Sample records for average sequence identity

  1. The nucleotide sequences of 5S rRNAs from a fern Dryopteris acuminata and a horsetail Equisetum arvense.

    PubMed Central

    Hori, H; Osawa, S; Takaiwa, F; Sugiura, M

    1984-01-01

    The nucleotide sequences from two Pteridophyta species, a fern Dryopteris acuminata and a horsetail Equisetum arvense have been determined. These two sequences are more related to those of the Bryophyta species (88% identity on average) than to those of seed plants (84% identity on average). PMID:6538332

  2. Remarkable sequence conservation of the last intron in the PKD1 gene.

    PubMed

    Rodova, Marianna; Islam, M Rafiq; Peterson, Kenneth R; Calvet, James P

    2003-10-01

    The last intron of the PKD1 gene (intron 45) was found to have exceptionally high sequence conservation across four mammalian species: human, mouse, rat, and dog. This conservation did not extend to the comparable intron in pufferfish. Pairwise comparisons for intron 45 showed 91% identity (human vs. dog) to 100% identity (mouse vs. rat) for an average for all four species of 94% identity. In contrast, introns 43 and 44 of the PKD1 gene had average pairwise identities of 57% and 54%, and exons 43, 44, and 45 and the coding region of exon 46 had average pairwise identities of 80%, 84%, 82%, and 80%. Intron 45 is 90 to 95 bp in length, with the major region of sequence divergence being in a central 4-bp to 9-bp variable region. RNA secondary structure analysis of intron 45 predicts a branching stem-loop structure in which the central variable region lies in one loop and the putative branch point sequence lies in another loop, suggesting that the intron adopts a specific stem-loop structure that may be important for its removal. Although intron 45 appears to conform to the class of small, G-triplet-containing introns that are spliced by a mechanism utilizing intron definition, its high sequence conservation may be a reflection of constraints imposed by a unique mechanism that coordinates splicing of this last PKD1 intron with polyadenylation.

  3. OrthoANI: An improved algorithm and software for calculating average nucleotide identity.

    PubMed

    Lee, Imchang; Ouk Kim, Yeong; Park, Sang-Cheol; Chun, Jongsik

    2016-02-01

    Species demarcation in Bacteria and Archaea is mainly based on overall genome relatedness, which serves a framework for modern microbiology. Current practice for obtaining these measures between two strains is shifting from experimentally determined similarity obtained by DNA-DNA hybridization (DDH) to genome-sequence-based similarity. Average nucleotide identity (ANI) is a simple algorithm that mimics DDH. Like DDH, ANI values between two genome sequences may be different from each other when reciprocal calculations are compared. We compared 63 690 pairs of genome sequences and found that the differences in reciprocal ANI values are significantly high, exceeding 1 % in some cases. To resolve this problem of not being symmetrical, a new algorithm, named OrthoANI, was developed to accommodate the concept of orthology for which both genome sequences were fragmented and only orthologous fragment pairs taken into consideration for calculating nucleotide identities. OrthoANI is highly correlated with ANI (using BLASTn) and the former showed approximately 0.1 % higher values than the latter. In conclusion, OrthoANI provides a more robust and faster means of calculating average nucleotide identity for taxonomic purposes. The standalone software tools are freely available at http://www.ezbiocloud.net/sw/oat.

  4. On the Role of Aggregation Prone Regions in Protein Evolution, Stability, and Enzymatic Catalysis: Insights from Diverse Analyses

    PubMed Central

    Buck, Patrick M.; Kumar, Sandeep; Singh, Satish K.

    2013-01-01

    The various roles that aggregation prone regions (APRs) are capable of playing in proteins are investigated here via comprehensive analyses of multiple non-redundant datasets containing randomly generated amino acid sequences, monomeric proteins, intrinsically disordered proteins (IDPs) and catalytic residues. Results from this study indicate that the aggregation propensities of monomeric protein sequences have been minimized compared to random sequences with uniform and natural amino acid compositions, as observed by a lower average aggregation propensity and fewer APRs that are shorter in length and more often punctuated by gate-keeper residues. However, evidence for evolutionary selective pressure to disrupt these sequence regions among homologous proteins is inconsistent. APRs are less conserved than average sequence identity among closely related homologues (≥80% sequence identity with a parent) but APRs are more conserved than average sequence identity among homologues that have at least 50% sequence identity with a parent. Structural analyses of APRs indicate that APRs are three times more likely to contain ordered versus disordered residues and that APRs frequently contribute more towards stabilizing proteins than equal length segments from the same protein. Catalytic residues and APRs were also found to be in structural contact significantly more often than expected by random chance. Our findings suggest that proteins have evolved by optimizing their risk of aggregation for cellular environments by both minimizing aggregation prone regions and by conserving those that are important for folding and function. In many cases, these sequence optimizations are insufficient to develop recombinant proteins into commercial products. Rational design strategies aimed at improving protein solubility for biotechnological purposes should carefully evaluate the contributions made by candidate APRs, targeted for disruption, towards protein structure and activity. PMID:24146608

  5. Subgrouping Automata: automatic sequence subgrouping using phylogenetic tree-based optimum subgrouping algorithm.

    PubMed

    Seo, Joo-Hyun; Park, Jihyang; Kim, Eun-Mi; Kim, Juhan; Joo, Keehyoung; Lee, Jooyoung; Kim, Byung-Gee

    2014-02-01

    Sequence subgrouping for a given sequence set can enable various informative tasks such as the functional discrimination of sequence subsets and the functional inference of unknown sequences. Because an identity threshold for sequence subgrouping may vary according to the given sequence set, it is highly desirable to construct a robust subgrouping algorithm which automatically identifies an optimal identity threshold and generates subgroups for a given sequence set. To meet this end, an automatic sequence subgrouping method, named 'Subgrouping Automata' was constructed. Firstly, tree analysis module analyzes the structure of tree and calculates the all possible subgroups in each node. Sequence similarity analysis module calculates average sequence similarity for all subgroups in each node. Representative sequence generation module finds a representative sequence using profile analysis and self-scoring for each subgroup. For all nodes, average sequence similarities are calculated and 'Subgrouping Automata' searches a node showing statistically maximum sequence similarity increase using Student's t-value. A node showing the maximum t-value, which gives the most significant differences in average sequence similarity between two adjacent nodes, is determined as an optimum subgrouping node in the phylogenetic tree. Further analysis showed that the optimum subgrouping node from SA prevents under-subgrouping and over-subgrouping. Copyright © 2013. Published by Elsevier Ltd.

  6. Microbial genomic taxonomy

    PubMed Central

    2013-01-01

    A need for a genomic species definition is emerging from several independent studies worldwide. In this commentary paper, we discuss recent studies on the genomic taxonomy of diverse microbial groups and a unified species definition based on genomics. Accordingly, strains from the same microbial species share >95% Average Amino Acid Identity (AAI) and Average Nucleotide Identity (ANI), >95% identity based on multiple alignment genes, <10 in Karlin genomic signature, and > 70% in silico Genome-to-Genome Hybridization similarity (GGDH). Species of the same genus will form monophyletic groups on the basis of 16S rRNA gene sequences, Multilocus Sequence Analysis (MLSA) and supertree analysis. In addition to the established requirements for species descriptions, we propose that new taxa descriptions should also include at least a draft genome sequence of the type strain in order to obtain a clear outlook on the genomic landscape of the novel microbe. The application of the new genomic species definition put forward here will allow researchers to use genome sequences to define simultaneously coherent phenotypic and genomic groups. PMID:24365132

  7. Implication of the cause of differences in 3D structures of proteins with high sequence identity based on analyses of amino acid sequences and 3D structures.

    PubMed

    Matsuoka, Masanari; Sugita, Masatake; Kikuchi, Takeshi

    2014-09-18

    Proteins that share a high sequence homology while exhibiting drastically different 3D structures are investigated in this study. Recently, artificial proteins related to the sequences of the GA and IgG binding GB domains of human serum albumin have been designed. These artificial proteins, referred to as GA and GB, share 98% amino acid sequence identity but exhibit different 3D structures, namely, a 3α bundle versus a 4β + α structure. Discriminating between their 3D structures based on their amino acid sequences is a very difficult problem. In the present work, in addition to using bioinformatics techniques, an analysis based on inter-residue average distance statistics is used to address this problem. It was hard to distinguish which structure a given sequence would take only with the results of ordinary analyses like BLAST and conservation analyses. However, in addition to these analyses, with the analysis based on the inter-residue average distance statistics and our sequence tendency analysis, we could infer which part would play an important role in its structural formation. The results suggest possible determinants of the different 3D structures for sequences with high sequence identity. The possibility of discriminating between the 3D structures based on the given sequences is also discussed.

  8. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences

    PubMed Central

    2018-01-01

    Prediction of taxonomy for marker gene sequences such as 16S ribosomal RNA (rRNA) is a fundamental task in microbiology. Most experimentally observed sequences are diverged from reference sequences of authoritatively named organisms, creating a challenge for prediction methods. I assessed the accuracy of several algorithms using cross-validation by identity, a new benchmark strategy which explicitly models the variation in distances between query sequences and the closest entry in a reference database. When the accuracy of genus predictions was averaged over a representative range of identities with the reference database (100%, 99%, 97%, 95% and 90%), all tested methods had ≤50% accuracy on the currently-popular V4 region of 16S rRNA. Accuracy was found to fall rapidly with identity; for example, better methods were found to have V4 genus prediction accuracy of ∼100% at 100% identity but ∼50% at 97% identity. The relationship between identity and taxonomy was quantified as the probability that a rank is the lowest shared by a pair of sequences with a given pair-wise identity. With the V4 region, 95% identity was found to be a twilight zone where taxonomy is highly ambiguous because the probabilities that the lowest shared rank between pairs of sequences is genus, family, order or class are approximately equal. PMID:29682424

  9. Oligonucleotide fingerprinting of rRNA genes for analysis of fungal community composition.

    PubMed

    Valinsky, Lea; Della Vedova, Gianluca; Jiang, Tao; Borneman, James

    2002-12-01

    Thorough assessments of fungal diversity are currently hindered by technological limitations. Here we describe a new method for identifying fungi, oligonucleotide fingerprinting of rRNA genes (OFRG). ORFG sorts arrayed rRNA gene (ribosomal DNA [rDNA]) clones into taxonomic clusters through a series of hybridization experiments, each using a single oligonucleotide probe. A simulated annealing algorithm was used to design an OFRG probe set for fungal rDNA. Analysis of 1,536 fungal rDNA clones derived from soil generated 455 clusters. A pairwise sequence analysis showed that clones with average sequence identities of 99.2% were grouped into the same cluster. To examine the accuracy of the taxonomic identities produced by this OFRG experiment, we determined the nucleotide sequences for 117 clones distributed throughout the tree. For all but two of these clones, the taxonomic identities generated by this OFRG experiment were consistent with those generated by a nucleotide sequence analysis. Eighty-eight percent of the clones were affiliated with Ascomycota, while 12% belonged to BASIDIOMYCOTA: A large fraction of the clones were affiliated with the genera Fusarium (404 clones) and Raciborskiomyces (176 clones). Smaller assemblages of clones had high sequence identities to the Alternaria, Ascobolus, Chaetomium, Cryptococcus, and Rhizoctonia clades.

  10. Sequence Similarity Presenter: a tool for the graphic display of similarities of long sequences for use in presentations.

    PubMed

    Fröhlich, K U

    1994-04-01

    A new method for the presentation of alignments of long sequences is described. The degree of identity for the aligned sequences is averaged for sections of a fixed number of residues. The resulting values are converted to shades of gray, with white corresponding to lack of identity and black corresponding to perfect identity. A sequence alignment is represented as a bar filled with varying shades of gray. The display is compact and allows for a fast and intuitive recognition of the distribution of regions with a high similarity. It is well suited for the presentation of alignments of long sequences, e.g. of protein superfamilies, in plenary lectures. The method is implemented as a HyperCard stack for Apple Macintosh computers. Several options for the modification of the output are available (e.g. background reduction, size of the summation window, consideration of amino acid similarity, inclusion of graphic markers to indicate specific domains). The output is a PostScript file which can be printed, imported as EPS or processed further with Adobe Illustrator.

  11. Draft Genome Sequences of Three Novel Low-Abundance Species Strains Isolated from Kefir Grain.

    PubMed

    Kim, Yongkyu; Blasche, Sonja; Patil, Kiran R

    2017-09-28

    We report here the genome sequences of three novel bacterial species strains- Bacillus kefirresidentii Opo, Rothia kefirresidentii KRP, and Streptococcus kefirresidentii YK-isolated from kefir grains collected in Germany. The draft genomes of these isolates were remarkably dissimilar (average nucleotide identities, 77.80%, 89.01%, and 92.10%, respectively) to those of the previously sequenced strains. Copyright © 2017 Kim et al.

  12. How Much Do rRNA Gene Surveys Underestimate Extant Bacterial Diversity?

    PubMed

    Rodriguez-R, Luis M; Castro, Juan C; Kyrpides, Nikos C; Cole, James R; Tiedje, James M; Konstantinidis, Konstantinos T

    2018-03-15

    The most common practice in studying and cataloguing prokaryotic diversity involves the grouping of sequences into operational taxonomic units (OTUs) at the 97% 16S rRNA gene sequence identity level, often using partial gene sequences, such as PCR-generated amplicons. Due to the high sequence conservation of rRNA genes, organisms belonging to closely related yet distinct species may be grouped under the same OTU. However, it remains unclear how much diversity has been underestimated by this practice. To address this question, we compared the OTUs of genomes defined at the 97% or 98.5% 16S rRNA gene identity level against OTUs of the same genomes defined at the 95% whole-genome average nucleotide identity (ANI), which is a much more accurate proxy for species. Our results show that OTUs resulting from a 98.5% 16S rRNA gene identity cutoff are more accurate than 97% compared to 95% ANI (90.5% versus 89.9% accuracy) but indistinguishable from any other threshold in the 98.29 to 98.78% range. Even with the more stringent thresholds, however, the 16S rRNA gene-based approach commonly underestimates the number of OTUs by ∼12%, on average, compared to the ANI-based approach (∼14% underestimation when using the 97% identity threshold). More importantly, the degree of underestimation can become 50% or more for certain taxa, such as the genera Pseudomonas , Burkholderia , Escherichia , Campylobacter , and Citrobacter These results provide a quantitative view of the degree of underestimation of extant prokaryotic diversity by 16S rRNA gene-defined OTUs and suggest that genomic resolution is often necessary. IMPORTANCE Species diversity is one of the most fundamental pieces of information for community ecology and conservational biology. Therefore, employing accurate proxies for what a species or the unit of diversity is are cornerstones for a large set of microbial ecology and diversity studies. The most common proxies currently used rely on the clustering of 16S rRNA gene sequences at some threshold of nucleotide identity, typically 97% or 98.5%. Here, we explore how well this strategy reflects the more accurate whole-genome-based proxies and determine the frequency with which the high conservation of 16S rRNA sequences masks substantial species-level diversity. Copyright © 2018 American Society for Microbiology.

  13. Genome variability of foot-and-mouth disease virus during the short period of the 2010 epidemic in Japan.

    PubMed

    Nishi, Tatsuya; Yamada, Manabu; Fukai, Katsuhiko; Shimada, Nobuaki; Morioka, Kazuki; Yoshida, Kazuo; Sakamoto, Kenichi; Kanno, Toru; Yamakawa, Makoto

    2017-02-01

    Foot-and-mouth disease virus (FMDV) is highly contagious and has a high mutation rate, leading to extensive genetic variation. To investigate how FMDV genetically evolves over a short period of an epidemic after initial introduction into an FMD-free area, whole L-fragment sequences of 104 FMDVs isolated from the 2010 epidemic in Japan, which continued for less than three months were determined and phylogenetically and comparatively analyzed. Phylogenetic analysis of whole L-fragment sequences showed that these isolates were classified into a single group, indicating that FMDV was introduced into Japan in the epidemic via a single introduction. Nucleotide sequences of 104 virus isolates showed more than 99.56% pairwise identity rates without any genetic deletion or insertion, although no sequences were completely identical with each other. These results indicate that genetic substitutions of FMDV occurred gradually and constantly during the epidemic and generation of an extensive mutant virus could have been prevented by rapid eradication strategy. From comparative analysis of variability of each FMDV protein coding region, VP4 and 2C regions showed the highest average identity rates and invariant rates, and were confirmed as highly conserved. In contrast, the protein coding regions VP2 and VP1 were confirmed to be highly variable regions with the lowest average identity rates and invariant rates, respectively. Our data demonstrate the importance of rapid eradication strategy in an FMD epidemic and provide valuable information on the genome variability of FMDV during the short period of an epidemic. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Draft Genome Sequence of Corynebacterium kefirresidentii SB, Isolated from Kefir.

    PubMed

    Blasche, Sonja; Kim, Yongkyu; Patil, Kiran R

    2017-09-14

    The genus Corynebacterium includes Gram-positive species with a high G+C content. We report here a novel species, Corynebacterium kefirresidentii SB, isolated from kefir grains collected in Germany. Its draft genome sequence was remarkably dissimilar (average nucleotide identity, 76.54%) to those of other Corynebacterium spp., confirming that this is a unique novel species. Copyright © 2017 Blasche et al.

  15. In silico analysis of L-asparaginase from different source organisms.

    PubMed

    Dwivedi, Vivek Dhar; Mishra, Sarad Kumar

    2014-06-01

    L-asparaginases are widely distributed enzymes among plants, fungi and bacteria. This enzyme catalyzes the conversion of l-asparagine to l-aspartate and ammonia and to a lesser extent the formation of l-glutamate from l-glutamine. In the present study, forty-five full-length amino acid sequences of L-asparaginases from bacteria, fungi and plants were collected and subjected to multiple sequence alignment (MSA), domain identification, discovering individual amino acid composition, and phylogenetic tree construction. MSA revealed that two glycine residues were identically found in all analyzed species, two glycine residues were also identically found in all the fungal and bacterial sources and three glycine residues were identically found in all plant and bacterial sources while no residue was identically found in plant and fungal L-asparaginases. Two major sequence clusters were constructed by phylogenetic analysis. One cluster contains eleven species of fungi, twelve species of bacteria, and one species of plant, whereas the other one contains fourteen species of plant, four species of fungi and three species bacteria. The amino acid composition result revealed that the average frequency of amino acid alanine is 10.77 percent that is very high in comparison to other amino acids in all analyzed species.

  16. Final progress report, Construction of a genome-wide highly characterized clone resource for genome sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nierman, William C.

    At TIGR, the human Bacterial Artificial Chromosome (BAC) end sequencing and trimming were with an overall sequencing success rate of 65%. CalTech human BAC libraries A, B, C and D as well as Roswell Park Cancer Institute's library RPCI-11 were used. To date, we have generated >300,000 end sequences from >186,000 human BAC clones with an average read length {approx}460 bp for a total of 141 Mb covering {approx}4.7% of the genome. Over sixty percent of the clones have BAC end sequences (BESs) from both ends representing over five-fold coverage of the genome by the paired-end clones. The average phredmore » Q20 length is {approx}400 bp. This high accuracy makes our BESs match the human finished sequences with an average identity of 99% and a match length of 450 bp, and a frequency of one match per 12.8 kb contig sequence. Our sample tracking has ensured a clone tracking accuracy of >90%, which gives researchers a high confidence in (1) retrieving the right clone from the BA C libraries based on the sequence matches; and (2) building a minimum tiling path of sequence-ready clones across the genome and genome assembly scaffolds.« less

  17. Streptococcus azizii sp. nov., isolated from naïve weanling mice.

    PubMed

    Shewmaker, Patricia Lynn; Whitney, Anne M; Gulvik, Christopher A; Lipman, Neil S

    2017-12-01

    Three isolates of a previously reported novel catalase-negative, Gram-stain-positive, coccoid, alpha-haemolytic, Streptococcus species that were associated with meningoencephalitis in naïve weanling mice were further evaluated to confirm their taxonomic status and to determine additional phenotypic and molecular characteristics. Comparative 16S rRNA gene sequence analysis showed nearly identical intra-species sequence similarity (≥99.9 %), and revealed the closest phylogenetically related species, Streptococcus acidominimus and Streptococcuscuniculi, with 97.0 and 97.5 % sequence similarity, respectively. The rpoB, sodA and recN genes were identical for the three isolates and were 87.6, 85.7 and 82.5 % similar to S. acidominimus and 89.7, 86.2 and 80.7 % similar to S. cuniculi, respectively. In silico DNA-DNA hybridization analyses of mouse isolate 12-5202 T against S. acidominimus CCUG 27296 T and S. cuniculi CCUG 65085 T produced estimated values of 26.4 and 25.7 % relatedness, and the calculated average nucleotide identity values were 81.9 and 81.7, respectively. These data confirm the taxonomic status of 12-5202 T as a distinct Streptococcus species, and we formally propose the type strain, Streptococcusazizii 12-5202 T (=CCUG 69378 T =DSM 103678 T ). The genome of Streptococcus azizii sp. nov. 12-5202 T contains 2062 total genes with a size of 2.34 Mbp, and an average G+C content of 42.76 mol%.

  18. Modestobacter caceresii sp. nov., novel actinobacteria with an insight into their adaptive mechanisms for survival in extreme hyper-arid Atacama Desert soils.

    PubMed

    Busarakam, Kanungnid; Bull, Alan T; Trujillo, Martha E; Riesco, Raul; Sangal, Vartul; van Wezel, Gilles P; Goodfellow, Michael

    2016-06-01

    A polyphasic study was designed to determine the taxonomic provenance of three Modestobacter strains isolated from an extreme hyper-arid Atacama Desert soil. The strains, isolates KNN 45-1a, KNN 45-2b(T) and KNN 45-3b, were shown to have chemotaxonomic and morphological properties in line with their classification in the genus Modestobacter. The isolates had identical 16S rRNA gene sequences and formed a branch in the Modestobacter gene tree that was most closely related to the type strain of Modestobacter marinus (99.6% similarity). All three isolates were distinguished readily from Modestobacter type strains by a broad range of phenotypic properties, by qualitative and quantitative differences in fatty acid profiles and by BOX fingerprint patterns. The whole genome sequence of isolate KNN 45-2b(T) showed 89.3% average nucleotide identity, 90.1% (SD: 10.97%) average amino acid identity and a digital DNA-DNA hybridization value of 42.4±3.1 against the genome sequence of M. marinus DSM 45201(T), values consistent with its assignment to a separate species. On the basis of all of these data, it is proposed that the isolates be assigned to the genus Modestobacter as Modestobacter caceresii sp. nov. with isolate KNN 45-2b(T) (CECT 9023(T)=DSM 101691(T)) as the type strain. Analysis of the whole-genome sequence of M. caceresii KNN 45-2b(T), with 4683 open reading frames and a genome size of ∽4.96Mb, revealed the presence of genes and gene-clusters that encode for properties relevant to its adaptability to harsh environmental conditions prevalent in extreme hyper arid Atacama Desert soils. Copyright © 2016. Published by Elsevier GmbH.

  19. Complete genome sequences of Geobacillus sp. WCH70, a thermophilic strain isolated from wood compost

    DOE PAGES

    Brumm, Phillip; Land, Miriam L.; Mead, David

    2016-04-27

    Geobacillus sp. WCH70 was one of several thermophilic organisms isolated from hot composts in the Middleton, WI area. Comparison of 16 S rRNA sequences showed the strain may be a new species, and is most closely related to G. galactosidasius and G. toebii. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2009 (CP001638). The genome of Geobacillus species WCH70 consists of one circular chromosome of 3,893,306 bp with an average G + C content of 43 %, and two circular plasmids of 33,899 and 10,287 bp with anmore » average G + C content of 40 %. Among sequenced organisms, Geobacillus sp. WCH70 shares highest Average Nucleotide Identity (86 %) with G. thermoglucosidasius strains, as well as similar genome organization. Geobacillus sp. WCH70 appears to be a highly adaptable organism, with an exceptionally high 125 annotated transposons in the genome. The organism also possesses four predicted restriction-modification systems not found in other Geobacillus species.« less

  20. Complete genome sequences of Geobacillus sp. WCH70, a thermophilic strain isolated from wood compost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumm, Phillip; Land, Miriam L.; Mead, David

    Geobacillus sp. WCH70 was one of several thermophilic organisms isolated from hot composts in the Middleton, WI area. Comparison of 16 S rRNA sequences showed the strain may be a new species, and is most closely related to G. galactosidasius and G. toebii. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2009 (CP001638). The genome of Geobacillus species WCH70 consists of one circular chromosome of 3,893,306 bp with an average G + C content of 43 %, and two circular plasmids of 33,899 and 10,287 bp with anmore » average G + C content of 40 %. Among sequenced organisms, Geobacillus sp. WCH70 shares highest Average Nucleotide Identity (86 %) with G. thermoglucosidasius strains, as well as similar genome organization. Geobacillus sp. WCH70 appears to be a highly adaptable organism, with an exceptionally high 125 annotated transposons in the genome. The organism also possesses four predicted restriction-modification systems not found in other Geobacillus species.« less

  1. Limited Genetic Diversity Preceded Extinction of the Tasmanian Tiger

    PubMed Central

    Menzies, Brandon R.; Renfree, Marilyn B.; Heider, Thomas; Mayer, Frieder; Hildebrandt, Thomas B.; Pask, Andrew J.

    2012-01-01

    The Tasmanian tiger or thylacine was the largest carnivorous marsupial when Europeans first reached Australia. Sadly, the last known thylacine died in captivity in 1936. A recent analysis of the genome of the closely related and extant Tasmanian devil demonstrated limited genetic diversity between individuals. While a similar lack of diversity has been reported for the thylacine, this analysis was based on just two individuals. Here we report the sequencing of an additional 12 museum-archived specimens collected between 102 and 159 years ago. We examined a portion of the mitochondrial DNA hyper-variable control region and determined that all sequences were on average 99.5% identical at the nucleotide level. As a measure of accuracy we also sequenced mitochondrial DNA from a mother and two offspring. As expected, these samples were found to be 100% identical, validating our methods. We also used 454 sequencing to reconstruct 2.1 kilobases of the mitochondrial genome, which shared 99.91% identity with the two complete thylacine mitochondrial genomes published previously. Our thylacine genomic data also contained three highly divergent putative nuclear mitochondrial sequences, which grouped phylogenetically with the published thylacine mitochondrial homologs but contained 100-fold more polymorphisms than the conserved fragments. Together, our data suggest that the thylacine population in Tasmania had limited genetic diversity prior to its extinction, possibly as a result of their geographic isolation from mainland Australia approximately 10,000 years ago. PMID:22530022

  2. Bradyrhizobium paxllaeri sp. nov. and Bradyrhizobium icense sp. nov., nitrogen-fixing rhizobial symbionts of Lima bean (Phaseolus lunatus L.) in Peru.

    PubMed

    Durán, David; Rey, Luis; Mayo, Juan; Zúñiga-Dávila, Doris; Imperial, Juan; Ruiz-Argüeso, Tomás; Martínez-Romero, Esperanza; Ormeño-Orrillo, Ernesto

    2014-06-01

    A group of strains isolated from root nodules of Phaseolus lunatus (Lima bean) in Peru were characterized by genotypic, genomic and phenotypic methods. All strains possessed identical 16S rRNA gene sequences that were 99.9% identical to that of Bradyrhizobium lablabi CCBAU 23086(T). Despite having identical 16S rRNA gene sequences, the Phaseolus lunatus strains could be divided into two clades by sequence analysis of recA, atpD, glnII, dnaK and gyrB genes. The genome sequence of a representative of each clade was obtained and compared to the genomes of closely related species of the genus Bradyrhizobium. Average nucleotide identity values below the species circumscription threshold were obtained when comparing the two clades to each other (88.6%) and with all type strains of the genus Bradyrhizobium (≤92.9%). Phenotypes distinguishing both clades from all described and closely related species of the genus Bradyrhizobium were found. On the basis of the results obtained, two novel species, Bradyrhizobium paxllaeri sp. nov. (type strain LMTR 21(T) = DSM 18454(T) = HAMBI 2911(T)) and Bradyrhizobium icense sp. nov. (type strain LMTR 13(T) = HAMBI 3584(T) = CECT 8509(T) = CNPSo 2583(T)), are proposed to accommodate the uncovered clades of Phaseolus lunatus bradyrhizobia. These species share highly related but distinct nifH and nodC symbiosis genes. © 2014 IUMS.

  3. Sexual identity trajectories among sexual-minority youths: gender comparisons.

    PubMed

    Savin-Williams, R C; Diamond, L M

    2000-12-01

    The present investigation explored gender differences in sexual identity development--first same-sex attractions, self-labeling, same-sex sexual contact, and disclosure--among 164 sexual-minority young adults. Based on interviews, results indicated the value of assessing gender differences in the context, timing, spacing, and sequencing of sexual identity milestones. Adolescent males had an earlier onset of all milestones except disclosure. The context for sexual identity milestones were likely to be emotionally oriented for young women and sexually oriented for young men. The gap from first same-sex attractions (8-9 years of age) to first disclosure (around 18 years) averaged 10 years for both sexes. Young women followed label-first developmental trajectories; men were more likely to pursue sex before identifying themselves as gay. In terms of achieving sexual identity milestones, gender mattered, but it was not everything.

  4. Genomic characterization reconfirms the taxonomic status of Lactobacillus parakefiri

    PubMed Central

    TANIZAWA, Yasuhiro; KOBAYASHI, Hisami; KAMINUMA, Eli; SAKAMOTO, Mitsuo; OHKUMA, Moriya; NAKAMURA, Yasukazu; ARITA, Masanori; TOHNO, Masanori

    2017-01-01

    Whole-genome sequencing was performed for Lactobacillus parakefiri JCM 8573T to confirm its hitherto controversial taxonomic position. Here, we report its first reliable reference genome. Genome-wide metrics, such as average nucleotide identity and digital DNA-DNA hybridization, and phylogenomic analysis based on multiple genes supported its taxonomic status as a distinct species in the genus Lactobacillus. The availability of a reliable genome sequence will aid future investigations on the industrial applications of L. parakefiri in functional foods such as kefir grains. PMID:28748134

  5. Rapid and Accurate Sequencing of Enterovirus Genomes Using MinION Nanopore Sequencer.

    PubMed

    Wang, Ji; Ke, Yue Hua; Zhang, Yong; Huang, Ke Qiang; Wang, Lei; Shen, Xin Xin; Dong, Xiao Ping; Xu, Wen Bo; Ma, Xue Jun

    2017-10-01

    Knowledge of an enterovirus genome sequence is very important in epidemiological investigation to identify transmission patterns and ascertain the extent of an outbreak. The MinION sequencer is increasingly used to sequence various viral pathogens in many clinical situations because of its long reads, portability, real-time accessibility of sequenced data, and very low initial costs. However, information is lacking on MinION sequencing of enterovirus genomes. In this proof-of-concept study using Enterovirus 71 (EV71) and Coxsackievirus A16 (CA16) strains as examples, we established an amplicon-based whole genome sequencing method using MinION. We explored the accuracy, minimum sequencing time, discrimination and high-throughput sequencing ability of MinION, and compared its performance with Sanger sequencing. Within the first minute (min) of sequencing, the accuracy of MinION was 98.5% for the single EV71 strain and 94.12%-97.33% for 10 genetically-related CA16 strains. In as little as 14 min, 99% identity was reached for the single EV71 strain, and in 17 min (on average), 99% identity was achieved for 10 CA16 strains in a single run. MinION is suitable for whole genome sequencing of enteroviruses with sufficient accuracy and fine discrimination and has the potential as a fast, reliable and convenient method for routine use. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  6. Whole-genome sequencing reveals that Shewanella haliotis Kim et al. 2007 can be considered a later heterotypic synonym of Shewanella algae Simidu et al. 1990.

    PubMed

    Szeinbaum, Nadia; Kellum, Cailin E; Glass, Jennifer B; Janda, J Michael; DiChristina, Thomas J

    2018-04-01

    Previously, experimental DNA-DNA hybridization (DDH) between Shewanellahaliotis JCM 14758 T and Shewanellaalgae JCM 21037 T had suggested that the two strains could be considered different species, despite minimal phenotypic differences. The recent isolation of Shewanella sp. MN-01, with 99 % 16S rRNA gene identity to S. algae and S. haliotis, revealed a potential taxonomic problem between these two species. In this study, we reassessed the nomenclature of S. haliotis and S. algae using available whole-genome sequences. The whole-genome sequence of S. haliotis JCM 14758 T and ten S. algae strains showed ≥97.7 % average nucleotide identity and >78.9 % digital DDH, clearly above the recommended species thresholds. According to the rules of priority and in view of the results obtained, S. haliotis is to be considered a later heterotypic synonym of S. algae. Because the whole-genome sequence of Shewanella sp. strain MN-01 shares >99 % ANI with S. algae JCM 14758 T , it can be confidently identified as S. algae.

  7. Bradyrhizobium algeriense sp. nov., a novel species isolated from effective nodules of Retama sphaerocarpa from Northeastern Algeria.

    PubMed

    Ahnia, Hadjira; Bourebaba, Yasmina; Durán, David; Boulila, Farida; Palacios, José M; Rey, Luis; Ruiz-Argüeso, Tomás; Boulila, Abdelghani; Imperial, Juan

    2018-04-04

    We have characterized genetic, phenotypic and symbiotic properties of bacterial strains previously isolated from nitrogen-fixing nodules of Retama sphaerocarpa from Northern Algeria. Phylogenetic analyses of 16S rRNA genes and three concatenated housekeeping genes, recA, atpD and glnII, placed them in a new divergent group that is proposed to form a new Bradyrhizobium species, Bradyrhizobium algeriense sp. nov. (type strain RST89 T , LMG 27618 and CECT 8363). Based on these phylogenetic markers and on genomic identity data derived from draft genomic sequences, Bradyrhizobium valentinum LmjM3 T , Bradyrhizobium lablabi CCBAU 23086 T , Bradyrhizobium retamae Ro19 T , and Bradyrhizobium jicamae PAC68 T are the closest relatives of B. algeriense RST89 T , with sequence identities of 92-94% and Average Nucleotide Identities (ANIm) under 90%, well below the 95-96% species circumscription threshold. Likewise, a comparison of whole-cell proteomic patterns, estimated by Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight (MALDI-TOF) mass spectrometric analysis, yielded almost identical spectra between B. algeriense strains but significant differences with B. valentinum, Bradyrhizobium paxllaeri, Bradyrhizobium icense, B. lablabi, B. jicamae and B. retamae. A phylogenetic tree based on symbiotic gene nodC revealed that the B. algeriense sequences cluster with sequences from the Bradyrhizobium symbiovar retamae, previously defined with B. retamae strains isolated from Retama monosperma. B. algeriense strains were able to establish effective symbioses with Retama raetam, Lupinus micranthus, Lupinus albus and Genista numidica, but not with Lupinus angustifolius or Glycine max. Copyright © 2018 Elsevier GmbH. All rights reserved.

  8. Characterization and Complete Nucleotide Sequence of an Unusual Reptilian Retrovirus Recovered from the Order Crocodylia

    PubMed Central

    Martin, Joanne; Kabat, Peter; Herniou, Elisabeth; Tristem, Michael

    2002-01-01

    A novel group of retroviruses found within the order Crocodylia are described. Phylogenetic analyses demonstrate that they are probably the most divergent members of the Retroviridae described to date; even the most conserved regions of Pol show an average of only 23% amino acid identity when compared to other retroviruses. PMID:11932432

  9. [Vertical variability of Pinus sylvestris var. mongolica tree ring delta13C and its relationship with tree ring width in northern Daxing' an Mountains of Northeast China].

    PubMed

    Shang, Zhi-Yuan; Wang, Jian; Zhang, Wen; Li, Yan-Yan; Cui, Ming-Xing; Chen, Zhen-Ju; Zhao, Xing-Yun

    2013-01-01

    A measurement was made on the vertical direction tree ring stable carbon isotope ratio (delta13C) and tree ring width of Pinus sylvestris var. mongolica in northern Daxing' an Mountains of Northeast China, with the relationship between the vertical direction variations of the tree ring delta13C and tree ring width analyzed. In the whole ring of xylem, earlywood (EW) and bark endodermis, the delta13C all exhibited an increasing trend from the top to the base at first, with the maximum at the bottom of tree crown, and then, decreased rapidly to the minimum downward. The EW and late-wood (LW) had an increasing ratio of average tree ring width from the base to the top. The average annual sequence of the delta13C in vertical direction had an obvious reverse correspondence with the average annual sequence of tree ring width, and had a trend comparatively in line with the average annual sequence of the tree ring width ratio of EW to LW above tree crown. The variance analysis showed that there existed significant differences in the sequences of tree ring delta13C and ring width in vertical direction, and the magnitude of vertical delta13C variability was basically the same as that of the inter-annual delta13C variability. The year-to-year variation trend of the vertical delta13C sequence was approximately identical. For each sample, the delta13C sequence at the same heights was negatively correlated with the ring width sequence, but the statistical significance differed with tree height.

  10. Characterization of 32 microsatellite loci for the Pacific red snapper, Lutjanus peru, through next generation sequencing.

    PubMed

    Paz-García, David A; Munguía-Vega, Adrián; Plomozo-Lugo, Tomas; Weaver, Amy Hudson

    2017-04-01

    We developed a set of hypervariable microsatellite markers for the Pacific red snapper (Lutjanus peru), an economically important marine fish for small-scale fisheries in the west coast of Mexico. We performed shotgun genome sequencing with the 454 XL titanium chemistry and used bioinformatic tools to search for perfect microsatellite loci. We selected 66 primer pairs that were synthesized and genotyped in an ABI PRISM 3730XL DNA sequencer in 32 individuals from the Gulf of California. We estimated levels of genetic diversity, deviations from linkage and Hardy-Weinberg equilibrium, estimated the frequency of null alleles and the probability of individual identity for the new markers. We reanalyzed 16 loci in 16 individuals to estimate genotyping error rates. Eighteen loci failed to amplify, 16 loci were discarded due to unspecific amplifications and 32 loci (14 tetranucleotide and 18 dinucleotide) were successfully scored. The average number of alleles per locus was 21 (±6.87, SD) and ranged from 8 to 34. The average observed and expected heterozygosities were 0.787 (±0.144 SD, range 0.250-0.935) and 0.909 (±0.122 SD, range 0.381-0.965), respectively. No significant linkage was detected. Eight loci showed deviations from Hardy-Weinberg equilibrium, and from these, four loci showed moderate null allele frequencies (0.104-0.220). The probability of individual identity for the new loci was 1.46 -62 . Genotyping error rates averaged 9.58%. The new markers will be useful to investigate patterns of larval dispersal, metapopulation dynamics, fine-scale genetic structure and diversity aimed to inform the implementation of spatially explicit fisheries management strategies in the Gulf of California.

  11. Coming-out across the life course: implications of age and historical context.

    PubMed

    Floyd, Frank J; Bakeman, Roger

    2006-06-01

    Effects of age and the calendar year when individuals first self-identified as gay, lesbian, or bisexual on their sexual orientation identity development were examined in a large community sample (N=767, 47% female, 18-74-years-old). These 2 variables were used to examine the timing and sequencing of 7 coming-out experiences: first awareness of same-sex attraction; first sexual experiences with opposite-sex partners; first sexual experiences with same-sex partners; self-identification as gay, lesbian, or bisexual; disclosure to someone other than a parent; disclosure to mother; and disclosure to father. The significant effects of age revealed that self-identification in adolescence as opposed to adulthood was associated with an overall young coming-out trajectory for all milestone experiences, which occurred in both earlier and recent historical contexts. Adolescents as opposed to adult self-identifiers were also more likely to demonstrate identity-centered sequences in which self-identification preceded same-sex sexual experiences, and fewer of these individuals had any heterosexual experience. Significant historical context effects indicated recent trends toward younger disclosure of orientation to others and to parents, greater likelihood of an identity-centered sequence, and younger ages for first heterosexual but not same-sex, sexual experiences. Among women, there was a recent trend toward greater likelihood of having a bisexual identity milestone. In general, the maturational effects were independent of historical context, with the exception that only adolescent self-identifiers who came out recently disclosed to others and to parents at an average age younger than 18 years. These developmental and historical trends expand on the stage-sequential framework to show how the process of sexual orientation identity development is driven by maturational factors as well as social changes.

  12. Global versus Local Regulatory Roles for Lrp-Related Proteins: Haemophilus influenzae as a Case Study

    PubMed Central

    Friedberg, Devorah; Midkiff, Michael; Calvo, Joseph M.

    2001-01-01

    Lrp (leucine-responsive regulatory protein) plays a global regulatory role in Escherichia coli, affecting expression of dozens of operons. Numerous lrp-related genes have been identified in different bacteria and archaea, including asnC, an E. coli gene that was the first reported member of this family. Pairwise comparisons of amino acid sequences of the corresponding proteins shows an average sequence identity of only 29% for the vast majority of comparisons. By contrast, Lrp-related proteins from enteric bacteria show more than 97% amino acid identity. Is the global regulatory role associated with E. coli Lrp limited to enteric bacteria? To probe this question we investigated LrfB, an Lrp-related protein from Haemophilus influenzae that shares 75% sequence identity with E. coli Lrp (highest sequence identity among 42 sequences compared). A strain of H. influenzae having an lrfB null allele grew at the wild-type growth rate but with a filamentous morphology. A comparison of two-dimensional (2D) electrophoretic patterns of proteins from parent and mutant strains showed only two differences (comparable studies with lrp+ and lrp E. coli strains by others showed 20 differences). The abundance of LrfB in H. influenzae, estimated by Western blotting experiments, was about 130 dimers per cell (compared to 3,000 dimers per E. coli cell). LrfB expressed in E. coli replaced Lrp as a repressor of the lrp gene but acted only to a limited extent as an activator of the ilvIH operon. Thus, although LrfB resembles Lrp sufficiently to perform some of its functions, its low abundance is consonant with a more local role in regulating but a few genes, a view consistent with the results of the 2D electrophoretic analysis. We speculate that an Lrp having a global regulatory role evolved to help enteric bacteria adapt to their ecological niches and that it is unlikely that Lrp-related proteins in other organisms have a broad regulatory function. PMID:11395465

  13. Molecular Identification of Sibling Species of Sclerodermus (Hymenoptera: Bethylidae) That Parasitize Buprestid and Cerambycid Beetles by Using Partial Sequences of Mitochondrial DNA Cytochrome Oxidase Subunit 1 and 28S Ribosomal RNA Gene

    PubMed Central

    Jiang, Yuan; Yang, Zhongqi; Wang, Xiaoyi; Hou, Yuxia

    2015-01-01

    The species belonging to Sclerodermus (Hymenoptera: Bethylidae) are currently the most important insect natural enemies of wood borer pests, mainly buprestid and cerambycid beetles, in China. However, some sibling species of this genus are very difficult to distinguish because of their similar morphological features. To address this issue, we conducted phylogenetic and genetic analyses of cytochrome oxidase subunit I (COI) and 28S RNA gene sequences from eight species of Sclerodermus reared from different wood borer pests. The eight sibling species were as follows: S. guani Xiao et Wu, S. sichuanensis Xiao, S. pupariae Yang et Yao, and Sclerodermus spp. (Nos. 1–5). A 594-bp fragment of COI and 750-bp fragment of 28S were subsequently sequenced. For COI, the G-C content was found to be low in all the species, averaging to about 30.0%. Sequence divergences (Kimura-2-parameter distances) between congeneric species averaged to 4.5%, and intraspecific divergences averaged to about 0.09%. Further, the maximum sequence divergences between congeneric species and Sclerodermus sp. (No. 5) averaged to about 16.5%. All 136 samples analyzed were included in six reciprocally monophyletic clades in the COI neighbor-joining (NJ) tree. The NJ tree inferred from the 28S rRNA sequence yielded almost identical results, but the samples from S. guani, S. sichuanensis, S. pupariae, and Sclerodermus spp. (Nos. 1–4) clustered together and only Sclerodermus sp. (No. 5) clustered separately. Our findings indicate that the standard barcode region of COI can be efficiently used to distinguish morphologically similar Sclerodermus species. Further, we speculate that Sclerodermus sp. (No. 5) might be a new species of Sclerodermus. PMID:25782000

  14. Partial Shotgun Sequencing of the Boechera stricta Genome Reveals Extensive Microsynteny and Promoter Conservation with Arabidopsis1[W

    PubMed Central

    Windsor, Aaron J.; Schranz, M. Eric; Formanová, Nataša; Gebauer-Jung, Steffi; Bishop, John G.; Schnabelrauch, Domenica; Kroymann, Juergen; Mitchell-Olds, Thomas

    2006-01-01

    Comparative genomics provides insight into the evolutionary dynamics that shape discrete sequences as well as whole genomes. To advance comparative genomics within the Brassicaceae, we have end sequenced 23,136 medium-sized insert clones from Boechera stricta, a wild relative of Arabidopsis (Arabidopsis thaliana). A significant proportion of these sequences, 18,797, are nonredundant and display highly significant similarity (BLASTn e-value ≤ 10−30) to low copy number Arabidopsis genomic regions, including more than 9,000 annotated coding sequences. We have used this dataset to identify orthologous gene pairs in the two species and to perform a global comparison of DNA regions 5′ to annotated coding regions. On average, the 500 nucleotides upstream to coding sequences display 71.4% identity between the two species. In a similar analysis, 61.4% identity was observed between 5′ noncoding sequences of Brassica oleracea and Arabidopsis, indicating that regulatory regions are not as diverged among these lineages as previously anticipated. By mapping the B. stricta end sequences onto the Arabidopsis genome, we have identified nearly 2,000 conserved blocks of microsynteny (bracketing 26% of the Arabidopsis genome). A comparison of fully sequenced B. stricta inserts to their homologous Arabidopsis genomic regions indicates that indel polymorphisms >5 kb contribute substantially to the genome size difference observed between the two species. Further, we demonstrate that microsynteny inferred from end-sequence data can be applied to the rapid identification and cloning of genomic regions of interest from nonmodel species. These results suggest that among diploid relatives of Arabidopsis, small- to medium-scale shotgun sequencing approaches can provide rapid and cost-effective benefits to evolutionary and/or functional comparative genomic frameworks. PMID:16607030

  15. The Impact of Mutation and Gene Conversion on the Local Diversification of Antigen Genes in African Trypanosomes

    PubMed Central

    Gjini, Erida; Haydon, Daniel T.; Barry, J. David; Cobbold, Christina A.

    2012-01-01

    Patterns of genetic diversity in parasite antigen gene families hold important information about their potential to generate antigenic variation within and between hosts. The evolution of such gene families is typically driven by gene duplication, followed by point mutation and gene conversion. There is great interest in estimating the rates of these processes from molecular sequences for understanding the evolution of the pathogen and its significance for infection processes. In this study, a series of models are constructed to investigate hypotheses about the nucleotide diversity patterns between closely related gene sequences from the antigen gene archive of the African trypanosome, the protozoan parasite causative of human sleeping sickness in Equatorial Africa. We use a hidden Markov model approach to identify two scales of diversification: clustering of sequence mismatches, a putative indicator of gene conversion events with other lower-identity donor genes in the archive, and at a sparser scale, isolated mismatches, likely arising from independent point mutations. In addition to quantifying the respective probabilities of occurrence of these two processes, our approach yields estimates for the gene conversion tract length distribution and the average diversity contributed locally by conversion events. Model fitting is conducted using a Bayesian framework. We find that diversifying gene conversion events with lower-identity partners occur at least five times less frequently than point mutations on variant surface glycoprotein (VSG) pairs, and the average imported conversion tract is between 14 and 25 nucleotides long. However, because of the high diversity introduced by gene conversion, the two processes have almost equal impact on the per-nucleotide rate of sequence diversification between VSG subfamily members. We are able to disentangle the most likely locations of point mutations and conversions on each aligned gene pair. PMID:22735079

  16. In-silico Taxonomic Classification of 373 Genomes Reveals Species Misidentification and New Genospecies within the Genus Pseudomonas.

    PubMed

    Tran, Phuong N; Savka, Michael A; Gan, Han Ming

    2017-01-01

    The genus Pseudomonas has one of the largest diversity of species within the Bacteria kingdom. To date, its taxonomy is still being revised and updated. Due to the non-standardized procedure and ambiguous thresholds at species level, largely based on 16S rRNA gene or conventional biochemical assay, species identification of publicly available Pseudomonas genomes remains questionable. In this study, we performed a large-scale analysis of all Pseudomonas genomes with species designation (excluding the well-defined P. aeruginosa ) and re-evaluated their taxonomic assignment via in silico genome-genome hybridization and/or genetic comparison with valid type species. Three-hundred and seventy-three pseudomonad genomes were analyzed and subsequently clustered into 145 distinct genospecies. We detected 207 erroneous labels and corrected 43 to the proper species based on Average Nucleotide Identity Multilocus Sequence Typing (MLST) sequence similarity to the type strain. Surprisingly, more than half of the genomes initially designated as Pseudomonas syringae and Pseudomonas fluorescens should be classified either to a previously described species or to a new genospecies. Notably, high pairwise average nucleotide identity (>95%) indicating species-level similarity was observed between P. synxantha-P. libanensis, P. psychrotolerans - P. oryzihabitans , and P. kilonensis- P. brassicacearum , that were previously differentiated based on conventional biochemical tests and/or genome-genome hybridization techniques.

  17. Function-based classification of carbohydrate-active enzymes by recognition of short, conserved peptide motifs.

    PubMed

    Busk, Peter Kamp; Lange, Lene

    2013-06-01

    Functional prediction of carbohydrate-active enzymes is difficult due to low sequence identity. However, similar enzymes often share a few short motifs, e.g., around the active site, even when the overall sequences are very different. To exploit this notion for functional prediction of carbohydrate-active enzymes, we developed a simple algorithm, peptide pattern recognition (PPR), that can divide proteins into groups of sequences that share a set of short conserved sequences. When this method was used on 118 glycoside hydrolase 5 proteins with 9% average pairwise identity and representing four characterized enzymatic functions, 97% of the proteins were sorted into groups correlating with their enzymatic activity. Furthermore, we analyzed 8,138 glycoside hydrolase 13 proteins including 204 experimentally characterized enzymes with 28 different functions. There was a 91% correlation between group and enzyme activity. These results indicate that the function of carbohydrate-active enzymes can be predicted with high precision by finding short, conserved motifs in their sequences. The glycoside hydrolase 61 family is important for fungal biomass conversion, but only a few proteins of this family have been functionally characterized. Interestingly, PPR divided 743 glycoside hydrolase 61 proteins into 16 subfamilies useful for targeted investigation of the function of these proteins and pinpointed three conserved motifs with putative importance for enzyme activity. Furthermore, the conserved sequences were useful for cloning of new, subfamily-specific glycoside hydrolase 61 proteins from 14 fungi. In conclusion, identification of conserved sequence motifs is a new approach to sequence analysis that can predict carbohydrate-active enzyme functions with high precision.

  18. High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake.

    PubMed

    DeMaere, Matthew Z; Williams, Timothy J; Allen, Michelle A; Brown, Mark V; Gibson, John A E; Rich, John; Lauro, Federico M; Dyall-Smith, Michael; Davenport, Karen W; Woyke, Tanja; Kyrpides, Nikos C; Tringe, Susannah G; Cavicchioli, Ricardo

    2013-10-15

    Deep Lake in Antarctica is a globally isolated, hypersaline system that remains liquid at temperatures down to -20 °C. By analyzing metagenome data and genomes of four isolates we assessed genome variation and patterns of gene exchange to learn how the lake community evolved. The lake is completely and uniformly dominated by haloarchaea, comprising a hierarchically structured, low-complexity community that differs greatly to temperate and tropical hypersaline environments. The four Deep Lake isolates represent distinct genera (∼85% 16S rRNA gene similarity and ∼73% genome average nucleotide identity) with genomic characteristics indicative of niche adaptation, and collectively account for ∼72% of the cellular community. Network analysis revealed a remarkable level of intergenera gene exchange, including the sharing of long contiguous regions (up to 35 kb) of high identity (∼100%). Although the genomes of closely related Halobacterium, Haloquadratum, and Haloarcula (>90% average nucleotide identity) shared regions of high identity between species or strains, the four Deep Lake isolates were the only distantly related haloarchaea to share long high-identity regions. Moreover, the Deep Lake high-identity regions did not match to any other hypersaline environment metagenome data. The most abundant species, tADL, appears to play a central role in the exchange of insertion sequences, but not the exchange of high-identity regions. The genomic characteristics of the four haloarchaea are consistent with a lake ecosystem that sustains a high level of intergenera gene exchange while selecting for ecotypes that maintain sympatric speciation. The peculiarities of this polar system restrict which species can grow and provide a tempo and mode for accentuating gene exchange.

  19. Nucleotide sequencing and identification of some wild mushrooms.

    PubMed

    Das, Sudip Kumar; Mandal, Aninda; Datta, Animesh K; Gupta, Sudha; Paul, Rita; Saha, Aditi; Sengupta, Sonali; Dubey, Priyanka Kumari

    2013-01-01

    The rDNA-ITS (Ribosomal DNA Internal Transcribed Spacers) fragment of the genomic DNA of 8 wild edible mushrooms (collected from Eastern Chota Nagpur Plateau of West Bengal, India) was amplified using ITS1 (Internal Transcribed Spacers 1) and ITS2 primers and subjected to nucleotide sequence determination for identification of mushrooms as mentioned. The sequences were aligned using ClustalW software program. The aligned sequences revealed identity (homology percentage from GenBank data base) of Amanita hemibapha [CN (Chota Nagpur) 1, % identity 99 (JX844716.1)], Amanita sp. [CN 2, % identity 98 (JX844763.1)], Astraeus hygrometricus [CN 3, % identity 87 (FJ536664.1)], Termitomyces sp. [CN 4, % identity 90 (JF746992.1)], Termitomyces sp. [CN 5, % identity 99 (GU001667.1)], T. microcarpus [CN 6, % identity 82 (EF421077.1)], Termitomyces sp. [CN 7, % identity 76 (JF746993.1)], and Volvariella volvacea [CN 8, % identity 100 (JN086680.1)]. Although out of 8 mushrooms 4 could be identified up to species level, the nucleotide sequences of the rest may be relevant to further characterization. A phylogenetic tree is constructed using Neighbor-Joining method showing interrelationship between/among the mushrooms. The determined nucleotide sequences of the mushrooms may provide additional information enriching GenBank database aiding to molecular taxonomy and facilitating its domestication and characterization for human benefits.

  20. Listeria costaricensis sp. nov.

    PubMed

    Núñez-Montero, Kattia; Leclercq, Alexandre; Moura, Alexandra; Vales, Guillaume; Peraza, Johnny; Pizarro-Cerdá, Javier; Lecuit, Marc

    2018-03-01

    A bacterial strain isolated from a food processing drainage system in Costa Rica fulfilled the criteria as belonging to the genus Listeria, but could not be assigned to any of the known species. Phylogenetic analysis based on the 16S rRNA gene revealed highest sequence similarity with the type strain of Listeria floridensis (98.7 %). Phylogenetic analysis based on Listeria core genomes placed the novel taxon within the Listeria fleishmannii, L. floridensis and Listeria aquatica clade (Listeria sensu lato). Whole-genome sequence analyses based on the average nucleotide blast identity (ANI<80 %) indicated that this isolate belonged to a novel species. Results of pairwise amino acid identity (AAI>70 %) and percentage of conserved proteins (POCP>68 %) with currently known Listeria species, as well as of biochemical characterization, confirmed that the strain constituted a novel species within the genus Listeria. The name Listeria costaricensis sp. nov. is proposed for the novel species, and is represented by the type strain CLIP 2016/00682 T (=CIP 111400 T =DSM 105474 T ).

  1. High quality draft genome sequence of Janthinobacterium psychrotolerans sp. nov., isolated from a frozen freshwater pond.

    PubMed

    Gong, Xianzhe; Skrivergaard, Stig; Korsgaard, Benjamin Smed; Schreiber, Lars; Marshall, Ian P G; Finster, Kai; Schramm, Andreas

    2017-01-01

    Strain S3-2 T , isolated from sediment of a frozen freshwater pond, shares 99% 16S rRNA gene sequence identity with strains of the genus Janthinobacterium . Strain S3-2 T is a facultative anaerobe that lacks the ability to produce violacein but shows antibiotic resistance, psychrotolerance, incomplete denitrification, and fermentation. The draft genome of strain S3-2 T has a size of ~5.8 Mbp and contains 5,297 genes, including 115 RNA genes. Based on the phenotypic properties of the strain, the low in silico DNA-DNA hybridization (DDH) values with related genomes (<35%), and the low whole genome-based average nucleotide identity (ANI) (<86%) with other strains within the genus Janthinobacterium, we propose that strain S3-2 T is the type strain (= DSM 102223 = LMG 29653) of a new species within this genus. We propose the name Janthinobacterium psychrotolerans sp. nov. to emphasize the capability of the strain to grow at low temperatures.

  2. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity

    NASA Technical Reports Server (NTRS)

    Fox, G. E.; Wisotzkey, J. D.; Jurtshuk, P. Jr

    1992-01-01

    16S rRNA (genes coding for rRNA) sequence comparisons were conducted with the following three psychrophilic strains: Bacillus globisporus W25T (T = type strain) and Bacillus psychrophilus W16AT, and W5. These strains exhibited more than 99.5% sequence identity and within experimental uncertainty could be regarded as identical. Their close taxonomic relationship was further documented by phenotypic similarities. In contrast, previously published DNA-DNA hybridization results have convincingly established that these strains do not belong to the same species if current standards are used. These results emphasize the important point that effective identity of 16S rRNA sequences is not necessarily a sufficient criterion to guarantee species identity. Thus, although 16S rRNA sequences can be used routinely to distinguish and establish relationships between genera and well-resolved species, very recently diverged species may not be recognizable.

  3. Diverse Antibiotic Resistance Genes in Dairy Cow Manure

    PubMed Central

    Wichmann, Fabienne; Udikovic-Kolic, Nikolina; Andrew, Sheila; Handelsman, Jo

    2014-01-01

    ABSTRACT Application of manure from antibiotic-treated animals to crops facilitates the dissemination of antibiotic resistance determinants into the environment. However, our knowledge of the identity, diversity, and patterns of distribution of these antibiotic resistance determinants remains limited. We used a new combination of methods to examine the resistome of dairy cow manure, a common soil amendment. Metagenomic libraries constructed with DNA extracted from manure were screened for resistance to beta-lactams, phenicols, aminoglycosides, and tetracyclines. Functional screening of fosmid and small-insert libraries identified 80 different antibiotic resistance genes whose deduced protein sequences were on average 50 to 60% identical to sequences deposited in GenBank. The resistance genes were frequently found in clusters and originated from a taxonomically diverse set of species, suggesting that some microorganisms in manure harbor multiple resistance genes. Furthermore, amid the great genetic diversity in manure, we discovered a novel clade of chloramphenicol acetyltransferases. Our study combined functional metagenomics with third-generation PacBio sequencing to significantly extend the roster of functional antibiotic resistance genes found in animal gut bacteria, providing a particularly broad resource for understanding the origins and dispersal of antibiotic resistance genes in agriculture and clinical settings. PMID:24757214

  4. Population and genomic analysis of the genus Halorubrum

    PubMed Central

    Fullmer, Matthew S.; Soucy, Shannon M.; Swithers, Kristen S.; Makkay, Andrea M.; Wheeler, Ryan; Ventosa, Antonio; Gogarten, J. Peter; Papke, R. Thane

    2014-01-01

    The Halobacteria are known to engage in frequent gene transfer and homologous recombination. For stably diverged lineages to persist some checks on the rate of between lineage recombination must exist. We surveyed a group of isolates from the Aran-Bidgol endorheic lake in Iran and sequenced a selection of them. Multilocus Sequence Analysis (MLSA) and Average Nucleotide Identity (ANI) revealed multiple clusters (phylogroups) of organisms present in the lake. Patterns of intein and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) presence/absence and their sequence similarity, GC usage along with the ANI and the identities of the genes used in the MLSA revealed that two of these clusters share an exchange bias toward others in their phylogroup while showing reduced rates of exchange with other organisms in the environment. However, a third cluster, composed in part of named species from other areas of central Asia, displayed many indications of variability in exchange partners, from within the lake as well as outside the lake. We conclude that barriers to gene exchange exist between the two purely Aran-Bidgol phylogroups, and that the third cluster with members from other regions is not a single population and likely reflects an amalgamation of several populations. PMID:24782836

  5. The novel primers for mammal species identification-based mitochondrial cytochrome b sequence: implication for reserved wild animals in Thailand and endangered mammal species in Southeast Asia.

    PubMed

    Muangkram, Yuttamol; Wajjwalku, Worawidh; Amano, Akira; Sukmak, Manakorn

    2018-01-01

    We presented the powerful techniques for species identification using the short amplicon of mitochondrial cytochrome b gene sequence. Two faecal samples and one single hair sample of the Asian tapir were tested using the new cytochrome b primers. The results showed a high sequence similarity with the mainland Asian tapir group. The comparative sequence analysis of the reserved wild mammals in Thailand and the other endangered mammal species from Southeast Asia comprehensibly verified the potential of our novel primers. The forward and reverse primers were 94.2 and 93.2%, respectively, by the average value of the sequence identity among 77 species sequences, and the overall mean distance was 35.9%. This development technique could provide rapid, simple, and reliable tools for species confirmation. Especially, it could recognize the problematic biological specimens contained less DNA material from illegal products and assist with wildlife crime investigation of threatened species and related forensic casework.

  6. Investigation of the effect of finite pulse errors on the BABA pulse sequence using the Floquet-Magnus expansion approach

    NASA Astrophysics Data System (ADS)

    Mananga, Eugene S.; Reid, Alicia E.

    2013-01-01

    This paper presents a study of finite pulse widths for the BABA pulse sequence using the Floquet-Magnus expansion (FME) approach. In the FME scheme, the first order ? is identical to its counterparts in average Hamiltonian theory (AHT) and Floquet theory (FT). However, the timing part in the FME approach is introduced via the ? function not present in other schemes. This function provides an easy way for evaluating the spin evolution during the time in between' through the Magnus expansion of the operator connected to the timing part of the evolution. The evaluation of ? is particularly useful for the analysis of the non-stroboscopic evolution. Here, the importance of the boundary conditions, which provide a natural choice of ? , is ignored. This work uses the ? function to compare the efficiency of the BABA pulse sequence with ? and the BABA pulse sequence with finite pulses. Calculations of ? and ? are presented.

  7. Complete genome sequences of Geobacillus sp. Y412MC52, a xylan-degrading strain isolated from obsidian hot spring in Yellowstone National Park.

    PubMed

    Brumm, Phillip; Land, Miriam L; Hauser, Loren J; Jeffries, Cynthia D; Chang, Yun-Juan; Mead, David A

    2015-01-01

    Geobacillus sp. Y412MC52 was isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). Based on 16S rRNA genes and average nucleotide identity, Geobacillus sp. Y412MC52 and the related Geobacillus sp. Y412MC61 appear to be members of a new species of Geobacillus. The genome of Geobacillus sp. Y412MC52 consists of one circular chromosome of 3,628,883 bp, an average G + C content of 52 % and one circular plasmid of 45,057 bp and an average G + C content of 45 %. Y412MC52 possesses arabinan, arabinoglucuronoxylan, and aromatic acid degradation clusters for degradation of hemicellulose from biomass. Transport and utilization clusters are also present for other carbohydrates including starch, cellobiose, and α- and β-galactooligosaccharides.

  8. Complete genome sequences of Geobacillus sp. Y412MC52, a xylan-degrading strain isolated from obsidian hot spring in Yellowstone National Park

    DOE PAGES

    Brumm, Phillip; Land, Miriam L.; Hauser, Loren J.; ...

    2015-10-19

    We isolated geobacillus sp. Y412MC52 from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). Based on 16S rRNA genes and average nucleotide identity, Geobacillus sp. Y412MC52 and the related Geobacillus sp. Y412MC61 appear to be members of a new species of Geobacillus. Moreover, te genome of Geobacillus sp. Y412MC52 consists of one circular chromosome of 3,628,883 bp, an average G + C content of 52 % and one circular plasmid ofmore » 45,057 bp and an average G + C content of 45 %. Y412MC52 possesses arabinan, arabinoglucuronoxylan, and aromatic acid degradation clusters for degradation of hemicellulose from biomass. Finally, we present transport and utilization clusters for other carbohydrates including starch, cellobiose, and - and -galactooligosaccharides.« less

  9. Complete genome sequences of Geobacillus sp. Y412MC52, a xylan-degrading strain isolated from obsidian hot spring in Yellowstone National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumm, Phillip; Land, Miriam L.; Hauser, Loren J.

    We isolated geobacillus sp. Y412MC52 from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). Based on 16S rRNA genes and average nucleotide identity, Geobacillus sp. Y412MC52 and the related Geobacillus sp. Y412MC61 appear to be members of a new species of Geobacillus. Moreover, te genome of Geobacillus sp. Y412MC52 consists of one circular chromosome of 3,628,883 bp, an average G + C content of 52 % and one circular plasmid ofmore » 45,057 bp and an average G + C content of 45 %. Y412MC52 possesses arabinan, arabinoglucuronoxylan, and aromatic acid degradation clusters for degradation of hemicellulose from biomass. Finally, we present transport and utilization clusters for other carbohydrates including starch, cellobiose, and - and -galactooligosaccharides.« less

  10. Streptococcus bovimastitidis sp. nov., isolated from a dairy cow with mastitis.

    PubMed

    de Vries, Stefan P W; Hadjirin, Nazreen F; Lay, Elizabeth M; Zadoks, Ruth N; Peacock, Sharon J; Parkhill, Julian; Grant, Andrew J; McDougall, Scott; Holmes, Mark A

    2018-01-01

    Here we describe a new species of the genus Streptococcus that was isolated from a dairy cow with mastitis in New Zealand. Strain NZ1587 T was Gram-positive, coccus-shaped and arranged as chains, catalase and coagulase negative, γ-haemolytic and negative for Lancefield carbohydrates (A-D, F and G). The 16S rRNA sequence did not match sequences in the NCBI 16S rRNA or GreenGenes databases. Taxonomic classification of strain NZ1587 T was investigated using 16S rRNA and core genome phylogeny, genome-wide average nucleotide identity (ANI) and predicted DNA-DNA hybridisation (DDH) analyses. Phylogeny based on 16S rRNA was unable to resolve the taxonomic position of strain NZ1587 T , however NZ1587 T shared 99.4 % identity at the 16S rRNA level with a distinct branch of S. pseudoporcinus. Importantly, core genome phylogeny demonstrated that NZ1587 T grouped amongst the 'pyogenic' streptococcal species and formed a distinct branch supported by a 100 % bootstrap value. In addition, average nucleotide identity and inferred DNA-DNA hybridisation analyses showed that NZ1587 T represents a novel species. Biochemical profiling using the rapid ID 32 strep identification test enabled differentiation of strain NZ1587 T from closely related streptococcal species. In conclusion, strain NZ1587 T can be classified as a novel species, and we propose a novel taxon named Streptococcus bovimastitidis sp. nov.; the type strain is NZ1587 T . NZ1587 T has been deposited in the Culture Collection University of Gothenburg (CCUG 69277 T ) and the Belgian Co-ordinated Collections of Micro-organisms/LMG (LMG 29747).

  11. In-silico Taxonomic Classification of 373 Genomes Reveals Species Misidentification and New Genospecies within the Genus Pseudomonas

    PubMed Central

    Tran, Phuong N.; Savka, Michael A.; Gan, Han Ming

    2017-01-01

    The genus Pseudomonas has one of the largest diversity of species within the Bacteria kingdom. To date, its taxonomy is still being revised and updated. Due to the non-standardized procedure and ambiguous thresholds at species level, largely based on 16S rRNA gene or conventional biochemical assay, species identification of publicly available Pseudomonas genomes remains questionable. In this study, we performed a large-scale analysis of all Pseudomonas genomes with species designation (excluding the well-defined P. aeruginosa) and re-evaluated their taxonomic assignment via in silico genome-genome hybridization and/or genetic comparison with valid type species. Three-hundred and seventy-three pseudomonad genomes were analyzed and subsequently clustered into 145 distinct genospecies. We detected 207 erroneous labels and corrected 43 to the proper species based on Average Nucleotide Identity Multilocus Sequence Typing (MLST) sequence similarity to the type strain. Surprisingly, more than half of the genomes initially designated as Pseudomonas syringae and Pseudomonas fluorescens should be classified either to a previously described species or to a new genospecies. Notably, high pairwise average nucleotide identity (>95%) indicating species-level similarity was observed between P. synxantha-P. libanensis, P. psychrotolerans–P. oryzihabitans, and P. kilonensis- P. brassicacearum, that were previously differentiated based on conventional biochemical tests and/or genome-genome hybridization techniques. PMID:28747902

  12. Xanthomonas prunicola sp. nov., a novel pathogen that affects nectarine (Prunus persica var. nectarina) trees.

    PubMed

    López, María M; Lopez-Soriano, Pablo; Garita-Cambronero, Jerson; Beltrán, Carmen; Taghouti, Geraldine; Portier, Perrine; Cubero, Jaime; Fischer-Le Saux, Marion; Marco-Noales, Ester

    2018-06-01

    Three isolates obtained from symptomatic nectarine trees (Prunus persica var. nectarina) cultivated in Murcia, Spain, which showed yellow and mucoid colonies similar to Xanthomonas arboricola pv. pruni, were negative after serological and real-time PCR analyses for this pathogen. For that reason, these isolates were characterized following a polyphasic approach that included both phenotypic and genomic methods. By sequence analysis of the 16S rRNA gene, these novel strains were identified as members of the genus Xanthomonas, and by multilocus sequence analysis (MLSA) they were clustered together in a distinct group that showed similarity values below 95 % with the rest of the species of this genus. Whole-genome comparisons of the average nucleotide identity (ANI) of genomes of the strains showed less than 91 % average nucleotide identity with all other species of the genus Xanthomonas. Additionally, phenotypic characterization based on API 20 NE, API 50 CH and BIOLOG tests differentiated the strains from the species of the genus Xanthomonas described previously. Moreover, the three strains were confirmed to be pathogenic on peach (Prunus persica), causing necrotic lesions on leaves. On the basis of these results, the novel strains represent a novel species of the genus Xanthomonas, for which the name Xanthomonas prunicola is proposed. The type strain is CFBP 8353 (=CECT 9404=IVIA 3287.1).

  13. Pseudomonas abyssi sp. nov., isolated from the abyssopelagic water of the Mariana Trench.

    PubMed

    Wei, Yuli; Mao, Haiyan; Xu, Yunping; Zou, Wencai; Fang, Jiasong; Blom, Jochen

    2018-06-21

    A novel heterotrophic, Gram-stain-negative, aerobic, rod-shaped bacterium, designated as strain MT5 T , was isolated from deep seawater in the Mariana Trench and characterized phylogenetically and phenotypically. Bacterial optimal growth occurred at 28 °C (range, 4-45 °C), pH 5-7 (pH 4-11) and with 3-7 % (w/v) NaCl (0-18 %). Phylogenetic analysis based on 16S rRNA gene sequence showed that strain MT5 T was related to members of the genus Pseudomonas and shared the highest sequence identities with Pseudomonas pachastrellae CCUG 46540 T (99.6 %), Pseudomonas aestusnigri VGXO14 T (98.5 %) and Pseudomonas oceani KX 20 T (98.4 %). The 16S rRNA gene sequence identities between strain MT5 T and other members of the genus Pseudomonas were below 96.7 %. The digital DNA-DNA hybridization values between strain MT5 T and the two type strains, P. pachastrellae and P. aestusnigri, were 38.9±2.5 and 25.8±2.4 %, respectively. The average nucleotide identity values between strain MT5 T and the two type strains were 90.3 and 87.0 %, respectively. Strain MT5 T and the two type strains shared 94.98 and 86.2 % average amino acid identity, and 30 and 33 Karlin genomic signature, respectively. The sole respiratory menaquinone was Q-9. The major polar lipids were phosphatidylethanolamine, diphosphatidyglycerol and phosphatidylglycerol. The predominant cellular fatty acids of strain MT5 T were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) (35.3 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) (24.1 %), C16 : 0 (15.9 %) and C12 : 0 (7.2 %). The G+C content of the genomic DNA was 61.2 mol%. The combined genotypic and phenotypic data indicated that strain MT5 T represents a novel species of the genus Pseudomonas, for which the name Pseudomonas abyssi sp. nov. is proposed, with the type strain MT5 T (=KCTC 62295 T =MCCC 1K03351 T ).

  14. Parameters of proteome evolution from histograms of amino-acid sequence identities of paralogous proteins

    PubMed Central

    Axelsen, Jacob Bock; Yan, Koon-Kiu; Maslov, Sergei

    2007-01-01

    Background The evolution of the full repertoire of proteins encoded in a given genome is mostly driven by gene duplications, deletions, and sequence modifications of existing proteins. Indirect information about relative rates and other intrinsic parameters of these three basic processes is contained in the proteome-wide distribution of sequence identities of pairs of paralogous proteins. Results We introduce a simple mathematical framework based on a stochastic birth-and-death model that allows one to extract some of this information and apply it to the set of all pairs of paralogous proteins in H. pylori, E. coli, S. cerevisiae, C. elegans, D. melanogaster, and H. sapiens. It was found that the histogram of sequence identities p generated by an all-to-all alignment of all protein sequences encoded in a genome is well fitted with a power-law form ~ p-γ with the value of the exponent γ around 4 for the majority of organisms used in this study. This implies that the intra-protein variability of substitution rates is best described by the Gamma-distribution with the exponent α ≈ 0.33. Different features of the shape of such histograms allow us to quantify the ratio between the genome-wide average deletion/duplication rates and the amino-acid substitution rate. Conclusion We separately measure the short-term ("raw") duplication and deletion rates rdup∗, rdel∗ which include gene copies that will be removed soon after the duplication event and their dramatically reduced long-term counterparts rdup, rdel. High deletion rate among recently duplicated proteins is consistent with a scenario in which they didn't have enough time to significantly change their functional roles and thus are to a large degree disposable. Systematic trends of each of the four duplication/deletion rates with the total number of genes in the genome were analyzed. All but the deletion rate of recent duplicates rdel∗ were shown to systematically increase with Ngenes. Abnormally flat shapes of sequence identity histograms observed for yeast and human are consistent with lineages leading to these organisms undergoing one or more whole-genome duplications. This interpretation is corroborated by our analysis of the genome of Paramecium tetraurelia where the p-4 profile of the histogram is gradually restored by the successive removal of paralogs generated in its four known whole-genome duplication events. PMID:18039386

  15. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities.

    PubMed

    Goris, Johan; Konstantinidis, Konstantinos T; Klappenbach, Joel A; Coenye, Tom; Vandamme, Peter; Tiedje, James M

    2007-01-01

    DNA-DNA hybridization (DDH) values have been used by bacterial taxonomists since the 1960s to determine relatedness between strains and are still the most important criterion in the delineation of bacterial species. Since the extent of hybridization between a pair of strains is ultimately governed by their respective genomic sequences, we examined the quantitative relationship between DDH values and genome sequence-derived parameters, such as the average nucleotide identity (ANI) of common genes and the percentage of conserved DNA. A total of 124 DDH values were determined for 28 strains for which genome sequences were available. The strains belong to six important and diverse groups of bacteria for which the intra-group 16S rRNA gene sequence identity was greater than 94 %. The results revealed a close relationship between DDH values and ANI and between DNA-DNA hybridization and the percentage of conserved DNA for each pair of strains. The recommended cut-off point of 70 % DDH for species delineation corresponded to 95 % ANI and 69 % conserved DNA. When the analysis was restricted to the protein-coding portion of the genome, 70 % DDH corresponded to 85 % conserved genes for a pair of strains. These results reveal extensive gene diversity within the current concept of "species". Examination of reciprocal values indicated that the level of experimental error associated with the DDH method is too high to reveal the subtle differences in genome size among the strains sampled. It is concluded that ANI can accurately replace DDH values for strains for which genome sequences are available.

  16. Lactobacillus herbarum sp. nov., a species related to Lactobacillus plantarum.

    PubMed

    Mao, Yuejian; Chen, Meng; Horvath, Philippe

    2015-12-01

    Strain TCF032-E4 was isolated from a traditional Chinese fermented radish. It shares >99% 16S rRNA sequence identity with L. plantarum, L. pentosus and L. paraplantarum. This strain can ferment ribose, galactose, glucose, fructose, mannose, mannitol, N-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, maltose, lactose, melibiose, trehalose and gentiobiose. It cannot ferment sucrose, which can be used by L. pentosus, L. paraplantarum, L. fabifermentans, L. xiangfangensis and L. mudanjiangensis, as well as most of the L. plantarum strains (88.7%). TCF032-E4 cannot grow at temperature above 32 °C. This strain shares 78.2-83.6% pheS (phenylalanyl-tRNA synthetase alpha subunit) and 89.5-94.9% rpoA (RNA polymerase alpha subunit) sequence identity with L. plantarum, L. pentosus, L. paraplantarum, L. fabifermentans, L. xiangfangensis and L. mudanjiangensis. These results indicate that TCF032-E4 represents a distinct species. This hypothesis was further confirmed by whole-genome sequencing and comparison with available genomes of related species. The draft genome size of TCF032-E4 is approximately 2.9 Mb, with a DNA G+C content of 43.5 mol%. The average nucleotide identity (ANI) between TCF032-E4 and related species ranges from 79.0 to 81.1%, the highest ANI value being observed with L. plantarum subsp. plantarum ATCC 14917T. A novel species, Lactobacillus herbarum sp. nov., is proposed with TCF032-E4T ( = CCTCC AB2015090T = DSM 100358T) as the type strain.

  17. Design and verification of a pangenome microarray oligonucleotide probe set for Dehalococcoides spp.

    PubMed

    Hug, Laura A; Salehi, Maryam; Nuin, Paulo; Tillier, Elisabeth R; Edwards, Elizabeth A

    2011-08-01

    Dehalococcoides spp. are an industrially relevant group of Chloroflexi bacteria capable of reductively dechlorinating contaminants in groundwater environments. Existing Dehalococcoides genomes revealed a high level of sequence identity within this group, including 98 to 100% 16S rRNA sequence identity between strains with diverse substrate specificities. Common molecular techniques for identification of microbial populations are often not applicable for distinguishing Dehalococcoides strains. Here we describe an oligonucleotide microarray probe set designed based on clustered Dehalococcoides genes from five different sources (strain DET195, CBDB1, BAV1, and VS genomes and the KB-1 metagenome). This "pangenome" probe set provides coverage of core Dehalococcoides genes as well as strain-specific genes while optimizing the potential for hybridization to closely related, previously unknown Dehalococcoides strains. The pangenome probe set was compared to probe sets designed independently for each of the five Dehalococcoides strains. The pangenome probe set demonstrated better predictability and higher detection of Dehalococcoides genes than strain-specific probe sets on nontarget strains with <99% average nucleotide identity. An in silico analysis of the expected probe hybridization against the recently released Dehalococcoides strain GT genome and additional KB-1 metagenome sequence data indicated that the pangenome probe set performs more robustly than the combined strain-specific probe sets in the detection of genes not included in the original design. The pangenome probe set represents a highly specific, universal tool for the detection and characterization of Dehalococcoides from contaminated sites. It has the potential to become a common platform for Dehalococcoides-focused research, allowing meaningful comparisons between microarray experiments regardless of the strain examined.

  18. Genetic characterization of strains of Saccharomyces uvarum from New Zealand wineries.

    PubMed

    Zhang, Hanyao; Richards, Keith D; Wilson, Sandra; Lee, Soon A; Sheehan, Hester; Roncoroni, Miguel; Gardner, Richard C

    2015-04-01

    We present a genetic characterization of 65 isolates of Saccharomyces uvarum isolated from wineries in New Zealand, along with the complete nucleotide sequence of a single sulfite-tolerant isolate. The genome of the New Zealand isolate averaged 99.85% nucleotide identity to CBS7001, the previously sequenced strain of S. uvarum. However, three genomic segments (37-87 kb) showed 10% nucleotide divergence from CBS7001 but 99% identity to Saccharomyces eubayanus. We conclude that these three segments appear to have been introgressed from that species. The nucleotide sequence of the internal transcribed spacer (ITS) region from other New Zealand isolates were also very similar to that of CBS7001, and hybrids showed complete genetic compatibility for some strains, with tetrads giving four viable progeny that showed 2:2 segregations of marker genes. Some strains showed high tolerance to sulfite, with genetic analysis indicating linkage of this trait to the transcription factor FZF1, but not to SSU1, the sulfite efflux pump that it regulates in order to confer sulfite tolerance in Saccharomyces cerevisiae. The fermentation characteristics of selected strains of S. uvarum showed exceptionally good cold fermentation characteristics, superior to the best commercially available strains of S. cerevisiae. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Partial Gene Sequencing of CYP1A, Vitellogenin, and Metallothionein in Mosquitofish Gambusia yucatana and Gambusia sexradiata.

    PubMed

    Vázquez-Euán, Roberto; Escalante-Herrera, Karla S; Rodríguez-Fuentes, Gabriela

    2017-01-01

    Ground characteristics in the Yucatan Peninsula make recovery and treatment of wastewater very expensive. This situation has contributed to an increase of pollutants in the aquifer. Unfortunately, studies related to the effects of those pollutants in native organisms are scarce. The aim of this work was to obtain partial sequences of widely known genes used as biomarkers of pollutant effect in Gambusia yucatana and Gambusia sexradiata. The studied genes were: cytochrome P450 1A (CYP1A); vitellogenin (VTG); metallothionein (MT), and two housekeeping genes, 18S and β-actin. From reported sequences of Gambusia affinis, primers were designed and amplification was done in the local Gambusia species exposed for 48 h to gasoline (100 µL/L, stirred for 24 h pre-exposure). Preliminary results revealed partial sequences of all genes with an approximate average length of 200 bp. BLAST analysis of found sequences indicated a minimum of 97% identity with reported sequences for G. affinis or Gambusia holbrooki showing great similarity.

  20. Phylogenetic relationships in three species of canine Demodex mite based on partial sequences of mitochondrial 16S rDNA.

    PubMed

    Sastre, Natalia; Ravera, Ivan; Villanueva, Sergio; Altet, Laura; Bardagí, Mar; Sánchez, Armand; Francino, Olga; Ferrer, Lluís

    2012-12-01

    The historical classification of Demodex mites has been based on their hosts and morphological features. Genome sequencing has proved to be a very effective taxonomic tool in phylogenetic studies and has been applied in the classification of Demodex. Mitochondrial 16S rDNA has been demonstrated to be an especially useful marker to establish phylogenetic relationships. To amplify and sequence a segment of the mitochondrial 16S rDNA from Demodex canis and Demodex injai, as well as from the short-bodied mite called, unofficially, D. cornei and to determine their genetic proximity. Demodex mites were examined microscopically and classified as Demodex folliculorum (one sample), D. canis (four samples), D. injai (two samples) or the short-bodied species D. cornei (three samples). DNA was extracted, and a 338 bp fragment of the 16S rDNA was amplified and sequenced. The sequences of the four D. canis mites were identical and shared 99.6 and 97.3% identity with two D. canis sequences available at GenBank. The sequences of the D. cornei isolates were identical and showed 97.8, 98.2 and 99.6% identity with the D. canis isolates. The sequences of the two D. injai isolates were also identical and showed 76.6% identity with the D. canis sequence. Demodex canis and D. injai are two different species, with a genetic distance of 23.3%. It would seem that the short-bodied Demodex mite D. cornei is a morphological variant of D. canis. © 2012 The Authors. Veterinary Dermatology © 2012 ESVD and ACVD.

  1. Visual adaptation provides objective electrophysiological evidence of facial identity discrimination.

    PubMed

    Retter, Talia L; Rossion, Bruno

    2016-07-01

    Discrimination of facial identities is a fundamental function of the human brain that is challenging to examine with macroscopic measurements of neural activity, such as those obtained with functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). Although visual adaptation or repetition suppression (RS) stimulation paradigms have been successfully implemented to this end with such recording techniques, objective evidence of an identity-specific discrimination response due to adaptation at the level of the visual representation is lacking. Here, we addressed this issue with fast periodic visual stimulation (FPVS) and EEG recording combined with a symmetry/asymmetry adaptation paradigm. Adaptation to one facial identity is induced through repeated presentation of that identity at a rate of 6 images per second (6 Hz) over 10 sec. Subsequently, this identity is presented in alternation with another facial identity (i.e., its anti-face, both faces being equidistant from an average face), producing an identity repetition rate of 3 Hz over a 20 sec testing sequence. A clear EEG response at 3 Hz is observed over the right occipito-temporal (ROT) cortex, indexing discrimination between the two facial identities in the absence of an explicit behavioral discrimination measure. This face identity discrimination occurs immediately after adaptation and disappears rapidly within 20 sec. Importantly, this 3 Hz response is not observed in a control condition without the single-identity 10 sec adaptation period. These results indicate that visual adaptation to a given facial identity produces an objective (i.e., at a pre-defined stimulation frequency) electrophysiological index of visual discrimination between that identity and another, and provides a unique behavior-free quantification of the effect of visual adaptation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Sequence determination and analysis of the NSs genes of two tospoviruses.

    PubMed

    Hallwass, Mariana; Leastro, Mikhail O; Lima, Mirtes F; Inoue-Nagata, Alice K; Resende, Renato O

    2012-03-01

    The tospoviruses groundnut ringspot virus (GRSV) and zucchini lethal chlorosis virus (ZLCV) cause severe losses in many crops, especially in solanaceous and cucurbit species. In this study, the non-structural NSs gene and the 5'UTRs of these two biologically distinct tospoviruses were cloned and sequenced. The NSs sequence of GRSV and ZLCV were both 1,404 nucleotides long. Pairwise comparison showed that the NSs amino acid sequence of GRSV shared 69.6% identity with that of ZLCV and 75.9% identity with that of TSWV, while the NSs sequence of ZLCV and TSWV shared 67.9% identity. Phylogenetic analysis based on NSs sequences confirmed that these viruses cluster in the American clade.

  3. Complete genome sequence of lymphocystis disease virus isolated from China.

    PubMed

    Zhang, Qi-Ya; Xiao, Feng; Xie, Jian; Li, Zheng-Qiu; Gui, Jian-Fang

    2004-07-01

    Lymphocystis diseases in fish throughout the world have been extensively described. Here we report the complete genome sequence of lymphocystis disease virus isolated in China (LCDV-C), an LCDV isolated from cultured flounder (Paralichthys olivaceus) with lymphocystis disease in China. The LCDV-C genome is 186,250 bp, with a base composition of 27.25% G+C. Computer-assisted analysis revealed 240 potential open reading frames (ORFs) and 176 nonoverlapping putative viral genes, which encode polypeptides ranging from 40 to 1,193 amino acids. The percent coding density is 67%, and the average length of each ORF is 702 bp. A search of the GenBank database using the 176 individual putative genes revealed 103 homologues to the corresponding ORFs of LCDV-1 and 73 potential genes that were not found in LCDV-1 and other iridoviruses. Among the 73 genes, there are 8 genes that contain conserved domains of cellular genes and 65 novel genes that do not show any significant homology with the sequences in public databases. Although a certain extent of similarity between putative gene products of LCDV-C and corresponding proteins of LCDV-1 was revealed, no colinearity was detected when their ORF arrangements and coding strategies were compared to each other, suggesting that a high degree of genetic rearrangements between them has occurred. And a large number of tandem and overlapping repeated sequences were observed in the LCDV-C genome. The deduced amino acid sequence of the major capsid protein (MCP) presents the highest identity to those of LCDV-1 and other iridoviruses among the LCDV-C gene products. Furthermore, a phylogenetic tree was constructed based on the multiple alignments of nine MCP amino acid sequences. Interestingly, LCDV-C and LCDV-1 were clustered together, but their amino acid identity is much less than that in other clusters. The unexpected levels of divergence between their genomes in size, gene organization, and gene product identity suggest that LCDV-C and LCDV-1 shouldn't belong to a same species and that LCDV-C should be considered a species different from LCDV-1.

