Area utilization efficiency of a sloping heliostat system for solar concentration.
Wei, L Y
1983-02-15
Area utilization efficiency (AUE) is formulated for a sloping heliostat system facing any direction. The effects of slope shading, incidence factor, sun shading, and tower blocking by the mirrors are all taken into account. Our results show that annually averaged AUEs calculated for heliostat systems (1) increase with tower height at low slope angles but less rapidly at high slopes, (2) increase monotonically with slope angle and saturate at large slopes for systems facing due south, (3) reach a maximum at a certain slope for systems facing other directions than due south, and (4) drop sharply at slopes greater than a certain value for systems facing due east or west due to slope shading effect. The results are useful for solar energy collection on nonflat terrains.
Spectral characteristics of earth-space paths at 2 and 30 FHz
NASA Technical Reports Server (NTRS)
Baxter, R. A.; Hodge, D. B.
1978-01-01
Spectral characteristics of 2 and 30 GHz signals received from the Applications Technology Satellite-6 (ATS-6) are analyzed in detail at elevation angles ranging from 0 deg to 44 deg. The spectra of the received signals are characterized by slopes and break frequencies. Statistics of these parameters are presented as probability density functions. Dependence of the spectral characteristics on elevation angle is investigated. The 2 and 30 GHz spectral shapes are contrasted through the use of scatter diagrams. The results are compared with those predicted from turbulence theory. The average spectral slopes are in close agreement with theory, although the departure from the average value at any given elevation angle is quite large.
Flare angles measured with ball gage
NASA Technical Reports Server (NTRS)
Cleghorn, D.; Wall, W. A.
1968-01-01
Precision tungsten carbide balls measure the internal angle of flared joints. Measurements from small and large balls in the flare throat to an external reference point are made. The difference in distances and diameters determine the average slope of the flare between the points of ball contact.
Choi, Seyoung; Lee, Minsun; Kwon, Byongan
2014-01-01
Individual pelvic sacral angle was measured, compared and analyzed for the 6 male and female adults who were diagnosed with lumbar spinal stenosis, foraminal stenosis and mild spondylolisthesis in accordance with spinal parameters, pelvic parameters and occlusion state of sacroiliac joint presented by the author of this thesis based on the fact that the degree of lumbar excessive lordosis that was one of the causes for lumbar pain was determined by sacral slope. The measured values were compared with the standard values of the average normal range from 20 s to 40 s of normal Koreans stated in the study on the change in lumbar lordosis angle, lumbosacral angle and sacral slope in accordance with the age by Oh et al. [5] and sacral slope and pelvic sacral slope of each individual of the subjects for measurement were compared. Comparing the difference between the two tilt angles possessed by an individual is a comparison to determine how much the sacroiliac joint connecting pelvis and sacral vertebrae compensated and corrected the sacral vertebrae slope by pelvic tilt under the condition of synarthrodial joint.Under the condition that the location conforming to the line in which the sagittal line of gravity connects with pelvic ASIS and pubic pubic tuberele is the neutral location of pelvic tilt, sacral slope being greater than pelvic sacral slope means pelvic anterior tilting, whereas sacral slope being smaller than pelvic sacral slope means pelvic posterior tilting. On that account, male B, female A and female C had a pelvic posterior tilting of 16 degrees, 1 degree and 5 degrees respectively, whereas male A, male C and female B had a pelvic anterior tilting of 3 degrees, 9 degrees and 4 degrees respectively. In addition, the 6 patients the values of lumbar lordosis angle, lumbosacral angle and sacral slope that were almost twice as much as the normal standard values of Koreans. It is believed that this is because the pelvic sacral slope maintaining an angle that is slightly greater than the normal range by being located in the lowest end of spine considering that the compensation for pelvic tilt, in other words, pelvic limb is not much causes an excess of lumbar lordosis angle. The meaning of this study based on these results is to prove that PSA is one of the important factors that fundamentally determine lumbar curvature. And this is because it is definitely required to have a study on the guideline for appropriate posture and life habit to the maintenance and management of ideal PSA before the end of growth phase and also the exercise therapy and adjustment for the control of PSA.
NASA Astrophysics Data System (ADS)
Gallegos, M. I.; Espejel-Garcia, V. V.
2012-12-01
The Camargo volcanic field (CVF) covers ~3000 km2 and is located in the southeast part of the state of Chihuahua, within the Basin and Range province. The CVF represents the largest mafic alkali volcanic field in northern Mexico. Over a 300 cinder cones have been recognized in the Camargo volcanic field. Volcanic activity ranges from 4.7 to 0.09 Ma revealed by 40Ar/39Ar dating methods. Previous studies say that there is a close relationship between the cinder cone slope angle, due to mechanical weathering, and age. This technique is considered a reliable age indicator, especially in arid climates, such as occur in the CVF. Data were acquired with digital topographic maps (DRG) and digital elevation models (DEM) overlapped in the Global Mapper software. For each cone, the average radius (r) was calculated from six measurements, the height (h) is the difference between peak elevation and the altitude of the contour used to close the radius, and the slope angle was calculated using the equation Θ = tan-1(h/r). The slope angles of 30 cinder cones were calculated showing angles ranging from 4 to 15 degrees. A diffusion model, displayed by an exponential relationship between slope angle and age, places the ages of these 30 cones from 215 to 82 ka, within the range marked by radiometric methods. Future work include the analysis of more cinder cones to cover the whole CVF, and contribute to the validation of this technique.
Rates of surficial rock creep on hillslopes in Western Colorado
Schumm, S.A.
1967-01-01
The average rate of downshope movement of rock fragments on shale hillslopes is directly proportional to the sine of the slope angle or that component of the gravitational force which acts parallel to the hillslope. The rates of surficial rock creep range from a few millimeters per year on a 3degree slope to almost 70 millimeters per year on a 40-degree slope, but these rates vary with natural variations in soil characteristics and microclimate, as well as with accidental disturbances.
[Effect analysis of anterior cervical operation for severe cervical kyphosis].
Shen, X L; Wu, H Q; Hu, Z H; Liu, Y; Wang, X W; Chen, H J; Cao, P; Tian, Y; Yang, C; Yuan, W
2017-03-01
Objective: To determine the feasibility and safety of anterior cervical decompression and fusion in severe cervical kyphosis treatment. Methods: Totally 29 patients with severe cervical kyphosis(Cobb angle>50°) underwent anterior cervical decompression and fusion from June 2008 to May 2016 were studied retrospectively. There were 19 males and 10 females. The average age was 32.6 years ranging from 14 to 53 years. According to the etiology, 12 patients had iatrogenic deformity (11 had post-laminectomy cervical kyphosis, 1 had kyphosis due to anterior graft subsidence), 5 had neurofibromatosis, 4 had infective kyphosis, 8 had idiopathic cervical kyphosis. The curvature of cervical angle was measured by two-line Cobb method. The severity of cervical kyphosis was evaluated by kyphosis index (KI). Parameters including kyphosis levels, the apex of the kyphosis, C(2-7) sagittal vertical axis(SVA) and T(1) slope were also measured on lateral radiographs in the neutral position in each patient. The pre- and post-operative Japanese Orthopaedic Association(JOA) scores, visual analogue scale (VAS) of neek pain, neck disability index (NDI) and cervical alignment were compared. All patients were treated by skull traction. Motor evoked potential and somatosensory evoked potential were applied intraoperation as the spinal cord monitor. Results: Skull traction was performed for an average of 6.3 days. The mean vertebral number in kyphotic region was 4.7. The average operation time was 155 minutes and blood loss was 135 ml. The preoperative C(2-7)Cobb angle was 46.6°±18.1° in average. It was reduced to 11.4°±6.4° in average after operation. The Cobb angle of operation region was 72.9°±19.6° in average before operation. It was reduced to 11.2°±6.4° in average after operation. The kyphosis region correction rate was 84.6%. The mean preoperative C(2-7)SVA changed from (3.8±14.6) mm to (12.6±7.8) mm postoperatively. The mean preoperative T(1) slope changed from -10.6°±16.4° to 7.1°±14.9° postoperatively. The average postoperative C(2-7) Cobb angle, Cobb angle of kyphosis region, KI, C(2-7) SVA and T(1) slope changed significantly compared with preoperation ( F =12.700-218.200, all P <0.01). The average postoperative JOA, VAS and NDI scores improved significantly compared with preoperation ( F =225.500, 217.900, 131.200, all P <0.01). Conclusion: For severe cervical kyphosis, anterior correction is a safe and effective technique, sufficient decompression will be achieved.
Evaluation of the rockfall susceptibility of the Solà D'Andorra using the Matterock methodology
NASA Astrophysics Data System (ADS)
Mavrouli, O.; Pedrazzini, A.; Loye, A.; Jaboyedoff, M.; Corominas, J.
2010-05-01
The rockfall susceptibility of a slope is directly linked to the topographical relief and the presence of favorable discontinuities for the detachment of rock volumes from the slope face. In order to rank the rockfall susceptibility throughout a slope so as to localize the zones which are the most probable to produce rockfalls, these parameters have to be taken into consideration. In this context, the objective of this work was the identification of susceptible areas on the Solà de Andorra, in Andorra. The susceptibility is evaluated implementing a GIS platform and the Matterock methodology (Rouiller et al., 1998) by superposition of four criteria that are related to the topographical relief and the presence of discontinuities. The used parameters and the related analyses to obtain them are the following and they are briefly described in the continue: 1. Comparison of the slope angle with the threshold value defined by slope angle analysis. 2. Average number of unfavorable discontinuities per surface unit. 3. Number of kinematically permitted plane or wedge failures. 4. Value in cubic meters of the potentially instable volumes using the Slope Local Base Level, SLBL, method. The slope angle analysis is used for the determination of an angle value above which rockfalls are very probable. It is based on the decomposition of the histogram of the present slope angles to different families, using a Gaussian distribution. The families represent the existing geo-morphological structures. The threshold value is determined by the angle characterizing the steepest family. The unfavorable discontinuities are detected using the Matterock software. The input data is the DEM and the principal discontinuity sets. The output is the average number of discontinuities counted in every topographic facet. The kinematic tests are also performed using the Matterock software. For each unfavorable discontinuity set, the number of potential plane or wedge failures is calculated. The volumes above a base level that is determined by the topographical relief are calculated using the SLBL method, also on a GIS platform. For the application at a local scale to the Solà de Andorra, the four analyses are performed and their outputs are ranked using appropriate rating. The susceptibility index that is used is equal to the sum of the ranked outputs and it is expressed on an increasing scale from 0 to 8. Historical rockfall events are superimposed on the topographic map to check the consistency of the results. It is indicated that areas characterized by high values of the susceptibility index coincide with past events, thus may be considered prone to also produce rockfalls in the future. References Rouiller, J.-D., Jaboyedoff, M., Marro, C., Phlippossian, F. and Mamin, M. (1998): Pentes instables dans le Pennique valaisan. Rapport final PNR31. VDF, Zürich.
NASA Astrophysics Data System (ADS)
Chen, T. C.; Yen, H. Y.; Zhou, F. L.
2015-12-01
This study focuses on the depth and magnitude of the small scale landslide in slate area in Ai-Liao-Shi catchment, South Taiwan. Landslide inventory of 2009 Typhoon Morakot, 5×5 m DEM, and aero photo have been interpreted by GIS software to assess the slope type and the scale of landslide events. The research database includes 276 landslides which orthographic projection areas are smaller than 1 ha. The slopes were also classified into dip, orthoclinical-dip, escarpment, and orthoclinical- escarpment 4 types of slope based on the slope aspect to the bedding orientation. The sliding plane, or so call the failure plane, was identified by aero photo, field reconnaissance and verification, and DEM before and after the typhoon event. Colluvium material deposited on the slip plane was removed based on the scarp and foot position, mass movement pattern, weak plane orientation, and the micro topography of a landslide to achieve the reasonable sliding plane. The maximum depth of sliding surface is explored through the slope type and sliding plane in total of 276 landslide cases. Results demonstrate that the average maximum depth, Dam, of dip slope is 4.6 m, Dam of orthoclinical-dip, escarpment, and orthoclinical-escarpment slopes are 5.8, 6.0, and 6.3 m respectively. In general, Dam is creasing with the average slope of landslide, the relationship of both factor is achieved in the study. Meanwhile, the orthographic projection area of landslide is increasing with the slope angle till the angle up to 40 degree then decreasing. The depth also varies with landslide magnitude. Finally, the relation of the depth normal to slope surface and the depth in gravity direction of landslides in four types slope are proposed, the R square values are 0.862 to 0.891 showing a good correlation between two types of depth.
NASA Astrophysics Data System (ADS)
Mendoza, J. P. A.
2016-12-01
The Philippines, being located in the circum-Pacific, bounded by multiple subduction zones, open seas and ocean, is one of the most hazard-prone countries in the world (Benson, 1997). This widespread recurrence of natural hazards in the country requires much attention for disaster management (Aurelio, 2006). On the average, 21 typhoons enter the Philippine area of responsibility annually with 6-9 making a landfall. Several rainfall-induced landslide events are reported annually particularly during and after the inundation of major typhoons which imposes hazards to communities and causes destruction of properties due to the moving mass and possible flash floods it may induce. Shallow landslides are the most commonly observed failure involving soil-mantled slopes and are considered major geohazards, often causing property damage and other economic loss. Hence numerous studies on landslide susceptibility including numerical models based on infinite slope equation are used in order to identify slopes prone to occurrences of shallow landslides. The study aims to determine the relationships between the slope and elevation to the factor of safety for laterite-mantled topography by incorporating precipitation values in the determination of landslide susceptibility. Using a DEM, flow direction map and slope map of the Sta Cruz (Zambales, Philippines), the FORTRAN based program TRIGRS, was used to generate the values for the factors of safety in the study area. Overlays with a generated slope map and elevation map were used to determine relationships of the mentioned factors and the factors of safety. A slope in a topography mantled with lateritic soil will fail at a slope angle higher than 20 degrees. Generally, the factor of safety decreases as the slope angle increases; this increases the probability and risk of slope failure. Elevation has no bearing on the computation for the factor of safety. The factor of safety is heavily dependent on the slope angle. The value of generated factor of safety coincides with the published geohazard map from Mines and Geosciences Bureau(MGB).
Slope-scale dynamic states of rockfalls
NASA Astrophysics Data System (ADS)
Agliardi, F.; Crosta, G. B.
2009-04-01
Rockfalls are common earth surface phenomena characterised by complex dynamics at the slope scale, depending on local block kinematics and slope geometry. We investigated the nature of this slope-scale dynamics by parametric 3D numerical modelling of rockfalls over synthetic slopes with different inclination, roughness and spatial resolution. Simulations were performed through an original code specifically designed for rockfall modeling, incorporating kinematic and hybrid algorithms with different damping functions available to model local energy loss by impact and pure rolling. Modelling results in terms of average velocity profiles suggest that three dynamic regimes (i.e. decelerating, steady-state and accelerating), previously recognized in the literature through laboratory experiments on granular flows, can set up at the slope scale depending on slope average inclination and roughness. Sharp changes in rock fall kinematics, including motion type and lateral dispersion of trajectories, are associated to the transition among different regimes. Associated threshold conditions, portrayed in "phase diagrams" as slope-roughness critical lines, were analysed depending on block size, impact/rebound angles, velocity and energy, and model spatial resolution. Motion in regime B (i.e. steady state) is governed by a slope-scale "viscous friction" with average velocity linearly related to the sine of slope inclination. This suggest an analogy between rockfall motion in regime B and newtonian flow, whereas in regime C (i.e. accelerating) an analogy with a dilatant flow was observed. Thus, although local behavior of single falling blocks is well described by rigid body dynamics, the slope scale dynamics of rockfalls seem to statistically approach that of granular media. Possible outcomes of these findings include a discussion of the transition from rockfall to granular flow, the evaluation of the reliability of predictive models, and the implementation of criteria for a preliminary evaluation of hazard assessment and countermeasure planning.
Large- and Very-Large-Scale Motions in Katabatic Flows Over Steep Slopes
NASA Astrophysics Data System (ADS)
Giometto, M. G.; Fang, J.; Salesky, S.; Parlange, M. B.
2016-12-01
Evidence of large- and very-large-scale motions populating the boundary layer in katabatic flows over steep slopes is presented via direct numerical simulations (DNSs). DNSs are performed at a modified Reynolds number (Rem = 967), considering four sloping angles (α = 60°, 70°, 80° and 90°). Large coherent structures prove to be strongly dependent on the inclination of the underlying surface. Spectra and co-spectra consistently show signatures of large-scale motions (LSMs), with streamwise extension on the order of the boundary layer thickness. A second low-wavenumber mode characterizes pre-multiplied spectra and co-spectra when the slope angle is below 70°, indicative of very-large-scale motions (VLSMs). In addition, conditional sampling and averaging shows how LSMs and VLSMs are induced by counter-rotating roll modes, in agreement with findings from canonical wall-bounded flows. VLSMs contribute to the stream-wise velocity variance and shear stress in the above-jet regions up to 30% and 45% respectively, whereas both LSMs and VLSMs are inactive in the near-wall regions.
Slope angle estimation method based on sparse subspace clustering for probe safe landing
NASA Astrophysics Data System (ADS)
Li, Haibo; Cao, Yunfeng; Ding, Meng; Zhuang, Likui
2018-06-01
To avoid planetary probes landing on steep slopes where they may slip or tip over, a new method of slope angle estimation based on sparse subspace clustering is proposed to improve accuracy. First, a coordinate system is defined and established to describe the measured data of light detection and ranging (LIDAR). Second, this data is processed and expressed with a sparse representation. Third, on this basis, the data is made to cluster to determine which subspace it belongs to. Fourth, eliminating outliers in subspace, the correct data points are used for the fitting planes. Finally, the vectors normal to the planes are obtained using the plane model, and the angle between the normal vectors is obtained through calculation. Based on the geometric relationship, this angle is equal in value to the slope angle. The proposed method was tested in a series of experiments. The experimental results show that this method can effectively estimate the slope angle, can overcome the influence of noise and obtain an exact slope angle. Compared with other methods, this method can minimize the measuring errors and further improve the estimation accuracy of the slope angle.
Kowalik, William S.; Marsh, Stuart E.; Lyon, Ronald J. P.
1982-01-01
A method for estimating the reflectance of ground sites from satellite radiance data is proposed and tested. The method uses the known ground reflectance from several sites and satellite data gathered over a wide range of solar zenith angles. The method was tested on each of 10 different Landsat images using 10 small sites in the Walker Lake, Nevada area. Plots of raw Landsat digital numbers (DNs) versus the cosine of the solar zenith angle (cos Z) for the the test areas are linear, and the average correlation coefficients of the data for Landsat bands 4, 5, 6, and 7 are 0.94, 0.93, 0.94, and 0.94, respectively. Ground reflectance values for the 10 sites are proportional to the slope of the DN versus cos Z relation at each site. The slope of the DN versus cos Z relation for seven additional sites in Nevada and California were used to estimate the ground reflectances of those sites. The estimates for nearby sites are in error by an average of 1.2% and more distant sites are in error by 5.1%. The method can successfully estimate the reflectance of sites outside the original scene, but extrapolation of the reflectance estimation equations to other areas may violate assumptions of atmospheric homogeneity.
Yang, Changwei; Zhang, Jianjing; Liu, Feicheng; Bi, Junwei; Jun, Zhang
2015-08-06
Based on our field investigations of landslide hazards in the Wenchuan earthquake, some findings can be reported: (1) the multi-aspect terrain facing empty isolated mountains and thin ridges reacted intensely to the earthquake and was seriously damaged; (2) the slope angles of most landslides was larger than 45°. Considering the above disaster phenomena, the reasons are analyzed based on shaking table tests of one-sided, two-sided and four-sided slopes. The analysis results show that: (1) the amplifications of the peak accelerations of four-sided slopes is stronger than that of the two-sided slopes, while that of the one-sided slope is the weakest, which can indirectly explain the phenomena that the damage is most serious; (2) the amplifications of the peak accelerations gradually increase as the slope angles increase, and there are two inflection points which are the point where the slope angle is 45° and where the slope angle is 50°, respectively, which can explain the seismic phenomenon whereby landslide hazards mainly occur on the slopes whose slope angle is bigger than 45°. The amplification along the slope strike direction is basically consistent, and the step is smooth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Farrell, T.P.; Mathews, N.E.; Kato, T.T.
1987-07-01
Field surveys were conducted to determine the distribution and relative abundance of burrow systems of the endangered giant kangaroo rat, Dipodomys ingens, on the US Department of Energy's Naval Petroleum Reserves (NPR-1, NPR-2) in Kern County, California. A total of 1080 burrow systems were observed on 30 sections of NPR-1, 22 sections of NPR-2, and six adjoining sections. Most burrow systems were found in clusters on deep sandy loams in Buena Vista Valley, but isolated burrows were found in similar soils on the upper slopes or crests of ridges in 30 other sections of the reserves. Burrow systems had anmore » average of 3.3 horizontal entrances measuring 2.7 in. high and 3.4 in. wide, and an average of 1.4 vertical entrances 2.0 in. in diameter. In the valleys burrows occurred in a density of 28.2 per acre; had an average slope angle of 4.3/sup 0/; were within 3.3 yd of a perennial shrub, usually a cheese-bush, Hymenoclea salsola; had a predominantly southern aspect; and were grazed by sheep, but were remote from petroleum production activities. In the uplands burrows occurred in a density of 0.1 per acre; had an average slope angle of 6.4/sup 0/; were within 5.1 yd of a perennial shrub, usually a desert saltbush, Atriplex polycarpa; had no particular aspect; and were not grazed by sheep, but were close to petroleum production activities. Since 1980, preconstruction surveys have helped conserve giant kangaroo rat burrows that may have been inadvertently threatened by construction projects on the reserves.« less
Structure of gel phase saturated lecithin bilayers: temperature and chain length dependence.
Sun, W J; Tristram-Nagle, S; Suter, R M; Nagle, J F
1996-01-01
Systematic low-angle and wide-angle x-ray scattering studies have been performed on fully hydrated unoriented multilamamellar vesicles of saturated lecithins with even chain lengths N = 16, 18, 20, 22, and 24 as a function of temperature T in the normal gel (L beta') phase. For all N, the area per chain Ac increases linearly with T with an average slope dAc/dT = 0.027 A2/degree C, and the lamellar D-spacings also increase linearly with an average slope dD/dT = 0.040 A/degree C. At the same T, longer chain length lecithins have more densely packed chains, i.e., smaller Ac's, than shorter chain lengths. The chain packing of longer chain lengths is found to be more distorted from hexagonal packing than that of smaller N, and the distortion epsilon of all N approaches the same value at the respective transition temperatures. The thermal volume expansion of these lipids is accounted for by the expansion in the hydrocarbon chain region. Electron density profiles are constructed using four orders of low-angle lamellar peaks. These show that most of the increase in D with increasing T is due to thickening of the bilayers that is consistent with a decrease in tilt angle theta and with little change in water spacing with either T or N. Because of the opposing effects of temperature on area per chain Ac and tilt angle 0, the area expansivity alpha A is quite small. A qualitative theoretical model based on competing head and chain interactions accounts for our results. PMID:8842227
NASA Astrophysics Data System (ADS)
Wu, Songbai; Yu, Minghui; Chen, Li
2017-02-01
The slope effect on flow erosivity and soil erosion still remains a controversial issue. This theoretical framework explained and quantified the direct slope effect by coupling the modified Green-Ampt equation accounting for slope effect on infiltration, 1-D kinematic wave overland flow routing model, and WEPP soil erosion model. The flow velocity, runoff rate, shear stress, interrill, and rill erosion were calculated on 0°-60° isotropic slopes with equal horizontal projective length. The results show that, for short-duration rainfall events, the flow erosivity and erosion amounts exhibit a bell-shaped trend which first increase with slope gradient, and then decrease after a critical slope angle. The critical slope angles increase significantly or even vanish with increasing rainfall duration but are nearly independent of the slope projective length. The soil critical shear stress, rainfall intensity, and temporal patterns have great influences on the slope effect trend, while the other soil erosion parameters, soil type, hydraulic conductivity, and antecedent soil moisture have minor impacts. Neglecting the slope effect on infiltration would generate smaller erosion and reduce critical slope angles. The relative slope effect on soil erosion in physically based model WEPP was compared to those in the empirical models USLE and RUSLE. The trends of relative slope effect were found quite different, but the difference may diminish with increasing rainfall duration. Finally, relatively smaller critical slope angles could be obtained with the equal slope length and the range of variation provides a possible explanation for the different critical slope angles reported in previous studies.
Yang, Changwei; Zhang, Jianjing; Liu, Feicheng; Bi, Junwei; Jun, Zhang
2015-01-01
Based on our field investigations of landslide hazards in the Wenchuan earthquake, some findings can be reported: (1) the multi-aspect terrain facing empty isolated mountains and thin ridges reacted intensely to the earthquake and was seriously damaged; (2) the slope angles of most landslides was larger than 45°. Considering the above disaster phenomena, the reasons are analyzed based on shaking table tests of one-sided, two-sided and four-sided slopes. The analysis results show that: (1) the amplifications of the peak accelerations of four-sided slopes is stronger than that of the two-sided slopes, while that of the one-sided slope is the weakest, which can indirectly explain the phenomena that the damage is most serious; (2) the amplifications of the peak accelerations gradually increase as the slope angles increase, and there are two inflection points which are the point where the slope angle is 45° and where the slope angle is 50°, respectively, which can explain the seismic phenomenon whereby landslide hazards mainly occur on the slopes whose slope angle is bigger than 45°. The amplification along the slope strike direction is basically consistent, and the step is smooth. PMID:26258785
Faundez, Antonio A; Richards, Jonathon; Maxy, Philippe; Price, Rachel; Léglise, Amélie; Le Huec, Jean-Charles
2018-02-01
To identify risk factors, in 12 patients with junctional breakdown (JBD) after thoraco-sacral fusions and to test a software locating maximal bending moment on full spine EOS images. Twelve patients underwent long fusions for lumbar degenerative pathologies. Preop EOS images were compared to first postop EOS showing JBD. Parameters analyzed were: spinopelvic parameters [pelvic incidence (PI), pelvic tilt (PT), sacral slope (SS), sagittal vertical axis (SVA), spinosacral angle (SSA), lordosis, and kyphosis], proximal junctional angle (PJA), odontoid-hip axis angle (ODHA), and CIA. A new software estimated the location of maximum bending moment (M max ) before and after JBD. All patients except one had a JBD located between T10 and L1, diagnosed at average follow-up of 18.58 months. JBD was a fracture in six patients, severe adjacent disc degeneration in the remaining. Average PI was 52°. PT increased, SS decreased after JBD versus preop (p > 0.05). Average PJA was 34.5°. Global lordosis (GLL), upper lordosis (ULL), L4-S1 lordosis, and thoracic kyphosis (TK) were increased (p < 0.05). Lower lumbar lordosis (LLL), was not increased postJBD (p = 0.6). SVA, SSA, ODHA, and C7 slope were not modified (p > 0.05). CIA average value decreased by 7.5% after JBD. T1-T5 alignment was correlated to C7 slope before (R 2 = 0.77075) and after JBD (R 2 = 0.85409). ODHA decreased after JBD (p > 0.05). Most JBD occurred at or one level away from preoperative M max location. This study confirms the importance of harmonious distribution of lumbar (GLL, ULL, and ILL) and thoracic curves (TK, T1-T5 segment) in thoraco-sacral fusions. All patients showed an exaggerated ULL, resulting in a posterior shift and increased lever arm at the thoraco-lumbar junction, leading to JBD.
Effect of Angle of Attack on Slope Climbing Performance
NASA Technical Reports Server (NTRS)
Creager, Colin M.; Jones, Lucas; Smith, Lauren M.