  4. Complete Genome Sequence of Lymphocystis Disease Virus Isolated from China

    PubMed Central

    Zhang, Qi-Ya; Xiao, Feng; Xie, Jian; Li, Zheng-Qiu; Gui, Jian-Fang

    2004-01-01

    Lymphocystis diseases in fish throughout the world have been extensively described. Here we report the complete genome sequence of lymphocystis disease virus isolated in China (LCDV-C), an LCDV isolated from cultured flounder (Paralichthys olivaceus) with lymphocystis disease in China. The LCDV-C genome is 186,250 bp, with a base composition of 27.25% G+C. Computer-assisted analysis revealed 240 potential open reading frames (ORFs) and 176 nonoverlapping putative viral genes, which encode polypeptides ranging from 40 to 1,193 amino acids. The percent coding density is 67%, and the average length of each ORF is 702 bp. A search of the GenBank database using the 176 individual putative genes revealed 103 homologues to the corresponding ORFs of LCDV-1 and 73 potential genes that were not found in LCDV-1 and other iridoviruses. Among the 73 genes, there are 8 genes that contain conserved domains of cellular genes and 65 novel genes that do not show any significant homology with the sequences in public databases. Although a certain extent of similarity between putative gene products of LCDV-C and corresponding proteins of LCDV-1 was revealed, no colinearity was detected when their ORF arrangements and coding strategies were compared to each other, suggesting that a high degree of genetic rearrangements between them has occurred. And a large number of tandem and overlapping repeated sequences were observed in the LCDV-C genome. The deduced amino acid sequence of the major capsid protein (MCP) presents the highest identity to those of LCDV-1 and other iridoviruses among the LCDV-C gene products. Furthermore, a phylogenetic tree was constructed based on the multiple alignments of nine MCP amino acid sequences. Interestingly, LCDV-C and LCDV-1 were clustered together, but their amino acid identity is much less than that in other clusters. The unexpected levels of divergence between their genomes in size, gene organization, and gene product identity suggest that LCDV-C and LCDV-1 shouldn't belong to a same species and that LCDV-C should be considered a species different from LCDV-1. PMID:15194775

  5. Phylogenetic analysis of family Neisseriaceae based on genome sequences and description of Populibacter corticis gen. nov., sp. nov., a member of the family Neisseriaceae, isolated from symptomatic bark of Populus × euramericana canker.

    PubMed

    Li, Yong; Xue, Han; Sang, Sheng-Qi; Lin, Cai-Li; Wang, Xi-Zhuo

    2017-01-01

    Two Gram-stain negative aerobic bacterial strains were isolated from the bark tissue of Populus × euramericana. The novel isolates were investigated using a polyphasic approach including 16S rRNA gene sequencing, genome sequencing, average nucleotide identity (ANI) and both phenotypic and chemotaxonomic assays. The genome core gene sequence and 16S rRNA gene phylogenies suggest that the novel isolates are different from the genera Snodgrassella and Stenoxybacter. Additionally, the ANI, G+C content, main fatty acids and phospholipid profile data supported the distinctiveness of the novel strain from genus Snodgrassella. Therefore, based on the data presented, the strains constitute a novel species of a novel genus within the family Neisseriaceae, for which the name Populibacter corticis gen. nov., sp. nov. is proposed. The type strain is 15-3-5T (= CFCC 13594T = KCTC 42251T).

  6. Population and performance analyses of four major populations with Illumina's FGx Forensic Genomics System.

    PubMed

    Churchill, Jennifer D; Novroski, Nicole M M; King, Jonathan L; Seah, Lay Hong; Budowle, Bruce

    2017-09-01

    The MiSeq FGx Forensic Genomics System (Illumina) enables amplification and massively parallel sequencing of 59 STRs, 94 identity informative SNPs, 54 ancestry informative SNPs, and 24 phenotypic informative SNPs. Allele frequency and population statistics data were generated for the 172 SNP loci included in this panel on four major population groups (Chinese, African Americans, US Caucasians, and Southwest Hispanics). Single-locus and combined random match probability values were generated for the identity informative SNPs. The average combined STR and identity informative SNP random match probabilities (assuming independence) across all four populations were 1.75E-67 and 2.30E-71 with length-based and sequence-based STR alleles, respectively. Ancestry and phenotype predictions were obtained using the ForenSeq™ Universal Analysis System (UAS; Illumina) based on the ancestry informative and phenotype informative SNP profiles generated for each sample. Additionally, performance metrics, including profile completeness, read depth, relative locus performance, and allele coverage ratios, were evaluated and detailed for the 725 samples included in this study. While some genetic markers included in this panel performed notably better than others, performance across populations was generally consistent. The performance and population data included in this study support that accurate and reliable profiles were generated and provide valuable background information for laboratories considering internal validation studies and implementation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. MetaGO: Predicting Gene Ontology of Non-homologous Proteins Through Low-Resolution Protein Structure Prediction and Protein-Protein Network Mapping.

    PubMed

    Zhang, Chengxin; Zheng, Wei; Freddolino, Peter L; Zhang, Yang

    2018-03-10

    Homology-based transferal remains the major approach to computational protein function annotations, but it becomes increasingly unreliable when the sequence identity between query and template decreases below 30%. We propose a novel pipeline, MetaGO, to deduce Gene Ontology attributes of proteins by combining sequence homology-based annotation with low-resolution structure prediction and comparison, and partner's homology-based protein-protein network mapping. The pipeline was tested on a large-scale set of 1000 non-redundant proteins from the CAFA3 experiment. Under the stringent benchmark conditions where templates with >30% sequence identity to the query are excluded, MetaGO achieves average F-measures of 0.487, 0.408, and 0.598, for Molecular Function, Biological Process, and Cellular Component, respectively, which are significantly higher than those achieved by other state-of-the-art function annotations methods. Detailed data analysis shows that the major advantage of the MetaGO lies in the new functional homolog detections from partner's homology-based network mapping and structure-based local and global structure alignments, the confidence scores of which can be optimally combined through logistic regression. These data demonstrate the power of using a hybrid model incorporating protein structure and interaction networks to deduce new functional insights beyond traditional sequence homology-based referrals, especially for proteins that lack homologous function templates. The MetaGO pipeline is available at http://zhanglab.ccmb.med.umich.edu/MetaGO/. Copyright © 2018. Published by Elsevier Ltd.

  8. NGS-based likelihood ratio for identifying contributors in two- and three-person DNA mixtures.

    PubMed

    Chan Mun Wei, Joshua; Zhao, Zicheng; Li, Shuai Cheng; Ng, Yen Kaow

    2018-06-01

    DNA fingerprinting, also known as DNA profiling, serves as a standard procedure in forensics to identify a person by the short tandem repeat (STR) loci in their DNA. By comparing the STR loci between DNA samples, practitioners can calculate a probability of match to identity the contributors of a DNA mixture. Most existing methods are based on 13 core STR loci which were identified by the Federal Bureau of Investigation (FBI). Analyses based on these loci of DNA mixture for forensic purposes are highly variable in procedures, and suffer from subjectivity as well as bias in complex mixture interpretation. With the emergence of next-generation sequencing (NGS) technologies, the sequencing of billions of DNA molecules can be parallelized, thus greatly increasing throughput and reducing the associated costs. This allows the creation of new techniques that incorporate more loci to enable complex mixture interpretation. In this paper, we propose a computation for likelihood ratio that uses NGS (next generation sequencing) data for DNA testing on mixed samples. We have applied the method to 4480 simulated DNA mixtures, which consist of various mixture proportions of 8 unrelated whole-genome sequencing data. The results confirm the feasibility of utilizing NGS data in DNA mixture interpretations. We observed an average likelihood ratio as high as 285,978 for two-person mixtures. Using our method, all 224 identity tests for two-person mixtures and three-person mixtures were correctly identified. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Phylogenetic analysis of Demodex caprae based on mitochondrial 16S rDNA sequence.

    PubMed

    Zhao, Ya-E; Hu, Li; Ma, Jun-Xian

    2013-11-01

    Demodex caprae infests the hair follicles and sebaceous glands of goats worldwide, which not only seriously impairs goat farming, but also causes a big economic loss. However, there are few reports on the DNA level of D. caprae. To reveal the taxonomic position of D. caprae within the genus Demodex, the present study conducted phylogenetic analysis of D. caprae based on mt16S rDNA sequence data. D. caprae adults and eggs were obtained from a skin nodule of the goat suffering demodicidosis. The mt16S rDNA sequences of individual mite were amplified using specific primers, and then cloned, sequenced, and aligned. The sequence divergence, genetic distance, and transition/transversion rate were computed, and the phylogenetic trees in Demodex were reconstructed. Results revealed the 339-bp partial sequences of six D. caprae isolates were obtained, and the sequence identity was 100% among isolates. The pairwise divergences between D. caprae and Demodex canis or Demodex folliculorum or Demodex brevis were 22.2-24.0%, 24.0-24.9%, and 22.9-23.2%, respectively. The corresponding average genetic distances were 2.840, 2.926, and 2.665, and the average transition/transversion rates were 0.70, 0.55, and 0.54, respectively. The divergences, genetic distances, and transition/transversion rates of D. caprae versus the other three species all reached interspecies level. The five phylogenetic trees all presented that D. caprae clustered with D. brevis first, and then with D. canis, D. folliculorum, and Demodex injai in sequence. In conclusion, D. caprae is an independent species, and it is closer to D. brevis than to D. canis, D. folliculorum, or D. injai.

  10. HIV drug resistance testing among patients failing second line antiretroviral therapy. Comparison of in-house and commercial sequencing.

    PubMed

    Chimukangara, Benjamin; Varyani, Bhavini; Shamu, Tinei; Mutsvangwa, Junior; Manasa, Justen; White, Elizabeth; Chimbetete, Cleophas; Luethy, Ruedi; Katzenstein, David

    2017-05-01

    HIV genotyping is often unavailable in low and middle-income countries due to infrastructure requirements and cost. We compared genotype resistance testing in patients with virologic failure, by amplification of HIV pol gene, followed by "in-house" sequencing and commercial sequencing. Remnant plasma samples from adults and children failing second-line ART were amplified and sequenced using in-house and commercial di-deoxysequencing, and analyzed in Harare, Zimbabwe and at Stanford, U.S.A, respectively. HIV drug resistance mutations were determined using the Stanford HIV drug resistance database. Twenty-six of 28 samples were amplified and 25 were successfully genotyped. Comparison of average percent nucleotide and amino acid identities between 23 pairs sequenced in both laboratories were 99.51 (±0.56) and 99.11 (±0.95), respectively. All pairs clustered together in phylogenetic analysis. Sequencing analysis identified 6/23 pairs with mutation discordances resulting in differences in phenotype, but these did not impact future regimens. The results demonstrate our ability to produce good quality drug resistance data in-house. Despite discordant mutations in some sequence pairs, the phenotypic predictions were not clinically significant. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Incorporation of unique molecular identifiers in TruSeq adapters improves the accuracy of quantitative sequencing.

    PubMed

    Hong, Jungeui; Gresham, David

    2017-11-01

    Quantitative analysis of next-generation sequencing (NGS) data requires discriminating duplicate reads generated by PCR from identical molecules that are of unique origin. Typically, PCR duplicates are identified as sequence reads that align to the same genomic coordinates using reference-based alignment. However, identical molecules can be independently generated during library preparation. Misidentification of these molecules as PCR duplicates can introduce unforeseen biases during analyses. Here, we developed a cost-effective sequencing adapter design by modifying Illumina TruSeq adapters to incorporate a unique molecular identifier (UMI) while maintaining the capacity to undertake multiplexed, single-index sequencing. Incorporation of UMIs into TruSeq adapters (TrUMIseq adapters) enables identification of bona fide PCR duplicates as identically mapped reads with identical UMIs. Using TrUMIseq adapters, we show that accurate removal of PCR duplicates results in improved accuracy of both allele frequency (AF) estimation in heterogeneous populations using DNA sequencing and gene expression quantification using RNA-Seq.

  12. Fine-tuning structural RNA alignments in the twilight zone.

    PubMed

    Bremges, Andreas; Schirmer, Stefanie; Giegerich, Robert

    2010-04-30

    A widely used method to find conserved secondary structure in RNA is to first construct a multiple sequence alignment, and then fold the alignment, optimizing a score based on thermodynamics and covariance. This method works best around 75% sequence similarity. However, in a "twilight zone" below 55% similarity, the sequence alignment tends to obscure the covariance signal used in the second phase. Therefore, while the overall shape of the consensus structure may still be found, the degree of conservation cannot be estimated reliably. Based on a combination of available methods, we present a method named planACstar for improving structure conservation in structural alignments in the twilight zone. After constructing a consensus structure by alignment folding, planACstar abandons the original sequence alignment, refolds the sequences individually, but consistent with the consensus, aligns the structures, irrespective of sequence, by a pure structure alignment method, and derives an improved sequence alignment from the alignment of structures, to be re-submitted to alignment folding, etc.. This circle may be iterated as long as structural conservation improves, but normally, one step suffices. Employing the tools ClustalW, RNAalifold, and RNAforester, we find that for sequences with 30-55% sequence identity, structural conservation can be improved by 10% on average, with a large variation, measured in terms of RNAalifold's own criterion, the structure conservation index.

  13. Facilitated sequence counting and assembly by template mutagenesis

    PubMed Central

    Levy, Dan; Wigler, Michael

    2014-01-01

    Presently, inferring the long-range structure of the DNA templates is limited by short read lengths. Accurate template counts suffer from distortions occurring during PCR amplification. We explore the utility of introducing random mutations in identical or nearly identical templates to create distinguishable patterns that are inherited during subsequent copying. We simulate the applications of this process under assumptions of error-free sequencing and perfect mapping, using cytosine deamination as a model for mutation. The simulations demonstrate that within readily achievable conditions of nucleotide conversion and sequence coverage, we can accurately count the number of otherwise identical molecules as well as connect variants separated by long spans of identical sequence. We discuss many potential applications, such as transcript profiling, isoform assembly, haplotype phasing, and de novo genome assembly. PMID:25313059

  14. Recombination and Insertion Events Involving the Botulinum Neurotoxin Complex Genes in Clostridium botulinum Types A, B, E and F and Clostridium butyricum Type E Strains

    DTIC Science & Technology

    2009-10-05

    to be located within a small plasmid [11]. The genomic sequence data for the Eklund 17B strain verified the presence of bont/np b within a unique...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed...three BoNT/A1 strains (ATCC 3502, ATCC 19397, Hall) revealed that these strains are nearly identical in genomic organization ( data not shown). The

  15. Novel dicistrovirus from bat guano.

    PubMed

    Reuter, Gábor; Pankovics, Péter; Gyöngyi, Zoltán; Delwart, Eric; Boros, Akos

    2014-12-01

    A novel dicistrovirus (strain NB-1/2011/HUN, KJ802403) genome was detected from guano collected from an insectivorous bat (species Pipistrellus pipistrellus) in Hungary, using viral metagenomics. The complete genome of NB-1 is 9136 nt in length, excluding the poly(A) tail. NB-1 has a genome organization typical of a dicistrovirus with multiple 3B(VPg) and a cripavirus-like intergenic region (IGR)-IRES. NB-1 shares only 41 % average amino acid sequence identity with capsid proteins of Himetobi P virus, indicating a potential novel species in the genus Cripavirus, family Dicistroviridae.

  16. Automated Identification of Medically Important Bacteria by 16S rRNA Gene Sequencing Using a Novel Comprehensive Database, 16SpathDB▿

    PubMed Central

    Woo, Patrick C. Y.; Teng, Jade L. L.; Yeung, Juilian M. Y.; Tse, Herman; Lau, Susanna K. P.; Yuen, Kwok-Yung

    2011-01-01

    Despite the increasing use of 16S rRNA gene sequencing, interpretation of 16S rRNA gene sequence results is one of the most difficult problems faced by clinical microbiologists and technicians. To overcome the problems we encountered in the existing databases during 16S rRNA gene sequence interpretation, we built a comprehensive database, 16SpathDB (http://147.8.74.24/16SpathDB) based on the 16S rRNA gene sequences of all medically important bacteria listed in the Manual of Clinical Microbiology and evaluated its use for automated identification of these bacteria. Among 91 nonduplicated bacterial isolates collected in our clinical microbiology laboratory, 71 (78%) were reported by 16SpathDB as a single bacterial species having >98.0% nucleotide identity with the query sequence, 19 (20.9%) were reported as more than one bacterial species having >98.0% nucleotide identity with the query sequence, and 1 (1.1%) was reported as no match. For the 71 bacterial isolates reported as a single bacterial species, all results were identical to their true identities as determined by a polyphasic approach. For the 19 bacterial isolates reported as more than one bacterial species, all results contained their true identities as determined by a polyphasic approach and all of them had their true identities as the “best match in 16SpathDB.” For the isolate (Gordonibacter pamelaeae) reported as no match, the bacterium has never been reported to be associated with human disease and was not included in the Manual of Clinical Microbiology. 16SpathDB is an automated, user-friendly, efficient, accurate, and regularly updated database for 16S rRNA gene sequence interpretation in clinical microbiology laboratories. PMID:21389154

  17. Two Genera of Magnetococci with Bean-like Morphology from Intertidal Sediments of the Yellow Sea, China

    PubMed Central

    Zhang, Wen-Yan; Zhou, Ke; Pan, Hong-Miao; Yue, Hai-Dong; Jiang, Ming

    2012-01-01

    Magnetotactic bacteria have the unique capacity of being able to swim along geomagnetic field lines. They are Gram-negative bacteria with diverse morphologies and variable phylogenetic relatedness. Here, we describe a group of uncultivated marine magnetococci collected from intertidal sediments of Huiquan Bay in the Yellow Sea. They were coccoid-ovoid in morphology, with an average size of 2.8 ± 0.3 μm by 2.0 ± 0.2 μm. Differential interference contrast microscopy, fluorescence microscopy, and transmission electron microscopy revealed that each cell was apparently composed of two hemispheres. The cells synthesized iron oxide-type magnetosomes that clustered on one side of the cell at the interface between the two hemispheres. In some cells two chains of magnetosomes were observed across the interface. Each cell had two bundles of flagella enveloped in a sheath and displayed north-seeking helical motion. Two 16S rRNA gene sequences having 91.8% identity were obtained, and their authenticity was confirmed by fluorescence in situ hybridization. Phylogenetic analysis revealed that the magnetococci are affiliated with the Alphaproteobacteria and are most closely related to two uncultured magnetococci with sequence identities of 92.7% and 92.4%, respectively. Because they display a >7% sequence divergence to all bacteria reported, the bean-like magnetococci may represent two novel genera. PMID:22660708

  18. Evaluation of DNA barcoding and identification of new haplomorphs in Canadian deerflies and horseflies.

    PubMed

    Cywinska, A; Hannan, M A; Kevan, P G; Roughley, R E; Iranpour, M; Hunter, F F

    2010-12-01

    This paper reports the first tests of the suitability of the standardized mitochondrial cytochrome c oxidase subunit I (COI) barcoding system for the identification of Canadian deerflies and horseflies. Two additional mitochondrial molecular markers were used to determine whether unambiguous species recognition in tabanids can be achieved. Our 332 Canadian tabanid samples yielded 650 sequences from five genera and 42 species. Standard COI barcodes demonstrated a strong A + T bias (mean 68.1%), especially at third codon positions (mean 93.0%). Our preliminary test of this system showed that the standard COI barcode worked well for Canadian Tabanidae: the target DNA can be easily recovered from small amounts of insect tissue and aligned for all tabanid taxa. Each tabanid species possessed distinctive sets of COI haplotypes which discriminated well among species. Average conspecific Kimura two-parameter (K2P) divergence (0.49%) was 12 times lower than the average divergence within species. Both the neighbour-joining and the Bayesian methods produced trees with identical monophyletic species groups. Two species, Chrysops dawsoni Philip and Chrysops montanus Osten Sacken (Diptera: Tabanidae), showed relatively deep intraspecific sequence divergences (∼ 10 times the average) for all three mitochondrial gene regions analysed. We suggest provisional differentiation of Ch. montanus into two haplotypes, namely, Ch. montanus haplomorph 1 and Ch. montanus haplomorph 2, both defined by their molecular sequences and by newly discovered differences in structural features near their ocelli. © 2010 Brock University. Medical and Veterinary Entomology © 2010 The Royal Entomological Society.

  19. Genomic taxonomy of vibrios

    PubMed Central

    Thompson, Cristiane C; Vicente, Ana Carolina P; Souza, Rangel C; Vasconcelos, Ana Tereza R; Vesth, Tammi; Alves, Nelson; Ussery, David W; Iida, Tetsuya; Thompson, Fabiano L

    2009-01-01

    Background Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera) from 32 genome sequences of different vibrio species. We use a variety of tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis (MLSA), supertrees, Average Amino Acid Identity (AAI), genomic signatures, and Genome BLAST atlases. Our aim is to analyse the usefulness of these tools for species identification in vibrios. Results We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a tantalizing image of the genomic differences that occur between closely related sister species, e.g. V. cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains of V. cholerae to occupy different niches. MLSA and supertree analyses resulted in a similar phylogenetic picture, with a clear distinction of four groups (Vibrio core group, V. cholerae-V. mimicus, Aliivibrio spp., and Photobacterium spp.). A Vibrio species is defined as a group of strains that share > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, ≤ 10 genome signature dissimilarity, and > 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree. Conclusion The combination of different analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in the birth of the online genomic taxonomy whereby researchers and end-users of taxonomy will be able to identify their isolates through a web-based server. This novel approach to microbial systematics will result in a tremendous advance concerning biodiversity discovery, description, and understanding. PMID:19860885

  20. Pairagon: a highly accurate, HMM-based cDNA-to-genome aligner.

    PubMed

    Lu, David V; Brown, Randall H; Arumugam, Manimozhiyan; Brent, Michael R

    2009-07-01

    The most accurate way to determine the intron-exon structures in a genome is to align spliced cDNA sequences to the genome. Thus, cDNA-to-genome alignment programs are a key component of most annotation pipelines. The scoring system used to choose the best alignment is a primary determinant of alignment accuracy, while heuristics that prevent consideration of certain alignments are a primary determinant of runtime and memory usage. Both accuracy and speed are important considerations in choosing an alignment algorithm, but scoring systems have received much less attention than heuristics. We present Pairagon, a pair hidden Markov model based cDNA-to-genome alignment program, as the most accurate aligner for sequences with high- and low-identity levels. We conducted a series of experiments testing alignment accuracy with varying sequence identity. We first created 'perfect' simulated cDNA sequences by splicing the sequences of exons in the reference genome sequences of fly and human. The complete reference genome sequences were then mutated to various degrees using a realistic mutation simulator and the perfect cDNAs were aligned to them using Pairagon and 12 other aligners. To validate these results with natural sequences, we performed cross-species alignment using orthologous transcripts from human, mouse and rat. We found that aligner accuracy is heavily dependent on sequence identity. For sequences with 100% identity, Pairagon achieved accuracy levels of >99.6%, with one quarter of the errors of any other aligner. Furthermore, for human/mouse alignments, which are only 85% identical, Pairagon achieved 87% accuracy, higher than any other aligner. Pairagon source and executables are freely available at http://mblab.wustl.edu/software/pairagon/

  1. Taxonomic evaluation of Streptomyces albus and related species using multilocus sequence analysis

    USDA-ARS?s Scientific Manuscript database

    In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811T formed a cluster with 5 other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these ot...

  2. Detecting authorized and unauthorized genetically modified organisms containing vip3A by real-time PCR and next-generation sequencing.

    PubMed

    Liang, Chanjuan; van Dijk, Jeroen P; Scholtens, Ingrid M J; Staats, Martijn; Prins, Theo W; Voorhuijzen, Marleen M; da Silva, Andrea M; Arisi, Ana Carolina Maisonnave; den Dunnen, Johan T; Kok, Esther J

    2014-04-01

    The growing number of biotech crops with novel genetic elements increasingly complicates the detection of genetically modified organisms (GMOs) in food and feed samples using conventional screening methods. Unauthorized GMOs (UGMOs) in food and feed are currently identified through combining GMO element screening with sequencing the DNA flanking these elements. In this study, a specific and sensitive qPCR assay was developed for vip3A element detection based on the vip3Aa20 coding sequences of the recently marketed MIR162 maize and COT102 cotton. Furthermore, SiteFinding-PCR in combination with Sanger, Illumina or Pacific BioSciences (PacBio) sequencing was performed targeting the flanking DNA of the vip3Aa20 element in MIR162. De novo assembly and Basic Local Alignment Search Tool searches were used to mimic UGMO identification. PacBio data resulted in relatively long contigs in the upstream (1,326 nucleotides (nt); 95 % identity) and downstream (1,135 nt; 92 % identity) regions, whereas Illumina data resulted in two smaller contigs of 858 and 1,038 nt with higher sequence identity (>99 % identity). Both approaches outperformed Sanger sequencing, underlining the potential for next-generation sequencing in UGMO identification.

  3. MetaSeq: privacy preserving meta-analysis of sequencing-based association studies.

    PubMed

    Singh, Angad Pal; Zafer, Samreen; Pe'er, Itsik

    2013-01-01

    Human genetics recently transitioned from GWAS to studies based on NGS data. For GWAS, small effects dictated large sample sizes, typically made possible through meta-analysis by exchanging summary statistics across consortia. NGS studies groupwise-test for association of multiple potentially-causal alleles along each gene. They are subject to similar power constraints and therefore likely to resort to meta-analysis as well. The problem arises when considering privacy of the genetic information during the data-exchange process. Many scoring schemes for NGS association rely on the frequency of each variant thus requiring the exchange of identity of the sequenced variant. As such variants are often rare, potentially revealing the identity of their carriers and jeopardizing privacy. We have thus developed MetaSeq, a protocol for meta-analysis of genome-wide sequencing data by multiple collaborating parties, scoring association for rare variants pooled per gene across all parties. We tackle the challenge of tallying frequency counts of rare, sequenced alleles, for metaanalysis of sequencing data without disclosing the allele identity and counts, thereby protecting sample identity. This apparent paradoxical exchange of information is achieved through cryptographic means. The key idea is that parties encrypt identity of genes and variants. When they transfer information about frequency counts in cases and controls, the exchanged data does not convey the identity of a mutation and therefore does not expose carrier identity. The exchange relies on a 3rd party, trusted to follow the protocol although not trusted to learn about the raw data. We show applicability of this method to publicly available exome-sequencing data from multiple studies, simulating phenotypic information for powerful meta-analysis. The MetaSeq software is publicly available as open source.

  4. Advanced Microbial Taxonomy Combined with Genome-Based-Approaches Reveals that Vibrio astriarenae sp. nov., an Agarolytic Marine Bacterium, Forms a New Clade in Vibrionaceae.

    PubMed

    Al-Saari, Nurhidayu; Gao, Feng; Rohul, Amin A K M; Sato, Kazumichi; Sato, Keisuke; Mino, Sayaka; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Ohkuma, Moriya; Meirelles, Pedro M; Thompson, Fabiano L; Thompson, Cristiane; Filho, Gilberto M A; Gomez-Gil, Bruno; Sawabe, Toko; Sawabe, Tomoo

    2015-01-01

    Advances in genomic microbial taxonomy have opened the way to create a more universal and transparent concept of species but is still in a transitional stage towards becoming a defining robust criteria for describing new microbial species with minimum features obtained using both genome and classical polyphasic taxonomies. Here we performed advanced microbial taxonomies combined with both genome-based and classical approaches for new agarolytic vibrio isolates to describe not only a novel Vibrio species but also a member of a new Vibrio clade. Two novel vibrio strains (Vibrio astriarenae sp. nov. C7T and C20) showing agarolytic, halophilic and fermentative metabolic activity were isolated from a seawater sample collected in a coral reef in Okinawa. Intraspecific similarities of the isolates were identical in both sequences on the 16S rRNA and pyrH genes, but the closest relatives on the molecular phylogenetic trees on the basis of 16S rRNA and pyrH gene sequences were V. hangzhouensis JCM 15146T (97.8% similarity) and V. agarivorans CECT 5085T (97.3% similarity), respectively. Further multilocus sequence analysis (MLSA) on the basis of 8 protein coding genes (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA, and topA) obtained by the genome sequences clearly showed the V. astriarenae strain C7T and C20 formed a distinct new clade protruded next to V. agarivorans CECT 5085T. The singleton V. agarivorans has never been included in previous MLSA of Vibrionaceae due to the lack of some gene sequences. Now the gene sequences are completed and analysis of 100 taxa in total provided a clear picture describing the association of V. agarivorans into pre-existing concatenated network tree and concluded its relationship to our vibrio strains. Experimental DNA-DNA hybridization (DDH) data showed that the strains C7T and C20 were conspecific but were separated from all of the other Vibrio species related on the basis of both 16S rRNA and pyrH gene phylogenies (e.g., V. agarivorans CECT 5085T, V. hangzhouensis JCM 15146T V. maritimus LMG 25439T, and V. variabilis LMG 25438T). In silico DDH data also supported the genomic relationship. The strains C7T also had less than 95% average amino acid identity (AAI) and average nucleotide identity (ANI) towards V. maritimus C210, V. variabilis C206, and V. mediterranei AK1T, V. brasiliensis LMG 20546T, V. orientalis ATCC 33934T, and V. sinaloensis DSM 21326. The name Vibrio astriarenae sp. nov. is proposed with C7 as the type strains. Both V. agarivorans CECT 5058T and V. astriarenae C7T are members of the newest clade of Vibrionaceae named Agarivorans.

  5. Molecular characterisation of Sarcocystis lutrae n. sp. and Toxoplasma gondii from the musculature of two Eurasian otters (Lutra lutra) in Norway.

    PubMed

    Gjerde, Bjørn; Josefsen, Terje D

    2015-03-01

    Sarcocysts were detected in routinely processed histological sections of skeletal muscle, but not cardiac muscle, of two adult male otters (Lutra lutra; Mustelidae) from northern Norway following their post-mortem examination in 1999 and 2000. The sarcocysts were slender, spindle-shaped, up to 970 μm long and 35-70 μm in greatest diameter. The sarcocyst wall was thin (∼ 0.5 μm) and smooth with no visible protrusions. Portions of unfixed diaphragm of both animals were collected at the autopsies and kept frozen for about 14 years pending further examination. When the study was resumed in 2013, the thawed muscle samples were examined for sarcocysts under a stereo microscope, but none could be found. Genomic DNA was therefore extracted from a total of 36 small pieces of the diaphragm from both otters, and samples found to contain Sarcocystidae DNA were used selectively for PCR amplification and sequencing of the nuclear 18S and 28S ribosomal (r) RNA genes and internal transcribed spacer 1 (ITS1) region, as well as the mitochondrial cytochrome b (cytb) and cytochrome c oxidase subunit 1 (cox1) genes. Sequence comparisons revealed that both otters were infected by the same Sarcocystis sp. and that there was no genetic variation (100 % identity) among sequenced isolates at the 18S and 28S rRNA genes (six identical isolates at both loci) or at cox1 (13 identical isolates). PCR products comprising the ITS1 region, on the other hand, had to be cloned before sequencing due to intraspecific sequence variation. A total of 33 clones were sequenced, and the identities between them were 97.9-99.9 %. These sequences were most similar (93.7-96.0 % identity) to a sequence of Sarcocystis kalvikus from the wolverine in Canada, but the phylogenetic analyses placed all of them as a monophyletic sister group to S. kalvikus. Hence, they were considered to represent a novel species, which was named Sarcocystis lutrae. Sequence comparisons and phylogenetic analyses based on sequences of the 18S and 28S rRNA genes and cox1, for which little or no sequence data were available for S. kalvikus, revealed that S. lutrae otherwise was most closely related to various Sarcocystis spp. using birds or carnivores as intermediate hosts. The cox1 sequences of S. lutrae from the otters were identical to two sequences from an arctic fox, which in a previous study had been assigned to Sarcocystis arctica due to a high identity (99.4 %) with the latter species at this gene and a complete identity with S. arctica at three other loci when using the same DNA samples as templates for PCR reactions. Additional PCR amplifications and sequencing of cox1 (ten sequences) and the ITS1 region (four sequences) using four DNA samples from this fox as templates again generated cox1 sequences exclusively of S. lutrae, but ITS1 sequences of S. arctica, and thus confirmed that this arctic fox had acted as intermediate host for both S. arctica and S. lutrae. Based on the phylogenetic placement of S. lutrae, the geographical location of infected animals (otters, arctic fox) and the distribution of carnivores/raptors which may have interacted with them, the white-tailed eagle (Haliaeetus albicilla) seems to be a possible definitive host of S. lutrae. Some of the muscle samples from both otters were shown to harbour stages of Toxoplasma gondii through PCR amplification and sequencing of the entire ITS1 region (five isolates) and/or the partial cytb (eight isolates) and cox1 (one isolate). These sequences were identical to several previous sequences of T. gondii in GenBank. Thus, both otters had a dual infection with S. lutrae and T. gondii.

  6. Polyclonality of Concurrent Natural Populations of Alteromonas macleodii

    PubMed Central

    Gonzaga, Aitor; Martin-Cuadrado, Ana-Belen; López-Pérez, Mario; Megumi Mizuno, Carolina; García-Heredia, Inmaculada; Kimes, Nikole E.; Lopez-García, Purificación; Moreira, David; Ussery, David; Zaballos, Mila; Ghai, Rohit; Rodriguez-Valera, Francisco

    2012-01-01

    We have analyzed a natural population of the marine bacterium, Alteromonas macleodii, from a single sample of seawater to evaluate the genomic diversity present. We performed full genome sequencing of four isolates and 161 metagenomic fosmid clones, all of which were assigned to A. macleodii by sequence similarity. Out of the four strain genomes, A. macleodii deep ecotype (AltDE1) represented a different genome, whereas AltDE2 and AltDE3 were identical to the previously described AltDE. Although the core genome (∼80%) had an average nucleotide identity of 98.51%, both AltDE and AltDE1 contained flexible genomic islands (fGIs), that is, genomic islands present in both genomes in the same genomic context but having different gene content. Some of the fGIs encode cell surface receptors known to be phage recognition targets, such as the O-chain of the lipopolysaccharide, whereas others have genes involved in physiological traits (e.g., nutrient transport, degradation, and metal resistance) denoting microniche specialization. The presence in metagenomic fosmids of genomic fragments differing from the sequenced strain genomes, together with the presence of new fGIs, indicates that there are at least two more A. macleodii clones present. The availability of three or more sequences overlapping the same genomic region also allowed us to estimate the frequency and distribution of recombination events among these different clones, indicating that these clustered near the genomic islands. The results indicate that this natural A. macleodii population has multiple clones with a potential for different phage susceptibility and exploitation of resources, within a seemingly unstructured habitat. PMID:23212172

  7. Multilocus sequence analysis for assessment of phylogenetic diversity and biogeography in Thalassospira bacteria from diverse marine environments.

    PubMed

    Lai, Qiliang; Liu, Yang; Yuan, Jun; Du, Juan; Wang, Liping; Sun, Fengqin; Shao, Zongze

    2014-01-01

    Thalassospira bacteria are widespread and have been isolated from various marine environments. Less is known about their genetic diversity and biogeography, as well as their role in marine environments, many of them cannot be discriminated merely using the 16S rRNA gene. To address these issues, in this report, the phylogenetic analysis of 58 strains from seawater and deep sea sediments were carried out using the multilocus sequence analysis (MLSA) based on acsA, aroE, gyrB, mutL, rpoD and trpB genes, and the DNA-DNA hybridization (DDH) and average nucleotide identity (ANI) based on genome sequences. The MLSA analysis demonstrated that the 58 strains were clearly separated into 15 lineages, corresponding to seven validly described species and eight potential novel species. The DDH and ANI values further confirmed the validity of the MLSA analysis and eight potential novel species. The MLSA interspecies gap of the genus Thalassospira was determined to be 96.16-97.12% sequence identity on the basis of the combined analyses of the DDH and MLSA, while the ANIm interspecies gap was 95.76-97.20% based on the in silico DDH analysis. Meanwhile, phylogenetic analyses showed that the Thalassospira bacteria exhibited distribution pattern to a certain degree according to geographic regions. Moreover, they clustered together according to the habitats depth. For short, the phylogenetic analyses and biogeography of the Thalassospira bacteria were systematically investigated for the first time. These results will be helpful to explore further their ecological role and adaptive evolution in marine environments.

  8. Multilocus Sequence Analysis for Assessment of Phylogenetic Diversity and Biogeography in Thalassospira Bacteria from Diverse Marine Environments

    PubMed Central

    Yuan, Jun; Du, Juan; Wang, Liping; Sun, Fengqin; Shao, Zongze

    2014-01-01

    Thalassospira bacteria are widespread and have been isolated from various marine environments. Less is known about their genetic diversity and biogeography, as well as their role in marine environments, many of them cannot be discriminated merely using the 16S rRNA gene. To address these issues, in this report, the phylogenetic analysis of 58 strains from seawater and deep sea sediments were carried out using the multilocus sequence analysis (MLSA) based on acsA, aroE, gyrB, mutL, rpoD and trpB genes, and the DNA-DNA hybridization (DDH) and average nucleotide identity (ANI) based on genome sequences. The MLSA analysis demonstrated that the 58 strains were clearly separated into 15 lineages, corresponding to seven validly described species and eight potential novel species. The DDH and ANI values further confirmed the validity of the MLSA analysis and eight potential novel species. The MLSA interspecies gap of the genus Thalassospira was determined to be 96.16–97.12% sequence identity on the basis of the combined analyses of the DDH and MLSA, while the ANIm interspecies gap was 95.76–97.20% based on the in silico DDH analysis. Meanwhile, phylogenetic analyses showed that the Thalassospira bacteria exhibited distribution pattern to a certain degree according to geographic regions. Moreover, they clustered together according to the habitats depth. For short, the phylogenetic analyses and biogeography of the Thalassospira bacteria were systematically investigated for the first time. These results will be helpful to explore further their ecological role and adaptive evolution in marine environments. PMID:25198177

  9. Form drag in rivers due to small-scale natural topographic features: 2. Irregular sequences

    USGS Publications Warehouse

    Kean, J.W.; Smith, J.D.

    2006-01-01

    The size, shape, and spacing of small-scale topographic features found on the boundaries of natural streams, rivers, and floodplains can be quite variable. Consequently, a procedure for determining the form drag on irregular sequences of different-sized topographic features is essential for calculating near-boundary flows and sediment transport. A method for carrying out such calculations is developed in this paper. This method builds on the work of Kean and Smith (2006), which describes the flow field for the simpler case of a regular sequence of identical topographic features. Both approaches model topographic features as two-dimensional elements with Gaussian-shaped cross sections defined in terms of three parameters. Field measurements of bank topography are used to show that (1) the magnitude of these shape parameters can vary greatly between adjacent topographic features and (2) the variability of these shape parameters follows a lognormal distribution. Simulations using an irregular set of topographic roughness elements show that the drag on an individual element is primarily controlled by the size and shape of the feature immediately upstream and that the spatial average of the boundary shear stress over a large set of randomly ordered elements is relatively insensitive to the sequence of the elements. In addition, a method to transform the topography of irregular surfaces into an equivalently rough surface of regularly spaced, identical topographic elements also is given. The methods described in this paper can be used to improve predictions of flow resistance in rivers as well as quantify bank roughness.

  10. Characterisation of Potential Antimicrobial Targets in Bacillus spp. I. Aminotransferases and Methionine Regeneration in Bacillus subtilis

    DTIC Science & Technology

    2002-07-01

    DAAT and 45% identical to the Staphylococcus haemolyticus DAAT. The ybgE and ywaA sequences were found in the Illa subfamily, and were 59% identical to...halodurans BH1060 gene product. The two sequences also had a respective 40% and 37% identity to the Staphylococcus aureuts SAV2560 gene product. The 6

  11. The randomized benchmarking number is not what you think it is

    NASA Astrophysics Data System (ADS)

    Proctor, Timothy; Rudinger, Kenneth; Blume-Kohout, Robin; Sarovar, Mohan; Young, Kevin

    Randomized benchmarking (RB) is a widely used technique for characterizing a gate set, whereby random sequences of gates are used to probe the average behavior of the gate set. The gates are chosen to ideally compose to the identity, and the rate of decay in the survival probability of an initial state with increasing length sequences is extracted from a set of experiments - this is the `RB number'. For reasonably well-behaved noise and particular gate sets, it has been claimed that the RB number is a reliable estimate of the average gate fidelity (AGF) of each noisy gate to the ideal target unitary, averaged over all gates in the set. Contrary to this widely held view, we show that this is not the case. We show that there are physically relevant situations, in which RB was thought to be provably reliable, where the RB number is many orders of magnitude away from the AGF. These results have important implications for interpreting the RB protocol, and immediate consequences for many advanced RB techniques. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Lactobacillus silagincola sp. nov. and Lactobacillus pentosiphilus sp. nov., isolated from silage.

    PubMed

    Tohno, Masanori; Tanizawa, Yasuhiro; Irisawa, Tomohiro; Masuda, Takaharu; Sakamoto, Mitsuo; Arita, Masanori; Ohkuma, Moriya; Kobayashi, Hisami

    2017-09-01

    Three Gram-stain positive, non-motile, non-spore-forming, catalase-negative and rod-shaped bacterial strains (IWT5T, IWT25T and IWT140), isolated from silage, were investigated by using a polyphasic taxonomic approach. Strains IWT5T and IWT25T grew at 10-37 °C and 30-37 °C, and at pH 4.0-7.5 and 4.0-7.0, respectively. The G+C contents of genomic DNA of strains IWT5T and IWT25T were 43.2 and 44.4 mol%, respectively. Strains IWT5T and IWT25T contained C16 : 0, C18 : 1 ω9c and summed feature 7 (unknown 18.846/C19 : 1 ω6c/C19 : 0cyclo ω10c) as the major fatty acids. Strain IWT5T was most closely related to the type strains of Lactobacillus mixtipabuli (99.9 % 16S rRNA gene sequence similarity) and Lactobacillus silagei (99.5 %). For IWT25T, the 16S rRNA gene sequence similarities with the closely related neighbour type strains L. mixtipabuli and L. silagei were 99.5 and 99.5 %, respectively. The 16S rRNA gene sequence similarities among the three novel isolates were 99.5-99.9 %. The average nucleotide identities of strains IWT5T and IWT25T to other neighbours of the genus Lactobacillus were less than 82 % and the genomes of IWT25T and IWT140 shared 97.3 % average nucleotide identity, demonstrating that the three strains were allocated to two different novel species of the genus Lactobacillus. Together with multilocus sequence analysis, phenotypic and chemotaxonomic characteristics, strains IWT5T (=JCM 31144T=DSM 102973T) and IWT25T (=JCM 31145T=DSM 102974T) are proposed as the type strains of novel species of the genus Lactobacillus, with the names Lactobacillus silagincola sp. nov. and Lactobacillus pentosiphilus sp. nov., respectively.

  13. ExprAlign - the identification of ESTs in non-model species by alignment of cDNA microarray expression profiles

    PubMed Central

    2009-01-01

    Background Sequence identification of ESTs from non-model species offers distinct challenges particularly when these species have duplicated genomes and when they are phylogenetically distant from sequenced model organisms. For the common carp, an environmental model of aquacultural interest, large numbers of ESTs remained unidentified using BLAST sequence alignment. We have used the expression profiles from large-scale microarray experiments to suggest gene identities. Results Expression profiles from ~700 cDNA microarrays describing responses of 7 major tissues to multiple environmental stressors were used to define a co-expression landscape. This was based on the Pearsons correlation coefficient relating each gene with all other genes, from which a network description provided clusters of highly correlated genes as 'mountains'. We show that these contain genes with known identities and genes with unknown identities, and that the correlation constitutes evidence of identity in the latter. This procedure has suggested identities to 522 of 2701 unknown carp ESTs sequences. We also discriminate several common carp genes and gene isoforms that were not discriminated by BLAST sequence alignment alone. Precision in identification was substantially improved by use of data from multiple tissues and treatments. Conclusion The detailed analysis of co-expression landscapes is a sensitive technique for suggesting an identity for the large number of BLAST unidentified cDNAs generated in EST projects. It is capable of detecting even subtle changes in expression profiles, and thereby of distinguishing genes with a common BLAST identity into different identities. It benefits from the use of multiple treatments or contrasts, and from the large-scale microarray data. PMID:19939286

  14. Complete sequence analysis reveals two distinct poleroviruses infecting cucurbits in China.

    PubMed

    Xiang, Hai-ying; Shang, Qiao-xia; Han, Cheng-gui; Li, Da-wei; Yu, Jia-lin

    2008-01-01

    The complete RNA genomes of a Chinese isolate of cucurbit aphid-borne yellows virus (CABYV-CHN) and a new polerovirus tentatively referred to as melon aphid-borne yellows virus (MABYV) were determined. The entire genome of CABYV-CHN shared 89.0% nucleotide sequence identity with the French CABYV isolate. In contrast, nucleotide sequence identities between MABYV and CABYV and other poleroviruses were in the range of 50.7-74.2%, with amino acid sequence identities ranging from 24.8 to 82.9% for individual gene products. We propose that CABYV-CHN is a strain of CABYV and that MABYV is a member of a tentative distinct species within the genus Polerovirus.

  15. TIA: algorithms for development of identity-linked SNP islands for analysis by massively parallel DNA sequencing.

    PubMed

    Farris, M Heath; Scott, Andrew R; Texter, Pamela A; Bartlett, Marta; Coleman, Patricia; Masters, David

    2018-04-11

    Single nucleotide polymorphisms (SNPs) located within the human genome have been shown to have utility as markers of identity in the differentiation of DNA from individual contributors. Massively parallel DNA sequencing (MPS) technologies and human genome SNP databases allow for the design of suites of identity-linked target regions, amenable to sequencing in a multiplexed and massively parallel manner. Therefore, tools are needed for leveraging the genotypic information found within SNP databases for the discovery of genomic targets that can be evaluated on MPS platforms. The SNP island target identification algorithm (TIA) was developed as a user-tunable system to leverage SNP information within databases. Using data within the 1000 Genomes Project SNP database, human genome regions were identified that contain globally ubiquitous identity-linked SNPs and that were responsive to targeted resequencing on MPS platforms. Algorithmic filters were used to exclude target regions that did not conform to user-tunable SNP island target characteristics. To validate the accuracy of TIA for discovering these identity-linked SNP islands within the human genome, SNP island target regions were amplified from 70 contributor genomic DNA samples using the polymerase chain reaction. Multiplexed amplicons were sequenced using the Illumina MiSeq platform, and the resulting sequences were analyzed for SNP variations. 166 putative identity-linked SNPs were targeted in the identified genomic regions. Of the 309 SNPs that provided discerning power across individual SNP profiles, 74 previously undefined SNPs were identified during evaluation of targets from individual genomes. Overall, DNA samples of 70 individuals were uniquely identified using a subset of the suite of identity-linked SNP islands. TIA offers a tunable genome search tool for the discovery of targeted genomic regions that are scalable in the population frequency and numbers of SNPs contained within the SNP island regions. It also allows the definition of sequence length and sequence variability of the target region as well as the less variable flanking regions for tailoring to MPS platforms. As shown in this study, TIA can be used to discover identity-linked SNP islands within the human genome, useful for differentiating individuals by targeted resequencing on MPS technologies.

  16. Terminal region sequence variations in variola virus DNA.

    PubMed

    Massung, R F; Loparev, V N; Knight, J C; Totmenin, A V; Chizhikov, V E; Parsons, J M; Safronov, P F; Gutorov, V V; Shchelkunov, S N; Esposito, J J

    1996-07-15

    Genome DNA terminal region sequences were determined for a Brazilian alastrim variola minor virus strain Garcia-1966 that was associated with an 0.8% case-fatality rate and African smallpox strains Congo-1970 and Somalia-1977 associated with variola major (9.6%) and minor (0.4%) mortality rates, respectively. A base sequence identity of > or = 98.8% was determined after aligning 30 kb of the left- or right-end region sequences with cognate sequences previously determined for Asian variola major strains India-1967 (31% death rate) and Bangladesh-1975 (18.5% death rate). The deduced amino acid sequences of putative proteins of > or = 65 amino acids also showed relatively high identity, although the Asian and African viruses were clearly more related to each other than to alastrim virus. Alastrim virus contained only 10 of 70 proteins that were 100% identical to homologs in Asian strains, and 7 alastrim-specific proteins were noted.

  17. Effects of learning with explicit elaboration on implicit transfer of visuomotor sequence learning.

    PubMed

    Tanaka, Kanji; Watanabe, Katsumi

    2013-08-01

    Intervals between stimuli and/or responses have significant influences on sequential learning. In the present study, we investigated whether transfer would occur even when the intervals and the visual configurations in a sequence were drastically changed so that participants did not notice that the required sequences of responses were identical. In the experiment, two (or three) sequential button presses comprised a "set," and nine (or six) consecutive sets comprised a "hyperset." In the first session, participants learned either a 2 × 9 or 3 × 6 hyperset by trial and error until they completed it 20 times without error. In the second block, the 2 × 9 (3 × 6) hyperset was changed into the 3 × 6 (2 × 9) hyperset, resulting in different visual configurations and intervals between stimuli and responses. Participants were assigned into two groups: the Identical and Random groups. In the Identical group, the sequence (i.e., the buttons to be pressed) in the second block was identical to that in the first block. In the Random group, a new hyperset was learned. Even in the Identical group, no participants noticed that the sequences were identical. Nevertheless, a significant transfer of performance occurred. However, in the subsequent experiment that did not require explicit trial-and-error learning in the first session, implicit transfer in the second session did not occur. These results indicate that learning with explicit elaboration strengthens the implicit representation of the sequence order as a whole; this might occur independently of the intervals between elements and enable implicit transfer.

  18. Sequence and structural implications of a bovine corneal keratan sulfate proteoglycan core protein. Protein 37B represents bovine lumican and proteins 37A and 25 are unique

    NASA Technical Reports Server (NTRS)

    Funderburgh, J. L.; Funderburgh, M. L.; Brown, S. J.; Vergnes, J. P.; Hassell, J. R.; Mann, M. M.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Amino acid sequence from tryptic peptides of three different bovine corneal keratan sulfate proteoglycan (KSPG) core proteins (designated 37A, 37B, and 25) showed similarities to the sequence of a chicken KSPG core protein lumican. Bovine lumican cDNA was isolated from a bovine corneal expression library by screening with chicken lumican cDNA. The bovine cDNA codes for a 342-amino acid protein, M(r) 38,712, containing amino acid sequences identified in the 37B KSPG core protein. The bovine lumican is 68% identical to chicken lumican, with an 83% identity excluding the N-terminal 40 amino acids. Location of 6 cysteine and 4 consensus N-glycosylation sites in the bovine sequence were identical to those in chicken lumican. Bovine lumican had about 50% identity to bovine fibromodulin and 20% identity to bovine decorin and biglycan. About two-thirds of the lumican protein consists of a series of 10 amino acid leucine-rich repeats that occur in regions of calculated high beta-hydrophobic moment, suggesting that the leucine-rich repeats contribute to beta-sheet formation in these proteins. Sequences obtained from 37A and 25 core proteins were absent in bovine lumican, thus predicting a unique primary structure and separate mRNA for each of the three bovine KSPG core proteins.

  19. Investigation of the Effect of Finite Pulse Errors on BABA Pulse Sequence Using Floquet-Magnus Expansion Approach.

    PubMed

    Mananga, Eugene S; Reid, Alicia E

    This paper presents the study of finite pulse widths for the BABA pulse sequence using the Floquet-Magnus expansion (FME) approach. In the FME scheme, the first order F 1 is identical to its counterparts in average Hamiltonian theory (AHT) and Floquet theory (FT). However, the timing part in the FME approach is introduced via the Λ 1 ( t ) function not present in other schemes. This function provides an easy way for evaluating the spin evolution during "the time in between" through the Magnus expansion of the operator connected to the timing part of the evolution. The evaluation of Λ 1 ( t ) is useful especially for the analysis of the non-stroboscopic evolution. Here, the importance of the boundary conditions, which provides a natural choice of Λ 1 (0) is ignored. This work uses the Λ 1 ( t ) function to compare the efficiency of the BABA pulse sequence with δ - pulses and the BABA pulse sequence with finite pulses. Calculations of Λ 1 ( t ) and F 1 are presented.

  20. Investigation of the Effect of Finite Pulse Errors on BABA Pulse Sequence Using Floquet-Magnus Expansion Approach

    PubMed Central

    Mananga, Eugene S.; Reid, Alicia E.

    2013-01-01

    This paper presents the study of finite pulse widths for the BABA pulse sequence using the Floquet-Magnus expansion (FME) approach. In the FME scheme, the first order F1 is identical to its counterparts in average Hamiltonian theory (AHT) and Floquet theory (FT). However, the timing part in the FME approach is introduced via the Λ1 (t) function not present in other schemes. This function provides an easy way for evaluating the spin evolution during “the time in between” through the Magnus expansion of the operator connected to the timing part of the evolution. The evaluation of Λ1 (t) is useful especially for the analysis of the non-stroboscopic evolution. Here, the importance of the boundary conditions, which provides a natural choice of Λ1 (0) is ignored. This work uses the Λ1 (t) function to compare the efficiency of the BABA pulse sequence with δ – pulses and the BABA pulse sequence with finite pulses. Calculations of Λ1 (t) and F1 are presented. PMID:25792763

  1. Chemical synthesis and characterization of branched oligodeoxyribonucleotides (bDNA) for use as signal amplifiers in nucleic acid quantification assays.

    PubMed

    Horn, T; Chang, C A; Urdea, M S

    1997-12-01

    The divergent synthesis of bDNA structures is described. This new type of branched DNA contains one unique oligonucleotide, the primary sequence, covalently attached through a comb-like branching network to many identical copies of a different oligonucleotide, the secondary sequence. The bDNA comb molecules were assembled on a solid support using parameters optimized for bDNA synthesis. The chemistry was used to synthesize bDNA comb molecules containing 15 secondary sequences. The bDNA comb molecules were elaborated by enzymatic ligation into branched amplification multimers, large bDNA molecules (a total of 1068 nt) containing an average of 36 repeated DNA oligomer sequences, each capable of hybridizing specifically to an alkaline phosphatase-labeled oligonucleotide. The bDNA comb molecules were characterized by electrophoretic methods and by controlled cleavage at periodate-cleavable moieties incorporated during synthesis. The branched amplification multimers have been used as signal amplifiers in nucleic acid quantification assays for detection of viral infection. It is possible to detect as few as 50 molecules with bDNA technology.

  2. Chemical synthesis and characterization of branched oligodeoxyribonucleotides (bDNA) for use as signal amplifiers in nucleic acid quantification assays.

    PubMed Central

    Horn, T; Chang, C A; Urdea, M S

    1997-01-01

    The divergent synthesis of bDNA structures is described. This new type of branched DNA contains one unique oligonucleotide, the primary sequence, covalently attached through a comb-like branching network to many identical copies of a different oligonucleotide, the secondary sequence. The bDNA comb molecules were assembled on a solid support using parameters optimized for bDNA synthesis. The chemistry was used to synthesize bDNA comb molecules containing 15 secondary sequences. The bDNA comb molecules were elaborated by enzymatic ligation into branched amplification multimers, large bDNA molecules (a total of 1068 nt) containing an average of 36 repeated DNA oligomer sequences, each capable of hybridizing specifically to an alkaline phosphatase-labeled oligonucleotide. The bDNA comb molecules were characterized by electrophoretic methods and by controlled cleavage at periodate-cleavable moieties incorporated during synthesis. The branched amplification multimers have been used as signal amplifiers in nucleic acid quantification assays for detection of viral infection. It is possible to detect as few as 50 molecules with bDNA technology. PMID:9365266

  3. Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70.

    PubMed Central

    Hunt, C; Morimoto, R I

    1985-01-01

    We have determined the nucleotide sequence of the human hsp70 gene and 5' flanking region. The hsp70 gene is transcribed as an uninterrupted primary transcript of 2440 nucleotides composed of a 5' noncoding leader sequence of 212 nucleotides, a 3' noncoding region of 242 nucleotides, and a continuous open reading frame of 1986 nucleotides that encodes a protein with predicted molecular mass of 69,800 daltons. Upstream of the 5' terminus are the canonical TATAAA box, the sequence ATTGG that corresponds in the inverted orientation to the CCAAT motif, and the dyad sequence CTGGAAT/ATTCCCG that shares homology in 12 of 14 positions with the consensus transcription regulatory sequence common to Drosophila heat shock genes. Comparison of the predicted amino acid sequences of human hsp70 with the published sequences of Drosophila hsp70 and Escherichia coli dnaK reveals that human hsp70 is 73% identical to Drosophila hsp70 and 47% identical to E. coli dnaK. Surprisingly, the nucleotide sequences of the human and Drosophila genes are 72% identical and human and E. coli genes are 50% identical, which is more highly conserved than necessary given the degeneracy of the genetic code. The lack of accumulated silent nucleotide substitutions leads us to propose that there may be additional information in the nucleotide sequence of the hsp70 gene or the corresponding mRNA that precludes the maximum divergence allowed in the silent codon positions. PMID:3931075

  4. The Unfolding of LGBT Lives: Key Events Associated With Health and Well-being in Later Life.

    PubMed

    Fredriksen-Goldsen, Karen I; Bryan, Amanda E B; Jen, Sarah; Goldsen, Jayn; Kim, Hyun-Jun; Muraco, Anna

    2017-02-01

    Life events are associated with the health and well-being of older adults. Using the Health Equity Promotion Model, this article explores historical and environmental context as it frames life experiences and adaptation of lesbian, gay, bisexual, and transgender (LGBT) older adults. This was the largest study to date of LGBT older adults to identify life events related to identity development, work, and kin relationships and their associations with health and quality of life (QOL). Using latent profile analysis (LPA), clusters of life events were identified and associations between life event clusters were tested. On average, LGBT older adults first disclosed their identities in their 20s; many experienced job-related discrimination. More had been in opposite-sex marriage than in same-sex marriage. Four clusters emerged: "Retired Survivors" were the oldest and one of the most prevalent groups; "Midlife Bloomers" first disclosed their LGBT identities in mid-40s, on average; "Beleaguered At-Risk" had high rates of job-related discrimination and few social resources; and "Visibly Resourced" had a high degree of identity visibility and were socially and economically advantaged. Clusters differed significantly in mental and physical health and QOL, with the Visibly Resourced faring best and Beleaguered At-Risk faring worst on most indicators; Retired Survivors and Midlife Bloomers showed similar health and QOL. Historical and environmental contexts frame normative and non-normative life events. Future research will benefit from the use of longitudinal data and an assessment of timing and sequencing of key life events in the lives of LGBT older adults. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. The Unfolding of LGBT Lives: Key Events Associated With Health and Well-being in Later Life

    PubMed Central

    Fredriksen-Goldsen, Karen I.; Bryan, Amanda E. B.; Jen, Sarah; Goldsen, Jayn; Kim, Hyun-Jun; Muraco, Anna

    2017-01-01

    Purpose of the Study: Life events are associated with the health and well-being of older adults. Using the Health Equity Promotion Model, this article explores historical and environmental context as it frames life experiences and adaptation of lesbian, gay, bisexual, and transgender (LGBT) older adults. Design and Methods: This was the largest study to date of LGBT older adults to identify life events related to identity development, work, and kin relationships and their associations with health and quality of life (QOL). Using latent profile analysis (LPA), clusters of life events were identified and associations between life event clusters were tested. Results: On average, LGBT older adults first disclosed their identities in their 20s; many experienced job-related discrimination. More had been in opposite-sex marriage than in same-sex marriage. Four clusters emerged: “Retired Survivors” were the oldest and one of the most prevalent groups; “Midlife Bloomers” first disclosed their LGBT identities in mid-40s, on average; “Beleaguered At-Risk” had high rates of job-related discrimination and few social resources; and “Visibly Resourced” had a high degree of identity visibility and were socially and economically advantaged. Clusters differed significantly in mental and physical health and QOL, with the Visibly Resourced faring best and Beleaguered At-Risk faring worst on most indicators; Retired Survivors and Midlife Bloomers showed similar health and QOL. Implications: Historical and environmental contexts frame normative and non-normative life events. Future research will benefit from the use of longitudinal data and an assessment of timing and sequencing of key life events in the lives of LGBT older adults. PMID:28087792

  6. Improved Model for Predicting the Free Energy Contribution of Dinucleotide Bulges to RNA Duplex Stability.

    PubMed

    Tomcho, Jeremy C; Tillman, Magdalena R; Znosko, Brent M

    2015-09-01

    Predicting the secondary structure of RNA is an intermediate in predicting RNA three-dimensional structure. Commonly, determining RNA secondary structure from sequence uses free energy minimization and nearest neighbor parameters. Current algorithms utilize a sequence-independent model to predict free energy contributions of dinucleotide bulges. To determine if a sequence-dependent model would be more accurate, short RNA duplexes containing dinucleotide bulges with different sequences and nearest neighbor combinations were optically melted to derive thermodynamic parameters. These data suggested energy contributions of dinucleotide bulges were sequence-dependent, and a sequence-dependent model was derived. This model assigns free energy penalties based on the identity of nucleotides in the bulge (3.06 kcal/mol for two purines, 2.93 kcal/mol for two pyrimidines, 2.71 kcal/mol for 5'-purine-pyrimidine-3', and 2.41 kcal/mol for 5'-pyrimidine-purine-3'). The predictive model also includes a 0.45 kcal/mol penalty for an A-U pair adjacent to the bulge and a -0.28 kcal/mol bonus for a G-U pair adjacent to the bulge. The new sequence-dependent model results in predicted values within, on average, 0.17 kcal/mol of experimental values, a significant improvement over the sequence-independent model. This model and new experimental values can be incorporated into algorithms that predict RNA stability and secondary structure from sequence.

  7. Fine-tuning structural RNA alignments in the twilight zone

    PubMed Central

    2010-01-01

    Background A widely used method to find conserved secondary structure in RNA is to first construct a multiple sequence alignment, and then fold the alignment, optimizing a score based on thermodynamics and covariance. This method works best around 75% sequence similarity. However, in a "twilight zone" below 55% similarity, the sequence alignment tends to obscure the covariance signal used in the second phase. Therefore, while the overall shape of the consensus structure may still be found, the degree of conservation cannot be estimated reliably. Results Based on a combination of available methods, we present a method named planACstar for improving structure conservation in structural alignments in the twilight zone. After constructing a consensus structure by alignment folding, planACstar abandons the original sequence alignment, refolds the sequences individually, but consistent with the consensus, aligns the structures, irrespective of sequence, by a pure structure alignment method, and derives an improved sequence alignment from the alignment of structures, to be re-submitted to alignment folding, etc.. This circle may be iterated as long as structural conservation improves, but normally, one step suffices. Conclusions Employing the tools ClustalW, RNAalifold, and RNAforester, we find that for sequences with 30-55% sequence identity, structural conservation can be improved by 10% on average, with a large variation, measured in terms of RNAalifold's own criterion, the structure conservation index. PMID:20433706

  8. Assessment and Challenges of Ligand Docking into Comparative Models of G-Protein Coupled Receptors

    PubMed Central

    Frimurer, Thomas M.; Meiler, Jens

    2013-01-01

    The rapidly increasing number of high-resolution X-ray structures of G-protein coupled receptors (GPCRs) creates a unique opportunity to employ comparative modeling and docking to provide valuable insight into the function and ligand binding determinants of novel receptors, to assist in virtual screening and to design and optimize drug candidates. However, low sequence identity between receptors, conformational flexibility, and chemical diversity of ligands present an enormous challenge to molecular modeling approaches. It is our hypothesis that rapid Monte-Carlo sampling of protein backbone and side-chain conformational space with Rosetta can be leveraged to meet this challenge. This study performs unbiased comparative modeling and docking methodologies using 14 distinct high-resolution GPCRs and proposes knowledge-based filtering methods for improvement of sampling performance and identification of correct ligand-receptor interactions. On average, top ranked receptor models built on template structures over 50% sequence identity are within 2.9 Å of the experimental structure, with an average root mean square deviation (RMSD) of 2.2 Å for the transmembrane region and 5 Å for the second extracellular loop. Furthermore, these models are consistently correlated with low Rosetta energy score. To predict their binding modes, ligand conformers of the 14 ligands co-crystalized with the GPCRs were docked against the top ranked comparative models. In contrast to the comparative models themselves, however, it remains difficult to unambiguously identify correct binding modes by score alone. On average, sampling performance was improved by 103 fold over random using knowledge-based and energy-based filters. In assessing the applicability of experimental constraints, we found that sampling performance is increased by one order of magnitude for every 10 residues known to contact the ligand. Additionally, in the case of DOR, knowledge of a single specific ligand-protein contact improved sampling efficiency 7 fold. These findings offer specific guidelines which may lead to increased success in determining receptor-ligand complexes. PMID:23844000

  9. Phylogenetic analysis of phenotypically characterized Cryptococcus laurentii isolates reveals high frequency of cryptic species.

    PubMed

    Ferreira-Paim, Kennio; Ferreira, Thatiana Bragine; Andrade-Silva, Leonardo; Mora, Delio Jose; Springer, Deborah J; Heitman, Joseph; Fonseca, Fernanda Machado; Matos, Dulcilena; Melhem, Márcia Souza Carvalho; Silva-Vergara, Mario León

    2014-01-01

    Although Cryptococcus laurentii has been considered saprophytic and its taxonomy is still being described, several cases of human infections have already reported. This study aimed to evaluate molecular aspects of C. laurentii isolates from Brazil, Botswana, Canada, and the United States. In this study, 100 phenotypically identified C. laurentii isolates were evaluated by sequencing the 18S nuclear ribosomal small subunit rRNA gene (18S-SSU), D1/D2 region of 28S nuclear ribosomal large subunit rRNA gene (28S-LSU), and the internal transcribed spacer (ITS) of the ribosomal region. BLAST searches using 550-bp, 650-bp, and 550-bp sequenced amplicons obtained from the 18S-SSU, 28S-LSU, and the ITS region led to the identification of 75 C. laurentii strains that shared 99-100% identity with C. laurentii CBS 139. A total of nine isolates shared 99% identity with both Bullera sp. VY-68 and C. laurentii RY1. One isolate shared 99% identity with Cryptococcus rajasthanensis CBS 10406, and eight isolates shared 100% identity with Cryptococcus sp. APSS 862 according to the 28S-LSU and ITS regions and designated as Cryptococcus aspenensis sp. nov. (CBS 13867). While 16 isolates shared 99% identity with Cryptococcus flavescens CBS 942 according to the 18S-SSU sequence, only six were confirmed using the 28S-LSU and ITS region sequences. The remaining 10 shared 99% identity with Cryptococcus terrestris CBS 10810, which was recently described in Brazil. Through concatenated sequence analyses, seven sequence types in C. laurentii, three in C. flavescens, one in C. terrestris, and one in the C. aspenensis sp. nov. were identified. Sequencing permitted the characterization of 75% of the environmental C. laurentii isolates from different geographical areas and the identification of seven haplotypes of this species. Among sequenced regions, the increased variability of the ITS region in comparison to the 18S-SSU and 28S-LSU regions reinforces its applicability as a DNA barcode.

  10. Low-Pass Genome-Wide Sequencing and Variant Inference Using Identity-by-Descent in an Isolated Human Population

    PubMed Central

    Gusev, A.; Shah, M. J.; Kenny, E. E.; Ramachandran, A.; Lowe, J. K.; Salit, J.; Lee, C. C.; Levandowsky, E. C.; Weaver, T. N.; Doan, Q. C.; Peckham, H. E.; McLaughlin, S. F.; Lyons, M. R.; Sheth, V. N.; Stoffel, M.; De La Vega, F. M.; Friedman, J. M.; Breslow, J. L.

    2012-01-01

    Whole-genome sequencing in an isolated population with few founders directly ascertains variants from the population bottleneck that may be rare elsewhere. In such populations, shared haplotypes allow imputation of variants in unsequenced samples without resorting to complex statistical methods as in studies of outbred cohorts. We focus on an isolated population cohort from the Pacific Island of Kosrae, Micronesia, where we previously collected SNP array and rich phenotype data for the majority of the population. We report identification of long regions with haplotypes co-inherited between pairs of individuals and methodology to leverage such shared genetic content for imputation. Our estimates show that sequencing as few as 40 personal genomes allows for inference in up to 60% of the 3000-person cohort at the average locus. We ascertained a pilot data set of whole-genome sequences from seven Kosraean individuals, with average 5× coverage. This assay identified 5,735,306 unique sites of which 1,212,831 were previously unknown. Additionally, these variants are unusually enriched for alleles that are rare in other populations when compared to geographic neighbors (published Korean genome SJK). We used the presence of shared haplotypes between the seven Kosraen individuals to estimate expected imputation accuracy of known and novel homozygous variants at 99.6% and 97.3%, respectively. This study presents whole-genome analysis of a homogenous isolate population with emphasis on optimal rare variant inference. PMID:22135348

  11. Development of real-time PCR assay for genetic identification of the mottled skate, Beringraja pulchra.

    PubMed

    Hwang, In Kwan; Lee, Hae Young; Kim, Min-Hee; Jo, Hyun-Su; Choi, Dong-Ho; Kang, Pil-Won; Lee, Yang-Han; Cho, Nam-Soo; Park, Ki-Won; Chae, Ho Zoon

    2015-10-01

    The mottled skate, Beringraja pulchra is one of the commercially important fishes in the market today. However, B. pulchra identification methods have not been well developed. The current study reports a novel real-time PCR method based on TaqMan technology developed for the genetic identification of B. pulchra. The mitochondrial cytochrome oxidase subunit 1 (COI) nucleotide sequences of 29 B. pulchra, 157 skates and rays reported in GenBank DNA database were comparatively analyzed and the COI sequences specific to B. pulchra was identified. Based on this information, a system of specific primers and Minor Groove Binding (MGB) TaqMan probe were designed. The assay successfully discriminated in 29 specimens of B. pulchra and 27 commercial samples with unknown species identity. For B. pulchra DNA, an average Threshold Cycle (Ct) value of 19.1±0.1 was obtained. Among 27 commercial samples, two samples showed average Ct values 19.1±0.0 and 26.7±0.1, respectively and were confirmed to be B. pulchra based on sequencing. The other samples tested showed undetectable or extremely weak signals for the target fragment, which was also consistent with the sequencing results. These results reveal that the method developed is a rapid and efficient tool to identify B. pulchra and might prevent fraud or mislabeling during the distribution of B. pulchra products. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Investigation of the Evolutionary Development of the Genus Bifidobacterium by Comparative Genomics

    PubMed Central

    Lugli, Gabriele Andrea; Milani, Christian; Turroni, Francesca; Duranti, Sabrina; Ferrario, Chiara; Viappiani, Alice; Mancabelli, Leonardo; Mangifesta, Marta; Taminiau, Bernard; Delcenserie, Véronique; van Sinderen, Douwe

    2014-01-01

    The Bifidobacterium genus currently encompasses 48 recognized taxa, which have been isolated from different ecosystems. However, the current phylogeny of bifidobacteria is hampered by the relative paucity of genotypic data. Here, we reassessed the taxonomy of this bacterial genus using genome-based approaches, which demonstrated that the previous taxonomic view of bifidobacteria contained several inconsistencies. In particular, high levels of genetic relatedness were shown to exist between particular Bifidobacterium taxa which would not justify their status as separate species. The results presented are here based on average nucleotide identity analysis involving the genome sequences for each type strain of the 48 bifidobacterial taxa, as well as phylogenetic comparative analysis of the predicted core genome of the Bifidobacterium genus. The results of this study demonstrate that the availability of complete genome sequences allows the reconstruction of a more robust bifidobacterial phylogeny than that obtained from a single gene-based sequence comparison, thus discouraging the assignment of a new or separate bifidobacterial taxon without such a genome-based validation. PMID:25107967

  13. Mosaic Graphs and Comparative Genomics in Phage Communities

    PubMed Central

    Belcaid, Mahdi; Bergeron, Anne

    2010-01-01

    Abstract Comparing the genomes of two closely related viruses often produces mosaics where nearly identical sequences alternate with sequences that are unique to each genome. When several closely related genomes are compared, the unique sequences are likely to be shared with third genomes, leading to virus mosaic communities. Here we present comparative analysis of sets of Staphylococcus aureus phages that share large identical sequences with up to three other genomes, and with different partners along their genomes. We introduce mosaic graphs to represent these complex recombination events, and use them to illustrate the breath and depth of sequence sharing: some genomes are almost completely made up of shared sequences, while genomes that share very large identical sequences can adopt alternate functional modules. Mosaic graphs also allow us to identify breakpoints that could eventually be used for the construction of recombination networks. These findings have several implications on phage metagenomics assembly, on the horizontal gene transfer paradigm, and more generally on the understanding of the composition and evolutionary dynamics of virus communities. PMID:20874413

  14. Complete nucleotide sequence of a monopartite Begomovirus and associated satellites infecting Carica papaya in Nepal.

    PubMed

    Shahid, M S; Yoshida, S; Khatri-Chhetri, G B; Briddon, R W; Natsuaki, K T

    2013-06-01

    Carica papaya (papaya) is a fruit crop that is cultivated mostly in kitchen gardens throughout Nepal. Leaf samples of C. papaya plants with leaf curling, vein darkening, vein thickening, and a reduction in leaf size were collected from a garden in Darai village, Rampur, Nepal in 2010. Full-length clones of a monopartite Begomovirus, a betasatellite and an alphasatellite were isolated. The complete nucleotide sequence of the Begomovirus showed the arrangement of genes typical of Old World begomoviruses with the highest nucleotide sequence identity (>99 %) to an isolate of Ageratum yellow vein virus (AYVV), confirming it as an isolate of AYVV. The complete nucleotide sequence of betasatellite showed greater than 89 % nucleotide sequence identity to an isolate of Tomato leaf curl Java betasatellite originating from Indonesian. The sequence of the alphasatellite displayed 92 % nucleotide sequence identity to Sida yellow vein China alphasatellite. This is the first identification of these components in Nepal and the first time they have been identified in papaya.

  15. Chromobacterium sphagni sp. nov., an insecticidal bacterium isolated from Sphagnum bogs.

    PubMed

    Blackburn, Michael B; Farrar, Robert R; Sparks, Michael E; Kuhar, Daniel; Mitchell, Ashaki; Gundersen-Rindal, Dawn E

    2017-09-01

    Sixteen isolates of Gram-reaction-negative, motile, violet-pigmented bacteria were isolated from Sphagnum bogs in West Virginia and Maine, USA. 16S rRNA gene sequences and fatty acid analysis revealed a high degree of relatedness among the isolates, and genome sequencing of two isolates, IIBBL 14B-1T and IIBBL 37-2 (from West Virginia and Maine, respectively), revealed highly similar genomic sequences. The average nucleotide identity (gANI) calculated for these two isolates was found to be in excess of 99 %, but did not exceed 88 % when comparing either isolate with genomic sequences of Chromobacterium violaceum ATCC 12472T, C. haemolyticum DSM 19808T, C. piscinae ND17, C. subtsugae PRAA4-1T, C. vaccinii MWU205T or C. amazonense CBMAI 310T. Collectively, gANI and 16S rRNA gene sequence comparisons suggested that isolates IIBBL 14B-1T and IIBBL 37-2 were most closely related to C. subtsugae, but represented a distinct species. We propose the name Chromobacterium sphagni sp. nov. for this taxon; the type strain is IIBBL 14B-1T (=NRRL B-67130T=JCM 31882T).

  16. Assembly of the Lactuca sativa, L. cv. Tizian draft genome sequence reveals differences within major resistance complex 1 as compared to the cv. Salinas reference genome.

    PubMed

    Verwaaijen, Bart; Wibberg, Daniel; Nelkner, Johanna; Gordin, Miriam; Rupp, Oliver; Winkler, Anika; Bremges, Andreas; Blom, Jochen; Grosch, Rita; Pühler, Alfred; Schlüter, Andreas

    2018-02-10

    Lettuce (Lactuca sativa, L.) is an important annual plant of the family Asteraceae (Compositae). The commercial lettuce cultivar Tizian has been used in various scientific studies investigating the interaction of the plant with phytopathogens or biological control agents. Here, we present the de novo draft genome sequencing and gene prediction for this specific cultivar derived from transcriptome sequence data. The assembled scaffolds amount to a size of 2.22 Gb. Based on RNAseq data, 31,112 transcript isoforms were identified. Functional predictions for these transcripts were determined within the GenDBE annotation platform. Comparison with the cv. Salinas reference genome revealed a high degree of sequence similarity on genome and transcriptome levels, with an average amino acid identity of 99%. Furthermore, it was observed that two large regions are either missing or are highly divergent within the cv. Tizian genome compared to cv. Salinas. One of these regions covers the major resistance complex 1 region of cv. Salinas. The cv. Tizian draft genome sequence provides a valuable resource for future functional and transcriptome analyses focused on this lettuce cultivar. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A highly conserved N-terminal sequence for teleost vitellogenin with potential value to the biochemistry, molecular biology and pathology of vitellogenesis

    USGS Publications Warehouse

    Folmar, L.D.; Denslow, N.D.; Wallace, R.A.; LaFleur, G.; Gross, T.S.; Bonomelli, S.; Sullivan, C.V.

    1995-01-01

    N-terminal amino acid sequences for vitellogenin (Vtg) from six species of teleost fish (striped bass, mummichog, pinfish, brown bullhead, medaka, yellow perch and the sturgeon) are compared with published N-terminal Vtg sequences for the lamprey, clawed frog and domestic chicken. Striped bass and mummichog had 100% identical amino acids between positions 7 and 21, while pinfish, brown bullhead, sturgeon, lamprey, Xenopus and chicken had 87%, 93%, 60%, 47%, 47-60%) for four transcripts and had 40% identical, respectively, with striped bass for the same positions. Partial sequences obtained for medaka and yellow perch were 100% identical between positions 5 to 10. The potential utility of this conserved sequence for studies on the biochemistry, molecular biology and pathology of vitellogenesis is discussed.

  18. Detection and molecular characterization of infectious bronchitis virus isolated from recent outbreaks in broiler flocks in Thailand.

    PubMed

    Pohuang, Tawatchai; Chansiripornchai, Niwat; Tawatsin, Achara; Sasipreeyajan, Jiroj

    2009-09-01

    Thirteen field isolates of infectious bronchitis virus (IBV) were isolated from broiler flocks in Thailand between January and June 2008. The 878-bp of the S1 gene covering a hypervariable region was amplified and sequenced. Phylogenetic analysis based on that region revealed that these viruses were separated into two groups (I and II). IBV isolates in group I were not related to other IBV strains published in the GenBank database. Group 1 nucleotide sequence identities were less than 85% and amino acid sequence identities less than 84% in common with IBVs published in the GenBank database. This group likely represents the strains indigenous to Thailand. The isolates in group II showed a close relationship with Chinese IBVs. They had nucleotide sequence identities of 97-98% and amino acid sequence identities 96-98% in common with Chinese IBVs (strain A2, SH and QXIBV). This finding indicated that the recent Thai IBVs evolved separately and at least two groups of viruses are circulating in Thailand.

  19. Native South American genetic structure and prehistory inferred from hierarchical modeling of mtDNA.

    PubMed

    Lewis, Cecil M; Long, Jeffrey C

    2008-03-01

    Genetic diversity in Native South Americans forms a complex pattern at both the continental and local levels. In comparing the West to the East, there is more variation within groups and smaller genetic distances between groups. From this pattern, researchers have proposed that there is more variation in the West and that a larger, more genetically diverse, founding population entered the West than the East. Here, we question this characterization of South American genetic variation and its interpretation. Our concern arises because others have inferred regional variation from the mean variation within local populations without taking into account the variation among local populations within the same region. This failure produces a biased view of the actual variation in the East. In this study, we analyze the mitochondrial DNA sequence between positions 16040 and 16322 of the Cambridge reference sequence. Our sample represents a total of 886 people from 27 indigenous populations from South (22), Central (3), and North America (2). The basic unit of our analyses is nucleotide identity by descent, which is easily modeled and proportional to nucleotide diversity. We use a forward modeling strategy to fit a series of nested models to identity by descent within and between all pairs of local populations. This method provides estimates of identity by descent at different levels of population hierarchy without assuming homogeneity within populations, regions, or continents. Our main discovery is that Eastern South America harbors more genetic variation than has been recognized. We find no evidence that there is increased identity by descent in the East relative to the total for South America. By contrast, we discovered that populations in the Western region, as a group, harbor more identity by descent than has been previously recognized, despite the fact that average identity by descent within groups is lower. In this light, there is no need to postulate separate founding populations for the East and the West because the variability in the East could serve as a source for the Western gene pools.

  20. A meiotic linkage map of the silver fox, aligned and compared to the canine genome.

    PubMed

    Kukekova, Anna V; Trut, Lyudmila N; Oskina, Irina N; Johnson, Jennifer L; Temnykh, Svetlana V; Kharlamova, Anastasiya V; Shepeleva, Darya V; Gulievich, Rimma G; Shikhevich, Svetlana G; Graphodatsky, Alexander S; Aguirre, Gustavo D; Acland, Gregory M

    2007-03-01

    A meiotic linkage map is essential for mapping traits of interest and is often the first step toward understanding a cryptic genome. Specific strains of silver fox (a variant of the red fox, Vulpes vulpes), which segregate behavioral and morphological phenotypes, create a need for such a map. One such strain, selected for docility, exhibits friendly dog-like responses to humans, in contrast to another strain selected for aggression. Development of a fox map is facilitated by the known cytogenetic homologies between the dog and fox, and by the availability of high resolution canine genome maps and sequence data. Furthermore, the high genomic sequence identity between dog and fox allows adaptation of canine microsatellites for genotyping and meiotic mapping in foxes. Using 320 such markers, we have constructed the first meiotic linkage map of the fox genome. The resulting sex-averaged map covers 16 fox autosomes and the X chromosome with an average inter-marker distance of 7.5 cM. The total map length corresponds to 1480.2 cM. From comparison of sex-averaged meiotic linkage maps of the fox and dog genomes, suppression of recombination in pericentromeric regions of the metacentric fox chromosomes was apparent, relative to the corresponding segments of acrocentric dog chromosomes. Alignment of the fox meiotic map against the 7.6x canine genome sequence revealed high conservation of marker order between homologous regions of the two species. The fox meiotic map provides a critical tool for genetic studies in foxes and identification of genetic loci and genes implicated in fox domestication.

  1. Virus Identification in Unknown Tropical Febrile Illness Cases Using Deep Sequencing

    PubMed Central

    Balmaseda, Angel; Harris, Eva; DeRisi, Joseph L.

    2012-01-01

    Dengue virus is an emerging infectious agent that infects an estimated 50–100 million people annually worldwide, yet current diagnostic practices cannot detect an etiologic pathogen in ∼40% of dengue-like illnesses. Metagenomic approaches to pathogen detection, such as viral microarrays and deep sequencing, are promising tools to address emerging and non-diagnosable disease challenges. In this study, we used the Virochip microarray and deep sequencing to characterize the spectrum of viruses present in human sera from 123 Nicaraguan patients presenting with dengue-like symptoms but testing negative for dengue virus. We utilized a barcoding strategy to simultaneously deep sequence multiple serum specimens, generating on average over 1 million reads per sample. We then implemented a stepwise bioinformatic filtering pipeline to remove the majority of human and low-quality sequences to improve the speed and accuracy of subsequent unbiased database searches. By deep sequencing, we were able to detect virus sequence in 37% (45/123) of previously negative cases. These included 13 cases with Human Herpesvirus 6 sequences. Other samples contained sequences with similarity to sequences from viruses in the Herpesviridae, Flaviviridae, Circoviridae, Anelloviridae, Asfarviridae, and Parvoviridae families. In some cases, the putative viral sequences were virtually identical to known viruses, and in others they diverged, suggesting that they may derive from novel viruses. These results demonstrate the utility of unbiased metagenomic approaches in the detection of known and divergent viruses in the study of tropical febrile illness. PMID:22347512

  2. Gilliamella intestini sp. nov., Gilliamella bombicola sp. nov., Gilliamella bombi sp. nov. and Gilliamella mensalis sp. nov.: Four novel Gilliamella species isolated from the bumblebee gut.

    PubMed

    Praet, Jessy; Cnockaert, Margo; Meeus, Ivan; Smagghe, Guy; Vandamme, Peter

    2017-06-01

    Spectra of five isolates (LMG 28358 T , LMG 29879 T , LMG 29880 T , LMG 28359 T and R-53705) obtained from gut samples of wild bumblebees of Bombus pascuorum, Bombus lapidarius and Bombus terrestris were grouped into four MALDI-TOF MS clusters. RAPD analysis revealed an identical DNA fingerprint for LMG 28359 T and R-53705 which also grouped in the same MALDI-TOF MS cluster, while different DNA fingerprints were obtained for the other isolates. Comparative 16S rRNA gene sequence analysis of the four different strains identified Gilliamella apicola NCIMB 14804 T as nearest neighbour species. Average nucleotide identity values of draft genome sequences of the four isolates and of G. apicola NCIMB 14804 T were below the 96% threshold value for species delineation and all four strains and G. apicola NCIMB 14804 T were phenotypically distinct. Together, the draft genome sequences and phylogenetic and phenotypic data indicate that the four strains represent four novel Gilliamella species for which we propose the names Gilliamella intestini sp. nov., with LMG 28358 T as the type strain, Gilliamella bombicola sp. nov., with LMG 28359 T as the type strain, Gilliamella bombi sp. nov., with LMG 29879 T as the type strain and Gilliamella mensalis sp. nov., with LMG 29880 T as the type strain. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Construction of a medicinal leech transcriptome database and its application to the identification of leech homologs of neural and innate immune genes.

    PubMed

    Macagno, Eduardo R; Gaasterland, Terry; Edsall, Lee; Bafna, Vineet; Soares, Marcelo B; Scheetz, Todd; Casavant, Thomas; Da Silva, Corinne; Wincker, Patrick; Tasiemski, Aurélie; Salzet, Michel

    2010-06-25

    The medicinal leech, Hirudo medicinalis, is an important model system for the study of nervous system structure, function, development, regeneration and repair. It is also a unique species in being presently approved for use in medical procedures, such as clearing of pooled blood following certain surgical procedures. It is a current, and potentially also future, source of medically useful molecular factors, such as anticoagulants and antibacterial peptides, which may have evolved as a result of its parasitizing large mammals, including humans. Despite the broad focus of research on this system, little has been done at the genomic or transcriptomic levels and there is a paucity of openly available sequence data. To begin to address this problem, we constructed whole embryo and adult central nervous system (CNS) EST libraries and created a clustered sequence database of the Hirudo transcriptome that is available to the scientific community. A total of approximately 133,000 EST clones from two directionally-cloned cDNA libraries, one constructed from mRNA derived from whole embryos at several developmental stages and the other from adult CNS cords, were sequenced in one or both directions by three different groups: Genoscope (French National Sequencing Center), the University of Iowa Sequencing Facility and the DOE Joint Genome Institute. These were assembled using the phrap software package into 31,232 unique contigs and singletons, with an average length of 827 nt. The assembled transcripts were then translated in all six frames and compared to proteins in NCBI's non-redundant (NR) and to the Gene Ontology (GO) protein sequence databases, resulting in 15,565 matches to 11,236 proteins in NR and 13,935 matches to 8,073 proteins in GO. Searching the database for transcripts of genes homologous to those thought to be involved in the innate immune responses of vertebrates and other invertebrates yielded a set of nearly one hundred evolutionarily conserved sequences, representing all known pathways involved in these important functions. The sequences obtained for Hirudo transcripts represent the first major database of genes expressed in this important model system. Comparison of translated open reading frames (ORFs) with the other openly available leech datasets, the genome and transcriptome of Helobdella robusta, shows an average identity at the amino acid level of 58% in matched sequences. Interestingly, comparison with other available Lophotrochozoans shows similar high levels of amino acid identity, where sequences match, for example, 64% with Capitella capitata (a polychaete) and 56% with Aplysia californica (a mollusk), as well as 58% with Schistosoma mansoni (a platyhelminth). Phylogenetic comparisons of putative Hirudo innate immune response genes present within the Hirudo transcriptome database herein described show a strong resemblance to the corresponding mammalian genes, indicating that this important physiological response may have older origins than what has been previously proposed.

  4. Genome sequencing identifies Listeria fleischmannii subsp. coloradonensis subsp. nov., isolated from a ranch.

    PubMed

    den Bakker, Henk C; Manuel, Clyde S; Fortes, Esther D; Wiedmann, Martin; Nightingale, Kendra K

    2013-09-01

    Twenty Listeria-like isolates were obtained from environmental samples collected on a cattle ranch in northern Colorado; all of these isolates were found to share an identical partial sigB sequence, suggesting close relatedness. The isolates were similar to members of the genus Listeria in that they were Gram-stain-positive, short rods, oxidase-negative and catalase-positive; the isolates were similar to Listeria fleischmannii because they were non-motile at 25 °C. 16S rRNA gene sequencing for representative isolates and whole genome sequencing for one isolate was performed. The genome of the type strain of Listeria fleischmannii (strain LU2006-1(T)) was also sequenced. The draft genomes were very similar in size and the average MUMmer nucleotide identity across 91% of the genomes was 95.16%. Genome sequence data were used to design primers for a six-gene multi-locus sequence analysis (MLSA) scheme. Phylogenies based on (i) the near-complete 16S rRNA gene, (ii) 31 core genes and (iii) six housekeeping genes illustrated the close relationship of these Listeria-like isolates to Listeria fleischmannii LU2006-1(T). Sufficient genetic divergence of the Listeria-like isolates from the type strain of Listeria fleischmannii and differing phenotypic characteristics warrant these isolates to be classified as members of a distinct infraspecific taxon, for which the name Listeria fleischmannii subsp. coloradonensis subsp. nov. is proposed. The type strain is TTU M1-001(T) ( =BAA-2414(T) =DSM 25391(T)). The isolates of Listeria fleischmannii subsp. coloradonensis subsp. nov. differ from the nominate subspecies by the inability to utilize melezitose, turanose and sucrose, and the ability to utilize inositol. The results also demonstrate the utility of whole genome sequencing to facilitate identification of novel taxa within a well-described genus. The genomes of both subspecies of Listeria fleischmannii contained putative enhancin genes; the Listeria fleischmannii subsp. coloradonensis subsp. nov. genome also encoded a putative mosquitocidal toxin. The presence of these genes suggests possible adaptation to an insect host, and further studies are needed to probe niche adaptation of Listeria fleischmannii.

  5. Differences in duration of eye fixation for conditions in a numerical stroop-effect experiment.

    PubMed

    Crespo, Antonio; Cabestrero, Raúl; Quirós, Pilar

    2009-02-01

    Durations of eye fixation were recorded for a numerical Stroop effect experiment. Participants (6 men, 19 women; M age=22 yr.) reported the number of characters present in sequences of variable length (2 to 5 characters) while attempting to ignore the identity of the character. Three conditions were included: congruent (the number of characters and the numeral were matched, e.g., responding "two" to 22), incongruent (the number of characters and the numeral were mismatched, e.g., responding "two" to 55), and control (baseline of stimuli made up of "X"s, e.g., responding "two" to XX). Comparisons among the three conditions produced the longest response times and average durations of fixation for the incongruent condition. The shortest response times and average durations of fixation were obtained for the congruent condition.

  6. Sequence of a second gene encoding bovine submaxillary mucin: implication for mucin heterogeneity and cloning.

    PubMed

    Jiang, W; Woitach, J T; Gupta, D; Bhavanandan, V P

    1998-10-20

    Secreted epithelial mucins are extremely large and heterogeneous glycoproteins. We report the 5 kilobase DNA sequence of a second gene, BSM2, which encodes bovine submaxillary mucin. The determined nucleotide and deduced amino acid sequences of BSM2 are 95.2% and 92. 2% identical, respectively, to those of the previously described BSM1 gene isolated from the same cow. Further, the five predicted protein domains of the two genes are 100%, 94%, 93%, 77%, and 88% identical. Based on the above results, we propose that expression of multiple homologous core proteins from a single animal is a factor in generating diversity of saccharides in mucins and in providing resistance of the molecules to proteolysis. In addition, this work raises several important issues in mucin cloning such as assembling sequences from seemingly overlapping clones and deducing consensus sequences for nearly identical tandem repeats. Copyright 1998 Academic Press.

  7. Identification of a new Apscaviroid from Japanese persimmon.

    PubMed

    Nakaune, Ryoji; Nakano, Masaaki

    2008-01-01

    Three viroid-like sequences were detected from Japanese persimmon (Diospyrus kaki Thunb.) by RT-PCR using primers specific for members of the genus Apscaviroid. Based on the sequences, we determined the complete genomic sequences. Two had 92.1-94.3% sequence identity with citrus viroid OS (CVd-OS) and 91.4-96.3% identity with apple fruit crinkle viroid (AFCVd), respectively. Another one, tentatively named persimmon viroid (PVd), had 396 nucleotides and less than 70% sequence identity with known viroids. The secondary structure of PVd is proposed to be rod-like with extensive base pairing and contains the terminal conserved region and the central conserved region characteristic of the genus Apscaviroid. Moreover, we confirmed that the viroids, including PVd, are graft transmissible from persimmon to persimmon and that persimmon is a natural host of these viroids. According to its molecular and biological properties, PVd should be considered a member of a new species in the genus Apscaviroid.

  8. Measuring and Modeling Shared Visual Attention

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Gontar, Patrick

    2016-01-01

    Multi-person teams are sometimes responsible for critical tasks, such as flying an airliner. Here we present a method using gaze tracking data to assess shared visual attention, a term we use to describe the situation where team members are attending to a common set of elements in the environment. Gaze data are quantized with respect to a set of N areas of interest (AOIs); these are then used to construct a time series of N dimensional vectors, with each vector component representing one of the AOIs, all set to 0 except for the component corresponding to the currently fixated AOI, which is set to 1. The resulting sequence of vectors can be averaged in time, with the result that each vector component represents the proportion of time that the corresponding AOI was fixated within the given time interval. We present two methods for comparing sequences of this sort, one based on computing the time-varying correlation of the averaged vectors, and another based on a chi-square test testing the hypothesis that the observed gaze proportions are drawn from identical probability distributions. We have evaluated the method using synthetic data sets, in which the behavior was modeled as a series of "activities," each of which was modeled as a first-order Markov process. By tabulating distributions for pairs of identical and disparate activities, we are able to perform a receiver operating characteristic (ROC) analysis, allowing us to choose appropriate criteria and estimate error rates. We have applied the methods to data from airline crews, collected in a high-fidelity flight simulator (Haslbeck, Gontar & Schubert, 2014). We conclude by considering the problem of automatic (blind) discovery of activities, using methods developed for text analysis.

  9. Measuring and Modeling Shared Visual Attention

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    2016-01-01

    Multi-person teams are sometimes responsible for critical tasks, such as flying an airliner. Here we present a method using gaze tracking data to assess shared visual attention, a term we use to describe the situation where team members are attending to a common set of elements in the environment. Gaze data are quantized with respect to a set of N areas of interest (AOIs); these are then used to construct a time series of N dimensional vectors, with each vector component representing one of the AOIs, all set to 0 except for the component corresponding to the currently fixated AOI, which is set to 1. The resulting sequence of vectors can be averaged in time, with the result that each vector component represents the proportion of time that the corresponding AOI was fixated within the given time interval. We present two methods for comparing sequences of this sort, one based on computing the time-varying correlation of the averaged vectors, and another based on a chi-square test testing the hypothesis that the observed gaze proportions are drawn from identical probability distributions.We have evaluated the method using synthetic data sets, in which the behavior was modeled as a series of activities, each of which was modeled as a first-order Markov process. By tabulating distributions for pairs of identical and disparate activities, we are able to perform a receiver operating characteristic (ROC) analysis, allowing us to choose appropriate criteria and estimate error rates.We have applied the methods to data from airline crews, collected in a high-fidelity flight simulator (Haslbeck, Gontar Schubert, 2014). We conclude by considering the problem of automatic (blind) discovery of activities, using methods developed for text analysis.

  10. Natronolimnobius aegyptiacus sp. nov., an extremely halophilic alkalithermophilic archaeon isolated from the athalassohaline Wadi An Natrun, Egypt.

    PubMed

    Zhao, Baisuo; Hu, Qingping; Guo, Xiaomeng; Liao, Ziya; Sarmiento, Felipe; Mesbah, Noha M; Yan, Yanchun; Li, Jun; Wiegel, Juergen

    2018-02-01

    An obligately aerobic extremely halophilic alkalithermophilic archaeon, strain JW/NM-HA 15 T , was isolated from the sediments of Wadi An Natrun in Egypt. Phylogenetic analysis based on 16S rRNA and rpoB' gene sequences indicated that it belongs to the family Natrialbaceae of the order Natrialbales. The closest relatives were Natronolimnobius baerhuensis IHC-005 T and Natronolimnobius innermongolicus N-1311 T (95.3 and 94.5 % 16S rRNA gene sequence similarity, respectively). Genome relatedness between strain JW/NM-HA 15 T and its neighbours was evaluated using average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity with the values of 75.7-85.0, 18.1-20.0, and 70.2-71.0%, respectively. Cells were obligately aerobic, rod-shaped, non-motile, Gram-stain-negative and chemo-organotrophic. The strain grew in the presence of 2.57 M to saturating Na + (optimum 3.25-4.60 M Na + ), at pH 55 °C 7.5-10.5 (optimum pH 55 °C 9.0-9.5), and at 30-56 °C (optimum 52 °C). The major polar lipids consisted of phosphatidylglycerol, methylated phosphatidylglycerolphosphate and two phospholipids. The complete genome size of strain JW/NM-HA 15 T is approximately 3.93 Mb, with a DNA G+C content of 64.1 mol%. On the basis of phylogenetic features, genomic relatedness, phenotypic and chemotaxonomic data, strain JW/NM-HA 15 T was thus considered to represent a novel species within the genus Natronolimnobius, for which the name Natronolimnobius aegyptiacus sp. nov. is proposed. The type strain is JW/NM-HA 15 T (=ATCC BAA-2088 T =DSM 23470 T ).

  11. Uncovering hidden variation in polyploid wheat.

    PubMed

    Krasileva, Ksenia V; Vasquez-Gross, Hans A; Howell, Tyson; Bailey, Paul; Paraiso, Francine; Clissold, Leah; Simmonds, James; Ramirez-Gonzalez, Ricardo H; Wang, Xiaodong; Borrill, Philippa; Fosker, Christine; Ayling, Sarah; Phillips, Andrew L; Uauy, Cristobal; Dubcovsky, Jorge

    2017-02-07

    Comprehensive reverse genetic resources, which have been key to understanding gene function in diploid model organisms, are missing in many polyploid crops. Young polyploid species such as wheat, which was domesticated less than 10,000 y ago, have high levels of sequence identity among subgenomes that mask the effects of recessive alleles. Such redundancy reduces the probability of selection of favorable mutations during natural or human selection, but also allows wheat to tolerate high densities of induced mutations. Here we exploited this property to sequence and catalog more than 10 million mutations in the protein-coding regions of 2,735 mutant lines of tetraploid and hexaploid wheat. We detected, on average, 2,705 and 5,351 mutations per tetraploid and hexaploid line, respectively, which resulted in 35-40 mutations per kb in each population. With these mutation densities, we identified an average of 23-24 missense and truncation alleles per gene, with at least one truncation or deleterious missense mutation in more than 90% of the captured wheat genes per population. This public collection of mutant seed stocks and sequence data enables rapid identification of mutations in the different copies of the wheat genes, which can be combined to uncover previously hidden variation. Polyploidy is a central phenomenon in plant evolution, and many crop species have undergone recent genome duplication events. Therefore, the general strategy and methods developed herein can benefit other polyploid crops.

  12. Formation of rings from segments of HeLa-cell nuclear deoxyribonucleic acid

    PubMed Central

    Hardman, Norman

    1974-01-01

    Duplex segments of HeLa-cell nuclear DNA were generated by cleavage with DNA restriction endonuclease from Haemophilus influenzae. About 20–25% of the DNA segments produced, when partly degraded with exonuclease III and annealed, were found to form rings visible in the electron microscope. A further 5% of the DNA segments formed structures that were branched in configuration. Similar structures were generated from HeLa-cell DNA, without prior treatment with restriction endonuclease, when the complementary polynucleotide chains were exposed by exonuclease III action at single-chain nicks. After exposure of an average single-chain length of 1400 nucleotides per terminus at nicks in HeLa-cell DNA by exonuclease III, followed by annealing, the physical length of ring closures was estimated and found to be 0.02–0.1μm, or 50–300 base pairs. An almost identical distribution of lengths was recorded for the regions of complementary base sequence responsible for branch formation. It is proposed that most of the rings and branches are formed from classes of reiterated base sequence with an average length of 180 base pairs arranged intermittenly in HeLa-cell DNA. From the rate of formation of branched structures when HeLa-cell DNA segments were heat-denatured and annealed, it is estimated that the reiterated sequences are in families containing approximately 2400–24000 copies. ImagesPLATE 2PLATE 1 PMID:4462738

  13. Taxonomic evaluation of Streptomyces albus and related species using multilocus sequence analysis and proposals to emend the description of Streptomyces albus and describe Streptomyces pathocidini sp. nov

    USDA-ARS?s Scientific Manuscript database

    In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811T forms a cluster with 5 other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these oth...

  14. Characterization of acid-tolerant H/CO-utilizing methanogenic enrichment cultures from an acidic peat bog in New York State.

    PubMed

    Bräuer, Suzanna L; Yashiro, Erika; Ueno, Norikiyo G; Yavitt, Joseph B; Zinder, Stephen H

    2006-08-01

    Two methanogenic cultures were enriched from acidic peat soil using a growth medium buffered to c. pH 5. One culture, 6A, was obtained from peat after incubation with H(2)/CO(2), whereas culture NTA was derived from a 10(-4) dilution of untreated peat into a modified medium. 16S rRNA gene clone libraries from each culture contained one methanogen and two bacterial sequences. The methanogen 16S rRNA gene sequences were 99% identical with each other and belonged to the novel "R-10/Fen cluster" family of the Methanomicrobiales, whereas their mcrA sequences were 96% identical. One bacterial 16S rRNA gene sequence from culture 6A belonged to the Bacteroidetes and showed 99% identity with sequences from methanogenic enrichments from German and Russian bogs. The other sequence belonged to the Firmicutes and was identical to a thick rod-shaped citrate-utilizing organism isolated from culture 6A, the numbers of which decreased when the Ti (III) chelator was switched from citrate to nitrilotriacetate. Bacterial clones from the NTA culture clustered in the Delta- and Betaproteobacteria. Both cultures contained thin rods, presumably the methanogens, as the predominant morphotype, and represent a significant advance in characterization of the novel acidiphilic R-10 family methanogens.

  15. Utility of 16S rDNA Sequencing for Identification of Rare Pathogenic Bacteria.

    PubMed

    Loong, Shih Keng; Khor, Chee Sieng; Jafar, Faizatul Lela; AbuBakar, Sazaly

    2016-11-01

    Phenotypic identification systems are established methods for laboratory identification of bacteria causing human infections. Here, the utility of phenotypic identification systems was compared against 16S rDNA identification method on clinical isolates obtained during a 5-year study period, with special emphasis on isolates that gave unsatisfactory identification. One hundred and eighty-seven clinical bacteria isolates were tested with commercial phenotypic identification systems and 16S rDNA sequencing. Isolate identities determined using phenotypic identification systems and 16S rDNA sequencing were compared for similarity at genus and species level, with 16S rDNA sequencing as the reference method. Phenotypic identification systems identified ~46% (86/187) of the isolates with identity similar to that identified using 16S rDNA sequencing. Approximately 39% (73/187) and ~15% (28/187) of the isolates showed different genus identity and could not be identified using the phenotypic identification systems, respectively. Both methods succeeded in determining the species identities of 55 isolates; however, only ~69% (38/55) of the isolates matched at species level. 16S rDNA sequencing could not determine the species of ~20% (37/187) of the isolates. The 16S rDNA sequencing is a useful method over the phenotypic identification systems for the identification of rare and difficult to identify bacteria species. The 16S rDNA sequencing method, however, does have limitation for species-level identification of some bacteria highlighting the need for better bacterial pathogen identification tools. © 2016 Wiley Periodicals, Inc.

  16. tRNADB-CE: tRNA gene database well-timed in the era of big sequence data.

    PubMed

    Abe, Takashi; Inokuchi, Hachiro; Yamada, Yuko; Muto, Akira; Iwasaki, Yuki; Ikemura, Toshimichi

    2014-01-01

    The tRNA gene data base curated by experts "tRNADB-CE" (http://trna.ie.niigata-u.ac.jp) was constructed by analyzing 1,966 complete and 5,272 draft genomes of prokaryotes, 171 viruses', 121 chloroplasts', and 12 eukaryotes' genomes plus fragment sequences obtained by metagenome studies of environmental samples. 595,115 tRNA genes in total, and thus two times of genes compiled previously, have been registered, for which sequence, clover-leaf structure, and results of sequence-similarity and oligonucleotide-pattern searches can be browsed. To provide collective knowledge with help from experts in tRNA researches, we added a column for enregistering comments to each tRNA. By grouping bacterial tRNAs with an identical sequence, we have found high phylogenetic preservation of tRNA sequences, especially at the phylum level. Since many species-unknown tRNAs from metagenomic sequences have sequences identical to those found in species-known prokaryotes, the identical sequence group (ISG) can provide phylogenetic markers to investigate the microbial community in an environmental ecosystem. This strategy can be applied to a huge amount of short sequences obtained from next-generation sequencers, as showing that tRNADB-CE is a well-timed database in the era of big sequence data. It is also discussed that batch-learning self-organizing-map with oligonucleotide composition is useful for efficient knowledge discovery from big sequence data.

  17. Reduced set averaging of face identity in children and adolescents with autism.

    PubMed

    Rhodes, Gillian; Neumann, Markus F; Ewing, Louise; Palermo, Romina

    2015-01-01

    Individuals with autism have difficulty abstracting and updating average representations from their diet of faces. These averages function as perceptual norms for coding faces, and poorly calibrated norms may contribute to face recognition difficulties in autism. Another kind of average, known as an ensemble representation, can be abstracted from briefly glimpsed sets of faces. Here we show for the first time that children and adolescents with autism also have difficulty abstracting ensemble representations from sets of faces. On each trial, participants saw a study set of four identities and then indicated whether a test face was present. The test face could be a set average or a set identity, from either the study set or another set. Recognition of set averages was reduced in participants with autism, relative to age- and ability-matched typically developing participants. This difference, which actually represents more accurate responding, indicates weaker set averaging and thus weaker ensemble representations of face identity in autism. Our finding adds to the growing evidence for atypical abstraction of average face representations from experience in autism. Weak ensemble representations may have negative consequences for face processing in autism, given the importance of ensemble representations in dealing with processing capacity limitations.

  18. Sequenced subjective accents for brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Vlek, R. J.; Schaefer, R. S.; Gielen, C. C. A. M.; Farquhar, J. D. R.; Desain, P.

    2011-06-01

    Subjective accenting is a cognitive process in which identical auditory pulses at an isochronous rate turn into the percept of an accenting pattern. This process can be voluntarily controlled, making it a candidate for communication from human user to machine in a brain-computer interface (BCI) system. In this study we investigated whether subjective accenting is a feasible paradigm for BCI and how its time-structured nature can be exploited for optimal decoding from non-invasive EEG data. Ten subjects perceived and imagined different metric patterns (two-, three- and four-beat) superimposed on a steady metronome. With an offline classification paradigm, we classified imagined accented from non-accented beats on a single trial (0.5 s) level with an average accuracy of 60.4% over all subjects. We show that decoding of imagined accents is also possible with a classifier trained on perception data. Cyclic patterns of accents and non-accents were successfully decoded with a sequence classification algorithm. Classification performances were compared by means of bit rate. Performance in the best scenario translates into an average bit rate of 4.4 bits min-1 over subjects, which makes subjective accenting a promising paradigm for an online auditory BCI.

  19. Molecular characterization of a distinct monopartite begomovirus associated with betasatellites and alphasatellites infecting Pisum sativum in Nepal.

    PubMed

    Shahid, M S; Pudashini, B J; Khatri-Chhetri, G B; Briddon, R W; Natsuaki, K T

    2017-04-01

    Pea (Pisum sativum) plants exhibiting leaf distortion, yellowing, stunted growth and reduction in leaf size from Rampur, Nepal were shown to be infected by a begomovirus in association with betasatellites and alphasatellites. The begomovirus associated with the disease showed only low levels of nucleotide sequence identity (<91%) to previously characterized begomoviruses. This finding indicates that the pea samples were infected with an as yet undescribed begomovirus for which the name Pea leaf distortion virus (PLDV) is proposed. Two species of betasatellite were identified in association with PLDV. One group of sequences had high (>78%) nucleotide sequence identity to isolates of Ludwigia leaf distortion betasatellite (LuLDB), and the second group had less than 78% to all other betasatellite sequences. This showed PLDV to be associated with either LuLDB or a previously undescribed betasatellite for which the name Pea leaf distortion betasatellite is proposed. Two types of alphasatellites were identified in the PLDV-infected pea plants. The first type showed high levels of sequence identity to Ageratum yellow vein alphasatellite, and the second type showed high levels of identity to isolates of Sida yellow vein China alphasatellite. These are the first begomovirus, betasatellites and alphasatellites isolated from pea.

  20. Phylogenetic Analysis of Phenotypically Characterized Cryptococcus laurentii Isolates Reveals High Frequency of Cryptic Species

    PubMed Central

    Ferreira-Paim, Kennio; Ferreira, Thatiana Bragine; Andrade-Silva, Leonardo; Mora, Delio Jose; Springer, Deborah J.; Heitman, Joseph; Fonseca, Fernanda Machado; Matos, Dulcilena; Melhem, Márcia Souza Carvalho; Silva-Vergara, Mario León

    2014-01-01

    Background Although Cryptococcus laurentii has been considered saprophytic and its taxonomy is still being described, several cases of human infections have already reported. This study aimed to evaluate molecular aspects of C. laurentii isolates from Brazil, Botswana, Canada, and the United States. Methods In this study, 100 phenotypically identified C. laurentii isolates were evaluated by sequencing the 18S nuclear ribosomal small subunit rRNA gene (18S-SSU), D1/D2 region of 28S nuclear ribosomal large subunit rRNA gene (28S-LSU), and the internal transcribed spacer (ITS) of the ribosomal region. Results BLAST searches using 550-bp, 650-bp, and 550-bp sequenced amplicons obtained from the 18S-SSU, 28S-LSU, and the ITS region led to the identification of 75 C. laurentii strains that shared 99–100% identity with C. laurentii CBS 139. A total of nine isolates shared 99% identity with both Bullera sp. VY-68 and C. laurentii RY1. One isolate shared 99% identity with Cryptococcus rajasthanensis CBS 10406, and eight isolates shared 100% identity with Cryptococcus sp. APSS 862 according to the 28S-LSU and ITS regions and designated as Cryptococcus aspenensis sp. nov. (CBS 13867). While 16 isolates shared 99% identity with Cryptococcus flavescens CBS 942 according to the 18S-SSU sequence, only six were confirmed using the 28S-LSU and ITS region sequences. The remaining 10 shared 99% identity with Cryptococcus terrestris CBS 10810, which was recently described in Brazil. Through concatenated sequence analyses, seven sequence types in C. laurentii, three in C. flavescens, one in C. terrestris, and one in the C. aspenensis sp. nov. were identified. Conclusions Sequencing permitted the characterization of 75% of the environmental C. laurentii isolates from different geographical areas and the identification of seven haplotypes of this species. Among sequenced regions, the increased variability of the ITS region in comparison to the 18S-SSU and 28S-LSU regions reinforces its applicability as a DNA barcode. PMID:25251413

  1. Re-classification of Clavibacter michiganensis subspecies on the basis of whole-genome and multi-locus sequence analyses.

    PubMed

    Li, Xiang; Tambong, James; Yuan, Kat Xiaoli; Chen, Wen; Xu, Huimin; Lévesque, C André; De Boer, Solke H

    2018-01-01

    Although the genus Clavibacter was originally proposed to accommodate all phytopathogenic coryneform bacteria containing B2γ diaminobutyrate in the peptidoglycan, reclassification of all but one species into other genera has resulted in the current monospecific status of the genus. The single species in the genus, Clavibacter michiganensis, has multiple subspecies, which are all highly host-specific plant pathogens. Whole genome analysis based on average nucleotide identity and digital DNA-DNA hybridization as well as multi-locus sequence analysis (MLSA) of seven housekeeping genes support raising each of the C. michiganensis subspecies to species status. On the basis of whole genome and MLSA data, we propose the establishment of two new species and three new combinations: Clavibacter capsici sp. nov., comb. nov. and Clavibacter tessellarius sp. nov., comb. nov., and Clavibacter insidiosus comb. nov., Clavibacter nebraskensis comb. nov. and Clavibacter sepedonicus comb. nov.

  2. Re-classification of Clavibacter michiganensis subspecies on the basis of whole-genome and multi-locus sequence analyses

    PubMed Central

    Li, Xiang; Tambong, James; Yuan, Kat (Xiaoli); Chen, Wen; Xu, Huimin; Lévesque, C. André; De Boer, Solke H.

    2018-01-01

    Although the genus Clavibacter was originally proposed to accommodate all phytopathogenic coryneform bacteria containing B2γ diaminobutyrate in the peptidoglycan, reclassification of all but one species into other genera has resulted in the current monospecific status of the genus. The single species in the genus, Clavibacter michiganensis, has multiple subspecies, which are all highly host-specific plant pathogens. Whole genome analysis based on average nucleotide identity and digital DNA–DNA hybridization as well as multi-locus sequence analysis (MLSA) of seven housekeeping genes support raising each of the C. michiganensis subspecies to species status. On the basis of whole genome and MLSA data, we propose the establishment of two new species and three new combinations: Clavibacter capsici sp. nov., comb. nov. and Clavibacter tessellarius sp. nov., comb. nov., and Clavibacter insidiosus comb. nov., Clavibacter nebraskensis comb. nov. and Clavibacter sepedonicus comb. nov. PMID:29160202

  3. Identification of the Coumermycin A1 Biosynthetic Gene Cluster of Streptomyces rishiriensis DSM 40489

    PubMed Central

    Wang, Zhao-Xin; Li, Shu-Ming; Heide, Lutz

    2000-01-01

    The biosynthetic gene cluster of the aminocoumarin antibiotic coumermycin A1 was cloned by screening of a cosmid library of Streptomyces rishiriensis DSM 40489 with heterologous probes from a dTDP-glucose 4,6-dehydratase gene, involved in deoxysugar biosynthesis, and from the aminocoumarin resistance gyrase gene gyrBr. Sequence analysis of a 30.8-kb region upstream of gyrBr revealed the presence of 28 complete open reading frames (ORFs). Fifteen of the identified ORFs showed, on average, 84% identity to corresponding ORFs in the biosynthetic gene cluster of novobiocin, another aminocoumarin antibiotic. Possible functions of 17 ORFs in the biosynthesis of coumermycin A1 could be assigned by comparison with sequences in GenBank. Experimental proof for the function of the identified gene cluster was provided by an insertional gene inactivation experiment, which resulted in an abolishment of coumermycin A1 production. PMID:11036020

  4. Orthogonal Pilot Channel Using Combination of FDMA and CDMA in Single-Carrier FDMA-Based Evolved UTRA Uplink

    NASA Astrophysics Data System (ADS)

    Kawamura, Teruo; Kishiyama, Yoshihisa; Higuchi, Kenichi; Sawahashi, Mamoru

    In the Evolved UTRA (UMTS Terrestrial Radio Access) uplink, single-carrier frequency division multiple access (SC-FDMA) radio access was adopted owing to its advantageous low peak-to-average power ratio (PAPR) feature, which leads to wide coverage area provisioning with limited peak transmission power of user equipments. This paper proposes orthogonal pilot channel generation using the combination of FDMA and CDMA in the SC-FDMA-based Evolved UTRA uplink. In the proposed method, we employ distributed FDMA transmission for simultaneous accessing users with different transmission bandwidths, and employ CDMA transmission for simultaneous accessing users with identical transmission bandwidth. Moreover, we apply a code sequence with a good auto-correlation property such as a Constant Amplitude Zero Auto-Correlation (CAZAC) sequence employing a cyclic shift to increase the number of sequences. Simulation results show that the average packet error rate performance using an orthogonal pilot channel with the combination of FDMA and CDMA in a six-user environment, i. e., four users each with a 1.25-MHz transmission bandwidth and two users each with a 5-MHz transmission bandwidth, employing turbo coding with the coding r of R=1/2 and QPSK and 16QAM data modulation coincides well with that in a single-user environment with the same transmission bandwidth. We show that the proposed orthogonal pilot channel structure using the combination of distributed FDMA and CDMA transmissions and the application of the CAZAC sequence is effective in the SC-FDMA-based Evolved UTRA uplink.

  5. Single-cell epigenomics: techniques and emerging applications.

    PubMed

    Schwartzman, Omer; Tanay, Amos

    2015-12-01

    Epigenomics is the study of the physical modifications, associations and conformations of genomic DNA sequences, with the aim of linking these with epigenetic memory, cellular identity and tissue-specific functions. While current techniques in the field are characterizing the average epigenomic features across large cell ensembles, the increasing interest in the epigenetics within complex and heterogeneous tissues is driving the development of single-cell epigenomics. We review emerging single-cell methods for capturing DNA methylation, chromatin accessibility, histone modifications, chromosome conformation and replication dynamics. Together, these techniques are rapidly becoming a powerful tool in studies of cellular plasticity and diversity, as seen in stem cells and cancer.

  6. Independent studies using deep sequencing resolve the same set of core bacterial species dominating gut communities of honey bees.

    PubMed

    Sabree, Zakee L; Hansen, Allison K; Moran, Nancy A

    2012-01-01

    Starting in 2003, numerous studies using culture-independent methodologies to characterize the gut microbiota of honey bees have retrieved a consistent and distinctive set of eight bacterial species, based on near identity of the 16S rRNA gene sequences. A recent study [Mattila HR, Rios D, Walker-Sperling VE, Roeselers G, Newton ILG (2012) Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. PLoS ONE 7(3): e32962], using pyrosequencing of the V1-V2 hypervariable region of the 16S rRNA gene, reported finding entirely novel bacterial species in honey bee guts, and used taxonomic assignments from these reads to predict metabolic activities based on known metabolisms of cultivable species. To better understand this discrepancy, we analyzed the Mattila et al. pyrotag dataset. In contrast to the conclusions of Mattila et al., we found that the large majority of pyrotag sequences belonged to clusters for which representative sequences were identical to sequences from previously identified core species of the bee microbiota. On average, they represent 95% of the bacteria in each worker bee in the Mattila et al. dataset, a slightly lower value than that found in other studies. Some colonies contain small proportions of other bacteria, mostly species of Enterobacteriaceae. Reanalysis of the Mattila et al. dataset also did not support a relationship between abundances of Bifidobacterium and of putative pathogens or a significant difference in gut communities between colonies from queens that were singly or multiply mated. Additionally, consistent with previous studies, the dataset supports the occurrence of considerable strain variation within core species, even within single colonies. The roles of these bacteria within bees, or the implications of the strain variation, are not yet clear.

  7. Neisseria arctica sp. nov. isolated from nonviable eggs of greater white-fronted geese (Anser albifrons) in Arctic Alaska

    USGS Publications Warehouse

    Hansen, Cristina M.; Himschoot, Elizabeth; Hare, Rebekah F.; Meixell, Brandt W.; Van Hemert, Caroline R.; Hueffer, Karsten

    2017-01-01

    During the summers of 2013 and 2014, isolates of a novel Gram-negative coccus in the Neisseria genus were obtained from the contents of nonviable greater white-fronted goose (Anser albifrons) eggs on the Arctic Coastal Plain of Alaska. We used a polyphasic approach to determine whether these isolates represent a novel species. 16S rRNA gene sequences, 23S rRNA gene sequences, and chaperonin 60 gene sequences suggested that these Alaskan isolates are members of a distinct species that is most closely related to Neisseria canis, N. animaloris, and N. shayeganii. Analysis of the rplF gene additionally showed that our isolates are unique and most closely related to N. weaveri. Average nucleotide identity of the whole genome sequence of our type strain was between 71.5% and 74.6% compared to close relatives, further supporting designation as a novel species. Fatty acid methyl ester analysis showed a predominance of C14:0, C16:0, and C16:1ω7c fatty acids. Finally, biochemical characteristics distinguished our isolates from other Neisseria species. The name Neisseria arctica (type strain KH1503T = ATCC TSD-57T = DSM 103136T) is proposed.

  8. Deletion within the metallothionein locus of cadmium-tolerant Synechococcus PCC 6301 involving a highly iterated palindrome (HIP1).

    PubMed

    Gupta, A; Morby, A P; Turner, J S; Whitton, B A; Robinson, N J

    1993-01-01

    Genomic rearrangements involving amplification of metallothionein (MT) genes have been reported in metal-tolerant eukaryotes. Similarly, we have recently observed amplification and rearrangement of a prokaryotic MT locus, smt, in cells of Synechococcus PCC 6301 selected for Cd tolerance. Following the characterization of this locus, the altered smt region has now been isolated from a Cd-tolerant cell line, C3.2, and its nucleotide sequence determined. This has identified a deletion within smtB, which encodes a trans-acting repressor of smt transcription. Two identical palindromic octanucleotides (5'-GCGATC-GC-3') traverse both borders of the excised element. This palindromic sequence is highly represented in the smt locus (7 occurrences in 1326 nucleotides) and analysis of the GenBank/EMBL/DDBJ DNA Nucleotide Sequence Data Libraries reveals that this is a highly iterated palindrome (HIP1) in other known sequences from Synechococcus strains (estimated to occur at an average frequency of once every c. 664 bp). HIP1 is also abundant in the genomes of other cyanobacteria. The functional significance of smtB deletion and the possible role of HIP1 in genome plasticity and adaptation in cyanobacteria are discussed.

  9. Identification of a novel bovine enterovirus possessing highly divergent amino acid sequences in capsid protein.

    PubMed

    Tsuchiaka, Shinobu; Rahpaya, Sayed Samim; Otomaru, Konosuke; Aoki, Hiroshi; Kishimoto, Mai; Naoi, Yuki; Omatsu, Tsutomu; Sano, Kaori; Okazaki-Terashima, Sachiko; Katayama, Yukie; Oba, Mami; Nagai, Makoto; Mizutani, Tetsuya

    2017-01-17

    Bovine enterovirus (BEV) belongs to the species Enterovirus E or F, genus Enterovirus and family Picornaviridae. Although numerous studies have identified BEVs in the feces of cattle with diarrhea, the pathogenicity of BEVs remains unclear. Previously, we reported the detection of novel kobu-like virus in calf feces, by metagenomics analysis. In the present study, we identified a novel BEV in diarrheal feces collected for that survey. Complete genome sequences were determined by deep sequencing in feces. Secondary RNA structure analysis of the 5' untranslated region (UTR), phylogenetic tree construction and pairwise identity analysis were conducted. The complete genome sequences of BEV were genetically distant from other EVs and the VP1 coding region contained novel and unique amino acid sequences. We named this strain as BEV AN12/Bos taurus/JPN/2014 (referred to as BEV-AN12). According to genome analysis, the genome length of this virus is 7414 nucleotides excluding the poly (A) tail and its genome consists of a 5'UTR, open reading frame encoding a single polyprotein, and 3'UTR. The results of secondary RNA structure analysis showed that in the 5'UTR, BEV-AN12 had an additional clover leaf structure and small stem loop structure, similarly to other BEVs. In pairwise identity analysis, BEV-AN12 showed high amino acid (aa) identities to Enterovirus F in the polyprotein, P2 and P3 regions (aa identity ≥82.4%). Therefore, BEV-AN12 is closely related to Enterovirus F. However, aa sequences in the capsid protein regions, particularly the VP1 encoding region, showed significantly low aa identity to other viruses in genus Enterovirus (VP1 aa identity ≤58.6%). In addition, BEV-AN12 branched separately from Enterovirus E and F in phylogenetic trees based on the aa sequences of P1 and VP1, although it clustered with Enterovirus F in trees based on sequences in the P2 and P3 genome region. We identified novel BEV possessing highly divergent aa sequences in the VP1 coding region in Japan. According to species definition, we proposed naming this strain as "Enterovirus K", which is a novel species within genus Enterovirus. Further genomic studies are needed to understand the pathogenicity of BEVs.

  10. Molecular identification of a new begomovirus infecting yellow passion fruit (Passiflora edulis) in Colombia.

    PubMed

    Vaca-Vaca, Juan Carlos; Carrasco-Lozano, Emerson Clovis; López-López, Karina

    2017-02-01

    The complete genome sequence of a bipartite begomovirus (genus Begomovirus, family Geminiviridae) infecting yellow passion fruit (Passiflora edulis) in the state of Valle del Cauca (Colombia) has been determined. The complete DNA-A and DNA-B components were determined to be 2600 and 2572 nt in length, respectively. The DNA-A showed the highest nucleotide sequence identity (87.2 %) to bean dwarf mosaic virus (M88179), a begomovirus found in common bean crops in Colombia, and only 77.4 % identity to passion fruit severe leaf distortion virus (FJ972767), a begomovirus identified infecting passion fruit in Brazil. Based on its sequence identity to all other begomoviruses known to date and in accordance with the ICTV species demarcation criterion for the genus Begomovirus (≥91 % sequence identity for the complete DNA-A), the name passion fruit leaf distortion virus is proposed for this new begomovirus. To our knowledge, this is the first report of a bipartite begomovirus affecting passion fruit in Colombia and the second report of a geminivirus affecting this crop worldwide.

  11. Sequence identity and antigenic cross-reactivity of white face hornet venom allergen, also a hyaluronidase, with other proteins.

    PubMed

    Lu, G; Kochoumian, L; King, T P

    1995-03-03

    White face hornet (Dolichovespula maculata) venom has three known protein allergens which induce IgE response in susceptible people. They are antigen 5, phospholipase A1, and hyaluronidase, also known as Dol m 5, 1, and 2, respectively. We have cloned Dol m 2, a protein of 331 residues. When expressed in bacteria, a mixture of recombinant Dol m 2 and its fragments was obtained. The fragments were apparently generated by proteolysis of a Met-Met bond at residue 122, as they were not observed for a Dol m 2 mutant with a Leu-Met bond. Dol m 2 has 56% sequence identity with the honey bee venom allergen hyaluronidase and 27% identity with PH-20, a human sperm protein with hyaluronidase activity. A common feature of hornet venom allergens is their sequence identity with other proteins in our environment. We showed previously the sequence identity of Dol m 5 with a plant protein and a mammalian testis protein and of Dol m 1 with mammalian lipases. In BALB/c mice, Dol m 2 and bee hyaluronidase showed cross-reactivity at both antibody and T cell levels. These findings are relevant to some patients' multiple sensitivity to hornet and bee stings.

  12. Optimization of identity operation in NMR spectroscopy via genetic algorithm: Application to the TEDOR experiment

    NASA Astrophysics Data System (ADS)

    Manu, V. S.; Veglia, Gianluigi

    2016-12-01

    Identity operation in the form of π pulses is widely used in NMR spectroscopy. For an isolated single spin system, a sequence of even number of π pulses performs an identity operation, leaving the spin state essentially unaltered. For multi-spin systems, trains of π pulses with appropriate phases and time delays modulate the spin Hamiltonian to perform operations such as decoupling and recoupling. However, experimental imperfections often jeopardize the outcome, leading to severe losses in sensitivity. Here, we demonstrate that a newly designed Genetic Algorithm (GA) is able to optimize a train of π pulses, resulting in a robust identity operation. As proof-of-concept, we optimized the recoupling sequence in the transferred-echo double-resonance (TEDOR) pulse sequence, a key experiment in biological magic angle spinning (MAS) solid-state NMR for measuring multiple carbon-nitrogen distances. The GA modified TEDOR (GMO-TEDOR) experiment with improved recoupling efficiency results in a net gain of sensitivity up to 28% as tested on a uniformly 13C, 15N labeled microcrystalline ubiquitin sample. The robust identity operation achieved via GA paves the way for the optimization of several other pulse sequences used for both solid- and liquid-state NMR used for decoupling, recoupling, and relaxation experiments.

  13. Detection and Phylogenetic Analysis of Wolbachia in the Asiatic Rice Leafroller, Cnaphalocrocis medinalis, in Chinese Populations

    PubMed Central

    Chai, Huan-Na; Du, Yu-Zhou; Qiu, Bao-Li; Zhai, Bao-Ping

    2011-01-01

    Wolbachia are a group of intracellular inherited endosymbiontic bacteria infecting a wide range of insects. In this study the infection status of Wolbachia (Rickettsiales: Rickettsiaceae) was measured in the Asiatic rice leafroller, Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae), from twenty locations in China by sequencing wsp, ftsZ and 16S rDNA genes. The results showed high infection rates of Wolbachia in C. medinalis populations. Wolbachia was detected in all geographically separate populations; the average infection rate was ∼ 62.5%, and the highest rates were 90% in Wenzhou and Yangzhou populations. The Wolbachia detected in different C. medinalis populations were 100% identical to each other when wsp, ftsZ, and 16S rDNA sequences were compared, with all sequences belonging to the Wolbachia B supergroup. Based on wsp, ftsZ and 16S rDNA sequences of Wolbachia, three phylogenetic trees of similar pattern emerged. This analysis indicated the possibility of inter-species and intra-species horizontal transmission of Wolbachia in different arthropods in related geographical regions. The migration route of C. medinalis in mainland China was also discussed since large differentiation had been found between the wsp sequences of Chinese and Thai populations. PMID:22233324

  14. Evolution and Diversity in Human Herpes Simplex Virus Genomes

    PubMed Central

    Gatherer, Derek; Ochoa, Alejandro; Greenbaum, Benjamin; Dolan, Aidan; Bowden, Rory J.; Enquist, Lynn W.; Legendre, Matthieu; Davison, Andrew J.

    2014-01-01

    Herpes simplex virus 1 (HSV-1) causes a chronic, lifelong infection in >60% of adults. Multiple recent vaccine trials have failed, with viral diversity likely contributing to these failures. To understand HSV-1 diversity better, we comprehensively compared 20 newly sequenced viral genomes from China, Japan, Kenya, and South Korea with six previously sequenced genomes from the United States, Europe, and Japan. In this diverse collection of passaged strains, we found that one-fifth of the newly sequenced members share a gene deletion and one-third exhibit homopolymeric frameshift mutations (HFMs). Individual strains exhibit genotypic and potential phenotypic variation via HFMs, deletions, short sequence repeats, and single-nucleotide polymorphisms, although the protein sequence identity between strains exceeds 90% on average. In the first genome-scale analysis of positive selection in HSV-1, we found signs of selection in specific proteins and residues, including the fusion protein glycoprotein H. We also confirmed previous results suggesting that recombination has occurred with high frequency throughout the HSV-1 genome. Despite this, the HSV-1 strains analyzed clustered by geographic origin during whole-genome distance analysis. These data shed light on likely routes of HSV-1 adaptation to changing environments and will aid in the selection of vaccine antigens that are invariant worldwide. PMID:24227835

  15. Complete Genome Sequence and Comparative Analysis of the Fish Pathogen Lactococcus garvieae

    PubMed Central

    Oshima, Kenshiro; Yoshizaki, Mariko; Kawanishi, Michiko; Nakaya, Kohei; Suzuki, Takehito; Miyauchi, Eiji; Ishii, Yasuo; Tanabe, Soichi; Murakami, Masaru; Hattori, Masahira

    2011-01-01

    Lactococcus garvieae causes fatal haemorrhagic septicaemia in fish such as yellowtail. The comparative analysis of genomes of a virulent strain Lg2 and a non-virulent strain ATCC 49156 of L. garvieae revealed that the two strains shared a high degree of sequence identity, but Lg2 had a 16.5-kb capsule gene cluster that is absent in ATCC 49156. The capsule gene cluster was composed of 15 genes, of which eight genes are highly conserved with those in exopolysaccharide biosynthesis gene cluster often found in Lactococcus lactis strains. Sequence analysis of the capsule gene cluster in the less virulent strain L. garvieae Lg2-S, Lg2-derived strain, showed that two conserved genes were disrupted by a single base pair deletion, respectively. These results strongly suggest that the capsule is crucial for virulence of Lg2. The capsule gene cluster of Lg2 may be a genomic island from several features such as the presence of insertion sequences flanked on both ends, different GC content from the chromosomal average, integration into the locus syntenic to other lactococcal genome sequences, and distribution in human gut microbiomes. The analysis also predicted other potential virulence factors such as haemolysin. The present study provides new insights into understanding of the virulence mechanisms of L. garvieae in fish. PMID:21829716

  16. Polypeptide having or assisting in carbohydrate material degrading activity and uses thereof

    DOEpatents

    Schooneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; Los, Alrik Pieter

    2016-02-16

    The invention relates to a polypeptide which comprises the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 76% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 76% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  17. Polypeptide having beta-glucosidase activity and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoonneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; De Jong, Rene Marcel

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well asmore » the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.« less

  18. Polypeptide having swollenin activity and uses thereof

    DOEpatents

    Schoonneveld-Bergmans, Margot Elizabeth Francoise; Heijne, Wilbert Herman Marie; Vlasie, Monica D; Damveld, Robbertus Antonius

    2015-11-04

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  19. Polypeptide having beta-glucosidase activity and uses thereof

    DOEpatents

    Schooneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; De Jong, Rene Marcel; Damveld, Robbertus Antonius

    2015-09-01

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 70% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 70% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  20. Polypeptide having cellobiohydrolase activity and uses thereof

    DOEpatents

    Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise; Roubos, Johannes Andries; Los, Alrik Pieter

    2015-09-15

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 93% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 93% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  1. Polypeptide having acetyl xylan esterase activity and uses thereof

    DOEpatents

    Schoonneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; Los, Alrik Pieter

    2015-10-20

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 82% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 82% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  2. Polypeptide having carbohydrate degrading activity and uses thereof

    DOEpatents

    Schooneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; Vlasie, Monica Diana; Damveld, Robbertus Antonius

    2015-08-18

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  3. Isolation of prolactin and growth hormone from the pituitary of the holostean fish Amia calva.

    PubMed

    Dores, R M; Noso, T; Rand-Weaver, M; Kawauchi, H

    1993-06-01

    Pituitaries from adult male and female Amia calva (Order Holostei) were acid extracted and fractionated by gel filtration column chromatography and reversed-phase high performance liquid chromatography. This two-step isolation procedure yielded homogeneous pools of Amia prolaction (PRL) and growth hormone (GH). The amino acid composition of both purified polypeptides was determined. Primary sequence analysis of the first 22 positions at the N-terminal of Amia PRL revealed that this region has 63% sequence identity with eel PRL-1. The N-terminal region of Amia PRL lacks the disulfide bridge which is characteristic of tetrapod PRLs. Primary sequence analysis of the first 24 positions at the N-terminal of Amia GH revealed that this region has 62% sequence identity with eel GH and 54% sequence identity with both blue shark GH and sea turtle GH. Based on N-terminal analysis, it appears that Amia PRL and GH are more closely related to teleost PRLs and GHs than they are to tetrapod PRLs and GHs.

  4. Complete mitochondrial genome of the larch hawk moth, Sphinx morio (Lepidoptera: Sphingidae).

    PubMed

    Kim, Min Jee; Choi, Sei-Woong; Kim, Iksoo

    2013-12-01

    The larch hawk moth, Sphinx morio, belongs to the lepidopteran family Sphingidae that has long been studied as a family of model insects in a diverse field. In this study, we describe the complete mitochondrial genome (mitogenome) sequences of the species in terms of general genomic features and characteristic short repetitive sequences found in the A + T-rich region. The 15,299-bp-long genome consisted of a typical set of genes (13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes) and one major non-coding A + T-rich region, with the typical arrangement found in Lepidoptera. The 316-bp-long A + T-rich region located between srRNA and tRNA(Met) harbored the conserved sequence blocks that are typically found in lepidopteran insects. Additionally, the A + T-rich region of S. morio contained three characteristic repeat sequences that are rarely found in Lepidoptera: two identical 12-bp repeat, three identical 5-bp-long tandem repeat, and six nearly identical 5-6 bp long repeat sequences.

  5. Towards the Rational Design of a Candidate Vaccine against Pregnancy Associated Malaria: Conserved Sequences of the DBL6ε Domain of VAR2CSA

    PubMed Central

    Badaut, Cyril; Bertin, Gwladys; Rustico, Tatiana; Fievet, Nadine; Massougbodji, Achille; Gaye, Alioune; Deloron, Philippe

    2010-01-01

    Background Placental malaria is a disease linked to the sequestration of Plasmodium falciparum infected red blood cells (IRBC) in the placenta, leading to reduced materno-fetal exchanges and to local inflammation. One of the virulence factors of P. falciparum involved in cytoadherence to chondroitin sulfate A, its placental receptor, is the adhesive protein VAR2CSA. Its localisation on the surface of IRBC makes it accessible to the immune system. VAR2CSA contains six DBL domains. The DBL6ε domain is the most variable. High variability constitutes a means for the parasite to evade the host immune response. The DBL6ε domain could constitute a very attractive basis for a vaccine candidate but its reported variability necessitates, for antigenic characterisations, identifying and classifying commonalities across isolates. Methodology/Principal Findings Local alignment analysis of the DBL6ε domain had revealed that it is not as variable as previously described. Variability is concentrated in seven regions present on the surface of the DBL6ε domain. The main goal of our work is to classify and group variable sequences that will simplify further research to determine dominant epitopes. Firstly, variable sequences were grouped following their average percent pairwise identity (APPI). Groups comprising many variable sequences sharing low variability were found. Secondly, ELISA experiments following the IgG recognition of a recombinant DBL6ε domain, and of peptides mimicking its seven variable blocks, allowed to determine an APPI cut-off and to isolate groups represented by a single consensus sequence. Conclusions/Significance A new sequence approach is used to compare variable regions in sequences that have extensive segmental gene relationship. Using this approach, the VAR2CSA DBL6 domain is composed of 7 variable blocks with limited polymorphism. Each variable block is composed of a limited number of consensus types. Based on peptide based ELISA, variable blocks with 85% or greater sequence identity are expected to be recognized equally well by antibody and can be considered the same consensus type. Therefore, the analysis of the antibody response against the classified small number of sequences should be helpful to determine epitopes. PMID:20585655

  6. ITS rDNA sequences of Pomphorhynchus laevis (Zoega in Müller, 1776) and P. lucyi Williams and Rogers, 1984 (Acanthocephala: Palaeacanthocephala).

    PubMed

    Král'ová-Hromadová, Iva; Tietz, David F; Shinn, Andrew P; Spakulová, Marta

    2003-10-01

    The internal transcribed spacers (ITS-1 and ITS-2) of the ribosomal RNA gene of Pomphorhynchus laevis (Zoega in Müller, 1776) (Acanthocephala) isolated from various fish species across Central and Southern Europe were compared with those of P. lucyi Williams and Rogers, 1984 collected from the largemouth bass Micropterus salmonoides Boulenger from the USA. The nucleotide sequences of ITS regions of P. laevis from minnows Phoxinus phoxinus (L.) and chub Leuciscus cephalus (L.) from two distant localities in the Slovak Republic were found to be 100% identical. The ITS-1 and ITS-2 of P. laevis from chub from the Czech Republic and Italy were also mutually identical, but significantly different from Slovak worms (88.7% identity for ITS-1, 91.3% identity for ITS-2). A fifth sample collected from Barbus tyberinus Bonaparte from Italy was very similar to the sympatric Italian isolate from chub, possessing four nucleotide substitutions in ITS-1 (98.4% identity). The ITS rDNA sequences of P. lucyi differed significantly from those of P. laevis; the values of identity were 51.8-56.1% for ITS-1 and 63.1-65.3% for ITS-2, and were significantly higher than the range of P. laevis within-species variability. The results based on the ITS sequences confirmed the occurrence of strains in P. laevis from Continental Europe which are well defined by molecules but reveal only slight differences in their morphology.

  7. Automated side-chain model building and sequence assignment by template matching.

    PubMed

    Terwilliger, Thomas C

    2003-01-01

    An algorithm is described for automated building of side chains in an electron-density map once a main-chain model is built and for alignment of the protein sequence to the map. The procedure is based on a comparison of electron density at the expected side-chain positions with electron-density templates. The templates are constructed from average amino-acid side-chain densities in 574 refined protein structures. For each contiguous segment of main chain, a matrix with entries corresponding to an estimate of the probability that each of the 20 amino acids is located at each position of the main-chain model is obtained. The probability that this segment corresponds to each possible alignment with the sequence of the protein is estimated using a Bayesian approach and high-confidence matches are kept. Once side-chain identities are determined, the most probable rotamer for each side chain is built into the model. The automated procedure has been implemented in the RESOLVE software. Combined with automated main-chain model building, the procedure produces a preliminary model suitable for refinement and extension by an experienced crystallographer.

  8. Bradyrhizobium sacchari sp. nov., a legume nodulating bacterium isolated from sugarcane roots.

    PubMed

    de Matos, Gustavo Feitosa; Zilli, Jerri Edson; de Araújo, Jean Luiz Simões; Parma, Marcia Maria; Melo, Itamar Soares; Radl, Viviane; Baldani, José Ivo; Rouws, Luc Felicianus Marie

    2017-11-01

    Members of the genus Bradyrhizobium are well-known as nitrogen-fixing microsymbionts of a wide variety of leguminous species, but they have also been found in different environments, notably as endophytes in non-legumes such as sugarcane. This study presents a detailed polyphasic characterization of four Bradyrhizobium strains (type strain BR 10280 T ), previously isolated from roots of sugarcane in Brazil. 16S rRNA sequence analysis, multilocus sequence analysis (MLSA) and analysis of the 16S-23S rRNA internal transcribed spacer showed that these strains form a novel clade close to, but different from B. huanghuaihaiense strain CCBAU 23303 T . Average nucleotide identity (ANI) analyses confirmed that BR 10280 T represents a novel species. Phylogenetic analysis based on nodC gene sequences also placed the strains close to CCBAU 23303 T , but different from this latter strain, the sugarcane strains did not nodulate soybean, although they effectively nodulated Vigna unguiculata, Cajanus cajan and Macroptilium atropurpureum. Physiological traits are in agreement with the placement of the strains in the genus Bradyrhizobium as a novel species for which the name Bradyrhizobium sacchari sp. nov. is proposed.

  9. Anthrax Toxin-Expressing Bacillus cereus Isolated from an Anthrax-Like Eschar.

    PubMed

    Marston, Chung K; Ibrahim, Hisham; Lee, Philip; Churchwell, George; Gumke, Megan; Stanek, Danielle; Gee, Jay E; Boyer, Anne E; Gallegos-Candela, Maribel; Barr, John R; Li, Han; Boulay, Darbi; Cronin, Li; Quinn, Conrad P; Hoffmaster, Alex R

    2016-01-01

    Bacillus cereus isolates have been described harboring Bacillus anthracis toxin genes, most notably B. cereus G9241, and capable of causing severe and fatal pneumonias. This report describes the characterization of a B. cereus isolate, BcFL2013, associated with a naturally occurring cutaneous lesion resembling an anthrax eschar. Similar to G9241, BcFL2013 is positive for the B. anthracis pXO1 toxin genes, has a multi-locus sequence type of 78, and a pagA sequence type of 9. Whole genome sequencing confirms the similarity to G9241. In addition to the chromosome having an average nucleotide identity of 99.98% when compared to G9241, BcFL2013 harbors three plasmids with varying homology to the G9241 plasmids (pBCXO1, pBC210 and pBFH_1). This is also the first report to include serologic testing of patient specimens associated with this type of B. cereus infection which resulted in the detection of anthrax lethal factor toxemia, a quantifiable serum antibody response to protective antigen (PA), and lethal toxin neutralization activity.

  10. Analysis of 16S-23S intergenic spacer regions of the rRNA operons in Edwardsiella ictaluri and Edwardsiella tarda isolates from fish.

    PubMed

    Panangala, V S; van Santen, V L; Shoemaker, C A; Klesius, P H

    2005-01-01

    To analyse interspecies and intraspecies differences based on the 16S-23S rRNA intergenic spacer region (ISR) sequences of the fish pathogens Edwardsiella ictaluri and Edwardsiella tarda. The 16S-23S rRNA spacer regions of 19 Edw. ictaluri and four Edw. tarda isolates from four geographical regions were amplified by PCR with primers complementary to conserved sequences within the flanking 16S-23S rRNA coding sequences. Two products were generated from all isolates, without interspecies or intraspecific size polymorphisms. Sequence analysis of the amplified fragments revealed a smaller ISR of 350 bp, which contained a gene for tRNA(Glu), and a larger ISR of 441 bp, which contained genes for tRNA(Ile) and tRNA(Ala). The sequences of the smaller ISR of different Edw. ictaluri isolates were essentially identical to each other. Partial sequences of larger ISR from several Edw. ictaluri isolates also revealed no differences from the one complete Edw. ictaluri large ISR sequence obtained. The sequences of the smaller ISR of Edw. tarda were 97% identical to the Edw. ictaluri smaller ISR and the larger ISR were 96-98% identical to the Edw. ictaluri larger ISR sequence. The Edw. tarda isolates displayed limited ISR sequence heterogeneity, with > or =97% sequence identity among isolates for both small and large ISR. There is a high degree of size and sequence similarity of 16S-23S ISR both among isolates within Edw. ictaluri and Edw. tarda species and between the two species. Our results confirm a close genetic relationship between Edw. ictaluri and Edw. tarda and the relative homogeneity of Edw. ictaluri isolates compared with Edw. tarda isolates. Because no differences were found in ISR sequences among Edw. ictaluri isolates, sequence analysis of the ISR will not be useful to distinguish isolates of Edw. ictaluri. However, we identified restriction sites that differ between ISR sequences of Edw. ictaluri and Edw. tarda, which will be useful in distinguishing the two species.

  11. Genetic analysis of Fasciola isolates from cattle in Korea based on second internal transcribed spacer (ITS-2) sequence of nuclear ribosomal DNA.

    PubMed

    Choe, Se-Eun; Nguyen, Thuy Thi-Dieu; Kang, Tae-Gyu; Kweon, Chang-Hee; Kang, Seung-Won

    2011-09-01

    Nuclear ribosomal DNA sequence of the second internal transcribed spacer (ITS-2) has been used efficiently to identify the liver fluke species collected from different hosts and various geographic regions. ITS-2 sequences of 19 Fasciola samples collected from Korean native cattle were determined and compared. Sequence comparison including ITS-2 sequences of isolates from this study and reference sequences from Fasciola hepatica and Fasciola gigantica and intermediate Fasciola in Genbank revealed seven identical variable sites of investigated isolates. Among 19 samples, 12 individuals had ITS-2 sequences completely identical to that of pure F. hepatica, five possessed the sequences identical to F. gigantica type, whereas two shared the sequence of both F. hepatica and F. gigantica. No variations in length and nucleotide composition of ITS-2 sequence were observed within isolates that belonged to F. hepatica or F. gigantica. At the position of 218, five Fasciola containing a single-base substitution (C>T) formed a distinct branch inside the F. gigantica-type group which was similar to those of Asian-origin isolates. The phylogenetic tree of the Fasciola spp. based on complete ITS-2 sequences from this study and other representative isolates in different locations clearly showed that pure F. hepatica, F. gigantica type and intermediate Fasciola were observed. The result also provided additional genetic evidence for the existence of three forms of Fasciola isolated from native cattle in Korea by genetic approach using ITS-2 sequence.

  12. First description of Grapevine leafroll-associated virus 5 in Argentina and partial genome sequence.

    PubMed

    Gómez Talquenca, Sebastián; Muñoz, Claudio; Grau, Oscar; Gracia, Olga

    2009-02-01

    An accession of Vitis vinifera cv. Red Globe from Argentina, was found to be infected with Grapevine leafroll-associated virus-5 by ELISA. It was partially sequenced, and three ORFs, corresponding to HSP70h, HSP90h, and CP, were found. This isolate shares a high aminoacid identity with the previously reported sequence of the virus, and identities between 80% and 90% with previously reported GLRaV-9 and GLRaV-4 isolates. The analysis of the sequence supports the clustering together with GLRaV-4 and GLRV-9 inside the Ampelovirus genus.

  13. Structures of two Arabidopsis thaliana major latex proteins represent novel helix-grip folds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lytle, Betsy L.; Song, Jikui; de la Cruz, Norberto B.

    2009-06-02

    Here we report the first structures of two major latex proteins (MLPs) which display unique structural differences from the canonical Bet v 1 fold described earlier. MLP28 (SwissProt/TrEMBL ID Q9SSK9), the product of gene At1g70830.1, and the At1g24000.1 gene product (Swiss- Prot/TrEMBL ID P0C0B0), proteins which share 32% sequence identity, were independently selected as foldspace targets by the Center for Eukaryotic Structural Genomics. The structure of a single domain (residues 17-173) of MLP28 was solved by NMR spectroscopy, while the full-length At1g24000.1 structure was determined by X-ray crystallography. MLP28 displays greater than 30% sequence identity to at least eight MLPsmore » from other species. For example, the MLP28 sequence shares 64% identity to peach Pp-MLP119 and 55% identity to cucumber Csf2.20 In contrast, the At1g24000.1 sequence is highly divergent (see Fig. 1), containing a gap of 33 amino acids when compared with all other known MLPs. Even when the gap is excluded, the sequence identity with MLPs from other species is less than 30%. Unlike some of the MLPs from other species, none of the A. thaliana MLPs have been characterized biochemically. We show by NMR chemical shift mapping that At1g24000.1 binds progesterone, demonstrating that despite its sequence dissimilarity, the hydrophobic binding pocket is conserved and, therefore, may play a role in its biological function and that of the MLP family in general.« less

  14. First isolation of Rickettsia monacensis from a patient in South Korea.

    PubMed

    Kim, Yeon-Sook; Choi, Yeon-Joo; Lee, Kyung-Min; Ahn, Kyu-Joong; Kim, Heung-Chul; Klein, Terry; Jiang, Ju; Richards, Allen; Park, Kyung-Hee; Jang, Won-Jong

    2017-07-01

    A Rickettsia sp. was isolated from the blood of a patient with an acute febrile illness using the shell vial technique; the isolate was named CN45Kr and was identified by molecular assay as Rickettsia monacensis, which was first recognized as a pathogen in Spain. Sequencing analysis showed that the gltA sequence of the isolate was identical to that of Rickettsia sp. IRS3. The ompA-5mp fragment sequence showed 100% identity to those of R. monacensis and Rickettsia sp. In56 and ompA-3pA In56 and 100% identity to that of Rickettsia sp. IRS3. The ompB sequence was found to have 99.9% similarity to that of R. monacensis IrR/Munich. This study confirms the pathogenicity of this agent and provides additional information about its geographic distribution. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  15. Inferences from structural comparison: flexibility, secondary structure wobble and sequence alignment optimization.

    PubMed

    Zhang, Gaihua; Su, Zhen

    2012-01-01

    Work on protein structure prediction is very useful in biological research. To evaluate their accuracy, experimental protein structures or their derived data are used as the 'gold standard'. However, as proteins are dynamic molecular machines with structural flexibility such a standard may be unreliable. To investigate the influence of the structure flexibility, we analysed 3,652 protein structures of 137 unique sequences from 24 protein families. The results showed that (1) the three-dimensional (3D) protein structures were not rigid: the root-mean-square deviation (RMSD) of the backbone Cα of structures with identical sequences was relatively large, with the average of the maximum RMSD from each of the 137 sequences being 1.06 Å; (2) the derived data of the 3D structure was not constant, e.g. the highest ratio of the secondary structure wobble site was 60.69%, with the sequence alignments from structural comparisons of two proteins in the same family sometimes being completely different. Proteins may have several stable conformations and the data derived from resolved structures as a 'gold standard' should be optimized before being utilized as criteria to evaluate the prediction methods, e.g. sequence alignment from structural comparison. Helix/β-sheet transition exists in normal free proteins. The coil ratio of the 3D structure could affect its resolution as determined by X-ray crystallography.

  16. A new begomovirus associated with alpha- and betasatellite molecules isolated from Vernonia cinerea in China.

    PubMed

    Zulfiqar, Awais; Zhang, Jie; Cui, Xiaofeng; Qian, Yajuan; Zhou, Xueping; Xie, Yan

    2012-01-01

    A begomovirus disease complex associated with Vernonia cinerea showing yellow vein symptoms was studied. The full-length genomic DNA was comprised of 2739 nucleotides (nt) and contained the typical genome structure of begomoviruses. Comparison analysis showed that it shared the highest (78.9%) nucleotide sequence identity with recently characterized Vernonia yellow vein virus (VeYVV) from India. For associated satellites, betasatellite showed the highest nucleotide sequence identity (52.1%) with Vernonia yellow vein virus betasatellite (VeYVVB) and alphasatellite shared the highest sequence identity (70.7%) with Gossypium mustelinium symptomless alphasatellite (GMusSLA). It is a member of a distinct species with cognate alpha- and betasatellites for which the name Vernonia yellow vein Fujian virus (VeYVFjV) is proposed.

  17. NGSCheckMate: software for validating sample identity in next-generation sequencing studies within and across data types.

    PubMed

    Lee, Sejoon; Lee, Soohyun; Ouellette, Scott; Park, Woong-Yang; Lee, Eunjung A; Park, Peter J

    2017-06-20

    In many next-generation sequencing (NGS) studies, multiple samples or data types are profiled for each individual. An important quality control (QC) step in these studies is to ensure that datasets from the same subject are properly paired. Given the heterogeneity of data types, file types and sequencing depths in a multi-dimensional study, a robust program that provides a standardized metric for genotype comparisons would be useful. Here, we describe NGSCheckMate, a user-friendly software package for verifying sample identities from FASTQ, BAM or VCF files. This tool uses a model-based method to compare allele read fractions at known single-nucleotide polymorphisms, considering depth-dependent behavior of similarity metrics for identical and unrelated samples. Our evaluation shows that NGSCheckMate is effective for a variety of data types, including exome sequencing, whole-genome sequencing, RNA-seq, ChIP-seq, targeted sequencing and single-cell whole-genome sequencing, with a minimal requirement for sequencing depth (>0.5X). An alignment-free module can be run directly on FASTQ files for a quick initial check. We recommend using this software as a QC step in NGS studies. https://github.com/parklab/NGSCheckMate. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Genome-Based Comparison of Clostridioides difficile: Average Amino Acid Identity Analysis of Core Genomes.

    PubMed

    Cabal, Adriana; Jun, Se-Ran; Jenjaroenpun, Piroon; Wanchai, Visanu; Nookaew, Intawat; Wongsurawat, Thidathip; Burgess, Mary J; Kothari, Atul; Wassenaar, Trudy M; Ussery, David W

    2018-02-14

    Infections due to Clostridioides difficile (previously known as Clostridium difficile) are a major problem in hospitals, where cases can be caused by community-acquired strains as well as by nosocomial spread. Whole genome sequences from clinical samples contain a lot of information but that needs to be analyzed and compared in such a way that the outcome is useful for clinicians or epidemiologists. Here, we compare 663 public available complete genome sequences of C. difficile using average amino acid identity (AAI) scores. This analysis revealed that most of these genomes (640, 96.5%) clearly belong to the same species, while the remaining 23 genomes produce four distinct clusters within the Clostridioides genus. The main C. difficile cluster can be further divided into sub-clusters, depending on the chosen cutoff. We demonstrate that MLST, either based on partial or full gene-length, results in biased estimates of genetic differences and does not capture the true degree of similarity or differences of complete genomes. Presence of genes coding for C. difficile toxins A and B (ToxA/B), as well as the binary C. difficile toxin (CDT), was deduced from their unique PfamA domain architectures. Out of the 663 C. difficile genomes, 535 (80.7%) contained at least one copy of ToxA or ToxB, while these genes were missing from 128 genomes. Although some clusters were enriched for toxin presence, these genes are variably present in a given genetic background. The CDT genes were found in 191 genomes, which were restricted to a few clusters only, and only one cluster lacked the toxin A/B genes consistently. A total of 310 genomes contained ToxA/B without CDT (47%). Further, published metagenomic data from stools were used to assess the presence of C. difficile sequences in blinded cases of C. difficile infection (CDI) and controls, to test if metagenomic analysis is sensitive enough to detect the pathogen, and to establish strain relationships between cases from the same hospital. We conclude that metagenomics can contribute to the identification of CDI and can assist in characterization of the most probable causative strain in CDI patients.

  19. GRIL: genome rearrangement and inversion locator.

    PubMed

    Darling, Aaron E; Mau, Bob; Blattner, Frederick R; Perna, Nicole T

    2004-01-01

    GRIL is a tool to automatically identify collinear regions in a set of bacterial-size genome sequences. GRIL uses three basic steps. First, regions of high sequence identity are located. Second, some of these regions are filtered based on user-specified criteria. Finally, the remaining regions of sequence identity are used to define significant collinear regions among the sequences. By locating collinear regions of sequence, GRIL provides a basis for multiple genome alignment using current alignment systems. GRIL also provides a basis for using current inversion distance tools to infer phylogeny. GRIL is implemented in C++ and runs on any x86-based Linux or Windows platform. It is available from http://asap.ahabs.wisc.edu/gril

  20. The tapeworm Atractolytocestus tenuicollis (Cestoda: Caryophyllidea)--a sister species or ancestor of an invasive A. huronensis?

    PubMed

    Králová-Hromadová, Ivica; Štefka, Jan; Bazsalovicsová, Eva; Bokorová, Silvia; Oros, Mikuláš

    2013-10-01

    Atractolytocestus tenuicollis (Li, 1964) Xi, Wang, Wu, Gao et Nie, 2009 is a monozoic, non-segmented tapeworm of the order Caryophyllidea, parasitizing exclusively common carp (Cyprinus carpio L.). In the current work, the first molecular data, in particular complete ribosomal internal transcribed spacer 2 (ITS2) and partial mitochondrial cytochrome c oxidase subunit I (cox1) on A. tenuicollis from Niushan Lake, Wuhan, China, are provided. In order to evaluate molecular interrelationships within Atractolytocestus, the data on A. tenuicollis were compared with relevant data on two other congeners, Atractolytocestus huronensis and Atractolytocestus sagittatus. Divergent intragenomic copies (ITS2 paralogues) were detected in the ITS2 ribosomal spacer of A. tenuicollis; the same phenomenon has previously been observed also in two other congeners. ITS2 structure of A. tenuicollis was very similar to that of A. huronensis from Slovakia, USA and UK; overall pairwise sequence identity was 91.7-95.2%. On the other hand, values of sequence identity between A. tenuicollis and A. sagittatus were lower, 69.7-70.9%. Cox1 sequence, analysed in five A. tenuicollis individuals, were 100 % identical and no intraspecific variation was observed. Comparison of A. tenuicollis cox1 with respective sequences of two other Atractolytocestus species showed that the mitochondrial haplotype found in Chinese A. tenuicollis is structurally specific (haplotype 4; Ha4) and differs from all so far determined Atractolytocestus haplotypes (Ha1 and Ha2 for A. huronensis; Ha3 for A. sagittatus). Pairwise sequence identity between A. tenuicollis cox1 haplotype and remaining three haplotypes followed the same pattern as in ITS2. The nucleotide and amino acide (aa) sequence comparison with A. huronensis Ha1 and Ha2 revealed higher sequence identity, 90.3-90.8% (96.9% in aa), while lower values were achieved between A. tenuicollis haplotype and Ha3 of Japanese A. sagittatus-75.2 % (81.9 % in aa). The phylogenetic analyses using cox1, ITS2 and combined cox1 + ITS2 sequences revealed close genetic interrelationship between A. tenuicollis and A. huronensis. Independently of a type of analysis and DNA region used, the topology of obtained trees was always identical; A. tenuicollis formed separate clade with A. huronensis forming a closely related sister group.

  1. Prevalence and genetic characterization of eimeriid coccidia from feces of black-necked cranes, Grus nigricollis.

    PubMed

    Liang, Yu; Zhao, ZiJiao; Hu, JunJie; Esch, Gerald W; Peng, MingChun; Liu, Qiong; Chen, JinQing

    2018-03-01

    Disseminated visceral coccidiosis (DVC) is a widely distributed intestinal and extraintestinal disease of cranes caused by eimeriid coccidia and has lethal pathogenicity to several crane species. Here, feces of 164 black-necked cranes collected in Dashanbao Black-necked Crane National Nature Reserve, China, were examined to determine the prevalence of coccidial oocysts. Of the 164 fecal samples, 76 (46.3%) were positive for oocysts of Eimeria, including E. gruis in 59 (35.9%), E. reichenowi in 52 (31.7%), and E. bosquei in 47 (28.7%) by microscopic observation. Sixty-eight (89.5%) of these positive samples included two or more morphologically identifiable species of Eimeria. The nearly full length 18S rRNA gene (18S rRNA; about 1.8 kb) and partial mitochondrial cytochrome c oxidase I gene (COX1; about 1.3 kb) from oocysts of each morphologically distinct species of Eimeria were amplified, sequenced, and analyzed. BLAST searches using these new 18S rRNA sequences for E. gruis, E. reichenowi, or E. bosquei showed the most similar sequences were those of E. gruis (98.7-99.7% identity), E. reichenowi (97.9-100% identity), or E. gruis (98.6-99.6% identity) isolated from different species of Grus. BLAST searches using the new COX1 sequences for the three species of Eimeria showed that no nucleotide sequences of Eimeria and Isospora coccidia in GenBank have more than 83.0% identity with these species. Identities among the new COX1 sequences were 91.8% for E. gruis and E. reichenowi, 94.5% for E. gruis and E. bosquei, and 91.3% for E. reichenowi and E. bosquei. Phylogenetic analysis based on 18S rRNA or COX1 sequences indicated that Eimeria spp. in black-necked cranes were clustered together with other previously identified Eimeria species from different cranes.

  2. Mycobacterium ahvazicum sp. nov., the nineteenth species of the Mycobacterium simiae complex.

    PubMed

    Bouam, Amar; Heidarieh, Parvin; Shahraki, Abodolrazagh Hashemi; Pourahmad, Fazel; Mirsaeidi, Mehdi; Hashemzadeh, Mohamad; Baptiste, Emeline; Armstrong, Nicholas; Levasseur, Anthony; Robert, Catherine; Drancourt, Michel

    2018-03-07

    Four slowly growing mycobacteria isolates were isolated from the respiratory tract and soft tissue biopsies collected in four unrelated patients in Iran. Conventional phenotypic tests indicated that these four isolates were identical to Mycobacterium lentiflavum while 16S rRNA gene sequencing yielded a unique sequence separated from that of M. lentiflavum. One representative strain AFP-003 T was characterized as comprising a 6,121,237-bp chromosome (66.24% guanosine-cytosine content) encoding for 5,758 protein-coding genes, 50 tRNA and one complete rRNA operon. A total of 2,876 proteins were found to be associated with the mobilome, including 195 phage proteins. A total of 1,235 proteins were found to be associated with virulence and 96 with toxin/antitoxin systems. The genome of AFP-003 T has the genetic potential to produce secondary metabolites, with 39 genes found to be associated with polyketide synthases and non-ribosomal peptide syntases and 11 genes encoding for bacteriocins. Two regions encoding putative prophages and three OriC regions separated by the dnaA gene were predicted. Strain AFP-003 T genome exhibits 86% average nucleotide identity with Mycobacterium genavense genome. Genetic and genomic data indicate that strain AFP-003 T is representative of a novel Mycobacterium species that we named Mycobacterium ahvazicum, the nineteenth species of the expanding Mycobacterium simiae complex.

  3. HIPPI: highly accurate protein family classification with ensembles of HMMs.

    PubMed

    Nguyen, Nam-Phuong; Nute, Michael; Mirarab, Siavash; Warnow, Tandy

    2016-11-11

    Given a new biological sequence, detecting membership in a known family is a basic step in many bioinformatics analyses, with applications to protein structure and function prediction and metagenomic taxon identification and abundance profiling, among others. Yet family identification of sequences that are distantly related to sequences in public databases or that are fragmentary remains one of the more difficult analytical problems in bioinformatics. We present a new technique for family identification called HIPPI (Hierarchical Profile Hidden Markov Models for Protein family Identification). HIPPI uses a novel technique to represent a multiple sequence alignment for a given protein family or superfamily by an ensemble of profile hidden Markov models computed using HMMER. An evaluation of HIPPI on the Pfam database shows that HIPPI has better overall precision and recall than blastp, HMMER, and pipelines based on HHsearch, and maintains good accuracy even for fragmentary query sequences and for protein families with low average pairwise sequence identity, both conditions where other methods degrade in accuracy. HIPPI provides accurate protein family identification and is robust to difficult model conditions. Our results, combined with observations from previous studies, show that ensembles of profile Hidden Markov models can better represent multiple sequence alignments than a single profile Hidden Markov model, and thus can improve downstream analyses for various bioinformatic tasks. Further research is needed to determine the best practices for building the ensemble of profile Hidden Markov models. HIPPI is available on GitHub at https://github.com/smirarab/sepp .

  4. The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences

    PubMed Central

    2010-01-01

    Background In today's age of genomic discovery, no attempt has been made to comprehensively sequence a gymnosperm genome. The largest genus in the coniferous family Pinaceae is Pinus, whose 110-120 species have extremely large genomes (c. 20-40 Gb, 2N = 24). The size and complexity of these genomes have prompted much speculation as to the feasibility of completing a conifer genome sequence. Conifer genomes are reputed to be highly repetitive, but there is little information available on the nature and identity of repetitive units in gymnosperms. The pines have extensive genetic resources, with approximately 329000 ESTs from eleven species and genetic maps in eight species, including a dense genetic map of the twelve linkage groups in Pinus taeda. Results We present here the Sanger sequence and annotation of ten P. taeda BAC clones and Genome Analyzer II whole genome shotgun (WGS) sequences representing 7.5% of the genome. Computational annotation of ten BACs predicts three putative protein-coding genes and at least fifteen likely pseudogenes in nearly one megabase of sequence. We found three conifer-specific LTR retroelements in the BACs, and tentatively identified at least 15 others based on evidence from the distantly related angiosperms. Alignment of WGS sequences to the BACs indicates that 80% of BAC sequences have similar copies (≥ 75% nucleotide identity) elsewhere in the genome, but only 23% have identical copies (99% identity). The three most common repetitive elements in the genome were identified and, when combined, represent less than 5% of the genome. Conclusions This study indicates that the majority of repeats in the P. taeda genome are 'novel' and will therefore require additional BAC or genomic sequencing for accurate characterization. The pine genome contains a very large number of diverged and probably defunct repetitive elements. This study also provides new evidence that sequencing a pine genome using a WGS approach is a feasible goal. PMID:20609256

  5. Nucleotide sequence of a chickpea chlorotic stunt virus relative that infects pea and faba bean in China.

    PubMed

    Zhou, Cui-Ji; Xiang, Hai-Ying; Zhuo, Tao; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui

    2012-07-01

    We determined the genome sequence of a new polerovirus that infects field pea and faba bean in China. Its entire nucleotide sequence (6021 nt) was most closely related (83.3% identity) to that of an Ethiopian isolate of chickpea chlorotic stunt virus (CpCSV-Eth). With the exception of the coat protein (encoded by ORF3), amino acid sequence identities of all gene products of this virus to those of CpCSV-Eth and other poleroviruses were <90%. This suggests that it is a new member of the genus Polerovirus, and the name pea mild chlorosis virus is proposed.

  6. PSS-3D1D: an improved 3D1D profile method of protein fold recognition for the annotation of twilight zone sequences.

    PubMed

    Ganesan, K; Parthasarathy, S

    2011-12-01

    Annotation of any newly determined protein sequence depends on the pairwise sequence identity with known sequences. However, for the twilight zone sequences which have only 15-25% identity, the pair-wise comparison methods are inadequate and the annotation becomes a challenging task. Such sequences can be annotated by using methods that recognize their fold. Bowie et al. described a 3D1D profile method in which the amino acid sequences that fold into a known 3D structure are identified by their compatibility to that known 3D structure. We have improved the above method by using the predicted secondary structure information and employ it for fold recognition from the twilight zone sequences. In our Protein Secondary Structure 3D1D (PSS-3D1D) method, a score (w) for the predicted secondary structure of the query sequence is included in finding the compatibility of the query sequence to the known fold 3D structures. In the benchmarks, the PSS-3D1D method shows a maximum of 21% improvement in predicting correctly the α + β class of folds from the sequences with twilight zone level of identity, when compared with the 3D1D profile method. Hence, the PSS-3D1D method could offer more clues than the 3D1D method for the annotation of twilight zone sequences. The web based PSS-3D1D method is freely available in the PredictFold server at http://bioinfo.bdu.ac.in/servers/ .

  7. Carbohydrate degrading polypeptide and uses thereof

    DOEpatents

    Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise; Roubos, Johannes Andries; Los, Alrik Pieter

    2015-10-20

    The invention relates to a polypeptide having carbohydrate material degrading activity which comprises the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 4, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional protein and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  8. From sequence to enzyme mechanism using multi-label machine learning.

    PubMed

    De Ferrari, Luna; Mitchell, John B O

    2014-05-19

    In this work we predict enzyme function at the level of chemical mechanism, providing a finer granularity of annotation than traditional Enzyme Commission (EC) classes. Hence we can predict not only whether a putative enzyme in a newly sequenced organism has the potential to perform a certain reaction, but how the reaction is performed, using which cofactors and with susceptibility to which drugs or inhibitors, details with important consequences for drug and enzyme design. Work that predicts enzyme catalytic activity based on 3D protein structure features limits the prediction of mechanism to proteins already having either a solved structure or a close relative suitable for homology modelling. In this study, we evaluate whether sequence identity, InterPro or Catalytic Site Atlas sequence signatures provide enough information for bulk prediction of enzyme mechanism. By splitting MACiE (Mechanism, Annotation and Classification in Enzymes database) mechanism labels to a finer granularity, which includes the role of the protein chain in the overall enzyme complex, the method can predict at 96% accuracy (and 96% micro-averaged precision, 99.9% macro-averaged recall) the MACiE mechanism definitions of 248 proteins available in the MACiE, EzCatDb (Database of Enzyme Catalytic Mechanisms) and SFLD (Structure Function Linkage Database) databases using an off-the-shelf K-Nearest Neighbours multi-label algorithm. We find that InterPro signatures are critical for accurate prediction of enzyme mechanism. We also find that incorporating Catalytic Site Atlas attributes does not seem to provide additional accuracy. The software code (ml2db), data and results are available online at http://sourceforge.net/projects/ml2db/ and as supplementary files.

  9. Identification of four novel HLA-B alleles, B*1590, B*1591, B*2726, and B*4705, from an East African population by high-resolution sequence-based typing.

    PubMed

    Luo, M; Mao, X; Plummer, F A

    2005-02-01

    We report here four novel HLA-B alleles, B*1590, B*1591, B*2726, and B*4705, identified from an East African population during sequence-based HLA-B typing. The novel alleles were confirmed by sequencing two separate polymerase chain reaction products, and by molecular cloning and sequencing multiple clones. B*1590 is identical to B*1510 at exon 2 and exon 3, except for a difference (GCCGTC) at codon 158. Sequence differences at codon 152 (GAGGTG) and codon 167 (TGGTCG) differentiate B*1591 from B*1503 at exon 3. B*2726 is identical to B*2708 at exon 2 and exon 3, except for a difference (AAGCAG) at codon 70. B*4705 was identified in three Kenyan women. The allele is identical to B*47010101/02 at exon 2 and exon 3, except for differences at codon 97 (AGGAAT) and codon 99 (TTTTAT). These new alleles have been named by the WHO Nomenclature Committee. Identification of these novel HLA-B alleles reflects the genetic diversity of this East African population.

  10. Phylogenetic characterization of Canine Parvovirus VP2 partial sequences from symptomatic dogs samples.

    PubMed

    Zienius, D; Lelešius, R; Kavaliauskis, H; Stankevičius, A; Šalomskas, A

    2016-01-01

    The aim of the present study was to detect canine parvovirus (CPV) from faecal samples of clinically ill domestic dogs by polymerase chain reaction (PCR) followed by VP2 gene partial sequencing and molecular characterization of circulating strains in Lithuania. Eleven clinically and antigen-tested positive dog faecal samples, collected during the period of 2014-2015, were investigated by using PCR. The phylogenetic investigations indicated that the Lithuanian CPV VP2 partial sequences (3025-3706 cds) were closely related and showed 99.0-99.9% identity. All Lithuanian sequences were associated with one phylogroup, but grouped in different clusters. Ten of investigated Lithuanian CPV VP2 sequences were closely associated with CPV 2a antigenic variant (99.4% nt identity). Five CPV VP2 sequences from Lithuania were related to CPV-2a, but were rather divergent (6.8 nt differences). Only one CPV VP2 sequence from Lithuania was associated (99.3% nt identity) with CPV-2b VP2 sequences from France, Italy, USA and Korea. The four of eleven investigated Lithuanian dogs with CPV infection symptoms were vaccinated with CPV-2 vaccine, but their VP2 sequences were phylogenetically distantly associated with CPV vaccine strains VP2 sequences (11.5-15.8 nt differences). Ten Lithuanian CPV VP2 sequences had monophyletic relations among the close geographically associated samples, but five of them were rather divergent (1.0% less sequence similarity). The one Lithuanian CPV VP2 sequence was closely related with CPV-2b antigenic variant. All the Lithuanian CPV VP2 partial sequences were conservative and phylogenetically low associated with most commonly used CPV vaccine strains.