2017-01-01
Ascending steep slopes is often a very difficult challenge for off-road vehicles, whether on Earth or on extraterrestrial bodies. This challenge is even greater if the surface consists of loose granular soil that does not provide much shear strength. This study investigated how the path at which a vehicle traverses a slope, specifically the angle that it is commanded to drive relative to the base of the hill (the angle of attack), can affect its performance. A vehicle was driven in loose sand at slope angles up to 15 degrees and angles of attack ranging from 10 to 90 degrees. A novel photogrammetry technique was implemented to both track vehicle motion and create a three-dimensional profile of the terrain. This allowed for true wheel sinkage measurements. The study showed that though low angles of attack result in lower wheel slip and sinkage, the efficiency of the vehicles uphill motion increased at higher angles of attack. For slopes up to 15 degrees, a 90 degree angle of attack provided the greatest likelihood of successful ascent.
Modeling granular material flows: The angle of repose, fluidization and the cliff collapse problem
NASA Astrophysics Data System (ADS)
Holsapple, Keith A.
2013-07-01
I discuss theories of granular material flows, with application to granular flows on the earth and planets. There are two goals. First, there is a lingering belief of some that the standard continuum plasticity Mohr-Coulomb and/or Drucker-Prager models are not adequate for many large-scale granular flow problems. The stated reason for those beliefs is the fact that the final slopes of the run-outs in collapse, landslide problems, and large-scale cratering are well below the angle of repose of the material. That observation, combined with the supposition that in those models flow cannot occur with slopes less than the angle of repose, has led to a number of researchers suggesting a need for lubrication or fluidization mechanisms and modeling. That issue is investigated in detail and shown to be false. A complete analysis of slope failures according to the Mohr-Coulomb model is presented, with special attention to the relations between the angle of repose and slope failures. It is shown that slope failure can occur for slope angles both larger than and smaller than the angle of repose. Second, to study the details of landslide run-outs, finite-difference continuum code simulations of the prototypical cliff collapse problem, using the classical plasticity models, are presented, analyzed and compared to experiments. Although devoid of any additional fluidization models, those simulations match experiments in the literature extremely well. The dynamics of this problem introduces additional important features relating to the run-out and final slope angles. The vertical free surface begins to fall at the initial 90° and flow continues to a final slope less than 10°. The detail in the calculation is examined to show why flow persists at slope angles that appear to be less than the angle of repose. The motions include regions of solid-like, fluid-like, and gas-like flows without invoking any additional models.
NASA Astrophysics Data System (ADS)
Edwards, C. S.; Bandfield, J. L.; Christensen, P. R.
2006-12-01
It is possible to obtain surface roughness characteristics, by measuring a single surface from multiple emission angles and azimuths in the thermal infrared. Surfaces will have different temperatures depending on their orientation relative to the sun. A different proportion of sunlit versus shaded surfaces will be in the field of view based on the viewing orientation, resulting in apparent temperature differences. This difference in temperature can be utilized to calculate the slope characteristics for the observed area. This technique can be useful for determining surface slope characteristics not resolvable by orbital imagery. There are two main components to this model, a surface DEM, in this case a synthetic, two dimensional sine wave surface, and a thermal model (provided by H. Kieffer). Using albedo, solar longitude, slope, azimuth, along with several other parameters, the temperature for each cell of the DEM is calculated using the thermal model. A temperature is then predicted using the same observation geometries as the Thermal Emission Spectrometer (TES) observations. A temperature difference is calculated for the two complementary viewing azimuths and emission angles from the DEM. These values are then compared to the observed temperature difference to determine the surface slope. This method has been applied to TES Emission Phase Function (EPF) observations for both the spectrometer and bolometer data, with a footprint size of 10s of kilometers. These specialized types of TES observations measure nearly the same surface from several angles. Accurate surface kinetic temperatures are obtained after the application of an atmospheric correction for the TES bolometer and/or spectrometer. Initial results include an application to the northern circumpolar dunes. An average maximum slope of ~33 degrees has been obtained, which makes physical sense since this is near the angle of repose for sand sized particles. There is some scatter in the data from separate observations, which may be due to the large footprint size. This technique can be better understood and characterized by correlation with high resolution imagery. Several different surface maps will also be tested in addition to the two dimensional sine wave surface. Finally, by modeling the thermal effects on different particle sizes and land forms, we can further interpret the scale of these slopes.
Shortwave radiation parameterization scheme for subgrid topography
NASA Astrophysics Data System (ADS)
Helbig, N.; LöWe, H.
2012-02-01
Topography is well known to alter the shortwave radiation balance at the surface. A detailed radiation balance is therefore required in mountainous terrain. In order to maintain the computational performance of large-scale models while at the same time increasing grid resolutions, subgrid parameterizations are gaining more importance. A complete radiation parameterization scheme for subgrid topography accounting for shading, limited sky view, and terrain reflections is presented. Each radiative flux is parameterized individually as a function of sky view factor, slope and sun elevation angle, and albedo. We validated the parameterization with domain-averaged values computed from a distributed radiation model which includes a detailed shortwave radiation balance. Furthermore, we quantify the individual topographic impacts on the shortwave radiation balance. Rather than using a limited set of real topographies we used a large ensemble of simulated topographies with a wide range of typical terrain characteristics to study all topographic influences on the radiation balance. To this end slopes and partial derivatives of seven real topographies from Switzerland and the United States were analyzed and Gaussian statistics were found to best approximate real topographies. Parameterized direct beam radiation presented previously compared well with modeled values over the entire range of slope angles. The approximation of multiple, anisotropic terrain reflections with single, isotropic terrain reflections was confirmed as long as domain-averaged values are considered. The validation of all parameterized radiative fluxes showed that it is indeed not necessary to compute subgrid fluxes in order to account for all topographic influences in large grid sizes.
Fujimoto, Eisaku; Sasashige, Yoshiaki; Masuda, Yasuji; Hisatome, Takashi; Eguchi, Akio; Masuda, Tetsuo; Sawa, Mikiya; Nagata, Yoshinori
2013-12-01
The intra-operative femorotibial joint gap and ligament balance, the predictors affecting these gaps and their balances, as well as the postoperative knee flexion, were examined. These factors were assessed radiographically after a posterior cruciate-retaining total knee arthroplasty (TKA). The posterior condylar offset and posterior tibial slope have been reported as the most important intra-operative factors affecting cruciate-retaining-type TKAs. The joint gap and balance have not been investigated in assessments of the posterior condylar offset and the posterior tibial slope. The femorotibial gap and medial/lateral ligament balance were measured with an offset-type tensor. The femorotibial gaps were measured at 0°, 45°, 90° and 135° of knee flexion, and various gap changes were calculated at 0°-90° and 0°-135°. Cruciate-retaining-type arthroplasties were performed in 98 knees with varus osteoarthritis. The 0°-90° femorotibial gap change was strongly affected by the posterior condylar offset value (postoperative posterior condylar offset subtracted by the preoperative posterior condylar offset). The 0°-135° femorotibial gap change was significantly correlated with the posterior tibial slope and the 135° medial/lateral ligament balance. The postoperative flexion angle was positively correlated with the preoperative flexion angle, γ angle and the posterior tibial slope. Multiple-regression analysis demonstrated that the preoperative flexion angle, γ angle, posterior tibial slope and 90° medial/lateral ligament balance were significant independent factors for the postoperative knee flexion angle. The flexion angle change (postoperative flexion angle subtracted by the preoperative flexion angle) was also strongly correlated with the preoperative flexion angle, posterior tibial slope and 90° medial/lateral ligament balance. The postoperative flexion angle is affected by multiple factors, especially in cruciate-retaining-type TKAs. However, it is important to pay attention not only to the posterior tibial slope, but also to the flexion medial/lateral ligament balance during surgery. A cruciate-retaining-type TKA has the potential to achieve both stability and a wide range of motion and to improve the patients' activities of daily living.
Galileo photometry of asteroid 243 Ida
Helfenstein, P.; Veverka, J.; Thomas, P.C.; Simonelli, D.P.; Klaasen, K.; Johnson, T.V.; Fanale, F.; Granahan, J.; McEwen, A.S.; Belton, M.; Chapman, C.
1996-01-01
Galileo imaging observations over phase angles 19.5?? to 109.8?? are combined with near-opposition Earth-based data to derive the photometric properties of Ida. To first order these properties are uniform over the surface and well modeled at ?? = 0.55 ??m by Hapke parameters ????0 = 0.22, h = 0.020, B0 = 1.5, g = -0.33, and ?? = 18?? with corresponding geometric albedo p = 0.21??0.030.01 and Bond albedo AB = 0.081??0.0170.008. Ida's photometric properties are more similar to those of "average S-asteroids" (P. Helfenstein and J. Veverka 1989, Asteroids II, Univ. of Arizona Press, Tucson) than are those of 951 Gaspra. Two primary color units are identified on Ida: Terrain A exhibits a spectrum with relatively shallower 1-??m absorption and a relatively steeper red spectral slope than average Ida, while Terrain B has a deeper 1-??m absorption and a less steep red slope. The average photometric properties of Ida and Terrain A are similar while those of Terrain B differ mostly in having a slightly higher value of ????0 (0.22 versus 0.21), suggesting that Terrain B consists of slightly brighter, more transparent regolith particles. Galileo observations of Ida's satellite Dactyl over phase angles 19.5?? to 47.6?? suggest photometric characteristics similar to those of Ida, the major difference being Dactyl's slightly lower albedo (0.20 compared to 0.21). ?? 1990 Academic Press, Inc.
Quasi-analytical treatment of spatially averaged radiation transfer in complex terrain
NASA Astrophysics Data System (ADS)
Löwe, H.; Helbig, N.
2012-04-01
We provide a new quasi-analytical method to compute the topographic influence on the effective albedo of complex topography as required for meteorological, land-surface or climate models. We investigate radiative transfer in complex terrain via the radiosity equation on isotropic Gaussian random fields. Under controlled approximations we derive expressions for domain averages of direct, diffuse and terrain radiation and the sky view factor. Domain averaged quantities are related to a type of level-crossing probability of the random field which is approximated by longstanding results developed for acoustic scattering at ocean boundaries. This allows us to express all non-local horizon effects in terms of a local terrain parameter, namely the mean squared slope. Emerging integrals are computed numerically and fit formulas are given for practical purposes. As an implication of our approach we provide an expression for the effective albedo of complex terrain in terms of the sun elevation angle, mean squared slope, the area averaged surface albedo, and the direct-to-diffuse ratio of solar radiation. As an application, we compute the effective albedo for the Swiss Alps and discuss possible generalizations of the method.
Asteroid (21) Lutetia: Disk-resolved photometric analysis of Baetica region
NASA Astrophysics Data System (ADS)
Hasselmann, P. H.; Barucci, M. A.; Fornasier, S.; Leyrat, C.; Carvano, J. M.; Lazzaro, D.; Sierks, H.
2016-03-01
(21) Lutetia has been visited by Rosetta mission on July 2010 and observed with a phase angle ranging from 0.15° to 156.8°. The Baetica region, located at the north pole has been extensively observed by OSIRIS cameras system. Baetica encompass a region called North Pole Crater Cluster (NPCC), shows a cluster of superposed craters which presents signs of variegation at the small phase angle images. For studying the location, we used 187 images distributed throughout 14 filter recorded by the NAC (Narrow Angle Camera) and WAC (Wide Angle Camera) of the OSIRIS system on-board Rosetta taken during the fly-by. Then, we photometrically modeled the region using Minnaert disk-function and Akimov phase function to obtain a resolved spectral slope map at phase angles of 5 ° and 20 ° . We observed a dichotomy between Gallicum and Danuvius-Sarnus Labes in the NPCC, but no significant phase reddening (- 0.04 ± 0.045 % μm-1deg-1). In the next step, we applied the Hapke (Hapke, B. [2008]. Icarus 195, 918-926; Hapke, B. [2012]. Theory of Reflectance and Emittance Spectroscopy, second ed. Cambridge University Press) model for the NAC F82+F22 (649.2 nm), WAC F13 (375 nm) and WAC F17 (631.6 nm) and we obtained normal albedo maps and Hapke parameter maps for NAC F82+F22. On Baetica, at 649.2 nm, the geometric albedo is 0.205 ± 0.005 , the average single-scattering albedo is 0.181 ± 0.005 , the average asymmetric factor is - 0.342 ± 0.003 , the average shadow-hiding opposition effect amplitude and width are 0.824 ± 0.002 and 0.040 ± 0.0007 , the average roughness slope is 11.45 ° ± 3 ° and the average porosity is 0.85 ± 0.002 . We are unable to confirm the presence of coherent-backscattering mechanism. In the NPCC, the normal albedo variegation among the craters walls reach 8% brighter for Gallicum Labes and 2% fainter for Danuvius Labes. The Hapke parameter maps also show a dichotomy at the opposition effect coefficients, single-scattering albedo and asymmetric factor, that may be attributed to the maturation degree of the regolith or to compositonal variation. In addition, we compared the Hapke (Hapke, B. [2008]. Icarus 195, 918-926; Hapke, B. [2012]. Theory of Reflectance and Emittance Spectroscopy, second ed. Cambridge University Press) and Hapke (Hapke, B. [1993]. Theory of Reflectance and Emittance Spectroscopy) parameters with laboratory samples and other small Solar System bodies visited by space missions.
Honda, Michitaka
2014-04-01
Several improvements were implemented in the edge method of presampled modulation transfer function measurements (MTFs). The estimation technique for edge angle was newly developed by applying an algorithm for principal components analysis. The error in the estimation was statistically confirmed to be less than 0.01 even in the presence of quantum noise. Secondly, the geometrical edge slope was approximated using a rationalized number, making it possible to obtain an oversampled edge response function (ESF) with equal intervals. Thirdly, the final MTFs were estimated using the average of multiple MTFs calculated for local areas. This averaging operation eliminates the errors caused by the rationalized approximation. Computer-simulated images were used to evaluate the accuracy of our method. The relative error between the estimated MTF and the theoretical MTF at the Nyquist frequency was less than 0.5% when the MTF was expressed as a sinc function. For MTFs representing an indirect detector and phase-contrast detector, good agreement was also observed for the estimated MTFs for each. The high accuracy of the MTF estimation was also confirmed, even for edge angles of around 10 degrees, which suggests the potential for simplification of the measurement conditions. The proposed method could be incorporated into an automated measurement technique using a software application.
Estimation of a Stopping Criterion for Geophysical Granular Flows Based on Numerical Experimentation
NASA Astrophysics Data System (ADS)
Yu, B.; Dalbey, K.; Bursik, M.; Patra, A.; Pitman, E. B.
2004-12-01
Inundation area may be the most important factor for mitigation of natural hazards related to avalanches, debris flows, landslides and pyroclastic flows. Run-out distance is the key parameter for inundation because the front deposits define the leading edge of inundation. To define the run-out distance, it is necessary to know when a flow stops. Numerical experiments are presented for determining a stopping criterion and exploring the suitability of a Savage-Hutter granular model for computing inundation areas of granular flows. The TITAN2D model was employed to run numerical experiments based on the Savage-Hutter theory. A potentially reasonable stopping criterion was found as a function of dimensionless average velocity, aspect ratio of pile, internal friction angle, bed friction angle and bed slope in the flow direction. Slumping piles on a horizontal surface and geophysical flows over complex topography were simulated. Several mountainous areas, including Colima volcano (MX), Casita (Nic.), Little Tahoma Peak (WA, USA) and the San Bernardino Mountains (CA, USA) were used to simulate geophysical flows. Volcanic block and ash flows, debris avalanches and debris flows occurred in these areas and caused varying degrees of damage. The areas have complex topography, including locally steep open slopes, sinuous channels, and combinations of these. With different topography and physical scaling, slumping piles and geophysical flows have a somewhat different dependence of dimensionless stopping velocity on power-law constants associated with aspect ratio of pile, internal friction angle, bed friction angle and bed slope in the flow direction. Visual comparison of the details of the inundation area obtained from the TITAN2D model with models that contain some form of viscous dissipation point out weaknesses in the model that are not evident by investigation of the stopping criterion alone.
Galileo Photometry of Asteroid 243 Ida
NASA Astrophysics Data System (ADS)
Helfenstein, P.; Veverka, J.; Thomas, P. C.; Simonelli, D. P.; Klaasen, K.; Johnson, T. V.; Fanale, F.; Granahan, J.; McEwen, A. S.; Belton, M.; Chapman, C.
1996-03-01
Galileo imaging observations over phase angles 19.5° to 109.8° are combined with near-opposition Earth-based data to derive the photometric properties of Ida. To first order these properties are uniform over the surface and well modeled at λ = 0.55 μm by Hapke parameters ω0= 0.22,h= 0.020,B0= 1.5,g= -0.33, and θ = 18° with corresponding geometric albedop= 0.21±0.030.01and Bond albedoAB= 0.081±0.0170.008. Ida's photometric properties are more similar to those of “average S-asteroids” (P. Helfenstein and J. Veverka 1989,Asteroids II, Univ. of Arizona Press, Tucson) than are those of 951 Gaspra. Two primary color units are identified on Ida: Terrain A exhibits a spectrum with relatively shallower 1-μm absorption and a relatively steeper red spectral slope than average Ida, while Terrain B has a deeper 1-μm absorption and a less steep red slope. The average photometric properties of Ida and Terrain A are similar while those of Terrain B differ mostly in having a slightly higher value of ω0(0.22 versus 0.21), suggesting that Terrain B consists of slightly brighter, more transparent regolith particles. Galileo observations of Ida's satellite Dactyl over phase angles 19.5° to 47.6° suggest photometric characteristics similar to those of Ida, the major difference being Dactyl's slightly lower albedo (0.20 compared to 0.21).
High-resolution DEM Effects on Geophysical Flow Models
NASA Astrophysics Data System (ADS)
Williams, M. R.; Bursik, M. I.; Stefanescu, R. E. R.; Patra, A. K.
2014-12-01
Geophysical mass flow models are numerical models that approximate pyroclastic flow events and can be used to assess the volcanic hazards certain areas may face. One such model, TITAN2D, approximates granular-flow physics based on a depth-averaged analytical model using inputs of basal and internal friction, material volume at a coordinate point, and a GIS in the form of a digital elevation model (DEM). The volume of modeled material propagates over the DEM in a way that is governed by the slope and curvature of the DEM surface and the basal and internal friction angles. Results from TITAN2D are highly dependent upon the inputs to the model. Here we focus on a single input: the DEM, which can vary in resolution. High resolution DEMs are advantageous in that they contain more surface details than lower-resolution models, presumably allowing modeled flows to propagate in a way more true to the real surface. However, very high resolution DEMs can create undesirable artifacts in the slope and curvature that corrupt flow calculations. With high-resolution DEMs becoming more widely available and preferable for use, determining the point at which high resolution data is less advantageous compared to lower resolution data becomes important. We find that in cases of high resolution, integer-valued DEMs, very high-resolution is detrimental to good model outputs when moderate-to-low (<10-15°) slope angles are involved. At these slope angles, multiple adjacent DEM cell elevation values are equal due to the need for the DEM to approximate the low slope with a limited set of integer values for elevation. The first derivative of the elevation surface thus becomes zero. In these cases, flow propagation is inhibited by these spurious zero-slope conditions. Here we present evidence for this "terracing effect" from 1) a mathematically defined simulated elevation model, to demonstrate the terracing effects of integer valued data, and 2) a real-world DEM where terracing must be addressed. We discuss the effect on the flow model output and present possible solutions for rectification of the problem.
Syed, Hasan R; Jean, Walter C
2018-03-01
There is no standard way to define the angle of the tentorium. The current trend to use the Twining line to define this angle has significant pitfalls. The goal of the current study was to provide a new and accurate way to measure the tentorial angle and demonstrate its impact on surgeries of the pineal region. A new technique (n-angle) to measure the tentorial angle was introduced using the floor of the fourth ventricle and the torcula. Comparisons with older techniques were made to illustrate reliability. Midline sagittal MR images were used to measure the tentorial angle in 240 individuals to obtain population-based data. A cohort of 8 patients who underwent either the infratentorial or the transtentorial approach to the pineal or upper vermian region were examined in search of correlations between tentorial angle and surgical approach. The data in this study showed that the Twining line technique understates the tentorial angle in people with low-lying torcula. The n-angle is more reliable in reflecting the true steepness of the tentorium regardless of torcula position. On average, men have slightly steeper tentoriums. In the clinical cohort, all patients who underwent infratentorial surgery had tentorial angles <55°, whereas the majority of patients who underwent transtentorial surgeries had angles >67°. The n-angle provides a reliable and accurate way to describe the slope of the tentorium. The population-based average of 60° may be a useful measurement to influence the choice of surgical approach, either under or through the tentorium, to the pineal region. Copyright © 2017 Elsevier Inc. All rights reserved.
Bates, Nathaniel A; Nesbitt, Rebecca J; Shearn, Jason T; Myer, Gregory D; Hewett, Timothy E
2016-07-01
Tibial slope angle is a nonmodifiable risk factor for anterior cruciate ligament (ACL) injury. However, the mechanical role of varying tibial slopes during athletic tasks has yet to be clinically quantified. To examine the influence of posterior tibial slope on knee joint loading during controlled, in vitro simulation of the knee joint articulations during athletic tasks. Descriptive laboratory study. A 6 degree of freedom robotic manipulator positionally maneuvered cadaveric knee joints from 12 unique specimens with varying tibial slopes (range, -7.7° to 7.7°) through drop vertical jump and sidestep cutting tasks that were derived from 3-dimensional in vivo motion recordings. Internal knee joint torques and forces were recorded throughout simulation and were linearly correlated with tibial slope. The mean (±SD) posterior tibial slope angle was 2.2° ± 4.3° in the lateral compartment and 2.3° ± 3.3° in the medial compartment. For simulated drop vertical jumps, lateral compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee adduction (r = 0.60-0.65), flexion (r = 0.64-0.66), lateral (r = 0.57-0.69), and external rotation torques (r = 0.47-0.72) as well as inverse correlations with peak abduction (r = -0.42 to -0.61) and internal rotation torques (r = -0.39 to -0.79). Only frontal plane torques were correlated during sidestep cutting simulations. For simulated drop vertical jumps, medial compartment tibial slope angle expressed moderate, direct correlations with peak internally generated knee flexion torque (r = 0.64-0.69) and lateral knee force (r = 0.55-0.74) as well as inverse correlations with peak external torque (r = -0.34 to -0.67) and medial knee force (r = -0.58 to -0.59). These moderate correlations were also present during simulated sidestep cutting. The investigation supported the theory that increased posterior tibial slope would lead to greater magnitude knee joint moments, specifically, internally generated knee adduction and flexion torques. The knee torques that positively correlated with increased tibial slope angle in this investigation are associated with heightened risk of ACL injury. Therefore, the present data indicated that a higher posterior tibial slope is correlated to increased knee loads that are associated with heightened risk of ACL injury. © 2016 The Author(s).
Booth, J.S.; Sangrey, D.A.; Fugate, J.K.
1985-01-01
This nomogram was designed to aid in interpreting the causes of mass movement in modern and ancient settings, to provide a basis for evaluating and predicting slope stability under given conditions and to further the understanding of the relationships among the several key factors that control slope stability. Design of the nomogram is based on effective stress and combines consolidation theory as applicable to depositional environments with the infinite-slope model of slope-stability analysis. If infinite-slope conditions are assumed to exist, the effective overburden stress can be used to derive a factor of safety against static slope failure by using the angle of internal friction and the slope angle. -from Authors
Historic bluff retreat and stabilization at Flag Harbor, Chesapeake Bay, Maryland
Clark, Inga; Larsen, Curtis E.; McRae, Michele
2002-01-01
Studies of bluff erosion and slope stability along the western shore of Chesapeake Bay suggest relative evolution from steep, eroding coastal bluffs to stable slopes at angles of repose ca. 35 degrees over decades. Because of the dating methods in those studies, it was impossible to precisely define rates of change. The present study provides historic age control. A pair of small harbor structures were constructed in the early 1950's at Chesapeake Beach, MD to maintain a dredged channel to a small marina occupying a ravine in the Calvert Cliffs. Prior to construction, this section of shoreline was comprised of eroding steep bluffs cut into Miocene-age sediments. Downdrift erosion is now apparent south of the structures as is updrift deposition behind the northern jetty. Since construction the updrift sand body has prograded northward and progressively deposited protective beaches along the toes of the bluffs. Former eroding bluffs nearest the harbor are now stable, vegetated slopes at angles near 35 degrees. Slope angles widen to the north and to the northern limit of the sand body. Beyond this are eroding bluffs standing at angles of 70-80 degrees. The relative time required for eroding bluffs to reach stability is estimated by interpolating the distance and time for the sand body to prograde northward since harbor construction. We measured slope angles at intervals northward from the updrift structure for a distance of 2000 feet. A least squares regression of slope angle vs distance showed progressive decrease in angle from north to south. Actively eroding 70-80 degree bluffs gave way to vegetated, but slumping slopes, and finally to stable 35-degree slopes at the harbor. A relationship between time and distance along the shore allowed us to estimate a stabilization time for this location of 35-40 years. The shortness of this time scale allows us to suggest that attempts to artificially stabilize eroding bluffs along this coast is not a simple task of protecting the toes of slopes from wave action. Once shoreline retreat ends, sloughing of sediment from bluff faces gives way to longer-term landslide processes. The bluff top recedes until a stable 35-degree slope is attained. Thus, simple shoreline protection methods may not preserve property at the bluff edge.
NASA Astrophysics Data System (ADS)
Loye, A.; Jaboyedoff, M.; Pedrazzini, A.
2009-10-01
The availability of high resolution Digital Elevation Models (DEM) at a regional scale enables the analysis of topography with high levels of detail. Hence, a DEM-based geomorphometric approach becomes more accurate for detecting potential rockfall sources. Potential rockfall source areas are identified according to the slope angle distribution deduced from high resolution DEM crossed with other information extracted from geological and topographic maps in GIS format. The slope angle distribution can be decomposed in several Gaussian distributions that can be considered as characteristic of morphological units: rock cliffs, steep slopes, footslopes and plains. A terrain is considered as potential rockfall sources when their slope angles lie over an angle threshold, which is defined where the Gaussian distribution of the morphological unit "Rock cliffs" become dominant over the one of "Steep slopes". In addition to this analysis, the cliff outcrops indicated by the topographic maps were added. They contain however "flat areas", so that only the slope angles values above the mode of the Gaussian distribution of the morphological unit "Steep slopes" were considered. An application of this method is presented over the entire Canton of Vaud (3200 km2), Switzerland. The results were compared with rockfall sources observed on the field and orthophotos analysis in order to validate the method. Finally, the influence of the cell size of the DEM is inspected by applying the methodology over six different DEM resolutions.
Luximon, Yan; Cong, Yan; Luximon, Ameersing; Zhang, Ming
2015-06-01
High-heeled shoes are associated with instability and a high risk of fall, fracture, and ankle sprain. This study investigated the effects of heel base size (HBS) on walking stability under different walking speeds and slope angles. The trajectory of the center of pressure (COP), maximal peak pressure, pressure time integral, contact area, and perceived stability were analyzed. The results revealed that a small HBS increased the COP deviations, shifting the COP more medially at the beginning of the gait cycle. The slope angle mainly affected the COP in the anteroposterior direction. An increased slope angle shifted the COP posterior and caused greater pressure and a larger contact area in the midfoot and rearfoot regions, which can provide more support. Subjective measures on perceived stability were consistent with objective measures. The results suggested that high-heeled shoes with a small HBS did not provide stable plantar support, particularly on a small slope angle. The changes in the COP and pressure pattern caused by a small HBS might increase joint torque and muscle activity and induce lower limb problems. Copyright © 2015 Elsevier B.V. All rights reserved.