  11. Complementary DNA sequencing and identification of mRNAs from the venomous gland of Agkistrodon piscivorus leucostoma.

    PubMed

    Jia, Ying; Cantu, Bruno A; Sánchez, Elda E; Pérez, John C

    2008-06-15

    To advance our knowledge on the snake venom composition and transcripts expressed in venom gland at the molecular level, we constructed a cDNA library from the venom gland of Agkistrodon piscivorus leucostoma for the generation of expressed sequence tags (ESTs) database. From the randomly sequenced 2112 independent clones, we have obtained ESTs for 1309 (62%) cDNAs, which showed significant deduced amino acid sequence similarity (scores >80) to previously characterized proteins in National Center for Biotechnology Information (NCBI) database. Ribosomal proteins make up 47 clones (2%) and the remaining 756 (36%) cDNAs represent either unknown identity or show BLASTX sequence identity scores of <80 with known GenBank accessions. The most highly expressed gene encoding phospholipase A(2) (PLA(2)) accounting for 35% of A. p. leucostoma venom gland cDNAs was identified and further confirmed by crude venom applied to sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) electrophoresis and protein sequencing. A total of 180 representative genes were obtained from the sequence assemblies and deposited to EST database. Clones showing sequence identity to disintegrins, thrombin-like enzymes, hemorrhagic toxins, fibrinogen clotting inhibitors and plasminogen activators were also identified in our EST database. These data can be used to develop a research program that will help us identify genes encoding proteins that are of medical importance or proteins involved in the mechanisms of the toxin venom.

  12. Infection of Taenia asiatica in a Bai Person in Dali, China.

    PubMed

    Wang, Li; Luo, Xuenong; Hou, Junling; Guo, Aijiang; Zhang, Shaohua; Li, Hailong; Cai, Xuepeng

    2016-02-01

    We report here a human case of Taenia asiatica infection which was confirmed by genetic analyses in Dali, China. A patient was found to have symptoms of taeniasis with discharge of tapeworm proglottids. By sequencing of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene, we observed nucleotide sequence identity of 99% with T. asiatica and 96% with T. saginata. Using the cytochrome b (cytb) gene, 99% identity with T. asiatica and 96% identity with T. saginata were found. Our findings suggest that taeniasis of people in Dali, China may be mainly caused by T. asiatica.

  13. Infection of Taenia asiatica in a Bai Person in Dali, China

    PubMed Central

    Wang, Li; Luo, Xuenong; Hou, Junling; Guo, Aijiang; Zhang, Shaohua; Li, Hailong; Cai, Xuepeng

    2016-01-01

    We report here a human case of Taenia asiatica infection which was confirmed by genetic analyses in Dali, China. A patient was found to have symptoms of taeniasis with discharge of tapeworm proglottids. By sequencing of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene, we observed nucleotide sequence identity of 99% with T. asiatica and 96% with T. saginata. Using the cytochrome b (cytb) gene, 99% identity with T. asiatica and 96% identity with T. saginata were found. Our findings suggest that taeniasis of people in Dali, China may be mainly caused by T. asiatica. PMID:26951981

  14. Precursors of vertebrate peptide antibiotics dermaseptin b and adenoregulin have extensive sequence identities with precursors of opioid peptides dermorphin, dermenkephalin, and deltorphins.

    PubMed

    Amiche, M; Ducancel, F; Mor, A; Boulain, J C; Menez, A; Nicolas, P

    1994-07-08

    The dermaseptins are a family of broad spectrum antimicrobial peptides, 27-34 amino acids long, involved in the defense of the naked skin of frogs against microbial invasion. They are the first vertebrate peptides to show lethal effects against the filamentous fungi responsible for severe opportunistic infections accompanying immunodeficiency syndrome and the use of immunosuppressive agents. A cDNA library was constructed from skin poly(A+) RNA of the arboreal frog Phyllomedusa bicolor and screened with an oligonucleotide probe complementary to the COOH terminus of dermaseptin b. Several clones contained a full-length DNA copy of a 443-nucleotide mRNA that encoded a 78-residue dermaseptin b precursor protein. The deduced precursor contained a putative signal sequence at the NH2 terminus, a 20-residue spacer sequence extremely rich (60%) in glutamic and aspartic acids, and a single copy of a dermaseptin b progenitor sequence at the COOH terminus. One clone contained a complete copy of adenoregulin, a 33-residue peptide reported to enhance the binding of agonists to the A1 adenosine receptor. The mRNAs encoding adenoregulin and dermaseptin b were very similar: 70 and 75% nucleotide identities between the 5'- and 3'-untranslated regions, respectively; 91% amino acid identity between the signal peptides; 82% identity between the acidic spacer sequences; and 38% identity between adenoregulin and dermaseptin b. Because adenoregulin and dermaseptin b have similar precursor designs and antimicrobial spectra, adenoregulin should be considered as a new member of the dermaseptin family and alternatively named dermaseptin b II. Preprodermaseptin b and preproadenoregulin have considerable sequence identities to the precursors encoding the opioid heptapeptides dermorphin, dermenkephalin, and deltorphins. This similarity extended into the 5'-untranslated regions of the mRNAs. These findings suggest that the genes encoding the four preproproteins are all members of the same family despite the fact that they encode end products having very different biological activities. These genes might contain a homologous export exon comprising the 5'-untranslated region, the 22-residue signal peptide, the 20-24-residue acidic spacer, and the basic pair Lys-Arg.

  15. Genetic analysis of the Yavapai Native Americans from West-Central Arizona using the Illumina MiSeq FGx™ forensic genomics system.

    PubMed

    Wendt, Frank R; Churchill, Jennifer D; Novroski, Nicole M M; King, Jonathan L; Ng, Jillian; Oldt, Robert F; McCulloh, Kelly L; Weise, Jessica A; Smith, David Glenn; Kanthaswamy, Sreetharan; Budowle, Bruce

    2016-09-01

    Forensically-relevant genetic markers were typed for sixty-two Yavapai Native Americans using the ForenSeq™ DNA Signature Prep Kit.These data are invaluable to the human identity community due to the greater genetic differentiation among Native American tribes than among other subdivisions within major populations of the United States. Autosomal, X-chromosomal, and Y-chromosomal short tandem repeat (STR) and identity-informative (iSNPs), ancestry-informative (aSNPs), and phenotype-informative (pSNPs) single nucleotide polymorphism (SNP) allele frequencies are reported. Sequence-based allelic variants were observed in 13 autosomal, 3 X, and 3 Y STRs. These observations increased observed and expected heterozygosities for autosomal STRs by 0.081±0.068 and 0.073±0.063, respectively, and decreased single-locus random match probabilities by 0.051±0.043 for 13 autosomal STRs. The autosomal random match probabilities (RMPs) were 2.37×10-26 and 2.81×10-29 for length-based and sequence-based alleles, respectively. There were 22 and 25 unique Y-STR haplotypes among 26 males, generating haplotype diversities of 0.95 and 0.96, for length-based and sequencebased alleles, respectively. Of the 26 haplotypes generated, 17 were assigned to haplogroup Q, three to haplogroup R1b, two each to haplogroups E1b1b and L, and one each to haplogroups R1a and I1. Male and female sequence-based X-STR random match probabilities were 3.28×10-7 and 1.22×10-6, respectively. The average observed and expected heterozygosities for 94 iSNPs were 0.39±0.12 and 0.39±0.13, respectively, and the combined iSNP RMP was 1.08×10-32. The combined STR and iSNP RMPs were 2.55×10-58 and 3.02×10-61 for length-based and sequence-based STR alleles, respectively. Ancestry and phenotypic SNP information, performed using the ForenSeq™ Universal Analysis Software, predicted black hair, brown eyes, and some probability of East Asian ancestry for all but one sample that clustered between European and Admixed American ancestry on a principal components analysis. These data serve as the first population assessment using the ForenSeq™ panel and highlight the value of employing sequence-based alleles for forensic DNA typing to increase heterozygosity, which is beneficial for identity testing in populations with reduced genetic diversity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Application of Genotyping during an Extensive Outbreak of Waterborne Giardiasis in Bergen, Norway, during Autumn and Winter 2004†

    PubMed Central

    Robertson, L. J.; Hermansen, L.; Gjerde, B. K.; Strand, E.; Alvsvåg, J. O.; Langeland, N.

    2006-01-01

    During the autumn and winter of 2004 and 2005, an extensive outbreak of waterborne giardiasis occurred in Bergen, Norway. Over 1,500 patients were diagnosed with giardiasis. Analysis of water from the implicated source revealed low numbers of Giardia cysts, but the initial contamination event probably occurred up to 10 weeks previously. While sewage leakage from a residential area is now considered to be the probable source of contamination, during the episode waste from one particular septic tank was thought to be a possible source. Genotyping of cysts from the septic tank demonstrated that they were assemblage A cysts, although the sequences were not identical to any previously published sequences. For the β-giardin gene, the closest published subgenotype was subgenotype A3; for the gdh gene, the closest published subgenotype was subgenotype A2. Genotyping of cysts from 21 patient samples revealed that they were assemblage B cysts; thus, the septic tank was unlikely to be the contamination source. Sequencing of the β-giardin and gdh genes from patient samples and a comparison of the sequences gave complex results. For the β-giardin gene, three isolates had sequences identical to subgenotype B3 sequences. However, other isolates had between one and four single-nucleotide polymorphisms (SNPs). For the gdh gene, none of the sequences were identical to the sequence published for subgenotype B3, and the sequences had between one and three SNPs. One isolate, which was identical to subgenotype B3 at the β-giardin gene, was more similar to subgenotype B2 at the gdh gene. Grouping the isolates on the basis of SNPs resulted in different groups for the two genes. The results are discussed in relation to giardiasis in Norway and to other Giardia genotyping studies. PMID:16517674

  17. Characterization of gonadotrophin-releasing hormone precursor cDNA in the Old World mole-rat Cryptomys hottentotus pretoriae: high degree of identity with the New World guinea pig sequence.

    PubMed

    Kalamatianos, T; du Toit, L; Hrabovszky, E; Kalló, I; Marsh, P J; Bennett, N C; Coen, C W

    2005-05-01

    Regulation of pituitary gonadotrophins by the decapeptide gonadotrophin-releasing hormone 1 (GnRH1) is crucial for the development and maintenance of reproductive functions. A common amino acid sequence for this decapeptide, designated as 'mammalian' GnRH, has been identified in all mammals thus far investigated with the exception of the guinea pig, in which there are two amino acid substitutions. Among hystricognath rodents, the members of the family Bathyergidae regulate reproduction in response to diverse cues. Thus, highveld mole-rats (Cryptomys hottentotus pretoriae) are social bathyergids in which breeding is restricted to a particular season in the dominant female, but continuously suppressed in subordinate colony members. Elucidation of reproductive control in these animals will be facilitated by characterization of their GnRH1 gene. A partial sequence of GnRH1 precursor cDNA was isolated and characterized. Comparative analysis revealed the highest degree of identity (86%) to guinea pig GnRH1 precursor mRNA. Nevertheless, the deduced amino acid sequence of the mole-rat decapeptide is identical to the 'mammalian' sequence rather than that of guinea pigs. Successful detection of GnRH1-synthesizing neurones using either a guinea pig GnRH1 riboprobe or an antibody against the 'mammalian' decapeptide is consistent with the guinea pig-like sequence for the precursor and the classic 'mammalian' form for the decapeptide. The high degree of identity in the GnRH1 precursor sequence between this Old World mole-rat and the New World guinea pig is consistent with the theory that caviomorphs and phiomorphs originated from a common ancestral line in the Palaeocene to mid Eocene, some 63-45 million years ago.

  18. Complete Nucleotide Sequence of Watermelon Chlorotic Stunt Virus Originating from Oman

    PubMed Central

    Khan, Akhtar J.; Akhtar, Sohail; Briddon, Rob W.; Ammara, Um; Al-Matrooshi, Abdulrahman M.; Mansoor, Shahid

    2012-01-01

    Watermelon chlorotic stunt virus (WmCSV) is a bipartite begomovirus (genus Begomovirus, family Geminiviridae) that causes economic losses to cucurbits, particularly watermelon, across the Middle East and North Africa. Recently squash (Cucurbita moschata) grown in an experimental field in Oman was found to display symptoms such as leaf curling, yellowing and stunting, typical of a begomovirus infection. Sequence analysis of the virus isolated from squash showed 97.6–99.9% nucleotide sequence identity to previously described WmCSV isolates for the DNA A component and 93–98% identity for the DNA B component. Agrobacterium-mediated inoculation to Nicotiana benthamiana resulted in the development of symptoms fifteen days post inoculation. This is the first bipartite begomovirus identified in Oman. Overall the Oman isolate showed the highest levels of sequence identity to a WmCSV isolate originating from Iran, which was confirmed by phylogenetic analysis. This suggests that WmCSV present in Oman has been introduced from Iran. The significance of this finding is discussed. PMID:22852046

  19. Complete nucleotide sequence of watermelon chlorotic stunt virus originating from Oman.

    PubMed

    Khan, Akhtar J; Akhtar, Sohail; Briddon, Rob W; Ammara, Um; Al-Matrooshi, Abdulrahman M; Mansoor, Shahid

    2012-07-01

    Watermelon chlorotic stunt virus (WmCSV) is a bipartite begomovirus (genus Begomovirus, family Geminiviridae) that causes economic losses to cucurbits, particularly watermelon, across the Middle East and North Africa. Recently squash (Cucurbita moschata) grown in an experimental field in Oman was found to display symptoms such as leaf curling, yellowing and stunting, typical of a begomovirus infection. Sequence analysis of the virus isolated from squash showed 97.6-99.9% nucleotide sequence identity to previously described WmCSV isolates for the DNA A component and 93-98% identity for the DNA B component. Agrobacterium-mediated inoculation to Nicotiana benthamiana resulted in the development of symptoms fifteen days post inoculation. This is the first bipartite begomovirus identified in Oman. Overall the Oman isolate showed the highest levels of sequence identity to a WmCSV isolate originating from Iran, which was confirmed by phylogenetic analysis. This suggests that WmCSV present in Oman has been introduced from Iran. The significance of this finding is discussed.

  20. DNA sequences of three beta-1,4-endoglucanase genes from Thermomonospora fusca.

    PubMed Central

    Lao, G; Ghangas, G S; Jung, E D; Wilson, D B

    1991-01-01

    The DNA sequences of the Thermomonospora fusca genes encoding cellulases E2 and E5 and the N-terminal end of E4 were determined. Each sequence contains an identical 14-bp inverted repeat upstream of the initiation codon. There were no significant homologies between the coding regions of the three genes. The E2 gene is 73% identical to the celA gene from Microbispora bispora, but this was the only homology found with other cellulase genes. E2 belongs to a family of cellulases that includes celA from M. bispora, cenA from Cellulomonas fimi, casA from an alkalophilic Streptomyces strain, and cellobiohydrolase II from Trichoderma reesei. E4 shows 44% identity to an avocado cellulase, while E5 belongs to the Bacillus cellulase family. There were strong similarities between the amino acid sequences of the E2 and E5 cellulose binding domains, and these regions also showed homology with C. fimi and Pseudomonas fluorescens cellulose binding domains. PMID:1904434

  1. Mining new crystal protein genes from Bacillus thuringiensis on the basis of mixed plasmid-enriched genome sequencing and a computational pipeline.

    PubMed

    Ye, Weixing; Zhu, Lei; Liu, Yingying; Crickmore, Neil; Peng, Donghai; Ruan, Lifang; Sun, Ming

    2012-07-01

    We have designed a high-throughput system for the identification of novel crystal protein genes (cry) from Bacillus thuringiensis strains. The system was developed with two goals: (i) to acquire the mixed plasmid-enriched genomic sequence of B. thuringiensis using next-generation sequencing biotechnology, and (ii) to identify cry genes with a computational pipeline (using BtToxin_scanner). In our pipeline method, we employed three different kinds of well-developed prediction methods, BLAST, hidden Markov model (HMM), and support vector machine (SVM), to predict the presence of Cry toxin genes. The pipeline proved to be fast (average speed, 1.02 Mb/min for proteins and open reading frames [ORFs] and 1.80 Mb/min for nucleotide sequences), sensitive (it detected 40% more protein toxin genes than a keyword extraction method using genomic sequences downloaded from GenBank), and highly specific. Twenty-one strains from our laboratory's collection were selected based on their plasmid pattern and/or crystal morphology. The plasmid-enriched genomic DNA was extracted from these strains and mixed for Illumina sequencing. The sequencing data were de novo assembled, and a total of 113 candidate cry sequences were identified using the computational pipeline. Twenty-seven candidate sequences were selected on the basis of their low level of sequence identity to known cry genes, and eight full-length genes were obtained with PCR. Finally, three new cry-type genes (primary ranks) and five cry holotypes, which were designated cry8Ac1, cry7Ha1, cry21Ca1, cry32Fa1, and cry21Da1 by the B. thuringiensis Toxin Nomenclature Committee, were identified. The system described here is both efficient and cost-effective and can greatly accelerate the discovery of novel cry genes.

  2. High efficiency family shuffling based on multi-step PCR and in vivo DNA recombination in yeast: statistical and functional analysis of a combinatorial library between human cytochrome P450 1A1 and 1A2.

    PubMed

    Abécassis, V; Pompon, D; Truan, G

    2000-10-15

    The design of a family shuffling strategy (CLERY: Combinatorial Libraries Enhanced by Recombination in Yeast) associating PCR-based and in vivo recombination and expression in yeast is described. This strategy was tested using human cytochrome P450 CYP1A1 and CYP1A2 as templates, which share 74% nucleotide sequence identity. Construction of highly shuffled libraries of mosaic structures and reduction of parental gene contamination were two major goals. Library characterization involved multiprobe hybridization on DNA macro-arrays. The statistical analysis of randomly selected clones revealed a high proportion of chimeric genes (86%) and a homogeneous representation of the parental contribution among the sequences (55.8 +/- 2.5% for parental sequence 1A2). A microtiter plate screening system was designed to achieve colorimetric detection of polycyclic hydrocarbon hydroxylation by transformed yeast cells. Full sequences of five randomly picked and five functionally selected clones were analyzed. Results confirmed the shuffling efficiency and allowed calculation of the average length of sequence exchange and mutation rates. The efficient and statistically representative generation of mosaic structures by this type of family shuffling in a yeast expression system constitutes a novel and promising tool for structure-function studies and tuning enzymatic activities of multicomponent eucaryote complexes involving non-soluble enzymes.

  3. Comparative Analysis of Vertebrate Dystrophin Loci Indicate Intron Gigantism as a Common Feature

    PubMed Central

    Pozzoli, Uberto; Elgar, Greg; Cagliani, Rachele; Riva, Laura; Comi, Giacomo P.; Bresolin, Nereo; Bardoni, Alessandra; Sironi, Manuela

    2003-01-01

    The human DMD gene is the largest known to date, spanning > 2000 kb on the X chromosome. The gene size is mainly accounted for by huge intronic regions. We sequenced 190 kb of Fugu rubripes (pufferfish) genomic DNA corresponding to the complete dystrophin gene (FrDMD) and provide the first report of gene structure and sequence comparison among dystrophin genomic sequences from different vertebrate organisms. Almost all intron positions and phases are conserved between FrDMD and its mammalian counterparts, and the predicted protein product of the Fugu gene displays 55% identity and 71% similarity to human dystrophin. In analogy to the human gene, FrDMD presents several-fold longer than average intronic regions. Analysis of intron sequences of the human and murine genes revealed that they are extremely conserved in size and that a similar fraction of total intron length is represented by repetitive elements; moreover, our data indicate that intron expansion through repeat accumulation in the two orthologs is the result of independent insertional events. The hypothesis that intron length might be functionally relevant to the DMD gene regulation is proposed and substantiated by the finding that dystrophin intron gigantism is common to the three vertebrate genes. [Supplemental material is available online at www.genome.org.] PMID:12727896

  4. Microbial Analysis of Bite Marks by Sequence Comparison of Streptococcal DNA

    PubMed Central

    Kennedy, Darnell M.; Stanton, Jo-Ann L.; García, José A.; Mason, Chris; Rand, Christy J.; Kieser, Jules A.; Tompkins, Geoffrey R.

    2012-01-01

    Bite mark injuries often feature in violent crimes. Conventional morphometric methods for the forensic analysis of bite marks involve elements of subjective interpretation that threaten the credibility of this field. Human DNA recovered from bite marks has the highest evidentiary value, however recovery can be compromised by salivary components. This study assessed the feasibility of matching bacterial DNA sequences amplified from experimental bite marks to those obtained from the teeth responsible, with the aim of evaluating the capability of three genomic regions of streptococcal DNA to discriminate between participant samples. Bite mark and teeth swabs were collected from 16 participants. Bacterial DNA was extracted to provide the template for PCR primers specific for streptococcal 16S ribosomal RNA (16S rRNA) gene, 16S–23S intergenic spacer (ITS) and RNA polymerase beta subunit (rpoB). High throughput sequencing (GS FLX 454), followed by stringent quality filtering, generated reads from bite marks for comparison to those generated from teeth samples. For all three regions, the greatest overlaps of identical reads were between bite mark samples and the corresponding teeth samples. The average proportions of reads identical between bite mark and corresponding teeth samples were 0.31, 0.41 and 0.31, and for non-corresponding samples were 0.11, 0.20 and 0.016, for 16S rRNA, ITS and rpoB, respectively. The probabilities of correctly distinguishing matching and non-matching teeth samples were 0.92 for ITS, 0.99 for 16S rRNA and 1.0 for rpoB. These findings strongly support the tenet that bacterial DNA amplified from bite marks and teeth can provide corroborating information in the identification of assailants. PMID:23284761

  5. Erwinia teleogrylli sp. nov., a Bacterial Isolate Associated with a Chinese Cricket

    PubMed Central

    Liu, Bo; Luo, Jin; Li, Wei; Long, Xiu-Feng; Zhang, Yu-Qin; Zeng, Zhi-Gang; Tian, Yong-Qiang

    2016-01-01

    A bacterial isolate (SCU-B244T) was obtained in China from crickets (Teleogryllus occipitalis) living in cropland deserted for approximately 10 years. The isolated bacteria were Gram-negative, facultatively anaerobic, oxidase-negative rods. A preliminary analysis of the 16S rRNA gene sequence indicated that the strain belongs to either the genus Erwinia or Pantoea. Analysis of multilocus sequence typing based on concatenated partial atpD, gyrB and infB gene sequences and physiological and biochemical characteristics indicated that the strain belonged to the genus Erwinia, as member of a new species as it was distinct from other known Erwinia species. Further analysis of the 16S rRNA gene showed SCU-B244T to have 94.71% identity to the closest species of that genus, Erwinia oleae (DSM 23398T), which is below the threshold of 97% used to discriminate bacterial species. DNA-DNA hybridization results (5.78±2.52%) between SCU-B244T and Erwinia oleae (DSM 23398T) confirmed that SCU-B244T and Erwinia oleae (DSM 23398T) represent different species combined with average nucleotide identity values which range from 72.42% to 74.41. The DNA G+C content of SCU-B244T was 55.32 mol%, which also differs from that of Erwinia oleae (54.7 to 54.9 mol%). The polyphasic taxonomic approach used here confirmed that the strain belongs to the Erwinia group and represents a novel species. The name Erwinia teleogrylli sp. nov. is proposed for this novel taxon, for which the type strain is SCU-B244T (= CGMCC 1.12772T = DSM 28222T = KCTC 42022T). PMID:26800121

  6. Examination into the taxonomic position of Bacillus thermotolerans Yang et al., 2013, proposal for its reclassification into a new genus and species Quasibacillus thermotolerans gen. nov., comb. nov. and reclassification of B. encimensis Dastager et al., 2015 as a later heterotypic synonym of B. badius.

    PubMed

    Verma, Ashish; Pal, Yash; Khatri, Indu; Ojha, Anup Kumar; Gruber-Vodicka, Harald; Schumann, Peter; Dastager, Syed; Subramanian, Srikrishna; Mayilraj, Shanmugam; Krishnamurthi, Srinivasan

    2017-10-01

    Two novel Gram-staining positive, rod-shaped, moderately halotolerant, endospore forming bacterial strains 5.5LF 38TD and 5.5LF 48TD were isolated and taxonomically characterized from a landfill in Chandigarh, India. The analysis of 16S rRNA gene sequences of the strains confirmed their closest identity to Bacillus thermotolerans SgZ-8T with 99.9% sequence similarity. A comparative phylogenetic analysis of strains 5.5LF 38TD, 5.5LF 48TD and B. thermotolerans SgZ-8 T confirmed their separation into a novel genus with B. badius and genus Domibacillus as the closest phylogenetic relatives. The major fatty acids of the strains are iso-C 15:0 and iso-C 16:0 and MK-7 is the only quinone. The major polar lipids are diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The digital DNA-DNA hybridization (DDH) and ortho average nucleotide identity (ANI) values calculated through whole genome sequences indicated that the three strains showed low relatedness with their phylogenetic neighbours. Based on evidences from phylogenomic analyses and polyphasic taxonomic characterization we propose reclassification of the species B. thermotolerans into a novel genus named Quasibacillus thermotolerans gen. nov., comb. nov with the type strain SgZ-8 T (=CCTCC AB2012108 T =KACC 16706 T ). Further our analyses also revealed that B. encimensis SGD-V-25 T is a later heterotypic synonym of Bacillus badius DSM 23 T . Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Human-Specific Duplication and Mosaic Transcripts: The Recent Paralogous Structure of Chromosome 22

    PubMed Central

    Bailey, Jeffrey A. ; Yavor, Amy M. ; Viggiano, Luigi ; Misceo, Doriana ; Horvath, Juliann E. ; Archidiacono, Nicoletta ; Schwartz, Stuart ; Rocchi, Mariano ; Eichler, Evan E. 

    2002-01-01

    In recent decades, comparative chromosomal banding, chromosome painting, and gene-order studies have shown strong conservation of gross chromosome structure and gene order in mammals. However, findings from the human genome sequence suggest an unprecedented degree of recent (<35 million years ago) segmental duplication. This dynamism of segmental duplications has important implications in disease and evolution. Here we present a chromosome-wide view of the structure and evolution of the most highly homologous duplications (⩾1 kb and ⩾90%) on chromosome 22. Overall, 10.8% (3.7/33.8 Mb) of chromosome 22 is duplicated, with an average sequence identity of 95.4%. To organize the duplications into tractable units, intron-exon structure and well-defined duplication boundaries were used to define 78 duplicated modules (minimally shared evolutionary segments) with 157 copies on chromosome 22. Analysis of these modules provides evidence for the creation or modification of 11 novel transcripts. Comparative FISH analyses of human, chimpanzee, gorilla, orangutan, and macaque reveal qualitative and quantitative differences in the distribution of these duplications—consistent with their recent origin. Several duplications appear to be human specific, including a ∼400-kb duplication (99.4%–99.8% sequence identity) that transposed from chromosome 14 to the most proximal pericentromeric region of chromosome 22. Experimental and in silico data further support a pericentromeric gradient of duplications where the most recent duplications transpose adjacent to the centromere. Taken together, these data suggest that segmental duplications have been an ongoing process of primate genome evolution, contributing to recent gene innovation and the dynamic transformation of genome architecture within and among closely related species. PMID:11731936

  8. Stability Mechanisms of Laccase Isoforms using a Modified FoldX Protocol Applicable to Widely Different Proteins.

    PubMed

    Christensen, Niels J; Kepp, Kasper P

    2013-07-09

    A recent computational protocol that accurately predicts and rationalizes protein multisite mutant stabilities has been extended to handle widely different isoforms of laccases. We apply the protocol to four isoenzymes of Trametes versicolor laccase (TvL) with variable lengths (498-503 residues) and thermostability (Topt ∼ 45-80 °C) and with 67-77% sequence identity. The extended protocol uses (i) statistical averaging, (ii) a molecular-dynamics-validated "compromise" homology model to minimize bias that causes proteins close in sequence to a structural template to be too stable due to having the benefits of the better sampled template (typically from a crystal structure), (iii) correction for hysteresis that favors the input template to overdestabilize, and (iv) a preparative protocol to provide robust input sequences of equal length. The computed ΔΔG values are in good agreement with the major trends in experimental stabilities; that is, the approach may be applicable for fast estimates of the relative stabilities of proteins with as little as 70% identity, something that is currently extremely challenging. The computed stability changes associated with variations are Gaussian-distributed, in good agreement with experimental distributions of stability effects from mutation. The residues causing the differential stability of the four isoforms are consistent with a range of compiled laccase wild type data, suggesting that we may have identified general drivers of laccase stability. Several sites near Cu, notably 79, 241, and 245, or near substrate, mainly 265, are identified that contribute to stability-function trade-offs, of relevance to the search for new proficient and stable variants of these important industrial enzymes.

  9. Divergent nuclear 18S rDNA paralogs in a turkey coccidium, Eimeria meleagrimitis, complicate molecular systematics and identification.

    PubMed

    El-Sherry, Shiem; Ogedengbe, Mosun E; Hafeez, Mian A; Barta, John R

    2013-07-01

    Multiple 18S rDNA sequences were obtained from two single-oocyst-derived lines of each of Eimeria meleagrimitis and Eimeria adenoeides. After analysing the 15 new 18S rDNA sequences from two lines of E. meleagrimitis and 17 new sequences from two lines of E. adenoeides, there were clear indications that divergent, paralogous 18S rDNA copies existed within the nuclear genome of E. meleagrimitis. In contrast, mitochondrial cytochrome c oxidase subunit I (COI) partial sequences from all lines of a particular Eimeria sp. were identical and, in phylogenetic analyses, COI sequences clustered unambiguously in monophyletic and highly-supported clades specific to individual Eimeria sp. Phylogenetic analysis of the new 18S rDNA sequences from E. meleagrimitis showed that they formed two distinct clades: Type A with four new sequences; and Type B with nine new sequences; both Types A and B sequences were obtained from each of the single-oocyst-derived lines of E. meleagrimitis. Together these rDNA types formed a well-supported E. meleagrimitis clade. Types A and B 18S rDNA sequences from E. meleagrimitis had a mean sequence identity of only 97.4% whereas mean sequence identity within types was 99.1-99.3%. The observed intraspecific sequence divergence among E. meleagrimitis 18S rDNA sequence types was even higher (approximately 2.6%) than the interspecific sequence divergence present between some well-recognized species such as Eimeria tenella and Eimeria necatrix (1.1%). Our observations suggest that, unlike COI sequences, 18S rDNA sequences are not reliable molecular markers to be used alone for species identification with coccidia, although 18S rDNA sequences have clear utility for phylogenetic reconstruction of apicomplexan parasites at the genus and higher taxonomic ranks. Copyright © 2013. Published by Elsevier Ltd.

  10. Molecular analysis of the split cox1 gene from the Basidiomycota Agrocybe aegerita: relationship of its introns with homologous Ascomycota introns and divergence levels from common ancestral copies.

    PubMed

    Gonzalez, P; Barroso, G; Labarère, J

    1998-10-05

    The Basidiomycota Agrocybe aegerita (Aa) mitochondrial cox1 gene (6790 nucleotides), encoding a protein of 527aa (58377Da), is split by four large subgroup IB introns possessing site-specific endonucleases assumed to be involved in intron mobility. When compared to other fungal COX1 proteins, the Aa protein is closely related to the COX1 one of the Basidiomycota Schizophyllum commune (Sc). This clade reveals a relationship with the studied Ascomycota ones, with the exception of Schizosaccharomyces pombe (Sp) which ranges in an out-group position compared with both higher fungi divisions. When comparison is extended to other kingdoms, fungal COX1 sequences are found to be more related to algae and plant ones (more than 57.5% aa similarity) than to animal sequences (53.6% aa similarity), contrasting with the previously established close relationship between fungi and animals, based on comparisons of nuclear genes. The four Aa cox1 introns are homologous to Ascomycota or algae cox1 introns sharing the same location within the exonic sequences. The percentages of identity of the intronic nucleotide sequences suggest a possible acquisition by lateral transfers of ancestral copies or of their derived sequences. These identities extend over the whole intronic sequences, arguing in favor of a transfer of the complete intron rather than a transfer limited to the encoded ORF. The intron i4 shares 74% of identity, at the nucleotidic level, with the Podospora anserina (Pa) intron i14, and up to 90.5% of aa similarity between the encoded proteins, i.e. the highest values reported to date between introns of two phylogenetically distant species. This low divergence argues for a recent lateral transfer between the two species. On the contrary, the low sequence identities (below 36%) observed between Aa i1 and the homologous Sp i1 or Prototheca wickeramii (Pw) i1 suggest a long evolution time after the separation of these sequences. The introns i2 and i3 possessed intermediate percentages of identity with their homologous Ascomycota introns. This is the first report of the complete nucleotide sequence and molecular organization of a mitochondrial cox1 gene of any member of the Basidiomycota division.

  11. Bradyrhizobium tropiciagri sp. nov. and Bradyrhizobium embrapense sp. nov., nitrogen-fixing symbionts of tropical forage legumes.

    PubMed

    Delamuta, Jakeline Renata Marçon; Ribeiro, Renan Augusto; Ormeño-Orrillo, Ernesto; Parma, Marcia Maria; Melo, Itamar Soares; Martínez-Romero, Esperanza; Hungria, Mariangela

    2015-12-01

    Biological nitrogen fixation is a key process for agricultural production and environmental sustainability, but there are comparatively few studies of symbionts of tropical pasture legumes, as well as few described species of the genus Bradyrhizobium, although it is the predominant rhizobial genus in the tropics. A detailed polyphasic study was conducted with two strains of the genus Bradyrhizobium used in commercial inoculants for tropical pastures in Brazil, CNPSo 1112T, isolated from perennial soybean (Neonotonia wightii), and CNPSo 2833T, from desmodium (Desmodium heterocarpon). Based on 16S-rRNA gene phylogeny, both strains were grouped in the Bradyrhizobium elkanii superclade, but were not clearly clustered with any known species. Multilocus sequence analysis of three (glnII, gyrB and recA) and five (plus atpD and dnaK) housekeeping genes confirmed that the strains are positioned in two distinct clades. Comparison with intergenic transcribed spacer sequences of type strains of described species of the genus Bradyrhizobium showed similarity lower than 93.1 %, and differences were confirmed by BOX-PCR analysis. Nucleotide identity of three housekeeping genes with type strains of described species ranged from 88.1 to 96.2 %. Average nucleotide identity of genome sequences showed values below the threshold for distinct species of the genus Bradyrhizobium ( < 90.6 %), and the value between the two strains was also below this threshold (91.2 %). Analysis of nifH and nodC gene sequences positioned the two strains in a clade distinct from other species of the genus Bradyrhizobium. Morphophysiological, genotypic and genomic data supported the description of two novel species in the genus Bradyrhizobium, Bradyrhizobium tropiciagri sp. nov. (type strain CNPSo 1112T = SMS 303T = BR 1009T = SEMIA 6148T = LMG 28867T) and Bradyrhizobium embrapense sp. nov. (type strain CNPSo 2833T = CIAT 2372T = BR 2212T = SEMIA 6208T = U674T = LMG 2987).

  12. Genotypic and Functional Impact of HIV-1 Adaptation to Its Host Population during the North American Epidemic

    PubMed Central

    Carlson, Jonathan M.; Chan, Benjamin; Chopera, Denis R.; Brumme, Chanson J.; Markle, Tristan J.; Martin, Eric; Shahid, Aniqa; Anmole, Gursev; Mwimanzi, Philip; Nassab, Pauline; Penney, Kali A.; Rahman, Manal A.; Milloy, M.-J.; Schechter, Martin T.; Markowitz, Martin; Carrington, Mary; Walker, Bruce D.; Wagner, Theresa; Buchbinder, Susan; Fuchs, Jonathan; Koblin, Beryl; Mayer, Kenneth H.; Harrigan, P. Richard; Brockman, Mark A.; Poon, Art F. Y.; Brumme, Zabrina L.

    2014-01-01

    HLA-restricted immune escape mutations that persist following HIV transmission could gradually spread through the viral population, thereby compromising host antiviral immunity as the epidemic progresses. To assess the extent and phenotypic impact of this phenomenon in an immunogenetically diverse population, we genotypically and functionally compared linked HLA and HIV (Gag/Nef) sequences from 358 historic (1979–1989) and 382 modern (2000–2011) specimens from four key cities in the North American epidemic (New York, Boston, San Francisco, Vancouver). Inferred HIV phylogenies were star-like, with approximately two-fold greater mean pairwise distances in modern versus historic sequences. The reconstructed epidemic ancestral (founder) HIV sequence was essentially identical to the North American subtype B consensus. Consistent with gradual diversification of a “consensus-like” founder virus, the median “background” frequencies of individual HLA-associated polymorphisms in HIV (in individuals lacking the restricting HLA[s]) were ∼2-fold higher in modern versus historic HIV sequences, though these remained notably low overall (e.g. in Gag, medians were 3.7% in the 2000s versus 2.0% in the 1980s). HIV polymorphisms exhibiting the greatest relative spread were those restricted by protective HLAs. Despite these increases, when HIV sequences were analyzed as a whole, their total average burden of polymorphisms that were “pre-adapted” to the average host HLA profile was only ∼2% greater in modern versus historic eras. Furthermore, HLA-associated polymorphisms identified in historic HIV sequences were consistent with those detectable today, with none identified that could explain the few HIV codons where the inferred epidemic ancestor differed from the modern consensus. Results are therefore consistent with slow HIV adaptation to HLA, but at a rate unlikely to yield imminent negative implications for cellular immunity, at least in North America. Intriguingly, temporal changes in protein activity of patient-derived Nef (though not Gag) sequences were observed, suggesting functional implications of population-level HIV evolution on certain viral proteins. PMID:24762668

  13. Lessons for livestock genomics from genome and transcriptome sequencing in cattle and other mammals.

    PubMed

    Taylor, Jeremy F; Whitacre, Lynsey K; Hoff, Jesse L; Tizioto, Polyana C; Kim, JaeWoo; Decker, Jared E; Schnabel, Robert D

    2016-08-17

    Decreasing sequencing costs and development of new protocols for characterizing global methylation, gene expression patterns and regulatory regions have stimulated the generation of large livestock datasets. Here, we discuss experiences in the analysis of whole-genome and transcriptome sequence data. We analyzed whole-genome sequence (WGS) data from 132 individuals from five canid species (Canis familiaris, C. latrans, C. dingo, C. aureus and C. lupus) and 61 breeds, three bison (Bison bison), 64 water buffalo (Bubalus bubalis) and 297 bovines from 17 breeds. By individual, data vary in extent of reference genome depth of coverage from 4.9X to 64.0X. We have also analyzed RNA-seq data for 580 samples representing 159 Bos taurus and Rattus norvegicus animals and 98 tissues. By aligning reads to a reference assembly and calling variants, we assessed effects of average depth of coverage on the actual coverage and on the number of called variants. We examined the identity of unmapped reads by assembling them and querying produced contigs against the non-redundant nucleic acids database. By imputing high-density single nucleotide polymorphism data on 4010 US registered Angus animals to WGS using Run4 of the 1000 Bull Genomes Project and assessing the accuracy of imputation, we identified misassembled reference sequence regions. We estimate that a 24X depth of coverage is required to achieve 99.5 % coverage of the reference assembly and identify 95 % of the variants within an individual's genome. Genomes sequenced to low average coverage (e.g., <10X) may fail to cover 10 % of the reference genome and identify <75 % of variants. About 10 % of genomic DNA or transcriptome sequence reads fail to align to the reference assembly. These reads include loci missing from the reference assembly and misassembled genes and interesting symbionts, commensal and pathogenic organisms. Assembly errors and a lack of annotation of functional elements significantly limit the utility of the current draft livestock reference assemblies. The Functional Annotation of Animal Genomes initiative seeks to annotate functional elements, while a 70X Pac-Bio assembly for cow is underway and may result in a significantly improved reference assembly.

  14. Lactococcus petauri sp. nov., isolated from an abscess of a sugar glider

    PubMed Central

    Goodman, Laura B.; Lawton, Marie R.; Franklin-Guild, Rebecca J.; Anderson, Renee R.; Schaan, Lynn; Thachil, Anil J.; Wiedmann, Martin; Miller, Claire B.; Alcaine, Samuel D.; Kovac, Jasna

    2017-01-01

    A strain of lactic acid bacteria, designated 159469T, isolated from a facial abscess in a sugar glider, was characterized genetically and phenotypically. Cells of the strain were Gram-stain-positive, coccoid and catalase-negative. Morphological, physiological and phylogenetic data indicated that the isolate belongs to the genus Lactococcus. Strain 159469T was closely related to Lactococcus garvieae ATCC 43921T, showing 95.86 and 98.08 % sequence similarity in 16S rRNA gene and rpoB gene sequences, respectively. Furthermore, a pairwise average nucleotide identity blast (ANIb) value of 93.54 % and in silico DNA–DNA hybridization value of 50.7  % were determined for the genome of strain 159469T, when compared with the genome of the type strain of Lactococcus garvieae. Based on the data presented here, the isolate represents a novel species of the genus Lactococcus, for which the name Lactococcus petauri sp. nov. is proposed. The type strain is 159469T (=LMG 30040T=DSM 104842T). PMID:28945531

  15. Pectobacterium polaris sp. nov., isolated from potato (Solanum tuberosum).

    PubMed

    Dees, Merete Wiken; Lysøe, Erik; Rossmann, Simeon; Perminow, Juliana; Brurberg, May Bente

    2017-12-01

    The genus Pectobacterium, which belongs to the bacterial family Enterobacteriaceae, contains numerous species that cause soft rot diseases in a wide range of plants. The species Pectobacterium carotovorum is highly heterogeneous, indicating a need for re-evaluation and a better classification of the species. PacBio was used for sequencing of two soft-rot-causing bacterial strains (NIBIO1006 T and NIBIO1392), initially identified as P. carotovorumstrains by fatty acid analysis and sequencing of three housekeeping genes (dnaX, icdA and mdh). Their taxonomic relationship to other Pectobacterium species was determined and the distance from any described species within the genus Pectobacterium was less than 94 % average nucleotide identity (ANI). Based on ANI, phylogenetic data and genome-to-genome distance, strains NIBIO1006 T , NIBIO1392 and NCPPB3395 are suggested to represent a novel species of the genus Pectobacterium, for which the name Pectobacterium polaris sp. nov. is proposed. The type strain is NIBIO1006 T (=DSM 105255 T =NCPPB 4611 T ).

  16. Lactococcus petauri sp. nov., isolated from an abscess of a sugar glider.

    PubMed

    Goodman, Laura B; Lawton, Marie R; Franklin-Guild, Rebecca J; Anderson, Renee R; Schaan, Lynn; Thachil, Anil J; Wiedmann, Martin; Miller, Claire B; Alcaine, Samuel D; Kovac, Jasna

    2017-11-01

    A strain of lactic acid bacteria, designated 159469 T , isolated from a facial abscess in a sugar glider, was characterized genetically and phenotypically. Cells of the strain were Gram-stain-positive, coccoid and catalase-negative. Morphological, physiological and phylogenetic data indicated that the isolate belongs to the genus Lactococcus. Strain 159469 T was closely related to Lactococcus garvieae ATCC 43921 T , showing 95.86 and 98.08 % sequence similarity in 16S rRNA gene and rpoB gene sequences, respectively. Furthermore, a pairwise average nucleotide identity blast (ANIb) value of 93.54 % and in silico DNA-DNA hybridization value of 50.7  % were determined for the genome of strain 159469 T , when compared with the genome of the type strain of Lactococcus garvieae. Based on the data presented here, the isolate represents a novel species of the genus Lactococcus, for which the name Lactococcus petauri sp. nov. is proposed. The type strain is 159469 T (=LMG 30040 T =DSM 104842 T ).

  17. Analysis of Draft Genome Sequence of Pseudomonas sp. QTF5 Reveals Its Benzoic Acid Degradation Ability and Heavy Metal Tolerance

    PubMed Central

    Li, Yang; Ren, Yi

    2017-01-01

    Pseudomonas sp. QTF5 was isolated from the continuous permafrost near the bitumen layers in the Qiangtang basin of Qinghai-Tibetan Plateau in China (5,111 m above sea level). It is psychrotolerant and highly and widely tolerant to heavy metals and has the ability to metabolize benzoic acid and salicylic acid. To gain insight into the genetic basis for its adaptation, we performed whole genome sequencing and analyzed the resistant genes and metabolic pathways. Based on 120 published and annotated genomes representing 31 species in the genus Pseudomonas, in silico genomic DNA-DNA hybridization (<54%) and average nucleotide identity calculation (<94%) revealed that QTF5 is closest to Pseudomonas lini and should be classified into a novel species. This study provides the genetic basis to identify the genes linked to its specific mechanisms for adaptation to extreme environment and application of this microorganism in environmental conservation. PMID:29270429

  18. Paecilomyces niveus Stolk & Samson, 1971 (Ascomycota: Thermoascaceae) as a pathogen of Nasonovia ribisnigri (Mosley, 1841) (Hemiptera, Aphididae) in Brazil.

    PubMed

    Zawadneak, M A C; Pimentel, I C; Robl, D; Dalzoto, P; Vicente, V; Sosa-Gómez, D R; Porsani, M; Cuquel, F L

    2015-11-01

    Nasonovia ribisnigri is a key pest of lettuce (Lactuca sativa L.) in Brazil that requires alternative control methods to synthetic pesticides. We report, for the first time, the occurrence of Paecilomyces niveus as an entomopathogen of the aphid Nasonovia ribisnigri in Pinhais, Paraná, Brazil. Samples of mummified aphids were collected from lettuce crops. The fungus P. niveus (PaePR) was isolated from the insect bodies and identified by macro and micromorphology. The species was confirmed by sequencing Internal Transcribed Spacer (ITS) rDNA. We obtained a sequence of 528 bp (accession number HQ441751), which aligned with Byssochlamys nivea strains (100% identities). In a bioassay, 120 h after inoculation of N. ribisnigri with pathogenic P. niveus had an average mortality of 74%. The presence of P. niveus as a natural pathogen of N. ribisnigri in Brazil suggests that it may be possible to employ P. niveus to minimize the use of chemical insecticides.

  19. The genome sequence of pepper vein yellows virus (family Luteoviridae, genus Polerovirus).

    PubMed

    Murakami, Ritsuko; Nakashima, Nobuhiko; Hinomoto, Norihide; Kawano, Shinji; Toyosato, Tetsuya

    2011-05-01

    The complete genome of pepper vein yellows virus (PeVYV) was sequenced using random amplification of RNA samples isolated from vector insects (Aphis gossypii) that had been given access to PeVYV-infected plants. The PeVYV genome consisted of 6244 nucleotides and had a genomic organization characteristic of members of the genus Polerovirus. PeVYV had highest amino acid sequence identities in ORF0 to ORF3 (75.9 - 91.9%) with tobacco vein distorting polerovirus, with which it was only 25.1% identical in ORF5. These sequence comparisons and previously studied biological properties indicate that PeVYV is a distinctly different virus and belongs to a new species of the genus Polerovirus.

  20. Complete genome analysis of jasmine virus T from Jasminum sambac in China.

    PubMed

    Tang, Yajun; Gao, Fangluan; Yang, Zhen; Wu, Zujian; Yang, Liang

    2016-07-01

    The genome of a potyvirus (isolate JaVT_FZ) recovered from jasmine (Jasminum sambac L.) showing yellow ringspot symptoms in Fuzhou, China, was sequenced. JaVT_FZ is closely related to seven other potyviruses with completely sequenced genomes, with which it shares 66-70 % nucleotide and 52-56 % amino acid sequence identity. However, the coat protein (CP) gene shares 82-92 % nucleotide and 90-97 % amino acid sequence identity with those of two partially sequenced potyviruses, named jasmine potyvirus T (JaVT-jasmine) and jasmine yellow mosaic potyvirus (JaYMV-India), respectively. This suggests that JaVT_FZ, JaVT-jasmine and JaYMV-India should be regarded as members of a single potyvirus species, for which the name "Jasmine virus T" has priority.

  1. Selection of optimal oligonucleotide probes for microarrays usingmultiple criteria, global alignment and parameter estimation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xingyuan; He, Zhili; Zhou, Jizhong

    2005-10-30

    The oligonucleotide specificity for microarray hybridizationcan be predicted by its sequence identity to non-targets, continuousstretch to non-targets, and/or binding free energy to non-targets. Mostcurrently available programs only use one or two of these criteria, whichmay choose 'false' specific oligonucleotides or miss 'true' optimalprobes in a considerable proportion. We have developed a software tool,called CommOligo using new algorithms and all three criteria forselection of optimal oligonucleotide probes. A series of filters,including sequence identity, free energy, continuous stretch, GC content,self-annealing, distance to the 3'-untranslated region (3'-UTR) andmelting temperature (Tm), are used to check each possibleoligonucleotide. A sequence identity is calculated based onmore » gapped globalalignments. A traversal algorithm is used to generate alignments for freeenergy calculation. The optimal Tm interval is determined based on probecandidates that have passed all other filters. Final probes are pickedusing a combination of user-configurable piece-wise linear functions andan iterative process. The thresholds for identity, stretch and freeenergy filters are automatically determined from experimental data by anaccessory software tool, CommOligo_PE (CommOligo Parameter Estimator).The program was used to design probes for both whole-genome and highlyhomologous sequence data. CommOligo and CommOligo_PE are freely availableto academic users upon request.« less

  2. New Ehrlichia Species Closely Related to Ehrlichia chaffeensis Isolated from Ixodes ovatus Ticks in Japan

    PubMed Central

    Shibata, Shin-ichiro; Kawahara, Makoto; Rikihisa, Yasuko; Fujita, Hiromi; Watanabe, Yuriko; Suto, Chiharu; Ito, Tadahiko

    2000-01-01

    Seven Ehrlichia strains (six HF strains and one Anan strain) that were obtained from laboratory mice by intraperitoneally inoculating homogenates of adult Ixodes ovatus collected in Japan were characterized. 16S rRNA sequences of all six HF strains were identical, and the sequences were 99.7, 98.2, and 97.7% identical to those of Anan strain, Ehrlichia chaffeensis (human monocytic ehrlichiosis agent), and E. muris, respectively. Partial GroEL amino acid sequencing also revealed that the six HF strains had identical sequences, which were 99.0, 98.5, and 97.3% identical to those of E. chaffeensis, the Anan strain, and E. canis, respectively. All HF strains were lethal to mice at higher dosages and intraperitoneal inoculation, whereas the Anan or E. muris strain induced only mild clinical signs. Light and electron microscopy of moribund mice inoculated with one of the HF strains revealed severe liver necrosis and the presence of numerous ehrlichial inclusions (morulae) in various organs. The study revealed that members of E. canis genogroup are naturally present in Ixodes ticks. HF strains that can cause severe illness in immunocompetent laboratory mice would be valuable in studying the pathogenesis and the roles of both cellular and humoral immune responses in ehrlichiosis caused by E. canis genogroup. PMID:10747103

  3. Indigenous and introduced potyviruses of legumes and Passiflora spp. from Australia: biological properties and comparison of coat protein sequences

    USDA-ARS?s Scientific Manuscript database

    Coat protein sequences of 33 Potyvirus isolates from legume and Passiflora spp. were sequenced to determine the identity of infecting viruses. Phylogenetic analysis of the sequences revealed the presence of seven distinct virus species....

  4. Molecular cloning of two human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzymes that are identical with chlordecone reductase and bile-acid binder.

    PubMed Central

    Deyashiki, Y; Ogasawara, A; Nakayama, T; Nakanishi, M; Miyabe, Y; Sato, K; Hara, A

    1994-01-01

    Human liver contains two dihydrodiol dehydrogenases, DD2 and DD4, associated with 3 alpha-hydroxysteroid dehydrogenase activity. We have raised polyclonal antibodies that cross-reacted with the two enzymes and isolated two 1.2 kb cDNA clones (C9 and C11) for the two enzymes from a human liver cDNA library using the antibodies. The clones of C9 and C11 contained coding sequences corresponding to 306 and 321 amino acid residues respectively, but lacked 5'-coding regions around the initiation codon. Sequence analyses of several peptides obtained by enzymic and chemical cleavages of the two purified enzymes verified that the C9 and C11 clones encoded DD2 and DD4 respectively, and further indicated that the sequence of DD2 had at least additional 16 residues upward from the N-terminal sequence deduced from the cDNA. There was 82% amino acid sequence identity between the two enzymes, indicating that the enzymes are genetic isoenzymes. A computer-based comparison of the cDNAs of the isoenzymes with the DNA sequence database revealed that the nucleotide and amino acid sequences of DD2 and DD4 are virtually identical with those of human bile-acid binder and human chlordecone reductase cDNAs respectively. Images Figure 1 PMID:8172617

  5. Visualizing bacterial tRNA identity determinants and antideterminants using function logos and inverse function logos

    PubMed Central

    Freyhult, Eva; Moulton, Vincent; Ardell, David H.

    2006-01-01

    Sequence logos are stacked bar graphs that generalize the notion of consensus sequence. They employ entropy statistics very effectively to display variation in a structural alignment of sequences of a common function, while emphasizing its over-represented features. Yet sequence logos cannot display features that distinguish functional subclasses within a structurally related superfamily nor do they display under-represented features. We introduce two extensions to address these needs: function logos and inverse logos. Function logos display subfunctions that are over-represented among sequences carrying a specific feature. Inverse logos generalize both sequence logos and function logos by displaying under-represented, rather than over-represented, features or functions in structural alignments. To make inverse logos, a compositional inverse is applied to the feature or function frequency distributions before logo construction, where a compositional inverse is a mathematical transform that makes common features or functions rare and vice versa. We applied these methods to a database of structurally aligned bacterial tDNAs to create highly condensed, birds-eye views of potentially all so-called identity determinants and antideterminants that confer specific amino acid charging or initiator function on tRNAs in bacteria. We recovered both known and a few potentially novel identity elements. Function logos and inverse logos are useful tools for exploratory bioinformatic analysis of structure–function relationships in sequence families and superfamilies. PMID:16473848

  6. Polysaccharides from heterocyst and spore envelopes of a blue-green alga. [Anabaena cylindrica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardemil, L.; Wolk, C.P.

    The polysaccharides from the envelopes of heterocysts and spores of Anabaena cylindrica consist of repeating units containing 1 mannosyl and 3 glucosyl residues, all linked by ..beta..(1 ..-->.. 3) glucosidic bonds, with glucose, xylose, galactose, and mannose present in side branches. Degradation of the polysaccharides with specific glycosidases has permitted identification of the linkages to almost all of the branches. When the polysaccharides, from which all but two types of side branches had been cleaved, were digested with a ..beta..(1 ..-->.. 3) endoglucanase, glucose, a tri-, and a pentasaccharide were produced. The oligosaccharide products were identified. The backbones of themore » polysaccharides were sequenced from the reducing terminus by a modified Smith degradation. Analysis with NaB/sup 3/H/sub 4/ at each stage of the degradation showed that the backbones terminate in the sequence Man-Glc-Glc-Glc and are therefore presumed to have the structure (Man-Glc-Glc-Glc)/sub n/, and that they contain an average of from 128 to 150 sugar residues. From the information obtained, the repeating sequences of the original polysaccharides from the two types of differentiated cells of A. cylindrica could be largely deduced and appeared to be identical.« less

  7. Reassessment of the taxonomic position of Burkholderia andropogonis and description of Robbsia andropogonis gen. nov., comb. nov.

    PubMed

    Lopes-Santos, Lucilene; Castro, Daniel Bedo Assumpção; Ferreira-Tonin, Mariana; Corrêa, Daniele Bussioli Alves; Weir, Bevan Simon; Park, Duckchul; Ottoboni, Laura Maria Mariscal; Neto, Júlio Rodrigues; Destéfano, Suzete Aparecida Lanza

    2017-06-01

    The phylogenetic classification of the species Burkholderia andropogonis within the Burkholderia genus was reassessed using 16S rRNA gene phylogenetic analysis and multilocus sequence analysis (MLSA). Both phylogenetic trees revealed two main groups, named A and B, strongly supported by high bootstrap values (100%). Group A encompassed all of the Burkholderia species complex, whi.le Group B only comprised B. andropogonis species, with low percentage similarities with other species of the genus, from 92 to 95% for 16S rRNA gene sequences and 83% for conserved gene sequences. Average nucleotide identity (ANI), tetranucleotide signature frequency, and percentage of conserved proteins POCP analyses were also carried out, and in the three analyses B. andropogonis showed lower values when compared to the other Burkholderia species complex, near 71% for ANI, from 0.484 to 0.724 for tetranucleotide signature frequency, and around 50% for POCP, reinforcing the distance observed in the phylogenetic analyses. Our findings provide an important insight into the taxonomy of B. andropogonis. It is clear from the results that this bacterial species exhibits genotypic differences and represents a new genus described herein as Robbsia andropogonis gen. nov., comb. nov.

  8. A new genome of Acidithiobacillus thiooxidans provides insights into adaptation to a bioleaching environment.

    PubMed

    Travisany, Dante; Cortés, María Paz; Latorre, Mauricio; Di Genova, Alex; Budinich, Marko; Bobadilla-Fazzini, Roberto A; Parada, Pilar; González, Mauricio; Maass, Alejandro

    2014-11-01

    Acidithiobacillus thiooxidans is a sulfur oxidizing acidophilic bacterium found in many sulfur-rich environments. It is particularly interesting due to its role in bioleaching of sulphide minerals. In this work, we report the genome sequence of At. thiooxidans Licanantay, the first strain from a copper mine to be sequenced and currently used in bioleaching industrial processes. Through comparative genomic analysis with two other At. thiooxidans non-metal mining strains (ATCC 19377 and A01) we determined that these strains share a large core genome of 2109 coding sequences and a high average nucleotide identity over 98%. Nevertheless, the presence of 841 strain-specific genes (absent in other At. thiooxidans strains) suggests a particular adaptation of Licanantay to its specific biomining environment. Among this group, we highlight genes encoding for proteins involved in heavy metal tolerance, mineral cell attachment and cysteine biosynthesis. Several of these genes were located near genetic motility genes (e.g. transposases and integrases) in genomic regions of over 10 kbp absent in the other strains, suggesting the presence of genomic islands in the Licanantay genome probably produced by horizontal gene transfer in mining environments. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  9. Characterization, Genome Sequence, and Analysis of Escherichia Phage CICC 80001, a Bacteriophage Infecting an Efficient L-Aspartic Acid Producing Escherichia coli.

    PubMed

    Xu, Youqiang; Ma, Yuyue; Yao, Su; Jiang, Zengyan; Pei, Jiangsen; Cheng, Chi

    2016-03-01

    Escherichia phage CICC 80001 was isolated from the bacteriophage contaminated medium of an Escherichia coli strain HY-05C (CICC 11022S) which could produce L-aspartic acid. The phage had a head diameter of 45-50 nm and a tail of about 10 nm. The one-step growth curve showed a latent period of 10 min and a rise period of about 20 min. The average burst size was about 198 phage particles per infected cell. Tests were conducted on the plaques, multiplicity of infection, and host range. The genome of CICC 80001 was sequenced with a length of 38,810 bp, and annotated. The key proteins leading to host-cell lysis were phylogenetically analyzed. One protein belonged to class II holin, and the other two belonged to the endopeptidase family and N-acetylmuramoyl-L-alanine amidase family, respectively. The genome showed the sequence identity of 82.7% with that of Enterobacteria phage T7, and carried ten unique open reading frames. The bacteriophage resistant E. coli strain designated CICC 11021S was breeding and its L-aspartase activity was 84.4% of that of CICC 11022S.

  10. Gene Deletion in Barley Mediated by LTR-retrotransposon BARE

    PubMed Central

    Shang, Yi; Yang, Fei; Schulman, Alan H.; Zhu, Jinghuan; Jia, Yong; Wang, Junmei; Zhang, Xiao-Qi; Jia, Qiaojun; Hua, Wei; Yang, Jianming; Li, Chengdao

    2017-01-01

    A poly-row branched spike (prbs) barley mutant was obtained from soaking a two-rowed barley inflorescence in a solution of maize genomic DNA. Positional cloning and sequencing demonstrated that the prbs mutant resulted from a 28 kb deletion including the inflorescence architecture gene HvRA2. Sequence annotation revealed that the HvRA2 gene is flanked by two LTR (long terminal repeat) retrotransposons (BARE) sharing 89% sequence identity. A recombination between the integrase (IN) gene regions of the two BARE copies resulted in the formation of an intact BARE and loss of HvRA2. No maize DNA was detected in the recombination region although the flanking sequences of HvRA2 gene showed over 73% of sequence identity with repetitive sequences on 10 maize chromosomes. It is still unknown whether the interaction of retrotransposons between barley and maize has resulted in the recombination observed in the present study. PMID:28252053

  11. Radiolabeled Escherichia coli heat-stable enterotoxin analogs for in vivo imaging of colorectal cancer

    NASA Astrophysics Data System (ADS)

    Giblin, M. F.; Sieckman, G. L.; Owen, N. K.; Hoffman, T. J.; Forte, L. R.; Volkert, W. A.

    2005-12-01

    The human Escherichia coli heat-stable enterotoxin (STh, amino acid sequence N1SSNYCCELCCNPACTGCY19) binds specifically to the guanylate cyclase C (GC-C) receptor, which is present in high density on the apical surface of normal intestinal epithelial cells as well as on the surface of human colon cancer cells. In the current study, two STh analogs were synthesized and evaluated in vitro and in vivo. Both analogs shared identical 6-19 core sequences, and had N-terminal pendant DOTA moieties. The analogs differed in the identity of a 6 amino acid peptide sequence intervening between DOTA and the 6-19 core. In one analog, the peptide was an RGD-containing sequence found in human fibronectin (GRGDSP), while in the other this peptide sequence was randomly scrambled (GRDSGP). The results indicated that the presence of the human fibronectin sequence in the hybrid peptide did not affect tumor localization in vivo.

  12. Opsin cDNA sequences of a UV and green rhodopsin of the satyrine butterfly Bicyclus anynana.

    PubMed

    Vanhoutte, K J A; Eggen, B J L; Janssen, J J M; Stavenga, D G

    2002-11-01

    The cDNAs of an ultraviolet (UV) and long-wavelength (LW) (green) absorbing rhodopsin of the bush brown Bicyclus anynana were partially identified. The UV sequence, encoding 377 amino acids, is 76-79% identical to the UV sequences of the papilionids Papilio glaucus and Papilio xuthus and the moth Manduca sexta. A dendrogram derived from aligning the amino acid sequences reveals an equidistant position of Bicyclus between Papilio and Manduca. The sequence of the green opsin cDNA fragment, which encodes 242 amino acids, represents six of the seven transmembrane regions. At the amino acid level, this fragment is more than 80% identical to the corresponding LW opsin sequences of Dryas, Heliconius, Papilio (rhodopsin 2) and Manduca. Whereas three LW absorbing rhodopsins were identified in the papilionid butterflies, only one green opsin was found in B. anynana.

  13. Characterization of apple stem grooving virus and apple chlorotic leaf spot virus identified in a crab apple tree.

    PubMed

    Li, Yongqiang; Deng, Congliang; Bian, Yong; Zhao, Xiaoli; Zhou, Qi

    2017-04-01

    Apple stem grooving virus (ASGV), apple chlorotic leaf spot virus (ACLSV), and prunus necrotic ringspot virus (PNRSV) were identified in a crab apple tree by small RNA deep sequencing. The complete genome sequence of ACLSV isolate BJ (ACLSV-BJ) was 7554 nucleotides and shared 67.0%-83.0% nucleotide sequence identity with other ACLSV isolates. A phylogenetic tree based on the complete genome sequence of all available ACLSV isolates showed that ACLSV-BJ clustered with the isolates SY01 from hawthorn, MO5 from apple, and JB, KMS and YH from pear. The complete nucleotide sequence of ASGV-BJ was 6509 nucleotides (nt) long and shared 78.2%-80.7% nucleotide sequence identity with other isolates. ASGV-BJ and the isolate ASGV_kfp clustered together in the phylogenetic tree as an independent clade. Recombination analysis showed that isolate ASGV-BJ was a naturally occurring recombinant.

  14. Common Amino Acid Subsequences in a Universal Proteome—Relevance for Food Science

    PubMed Central

    Minkiewicz, Piotr; Darewicz, Małgorzata; Iwaniak, Anna; Sokołowska, Jolanta; Starowicz, Piotr; Bucholska, Justyna; Hrynkiewicz, Monika

    2015-01-01

    A common subsequence is a fragment of the amino acid chain that occurs in more than one protein. Common subsequences may be an object of interest for food scientists as biologically active peptides, epitopes, and/or protein markers that are used in comparative proteomics. An individual bioactive fragment, in particular the shortest fragment containing two or three amino acid residues, may occur in many protein sequences. An individual linear epitope may also be present in multiple sequences of precursor proteins. Although recent recommendations for prediction of allergenicity and cross-reactivity include not only sequence identity, but also similarities in secondary and tertiary structures surrounding the common fragment, local sequence identity may be used to screen protein sequence databases for potential allergens in silico. The main weakness of the screening process is that it overlooks allergens and cross-reactivity cases without identical fragments corresponding to linear epitopes. A single peptide may also serve as a marker of a group of allergens that belong to the same family and, possibly, reveal cross-reactivity. This review article discusses the benefits for food scientists that follow from the common subsequences concept. PMID:26340620

  15. Novel Detection of Coxiella spp., Theileria luwenshuni, and T. ovis Endosymbionts in Deer Keds (Lipoptena fortisetosa).

    PubMed

    Lee, Seung-Hun; Kim, Kyoo-Tae; Kwon, Oh-Deog; Ock, Younsung; Kim, Taeil; Choi, Donghag; Kwak, Dongmi

    2016-01-01

    We describe for the first time the detection of Coxiella-like bacteria (CLB), Theileria luwenshuni, and T. ovis endosymbionts in blood-sucking deer keds. Eight deer keds attached to a Korean water deer were identified as Lipoptena fortisetosa (Diptera: Hippoboscidae) by morphological and genetic analyses. Among the endosymbionts assessed, CLB, Theileria luwenshuni, and T. ovis were identified in L. fortisetosa by PCR and nucleotide sequencing. Based on phylogeny, CLB 16S rRNA sequences were classified into clade B, sharing 99.4% identity with CLB from Haemaphysalis longicornis in South Korea. Although the virulence of CLB to vertebrates is still controversial, several studies have reported clinical symptoms in birds due to CLB infections. The 18S rRNA sequences of T. luwenshuni and T. ovis in this study were 98.8-100% identical to those in GenBank, and all of the obtained sequences of T. ovis and T. luwenshuni in this study were 100% identical to each other, respectively. Although further studies are required to positively confirm L. fortisetosa as a biological vector of these pathogens, strong genetic relationships among sequences from this and previous studies suggest potential transmission among mammalian hosts by ticks and keds.

  16. Complete genome sequence of a new begomovirus associated with yellow mosaic disease of Hemidesmus indicus in India.

    PubMed

    Reddy, M Sreekanth; Kanakala, S; Srinivas, K P; Hema, M; Malathi, V G; Sreenivasulu, P

    2014-05-01

    The complete DNA A genome of a virus isolate associated with yellow mosaic disease of a medicinal plant, Hemidesmus indicus, from India was cloned and sequenced. The length of DNA A was 2825 nucleotides, 35 nucleotides longer than the unit genome of monopartite begomoviruses. Comparison of the nucleotide sequence of DNA A of the virus isolate with those of other begomoviruses showed maximum sequence identity of 69 % to DNA A of ageratum yellow vein China virus (AYVCNV; AJ558120) and 68 % with tomato yellow leaf curl virus- LBa4 (TYLCV; EF185318), and it formed a distinct clade in phylogenetic analysis. The genome organization of the present virus isolate was found to be similar to that of Old World monopartite begomoviruses. The genome was considered to be monopartite, because association of DNA B and β satellite DNA components was not detected. Based on its sequence identity (<70 %) to all other begomoviruses known to date and ICTV (International Committee on Taxonomy of Viruses) species demarcating criteria (<89 % identity), it is considered a member of a novel begomovirus species, and the tentative name "Hemidesmus yellow mosaic virus" (HeYMV) is proposed.

  17. Phylogenetic Analysis of Theileria annulata Infected Cell Line S15 Iran Vaccine Strain.

    PubMed

    Habibi, Gh

    2012-01-01

    Bovine theileriosis results from infection with obligate intracellular protozoa of the genus Theileria. The phylogenetic relationships between two isolates of Theileria annulata, and 36 Theileria spp., as well as 6 outgroup including Babesia spp. and coccidian protozoa were analyzed using the 18S rRNA gene sequence. The target DNA segment was amplified by PCR. The PCR product was used for direct sequencing. The length of the 18S rRNA gene of all Theileria spp. involved in this study was around 1,400 bp. A phylogenetic tree was inferred based on the 18S rRNA gene sequence of the Iran and Iraq isolates, and other species of Theileria available in GenBank. In the constructed tree, Theileria annulata (Iran vaccine strain) was closely related to other T. annulata from Europe, Asia, as well as T. lestoquardi, T. parva and T. taurotragi all in one clade. Phylogenetic analyses based on small subunit ribosomal RNA gene suggested that the percent identity of the sequence of Iran vaccine strain was completely the same as Iraq sequence (100% identical), but the similarity of Iran vaccine strain with other T. annulata reported from China, Spain and Italy determined the 97.9 to 99.9% identity.

  18. Cloning of an avilamycin biosynthetic gene cluster from Streptomyces viridochromogenes Tü57.

    PubMed Central

    Gaisser, S; Trefzer, A; Stockert, S; Kirschning, A; Bechthold, A

    1997-01-01

    A 65-kb region of DNA from Streptomyces viridochromogenes Tü57, containing genes encoding proteins involved in the biosynthesis of avilamycins, was isolated. The DNA sequence of a 6.4-kb fragment from this region revealed four open reading frames (ORF1 to ORF4), three of which are fully contained within the sequenced fragment. The deduced amino acid sequence of AviM, encoded by ORF2, shows 37% identity to a 6-methylsalicylic acid synthase from Penicillium patulum. Cultures of S. lividans TK24 and S. coelicolor CH999 containing plasmids with ORF2 on a 5.5-kb PstI fragment were able to produce orsellinic acid, an unreduced version of 6-methylsalicylic acid. The amino acid sequence encoded by ORF3 (AviD) is 62% identical to that of StrD, a dTDP-glucose synthase from S. griseus. The deduced amino acid sequence of AviE, encoded by ORF4, shows 55% identity to a dTDP-glucose dehydratase (StrE) from S. griseus. Gene insertional inactivation experiments of aviE abolished avilamycin production, indicating the involvement of aviE in the biosynthesis of avilamycins. PMID:9335272

  19. Comparative genomic sequence analysis of novel Helicoverpa armigera nucleopolyhedrovirus (NPV) isolated from Kenya and three other previously sequenced Helicoverpa spp. NPVs.

    PubMed

    Ogembo, Javier Gordon; Caoili, Barbara L; Shikata, Masamitsu; Chaeychomsri, Sudawan; Kobayashi, Michihiro; Ikeda, Motoko

    2009-10-01

    A newly cloned Helicoverpa armigera nucleopolyhedrovirus (HearNPV) from Kenya, HearNPV-NNg1, has a higher insecticidal activity than HearNPV-G4, which also exhibits lower insecticidal activity than HearNPV-C1. In the search for genes and/or nucleotide sequences that might be involved in the observed virulence differences among Helicoverpa spp. NPVs, the entire genome of NNg1 was sequenced and compared with previously sequenced genomes of G4, C1 and Helicoverpa zea single-nucleocapsid NPV (Hz). The NNg1 genome was 132,425 bp in length, with a total of 143 putative open reading frames (ORFs), and shared high levels of overall amino acid and nucleotide sequence identities with G4, C1 and Hz. Three NNg1 ORFs, ORF5, ORF100 and ORF124, which were shared with C1, were absent in G4 and Hz, while NNg1 and C1 were missing a homologue of G4/Hz ORF5. Another three ORFs, ORF60 (bro-b), ORF119 and ORF120, and one direct repeat sequence (dr) were unique to NNg1. Relative to the overall nucleotide sequence identity, lower sequence identities were observed between NNg1 hrs and the homologous hrs in the other three Helicoverpa spp. NPVs, despite containing the same number of hrs located at essentially the same positions on the genomes. Differences were also observed between NNg1 and each of the other three Helicoverpa spp. NPVs in the diversity of bro genes encoded on the genomes. These results indicate several putative genes and nucleotide sequences that may be responsible for the virulence differences observed among Helicoverpa spp., yet the specific genes and/or nucleotide sequences responsible have not been identified.

  20. Detection and molecular characterization of Babesia, Theileria, and Hepatozoon species in hard ticks collected from Kagoshima, the southern region in Japan.

    PubMed

    Masatani, Tatsunori; Hayashi, Kei; Andoh, Masako; Tateno, Morihiro; Endo, Yasuyuki; Asada, Masahito; Kusakisako, Kodai; Tanaka, Tetsuya; Gokuden, Mutsuyo; Hozumi, Nodoka; Nakadohzono, Fumiko; Matsuo, Tomohide

    2017-06-01

    To reveal the distribution of tick-borne parasites, we established a novel nested polymerase chain reaction (PCR) system to detect the most common agents of tick-borne parasitic diseases, namely Babesia, Theileria, and Hepatozoon parasites. We collected host-seeking or animal-feeding ticks in Kagoshima Prefecture, the southernmost region of Kyusyu Island in southwestern Japan. Twenty of the total of 776 tick samples displayed a specific band of the appropriate size (approximately 1.4-1.6kbp) for the 18S rRNA genes in the novel nested PCR (20/776: 2.58%). These PCR products have individual sequences of Babesia spp. (from 8 ticks), Theileria spp. (from 9 ticks: one tick sample including at least two Theileria spp. sequences), and Hepatozoon spp. (from 3 ticks). Phylogenetic analyses revealed that these sequences were close to those of undescribed Babesia spp. detected in feral raccoons in Japan (5 sequences; 3 sequences being identical), Babesia gibsoni-like parasites detected in pigs in China (3 sequences; all sequences being identical), Theileria spp. detected in sika deer in Japan and China (10 sequences; 2 sequences being identical), Hepatozoon canis (one sequence), and Hepatozoon spp. detected in Japanese martens in Japan (two sequences). In summary, we showed that various tick-borne parasites exist in Kagoshima, the southern region in Japan by using the novel nested PCR system. These including undescribed species such as Babesia gibsoni-like parasites previously detected in pigs in China. Importantly, our results revealed new combinations of ticks and protozoan parasites in southern Japan. The results of this study will aid in the recognition of potential parasitic animal diseases caused by tick-borne parasites. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Taxonomic evaluation of Streptomyces albus and related species using multilocus sequence analysis and proposals to emend the description of Streptomyces albus and describe Streptomyces pathocidini sp. nov.

    PubMed Central

    Doroghazi, J. R.; Ju, K.-S.; Metcalf, W. W.

    2014-01-01

    In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811T forms a cluster with five other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these other species, including Streptomyces almquistii NRRL B-1685T, Streptomyces flocculus NRRL B-2465T, Streptomyces gibsonii NRRL B-1335T and Streptomyces rangoonensis NRRL B-12378T are quite similar. This cluster is of particular taxonomic interest because Streptomyces albus is the type species of the genus Streptomyces. The related strains were subjected to multilocus sequence analysis (MLSA) utilizing partial sequences of the housekeeping genes atpD, gyrB, recA, rpoB and trpB and confirmation of previously reported phenotypic characteristics. The five strains formed a coherent cluster supported by a 100 % bootstrap value in phylogenetic trees generated from sequence alignments prepared by concatenating the sequences of the housekeeping genes, and identical tree topology was observed using various different tree-making algorithms. Moreover, all but one strain, S. flocculus NRRL B-2465T, exhibited identical sequences for all of the five housekeeping gene loci sequenced, but NRRL B-2465T still exhibited an MLSA evolutionary distance of 0.005 from the other strains, a value that is lower than the 0.007 MLSA evolutionary distance threshold proposed for species-level relatedness. These data support a proposal to reclassify S. almquistii, S. flocculus, S. gibsonii and S. rangoonensis as later heterotypic synonyms of S. albus with NRRL B-1811T as the type strain. The MLSA sequence database also demonstrated utility for quickly and conclusively confirming that numerous strains within the ARS Culture Collection had been previously misidentified as subspecies of S. albus and that Streptomyces albus subsp. pathocidicus should be redescribed as a novel species, Streptomyces pathocidini sp. nov., with the type strain NRRL B-24287T. PMID:24277863

  2. Emergence of patterns in random processes

    NASA Astrophysics Data System (ADS)

    Newman, William I.; Turcotte, Donald L.; Malamud, Bruce D.

    2012-08-01

    Sixty years ago, it was observed that any independent and identically distributed (i.i.d.) random variable would produce a pattern of peak-to-peak sequences with, on average, three events per sequence. This outcome was employed to show that randomness could yield, as a null hypothesis for animal populations, an explanation for their apparent 3-year cycles. We show how we can explicitly obtain a universal distribution of the lengths of peak-to-peak sequences in time series and that this can be employed for long data sets as a test of their i.i.d. character. We illustrate the validity of our analysis utilizing the peak-to-peak statistics of a Gaussian white noise. We also consider the nearest-neighbor cluster statistics of point processes in time. If the time intervals are random, we show that cluster size statistics are identical to the peak-to-peak sequence statistics of time series. In order to study the influence of correlations in a time series, we determine the peak-to-peak sequence statistics for the Langevin equation of kinetic theory leading to Brownian motion. To test our methodology, we consider a variety of applications. Using a global catalog of earthquakes, we obtain the peak-to-peak statistics of earthquake magnitudes and the nearest neighbor interoccurrence time statistics. In both cases, we find good agreement with the i.i.d. theory. We also consider the interval statistics of the Old Faithful geyser in Yellowstone National Park. In this case, we find a significant deviation from the i.i.d. theory which we attribute to antipersistence. We consider the interval statistics using the AL index of geomagnetic substorms. We again find a significant deviation from i.i.d. behavior that we attribute to mild persistence. Finally, we examine the behavior of Standard and Poor's 500 stock index's daily returns from 1928-2011 and show that, while it is close to being i.i.d., there is, again, significant persistence. We expect that there will be many other applications of our methodology both to interoccurrence statistics and to time series.

  3. Bean common mosaic virus isolates causing different symptoms in asparagus bean in China differ greatly in the 5'-parts of their genomes.

    PubMed

    Zheng, Hongying; Chen, Jiong; Chen, Jianping; Adams, Michael J; Hou, Mingsheng

    2002-06-01

    Potyvirus isolates from asparagus bean ( Vigna sesquipedalis) plants in Zhejiang province, China, caused either rugose and vein banding mosaic symptoms (isolate R) or severe yellowing (isolate Y) in this host, but were otherwise similar in host range. Both isolates were completely sequenced and shown to be isolates of Bean common mosaic virus (BCMV). The complete sequences were 9992 (R) or 10062 (Y) nucleotides long and shared 91.7% identical nucleotides (93.2% identical amino acids) in their genomes and were more distantly related to the BCMV-Peanut stripe virus sequence (PStV). The isolates were much less similar to one another in the 5'-UTR and the N-terminal region of the P1 protein. In the P1, isolate Y was closer to PStV (76.1% identical amino acids) than to isolate R (64.8%). Phylogenetic analyses of the coat protein region showed that the new isolates grouped with other isolates from Vigna spp., forming the blackeye cowpea mosaic strain subgroup of BCMV with 94-98% nucleotides (96-99% amino acids) identical to one another and about 90% identity to other BCMV isolates. Other significant subgroupings amongst published BCMV isolates were detected.

  4. Deep Sequencing Analysis of Apple Infecting Viruses in Korea

    PubMed Central

    Cho, In-Sook; Igori, Davaajargal; Lim, Seungmo; Choi, Gug-Seoun; Hammond, John; Lim, Hyoun-Sub; Moon, Jae Sun

    2016-01-01

    Deep sequencing has generated 52 contigs derived from five viruses; Apple chlorotic leaf spot virus (ACLSV), Apple stem grooving virus (ASGV), Apple stem pitting virus (ASPV), Apple green crinkle associated virus (AGCaV), and Apricot latent virus (ApLV) were identified from eight apple samples showing small leaves and/or growth retardation. Nucleotide (nt) sequence identity of the assembled contigs was from 68% to 99% compared to the reference sequences of the five respective viral genomes. Sequences of ASPV and ASGV were the most abundantly represented by the 52 contigs assembled. The presence of the five viruses in the samples was confirmed by RT-PCR using specific primers based on the sequences of each assembled contig. All five viruses were detected in three of the samples, whereas all samples had mixed infections with at least two viruses. The most frequently detected virus was ASPV, followed by ASGV, ApLV, ACLSV, and AGCaV which were withal found in mixed infections in the tested samples. AGCaV was identified in assembled contigs ID 1012480 and 93549, which showed 82% and 78% nt sequence identity with ORF1 of AGCaV isolate Aurora-1. ApLV was identified in three assembled contigs, ID 65587, 1802365, and 116777, which showed 77%, 78%, and 76% nt sequence identity respectively with ORF1 of ApLV isolate LA2. Deep sequencing assay was shown to be a valuable and powerful tool for detection and identification of known and unknown virome in infected apple trees, here identifying ApLV and AGCaV in commercial orchards in Korea for the first time. PMID:27721694

  5. Large-Scale Concatenation cDNA Sequencing

    PubMed Central

    Yu, Wei; Andersson, Björn; Worley, Kim C.; Muzny, Donna M.; Ding, Yan; Liu, Wen; Ricafrente, Jennifer Y.; Wentland, Meredith A.; Lennon, Greg; Gibbs, Richard A.

    1997-01-01

    A total of 100 kb of DNA derived from 69 individual human brain cDNA clones of 0.7–2.0 kb were sequenced by concatenated cDNA sequencing (CCS), whereby multiple individual DNA fragments are sequenced simultaneously in a single shotgun library. The method yielded accurate sequences and a similar efficiency compared with other shotgun libraries constructed from single DNA fragments (>20 kb). Computer analyses were carried out on 65 cDNA clone sequences and their corresponding end sequences to examine both nucleic acid and amino acid sequence similarities in the databases. Thirty-seven clones revealed no DNA database matches, 12 clones generated exact matches (≥98% identity), and 16 clones generated nonexact matches (57%–97% identity) to either known human or other species genes. Of those 28 matched clones, 8 had corresponding end sequences that failed to identify similarities. In a protein similarity search, 27 clone sequences displayed significant matches, whereas only 20 of the end sequences had matches to known protein sequences. Our data indicate that full-length cDNA insert sequences provide significantly more nucleic acid and protein sequence similarity matches than expressed sequence tags (ESTs) for database searching. [All 65 cDNA clone sequences described in this paper have been submitted to the GenBank data library under accession nos. U79240–U79304.] PMID:9110174

  6. Sequence and RT-PCR expression analysis of two peroxidases from Arabidopsis thaliana belonging to a novel evolutionary branch of plant peroxidases.

    PubMed

    Kjaersgård, I V; Jespersen, H M; Rasmussen, S K; Welinder, K G

    1997-03-01

    cDNA clones encoding two new Arabidopsis thaliana peroxidases, ATP 1a and ATP 2a, have been identified by searching the Arabidopsis database of expressed sequence tags (dbEST). They represent a novel branch of hitherto uncharacterized plant peroxidases which is only 35% identical in amino acid sequence to the well characterized group of basic plant peroxidases represented by the horseradish (Armoracia rusticana) isoperoxidases HRP C, HRP E5 and the similar Arabidopsis isoperoxidases ATP Ca, ATP Cb, and ATP Ea. However ATP 1a is 87% identical in amino acid sequence to a peroxidase encoded by an mRNA isolated from cotton (Gossypium hirsutum). As cotton and Arabidopsis belong to rather diverse families (Malvaceae and Crucifereae, respectively), in contrast with Arabidopsis and horseradish (both Crucifereae), the high degree of sequence identity indicates that this novel type of peroxidase, albeit of unknown function, is likely to be widespread in plant species. The atp 1 and atp 2 types of cDNA sequences were the most redundant among the 28 different isoperoxidases identified among about 200 peroxidase encoding ESTs. Interestingly, 8 out of totally 38 EST sequences coding for ATP 1 showed three identical nucleotide substitutions. This variant form is designated ATP 1b. Similarly, six out of totally 16 EST sequences coding for ATP 2 showed a number of deletions and nucleotide changes. This variant form is designated ATP 2b. The selected EST clones are full-length and contain coding regions of 993 nucleotides for atp 1a, and 984 nucleotides for atp 2a. These regions show 61% DNA sequence identity. The predicted mature proteins ATP 1a, and ATP 2a are 57% identical in sequence and contain the structurally and functionally important residues, characteristic of the plant peroxidase superfamily. However, they do show two differences of importance to peroxidase catalysis: (1) the asparagine residue linked with the active site distal histidine via hydrogen bonding is absent; (2) an N-glycosylation site is located right at the entrance to the heme channel. The reverse transcriptase polymerase chain reaction (RT-PCR) was used to identify mRNAs coding for ATP 1a/b and ATP 2a/b in germinating seeds, seedlings, roots, leaves, stems, flowers and cell suspension culture using elongation factor 1alpha (EF-1alpha) for the first time as a positive control. Both mRNAs were transcribed at levels comparable to EF-1alpha in all plant tissues investigated which were more than two days old, and in cell suspension culture. In addition, the mRNA coding for ATP 1a/b was found in two day old germinating seeds. The abundant transcription of ATP 1a/b and ATP 2a/b is in line with their many entries in dbEST, and indicates essential roles for these novel peroxidases.

  7. Otitis in a cat associated with Corynebacterium provencense.

    PubMed

    Kittl, Sonja; Brodard, Isabelle; Rychener, Lorenz; Jores, Jörg; Roosje, Petra; Gobeli Brawand, Stefanie

    2018-06-25

    The role of corynebacteria in canine and feline otitis has not been investigated in detail; however, members of this genus are increasingly recognized as pathogens of otitis in both human and veterinary medicine. Here we report the first case of feline otitis associated with the recently described species Corynebacterium provencense. A seven-month old cat presented with a head tilt and ataxia was diagnosed with peripheral vestibular syndrome associated with an otitis media/interna. This took place 6 weeks after resection of a polyp, having initially shown a full recovery with topical ofloxacin and glucocorticoid treatment. Bacteriology of an ear swab yielded a pure culture of corynebacteria, which could not be identified at the species level using routine methods. However, the 16S rRNA gene sequence was 100% identical to the recently published novel corynebacterium species, Corynebacterium provencense. Whole genome sequencing of the cat isolate and calculation of average nucleotide identity (99.1%) confirmed this finding. The cat isolate was found to contain additional presumptive iron acquisition genes that are likely to encode virulence factors. Furthermore, the strain tested resistant to clindamycin, penicillin and ciprofloxacin. The cat was subsequently treated with chloramphenicol, which lead to clinical improvement. Corynebacteria from otitis cases are not routinely identified at the species level and not tested for antimicrobial susceptibility in veterinary laboratories, as they are not considered major pathogens. This may lead to underreporting of this genus or animals being treated with inappropriate antimicrobials since corynebacteria are often resistant to multiple drugs.

  8. Anaerobic carbon monoxide metabolism by Pleomorphomonas carboxyditropha sp. nov., a new mesophilic hydrogenogenic carboxydotroph.

    PubMed

    Esquivel-Elizondo, Sofia; Maldonado, Juan; Krajmalnik-Brown, Rosa

    2018-06-01

    Carbon monoxide (CO)-metabolism and phenotypic and phylogenetic characterization of a novel anaerobic, mesophilic and hydrogenogenic carboxydotroph are reported. Strain SVCO-16 was isolated from anaerobic sludge and grows autotrophically and mixotrophically with CO. The genes cooS and cooF, coding for a CO dehydrogenase complex, and genes similar to hycE2, encoding a CO-induced hydrogenase, were present in its genome. The isolate produces H2 and CO2 from CO, and acetate and formate from organic substrates. Based on the 16S rRNA sequence, it is an Alphaproteobacterium most closely related to the genus Pleomorphomonas (98.9%-99.2% sequence identity). Comparison with other previously characterized Pleomorphomonas showed that P. diazotrophica and P. oryzae do not metabolize CO, and P. diazotrophica does not grow anaerobically with organic substrates. Average nucleotide identity values between strain SVCO-16 and P. diazotrophica, P. oryzae or P. koreensis were 86.66 ± 0.21%. These values are below the boundary to define species (95%-96%). Digital DNA-DNA hybridization estimates between strain SVCO-16 and reference strains were also below the 70% threshold for species delineation: 29.1%-34.5%. Based on the differences in CO metabolism, genome analyses and cellular fatty acid composition, the isolate should be classified into the genus Pleomorphomonas as a representative of a novel species, Pleomorphomonas carboxyditropha. The type strain of Pleomorphomonas carboxyditropha is SVCO-16T (strain deposit numbers, DSM 106132T and TSD-119T).

  9. Complete genome sequence of the first human parechovirus type 3 isolated in Taiwan.

    PubMed

    Chang, Jenn-Tzong; Yang, Chih-Shiang; Chen, Bao-Chen; Chen, Yao-Shen; Chang, Tsung-Hsien

    2017-11-01

    The first human parechovirus 3 (HPeV3 VGHKS-2007) in Taiwan was identified from a clinical specimen from a male infant. The entire genome of the HPeV3 isolate was sequenced and compared to known HPeV3 sequences. Genome alignment data showed that HPeV3 VGHKS-2007 shares the highest nucleotide identity, 99%, with the Japanese strain of HPeV3 1361K-162589-Yamagata-2008. All HPeV3 isolates possess at least 97% amino acid identity. The analysis of the genome sequence of HPeV3 VGHKS-2007 will facilitate future investigations of the epidemiology and pathogenicity of HPeV3 infection. Copyright © 2017. Published by Elsevier Taiwan LLC.

  10. Genetic variation in potential Giardia vaccine candidates cyst wall protein 2 and α1-giardin.

    PubMed

    Radunovic, Matej; Klotz, Christian; Saghaug, Christina Skår; Brattbakk, Hans-Richard; Aebischer, Toni; Langeland, Nina; Hanevik, Kurt

    2017-08-01

    Giardia is a prevalent intestinal parasitic infection. The trophozoite structural protein a1-giardin (a1-g) and the cyst protein cyst wall protein 2 (CWP2) have shown promise as Giardia vaccine antigen candidates in murine models. The present study assesses the genetic diversity of a1-g and CWP2 between and within assemblages A and B in human clinical isolates. a1-g and CWP2 sequences were acquired from 15 Norwegian isolates by PCR amplification and 20 sequences from German cultured isolates by whole genome sequencing. Sequences were aligned to reference genomes from assemblage A2 and B to identify genetic variance. Genetic diversity was found between assemblage A and B reference sequences for both a1-g (90.8% nucleotide identity) and CWP2 (82.5% nucleotide identity). However, for a1-g, this translated into only 3 amino acid (aa) substitutions, while for CWP2 there were 41 aa substitutions, and also one aa deletion. Genetic diversity within assemblage B was larger; nucleotide identity 92.0% for a1-g and 94.3% for CWP2, than within assemblage A (nucleotide identity 99.0% for a1-g and 99.7% for CWP2). For CWP2, the diversity on both nucleotide and protein level was higher in the C-terminal end. Predicted antigenic epitopes were not affected for a1-g, but partially for CWP2. Despite genetic diversity in a1-g, we found aa sequence, characteristics, and antigenicity to be well preserved. CWP2 showed more aa variance and potential antigenic differences. Several CWP2 antigens might be necessary in a future Giardia vaccine to provide cross protection against both Giardia assemblages infecting humans.

  11. Complete nucleotide sequence and genome structure of a Japanese isolate of hibiscus latent Fort Pierce virus, a unique tobamovirus that contains an internal poly(A) region in its 3' end.

    PubMed

    Yoshida, Tetsuya; Kitazawa, Yugo; Komatsu, Ken; Neriya, Yutaro; Ishikawa, Kazuya; Fujita, Naoko; Hashimoto, Masayoshi; Maejima, Kensaku; Yamaji, Yasuyuki; Namba, Shigetou

    2014-11-01

    In this study, we detected a Japanese isolate of hibiscus latent Fort Pierce virus (HLFPV-J), a member of the genus Tobamovirus, in a hibiscus plant in Japan and determined the complete sequence and organization of its genome. HLFPV-J has four open reading frames (ORFs), each of which shares more than 98 % nucleotide sequence identity with those of other HLFPV isolates. Moreover, HLFPV-J contains a unique internal poly(A) region of variable length, ranging from 44 to 78 nucleotides, in its 3'-untranslated region (UTR), as is the case with hibiscus latent Singapore virus (HLSV), another hibiscus-infecting tobamovirus. The length of the HLFPV-J genome was 6431 nucleotides, including the shortest internal poly(A) region. The sequence identities of ORFs 1, 2, 3 and 4 of HLFPV-J to other tobamoviruses were 46.6-68.7, 49.9-70.8, 31.0-70.8 and 39.4-70.1 %, respectively, at the nucleotide level and 39.8-75.0, 43.6-77.8, 19.2-70.4 and 31.2-74.2 %, respectively, at the amino acid level. The 5'- and 3'-UTRs of HLFPV-J showed 24.3-58.6 and 13.0-79.8 % identity, respectively, to other tobamoviruses. In particular, when compared to other tobamoviruses, each ORF and UTR of HLFPV-J showed the highest sequence identity to those of HLSV. Phylogenetic analysis showed that HLFPV-J, other HLFPV isolates and HLSV constitute a malvaceous-plant-infecting tobamovirus cluster. These results indicate that the genomic structure of HLFPV-J has unique features similar to those of HLSV. To our knowledge, this is the first report of the complete genome sequence of HLFPV.

  12. Reliability generalization of the Multigroup Ethnic Identity Measure-Revised (MEIM-R).

    PubMed

    Herrington, Hayley M; Smith, Timothy B; Feinauer, Erika; Griner, Derek

    2016-10-01

    [Correction Notice: An Erratum for this article was reported in Vol 63(5) of Journal of Counseling Psychology (see record 2016-33161-001). The name of author Erika Feinauer was misspelled as Erika Feinhauer. All versions of this article have been corrected.] Individuals' strength of ethnic identity has been linked with multiple positive indicators, including academic achievement and overall psychological well-being. The measure researchers use most often to assess ethnic identity, the Multigroup Ethnic Identity Measure (MEIM), underwent substantial revision in 2007. To inform scholars investigating ethnic identity, we performed a reliability generalization analysis on data from the revised version (MEIM-R) and compared it with data from the original MEIM. Random-effects weighted models evaluated internal consistency coefficients (Cronbach's alpha). Reliability coefficients for the MEIM-R averaged α = .88 across 37 samples, a statistically significant increase over the average of α = .84 for the MEIM across 75 studies. Reliability coefficients for the MEIM-R did not differ across study and participant characteristics such as sample gender and ethnic composition. However, consistently lower reliability coefficients averaging α = .81 were found among participants with low levels of education, suggesting that greater attention to data reliability is warranted when evaluating the ethnic identity of individuals such as middle-school students. Future research will be needed to ascertain whether data with other measures of aspects of personal identity (e.g., racial identity, gender identity) also differ as a function of participant level of education and associated cognitive or maturation processes. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. Molecular characterization of two prunus necrotic ringspot virus isolates from Canada.

    PubMed

    Cui, Hongguang; Hong, Ni; Wang, Guoping; Wang, Aiming

    2012-05-01

    We determined the entire RNA1, 2 and 3 sequences of two prunus necrotic ringspot virus (PNRSV) isolates, Chr3 from cherry and Pch12 from peach, obtained from an orchard in the Niagara Fruit Belt, Canada. The RNA1, 2 and 3 of the two isolates share nucleotide sequence identities of 98.6%, 98.4% and 94.5%, respectively. Their RNA1- and 2-encoded amino acid sequences are about 98% identical to the corresponding sequences of a cherry isolate, CH57, the only other PNRSV isolate with complete RNA1 and 2 sequences available. Phylogenetic analysis of the coat protein and movement protein encoded by RNA3 of Pch12 and Chr3 and published PNRSV isolates indicated that Chr3 belongs to the PV96 group and Pch12 belongs to the PV32 group.

  14. FragIdent--automatic identification and characterisation of cDNA-fragments.

    PubMed

    Seelow, Dominik; Goehler, Heike; Hoffmann, Katrin

    2009-03-02

    Many genetic studies and functional assays are based on cDNA fragments. After the generation of cDNA fragments from an mRNA sample, their content is at first unknown and must be assigned by sequencing reactions or hybridisation experiments. Even in characterised libraries, a considerable number of clones are wrongly annotated. Furthermore, mix-ups can happen in the laboratory. It is therefore essential to the relevance of experimental results to confirm or determine the identity of the employed cDNA fragments. However, the manual approach for the characterisation of these fragments using BLAST web interfaces is not suited for larger number of sequences and so far, no user-friendly software is publicly available. Here we present the development of FragIdent, an application for the automatic identification of open reading frames (ORFs) within cDNA-fragments. The software performs BLAST analyses to identify the genes represented by the sequences and suggests primers to complete the sequencing of the whole insert. Gene-specific information as well as the protein domains encoded by the cDNA fragment are retrieved from Internet-based databases and included in the output. The application features an intuitive graphical interface and is designed for researchers without any bioinformatics skills. It is suited for projects comprising up to several hundred different clones. We used FragIdent to identify 84 cDNA clones from a yeast two-hybrid experiment. Furthermore, we identified 131 protein domains within our analysed clones. The source code is freely available from our homepage at http://compbio.charite.de/genetik/FragIdent/.

  15. Complete sequence and diversity of a maize-associated Polerovirus in East Africa.

    PubMed

    Massawe, Deogracious P; Stewart, Lucy R; Kamatenesi, Jovia; Asiimwe, Theodore; Redinbaugh, Margaret G

    2018-06-01

    Since 2011-2012, Maize lethal necrosis (MLN) has emerged in East Africa, causing massive yield loss and propelling research to identify viruses and virus populations present in maize. As expected, next generation sequencing (NGS) has revealed diverse and abundant viruses from the family Potyviridae, primarily sugarcane mosaic virus (SCMV), and maize chlorotic mottle virus (MCMV) (Tombusviridae), which are known to cause MLN by synergistic co-infection. In addition to these expected viruses, we identified a virus in the genus Polerovirus (family Luteoviridae) in 104/172 samples selected for MLN or other potential virus symptoms from Kenya, Uganda, Rwanda, and Tanzania. This polerovirus (MF974579) nucleotide sequence is 97% identical to maize-associated viruses recently reported in China, termed 'maize yellow mosaic virus' (MaYMV) and maize yellow dwarf virus (MaYMV; KU291101, KU291107, MYDV-RMV2; KT992824); and 99% identical to MaYMV (KY684356) infecting sugarcane and itch grass in Nigeria; 83% identical to a barley-associated polerovirus recently identified in Korea (BVG; KT962089); and 79% identical to the U.S. maize-infecting polerovirus maize yellow dwarf virus (MYDV-RMV; KT992824). Nucleotide sequences from ORF0 of 20 individual East African isolates collected from Kenya, Uganda, Rwanda, and Tanzania shared 98% or higher identity, and were detected in 104/172 (60.5%) of samples collected for virus-like symptoms, indicating extensive prevalence but limited diversity of this virus in East Africa. We refer to this virus as "MYDV-like polerovirus" until symptoms of the virus in maize are known.

  16. "Reliability generalization of the Multigroup Ethnic Identity Measure-Revised (MEIM-R)": Correction to Herrington et al. (2016).

    PubMed

    2016-10-01

    Reports an error in "Reliability Generalization of the Multigroup Ethnic Identity Measure-Revised (MEIM-R)" by Hayley M. Herrington, Timothy B. Smith, Erika Feinauer and Derek Griner ( Journal of Counseling Psychology , Advanced Online Publication, Mar 17, 2016, np). The name of author Erika Feinauer was misspelled as Erika Feinhauer. All versions of this article have been corrected. (The following abstract of the original article appeared in record 2016-13160-001.) Individuals' strength of ethnic identity has been linked with multiple positive indicators, including academic achievement and overall psychological well-being. The measure researchers use most often to assess ethnic identity, the Multigroup Ethnic Identity Measure (MEIM), underwent substantial revision in 2007. To inform scholars investigating ethnic identity, we performed a reliability generalization analysis on data from the revised version (MEIM-R) and compared it with data from the original MEIM. Random-effects weighted models evaluated internal consistency coefficients (Cronbach's alpha). Reliability coefficients for the MEIM-R averaged α = .88 across 37 samples, a statistically significant increase over the average of α = .84 for the MEIM across 75 studies. Reliability coefficients for the MEIM-R did not differ across study and participant characteristics such as sample gender and ethnic composition. However, consistently lower reliability coefficients averaging α = .81 were found among participants with low levels of education, suggesting that greater attention to data reliability is warranted when evaluating the ethnic identity of individuals such as middle-school students. Future research will be needed to ascertain whether data with other measures of aspects of personal identity (e.g., racial identity, gender identity) also differ as a function of participant level of education and associated cognitive or maturation processes. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. Complete genome of Nitrosospira briensis C-128, an ammonia-oxidizing bacterium from agricultural soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, Marlen C.; Norton, Jeanette M.; Valois, Frederica

    Nitrosospira briensis C-128 is an ammonia-oxidizing bacterium isolated from an acid agricultural soil. N. briensis C-128 was sequenced with PacBio RS technologies at the DOE-Joint Genome Institute through their Community Science Program (2010). The high-quality finished genome contains one chromosome of 3.21 Mb and no plasmids. We identified 3073 gene models, 3018 of which are protein coding. The two-way average nucleotide identity between the chromosomes of Nitrosospira multiformis ATCC 25196 and Nitrosospira briensis C-128 was found to be 77.2 %. Multiple copies of modules encoding chemolithotrophic metabolism were identified in their genomic context. The gene inventory supports chemolithotrophic metabolism withmore » implications for function in soil environments.« less

  18. Complete genome of Nitrosospira briensis C-128, an ammonia-oxidizing bacterium from agricultural soil

    DOE PAGES

    Rice, Marlen C.; Norton, Jeanette M.; Valois, Frederica; ...

    2016-07-28

    Nitrosospira briensis C-128 is an ammonia-oxidizing bacterium isolated from an acid agricultural soil. N. briensis C-128 was sequenced with PacBio RS technologies at the DOE-Joint Genome Institute through their Community Science Program (2010). The high-quality finished genome contains one chromosome of 3.21 Mb and no plasmids. We identified 3073 gene models, 3018 of which are protein coding. The two-way average nucleotide identity between the chromosomes of Nitrosospira multiformis ATCC 25196 and Nitrosospira briensis C-128 was found to be 77.2 %. Multiple copies of modules encoding chemolithotrophic metabolism were identified in their genomic context. The gene inventory supports chemolithotrophic metabolism withmore » implications for function in soil environments.« less

  19. Identification of a novel vitivirus from grapevines in New Zealand.

    PubMed

    Blouin, Arnaud G; Keenan, Sandi; Napier, Kathryn R; Barrero, Roberto A; MacDiarmid, Robin M

    2018-01-01

    We report a sequence of a novel vitivirus from Vitis vinifera obtained using two high-throughput sequencing (HTS) strategies on RNA. The initial discovery from small-RNA sequencing was confirmed by HTS of the total RNA and Sanger sequencing. The new virus has a genome structure similar to the one reported for other vitiviruses, with five open reading frames (ORFs) coding for the conserved domains described for members of that genus. Phylogenetic analysis of the complete genome sequence confirmed its affiliation to the genus Vitivirus, with the closest described viruses being grapevine virus E (GVE) and Agave tequilana leaf virus (ATLV). However, the virus we report is distinct and shares only 51% amino acid sequence identity with GVE in the replicase polyprotein and 66.8% amino acid sequence identity with ATLV in the coat protein. This is well below the threshold determined by the ICTV for species demarcation, and we propose that this virus represents a new species. It is provisionally named "grapevine virus G".

  20. Sequences Associated with Centromere Competency in the Human Genome

    PubMed Central

    Hayden, Karen E.; Strome, Erin D.; Merrett, Stephanie L.; Lee, Hye-Ran; Rudd, M. Katharine

    2013-01-01

    Centromeres, the sites of spindle attachment during mitosis and meiosis, are located in specific positions in the human genome, normally coincident with diverse subsets of alpha satellite DNA. While there is strong evidence supporting the association of some subfamilies of alpha satellite with centromere function, the basis for establishing whether a given alpha satellite sequence is or is not designated a functional centromere is unknown, and attempts to understand the role of particular sequence features in establishing centromere identity have been limited by the near identity and repetitive nature of satellite sequences. Utilizing a broadly applicable experimental approach to test sequence competency for centromere specification, we have carried out a genomic and epigenetic functional analysis of endogenous human centromere sequences available in the current human genome assembly. The data support a model in which functionally competent sequences confer an opportunity for centromere specification, integrating genomic and epigenetic signals and promoting the concept of context-dependent centromere inheritance. PMID:23230266

  1. Complete genome sequence of Southern tomato virus naturally infecting tomatoes in Bangladesh using small RNA deep sequencing

    USDA-ARS?s Scientific Manuscript database

    The complete genome sequence of a Southern tomato virus (STV) isolate on tomato plants in a seed production field in Bangladesh was obtained for the first time using next generation sequencing. The identified isolate STV_BD-13 shares high degree of sequence identity (99%) with several known STV isol...

  2. Complete genome sequence of southern tomato virus identified from China using next generation sequencing

    USDA-ARS?s Scientific Manuscript database

    Complete genome sequence of a double-stranded RNA (dsRNA) virus, southern tomato virus (STV), on tomatoes in China, was elucidated using small RNAs deep sequencing. The identified STV_CN12 shares 99% sequence identity to other isolates from Mexico, France, Spain, and U.S. This is the first report ...

  3. Candida mesorugosa sp. nov., a novel yeast species similar to Candida rugosa, isolated from a tertiary hospital in Brazil.

    PubMed

    Chaves, Guilherme M; Terçarioli, Gisela R; Padovan, Ana Carolina B; Rosas, Robert C; Ferreira, Renata C; Melo, Analy S A; Colombo, Arnaldo L

    2013-04-01

    Candida rugosa is a yeast species that is emerging as a causative agent of invasive infection, particularly in Latin America. Recently, C. pseudorugosa was proposed as a new species closely related to C. rugosa. We evaluated in this investigation the genetic heterogeneity within the C. rugosa species complex. All clinical isolates used in this study were identified phenotypically as C. rugosa but were genotypically different from the C. rugosa type, ATCC 10571. RAPD marker analysis revealed less than 83% similarity between our clinical isolates and the C. rugosa type strain. The D1/D2 region sequences of our clinical isolates showed 98% identity with C. rugosa but only 94-95% identity with C. pseudorugosa. The ITS rDNA sequences of the Brazilian isolates showed 91% identity with the C. rugosa ATCC 10571 ITS sequence. Network and Bayesian analyses of ITS and housekeeping gene sequences separated our clinical isolates into different branches from C. rugosa type strain. These differences are sufficient to reassign our isolates to a distinct species, named C. mesorugosa.

  4. Adaptation to Antifaces and the Perception of Correct Famous Identity in an Average Face

    PubMed Central

    Little, Anthony C.; Hancock, Peter J. B.; DeBruine, Lisa M.; Jones, Benedict C.

    2011-01-01

    Previous experiments have examined exposure to anti-identities (faces that possess traits opposite to an identity through a population average), finding that exposure to antifaces enhances recognition of the plus-identity images. Here we examine adaptation to antifaces using famous female celebrities. We demonstrate: that exposure to a color and shape transformed antiface of a celebrity increases the likelihood of perceiving the identity from which the antiface was manufactured in a composite face and that the effect shows size invariance (experiment 1), equivalent effects are seen in internet and laboratory-based studies (experiment 2), adaptation to shape-only antifaces has stronger effects on identity recognition than adaptation to color-only antifaces (experiment 3), and exposure to male versions of the antifaces does not influence the perception of female faces (experiment 4). Across these studies we found an effect of order where aftereffects were more pronounced in early than later trials. Overall, our studies delineate several aspects of identity aftereffects and support the proposal that identity is coded relative to other faces with special reference to a relatively sex-specific mean face representation. PMID:22363301

  5. Review and comparison of geometric distortion correction schemes in MR images used in stereotactic radiosurgery applications

    NASA Astrophysics Data System (ADS)

    Pappas, E. P.; Dellios, D.; Seimenis, I.; Moutsatsos, A.; Georgiou, E.; Karaiskos, P.

    2017-11-01

    In Stereotactic Radiosurgery (SRS), MR-images are widely used for target localization and delineation in order to take advantage of the superior soft tissue contrast they exhibit. However, spatial dose delivery accuracy may be deteriorated due to geometric distortions which are partly attributed to static magnetic field inhomogeneity and patient/object-induced chemical shift and susceptibility related artifacts, known as sequence-dependent distortions. Several post-imaging sequence-dependent distortion correction schemes have been proposed which mainly employ the reversal of read gradient polarity. The scope of this work is to review, evaluate and compare the efficacy of two proposed correction approaches. A specially designed phantom which incorporates 947 control points (CPs) for distortion detection was utilized. The phantom was MR scanned at 1.5T using the head coil and the clinically employed pulse sequence for SRS treatment planning. An additional scan was performed with identical imaging parameters except for reversal of read gradient polarity. In-house MATLAB routines were developed for implementation of the signal integration and average-image distortion correction techniques. The mean CP locations of the two MR scans were regarded as the reference CP distribution. Residual distortion was assessed by comparing the corrected CP locations with corresponding reference positions. Mean absolute distortion on frequency encoding direction was reduced from 0.34mm (original images) to 0.15mm and 0.14mm following application of signal integration and average-image methods, respectively. However, a maximum residual distortion of 0.7mm was still observed for both techniques. The signal integration method relies on the accuracy of edge detection and requires 3-4 hours of post-imaging computational time. The average-image technique is a more efficient (processing time of the order of seconds) and easier to implement method to improve geometric accuracy in such applications.

  6. Prevalence, distribution, and sequence diversity of hmwA among commensal and otitis media non-typeable Haemophilus influenzae.

    PubMed

    Davis, Gregg S; Patel, May; Hammond, James; Zhang, Lixin; Dawid, Suzanne; Marrs, Carl F; Gilsdorf, Janet R

    2014-12-01

    Nontypeable Haemophilus influenzae (NTHi) are Gram-negative coccobacilli that colonize the human pharynx, their only known natural reservoir. Adherence to the host epithelium facilitates NTHi colonization and marks one of the first steps in NTHi pathogenesis. Epithelial cell attachment is mediated, in part, by a pair of high molecular weight (HMW) adhesins that are highly immunogenic, antigenically diverse, and display a wide range of amino acid diversity both within and between isolates. In this study, the prevalence of hmwA, which encodes the HMW adhesin, was determined for a collection of 170 NTHi isolates recovered from the middle ears of children with otitis media (OM isolates) or throats or nasopharynges of healthy children (commensal isolates) from Finland, Israel, and the U.S. Overall, hmwA was detected in 61% of NTHi isolates and was significantly more prevalent (P=0.004) among OM isolates than among commensal isolates; the prevalence ratio comparing hmwA prevalence among ear isolates with that of commensal isolates was 1.47 (95% CI (1.12, 1.92)). Ninety-five percent (98/103) of the hmwA-positive NTHi isolates possessed two hmw loci. To advance our understanding of hmwA binding sequence diversity, we determined the DNA sequence of the hmwA binding region of 33 isolates from this collection. The average amino acid identity across all hmwA sequences was 62%. Phylogenetic analyses of the hmwA binding revealed four distinct sequence clusters, and the majority of hmwA sequences (83%) belonged to one of two dominant sequence clusters. hmwA sequences did not cluster by chromosomal location, geographic region, or disease status. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Thermophilic cellobiohydrolase

    DOEpatents

    Sapra, Rajat; Park, Joshua I.; Datta, Supratim; Simmons, Blake A.

    2017-04-18

    The present invention provides for a composition comprising a polypeptide comprising a first amino acid sequence having at least 70% identity with the amino acid sequence of Csac GH5 wherein said first amino acid sequence has a thermostable or thermophilic cellobiohydrolase (CBH) or exoglucanase activity.

  8. Diagnostics of Neisseriaceae and Moraxellaceae by Ribosomal DNA Sequencing: Ribosomal Differentiation of Medical Microorganisms

    PubMed Central

    Harmsen, Dag; Singer, Christian; Rothgänger, Jörg; Tønjum, Tone; Sybren de Hoog, Gerrit; Shah, Haroun; Albert, Jürgen; Frosch, Matthias

    2001-01-01

    Fast and reliable identification of microbial isolates is a fundamental goal of clinical microbiology. However, in the case of some fastidious gram-negative bacterial species, classical phenotype identification based on either metabolic, enzymatic, or serological methods is difficult, time-consuming, and/or inadequate. 16S or 23S ribosomal DNA (rDNA) bacterial sequencing will most often result in accurate speciation of isolates. Therefore, the objective of this study was to find a hypervariable rDNA stretch, flanked by strongly conserved regions, which is suitable for molecular species identification of members of the Neisseriaceae and Moraxellaceae. The inter- and intrageneric relationships were investigated using comparative sequence analysis of PCR-amplified partial 16S and 23S rDNAs from a total of 94 strains. When compared to the type species of the genera Acinetobacter, Moraxella, and Neisseria, an average of 30 polymorphic positions was observed within the partial 16S rDNA investigated (corresponding to Escherichia coli positions 54 to 510) for each species and an average of 11 polymorphic positions was observed within the 202 nucleotides of the 23S rDNA gene (positions 1400 to 1600). Neisseria macacae and Neisseria mucosa subsp. mucosa (ATCC 19696) had identical 16S and 23S rDNA sequences. Species clusters were heterogeneous in both genes in the case of Acinetobacter lwoffii, Moraxella lacunata, and N. mucosa. Neisseria meningitidis isolates failed to cluster only in the 23S rDNA subset. Our data showed that the 16S rDNA region is more suitable than the partial 23S rDNA for the molecular diagnosis of Neisseriaceae and Moraxellaceae and that a reference database should include more than one strain of each species. All sequence chromatograms and taxonomic and disease-related information are available as part of our ribosomal differentiation of medical microorganisms (RIDOM) web-based service (http://www.ridom.hygiene.uni-wuerzburg.de/). Users can submit a sequence and conduct a similarity search against the RIDOM reference database for microbial identification purposes. PMID:11230407

  9. Sinorhizobium meliloti strains TII7 and A5 by Multilocus Sequence Typing (MLST) have chromsomes identical with Rm1021 and form an effective and ineffective symbiosis with Medicago truncatula line Jemalong A17, respectively

    USDA-ARS?s Scientific Manuscript database

    The strains TII7 and A5 formed an effective and ineffective symbiosis with Medicago truncatula Jemalong A17, respectively. Both were shown to have identical chromsomes with strains Rm1021 and RCR2011 using a Multilocus Sequence Typing method. The 2260 bp segments of DNA stretching from the 3’ end ...

  10. Distant sequences determine 5′ end formation of cox3 transcripts in Arabidopsis thaliana ecotype C24

    PubMed Central

    Forner, Joachim; Weber, Bärbel; Wiethölter, Caterina; Meyer, Rhonda C.; Binder, Stefan

    2005-01-01

    The genomic environments and the transcripts of the mitochondrial cox3 gene are investigated in three Arabidopsis thaliana ecotypes. While the proximate 5′ sequences up to nucleotide position −584, the coding regions and the 3′ flanking regions are identical in Columbia (Col), C24 and Landsberg erecta (Ler), genomic variation is detected in regions further upstream. In the mitochondrial DNA of Col, a 1790 bp fragment flanked by a nonanucleotide direct repeat is present beyond position −584 with respect to the ATG. While in Ler only part of this insertion is conserved, this sequence is completely absent in C24, except for a single copy of the nonanucleotide direct repeat. Northern hybridization reveals identical major transcripts in the three ecotypes, but identifies an additional abundant 60 nt larger mRNA species in C24. The extremities of the most abundant mRNA species are identical in the three ecotypes. In C24, an extra major 5′ end is abundant. This terminus and the other major 5′ ends are located in identical sequence regions. Inspection of Atcox3 transcripts in C24/Col hybrids revealed a female inheritance of the mRNA species with the extra 5′ terminus. Thus, a mitochondrially encoded factor determines the generation of an extra 5′ mRNA end. PMID:16107557

  11. Analysis of drug binding pockets and repurposing opportunities for twelve essential enzymes of ESKAPE pathogens

    PubMed Central

    Naz, Sadia; Ngo, Tony; Farooq, Umar

    2017-01-01

    Background The rapid increase in antibiotic resistance by various bacterial pathogens underlies the significance of developing new therapies and exploring different drug targets. A fraction of bacterial pathogens abbreviated as ESKAPE by the European Center for Disease Prevention and Control have been considered a major threat due to the rise in nosocomial infections. Here, we compared putative drug binding pockets of twelve essential and mostly conserved metabolic enzymes in numerous bacterial pathogens including those of the ESKAPE group and Mycobacterium tuberculosis. The comparative analysis will provide guidelines for the likelihood of transferability of the inhibitors from one species to another. Methods Nine bacterial species including six ESKAPE pathogens, Mycobacterium tuberculosis along with Mycobacterium smegmatis and Eschershia coli, two non-pathogenic bacteria, have been selected for drug binding pocket analysis of twelve essential enzymes. The amino acid sequences were obtained from Uniprot, aligned using ICM v3.8-4a and matched against the Pocketome encyclopedia. We used known co-crystal structures of selected target enzyme orthologs to evaluate the location of their active sites and binding pockets and to calculate a matrix of pairwise sequence identities across each target enzyme across the different species. This was used to generate sequence maps. Results High sequence identity of enzyme binding pockets, derived from experimentally determined co-crystallized structures, was observed among various species. Comparison at both full sequence level and for drug binding pockets of key metabolic enzymes showed that binding pockets are highly conserved (sequence similarity up to 100%) among various ESKAPE pathogens as well as Mycobacterium tuberculosis. Enzymes orthologs having conserved binding sites may have potential to interact with inhibitors in similar way and might be helpful for design of similar class of inhibitors for a particular species. The derived pocket alignments and distance-based maps provide guidelines for drug discovery and repurposing. In addition they also provide recommendations for the relevant model bacteria that may be used for initial drug testing. Discussion Comparing ligand binding sites through sequence identity calculation could be an effective approach to identify conserved orthologs as drug binding pockets have shown higher level of conservation among various species. By using this approach we could avoid the problems associated with full sequence comparison. We identified essential metabolic enzymes among ESKAPE pathogens that share high sequence identity in their putative drug binding pockets (up to 100%), of which known inhibitors can potentially antagonize these identical pockets in the various species in a similar manner. PMID:28948099

  12. Analysis of drug binding pockets and repurposing opportunities for twelve essential enzymes of ESKAPE pathogens.

    PubMed

    Naz, Sadia; Ngo, Tony; Farooq, Umar; Abagyan, Ruben

    2017-01-01

    The rapid increase in antibiotic resistance by various bacterial pathogens underlies the significance of developing new therapies and exploring different drug targets. A fraction of bacterial pathogens abbreviated as ESKAPE by the European Center for Disease Prevention and Control have been considered a major threat due to the rise in nosocomial infections. Here, we compared putative drug binding pockets of twelve essential and mostly conserved metabolic enzymes in numerous bacterial pathogens including those of the ESKAPE group and Mycobacterium tuberculosis . The comparative analysis will provide guidelines for the likelihood of transferability of the inhibitors from one species to another. Nine bacterial species including six ESKAPE pathogens, Mycobacterium tuberculosis along with Mycobacterium smegmatis and Eschershia coli , two non-pathogenic bacteria, have been selected for drug binding pocket analysis of twelve essential enzymes. The amino acid sequences were obtained from Uniprot, aligned using ICM v3.8-4a and matched against the Pocketome encyclopedia. We used known co-crystal structures of selected target enzyme orthologs to evaluate the location of their active sites and binding pockets and to calculate a matrix of pairwise sequence identities across each target enzyme across the different species. This was used to generate sequence maps. High sequence identity of enzyme binding pockets, derived from experimentally determined co-crystallized structures, was observed among various species. Comparison at both full sequence level and for drug binding pockets of key metabolic enzymes showed that binding pockets are highly conserved (sequence similarity up to 100%) among various ESKAPE pathogens as well as Mycobacterium tuberculosis . Enzymes orthologs having conserved binding sites may have potential to interact with inhibitors in similar way and might be helpful for design of similar class of inhibitors for a particular species. The derived pocket alignments and distance-based maps provide guidelines for drug discovery and repurposing. In addition they also provide recommendations for the relevant model bacteria that may be used for initial drug testing. Comparing ligand binding sites through sequence identity calculation could be an effective approach to identify conserved orthologs as drug binding pockets have shown higher level of conservation among various species. By using this approach we could avoid the problems associated with full sequence comparison. We identified essential metabolic enzymes among ESKAPE pathogens that share high sequence identity in their putative drug binding pockets (up to 100%), of which known inhibitors can potentially antagonize these identical pockets in the various species in a similar manner.

  13. Genome sequence of a distinct watermelon mosaic virus identified from ginseng (Panax ginseng) transcriptome.

    PubMed

    Park, D; Kim, H; Hahn, Y

    Watermelon mosaic virus (WMV) is a member of the genus Potyvirus, which is the largest genus of plant viruses. WMV is a significant pathogen of crop plants, including Cucurbitaceae species. A WMV strain, designated as WMV-Pg, was identified in transcriptome data collected from ginseng (Panax ginseng) root. WMV-Pg showed 84% nucleotide sequence identity and 91% amino acid sequence identity with its closest related virus, WMV-Fr. A phylogenetic analysis of WMV-Pg with other WMVs and soybean mosaic viruses (SMVs) indicated that WMV-Pg is a distinct subtype of the WMV/SMV group of the genus Potyvirus in the family Potyviridae.

  14. A gyrovirus infecting a sea bird

    PubMed Central

    Li, Linlin; Pesavento, Patricia A.; Gaynor, Anne M.; Duerr, Rebecca S.; Phan, Tung Gia; Zhang, Wen; Deng, Xutao

    2015-01-01

    We characterized the genome of a highly divergent gyrovirus (GyV8) in the spleen and uropygial gland tissues of a diseased northern fulmar (Fulmarus glacialis), a pelagic bird beached in San Francisco, California. No other exogenous viral sequences could be identified using viral metagenomics. The small circular DNA genome shared no significant nucleotide sequence identity, and only 38–42 % amino acid sequence identity in VP1, with any of the previously identified gyroviruses. GyV8 is the first member of the third major phylogenetic clade of this viral genus and the first gyrovirus detected in an avian species other than chicken. PMID:26036564

  15. Information theory analysis of Australian humpback whale song.

    PubMed

    Miksis-Olds, Jennifer L; Buck, John R; Noad, Michael J; Cato, Douglas H; Stokes, M Dale

    2008-10-01

    Songs produced by migrating whales were recorded off the coast of Queensland, Australia, over six consecutive weeks in 2003. Forty-eight independent song sessions were analyzed using information theory techniques. The average length of the songs estimated by correlation analysis was approximately 100 units, with song sessions lasting from 300 to over 3100 units. Song entropy, a measure of structural constraints, was estimated using three different methodologies: (1) the independently identically distributed model, (2) a first-order Markov model, and (3) the nonparametric sliding window match length (SWML) method, as described by Suzuki et al. [(2006). "Information entropy of humpback whale song," J. Acoust. Soc. Am. 119, 1849-1866]. The analysis finds that the song sequences of migrating Australian whales are consistent with the hierarchical structure proposed by Payne and McVay [(1971). "Songs of humpback whales," Science 173, 587-597], and recently supported mathematically by Suzuki et al. (2006) for singers on the Hawaiian breeding grounds. Both the SWML entropy estimates and the song lengths for the Australian singers in 2003 were lower than that reported by Suzuki et al. (2006) for Hawaiian whales in 1976-1978; however, song redundancy did not differ between these two populations separated spatially and temporally. The average total information in the sequence of units in Australian song was approximately 35 bits/song. Aberrant songs (8%) yielded entropies similar to the typical songs.

  16. Consequences of organ choice in describing bacterial pathogen assemblages in a rodent population.

    PubMed

    Villette, P; Afonso, E; Couval, G; Levret, A; Galan, M; Tatard, C; Cosson, J F; Giraudoux, P

    2017-10-01

    High-throughput sequencing technologies now allow for rapid cost-effective surveys of multiple pathogens in many host species including rodents, but it is currently unclear if the organ chosen for screening influences the number and identity of bacteria detected. We used 16S rRNA amplicon sequencing to identify bacterial pathogens in the heart, liver, lungs, kidneys and spleen of 13 water voles (Arvicola terrestris) collected in Franche-Comté, France. We asked if bacterial pathogen assemblages within organs are similar and if all five organs are necessary to detect all of the bacteria present in an individual animal. We identified 24 bacteria representing 17 genera; average bacterial richness for each organ ranged from 1·5 ± 0·4 (mean ± standard error) to 2·5 ± 0·4 bacteria/organ and did not differ significantly between organs. The average bacterial richness when organ assemblages were pooled within animals was 4·7 ± 0·6 bacteria/animal; Operational Taxonomic Unit accumulation analysis indicates that all five organs are required to obtain this. Organ type influences bacterial assemblage composition in a systematic way (PERMANOVA, 999 permutations, pseudo-F 4,51 = 1·37, P = 0·001). Our results demonstrate that the number of organs sampled influences the ability to detect bacterial pathogens, which can inform sampling decisions in public health and wildlife ecology.

  17. Discovery of a novel retrovirus sequence in an Australian native rodent (Melomys burtoni): a putative link between gibbon ape leukemia virus and koala retrovirus.

    PubMed

    Simmons, Greg; Clarke, Daniel; McKee, Jeff; Young, Paul; Meers, Joanne

    2014-01-01

    Gibbon ape leukaemia virus (GALV) and koala retrovirus (KoRV) share a remarkably close sequence identity despite the fact that they occur in distantly related mammals on different continents. It has previously been suggested that infection of their respective hosts may have occurred as a result of a species jump from another, as yet unidentified vertebrate host. To investigate possible sources of these retroviruses in the Australian context, DNA samples were obtained from 42 vertebrate species and screened using PCR in order to detect proviral sequences closely related to KoRV and GALV. Four proviral partial sequences totalling 2880 bases which share a strong similarity with KoRV and GALV were detected in DNA from a native Australian rodent, the grassland melomys, Melomys burtoni. We have designated this novel gammaretrovirus Melomys burtoni retrovirus (MbRV). The concatenated nucleotide sequence of MbRV shares 93% identity with the corresponding sequence from GALV-SEATO and 83% identity with KoRV. The geographic ranges of the grassland melomys and of the koala partially overlap. Thus a species jump by MbRV from melomys to koalas is conceivable. However the genus Melomys does not occur in mainland South East Asia and so it appears most likely that another as yet unidentified host was the source of GALV.

  18. An approach for identification of unknown viruses using sequencing-by-hybridization.

    PubMed

    Katoski, Sarah E; Meyer, Hermann; Ibrahim, Sofi

    2015-09-01

    Accurate identification of biological threat agents, especially RNA viruses, in clinical or environmental samples can be challenging because the concentration of viral genomic material in a given sample is usually low, viral genomic RNA is liable to degradation, and RNA viruses are extremely diverse. A two-tiered approach was used for initial identification, then full genomic characterization of 199 RNA viruses belonging to virus families Arenaviridae, Bunyaviridae, Filoviridae, Flaviviridae, and Togaviridae. A Sequencing-by-hybridization (SBH) microarray was used to tentatively identify a viral pathogen then, the identity is confirmed by guided next-generation sequencing (NGS). After optimization and evaluation of the SBH and NGS methodologies with various virus species and strains, the approach was used to test the ability to identify viruses in blinded samples. The SBH correctly identified two Ebola viruses in the blinded samples within 24 hr, and by using guided amplicon sequencing with 454 GS FLX, the identities of the viruses in both samples were confirmed. SBH provides at relatively low-cost screening of biological samples against a panel of viral pathogens that can be custom-designed on a microarray. Once the identity of virus is deduced from the highest hybridization signal on the SBH microarray, guided (amplicon) NGS sequencing can be used not only to confirm the identity of the virus but also to provide further information about the strain or isolate, including a potential genetic manipulation. This approach can be useful in situations where natural or deliberate biological threat incidents might occur and a rapid response is required. © 2015 Wiley Periodicals, Inc.

  19. Global Occurrence of Archaeal amoA Genes in Terrestrial Hot Springs▿

    PubMed Central

    Zhang, Chuanlun L.; Ye, Qi; Huang, Zhiyong; Li, WenJun; Chen, Jinquan; Song, Zhaoqi; Zhao, Weidong; Bagwell, Christopher; Inskeep, William P.; Ross, Christian; Gao, Lei; Wiegel, Juergen; Romanek, Christopher S.; Shock, Everett L.; Hedlund, Brian P.

    2008-01-01

    Despite the ubiquity of ammonium in geothermal environments and the thermodynamic favorability of aerobic ammonia oxidation, thermophilic ammonia-oxidizing microorganisms belonging to the crenarchaeota kingdom have only recently been described. In this study, we analyzed microbial mats and surface sediments from 21 hot spring samples (pH 3.4 to 9.0; temperature, 41 to 86°C) from the United States, China, and Russia and obtained 846 putative archaeal ammonia monooxygenase large-subunit (amoA) gene and transcript sequences, representing a total of 41 amoA operational taxonomic units (OTUs) at 2% identity. The amoA gene sequences were highly diverse, yet they clustered within two major clades of archaeal amoA sequences known from water columns, sediments, and soils: clusters A and B. Eighty-four percent (711/846) of the sequences belonged to cluster A, which is typically found in water columns and sediments, whereas 16% (135/846) belonged to cluster B, which is typically found in soils and sediments. Although a few amoA OTUs were present in several geothermal regions, most were specific to a single region. In addition, cluster A amoA genes formed geographic groups, while cluster B sequences did not group geographically. With the exception of only one hot spring, principal-component analysis and UPGMA (unweighted-pair group method using average linkages) based on the UniFrac metric derived from cluster A grouped the springs by location, regardless of temperature or bulk water pH, suggesting that geography may play a role in structuring communities of putative ammonia-oxidizing archaea (AOA). The amoA genes were distinct from those of low-temperature environments; in particular, pair-wise comparisons between hot spring amoA genes and those from sympatric soils showed less than 85% sequence identity, underscoring the distinctness of hot spring archaeal communities from those of the surrounding soil system. Reverse transcription-PCR showed that amoA genes were transcribed in situ in one spring and the transcripts were closely related to the amoA genes amplified from the same spring. Our study demonstrates the global occurrence of putative archaeal amoA genes in a wide variety of terrestrial hot springs and suggests that geography may play an important role in selecting different assemblages of AOA. PMID:18676703

  20. Global occurrence of archaeal amoA genes in terrestrial hot springs.

    PubMed

    Zhang, Chuanlun L; Ye, Qi; Huang, Zhiyong; Li, Wenjun; Chen, Jinquan; Song, Zhaoqi; Zhao, Weidong; Bagwell, Christopher; Inskeep, William P; Ross, Christian; Gao, Lei; Wiegel, Juergen; Romanek, Christopher S; Shock, Everett L; Hedlund, Brian P

    2008-10-01

    Despite the ubiquity of ammonium in geothermal environments and the thermodynamic favorability of aerobic ammonia oxidation, thermophilic ammonia-oxidizing microorganisms belonging to the crenarchaeota kingdom have only recently been described. In this study, we analyzed microbial mats and surface sediments from 21 hot spring samples (pH 3.4 to 9.0; temperature, 41 to 86 degrees C) from the United States, China, and Russia and obtained 846 putative archaeal ammonia monooxygenase large-subunit (amoA) gene and transcript sequences, representing a total of 41 amoA operational taxonomic units (OTUs) at 2% identity. The amoA gene sequences were highly diverse, yet they clustered within two major clades of archaeal amoA sequences known from water columns, sediments, and soils: clusters A and B. Eighty-four percent (711/846) of the sequences belonged to cluster A, which is typically found in water columns and sediments, whereas 16% (135/846) belonged to cluster B, which is typically found in soils and sediments. Although a few amoA OTUs were present in several geothermal regions, most were specific to a single region. In addition, cluster A amoA genes formed geographic groups, while cluster B sequences did not group geographically. With the exception of only one hot spring, principal-component analysis and UPGMA (unweighted-pair group method using average linkages) based on the UniFrac metric derived from cluster A grouped the springs by location, regardless of temperature or bulk water pH, suggesting that geography may play a role in structuring communities of putative ammonia-oxidizing archaea (AOA). The amoA genes were distinct from those of low-temperature environments; in particular, pair-wise comparisons between hot spring amoA genes and those from sympatric soils showed less than 85% sequence identity, underscoring the distinctness of hot spring archaeal communities from those of the surrounding soil system. Reverse transcription-PCR showed that amoA genes were transcribed in situ in one spring and the transcripts were closely related to the amoA genes amplified from the same spring. Our study demonstrates the global occurrence of putative archaeal amoA genes in a wide variety of terrestrial hot springs and suggests that geography may play an important role in selecting different assemblages of AOA.

  1. Complete nucleotide sequence of Alfalfa mosaic virus isolated from alfalfa (Medicago sativa L.) in Argentina.

    PubMed

    Trucco, Verónica; de Breuil, Soledad; Bejerman, Nicolás; Lenardon, Sergio; Giolitti, Fabián

    2014-06-01

    The complete nucleotide sequence of an Alfalfa mosaic virus (AMV) isolate infecting alfalfa (Medicago sativa L.) in Argentina, AMV-Arg, was determined. The virus genome has the typical organization described for AMV, and comprises 3,643, 2,593, and 2,038 nucleotides for RNA1, 2 and 3, respectively. The whole genome sequence and each encoding region were compared with those of other four isolates that have been completely sequenced from China, Italy, Spain and USA. The nucleotide identity percentages ranged from 95.9 to 99.1 % for the three RNAs and from 93.7 to 99 % for the protein 1 (P1), protein 2 (P2), movement protein and coat protein (CP) encoding regions, whereas the amino acid identity percentages of these proteins ranged from 93.4 to 99.5 %, the lowest value corresponding to P2. CP sequences of AMV-Arg were compared with those of other 25 available isolates, and the phylogenetic analysis based on the CP gene was carried out. The highest percentage of nucleotide sequence identity of the CP gene was 98.3 % with a Chinese isolate and 98.6 % at the amino acid level with four isolates, two from Italy, one from Brazil and the remaining one from China. The phylogenetic analysis showed that AMV-Arg is closely related to subgroup I of AMV isolates. To our knowledge, this is the first report of a complete nucleotide sequence of AMV from South America and the first worldwide report of complete nucleotide sequence of AMV isolated from alfalfa as natural host.

  2. Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes

    PubMed Central

    Saski, Christopher; Lee, Seung-Bum; Fjellheim, Siri; Guda, Chittibabu; Jansen, Robert K.; Luo, Hong; Tomkins, Jeffrey; Rognli, Odd Arne; Clarke, Jihong Liu

    2009-01-01

    Comparisons of complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera to six published grass chloroplast genomes reveal that gene content and order are similar but two microstructural changes have occurred. First, the expansion of the IR at the SSC/IRa boundary that duplicates a portion of the 5′ end of ndhH is restricted to the three genera of the subfamily Pooideae (Agrostis, Hordeum and Triticum). Second, a 6 bp deletion in ndhK is shared by Agrostis, Hordeum, Oryza and Triticum, and this event supports the sister relationship between the subfamilies Erhartoideae and Pooideae. Repeat analysis identified 19–37 direct and inverted repeats 30 bp or longer with a sequence identity of at least 90%. Seventeen of the 26 shared repeats are found in all the grass chloroplast genomes examined and are located in the same genes or intergenic spacer (IGS) regions. Examination of simple sequence repeats (SSRs) identified 16–21 potential polymorphic SSRs. Five IGS regions have 100% sequence identity among Zea mays, Saccharum officinarum and Sorghum bicolor, whereas no spacer regions were identical among Oryza sativa, Triticum aestivum, H. vulgare and A. stolonifera despite their close phylogenetic relationship. Alignment of EST sequences and DNA coding sequences identified six C–U conversions in both Sorghum bicolor and H. vulgare but only one in A. stolonifera. Phylogenetic trees based on DNA sequences of 61 protein-coding genes of 38 taxa using both maximum parsimony and likelihood methods provide moderate support for a sister relationship between the subfamilies Erhartoideae and Pooideae. PMID:17534593

  3. Increased fMRI Sensitivity at Equal Data Burden Using Averaged Shifted Echo Acquisition

    PubMed Central

    Witt, Suzanne T.; Warntjes, Marcel; Engström, Maria

    2016-01-01

    There is growing evidence as to the benefits of collecting BOLD fMRI data with increased sampling rates. However, many of the newly developed acquisition techniques developed to collect BOLD data with ultra-short TRs require hardware, software, and non-standard analytic pipelines that may not be accessible to all researchers. We propose to incorporate the method of shifted echo into a standard multi-slice, gradient echo EPI sequence to achieve a higher sampling rate with a TR of <1 s with acceptable spatial resolution. We further propose to incorporate temporal averaging of consecutively acquired EPI volumes to both ameliorate the reduced temporal signal-to-noise inherent in ultra-fast EPI sequences and reduce the data burden. BOLD data were collected from 11 healthy subjects performing a simple, event-related visual-motor task with four different EPI sequences: (1) reference EPI sequence with TR = 1440 ms, (2) shifted echo EPI sequence with TR = 700 ms, (3) shifted echo EPI sequence with every two consecutively acquired EPI volumes averaged and effective TR = 1400 ms, and (4) shifted echo EPI sequence with every four consecutively acquired EPI volumes averaged and effective TR = 2800 ms. Both the temporally averaged sequences exhibited increased temporal signal-to-noise over the shifted echo EPI sequence. The shifted echo sequence with every two EPI volumes averaged also had significantly increased BOLD signal change compared with the other three sequences, while the shifted echo sequence with every four EPI volumes averaged had significantly decreased BOLD signal change compared with the other three sequences. The results indicated that incorporating the method of shifted echo into a standard multi-slice EPI sequence is a viable method for achieving increased sampling rate for collecting event-related BOLD data. Further, consecutively averaging every two consecutively acquired EPI volumes significantly increased the measured BOLD signal change and the subsequently calculated activation map statistics. PMID:27932947

  4. Complete genome sequence of a tomato infecting tomato mottle mosaic virus in New York

    USDA-ARS?s Scientific Manuscript database

    Complete genome sequence of an emerging isolate of tomato mottle mosaic virus (ToMMV) infecting experimental nicotianan benthamiana plants in up-state New York was obtained using small RNA deep sequencing. ToMMV_NY-13 shared 99% sequence identity to ToMMV isolates from Mexico and Florida. Broader d...

  5. SEAN: SNP prediction and display program utilizing EST sequence clusters.

    PubMed

    Huntley, Derek; Baldo, Angela; Johri, Saurabh; Sergot, Marek

    2006-02-15

    SEAN is an application that predicts single nucleotide polymorphisms (SNPs) using multiple sequence alignments produced from expressed sequence tag (EST) clusters. The algorithm uses rules of sequence identity and SNP abundance to determine the quality of the prediction. A Java viewer is provided to display the EST alignments and predicted SNPs.

  6. Complete Genome Sequence of Paenibacillus strain Y4.12MC10, a Novel Paenibacillus lautus strain Isolated from Obsidian Hot Spring in Yellowstone National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mead, David; Lucas, Susan; Copeland, A

    2012-01-01

    Paenibacillus speciesY412MC10 was one of a number of organisms initially isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA. The isolate Y412MC10 was initially classified as a Geobacillus sp. based on its isolation conditions and similarity to other organisms isolated from hot springs at Yellowstone National Park. Comparison of 16 S rRNA sequences within the Bacillales indicated that Geobacillus sp.Y412MC10 clustered with Paenibacillus species and not Geobacillus; the 16S rRNA analysis indicated the organism was a strain of Paenibacillus lautus. Lucigen Corp. prepared genomic DNA and the genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute.more » The genome of Paenibacillus lautus strain Y412MC10 consists of one circular chromosome of 7,121,665 bp with an average G+C content of 51.2%. The Paenibacillus sp.Y412MC10 genome sequence was deposited at the NCBI in October 2009 (NC{_}013406). Comparison to other Paenibacillus species shows the organism lacks nitrogen fixation, antibiotic production and social interaction genes reported in other Paenibacilli. Over 25% of the proteins predicted by the Y412MC10 genome share no identity with the closest sequenced Paenibacillus species; most of these are predicted hypothetical proteins and their specific function in the environment is unknown.« less

  7. Mycelial Propagation and Molecular Phylogenetic Relationships of Commercially Cultivated Agrocybe cylindracea based on ITS Sequences and RAPD

    PubMed Central

    Alam, Nuhu; Kim, Jeong Hwa; Shim, Mi Ja; Lee, U Youn

    2010-01-01

    This study evaluated the optimal vegetative growth conditions and molecular phylogenetic relationships of eleven strains of Agrocybe cylindracea collected from different ecological regions of Korea, China and Taiwan. The optimal temperature and pH for mycelial growth were observed at 25℃ and 6. Potato dextrose agar and Hennerberg were the favorable media for vegetative growth, whereas glucose tryptone was unfavorable. Dextrin, maltose, and fructose were the most effective carbon sources. The most suitable nitrogen sources were arginine and glycine, whereas methionine, alanine, histidine, and urea were least effective for the mycelial propagation of A. cylindracea. The internal transcribed spacer (ITS) regions of rDNA were amplified using PCR. The sequence of ITS2 was more variable than that of ITS1, while the 5.8S sequences were identical. The reciprocal homologies of the ITS sequences ranged from 98 to 100%. The strains were also analyzed by random amplification of polymorphic DNA (RAPD) using 20 arbitrary primers. Fifteen primers efficiently amplified the genomic DNA. The average number of polymorphic bands observed per primer was 3.8. The numbers of amplified bands varied based on the primers and strains, with polymorphic fragments ranging from 0.1 to 2.9 kb. The results of RAPD analysis were similar to the ITS region sequences. The results revealed that RAPD and ITS techniques were well suited for detecting the genetic diversity of all A. cylindracea strains tested. PMID:23956633

  8. Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation.

    PubMed

    Dueck, Hannah; Khaladkar, Mugdha; Kim, Tae Kyung; Spaethling, Jennifer M; Francis, Chantal; Suresh, Sangita; Fisher, Stephen A; Seale, Patrick; Beck, Sheryl G; Bartfai, Tamas; Kuhn, Bernhard; Eberwine, James; Kim, Junhyong

    2015-06-09

    Differentiation of metazoan cells requires execution of different gene expression programs but recent single-cell transcriptome profiling has revealed considerable variation within cells of seeming identical phenotype. This brings into question the relationship between transcriptome states and cell phenotypes. Additionally, single-cell transcriptomics presents unique analysis challenges that need to be addressed to answer this question. We present high quality deep read-depth single-cell RNA sequencing for 91 cells from five mouse tissues and 18 cells from two rat tissues, along with 30 control samples of bulk RNA diluted to single-cell levels. We find that transcriptomes differ globally across tissues with regard to the number of genes expressed, the average expression patterns, and within-cell-type variation patterns. We develop methods to filter genes for reliable quantification and to calibrate biological variation. All cell types include genes with high variability in expression, in a tissue-specific manner. We also find evidence that single-cell variability of neuronal genes in mice is correlated with that in rats consistent with the hypothesis that levels of variation may be conserved. Single-cell RNA-sequencing data provide a unique view of transcriptome function; however, careful analysis is required in order to use single-cell RNA-sequencing measurements for this purpose. Technical variation must be considered in single-cell RNA-sequencing studies of expression variation. For a subset of genes, biological variability within each cell type appears to be regulated in order to perform dynamic functions, rather than solely molecular noise.

  9. New advances in molecular epizootiology of canine hematic protozoa from Venezuela, Thailand and Spain.

    PubMed

    Criado-Fornelio, A; Rey-Valeiron, C; Buling, A; Barba-Carretero, J C; Jefferies, R; Irwin, P

    2007-03-31

    The prevalence of hematozoan infections (Hepatozoon canis and Babesia sp., particularly Babesia canis vogeli) in canids from Venezuela, Thailand and Spain was studied by amplification and sequencing of the 18S rRNA gene. H. canis infections caused simultaneously by two different isolates were confirmed by RFLP analysis in samples from all the geographic regions studied. In Venezuela, blood samples from 134 dogs were surveyed. Babesia infections were found in 2.24% of the dogs. Comparison of sequences of the 18S rRNA gene indicated that protozoan isolates were genetically identical to B. canis vogeli from Japan and Brazil. H. canis infected 44.77 per cent of the dogs. A representative sample of Venezuelan H. canis isolates (21.6% of PCR-positives) was sequenced. Many of them showed 18S rRNA gene sequences identical to H. canis Spain 2, albeit two less frequent genotypes were found in the sample studied. In Thailand, 20 dogs were analyzed. No infections caused by Babesia were diagnosed, whereas 30 per cent of the dogs were positive to hematozoan infection. Two protozoa isolates showing 99.7-100% identity to H. canis Spain 2 were found. In Spain, 250 dogs were studied. B. canis vogeli infected 0.01% of the animals. The sequence of the 18S rRNA gene in Spanish isolates of this protozoa was closely related to those previously deposited in GenBank (> 99% identity). Finally, 20 red foxes were screened for hematozoans employing semi-nested PCR and primers designed to detect Babesia/Theileria. Fifty percent of the foxes were positive to Theileria annae. In addition, it was found that the PCR assay was able as well to detect Hepatozoon infections. Thirty five percent of the foxes were infected with two different H. canis isolates showing 99.8-100% identity to Curupira 1 from Brazil.

  10. Identity of Fasciola spp. in sheep in Egypt.

    PubMed

    Amer, Said; ElKhatam, Ahmed; Zidan, Shereif; Feng, Yaoyu; Xiao, Lihua

    2016-12-01

    In Egypt, liver flukes, Fasciola spp. (Digenea: Fasciolidae), have a serious impact on the farming industry and public health. Both Fasciola hepatica and Fasciola gigantica are known to occur in cattle, providing the opportunity for genetic recombination. Little is known on the identity and genetic variability of Fasciola populations in sheep. This study was performed to determine the prevalence of liver flukes in sheep in Menofia Province as a representative area of the delta region in Egypt, as measured by postmortem examination of slaughtered animals at three abattoirs. The identity and genetic variability of Fasciola spp. in slaughtered animals were determined by PCR-sequence analysis of the nuclear ribosomal internal transcribed spacer 1 (ITS1) and the mitochondrial NADH dehydrogenase subunit 1 (nad1) genes. Physical inspection of the liver indicated that 302 of 2058 (14.7%) slaughtered sheep were infected with Fasciola spp. Sequence analysis of the ITS1 and nad1 genes of liver flukes from 17 animals revealed that 11 animals were infected with F. hepatica, four with F. gigantica, and two with both species. Seventy eight of 103 flukes genetically characterized from these animals were F. hepatica, 23 were F. gigantica, and two had ITS1 sequences identical to F. hepatica but nad1 sequences identical to F. gigantica. nad1 sequences of Egyptian isolates of F. gigantica showed pronounced differences from those in the GenBank database. Egyptian F. gigantica haplotypes formed haplogroup D, which clustered in a sister clade with haplogroups A, B and C circulating in Asia, indicating the existence of geographic isolation in the species. Both F. hepatica and F. gigantica are prevalent in sheep in Egypt and an introgressed form of the two occurs as the result of genetic recombination. In addition, a geographically isolated F. gigantica population is present in the country. The importance of these observations in epidemiology of fascioliasis needs to be examined in future studies.

  11. Characterization, genetic diversity, and evolutionary link of Cucumber mosaic virus strain New Delhi from India.

    PubMed

    Koundal, Vikas; Haq, Qazi Mohd Rizwanul; Praveen, Shelly

    2011-02-01

    The genome of Cucumber mosaic virus New Delhi strain (CMV-ND) from India, obtained from tomato, was completely sequenced and compared with full genome sequences of 14 known CMV strains from subgroups I and II, for their genetic diversity. Sequence analysis suggests CMV-ND shares maximum sequence identity at the nucleotide level with a CMV strain from Taiwan. Among all 15 strains of CMV, the encoded protein 2b is least conserved, whereas the coat protein (CP) is most conserved. Sequence identity values and phylogram results indicate that CMV-ND belongs to subgroup I. Based on the recombination detection program result, it appears that CMV is prone to recombination, and different RNA components of CMV-ND have evolved differently. Recombinational analysis of all 15 CMV strains detected maximum recombination breakpoints in RNA2; CP showed the least recombination sites.

  12. Molecular characterization of Atractolytocestus sagittatus (Cestoda: Caryophyllidea), monozoic parasite of common carp, and its differentiation from the invasive species Atractolytocestus huronensis.

    PubMed

    Bazsalovicsová, Eva; Králová-Hromadová, Ivica; Stefka, Jan; Scholz, Tomáš

    2012-05-01

    Sequence structure of complete internal transcribed spacer 1 and 2 (ITS1 and ITS2) of the ribosomal DNA region and partial mitochondrial cytochrome c oxidase subunit I (cox1) gene sequences were studied in the monozoic tapeworm Atractolytocestus sagittatus (Kulakovskaya et Akhmerov, 1965) (Cestoda: Caryophyllidea), a parasite of common carp (Cyprinus carpio carpio L.). Intraindividual sequence diversity was observed in both ribosomal spacers. In ITS1, a total number of 19 recombinant clones yielded eight different sequence types (pairwise sequence identity, 99.7-100%) which, however, did not resemble the structure typical for divergent intragenomic ITS copies (paralogues). Polymorphism was displayed by several single nucleotide mutations present exclusively in single clones, but variation in the number of short repetitive motifs was not observed. In ITS2, a total of 21 recombinant clones yielded ten different sequence types (pairwise sequence identity, 97.5-100%). They were mostly characterized by a varying number of (TCGT)(n) repeats resulting in assortment of ITS2 sequences into two sequence variants, which reflected the structure specific for ITS paralogues. The third DNA region analysed, mitochondrial cox1 gene (669 bp) was detected to be 100% identical in all studied A. sagittatus individuals. Comparison of molecular data on A. sagittatus with those on Atractolytocestus huronensis Anthony, 1958, an invasive parasite of common carp, has shown that interspecific differences significantly exceeded intraspecific variation in both ribosomal spacers (81.4-82.5% in ITS1, 74.4-75.2% in ITS2) as well as in mitochondrial cox1, which confirms validity of both congeneric tapeworms parasitic in the same fish host.

  13. Whole-genome sequence analysis of the Mycobacterium avium complex and proposal of the transfer of Mycobacterium yongonense to Mycobacterium intracellulare subsp. yongonense subsp. nov.

    PubMed

    Castejon, Maria; Menéndez, Maria Carmen; Comas, Iñaki; Vicente, Ana; Garcia, Maria J

    2018-06-01

    Bacterial whole-genome sequences contain informative features of their evolutionary pathways. Comparison of whole-genome sequences have become the method of choice for classification of prokaryotes, thus allowing the identification of bacteria from an evolutionary perspective, and providing data to resolve some current controversies. Currently, controversy exists about the assignment of members of the Mycobacterium avium complex, as is for the cases of Mycobacterium yongonense and 'Mycobacterium indicus pranii'. These two mycobacteria, closely related to Mycobacterium intracellulare on the basis of standard phenotypic and single gene-sequences comparisons, were not considered a member of such species on the basis on some particular differences displayed by a single strain. Whole-genome sequence comparison procedures, namely the average nucleotide identity and the genome distance, showed that those two mycobacteria should be considered members of the species M. intracellulare. The results were confirmed with other whole-genome comparison supplementary methods. According to the data provided, Mycobacterium yongonense and 'Mycobacterium indicus pranii' should be considered and renamed and included as members of M. intracellulare. This study highlights the problems caused when a novel species is accepted on the basis of a single strain, as was the case for M. yongonense. Based mainly on whole-genome sequence analysis, we conclude that M. yongonense should be reclassified as a subspecies of Mycobacterium intracellulareas Mycobacterium intracellularesubsp. yongonense and 'Mycobacterium indicus pranii' classified in the same subspecies as the type strain of Mycobacterium intracellulare and classified as Mycobacterium intracellularesubsp. intracellulare.

  14. Reappraisal of the taxonomy of Streptococcus suis serotypes 20, 22 and 26: Streptococcus parasuis sp. nov.

    PubMed

    Nomoto, R; Maruyama, F; Ishida, S; Tohya, M; Sekizaki, T; Osawa, Ro

    2015-02-01

    In order to clarify the taxonomic position of serotypes 20, 22 and 26 of Streptococcus suis, biochemical and molecular genetic studies were performed on isolates (SUT-7, SUT-286(T), SUT-319, SUT-328 and SUT-380) reacted with specific antisera of serotypes 20, 22 or 26 from the saliva of healthy pigs as well as reference strains of serotypes 20, 22 and 26. Comparative recN gene sequencing showed high genetic relatedness among our isolates, but marked differences from the type strain S. suis NCTC 10234(T), i.e. 74.8-75.7 % sequence similarity. The genomic relatedness between the isolates and other strains of species of the genus Streptococcus, including S. suis, was calculated using the average nucleotide identity values of whole genome sequences, which indicated that serotypes 20, 22 and 26 should be removed taxonomically from S. suis and treated as a novel genomic species. Comparative sequence analysis revealed 99.0-100 % sequence similarities for the 16S rRNA genes between the reference strains of serotypes 20, 22 and 26, and our isolates. Isolate STU-286(T) had relatively high 16S rRNA gene sequence similarity with S. suis NCTC 10234(T) (98.8 %). SUT-286(T) could be distinguished from S. suis and other closely related species of the genus Streptococcus using biochemical tests. Due to its phylogenetic and phenotypic similarities to S. suis we propose naming the novel species Streptococcus parasuis sp. nov., with SUT-286(T) ( = JCM 30273(T) = DSM 29126(T)) as the type strain. © 2015 IUMS.

  15. Grapevine virus I, a putative new vitivirus detected in co-infection with grapevine virus G in New Zealand.

    PubMed

    Blouin, Arnaud G; Chooi, Kar Mun; Warren, Ben; Napier, Kathryn R; Barrero, Roberto A; MacDiarmid, Robin M

    2018-05-01

    A novel virus, with characteristics of viruses classified within the genus Vitivirus, was identified from a sample of Vitis vinifera cv. Chardonnay in New Zealand. The virus was detected with high throughput sequencing (small RNA and total RNA) and its sequence was confirmed by Sanger sequencing. Its genome is 7507 nt long (excluding the polyA tail) with an organisation similar to that described for other classifiable members of the genus Vitivirus. The closest relative of the virus is grapevine virus E (GVE) with 65% aa identity in ORF1 (65% nt identity) and 63% aa identity in the coat protein (66% nt identity). The relationship with GVE was confirmed with phylogenetic analysis, showing the new virus branching with GVE, Agave tequilina leaf virus and grapevine virus G (GVG). A limited survey revealed the presence of this virus in multiple plants from the same location where the newly described GVG was discovered, and in most cases both viruses were detected as co-infections. The genetic characteristics of this virus suggest it represents an isolate of a new species within the genus Vitivirus and following the current nomenclature, we propose the name "Grapevine virus I".

  16. Successful isolation and PCR amplification of DNA from National Institute of Standards and Technology herbal dietary supplement standard reference material powders and extracts.

    PubMed

    Cimino, Matthew T

    2010-03-01

    Twenty-four herbal dietary supplement powder and extract reference standards provided by the National Institute of Standards and Technology (NIST) were investigated using three different commercially available DNA extraction kits to evaluate DNA availability for downstream nucleotide-based applications. The material included samples of Camellia, Citrus, Ephedra, Ginkgo, Hypericum, Serenoa, And Vaccinium. Protocols from Qiagen, MoBio, and Phytopure were used to isolate and purify DNA from the NIST standards. The resulting DNA concentration was quantified using SYBR Green fluorometry. Each of the 24 samples yielded DNA, though the concentration of DNA from each approach was notably different. The Phytopure method consistently yielded more DNA. The average yield ratio was 22 : 3 : 1 (ng/microL; Phytopure : Qiagen : MoBio). Amplification of the internal transcribed spacer II region using PCR was ultimately successful in 22 of the 24 samples. Direct sequencing chromatograms of the amplified material suggested that most of the samples were comprised of mixtures. However, the sequencing chromatograms of 12 of the 24 samples were sufficient to confirm the identity of the target material. The successful extraction, amplification, and sequencing of DNA from these herbal dietary supplement extracts and powders supports a continued effort to explore nucleotide sequence-based tools for the authentication and identification of plants in dietary supplements. (c) Georg Thieme Verlag KG Stuttgart . New York.

  17. Alkane biodegradation genes from chronically polluted subantarctic coastal sediments and their shifts in response to oil exposure.

    PubMed

    Guibert, Lilian M; Loviso, Claudia L; Marcos, Magalí S; Commendatore, Marta G; Dionisi, Hebe M; Lozada, Mariana

    2012-10-01

    Although sediments are the natural hydrocarbon sink in the marine environment, the ecology of hydrocarbon-degrading bacteria in sediments is poorly understood, especially in cold regions. We studied the diversity of alkane-degrading bacterial populations and their response to oil exposure in sediments of a chronically polluted Subantarctic coastal environment, by analyzing alkane monooxygenase (alkB) gene libraries. Sequences from the sediment clone libraries were affiliated with genes described in Proteobacteria and Actinobacteria, with 67 % amino acid identity in average to sequences from isolated microorganisms. The majority of the sequences were most closely related to uncultured microorganisms from cold marine sediments or soils from high latitude regions, highlighting the role of temperature in the structuring of this bacterial guild. The distribution of alkB sequences among samples of different sites and years, and selection after experimental oil exposure allowed us to identify ecologically relevant alkB genes in Subantarctic sediments, which could be used as biomarkers for alkane biodegradation in this environment. 16 S rRNA amplicon pyrosequencing indicated the abundance of several genera for which no alkB genes have yet been described (Oleispira, Thalassospira) or that have not been previously associated with oil biodegradation (Spongiibacter-formerly Melitea-, Maribius, Robiginitomaculum, Bizionia and Gillisia). These genera constitute candidates for future work involving identification of hydrocarbon biodegradation pathway genes.

  18. Veillonella infantium sp. nov., an anaerobic, Gram-stain-negative coccus isolated from tongue biofilm of a Thai child.

    PubMed

    Mashima, Izumi; Liao, Yu-Chieh; Miyakawa, Hiroshi; Theodorea, Citra F; Thawboon, Boonyanit; Thaweboon, Sroisiri; Scannapieco, Frank A; Nakazawa, Futoshi

    2018-04-01

    A strain of a novel anaerobic, Gram-stain-negative coccus was isolated from the tongue biofilm of a Thai child. This strain was shown, at the phenotypic level and based on 16S rRNA gene sequencing, to be a member of the genus Veillonella. Comparative analysis of the 16S rRNA, dnaK and rpoB gene sequences indicated that phylogenetically the strain comprised a distinct novel branch within the genus Veillonella. The novel strain showed 99.8, 95.1 and 95.9 % similarity to partial 16S rRNA, dnaK and rpoB gene sequences, respectively, to the type strains of the two most closely related species, Veillonelladispar ATCC 17748 T and Veillonellatobetsuensis ATCC BAA-2400 T . The novel strain could be discriminated from previously reported species of the genus Veillonella based on partial dnaK and rpoB gene sequencing and average nucleotide identity values. The major acid end-product produced by this strain was acetic acid under anaerobic conditions in trypticase-yeast extract-haemin with 1 % (w/v) glucose or fructose medium. Lactate was fermented to acetic acid and propionic acid. Based on these observations, this strain represents a novel species, for which the name Veillonella infantium sp. nov. is proposed. The type strain is T11011-4 T (=JCM 31738 T =TSD-88 T ).

  19. The genome sequence of 'Mycobacterium massiliense' strain CIP 108297 suggests the independent taxonomic status of the Mycobacterium abscessus complex at the subspecies level.

    PubMed

    Cho, Yong-Joon; Yi, Hana; Chun, Jongsik; Cho, Sang-Nae; Daley, Charles L; Koh, Won-Jung; Shin, Sung Jae

    2013-01-01

    Members of the Mycobacterium abscessus complex are rapidly growing mycobacteria that are emerging as human pathogens. The M. abscessus complex was previously composed of three species, namely M. abscessus sensu stricto, 'M. massiliense', and 'M. bolletii'. In 2011, 'M. massiliense' and 'M. bolletii' were united and reclassified as a single subspecies within M. abscessus: M. abscessus subsp. bolletii. However, the placement of 'M. massiliense' within the boundary of M. abscessus subsp. bolletii remains highly controversial with regard to clinical aspects. In this study, we revisited the taxonomic status of members of the M. abscessus complex based on comparative analysis of the whole-genome sequences of 53 strains. The genome sequence of the previous type strain of 'Mycobacterium massiliense' (CIP 108297) was determined using next-generation sequencing. The genome tree based on average nucleotide identity (ANI) values supported the differentiation of 'M. bolletii' and 'M. massiliense' at the subspecies level. The genome tree also clearly illustrated that 'M. bolletii' and 'M. massiliense' form a distinct phylogenetic clade within the radiation of the M. abscessus complex. The genomic distances observed in this study suggest that the current M. abscessus subsp. bolletii taxon should be divided into two subspecies, M. abscessus subsp. massiliense subsp. nov. and M. abscessus subsp. bolletii, to correspondingly accommodate the previously known 'M. massiliense' and 'M. bolletii' strains.

  20. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level.

    PubMed

    Rodriguez-R, Luis M; Gunturu, Santosh; Harvey, William T; Rosselló-Mora, Ramon; Tiedje, James M; Cole, James R; Konstantinidis, Konstantinos T

    2018-06-14

    The small subunit ribosomal RNA gene (16S rRNA) has been successfully used to catalogue and study the diversity of prokaryotic species and communities but it offers limited resolution at the species and finer levels, and cannot represent the whole-genome diversity and fluidity. To overcome these limitations, we introduced the Microbial Genomes Atlas (MiGA), a webserver that allows the classification of an unknown query genomic sequence, complete or partial, against all taxonomically classified taxa with available genome sequences, as well as comparisons to other related genomes including uncultivated ones, based on the genome-aggregate Average Nucleotide and Amino Acid Identity (ANI/AAI) concepts. MiGA integrates best practices in sequence quality trimming and assembly and allows input to be raw reads or assemblies from isolate genomes, single-cell sequences, and metagenome-assembled genomes (MAGs). Further, MiGA can take as input hundreds of closely related genomes of the same or closely related species (a so-called 'Clade Project') to assess their gene content diversity and evolutionary relationships, and calculate important clade properties such as the pangenome and core gene sets. Therefore, MiGA is expected to facilitate a range of genome-based taxonomic and diversity studies, and quality assessment across environmental and clinical settings. MiGA is available at http://microbial-genomes.org/.

  1. Vacuolar H[sup +]-ATPase 69-kilodalton catalytic subunit cDNA from developing cotton (Gossypium hirsutum) ovules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkins, T.A.

    1993-06-01

    This study investigates the molecular events of vacuole ontogeny in rapidly elongated cotton plant cells. Within the DNA coding region, the cotton and carrot cDNA clones exhibit 82.2% nucleotide sequence homology; at the amino acid level cotton and carrot catalytic subunits exhibited 95.7% identity and 2.1% amino acid similarity. When aligned with the analogous sequences from yeast, the cotton protein shared only 60.5% amino acid identity and 12.7% similarity. 10 refs., 1 tab.

  2. Molecular detection of kobuviruses in European roe deer (Capreolus capreolus) in Italy.

    PubMed

    Di Martino, Barbara; Di Profio, Federica; Melegari, Irene; Di Felice, Elisabetta; Robetto, Serena; Guidetti, Cristina; Orusa, Riccardo; Martella, Vito; Marsilio, Fulvio

    2015-08-01

    Kobuvirus RNA was found in 6.6 % (13/198) of stool specimens from roe deer (Capreolus capreolus) captured during the regular hunting season. Upon sequence analysis of a fragment of the 3D gene, nine strains displayed the highest nucleotide sequence identity (91.2-97.4 %) to bovine kobuviruses previously detected in either diarrhoeic or asymptomatic calves. Interestingly, four strains were genetically related to the newly discovered caprine kobuviruses (84.2-87.6 % nucleotide identity) identified in black goats in Korea.

  3. Some identities of generalized Fibonacci sequence

    NASA Astrophysics Data System (ADS)

    Chong, Chin-Yoon; Cheah, C. L.; Ho, C. K.

    2014-07-01

    We introduced the generalized Fibonacci sequence {Un} defined by U0 = 0, U1 = 1, and Un+2 = pUn+1+qUn for all p, q∈Z+ and for all non-negative integers n. In this paper, we obtained some recursive formulas of the sequence.

  4. Complete genome sequence of a new maize-associated cytorhabdovirus

    USDA-ARS?s Scientific Manuscript database

    A new 11,877 nt cytorhabdovirus sequence with 6 open reading frames has been identified in a maize sample. It shares 50 and 51% genome-wide nucleotide sequence identity with northern cereal mosaic cytorhabdovirus (NCMV) and barley yellow striate mosaic cytorhabdovirus (BYSMV), respectively....

  5. Sequence Variation in the Small-Subunit rRNA Gene of Plasmodium malariae and Prevalence of Isolates with the Variant Sequence in Sichuan, China

    PubMed Central

    Liu, Qing; Zhu, Shenghua; Mizuno, Sahoko; Kimura, Masatsugu; Liu, Peina; Isomura, Shin; Wang, Xingzhen; Kawamoto, Fumihiko

    1998-01-01

    By two PCR-based diagnostic methods, Plasmodium malariae infections have been rediscovered at two foci in the Sichuan province of China, a region where no cases of P. malariae have been officially reported for the last 2 decades. In addition, a variant form of P. malariae which has a deletion of 19 bp and seven substitutions of base pairs in the target sequence of the small-subunit (SSU) rRNA gene was detected with high frequency. Alignment analysis of Plasmodium sp. SSU rRNA gene sequences revealed that the 5′ region of the variant sequence is identical to that of P. vivax or P. knowlesi and its 3′ region is identical to that of P. malariae. The same sequence variations were also found in P. malariae isolates collected along the Thai-Myanmar border, suggesting a wide distribution of this variant form from southern China to Southeast Asia. PMID:9774600

  6. Sequence analysis of MHC class I α2 from sockeye salmon (Oncorhynchus nerka).

    PubMed

    McClelland, Erin K; Ming, Tobi J; Tabata, Amy; Miller, Kristina M

    2011-09-01

    Most studies assessing adaptive MHC diversity in salmon populations have focused on the classical class II DAB or DAA loci, as these have been most amenable to single PCR amplifications due to their relatively low level of sequence divergence. Herein, we report the characterization of the classical class I UBA α2 locus based on collections taken throughout the species range of sockeye salmon (Oncorhynchus nerka). Through use of multiple lineage-specific primer sets, denaturing gradient gel electrophoresis and sequencing, we identified thirty-four alleles from three highly divergent lineages. Sequence identity between lineages ranged from 30.0% to 56.8% but was relatively high within lineages. Allelic identity within the antigen recognition site (ARS) was greater than for the longer sequence. Global positive selection on UBA was seen at the sequence level (dN:dS = 1.012) with four codons under positive selection and 12 codons under negative selection. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  7. Increasing Sequence Diversity with Flexible Backbone Protein Design: The Complete Redesign of a Protein Hydrophobic Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Grant S.; Mills, Jeffrey L.; Miley, Michael J.

    2015-10-15

    Protein design tests our understanding of protein stability and structure. Successful design methods should allow the exploration of sequence space not found in nature. However, when redesigning naturally occurring protein structures, most fixed backbone design algorithms return amino acid sequences that share strong sequence identity with wild-type sequences, especially in the protein core. This behavior places a restriction on functional space that can be explored and is not consistent with observations from nature, where sequences of low identity have similar structures. Here, we allow backbone flexibility during design to mutate every position in the core (38 residues) of a four-helixmore » bundle protein. Only small perturbations to the backbone, 12 {angstrom}, were needed to entirely mutate the core. The redesigned protein, DRNN, is exceptionally stable (melting point >140C). An NMR and X-ray crystal structure show that the side chains and backbone were accurately modeled (all-atom RMSD = 1.3 {angstrom}).« less

  8. Comparison of the nucleotide and amino acid sequences of the RsrI and EcoRI restriction endonucleases.

    PubMed

    Stephenson, F H; Ballard, B T; Boyer, H W; Rosenberg, J M; Greene, P J

    1989-12-21

    The RsrI endonuclease, a type-II restriction endonuclease (ENase) found in Rhodobacter sphaeroides, is an isoschizomer of the EcoRI ENase. A clone containing an 11-kb BamHI fragment was isolated from an R. sphaeroides genomic DNA library by hybridization with synthetic oligodeoxyribonucleotide probes based on the N-terminal amino acid (aa) sequence of RsrI. Extracts of E. coli containing a subclone of the 11-kb fragment display RsrI activity. Nucleotide sequence analysis reveals an 831-bp open reading frame encoding a polypeptide of 277 aa. A 50% identity exists within a 266-aa overlap between the deduced aa sequences of RsrI and EcoRI. Regions of 75-100% aa sequence identity correspond to key structural and functional regions of EcoRI. The type-II ENases have many common properties, and a common origin might have been expected. Nevertheless, this is the first demonstration of aa sequence similarity between ENases produced by different organisms.

  9. Expressed sequence tags from the oomycete fish pathogen Saprolegnia parasitica reveal putative virulence factors

    PubMed Central

    Torto-Alalibo, Trudy; Tian, Miaoying; Gajendran, Kamal; Waugh, Mark E; van West, Pieter; Kamoun, Sophien

    2005-01-01

    Background The oomycete Saprolegnia parasitica is one of the most economically important fish pathogens. There is a dramatic recrudescence of Saprolegnia infections in aquaculture since the use of the toxic organic dye malachite green was banned in 2002. Little is known about the molecular mechanisms underlying pathogenicity in S. parasitica and other animal pathogenic oomycetes. In this study we used a genomics approach to gain a first insight into the transcriptome of S. parasitica. Results We generated 1510 expressed sequence tags (ESTs) from a mycelial cDNA library of S. parasitica. A total of 1279 consensus sequences corresponding to 525944 base pairs were assembled. About half of the unigenes showed similarities to known protein sequences or motifs. The S. parasitica sequences tended to be relatively divergent from Phytophthora sequences. Based on the sequence alignments of 18 conserved proteins, the average amino acid identity between S. parasitica and three Phytophthora species was 77% compared to 93% within Phytophthora. Several S. parasitica cDNAs, such as those with similarity to fungal type I cellulose binding domain proteins, PAN/Apple module proteins, glycosyl hydrolases, proteases, as well as serine and cysteine protease inhibitors, were predicted to encode secreted proteins that could function in virulence. Some of these cDNAs were more similar to fungal proteins than to other eukaryotic proteins confirming that oomycetes and fungi share some virulence components despite their evolutionary distance Conclusion We provide a first glimpse into the gene content of S. parasitica, a reemerging oomycete fish pathogen. These resources will greatly accelerate research on this important pathogen. The data is available online through the Oomycete Genomics Database [1]. PMID:16076392

  10. Initial Detection and Molecular Characterization of Namaycush Herpesvirus (Salmonid Herpesvirus 5) in Lake Trout.

    PubMed

    Glenney, Gavin W; Barbash, Patricia A; Coll, John A

    2016-03-01

    A novel herpesvirus was found by molecular methods in samples of Lake Trout Salvelinus namaycush from Lake Erie, Pennsylvania, and Lake Ontario, Keuka Lake, and Lake Otsego, New York. Based on PCR amplification and partial sequencing of polymerase, terminase, and glycoprotein genes, a number of isolates were identified as a novel virus, which we have named Namaycush herpesvirus (NamHV) salmonid herpesvirus 5 (SalHV5). Phylogenetic analyses of three NamHV genes indicated strong clustering with other members of the genus Salmonivirus, placing these isolates into family Alloherpesviridae. The NamHV isolates were identical in the three partially sequenced genes; however, they varied from other salmonid herpesviruses in nucleotide sequence identity. In all three of the genes sequenced, NamHV shared the highest sequence identity with Atlantic Salmon papillomatosis virus (ASPV; SalHV4) isolated from Atlantic Salmon Salmo salar in northern Europe, including northwestern Russia. These results lead one to believe that NamHV and ASPV have a common ancestor that may have made a relatively recent host jump from Atlantic Salmon to Lake Trout or vice versa. Partial nucleotide sequence comparisons between NamHV and ASPV for the polymerase and glycoprotein genes differ by >5% and >10%, respectively. Additional nucleotide sequence comparisons between NamHV and epizootic epitheliotropic disease virus (EEDV/SalHV3) in the terminase, glycoprotein, and polymerase genes differ by >5%, >20%, and >10%, respectively. Thus, NamHV and EEDV may be occupying discrete ecological niches in Lake Trout. Even though NamHV shared the highest genetic identity with ASPV, each of these viruses has a separate host species, which also implies speciation. Additionally, NamHV has been detected over the last 4 years in four separate water bodies across two states, which suggests that NamHV is a distinct, naturally replicating lineage. This, in combination with a divergence in nucleotide sequence from EEDV, indicates that NamHV is a new species in the genus Salmonivirus. Received April 20, 2015; accepted October 11, 2015.