Qian, Bang-Ping; Jiang, Jun; Qiu, Yong; Wang, Bin; Yu, Yang; Zhu, Ze-Zhang
2014-11-19
Pelvic retroversion is one of the mechanisms for regulating sagittal balance in patients with a kyphotic deformity. This retroversion is limited by hip extension, which prevents the pelvis from becoming excessively retroverted, achieving a sacral slope of <0°. However, a negative sacral slope can be found in some patients with ankylosing spondylitis with thoracolumbar kyphosis. The purpose of this study was to analyze this finding. We performed a retrospective review of 106 consecutive Chinese Han patients with ankylosing spondylitis with thoracolumbar kyphosis treated at our center from October 2005 to October 2012. Forty-one patients in whom the upper third of the femur was clearly visualized on lateral radiographs were analyzed. Seventeen had a sacral slope of <0° (group A) and twenty-four had a sacral slope of ≥0° (group B). Eight sagittal parameters were measured and compared between the two groups. Correlations among sacral slope, the femoral obliquity angle, and the other sagittal parameters were analyzed. Mean global kyphosis, lumbar lordosis, pelvic tilt, the sagittal vertical axis, and the femoral obliquity angle were significantly larger in group A than in group B, whereas mean pelvic incidence and sacral slope were significantly smaller in group A (p < 0.05 for all). Global kyphosis, lumbar lordosis, pelvic tilt, and the sagittal vertical axis were significantly negatively associated with sacral slope but positively associated with the femoral obliquity angle, whereas pelvic incidence was significantly positively associated with sacral slope but negatively associated with the femoral obliquity angle (p < 0.05 for all). The femoral obliquity angle was significantly negatively associated with sacral slope (p < 0.05). Negative sacral slope does exist in Chinese Han patients with ankylosing spondylitis with thoracolumbar kyphosis. This appears to be caused by severe kyphosis, an initially small sacral slope, and pronounced tilting of the femoral shaft as a result of knee flexion, resulting in the pelvis becoming further retroverted. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.
Debris-flow runout predictions based on the average channel slope (ACS)
Prochaska, A.B.; Santi, P.M.; Higgins, J.D.; Cannon, S.H.
2008-01-01
Prediction of the runout distance of a debris flow is an important element in the delineation of potentially hazardous areas on alluvial fans and for the siting of mitigation structures. Existing runout estimation methods rely on input parameters that are often difficult to estimate, including volume, velocity, and frictional factors. In order to provide a simple method for preliminary estimates of debris-flow runout distances, we developed a model that provides runout predictions based on the average channel slope (ACS model) for non-volcanic debris flows that emanate from confined channels and deposit on well-defined alluvial fans. This model was developed from 20 debris-flow events in the western United States and British Columbia. Based on a runout estimation method developed for snow avalanches, this model predicts debris-flow runout as an angle of reach from a fixed point in the drainage channel to the end of the runout zone. The best fixed point was found to be the mid-point elevation of the drainage channel, measured from the apex of the alluvial fan to the top of the drainage basin. Predicted runout lengths were more consistent than those obtained from existing angle-of-reach estimation methods. Results of the model compared well with those of laboratory flume tests performed using the same range of channel slopes. The robustness of this model was tested by applying it to three debris-flow events not used in its development: predicted runout ranged from 82 to 131% of the actual runout for these three events. Prediction interval multipliers were also developed so that the user may calculate predicted runout within specified confidence limits. ?? 2008 Elsevier B.V. All rights reserved.
Herzog, Martha; Larsen, Curtis E.; McRae, Michele
2002-01-01
Despite a long history of geomorphic studies, it is difficult to ascertain the time required for slopes to change from near vertical exposures to relatively stable slopes due to inadequate age control. Actively eroding coastal bluffs along the western shore of the Chesapeake Bay provide a key for understanding the centennial-scale development of stable slopes from eroding bluff faces. The Calvert Cliffs are composed of sandy silts, silty sands, and clayey silts of Miocene-age. Active wave erosion at the bluff toes encourages rapid sloughing from bluff faces and maintains slope angles of 70-80 degrees and relatively constant bluff-retreat rates. Naturally stabilized slopes are preserved as a fossil bluff line inland from a prograding cuspate foreland at Cove Point. The foreland is migrating southward at a rate of ca. 1.5 m/yr. As it moves south, it progressively protects bluffs from wave action as new beaches are deposited at their toes. Wave erosion is reinitiated at the northern end of the complex as the landform passes. An incremental record of slope change is preserved along the fossil bluff line. 14C dating of swales between beach ridges shows the complex to span 1700 years of progressive migration history. We hypothesized that slopes would change from steep, eroding faces to low-angle slopes covered with vegetation and sought to document the rate of change. Our team measured slope angles at intervals along the fossil bluff line and dated profiles by interpolating 14C ages of adjacent beach ridges. There was no progressive decrease in slope with age. All slopes along the fossil bluff line were 30-40 degrees with a mean of 35 degrees. Constancy in slope angle suggests that steep, actively eroding bluffs were quickly changed to stable slopes by landslides and slumping once they were protected. Given the accuracy of our age control, we conclude that the time required to attain a stable slope under natural processes is less than one century. This indicates that once toe erosion is ended (naturally or through engineering) slopes are reduced to 35-degrees over a period of decades and not centuries.
Total N exports from once vs. repeatedly burnt Pine plantations
NASA Astrophysics Data System (ADS)
Gonzalez Pelayo, Oscar; Hosseini, Mohammadreza; Varandas, Daniela; Machado, Ana Isabel; Prats Alegre, Sergio; Coelho, Celeste O. A.; Geissen, Violette; Ritsema, Coen; Keizer, Jan Jacob
2014-05-01
Post-fire nutrient losses in Mediterranean forested areas have been suggested as a key driver for ecosystem degradation. The role of fire recurrence in soil nutrient depletion, however, has been poorly studied. The EU-funded CASCADE project addresses this research gap in the study case in Portugal, having as overarching aim to assess if repeated wildfires lead to land degradation in Maritime Pine stands through a gradual process or, instead, through tipping-points in plant-water-soil relationships. Following a large wildfire in September 2012 affecting more than 3000 ha in the municipality of Viseu (central Portugal), total N losses are being monitored in three zones: 4x burnt since 1975; 1x burnt since 197, i.e. in 2012); unburnt since 1975. Within each zone, three replicate slopes were selected with similar slope angles and expositions and, at each slope, three pairs of erosion plots of approximately 0.25 m2 were installed on the lower, middle and lower slope section. Additionally, a catchment outlet within the 4x burned zones was equipped with a gauging station for automatic recording of water level sensor and tubidity and for collecting stream flow samples using an automatic sampler. Preliminary results from the first 6 months after the 2012-wildfire suggested that total N losses were, on average, twice as high at the 4x times burned slopes than at the 1x burned slopes. Nonetheless, temporal patterns in average losses during these initial six months were similar for the two zones. By contrast, the results obtained during the subsequent spring and summer seasons suggested that average total N losses from the 1x burned slopes closely approximated those from the 4x burned slopes. At the unburned slopes, total N losses were very small and limited to few rainfall events. Interestingly, at the catchment outlet the total N values were 66% higher compared to the 4x times burned microplots, highlighting the importance of up-scaling effects in terms of nutrient losses. Preliminary results on total N losses during the first post-fire year showed that nutrient depletion can be triggered by increasing the fire regime. The up-scaling effect suggested an increase in nutrient exportations from micro-plot to catchment scale. These results are being further investigated to establish the relationships between soil fertility losses and fire recurrence.
Turbulent properties under sloping Ice-wall in polar water
NASA Astrophysics Data System (ADS)
Mondal, Mainak; Gayen, Bishakhdatta; Griffiths, Ross W.; Kerr, Ross C.
2017-11-01
Ice-shelves around West Antarctic basins are the most vulnerable to melting in the presence of warmer continental shelf water. A large extent of slope exists under these ice-shelves, where turbulent transport of salt and heat into the ice wall drives a convective melt-water plume against it. Large scale ice-ocean models neglect the effect of convection which can lead to a wrong estimation of melt rate. We perform direct numerical simulations under sloping ice-shelves with realistic ambient conditions. We estimated the melt rates, boundary layer thicknesses and entrainment coefficients as a function of slope angle. The numerical results are further supported by theoretical predictions. Over the range of slope angles, different mechanisms are active for sustaining turbulence. For near vertical case, buoyancy production is the primary source of turbulent kinetic energy whereas for shallower angles turbulence is produced by velocity shear in the meltwater plume. Australian Research Council.
NASA Technical Reports Server (NTRS)
Sullivan, R. J.
1992-01-01
Back-analysis (reconstruction) of the stability of thirty avalanche chutes was performed in the very limited areas where high resolution imaging overlapped with available 1:500 K topographic map coverage. A new technique was developed to incorporate the third dimension (width) of an avalanche chute in stability back-analysis in order to yield unambiguous values of cohesion and angle of internal friction. The procedure is based upon extending the ordinary method of slices to three dimensions, in order to construct avalanche chute cross-sections whose widths and depths vary as a function of gradient, gravity, density of material, and phi and c. Applying the technique to the well documented slide at Lodalen, Norway as a test produces excellent correspondence with reality. Generally, the technique reveals that the width:depth ratio of any avalanche chute decreases with increasing contrast between the average slope angle and the angle of internal friction. Applying this technique to the martian avalanche chute yields results consistent with indications from earlier work, but with greater certainty. Values of cohesion and angle of internal friction identify the materials at the time of failure as moderately cohesive debris. If Sharp's identification of these features as avalanche chutes is correct, then the results here imply that weathering processes have had a significant effect to depths of tens of meters (where failure has occured) below the martian surface. It is also implied that on relatively steep slopes within Valles Marineris, sizable, unaltered, unmantled bedrock exposures for high resolution spectral and spatial scanning by Mars Observer may be scarce.
Dry granular avalanche impact force on a rigid wall of semi-infinite height
NASA Astrophysics Data System (ADS)
Albaba, Adel; Lambert, Stéphane; Faug, Thierry
2017-06-01
The present paper tackles the problem of the impact of a dry granular avalanche-flow on a rigid wall of semi-infinite height. An analytic force model based on depth-averaged shock theory is proposed to describe the flow-wall interaction and the resulting impact force on the wall. Provided that the analytic force model is fed with the incoming flow conditions regarding thickness, velocity and density, all averaged over a certain distance downstream of the undisturbed incoming flow, it reproduces very well the time history of the impact force actually measured by detailed discrete element simulations, for a wide range of slope angles.
Alobaidy, Mohammad A; Soames, Roger W
2016-01-01
Understanding the geometry of the coracoid and coracoacromial arch will improve surgical intervention in shoulder surgery. Thirty pairs of scapulae from 20 female and 10 male deceased donors, average age of 82 years (range, 62-101 years), were scanned and measurements taken using the 3-dimensional (3D) MicroScribe digitizer (Immersion Corp, San Jose CA, USA) and Rhino software (McNeel North America, Seattle, WA, USA). The following mean angles were determined: coracoid slope, 44° ± 11°; coracoid deviation, 35° ± 6°; coracoid root to glenoid, 115° ± 14°; coracoid head to glenoid, 110° ± 11°; scapular spine angle, 35° ± 6°; and coracoacromial angle, 63° ± 9°. The following mean distances were also determined: coracoid height, 10 ± 3 mm; coracoacromial distance, 42 ± 7 mm; coracoacromial arch height, 20 ± 5 mm; and coracoid (anterior, 29 ± 6 mm; middle, 20 ± 4 mm; posterior tip, 18 ± 6 mm) to the glenoid fossa. The coracoid root-to-glenoid angle was significantly correlated with the coracoacromial angle. In addition, coracoid slope was significantly correlated with coracoid root-to-glenoid angle and also with coracoid deviation. Left shoulders had a significantly higher coracoid-to-glenoid angle (P < .029) than right shoulders. Women had a significantly higher coracoid root-to-glenoid angle than men (P < .042), and men had a significantly higher coracoid deviation (P < .011), anterior (P < .006) and posterior coracoid-to-glenoid distances (P < .03), and coracoacromial arch height (P < .07) than women. This is the first time that the 3D MicroScribe digitizer has been used to evaluate the geometry of the coracoacromial arch and coracoid process. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
The angle of shoulder slope in normal males as a factor in shoulder-harness design.
DOT National Transportation Integrated Search
1965-03-01
In order to establish criteria for more comfortable shoulder-harness design, this study was conducted to determine the angle of slope of the top of the shoulders where poorly fitting shoulder harness may produce discomfort and, occasionally, function...
Mapping Shallow Landslide Slope Inestability at Large Scales Using Remote Sensing and GIS
NASA Astrophysics Data System (ADS)
Avalon Cullen, C.; Kashuk, S.; Temimi, M.; Suhili, R.; Khanbilvardi, R.
2015-12-01
Rainfall induced landslides are one of the most frequent hazards on slanted terrains. They lead to great economic losses and fatalities worldwide. Most factors inducing shallow landslides are local and can only be mapped with high levels of uncertainty at larger scales. This work presents an attempt to determine slope instability at large scales. Buffer and threshold techniques are used to downscale areas and minimize uncertainties. Four static parameters (slope angle, soil type, land cover and elevation) for 261 shallow rainfall-induced landslides in the continental United States are examined. ASTER GDEM is used as bases for topographical characterization of slope and buffer analysis. Slope angle threshold assessment at the 50, 75, 95, 98, and 99 percentiles is tested locally. Further analysis of each threshold in relation to other parameters is investigated in a logistic regression environment for the continental U.S. It is determined that lower than 95-percentile thresholds under-estimate slope angles. Best regression fit can be achieved when utilizing the 99-threshold slope angle. This model predicts the highest number of cases correctly at 87.0% accuracy. A one-unit rise in the 99-threshold range increases landslide likelihood by 11.8%. The logistic regression model is carried over to ArcGIS where all variables are processed based on their corresponding coefficients. A regional slope instability map for the continental United States is created and analyzed against the available landslide records and their spatial distributions. It is expected that future inclusion of dynamic parameters like precipitation and other proxies like soil moisture into the model will further improve accuracy.
Monitoring of unstable slopes by MEMS tilting sensors and its application to early warning
NASA Astrophysics Data System (ADS)
Towhata, I.; Uchimura, T.; Seko, I.; Wang, L.
2015-09-01
The present paper addresses the newly developed early warning technology that can help mitigate the slope failure disasters during heavy rains. Many studies have been carried out in the recent times on early warning that is based on rainfall records. Although those rainfall criteria of slope failure tells the probability of disaster on a regional scale, it is difficult for them to judge the risk of particular slopes. This is because the rainfall intensity is spatially too variable to forecast and the early warning based on rainfall alone cannot take into account the effects of local geology, hydrology and topography that vary spatially as well. In this regard, the authors developed an alternative technology in which the slope displacement/deformation is monitored and early warning is issued when a new criterion is satisfied. The new MEMS-based sensor monitors the tilting angle of an instrument that is embedded at a very shallow depth and the record of the tilting angle corresponds to the lateral displacement at the slope surface. Thus, the rate of tilting angle that exceeds a new criterion value implies an imminent slope failure. This technology has been validated against several events of slope failures as well as against a field rainfall test. Those validations have made it possible to determine the criterion value of the rate of tilting angle to be 0.1 degree/hour. The advantage of the MEMS tilting sensor lies in its low cost. Hence, it is possible to install many low-cost sensors over a suspected slope in which the precise range of what is going to fall down during the next rainfall is unknown. In addition to the past validations, this paper also introduces a recent application to a failed slope in the Izu Oshima Island where a heavy rainfall-induced slope failure occurred in October, 2013.
NASA Astrophysics Data System (ADS)
Fornasier, S.; Hasselmann, P. H.; Barucci, M. A.; Feller, C.; Besse, S.; Leyrat, C.; Lara, L.; Gutierrez, P. J.; Oklay, N.; Tubiana, C.; Scholten, F.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; A'Hearn, M. F.; Bertaux, J.-L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Fulle, M.; Groussin, O.; Güttler, C.; Hviid, S. F.; Ip, W.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, R.; Kührt, E.; Küppers, M.; La Forgia, F.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Matz, K.-D.; Michalik, H.; Moreno, F.; Mottola, S.; Naletto, G.; Pajola, M.; Pommerol, A.; Preusker, F.; Shi, X.; Snodgrass, C.; Thomas, N.; Vincent, J.-B.
2015-11-01
Context. The Rosetta mission of the European Space Agency has been orbiting the comet 67P/Churyumov-Gerasimenko (67P) since August 2014 and is now in its escort phase. A large complement of scientific experiments designed to complete the most detailed study of a comet ever attempted are onboard Rosetta. Aims: We present results for the photometric and spectrophotometric properties of the nucleus of 67P derived from the OSIRIS imaging system, which consists of a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). The observations presented here were performed during July and the beginning of August 2014, during the approach phase, when OSIRIS was mapping the surface of the comet with several filters at different phase angles (1.3°-54°). The resolution reached up to 2.1 m/px. Methods: The OSIRIS images were processed with the OSIRIS standard pipeline, then converted into I/F radiance factors and corrected for the illumination conditions at each pixel using the Lommel-Seeliger disk law. Color cubes of the surface were produced by stacking registered and illumination-corrected images. Furthermore, photometric analysis was performed both on disk-averaged photometry in several filters and on disk-resolved images acquired with the NAC orange filter, centered at 649 nm, using Hapke modeling. Results: The disk-averaged phase function of the nucleus of 67P shows a strong opposition surge with a G parameter value of -0.13 ± 0.01 in the HG system formalism and an absolute magnitude Hv(1,1,0) = 15.74 ± 0.02 mag. The integrated spectrophotometry in 20 filters covering the 250-1000 nm wavelength range shows a red spectral behavior, without clear absorption bands except for a potential absorption centered at ~290 nm that is possibly due to SO2 ice. The nucleus shows strong phase reddening, with disk-averaged spectral slopes increasing from 11%/(100 nm) to 16%/(100 nm) in the 1.3°-54° phase angle range. The geometric albedo of the comet is 6.5 ± 0.2% at 649 nm, with local variations of up to ~16% in the Hapi region. From the disk-resolved images we computed the spectral slope together with local spectrophotometry and identified three distinct groups of regions (blue, moderately red, and red). The Hapi region is the brightest, the bluest in term of spectral slope, and the most active surface on the comet. Local spectrophotometry shows an enhancement of the flux in the 700-750 nm that is associated with coma emissions. Table 1 is available in electronic form at http://www.aanda.org
Comparison and correlation of pelvic parameters between low-grade and high-grade spondylolisthesis.
Min, Woo-Kie; Lee, Chang-Hwa
2014-05-01
This study was retrospectively conducted on 51 patients with L5-S1 spondylolisthesis. This study was conducted to compare a total of 11 pelvic parameters, such as the level of displacement by Meyerding method, lumbar lordosis, sacral inclination, lumbosacral angle, slip angle, S2 inclination, pelvic incidence (PI), L5 inclination, L5 slope, pelvic tilt (PT), and sacral slope (SS) between low-grade and high-grade spondylolisthesis, and to investigate a correlation of the level of displacement by Meyerding method with other pelvic parameters. Pelvic parameters were measured using preoperational erect lateral spinal simple radiographs. The patients were divided into 39 patients with low-grade spondylolisthesis and 12 patients with high-grade spondylolisthesis before analysis. In all patients of both groups, 11 radiographic measurements including the level of displacement by Meyerding method, lumbar lordosis, sacral inclination, lumbosacral angle, slip angle, S2 inclination, PI, L5 inclination, L5 slope, PT, and SS were performed. T test and Pearson correlation analysis were conducted to compare and analyze each measurement. As for the comparison between the 2 groups, a statistically great significance in the level of displacement by Meyerding method, lumbosacral angle, slip angle, L5 incidence, PI, and L5 slope (P≤0.001) was shown. Meanwhile, a statistical significance in the sacral inclination and PT (P<0.05) was also shown. However, no statistical significance in the S2 incidence and SS was shown. A correlation of the level of displacement by Meyerding method with each parameter was analyzed in the both the groups. A high correlation was observed in the lumbar lordosis, lumbosacral angle, slip angle, L5 incidence, and L5 slope (Pearson correlation coefficient, P=0.01), as well as the sacral inclination, PI, and PT (Pearson correlation coefficient, P=0.05). Meanwhile, no correlation was shown in the S2 incidence and SS. A significant difference in the lumbosacral angle, slip angle, L5 incidence, PI, L5 slope, sacral inclination, and PT was shown between the patients with high-grade spondylolisthesis and patients with low-grade spondylolisthesis. Among the aforementioned measurements, the PI showed a significant difference between the 2 groups and also had a significant correlation with the dislocation level in all the patients.
Gallagher, Kaitlin M; Callaghan, Jack P
2016-09-01
While alternating standing position on a sloped surface has proven successful at reducing low back pain during standing, the purpose of this study was to evaluate standing solely on a declining surface to isolate the influence of the postural change. Seventeen participants performed two 75-min prolonged standing occupational simulations- level ground and declining surface. Fifty-three percent of participants (9/17) were categorized as pain developers during the level ground standing condition. For these same pain developers, their average maximum pain scores were 58% lower during sloped standing. All participants showed greater hip flexion, trunk-to-thigh angle flexion, and posterior translation of the trunk center of gravity when standing on the sloped surface. These postural changes could cause the muscles crossing the hip posteriorly to increase passive stiffness and assist with stabilizing the pelvis. This study stresses the importance of hip kinematics, not just lumbar spine posture, in reducing prolonged standing induced low back pain. Copyright © 2016 Elsevier Ltd. All rights reserved.
Europan double ridge morphometry as a test of formation models
NASA Astrophysics Data System (ADS)
Dameron, Ashley C.; Burr, Devon M.
2018-05-01
Double ridges on the Jovian satellite Europa consist of two parallel ridges with a central trough. Although these features are nearly ubiquitous on Europa, their formation mechanism(s) is (are) not yet well-understood. Previous hypotheses for their formation can be divided into two groups based on 1) the expected interior slope angles and 2) the magnitude of interior/exterior slope symmetry. The published hypotheses in the first ("fracture") group entail brittle deformation of the crust, either by diapirism, shear heating, or buckling due to compression. Because these mechanisms imply uplift of near-vertical fractures, their predicted interior slopes are steeper than the angle of repose (AOR) with shallower exterior slopes. The second ("flow") group includes cryosedimentary and cryovolcanic processes - explosive or effusive cryovolcanism and tidal squeezing -, which are predicted to form ridge slopes at or below the AOR. Explosive cryovolcanism would form self-symmetric ridges, whereas effusive cryolavas and cryo-sediments deposited during tidal squeezing would likely not exhibit slope symmetry. To distinguish between these two groups of hypothesized formation mechanisms, we derived measurements of interior slope angle and interior/exterior slope symmetry at multiple locations on Europa through analysis of data from the Galileo Solid State Imaging (SSI) camera. Two types of data were used: i) elevation data from five stereo-pair digital elevation models (DEMs) covering four ridges (580 individual measurements), and ii) ridge shadow length measurements taken on individual images over 40 ridges (200 individual measurements). Our results shows that slopes measured on our DEMs, located in the Cilix and Banded Plains regions, typically fall below the AOR, and slope symmetry is dominant. Two different shadow measurement techniques implemented to calculate interior slopes yielded slope angles that also fall below the AOR. The shallow interior slopes derived from both techniques weigh against brittle deformation mechanisms. Although shallow slopes could result from degradation, interior/exterior ridge symmetry weighs against ridge degradation as the sole reason for shallow interior slopes. Thus, our results suggest that, for the double ridges analyzed in this work, cryovolcanic or cryosedimentary formation is more likely than brittle deformation, and of those formation mechanisms, explosive cryovolcanism is the double ridge formation mechanism best supported on the basis of interior-exterior slope symmetry.
NASA Astrophysics Data System (ADS)
Sulpizio, R.; Castioni, D.; Rodriguez-Sedano, L. A.; Sarocchi, D.; Lucchi, F.
2016-11-01
Laboratory experiments on granular flows using natural material were carried out in order to investigate the behaviour of granular flows passing over a break in slope. Sensors in the depositional area recorded the flow kinematics, while video footage permitted reconstruction of the deposit formation, which allowed investigation of the deposit shape as a function of the change in slope. We defined the slope-angle ratio as the proportion between slope angle in the depositional area and that of the channel. When the granular flow encounters the break in slope part of the flow front forms a bouncing clast zone due to elastic impact with the expansion box floor. During this process, part of the kinetic energy of the dense granular flow is transferred to elutriating fine ash, which subsequently forms turbulent ash cloud accompanying the granular flow until it comes to rest. Morphometric analysis of the deposits shows that they are all elliptical, with an almost constant minor axis and a variable major axis. The almost constant value of the minor axis relates to the spreading angle of flow at the end of the channel, which resembles the basal friction angle of the material. The variation of the major axis is interpreted to relate to the effect of competing inertial and frictional forces. This effect also reflects the partitioning of centripetal and tangential velocities, which changes as the flow passes over the break in slope. After normalization, morphometric data provided empirical relationships that highlight the dependence of runout from the product of slope-angle ratio and the difference in height between granular material release and deposit. The empirical relationships were tested against the runouts of hot avalanches formed during the 1944 ad eruption at Vesuvius, with differences among actual and calculated values are between 1.7 and 15 %. Velocity measurements of laboratory granular flows record deceleration paths at different breaks in slope. When normalized, the velocity data show third-order polynomial fit, highlighting a complex behaviour involving interplay between inertial and frictional forces. The theoretical velocity decays were tested against the data published for volcaniclastic debris flows of the 5-6 May 1998 event in the Sarno area. The comparison is very good for non-channelized debris flows, with significant differences between actual and calculated velocities for the channelized debris flows.
Static friction between rigid fractal surfaces
NASA Astrophysics Data System (ADS)
Alonso-Marroquin, Fernando; Huang, Pengyu; Hanaor, Dorian A. H.; Flores-Johnson, E. A.; Proust, Gwénaëlle; Gan, Yixiang; Shen, Luming
2015-09-01
Using spheropolygon-based simulations and contact slope analysis, we investigate the effects of surface topography and atomic scale friction on the macroscopically observed friction between rigid blocks with fractal surface structures. From our mathematical derivation, the angle of macroscopic friction is the result of the sum of the angle of atomic friction and the slope angle between the contact surfaces. The latter is obtained from the determination of all possible contact slopes between the two surface profiles through an alternative signature function. Our theory is validated through numerical simulations of spheropolygons with fractal Koch surfaces and is applied to the description of frictional properties of Weierstrass-Mandelbrot surfaces. The agreement between simulations and theory suggests that for interpreting macroscopic frictional behavior, the descriptors of surface morphology should be defined from the signature function rather than from the slopes of the contacting surfaces.
Terrain-analysis procedures for modeling radar backscatter
Schaber, Gerald G.; Pike, Richard J.; Berlin, Graydon Lennis
1978-01-01
The collection and analysis of detailed information on the surface of natural terrain are important aspects of radar-backscattering modeling. Radar is especially sensitive to surface-relief changes in the millimeter- to-decimeter scale four conventional K-band (~1-cm wavelength) to L-band (~25-cm wavelength) radar systems. Surface roughness statistics that characterize these changes in detail have been generated by a comprehensive set of seven programmed calculations for radar-backscatter modeling from sets of field measurements. The seven programs are 1) formatting of data in readable form for subsequent topographic analysis program; 2) relief analysis; 3) power spectral analysis; 4) power spectrum plots; 5) slope angle between slope reversals; 6) slope angle against slope interval plots; and 7) base length slope angle and curvature. This complete Fortran IV software package, 'Terrain Analysis', is here presented for the first time. It was originally developed a decade ago for investigations of lunar morphology and surface trafficability for the Apollo Lunar Roving Vehicle.
[Analysis of related factors of slope plant hyperspectral remote sensing].
Sun, Wei-Qi; Zhao, Yun-Sheng; Tu, Lin-Ling
2014-09-01
In the present paper, the slope gradient, aspect, detection zenith angle and plant types were analyzed. In order to strengthen the theoretical discussion, the research was under laboratory condition, and modeled uniform slope for slope plant. Through experiments we found that these factors indeed have influence on plant hyperspectral remote sensing. When choosing slope gradient as the variate, the blade reflection first increases and then decreases as the slope gradient changes from 0° to 36°; When keeping other factors constant, and only detection zenith angle increasing from 0° to 60°, the spectral characteristic of slope plants do not change significantly in visible light band, but decreases gradually in near infrared band; With only slope aspect changing, when the dome meets the light direction, the blade reflectance gets maximum, and when the dome meets the backlit direction, the blade reflectance gets minimum, furthermore, setting the line of vertical intersection of incidence plane and the dome as an axis, the reflectance on the axis's both sides shows symmetric distribution; In addition, spectral curves of different plant types have a lot differences between each other, which means that the plant types also affect hyperspectral remote sensing results of slope plants. This research breaks through the limitations of the traditional vertical remote sensing data collection and uses the multi-angle and hyperspectral information to analyze spectral characteristics of slope plants. So this research has theoretical significance to the development of quantitative remote sensing, and has application value to the plant remote sensing monitoring.