  11. Complete genome sequence of a novel genotype of squash mosaic virus

    USDA-ARS?s Scientific Manuscript database

    Complete genome sequence of a novel genotype of Squash mosaic virus (SqMV) infecting squash plants in Spain was obtained using deep sequencing of small ribonucleic acids and assembly. The low nucleotide sequence identities, with 87-88% on RNA1 and 84-86% on RNA2 to known SqMV isolates, suggest a new...

  12. First complete genome sequence of an emerging cucumber green mottle mosaic virus isolate in North America

    USDA-ARS?s Scientific Manuscript database

    The complete genome sequence (6,423 nt) of an emerging Cucumber green mottle mosaic virus (CGMMV) isolate on cucumber in North America was determined through deep sequencing of sRNA and rapid amplification of cDNA ends. It shares 99% nucleotide sequence identity to the Asian genotype, but only 90% t...

  13. First report of Beet western yellows virus infecting Epiphyllum spp

    USDA-ARS?s Scientific Manuscript database

    Beet western yellow virus (BWYV) was identified from an orchid cactus (Epiphyllum spp.) hybrid without obvious symptoms by high-throughput sequencing. The nearly complete genomic sequence of 5,458 nucleotides of the virus was determined. The isolate has the highest nucleotide sequence identity (93%)...

  14. A new betasatellite associated with cotton leaf curl Burewala virus infecting tomato in India: influence on symptoms and viral accumulation.

    PubMed

    Kumar, Jitendra; Gunapati, Samatha; Singh, Sudhir P; Kumar, Abhinav; Lalit, Adarsh; Sharma, Naresh C; Puranik, Rekha; Tuli, Rakesh

    2013-06-01

    A begomovirus and its associated alpha- and betasatellite were detected in tomato plants affected with leaf curl disease. Based on a nucleotide sequence identity of 99 %, this begomovirus was designated an isolate of cotton leaf curl Burewala virus (CLCuBuV). The alphasatellite exhibited 93 % sequence identity to cotton leaf curl Burewala alphasatellite (CLCuBuA) and is hence referred to here as a variant of CLCuBuA. The detected betasatellite was recombinant in nature and showed 70 % sequence identity to the known betasatellites. Inoculation of healthy tomato with CLCuBuV plus betasatellite, either in the presence or the absence of alphasatellite, led to typical leaf curling, while inoculation with CLCuBuV in the absence of betasatellite resulted in mild symptoms. This confirmed the role of the betasatellite in expression of disease symptoms. We propose to name the newly detected betasatellite tomato leaf curl Hajipur betasatellite (ToLCHJB).

  15. An Accurate Scalable Template-based Alignment Algorithm

    PubMed Central

    Gardner, David P.; Xu, Weijia; Miranker, Daniel P.; Ozer, Stuart; Cannone, Jamie J.; Gutell, Robin R.

    2013-01-01

    The rapid determination of nucleic acid sequences is increasing the number of sequences that are available. Inherent in a template or seed alignment is the culmination of structural and functional constraints that are selecting those mutations that are viable during the evolution of the RNA. While we might not understand these structural and functional, template-based alignment programs utilize the patterns of sequence conservation to encapsulate the characteristics of viable RNA sequences that are aligned properly. We have developed a program that utilizes the different dimensions of information in rCAD, a large RNA informatics resource, to establish a profile for each position in an alignment. The most significant include sequence identity and column composition in different phylogenetic taxa. We have compared our methods with a maximum of eight alternative alignment methods on different sets of 16S and 23S rRNA sequences with sequence percent identities ranging from 50% to 100%. The results showed that CRWAlign outperformed the other alignment methods in both speed and accuracy. A web-based alignment server is available at http://www.rna.ccbb.utexas.edu/SAE/2F/CRWAlign. PMID:24772376

  16. rRNA Gene Internal Transcribed Spacer 1 and 2 Sequences of Asexual, Anthropophilic Dermatophytes Related to Trichophyton rubrum

    PubMed Central

    Summerbell, R. C.; Haugland, R. A.; Li, A.; Gupta, A. K.

    1999-01-01

    The ribosomal region spanning the two internal transcribed spacer (ITS) regions and the 5.8S ribosomal DNA region was sequenced for asexual, anthropophilic dermatophyte species with morphological similarity to Trichophyton rubrum, as well as for members of the three previously delineated, related major clades in the T. mentagrophytes complex. Representative isolates of T. raubitschekii, T. fischeri, and T. kanei were found to have ITS sequences identical to that of T. rubrum. The ITS sequences of T. soudanense and T. megninii differed from that of T. rubrum by only a small number of base pairs. Their continued status as species, however, appears to meet criteria outlined in the population genetics-based cohesion species concept of A. R. Templeton. The ITS sequence of T. tonsurans differed from that of the biologically distinct T. equinum by only 1 bp, while the ITS sequence of the recently described species T. krajdenii had a sequence identical to that of T. mentagrophytes isolates related to the teleomorph Arthroderma vanbreuseghemii. PMID:10565922

  17. Rapid and accurate pyrosequencing of angiosperm plastid genomes

    PubMed Central

    Moore, Michael J; Dhingra, Amit; Soltis, Pamela S; Shaw, Regina; Farmerie, William G; Folta, Kevin M; Soltis, Douglas E

    2006-01-01

    Background Plastid genome sequence information is vital to several disciplines in plant biology, including phylogenetics and molecular biology. The past five years have witnessed a dramatic increase in the number of completely sequenced plastid genomes, fuelled largely by advances in conventional Sanger sequencing technology. Here we report a further significant reduction in time and cost for plastid genome sequencing through the successful use of a newly available pyrosequencing platform, the Genome Sequencer 20 (GS 20) System (454 Life Sciences Corporation), to rapidly and accurately sequence the whole plastid genomes of the basal eudicot angiosperms Nandina domestica (Berberidaceae) and Platanus occidentalis (Platanaceae). Results More than 99.75% of each plastid genome was simultaneously obtained during two GS 20 sequence runs, to an average depth of coverage of 24.6× in Nandina and 17.3× in Platanus. The Nandina and Platanus plastid genomes shared essentially identical gene complements and possessed the typical angiosperm plastid structure and gene arrangement. To assess the accuracy of the GS 20 sequence, over 45 kilobases of sequence were generated for each genome using conventional sequencing. Overall error rates of 0.043% and 0.031% were observed in GS 20 sequence for Nandina and Platanus, respectively. More than 97% of all observed errors were associated with homopolymer runs, with ~60% of all errors associated with homopolymer runs of 5 or more nucleotides and ~50% of all errors associated with regions of extensive homopolymer runs. No substitution errors were present in either genome. Error rates were generally higher in the single-copy and noncoding regions of both plastid genomes relative to the inverted repeat and coding regions. Conclusion Highly accurate and essentially complete sequence information was obtained for the Nandina and Platanus plastid genomes using the GS 20 System. More importantly, the high accuracy observed in the GS 20 plastid genome sequence was generated for a significant reduction in time and cost over traditional shotgun-based genome sequencing techniques, although with approximately half the coverage of previously reported GS 20 de novo genome sequence. The GS 20 should be broadly applicable to angiosperm plastid genome sequencing, and therefore promises to expand the scale of plant genetic and phylogenetic research dramatically. PMID:16934154

  18. Sarcocystis spp. in domestic sheep in Kunming City, China: prevalence, morphology, and molecular characteristics.

    PubMed

    Hu, Jun-Jie; Huang, Si; Wen, Tao; Esch, Gerald W; Liang, Yu; Li, Hong-Liang

    2017-01-01

    Sheep (Ovis aries) are intermediate hosts for at least six named species of Sarcocystis: S. tenella, S. arieticanis, S. gigantea, S. medusiformis, S. mihoensis, and S. microps. Here, only two species, S. tenella and S. arieticanis, were found in 79 of 86 sheep (91.9%) in Kunming, China, based on their morphological characteristics. Four genetic markers, i.e., 18S rRNA gene, 28S rRNA gene, mitochondrial cox1 gene, and ITS-1 region, were sequenced and characterized for the two species of Sarcocystis. Sequences of the three former markers for S. tenella shared high identities with those of S. capracanis in goats, i.e., 99.0%, 98.3%, and 93.6%, respectively; the same three marker sequences of S. arieticanis shared high identities with those of S. hircicanis in goats, i.e., 98.5%, 96.5%, and 92.5%, respectively. No sequences in GenBank were found to significantly resemble the ITS-1 regions of S. tenella and S. arieticanis. Identities of the four genetic markers for S. tenella and S. arieticanis were 96.3%, 95.4%, 82.5%, and 66.2%, respectively. © J.-J. Hu et al., published by EDP Sciences, 2017.

  19. Evidence of three new members of malignant catarrhal fever virus group in Muskox (Ovibos moschatus), Nubian ibex (Capra nubiana), and gemsbok (Oryx gazella)

    USGS Publications Warehouse

    Li, H.; Gailbreath, K.; Bender, L.C.; West, K.; Keller, J.; Crawford, T.B.

    2003-01-01

    Six members of the malignant catarrhal fever (MCF) virus group of ruminant rhadinoviruses have been identified to date. Four of these viruses are clearly associated with clinical disease: alcelaphine herpesvirus 1 (AlHV-1) carried by wildebeest (Connochaetes spp.); ovine herpesvirus 2 (OvHV-2), ubiquitous in domestic sheep; caprine herpesvirus 2 (CpHV-2), endemic in domestic goats; and the virus of unknown origin found causing classic MCF in white-tailed deer (Odocoileus virginianus; MCFV-WTD). Using serology and polymerase chain reaction with degenerate primers targeting a portion of the herpesviral DNA polymerase gene, evidence of three previously unrecognized rhadinoviruses in the MCF virus group was found in muskox (Ovibos moschatus), Nubian ibex (Capra nubiana), and gemsbok (South African oryx, Oryx gazella), respectively. Based on sequence alignment, the viral sequence in the muskox is most closely related to MCFV-WTD (81.5% sequence identity) and that in the Nubian ibex is closest to CpHV-2 (89.3% identity). The viral sequence in the gemsbok is most closely related to AlHV-1 (85.1% identity). No evidence of disease association with these viruses has been found. ?? Wildlife Disease Association 2003.

  20. Norm-based coding of facial identity in adults with autism spectrum disorder.

    PubMed

    Walsh, Jennifer A; Maurer, Daphne; Vida, Mark D; Rhodes, Gillian; Jeffery, Linda; Rutherford, M D

    2015-03-01

    It is unclear whether reported deficits in face processing in individuals with autism spectrum disorders (ASD) can be explained by deficits in perceptual face coding mechanisms. In the current study, we examined whether adults with ASD showed evidence of norm-based opponent coding of facial identity, a perceptual process underlying the recognition of facial identity in typical adults. We began with an original face and an averaged face and then created an anti-face that differed from the averaged face in the opposite direction from the original face by a small amount (near adaptor) or a large amount (far adaptor). To test for norm-based coding, we adapted participants on different trials to the near versus far adaptor, then asked them to judge the identity of the averaged face. We varied the size of the test and adapting faces in order to reduce any contribution of low-level adaptation. Consistent with the predictions of norm-based coding, high functioning adults with ASD (n = 27) and matched typical participants (n = 28) showed identity aftereffects that were larger for the far than near adaptor. Unlike results with children with ASD, the strength of the aftereffects were similar in the two groups. This is the first study to demonstrate norm-based coding of facial identity in adults with ASD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Mitochondrial DNA Evidence Supports the Hypothesis that Triodontophorus Species Belong to Cyathostominae

    PubMed Central

    Gao, Yuan; Zhang, Yan; Yang, Xin; Qiu, Jian-Hua; Duan, Hong; Xu, Wen-Wen; Chang, Qiao-Cheng; Wang, Chun-Ren

    2017-01-01

    Equine strongyles, the significant nematode pathogens of horses, are characterized by high quantities and species abundance, but classification of this group of parasitic nematodes is debated. Mitochondrial (mt) genome DNA data are often used to address classification controversies. Thus, the objectives of this study were to determine the complete mt genomes of three Cyathostominae nematode species (Cyathostomum catinatum, Cylicostephanus minutus, and Poteriostomum imparidentatum) of horses and reconstruct the phylogenetic relationship of Strongylidae with other nematodes in Strongyloidea to test the hypothesis that Triodontophorus spp. belong to Cyathostominae using the mt genomes. The mt genomes of Cy. catinatum, Cs. minutus, and P. imparidentatum were 13,838, 13,826, and 13,817 bp in length, respectively. Complete mt nucleotide sequence comparison of all Strongylidae nematodes revealed that sequence identity ranged from 77.8 to 91.6%. The mt genome sequences of Triodontophorus species had relatively high identity with Cyathostominae nematodes, rather than Strongylus species of the same subfamily (Strongylinae). Comparative analyses of mt genome organization for Strongyloidea nematodes sequenced to date revealed that members of this superfamily possess identical gene arrangements. Phylogenetic analyses using mtDNA data indicated that the Triodontophorus species clustered with Cyathostominae species instead of Strongylus species. The present study first determined the complete mt genome sequences of Cy. catinatum, Cs. minutus, and P. imparidentatum, which will provide novel genetic markers for further studies of Strongylidae taxonomy, population genetics, and systematics. Importantly, sequence comparison and phylogenetic analyses based on mtDNA sequences supported the hypothesis that Triodontophorus belongs to Cyathostominae. PMID:28824575

  2. Genetic Characteristics of Coronaviruses from Korean Bats in 2016.

    PubMed

    Lee, Saemi; Jo, Seong-Deok; Son, Kidong; An, Injung; Jeong, Jipseol; Wang, Seung-Jun; Kim, Yongkwan; Jheong, Weonhwa; Oem, Jae-Ku

    2018-01-01

    Bats have increasingly been recognized as the natural reservoir of severe acute respiratory syndrome (SARS), coronavirus, and other coronaviruses found in mammals. However, little research has been conducted on bat coronaviruses in South Korea. In this study, bat samples (332 oral swabs, 245 fecal samples, 38 urine samples, and 57 bat carcasses) were collected at 33 natural bat habitat sites in South Korea. RT-PCR and sequencing were performed for specific coronavirus genes to identify the bat coronaviruses in different bat samples. Coronaviruses were detected in 2.7% (18/672) of the samples: 13 oral swabs from one species of the family Rhinolophidae, and four fecal samples and one carcass (intestine) from three species of the family Vespertiliodae. To determine the genetic relationships of the 18 sequences obtained in this study and previously known coronaviruses, the nucleotide sequences of a 392-nt region of the RNA-dependent RNA polymerase (RdRp) gene were analyzed phylogenetically. Thirteen sequences belonging to SARS-like betacoronaviruses showed the highest nucleotide identity (97.1-99.7%) with Bat-CoV-JTMC15 reported in China. The other five sequences were most similar to MERS-like betacoronaviruses. Four nucleotide sequences displayed the highest identity (94.1-95.1%) with Bat-CoV-HKU5 from Hong Kong. The one sequence from a carcass showed the highest nucleotide identity (99%) with Bat-CoV-SC2013 from China. These results suggest that careful surveillance of coronaviruses from bats should be continued, because animal and human infections may result from the genetic variants present in bat coronavirus reservoirs.

  3. Homology-based Modeling of Rhodopsin-like Family Members in the Inactive State: Structural Analysis and Deduction of Tips for Modeling and Optimization.

    PubMed

    Pappalardo, Matteo; Rayan, Mahmoud; Abu-Lafi, Saleh; Leonardi, Martha E; Milardi, Danilo; Guccione, Salvatore; Rayan, Anwar

    2017-08-01

    Modeling G-Protein Coupled Receptors (GPCRs) is an emergent field of research, since utility of high-quality models in receptor structure-based strategies might facilitate the discovery of interesting drug candidates. The findings from a quantitative analysis of eighteen resolved structures of rhodopsin family "A" receptors crystallized with antagonists and 153 pairs of structures are described. A strategy termed endeca-amino acids fragmentation was used to analyze the structures models aiming to detect the relationship between sequence identity and Root Mean Square Deviation (RMSD) at each trans-membrane-domain. Moreover, we have applied the leave-one-out strategy to study the shiftiness likelihood of the helices. The type of correlation between sequence identity and RMSD was studied using the aforementioned set receptors as representatives of membrane proteins and 98 serine proteases with 4753 pairs of structures as representatives of globular proteins. Data analysis using fragmentation strategy revealed that there is some extent of correlation between sequence identity and global RMSD of 11AA width windows. However, spatial conservation is not always close to the endoplasmic side as was reported before. A comparative study with globular proteins shows that GPCRs have higher standard deviation and higher slope in the graph with correlation between sequence identity and RMSD. The extracted information disclosed in this paper could be incorporated in the modeling protocols while using technique for model optimization and refinement. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cloning and Sequence Analysis of Vibrio halioticoli Genes Encoding Three Types of Polyguluronate Lyase.

    PubMed

    Sugimura; Sawabe; Ezura

    2000-01-01

    The alginate lyase-coding genes of Vibrio halioticoli IAM 14596(T), which was isolated from the gut of the abalone Haliotis discus hannai, were cloned using plasmid vector pUC 18, and expressed in Escherichia coli. Three alginate lyase-positive clones, pVHB, pVHC, and pVHE, were obtained, and all clones expressed the enzyme activity specific for polyguluronate. Three genes, alyVG1, alyVG2, and alyVG3, encoding polyguluronate lyase were sequenced: alyVG1 from pVHB was composed of a 1056-bp open reading frame (ORF) encoding 352 amino acid residues; alyVG2 gene from pVHC was composed of a 993-bp ORF encoding 331 amino acid residues; and alyVG3 gene from pVHE was composed of a 705-bp ORF encoding 235 amino acid residues. Comparison of nucleotide and deduced amino acid sequences among AlyVG1, AlyVG2, and AlyVG3 revealed low homologies. The identity value between AlyVG1 and AlyVG2 was 18.7%, and that between AlyVG2 and AlyVG3 was 17.0%. A higher identity value (26.0%) was observed between AlyVG1 and AlyVG3. Sequence comparison among known polyguluronate lyases including AlyVG1, AlyVG2, and AlyVG3 also did not reveal an identical region in these sequences. However, AlyVG1 showed the highest identity value (36.2%) and the highest similarity (73.3%) to AlyA from Klebsiella pneumoniae. A consensus region comprising nine amino acid (YFKAGXYXQ) in the carboxy-terminal region previously reported by Mallisard and colleagues was observed only in AlyVG1 and AlyVG2.

  5. Identification of a third feline Demodex species through partial sequencing of the 16S rDNA and frequency of Demodex species in 74 cats using a PCR assay.

    PubMed

    Ferreira, Diana; Sastre, Natalia; Ravera, Iván; Altet, Laura; Francino, Olga; Bardagí, Mar; Ferrer, Lluís

    2015-08-01

    Demodex cati and Demodex gatoi are considered the two Demodex species of cats. However, several reports have identified Demodex mites morphologically different from these two species. The differentiation of Demodex mites is usually based on morphology, but within the same species different morphologies can occur. DNA amplification/sequencing has been used effectively to identify and differentiate Demodex mites in humans, dogs and cats. The aim was to develop a PCR technique to identify feline Demodex mites and use this technique to investigate the frequency of Demodex in cats. Demodex cati, D. gatoi and Demodex mites classified morphologically as the third unnamed feline species were obtained. Hair samples were taken from 74 cats. DNA was extracted; a 330 bp fragment of the 16S rDNA was amplified and sequenced. The sequences of D. cati and D. gatoi shared >98% identity with those published on GenBank. The sequence of the third unnamed species showed 98% identity with a recently published feline Demodex sequence and only 75.2 and 70.9% identity with D. gatoi and D. cati sequences, respectively. Demodex DNA was detected in 19 of 74 cats tested; 11 DNA sequences corresponded to Demodex canis, five to Demodex folliculorum, three to D. cati and two to Demodex brevis. Three Demodex species can be found in cats, because the third unnamed Demodex species is likely to be a distinct species. Apart from D. cati and D. gatoi, DNA from D. canis, D. folliculorum and D. brevis was found on feline skin. © 2015 ESVD and ACVD.

  6. Piscine reovirus: Genomic and molecular phylogenetic analysis from farmed and wild salmonids collected on the Canada/US Pacific Coast

    USGS Publications Warehouse

    Siah, Ahmed; Morrison, Diane B.; Fringuelli, Elena; Savage, Paul S.; Richmond, Zina; Purcell, Maureen K.; Johns, Robert; Johnson, Stewart C.; Sakasida, Sonja M.

    2015-01-01

    Piscine reovirus (PRV) is a double stranded non-enveloped RNA virus detected in farmed and wild salmonids. This study examined the phylogenetic relationships among different PRV sequence types present in samples from salmonids in Western Canada and the US, including Alaska (US), British Columbia (Canada) and Washington State (US). Tissues testing positive for PRV were partially sequenced for segment S1, producing 71 sequences that grouped into 10 unique sequence types. Sequence analysis revealed no identifiable geographical or temporal variation among the sequence types. Identical sequence types were found in fish sampled in 2001, 2005 and 2014. In addition, PRV positive samples from fish derived from Alaska, British Columbia and Washington State share identical sequence types. Comparative analysis of the phylogenetic tree indicated that Canada/US Pacific Northwest sequences formed a subgroup with some Norwegian sequence types (group II), distinct from other Norwegian and Chilean sequences (groups I, III and IV). Representative PRV positive samples from farmed and wild fish in British Columbia and Washington State were subjected to genome sequencing using next generation sequencing methods. Individual analysis of each of the 10 partial segments indicated that the Canadian and US PRV sequence types clustered separately from available whole genome sequences of some Norwegian and Chilean sequences for all segments except the segment S4. In summary, PRV was genetically homogenous over a large geographic distance (Alaska to Washington State), and the sequence types were relatively stable over a 13 year period.

  7. Piscine Reovirus: Genomic and Molecular Phylogenetic Analysis from Farmed and Wild Salmonids Collected on the Canada/US Pacific Coast

    PubMed Central

    Siah, Ahmed; Morrison, Diane B.; Fringuelli, Elena; Savage, Paul; Richmond, Zina; Johns, Robert; Purcell, Maureen K.; Johnson, Stewart C.; Saksida, Sonja M.

    2015-01-01

    Piscine reovirus (PRV) is a double stranded non-enveloped RNA virus detected in farmed and wild salmonids. This study examined the phylogenetic relationships among different PRV sequence types present in samples from salmonids in Western Canada and the US, including Alaska (US), British Columbia (Canada) and Washington State (US). Tissues testing positive for PRV were partially sequenced for segment S1, producing 71 sequences that grouped into 10 unique sequence types. Sequence analysis revealed no identifiable geographical or temporal variation among the sequence types. Identical sequence types were found in fish sampled in 2001, 2005 and 2014. In addition, PRV positive samples from fish derived from Alaska, British Columbia and Washington State share identical sequence types. Comparative analysis of the phylogenetic tree indicated that Canada/US Pacific Northwest sequences formed a subgroup with some Norwegian sequence types (group II), distinct from other Norwegian and Chilean sequences (groups I, III and IV). Representative PRV positive samples from farmed and wild fish in British Columbia and Washington State were subjected to genome sequencing using next generation sequencing methods. Individual analysis of each of the 10 partial segments indicated that the Canadian and US PRV sequence types clustered separately from available whole genome sequences of some Norwegian and Chilean sequences for all segments except the segment S4. In summary, PRV was genetically homogenous over a large geographic distance (Alaska to Washington State), and the sequence types were relatively stable over a 13 year period. PMID:26536673

  8. Merida virus, a putative novel rhabdovirus discovered in Culex and Ochlerotatus spp. mosquitoes in the Yucatan Peninsula of Mexico.

    PubMed

    Charles, Jermilia; Firth, Andrew E; Loroño-Pino, Maria A; Garcia-Rejon, Julian E; Farfan-Ale, Jose A; Lipkin, W Ian; Blitvich, Bradley J; Briese, Thomas

    2016-04-01

    Sequences corresponding to a putative, novel rhabdovirus [designated Merida virus (MERDV)] were initially detected in a pool of Culex quinquefasciatus collected in the Yucatan Peninsula of Mexico. The entire genome was sequenced, revealing 11 798 nt and five major ORFs, which encode the nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G) and RNA-dependent RNA polymerase (L). The deduced amino acid sequences of the N, G and L proteins have no more than 24, 38 and 43 % identity, respectively, to the corresponding sequences of all other known rhabdoviruses, whereas those of the P and M proteins have no significant identity with any sequences in GenBank and their identity is only suggested based on their genome position. Using specific reverse transcription-PCR assays established from the genome sequence, 27 571 C. quinquefasciatus which had been sorted in 728 pools were screened to assess the prevalence of MERDV in nature and 25 pools were found positive. The minimal infection rate (calculated as the number of positive mosquito pools per 1000 mosquitoes tested) was 0.9, and similar for both females and males. Screening another 140 pools of 5484 mosquitoes belonging to four other genera identified positive pools of Ochlerotatus spp. mosquitoes, indicating that the host range is not restricted to C. quinquefasciatus. Attempts to isolate MERDV in C6/36 and Vero cells were unsuccessful. In summary, we provide evidence that a previously undescribed rhabdovirus occurs in mosquitoes in Mexico.

  9. Multivariate sequence analysis reveals additional function impacting residues in the SDR superfamily.

    PubMed

    Tiwari, Pratibha; Singh, Noopur; Dixit, Aparna; Choudhury, Devapriya

    2014-10-01

    The "extended" type of short chain dehydrogenases/reductases (SDR), share a remarkable similarity in their tertiary structures inspite of being highly divergent in their functions and sequences. We have carried out principal component analysis (PCA) on structurally equivalent residue positions of 10 SDR families using information theoretic measures like Jensen-Shannon divergence and average shannon entropy as variables. The results classify residue positions in the SDR fold into six groups, one of which is characterized by low Shannon entropies but high Jensen-Shannon divergence against the reference family SDR1E, suggesting that these positions are responsible for the specific functional identities of individual SDR families, distinguishing them from the reference family SDR1E. Site directed mutagenesis of three residues from this group in the enzyme UDP-Galactose 4-epimerase belonging to SDR1E shows that the mutants promote the formation of NADH containing abortive complexes. Finally, molecular dynamics simulations have been used to suggest a mechanism by which the mutants interfere with the re-oxidation of NADH leading to the formation of abortive complexes. © 2014 Wiley Periodicals, Inc.

  10. Permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, a thermoacidophilic sulfur-reducing crenarchaeon isolated from acidic hot springs of Hveravellir, Iceland.

    PubMed

    Susanti, Dwi; Johnson, Eric F; Lapidus, Alla; Han, James; Reddy, T B K; Pilay, Manoj; Ivanova, Natalia N; Markowitz, Victor M; Woyke, Tanja; Kyrpides, Nikos C; Mukhopadhyay, Biswarup

    2016-01-01

    This report presents the permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, an obligate anaerobic hyperthermophilic crenarchaeon that was isolated from acidic hot springs in Hveravellir, Iceland. D. mobilis utilizes peptides as carbon and energy sources and reduces elemental sulfur to H2S. A metabolic construction derived from the draft genome identified putative pathways for peptide degradation and sulfur respiration in this archaeon. Existence of several hydrogenase genes in the genome supported previous findings that H2 is produced during the growth of D. mobilis in the absence of sulfur. Interestingly, genes encoding glucose transport and utilization systems also exist in the D. mobilis genome though this archaeon does not utilize carbohydrate for growth. The draft genome of D. mobilis provides an additional mean for comparative genomic analysis of desulfurococci. In addition, our analysis on the Average Nucleotide Identity between D. mobilis and Desulfurococcus mucosus suggested that these two desulfurococci are two different strains of the same species.

  11. High stability of yellow fever 17D-204 vaccine: a 12-year restrospective analysis of large-scale production.

    PubMed

    Barban, V; Girerd, Y; Aguirre, M; Gulia, S; Pétiard, F; Riou, P; Barrere, B; Lang, J

    2007-04-12

    We have retrospectively analyzed 12 bulk lots of yellow fever vaccine Stamaril, produced between 1990 and 2002 and prepared from the same seed lot that has been in continuous use since 1990. All vaccine batches displayed identical genome sequence. Only four nucleotide substitutions were observed, compared to previously published sequence, with no incidence at amino-acid level. Fine analysis of viral plaque size distribution was used as an additional marker for genetic stability and demonstrated a remarkable homogeneity of the viral population. The total virus load, measured by qRT-PCR, was also homogeneous pointing out reproducibility of the vaccine production process. Mice inoculated intracerebrally with the different bulks exhibited a similar average survival time, and ratio between in vitro potency and mouse LD(50) titers remained constant from batch-to-batch. Taken together, these data demonstrate the genetic stability of the strain at mass production level over a period of 12 years and reinforce the generally admitted idea of the safety of YF17D-based vaccines.

  12. Comparative Genome and Proteome Analysis of Anopheles gambiae and Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Zdobnov, Evgeny M.; von Mering, Christian; Letunic, Ivica; Torrents, David; Suyama, Mikita; Copley, Richard R.; Christophides, George K.; Thomasova, Dana; Holt, Robert A.; Subramanian, G. Mani; Mueller, Hans-Michael; Dimopoulos, George; Law, John H.; Wells, Michael A.; Birney, Ewan; Charlab, Rosane; Halpern, Aaron L.; Kokoza, Elena; Kraft, Cheryl L.; Lai, Zhongwu; Lewis, Suzanna; Louis, Christos; Barillas-Mury, Carolina; Nusskern, Deborah; Rubin, Gerald M.; Salzberg, Steven L.; Sutton, Granger G.; Topalis, Pantelis; Wides, Ron; Wincker, Patrick; Yandell, Mark; Collins, Frank H.; Ribeiro, Jose; Gelbart, William M.; Kafatos, Fotis C.; Bork, Peer

    2002-10-01

    Comparison of the genomes and proteomes of the two diptera Anopheles gambiae and Drosophila melanogaster, which diverged about 250 million years ago, reveals considerable similarities. However, numerous differences are also observed; some of these must reflect the selection and subsequent adaptation associated with different ecologies and life strategies. Almost half of the genes in both genomes are interpreted as orthologs and show an average sequence identity of about 56%, which is slightly lower than that observed between the orthologs of the pufferfish and human (diverged about 450 million years ago). This indicates that these two insects diverged considerably faster than vertebrates. Aligned sequences reveal that orthologous genes have retained only half of their intron/exon structure, indicating that intron gains or losses have occurred at a rate of about one per gene per 125 million years. Chromosomal arms exhibit significant remnants of homology between the two species, although only 34% of the genes colocalize in small ``microsyntenic'' clusters, and major interarm transfers as well as intra-arm shuffling of gene order are detected.

  13. Permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, a thermoacidophilic sulfur-reducing crenarchaeon isolated from acidic hot springs of Hveravellir, Iceland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susanti, Dwi; Johnson, Eric F.; Lapidus, Alla

    Our report presents the permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, an obligate anaerobic hyperthermophilic crenarchaeon that was isolated from acidic hot springs in Hveravellir, Iceland. D. mobilis utilizes peptides as carbon and energy sources and reduces elemental sulfur to H 2S. A metabolic construction derived from the draft genome identified putative pathways for peptide degradation and sulfur respiration in this archaeon. Existence of several hydrogenase genes in the genome supported previous findings that H 2 is produced during the growth of D. mobilis in the absence of sulfur. Interestingly, genes encoding glucose transport and utilizationmore » systems also exist in the D. mobilis genome though this archaeon does not utilize carbohydrate for growth. The draft genome of D. mobilis provides an additional mean for comparative genomic analysis of desulfurococci. In addition, our analysis on the Average Nucleotide Identity between D. mobilis and Desulfurococcus mucosus suggested that these two desulfurococci are two different strains of the same species.« less

  14. Permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, a thermoacidophilic sulfur-reducing crenarchaeon isolated from acidic hot springs of Hveravellir, Iceland

    DOE PAGES

    Susanti, Dwi; Johnson, Eric F.; Lapidus, Alla; ...

    2016-01-13

    Our report presents the permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, an obligate anaerobic hyperthermophilic crenarchaeon that was isolated from acidic hot springs in Hveravellir, Iceland. D. mobilis utilizes peptides as carbon and energy sources and reduces elemental sulfur to H 2S. A metabolic construction derived from the draft genome identified putative pathways for peptide degradation and sulfur respiration in this archaeon. Existence of several hydrogenase genes in the genome supported previous findings that H 2 is produced during the growth of D. mobilis in the absence of sulfur. Interestingly, genes encoding glucose transport and utilizationmore » systems also exist in the D. mobilis genome though this archaeon does not utilize carbohydrate for growth. The draft genome of D. mobilis provides an additional mean for comparative genomic analysis of desulfurococci. In addition, our analysis on the Average Nucleotide Identity between D. mobilis and Desulfurococcus mucosus suggested that these two desulfurococci are two different strains of the same species.« less

  15. The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum.

    PubMed

    Zimin, Aleksey V; Puiu, Daniela; Hall, Richard; Kingan, Sarah; Clavijo, Bernardo J; Salzberg, Steven L

    2017-11-01

    Common bread wheat, Triticum aestivum, has one of the most complex genomes known to science, with 6 copies of each chromosome, enormous numbers of near-identical sequences scattered throughout, and an overall haploid size of more than 15 billion bases. Multiple past attempts to assemble the genome have produced assemblies that were well short of the estimated genome size. Here we report the first near-complete assembly of T. aestivum, using deep sequencing coverage from a combination of short Illumina reads and very long Pacific Biosciences reads. The final assembly contains 15 344 693 583 bases and has a weighted average (N50) contig size of 232 659 bases. This represents by far the most complete and contiguous assembly of the wheat genome to date, providing a strong foundation for future genetic studies of this important food crop. We also report how we used the recently published genome of Aegilops tauschii, the diploid ancestor of the wheat D genome, to identify 4 179 762 575 bp of T. aestivum that correspond to its D genome components. © The Author 2017. Published by Oxford University Press.

  16. An Improved Internal Consistency Reliability Estimate.

    ERIC Educational Resources Information Center

    Cliff, Norman

    1984-01-01

    The proposed coefficient is derived by assuming that the average Goodman-Kruskal gamma between items of identical difficulty would be the same for items of different difficulty. An estimate of covariance between items of identical difficulty leads to an estimate of the correlation between two tests with identical distributions of difficulty.…

  17. A first report and complete genome sequence of alfalfa enamovirus from Sudan

    USDA-ARS?s Scientific Manuscript database

    A full genome sequence of a viral pathogen, provisionally named alfalfa enamovirus 2 (AEV-2), was reconstructed from short reads obtained by Illumina RNA sequencing of alfalfa sample originating from Sudan. Ambiguous nucleotides in the resultant consensus assembly and identity of the predicted virus...

  18. Unique transposon landscapes are pervasive across Drosophila melanogaster genomes

    PubMed Central

    Rahman, Reazur; Chirn, Gung-wei; Kanodia, Abhay; Sytnikova, Yuliya A.; Brembs, Björn; Bergman, Casey M.; Lau, Nelson C.

    2015-01-01

    To understand how transposon landscapes (TLs) vary across animal genomes, we describe a new method called the Transposon Insertion and Depletion AnaLyzer (TIDAL) and a database of >300 TLs in Drosophila melanogaster (TIDAL-Fly). Our analysis reveals pervasive TL diversity across cell lines and fly strains, even for identically named sub-strains from different laboratories such as the ISO1 strain used for the reference genome sequence. On average, >500 novel insertions exist in every lab strain, inbred strains of the Drosophila Genetic Reference Panel (DGRP), and fly isolates in the Drosophila Genome Nexus (DGN). A minority (<25%) of transposon families comprise the majority (>70%) of TL diversity across fly strains. A sharp contrast between insertion and depletion patterns indicates that many transposons are unique to the ISO1 reference genome sequence. Although TL diversity from fly strains reaches asymptotic limits with increasing sequencing depth, rampant TL diversity causes unsaturated detection of TLs in pools of flies. Finally, we show novel transposon insertions negatively correlate with Piwi-interacting RNA (piRNA) levels for most transposon families, except for the highly-abundant roo retrotransposon. Our study provides a useful resource for Drosophila geneticists to understand how transposons create extensive genomic diversity in fly cell lines and strains. PMID:26578579

  19. Campylobacter iguaniorum sp. nov., isolated from reptiles.

    PubMed

    Gilbert, Maarten J; Kik, Marja; Miller, William G; Duim, Birgitta; Wagenaar, Jaap A

    2015-03-01

    During sampling of reptiles for members of the class Epsilonproteobacteria, strains representing a member of the genus Campylobacter not belonging to any of the established taxa were isolated from lizards and chelonians. Initial amplified fragment length polymorphism, PCR and 16S rRNA sequence analysis showed that these strains were most closely related to Campylobacter fetus and Campylobacter hyointestinalis. A polyphasic study was undertaken to determine the taxonomic position of five strains. The strains were characterized by 16S rRNA and atpA sequence analysis, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and conventional phenotypic testing. Whole-genome sequences were determined for strains 1485E(T) and 2463D, and the average nucleotide and amino acid identities were determined for these strains. The strains formed a robust phylogenetic clade, divergent from all other species of the genus Campylobacter. In contrast to most currently known members of the genus Campylobacter, the strains showed growth at ambient temperatures, which might be an adaptation to their reptilian hosts. The results of this study clearly show that these strains isolated from reptiles represent a novel species within the genus Campylobacter, for which the name Campylobacter iguaniorum sp. nov. is proposed. The type strain is 1485E(T) ( = LMG 28143(T) = CCUG 66346(T)). © 2015 IUMS.

  20. Cloning and sequencing of the allophycocyanin genes from Spirulina maxima (Cyanophyta)

    NASA Astrophysics Data System (ADS)

    Qin, Song; Hiroyuki, Kojima; Yoshikazu, Kawata; Shin-Ichi, Yano; Zeng, Cheng-Kui

    1998-03-01

    The genes coding for the α-and β-subunit of allophycocyanin ( apcA and apcB) from the cyanophyte Spirulina maxima were cloned and sequenced. The results revealed 44.4% of nucleotide sequence similarity and 30.4% of similarity of deduced amino acid sequence between them. The amino acid sequence identities between S. maxima and S. platensis are 99.4% for α subunit and 100% for β subunit.

  1. Corruption of genomic databases with anomalous sequence.

    PubMed

    Lamperti, E D; Kittelberger, J M; Smith, T F; Villa-Komaroff, L

    1992-06-11

    We describe evidence that DNA sequences from vectors used for cloning and sequencing have been incorporated accidentally into eukaryotic entries in the GenBank database. These incorporations were not restricted to one type of vector or to a single mechanism. Many minor instances may have been the result of simple editing errors, but some entries contained large blocks of vector sequence that had been incorporated by contamination or other accidents during cloning. Some cases involved unusual rearrangements and areas of vector distant from the normal insertion sites. Matches to vector were found in 0.23% of 20,000 sequences analyzed in GenBank Release 63. Although the possibility of anomalous sequence incorporation has been recognized since the inception of GenBank and should be easy to avoid, recent evidence suggests that this problem is increasing more quickly than the database itself. The presence of anomalous sequence may have serious consequences for the interpretation and use of database entries, and will have an impact on issues of database management. The incorporated vector fragments described here may also be useful for a crude estimate of the fidelity of sequence information in the database. In alignments with well-defined ends, the matching sequences showed 96.8% identity to vector; when poorer matches with arbitrary limits were included, the aggregate identity to vector sequence was 94.8%.

  2. Gene encoding the group B streptococcal protein R4, its presence in clinical reference laboratory isolates & R4 protein pepsin sensitivity.

    PubMed

    Smith, B L; Flores, A; Dechaine, J; Krepela, J; Bergdall, A; Ferrieri, P

    2004-05-01

    R proteins were first identified by Lancefield in group B Streptococcus (GBS) as resistant to trypsin at pH8 and sensitive to pepsin at pH2. The R4 protein found predominantly in type III and some type II and V invasive isolates conforms to these criteria. The Rib protein, although structurally and epidemiologically similar to R4, was reported as resistant to both proteases. We report here the gene encoding the R4 protein from a type III group B streptococcal isolate (76-043) well characterized in our laboratory. Trypsin extracted GBS proteins were assayed for protease sensitivities by double-diffusion Ouchterlony using varying conditions for the enzyme pepsin. Standard haemoglobin assay was used to examine pepsin enzymatic activity. Thirty clinical isolates of varying protein profiles identified by double-diffusion from our reference strain laboratory were screened by PCR and Southern technique. SDS-PAGE gel purified R4 amino acid sequences were determined and used to design oligonucleotide primers for screening a 76-043 genomic library. R4 was sensitive to pepsin at pH2 but appeared resistant at pH4, the reported pH used for Rib. By standard haemoglobin assay and trypsin extract studies of R4 protein, pepsin was shown to be active at pH2, yet easily inactivated; assays of GBS surface proteins are critical at pH2. Of the amino acids initially sequenced from R4, 88 per cent (61/69) showed identity to Rib; the r4 nucleotide sequence was identical to that of rib. All isolates with strong positive protein reactions for R4 were positive in both PCR and Southern technique, whereas isolates expressing alpha, beta, R1/R4, and R5 (BPS) protein profiles were not. Sequenced PCR products aligned with identity to the R4 and Rib nucleotide sequences and confirmed the identity of these proteins and their molecular sequences.

  3. Comparisons of Highly Virulent H5N1 Influenza A Viruses Isolated from Humans and Chickens from Hong Kong

    PubMed Central

    Suarez, David L.; Perdue, Michael L.; Cox, Nancy; Rowe, Thomas; Bender, Catherine; Huang, Jing; Swayne, David E.

    1998-01-01

    Genes of an influenza A (H5N1) virus from a human in Hong Kong isolated in May 1997 were sequenced and found to be all avian-like (K. Subbarao et al., Science 279:393–395, 1998). Gene sequences of this human isolate were compared to those of a highly pathogenic chicken H5N1 influenza virus isolated from Hong Kong in April 1997. Sequence comparisons of all eight RNA segments from the two viruses show greater than 99% sequence identity between them. However, neither isolate’s gene sequence was closely (>95% sequence identity) related to any other gene sequences found in the GenBank database. Phylogenetic analysis demonstrated that the nucleotide sequences of at least four of the eight RNA segments clustered with Eurasian origin avian influenza viruses. The hemagglutinin gene phylogenetic analysis also included the sequences from an additional three human and two chicken H5N1 virus isolates from Hong Kong, and the isolates separated into two closely related groups. However, no single amino acid change separated the chicken origin and human origin isolates, but they all contained multiple basic amino acids at the hemagglutinin cleavage site, which is associated with a highly pathogenic phenotype in poultry. In experimental intravenous inoculation studies with chickens, all seven viruses were highly pathogenic, killing most birds within 24 h. All infected chickens had virtually identical pathologic lesions, including moderate to severe diffuse edema and interstitial pneumonitis. Viral nucleoprotein was most frequently demonstrated in vascular endothelium, macrophages, heterophils, and cardiac myocytes. Asphyxiation from pulmonary edema and generalized cardiovascular collapse were the most likely pathogenic mechanisms responsible for illness and death. In summary, a small number of changes in hemagglutinin gene sequences defined two closely related subgroups, with both subgroups having human and chicken members, among the seven viruses examined from Hong Kong, and all seven viruses were highly pathogenic in chickens and caused similar lesions in experimental inoculations. PMID:9658115

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabin, Charles; Plevka, Pavel, E-mail: pavel.plevka@ceitec.muni.cz

    Molecular replacement and noncrystallographic symmetry averaging were used to detwin a data set affected by perfect hemihedral twinning. The noncrystallographic symmetry averaging of the electron-density map corrected errors in the detwinning introduced by the differences between the molecular-replacement model and the crystallized structure. Hemihedral twinning is a crystal-growth anomaly in which a specimen is composed of two crystal domains that coincide with each other in three dimensions. However, the orientations of the crystal lattices in the two domains differ in a specific way. In diffraction data collected from hemihedrally twinned crystals, each observed intensity contains contributions from both of themore » domains. With perfect hemihedral twinning, the two domains have the same volumes and the observed intensities do not contain sufficient information to detwin the data. Here, the use of molecular replacement and of noncrystallographic symmetry (NCS) averaging to detwin a 2.1 Å resolution data set for Aichi virus 1 affected by perfect hemihedral twinning is described. The NCS averaging enabled the correction of errors in the detwinning introduced by the differences between the molecular-replacement model and the crystallized structure. The procedure permitted the structure to be determined from a molecular-replacement model that had 16% sequence identity and a 1.6 Å r.m.s.d. for C{sup α} atoms in comparison to the crystallized structure. The same approach could be used to solve other data sets affected by perfect hemihedral twinning from crystals with NCS.« less

  5. Molecular variation and distribution of Anopheles fluviatilis (Diptera: Culicidae) complex in Iran.

    PubMed

    Naddaf, Saied Reza; Razavi, Mohammad Reza; Bahramali, Golnaz

    2010-09-01

    Anopheles fluviatilis James (Diptera: Culicidae) is one of the known malaria vectors in south and southeastern Iran. Earlier ITS2 sequences analysis of specimens from Iran demonstrated only a single genotype that was identical to species Y in India, which is also the same as species T. We identified 2 haplotypes in the An. fluviatilis populations of Iran based on differences in nucleotide sequences of D3 domain of the 28S locus of ribosomal DNA (rDNA). Comparison of sequence data from 44 Iranian specimens with those publicly available in the Genbank database showed that all of the 28S-D3 sequences from Kazeroun and Khesht regions in Fars Province were identical to the database entry representing species U in India. In other regions, all the individuals showed heterozygosity at the single nucleotide position, which identifies species U and T. It is argued that the 2 species may co-occur in some regions and hybridize; however, the heterozygosity in the 28S-D3 locus was not reflected in ITS2 sequences and this locus for all individuals was identical to species T. This study shows that in a newly diverged species, like members of An. fluviatilis complex, a single molecular marker may not be sufficiently discriminatory to identify all the taxa over a vast geographical area. In addition, other molecular markers may provide more reliable information for species discrimination.

  6. Molecular homogeneity of heat-stable enterotoxins produced by bovine enterotoxigenic Escherichia coli.

    PubMed Central

    Saeed, A M; Magnuson, N S; Sriranganathan, N; Burger, D; Cosand, W

    1984-01-01

    Heat-stable enterotoxins (STs) from four strains of bovine enterotoxigenic Escherichia coli representing four serogroups were purified to homogeneity by utilizing previously published purification schemata. Biochemical characterization of the purified STs showed that they met the basic criteria for the heat-stable enterotoxins of E. coli. Amino acid analysis of the purified STs revealed that they were peptides of identical amino acid composition. This composition consisted of 18 residues of 10 different amino acids, 6 of which were cysteine. The amino acid composition of the four ST peptides was identical to that reported for the STs of human and porcine E. coli. In addition, complete sequence analysis of two of the ST peptides and partial sequencing of several others revealed strong homology to the sequences of STs from human and porcine E. coli and to the sequence predicted from the last 18 codons of the transposon Tn1681. There was also substantial homology to the sequence predicted from the ST-coding genetic element of human E. coli, which may indicate the existence of identical bioactive configuration among ST peptides of E. coli strains of various host origins. These data support the hypothesis that STs produced by human, bovine, and porcine E. coli are coded by a closely related genetic element which may have originated from a single, widely disseminated transposon. Images PMID:6376355

  7. RT-PCR and sequence analysis of the full-length fusion protein of Canine Distemper Virus from domestic dogs.

    PubMed

    Romanutti, Carina; Gallo Calderón, Marina; Keller, Leticia; Mattion, Nora; La Torre, José

    2016-02-01

    During 2007-2014, 84 out of 236 (35.6%) samples from domestic dogs submitted to our laboratory for diagnostic purposes were positive for Canine Distemper Virus (CDV), as analyzed by RT-PCR amplification of a fragment of the nucleoprotein gene. Fifty-nine of them (70.2%) were from dogs that had been vaccinated against CDV. The full-length gene encoding the Fusion (F) protein of fifteen isolates was sequenced and compared with that of those of other CDVs, including wild-type and vaccine strains. Phylogenetic analysis using the F gene full-length sequences grouped all the Argentinean CDV strains in the SA2 clade. Sequence identity with the Onderstepoort vaccine strain was 89.0-90.6%, and the highest divergence was found in the 135 amino acids corresponding to the F protein signal-peptide, Fsp (64.4-66.7% identity). In contrast, this region was highly conserved among the local strains (94.1-100% identity). One extra putative N-glycosylation site was identified in the F gene of CDV Argentinean strains with respect to the vaccine strain. The present report is the first to analyze full-length F protein sequences of CDV strains circulating in Argentina, and contributes to the knowledge of molecular epidemiology of CDV, which may help in understanding future disease outbreaks. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Novel molecular approach to define pest species status and tritrophic interactions from historical Bemisia specimens.

    PubMed

    Tay, W T; Elfekih, S; Polaszek, A; Court, L N; Evans, G A; Gordon, K H J; De Barro, P J

    2017-03-27

    Museum specimens represent valuable genomic resources for understanding host-endosymbiont/parasitoid evolutionary relationships, resolving species complexes and nomenclatural problems. However, museum collections suffer DNA degradation, making them challenging for molecular-based studies. Here, the mitogenomes of a single 1912 Sri Lankan Bemisia emiliae cotype puparium, and of a 1942 Japanese Bemisia puparium are characterised using a Next-Generation Sequencing approach. Whiteflies are small sap-sucking insects including B. tabaci pest species complex. Bemisia emiliae's draft mitogenome showed a high degree of homology with published B. tabaci mitogenomes, and exhibited 98-100% partial mitochondrial DNA Cytochrome Oxidase I (mtCOI) gene identity with the B. tabaci species known as Asia II-7. The partial mtCOI gene of the Japanese specimen shared 99% sequence identity with the Bemisia 'JpL' genetic group. Metagenomic analysis identified bacterial sequences in both Bemisia specimens, while hymenopteran sequences were also identified in the Japanese Bemisia puparium, including complete mtCOI and rRNA genes, and various partial mtDNA genes. At 88-90% mtCOI sequence identity to Aphelinidae wasps, we concluded that the 1942 Bemisia nymph was parasitized by an Eretmocerus parasitoid wasp. Our approach enables the characterisation of genomes and associated metagenomic communities of museum specimens using 1.5 ng gDNA, and to infer historical tritrophic relationships in Bemisia whiteflies.

  9. The "expanding universe" of piroplasms.

    PubMed

    Criado-Fornelio, A; Gónzalez-del-Río, M A; Buling-Saraña, A; Barba-Carretero, J C

    2004-02-06

    The present paper is the continuation of our previous studies dealing with the genetic characterization of piroplasmid species found in southern Europe. We report in this work new data concerning sequences of the 18s rRNA gene in Spanish piroplasms not studied (or not totally sequenced) in our former surveys. Molecular data analysis indicated that Spanish Cytauxzoon felis (cat isolate) has 98% identity with Cytauxzoon sp. from Mongolia and 95% identity compared to African C. felis. There are at least two main genetic variants of Babesia caballi in Spain: The first variety (isolate Spain 1) shows a relatively low homology with the African genotype (97% identity). The second variety (represented by two isolates, Spain 2 and Spain 3, differing by a single base) shows high genetic similarity with the African genotype (99.7-100% identity). There are also two genetic variants of Babesia equi (isolates Spain 1 and Spain 2, differing by four bases) in Spain, sharing 99% identity with the African genotype. At least one of them (Spain 1) can infect dogs. All of the phylogenetic analysis procedures employed indicated that Spanish isolates of C. felis, B. caballi (Spain 1) and B. equi (Spain 1 and Spain 2) are genetically different from their African relatives, all those dichotomies showing very high bootstrap support. Nonetheless, the lack of information on their morphology and the fact that the sequences were obtained in a single isolate preclude any conclusion about their definitive taxonomic status.

  10. Ensemble coding of face identity is present but weaker in congenital prosopagnosia.

    PubMed

    Robson, Matthew K; Palermo, Romina; Jeffery, Linda; Neumann, Markus F

    2018-03-01

    Individuals with congenital prosopagnosia (CP) are impaired at identifying individual faces but do not appear to show impairments in extracting the average identity from a group of faces (known as ensemble coding). However, possible deficits in ensemble coding in a previous study (CPs n = 4) may have been masked because CPs relied on pictorial (image) cues rather than identity cues. Here we asked whether a larger sample of CPs (n = 11) would show intact ensemble coding of identity when availability of image cues was minimised. Participants viewed a "set" of four faces and then judged whether a subsequent individual test face, either an exemplar or a "set average", was in the preceding set. Ensemble coding occurred when matching (vs. mismatching) averages were mistakenly endorsed as set members. We assessed both image- and identity-based ensemble coding, by varying whether test faces were either the same or different images of the identities in the set. CPs showed significant ensemble coding in both tasks, indicating that their performance was independent of image cues. As a group, CPs' ensemble coding was weaker than controls in both tasks, consistent with evidence that perceptual processing of face identity is disrupted in CP. This effect was driven by CPs (n= 3) who, in addition to having impaired face memory, also performed particularly poorly on a measure of face perception (CFPT). Future research, using larger samples, should examine whether deficits in ensemble coding may be restricted to CPs who also have substantial face perception deficits. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Assessing the Chemical Accuracy of Protein Structures via Peptide Acidity

    PubMed Central

    Anderson, Janet S.; Hernández, Griselda; LeMaster, David M.

    2012-01-01

    Although the protein native state is a Boltzmann conformational ensemble, practical applications often require a representative model from the most populated region of that distribution. The acidity of the backbone amides, as reflected in hydrogen exchange rates, is exquisitely sensitive to the surrounding charge and dielectric volume distribution. For each of four proteins, three independently determined X-ray structures of differing crystallographic resolution were used to predict exchange for the static solvent-exposed amide hydrogens. The average correlation coefficients range from 0.74 for ubiquitin to 0.93 for Pyrococcus furiosus rubredoxin, reflecting the larger range of experimental exchange rates exhibited by the latter protein. The exchange prediction errors modestly correlate with the crystallographic resolution. MODELLER 9v6-derived homology models at ~60% sequence identity (36% identity for chymotrypsin inhibitor CI2) yielded correlation coefficients that are ~0.1 smaller than for the cognate X-ray structures. The most recently deposited NOE-based ubiquitin structure and the original NMR structure of CI2 fail to provide statistically significant predictions of hydrogen exchange. However, the more recent RECOORD refinement study of CI2 yielded predictions comparable to the X-ray and homology model-based analyses. PMID:23182463

  12. Novel staphylococcal species that form part of a Staphylococcus aureus-related complex: the non-pigmented Staphylococcus argenteus sp. nov. and the non-human primate-associated Staphylococcus schweitzeri sp. nov.

    PubMed

    Tong, Steven Y C; Schaumburg, Frieder; Ellington, Matthew J; Corander, Jukka; Pichon, Bruno; Leendertz, Fabian; Bentley, Stephen D; Parkhill, Julian; Holt, Deborah C; Peters, Georg; Giffard, Philip M

    2015-01-01

    We define two novel species of the genus Staphylococcus that are phenotypically similar to and have near identical 16S rRNA gene sequences to Staphylococcus aureus. However, compared to S. aureus and each other, the two species, Staphylococcus argenteus sp. nov. (type strain MSHR1132(T) = DSM 28299(T) = SSI 89.005(T)) and Staphylococcus schweitzeri sp. nov. (type strain FSA084(T) = DSM 28300(T) = SSI 89.004(T)), demonstrate: 1) at a whole-genome level considerable phylogenetic distance, lack of admixture, average nucleotide identity <95 %, and inferred DNA-DNA hybridization <70 %; 2) different profiles as determined by MALDI-TOF MS; 3) a non-pigmented phenotype for S. argenteus sp. nov.; 4) S. schweitzeri sp. nov. is not detected by standard nucA PCR; 5) distinct peptidoglycan types compared to S. aureus; 6) a separate ecological niche for S. schweitzeri sp. nov.; and 7) a distinct clinical disease profile for S. argenteus sp. nov. compared to S. aureus. © 2015 IUMS.

  13. Whole Genome Sequence and Comparative Genomics of the Novel Lyme Borreliosis Causing Pathogen, Borrelia mayonii.

    PubMed

    Kingry, Luke C; Batra, Dhwani; Replogle, Adam; Rowe, Lori A; Pritt, Bobbi S; Petersen, Jeannine M

    2016-01-01

    Borrelia mayonii, a Borrelia burgdorferi sensu lato (Bbsl) genospecies, was recently identified as a cause of Lyme borreliosis (LB) among patients from the upper midwestern United States. By microscopy and PCR, spirochete/genome loads in infected patients were estimated at 105 to 106 per milliliter of blood. Here, we present the full chromosome and plasmid sequences of two B. mayonii isolates, MN14-1420 and MN14-1539, cultured from blood of two of these patients. Whole genome sequencing and assembly was conducted using PacBio long read sequencing (Pacific Biosciences RSII instrument) followed by hierarchical genome-assembly process (HGAP). The B. mayonii genome is ~1.31 Mbp in size (26.9% average GC content) and is comprised of a linear chromosome, 8 linear and 7 circular plasmids. Consistent with its taxonomic designation as a new Bbsl genospecies, the B. mayonii linear chromosome shares only 93.83% average nucleotide identity with other genospecies. Both B. mayonii genomes contain plasmids similar to B. burgdorferi sensu stricto lp54, lp36, lp28-3, lp28-4, lp25, lp17, lp5, 5 cp32s, cp26, and cp9. The vls locus present on lp28-10 of B. mayonii MN14-1420 is remarkably long, being comprised of 24 silent vls cassettes. Genetic differences between the two B. mayonii genomes are limited and include 15 single nucleotide variations as well as 7 fewer silent vls cassettes and a lack of the lp5 plasmid in MN14-1539. Notably, 68 homologs to proteins present in B. burgdorferi sensu stricto appear to be lacking from the B. mayonii genomes. These include the complement inhibitor, CspZ (BB_H06), the fibronectin binding protein, BB_K32, as well as multiple lipoproteins and proteins of unknown function. This study shows the utility of long read sequencing for full genome assembly of Bbsl genomes, identifies putative genome regions of B. mayonii that may be linked to clinical manifestation or tissue tropism, and provides a valuable resource for pathogenicity, diagnostic and vaccine studies.

  14. Whole Genome Sequence and Comparative Genomics of the Novel Lyme Borreliosis Causing Pathogen, Borrelia mayonii

    PubMed Central

    Batra, Dhwani; Replogle, Adam; Rowe, Lori A.; Pritt, Bobbi S.; Petersen, Jeannine M.

    2016-01-01

    Borrelia mayonii, a Borrelia burgdorferi sensu lato (Bbsl) genospecies, was recently identified as a cause of Lyme borreliosis (LB) among patients from the upper midwestern United States. By microscopy and PCR, spirochete/genome loads in infected patients were estimated at 105 to 106 per milliliter of blood. Here, we present the full chromosome and plasmid sequences of two B. mayonii isolates, MN14-1420 and MN14-1539, cultured from blood of two of these patients. Whole genome sequencing and assembly was conducted using PacBio long read sequencing (Pacific Biosciences RSII instrument) followed by hierarchical genome-assembly process (HGAP). The B. mayonii genome is ~1.31 Mbp in size (26.9% average GC content) and is comprised of a linear chromosome, 8 linear and 7 circular plasmids. Consistent with its taxonomic designation as a new Bbsl genospecies, the B. mayonii linear chromosome shares only 93.83% average nucleotide identity with other genospecies. Both B. mayonii genomes contain plasmids similar to B. burgdorferi sensu stricto lp54, lp36, lp28-3, lp28-4, lp25, lp17, lp5, 5 cp32s, cp26, and cp9. The vls locus present on lp28-10 of B. mayonii MN14-1420 is remarkably long, being comprised of 24 silent vls cassettes. Genetic differences between the two B. mayonii genomes are limited and include 15 single nucleotide variations as well as 7 fewer silent vls cassettes and a lack of the lp5 plasmid in MN14-1539. Notably, 68 homologs to proteins present in B. burgdorferi sensu stricto appear to be lacking from the B. mayonii genomes. These include the complement inhibitor, CspZ (BB_H06), the fibronectin binding protein, BB_K32, as well as multiple lipoproteins and proteins of unknown function. This study shows the utility of long read sequencing for full genome assembly of Bbsl genomes, identifies putative genome regions of B. mayonii that may be linked to clinical manifestation or tissue tropism, and provides a valuable resource for pathogenicity, diagnostic and vaccine studies. PMID:28030649

  15. Herbaspirillum robiniae sp. nov., isolated from root nodules of Robinia pseudoacacia in a lead-zinc mine.

    PubMed

    Fan, Miao-Chun; Guo, Yan-Qing; Zhang, Li-Ping; Zhu, Ya-Min; Chen, Wei-Min; Lin, Yan-Bing; Wei, Ge-Hong

    2018-04-01

    A novel endophytic bacterium, designated strain HZ10 T , was isolated from root nodules of Robinia pseudoacacia growing in a lead-zinc mine in Mianxian County, Shaanxi Province, China. The bacterium was Gram-stain-negative, aerobic, motile, slightly curved- and rod-shaped, methyl red-negative, catalase-positive, and did not produce H2S. Strain HZ10 T grew at 4-45 °C (optimum, 25-30 °C), pH 5-9 (optimum, pH 7-8) and 0-1 % (w/v) NaCl. The major fatty acids were identified as C16 : 0, summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), and the quinone type was Q-8. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content of the genomic DNA was 64.9 mol% based on the whole genome sequence. According to the 16S rRNA gene sequence analysis, the closest phylogenetic relative to strain HZ10 T is Herbaspirillum chlorophenolicum CPW301 T (98.72 % sequence identity). Genome relatedness of the type strains H. chlorophenolicum CPW301 T , Herbaspirillum seropedicae Z67 T and Herbaspirillum aquaticum IEH 4430 T , was quantified by using the average nucleotide identity (86.9-88.0 %) and a genome-to-genome distance analysis (26.6 %-29.3 %), with both strongly supporting the notion that strain HZ10 T belongs to the genus Herbaspirillum as a novel species. Based on the results from phylogenetic, chemotaxonomic and physiological analyses, strain HZ10 T represents a novel Herbaspirillum species, for which the name Herbaspirillum robiniae sp. nov. is proposed. The type strain is HZ10 T (=JCM 31754 T =CCTCC AB 2014352 T ).

  16. Pilot survey of expressed sequence tags (ESTs) from the asexual blood stages of Plasmodium vivax in human patients.

    PubMed

    Merino, Emilio F; Fernandez-Becerra, Carmen; Madeira, Alda M B N; Machado, Ariane L; Durham, Alan; Gruber, Arthur; Hall, Neil; del Portillo, Hernando A

    2003-07-21

    Plasmodium vivax is the most widely distributed human malaria, responsible for 70-80 million clinical cases each year and large socio-economical burdens for countries such as Brazil where it is the most prevalent species. Unfortunately, due to the impossibility of growing this parasite in continuous in vitro culture, research on P. vivax remains largely neglected. A pilot survey of expressed sequence tags (ESTs) from the asexual blood stages of P. vivax was performed. To do so, 1,184 clones from a cDNA library constructed with parasites obtained from 10 different human patients in the Brazilian Amazon were sequenced. Sequences were automatedly processed to remove contaminants and low quality reads. A total of 806 sequences with an average length of 586 bp met such criteria and their clustering revealed 666 distinct events. The consensus sequence of each cluster and the unique sequences of the singlets were used in similarity searches against different databases that included P. vivax, Plasmodium falciparum, Plasmodium yoelii, Plasmodium knowlesi, Apicomplexa and the GenBank non-redundant database. An E-value of <10(-30) was used to define a significant database match. ESTs were manually assigned a gene ontology (GO) terminology A total of 769 ESTs could be assigned a putative identity based upon sequence similarity to known proteins in GenBank. Moreover, 292 ESTs were annotated and a GO terminology was assigned to 164 of them. These are the first ESTs reported for P. vivax and, as such, they represent a valuable resource to assist in the annotation of the P. vivax genome currently being sequenced. Moreover, since the GC-content of the P. vivax genome is strikingly different from that of P. falciparum, these ESTs will help in the validation of gene predictions for P. vivax and to create a gene index of this malaria parasite.

  17. A Systematic Approach for Discovering Novel, Clinically Relevant Bacteria

    PubMed Central

    Simmon, Keith E.; Fisher, Mark A.

    2012-01-01

    Sequencing of the 16S rRNA gene (16S) is a reference method for bacterial identification. Its expanded use has led to increased recognition of novel bacterial species. In most clinical laboratories, novel species are infrequently encountered, and their pathogenic potential is often difficult to assess. We reviewed partial 16S sequences from >26,000 clinical isolates, analyzed during February 2006–June 2010, and identified 673 that have <99% sequence identity with valid reference sequences and are thus possibly novel species. Of these 673 isolates, 111 may represent novel genera (<95% identity). Isolates from 95 novel taxa were recovered from multiple patients, indicating possible clinical relevance. Most repeatedly encountered novel taxa belonged to the genera Nocardia (14 novel taxa, 42 isolates) and Actinomyces (12 novel taxa, 52 isolates). This systematic approach for recognition of novel species with potential diagnostic or therapeutic relevance provides a basis for epidemiologic surveys and improvement of sequence databases and may lead to identification of new clinical entities. PMID:22377371

  18. IVisTMSA: Interactive Visual Tools for Multiple Sequence Alignments.

    PubMed

    Pervez, Muhammad Tariq; Babar, Masroor Ellahi; Nadeem, Asif; Aslam, Naeem; Naveed, Nasir; Ahmad, Sarfraz; Muhammad, Shah; Qadri, Salman; Shahid, Muhammad; Hussain, Tanveer; Javed, Maryam

    2015-01-01

    IVisTMSA is a software package of seven graphical tools for multiple sequence alignments. MSApad is an editing and analysis tool. It can load 409% more data than Jalview, STRAP, CINEMA, and Base-by-Base. MSA comparator allows the user to visualize consistent and inconsistent regions of reference and test alignments of more than 21-MB size in less than 12 seconds. MSA comparator is 5,200% efficient and more than 40% efficient as compared to BALiBASE c program and FastSP, respectively. MSA reconstruction tool provides graphical user interfaces for four popular aligners and allows the user to load several sequence files at a time. FASTA generator converts seven formats of alignments of unlimited size into FASTA format in a few seconds. MSA ID calculator calculates identity matrix of more than 11,000 sequences with a sequence length of 2,696 base pairs in less than 100 seconds. Tree and Distance Matrix calculation tools generate phylogenetic tree and distance matrix, respectively, using neighbor joining% identity and BLOSUM 62 matrix.

  19. A systematic approach for discovering novel, clinically relevant bacteria.

    PubMed

    Schlaberg, Robert; Simmon, Keith E; Fisher, Mark A

    2012-03-01

    Sequencing of the 16S rRNA gene (16S) is a reference method for bacterial identification. Its expanded use has led to increased recognition of novel bacterial species. In most clinical laboratories, novel species are infrequently encountered, and their pathogenic potential is often difficult to assess. We reviewed partial 16S sequences from >26,000 clinical isolates, analyzed during February 2006-June 2010, and identified 673 that have <99% sequence identity with valid reference sequences and are thus possibly novel species. Of these 673 isolates, 111 may represent novel genera (<95% identity). Isolates from 95 novel taxa were recovered from multiple patients, indicating possible clinical relevance. Most repeatedly encountered novel taxa belonged to the genera Nocardia (14 novel taxa, 42 isolates) and Actinomyces (12 novel taxa, 52 isolates). This systematic approach for recognition of novel species with potential diagnostic or therapeutic relevance provides a basis for epidemiologic surveys and improvement of sequence databases and may lead to identification of new clinical entities.

  20. Characterization of Austrian koi herpesvirus samples based on the ORF40 region.

    PubMed

    Marek, A; Schachner, O; Bilic, I; Hess, M

    2010-02-17

    Using a PCR that amplifies a region of the thymidine kinase (TK) gene, an epidemic spread of koi herpesvirus (KHV) was determined in koi carps in Austria in 2007. A total of 15 virus samples from different locations in Austria were analyzed to determine their genetic relatedness following PCR and nucleic acid sequencing of the open reading frame 40 (ORF40) region of the KHV genome. ORF40-specific PCR amplification products that were obtained from tissue samples shared 100% nucleotide sequence identity with the published sequence of the Japanese strain of KHV. The ORF40 sequence of one isolate from the UK that was included in the present study was 100% identical with the published sequence of an Israeli strain of KHV. This is the first study that used a larger number of samples and a PCR method, which allowed distinguishing all 3 strains of KHV. The present investigation provides information on the epidemiology of KHV infections in Europe and describes a useful molecular tool for epidemiological studies.

  1. Recent advances in plant centromere biology.

    PubMed

    Feng, Chao; Liu, YaLin; Su, HanDong; Wang, HeFei; Birchler, James; Han, FangPu

    2015-03-01

    The centromere, which is one of the essential parts of a chromosome, controls kinetochore formation and chromosome segregation during mitosis and meiosis. While centromere function is conserved in eukaryotes, the centromeric DNA sequences evolve rapidly and have few similarities among species. The histone H3 variant CENH3 (CENP-A in human), which mostly exists in centromeric nucleosomes, is a universal active centromere mark in eukaryotes and plays an essential role in centromere identity determination. The relationship between centromeric DNA sequences and centromere identity determination is one of the intriguing questions in studying centromere formation. Due to the discoveries in the past decades, including "neocentromeres" and "centromere inactivation", it is now believed that the centromere identity is determined by epigenetic mechanisms. This review will present recent progress in plant centromere biology.

  2. Human centromere genomics: now it's personal.

    PubMed

    Hayden, Karen E

    2012-07-01

    Advances in human genomics have accelerated studies in evolution, disease, and cellular regulation. However, centromere sequences, defining the chromosomal interface with spindle microtubules, remain largely absent from ongoing genomic studies and disconnected from functional, genome-wide analyses. This disparity results from the challenge of predicting the linear order of multi-megabase-sized regions that are composed almost entirely of near-identical satellite DNA. Acknowledging these challenges, the field of human centromere genomics possesses the potential to rapidly advance given the availability of individual, or personalized, genome projects matched with the promise of long-read sequencing technologies. Here I review the current genomic model of human centromeres in consideration of those studies involving functional datasets that examine the role of sequence in centromere identity.

  3. Full genome sequences of zebra-borne equine herpesvirus type 1 isolated from zebra, onager and Thomson's gazelle.

    PubMed

    Guo, Xiaoqin; Izume, Satoko; Okada, Ayaka; Ohya, Kenji; Kimura, Takashi; Fukushi, Hideto

    2014-09-01

    A strain of equine herpesvirus type 1 (EHV-1) was isolated from zebra. This strain, called "zebra-borne EHV-1", was also isolated from an onager and a gazelle in zoological gardens in U.S.A. The full genome sequences of the 3 strains were determined. They shared 99% identities with each other, while they shared 98% and 95% identities with the horse derived EHV-1 and equine herpesvirus type 9, respectively. Sequence data indicated that the EHV-1 isolated from a polar bear in Germany is one of the zebra-borne EHV-1 and not a recombinant virus. These results indicated that zebra-borne EHV-1 is a subtype of EHV-1.

  4. The complete nucleotide sequence of the barley yellow dwarf GPV isolate from China shows that it is a new member of the genus Polerovirus.

    PubMed

    Zhang, Wenwei; Cheng, Zhuomin; Xu, Lei; Wu, Maosen; Waterhouse, Peter; Zhou, Guanghe; Li, Shifang

    2009-01-01

    The complete nucleotide sequence of the ssRNA genome of a Chinese GPV isolate of barley yellow dwarf virus (BYDV) was determined. It comprised 5673 nucleotides, and the deduced genome organization resembled that of members of the genus Polerovirus. It was most closely related to cereal yellow dwarf virus-RPV (77% nt identity over the entire genome; coat protein amino acid identity 79%). The GPV isolate also differs in vector specificity from other BYDV strains. Biological properties, phylogenetic analyses and detailed sequence comparisons suggest that GPV should be considered a member of a new species within the genus, and the name Wheat yellow dwarf virus-GPV is proposed.

  5. Sex or Gender Identity? Understanding Children's Reading Choices and Motivation

    ERIC Educational Resources Information Center

    McGeown, Sarah P.

    2015-01-01

    The extent to which children's reading choices could be predicted by their motivation and gender identity was examined. Two hundred and twenty-three children (average age 9 years 11 months) completed questionnaires measuring book reading choices, reading motivation, gender identity (identification with masculine and feminine traits) and a…

  6. Whole-genome sequence-based genomic prediction in laying chickens with different genomic relationship matrices to account for genetic architecture.

    PubMed

    Ni, Guiyan; Cavero, David; Fangmann, Anna; Erbe, Malena; Simianer, Henner

    2017-01-16

    With the availability of next-generation sequencing technologies, genomic prediction based on whole-genome sequencing (WGS) data is now feasible in animal breeding schemes and was expected to lead to higher predictive ability, since such data may contain all genomic variants including causal mutations. Our objective was to compare prediction ability with high-density (HD) array data and WGS data in a commercial brown layer line with genomic best linear unbiased prediction (GBLUP) models using various approaches to weight single nucleotide polymorphisms (SNPs). A total of 892 chickens from a commercial brown layer line were genotyped with 336 K segregating SNPs (array data) that included 157 K genic SNPs (i.e. SNPs in or around a gene). For these individuals, genome-wide sequence information was imputed based on data from re-sequencing runs of 25 individuals, leading to 5.2 million (M) imputed SNPs (WGS data), including 2.6 M genic SNPs. De-regressed proofs (DRP) for eggshell strength, feed intake and laying rate were used as quasi-phenotypic data in genomic prediction analyses. Four weighting factors for building a trait-specific genomic relationship matrix were investigated: identical weights, -(log 10 P) from genome-wide association study results, squares of SNP effects from random regression BLUP, and variable selection based weights (known as BLUP|GA). Predictive ability was measured as the correlation between DRP and direct genomic breeding values in five replications of a fivefold cross-validation. Averaged over the three traits, the highest predictive ability (0.366 ± 0.075) was obtained when only genic SNPs from WGS data were used. Predictive abilities with genic SNPs and all SNPs from HD array data were 0.361 ± 0.072 and 0.353 ± 0.074, respectively. Prediction with -(log 10 P) or squares of SNP effects as weighting factors for building a genomic relationship matrix or BLUP|GA did not increase accuracy, compared to that with identical weights, regardless of the SNP set used. Our results show that little or no benefit was gained when using all imputed WGS data to perform genomic prediction compared to using HD array data regardless of the weighting factors tested. However, using only genic SNPs from WGS data had a positive effect on prediction ability.

  7. Rolling circle amplification-based analysis of Sri Lankan cassava mosaic virus isolates from Tamil Nadu, India, suggests a low level of genetic variability.

    PubMed

    Kushawaha, Akhilesh Kumar; Rabindran, Ramalingam; Dasgupta, Indranil

    2018-03-01

    Cassava mosaic disease is a widespread disease of cassava in south Asia and the African continent. In India, CMD is known to be caused by two single-stranded DNA viruses (geminiviruses), Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosdaic virus (SLCMV). Previously, the diversity of ICMV and SLCMV in India has been studied using PCR, a sequence-dependent method. To have a more in-depth study of the variability of the above viruses and to detect any novel geminiviruses associated with CMD, sequence-independent amplification using rolling circle amplification (RCA)-based methods were used. CMD affected cassava plants were sampled across eighty locations in nine districts of the southern Indian state of Tamil Nadu. Twelve complete sequence of coat protein genes of the resident geminiviruses, comprising 256 amino acid residues were generated from the above samples, which indicated changes at only six positions. RCA followed by RFLP of the 80 samples indicated that most samples (47) contained only SLCMV, followed by 8, which were infected jointly with ICMV and SLCMV. In 11 samples, the pattern did not match the expected patterns from either of the two viruses and hence, were variants. Sequence analysis of an average of 700 nucleotides from 31 RCA-generated fragments of the variants indicated identities of 97-99% with the sequence of a previously reported infectious clone of SLCMV. The evidence suggests low levels of genetic variability in the begomoviruses infecting cassava, mainly in the form of scattered single nucleotide changes.

  8. Complete mitochondrial genome of Camponotus atrox (Hymenoptera: Formicidae): a new tRNA arrangement in Hymenoptera.

    PubMed

    Kim, Min Jee; Hong, Eui Jeong; Kim, Iksoo

    2016-01-01

    We sequenced the complete mitochondrial (mt) genome of Camponotus atrox (Hymenoptera: Formicidae), which is only distributed in Korea. The genome was 16 540 bp in size and contained typical sets of genes (13 protein-coding genes, 22 tRNAs, and 2 rRNAs). The C. atrox A+T-rich region, at 1402 bp, was the longest of all sequenced ant genomes and was composed of an identical tandem repeat consisting of six 100-bp copies and one 96-bp copy. A total of 315 bp of intergenic spacer sequence was spread over 23 regions. An alignment of the spacer sequences in ants was largely feasible among congeneric species, and there was substantial sequence divergence, indicating their potential use as molecular markers for congeneric species. The A/T contents at the first and second codon positions of protein-coding genes (PCGs) were similar for ant species, including C. atrox (73.9% vs. 72.3%, on average). With increased taxon sampling among hymenopteran superfamilies, differences in the divergence rates (i.e., the non-synonymous substitution rates) between the suborders Symphyta and Apocrita were detected, consistent with previous results. The C. atrox mt genome had a unique gene arrangement, trnI-trnM-trnQ, at the A+T-rich region and ND2 junction (underline indicates inverted gene). This may have originated from a tandem duplication of trnM-trnI, resulting in trnM-trnI-trnM-trnI-trnQ, and the subsequent loss of the first trnM and second trnI, resulting in trnI-trnM-trnQ.

  9. Intricate interactions between the bloom-forming cyanobacterium Microcystis aeruginosa and foreign genetic elements, revealed by diversified clustered regularly interspaced short palindromic repeat (CRISPR) signatures.

    PubMed

    Kuno, Sotaro; Yoshida, Takashi; Kaneko, Takakazu; Sako, Yoshihiko

    2012-08-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) confer sequence-dependent, adaptive resistance in prokaryotes against viruses and plasmids via incorporation of short sequences, called spacers, derived from foreign genetic elements. CRISPR loci are thus considered to provide records of past infections. To describe the host-parasite (i.e., cyanophages and plasmids) interactions involving the bloom-forming freshwater cyanobacterium Microcystis aeruginosa, we investigated CRISPR in four M. aeruginosa strains and in two previously sequenced genomes. The number of spacers in each locus was larger than the average among prokaryotes. All spacers were strain specific, except for a string of 11 spacers shared in two closely related strains, suggesting diversification of the loci. Using CRISPR repeat-based PCR, 24 CRISPR genotypes were identified in a natural cyanobacterial community. Among 995 unique spacers obtained, only 10 sequences showed similarity to M. aeruginosa phage Ma-LMM01. Of these, six spacers showed only silent or conservative nucleotide mutations compared to Ma-LMM01 sequences, suggesting a strategy by the cyanophage to avert CRISPR immunity dependent on nucleotide identity. These results imply that host-phage interactions can be divided into M. aeruginosa-cyanophage combinations rather than pandemics of population-wide infectious cyanophages. Spacer similarity also showed frequent exposure of M. aeruginosa to small cryptic plasmids that were observed only in a few strains. Thus, the diversification of CRISPR implies that M. aeruginosa has been challenged by diverse communities (almost entirely uncharacterized) of cyanophages and plasmids.

  10. Intricate Interactions between the Bloom-Forming Cyanobacterium Microcystis aeruginosa and Foreign Genetic Elements, Revealed by Diversified Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Signatures

    PubMed Central

    Kuno, Sotaro; Kaneko, Takakazu; Sako, Yoshihiko

    2012-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) confer sequence-dependent, adaptive resistance in prokaryotes against viruses and plasmids via incorporation of short sequences, called spacers, derived from foreign genetic elements. CRISPR loci are thus considered to provide records of past infections. To describe the host-parasite (i.e., cyanophages and plasmids) interactions involving the bloom-forming freshwater cyanobacterium Microcystis aeruginosa, we investigated CRISPR in four M. aeruginosa strains and in two previously sequenced genomes. The number of spacers in each locus was larger than the average among prokaryotes. All spacers were strain specific, except for a string of 11 spacers shared in two closely related strains, suggesting diversification of the loci. Using CRISPR repeat-based PCR, 24 CRISPR genotypes were identified in a natural cyanobacterial community. Among 995 unique spacers obtained, only 10 sequences showed similarity to M. aeruginosa phage Ma-LMM01. Of these, six spacers showed only silent or conservative nucleotide mutations compared to Ma-LMM01 sequences, suggesting a strategy by the cyanophage to avert CRISPR immunity dependent on nucleotide identity. These results imply that host-phage interactions can be divided into M. aeruginosa-cyanophage combinations rather than pandemics of population-wide infectious cyanophages. Spacer similarity also showed frequent exposure of M. aeruginosa to small cryptic plasmids that were observed only in a few strains. Thus, the diversification of CRISPR implies that M. aeruginosa has been challenged by diverse communities (almost entirely uncharacterized) of cyanophages and plasmids. PMID:22636003

  11. Complete sequence analysis of 18S rDNA based on genomic DNA extraction from individual Demodex mites (Acari: Demodicidae).

    PubMed

    Zhao, Ya-E; Xu, Ji-Ru; Hu, Li; Wu, Li-Ping; Wang, Zheng-Hang

    2012-05-01

    The study for the first time attempted to accomplish 18S ribosomal DNA (rDNA) complete sequence amplification and analysis for three Demodex species (Demodex folliculorum, Demodex brevis and Demodex canis) based on gDNA extraction from individual mites. The mites were treated by DNA Release Additive and Hot Start II DNA Polymerase so as to promote mite disruption and increase PCR specificity. Determination of D. folliculorum gDNA showed that the gDNA yield reached the highest at 1 mite, tending to descend with the increase of mite number. The individual mite gDNA was successfully used for 18S rDNA fragment (about 900 bp) amplification examination. The alignments of 18S rDNA complete sequences of individual mite samples and those of pooled mite samples ( ≥ 1000mites/sample) showed over 97% identities for each species, indicating that the gDNA extracted from a single individual mite was as satisfactory as that from pooled mites for PCR amplification. Further pairwise sequence analyses showed that average divergence, genetic distance, transition/transversion or phylogenetic tree could not effectively identify the three Demodex species, largely due to the differentiation in the D. canis isolates. It can be concluded that the individual Demodex mite gDNA can satisfy the molecular study of Demodex. 18S rDNA complete sequence is suitable for interfamily identification in Cheyletoidea, but whether it is suitable for intrafamily identification cannot be confirmed until the ascertainment of the types of Demodex mites parasitizing in dogs. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Discrimination between Demodex folliculorum (Acari: Demodicidae) isolates from China and Spain based on mitochondrial cox1 sequences*

    PubMed Central

    Zhao, Ya-e; Ma, Jun-xian; Hu, Li; Wu, Li-ping; De Rojas, Manuel

    2013-01-01

    For a long time, classification of Demodex mites has been based mainly on their hosts and phenotypic characteristics. A new subspecies of Demodex folliculorum has been proposed, but not confirmed. Here, cox1 partial sequences of nine isolates of three Demodex species from two geographical sources (China and Spain) were studied to conduct molecular identification of D. folliculorum. Sequencing showed that the mitochondrial cox1 fragments of five D. folliculorum isolates from the facial skin of Chinese individuals were 429 bp long and that their sequence identity was 97.4%. The average sequence divergence was 1.24% among the five Chinese isolates, 0.94% between the two geographical isolate groups (China (5) and Spain (1)), and 2.15% between the two facial tissue sources (facial skin (6) and eyelids (1)). The genetic distance and rate of third-position nucleotide transition/transversion were 0.0125, 2.7 (3/1) among the five Chinese isolates, 0.0094, 3.1 (3/1) between the two geographical isolate groups, and 0.0217, 4.4 (3/1) between the two facial tissue sources. Phylogenetic trees showed that D. folliculorum from the two geographical isolate groups did not form sister clades, while those from different facial tissue sources did. According to the molecular characteristics, it appears that subspecies differentiation might not have occurred and that D. folliculorum isolates from the two geographical sources are of the same population. However, population differentiation might be occurring between isolates from facial skin and eyelids. PMID:24009203

  13. Lelliottia aquatilis sp. nov., isolated from drinking water.

    PubMed

    Kämpfer, Peter; Glaeser, Stefanie P; Packroff, Gabriele; Behringer, Katja; Exner, Martin; Chakraborty, Trinad; Schmithausen, Ricarda M; Doijad, Swapnil

    2018-06-22

    Five beige-pigmented, oxidase-negative bacterial isolates, 6331-17 T , 6332-17, 6333-17, 6334-17 and 9827-07, isolated either from a drinking water storage reservoir or drinking water in 2006 and 2017 in Germany, were examined in detail applying by a polyphasic taxonomic approach. Cells of the isolates were rod-shaped and Gram-stain-negative. Comparison of the 16S rRNA gene sequences of these five isolates showed highest sequence similarities to Lelliottia amnigena (99.98 %) and Lelliottia nimipressuralis (99.99 %). Multilocus sequence analyses based on concatenated partial rpoB, gyrB, infB and atpD sequences confirmed the clustering of these isolates with Lelliottia species, but also revealed a clear distinction to the closest related type strains. Analysis of the genome sequences of these isolates indicated >70 % in silico DNA-DNA hybridization and high average nucleotide identities between strains. Nevertheless, they showed only <70 and <95 % similarity to the type strains of these two Lelliottia species. The fatty acid profiles of these isolates were very similar and consisted of the major fatty acids C16:0, C17 : 0cyclo, C15 : 0iso 2-OH/C16 : 1ω7c and C18 : 1ω7c. In addition, physiological/biochemical tests revealed high phenotypic similarity to each other. These cumulative data indicate that these isolates represent a novel Lelliottia species, for which the name Lelliottia aquatilis sp. nov. is proposed, with strain 6331-17 T (=CCM 8846 T =CIP 111609 T =LMG 30560 T ) as the type strain.

  14. Porcine insulin receptor substrate 4 (IRS4) gene: cloning, polymorphism and association study

    USDA-ARS?s Scientific Manuscript database

    Using PCR and IPCR techniques we obtained a 4498 bp nucleotide sequence FN424076 encompassing the complete coding sequence of the porcine IRS4 gene and its proximal promoter. The 1269-amino acid porcine protein deduced from the nucleotide sequence shares 92% identity with the human IRS4 and possesse...

  15. Genome Sequences for Five Strains of the Emerging Pathogen Haemophilus haemolyticus

    PubMed Central

    Jordan, I. King; Conley, Andrew B.; Antonov, Ivan V.; Arthur, Robert A.; Cook, Erin D.; Cooper, Guy P.; Jones, Bernard L.; Knipe, Kristen M.; Lee, Kevin J.; Liu, Xing; Mitchell, Gabriel J.; Pande, Pushkar R.; Petit, Robert A.; Qin, Shaopu; Rajan, Vani N.; Sarda, Shruti; Sebastian, Aswathy; Tang, Shiyuyun; Thapliyal, Racchit; Varghese, Neha J.; Ye, Tianjun; Katz, Lee S.; Wang, Xin; Rowe, Lori; Frace, Michael; Mayer, Leonard W.

    2011-01-01

    We report the first whole-genome sequences for five strains, two carried and three pathogenic, of the emerging pathogen Haemophilus haemolyticus. Preliminary analyses indicate that these genome sequences encode markers that distinguish H. haemolyticus from its closest Haemophilus relatives and provide clues to the identity of its virulence factors. PMID:21952546

  16. Complete Genome Sequences of Bacillus Phages Janet and OTooleKemple52

    PubMed Central

    2018-01-01

    ABSTRACT We report here the genome sequences of two novel Bacillus cereus group-infecting bacteriophages, Janet and OTooleKemple52. These bacteriophages are double-stranded DNA-containing Myoviridae isolated from soil samples. While their genomes share a high degree of sequence identity with one another, their host preferences are unique. PMID:29748396

  17. Development and application of a PCR assay to detect chicken and turkey parvoviruses in commercial poultry flocks in the United States.

    USDA-ARS?s Scientific Manuscript database

    Comparative sequence analysis of six independent chicken and turkey parvovirus nonstructural (NS) genes revealed specific genomic regions with 100% nucleotide sequence identity. A PCR assay with primers targeting these conserved genome sequences proved to be highly specific and sensitive to detect p...

  18. Perception and the Temporal Properties of Speech.

    DTIC Science & Technology

    1993-01-11

    conditions. In the embedded condition, phoneme sequences equivalent to these words formed the second syllable of a two-syllable word. In the unembedded ... unembedded in the sequence "warm lips". These priming sequences were based on the sequences used in Experiment 2. Each combinable priming sequence in...unrelated, to the embedded or unembedded prime word. The probes used in this experiment were identical to the ones used in Experiment 2. Subjects were tested

  19. High resolution identity testing of inactivated poliovirus vaccines

    PubMed Central

    Mee, Edward T.; Minor, Philip D.; Martin, Javier

    2015-01-01

    Background Definitive identification of poliovirus strains in vaccines is essential for quality control, particularly where multiple wild-type and Sabin strains are produced in the same facility. Sequence-based identification provides the ultimate in identity testing and would offer several advantages over serological methods. Methods We employed random RT-PCR and high throughput sequencing to recover full-length genome sequences from monovalent and trivalent poliovirus vaccine products at various stages of the manufacturing process. Results All expected strains were detected in previously characterised products and the method permitted identification of strains comprising as little as 0.1% of sequence reads. Highly similar Mahoney and Sabin 1 strains were readily discriminated on the basis of specific variant positions. Analysis of a product known to contain incorrect strains demonstrated that the method correctly identified the contaminants. Conclusion Random RT-PCR and shotgun sequencing provided high resolution identification of vaccine components. In addition to the recovery of full-length genome sequences, the method could also be easily adapted to the characterisation of minor variant frequencies and distinction of closely related products on the basis of distinguishing consensus and low frequency polymorphisms. PMID:26049003

  20. Sequence divergence of the red and green visual pigments in great apes and humans.

    PubMed Central

    Deeb, S S; Jorgensen, A L; Battisti, L; Iwasaki, L; Motulsky, A G

    1994-01-01

    We have determined the coding sequences of red and green visual pigment genes of the chimpanzee, gorilla, and orangutan. The deduced amino acid sequences of these pigments are highly homologous to the equivalent human pigments. None of the amino acid differences occurred at sites that were previously shown to influence pigment absorption characteristics. Therefore, we predict the spectra of red and green pigments of the apes to have wavelengths of maximum absorption that differ by < 2 nm from the equivalent human pigments and that color vision in these nonhuman primates will be very similar, if not identical, to that in humans. A total of 14 within-species polymorphisms (6 involving silent substitutions) were observed in the coding sequences of the red and green pigment genes of the great apes. Remarkably, the polymorphisms at 6 of these sites had been observed in human populations, suggesting that they predated the evolution of higher primates. Alleles at polymorphic sites were often shared between the red and green pigment genes. The average synonymous rate of divergence of red from green sequences was approximately 1/10th that estimated for other proteins of higher primates, indicating the involvement of gene conversion in generating these polymorphisms. The high degree of homology and juxtaposition of these two genes on the X chromosome has promoted unequal recombination and/or gene conversion that led to sequence homogenization. However, natural selection operated to maintain the degree of separation in peak absorbance between the red and green pigments that resulted in optimal chromatic discrimination. This represents a unique case of molecular coevolution between two homologous genes that functionally interact at the behavioral level. PMID:8041777

  1. Applications of statistical physics and information theory to the analysis of DNA sequences

    NASA Astrophysics Data System (ADS)

    Grosse, Ivo

    2000-10-01

    DNA carries the genetic information of most living organisms, and the of genome projects is to uncover that genetic information. One basic task in the analysis of DNA sequences is the recognition of protein coding genes. Powerful computer programs for gene recognition have been developed, but most of them are based on statistical patterns that vary from species to species. In this thesis I address the question if there exist universal statistical patterns that are different in coding and noncoding DNA of all living species, regardless of their phylogenetic origin. In search for such species-independent patterns I study the mutual information function of genomic DNA sequences, and find that it shows persistent period-three oscillations. To understand the biological origin of the observed period-three oscillations, I compare the mutual information function of genomic DNA sequences to the mutual information function of stochastic model sequences. I find that the pseudo-exon model is able to reproduce the mutual information function of genomic DNA sequences. Moreover, I find that a generalization of the pseudo-exon model can connect the existence and the functional form of long-range correlations to the presence and the length distributions of coding and noncoding regions. Based on these theoretical studies I am able to find an information-theoretical quantity, the average mutual information (AMI), whose probability distributions are significantly different in coding and noncoding DNA, while they are almost identical in all studied species. These findings show that there exist universal statistical patterns that are different in coding and noncoding DNA of all studied species, and they suggest that the AMI may be used to identify genes in different living species, irrespective of their taxonomic origin.

  2. Polynucleobacter meluiroseus sp. nov., a bacterium isolated from a lake located in the mountains of the Mediterranean island of Corsica.

    PubMed

    Pitt, Alexandra; Schmidt, Johanna; Lang, Elke; Whitman, William B; Woyke, Tanja; Hahn, Martin W

    2018-06-01

    Strain AP-Melu-1000-B4 was isolated from a lake located in the mountains of the Mediterranean island of Corsica (France). Phenotypic, chemotaxonomic and genomic traits were investigated. Phylogenetic analyses based on 16S rRNA gene sequencing referred the strain to the cryptic species complex PnecC within the genus Polynucleobacter. The strain encoded genes for biosynthesis of proteorhodopsin and retinal. When pelleted by centrifugation the strain showed an intense rose colouring. Major fatty acids were C16 : 1ω7c, C16 : 0, C18 : 1ω7c and summed feature 2 (C16 : 1 isoI and C14 : 0-3OH). The sequence of the 16S rRNA gene contained an indel which was not present in any previously described Polynucleobacter species. Genome sequencing revealed a genome size of 1.89 Mbp and a G+C content of 46.6 mol%. In order to resolve the phylogenetic position of the new strain within subcluster PnecC, its phylogeny was reconstructed from sequences of 319 shared genes. To represent all currently described Polynucleobacter species by whole genome sequences, three type strains were additionally sequenced. Our phylogenetic analysis revealed that strain AP-Melu-100-B4 occupied a basal position compared with previously described PnecC strains. Pairwise determined whole genome average nucleotide identity (gANI) values suggested that strain AP-Melu-1000-B4 represents a new species, for which we propose the name Polynucleobacter meluiroseus sp. nov. with the type strain AP-Melu-1000-B4 T (=DSM 103591 T =CIP 111329 T ).

  3. Evolutionary sequences of very hot, low-mass, accreting white dwarfs with application to symbiotic variables and ultrasoft/supersoft low-luminosity x-ray sources

    NASA Technical Reports Server (NTRS)

    Sion, Edward M.; Starrfield, Sumner G.

    1994-01-01

    We present the first detailed model results of quasi-static evolutionary sequences of very hot low-mass white dwarfs accreting hydrogen-rich material at rates between 1 x 10(exp -7) and 1 x 10(exp -9) solar mass/yr. Most of the sequences were generated from starting models whose core thermal structures were not thermally relaxed in the thermal pulse cycle-averaged sense of an asymptotic giant branch stellar core. Hence, the evolution at constant accretion rate was not invariably characterized by series of identical shell flashes. Sequences exhibiting stable steady state nuclear burning at the accretion supply rate as well as sequences exhibiting recurrent thermonuclear shell flashes are presented and discussed. In some cases, the white dwarf accretors remain small (less than 10(exp 11) cm) and very hot even during the shell flash episode. They then experience continued but reduced hydrogen shell burning during the longer quiescent intervals while their surface temperatures increase both because of compressional heating and envelope structure readjustment in response to accretion over thousands of years. Both accretion and continued hydrogen burning power these models with luminosities of a few times 10(exp 37) ergs/s. We suggest that the physical properties of these model sequences are of considerable relevance to the observed outburst and quiescent behavior of those symbiotic variables and symbiotic novae containing low-mass white dwarfs. We also suggest that our models are relevant to the observational characteristics of the growing class of low-luminosity, supersoft/ultrasoft X-ray sources in globular clusters, and the Magellanic Clouds.

  4. Reduced TCOF1 mRNA level in a rhesus macaque with Treacher Collins-like syndrome: further evidence for haploinsufficiency of treacle as the cause of disease.

    PubMed

    Shows, Kathryn H; Ward, Christy; Summers, Laura; Li, Lin; Ziegler, Gregory R; Hendrickx, Andrew G; Shiang, Rita

    2006-02-01

    Mutations in the human gene TCOF1 cause a mandibulofacial dysostosis known as Treacher Collins syndrome (TCS). An infant rhesus macaque (Macaca mulatta) that displayed the TCS phenotype was identified at the California National Primate Research Center. The TCOF1 coding region was cloned from a normal rhesus macaque and sequenced. The rhesus macaque homolog of TCOF1 is 91.6% identical in cDNA sequence and 93.8% identical in translated protein sequence compared to human TCOF1. Sequencing of TCOF1 in the TCS-affected rhesus macaque showed no mutations within the coding region or splice sites; however, real-time quantitative PCR showed an 87% reduction of spleen TCOF1 mRNA level in the TCS affected macaque when compared with normal macaque spleen.

  5. DNA sequence analysis of a 10 624 bp fragment of the left arm of chromosome XV from Saccharomyces cerevisiae reveals a RNA binding protein, a mitochondrial protein, two ribosomal proteins and two new open reading frames.

    PubMed

    Lafuente, M J; Gamo, F J; Gancedo, C

    1996-09-01

    We have determined the sequence of a 10624 bp DNA segment located in the left arm of chromosome XV of Saccharomyces cerevisiae. The sequence contains eight open reading frames (ORFs) longer than 100 amino acids. Two of them do not present significant homology with sequences found in the databases. The product of ORF o0553 is identical to the protein encoded by the gene SMF1. Internal to it there is another ORF, o0555 that is apparently expressed. The proteins encoded by ORFs o0559 and o0565 are identical to ribosomal proteins S19.e and L18 respectively. ORF o0550 encodes a protein with an RNA binding signature including RNP motifs and stretches rich in asparagine, glutamine and arginine.

  6. Host Cell Virus Entry Mediated by Australian Bat Lyssavirus Envelope G glycoprotein

    DTIC Science & Technology

    2013-10-24

    39 Figure 7. Comparison of the amino acid sequences of Saccolaimus and Pteropus ABLV G mature protein... sequence analysis revealed that the PCR products were identical. Sequence comparisons of the ABLV N and other lyssavirus N proteins showed that ABLV...Saccolaimus flaviventris) (129). Nucleoprotein sequence comparisons revealed that the Saccolaimus N protein shared 96% amino acid homology with the Pteropus

  7. Full-Genome Sequence of Infectious Laryngotracheitis Virus (Gallid Alphaherpesvirus 1) Strain VFAR-043, Isolated in Peru

    PubMed Central

    Bendezu Eguis, Jorge; Montesinos, Ricardo; Fernández-Díaz, Manolo

    2018-01-01

    ABSTRACT We report here the first genome sequence of infectious laryngotracheitis virus isolated in Peru from tracheal tissues of layer chickens. The genome showed 99.98% identity to the J2 strain genome sequence. Single nucleotide polymorphisms were detected in five gene-coding sequences related to vaccine development, virus attachment, and viral immune evasion. PMID:29519822

  8. Complete genome sequence of uropathogenic Escherichia coli isolate UPEC 26-1.

    PubMed

    Subhadra, Bindu; Kim, Dong Ho; Kim, Jaeseok; Woo, Kyungho; Sohn, Kyung Mok; Kim, Hwa-Jung; Han, Kyudong; Oh, Man Hwan; Choi, Chul Hee

    2018-06-01

    Urinary tract infections (UTIs) are among the most common infections in humans, predominantly caused by uropathogenic Escherichia coli (UPEC). The diverse genomes of UPEC strains mostly impede disease prevention and control measures. In this study, we comparatively analyzed the whole genome sequence of a highly virulent UPEC strain, namely UPEC 26-1, which was isolated from urine sample of a patient suffering from UTI in Korea. Whole genome analysis showed that the genome consists of one circular chromosome of 5,329,753 bp, comprising 5064 protein-coding genes, 122 RNA genes (94 tRNA, 22 rRNA and 6 ncRNA genes), and 100 pseudogenes, with an average G+C content of 50.56%. In addition, we identified 8 prophage regions comprising 5 intact, 2 incomplete and 1 questionable ones and 63 genomic islands, suggesting the possibility of horizontal gene transfer in this strain. Comparative genome analysis of UPEC 26-1 with the UPEC strain CFT073 revealed an average nucleotide identity of 99.7%. The genome comparison with CFT073 provides major differences in the genome of UPEC 26-1 that would explain its increased virulence and biofilm formation. Nineteen of the total GIs were unique to UPEC 26-1 compared to CFT073 and nine of them harbored unique genes that are involved in virulence, multidrug resistance, biofilm formation and bacterial pathogenesis. The data from this study will assist in future studies of UPEC strains to develop effective control measures.

  9. Solution structure of the chick TGFbeta type II receptor ligand-binding domain.

    PubMed

    Marlow, Michael S; Brown, Christopher B; Barnett, Joey V; Krezel, Andrzej M

    2003-02-28

    The transforming growth factor beta (TGFbeta) signaling pathway influences cell proliferation, immune responses, and extracellular matrix reorganization throughout the vertebrate life cycle. The signaling cascade is initiated by ligand-binding to its cognate type II receptor. Here, we present the structure of the chick type II TGFbeta receptor determined by solution NMR methods. Distance and angular constraints were derived from 15N and 13C edited NMR experiments. Torsion angle dynamics was used throughout the structure calculations and refinement. The 20 final structures were energy minimized using the generalized Born solvent model. For these 20 structures, the average backbone root-mean-square distance from the average structure is below 0.6A. The overall fold of this 109-residue domain is conserved within the superfamily of these receptors. Chick receptors fully recognize and respond to human TGFbeta ligands despite only 60% identity at the sequence level. Comparison with the human TGFbeta receptor determined by X-ray crystallography reveals different conformations in several regions. Sequence divergence and crystal packing interactions under low pH conditions are likely causes. This solution structure identifies regions were structural changes, however subtle, may occur upon ligand-binding. We also identified two very well conserved molecular surfaces. One was found to bind ligand in the crystallized human TGFbeta3:TGFbeta type II receptor complex. The other, newly identified area can be the interaction site with type I and/or type III receptors of the TGFbeta signaling complex.

  10. PASS2: an automated database of protein alignments organised as structural superfamilies.

    PubMed

    Bhaduri, Anirban; Pugalenthi, Ganesan; Sowdhamini, Ramanathan

    2004-04-02

    The functional selection and three-dimensional structural constraints of proteins in nature often relates to the retention of significant sequence similarity between proteins of similar fold and function despite poor sequence identity. Organization of structure-based sequence alignments for distantly related proteins, provides a map of the conserved and critical regions of the protein universe that is useful for the analysis of folding principles, for the evolutionary unification of protein families and for maximizing the information return from experimental structure determination. The Protein Alignment organised as Structural Superfamily (PASS2) database represents continuously updated, structural alignments for evolutionary related, sequentially distant proteins. An automated and updated version of PASS2 is, in direct correspondence with SCOP 1.63, consisting of sequences having identity below 40% among themselves. Protein domains have been grouped into 628 multi-member superfamilies and 566 single member superfamilies. Structure-based sequence alignments for the superfamilies have been obtained using COMPARER, while initial equivalencies have been derived from a preliminary superposition using LSQMAN or STAMP 4.0. The final sequence alignments have been annotated for structural features using JOY4.0. The database is supplemented with sequence relatives belonging to different genomes, conserved spatially interacting and structural motifs, probabilistic hidden markov models of superfamilies based on the alignments and useful links to other databases. Probabilistic models and sensitive position specific profiles obtained from reliable superfamily alignments aid annotation of remote homologues and are useful tools in structural and functional genomics. PASS2 presents the phylogeny of its members both based on sequence and structural dissimilarities. Clustering of members allows us to understand diversification of the family members. The search engine has been improved for simpler browsing of the database. The database resolves alignments among the structural domains consisting of evolutionarily diverged set of sequences. Availability of reliable sequence alignments of distantly related proteins despite poor sequence identity and single-member superfamilies permit better sampling of structures in libraries for fold recognition of new sequences and for the understanding of protein structure-function relationships of individual superfamilies. PASS2 is accessible at http://www.ncbs.res.in/~faculty/mini/campass/pass2.html

  11. Detection of Co-Infection of Notocactus leninghausii f. cristatus with Six Virus Species in South Korea

    PubMed Central

    Park, Chung Hwa; Song, Eun Gyeong; Ryu, Ki Hyun

    2018-01-01

    Co-infection with two virus species was previously reported in some cactus plants. Here, we showed that Notocactus leninghausii f. cristatus can be co-infected with six different viruses: cactus mild mottle virus (CMMoV)-Nl, cactus virus X (CVX)-Nl, pitaya virus X (PiVX)-Nl, rattail cactus necrosis-associated virus (RCNaV)-Nl, schlumbergera virus X (SchVX)-Nl, and zygocactus virus X (ZyVX)-Nl. The coat protein sequences of these viruses were compared with those of previously reported viruses. CMMoV-Nl, CVX-Nl, PiVX-Nl, RCNaV-Nl, SchVX-Nl, and ZyVX-Nl showed the greatest nucleotide sequence homology to CMMoV-Kr (99.8% identity, GenBank accession NC_011803), CVX-Jeju (77.5% identity, GenBank accession LC12841), PiVX-P37 (98.4% identity, GenBank accession NC_024458), RCNaV (99.4% identity, GenBank accession NC_016442), SchVX-K11 (95.7% identity, GenBank accession NC_011659), and ZyVX-B1 (97.9% identity, GenBank accession NC_006059), respectively. This study is the first report of co-infection with six virus species in N. leninghausii f. cristatus in South Korea. PMID:29422789

  12. Complete Genomic Sequence and Comparative Analysis of the Genome Segments of Sweet Potato Chlorotic Stunt Virus in China

    PubMed Central

    Qin, Yanhong; Wang, Li; Zhang, Zhenchen; Qiao, Qi; Zhang, Desheng; Tian, Yuting; Wang, Shuang; Wang, Yongjiang; Yan, Zhaoling

    2014-01-01

    Background Sweet potato chlorotic stunt virus (family Closteroviridae, genus Crinivirus) features a large bipartite, single-stranded, positive-sense RNA genome. To date, only three complete genomic sequences of SPCSV can be accessed through GenBank. SPCSV was first detected from China in 2011, only partial genomic sequences have been determined in the country. No report on the complete genomic sequence and genome structure of Chinese SPCSV isolates or the genetic relation between isolates from China and other countries is available. Methodology/Principal Findings The complete genomic sequences of five isolates from different areas in China were characterized. This study is the first to report the complete genome sequences of SPCSV from whitefly vectors. Genome structure analysis showed that isolates of WA and EA strains from China have the same coding protein as isolates Can181-9 and m2-47, respectively. Twenty cp genes and four RNA1 partial segments were sequenced and analyzed, and the nucleotide identities of complete genomic, cp, and RNA1 partial sequences were determined. Results indicated high conservation among strains and significant differences between WA and EA strains. Genetic analysis demonstrated that, except for isolates from Guangdong Province, SPCSVs from other areas belong to the WA strain. Genome organization analysis showed that the isolates in this study lack the p22 gene. Conclusions/Significance We presented the complete genome sequences of SPCSV in China. Comparison of nucleotide identities and genome structures between these isolates and previously reported isolates showed slight differences. The nucleotide identities of different SPCSV isolates showed high conservation among strains and significant differences between strains. All nine isolates in this study lacked p22 gene. WA strains were more extensively distributed than EA strains in China. These data provide important insights into the molecular variation and genomic structure of SPCSV in China as well as genetic relationships among isolates from China and other countries. PMID:25170926

  13. [Genetic diversity of wild Cynodon dactylon germplasm detected by SRAP markers].

    PubMed

    Yi, Yang-Jie; Zhang, Xin-Quan; Huang, Lin-Kai; Ling, Yao; Ma, Xiao; Liu, Wei

    2008-01-01

    Sequence-related amplified polymorphism (SRAP) molecular markers were used to detect the genetic diversity of 32 wild accessions of Cynodon dactylon collected from Sichuan, Chongqing, Guizhou and Tibet, China. The following results were obtained. (1) Fourteen primer pairs produced 132 polymorphic bands, averaged 9.4 bands per primer pair. The percentage of polymorphic bands in average was 79.8%. The Nei's genetic similarity coefficient of the tested accessions ranged from 0.591 to 0.957, and the average Nei's coefficient was 0.759. These results suggested that there was rich genetic diversity among the wild resources of Cynodon dactylon tested. (2) Thirty two wild accessions were clustered into four groups. Moreover, the accessions from the same origin frequently clustered into one group. The findings implied that a correlation among the wild resources, geographical and ecological environment. (3) Genetic differentiation between and within six eco-geographical groups of C. dactylon was estimated by Shannon's diversity index, which showed that 65.56% genetic variance existed within group, and 34.44% genetic variance was among groups. (4) Based on Nei's unbiased measures of genetic identity, UPGMA cluster analysis measures of six eco-geographical groups of Cynodon dactylon, indicated that there was a correlation between genetic differentiation and eco-geographical habits among the groups.

  14. Polyacrylamide medium for the electrophoretic separation of biomolecules

    DOEpatents

    Madabhushi, Ramakrishna S.; Gammon, Stuart A.

    2003-11-11

    A polyacryalmide medium for the electrophoretic separation of biomolecules. The polyacryalmide medium comprises high molecular weight polyacrylamides (PAAm) having a viscosity average molecular weight (M.sub.v) of about 675-725 kDa were synthesized by conventional red-ox polymerization technique. Using this separation medium, capillary electrophoresis of BigDye DNA sequencing standard was performed. A single base resolution of .about.725 bases was achieved in .about.60 minute in a non-covalently coated capillary of 50 .mu.m i.d., 40 cm effective length, and a filed of 160 V/cm at 40.degree. C. The resolution achieved with this formulation to separate DNA under identical conditions is much superior (725 bases vs. 625 bases) and faster (60 min. vs. 75 min.) to the commercially available PAAm, such as supplied by Amersham. The formulation method employed here to synthesize PAAm is straight-forward, simple and does not require cumbersome methods such as emulsion polymerizaiton in order to achieve very high molecular weights. Also, the formulation here does not require separation of PAAm from the reaction mixture prior to reconstituting the polymer to a final concentration. Furthermore, the formulation here is prepared from a single average mol. wt. PAAm as opposed to the mixture of two different average mo. wt. PAAm previously required to achieve high resolution.

  15. Molecular characterization of the ribosomal DNA unit of Sarcocystis singaporensis, Sarcocystis zamani and Sarcocystis zuoi from rodents in Thailand

    PubMed Central

    WATTHANAKAIWAN, Vichan; SUKMAK, Manakorn; HAMARIT, Kriengsak; KAOLIM, Nongnid; WAJJWALKU, Worawidh; MUANGKRAM, Yuttamol

    2017-01-01

    Sarcocystis species are heteroxenous cyst-forming coccidian protozoan parasites with a wide host range, including rodents. In this study, Sarcocystis spp. samples were isolated from Bandicota indica, Rattus argentiventer, R. tiomanicus and R. norvegicus across five provinces of Thailand. Two major groups of Sarcocystis cysts were determined in this study: large and small cysts. By sequence comparisons and phylogenetic analyses based on the partial sequences of 28S ribosomal DNA, the large cysts showed the highest identity value (99%) with the S. zamani in GenBank database. While the small cysts could be divided into 2 groups of Sarcocystis: S. singaporensis and presupposed S. zuoi. The further analysis on 18S rDNA supported that the 2 isolates (S2 and B6 no.2) were as identified as S. singaporensis shared a high sequence identity with the S. singaporensis in GenBank database and the unidentified Sarcocystis (4 isolates, i.e., B6 no.10, B6 no.12, B10 no.4 and B10 no.7) showed 96.3–99.5% identity to S. zuoi as well as high distinct identity from others Sarcocystis spp. (≤93%). The result indicated that these four samples should be S. zuoi. In this study, we provided complete sequence of internal transcribed spacer 1 (ITS1), 5.8S rDNA and internal transcribed spacer 2 (ITS2) of these three Sarcocystis species and our new primer set could be useful to study the evolution of Sarcocystis. PMID:28701623

  16. Molecular characterization of the ribosomal DNA unit of Sarcocystis singaporensis, Sarcocystis zamani and Sarcocystis zuoi from rodents in Thailand.

    PubMed

    Watthanakaiwan, Vichan; Sukmak, Manakorn; Hamarit, Kriengsak; Kaolim, Nongnid; Wajjwalku, Worawidh; Muangkram, Yuttamol

    2017-08-18

    Sarcocystis species are heteroxenous cyst-forming coccidian protozoan parasites with a wide host range, including rodents. In this study, Sarcocystis spp. samples were isolated from Bandicota indica, Rattus argentiventer, R. tiomanicus and R. norvegicus across five provinces of Thailand. Two major groups of Sarcocystis cysts were determined in this study: large and small cysts. By sequence comparisons and phylogenetic analyses based on the partial sequences of 28S ribosomal DNA, the large cysts showed the highest identity value (99%) with the S. zamani in GenBank database. While the small cysts could be divided into 2 groups of Sarcocystis: S. singaporensis and presupposed S. zuoi. The further analysis on 18S rDNA supported that the 2 isolates (S2 and B6 no.2) were as identified as S. singaporensis shared a high sequence identity with the S. singaporensis in GenBank database and the unidentified Sarcocystis (4 isolates, i.e., B6 no.10, B6 no.12, B10 no.4 and B10 no.7) showed 96.3-99.5% identity to S. zuoi as well as high distinct identity from others Sarcocystis spp. (≤93%). The result indicated that these four samples should be S. zuoi. In this study, we provided complete sequence of internal transcribed spacer 1 (ITS1), 5.8S rDNA and internal transcribed spacer 2 (ITS2) of these three Sarcocystis species and our new primer set could be useful to study the evolution of Sarcocystis.

  17. The influence of phonological priming on variability in articulation

    NASA Astrophysics Data System (ADS)

    Babel, Molly E.; Munson, Benjamin

    2004-05-01

    Previous research [Sevald and Dell, Cognition 53, 91-127 (1994)] has found that reiterant sequences of CVC words are produced more quickly when the prime word and target word share VC sequences (i.e., sequences like sit sick) than when they are identical (sequences like sick sick). Even slower production rates are found when primes and targets share a CV sequence (sequences like kick sick). These data have been used to support a model of speech production in which lexical items and their constituent phonemes are activated sequentially. The current experiment investigated whether phonological priming also influences variability in the acoustic characteristics of words. Specifically, we examined whether greater variability in the acoustic characteristics of target words was noted in the CV-related prime context than in the identical-prime context, and whether less variability was noted in the VC-related context. Thirty adult subjects with typical speech, language, and hearing ability produced reiterant two-word sequences that varied in their phonological similarity. The duration, first, and second formant frequencies of the target-words' vowels were measured. Preliminary analyses indicate that phonological priming does not have a systematic effect on variability in these acoustic parameters.

  18. Sequence diversity of wheat mosaic virus isolates.

    PubMed

    Stewart, Lucy R

    2016-02-02

    Wheat mosaic virus (WMoV), transmitted by eriophyid wheat curl mites (Aceria tosichella) is the causal agent of High Plains disease in wheat and maize. WMoV and other members of the genus Emaravirus evaded thorough molecular characterization for many years due to the experimental challenges of mite transmission and manipulating multisegmented negative sense RNA genomes. Recently, the complete genome sequence of a Nebraska isolate of WMoV revealed eight segments, plus a variant sequence of the nucleocapsid protein-encoding segment. Here, near-complete and partial consensus sequences of five more WMoV isolates are reported and compared to the Nebraska isolate: an Ohio maize isolate (GG1), a Kansas barley isolate (KS7), and three Ohio wheat isolates (H1, K1, W1). Results show two distinct groups of WMoV isolates: Ohio wheat isolate RNA segments had 84% or lower nucleotide sequence identity to the NE isolate, whereas GG1 and KS7 had 98% or higher nucleotide sequence identity to the NE isolate. Knowledge of the sequence variability of WMoV isolates is a step toward understanding virus biology, and potentially explaining observed biological variation. Published by Elsevier B.V.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denef, Vincent; Shah, Manesh B; Verberkmoes, Nathan C

    The recent surge in microbial genomic sequencing, combined with the development of high-throughput liquid chromatography-mass-spectrometry-based (LC/LC-MS/MS) proteomics, has raised the question of the extent to which genomic information of one strain or environmental sample can be used to profile proteomes of related strains or samples. Even with decreasing sequencing costs, it remains impractical to obtain genomic sequence for every strain or sample analyzed. Here, we evaluate how shotgun proteomics is affected by amino acid divergence between the sample and the genomic database using a probability-based model and a random mutation simulation model constrained by experimental data. To assess the effectsmore » of nonrandom distribution of mutations, we also evaluated identification levels using in silico peptide data from sequenced isolates with average amino acid identities (AAI) varying between 76 and 98%. We compared the predictions to experimental protein identification levels for a sample that was evaluated using a database that included genomic information for the dominant organism and for a closely related variant (95% AAI). The range of models set the boundaries at which half of the proteins in a proteomic experiment can be identified to be 77-92% AAI between orthologs in the sample and database. Consistent with this prediction, experimental data indicated loss of half the identifiable proteins at 90% AAI. Additional analysis indicated a 6.4% reduction of the initial protein coverage per 1% amino acid divergence and total identification loss at 86% AAI. Consequently, shotgun proteomics is capable of cross-strain identifications but avoids most crossspecies false positives.« less

  20. Molecular evidence that the asexual industrial fungus Trichoderma reesei is a clonal derivative of the ascomycete Hypocrea jecorina.

    PubMed Central

    Kuhls, K; Lieckfeldt, E; Samuels, G J; Kovacs, W; Meyer, W; Petrini, O; Gams, W; Börner, T; Kubicek, C P

    1996-01-01

    The relationship of the important cellulase producing asexual fungus Trichoderma reesei to its putative teleomorphic (sexual) ancestor Hypocrea jecorina and other species of the Trichoderma sect. Longibrachiatum was studied by PCR-fingerprinting and sequence analyses of the nuclear ribosomal DNA region containing the internal transcribed spacers (ITS-1 and ITS-2) and the 5.8S rRNA gene. The differences in the corresponding ITS sequences allowed a grouping of anamorphic (asexual) species of Trichoderma sect. Longibrachiatum into Trichoderma longibrachiatum, Trichoderma pseudokoningii, and Trichoderma reesei. The sexual species Hypocrea schweinitzii and H. jecorina were also clearly separated from each other. H. jecorina and T. reesei exhibited identical sequences, suggesting close relatedness or even species identity. Intraspecific and interspecific variation in the PCR-fingerprinting patterns supported the differentiation of species based on ITS sequences, the grouping of the strains, and the assignment of these strains to individual species. The variations between T. reesei and H. jecorina were at the same order of magnitude as found between all strains of H. jecorina, but much lower than the observed interspecific variations. Identical ITS sequences and the high similarity of PCR-fingerprinting patterns indicate a very close relationship between T. reesei and H. jecorina, whereas differences of the ITS sequences and the PCR-fingerprinting patterns show a clear phylogenetic distance between T. reesei/H. jecorina and T. longibrachiatum. T. reesei is considered to be an asexual, clonal line derived from a population of the tropical ascomycete H. jecorina. Images Fig. 2 PMID:8755548

  1. Merida virus, a putative novel rhabdovirus discovered in Culex and Ochlerotatus spp. mosquitoes in the Yucatan Peninsula of Mexico

    PubMed Central

    Charles, Jermilia; Firth, Andrew E.; Loroño-Pino, Maria A.; Garcia-Rejon, Julian E.; Farfan-Ale, Jose A.; Lipkin, W. Ian; Briese, Thomas

    2016-01-01

    Sequences corresponding to a putative, novel rhabdovirus [designated Merida virus (MERDV)] were initially detected in a pool of Culex quinquefasciatus collected in the Yucatan Peninsula of Mexico. The entire genome was sequenced, revealing 11 798 nt and five major ORFs, which encode the nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G) and RNA-dependent RNA polymerase (L). The deduced amino acid sequences of the N, G and L proteins have no more than 24, 38 and 43 % identity, respectively, to the corresponding sequences of all other known rhabdoviruses, whereas those of the P and M proteins have no significant identity with any sequences in GenBank and their identity is only suggested based on their genome position. Using specific reverse transcription-PCR assays established from the genome sequence, 27 571 C. quinquefasciatus which had been sorted in 728 pools were screened to assess the prevalence of MERDV in nature and 25 pools were found positive. The minimal infection rate (calculated as the number of positive mosquito pools per 1000 mosquitoes tested) was 0.9, and similar for both females and males. Screening another 140 pools of 5484 mosquitoes belonging to four other genera identified positive pools of Ochlerotatus spp. mosquitoes, indicating that the host range is not restricted to C. quinquefasciatus. Attempts to isolate MERDV in C6/36 and Vero cells were unsuccessful. In summary, we provide evidence that a previously undescribed rhabdovirus occurs in mosquitoes in Mexico. PMID:26868915

  2. Characterization of the Campylobacter jejuni cryptic plasmid pTIW94 recovered from wild birds in the southeastern United States.

    PubMed

    Hiett, Kelli L; Rothrock, Michael J; Seal, Bruce S

    2013-09-01

    The complete nucleotide sequence was determined for a cryptic plasmid, pTIW94, recovered from several Campylobacter jejuni isolates from wild birds in the southeastern United States. pTIW94 is a circular molecule of 3860 nucleotides, with a G+C content (31.0%) similar to that of many Campylobacter spp. genomes. A typical origin of replication, with iteron sequences, was identified upstream of DNA sequences that demonstrated similarity to replication initiation proteins. A total of five open reading frames (ORFs) were identified; two of the five ORFs demonstrated significant similarity to plasmid pCC2228-2 found within Campylobacter coli. These two ORFs were similar to essential replication proteins RepA (100%; 26/26 aa identity) and RepB (95%; 327/346 aa identity). A third identified ORF demonstrated significant similarity (99%; 421/424 aa identity) to the MOB protein from C. coli 67-8, originally recovered from swine. The other two identified ORFs were either similar to hypothetical proteins from other Campylobacter spp., or exhibited no significant similarity to any DNA or protein sequence in the GenBank database. Promoter regions (-35 and -10 signal sites), ribosomal binding sites upstream of ORFs, and stem-loop structures were also identified within the plasmid. These results demonstrate that pTIW94 represents a previously un-reported small cryptic plasmid with unique sequences as well as highly similar sequences to other small plasmids found within Campylobacter spp., and that this cryptic plasmid is present among Campylobacter spp. recovered from different genera of wild birds. Copyright © 2013. Published by Elsevier Inc.

  3. Distribution and molecular diversity of three cucurbit-infecting poleroviruses in China.

    PubMed

    Shang, Qiao-xia; Xiang, Hai-ying; Han, Cheng-gui; Li, Da-wei; Yu, Jia-lin

    2009-11-01

    Cucurbit aphid-borne yellows virus (CABYV) and Melon aphid-borne yellows virus (MABYV) have been found to be associated with cucurbit yellowing disease in China. Our report identifies for the first time a third distinct polerovirus, tentatively named Suakwa aphid-borne yellows virus (SABYV), infecting Suakwa vegetable sponge. To better understand the distribution and molecular diversity of these three poleroviruses infecting cucurbits, a total of 214 cucurbitaceous crop samples were collected from 25 provinces in China, and were investigated by RT-PCR and sequencing. Of these, 108 samples tested positive for CABYV, while 40 samples from five provinces were positive for MABYV, and SABYV was detected in only 4 samples which were collected in the southern part of China. Forty-one PCR-amplified fragments containing a portion of the RdRp gene, intergenic NCR and CP gene were cloned and sequenced. Sequence comparisons showed that CABYV isolates shared 78.0-79.2% nucleotide sequence identity with MABYV isolates, and 69.7-70.8% with SABYV. Sequence identity between MABYV and SABYV was 73.3-76.5%. In contrast, the nucleotide identities within each species were 93.2-98.7% (CABYV), 98.1-99.9% (MABYV), and 96.1-98.6% (SABYV). Phylogenetic analyses revealed that the polerovirus isolates fit into three distinct groups, corresponding to the three species. The CABYV group could be further divided into two subgroups: the Asia subgroup and the Mediterranean subgroup, based on CP gene and partial RdRp gene sequences. Recombination analysis suggested that MABYV may be a recombinant virus.

  4. First isolation of hirame rhabdovirus from freshwater fish in Europe.

    PubMed

    Borzym, E; Matras, M; Maj-Paluch, J; Baud, M; De Boisséson, C; Talbi, C; Olesen, N J; Bigarré, L

    2014-05-01

    A rhabdovirus was isolated in cell culture inoculated with tissue material from diseased grayling, Thymallus thymallus (L.), originating from a fish farm affected by a mortality episode in Poland. Diagnostics tests showed that the virus was not related to novirhabdoviruses known in Europe, nor to vesiculovirus-like species, except perch rhabdovirus (PRhV) with which it shared moderate serological relations. However, RT-PCR with PRhV probes gave negative results. To identify the virus, a random-priming sequence-independent single primer amplification was adopted. Surprisingly, two of the obtained sequences exhibited a high identity (>99%) with hirame rhabdovirus (HIRRV), a novirhabdovirus usually found in fish in marine Asiatic countries, for instance Japan, China and Korea. The full-length sequence of the phosphoprotein gene (P) demonstrated a higher identity of the present isolate with HIRRV from China compared with the Korean isolate. An identical viral sequence was also found in brown trout, Salmo trutta trutta L., affected by mortalities in a second farm in the same region, after a likely contamination from the grayling farm. To our knowledge, this is the first report of HIRRV in Europe, and in two hosts from fresh water that have not been described before as susceptible species. © 2013 John Wiley & Sons Ltd.

  5. Higher order memories for objects encountered in different spatio-temporal contexts in mice: evidence for episodic memory.

    PubMed

    Dere, Ekrem; Silva, Maria A De Souza; Huston, Joseph P

    2004-01-01

    The ability to build higher order multi-modal memories comprising information about the spatio-temporal context of events has been termed 'episodic memory'. Deficits in episodic memory are apparent in a number of neuropsychiatric diseases. Unfortunately, the development of animal models of episodic memory has made little progress. Towards the goal of such a model we devised an object exploration task for mice, providing evidence that rodents can associate object, spatial and temporal information. In our task the mice learned the temporal sequence by which identical objects were introduced into two different contexts. The 'what' component of an episodic memory was operationalized via physically distinct objects; the 'where' component through physically different contexts, and, most importantly, the 'when' component via the context-specific inverted sequence in which four objects were presented. Our results suggest that mice are able to recollect the inverted temporal sequence in which identical objects were introduced into two distinct environments. During two consecutive test trials mice showed an inverse context-specific exploration pattern regarding identical objects that were previously encountered with even frequencies. It seems that the contexts served as discriminative stimuli signaling which of the two sequences are decisive during the two test trials.

  6. Genetic diversity of the human head lice, Pediculus humanus capitis, among primary school girls in Saudi Arabia, with reference to their prevalence.

    PubMed

    Al-Shahrani, Sarah A; Alajmi, Reem A; Ayaad, Tahany H; Al-Shahrani, Mohammed A; Shaurub, El-Sayed H

    2017-10-01

    The present work aimed at investigating the genetic diversity of the head louse Pediculus humanus capitis (P. humanus capitis) among infested primary school girls at Bisha governorate, Saudi Arabia, based on the sequence of mitochondrial cytochrome b (mt cyt b) gene of 121 P. humanus capitis adults. Additionally, the prevalence of pediculosis capitis was surveyed. The results of sequencing were compared with the sequence of human head lice that are genotyped previously. Phylogenetic tree analysis showed the presence of 100% identity (n = 26) of louse specimens with clade A (prevalent worldwide) of the GenBank data base. Louse individuals (n = 50) showed 99.8% similarity with the same clade A reference having a single base pair difference. Also, a number of 22 louse individuals revealed 99.8% identity with clade B reference (prevalent in North and Central Americas, Europe, and Australia) with individual diversity in two base pairs. Moreover, 14 louse individual sequences revealed 99.4% identity with three base pair differences. It was concluded that moderate pediculosis (~13%) prevailed among the female students of the primary schools. It was age-and hair texture (straight or curly)-dependent. P. humanus capitis prevalence diversity is of clades A and B genotyping.

  7. A novel flavivirus detected in two Aedes spp. collected near the demilitarized zone of the Republic of Korea.

    PubMed

    Korkusol, Achareeya; Takhampunya, Ratree; Hang, Jun; Jarman, Richard G; Tippayachai, Bousaraporn; Kim, Heung-Chul; Chong, Sung-Tae; Davidson, Silas A; Klein, Terry A

    2017-05-01

    Flaviviruses comprise a large and diverse group of positive-stranded RNA viruses, including tick-, mosquito- and unknown-vector-borne flaviviruses. A novel flavivirus was detected in pools of Aedes vexans nipponii (n=1) and Aedes esoensis (n=3) collected in 2012 and 2013 near the demilitarized zone (DMZ), Republic of Korea (ROK). Phylogenetic analyses of the NS5, E gene and complete polyprotein coding sequence (CDS) showed that the novel virus fell within the Aedes-borne flaviviruses (ABFVs), with nucleotide identity ranging from 57.8-75.1 %, 46.1-74.2 % and 51.1-76.2 %, respectively. While the novel ABFV was distant from other flaviviruses within the group, it formed a clade with Ilomantsi virus (ILOV). Sequence alignments of the partial NS5 gene, full-length E gene and polyprotein CDS between the novel virus and ILOV showed approximately 76.2 % nucleotide identity and 90 % amino acid identity, respectively. The ABFV identified in Aedes mosquitoes from the ROK is a novel ABFV based on the sequence analyses and is designated as Panmunjeom flavivirus (PANFV).

  8. Detection of a divergent variant of grapevine virus F by next-generation sequencing.

    PubMed

    Molenaar, Nicholas; Burger, Johan T; Maree, Hans J

    2015-08-01

    The complete genome sequence of a South African isolate of grapevine virus F (GVF) is presented. It was first detected by metagenomic next-generation sequencing of field samples and validated through direct Sanger sequencing. The genome sequence of GVF isolate V5 consists of 7539 nucleotides and contains a poly(A) tail. It has a typical vitivirus genome arrangement that comprises five open reading frames (ORFs), which share only 88.96 % nucleotide sequence identity with the existing complete GVF genome sequence (JX105428).

  9. Children's Sense of Being a Writer: Identity Construction in Second Grade Writers Workshop

    ERIC Educational Resources Information Center

    Seban, Demet; Tavsanli, Ömer Faruk

    2015-01-01

    Literacy activities in which children invest in and understand literacy creates spaces for them to construct their identity as readers/writers and build their personal theories of literacy. This study presents the identity construction of second grade students who identified as successful, average or struggling in their first time engagement with…

  10. Academic Identity Status, Goal Orientation, and Academic Achievement among High School Students

    ERIC Educational Resources Information Center

    Hejazi, Elaheh; Lavasani, Masoud Gholamali; Amani, Habib; Was, Christopher A.

    2012-01-01

    The aim of the present study was to determine the relationship between academic identity status, goal orientations and academic achievement. 301 first year high school students completed the Academic Identity Measure and Goal Orientation Questionnaire. The average of 10 exam scores in the final semester was used as an index of academic…

  11. Random Amplification and Pyrosequencing for Identification of Novel Viral Genome Sequences

    PubMed Central

    Hang, Jun; Forshey, Brett M.; Kochel, Tadeusz J.; Li, Tao; Solórzano, Víctor Fiestas; Halsey, Eric S.; Kuschner, Robert A.

    2012-01-01

    ssRNA viruses have high levels of genomic divergence, which can lead to difficulty in genomic characterization of new viruses using traditional PCR amplification and sequencing methods. In this study, random reverse transcription, anchored random PCR amplification, and high-throughput pyrosequencing were used to identify orthobunyavirus sequences from total RNA extracted from viral cultures of acute febrile illness specimens. Draft genome sequence for the orthobunyavirus L segment was assembled and sequentially extended using de novo assembly contigs from pyrosequencing reads and orthobunyavirus sequences in GenBank as guidance. Accuracy and continuous coverage were achieved by mapping all reads to the L segment draft sequence. Subsequently, RT-PCR and Sanger sequencing were used to complete the genome sequence. The complete L segment was found to be 6936 bases in length, encoding a 2248-aa putative RNA polymerase. The identified L segment was distinct from previously published South American orthobunyaviruses, sharing 63% and 54% identity at the nucleotide and amino acid level, respectively, with the complete Oropouche virus L segment and 73% and 81% identity at the nucleotide and amino acid level, respectively, with a partial Caraparu virus L segment. The result demonstrated the effectiveness of a sequence-independent amplification and next-generation sequencing approach for obtaining complete viral genomes from total nucleic acid extracts and its use in pathogen discovery. PMID:22468136

  12. SCPRED: accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences.

    PubMed

    Kurgan, Lukasz; Cios, Krzysztof; Chen, Ke

    2008-05-01

    Protein structure prediction methods provide accurate results when a homologous protein is predicted, while poorer predictions are obtained in the absence of homologous templates. However, some protein chains that share twilight-zone pairwise identity can form similar folds and thus determining structural similarity without the sequence similarity would be desirable for the structure prediction. The folding type of a protein or its domain is defined as the structural class. Current structural class prediction methods that predict the four structural classes defined in SCOP provide up to 63% accuracy for the datasets in which sequence identity of any pair of sequences belongs to the twilight-zone. We propose SCPRED method that improves prediction accuracy for sequences that share twilight-zone pairwise similarity with sequences used for the prediction. SCPRED uses a support vector machine classifier that takes several custom-designed features as its input to predict the structural classes. Based on extensive design that considers over 2300 index-, composition- and physicochemical properties-based features along with features based on the predicted secondary structure and content, the classifier's input includes 8 features based on information extracted from the secondary structure predicted with PSI-PRED and one feature computed from the sequence. Tests performed with datasets of 1673 protein chains, in which any pair of sequences shares twilight-zone similarity, show that SCPRED obtains 80.3% accuracy when predicting the four SCOP-defined structural classes, which is superior when compared with over a dozen recent competing methods that are based on support vector machine, logistic regression, and ensemble of classifiers predictors. The SCPRED can accurately find similar structures for sequences that share low identity with sequence used for the prediction. The high predictive accuracy achieved by SCPRED is attributed to the design of the features, which are capable of separating the structural classes in spite of their low dimensionality. We also demonstrate that the SCPRED's predictions can be successfully used as a post-processing filter to improve performance of modern fold classification methods.

  13. SCPRED: Accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences

    PubMed Central

    Kurgan, Lukasz; Cios, Krzysztof; Chen, Ke

    2008-01-01

    Background Protein structure prediction methods provide accurate results when a homologous protein is predicted, while poorer predictions are obtained in the absence of homologous templates. However, some protein chains that share twilight-zone pairwise identity can form similar folds and thus determining structural similarity without the sequence similarity would be desirable for the structure prediction. The folding type of a protein or its domain is defined as the structural class. Current structural class prediction methods that predict the four structural classes defined in SCOP provide up to 63% accuracy for the datasets in which sequence identity of any pair of sequences belongs to the twilight-zone. We propose SCPRED method that improves prediction accuracy for sequences that share twilight-zone pairwise similarity with sequences used for the prediction. Results SCPRED uses a support vector machine classifier that takes several custom-designed features as its input to predict the structural classes. Based on extensive design that considers over 2300 index-, composition- and physicochemical properties-based features along with features based on the predicted secondary structure and content, the classifier's input includes 8 features based on information extracted from the secondary structure predicted with PSI-PRED and one feature computed from the sequence. Tests performed with datasets of 1673 protein chains, in which any pair of sequences shares twilight-zone similarity, show that SCPRED obtains 80.3% accuracy when predicting the four SCOP-defined structural classes, which is superior when compared with over a dozen recent competing methods that are based on support vector machine, logistic regression, and ensemble of classifiers predictors. Conclusion The SCPRED can accurately find similar structures for sequences that share low identity with sequence used for the prediction. The high predictive accuracy achieved by SCPRED is attributed to the design of the features, which are capable of separating the structural classes in spite of their low dimensionality. We also demonstrate that the SCPRED's predictions can be successfully used as a post-processing filter to improve performance of modern fold classification methods. PMID:18452616

  14. Detection of Grapevine Leafroll-associated virus 7 using real-time qRT-PCR and conventional RT-PCR

    USDA-ARS?s Scientific Manuscript database

    Nine isolates of Grapevine Leafroll-associated Virus 7 (GLRaV-7) from California have been sequenced to design more sensitive molecular diagnostic tools. These sequences were from the coat protein (CP) and the homologous heat shock protein (hHSP70) genes. Sequence identity among these isolates rang...

  15. Sequences of Zika Virus Genomes from a Pediatric Cohort in Nicaragua.

    PubMed

    Oldfield, Lauren M; Fedorova, Nadia; Puri, Vinita; Shrivastava, Susmita; Amedeo, Paolo; Durbin, Alan; Rocchi, Iara; Williams, Torrey; Shabman, Reed S; Tan, Gene S; Balmaseda, Angel; Kuan, Guillermina; Saborio, Saira; Gordon, Aubree; Harris, Eva; Pickett, Brett E

    2018-06-14

    We report here the whole-genome sequence of 11 Zika virus (ZIKV) samples from six pediatric patients in Nicaragua. Serum samples were collected, and ZIKV was isolated in tissue culture. Both serum and virus isolates were sequenced. The consensus ZIKV genomes are greater than 99% identical to each other. Copyright © 2018 Oldfield et al.

  16. Arrays of nucleic acid probes on biological chips

    DOEpatents

    Chee, Mark; Cronin, Maureen T.; Fodor, Stephen P. A.; Huang, Xiaohua X.; Hubbell, Earl A.; Lipshutz, Robert J.; Lobban, Peter E.; Morris, MacDonald S.; Sheldon, Edward L.

    1998-11-17

    DNA chips containing arrays of oligonucleotide probes can be used to determine whether a target nucleic acid has a nucleotide sequence identical to or different from a specific reference sequence. The array of probes comprises probes exactly complementary to the reference sequence, as well as probes that differ by one or more bases from the exactly complementary probes.

  17. Complete Genome Sequences of Bacillus Phages Janet and OTooleKemple52.

    PubMed

    Kent, Brenna; Raymond, Thomas; Mosier, Philip D; Johnson, Allison A

    2018-05-10

    We report here the genome sequences of two novel Bacillus cereus group-infecting bacteriophages, Janet and OTooleKemple52. These bacteriophages are double-stranded DNA-containing Myoviridae isolated from soil samples. While their genomes share a high degree of sequence identity with one another, their host preferences are unique. Copyright © 2018 Kent et al.

  18. Isolation and genetic characterization of an Actinobacillus pleuropneumoniae serovar K12:O3 strain.

    PubMed

    Ito, Hiroya; Matsumoto, Atsuko

    2015-01-01

    An atypical Actinobacillus pleuropneumoniae serovar 12 strain, termed QAS106, was isolated from a clinical case of porcine pleuropneumonia in Japan. An immunodiffusion (ID) test identified the strain as serovar 12. However, the ID test also demonstrated that strain QAS106 shared antigenic determinants with both the serovar 3 and 15 reference strains. Strain QAS106 was positive in the capsular serovar 12-specific polymerase chain reaction (PCR) assay, while the PCR toxin gene profiling and omlA PCR typing assays indicated that strain QAS106 was similar to serovar 3. The nucleotide sequence of the 16S ribosomal DNA (rDNA) of strain QAS106 was identical with that of serovars 3 and 12, but it showed 99.7% identity with that of serovar 15. Nucleotide sequence analysis revealed that genes involved in biosynthesis of the capsular polysaccharide (CPS) of strain QAS106 were identical to those of serovar 12 at the amino acid level. On the other hand, strain QAS106 would express putative proteins involved in the biosynthesis of lipopolysaccharide (LPS) O-polysaccharide (O-PS), the amino acid sequences of which were identical or nearly identical to those of serovars 3 and 15. In conclusion, strain QAS106 should be recognized as K12:O3, even though typical serovar 12 strains are K12:O12. The emergence of an atypical A. pleuropneumoniae serovar 12 strain expressing a rare combination of CPS and O-PS antigens would hamper precise serodiagnosis by the use of either CPS- or LPS-based serodiagnostic methodology alone. © 2014 The Author(s).

  19. In Silico Identification of Protein Disulfide Isomerase Gene Families in the De Novo Assembled Transcriptomes of Four Different Species of the Genus Conus.

    PubMed

    Figueroa-Montiel, Andrea; Ramos, Marco A; Mares, Rosa E; Dueñas, Salvador; Pimienta, Genaro; Ortiz, Ernesto; Possani, Lourival D; Licea-Navarro, Alexei F

    2016-01-01

    Small peptides isolated from the venom of the marine snails belonging to the genus Conus have been largely studied because of their therapeutic value. These peptides can be classified in two groups. The largest one is composed by peptides rich in disulfide bonds, and referred to as conotoxins. Despite the importance of conotoxins given their pharmacology value, little is known about the protein disulfide isomerase (PDI) enzymes that are required to catalyze their correct folding. To discover the PDIs that may participate in the folding and structural maturation of conotoxins, the transcriptomes of the venom duct of four different species of Conus from the peninsula of Baja California (Mexico) were assembled. Complementary DNA (cDNA) libraries were constructed for each species and sequenced using a Genome Analyzer Illumina platform. The raw RNA-seq data was converted into transcript sequences using Trinity, a de novo assembler that allows the grouping of reads into contigs without a reference genome. An N50 value of 605 was established as a reference for future assemblies of Conus transcriptomes using this software. Transdecoder was used to extract likely coding sequences from Trinity transcripts, and PDI-specific sequence motif "APWCGHCK" was used to capture potential PDIs. An in silico analysis was performed to characterize the group of PDI protein sequences encoded by the duct-transcriptome of each species. The computational approach entailed a structural homology characterization, based on the presence of functional Thioredoxin-like domains. Four different PDI families were characterized, which are constituted by a total of 41 different gene sequences. The sequences had an average of 65% identity with other PDIs. Using MODELLER 9.14, the homology-based three-dimensional structure prediction of a subset of the sequences reported, showed the expected thioredoxin fold which was confirmed by a "simulated annealing" method.

  20. Targeted genomic enrichment and sequencing of CyHV-3 from carp tissues confirms low nucleotide diversity and mixed genotype infections.

    PubMed

    Hammoumi, Saliha; Vallaeys, Tatiana; Santika, Ayi; Leleux, Philippe; Borzym, Ewa; Klopp, Christophe; Avarre, Jean-Christophe

    2016-01-01

    Koi herpesvirus disease (KHVD) is an emerging disease that causes mass mortality in koi and common carp, Cyprinus carpio L. Its causative agent is Cyprinid herpesvirus 3 (CyHV-3), also known as koi herpesvirus (KHV). Although data on the pathogenesis of this deadly virus is relatively abundant in the literature, still little is known about its genomic diversity and about the molecular mechanisms that lead to such a high virulence. In this context, we developed a new strategy for sequencing full-length CyHV-3 genomes directly from infected fish tissues. Total genomic DNA extracted from carp gill tissue was specifically enriched with CyHV-3 sequences through hybridization to a set of nearly 2 million overlapping probes designed to cover the entire genome length, using KHV-J sequence (GenBank accession number AP008984) as reference. Applied to 7 CyHV-3 specimens from Poland and Indonesia, this targeted genomic enrichment enabled recovery of the full genomes with >99.9% reference coverage. The enrichment rate was directly correlated to the estimated number of viral copies contained in the DNA extracts used for library preparation, which varied between ∼5000 and ∼2×10 7 . The average sequencing depth was >200 for all samples, thus allowing the search for variants with high confidence. Sequence analyses highlighted a significant proportion of intra-specimen sequence heterogeneity, suggesting the presence of mixed infections in all investigated fish. They also showed that inter-specimen genetic diversity at the genome scale was very low (>99.95% of sequence identity). By enabling full genome comparisons directly from infected fish tissues, this new method will be valuable to trace outbreaks rapidly and at a reasonable cost, and in turn to understand the transmission routes of CyHV-3.

  1. Targeted genomic enrichment and sequencing of CyHV-3 from carp tissues confirms low nucleotide diversity and mixed genotype infections

    PubMed Central

    Hammoumi, Saliha; Vallaeys, Tatiana; Santika, Ayi; Leleux, Philippe; Borzym, Ewa; Klopp, Christophe

    2016-01-01

    Koi herpesvirus disease (KHVD) is an emerging disease that causes mass mortality in koi and common carp, Cyprinus carpio L. Its causative agent is Cyprinid herpesvirus 3 (CyHV-3), also known as koi herpesvirus (KHV). Although data on the pathogenesis of this deadly virus is relatively abundant in the literature, still little is known about its genomic diversity and about the molecular mechanisms that lead to such a high virulence. In this context, we developed a new strategy for sequencing full-length CyHV-3 genomes directly from infected fish tissues. Total genomic DNA extracted from carp gill tissue was specifically enriched with CyHV-3 sequences through hybridization to a set of nearly 2 million overlapping probes designed to cover the entire genome length, using KHV-J sequence (GenBank accession number AP008984) as reference. Applied to 7 CyHV-3 specimens from Poland and Indonesia, this targeted genomic enrichment enabled recovery of the full genomes with >99.9% reference coverage. The enrichment rate was directly correlated to the estimated number of viral copies contained in the DNA extracts used for library preparation, which varied between ∼5000 and ∼2×107. The average sequencing depth was >200 for all samples, thus allowing the search for variants with high confidence. Sequence analyses highlighted a significant proportion of intra-specimen sequence heterogeneity, suggesting the presence of mixed infections in all investigated fish. They also showed that inter-specimen genetic diversity at the genome scale was very low (>99.95% of sequence identity). By enabling full genome comparisons directly from infected fish tissues, this new method will be valuable to trace outbreaks rapidly and at a reasonable cost, and in turn to understand the transmission routes of CyHV-3. PMID:27703859

  2. How to Choose the Suitable Template for Homology Modelling of GPCRs: 5-HT7 Receptor as a Test Case.

    PubMed

    Shahaf, Nir; Pappalardo, Matteo; Basile, Livia; Guccione, Salvatore; Rayan, Anwar

    2016-09-01

    G protein-coupled receptors (GPCRs) are a super-family of membrane proteins that attract great pharmaceutical interest due to their involvement in almost every physiological activity, including extracellular stimuli, neurotransmission, and hormone regulation. Currently, structural information on many GPCRs is mainly obtained by the techniques of computer modelling in general and by homology modelling in particular. Based on a quantitative analysis of eighteen antagonist-bound, resolved structures of rhodopsin family "A" receptors - also used as templates to build 153 homology models - it was concluded that a higher sequence identity between two receptors does not guarantee a lower RMSD between their structures, especially when their pair-wise sequence identity (within trans-membrane domain and/or in binding pocket) lies between 25 % and 40 %. This study suggests that we should consider all template receptors having a sequence identity ≤50 % with the query receptor. In fact, most of the GPCRs, compared to the currently available resolved structures of GPCRs, fall within this range and lack a correlation between structure and sequence. When testing suitability for structure-based drug design, it was found that choosing as a template the most similar resolved protein, based on sequence resemblance only, led to unsound results in many cases. Molecular docking analyses were carried out, and enrichment factors as well as attrition rates were utilized as criteria for assessing suitability for structure-based drug design. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. nuID: a universal naming scheme of oligonucleotides for Illumina, Affymetrix, and other microarrays

    PubMed Central

    Du, Pan; Kibbe, Warren A; Lin, Simon M

    2007-01-01

    Background Oligonucleotide probes that are sequence identical may have different identifiers between manufacturers and even between different versions of the same company's microarray; and sometimes the same identifier is reused and represents a completely different oligonucleotide, resulting in ambiguity and potentially mis-identification of the genes hybridizing to that probe. Results We have devised a unique, non-degenerate encoding scheme that can be used as a universal representation to identify an oligonucleotide across manufacturers. We have named the encoded representation 'nuID', for nucleotide universal identifier. Inspired by the fact that the raw sequence of the oligonucleotide is the true definition of identity for a probe, the encoding algorithm uniquely and non-degenerately transforms the sequence itself into a compact identifier (a lossless compression). In addition, we added a redundancy check (checksum) to validate the integrity of the identifier. These two steps, encoding plus checksum, result in an nuID, which is a unique, non-degenerate, permanent, robust and efficient representation of the probe sequence. For commercial applications that require the sequence identity to be confidential, we have an encryption schema for nuID. We demonstrate the utility of nuIDs for the annotation of Illumina microarrays, and we believe it has universal applicability as a source-independent naming convention for oligomers. Reviewers This article was reviewed by Itai Yanai, Rong Chen (nominated by Mark Gerstein), and Gregory Schuler (nominated by David Lipman). PMID:17540033

  4. Sequence and features of the tryptophan operon of Vibrio parahemolyticus.

    PubMed

    Crawford, I P; Han, C Y; Silverman, M

    1991-01-01

    The nucleotide sequence of the trp operon of the marine enteric bacterium Vibrio parahemolyticus is presented. The gene order E, G, D, C(F), B, A is identical to that of other enterics. The structural genes of the operon are preceded by a long leader region encoding a 41-residue peptide containing five tryptophan residues. The organization of the leader region suggests that transcription of the operon is subject to attenuation control. The promoter-operator region of the V. parahemolyticus trp operon is almost identical to the corresponding promoter-operator of E. coli. The similarities suggest that promoter strength and operator function are identical in the two species, and that transcription initiation is regulated by repression. The operon appears to lack the internal promoter within trpD that is common in terrestrial enteric species.

  5. Post-transcriptional modifications in the small subunit ribosomal RNA from Thermotoga maritima, including presence of a novel modified cytidine

    PubMed Central

    Guymon, Rebecca; Pomerantz, Steven C.; Ison, J. Nicholas; Crain, Pamela F.; McCloskey, James A.

    2007-01-01

    Post-transcriptional modifications of RNA are nearly ubiquitous in the principal RNAs involved in translation. However, in the case of rRNA the functional roles of modification are far less established than for tRNA, and are subject to less knowledge in terms of specific nucleoside identities and their sequence locations. Post-transcriptional modifications have been studied in the SSU rRNA from Thermotoga maritima (optimal growth 80°C), one of the most deeply branched organisms in the Eubacterial phylogenetic tree. A total of 10 different modified nucleosides were found, the greatest number reported for bacterial SSU rRNA, occupying a net of ∼14 sequence sites, compared with a similar number of sites recently reported for Thermus thermophilus and 11 for Escherichia coli. The relatively large number of modifications in Thermotoga offers modest support for the notion that thermophile rRNAs are more extensively modified than those from mesophiles. Seven of the Thermotoga modified sites are identical (location and identity) to those in E. coli. An unusual derivative of cytidine was found, designated N-330 (M r 330.117), and was sequenced to position 1404 in the decoding region of the rRNA. It was unexpectedly found to be identical to an earlier reported nucleoside of unknown structure at the same location in the SSU RNA of the archaeal mesophile Haloferax volcanii. PMID:17255199

  6. Four year-olds use norm-based coding for face identity.

    PubMed

    Jeffery, Linda; Read, Ainsley; Rhodes, Gillian

    2013-05-01

    Norm-based coding, in which faces are coded as deviations from an average face, is an efficient way of coding visual patterns that share a common structure and must be distinguished by subtle variations that define individuals. Adults and school-aged children use norm-based coding for face identity but it is not yet known if pre-school aged children also use norm-based coding. We reasoned that the transition to school could be critical in developing a norm-based system because school places new demands on children's face identification skills and substantially increases experience with faces. Consistent with this view, face identification performance improves steeply between ages 4 and 7. We used face identity aftereffects to test whether norm-based coding emerges between these ages. We found that 4 year-old children, like adults, showed larger face identity aftereffects for adaptors far from the average than for adaptors closer to the average, consistent with use of norm-based coding. We conclude that experience prior to age 4 is sufficient to develop a norm-based face-space and that failure to use norm-based coding cannot explain 4 year-old children's poor face identification skills. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Morphological identification and COI barcodes of adult flies help determine species identities of chironomid larvae (Diptera, Chironomidae).

    PubMed

    Failla, A J; Vasquez, A A; Hudson, P; Fujimoto, M; Ram, J L

    2016-02-01

    Establishing reliable methods for the identification of benthic chironomid communities is important due to their significant contribution to biomass, ecology and the aquatic food web. Immature larval specimens are more difficult to identify to species level by traditional morphological methods than their fully developed adult counterparts, and few keys are available to identify the larval species. In order to develop molecular criteria to identify species of chironomid larvae, larval and adult chironomids from Western Lake Erie were subjected to both molecular and morphological taxonomic analysis. Mitochondrial cytochrome c oxidase I (COI) barcode sequences of 33 adults that were identified to species level by morphological methods were grouped with COI sequences of 189 larvae in a neighbor-joining taxon-ID tree. Most of these larvae could be identified only to genus level by morphological taxonomy (only 22 of the 189 sequenced larvae could be identified to species level). The taxon-ID tree of larval sequences had 45 operational taxonomic units (OTUs, defined as clusters with >97% identity or individual sequences differing from nearest neighbors by >3%; supported by analysis of all larval pairwise differences), of which seven could be identified to species or 'species group' level by larval morphology. Reference sequences from the GenBank and BOLD databases assigned six larval OTUs with presumptive species level identifications and confirmed one previously assigned species level identification. Sequences from morphologically identified adults in the present study grouped with and further classified the identity of 13 larval OTUs. The use of morphological identification and subsequent DNA barcoding of adult chironomids proved to be beneficial in revealing possible species level identifications of larval specimens. Sequence data from this study also contribute to currently inadequate public databases relevant to the Great Lakes region, while the neighbor-joining analysis reported here describes the application and confirmation of a useful tool that can accelerate identification and bioassessment of chironomid communities.

  8. Morphological identification and COI barcodes of adult flies help determine species identities of chironomid larvae (Diptera, Chironomidae)

    USGS Publications Warehouse

    Failla, Andrew Joseph; Vasquez, Adrian Amelio; Hudson, Patrick L.; Fujimoto, Masanori; Ram, Jeffrey L.

    2016-01-01

    Establishing reliable methods for the identification of benthic chironomid communities is important due to their significant contribution to biomass, ecology and the aquatic food web. Immature larval specimens are more difficult to identify to species level by traditional morphological methods than their fully developed adult counterparts, and few keys are available to identify the larval species. In order to develop molecular criteria to identify species of chironomid larvae, larval and adult chironomids from Western Lake Erie were subjected to both molecular and morphological taxonomic analysis. Mitochondrial cytochrome c oxidase I (COI) barcode sequences of 33 adults that were identified to species level by morphological methods were grouped with COI sequences of 189 larvae in a neighbor-joining taxon-ID tree. Most of these larvae could be identified only to genus level by morphological taxonomy (only 22 of the 189 sequenced larvae could be identified to species level). The taxon-ID tree of larval sequences had 45 operational taxonomic units (OTUs, defined as clusters with >97% identity or individual sequences differing from nearest neighbors by >3%; supported by analysis of all larval pairwise differences), of which seven could be identified to species or ‘species group’ level by larval morphology. Reference sequences from the GenBank and BOLD databases assigned six larval OTUs with presumptive species level identifications and confirmed one previously assigned species level identification. Sequences from morphologically identified adults in the present study grouped with and further classified the identity of 13 larval OTUs. The use of morphological identification and subsequent DNA barcoding of adult chironomids proved to be beneficial in revealing possible species level identifications of larval specimens. Sequence data from this study also contribute to currently inadequate public databases relevant to the Great Lakes region, while the neighbor-joining analysis reported here describes the application and confirmation of a useful tool that can accelerate identification and bioassesment of chironomid communities.

  9. Simultaneous identification of DNA and RNA viruses present in pig faeces using process-controlled deep sequencing.

    PubMed

    Sachsenröder, Jana; Twardziok, Sven; Hammerl, Jens A; Janczyk, Pawel; Wrede, Paul; Hertwig, Stefan; Johne, Reimar

    2012-01-01

    Animal faeces comprise a community of many different microorganisms including bacteria and viruses. Only scarce information is available about the diversity of viruses present in the faeces of pigs. Here we describe a protocol, which was optimized for the purification of the total fraction of viral particles from pig faeces. The genomes of the purified DNA and RNA viruses were simultaneously amplified by PCR and subjected to deep sequencing followed by bioinformatic analyses. The efficiency of the method was monitored using a process control consisting of three bacteriophages (T4, M13 and MS2) with different morphology and genome types. Defined amounts of the bacteriophages were added to the sample and their abundance was assessed by quantitative PCR during the preparation procedure. The procedure was applied to a pooled faecal sample of five pigs. From this sample, 69,613 sequence reads were generated. All of the added bacteriophages were identified by sequence analysis of the reads. In total, 7.7% of the reads showed significant sequence identities with published viral sequences. They mainly originated from bacteriophages (73.9%) and mammalian viruses (23.9%); 0.8% of the sequences showed identities to plant viruses. The most abundant detected porcine viruses were kobuvirus, rotavirus C, astrovirus, enterovirus B, sapovirus and picobirnavirus. In addition, sequences with identities to the chimpanzee stool-associated circular ssDNA virus were identified. Whole genome analysis indicates that this virus, tentatively designated as pig stool-associated circular ssDNA virus (PigSCV), represents a novel pig virus. The established protocol enables the simultaneous detection of DNA and RNA viruses in pig faeces including the identification of so far unknown viruses. It may be applied in studies investigating aetiology, epidemiology and ecology of diseases. The implemented process control serves as quality control, ensures comparability of the method and may be used for further method optimization.

  10. Complete Genome Sequence of a CTX-M-15-Producing Escherichia coli Strain from the H30Rx Subclone of Sequence Type 131 from a Patient with Recurrent Urinary Tract Infections, Closely Related to a Lethal Urosepsis Isolate from the Patient’s Sister

    PubMed Central

    Johnson, Timothy J.; Liu, Cindy M.; Sokurenko, Evgeni; Kisiela, Dagmara I.; Paul, Sandip; Andersen, Paal; Johnson, James R.; Price, Lance B.

    2016-01-01

    We report here the complete genome sequence, including five plasmid sequences, of Escherichia coli sequence type 131 (ST131) strain JJ1887. The strain was isolated in 2007 in the United States from a patient with recurrent cystitis, whose caregiver sister died from urosepsis caused by a nearly identical strain. PMID:27174264

  11. The complete sequence of Cymbidium mosaic virus from Vanilla fragrans in Hainan, China.

    PubMed

    He, Zhen; Jiang, Dongmei; Liu, Aiqin; Sang, Liwei; Li, Wenfeng; Li, Shifang

    2011-06-01

    The complete nucleotide sequence of Cymbidium mosaic virus (CymMV) isolated from vanilla in Hainan province, China was determined for the first time. It comprised 6,224 nucleotides; sequence analysis suggested that the isolate we obtained was a member of the genus Potexvirus, and its sequence shared 86.67-96.61% identities with previously reported sequences. Phylogenetic analysis suggested that CymMV from vanilla fragrans was clustered into subgroup A and the isolates in this subgroup displayed little regional difference.

  12. Investigation of timing effects in modified composite quadrupolar echo pulse sequences by mean of average Hamiltonian theory

    NASA Astrophysics Data System (ADS)

    Mananga, Eugene Stephane

    2018-01-01

    The utility of the average Hamiltonian theory and its antecedent the Magnus expansion is presented. We assessed the concept of convergence of the Magnus expansion in quadrupolar spectroscopy of spin-1 via the square of the magnitude of the average Hamiltonian. We investigated this approach for two specific modified composite pulse sequences: COM-Im and COM-IVm. It is demonstrated that the size of the square of the magnitude of zero order average Hamiltonian obtained on the appropriated basis is a viable approach to study the convergence of the Magnus expansion. The approach turns to be efficient in studying pulse sequences in general and can be very useful to investigate coherent averaging in the development of high resolution NMR technique in solids. This approach allows comparing theoretically the two modified composite pulse sequences COM-Im and COM-IVm. We also compare theoretically the current modified composite sequences (COM-Im and COM-IVm) to the recently published modified composite pulse sequences (MCOM-I, MCOM-IV, MCOM-I_d, MCOM-IV_d).

  13. Rank-order-selective neurons form a temporal basis set for the generation of motor sequences.

    PubMed

    Salinas, Emilio

    2009-04-08

    Many behaviors are composed of a series of elementary motor actions that must occur in a specific order, but the neuronal mechanisms by which such motor sequences are generated are poorly understood. In particular, if a sequence consists of a few motor actions, a primate can learn to replicate it from memory after practicing it for just a few trials. How do the motor and premotor areas of the brain assemble motor sequences so fast? The network model presented here reveals part of the solution to this problem. The model is based on experiments showing that, during the performance of motor sequences, some cortical neurons are always activated at specific times, regardless of which motor action is being executed. In the model, a population of such rank-order-selective (ROS) cells drives a layer of downstream motor neurons so that these generate specific movements at different times in different sequences. A key ingredient of the model is that the amplitude of the ROS responses must be modulated by sequence identity. Because of this modulation, which is consistent with experimental reports, the network is able not only to produce multiple sequences accurately but also to learn a new sequence with minimal changes in connectivity. The ROS neurons modulated by sequence identity thus serve as a basis set for constructing arbitrary sequences of motor responses downstream. The underlying mechanism is analogous to the mechanism described in parietal areas for generating coordinate transformations in the spatial domain.

  14. RANK-ORDER-SELECTIVE NEURONS FORM A TEMPORAL BASIS SET FOR THE GENERATION OF MOTOR SEQUENCES

    PubMed Central

    Salinas, Emilio

    2009-01-01

    Many behaviors are composed of a series of elementary motor actions that must occur in a specific order, but the neuronal mechanisms by which such motor sequences are generated are poorly understood. In particular, if a sequence consists of a few motor actions, a primate can learn to replicate it from memory after practicing it for just a few trials. How do the motor and premotor areas of the brain assemble motor sequences so fast? The network model presented here reveals part of the solution to this problem. The model is based on experiments showing that, during the performance of motor sequences, some cortical neurons are always activated at specific times, regardless of which motor action is being executed. In the model, a population of such rank-order-selective (ROS) cells drives a layer of downstream motor neurons so that these generate specific movements at different times in different sequences. A key ingredient of the model is that the amplitude of the ROS responses must be modulated by sequence identity. Because of this modulation, which is consistent with experimental reports, the network is able not only to produce multiple sequences accurately but also to learn a new sequence with minimal changes in connectivity. The ROS neurons modulated by sequence identity thus serve as a basis set for constructing arbitrary sequences of motor responses downstream. The underlying mechanism is analogous to the mechanism described in parietal areas for generating coordinate transformations in the spatial domain. PMID:19357265

  15. Phylogenetic analysis of simian Plasmodium spp. infecting Anopheles balabacensis Baisas in Sabah, Malaysia

    PubMed Central

    Manin, Benny O.; Daim, Sylvia; Vythilingam, Indra; Drakeley, Chris

    2017-01-01

    Background Anopheles balabacensis of the Leucospyrus group has been confirmed as the primary knowlesi malaria vector in Sabah, Malaysian Borneo for some time now. Presently, knowlesi malaria is the only zoonotic simian malaria in Malaysia with a high prevalence recorded in the states of Sabah and Sarawak. Methodology/Principal findings Anopheles spp. were sampled using human landing catch (HLC) method at Paradason village in Kudat district of Sabah. The collected Anopheles were identified morphologically and then subjected to total DNA extraction and polymerase chain reaction (PCR) to detect Plasmodium parasites in the mosquitoes. Identification of Plasmodium spp. was confirmed by sequencing the SSU rRNA gene with species specific primers. MEGA4 software was then used to analyse the SSU rRNA sequences and bulid the phylogenetic tree for inferring the relationship between simian malaria parasites in Sabah. PCR results showed that only 1.61% (23/1,425) of the screened An. balabacensis were infected with one or two of the five simian Plasmodium spp. found in Sabah, viz. Plasmodium coatneyi, P. inui, P. fieldi, P. cynomolgi and P. knowlesi. Sequence analysis of SSU rRNA of Plasmodium isolates showed high percentage of identity within the same Plasmodium sp. group. The phylogenetic tree based on the consensus sequences of P. knowlesi showed 99.7%–100.0% nucleotide identity among the isolates from An. balabacensis, human patients and a long-tailed macaque from the same locality. Conclusions/Significance This is the first study showing high molecular identity between the P. knowlesi isolates from An. balabacensis, human patients and a long-tailed macaque in Sabah. The other common simian Plasmodium spp. found in long-tailed macaques and also detected in An. balabacensis were P. coatneyi, P. inui, P. fieldi and P. cynomolgi. The high percentage identity of nucleotide sequences between the P. knowlesi isolates from the long-tailed macaque, An. balabacensis and human patients suggests a close genetic relationship between the parasites from these hosts. PMID:28968395

  16. Cloning and sequence analysis of a cDNA clone coding for the mouse GM2 activator protein.

    PubMed Central

    Bellachioma, G; Stirling, J L; Orlacchio, A; Beccari, T

    1993-01-01

    A cDNA (1.1 kb) containing the complete coding sequence for the mouse GM2 activator protein was isolated from a mouse macrophage library using a cDNA for the human protein as a probe. There was a single ATG located 12 bp from the 5' end of the cDNA clone followed by an open reading frame of 579 bp. Northern blot analysis of mouse macrophage RNA showed that there was a single band with a mobility corresponding to a size of 2.3 kb. We deduce from this that the mouse mRNA, in common with the mRNA for the human GM2 activator protein, has a long 3' untranslated sequence of approx. 1.7 kb. Alignment of the mouse and human deduced amino acid sequences showed 68% identity overall and 75% identity for the sequence on the C-terminal side of the first 31 residues, which in the human GM2 activator protein contains the signal peptide. Hydropathicity plots showed great similarity between the mouse and human sequences even in regions of low sequence similarity. There is a single N-glycosylation site in the mouse GM2 activator protein sequence (Asn151-Phe-Thr) which differs in its location from the single site reported in the human GM2 activator protein sequence (Asn63-Val-Thr). Images Figure 1 PMID:7689829

  17. Statistical theory for protein combinatorial libraries. Packing interactions, backbone flexibility, and the sequence variability of a main-chain structure.

    PubMed

    Kono, H; Saven, J G

    2001-02-23

    Combinatorial experiments provide new ways to probe the determinants of protein folding and to identify novel folding amino acid sequences. These types of experiments, however, are complicated both by enormous conformational complexity and by large numbers of possible sequences. Therefore, a quantitative computational theory would be helpful in designing and interpreting these types of experiment. Here, we present and apply a statistically based, computational approach for identifying the properties of sequences compatible with a given main-chain structure. Protein side-chain conformations are included in an atom-based fashion. Calculations are performed for a variety of similar backbone structures to identify sequence properties that are robust with respect to minor changes in main-chain structure. Rather than specific sequences, the method yields the likelihood of each of the amino acids at preselected positions in a given protein structure. The theory may be used to quantify the characteristics of sequence space for a chosen structure without explicitly tabulating sequences. To account for hydrophobic effects, we introduce an environmental energy that it is consistent with other simple hydrophobicity scales and show that it is effective for side-chain modeling. We apply the method to calculate the identity probabilities of selected positions of the immunoglobulin light chain-binding domain of protein L, for which many variant folding sequences are available. The calculations compare favorably with the experimentally observed identity probabilities.

  18. Nanopore DNA Sequencing and Genome Assembly on the International Space Station.

    PubMed

    Castro-Wallace, Sarah L; Chiu, Charles Y; John, Kristen K; Stahl, Sarah E; Rubins, Kathleen H; McIntyre, Alexa B R; Dworkin, Jason P; Lupisella, Mark L; Smith, David J; Botkin, Douglas J; Stephenson, Timothy A; Juul, Sissel; Turner, Daniel J; Izquierdo, Fernando; Federman, Scot; Stryke, Doug; Somasekar, Sneha; Alexander, Noah; Yu, Guixia; Mason, Christopher E; Burton, Aaron S

    2017-12-21

    We evaluated the performance of the MinION DNA sequencer in-flight on the International Space Station (ISS), and benchmarked its performance off-Earth against the MinION, Illumina MiSeq, and PacBio RS II sequencing platforms in terrestrial laboratories. Samples contained equimolar mixtures of genomic DNA from lambda bacteriophage, Escherichia coli (strain K12, MG1655) and Mus musculus (female BALB/c mouse). Nine sequencing runs were performed aboard the ISS over a 6-month period, yielding a total of 276,882 reads with no apparent decrease in performance over time. From sequence data collected aboard the ISS, we constructed directed assemblies of the ~4.6 Mb E. coli genome, ~48.5 kb lambda genome, and a representative M. musculus sequence (the ~16.3 kb mitochondrial genome), at 100%, 100%, and 96.7% consensus pairwise identity, respectively; de novo assembly of the E. coli genome from raw reads yielded a single contig comprising 99.9% of the genome at 98.6% consensus pairwise identity. Simulated real-time analyses of in-flight sequence data using an automated bioinformatic pipeline and laptop-based genomic assembly demonstrated the feasibility of sequencing analysis and microbial identification aboard the ISS. These findings illustrate the potential for sequencing applications including disease diagnosis, environmental monitoring, and elucidating the molecular basis for how organisms respond to spaceflight.

  19. Diversity of the P2 protein among nontypeable Haemophilus influenzae isolates.

    PubMed Central

    Bell, J; Grass, S; Jeanteur, D; Munson, R S

    1994-01-01

    The genes for outer membrane protein P2 of four nontypeable Haemophilus influenzae strains were cloned and sequenced. The derived amino acid sequences were compared with the outer membrane protein P2 sequence from H. influenzae type b MinnA and the sequences of P2 from three additional nontypeable H. influenzae strains. The sequences were 76 to 94% identical. The sequences had regions with considerable variability separated by regions which were highly conserved. The variable regions mapped to putative surface-exposed loops of the protein. PMID:8188390

  20. Genome Sequences of Ilzat and Eleri, Two Phages Isolated Using Microbacterium foliorum NRRL B-24224

    PubMed Central

    Ali, Ilzat; Jones, Acacia Eleri; Mohamed, Aleem

    2018-01-01

    ABSTRACT Bacteriophages Ilzat and Eleri are newly isolated Siphoviridae infecting Microbacterium foliorum NRRL B-24224. The phage genomes are similar in length, G+C content, and architecture and share 62.9% nucleotide sequence identity. PMID:29650566

  1. Preservation of protein clefts in comparative models.

    PubMed

    Piedra, David; Lois, Sergi; de la Cruz, Xavier

    2008-01-16

    Comparative, or homology, modelling of protein structures is the most widely used prediction method when the target protein has homologues of known structure. Given that the quality of a model may vary greatly, several studies have been devoted to identifying the factors that influence modelling results. These studies usually consider the protein as a whole, and only a few provide a separate discussion of the behaviour of biologically relevant features of the protein. Given the value of the latter for many applications, here we extended previous work by analysing the preservation of native protein clefts in homology models. We chose to examine clefts because of their role in protein function/structure, as they are usually the locus of protein-protein interactions, host the enzymes' active site, or, in the case of protein domains, can also be the locus of domain-domain interactions that lead to the structure of the whole protein. We studied how the largest cleft of a protein varies in comparative models. To this end, we analysed a set of 53507 homology models that cover the whole sequence identity range, with a special emphasis on medium and low similarities. More precisely we examined how cleft quality - measured using six complementary parameters related to both global shape and local atomic environment, depends on the sequence identity between target and template proteins. In addition to this general analysis, we also explored the impact of a number of factors on cleft quality, and found that the relationship between quality and sequence identity varies depending on cleft rank amongst the set of protein clefts (when ordered according to size), and number of aligned residues. We have examined cleft quality in homology models at a range of seq.id. levels. Our results provide a detailed view of how quality is affected by distinct parameters and thus may help the user of comparative modelling to determine the final quality and applicability of his/her cleft models. In addition, the large variability in model quality that we observed within each sequence bin, with good models present even at low sequence identities (between 20% and 30%), indicates that properly developed identification methods could be used to recover good cleft models in this sequence range.