The study on length and diameter ratio of nail as preliminary design for slope stabilization
NASA Astrophysics Data System (ADS)
Gunawan, Indra; Silmi Surjandari, Niken; Muslih Purwana, Yusep
2017-11-01
Soil nailing technology has been widely applied in practice for reinforced slope. The number of studies for the effective design of nail-reinforced slopes has also increased. However, most of the previous study was focused on a safety factor of the slope; the ratio of length and diameter itself has likely never been studied before. The aim of this study is to relate the length and diameter ratio of the nail with the safety factor of the 20 m height of sand slope in the various angle of friction and steepness of the slope. Simplified Bishop method was utilized to analyze the safety factor of the slope. This study is using data simulation to calculate the safety factor of the slope with soil nailing reinforcement. The results indicate that safety factor of slope stability increases with the increase of length and diameter ratio of the nail. At any angle of friction and steepness of the slope, certain effective length and diameter ratio was obtain. These results may be considered as a preliminary design for slope stabilization.
Quasi-analytical treatment of spatially averaged radiation transfer in complex terrain
NASA Astrophysics Data System (ADS)
LöWe, H.; Helbig, N.
2012-10-01
We provide a new quasi-analytical method to compute the subgrid topographic influences on the shortwave radiation fluxes and the effective albedo in complex terrain as required for large-scale meteorological, land surface, or climate models. We investigate radiative transfer in complex terrain via the radiosity equation on isotropic Gaussian random fields. Under controlled approximations we derive expressions for domain-averaged fluxes of direct, diffuse, and terrain radiation and the sky view factor. Domain-averaged quantities can be related to a type of level-crossing probability of the random field, which is approximated by long-standing results developed for acoustic scattering at ocean boundaries. This allows us to express all nonlocal horizon effects in terms of a local terrain parameter, namely, the mean-square slope. Emerging integrals are computed numerically, and fit formulas are given for practical purposes. As an implication of our approach, we provide an expression for the effective albedo of complex terrain in terms of the Sun elevation angle, mean-square slope, the area-averaged surface albedo, and the ratio of atmospheric direct beam to diffuse radiation. For demonstration we compute the decrease of the effective albedo relative to the area-averaged albedo in Switzerland for idealized snow-covered and clear-sky conditions at noon in winter. We find an average decrease of 5.8% and spatial patterns which originate from characteristics of the underlying relief. Limitations and possible generalizations of the method are discussed.
Hydrologic behavior of model slopes with synthetic water repellent soils
NASA Astrophysics Data System (ADS)
Zheng, Shuang; Lourenço, Sérgio D. N.; Cleall, Peter J.; Chui, Ting Fong May; Ng, Angel K. Y.; Millis, Stuart W.
2017-11-01
In the natural environment, soil water repellency decreases infiltration, increases runoff, and increases erosion in slopes. In the built environment, soil water repellency offers the opportunity to develop granular materials with controllable wettability for slope stabilization. In this paper, the influence of soil water repellency on the hydrological response of slopes is investigated. Twenty-four flume tests were carried out in model slopes under artificial rainfall; soils with various wettability levels were tested, including wettable (Contact Angle, CA < 90°), subcritical water repellent (CA ∼ 90°) and water repellent (CA > 90°). Various rainfall intensities (30 mm/h and 70 mm/h), slope angles (20° and 40°) and relative compactions (70% and 90%) were applied to model the response of natural and man-made slopes to rainfall. To quantitatively assess the hydrological response, a number of measurements were made: runoff rate, effective rainfall rate, time to ponding, time to steady state, runoff acceleration, total water storage and wetting front rate. Overall, an increase in soil water repellency reduces infiltration and shortens the time for runoff generation, with the effects amplified for high rainfall intensity. Comparatively, the slope angle and relative compaction had only a minor contribution to the slope hydrology. The subcritical water repellent soils sustained infiltration for longer than both the wettable and water repellent soils, which presents an added advantage if they are to be used in the built environment as barriers. This study revealed substantial impacts of man-made or synthetically induced soil water repellency on the hydrological behavior of model slopes in controlled conditions. The results shed light on our understanding of hydrological processes in environments where the occurrence of natural soil water repellency is likely, such as slopes subjected to wildfires and in agricultural and forested slopes.
Rockfall hazard and risk assessments along roads at a regional scale: example in Swiss Alps
NASA Astrophysics Data System (ADS)
Michoud, C.; Derron, M.-H.; Horton, P.; Jaboyedoff, M.; Baillifard, F.-J.; Loye, A.; Nicolet, P.; Pedrazzini, A.; Queyrel, A.
2012-03-01
Unlike fragmental rockfall runout assessments, there are only few robust methods to quantify rock-mass-failure susceptibilities at regional scale. A detailed slope angle analysis of recent Digital Elevation Models (DEM) can be used to detect potential rockfall source areas, thanks to the Slope Angle Distribution procedure. However, this method does not provide any information on block-release frequencies inside identified areas. The present paper adds to the Slope Angle Distribution of cliffs unit its normalized cumulative distribution function. This improvement is assimilated to a quantitative weighting of slope angles, introducing rock-mass-failure susceptibilities inside rockfall source areas previously detected. Then rockfall runout assessment is performed using the GIS- and process-based software Flow-R, providing relative frequencies for runout. Thus, taking into consideration both susceptibility results, this approach can be used to establish, after calibration, hazard and risk maps at regional scale. As an example, a risk analysis of vehicle traffic exposed to rockfalls is performed along the main roads of the Swiss alpine valley of Bagnes.
IB-LBM simulation on blood cell sorting with a micro-fence structure.
Wei, Qiang; Xu, Yuan-Qing; Tian, Fang-bao; Gao, Tian-xin; Tang, Xiao-ying; Zu, Wen-Hong
2014-01-01
A size-based blood cell sorting model with a micro-fence structure is proposed in the frame of immersed boundary and lattice Boltzmann method (IB-LBM). The fluid dynamics is obtained by solving the discrete lattice Boltzmann equation, and the cells motion and deformation are handled by the immersed boundary method. A micro-fence consists of two parallel slope post rows which are adopted to separate red blood cells (RBCs) from white blood cells (WBCs), in which the cells to be separated are transported one after another by the flow into the passageway between the two post rows. Effected by the cross flow, RBCs are schemed to get through the pores of the nether post row since they are smaller and more deformable compared with WBCs. WBCs are required to move along the nether post row till they get out the micro-fence. Simulation results indicate that for a fix width of pores, the slope angle of the post row plays an important role in cell sorting. The cells mixture can not be separated properly in a small slope angle, while obvious blockages by WBCs will take place to disturb the continuous cell sorting in a big slope angle. As an optimal result, an adaptive slope angle is found to sort RBCs form WBCs correctly and continuously.
NASA Astrophysics Data System (ADS)
Mangeney, A.; Farin, M.; de Rosny, J.; Toussaint, R.; Trinh, P. T.
2017-12-01
Landslides, rock avalanche and rockfalls represent a major natural hazard in steep environments. However, owing to the lack of visual observations, the dynamics of these gravitational events is still not well understood. A burning challenge is to deduce the landslide dynamics (flow potential energy, involved volume, particle size…) from the characteristics of the generated seismic signal (radiated seismic energy, maximum amplitude, frequencies,...). Laboratory experiments of granular columns collapse are conducted on an inclined plane. The seismic signal generated by the collapse is recorded by piezoelectric accelerometers sensitive in a wide frequency range (1 Hz - 56 kHz). The granular flow are constituted with steel beads of same diameter. We compare the dynamic parameters of the granular flows, deduced from the movie of the experiments, to the seismic parameters deduced from the measured seismic signals. The ratio of radiated seismic energy to potential energy lost is shown to slightly decrease with slope angle and is between 0.2% and 9%. It decreases as time, slope angle and flow volume increase and when the particle diameter decreases. These results explain the dispersion over several orders of magnitude of the seismic efficiency of natural landslides. We distinguish two successive phases of rise and decay in the time profiles if the amplitude of the seismic signal and of the mean frequency of the signal generated by the granular flows. The rise phase and the maximum are shown to be independent of the slope angle. The maximum seismic amplitude coincides with the maximum flow speed in the direction normal to the slope but not with the maximum downslope speed. We observe that the shape of the seismic envelope and frequencies as a function of time changes after a critical slope angle, between 10° and 15° with respect to the horizontal, with a decay phase lasting much longer as slope angle increases, due to a change in the flow regime, from a dense to a more agitated flow. In addition, we propose a semi-empirical scaling law to describe how the seismic energy radiated by a granular flow increases when the slope angle increases. The fit of this law with the seismic data allows us to retrieve the friction angle of the granular material, which is a crucial rheological parameter.
Computer modeling of bidirectional spectra: the role of geometry of illumination/observation
NASA Astrophysics Data System (ADS)
Grynko, Ye.; Shkuratov, Yu.; Mall, U.
Reflectance spectroscopy is widely used in the remote sensing of the Moon. Ground based and space spectrophotometric observations provide information about physical properties and chemical composition of lunar regolith. The main spectral features such as spectral slope and parameters of the absorption bands are different for different minerals and depend on the surface roughness, particle size, degrees of maturity and cristallinity, etc. In order to interpret reflectance measurements a model describing the light interaction with a regolith-like surface is needed. However, the problem of light scattering in dense particulate media consisting of irregular particles larger than the wavelength of light (which is the case for lunar regolith) has not yet been solved and only approximate models exist. Spectrophotometric properties of such surfaces can be analyzed in the geometric optics approach with one-dimensional (1-D) light scattering models (e.g., [1]). Although the 1-D models are successfully applied to interprete planetary regolith spectra they do not give an answer how spectral features depend on the geometrical illumination/observation condition of the surface. Laboratory measurements prove that the changing lighting conditions play a significant role in the formation of the above mentioned spectral features [2, 3]. In the presented work we use computer modeling to simulate light reflection from a regolith-like surface. Our computer experiment includes two stages: The simulation of the medium and ray tracing [4, 5]. Particles with random irregular shape are randomly distributed in a cyclically closed model volume which forms a semi-infinite medium (surface). Their surface is described by flat facets.The applied technique uses a Monte Carlo ray tracing method with parallel rays falling under a given angle relative to the average surface normal. The interaction of a ray with a particle surface facet is determined by Fresnel formulas and Snell's law. The model delivers the absolute surface reflectance as function of wavelength for a given geometrical illumination/observation condition In this paper we study the dependence of the reflectance spectra on the phase angle. The angle of incidence is constant and equals to 70°. The phase angle changes from 0° to 160°. For the substance which the particles are made of we chose average value 1 for the complex refractive index corresponding to lunar mare and highlands. Our calculations reveal a strong dependence of the spectral slopes on the phase angle. This confirms the previous general conclusion given in [2] that the larger the phase angle is the redder is the spectrum. A decomposition of the reflected flux into different scattering components shows that this is caused by the indicatrix of single scattering. Multiple scattering has almost no influence on spectral slope. The shape of the absorption bands also varies with phase angle but this dependence is not regular. The 1 µm feature is more pronounced at small and moderate phase angles and becomes wide and less visible at very large phase angles. References. [1] Yu. Shkuratov et al., Icarus, 137, 235-246 (1999). [2] C. M. Pieters et al., LPSC XXII, Abstract #1069 (1991). [3] A. Cord et al., Icarus, 165, 414-427 (2003). [4] Ye. Grynko and Yu. Shkuratov, J. Quant. Spectrosc. Rad. Trans. 78, 319- 340 (2003). [5] Yu. Shkuratov and Ye. Grynko, Icarus, 173, 16-28 (2006). 2
Kenttä, Tuomas; Karsikas, Mari; Kiviniemi, Antti; Tulppo, Mikko; Seppänen, Tapio; Huikuri, Heikki V
2010-07-01
QRS/T angle and the cosine of the angle between QRS and T-wave vectors (TCRT), measured from standard 12-lead electrocardiogram (ECG), have been used in risk stratification of patients. This study assessed the possible rate dependence of these variables during exercise ECG in healthy subjects. Forty healthy volunteers, 20 men and 20 women, aged 34.6 +/- 3.4, underwent an exercise ECG testing. Twelve-lead ECG was recorded from each test subject and the spatial QRS/T angle and TCRT were automatically analyzed in a beat-to-beat manner with custom-made software. The individual TCRT/RR and QRST/RR patterns were fitted with seven different regression models, including a linear model and six nonlinear models. TCRT and QRS/T angle showed a significant rate dependence, with decreased values at higher heart rates (HR). In individual subjects, the second-degree polynomic model was the best regression model for TCRT/RR and QRST/RR slopes. It provided the best fit for both exercise and recovery. The overall TCRT/RR and QRST/RR slopes were similar between men and women during exercise and recovery. However, women had predominantly higher TCRT and QRS/T values. With respect to time, the dynamics of TCRT differed significantly between men and women; with a steeper exercise slope in women (women, -0.04/min vs -0.02/min in men, P < 0.0001). In addition, evident hysteresis was observed in the TCRT/RR slopes; with higher TCRT values during exercise. The individual patterns of TCRT and QRS/T angle are affected by HR and gender. Delayed rate adaptation creates hysteresis in the TCRT/RR slopes.
NASA Astrophysics Data System (ADS)
Deldar, H.; Bidokhti, A. A.; Chegini, V.
2018-01-01
Internal waves usually cause temporal and spatial changes of density and consequently affect the acoustic wave propagation in the ocean. The purpose of this study is a laboratory investigation of the effects of internal waves generated by oscillation of a cylinder in a large stratified glass tank with a sloping bed on the sound waves propagation. Results showed that sound waves are affected by internal waves that depend on the slope angle to the direction of internal wave propagation angle ratio. When the ratio is subcritical or supercritical, the acoustic signal is much reduced as compared to the case with no sloped bottom. This can be explained in terms of the internal waves energy reaching the sloped bed and their reflections.
Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water
NASA Astrophysics Data System (ADS)
Dundas, Colin M.; McEwen, Alfred S.; Chojnacki, Matthew; Milazzo, Moses P.; Byrne, Shane; McElwaine, Jim N.; Urso, Anna
2017-12-01
Recent liquid water flow on Mars has been proposed based on geomorphological features, such as gullies. Recurring slope lineae — seasonal flows that are darker than their surroundings — are candidate locations for seeping liquid water on Mars today, but their formation mechanism remains unclear. Topographical analysis shows that the terminal slopes of recurring slope lineae match the stopping angle for granular flows of cohesionless sand in active Martian aeolian dunes. In Eos Chasma, linea lengths vary widely and are longer where there are more extensive angle-of-repose slopes, inconsistent with models for water sources. These observations suggest that recurring slope lineae are granular flows. The preference for warm seasons and the detection of hydrated salts are consistent with some role for water in their initiation. However, liquid water volumes may be small or zero, alleviating planetary protection concerns about habitable environments.
Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water
Dundas, Colin M.; McEwen, Alfred S.; Chojnacki, Matthew; Milazzo, Moses; Byrne, Shane; McElwaine, Jim; Urso, Anna
2017-01-01
Recent liquid water flow on Mars has been proposed based on geomorphological features, such as gullies. Recurring slope lineae — seasonal flows that are darker than their surroundings — are candidate locations for seeping liquid water on Mars today, but their formation mechanism remains unclear. Topographical analysis shows that the terminal slopes of recurring slope lineae match the stopping angle for granular flows of cohesionless sand in active Martian aeolian dunes. In Eos Chasma, linea lengths vary widely and are longer where there are more extensive angle-of-repose slopes, inconsistent with models for water sources. These observations suggest that recurring slope lineae are granular flows. The preference for warm seasons and the detection of hydrated salts are consistent with some role for water in their initiation. However, liquid water volumes may be small or zero, alleviating planetary protection concerns about habitable environments.
Szarmach, Arkadiusz; Luczkiewicz, Piotr; Skotarczak, Monika; Kaszubowski, Mariusz; Winklewski, Pawel J; Dzierzanowski, Jaroslaw; Piskunowicz, Maciej; Szurowska, Edyta; Baczkowski, Bogusław
2016-01-01
Meniscus extrusion is a serious and relatively frequent clinical problem. For this reason the role of different risk factors for this pathology is still the subject of debate. The goal of this study was to verify the results of previous theoretical work, based on the mathematical models, regarding a relationship between the cross-section shape of the meniscus and the risk of its extrusion. Knee MRI examination was performed in 77 subjects (43 men and 34 women), mean age 34.99 years (range: 18-49 years), complaining of knee pain. Patients with osteoarthritic changes (grade 3 and 4 to Kellgren classification), varus or valgus deformity and past injuries of the knee were excluded from the study. A 3-Tesla MR device was used to study the relationship between the shape of the lateral meniscus (using slope angle, meniscus-cartilage height and meniscus-bone angle) and the risk of extrusion. Analysis revealed that with values of slope angle and meniscus-bone angle increasing by one degree, the risk of meniscus extrusion raises by 1.157 and 1.078 respectively. Also, an increase in meniscus-cartilage height by 1 mm significantly elevates the risk of extrusion. At the same time it was demonstrated that for meniscus-bone angle values over 42 degrees and slope angle over 37 degrees the risk of extrusion increases significantly. This was the first study to demonstrate a tight correlation between slope angle, meniscus-bone angle and meniscus-cartilage height values in the assessment of the risk of lateral meniscus extrusion. Insertion of the above parameters to the radiological assessment of the knee joint allows identification of patients characterized by an elevated risk of development of this pathology.
Wang, Kuan; Deng, Zhen; Wang, Hui-Hao; Li, Zheng-Yan; Niu, Wen-Xin; Chen, Bo; Zhang, Ming-Cai; Yuan, Wei-An; Zhan, Hong-Sheng
2017-05-25
To analyze the relationship between position of head, cervical curvature type and associated cervical balance parameters in a neutral looking-forward posture. Cervical lateral X-rays of 60 patients with cervical spondylosis were selected from January to December 2015. There were 22 males and 38 females with an average age of (35.5±10.9) years old. The measured parameters included cervical curvature type, McGregor slope, C2 lower end plate slope, T1 slope, center of gravity to C7 sagittal vertical offset (CG-C7 SVA), and C2 to C7 sagittal vertical offset (C2-C7 SVA). The parameters were analyzed using Spearman correlation. The cervical curvature type was significantly correlated with C2 lower endplate slope, C0-C2 angle (total degree of C2 lower endplate slope plus McGregor slope), CG-C7 SVA and T1 slope ( P <0.05), but it was not significantly correlated McGregor slope ( P >0.05). C2 lower endplate slope and C2-C7 SVA (r=0.87) were significantly ( P <0.05) correlated with CG-C7 SVA ( P <0.05). There was certain some relationship among position of head, cervical curvature type and associated cervical balance parameters in a neutral looking-forward posture. The center of gravity of the head would backwards shift following faced upward. A position of extension with posterior-shifting of the head would suggest that it may be accompanied with a relatively normal lordosis of the cervical spine. Some patients with abnormal curvature showed slightly bended head in the natural posture. Health education toward these people would be meaningful to restore the balance of their neck.
NASA Technical Reports Server (NTRS)
Coltrane, Lucille C.
1959-01-01
A cone with a blunt nose tip and a 10.7 deg cone half angle and an ogive with a blunt nose tip and a 20 deg flared cylinder afterbody have been tested in free flight over a Mach number range of 0.30 to 2.85 and a Reynolds number range of 1 x 10(exp 6) to 23 x 10(exp 6). Time histories, cross plots of force and moment coefficients, and plots of the longitudinal force,coefficient, rolling velocity, aerodynamic center, normal- force-curve slope, and dynamic stability are presented. With the center-of-gravity location at about 50 percent of the model length, the models were both statically and dynamically stable throughout the Mach number range. For the cone, the average aerodynamic center moved slightly forward with decreasing speeds and the normal-force-curve slope was fairly constant throughout the speed range. For the ogive, the average aerodynamic center remained practically constant and the normal-force-curve slope remained practically constant to a Mach number of approximately 1.6 where a rising trend is noted. Maximum drag coefficient for the cone, with reference to the base area, was approximately 0.6, and for the ogive, with reference to the area of the cylindrical portion, was approximately 2.1.
Kim, Do Yun; Santbergen, Rudi; Jäger, Klaus; Sever, Martin; Krč, Janez; Topič, Marko; Hänni, Simon; Zhang, Chao; Heidt, Anna; Meier, Matthias; van Swaaij, René A C M M; Zeman, Miro
2014-12-24
Thin-film silicon solar cells are often deposited on textured ZnO substrates. The solar-cell performance is strongly correlated to the substrate morphology, as this morphology determines light scattering, defective-region formation, and crystalline growth of hydrogenated nanocrystalline silicon (nc-Si:H). Our objective is to gain deeper insight in these correlations using the slope distribution, rms roughness (σ(rms)) and correlation length (lc) of textured substrates. A wide range of surface morphologies was obtained by Ar plasma treatment and wet etching of textured and flat-as-deposited ZnO substrates. The σ(rms), lc and slope distribution were deduced from AFM scans. Especially, the slope distribution of substrates was represented in an efficient way that light scattering and film growth direction can be more directly estimated at the same time. We observed that besides a high σ(rms), a high slope angle is beneficial to obtain high haze and scattering of light at larger angles, resulting in higher short-circuit current density of nc-Si:H solar cells. However, a high slope angle can also promote the creation of defective regions in nc-Si:H films grown on the substrate. It is also found that the crystalline fraction of nc-Si:H solar cells has a stronger correlation with the slope distributions than with σ(rms) of substrates. In this study, we successfully correlate all these observations with the solar-cell performance by using the slope distribution of substrates.
Development of a GIS-based failure investigation system for highway soil slopes
NASA Astrophysics Data System (ADS)
Ramanathan, Raghav; Aydilek, Ahmet H.; Tanyu, Burak F.
2015-06-01
A framework for preparation of an early warning system was developed for Maryland, using a GIS database and a collective overlay of maps that highlight highway slopes susceptible to soil slides or slope failures in advance through spatial and statistical analysis. Data for existing soil slope failures was collected from geotechnical reports and field visits. A total of 48 slope failures were recorded and analyzed. Six factors, including event precipitation, geological formation, land cover, slope history, slope angle, and elevation were considered to affect highway soil slope stability. The observed trends indicate that precipitation and poor surface or subsurface drainage conditions are principal factors causing slope failures. 96% of the failed slopes have an open drainage section. A majority of the failed slopes lie in regions with relatively high event precipitation ( P>200 mm). 90% of the existing failures are surficial erosion type failures, and only 1 out of the 42 slope failures is deep rotational type failure. More than half of the analyzed slope failures have occurred in regions having low density land cover. 46% of failures are on slopes with slope angles between 20° and 30°. Influx of more data relating to failed slopes should give rise to more trends, and thus the developed slope management system will aid the state highway engineers in prudential budget allocation and prioritizing different remediation projects based on the literature reviewed on the principles, concepts, techniques, and methodology for slope instability evaluation (Leshchinsky et al., 2015).
At similar angles, slope walking has a greater fall risk than stair walking.
Sheehan, Riley C; Gottschall, Jinger S
2012-05-01
According to the CDC, falls are the leading cause of injury for all age groups with over half of the falls occurring during slope and stair walking. Consequently, the purpose of this study was to compare and contrast the different factors related to fall risk as they apply to these walking tasks. More specifically, we hypothesized that compared to level walking, slope and stair walking would have greater speed standard deviation, greater ankle dorsiflexion, and earlier peak activity of the tibialis anterior. Twelve healthy, young male participants completed level, slope, and stair trials on a 25-m walkway. Overall, during slope and stair walking, medial-lateral stability was less, anterior-posterior stability was less, and toe clearance was greater in comparison to level walking. In addition, there were fewer differences between level and stair walking than there were between level and slope walking, suggesting that at similar angles, slope walking has a greater fall risk than stair walking. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Cavallo, Eugenio; Görücü, Serap; Murphy, Dennis
2015-06-05
All-terrain vehicles (ATVs) are unstable on steep and rough terrain, and thus, rollover is the most common accident which can result in a high rate of fatal outcomes, with higher rates for young and male drivers. This paper investigates the ability of rural Pennsylvania ATV drivers to correctly evaluate slopes, and the mean slope angle at which the most and least conservative drivers indicate a beginning of concern of a roll-over. The study was conducted using a simulator, a commercial ATV firmly fixed on an hydraulically-lifted platform. As the platform was being raised, participants were asked to report when they became uncomfortable and then when they would not drive across a slope at such an angle. The difference between the reported and the actual angles in both conditions were analyzed. Fifty-five individuals, mostly male and younger than 20 years, participated in riding on the simulator. Between 1/3 and 1/4 of the participants correctly estimated the angle while approximately 2/3 of participants overestimated the angles at which they felt they would be uncomfortable and they would not drive across. Participants began to feel uncomfortable at 15.9±5.7 degrees and became so uncomfortable that they felt they would not drive at 22.7±3.7 degrees. Overestimation of lateral roll angles is the most common result. This is in favor of safety when drivers are informed about a slope limit ATVs should not be operated on.
Slope stability and bearing capacity of landfills and simple on-site test methods.
Yamawaki, Atsushi; Doi, Yoichi; Omine, Kiyoshi
2017-07-01
This study discusses strength characteristics (slope stability, bearing capacity, etc.) of waste landfills through on-site tests that were carried out at 29 locations in 19 sites in Japan and three other countries, and proposes simple methods to test and assess the mechanical strength of landfills on site. Also, the possibility of using a landfill site was investigated by a full-scale eccentric loading test. As a result of this, landfills containing more than about 10 cm long plastics or other fibrous materials were found to be resilient and hard to yield. An on-site full scale test proved that no differential settlement occurs. The repose angle test proposed as a simple on-site test method has been confirmed to be a good indicator for slope stability assessment. The repose angle test suggested that landfills which have high, near-saturation water content have considerably poorer slope stability. The results of our repose angle test and the impact acceleration test were related to the internal friction angle and the cohesion, respectively. In addition to this, it was found that the air pore volume ratio measured by an on-site air pore volume ratio test is likely to be related to various strength parameters.
The dispersion analysis of drift velocity in the study of solar wind flows
NASA Astrophysics Data System (ADS)
Olyak, Maryna
2013-09-01
In this work I consider a method for the study of the solar wind flows at distances from the Sun more than 1 AU. The method is based on the analysis of drift velocity dispersion that was obtained from the simultaneous scintillation observations in two antennas. I considered dispersion dependences for different models of the solar wind, and I defined its specificity for each model. I have determined that the presence of several solar wind flows significantly affects the shape and the slope of the dispersion curve. The maximum slope angle is during the passage of the fast solar wind flow near the Earth. If a slow flow passes near the Earth, the slope of the dispersion curve decreases. This allows a more precise definition of the velocity and flow width compared to the traditional scintillation method. Using the comparison of experimental and theoretical dispersion curves, I calculated the velocity and width of solar wind flows and revealed the presence of significant velocity fluctuations which accounted for about 60% of the average velocity.