  2. Isolation and whole genome analysis of endospore-forming bacteria from heroin.

    PubMed

    Kalinowski, Jörn; Ahrens, Björn; Al-Dilaimi, Arwa; Winkler, Anika; Wibberg, Daniel; Schleenbecker, Uwe; Rückert, Christian; Wölfel, Roman; Grass, Gregor

    2018-01-01

    Infections caused by endospore-forming bacteria have been associated with severe illness and death among persons who inject drugs. Analysis of the bacteria residing in heroin has thus been biased towards species that affect human health. Similarly, exploration of the bacterial diversity of seized street market heroin correlated with the skin microflora of recreational heroin users insofar as different Staphylococus spp. or typical environmental endospore formers including Bacillus cereus and other Bacilli outside the B. cereus sensu lato group as well as diverse Clostridia were identified. In this work 82 samples of non-street market ("wholesale") heroin originating from the German Federal Criminal Police Office's heroin analysis program seized during the period between 2009 and 2014 were analyzed for contaminating bacteria. Without contact with the end user and with only little contaminations introduced by final processing, adulteration and cutting this heroin likely harbors original microbiota from the drug's original source or trafficking route. We found this drug to be only sparsely populated with retrievable heterotrophic, aerobic bacteria. In total, 68 isolates were retrieved from 49 out of 82 samples analyzed (60% culture positive). All isolates were endospore-forming, Gram-positive Bacilli. Completely absent were non-endospore-formers or Gram-negatives. The three most predominant species were Bacillus clausii, Bacillus (para)licheniformis, and Terribacillus saccharophilus. Whole genome sequencing of these 68 isolates was performed using Illumina technology. Sequence data sets were assembled and annotated using an automated bioinformatics pipeline. Average nucleotide identity (ANI) values were calculated for all draft genomes and all close to identical genomes (ANI>99.5%) were compared to the forensic data of the seized drug, showing positive correlations that strongly warrant further research on this subject. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Deep Sequencing Reveals a Divergent Ugandan cassava brown streak virus Isolate from Malawi

    PubMed Central

    Winter, Stephan; Mukasa, Settumba; Tairo, Fred; Sseruwagi, Peter; Ndunguru, Joseph; Duffy, Siobain

    2017-01-01

    ABSTRACT Illumina sequencing of RNA from a cassava cutting from northern Malawi produced a genome of Ugandan cassava brown streak virus (UCBSV-MW-NB7_2013). Sequence comparisons revealed stronger similarity to an isolate from nearby Tanzania (93.4% pairwise nucleotide identity) than to those previously reported from Malawi (86.9 to 87.0%). PMID:28818908

  4. First Complete Genome Sequence of Suakwa aphid-borne yellows virus from East Timor

    PubMed Central

    Maina, Solomon; Edwards, Owain R.; de Almeida, Luis; Ximenes, Abel

    2016-01-01

    We present here the first complete genomic RNA sequence of the polerovirus Suakwa aphid-borne yellows virus (SABYV), from East Timor. The isolate sequenced came from a virus-infected pumpkin plant. The East Timorese genome had a nucleotide identity of 86.5% with the only other SABYV genome available, which is from Taiwan. PMID:27469955

  5. Algorithms for optimizing cross-overs in DNA shuffling.

    PubMed

    He, Lu; Friedman, Alan M; Bailey-Kellogg, Chris

    2012-03-21

    DNA shuffling generates combinatorial libraries of chimeric genes by stochastically recombining parent genes. The resulting libraries are subjected to large-scale genetic selection or screening to identify those chimeras with favorable properties (e.g., enhanced stability or enzymatic activity). While DNA shuffling has been applied quite successfully, it is limited by its homology-dependent, stochastic nature. Consequently, it is used only with parents of sufficient overall sequence identity, and provides no control over the resulting chimeric library. This paper presents efficient methods to extend the scope of DNA shuffling to handle significantly more diverse parents and to generate more predictable, optimized libraries. Our CODNS (cross-over optimization for DNA shuffling) approach employs polynomial-time dynamic programming algorithms to select codons for the parental amino acids, allowing for zero or a fixed number of conservative substitutions. We first present efficient algorithms to optimize the local sequence identity or the nearest-neighbor approximation of the change in free energy upon annealing, objectives that were previously optimized by computationally-expensive integer programming methods. We then present efficient algorithms for more powerful objectives that seek to localize and enhance the frequency of recombination by producing "runs" of common nucleotides either overall or according to the sequence diversity of the resulting chimeras. We demonstrate the effectiveness of CODNS in choosing codons and allocating substitutions to promote recombination between parents targeted in earlier studies: two GAR transformylases (41% amino acid sequence identity), two very distantly related DNA polymerases, Pol X and β (15%), and beta-lactamases of varying identity (26-47%). Our methods provide the protein engineer with a new approach to DNA shuffling that supports substantially more diverse parents, is more deterministic, and generates more predictable and more diverse chimeric libraries.

  6. Massively parallel sequencing of 124 SNPs included in the precision ID identity panel in three East Asian minority ethnicities.

    PubMed

    Liu, Jing; Wang, Zheng; He, Guanglin; Zhao, Xueying; Wang, Mengge; Luo, Tao; Li, Chengtao; Hou, Yiping

    2018-07-01

    Massively parallel sequencing (MPS) technologies can sequence many targeted regions of multiple samples simultaneously and are gaining great interest in the forensic community. The Precision ID Identity Panel contains 90 autosomal SNPs and 34 upper Y-Clade SNPs, which was designed with small amplicons and optimized for forensic degraded or challenging samples. Here, 184 unrelated individuals from three East Asian minority ethnicities (Tibetan, Uygur and Hui) were analyzed using the Precision ID Identity Panel and the Ion PGM System. The sequencing performance and corresponding forensic statistical parameters of this MPS-SNP panel were investigated. The inter-population relationships and substructures among three investigated populations and 30 worldwide populations were further investigated using PCA, MDS, cladogram and STRUCTURE. No significant deviation from Hardy-Weinberg equilibrium (HWE) and Linkage Disequilibrium (LD) tests was observed across all 90 autosomal SNPs. The combined matching probability (CMP) for Tibetan, Uygur and Hui were 2.5880 × 10 -33 , 1.7480 × 10 -35 and 4.6326 × 10 -34 respectively, and the combined power of exclusion (CPE) were 0.999999386152271, 0.999999607712827 and 0.999999696360182 respectively. For 34 Y-SNPs, only 16 haplogroups were obtained, but the haplogroup distributions differ among the three populations. Tibetans from the Sino-Tibetan population and Hui with multiple ethnicities with an admixture population have genetic affinity with East Asian populations, while Uygurs of a Eurasian admixture population have similar genetic components to the South Asian populations and are distributed between East Asian and European populations. The aforementioned results suggest that the Precision ID Identity Panel is informative and polymorphic in three investigated populations and could be used as an effective tool for human forensics. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Congruency sequence effect in cross-task context: evidence for dimension-specific modulation.

    PubMed

    Lee, Jaeyong; Cho, Yang Seok

    2013-11-01

    The congruency sequence effect refers to a reduced congruency effect after incongruent trials relative to congruent trials. This modulation is thought to be, at least in part, due to the control mechanisms resolving conflict. The present study examined the nature of the control mechanisms by having participants perform two different tasks in an alternating way. When participants performed horizontal and vertical Simon tasks in Experiment 1A, and horizontal and vertical spatial Stroop task in Experiment 1B, no congruency sequence effect was obtained between the task congruencies. When the Simon task and spatial Stroop task were performed with different response sets in Experiment 2, no congruency sequence effect was obtained. However, in Experiment 3, in which the participants performed the horizontal Simon and spatial Stroop tasks with an identical response set, a significant congruency sequence effect was obtained between the task congruencies. In Experiment 4, no congruency sequence effect was obtained when participants performed two tasks having different task-irrelevant dimensions with the identical response set. The findings suggest inhibitory processing between the task-irrelevant dimension and response mode after conflict. © 2013 Elsevier B.V. All rights reserved.

  8. A nucleotide sequence comparison of coxsackievirus B4 isolates from aquatic samples and clinical specimens.

    PubMed Central

    Hughes, M. S.; Hoey, E. M.; Coyle, P. V.

    1993-01-01

    Ten coxsackievirus B4 (CVB4) strains isolated from clinical and environmental sources in Northern Ireland in 1985-7, were compared at the nucleotide sequence level. Dideoxynucleotide sequencing of a polymerase chain reaction (PCR) amplified fragment, spanning the VP1/P2A genomic region, classified the isolates into two distinct groups or genotypes as defined by Rico-Hesse and colleagues for poliovirus type 1. Isolates within each group shared approximately 99% sequence identity at the nucleotide level whereas < or = 86% sequence identity was shared between groups. One isolate derived from a clinical specimen in 1987 was grouped with six CVB4 isolates recovered from the aquatic environment in 1986-7. The second group comprised CVB4 isolates from clinical specimens in 1985-6. Both groups were different at the nucleotide level from the prototype strain isolated in 1950. It was concluded that the method could be used to sub-type CVB4 isolates and would be of value in epidemiological studies of CVB4. Predicted amino acid sequences revealed non-conservation of the tyrosine residue at the VP1/P2A cleavage site but were of little value in distinguishing CVB4 variants. PMID:8386098

  9. Characterization of the Complete Mitochondrial Genome Sequence of Spirometra erinaceieuropaei (Cestoda: Diphyllobothriidae) from China

    PubMed Central

    Liu, Guo-Hua; Li, Chun; Li, Jia-Yuan; Zhou, Dong-Hui; Xiong, Rong-Chuan; Lin, Rui-Qing; Zou, Feng-Cai; Zhu, Xing-Quan

    2012-01-01

    Sparganosis, caused by the plerocercoid larvae of members of the genus Spirometra, can cause significant public health problem and considerable economic losses. In the present study, the complete mitochondrial DNA (mtDNA) sequence of Spirometra erinaceieuropaei from China was determined, characterized and compared with that of S. erinaceieuropaei from Japan. The gene arrangement in the mt genome sequences of S. erinaceieuropaei from China and Japan is identical. The identity of the mt genomes was 99.1% between S. erinaceieuropaei from China and Japan, and the complete mtDNA sequence of S. erinaceieuropaei from China is slightly shorter (2 bp) than that from Japan. Phylogenetic analysis of S. erinaceieuropaei with other representative cestodes using two different computational algorithms [Bayesian inference (BI) and maximum likelihood (ML)] based on concatenated amino acid sequences of 12 protein-coding genes, revealed that S. erinaceieuropaei is closely related to Diphyllobothrium spp., supporting classification based on morphological features. The present study determined the complete mtDNA sequences of S. erinaceieuropaei from China that provides novel genetic markers for studying the population genetics and molecular epidemiology of S. erinaceieuropaei in humans and animals. PMID:22553464

  10. High resolution identity testing of inactivated poliovirus vaccines.

    PubMed

    Mee, Edward T; Minor, Philip D; Martin, Javier

    2015-07-09

    Definitive identification of poliovirus strains in vaccines is essential for quality control, particularly where multiple wild-type and Sabin strains are produced in the same facility. Sequence-based identification provides the ultimate in identity testing and would offer several advantages over serological methods. We employed random RT-PCR and high throughput sequencing to recover full-length genome sequences from monovalent and trivalent poliovirus vaccine products at various stages of the manufacturing process. All expected strains were detected in previously characterised products and the method permitted identification of strains comprising as little as 0.1% of sequence reads. Highly similar Mahoney and Sabin 1 strains were readily discriminated on the basis of specific variant positions. Analysis of a product known to contain incorrect strains demonstrated that the method correctly identified the contaminants. Random RT-PCR and shotgun sequencing provided high resolution identification of vaccine components. In addition to the recovery of full-length genome sequences, the method could also be easily adapted to the characterisation of minor variant frequencies and distinction of closely related products on the basis of distinguishing consensus and low frequency polymorphisms. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Molecular characterization of a novel luteovirus infecting apple by next-generation sequencing.

    PubMed

    Shen, Pan; Tian, Xin; Zhang, Song; Ren, Fang; Li, Ping; Yu, Yun-Qi; Li, Ruhui; Zhou, Changyong; Cao, Mengji

    2018-03-01

    A new single-stranded positive-sense RNA virus, which shares the highest nucleotide (nt) sequence identity of 53.4% with the genome sequence of cherry-associated luteovirus South Korean isolate (ChALV-SK, genus Luteovirus), was discovered in this work. It is provisionally named apple-associated luteovirus (AaLV). The complete genome sequence of AaLV comprises 5,890 nt and contains eight open reading frames (ORFs), in a very similar arrangement that is typical of members of the genus Luteovirus. When compared with other members of the family Luteoviridae, ORF1 of AaLV was found to encompass another ORF, ORF1a, which encodes a putative 32.9-kDa protein. The ORF1-ORF2 region (RNA-dependent RNA polymerase, RdRP) showed the greatest amino acid (aa) sequence identity (59.7%) to that of cherry-associated luteovirus Czech Republic isolate (ChALV-CZ, genus Luteovirus). The results of genome sequence comparisons and phylogenetic analysis, suggest that AaLV should be a member of a novel species in the genus Luteovirus. To our knowledge, it is the sixth member of the genus Luteovirus reported to naturally infect rosaceous plants.

  12. Evolution of puma lentivirus in bobcats (Lynx rufus) and mountain lions (Puma concolor) in North America

    USGS Publications Warehouse

    Lee, Justin S.; Bevins, Sarah N.; Serieys, Laurel E.K.; Vickers, Winston; Logan, Ken A.; Aldredge, Mat; Boydston, Erin E.; Lyren, Lisa M.; McBride, Roy; Roelke-Parker, Melody; Pecon-Slattery, Jill; Troyer, Jennifer L.; Riley, Seth P.; Boyce, Walter M.; Crooks, Kevin R.; VandeWoude, Sue

    2014-01-01

    Mountain lions (Puma concolor) throughout North and South America are infected with puma lentivirus clade B (PLVB). A second, highly divergent lentiviral clade, PLVA, infects mountain lions in southern California and Florida. Bobcats (Lynx rufus) in these two geographic regions are also infected with PLVA, and to date, this is the only strain of lentivirus identified in bobcats. We sequenced full-length PLV genomes in order to characterize the molecular evolution of PLV in bobcats and mountain lions. Low sequence homology (88% average pairwise identity) and frequent recombination (1 recombination breakpoint per 3 isolates analyzed) were observed in both clades. Viral proteins have markedly different patterns of evolution; sequence homology and negative selection were highest in Gag and Pol and lowest in Vif and Env. A total of 1.7% of sites across the PLV genome evolve under positive selection, indicating that host-imposed selection pressure is an important force shaping PLV evolution. PLVA strains are highly spatially structured, reflecting the population dynamics of their primary host, the bobcat. In contrast, the phylogeography of PLVB reflects the highly mobile mountain lion, with diverse PLVB isolates cocirculating in some areas and genetically related viruses being present in populations separated by thousands of kilometers. We conclude that PLVA and PLVB are two different viral species with distinct feline hosts and evolutionary histories.

  13. Arthrobacter ruber sp. nov., isolated from glacier ice.

    PubMed

    Liu, Qing; Xin, Yu-Hua; Chen, Xiu-Ling; Liu, Hong-Can; Zhou, Yu-Guang; Chen, Wen-Xin

    2018-05-01

    A Gram-stain-positive strain designated MDB1-42 T was isolated from ice collected from Midui glacier in Tibet, PR China. Strain MDB1-42 T was catalase-positive, oxidase-negative and grew optimally at 25-28 °C and pH 7.0. Phylogenetic analysis based on 16S rRNA gene sequences revealed that MDB1-42 T represented a member of the genus Arthrobacter. The highest level of 16S rRNA gene sequence similarity (99.86 %) was found with Arthrobacter agilis NBRC 15319 T . Multilocus sequence analysis revealed low similarity of 91.93 % between MDB1-42 T and Arthrobacter agilis NBRC 15319 T . Average nucleotide identity and digital DNA-DNA hybridization values between MDB1-42 T and the most closely related strain, Arthrobacter agilis DSM 20550 T , were 81.36 and 24.5 %, respectively. The genomic DNA G+C content was 69.0 mol%. The major cellular fatty acids of MDB1-42 T were anteiso-C15 : 0 and anteiso-C17:0. The polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, one unidentified glycolipid and one unidentified lipid. The predominant menaquinone was MK-9(H2). On the basis of results obtained using a polyphasic approach, a novel species Arthrobacter ruber sp. nov. is proposed, with MDB1-42 T (=CGMCC 1.9772 T =NBRC 113088 T ) as the type strain.

  14. Cloning and sequencing of the cDNA species for mammalian dimeric dihydrodiol dehydrogenases.

    PubMed Central

    Arimitsu, E; Aoki, S; Ishikura, S; Nakanishi, K; Matsuura, K; Hara, A

    1999-01-01

    Cynomolgus and Japanese monkey kidneys, dog and pig livers and rabbit lens contain dimeric dihydrodiol dehydrogenase (EC 1.3.1.20) associated with high carbonyl reductase activity. Here we have isolated cDNA species for the dimeric enzymes by reverse transcriptase-PCR from human intestine in addition to the above five animal tissues. The amino acid sequences deduced from the monkey, pig and dog cDNA species perfectly matched the partial sequences of peptides digested from the respective enzymes of these animal tissues, and active recombinant proteins were expressed in a bacterial system from the monkey and human cDNA species. Northern blot analysis revealed the existence of a single 1.3 kb mRNA species for the enzyme in these animal tissues. The human enzyme shared 94%, 85%, 84% and 82% amino acid identity with the enzymes of the two monkey strains (their sequences were identical), the dog, the pig and the rabbit respectively. The sequences of the primate enzymes consisted of 335 amino acid residues and lacked one amino acid compared with the other animal enzymes. In contrast with previous reports that other types of dihydrodiol dehydrogenase, carbonyl reductases and enzymes with either activity belong to the aldo-keto reductase family or the short-chain dehydrogenase/reductase family, dimeric dihydrodiol dehydrogenase showed no sequence similarity with the members of the two protein families. The dimeric enzyme aligned with low degrees of identity (14-25%) with several prokaryotic proteins, in which 47 residues are strictly or highly conserved. Thus dimeric dihydrodiol dehydrogenase has a primary structure distinct from the previously known mammalian enzymes and is suggested to constitute a novel protein family with the prokaryotic proteins. PMID:10477285

  15. A proposal to rename the hyperthermophile Pyrococcus woesei as Pyrococcus furiosus subsp. woesei.

    PubMed

    Kanoksilapatham, Wirojne; González, Juan M; Maeder, Dennis L; DiRuggiero, Jocelyne; Robb, Frank T

    2004-10-01

    Pyrococcus species are hyperthermophilic members of the order Thermococcales, with optimal growth temperatures approaching 100 degrees C. All species grow heterotrophically and produce H2 or, in the presence of elemental sulfur (S(o)), H2S. Pyrococcus woesei and P. furiosus were isolated from marine sediments at the same Vulcano Island beach site and share many morphological and physiological characteristics. We report here that the rDNA operons of these strains have identical sequences, including their intergenic spacer regions and part of the 23S rRNA. Both species grow rapidly and produce H2 in the presence of 0.1% maltose and 10-100 microM sodium tungstate in S(o)-free medium. However, P. woesei shows more extensive autolysis than P. furiosus in the stationary phase. Pyrococcus furiosus and P. woesei share three closely related families of insertion sequences (ISs). A Southern blot performed with IS probes showed extensive colinearity between the genomes of P. woesei and P. furiosus. Cloning and sequencing of ISs that were in different contexts in P. woesei and P. furiosus revealed that the napA gene in P. woesei is disrupted by a type III IS element, whereas in P. furiosus, this gene is intact. A type I IS element, closely linked to the napA gene, was observed in the same context in both P. furiosus and P. woesei genomes. Our results suggest that the IS elements are implicated in genomic rearrangements and reshuffling in these closely related strains. We propose to rename P. woesei a subspecies of P. furiosus based on their identical rDNA operon sequences, many common IS elements that are shared genomic markers, and the observation that all P. woesei nucleotide sequences deposited in GenBank to date are > 99% identical to P. furiosus sequences.

  16. Cloning and Characterization of the Lactococcal Plasmid-Encoded Type II Restriction/Modification System, LlaDII

    PubMed Central

    Madsen, Annette; Josephsen, Jytte

    1998-01-01

    The LlaDII restriction/modification (R/M) system was found on the naturally occurring 8.9-kb plasmid pHW393 in Lactococcus lactis subsp. cremoris W39. A 2.4-kb PstI-EcoRI fragment inserted into the Escherichia coli-L. lactis shuttle vector pCI3340 conferred to L. lactis LM2301 and L. lactis SMQ86 resistance against representatives of the three most common lactococcal phage species: 936, P335, and c2. The LlaDII endonuclease was partially purified and found to recognize and cleave the sequence 5′-GC↓NGC-3′, where the arrow indicates the cleavage site. It is thus an isoschizomer of the commercially available restriction endonuclease Fnu4HI. Sequencing of the 2.4-kb PstI-EcoRI fragment revealed two open reading frames arranged tandemly and separated by a 105-bp intergenic region. The endonuclease gene of 543 bp preceded the methylase gene of 954 bp. The deduced amino acid sequence of the LlaDII R/M system showed high homology to that of its only sequenced isoschizomer, Bsp6I from Bacillus sp. strain RFL6, with 41% identity between the endonucleases and 60% identity between the methylases. The genetic organizations of the LlaDII and Bsp6I R/M systems are identical. Both methylases have two recognition sites (5′-GCGGC-3′ and 5′-GCCGC-3′) forming a putative stem-loop structure spanning part of the presumed −35 sequence and part of the intervening region between the −35 and −10 sequences. Alignment of the LlaDII and Bsp6I methylases with other m5C methylases showed that the protein primary structures possessed the same organization. PMID:9647810

  17. SH2-catalytic domain linker heterogeneity influences allosteric coupling across the SFK family.

    PubMed

    Register, A C; Leonard, Stephen E; Maly, Dustin J

    2014-11-11

    Src-family kinases (SFKs) make up a family of nine homologous multidomain tyrosine kinases whose misregulation is responsible for human disease (cancer, diabetes, inflammation, etc.). Despite overall sequence homology and identical domain architecture, differences in SH3 and SH2 regulatory domain accessibility and ability to allosterically autoinhibit the ATP-binding site have been observed for the prototypical SFKs Src and Hck. Biochemical and structural studies indicate that the SH2-catalytic domain (SH2-CD) linker, the intramolecular binding epitope for SFK SH3 domains, is responsible for allosterically coupling SH3 domain engagement to autoinhibition of the ATP-binding site through the conformation of the αC helix. As a relatively unconserved region between SFK family members, SH2-CD linker sequence variability across the SFK family is likely a source of nonredundant cellular functions between individual SFKs via its effect on the availability of SH3 and SH2 domains for intermolecular interactions and post-translational modification. Using a combination of SFKs engineered with enhanced or weakened regulatory domain intramolecular interactions and conformation-selective inhibitors that report αC helix conformation, this study explores how SH2-CD sequence heterogeneity affects allosteric coupling across the SFK family by examining Lyn, Fyn1, and Fyn2. Analyses of Fyn1 and Fyn2, isoforms that are identical but for a 50-residue sequence spanning the SH2-CD linker, demonstrate that SH2-CD linker sequence differences can have profound effects on allosteric coupling between otherwise identical kinases. Most notably, a dampened allosteric connection between the SH3 domain and αC helix leads to greater autoinhibitory phosphorylation by Csk, illustrating the complex effects of SH2-CD linker sequence on cellular function.

  18. The human homolog of S. cerevisiae CDC27, CDC27 Hs, is encoded by a highly conserved intronless gene present in multiple copies in the human genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devor, E.J.; Dill-Devor, R.M.

    1994-09-01

    We have obtained a number of unique sequences via PCR amplification of human genomic DNA using degenerate primers under low stringency (42{degrees}C). One of these, an 853 bp product, has been identified as a partial genomic sequence of the human homolog of the S. cerevisiae CDC27 gene, CDC27Hs (GenBank No. U00001). This gene, reported by Turgendreich et al. is also designated EST00556 from Adams et al. We have undertaken a more detailed examination of our sequence, MCP34N, and have found that: 1. the genomic sequence is nearly identical to CDC27Hs over its entire 853 bp length; 2. an MCP34N-specific PCRmore » assay of several non-human primate species reveals amplification products in chimpanzee and gorilla genomes having greater than 90% sequence identity with CDC27Hs; and 3. an MCP34N-specific PCR assay of the BIOS hybrid cell line panel gives a discordancy pattern suggesting multiple loci. Based upon these data, we present the following initial characterization: 1. the complete MCP34N sequence identity with CDC27Hs indicates that the latter is encoded by an intronless gene; 2. CDC27Hs is highly conserved among higher primates; and 3. CDC27Hs is present in multiple copies in the human genome. These characteristics, taken together with those initially reported for CDC27Hs, suggest that this is an old gene that carries out an important but, as yet, unknown function in the human brain.« less

  19. Dissimilation in the Second Language Acquisition of Mandarin Chinese Tones

    ERIC Educational Resources Information Center

    Zhang, Hang

    2016-01-01

    This article extends Optimality Theoretic studies to the research on second language tone phonology. Specifically, this work analyses the acquisition of identical tone sequences in Mandarin Chinese by adult speakers of three non-tonal languages: English, Japanese and Korean. This study finds that the learners prefer not to use identical lexical…

  20. Transitive homology-guided structural studies lead to discovery of Cro proteins with 40% sequence identity but different folds

    PubMed Central

    Roessler, Christian G.; Hall, Branwen M.; Anderson, William J.; Ingram, Wendy M.; Roberts, Sue A.; Montfort, William R.; Cordes, Matthew H. J.

    2008-01-01

    Proteins that share common ancestry may differ in structure and function because of divergent evolution of their amino acid sequences. For a typical diverse protein superfamily, the properties of a few scattered members are known from experiment. A satisfying picture of functional and structural evolution in relation to sequence changes, however, may require characterization of a larger, well chosen subset. Here, we employ a “stepping-stone” method, based on transitive homology, to target sequences intermediate between two related proteins with known divergent properties. We apply the approach to the question of how new protein folds can evolve from preexisting folds and, in particular, to an evolutionary change in secondary structure and oligomeric state in the Cro family of bacteriophage transcription factors, initially identified by sequence-structure comparison of distant homologs from phages P22 and λ. We report crystal structures of two Cro proteins, Xfaso 1 and Pfl 6, with sequences intermediate between those of P22 and λ. The domains show 40% sequence identity but differ by switching of α-helix to β-sheet in a C-terminal region spanning ≈25 residues. Sedimentation analysis also suggests a correlation between helix-to-sheet conversion and strengthened dimerization. PMID:18227506

  1. Phylogeny of the Defined Murine Microbiota: Altered Schaedler Flora

    PubMed Central

    Dewhirst, Floyd E.; Chien, Chih-Ching; Paster, Bruce J.; Ericson, Rebecca L.; Orcutt, Roger P.; Schauer, David B.; Fox, James G.

    1999-01-01

    The “altered Schaedler flora” (ASF) was developed for colonizing germfree rodents with a standardized microbiota. The purpose of this study was to identify each of the eight ASF strains by 16S rRNA sequence analysis. Three strains were previously identified as Lactobacillus acidophilus (strain ASF 360), Lactobacillus salivarius (strain ASF 361), and Bacteroides distasonis (strain ASF 519) based on phenotypic criteria. 16S rRNA analysis indicated that each of the strains differed from its presumptive identity. The 16S rRNA sequence of strain ASF 361 is essentially identical to the 16S rRNA sequences of the type strains of Lactobacillus murinis and Lactobacillus animalis (both isolated from mice), and all of these strains probably belong to a single species. Strain ASF 360 is a novel lactobacillus that clusters with L. acidophilus and Lactobacillus lactis. Strain ASF 519 falls into an unnamed genus containing [Bacteroides] distasonis, [Bacteroides] merdae, [Bacteroides] forsythus, and CDC group DF-3. This unnamed genus is in the Cytophaga-Flavobacterium-Bacteroides phylum and is most closely related to the genus Porphyromonas. The spiral-shaped strain, strain ASF 457, is in the Flexistipes phylum and exhibits sequence identity with rodent isolates of Robertson. The remaining four ASF strains, which are extremely oxygen-sensitive fusiform bacteria, group phylogenetically with the low-G+C-content gram-positive bacteria (Firmicutes, Bacillus-Clostridium group). ASF 356, ASF 492, and ASF 502 fall into Clostridium cluster XIV of Collins et al. Morphologically, ASF 492 resembles members of this cluster, Roseburia cecicola, and Eubacterium plexicaudatum. The 16S rRNA sequence of ASF 492 is identical to that of E. plexicaudatum. Since the type strain and other viable original isolates of E. plexicaudatum have been lost, strain ASF 492 is a candidate for a neotype strain. Strain ASF 500 branches deeply in the low-G+C-content gram-positive phylogenetic tree but is not closely related to any organisms whose 16S rRNA sequences are currently in the GenBank database. The 16S rRNA sequence information determined in the present study should allow rapid identification of ASF strains and should permit detailed analysis of the interactions of ASF organisms during development of intestinal disease in mice that are coinfected with a variety of pathogenic microorganisms. PMID:10427008

  2. Epidemic Keratoconjunctivitis Due to the Novel Hexon-Chimeric-Intermediate 22,37/H8 Human Adenovirus ▿

    PubMed Central

    Aoki, Koki; Ishiko, Hiroaki; Konno, Tsunetada; Shimada, Yasushi; Hayashi, Akio; Kaneko, Hisatoshi; Ohguchi, Takeshi; Tagawa, Yoshitsugu; Ohno, Shigeaki; Yamazaki, Shudo

    2008-01-01

    In a 2-month period in 2003, we encountered an outbreak of epidemic keratoconjunctivitis (EKC) in Japan. We detected 67 human adenoviruses (HAdVs) by PCR from eye swabs of patients with EKC at five eye clinics in different parts of Japan. Forty-one of the 67 HAdV DNAs from the swabs were identified as HAdV-37 by phylogenetic analysis using a partial hexon gene sequence. When the restriction patterns of these viral genomes were compared with that of the HAdV-37 prototype strain, one isolate showed a never-before-seen restriction pattern. Within 1 year, we encountered three more EKC cases caused by a genetically identical virus: two nosocomial infections at two different university hospitals and a sporadic infection at an eye clinic. We determined the nucleotide sequences of the full-length hexon and fiber genes of these isolates and compared them to those of the 51 prototype strains. Surprisingly, the sequence of the hexon (ɛ determinant) loop-1 and -2 regions showed the highest nucleotide identity with HAdV-22, a rare EKC isolate. However, the nucleotide sequence of the fiber gene was identical to that of the HAdV-8 prototype strain. 22 We propose that this virus is a new hexon-chimeric intermediate HAdV-22,37/H8, and may be an etiological agent of EKC. PMID:18701656

  3. Phylogenetic analyses indicate little variation among reticuloendotheliosis viruses infecting avian species, including the endangered Attwater's prairie chicken.

    PubMed

    Bohls, Ryan L; Linares, Jose A; Gross, Shannon L; Ferro, Pam J; Silvy, Nova J; Collisson, Ellen W

    2006-08-01

    Reticuloendotheliosis virus infection, which typically causes systemic lymphomas and high mortality in the endangered Attwater's prairie chicken, has been described as a major obstacle in repopulation efforts of captive breeding facilities in Texas. Although antigenic relationships among reticuloendotheliosis virus (REV) strains have been previously determined, phylogenetic relationships have not been reported. The pol and env of REV proviral DNA from prairie chickens (PC-R92 and PC-2404), from poxvirus lesions in domestic chickens, the prototype poultry derived REV-A and chick syncytial virus (CSV), and duck derived spleen necrosis virus (SNV) were PCR amplified and sequenced. The 5032bp, that included the pol and most of env genes, of the PC-R92 and REV-A were 98% identical, and nucleotide sequence identities of smaller regions within the pol and env from REV strains examined ranged from 95 to 99% and 93 to 99%, respectively. The putative amino acid sequences were 97-99% identical in the polymerase and 90-98% in the envelope. Phylogenetic analyses of the nucleotide and amino acid sequences indicated the closest relationship among the recent fowl pox-associated chicken isolates, the prairie chicken isolates and the prototype CSV while only the SNV appeared to be distinctly divergent. While the origin of the naturally occurring viruses is not known, the avian poxvirus may be a critical component of transmission of these ubiquitous oncogenic viruses.

  4. SPARSE: quadratic time simultaneous alignment and folding of RNAs without sequence-based heuristics.

    PubMed

    Will, Sebastian; Otto, Christina; Miladi, Milad; Möhl, Mathias; Backofen, Rolf

    2015-08-01

    RNA-Seq experiments have revealed a multitude of novel ncRNAs. The gold standard for their analysis based on simultaneous alignment and folding suffers from extreme time complexity of [Formula: see text]. Subsequently, numerous faster 'Sankoff-style' approaches have been suggested. Commonly, the performance of such methods relies on sequence-based heuristics that restrict the search space to optimal or near-optimal sequence alignments; however, the accuracy of sequence-based methods breaks down for RNAs with sequence identities below 60%. Alignment approaches like LocARNA that do not require sequence-based heuristics, have been limited to high complexity ([Formula: see text] quartic time). Breaking this barrier, we introduce the novel Sankoff-style algorithm 'sparsified prediction and alignment of RNAs based on their structure ensembles (SPARSE)', which runs in quadratic time without sequence-based heuristics. To achieve this low complexity, on par with sequence alignment algorithms, SPARSE features strong sparsification based on structural properties of the RNA ensembles. Following PMcomp, SPARSE gains further speed-up from lightweight energy computation. Although all existing lightweight Sankoff-style methods restrict Sankoff's original model by disallowing loop deletions and insertions, SPARSE transfers the Sankoff algorithm to the lightweight energy model completely for the first time. Compared with LocARNA, SPARSE achieves similar alignment and better folding quality in significantly less time (speedup: 3.7). At similar run-time, it aligns low sequence identity instances substantially more accurate than RAF, which uses sequence-based heuristics. © The Author 2015. Published by Oxford University Press.

  5. Complete genome sequences of cowpea polerovirus 1 and cowpea polerovirus 2 infecting cowpea plants in Burkina Faso.

    PubMed

    Palanga, Essowè; Martin, Darren P; Galzi, Serge; Zabré, Jean; Bouda, Zakaria; Neya, James Bouma; Sawadogo, Mahamadou; Traore, Oumar; Peterschmitt, Michel; Roumagnac, Philippe; Filloux, Denis

    2017-07-01

    The full-length genome sequences of two novel poleroviruses found infecting cowpea plants, cowpea polerovirus 1 (CPPV1) and cowpea polerovirus 2 (CPPV2), were determined using overlapping RT-PCR and RACE-PCR. Whereas the 5845-nt CPPV1 genome was most similar to chickpea chlorotic stunt virus (73% identity), the 5945-nt CPPV2 genome was most similar to phasey bean mild yellow virus (86% identity). The CPPV1 and CPPV2 genomes both have a typical polerovirus genome organization. Phylogenetic analysis of the inferred P1-P2 and P3 amino acid sequences confirmed that CPPV1 and CPPV2 are indeed poleroviruses. Four apparently unique recombination events were detected within a dataset of 12 full polerovirus genome sequences, including two events in the CPPV2 genome. Based on the current species demarcation criteria for the family Luteoviridae, we tentatively propose that CPPV1 and CPPV2 should be considered members of novel polerovirus species.

  6. Primary structures of ribosomal proteins from the archaebacterium Halobacterium marismortui and the eubacterium Bacillus stearothermophilus.

    PubMed

    Arndt, E; Scholzen, T; Krömer, W; Hatakeyama, T; Kimura, M

    1991-06-01

    Approximately 40 ribosomal proteins from each Halobacterium marismortui and Bacillus stearothermophilus have been sequenced either by direct protein sequence analysis or by DNA sequence analysis of the appropriate genes. The comparison of the amino acid sequences from the archaebacterium H marismortui with the available ribosomal proteins from the eubacterial and eukaryotic kingdoms revealed four different groups of proteins: 24 proteins are related to both eubacterial as well as eukaryotic proteins. Eleven proteins are exclusively related to eukaryotic counterparts. For three proteins only eubacterial relatives-and for another three proteins no counterpart-could be found. The similarities of the halobacterial ribosomal proteins are in general somewhat higher to their eukaryotic than to their eubacterial counterparts. The comparison of B stearothermophilus proteins with their E coli homologues showed that the proteins evolved at different rates. Some proteins are highly conserved with 64-76% identity, others are poorly conserved with only 25-34% identical amino acid residues.

  7. Evidence for Elizabethkingia anophelis transmission from mother to infant, Hong Kong.

    PubMed

    Lau, Susanna K P; Wu, Alan K L; Teng, Jade L L; Tse, Herman; Curreem, Shirly O T; Tsui, Stephen K W; Huang, Yi; Chen, Jonathan H K; Lee, Rodney A; Yuen, Kwok-Yung; Woo, Patrick C Y

    2015-02-01

    Elizabethkingia anophelis, recently discovered from mosquito gut, is an emerging bacterium associated with neonatal meningitis and nosocomial outbreaks. However, its transmission route remains unknown. We use rapid genome sequencing to investigate 3 cases of E. anophelis sepsis involving 2 neonates who had meningitis and 1 neonate's mother who had chorioamnionitis. Comparative genomics revealed evidence for perinatal vertical transmission from a mother to her neonate; the 2 isolates from these patients, HKU37 and HKU38, shared essentially identical genome sequences. In contrast, the strain from another neonate (HKU36) was genetically divergent, showing only 78.6% genome sequence identity to HKU37 and HKU38, thus excluding a clonal outbreak. Comparison to genomes from mosquito strains revealed potential metabolic adaptations in E. anophelis under different environments. Maternal infection, not mosquitoes, is most likely the source of neonatal E. anophelis infections. Our findings highlight the power of genome sequencing in gaining rapid insights on transmission and pathogenesis of emerging pathogens.

  8. Cloning and High-Level Expression of α-Galactosidase cDNA from Penicillium purpurogenum

    PubMed Central

    Shibuya, Hajime; Nagasaki, Hiroaki; Kaneko, Satoshi; Yoshida, Shigeki; Park, Gwi Gun; Kusakabe, Isao; Kobayashi, Hideyuki

    1998-01-01

    The cDNA coding for Penicillium purpurogenum α-galactosidase (αGal) was cloned and sequenced. The deduced amino acid sequence of the α-Gal cDNA showed that the mature enzyme consisted of 419 amino acid residues with a molecular mass of 46,334 Da. The derived amino acid sequence of the enzyme showed similarity to eukaryotic αGals from plants, animals, yeasts, and filamentous fungi. The highest similarity observed (57% identity) was to Trichoderma reesei AGLI. The cDNA was expressed in Saccharomyces cerevisiae under the control of the yeast GAL10 promoter. Almost all of the enzyme produced was secreted into the culture medium, and the expression level reached was approximately 0.2 g/liter. The recombinant enzyme purified to homogeneity was highly glycosylated, showed slightly higher specific activity, and exhibited properties almost identical to those of the native enzyme from P. purpurogenum in terms of the N-terminal amino acid sequence, thermoactivity, pH profile, and mode of action on galacto-oligosaccharides. PMID:9797312

  9. Short communication: Conservation of Streptococcus uberis adhesion molecule and the sua gene in strains of Streptococcus uberis isolated from geographically diverse areas.

    PubMed

    Yuan, Ying; Dego, Oudessa Kerro; Chen, Xueyan; Abadin, Eurife; Chan, Shangfeng; Jory, Lauren; Kovacevic, Steven; Almeida, Raul A; Oliver, Stephen P

    2014-12-01

    The objective was to identify and sequence the sua gene (GenBank no. DQ232760; http://www.ncbi.nlm.nih.gov/genbank/) and detect Streptococcus uberis adhesion molecule (SUAM) expression by Western blot using serum from naturally S. uberis-infected cows in strains of S. uberis isolated in milk from cows with mastitis from geographically diverse areas of the world. All strains evaluated yielded a 4.4-kb sua-containing PCR fragment that was subsequently sequenced. Deduced SUAM AA sequences from those S. uberis strains evaluated shared >97% identity. The pepSUAM sequence located at the N terminus of SUAM was >99% identical among strains of S. uberis. Streptococcus uberis adhesion molecule expression was detected in all strains of S. uberis tested. These results suggest that sua is ubiquitous among strains of S. uberis isolated from diverse geographic locations and that SUAM is immunogenic. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. High-efficiency transformation of Pichia stipitis based on its URA3 gene and a homologous autonomous replication sequence, ARS2.

    PubMed Central

    Yang, V W; Marks, J A; Davis, B P; Jeffries, T W

    1994-01-01

    This paper describes the first high-efficiency transformation system for the xylose-fermenting yeast Pichia stipitis. The system includes integrating and autonomously replicating plasmids based on the gene for orotidine-5'-phosphate decarboxylase (URA3) and an autonomous replicating sequence (ARS) element (ARS2) isolated from P. stipitis CBS 6054. Ura- auxotrophs were obtained by selecting for resistance to 5-fluoroorotic acid and were identified as ura3 mutants by transformation with P. stipitis URA3. P. stipitis URA3 was cloned by its homology to Saccharomyces cerevisiae URA3, with which it is 69% identical in the coding region. P. stipitis ARS elements were cloned functionally through plasmid rescue. These sequences confer autonomous replication when cloned into vectors bearing the P. stipitis URA3 gene. P. stipitis ARS2 has features similar to those of the consensus ARS of S. cerevisiae and other ARS elements. Circular plasmids bearing the P. stipitis URA3 gene with various amounts of flanking sequences produced 600 to 8,600 Ura+ transformants per micrograms of DNA by electroporation. Most transformants obtained with circular vectors arose without integration of vector sequences. One vector yielded 5,200 to 12,500 Ura+ transformants per micrograms of DNA after it was linearized at various restriction enzyme sites within the P. stipitis URA3 insert. Transformants arising from linearized vectors produced stable integrants, and integration events were site specific for the genomic ura3 in 20% of the transformants examined. Plasmids bearing the P. stipitis URA3 gene and ARS2 element produced more than 30,000 transformants per micrograms of plasmid DNA. Autonomously replicating plasmids were stable for at least 50 generations in selection medium and were present at an average of 10 copies per nucleus. Images PMID:7811063

  11. Antigenic and molecular characterization of isolates of the Italy 02 infectious bronchitis virus genotype.

    PubMed

    Dolz, Roser; Pujols, Joan; Ordóñez, German; Porta, Ramon; Majó, Natàlia

    2006-04-01

    As part of an epidemiological surveillance of infectious bronchitis virus (IBV) in Spain, four Spanish field isolates showed high S1 spike sequence similarities with an IBV sequence from the GenBank database named Italy 02. Given that little was known about this new emergent IBV strain we have characterized the four isolates by sequencing the entire S1 part of the spike protein gene and have compared them with many reference IBV serotypes. In addition, cross-virus neutralization assays were conducted with the main IBV serotypes present in Europe. The four Spanish field strains and the Italy 02 S1 sequence from the NCBI database were established as a new genotype that showed maximum amino acid identities with the 4/91 serotype (81.7% to 83.7%), the D274 group that included D207, D274 and D3896 strains (79.8% to 81.7%), and the B1648 serotype (79.3% to 80%). Furthermore, on the basis of these results, it was demonstrated that the Italy 02 genotype had been circulating in Spain since as early as 1997. Based on the average ratio of synonymous:non-synonymous (dS/dN) amino acid substitutions within Italy 02 sequences, no positive selection pressures were related with changes observed in the S1 gene. Moreover, phylogenetic analysis of the S1 gene suggested that the Italy 02 genotype has undergone a recombination event. Virus neutralization assays demonstrated that little antigenic relatedness (less than 35%) exists between Italy 02 and some of the reference IBV serotypes, and indicated that Italy 02 is likely to be a new serotype.

  12. Listeria booriae sp. nov. and Listeria newyorkensis sp. nov., from food processing environments in the USA.

    PubMed

    Weller, Daniel; Andrus, Alexis; Wiedmann, Martin; den Bakker, Henk C

    2015-01-01

    Sampling of seafood and dairy processing facilities in the north-eastern USA produced 18 isolates of Listeria spp. that could not be identified at the species-level using traditional phenotypic and genotypic identification methods. Results of phenotypic and genotypic analyses suggested that the isolates represent two novel species with an average nucleotide blast identity of less than 92% with previously described species of the genus Listeria. Phylogenetic analyses based on whole genome sequences, 16S rRNA gene and sigB gene sequences confirmed that the isolates represented by type strain FSL M6-0635(T) and FSL A5-0209 cluster phylogenetically with Listeria cornellensis. Phylogenetic analyses also showed that the isolates represented by type strain FSL A5-0281(T) cluster phylogenetically with Listeria riparia. The name Listeria booriae sp. nov. is proposed for the species represented by type strain FSL A5-0281(T) ( =DSM 28860(T) =LMG 28311(T)), and the name Listeria newyorkensis sp. nov. is proposed for the species represented by type strain FSL M6-0635(T) ( =DSM 28861(T) =LMG 28310(T)). Phenotypic and genotypic analyses suggest that neither species is pathogenic. © 2015 IUMS.

  13. High quality draft genome sequences of Pseudomonas fulva DSM 17717 T, Pseudomonas parafulva DSM 17004 T and Pseudomonas cremoricolorata DSM 17059 T type strains

    DOE PAGES

    Peña, Arantxa; Busquets, Antonio; Gomila, Margarita; ...

    2016-09-01

    Pseudomonas has the highest number of species out of any genus of Gram-negative bacteria and is phylogenetically divided into several groups. The Pseudomonas putida phylogenetic branch includes at least 13 species of environmental and industrial interest, plant-associated bacteria, insect pathogens, and even some members that have been found in clinical specimens. In the context of the Genomic Encyclopedia of Bacteria and Archaea project, we present the permanent, high-quality draft genomes of the type strains of 3 taxonomically and ecologically closely related species in the Pseudomonas putida phylogenetic branch: Pseudomonas fulva DSM 17717 T, Pseudomonas parafulva DSM 17004 T and Pseudomonasmore » cremoricolorata DSM 17059T. All three genomes are comparable in size (4.6-4.9Mb), with 4,119-4,459 protein-coding genes. Average nucleotide identity based on BLAST comparisons and digital genome-to-genome distance calculations are in good agreement with experimental DNA-DNA hybridization results. The genome sequences presented here will be very helpful in elucidating the taxonomy, phylogeny and evolution of the Pseudomonas putida species complex.« less

  14. Single-cell sequencing unveils the lifestyle and CRISPR-based population history of Hydrotalea sp. in acid mine drainage.

    PubMed

    Medeiros, J D; Leite, L R; Pylro, V S; Oliveira, F S; Almeida, V M; Fernandes, G R; Salim, A C M; Araújo, F M G; Volpini, A C; Oliveira, G; Cuadros-Orellana, S

    2017-10-01

    Acid mine drainage (AMD) is characterized by an acid and metal-rich run-off that originates from mining systems. Despite having been studied for many decades, much remains unknown about the microbial community dynamics in AMD sites, especially during their early development, when the acidity is moderate. Here, we describe draft genome assemblies from single cells retrieved from an early-stage AMD sample. These cells belong to the genus Hydrotalea and are closely related to Hydrotalea flava. The phylogeny and average nucleotide identity analysis suggest that all single amplified genomes (SAGs) form two clades that may represent different strains. These cells have the genomic potential for denitrification, copper and other metal resistance. Two coexisting CRISPR-Cas loci were recovered across SAGs, and we observed heterogeneity in the population with regard to the spacer sequences, together with the loss of trailer-end spacers. Our results suggest that the genomes of Hydrotalea sp. strains studied here are adjusting to a quickly changing selective pressure at the microhabitat scale, and an important form of this selective pressure is infection by foreign DNA. © 2017 John Wiley & Sons Ltd.

  15. High quality draft genome sequences of Pseudomonas fulva DSM 17717 T, Pseudomonas parafulva DSM 17004 T and Pseudomonas cremoricolorata DSM 17059 T type strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peña, Arantxa; Busquets, Antonio; Gomila, Margarita

    Pseudomonas has the highest number of species out of any genus of Gram-negative bacteria and is phylogenetically divided into several groups. The Pseudomonas putida phylogenetic branch includes at least 13 species of environmental and industrial interest, plant-associated bacteria, insect pathogens, and even some members that have been found in clinical specimens. In the context of the Genomic Encyclopedia of Bacteria and Archaea project, we present the permanent, high-quality draft genomes of the type strains of 3 taxonomically and ecologically closely related species in the Pseudomonas putida phylogenetic branch: Pseudomonas fulva DSM 17717 T, Pseudomonas parafulva DSM 17004 T and Pseudomonasmore » cremoricolorata DSM 17059T. All three genomes are comparable in size (4.6-4.9Mb), with 4,119-4,459 protein-coding genes. Average nucleotide identity based on BLAST comparisons and digital genome-to-genome distance calculations are in good agreement with experimental DNA-DNA hybridization results. The genome sequences presented here will be very helpful in elucidating the taxonomy, phylogeny and evolution of the Pseudomonas putida species complex.« less

  16. Detection of misidentifications of species from the Burkholderia cepacia complex and description of a new member, the soil bacterium Burkholderia catarinensis sp. nov.

    PubMed

    Bach, Evelise; Sant'Anna, Fernando Hayashi; Magrich Dos Passos, João Frederico; Balsanelli, Eduardo; de Baura, Valter Antonio; Pedrosa, Fábio de Oliveira; de Souza, Emanuel Maltempi; Passaglia, Luciane Maria Pereira

    2017-08-31

    The correct identification of bacteria from the Burkholderia cepacia complex (Bcc) is crucial for epidemiological studies and treatment of cystic fibrosis infections. However, genome-based identification tools are revealing many controversial Bcc species assignments. The aim of this work is to re-examine the taxonomic position of the soil bacterium B. cepacia 89 through polyphasic and genomic approaches. recA and 16S rRNA gene sequence analysis positioned strain 89 inside the Bcc group. However, based on the divergence score of seven concatenated allele sequences, and values of average nucleotide identity, and digital DNA:DNA hybridization, our results suggest that strain 89 is different from other Bcc species formerly described. Thus, we propose to classify Burkholderia sp. 89 as the novel species Burkholderia catarinensis sp. nov. with strain 89T (=DSM 103188T = BR 10601T) as the type strain. Moreover, our results call the attention to some probable misidentifications of Bcc genomes at the National Center for Biotechnology Information database. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Burkholderia monticola sp. nov., isolated from mountain soil.

    PubMed

    Baek, Inwoo; Seo, Boram; Lee, Imchang; Yi, Hana; Chun, Jongsik

    2015-02-01

    An ivory/yellow, Gram-stain-negative, short-rod-shaped, aerobic bacterial strain, designated JC2948(T), was isolated from a soil sample taken from Gwanak Mountain, Republic of Korea. 16S rRNA gene sequence analysis indicated that strain JC2948(T) belongs to the genus Burkholderia. The test strain showed highest sequence similarities to Burkholderia tropica LMG 22274(T) (97.6 %), Burkholderia acidipaludis NBRC 101816(T) (97.5 %), Burkholderia tuberum LMG 21444(T) (97.5 %), Burkholderia sprentiae LMG 27175(T) (97.4 %), Burkholderia terricola LMG 20594(T) (97.3 %) and Burkholderia diazotrophica LMG 26031(T) (97.1 %). Based on average nucleotide identity (ANI) values, the new isolate represents a novel genomic species as it shows less than 90 % ANI values with other closely related species. Also, other phylosiological and biochemical comparisons allowed the phenotypic differentiation of strain JC2948(T) from other members of the genus Burkholderia. Therefore, we suggest that this strain should be classified as the type strain of a novel species of the genus Burkholderia. The name Burkholderia monticola sp. nov. (type strain, JC2948(T) = JCM 19904(T) = KACC 17924(T)) is proposed. © 2015 IUMS.

  18. Diversity of 16S rRNA genes of new Ehrlichia strains isolated from horses with clinical signs of Potomac horse fever.

    PubMed

    Wen, B; Rikihisa, Y; Fuerst, P A; Chaichanasiriwithaya, W

    1995-04-01

    Ehrlichia risticii is the causative agent of Potomac horse fever. Variations among the major antigens of different local E. risticii strains have been detected previously. To further assess genetic variability in this species or species complex, the sequences of the 16S rRNA genes of several isolates obtained from sick horses diagnosed as having Potomac horse fever were determined. The sequences of six isolates obtained from Ohio and three isolates obtained from Kentucky were amplified by PCR. Three groups of sequences were identified. The sequences of five of the Ohio isolates were identical to the sequence of the type strain of E. risticii, the Illinois strain. The sequence of one Ohio isolate, isolate 081, was unique; this sequence differed in 10 nucleotides from the sequence of the type strain (level of similarity, 99.3%). The sequences of the three Kentucky isolates were identical to each other, but differed by five bases from the sequence of the type strain (level of similarity, 99.6%). The levels of sequence similarity of isolate 081, the Kentucky isolates, and the type strain to the next most closely related Ehrlichia sp., Ehrlichia sennetsu, were 99.3, 99.2, and 99.2%, respectively. On the basis of the distinct antigenic profiles and the levels of 16S rRNA sequence divergence, isolate 081 is as divergent from the type strain of E. risticii as E. sennetsu is. Therefore, we suggest that strain 081 and the Kentucky isolates may represent two new distinct Ehrlichia species.

  19. "Coming out" in the age of social constructionism.

    PubMed

    Rust, P C

    1997-01-01

    Abstract This article examines sexual identity formation among 346 lesbian-identified and 60 bisexual-identified women. On average, bisexuals come out at later ages and exhibit less "stable" identity histories. However, variations in identity history among lesbians and bisexuals overshadow the differences between them and demonstrate that coming out is not a linear, goal-oriented, developmental process. Sexual identity formation must be reconceptualized as a process of describing one's social location within a changing social context. Changes in sexual identity are, therefore, expected of mature individuals as they maintain an accurate description of their position vis-à-vis other individuals, groups, and institutions.

  20. The complete mitochondrial genome of the Japanese ornamental koi carp (Cyprinus carpio) and its implication for the history of koi.

    PubMed

    Mabuchi, Kohji; Song, Hayeun

    2014-02-01

    Complete mitochondrial genome (mitogenome) sequences were determined for two individuals of Japanese ornamental koi carp. Interestingly, the obtained mitogenomes (16,581 bp) were both completely identical to the recently reported mitogenome of Oujiang color carp from China. Control region (CR) sequences in DNA database demonstrated that more than half (65%) of the koi carp individuals so far reported had partial or complete CR sequences identical to those from Oujiang color carp. These results might suggest that the Japanese koi carp has been originated from Chinese Oujiang color carp, contrary to the belief in Japan that the koi carps have been developed directly from carp stocks in Japan. In any case, the present results emphasize the importance of analyzing Oujiang color carp when studying the origin of koi carp.

  1. Purification and characterization of the restriction endonuclease RsrI, an isoschizomer of EcoRI.

    PubMed

    Greene, P J; Ballard, B T; Stephenson, F; Kohr, W J; Rodriguez, H; Rosenberg, J M; Boyer, H W

    1988-08-15

    Rhodobacter sphaeroides strain 630 produces restriction enzyme RsrI which is an isoschizomer of EcoRI. We have purified this enzyme and initiated a comparison with the EcoRI endonuclease. The properties of RsrI are consistent with a reaction mechanism similar to that of EcoRI: the position of cleavage within the -GAATTC-site is identical, the MgCl2 optimum for the cleavage is identical, and the pH profile is similar. Methylation of the substrate sequence by the EcoRI methylase protects the site from cleavage by the RsrI endonuclease. RsrI cross-reacts strongly with anti-EcoRI serum indicating three-dimensional structural similarities. We have determined the sequence of 34 N terminal amino acids for RsrI and this sequence possesses significant similarity to the EcoRI N terminus.

  2. Defining the healthy "core microbiome" of oral microbial communities

    PubMed Central

    2009-01-01

    Background Most studies examining the commensal human oral microbiome are focused on disease or are limited in methodology. In order to diagnose and treat diseases at an early and reversible stage an in-depth definition of health is indispensible. The aim of this study therefore was to define the healthy oral microbiome using recent advances in sequencing technology (454 pyrosequencing). Results We sampled and sequenced microbiomes from several intraoral niches (dental surfaces, cheek, hard palate, tongue and saliva) in three healthy individuals. Within an individual oral cavity, we found over 3600 unique sequences, over 500 different OTUs or "species-level" phylotypes (sequences that clustered at 3% genetic difference) and 88 - 104 higher taxa (genus or more inclusive taxon). The predominant taxa belonged to Firmicutes (genus Streptococcus, family Veillonellaceae, genus Granulicatella), Proteobacteria (genus Neisseria, Haemophilus), Actinobacteria (genus Corynebacterium, Rothia, Actinomyces), Bacteroidetes (genus Prevotella, Capnocytophaga, Porphyromonas) and Fusobacteria (genus Fusobacterium). Each individual sample harboured on average 266 "species-level" phylotypes (SD 67; range 123 - 326) with cheek samples being the least diverse and the dental samples from approximal surfaces showing the highest diversity. Principal component analysis discriminated the profiles of the samples originating from shedding surfaces (mucosa of tongue, cheek and palate) from the samples that were obtained from solid surfaces (teeth). There was a large overlap in the higher taxa, "species-level" phylotypes and unique sequences among the three microbiomes: 84% of the higher taxa, 75% of the OTUs and 65% of the unique sequences were present in at least two of the three microbiomes. The three individuals shared 1660 of 6315 unique sequences. These 1660 sequences (the "core microbiome") contributed 66% of the reads. The overlapping OTUs contributed to 94% of the reads, while nearly all reads (99.8%) belonged to the shared higher taxa. Conclusions We obtained the first insight into the diversity and uniqueness of individual oral microbiomes at a resolution of next-generation sequencing. We showed that a major proportion of bacterial sequences of unrelated healthy individuals is identical, supporting the concept of a core microbiome at health. PMID:20003481

  3. Donkey Orchid Symptomless Virus: A Viral ‘Platypus’ from Australian Terrestrial Orchids

    PubMed Central

    Wylie, Stephen J.; Li, Hua; Jones, Michael G. K.

    2013-01-01

    Complete and partial genome sequences of two isolates of an unusual new plant virus, designated Donkey orchid symptomless virus (DOSV) were identified using a high-throughput sequencing approach. The virus was identified from asymptomatic plants of Australian terrestrial orchid Diuris longifolia (Common donkey orchid) growing in a remnant forest patch near Perth, western Australia. DOSV was identified from two D. longifolia plants of 264 tested, and from at least one plant of 129 Caladenia latifolia (pink fairy orchid) plants tested. Phylogenetic analysis of the genome revealed open reading frames (ORF) encoding seven putative proteins of apparently disparate origins. A 69-kDa protein (ORF1) that overlapped the replicase shared low identity with MPs of plant tymoviruses (Tymoviridae). A 157-kDa replicase (ORF2) and 22-kDa coat protein (ORF4) shared 32% and 40% amino acid identity, respectively, with homologous proteins encoded by members of the plant virus family Alphaflexiviridae. A 44-kDa protein (ORF3) shared low identity with myosin and an autophagy protein from Squirrelpox virus. A 27-kDa protein (ORF5) shared no identity with described proteins. A 14-kDa protein (ORF6) shared limited sequence identity (26%) over a limited region of the envelope glycoprotein precursor of mammal-infecting Crimea-Congo hemorrhagic fever virus (Bunyaviridae). The putative 25-kDa movement protein (MP) (ORF7) shared limited (27%) identity with 3A-like MPs of members of the plant-infecting Tombusviridae and Virgaviridae. Transmissibility was shown when DOSV systemically infected Nicotiana benthamiana plants. Structure and organization of the domains within the putative replicase of DOSV suggests a common evolutionary origin with ‘potexvirus-like’ replicases of viruses within the Alphaflexiviridae and Tymoviridae, and the CP appears to be ancestral to CPs of allexiviruses (Alphaflexiviridae). The MP shares an evolutionary history with MPs of dianthoviruses, but the other putative proteins are distant from plant viruses. DOSV is not readily classified in current lower order virus taxa. PMID:24223974

  4. A homologue of the defender against the apoptotic death gene (dad1 )in UV-exposed Chlamydomonas cells is downregulated with the onset of programmed cell death.

    PubMed

    Moharikar, Swati; D'Souza, Jacinta S; Rao, Basuthkar J

    2007-03-01

    We report here the isolation of a homologue of the potential anti-apoptotic gene, defender against apoptotic death (dad1 )from Chlamydomonas reinhardtii cells.Using polymerase chain reaction (PCR),we investigated its expression in the execution process of programmed cell death (PCD)in UV-C exposed dying C.reinhardtii cells.Reverse- transcriptase (RT)-PCR showed that C.reinhardtii dad1 amplification was drastically reduced in UV-C exposed dying C.reinhardtii cells.We connect the downregulation of dad1 with the upregulation of apoptosis protease activating factor-1 (APAF-1)and the physiological changes that occur in C.reinhardtii cells upon exposure to 12 J/m 2 UV-C in order to show a reciprocal relationship between proapoptotic and inhibitor of apoptosis factors.The temporal changes indicate a correlation between the onset of cell death and dad1 downregulation.The sequence of the PCR product of the cDNA encoding the dad1 homologue was aligned with the annotated dad1 (C_20215)from the Chlamydomonas database (http://genome.jgi-psf.org:8080/annotator/servlet/jgi.annotation.Annotation?pDb=chlre2); Annotation?pDb=chlre2 );this sequence was found to show 100% identity,both at the nucleotide and amino acid level. The 327 bp transcript showed an open reading frame of 87 amino acid residues.The deduced amino acid sequence of the putative C.reinhardtii DAD1 homologue showed 54% identity with Oryza sativa, 56 identity with Drosophila melanogaster, 66% identity with Xenopus laevis, and 64% identity with Homo sapiens,Sus scrofa,Gallus gallus,Rattus norvegicus and Mus musculus.

  5. Identification of cDNAs encoding viper venom hyaluronidases: cross-generic sequence conservation of full-length and unusually short variant transcripts.

    PubMed

    Harrison, Robert A; Ibison, Frances; Wilbraham, Davina; Wagstaff, Simon C

    2007-05-01

    The immobilisation of prey by snakes is most efficiently achieved by the rapid dissemination of venom from its site of injection into the blood stream. Hyaluronidase is a common component of snake venoms and has been termed the "venom spreading factor". In the absence of nucleotide or protein sequence data to confirm the functional identity of this venom component, we interrogated a venom gland EST database for the saw-scaled viper, Echis ocellatus (Nigeria), using the gene ontology (GO) term "carbohydrate metabolism". A single hyalurononglucosaminadase-activity matching sequence (EOC00242) was found and used to design PCR primers to acquire the full-length cDNA sequence. Although very different from the bee venom and mammalian hyaluronidase sequences, the E. ocellatus sequence retained all the catalytic, positional and structural residues that characterise this class of carbohydrate metabolising hydrolases. An extraordinarily high level of sequence identity (>95%) was observed in analogous venom gland cDNA sequences isolated (by PCR) from another saw-scaled viper species, E. pyramidum leakeyi (Kenya), and from the sahara horned viper, Cerastes cerastes cerastes (Egypt) and the puff adder, Bitis arietans (Nigeria). Smaller amplicons, lacking hyaluronidase catalytic residues because of 768 bp or 855 bp central deletions, appear to encode either truncated peptides without hyaluronidase activity, or are non-translated transcripts because they lack consensus translation initiating motifs.

  6. Novel Human Adenovirus Causing Nosocomial Epidemic Keratoconjunctivitis▿

    PubMed Central

    Ishiko, Hiroaki; Shimada, Yasushi; Konno, Tsunetada; Hayashi, Akio; Ohguchi, Takeshi; Tagawa, Yoshitsugu; Aoki, Koki; Ohno, Shigeaki; Yamazaki, Shudo

    2008-01-01

    In 2000, we encountered cases of nosocomial infections with epidemic keratoconjunctivitis (EKC) at a university hospital in Kobe, in the western part of Japan. Two human adenovirus (HAdV) strains, Kobe-H and Kobe-S, were isolated from patients with nosocomial EKC infection. They were untypeable by existing neutralizing antisera; however, the isolate was neutralized with homologous antisera. We then encountered several cases of EKC due to nosocomial infections in eye clinics in different parts of Japan. A total of 80 HAdVs were isolated from patients with EKC at eight different hospitals. The partial hexon gene sequences of the isolates were determined and compared to those of the prototype strains of 51 serotypes. All isolates had identical partial hexon nucleotide sequences. Phylogenetic analysis classified these isolates into species of HAdV-D. The isolates showed 93.9 to 96.7% nucleotide identity with HAdV-D prototype strains, while all 32 HAdV-D prototype strains ranged from 93.2 to 99.2% identity. The sequences of the loop 2 and fiber knob regions from the representative strain, Kobe-H, were dissimilar in all prototype strains of 51 serotypes. We believe that this virus is a novel serotype of HAdV that causes EKC. PMID:18385435

  7. Detection of Rickettsia helvetica and Candidatus R. tarasevichiae DNA in Ixodes persulcatus ticks collected in Northeastern European Russia (Komi Republic).

    PubMed

    Kartashov, Mikhail Yu; Glushkova, Ludmila I; Mikryukova, Tamara P; Korabelnikov, Igor V; Egorova, Yulia I; Tupota, Natalia L; Protopopova, Elena V; Konovalova, Svetlana N; Ternovoi, Vladimir A; Loktev, Valery B

    2017-06-01

    The number of tick-borne infections in the northern European regions of Russia has increased considerably in the last years. In the present study, 676 unfed adult Ixodes persulcatus ticks were collected in the Komi Republic from 2011 to 2013 to study tick-borne rickettsioses. Rickettsia spp. DNA was detected by PCR in 51 (7.6%) ticks. The nucleotide sequence analysis of gltA fragments (765bp) from 51 ticks indicated that 60.8% and 39.2% of the ticks were infected with Rickettsia helvetica and Candidatus R. tarasevichiae, respectively. The gltA fragments showed 100% identity with those of Candidatus R. tarasevichiae previously discovered in Siberia and China, whereas R. helvetica showed 99.9% sequence identity with European isolates. The ompB had 8 nucleotide substitutions, 6 of which resulted in amino acid substitutions. In the sca9 gene, 3 nucleotide substitutions were detected, and only one resulted in amino acid substitution. The smpA, ompW, and β-lactamase genes of R. helvetica also showed a high level of sequence identity. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Morphological and Molecular Identification of Globodera pallida Associated with Potato in Idaho

    PubMed Central

    Skantar, A. M.; Handoo, Z. A.; Carta, L. K.; Chitwood, D. J.

    2007-01-01

    The identity of a newly discovered population of pale potato cyst nematode Globodera pallida associated with potato in eastern Idaho was established by morphological and molecular methods. Morphometrics of cysts and second-stage juveniles were generally within the expected ranges for G. pallida with some variations noted. The Idaho population and paratype material from Epworth, Lincolnshire, England, both showed variations in tail shape, with bluntly rounded to finely pointed tail termini. Compared to literature values for the paratypes, second-stage juveniles of the Idaho population had a somewhat shorter mean body length, and cysts had a slightly higher mean distance from the anus to the nearest edge of the fenestra. PCR-RFLP of the rDNA ITS region, sequence-specific multiplex PCR and DNA sequence comparisons all confirmed the identity of the Idaho population as G. pallida. The ITS rDNA sequence of the Idaho isolate was identical to those from York, England, and the Netherlands. Species-specific primers that can positively identify the tobacco cyst nematode Globodera tabacum were also developed, providing a new assay for distinguishing this species from G. pallida and the golden potato cyst nematode Globodera rostochiensis. PMID:19259482

  9. Development and application of triple antibody sandwich enzyme-linked immunosorbent assays for begomovirus detection using monoclonal antibodies against Tomato yellow leaf curl Thailand virus.

    PubMed

    Seepiban, Channarong; Charoenvilaisiri, Saengsoon; Warin, Nuchnard; Bhunchoth, Anjana; Phironrit, Namthip; Phuangrat, Bencharong; Chatchawankanphanich, Orawan; Attathom, Supat; Gajanandana, Oraprapai

    2017-05-30

    Tomato yellow leaf curl Thailand virus, TYLCTHV, is a begomovirus that causes severe losses of tomato crops in Thailand as well as several countries in Southeast and East Asia. The development of monoclonal antibodies (MAbs) and serological methods for detecting TYLCTHV is essential for epidemiological studies and screening for virus-resistant cultivars. The recombinant coat protein (CP) of TYLCTHV was expressed in Escherichia coli and used to generate MAbs against TYLCTHV through hybridoma technology. The MAbs were characterized and optimized to develop triple antibody sandwich enzyme-linked immunosorbent assays (TAS-ELISAs) for begomovirus detection. The efficiency of TAS-ELISAs for begomovirus detection was evaluated with tomato, pepper, eggplant, okra and cucurbit plants collected from several provinces in Thailand. Molecular identification of begomoviruses in these samples was also performed through PCR and DNA sequence analysis of the CP gene. Two MAbs (M1 and D2) were generated and used to develop TAS-ELISAs for begomovirus detection. The results of begomovirus detection in 147 field samples indicated that MAb M1 reacted with 2 begomovirus species, TYLCTHV and Tobacco leaf curl Yunnan virus (TbLCYnV), whereas MAb D2 reacted with 4 begomovirus species, TYLCTHV, TbLCYnV, Tomato leaf curl New Delhi virus (ToLCNDV) and Squash leaf curl China virus (SLCCNV). Phylogenetic analyses of CP amino acid sequences from these begomoviruses revealed that the CP sequences of begomoviruses recognized by the narrow-spectrum MAb M1 were highly conserved, sharing 93% identity with each other but only 72-81% identity with MAb M1-negative begomoviruses. The CP sequences of begomoviruses recognized by the broad-spectrum MAb D2 demonstrated a wider range of amino acid sequence identity, sharing 78-96% identity with each other and 72-91% identity with those that were not detected by MAb D2. TAS-ELISAs using the narrow-specificity MAb M1 proved highly efficient for the detection of TYLCTHV and TbLCYnV, whereas TAS-ELISAs using the broad-specificity MAb D2 were highly efficient for the detection of TYLCTHV, TbLCYnV, ToLCNDV and SLCCNV. Both newly developed assays allow for sensitive, inexpensive, high-throughput detection of begomoviruses in field plant samples, as well as screening for virus-resistant cultivars.

  10. Genetic diversity of pneumococcal surface protein A in invasive pneumococcal isolates from Korean children, 1991-2016.

    PubMed

    Yun, Ki Wook; Choi, Eun Hwa; Lee, Hoan Jong

    2017-01-01

    Pneumococcal surface protein A (PspA) is an important virulence factor of pneumococci and has been investigated as a primary component of a capsular serotype-independent pneumococcal vaccine. Thus, we sought to determine the genetic diversity of PspA to explore its potential as a vaccine candidate. Among the 190 invasive pneumococcal isolates collected from Korean children between 1991 and 2016, two (1.1%) isolates were found to have no pspA by multiple polymerase chain reactions. The full length pspA genes from 185 pneumococcal isolates were sequenced. The length of pspA varied, ranging from 1,719 to 2,301 base pairs with 55.7-100% nucleotide identity. Based on the sequences of the clade-defining regions, 68.7% and 49.7% were in PspA family 2 and clade 3/family 2, respectively. PspA clade types were correlated with genotypes using multilocus sequence typing and divided into several subclades based on diversity analysis of the N-terminal α-helical regions, which showed nucleotide sequence identities of 45.7-100% and amino acid sequence identities of 23.1-100%. Putative antigenicity plots were also diverse among individual clades and subclades. The differences in antigenicity patterns were concentrated within the N-terminal 120 amino acids. In conclusion, the N-terminal α-helical domain, which is known to be the major immunogenic portion of PspA, is genetically variable and should be further evaluated for antigenic differences and cross-reactivity between various PspA types from pneumococcal isolates.

  11. Genome organisation and sequence comparison suggest intraspecies incongruence in M RNA of Watermelon bud necrosis virus.

    PubMed

    Kumar, Rakesh; Mandal, B; Geetanjali, A S; Jain, R K; Jaiwal, P K

    2010-08-01

    Watermelon bud necrosis virus (WBNV), a member of the genus Tospovirus, family Bunyaviridae is an important viral pathogen in watermelon cultivation in India. The complete genome sequence properties of WBNV are not available. In the present study, the complete M RNA sequence and the genome organisation of a WBNV isolate infecting watermelon in Delhi (WBNV-wDel) were determined. The M RNA was 4,794 nucleotides (nt) long and potentially coded for a movement protein (NSm) of 34.22 kDa (307 amino acids) on the viral sense strand and a Gn/Gc glycoprotein precursor of 127.15 kDa (1,121 amino acids) on the complementary strand. The two open reading frames were separated by an intergenic region of 402 nt. The 5' and 3' untranslated regions were 55 and 47 nt long, respectively, containing complementary termini typical of tospoviruses. WBNV-wDel was most closely related (79.1% identity) to Groundnut bud necrosis virus, an important tospovirus that occurs in several crops in India, and was different (63.3-75.2% identity) from the other cucurbit-infecting tospoviruses known to occur in Taiwan and Japan. Sequence analysis of NSm and Gn/Gc revealed phylogenetic incongruence between WBNV-wDel and another isolate originating from central India (WBNV-Wm-Som isolate). The Wm-Som isolate showed evolutionary divergence from the wDel isolate in the Gn/Gc protein (74.6% identity) potentially due to recombination with the other tospoviruses that are known to occur in India. This is the first report of a comparison of complete sequences of M RNA of WBNV.

  12. Molecular confirmation of Trichomonas gallinae and other parabasalids from Brazil using the 5.8S and ITS-1 rRNA regions.

    PubMed

    Ecco, Roselene; Preis, Ingred S; Vilela, Daniel A R; Luppi, Marcela M; Malta, Marcelo C C; Beckstead, Robert B; Stimmelmayr, Raphaela; Stimmelmayer, Raphaela; Gerhold, Richard W

    2012-11-23

    Clinical, gross, and histopathology lesions and molecular characterization of Trichomonas spp. infection were described in two striped owls (Asio (Rhinoptynx) clamator), one American kestrel (Falco sparverius), two green-winged saltators (Saltator similis), and in a toco toucan (Ramphastos toco) from Brazil. These birds presented clinical signs including emaciation, ruffled feathers, abundant salivation and open mouth breathing presumably due to abundant caseous material. Gross lesions were characterized by multifocal yellow friable plaques on the surface of the tongue, pharynx and/or caseous masses partially occluding the laryngeal entrance. In the owls, the caseous material extended into the mandibular muscles and invaded the sinuses of the skull. Histopathologically, marked necrotic and inflammatory lesions were associated with numerous round to oval, pale eosinophilic structures (6-10μm) with basophilic nuclei, consistent with trichomonads. Organisms similar to those described above also were found in the liver of the two green-winged saltators. To the authors' knowledge, this is the first report of trichomonosis in a striped owl and a toco toucan. Sequence analysis of the Trichomonas spp. internal transcribed spacer 1 (ITS-1) region and partial 5.8S of the ribosomal RNA (rRNA) disclosed significant genetic diversity. Two sequences had 100% identity to Trichomonas gallinae, whereas two sequences had a 99% and 92% identity to a Trichomonas vaginalis-like sequence, respectively. One sequence (green-winged saltator 502-08) had a 100% identity to a newly recognized genus Simplicomonas. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Brucella vulpis sp. nov., isolated from mandibular lymph nodes of red foxes (Vulpes vulpes).

    PubMed

    Scholz, Holger C; Revilla-Fernández, Sandra; Al Dahouk, Sascha; Hammerl, Jens A; Zygmunt, Michel S; Cloeckaert, Axel; Koylass, Mark; Whatmore, Adrian M; Blom, Jochen; Vergnaud, Gilles; Witte, Angela; Aistleitner, Karin; Hofer, Erwin

    2016-05-01

    Two slow-growing, Gram-negative, non-motile, non-spore-forming, coccoid bacteria (strains F60T and F965), isolated in Austria from mandibular lymph nodes of two red foxes (Vulpes vulpes), were subjected to a polyphasic taxonomic analysis. In a recent study, both isolates were assigned to the genus Brucella but could not be attributed to any of the existing species. Hence, we have analysed both strains in further detail to determine their exact taxonomic position and genetic relatedness to other members of the genus Brucella. The genome sizes of F60T and F965 were 3 236 779 and 3 237 765 bp, respectively. Each genome consisted of two chromosomes, with a DNA G+C content of 57.2 %. A genome-to-genome distance of >80 %, an average nucleotide identity (ANI) of 97 % and an average amino acid identity (AAI) of 98 % compared with the type species Brucella melitensis confirmed affiliation to the genus. Remarkably, 5 % of the entire genetic information of both strains was of non-Brucella origin, including as-yet uncharacterized bacteriophages and insertion sequences as well as ABC transporters and other genes of metabolic function from various soil-living bacteria. Core-genome-based phylogenetic reconstructions placed the novel species well separated from all hitherto-described species of the genus Brucella, forming a long-branched sister clade to the classical species of Brucella. In summary, based on phenotypic and molecular data, we conclude that strains F60T and F965 are members of a novel species of the genus Brucella, for which the name Brucella vulpis sp. nov. is proposed, with the type strain F60T ( = BCCN 09-2T = DSM 101715T).

  14. Distinctive acceptor-end structure and other determinants of Escherichia coli tRNAPro identity.

    PubMed Central

    McClain, W H; Schneider, J; Gabriel, K

    1994-01-01

    The previously uncharacterized determinants of the specificity of tRNAPro for aminoacylation (tRNAPro identity) were defined by a computer comparison of all Escherichia coli tRNA sequences and tested by a functional analysis of amber suppressor tRNAs in vivo. We determined the amino acid specificity of tRNA by sequencing a suppressed protein and the aminoacylation efficiency of tRNA by examining the steady-state level of aminoacyl-tRNA. On substituting nucleotides derived from the acceptor end and variable pocket of tRNAPro for the corresponding nucleotides in a tRNAPhe gene, the identity of the resulting tRNA changed substantially but incompletely to that of tRNAPro. The redesigned tRNAPhe was weakly active and aminoacyl-tRNA was not detected. Ethyl methanesulfonate mutagenesis of the redesigned tRNAPhe gene produced a mutant with a wobble pair in place of a base pair in the end of the acceptor-stem helix of the transcribed tRNA. This mutant exhibited both a tRNAPro identity and substantial aminoacyl-tRNA. The results speak for the importance of a distinctive conformation in the acceptor-stem helix of tRNAPro for aminoacylation by the prolyl-tRNA synthetase. The anticodon also contributes to tRNAPro identity but is not necessary in vivo. Images PMID:8127693

  15. Systematic analysis of protein identity between Zika virus and other arthropod-borne viruses.

    PubMed

    Chang, Hsiao-Han; Huber, Roland G; Bond, Peter J; Grad, Yonatan H; Camerini, David; Maurer-Stroh, Sebastian; Lipsitch, Marc

    2017-07-01

    To analyse the proportions of protein identity between Zika virus and dengue, Japanese encephalitis, yellow fever, West Nile and chikungunya viruses as well as polymorphism between different Zika virus strains. We used published protein sequences for the Zika virus and obtained protein sequences for the other viruses from the National Center for Biotechnology Information (NCBI) protein database or the NCBI virus variation resource. We used BLASTP to find regions of identity between viruses. We quantified the identity between the Zika virus and each of the other viruses, as well as within-Zika virus polymorphism for all amino acid k -mers across the proteome, with k ranging from 6 to 100. We assessed accessibility of protein fragments by calculating the solvent accessible surface area for the envelope and nonstructural-1 (NS1) proteins. In total, we identified 294 Zika virus protein fragments with both low proportion of identity with other viruses and low levels of polymorphisms among Zika virus strains. The list includes protein fragments from all Zika virus proteins, except NS3. NS4A has the highest number (190 k -mers) of protein fragments on the list. We provide a candidate list of protein fragments that could be used when developing a sensitive and specific serological test to detect previous Zika virus infections.

  16. Genetic diversity in intraspecific hybrid populations of Eucommia ulmoides Oliver evaluated from ISSR and SRAP molecular marker analysis.

    PubMed

    Yu, J; Wang, Y; Ru, M; Peng, L; Liang, Z S

    2015-07-03

    Eucommia ulmoides Oliver, the only extant species of Eucommiaceae, is a second-category state-protected endangered plant in China. Evaluation of genetic diversity among some intraspecific hybrid populations of E. ulmoides Oliver is vital for breeding programs and further conservation of this rare species. We studied the genetic diversity of 130 accessions from 13 E. ulmoides intraspecific hybrid populations using inter-simple sequence related (ISSR) and sequence-related amplified polymorphism (SRAP) markers. Of the 100 ISSR primers and 100 SRAP primer combinations screened, eight ISSRs and eight SRAPs were used to evaluate the level of polymorphism and discriminating capacity. A total number of 65 bands were amplified using eight ISSR primers, in which 50 bands (76.9%) were polymorphic, with an average of 8.1 polymorphic fragments per primer. Alternatively, another 244 bands were observed using eight SRAP primer combinations, and 163 (66.8%) of them were polymorphic, with an average of 30.5 polymorphic fragments per primer. The unweighted pair-group method (UPGMA) analysis showed that these 13 populations could be classified into three groups by the ISSR marker and two groups by the SRAP marker. Principal coordinate analysis using SRAP was completely identical to the UPGMA-based clustering, although this was partly confirmed by the results of UPGMA cluster analysis using the ISSR marker. This study provides insights into the genetic background of E. ulmoides intraspecific hybrids. The progenies of the variations "Huazhong-3", "big fruit", "Yanci", and "smooth bark" present high genetic diversity and offer great potential for E. ulmoides breeding and conservation.

  17. The protein structure prediction problem could be solved using the current PDB library

    PubMed Central

    Zhang, Yang; Skolnick, Jeffrey

    2005-01-01

    For single-domain proteins, we examine the completeness of the structures in the current Protein Data Bank (PDB) library for use in full-length model construction of unknown sequences. To address this issue, we employ a comprehensive benchmark set of 1,489 medium-size proteins that cover the PDB at the level of 35% sequence identity and identify templates by structure alignment. With homologous proteins excluded, we can always find similar folds to native with an average rms deviation (RMSD) from native of 2.5 Å with ≈82% alignment coverage. These template structures often contain a significant number of insertions/deletions. The tasser algorithm was applied to build full-length models, where continuous fragments are excised from the top-scoring templates and reassembled under the guide of an optimized force field, which includes consensus restraints taken from the templates and knowledge-based statistical potentials. For almost all targets (except for 2/1,489), the resultant full-length models have an RMSD to native below 6 Å (97% of them below 4 Å). On average, the RMSD of full-length models is 2.25 Å, with aligned regions improved from 2.5 Å to 1.88 Å, comparable with the accuracy of low-resolution experimental structures. Furthermore, starting from state-of-the-art structural alignments, we demonstrate a methodology that can consistently bring template-based alignments closer to native. These results are highly suggestive that the protein-folding problem can in principle be solved based on the current PDB library by developing efficient fold recognition algorithms that can recover such initial alignments. PMID:15653774

  18. A complete high-quality MinION nanopore assembly of an extensively drug-resistant Mycobacterium tuberculosis Beijing lineage strain identifies novel variation in repetitive PE/PPE gene regions.

    PubMed

    Bainomugisa, Arnold; Duarte, Tania; Lavu, Evelyn; Pandey, Sushil; Coulter, Chris; Marais, Ben J; Coin, Lachlan M

    2018-06-15

    A better understanding of the genomic changes that facilitate the emergence and spread of drug-resistant Mycobacterium tuberculosis strains is currently required. Here, we report the use of the MinION nanopore sequencer (Oxford Nanopore Technologies) to sequence and assemble an extensively drug-resistant (XDR) isolate, which is part of a modern Beijing sub-lineage strain, prevalent in Western Province, Papua New Guinea. Using 238-fold coverage obtained from a single flow-cell, de novo assembly of nanopore reads resulted into one contiguous assembly with 99.92 % assembly accuracy. Incorporation of complementary short read sequences (Illumina) as part of consensus error correction resulted in a 4 404 064 bp genome with 99.98 % assembly accuracy. This assembly had an average nucleotide identity of 99.7 % relative to the reference genome, H37Rv. We assembled nearly all GC-rich repetitive PE/PPE family genes (166/168) and identified variants within these genes. With an estimated genotypic error rate of 5.3 % from MinION data, we demonstrated identification of variants to include the conventional drug resistance mutations, and those that contribute to the resistance phenotype (efflux pumps/transporter) and virulence. Reference-based alignment of the assembly allowed detection of deletions and insertions. MinION sequencing provided a fully annotated assembly of a transmissible XDR strain from an endemic setting and showed its utility to provide further understanding of genomic processes within Mycobacterium tuberculosis.

  19. Coupling Spore Traps and Quantitative PCR Assays for Detection of the Downy Mildew Pathogens of Spinach (Peronospora effusa) and Beet (P. schachtii)

    PubMed Central

    Klosterman, Steven J.; Anchieta, Amy; McRoberts, Neil; Koike, Steven T.; Subbarao, Krishna V.; Voglmayr, Hermann; Choi, Young-Joon; Thines, Marco; Martin, Frank N.

    2016-01-01

    Downy mildew of spinach (Spinacia oleracea), caused by Peronospora effusa, is a production constraint on production worldwide, including in California, where the majority of U.S. spinach is grown. The aim of this study was to develop a real-time quantitative polymerase chain reaction (qPCR) assay for detection of airborne inoculum of P. effusa in California. Among oomycete ribosomal DNA (rDNA) sequences examined for assay development, the highest nucleotide sequence identity was observed between rDNA sequences of P. effusa and P. schachtii, the cause of downy mildew on sugar beet and Swiss chard in the leaf beet group (Beta vulgaris subsp. vulgaris). Single-nucleotide polymorphisms were detected between P. effusa and P. schachtii in the 18S rDNA regions for design of P. effusa- and P. schachtii-specific TaqMan probes and reverse primers. An allele-specific probe and primer amplification method was applied to determine the frequency of both P. effusa and P. schachtii rDNA target sequences in pooled DNA samples, enabling quantification of rDNA of P. effusa from impaction spore trap samples collected from spinach production fields. The rDNA copy numbers of P. effusa were, on average, ≈3,300-fold higher from trap samples collected near an infected field compared with those levels recorded at a site without a nearby spinach field. In combination with disease-conducive weather forecasting, application of the assays may be helpful to time fungicide applications for disease management. PMID:24964150

  20. Combining phage display with de novo protein sequencing for reverse engineering of monoclonal antibodies.

    PubMed

    Rickert, Keith W; Grinberg, Luba; Woods, Robert M; Wilson, Susan; Bowen, Michael A; Baca, Manuel

    2016-01-01

    The enormous diversity created by gene recombination and somatic hypermutation makes de novo protein sequencing of monoclonal antibodies a uniquely challenging problem. Modern mass spectrometry-based sequencing will rarely, if ever, provide a single unambiguous sequence for the variable domains. A more likely outcome is computation of an ensemble of highly similar sequences that can satisfy the experimental data. This outcome can result in the need for empirical testing of many candidate sequences, sometimes iteratively, to identity one which can replicate the activity of the parental antibody. Here we describe an improved approach to antibody protein sequencing by using phage display technology to generate a combinatorial library of sequences that satisfy the mass spectrometry data, and selecting for functional candidates that bind antigen. This approach was used to reverse engineer 2 commercially-obtained monoclonal antibodies against murine CD137. Proteomic data enabled us to assign the majority of the variable domain sequences, with the exception of 3-5% of the sequence located within or adjacent to complementarity-determining regions. To efficiently resolve the sequence in these regions, small phage-displayed libraries were generated and subjected to antigen binding selection. Following enrichment of antigen-binding clones, 2 clones were selected for each antibody and recombinantly expressed as antigen-binding fragments (Fabs). In both cases, the reverse-engineered Fabs exhibited identical antigen binding affinity, within error, as Fabs produced from the commercial IgGs. This combination of proteomic and protein engineering techniques provides a useful approach to simplifying the technically challenging process of reverse engineering monoclonal antibodies from protein material.

Top