NASA Astrophysics Data System (ADS)
Roering, Joshua J.; Mackey, Benjamin H.; Handwerger, Alexander L.; Booth, Adam M.; Schmidt, David A.; Bennett, Georgina L.; Cerovski-Darriau, Corina
2015-05-01
In mountainous settings, increases in rock uplift are often followed by a commensurate uptick in denudation as rivers incise and steepen hillslopes, making them increasingly prone to landsliding as slope angles approach a limiting value. For decades, the threshold slope model has been invoked to account for landslide-driven increases in sediment flux that limit topographic relief, but the manner by which slope failures organize themselves spatially and temporally in order for erosion to keep pace with rock uplift has not been well documented. Here, we review past work and present new findings from remote sensing, cosmogenic radionuclides, suspended sediment records, and airborne lidar data, to decipher patterns of landslide activity and geomorphic processes related to rapid uplift along the northward-migrating Mendocino Triple Junction in Northern California. From historical air photos and airborne lidar, we estimated the velocity and sediment flux associated with active, slow-moving landslides (or earthflows) in the mélange- and argillite-dominated Eel River watershed using the downslope displacement of surface markers such as trees and shrubs. Although active landslides that directly convey sediment into the channel network account for only 7% of the landscape surface, their sediment flux amounts to more than 50% of the suspended load recorded at downstream sediment gaging stations. These active slides tend to exhibit seasonal variations in velocity as satellite-based interferometry has demonstrated that rapid acceleration commences within 1 to 2 months of the onset of autumn rainfall events before slower deceleration ensues in the spring and summer months. Curiously, this seasonal velocity pattern does not appear to vary with landslide size, suggesting that complex hydrologic-mechanical feedbacks (rather than 1-D pore pressure diffusion) may govern slide dynamics. A new analysis of 14 yrs of discharge and sediment concentration data for the Eel River indicates that the characteristic mid-winter timing of earthflow acceleration corresponds with increased suspended concentration values, suggesting that the seasonal onset of landslide motion each year may be reflected in the export of sediments to the continental margin. The vast majority of active slides exhibit gullied surfaces and the gully networks, which are also seasonally active, may facilitate sediment export although the proportion of material produced by this pathway is poorly known. Along Kekawaka Creek, a prominent tributary to the Eel River, new analyses of catchment-averaged erosion rates derived from cosmogenic radionuclides reveal rapid erosion (0.76 mm/yr) below a prominent knickpoint and slower erosion (0.29 mm/yr) upstream. Such knickpoints are frequently observed in Eel tributaries and are usually comprised of massive (> 10 m) interlocking resistant boulders that likely persist in the landscape for long periods of time (> 105 yr). Upstream of these knickpoints, active landslides tend to be less frequent and average slope angles are slightly gentler than in downstream areas, which indicates that landslide density and average slope angle appear to increase with erosion rate. Lastly, we synthesize evidence for the role of large, catastrophic landslides in regulating sediment flux and landscape form. The emergence of resistant blocks within the mélange bedrock has promoted large catastrophic slides that have dammed the Eel River and perhaps generated outburst events in the past. The frequency and impact of these landslide dams likely depend on the spatial and size distributions of resistant blocks relative to the width and drainage area of adjacent valley networks. Overall, our findings demonstrate that landslides within the Eel River catchment do not occur randomly, but instead exhibit spatial and temporal patterns related to baselevel lowering, climate forcing, and lithologic variations. Combined with recent landscape evolution models that incorporate landslides, these results provide predictive capability for estimating erosion rates and managing hazards in mountainous regions.
Characterization of Human Rib Biomechanical Responses due to Three-Point Bending.
Kalra, Anil; Saif, Tal; Shen, Ming; Jin, Xin; Zhu, Feng; Begeman, Paul; Yang, King H; Millis, Scott
2015-11-01
In the elderly population, rib fracture is one of the most common injuries sustained in motor vehicle crashes. The current study was conducted to predict the biomechanical fracture responses of ribs with respect to age, gender, height, weight and percentage of ash content. Three-point bending experiments were conducted on 278 isolated rib samples extracted from 82 cadaver specimens (53 males and 29 females between the ages of 21 and 87 years) for 6th and 7th levels of ribs. Statistical analyses were carried out to identify differences based on age and gender. It was found that, in comparison to males, females had significantly lower values for maximum bending moments, slopes of bending moment-angle curves, and average cortical-bone thickness (p<0.05). Samples of ribs taken from elderly specimens failed at lower values of fracture moments than those from younger specimens, and had lower slopes of bending moment-angle curves, both in males and females (p<0.05). The generalized estimated equations were developed to predict the values of biomechanical response and average cortical thickness based on age, gender, height and weight of individual specimens. Results from the current study illustrate that biomechanical responses and rib cortical thicknesses are functions of age, gender, height and weight. However, the current study is limited to a quasi-static loading scheme, which is different from real crash conditions. Hence, rib-material properties, which are dependent on strain rate, and are needed for wholebody finite element models representing different populations, still require more research.
NASA Technical Reports Server (NTRS)
Moul, T. M.
1979-01-01
A preliminary wind tunnel investigation was undertaken to determine the flow correction for a vane angle of attack sensor over an angle of attack range from -10 deg to 110 deg. The sensor was mounted ahead of the wing on a 1/5 scale model of a general aviation airplane. It was shown that the flow correction was substantial, reaching about 15 deg at an angle of attack of 90 deg. The flow correction was found to increase as the sensor was moved closer to the wing or closer to the fuselage. The experimentally determined slope of the flow correction versus the measured angle of attack below the stall angle of attack agreed closely with the slope of flight data from a similar full scale airplane.
NASA Astrophysics Data System (ADS)
Lian, Ji-Jian; Li, Qin; Deng, Xi-Fei; Zhao, Gao-Feng; Chen, Zu-Yu
2018-02-01
In this work, toppling failure of a jointed rock slope is studied by using the distinct lattice spring model (DLSM). The gravity increase method (GIM) with a sub-step loading scheme is implemented in the DLSM to mimic the loading conditions of a centrifuge test. A classical centrifuge test for a jointed rock slope, previously simulated by the finite element method and the discrete element model, is simulated by using the GIM-DLSM. Reasonable boundary conditions are obtained through detailed comparisons among existing numerical solutions with experimental records. With calibrated boundary conditions, the influences of the tensional strength of the rock block, cohesion and friction angles of the joints, as well as the spacing and inclination angles of the joints, on the flexural toppling failure of the jointed rock slope are investigated by using the GIM-DLSM, leading to some insight into evaluating the state of flexural toppling failure for a jointed slope and effectively preventing the flexural toppling failure of jointed rock slopes.
NASA Astrophysics Data System (ADS)
Scheibner, C.; Marzouk, A. M.; Kuss, J.
2001-12-01
An asymmetrical carbonate platform margin to basin transect has been investigated in the Upper Campanian-Maastrichtian succession of the Galala Mountains, northern Egypt. Identification of systems tracts and their lateral correlation was possible in slope sections only, whereas the monotonous chalk-marl alternations of the basinal sections could not be subdivided with respect to sequence stratigraphic terminology. The platform asymmetry is expressed by varying large-scale depositional architectures exhibiting a rimmed platform with a sigmoidal slope curvature in south-easterly dip-sections and a ramp with a linear slope curvature in south-westerly dip-sections. The rimmed platform is subdivided into a gentle upper slope and a steep lower slope. The platform formed as a result of the initial topography that was controlled by the tectonic uplift of the Northern Galala/Wadi Araba Syrian Arc structure. The calculated angles of the steep lower slope of the rimmed part range from 5 to 8°, whereas the ramp part has an angle of less than 0.1°.
NASA Astrophysics Data System (ADS)
Cloutis, Edward A.; Pietrasz, Valerie B.; Kiddell, Cain; Izawa, Matthew R. M.; Vernazza, Pierre; Burbine, Thomas H.; DeMeo, Francesca; Tait, Kimberly T.; Bell, James F.; Mann, Paul; Applin, Daniel M.; Reddy, Vishnu
2018-05-01
Carbonaceous chondrites (CCs) are important materials for understanding the early evolution of the solar system and delivery of volatiles and organic material to the early Earth. Presumed CC-like asteroids are also the targets of two current sample return missions: OSIRIS-REx to asteroid Bennu and Hayabusa-2 to asteroid Ryugu, and the Dawn orbital mission at asteroid Ceres. To improve our ability to identify and characterize CM2 CC-type parent bodies, we have examined how factors such as particle size, particle packing, and viewing geometry affect reflectance spectra of the Murchison CM2 CC. The derived relationships have implications for disc-resolved examinations of dark asteroids and sampleability. It has been found that reflectance spectra of slabs are more blue-sloped (reflectance decreasing toward longer wavelengths as measured by the 1.8/0.6 μm reflectance ratio), and generally darker, than powdered sample spectra. Decreasing the maximum grain size of a powdered sample results in progressively brighter and more red-sloped spectra. Decreasing the average grain size of a powdered sample results in a decrease in diagnostic absorption band depths, and redder and brighter spectra. Decreasing porosity of powders and variations in surface texture result in spectral changes that may be different as a function of viewing geometry. Increasing thickness of loose dust on a denser powdered substrate leads to a decrease in absorption band depths. Changes in viewing geometry lead to different changes in spectral metrics depending on whether the spectra are acquired in backscatter or forward-scatter geometries. In backscattered geometry, increasing phase angle leads to an initial increase and then decrease in spectral slope, and a general decrease in visible region reflectance and absorption band depths, and frequent decreases in absorption band minima positions. In forward scattering geometry, increasing phase angle leads to small non-systematic changes in spectral slope, and general decreases in visible region reflectance, and absorption band depths. The highest albedos and larger band depths are generally seen in the lowest phase angle backscattering geometry spectra. The reddest spectra are generally seen in the lowest phase angle backscatter geometry spectra. For the same phase angle, spectra acquired in forward scatter geometry are generally redder and darker and have shallower absorption bands than those acquired in backscatter geometry. Overall, backscatter geometry-acquired spectra are flatter, brighter, and have deeper 0.7 μm region absorption band depths than forward scatter geometry-acquired spectra. It was also found that the 0.7, 0.9, and 1.1 μm absorption bands in Murchison spectra, which are attributable to various Fe electronic processes, are ubiquitous and can be used to recognize CM2 chondrites regardless of the physical properties of the meteorite and viewing geometry.
Landslide characteristics and spatial distribution in the Rwenzori Mountains, Uganda
NASA Astrophysics Data System (ADS)
Jacobs, Liesbet; Dewitte, Olivier; Poesen, Jean; Maes, Jan; Mertens, Kewan; Sekajugo, John; Kervyn, Matthieu
2017-10-01
In many landslide-prone regions, data on landslide characteristics remain poor or inexistent. This is also the case for the Rwenzori Mountains, located on the border of Uganda and the DR Congo. There, landslides frequently occur and cause fatalities and substantial damage to private property and infrastructure. In this paper, we present the results of a field inventory performed in three representative study areas covering 114 km2. A total of 371 landslides were mapped and analyzed for their geomorphological characteristics and their spatial distribution. The average landslide areas varied from less than 0.3 ha in the gneiss-dominated highlands to >1 ha in the rift alluvium of the lowlands. Large landslides (>1.5 ha) are well represented while smaller landslides (<1.5 ha) are underrepresented. The degrees of completeness of the field inventories are comparable to those of similar historical landslide inventories. The diversity of potential mass movements in the Rwenzori is large and depends on the dominant lithological and topographic conditions. A dominance of shallow translational soil slides in gneiss and of deep rotational soil slides in the rift alluvium is observed. Slope angle is the main controlling topographic factor for landslides with the highest landslide concentrations for slope angles above 25-30° in the highlands and 10-15° in the lowlands. The undercutting of slopes by rivers and excavations for construction are important preparatory factors. Rainfall-triggered landslides are the most common in the area, however in the zones of influence of the last two major earthquakes (1966: Mw = 6.6 and 1994: Mw = 6.2), 12 co-seismic landslides were also observed.
The Cognitive and Perceptual Laws of the Inclined Plane.
Masin, Sergio Cesare
2016-09-01
The study explored whether laypersons correctly tacitly know Galileo's law of the inclined plane and what the basis of such knowledge could be. Participants predicted the time a ball would take to roll down a slope with factorial combination of ball travel distance and slope angle. The resulting pattern of factorial curves relating the square of predicted time to travel distance for each slope angle was identical to that implied by Galileo's law, indicating a correct cognitive representation of this law. Intuitive physics research suggests that this cognitive representation may result from memories of past perceptions of objects rolling down a slope. Such a basis and the correct cognitive representation of Galileo's law led to the hypothesis that Galileo's law is also perceptually represented correctly. To test this hypothesis, participants were asked to judge the perceived travel time of a ball actually rolling down a slope, with perceived travel distance and perceived slope angle varied in a factorial design. The obtained pattern of factorial curves was equal to that implied by Galileo's law, indicating that the functional relationships defined in this law were perceptually represented correctly. The results foster the idea that laypersons may tacitly know both linear and nonlinear multiplicative physical laws of the everyday world. As a practical implication, the awareness of this conclusion may help develop more effective methods for teaching physics and for improving human performance in the physical environment.
Effects of wind velocity and slope on flame properties
David R. Weise; Gregory S. Biging
1996-01-01
Abstract: The combined effects of wind velocity and percent slope on flame length and angle were measured in an open-topped, tilting wind tunnel by burning fuel beds composed of vertical birch sticks and aspen excelsior. Mean flame length ranged from 0.08 to 1.69 m; 0.25 m was the maximum observed flame length for most backing fires. Flame angle ranged from -46o to 50o...
LaPrade, Robert F; Smith, Sean D; Wilson, Katharine J; Wijdicks, Coen A
2015-10-01
Counteracting posterior translation of the tibia with an anterior force on the posterior proximal tibia has been demonstrated clinically to improve posterior knee laxity following posterior cruciate ligament (PCL) injury. This study quantified forces applied to the posterior proximal tibia by two knee braces designed for treatment of PCL injuries. The forces applied by two knee braces to the posterior proximal tibia and in vivo three-dimensional knee kinematics of six adult, male, healthy volunteer subjects (mean ± standard deviation: height, 182.5 ± 5.2 cm; body mass, 83.2 ± 9.3 kg; body mass index, 24.9 ± 1.5 kg/m(2); age, 25.8 ± 2.9 years) were measured using a custom pressure mapping technique and traditional surface marker motion capture techniques, while subjects performed three functional activities. The activities included seated unloaded knee flexion, squatting, and stair descent in a new generation dynamic force (DF) PCL brace and a static force (SF) PCL brace. During unloaded flexion at the lowest force level setting, the force applied by the DF brace increased as a function of flexion angle (slope = 0.7 N/°; p < 0.001) compared to the SF brace effect. Force applied by the SF brace did not significantly change as a function of flexion angle (slope = 0.0 N/°; n.s.). By 45° of flexion, the average force applied by the DF brace (48.1 N) was significantly larger (p < 0.001) than the average force applied by the SF brace (25.0 N). The difference in force continued to increase as flexion angle increased. During stair descent, average force (mean ± standard deviation) at toe off was significantly higher (p = 0.013) for the DF brace (78.7 ± 21.6 N) than the SF brace (37.3 ± 7.2 N). Similar trends were observed for squatting and for the higher force level settings. The DF brace applied forces to the posterior proximal tibia that dynamically increased with increased flexion angle. Additionally, the DF brace applied significantly larger forces at higher flexion angles compared to the SF brace where the PCL is known to experience larger in situ forces. Clinical studies are necessary to determine whether the loading characteristics of the DF brace, which more closely replicated the in situ loading profile of the native PCL, results in long-term improved posterior knee laxity following PCL injury. II.
The Q-Slope Method for Rock Slope Engineering
NASA Astrophysics Data System (ADS)
Bar, Neil; Barton, Nick
2017-12-01
Q-slope is an empirical rock slope engineering method for assessing the stability of excavated rock slopes in the field. Intended for use in reinforcement-free road or railway cuttings or in opencast mines, Q-slope allows geotechnical engineers to make potential adjustments to slope angles as rock mass conditions become apparent during construction. Through case studies across Asia, Australia, Central America, and Europe, a simple correlation between Q-slope and long-term stable slopes was established. Q-slope is designed such that it suggests stable, maintenance-free bench-face slope angles of, for instance, 40°-45°, 60°-65°, and 80°-85° with respective Q-slope values of approximately 0.1, 1.0, and 10. Q-slope was developed by supplementing the Q-system which has been extensively used for characterizing rock exposures, drill-core, and tunnels under construction for the last 40 years. The Q' parameters (RQD, J n, J a, and J r) remain unchanged in Q-slope. However, a new method for applying J r/ J a ratios to both sides of potential wedges is used, with relative orientation weightings for each side. The term J w, which is now termed J wice, takes into account long-term exposure to various climatic and environmental conditions such as intense erosive rainfall and ice-wedging effects. Slope-relevant SRF categories for slope surface conditions, stress-strength ratios, and major discontinuities such as faults, weakness zones, or joint swarms have also been incorporated. This paper discusses the applicability of the Q-slope method to slopes ranging from less than 5 m to more than 250 m in height in both civil and mining engineering projects.
Derivation of martian surface slope characteristics from directional thermal infrared radiometry
NASA Astrophysics Data System (ADS)
Bandfield, Joshua L.; Edwards, Christopher S.
2008-01-01
Directional thermal infrared measurements of the martian surface is one of a variety of methods that may be used to characterize surface roughness and slopes at scales smaller than can be obtained by orbital imagery. Thermal Emission Spectrometer (TES) emission phase function (EPF) observations show distinct apparent temperature variations with azimuth and emission angle that are consistent with the presence of warm, sunlit and cool, shaded slopes at typically ˜0.1 m scales. A surface model of a Gaussian distribution of azimuth independent slopes (described by θ-bar) is combined with a thermal model to predict surface temperature from each viewing angle and azimuth of the TES EPF observation. The models can be used to predict surface slopes using the difference in measured apparent temperature from 2 separate 60-70° emission angle observations taken ˜180° in azimuth relative to each other. Most martian surfaces are consistent with low to moderate slope distributions. The slope distributions display distinct correlations with latitude, longitude, and albedo. Exceptionally smooth surfaces are located at lower latitudes in both the southern highlands as well as in high albedo dusty terrains. High slopes are associated with southern high-latitude patterned ground and north polar sand dunes. There is little apparent correlation between high resolution imagery and the derived θ-bar, with exceptions such as duneforms. This method can be used to characterize potential landing sites by assuming fractal scaling behavior to meter scales. More precisely targeted thermal infrared observations from other spacecraft instruments are capable of significantly reducing uncertainty as well as reducing measurement spot size from 10s of kilometers to sub-kilometer scales.
NASA Astrophysics Data System (ADS)
Gu, Chengyan; Clevers, Jan G. P. W.; Liu, Xiao; Tian, Xin; Li, Zhouyuan; Li, Zengyuan
2018-03-01
Sloping terrain of forests is an overlooked factor in many models simulating the canopy bidirectional reflectance distribution function, which limits the estimation accuracy of forest vertical structure parameters (e.g., forest height). The primary objective of this study was to predict forest height on sloping terrain over large areas with the Geometric-Optical Model for Sloping Terrains (GOST) using airborne Light Detection and Ranging (LiDAR) data and Landsat 7 imagery in the western Greater Khingan Mountains of China. The Sequential Maximum Angle Convex Cone (SMACC) algorithm was used to generate image endmembers and corresponding abundances in Landsat imagery. Then, LiDAR-derived forest metrics, topographical factors and SMACC abundances were used to calibrate and validate the GOST, which aimed to accurately decompose the SMACC mixed forest pixels into sunlit crown, sunlit background and shade components. Finally, the forest height of the study area was retrieved based on a back-propagation neural network and a look-up table. Results showed good performance for coniferous forests on all slopes and at all aspects, with significant coefficients of determination above 0.70 and root mean square errors (RMSEs) between 0.50 m and 1.00 m based on ground observed validation data. Higher RMSEs were found in areas with forest heights below 5 m and above 17 m. For 90% of the forested area, the average RMSE was 3.58 m. Our study demonstrates the tremendous potential of the GOST for quantitative mapping of forest height on sloping terrains with multispectral and LiDAR inputs.
Slot angle detecting method for fiber fixed chip
NASA Astrophysics Data System (ADS)
Zhang, Jiaquan; Wang, Jiliang; Zhou, Chaochao
2018-04-01
The slot angle of fiber fixed chip has a significant impact on performance of photoelectric devices. In order to solve the actual engineering problem, this paper put forward a detecting method based on imaging processing. Because the images have very low contrast that is hardly segmented, so this paper proposes imaging segment methods based on edge character. Then get fixed chip edge line slope k2 and calculate the fiber fixed slot line slope k1, which can be used calculating the slot angle. Lastly, test the repeatability and accuracy of system, which show that this method has very fast operation speed and good robustness. Clearly, it is also satisfied to the actual demand of fiber fixed chip slot angle detection.
Walker, Peter S; Yildirim, Gokce; Sussman-Fort, Jon; Roth, Jonathan; White, Brian; Klein, Gregg R
2007-08-01
Maximum flexion-or impingement angle-is defined as the angle of flexion when the posterior femoral cortex impacts the posterior edge of the tibial insert. We examined the effects of femoral component placement on the femur, the slope angle of the tibial component, the location of the femoral-tibial contact point, and the amount of internal or external rotation. Posterior and proximal femoral placement, a more posterior femoral-tibial contact point, and a more tibial slope all increased maximum flexion, whereas rotation reduced it. A mobile-bearing knee gave results similar to those of the fixed-bearing knee, but there was no loss of flexion in internal or external rotation if the mobile bearing moved with the femur. In the absence of negative factors, a flexion angle of 150 degrees can be reached before impingement.
Modic changes of the cervical spine: T1 slope and its impact on axial neck pain.
Li, Jia; Qin, Shuhui; Li, Yongqian; Shen, Yong
2017-01-01
The purpose of the research was to evaluate cervical sagittal parameters on magnetic resonance imaging (MRI) in patients with Modic changes and its impact on axial neck pain. This study consisted of 266 consecutive asymptomatic or symptomatic patients with Modic changes, whose average age was 50.9±12.6 years from January 2015 to December 2016. Cervical sagittal parameters included sagittal alignment of the cervical spine (SACS), T1 slope, thoracic inlet angle (TIA), and neck tilt (NT). The Modic changes group was compared with an asymptomatic control group of 338 age- and gender-matched adults. In the Modic changes group, T1 slope was significantly higher (25.8°±6.3°) compared with that in the control group (22.5°±6.8°) ( P =0.000). However, there was no significant difference of the NT, TIA, and SACS between the two groups. Patients in the Modic changes group were more likely to have experienced historical axial neck pain compared with the control group ( P =0.000). With regard to the disc degeneration, it indicated that the disc in the Modic changes group had more severe disc degeneration ( P =0.032). T1 slope in the Modic changes group was significantly higher compared to that of the control group. The findings suggested that a higher T1 slope with broken compensation of cervical sagittal mechanism may be associated with the development of Modic changes in the cervical spine.
Zhang, Jingwei; Hamilton, Ryan; Li, Ming; Ebraheim, Nabil A; He, Xianfeng; Liu, Jiayong; Zhu, Limei
2015-12-01
An anatomic and radiographic study of placement of sacroiliac screws. The aim of this study was to quantitatively assess the risk of partial cut-out of sacroiliac screws from the sacral ala slope via inlet and outlet view. The partial cut-out of sacroiliac screws from the superior surface of sacral ala can jeopardize the L5 nerve root, which is difficult to identify on the pelvic inlet and outlet views. Computed tomography images of 60 patients without pelvic ring deformity or injury were used to measure the width (on inlet view) and height (on outlet view) of the sacral ala. The angle of the sacral ala slope was measured on lateral view. According to the measured parameters, the theoretical safe trajectories of screw placement were calculated using inverse trigonometric functions. Under fluoroscopic guidance, a sacroiliac screw was placed close to the midline on both inlet and outlet views, including posterosuperior, posteroinferior, anterosuperior, and anteroinferior regions to the midline. The incidence of screw partial cut-out from the superior surface of sacral ala was identified. The measured widths and heights of the sacral alas were 28.1 ± 2.8 and 29.8 ± 3.1 mm, respectively. The average angle between the superior aspect of the S1 vertebral body and the superior aspect of the sacral ala was 37.2 ± 2.5 degrees. The rate of partial cut-out of the screws from the superior surface of sacral ala slope was 12.5% (5/40) in posterosuperior, 0% (0/40) in posteroinferior, 70% (28/40) in anterosuperior, and 20% (8/40) in anteroinferior. To avoid the risk of partial cut-out from sacroiliac screw placement, more precise description should be added to the conventional description: the sacroiliac screws should be placed at the inferior half portion on outlet view and at the posterior half portion on inlet view. 4.
NASA Astrophysics Data System (ADS)
Gusman, M.; Nazki, A.; Putra, R. R.
2018-04-01
One of the parameters in slope stability analysis is the shear strength of the soil. Changes in soil shear strength characteristics lead to a decrease in safety factors on the slopes. This study aims to see the effect of increased moisture content on soil mechanical parameters. The case study study was conducted on the slopes of Sitinjau Lauik Kota Padang. The research method was done by laboratory analysis and simple liniear regression analysis and multiple. Based on the test soil results show that the increase in soil water content causes a decrease in cohesion values and internal shear angle. The relationship of moisture content to cohesion is described in equation Y = 55.713-0,6X with R2 = 0.842. While the relationship of water content to shear angle in soil is described in the equation Y = 38.878-0.258X with R2 = 0.915. From several simulations of soil water level improvement, calculation of safety factor (SF) of slope. The calculation results show that the increase of groundwater content is very significant affect the safety factor (SF) slope. SF slope values are in safe condition when moisture content is 50% and when it reaches maximum water content 73.74% slope safety factor value potentially for landslide.
NASA Technical Reports Server (NTRS)
Petty, Grant W.; Katsaros, Kristina B.
1994-01-01
Based on a geometric optics model and the assumption of an isotropic Gaussian surface slope distribution, the component of ocean surface microwave emissivity variation due to large-scale surface roughness is parameterized for the frequencies and approximate viewing angle of the Special Sensor Microwave/Imager. Independent geophysical variables in the parameterization are the effective (microwave frequency dependent) slope variance and the sea surface temperature. Using the same physical model, the change in the effective zenith angle of reflected sky radiation arising from large-scale roughness is also parameterized. Independent geophysical variables in this parameterization are the effective slope variance and the atmospheric optical depth at the frequency in question. Both of the above model-based parameterizations are intended for use in conjunction with empirical parameterizations relating effective slope variance and foam coverage to near-surface wind speed. These empirical parameterizations are the subject of a separate paper.
Method of Preparation AZP4330 PR Pattern with Edge Slope 40°
NASA Astrophysics Data System (ADS)
Wu, Jie; Zhao, Hongyuan; Yu, Yuanwei; Zhu, Jian
2018-03-01
When the edge which is under the multi-film is more steep or angular, the stress in the multilayer film near the edge is concentrated, this situation will greatly reduce the reliability of electronic components. And sometimes, we need some special structure such as a slope with a specific angle in the MEMS, so that the metal line can take the signal to the output pad through the slope instead of deep step. To cover these problems, the lithography method of preparing the structure with edge slope is studied. In this paper, based on the Kirchhoff scalar diffraction theory we try to change the contact exposure gap and the post-baking time at the specific temperature to find out the effect about the edge angle of the photoresist. After test by SEM, the results were presented by using AZP4330 photoresist, we can get the PR Pattern with edge slope 40° of the process and the specific process parameters.
NASA Astrophysics Data System (ADS)
Boldyrev, A. V.; Karelin, D. L.; Muljukin, V. L.
2016-11-01
Conducted numerical research of static characteristics of the rotary gate valve at different angles of its deviation. for this purpose were set different values of pressure differential on the valve depending on which, was determined the mass flow and torque on valve axes. The mathematical model is provided by continuity equations, average on Reynolds, Navier-Stokes and energy, the equation of the perfect gas, the equations of two-layer k-e of model of turbulence. When calculating the current near walls are used Wolfstein's model and the hybrid wall functions of Reichardt for the speed and temperature. The task is solved in three-dimensional statement with use of conditions of symmetry. The structure of the current is analyzed: zones of acceleration and flow separation, whirlwinds, etc. Noted growth of hydraulic resistance of the valve with reduction of slope angle of the valve and with the increase in mass flow. Established increase of torque with reduction of the deviation angle of the valve and with increase in the mass expense.
NASA Astrophysics Data System (ADS)
Song, Jungki; Heilmann, Ralf K.; Bruccoleri, Alexander R.; Hertz, Edward; Schatternburg, Mark L.
2017-08-01
We report progress toward developing a scanning laser reflection (LR) tool for alignment and period measurement of critical-angle transmission (CAT) gratings. It operates on a similar measurement principle as a tool built in 1994 which characterized period variations of grating facets for the Chandra X-ray Observatory. A specularly reflected beam and a first-order diffracted beam were used to record local period variations, surface slope variations, and grating line orientation. In this work, a normal-incidence beam was added to measure slope variations (instead of the angled-incidence beam). Since normal incidence reflection is not coupled with surface height change, it enables measurement of slope variations more accurately and, along with the angled-incidence beam, helps to reconstruct the surface figure (or tilt) map. The measurement capability of in-grating period variations was demonstrated by measuring test reflection grating (RG) samples that show only intrinsic period variations of the interference lithography process. Experimental demonstration for angular alignment of CAT gratings is also presented along with a custom-designed grating alignment assembly (GAA) testbed. All three angles were aligned to satisfy requirements for the proposed Arcus mission. The final measurement of roll misalignment agrees with the roll measurements performed at the PANTER x-ray test facility.
Kinematic adaptations of the hindfoot, forefoot, and hallux during cross-slope walking.
Damavandi, Mohsen; Dixon, Philippe C; Pearsall, David J
2010-07-01
Despite cross-slope surfaces being a regular feature of our environment, little is known about segmental adaptations required to maintain both balance and forward locomotion. The purpose of this study was to determine kinematic adaptations of the foot segments in relation to transverse (cross-sloped) walking surfaces. Ten young adult males walked barefoot along an inclinable walkway (level, 0° and cross-slope, 10°). Kinematic adaptations of hindfoot with respect to tibia (HF/TB), forefoot with respect to hindfoot (FF/HF), and hallux with respect to forefoot (HX/FF) in level walking (LW), inclined walking up-slope (IWU), i.e., the foot at the higher elevation, and inclined walking down-slope (IWD), i.e., the foot at the lower elevation, were measured. Multivariate analysis of variance (MANOVA) for repeated measures was used to analyze the data. In the sagittal plane, the relative FF/HF and HX/FF plantar/dorsiflexion angles differed across conditions (p=0.024 and p=0.026, respectively). More importantly, numerous frontal plane alterations occurred. For the HF/TB angle, inversion of IWU and eversion of IWD was seen at heel-strike (p<0.001). This pattern reversed with IWU showing eversion and IWD inversion in early stance (p=0.024). For the FF/HF angle, significant differences were observed in mid-stance with IWD revealing inversion while IWU was everted (p<0.004). At toe-off, the pattern switched to eversion of IWD and inversion of IWU (p=0.032). The information obtained from this study enhances our understanding of the kinematics of the human foot in stance during level and cross-slope walking. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Krasilnikov, S. S.; Basilevsky, A. T.; Ivanov, M. A.; Abdrakhimov, A. M.; Kokhanov, A. A.
2018-03-01
The paper presents estimates of the occurrence probability of slopes, whose steep surfaces could be dangerous for the landing of the Luna-Glob descent probe ( Luna-25) given the baseline of the span between the landing pads ( 3.5 m), for five potential landing ellipses. As a rule, digital terrain models built from stereo pairs of high-resolution images (here, the images taken by the Narrow Angle Camera onboard the Lunar Reconnaissance Orbiter (LROC NAC)) are used in such cases. However, the planned landing sites are at high latitudes (67°-74° S), which makes it impossible to build digital terrain models, since the difference in the observation angle of the overlapping images is insufficient at these latitudes. Because of this, to estimate the steepness of slopes, we considered the interrelation between the shaded area percentage in the image and the Sun angle over horizon at the moment of imaging. For five proposed landing ellipses, the LROC NAC images (175 images in total) with a resolution from 0.4 to 1.2 m/pixel were analyzed. From the results of the measurements in each of the ellipses, the dependence of the shaded area percentage on the solar angle were built, which was converted to the occurrence probability of slopes. For this, the data on the Apollo 16 landing region ware used, which is covered by both the LROC NAC images and the digital terrain model with high resolution. As a result, the occurrence probability of slopes with different steepness has been estimated on the baseline of 3.5 m for five landing ellipses according to the steepness categories of <7°, 7°-10°, 10°-15°, 15°-20°, and >20°.
Marginal Fit of Metal-Ceramic Copings: Effect of Luting Cements and Tooth Preparation Design.
de Almeida, Juliana Gomes Dos Santos Paes; Guedes, Carlos Gramani; Abi-Rached, Filipe de Oliveira; Trindade, Flávia Zardo; Fonseca, Renata Garcia
2017-12-22
To evaluate the effect of the triad finish line design, axial wall convergence angle, and luting cement on the marginal fit of metal copings used in metal-ceramic crowns. Schematic dies and their respective copings were cast in NiCr alloy. The dies exhibited the following finish line/convergence angle combinations: sloping shoulder/6°, sloping shoulder/20°, shoulder/6°, shoulder/20°. Marginal fit was evaluated under a stereomicroscope, before and after cementation. Copings were air-abraded with 50 μm Al 2 O 3 particles and cemented with Cimento de Zinco, RelyX U100, or Panavia F cements (n = 10/group). Data were square-root transformed and analyzed by 3-way factorial random effect model and Tukey's post hoc test (α = 0.05). Statistical analysis showed significance for the interactions finish line and convergence angle (p < 0.05), convergence angle and time (p < 0.001), and luting cement and time (p < 0.001). Sloping shoulder/20° provided the highest marginal discrepancy when compared to the other finish line/convergence angle combinations, which were statistically similar among each other. For both convergence angles and for all luting cements, the marginal discrepancy was significantly higher after cementation. Before and after cementation, 6° provided better marginal fit than 20°. After cementation, Panavia F provided higher marginal discrepancy than Cimento de Zinco. Lower convergence angle combined with shoulder and a low-consistency luting cement is preferable to cement metal copings. © 2017 by the American College of Prosthodontists.
Influences of geological parameters to probabilistic assessment of slope stability of embankment
NASA Astrophysics Data System (ADS)
Nguyen, Qui T.; Le, Tuan D.; Konečný, Petr
2018-04-01
This article considers influences of geological parameters to slope stability of the embankment in probabilistic analysis using SLOPE/W computational system. Stability of a simple slope is evaluated with and without pore–water pressure on the basis of variation of soil properties. Normal distributions of unit weight, cohesion and internal friction angle are assumed. Monte Carlo simulation technique is employed to perform analysis of critical slip surface. Sensitivity analysis is performed to observe the variation of the geological parameters and their effects on safety factors of the slope stability.
Means of Slope Retreat on the Na Pali Cliffs, Kauai, Hawaii
NASA Astrophysics Data System (ADS)
Osborn, G.; Sheardown, A.; Blay, C.
2016-12-01
The spectacular, 500 to 600 m high, deeply grooved escarpment referred to as the Na Pali cliffs, on the northwest coast of Kauai, requires a substrate competent enough to hold up high steep cliffs yet erodible enough to allow generation of wide, deep grooves. These opposing tendencies are afforded by weathering of originally strong basalt that keeps pace with erosion. The fluted cliffs maintain a rather consistent slope angle, generally 50-60°, whether they are close to the shoreline or have retreated some distance from it, indicating that the slopes are retreating parallel to themselves. Previous literature promotes groundwater sapping or waterfall-plunge-pool erosion as the chief means of valley-head retreat, but there is no evidence that either concept provides a general explanation for retreat of the fluted cliffs. The eroding cliffs maintain steepness because as much rock is eroded at the base as at the top, and transported sediment is washed completely out of the gully system. The thin-bedded basalts exposed in the steep flutes are decomposed into irregularly alternating fine sediment of low to moderate cohesion and thoroughly fractured beds or lenses of solid but chemically weathered rock, and covered with a veneer of sparse grass. Erosion proceeds by episodic removal of thin grass-covered surficial sheets of the weathering products. Some of this process may be facilitated by shallow mass movement, but probably most of the work is done by overland and channelized flow during intense rainstorms. The Na Pali coast experiences one-hour rainfalls of 2-2.5 inches (1 year recurrence interval) and 5-6 inches (100 year recurrence interval); experiments by others on basaltic soils in Molokai suggest such rain is more than enough to generate erosion-inducing overland flow. Between the deep grooves and the shoreline are slopes with lesser drainage densities and lesser slope angles. The rocks here are not distinguished from the rocks above in previous literature, and there is no reason to expect any difference in lithology. The lower-angle slopes may be erosional footslopes, genetically similar to desert pediments, left behind as the fluted cliffs retreat. On their uphill edges the lower-angle slopes are expanding in area as the cliffs retreat but at the coast the slopes are being consumed by wave action.
Influence of input device, work surface angle, and task on spine kinematics.
Riddell, Maureen F; Gallagher, Kaitlin M; McKinnon, Colin D; Callaghan, Jack P
2016-01-01
With the increase of tablet usage in both office and industrial workplaces, it is critical to investigate the influence of tablet usage on spine posture and movement. To quantify spine kinematics while participants interacted with a tablet or desktop computer. Fourteen participants volunteered for this study. Marker clusters were fixed onto body regions to analyze cervical and lumbar spine posture and sampled at 32 Hz (Optotrak Certus, NDI, Waterloo, Canada). Participants sat for one hour in total. Cervical and lumbar median angles and range of motion (10th to 90th % ile angles) were extracted from amplitude probability distribution functions performed on the angle data. Using a sloped desk surface at 15°, compared to a flat desk, influenced cervical flexion (p = 0.0228). Completing the form fill task resulted in the highest degree of cervical flexion (p = 0.0008) compared to the other tasks completed with cervical angles between 6.1°-8.5° higher than emailing and reading respectively. An interaction between device and task (p = 0.0061) was found for relative lumbar median spine angles. Increased lumbar flexion was recorded when using a computer versus a tablet to complete various tasks. Task influenced both cervical and lumbar spine posture with the highest cervical flexion occurring while completing a simulated data entry task. A work surface slope of 15° decreased cervical spine flexion compared to a horizontal work surface slope.
Postural Stability Margins as a Function of Support Surface Slopes.
Dutt-Mazumder, Aviroop; Slobounov, Seymon M; Challis, John Henry; Newell, Karl Maxim
2016-01-01
This investigation examined the effects of slope of the surface of support (35°, 30°, 20°, 10° Facing(Toe) Down, 0° Flat and 10°, 20°, 25° Facing (Toe) Up) and postural orientation on the margins of postural stability in quiet standing of young adults. The findings showed that the center of pressure-CoP (displacement, area and length) had least motion at the baseline (0° Flat) platform condition that progressively increased as a function of platform angle in both facing up and down directions. The virtual time to collision (VTC) dynamics revealed that the spatio-temporal margins to the functional stability boundary were progressively smaller and the VTC time series also more regular (SampEn-Sample Entropy) as slope angle increased. Surface slope induces a restricted stability region with lower dimension VTC dynamics that is more constrained when postural orientation is facing down the slope. These findings provide further evidence that VTC acts as a control variable in standing posture that is influenced by the emergent dynamics of the individual-environment-task interaction.
NASA Astrophysics Data System (ADS)
Alexander, Cici; Korstjens, Amanda H.; Hill, Ross A.
2018-03-01
Tree or canopy height is an important attribute for carbon stock estimation, forest management and habitat quality assessment. Airborne Laser Scanning (ALS) based on Light Detection and Ranging (LiDAR) has advantages over other remote sensing techniques for describing the structure of forests. However, sloped terrain can be challenging for accurate estimation of tree locations and heights based on a Canopy Height Model (CHM) generated from ALS data; a CHM is a height-normalised Digital Surface Model (DSM) obtained by subtracting a Digital Terrain Model (DTM) from a DSM. On sloped terrain, points at the same elevation on a tree crown appear to increase in height in the downhill direction, based on the ground elevations at these points. A point will be incorrectly identified as the treetop by individual tree crown (ITC) recognition algorithms if its height is greater than that of the actual treetop in the CHM, which will be recorded as the tree height. In this study, the influence of terrain slope and crown characteristics on the detection of treetops and estimation of tree heights is assessed using ALS data in a tropical forest with complex terrain (i.e. micro-topography) and tree crown characteristics. Locations and heights of 11,442 trees based on a DSM are compared with those based on a CHM. The horizontal (DH) and vertical displacements (DV) increase with terrain slope (r = 0.47 and r = 0.54 respectively, p < 0.001). The overestimations in tree height are up to 16.6 m on slopes greater than 50° in our study area in Sumatra. The errors in locations (DH) and tree heights (DV) are modelled for trees with conical and spherical tree crowns. For a spherical tree crown, DH can be modelled as R sin θ, and DV as R (sec θ - 1). In this study, a model is developed for an idealised conical tree crown, DV = R (tan θ - tan ψ), where R is the crown radius, and θ and ψ are terrain and crown angles respectively. It is shown that errors occur only when terrain angle exceeds the crown angle, with the horizontal displacement equal to the crown radius. Errors in location are seen to be greater for spherical than conical trees on slopes where crown angles of conical trees are less than the terrain angle. The results are especially relevant for biomass and carbon stock estimations in tropical forests where there are trees with large crown radii on slopes.
Gyre formation within embayments of a large lake (Lake Geneva, Switzerland)
NASA Astrophysics Data System (ADS)
Razmi, A.; Barry, D.; Bouffard, D.; Le Dantec, N.; Lemmin, U.; Wuest, A.
2013-12-01
Numerical simulations were carried out to examine gyre formation within open, wide lacustrine embayments. The present study was motivated by observed differences in gyre formation within two open and wide embayments (located at Vidy and Morges in Lake Geneva, Switzerland). These two embayments are located within about 3 km of each other on the northern shore of Lake Geneva, and are subjected to similar pelagic currents. Vidy is deeper and has a greater aspect ratio than Morges. The flow field in the embayments was modeled using a previously validated 3D hydrodynamic model (Delft3D-FLOW). The model solved the Reynolds-Averaged Navier-Stokes equations, combined with a k-ɛ turbulence closure in σ (lakebed-following) coordinates. Our study focused on the influence of the embayment geometry on the (uniform) longshore (pelagic) current, specifically the occurrence and magnitude of circulation within the embayment. We built a set of numerical experiments using synthetic embayments, and systematically examined embayment geometry, thereby capturing the differences between the Vidy and Morges embayments. The numerical experiments considered single rectilinear embayments with different aspect ratios (i.e., 1-6), depth, shore-parallel flow rates, and embayment corner angle between 0°-50°. The circulation magnitude changes abruptly for an angle of about 40°. Embayments with angles greater than 40° have much greater circulation then those with lesser angles, other factors remaining the same. Of the factors considered (i.e., aspect ratio, offshore current velocity, corner angle, bottom slope, and viscosity), bottom slope and the viscosity have almost no impact on embayment circulation. For uniform offshore current patterns, gyres form in embayments with large aspect ratios (up to ~3). For the Vidy and Morges embayments, the results showed that gyre formation is more likely in Morges due to its smaller aspect ratio, a finding that is supported by field data gathered in drifter studies. For example, simultaneous drifter releases in 2011 showed parallel-to-shore currents in the Vidy embayment and a gyre in Morges. KEYWORDS: Hydrodynamics; Open Embayment; Flow Separation; Gyre; Topography; Lake Geneva.
Shen, Dazhong; Kang, Qi; Li, Xiaoyu; Cai, Hongmei; Wang, Yuandong
2007-06-19
This paper presents different experimental results of the influence of an immersion angle (theta, the angle between the surface of a quartz crystal resonator and the horizon) on the resonant frequency of a quartz crystal microbalance (QCM) sensor exposed one side of its sensing surfaces to liquid. The experimental results show that the immersion angle is an added factor that may influence the frequency of the QCM sensor. This type of influence is caused by variation of the reflection conditions of the longitudinal wave between the QCM sensor and the walls of the detection cell. The frequency shifts, measured by varying theta, are related to the QCM sensor used. When a QCM sensor with a weak longitudinal wave is used, its resonant frequency is nearly independent of theta. But, if a QCM sensor with a strong longitudinal wave is employed, the immersion angle is a potential error source for the measurements performed on the QCM sensor. When the reflection conditions of the longitudinal wave are reduced, the influence of theta on the resonant frequency of the QCM sensor is negligible. The slope of the plot of frequency shifts (deltaF) versus (rho eta)(1/2), the square root of the product of solution density (rho) and viscosity (eta), may be influenced by theta in a single experiment for the QCM sensor with a strong longitudinal wave in low viscous liquids, which can however, be effectively weakened by using the averaged values of reduplicated experiments. In solutions with a large (rho eta)(1/2) region (0-55 wt% sucrose solution as an example, with rho value from 1.00 to 1.26 g cm(-3) and eta value from 0.01 to 0.22 g cm(-1) s(-1), respectively), the slope of the plot of deltaF versus (rho eta)(1/2) is independent of theta even for the QCM sensor with a strong longitudinal wave in a single experiment. The influence of theta on the resonant frequency of the QCM sensor should be taken into consideration in its applications in liquid phase.
The Relationship Between Osteoarthritis of the Lumbar Facet Joints and Lumbosacropelvic Morphology.
Sahin, Mehmet Sukru; Ergün, Adviye; Aslan, Akın
2015-10-01
Cross-sectional study. To investigate the relation between lumbosacropelvic morphology and the presence and degree of facet joint degeneration. Osteoarthritis of the facet joints is one of the most common degenerative changes in the spine. It is considered to be formed secondary to repetitive stress or trauma and spinal deformity with secondary overload. The cause(s) of facet joints osteoarthritis, however, have not been clearly identified. Abdominal computed tomography (CT) images of 723 patients which were taken between the years 2010 and 2014 were evaluated retrospectively. Patients with prior lumbar spinal surgery, serious congenital anomalies on CT, incomplete or complete lumbosacral transition, severe scoliosis, were excluded from the study. To eliminate the age- and sex-related differences in spinopelvic morphology, a study group was formed of the remaining subjects by including patients from a specific age group (30-35 yr) and same sex (females). For each patient the presence and grade of facet joint degeneration was investigated. In addition, pelvic incidence (PI), sacral slope and the angles of L1-L5 lumbar lordosis, sacral table, L5 vertebra posterior, and sacral kyphosis were measured for each patient. Sacral slope, sacral kyphosis, and L1-L5 lumbar lordosis angle were significantly higher in patients with osteoarthritic compared with normal subjects (P = 0.015, P = 0.018, P = 0.016). L5 vertebra posterior and sacral table angle were found to be significantly lower in patients with osteoarthritic than in normal subjects (P = 0.019, P = 0.007). The degree of facet joint degeneration was noticed to increase parallel to the decrease in the sacral table angle and L5 vertebra posterior angle, and to the increase in the L1-L5 lumbar lordosis, PI, and sacral slope. A close relation exists between the presence and degree of degeneration in the facet joint and lumbosacral pelvic morphology. Prevalence and degree of the degeneration in facet joint increases as the angle of sacral slope, L1-L5 lumbar lordosis, and PI increases or the angle of sacral table and L5 vertebra posterior decreases. 4.
Shi, Xiaojun; Shen, Bin; Kang, Pengde; Yang, Jing; Zhou, Zongke; Pei, Fuxing
2013-12-01
To evaluate and quantify the effect of the tibial slope on the postoperative maximal knee flexion and stability in the posterior-stabilized total knee arthroplasty (TKA). Fifty-six patients (65 knees) who had undergone TKA with the posterior-stabilized prostheses were divided into the following 3 groups according to the measured tibial slopes: Group 1: ≤4°, Group 2: 4°-7° and Group 3: >7°. The preoperative range of the motion, the change in the posterior condylar offset, the elevation of the joint line, the postoperative tibiofemoral angle and the preoperative and postoperative Hospital for Special Surgery (HSS) scores were recorded. The tibial anteroposterior translation was measured using the Kneelax 3 Arthrometer at both the 30° and the 90° flexion angles. The mean values of the postoperative maximal knee flexion were 101° (SD 5), 106° (SD 5) and 113° (SD 9) in Groups 1, 2 and 3, respectively. A significant difference was found in the postoperative maximal flexion between the 3 groups (P < 0.001). However, no significant differences were found between the 3 groups in the postoperative HSS scores, the changes in the posterior condylar offset, the elevation of the joint line or the tibial anteroposterior translation at either the 30° or the 90° flexion angles. A 1° increase in the tibial slope resulted in a 1.8° flexion increment (r = 1.8, R (2) = 0.463, P < 0.001). An increase in the posterior tibial slope can significantly increase the postoperative maximal knee flexion. The tibial slope with an appropriate flexion and extension gap balance during the operation does not affect the joint stability.
Ibrahim, Ahmad Najmuddin; Aoshima, Shinichi; Shiroma, Naoji; Fukuoka, Yasuhiro
2016-01-01
Typical rovers with wheels equipped with conventional grousers are prone to getting stuck in unconsolidated sandy dune inclines as the wheels tend to sink into the sand. This phenomenon is caused by the motion of the grouser through the sand during the latter half of the rotation, in which the grouser pushes the sand from underneath the wheel upwards and towards the backside of the wheel. This creates a space that the wheel can sink into. To minimize sand movement and subsequent sinkage, we propose the concept of using an “assistive grouser”, which is attached to the side of a conventional rover wheel. The assistive grouser is designed to be able to autonomously maintain a uniform angle relative to the rover body independent of the rotation of the wheels. Rotating the wheel causes the assistive grousers to automatically penetrate into the sand slope surface at a constant angle of attack, thereby acting as an anchor and providing traction for the wheel. Maintaining a uniform grouser angle as opposed to a rotating motion also assists in extracting the grouser out of the sand without moving the sand towards the back of the wheel. Moreover, the angle of the assistive grousers is held constantly by a single dedicated motor, meaning that the angle of the assistive grousers can be optimized to provide the least amount of sinkage for each slope angle. The experimental results showed that for slope angles of 0–30 degrees, the rover equipped with the proposed assistive grousers experienced significantly less sinkage and consumed less current compared to the rover equipped with conventional grousers. PMID:27649196
NASA Astrophysics Data System (ADS)
Eglit, M. E.; Yakubenko, A. E.; Yakubenko, T. A.
2017-10-01
This paper deals with the mathematical and numerical modeling of the propagation stage of geophysical gravity-driven flows, such as snow avalanches, mudflows, and rapid landslides. New mathematical models are presented which are based on full, not-depth-averaged equations of mechanics of continuous media. The models account for three important issues: non-Newtonian rheology of the moving material, entrainment of the bed material by the flow, and turbulence. The main objective is to investigate the effect of these three factors on the flow dynamics and on the value of the entrainment rate. To exclude the influence of many other factors, e.g., the complicated slope topography, only the motion down a long uniform slope with a constant inclination angle is studied numerically. Moreover, the entire flow from the front to the rear area was not modeled, but only its middle part where the flow is approximately uniform in length. One of the qualitative results is that in motion along homogeneous slope the mass entrainment increases the flow velocity and depth while the entrainment rate at large time tends to become constant which depends on the physical properties of the flow and the underlying material but not on the current values of the flow velocity and depth.
NASA Astrophysics Data System (ADS)
Poulos, M. J.; Pierce, J. L.; McNamara, J. P.; Flores, A. N.; Benner, S. G.
2015-12-01
Terrain aspect alters the spatial distribution of insolation across topography, driving eco-pedo-hydro-geomorphic feedbacks that can alter landform evolution and result in valley asymmetries for a suite of land surface characteristics (e.g. slope length and steepness, vegetation, soil properties, and drainage development). Asymmetric valleys serve as natural laboratories for studying how landscapes respond to climate perturbation. In the semi-arid montane granodioritic terrain of the Idaho batholith, Northern Rocky Mountains, USA, prior works indicate that reduced insolation on northern (pole-facing) aspects prolongs snow pack persistence, and is associated with thicker, finer-grained soils, that retain more water, prolong the growing season, support coniferous forest rather than sagebrush steppe ecosystems, stabilize slopes at steeper angles, and produce sparser drainage networks. We hypothesize that the primary drivers of valley asymmetry development are changes in the pedon-scale water-balance that coalesce to alter catchment-scale runoff and drainage development, and ultimately cause the divide between north and south-facing land surfaces to migrate northward. We explore this conceptual framework by coupling land surface analyses with statistical modeling to assess relationships and the relative importance of land surface characteristics. Throughout the Idaho batholith, we systematically mapped and tabulated various statistical measures of landforms, land cover, and hydroclimate within discrete valley segments (n=~10,000). We developed a random forest based statistical model to predict valley slope asymmetry based upon numerous measures (n>300) of landscape asymmetries. Preliminary results suggest that drainages are tightly coupled with hillslopes throughout the region, with drainage-network slope being one of the strongest predictors of land-surface-averaged slope asymmetry. When slope-related statistics are excluded, due to possible autocorrelation, valley slope asymmetry is most strongly predicted by asymmetries of insolation and drainage density, which generally supports a water-balance based conceptual model of valley asymmetry development. Surprisingly, vegetation asymmetries had relatively low predictive importance.
NASA Astrophysics Data System (ADS)
Lai, Xing-ping; Shan, Peng-fei; Cai, Mei-feng; Ren, Fen-hua; Tan, Wen-hui
2015-01-01
High-steep slope stability and its optimal excavation design in Shuichang open pit iron mine were analyzed based on a large 3D physical simulation technique. An optimal excavation scheme with a relatively steeper slope angle was successfully implemented at the northwest wall between Nos. 4 and 5 exploration lines of Shuichang Iron Mine, taking into account the 3D scale effect. The physico-mechanical properties of rock materials were obtained by laboratory tests conducted on sample cores from exploration drilling directly from the iron mine. A porous rock-like composite material was formed for the model, and the mechanical parameters of the material were assessed experimentally; specifically, the effect of water on the sample was quantitatively determined. We adopted an experimental setup using stiff modular applied static loading to carry out a visual excavation of the slope at a random depth. The setup was equipped with acoustic emission (AE) sensors, and the experiments were monitored by crack optical acquirement, ground penetrating radar, and close-field photogrammetry to investigate the mechanisms of rock-mass destabilization in the high-steep slope. For the complex study area, the model results indicated a clear correlation between the model's destabilization resulting from slope excavation and the collected monitoring information. During the model simulation, the overall angle of the slope increased by 1-6 degrees in different sections. Dramatically, the modeled excavation scheme saved over 80 million tons of rock from extraction, generating enormous economic and ecological benefits.
NASA Astrophysics Data System (ADS)
Maleszewski, C.; McMillan, R.; Smith, P.
2012-12-01
We are measuring the polarization of asteroids with the SPOL polarimeter of Steward Observatory. With monthly access to the instrument, we can obtain many observations throughout phase angle. This is in contrast to other recent work that had to rely on aggregate properties of targets of similar taxonomic type. Comparing individual objects to these aggregate results may reveal differences of regolith properties from object to object. Both the phase angle and spectral dependence of polarization are being measured. SPOL provides simultaneous coverage from 0.40-0.75 microns, equivalent to BVR filters. Three phase curves thus reveal differences of phase angle dependences with respect to wavelength. The spectral dependence of the linear polarization is determined according to a linear trend previously used to describe the dependence for Main Belt Asteroids (MBAs) in various taxonomic classes (Belskaya et al. 2009). The slopes of these linear trends vs. phase angle are also investigated as was also done in the Belskaya analysis for MBAs in the C-, M-, and S-types. Two initial objects of interest are the NEAs (1036) Ganymed and (5143) Heracles. The taxonomic types of Ganymed and Heracles are S-type and Q-type respectively (DeMeo et al. 2009). For Ganymed, twelve observations were made between 2011 September and 2012 March. These include observations below ten degrees phase angle, which are currently lacking in the polarimetric databases. The positive branch of Ganymed's polarization phase curve behaved similarly across SPOL's wavelength range. But for wavelengths associated with a typical B-filter, the negative branch is more shallow and narrow. The negative phase branch of Ganymed is smaller compared to the aggregate phase curve of S-types determined by Gil-Hutton and Cañada-Assandri (2011). The linear polarization decreases with increasing wavelength at all observed phase angles. As the phase angle increases, the slope of the wavelength dependence of polarization becomes steeper. This is similar to the behavior seen in S-type MBAs, except that the trend in phase angle is less pronounced in the MBAs. For Heracles, high phase angle observations were made in the first half of 2012. The slope of the positive branch of Heracles's phase angle curve is consistent with our Ganymed measurements. Slopes of Heracles' spectral dependence follow similar trends to our Ganymed results and the aggregate MBA data. However, the magnitudes of the Heracles slopes are lower. Because differences of spectra between these asteroid types are thought to be due to resurfacing, that process may affect the polarimetric spectral dependence as well. Further polarimetric studies of S-, Sq- and Q-type asteroids and spectroscopic surveys designed to classify additional Q-types are thus encouraged. This research is funded by the Brinson Foundation of Chicago, Illinois. Links to Cited Material: Belskaya et al. 2009: http://adsabs.harvard.edu/abs/2009Icar..199...97B DeMeo et al. 2009: http://adsabs.harvard.edu/abs/2009Icar..202..160D Gil-Hutton and Cañada-Assandri 2011: http://adsabs.harvard.edu/abs/2011A%26A...529A..86G
Kim, Do Yeon; Moon, Eun Su; Park, Jin Oh; Chong, Hyon Su; Lee, Hwan Mo; Moon, Seong Hwan; Kim, Sung Hoon; Kim, Hak Sun
2016-10-01
Retrospective study. To report on neuromuscular patients with preserved walking ability, but forward bending of the body due to thoracic lordosis, and to suggest thoracic lordosis correction as the surgical treatment. It is an established fact that lumbar lordosis or pelvic parameter is directly related to thoracic sagittal balance. However, the reverse relationship has not been fully defined yet. Loss of thoracic kyphosis results in positive sagittal balance, which causes walking difficulty. Neuromuscular patients with thoracic lordosis have not been reported yet, and there have been no reports on their surgical treatments. This study analyzed 8 patients treated with thoracic lordosis correction surgery. Every patient was diagnosed with muscular dystrophy. In thoracic lordosis correction surgery, anterior release was performed in the first stage and posterior segmental instrumentation was performed in the second stage. Radiographic parameters were compared and walking ability was evaluated with gait analysis. All patients were classified according to the modified Rancho Los Amigos Hospital system preoperatively and 2 years postoperatively to evaluate functional ability. The average follow-up period was 2.9 years. Before surgery, the mean thoracic sagittal alignment was -2.1-degree lordosis, the mean Cobb angle and sacral slope increased to 36.3 and 56.6 degrees, respectively. The anterior pelvic tilt in gait analysis was 29.3 degrees. At last follow-up after surgery, the mean thoracic sagittal alignment changed to 12.6-degree kyphosis, and the Cobb angle and sacral slope decreased to 18.9 and 39.5 degrees, respectively. Lumbar lordosis and the sacral slope showed significant positive correlation (P<0.001). The improvement in thoracic lordosis showed a significant correlation to the preoperative flexibility of the major curve (P=0.028). The anterior pelvic tilt in gait analysis improved to 15.4 degrees. The functional ability improved in 2 (50%) of 4 patients in class 2 and maintained in remaining 6 patients 2 years after surgery. Thoracic lordosis correction surgery in neuromuscular scoliosis patients with thoracic lordosis improved the sacral slope in the standing position and the anterior pelvic tilt in gait. Sagittal imbalance was compensated by the spinopelvic mechanism, and back and hip extensor muscles seem to play a major role in this compensation.
Using sky radiances measured by ground based AERONET Sun-Radiometers for cirrus cloud detection
NASA Astrophysics Data System (ADS)
Sinyuk, A.; Holben, B. N.; Eck, T. F.; Slutsker, I.; Lewis, J. R.
2013-12-01
Screening of cirrus clouds using observations of optical depth (OD) only has proven to be a difficult task due mostly to some clouds having temporally and spatially stable OD. On the other hand, the sky radiances measurements which in AERONET protocol are taken throughout the day may contain additional cloud information. In this work the potential of using sky radiances for cirrus cloud detection is investigated. The detection is based on differences in the angular shape of sky radiances due to cirrus clouds and aerosol (see Figure). The range of scattering angles from 3 to 6 degrees was selected due to two primary reasons: high sensitivity to cirrus clouds presence, and close proximity to the Sun. The angular shape of sky radiances was parametrized by its curvature, which is a parameter defined as a combination of the first and second derivatives as a function of scattering angle. We demonstrate that a slope of the logarithm of curvature versus logarithm of scattering angle in this selected range of scattering angles is sensitive to cirrus cloud presence. We also demonstrate that restricting the values of the slope below some threshold value can be used for cirrus cloud screening. The threshold value of the slope was estimated using collocated measurements of AERONET data and MPLNET lidars.
Hydrological survey and modeling of a landslide in Borgata Gros (Bussoleno, Italy)
NASA Astrophysics Data System (ADS)
Pognant, Davide; Canone, Davide; Previati, Maurizio; Bevilacqua, Ivan
2010-05-01
The instability of the slopes is a problem of major concern in the mountain areas. The aim of this work is the individuation of the depth of soil layers with low safety coefficient (Fs), through the evaluation of the Infinity slope stability under steady unsaturated seepage conditions model proposed by Ning Lu and Jonathan Godt (2008), employing an experimental dataset. The infinite slope stability under steady unsaturated conditions proposed by Lu and Godt, (2008) is a model that simulates the soil behavior during precipitations in function of hydrological and physical parameters of soil, such as porosity, texture, bulk density and hydraulic conductivity. The data were collected on a landslide in Borgata Gros (Bussoleno, Torino) originated during the flood occurred in Northern Italy in the Autumn 2000. The intense and abundant precipitations caused the erosion of a big part of the top soil and the detachment of a landslide in correspondence of the change of inclination in a meadow facing Borgata Gros. The land slide interested an area of 10000 m2, with a volume of material estimated in 8000-9000 m3. Field infiltration tests were performed on 15 stations and soil samples were collected for the determination of the physical properties of the soil. Furthermore a campaign of water contents measurements by TDR (Time Domain Reflectometry) was performed from May to October 2008. A total of 45 TDR probes were installed on the land slide area. Each station is composed by three vertically installed probes with length of 15 cm, 30 cm and 60 cm. The hydraulic conductivity was calculated fitting the measured infiltrations rates and water content data on the Green and Ampt (1911) infiltration model. The Lu and Godt, (2008) model has been programmed to show the trend of Fs for five values of steady infiltration. Four of them were referred to precipitations of different intensity taken by the meteorological station of Bussoleno, and the fifth value was imposed equal to a precipitation sufficiently intense to cause an infiltration rate corresponding to the hydraulic conductivity at saturation. The Infinite slope stability under unsaturated conditions method proved to be a very useful tool for the prevision of landslides, especially for the situations in which the angle of inclination of the slope is similar to the internal friction resistance angle. The Safety Factor is mainly function of the relation between the above-mentioned angles: when the slope exceed the internal friction angle of 10 ° , in such cases the Fs is under the critical value of 1 for the entire soil profile. On the contrary when the inclination is equal or inferior to the frictional angle, the slope remains in safety conditions. The method is therefore especially useful in the intermediate situations, when the difference between angles is very low.
Shi, Chong; Xu, Fu-gang
2013-01-01
Two important features of the high slopes at Gushui Hydropower Station are layered accumulations (rock-soil aggregate) and multilevel toppling failures of plate rock masses; the Gendakan slope is selected for case study in this paper. Geological processes of the layered accumulation of rock and soil particles are carried out by the movement of water flow; the main reasons for the toppling failure of plate rock masses are the increasing weight of the upper rock-soil aggregate and mountain erosion by river water. Indoor triaxial compression test results show that, the cohesion and friction angle of the rock-soil aggregate decreased with the increasing water content; the cohesion and the friction angle for natural rock-soil aggregate are 57.7 kPa and 31.3° and 26.1 kPa and 29.1° for saturated rock-soil aggregate, respectively. The deformation and failure mechanism of the rock-soil aggregate slope is a progressive process, and local landslides will occur step by step. Three-dimensional limit equilibrium analysis results show that the minimum safety factor of Gendakan slope is 0.953 when the rock-soil aggregate is saturated, and small scale of landslide will happen at the lower slope. PMID:24082854
Slope stability analysis using limit equilibrium method in nonlinear criterion.
Lin, Hang; Zhong, Wenwen; Xiong, Wei; Tang, Wenyu
2014-01-01
In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock σ ci , and the parameter of intact rock m i . There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when σ ci is relatively small, the relation between F and σ ci is nonlinear, but when σ ci is relatively large, the relation is linear; with the increase of m i , F decreases first and then increases.
Slope Stability Analysis Using Limit Equilibrium Method in Nonlinear Criterion
Lin, Hang; Zhong, Wenwen; Xiong, Wei; Tang, Wenyu
2014-01-01
In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock σ ci, and the parameter of intact rock m i. There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when σ ci is relatively small, the relation between F and σ ci is nonlinear, but when σ ci is relatively large, the relation is linear; with the increase of m i, F decreases first and then increases. PMID:25147838
Zhou, Jia-wen; Shi, Chong; Xu, Fu-gang
2013-01-01
Two important features of the high slopes at Gushui Hydropower Station are layered accumulations (rock-soil aggregate) and multilevel toppling failures of plate rock masses; the Gendakan slope is selected for case study in this paper. Geological processes of the layered accumulation of rock and soil particles are carried out by the movement of water flow; the main reasons for the toppling failure of plate rock masses are the increasing weight of the upper rock-soil aggregate and mountain erosion by river water. Indoor triaxial compression test results show that, the cohesion and friction angle of the rock-soil aggregate decreased with the increasing water content; the cohesion and the friction angle for natural rock-soil aggregate are 57.7 kPa and 31.3° and 26.1 kPa and 29.1° for saturated rock-soil aggregate, respectively. The deformation and failure mechanism of the rock-soil aggregate slope is a progressive process, and local landslides will occur step by step. Three-dimensional limit equilibrium analysis results show that the minimum safety factor of Gendakan slope is 0.953 when the rock-soil aggregate is saturated, and small scale of landslide will happen at the lower slope.
Oil Slick Observation at Low Incidence Angles in Ku-Band
NASA Astrophysics Data System (ADS)
Panfilova, M. A.; Karaev, V. Y.; Guo, Jie
2018-03-01
On the 20 April 2010 the oil platform Deep Water Horizon in the Gulf of Mexico suffered an explosion during the final phases of drilling an exploratory well. As a result, an oil film covered the sea surface area of several thousand square kilometers. In the present paper the data of the Ku-band Precipitation Radar, which operates at low incidence angles, were used to explore the oil spill event. The two-scale model of the scattering surface was used to describe radar backscatter from the sea surface. The algorithm for retrieval of normalized radar cross section at nadir and the total slope variance of large-scale waves compared to the wavelength of electromagnetic wave (22 mm) was developed for the Precipitation Radar swath. It is shown that measurements at low incidence angles can be used for oil spill detection. This is the first time that the dependence of mean square slope of large-scale waves on wind speed has been obtained for oil slicks from Ku-band data, and compared to mean square slope obtained by Cox and Munk from optical data.
Zhang, Lingli; Zeng, Li; Guo, Yumeng
2018-01-01
Restricted by the scanning environment in some CT imaging modalities, the acquired projection data are usually incomplete, which may lead to a limited-angle reconstruction problem. Thus, image quality usually suffers from the slope artifacts. The objective of this study is to first investigate the distorted domains of the reconstructed images which encounter the slope artifacts and then present a new iterative reconstruction method to address the limited-angle X-ray CT reconstruction problem. The presented framework of new method exploits the structural similarity between the prior image and the reconstructed image aiming to compensate the distorted edges. Specifically, the new method utilizes l0 regularization and wavelet tight framelets to suppress the slope artifacts and pursue the sparsity. New method includes following 4 steps to (1) address the data fidelity using SART; (2) compensate for the slope artifacts due to the missed projection data using the prior image and modified nonlocal means (PNLM); (3) utilize l0 regularization to suppress the slope artifacts and pursue the sparsity of wavelet coefficients of the transformed image by using iterative hard thresholding (l0W); and (4) apply an inverse wavelet transform to reconstruct image. In summary, this method is referred to as "l0W-PNLM". Numerical implementations showed that the presented l0W-PNLM was superior to suppress the slope artifacts while preserving the edges of some features as compared to the commercial and other popular investigative algorithms. When the image to be reconstructed is inconsistent with the prior image, the new method can avoid or minimize the distorted edges in the reconstructed images. Quantitative assessments also showed that applying the new method obtained the highest image quality comparing to the existing algorithms. This study demonstrated that the presented l0W-PNLM yielded higher image quality due to a number of unique characteristics, which include that (1) it utilizes the structural similarity between the reconstructed image and prior image to modify the distorted edges by slope artifacts; (2) it adopts wavelet tight frames to obtain the first and high derivative in several directions and levels; and (3) it takes advantage of l0 regularization to promote the sparsity of wavelet coefficients, which is effective for the inhibition of the slope artifacts. Therefore, the new method can address the limited-angle CT reconstruction problem effectively and have practical significance.
Morphometry of terrestrial shield volcanoes
NASA Astrophysics Data System (ADS)
Grosse, Pablo; Kervyn, Matthieu
2018-03-01
Shield volcanoes are described as low-angle edifices built primarily by the accumulation of successive lava flows. This generic view of shield volcano morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galápagos). Here, the morphometry of 158 monogenetic and polygenetic shield volcanoes is analyzed quantitatively from 90-meter resolution SRTM DEMs using the MORVOLC algorithm. An additional set of 24 lava-dominated 'shield-like' volcanoes, considered so far as stratovolcanoes, are documented for comparison. Results show that there is a large variation in shield size (volumes from 0.1 to > 1000 km3), profile shape (height/basal width (H/WB) ratios mostly from 0.01 to 0.1), flank slope gradients (average slopes mostly from 1° to 15°), elongation and summit truncation. Although there is no clear-cut morphometric difference between shield volcanoes and stratovolcanoes, an approximate threshold can be drawn at 12° average slope and 0.10 H/WB ratio. Principal component analysis of the obtained database enables to identify four key morphometric descriptors: size, steepness, plan shape and truncation. Hierarchical cluster analysis of these descriptors results in 12 end-member shield types, with intermediate cases defining a continuum of morphologies. The shield types can be linked in terms of growth stages and shape evolution, related to (1) magma composition and rheology, effusion rate and lava/pyroclast ratio, which will condition edifice steepness; (2) spatial distribution of vents, in turn related to the magmatic feeding system and the tectonic framework, which will control edifice plan shape; and (3) caldera formation, which will condition edifice truncation.
Opposition effect of the Moon from LROC WAC data
NASA Astrophysics Data System (ADS)
Velikodsky, Yu. I.; Korokhin, V. V.; Shkuratov, Yu. G.; Kaydash, V. G.; Videen, Gorden
2016-09-01
LROC WAC images acquired in 5 bands of the visible spectral range were used to study the opposition effect for two mare and two highland regions near the lunar equator. Opposition phase curves were extracted from the images containing the opposition by separating the phase-curve effect from the albedo pattern by comparing WAC images at different phase angles (from 0° to 30°). Akimov's photometric function and the NASA Digital Terrain Model GLD100 were used in the processing. It was found that phase-curve slopes at small phase angles directly correlate with albedo, while at larger phase angles, they are anti-correlated. We suggest a parameter to characterize the coherent-backscattering component of the lunar opposition surge, which is defined as the maximum phase angle for which the opposition-surge slope increases with growing albedo. The width of the coherent-backscattering opposition effect varies from approximately 1.2° for highlands in red light to 3.9° for maria in blue light. The parameter depends on albedo, which is in agreement with the coherent-backscattering theory. The maximum amplitude of the coherent opposition effect is estimated to be near 8%. Maps of albedo and phase-curve slope at phase angles larger than those, at which the coherent-backscattering occurs, were built for the areas under study. Absolute calibration of WAC images was compared with Earth-based observations: the WAC-determined albedo is very close to the mean lunar albedo calculated using available Earth-based observations.
Dictionary-learning-based reconstruction method for electron tomography.
Liu, Baodong; Yu, Hengyong; Verbridge, Scott S; Sun, Lizhi; Wang, Ge
2014-01-01
Electron tomography usually suffers from so-called “missing wedge” artifacts caused by limited tilt angle range. An equally sloped tomography (EST) acquisition scheme (which should be called the linogram sampling scheme) was recently applied to achieve 2.4-angstrom resolution. On the other hand, a compressive sensing inspired reconstruction algorithm, known as adaptive dictionary based statistical iterative reconstruction (ADSIR), has been reported for X-ray computed tomography. In this paper, we evaluate the EST, ADSIR, and an ordered-subset simultaneous algebraic reconstruction technique (OS-SART), and compare the ES and equally angled (EA) data acquisition modes. Our results show that OS-SART is comparable to EST, and the ADSIR outperforms EST and OS-SART. Furthermore, the equally sloped projection data acquisition mode has no advantage over the conventional equally angled mode in this context.
Kitaoka, Yasushi; Tanito, Masaki; Yokoyama, Yu; Nitta, Koji; Katai, Maki; Omodaka, Kazuko; Nakazawa, Toru
2018-01-01
The Glaucoma Stereo Analysis Study, a cross-sectional multicenter collaborative study, used a stereo fundus camera (nonmyd WX) to assess various morphological parameters of the optic nerve head (ONH) in glaucoma patients. We compared the associations of each parameter between the visual field loss progression group and no-progression group. The study included 187 eyes of 187 patients with primary open-angle glaucoma or normal-tension glaucoma. We divided the mean deviation (MD) slope values of all patients into the progression group (<-0.3 dB/year) and no-progression group (≧-0.3 dB/year). ONH morphological parameters were calculated with prototype analysis software. The correlations between glaucomatous visual field progression and patient characteristics or each ONH parameter were analyzed with Spearman's rank correlation coefficient. The MD slope averages in the progression group and no-progression group were -0.58 ± 0.28 dB/year and 0.05 ± 0.26 dB/year, respectively. Among disc parameters, vertical disc width (diameter), disc area, cup area, and cup volume in the progression group were significantly less than those in the no-progression group. Logistic regression analysis revealed a significant association between the visual field progression and disc area (odds ratio 0.49/mm 2 disc area). A smaller disc area may be associated with more rapid glaucomatous visual field progression.
SURBAL: computerized metes and bounds surveying
Roger N. Baughman; James H. Patric
1970-01-01
A computer program has been developed at West Virginia University for use in metes and bounds surveying. Stations, slope distances, slope angles, and bearings are primary information needed for this program. Other information needed may include magnetic deviation, acceptable closure error, desired map scale, and title designation. SURBAL prints out latitudes and...
NASA Astrophysics Data System (ADS)
Ismail, Mohd Ashraf Mohamad; Hamzah, Nur Hasliza
2017-07-01
Rainfall has been considered as the major cause of the slope failure. The mechanism leading to slope failures included the infiltration process, surface runoff, volumetric water content and pore-water pressure of the soil. This paper describes a study in which simulated rainfall events were used with 2-dimensional soil column to study the response of unsaturated soil behavior based on different slope angle. The 2-dimensional soil column is used in order to demonstrate the mechanism of the slope failure. These unsaturated soil were tested with four different slope (15°, 25°, 35° and 45°) and subjected to three different rainfall intensities (maximum, mean and minimum). The following key results were obtained: (1) the stability of unsaturated soil decrease as the rainwater infiltrates into the soil. Soil that initially in unsaturated state will start to reach saturated state when rainwater seeps into the soil. Infiltration of rainwater will reduce the matric suction in the soil. Matric suction acts in controlling soil shear strength. Reduction in matric suction affects the decrease in effective normal stress, which in turn diminishes the available shear strength to a point where equilibrium can no longer be sustained in the slope. (2) The infiltration rate of rainwater decreases while surface runoff increase when the soil nearly achieve saturated state. These situations cause the soil erosion and lead to slope failure. (3) The steepness of the soil is not a major factor but also contribute to slope failures. For steep slopes, rainwater that fall on the soil surface will become surface runoff within a short time compare to the water that infiltrate into the soil. While for gentle slopes, water that becomes surface runoff will move slowly and these increase the water that infiltrate into the soil.
Zhang, Jing Tao; Li, Jia Qi; Niu, Rui Jie; Liu, Zhao; Tong, Tong; Shen, Yong
2017-04-01
To determine whether radiological, clinical, and demographic findings in patients with cervical spondylotic myelopathy (CSM) were independently associated with loss of cervical lordosis (LCL) after laminoplasty. The prospective study included 41 consecutive patients who underwent laminoplasty for CSM. The difference in C2-7 Cobb angle between the postoperative and preoperative films was used to evaluate change in cervical alignment. Age, sex, body mass index (BMI), smoking history, preoperative C2-7 Cobb angle, T1 slope, C2-7 range of motion (C2-7 ROM), C2-7 sagittal vertical axis (C2-7 SVA), and cephalad vertebral level undergoing laminoplasty (CVLL) were assessed. Data were analyzed using Pearson and Spearman correlation test, and univariate and stepwise multivariate linear regression. T1 slope, C2-7 SVA, and CVLL significantly correlated with LCL (P < 0.001), whereas age, BMI, and preoperative C2-7 Cobb angle did not. In multiple linear regression analysis, higher T1 slope (B = 0.351, P = 0.037), greater C2-7 SVA (B = 0.393, P < 0.001), and starting laminoplasty at C4 level (B = - 7.038, P < 0.001) were significantly associated with higher postoperative LCL. Cervical alignment was compromised after laminoplasty in patients with CSM, and the degree of LCL was associated with preoperative T1 slope, C2-7 SVA, and CVLL.
NASA Astrophysics Data System (ADS)
Vreugdenhil, Mariette; de Jeu, Richard; Wagner, Wolfgang; Dorigo, Wouter; Hahn, Sebastian; Bloeschl, Guenter
2013-04-01
Vegetation and its water content affect active and passive microwave soil moisture retrievals and need to be taken into account in such retrieval methodologies. This study compares the vegetation parameterisation that is used in the TU-Wien soil moisture retrieval algorithm to other vegetation products, such as the Vegetation Optical Depth (VOD), Net Primary Production (NPP) and Leaf Area Index (LAI). When only considering the retrieval algorithm for active microwaves, which was developed by the TU-Wien, the effect of vegetation on the backscattering coefficient is described by the so-called slope [1]. The slope is the first derivative of the backscattering coefficient in relation to the incidence angle. Soil surface backscatter normally decreases quite rapidly with the incidence angle over bare or sparsely vegetated soils, whereas the contribution of dense vegetation is fairly uniform over a large range of incidence angles. Consequently, the slope becomes less steep with increasing vegetation. Because the slope is a derivate of noisy backscatter measurements, it is characterised by an even higher level of noise. Therefore, it is averaged over several years assuming that the state of the vegetation doesn't change inter-annually. The slope is compared to three dynamic vegetation products over Australia, the VOD, NPP and LAI. The VOD was retrieved from AMSR-E passive microwave data using the VUA-NASA retrieval algorithm and provides information on vegetation with a global coverage of approximately every two days [2]. LAI is defined as half the developed area of photosynthetically active elements of the vegetation per unit horizontal ground area. In this study LAI is used from the Geoland2 products derived from SPOT Vegetation*. The NPP is the net rate at which plants build up carbon through photosynthesis and is a model-based estimate from the BiosEquil model [3, 4]. Results show that VOD and slope correspond reasonably well over vegetated areas, whereas in arid areas, where the microwave signals mostly stem from the soil surface and deeper soil layers, they are negatively correlated. A second comparison of monthly values of both vegetation parameters to modelled NPP data shows that particularly over dry areas the VOD corresponds better to the NPP, with r=0.79 for VOD-NPP and r=-0.09 for slope-NPP. 1. Wagner, W., et al., A Study of Vegetation Cover Effects on ERS Scatterometer Data. IEEE Transactions on Geoscience and Remote Sensing, 1999. 37(2): p. 938-948. 2. Owe, M., R. de Jeu, and J. Walker, A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. Geoscience and Remote Sensing, IEEE Transactions on, 2001. 39(8): p. 1643-1654. 3. Raupach, M.R., et al., Balances of Water, Carbon, Nitrogen and Phosphorus in Australian Landscapes: (1) Project Description and Results, 2001, Sustainable Minerals Institute, CSIRO Land and Water. 4. Raupach, M.R., et al., Balances of Water, Carbon, Nitrogen and Phosporus in Australian Landscapes: (2) Model Formulation and Testing, 2001, Sustainable Minerals Institute, CSIRO Land and Water. * These products are the joint property of INRA, CNES and VITO under copyright of Geoland2. They are generated from the SPOT VEGETATION data under copyright CNES and distribution by VITO.
Freeform solar concentrator with a highly asymmetric acceptance cone
NASA Astrophysics Data System (ADS)
Wheelwright, Brian; Angel, J. Roger P.; Coughenour, Blake; Hammer, Kimberly
2014-10-01
A solar concentrator with a highly asymmetric acceptance cone is investigated. Concentrating photovoltaic systems require dual-axis sun tracking to maintain nominal concentration throughout the day. In addition to collecting direct rays from the solar disk, which subtends ~0.53 degrees, concentrating optics must allow for in-field tracking errors due to mechanical misalignment of the module, wind loading, and control loop biases. The angular range over which the concentrator maintains <90% of on-axis throughput is defined as the optical acceptance angle. Concentrators with substantial rotational symmetry likewise exhibit rotationally symmetric acceptance angles. In the field, this is sometimes a poor match with azimuth-elevation trackers, which have inherently asymmetric tracking performance. Pedestal-mounted trackers with low torsional stiffness about the vertical axis have better elevation tracking than azimuthal tracking. Conversely, trackers which rotate on large-footprint circular tracks are often limited by elevation tracking performance. We show that a line-focus concentrator, composed of a parabolic trough primary reflector and freeform refractive secondary, can be tailored to have a highly asymmetric acceptance angle. The design is suitable for a tracker with excellent tracking accuracy in the elevation direction, and poor accuracy in the azimuthal direction. In the 1000X design given, when trough optical errors (2mrad rms slope deviation) are accounted for, the azimuthal acceptance angle is +/- 1.65°, while the elevation acceptance angle is only +/-0.29°. This acceptance angle does not include the angular width of the sun, which consumes nearly all of the elevation tolerance at this concentration level. By decreasing the average concentration, the elevation acceptance angle can be increased. This is well-suited for a pedestal alt-azimuth tracker with a low cost slew bearing (without anti-backlash features).
Tsukeoka, Tadashi; Tsuneizumi, Yoshikazu
2016-03-01
Although sagittal tibial alignment in total knee arthroplasty (TKA) is important, no landmarks exist to achieve a reproducible slope. The purpose of this study was to evaluate the clinical usefulness of the distance from the guide rod to the skin surface for the tibial slope in TKA. Computer simulation studies were performed on 100 consecutive knees scheduled for TKA. The angle between the line connecting the most anterior point of the predicted tibial cut surface and the skin surface 20 cm distal to the predicted cut surface (Line S) and the mechanical axis (MA) of the tibia in the sagittal plane was measured. The mean (±SD) absolute angle difference between the Line S and the MA was 0.9°±0.7°. The Line S was almost parallel to the MA in the sagittal plane (95% and 99% within two degrees and three degrees of deviation from MA, respectively). The guide rod orientation is a surrogate for the tibial cut slope because the targeted posterior slope is usually built into the cutting block and ensuring the rod is parallel to the MA in the sagittal plane is recommended. Therefore the distance between the skin surface and the rod can be a useful guide for the tibial slope. II. Copyright © 2015 Elsevier B.V. All rights reserved.
Aging and free surface flow of a thixotropic fluid
NASA Astrophysics Data System (ADS)
Huynh, H. T.; Roussel, N.; Coussot, P.
2005-03-01
Free surface flows of thixotropic fluids such as paints, self-compacting concrete, or natural mudflows are of noticeable practical interest. Here we study the basic characteristics of the uniform flow of a layer of thixotropic fluid under gravity. A theoretical approach relying on a simple thixotropy constitutive equation shows that after some time at rest over a small slope angle the fluid layer should start to flow rather abruptly beyond a new, larger, critical slope angle. The theory also predicts that the critical time at which the layer velocity should significantly increase is proportional to the duration of the preliminary rest and tends to infinity when the new slope approaches the critical slope. Experiments carried out with different suspensions show that the qualitative trends of the flows are in very good agreement with the theoretical predictions, except that the critical time for flow start appears to be proportional to a power 0.6 of the time of rest whereas the theory predicts a linear dependence. We show that this indicates a restructuration process at rest differing from the restructuration process under flow.
Have a Nice Spring! MOC Revisits "Happy Face" Crater
2005-05-16
Smile! Spring has sprung in the martian southern hemisphere. With it comes the annual retreat of the winter polar frost cap. This view of "Happy Face Crater"--officially named "Galle Crater"--shows patches of white water ice frost in and around the crater's south-facing slopes. Slopes that face south will retain frost longer than north-facing slopes because they do not receive as much sunlight in early spring. This picture is a composite of images taken by the Mars Global Surveyor Mars Orbiter Camera (MOC) red and blue wide angle cameras. The wide angle cameras were designed to monitor the changing weather, frost, and wind patterns on Mars. Galle Crater is located on the east rim of the Argyre Basin and is about 215 kilometers (134 miles) across. In this picture, illumination is from the upper left and north is up. http://photojournal.jpl.nasa.gov/catalog/PIA02325
Domain wall kinetics of lithium niobate single crystals near the hexagonal corner
NASA Astrophysics Data System (ADS)
Choi, Ju Won; Ko, Do-Kyeong; Yu, Nan Ei; Kitamura, Kenji; Ro, Jung Hoon
2015-03-01
A mesospheric approach based on a simple microscopic 2D Ising model in a hexagonal lattice plane is proposed to explain macroscopic "asymmetric in-out domain wall motion" observation in the (0001) plane of MgO-doped stoichiometric lithium niobate. Under application of an electric field that was higher than the conventional coercive field (Ec) to the ferroelectric crystal, a natural hexagonal domain was obtained with walls that were parallel to the Y-axis of the crystal. When a fraction of the coercive field of around 0.1Ec is applied in the reverse direction, this hexagonal domain is shrunk (moved inward) from the corner site into a shape with a corner angle of around 150° and 15° wall slopes to the Y-axis. A flipped electric field of 0.15Ec is then applied to recover the natural hexagonal shape, and the 150° corner shape changes into a flat wall with 30° slope (moved outward). The differences in corner domain shapes between inward and outward domain motion were analyzed theoretically in terms of corner and wall site energies, which are described using the domain corner angle and wall slope with respect to the crystal Y-axis, respectively. In the inward domain wall motion case, the energy levels of the evolving 150° domain corner and 15° slope walls are most competitive, and could co-exist. In the outward case, the energy levels of corners with angles >180° are highly stable when compared with the possible domain walls; only a flat wall with 30° slope to the Y-axis is possible during outward motion.
Cheng, Zhaojun; Peng, Bing; Zhang, Lilong; Cui, Zijian; Ren, Zhishuai; Zhang, Xueli
2018-01-01
To investigate whether preoperative T 1 slope (T 1 S) in MRI can predict the changes of cervical curvature after expansive open-door laminoplasty (EOLP) in patients with cervical spondylotic myelopathy, so as to make up for the shortcomings of difficult measurement in X-ray film. The clinical data of 36 patients with cervical spondylotic myelopathy who underwent EOLP were retrospectively analysed. There were 21 males and 15 females with an average age of 55.8 years (range, 37-73 years) and an average follow-up time of 14.3 months (range, 12-24 months). The preoperative X-ray films at dynamic position, CT, and MRI of cervical spine before operation, and the anteroposterior and lateral X-ray films at last follow-up were taken out to measure the following sagittal parameters. The parameters included C 2 -C 7 Cobb angle and C 2 -C 7 sagittal vertical axis (C 2 -C 7 SVA) in all patients before operation and at last follow-up; preoperative T 1 S were measured in MRI, and the patients were divided into larger T 1 S group (T 1 S>19°, group A) and small T 1 S group (T 1 S≤19°, group B) according to the median of T 1 S, and the preoperative T 1 S, C 2 -C 7 Cobb angle, C 2 -C 7 SVA, and the C 2 -C 7 Cobb angle and C 2 -C 7 SVA at last follow-up, difference in axial distance (the difference of C 2 -C 7 SVA before and after operation), postoperative curvature loss (the difference of C 2 -C 7 Cobb angle before and after operation), the number of patients whose curvature loss was more than 5° after operation, and the number of patients whose kyphosis changed (C 2 -C 7 Cobb angle was less than 0° after operation). The C 2 -C 7 Cobb angle at last follow-up was significantly decreased when compared with preoperative value ( t =8.000, P =0.000), but there was no significant difference in C 2 -C 7 SVA between pre- and post-operation ( t =-1.842, P =0.074). The preoperative T 1 S was (19.69±3.39)°; there were 17 cases in group A and 19 cases in group B with no significant difference in gender and age between 2 groups ( P >0.05). The preoperative C 2 -C 7 Cobb angle in group B was significantly lower than that in group A ( t =-2.150, P =0.039), while there was no significant difference in preoperative C 2 -C 7 SVA between 2 groups ( t =0.206, P =0.838). At last follow-up, except for the curvature loss after operation in group B was significantly lower than that in group A ( t =-2.723, P =0.010), there was no significant difference in the other indicators between 2 groups ( P >0.05). Preoperative larger T 1 S (T 1 S>19°) in MRI had a larger preoperative lordosis angle, but more postoperative physiological curvature was lost; preoperative T 1 S in MRI can not predict postoperative curvature loss, but preoperative larger T 1 S may be more prone to kyphosis.
Granular flow behavior at sharp changes in slope
NASA Astrophysics Data System (ADS)
Crosta, Giovanni; De Blasio, Fabio; Locatelli, Michele
2015-04-01
This study extends some recent experiments and analyses performed by the authors to examine the behavior of granular flows along path characterised by sharp changes in slope. In particular, various series of experiments along a bi-linear broken slope (an inclined initial sector followed by a horizontal one) have been completed using a uniform (Hostun, 0.32 mm) sand and a uniform fine gravel (2 mm grains). 60 new have been performed by releasing different volumes (1.5, 2.1 and 5.1 L) on surfaces characterized by different slope angles (35-60°), type of materials (wood and plexiglass), with or without an erodible layer (sand), or in presence of a shallow water pond (0.5 cm). These geometrical features are typical of many large rock and snow avalanches, rock falls and of chalk flows. The latter are usually typical of coastal cliffs where a shallow water environment is typical. The evolution of the flow has been monitored through a laser profilometer at 120 Hz sampling frequency and high speed camera, and in this way it has been possible to follow the evolution of the flow and deposition, and to analyse the change in deposition mode at varying the slope angle, the material and the basal friction. This is an extremely interesting development in the study of the evolution of the deposition and of the final morphology typical of such phenomena, and can support the testing of numerical models. Propagation and deposition occur forward or backward accordingly to the slope angle and the basal friction. Forward movement and deposition occur at high slope angles and with low basal friction. The opposite is true for the backward deposition. The internal "layering" within the deposit is also strongly controlled by the combination of such parameters. The time evolution of the flow allowed to determine the velocity of flow and the mode of deposition through the analysis of the change in thickness, position of the front and of the flow tail. Presence of water reduces the runout of the sand on the horizontal sector of the path, whereas the opposite seems true for the gravel. In these cases, as already shown by the authors (Crosta et al., submitted), a partial reflection of the flow occurs and the same holds true when a shallow water reservoir exists. Furthermore, a sort of hydroplaning phenomenon occurs which controls the initial part of the expansion along the subhorizontal sector of the path. Results of the experimental campaign have been compared against those from simple analytical models which assume the energy loss at the slope break and numerical simulations performed by a FEM-ALE (2D and fully 3D) modeling.
NASA Astrophysics Data System (ADS)
Pan, Yanxia; Li, Xinrong; Hui, Rong; Zhao, Yang
2016-04-01
The formation characteristics of hygroscopic and condensate water for different topographic positions were observed using the PVC pipes manual weighing and CPM method in the typical mobile dunes fixed by straw checkerboard barriers in Shapotou. The results indicated that the formation amounts and duration of hygroscopic and condensate water show moderate spatial heterogeneity at the influence of topography. The formation amounts of hygroscopic and condensate water at different aspects conform to the classical convection model, in which the hygroscopic and condensate water amounts are highest at hollow, and windward aspect gets more water than leeward aspect, the hygroscopic and condensate water amounts at different aspects are expressed as: hollow>Western-faced aspect>Northern-faced aspect>hilltop>Southern-faced aspect>Eastern-faced aspect. The hygroscopic and condensate water amounts at different slope positions for every aspect are as follows: the foot of slope>middle slope>hilltop. A negatively linear correlation is got between slope angles and hygroscopic and condensate water amounts, hygroscopic and condensate water amounts decrease gradually along with the increase of slope angles, the amounts of hygroscopic and condensate water at the vertical aspect are only half of horizontal aspect, which indicated topography were important influence factors for the formation of the hygroscopic and condensate water in arid area.
Slopeland utilizable limitation classification using landslide inventory
NASA Astrophysics Data System (ADS)
Tsai, Shu Fen; Lin, Chao Yuan
2016-04-01
In 1976, "Slopeland Conservation and Utilization Act" was promulgated as well as the criteria for slopeland utilization limitation classification (SULC) i.e., average slope, effective soil depth, degree of soil erosion, and parent rock became standardized. Due to the development areas on slope land steadily increased and the extreme rainfall events occurred frequently, the areas affected by landslides also increased year by year. According to the act, the land which damaged by disaster must be categorized to the conservation land and required rehabilitation. Nevertheless, the large-scale disaster on slope land and the limitation of SWCB officers are the constraint of field investigation. Therefore, how to establish the ongoing inspective procedure of post-disaster SULC using remote sensing was essential. A-Li-Shan, Ai-Liao, and Tai-Ma-Li Watershed were selected to be case studies in this project. The spatial data from big data i.e., Digital Elevation Model (DEM), soil map, and satellite images integrated with Geographic Information Systems (GIS) were applied to post-disaster SULC. The collapse and deposition area which delineated by vegetation recovery rate was established landslide inventory of cadastral unit combined with watershed unit. The results were verified with field survey and the accuracy was 97%. The landslide inventory could be an effective reference for sediment disaster investigation and a practical evidence for judgement to expropriation. Finally, the results showed that the ongoing inspective procedure of post-disaster SULC was practicable. From the four criteria, the average slope was the major factor. It was found that the non-uniform slopes, especially derived from cadastral units, often produce significant slope difference and lead to errors of average slope evaluation. Therefore, the Grid-based DEM slope derivation has been recommended as the standard method to calculate the average slope. Others criteria were previously required to classify the farm land tax. However, as a result of environmental change and advancements in farm machinery, it seems that those criteria were further inappropriate criteria for agricultural land. In conclusion, soil and water conservation works, which were enhanced to disaster prevention under climate change, should reconsider the SULC criteria. The average slope from DEM derivation and the sediment disaster from landslide inventory were suggested and adequate for SULC.
Risk analysis for dry snow slab avalanche release by skier triggering
NASA Astrophysics Data System (ADS)
McClung, David
2013-04-01
Risk analysis is of primary importance for skier triggering of avalanches since human triggering is responsible for about 90% of deaths from slab avalanches in Europe and North America. Two key measureable quantities about dry slab avalanche release prior to initiation are the depth to the weak layer and the slope angle. Both are important in risk analysis. As the slope angle increases, the probability of avalanche release increases dramatically. As the slab depth increases, the consequences increase if an avalanche releases. Among the simplest risk definitions is (Vick, 2002): Risk = (Probability of failure) x (Consequences of failure). Here, these two components of risk are the probability or chance of avalanche release and the consequences given avalanche release. In this paper, for the first time, skier triggered avalanches were analyzed from probability theory and its relation to risk for both the D and . The data consisted of two quantities : (,D) taken from avalanche fracture line profiles after an avalanche has taken place. Two data sets from accidentally skier triggered avalanches were considered: (1) 718 for and (2) a set of 1242 values of D which represent average values along the fracture line. The values of D were both estimated (about 2/3) and measured (about 1/3) by ski guides from Canadian Mountain Holidays CMH). I also analyzed 1231 accidentally skier triggered avalanches reported by CMH ski guides for avalanche size (representing destructive potential) on the Canadian scale. The size analysis provided a second analysis of consequences to verify that using D. The results showed that there is an intermediate range of both D and with highest risk. ForD, the risk (product of consequences and probability of occurrence) is highest for D in the approximate range 0.6 m - 1.0 m. The consequences are low for lower values of D and the chance of release is low for higher values of D. Thus, the highest product is in the intermediate range. For slope angles, the risk analysis showed there are two ranges: ˜ 320; × 460for which risk is lowest. In this case, both the range of and the consequences vary by about a factor of two so the probability of release dominates the risk analysis to yield low risk at the tails of the distribution of with highest risk in the middle (330 - 450) of the expected range (250 - 550).
Determination Of Slope Instability Using Spatially Integrated Mapping Framework
NASA Astrophysics Data System (ADS)
Baharuddin, I. N. Z.; Omar, R. C.; Roslan, R.; Khalid, N. H. N.; Hanifah, M. I. M.
2016-11-01
The determination and identification of slope instability are often rely on data obtained from in-situ soil investigation work where it involves the logistic of machineries and manpower, thus these aspects may increase the cost especially for remote locations. Therefore a method, which is able to identify possible slope instability without frequent ground walkabout survey, is needed. This paper presents the method used in prediction of slope instability using spatial integrated mapping framework which applicable for remote areas such as tropical forest and natural hilly terrain. Spatial data such as geology, topography, land use map, slope angle and elevation were used in regional analysis during desktop study. Through this framework, the occurrence of slope instability was able to be identified and was validate using a confirmatory site- specific analysis.
1981-06-01
acres (0.766 mi2 ). Major soil types in the watershed include Bodine, Mountview, Delrose, Dickson, and Mimosa . The drainage area is mountainous and...Bodine, Mountview, Delrose, Dickson, Mimosa c. Average slope - 40% d. Land use - Woods, pasture, few roads, and isolated structures e. Runoff from...490 acres (0.766 mi2) B. Average Channel Slope 2% C. Average Land Slope 40% D. Hydrologic Soil Group 90% C (Dickson, Mimosa ) E. Time of Concentration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchberger, G., E-mail: erda.buchberger@jku.at; Hauser, B.; Jakoby, B.
Dielectric elastomer minimum energy structures (DEMES) are soft electronic transducers and energy harvesters with potential for consumer goods. The temporal change in their electromechanical properties is of major importance for engineering tasks. Therefore, we study acrylic DEMES by impedance spectroscopy and by optical methods for a total time period of approx. 4.5 months. We apply either compliant electrodes from carbon black particles only or fluid electrodes from a mixture of carbon black particles and silicone oil. From the measurement data, the equivalent series capacitances and resistances as well as the bending angles of the transducers are obtained. We find thatmore » the equivalent series capacitances change in average between −12 %/1000 h and −4.0 %/1000 h, while the bending angles decrease linearly with slopes ranging from −15 %/1000 h to −7 %/1000 h. Transducers with high initial bending angles and electrodes from carbon black particles show the smallest changes of the electromechanical characteristics. The capacitances decrease faster for DEMES with fluid electrodes. Some DEMES of this type reveal huge and unpredictable fluctuations of the resistances over time due to the ageing of the contacts. Design guidelines for DEMES follow directly from the observed transient changes of their electromechanical performance.« less
Hey, Hwee Weng Dennis; Lau, Eugene Tze-Chun; Wong, Gordon Chengyuan; Tan, Kimberly-Anne; Liu, Gabriel Ka-Po; Wong, Hee-Kit
2017-11-01
Comparative study of prospectively collected radiographic data. To predict physiological alignment of the cervical spine and study its morphology in different postures. There is increasing evidence that normal cervical spinal alignment may vary from lordosis to neutral to kyphosis, or form S-shaped or reverse S-shaped curves. Standing, erect sitting, and natural sitting whole-spine radiographs were obtained from 26 consecutive patients without cervical spine pathology. Sagittal vertical axis (SVA), global cervical lordosis, lower cervical alignment C4-T1, C0-C2 angle, T1 slope, C0-C7 SVA and C2-7SVA, SVA, thoracic kyphosis, thoracolumbar junctional angle, lumbar lordosis, sacral slope, pelvic tilt, and pelvic incidence were measured. Statistical analysis was performed to elucidate differences in cervical alignment for all postures. Predictive values of T1 slope and SVA for cervical kyphosis were evaluated. Most patients (73.0%) do not have lordotic cervical alignment (C2-C7) upon standing (mean -0.6, standard deviation 11.1°). Lordosis increases significantly when transitioning from standing to erect sitting, as well as from erect to natural sitting (mean -17.2, standard deviation 12.1°). Transition from standing to natural sitting also produces concomitant increases in SVA (-8.8-65.2 mm) and T1-slope (17.4°-30.2°). T1 slope and SVA measured during standing significantly predicts angular cervical spine alignment in the same position. SVA < 10 mm significantly predicts C4-C7 kyphosis (P < 0.001), and to a lesser extent, C2-C7 kyphosis (P = 0.02). T1 slope <20° is both predictive of C2-C7 and C4-7 kyphosis (P = 0.001 and P = 0.023, respectively). For global cervical Cobb angle, T1 slope seems to be a more significant predictor of kyphosis than SVA (odds ratio 17.33, P = 0.001 vs odds ratio 11.67, P = 0.02, respectively). The cervical spine has variable normal morphology. Key determinants of its alignment include SVA and T1 slope. Lordotic correction of the cervical spine is not always physiological and thus correction targets should be individualized. 3.
Dynamics of liquid spreading on solid surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalliadasis, S.; Chang, H.C.
1996-09-01
Using simple scaling arguments and a precursor film model, the authors show that the appropriate macroscopic contact angle {theta} during the slow spreading of a completely or partially wetting liquid under conditions of viscous flow and small slopes should be described by tan {theta} = [tan{sup 3} {theta}{sub e} {minus} 9 log {eta}Ca]{sup 1/3} where {theta}{sub e} is the static contact angle, Ca is the capillary number, and {eta} is a scaled Hamaker constant. Using this simple relation as a boundary condition, the authors are able to quantitatively model, without any empirical parameter, the spreading dynamics of several classical spreadingmore » phenomena (capillary rise, sessile, and pendant drop spreading) by simply equating the slope of the leading order static bulk region to the dynamic contact angle boundary condition without performing a matched asymptotic analysis for each case independently as is usually done in the literature.« less
Jo, Woo Lam; Lee, Woo Suk; Chae, Dong Sik; Yang, Ick Hwan; Lee, Kyoung Min; Koo, Kyung Hoi
2016-10-01
Subchondral insufficiency fracture (SIF) of the femoral head occurs in the elderly and recipients of organ transplantation. Osteoporosis and deficient lateral coverage of the acetabulum are known risk factors for SIF. There has been no study about relation between spinopelvic alignment and anterior acetabular coverage with SIF. We therefore asked whether a decrease of lumbar lordosis and a deficiency in the anterior acetabular coverage are risk factors. We investigated 37 patients with SIF. There were 33 women and 4 men, and their mean age was 71.5 years (59-85 years). These 37 patients were matched with 37 controls for gender, age, height, weight, body mass index and bone mineral density. We compared the lumbar lordosis, pelvic incidence, pelvic tilt, sacral slope, acetabular index, acetabular roof angle, acetabular head index, anterior center-edge angle and lateral center-edge angle. Lumbar lordosis, pelvic tilt, sacral slope, lateral center edge angle, anterior center edge angle, acetabular index and acetabular head index were significantly different between SIF group and control group. Lumbar lordosis (OR = 1.11), lateral center edge angle (OR = 1.30) and anterior center edge angle (OR = 1.27) had significant associations in multivariate analysis. Decreased lumbar lordosis and deficient anterior coverage of the acetabulum are risk factors for SIF as well as decreased lateral coverage of the acetabulum.
NASA Astrophysics Data System (ADS)
Saouane, I.; Chaker, A.; Zaidi, B.; Shekhar, C.
2017-03-01
This paper describes the mathematical model used to determine the amount of solar radiation received on an inclined solar photovoltaic panel. The optimum slope angles for each month, season, and year have also been calculated for a solar photovoltaic panel. The optimization of the procedure to maximize the solar energy collected by the solar panel by varying the tilt angle is also presented. As a first step, the global solar radiation on the horizontal surface of a thermal photovoltaic panel during clear sky is estimated. Thereafter, the Muneer model, which provides the most accurate estimation of the total solar radiation at a given geographical point has been used to determine the optimum collector slope. Also, the Ant Colony Optimization (ACO) algorithm was applied to obtain the optimum tilt angle settings for PV collector to improve the PV collector efficiency. The results show good agreement between calculated and predicted results. Additionally, this paper presents studies carried out on the polycrystalline silicon solar panels for electrical energy generation in the city of Ghardaia. The electrical energy generation has been studied as a function of amount of irradiation received and the angle of optimum orientation of the solar panels.
Thermal and Energy Performance of Conditioned Building Due To Insulated Sloped Roof
NASA Astrophysics Data System (ADS)
Irwan, Suhandi Syiful; Ahmed, Azni Zain; Zakaria, Nor Zaini; Ibrahim, Norhati
2010-07-01
For low-rise buildings in equatorial region, the roof is exposed to solar radiation longer than other parts of the envelope. Roofs are to be designed to reject heat and moderate the thermal impact. These are determined by the design and construction of the roofing system. The pitch of roof and the properties of construction affect the heat gain into the attic and subsequently the indoor temperature of the living spaces underneath. This finally influences the thermal comfort conditions of naturally ventilated buildings and cooling load of conditioned buildings. This study investigated the effect of insulated sloping roof on thermal energy performance of the building. A whole-building thermal energy computer simulation tool, Integrated Environmental Solution (IES), was used for the modelling and analyses. A building model with dimension of 4.0 m × 4.0 m × 3.0 m was designed with insulated roof and conventional construction for other parts of the envelope. A 75 mm conductive insulation material with thermal conductivity (k-value) of 0.034 Wm-1K-1 was installed underneath the roof tiles. The building was modelled with roof pitch angles of 0° , 15°, 30°, 45°, 60° and simulated for the month of August in Malaysian climate conditions. The profile for attic temperature, indoor temperature and cooling load were downloaded and evaluated. The optimum roof pitch angle for best thermal performance and energy saving was identified. The results show the pitch angle of 0° is able to mitigate the thermal impact to provide the best thermal condition with optimum energy savings. The maximum temperature difference between insulated and non-insulted roof for attic (AtticA-B) and indoor condition (IndoorA-B) is +7.8 °C and 0.4 °C respectively with an average energy monthly savings of 3.9 %.
Gong, Ping; Wang, Xiaoping; Liu, Xiande; Wania, Frank
2017-05-16
The passive air sampler based on XAD-2 resin (XAD-PAS) has proven useful for collecting atmospheric persistent organic pollutants (POPs) in remote regions. Whereas laboratory studies have shown that, due to the open bottom of its housing, the passive sampling rate (PSR) of the XAD-PAS is susceptible to wind and other processes causing air turbulence, the sampler has not been calibrated in the field at sites experiencing high winds. In this study, the PSRs of the XAD-PAS were calibrated at three sites on the Tibetan Plateau, covering a wide range in temperature (T), pressure (P) and wind speed (v). At sites with low wind speeds (i.e., in a forest and an urban site), the PSRs are proportional to the ratio T 1.75 / P; at windy sites with an average wind speed above 3 m/s, the influence of v on PSRs cannot be ignored. Moreover, the open bottom of the XAD-PAS housing causes the PSRs to be influenced by wind angle and air turbulence caused by sloped terrain. Field calibration, wind speed measurements, and computational fluid dynamics (CFD) simulations indicate that a modified design incorporating an air spoiler consisting of 4 metal sheets dampens the turbulence caused by wind angle and sloped terrain and caps the PSR at ∼5 m 3 /day, irrespective of ambient wind. Therefore, the original XAD-PAS with an open bottom is suitable for deployment in urban areas and other less windy places, the modified design is preferable in mountain regions and other places where air circulation is complicated and strong.
Thermal behavior of horizontally mixed surfaces on Mars
NASA Astrophysics Data System (ADS)
Putzig, Nathaniel E.; Mellon, Michael T.
2007-11-01
Current methods for deriving thermal inertia from spacecraft observations of planetary brightness temperature generally assume that surface properties are uniform for any given observation or co-located set of observations. As a result of this assumption and the nonlinear relationship between temperature and thermal inertia, sub-pixel horizontal heterogeneity may yield different apparent thermal inertia at different times of day or seasons. We examine the effects of horizontal heterogeneity on Mars by modeling the thermal behavior of various idealized mixed surfaces containing differing proportions of either dust, sand, duricrust, and rock or slope facets at different angles and azimuths. Latitudinal effects on mixed-surface thermal behavior are also investigated. We find large (several 100 J m -2 K -1 s -1/2) diurnal and seasonal variations in apparent thermal inertia even for small (˜10%) admixtures of materials with moderately contrasting thermal properties or slope angles. Together with similar results for layered surfaces [Mellon, M.T., Putzig, N.E., 2007. Lunar Planet. Sci. XXXVIII. Abstract 2184], this work shows that the effects of heterogeneity on the thermal behavior of the martian surface are substantial and may be expected to result in large variations in apparent thermal inertia as derived from spacecraft instruments. While our results caution against the over-interpretation of thermal inertia taken from median or average maps or derived from single temperature measurements, they also suggest the possibility of using a suite of apparent thermal inertia values derived from single observations over a range of times of day and seasons to constrain the heterogeneity of the martian surface.
Texas lignite mining: Groundwater and slope stability control in the nineties and beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence J.
As lignite mining in Texas approaches and exceeds depths of 200 feet below ground level, rising costs demand that innovative mining approaches be used in order to maintain the economic viability of lignite mining. Groundwater and slope stability problems multiply at these depths, resulting in increasing focus on how to control these costs. Dewatering costs are consistently rising for the lignite industry, as deeper mining encounters more and larger saturated sand bodies. These sands require dewatering in order to improve slope stability. Planning and analysis become more important as the number of wells grows beyond what can be managed withmore » a simple {open_quotes}cookie-cutter{close_quotes} approach. Slope stability plays an increasing role in mining concerns as deeper lignite is recovered. Slope stability causes several problems, including loss of lignite, increased rehandle, and hazards to personnel and equipment. Traditional lignite mine planning involved a fairly {open_quotes}generic{close_quotes} pit design with one design highwall angle, one design spoil angle, and little geotechnical evaluation of the deposit. This {open_quotes}one mine-one design{close_quotes} approach, while cost-effective in the past, is now being replaced by a more critical analysis of the design requirements of each area. Geotechnical evaluation plays an increasing role in the planning and operational aspects of lignite mining. Laboratory core sample test results can be used for slope stability modeling, in order to obtain more accurate design and operational information.« less
Fractal Structures on Fe3O4 Ferrofluid: A Small-Angle Neutron Scattering Study
NASA Astrophysics Data System (ADS)
Giri Rachman Putra, Edy; Seong, Baek Seok; Shin, Eunjoo; Ikram, Abarrul; Ani, Sistin Ari; Darminto
2010-10-01
A small-angle neutron scattering (SANS) which is a powerful technique to reveal the large scale structures was applied to investigate the fractal structures of water-based Fe3O4ferrofluid, magnetic fluid. The natural magnetite Fe3O4 from iron sand of several rivers in East Java Province of Indonesia was extracted and purified using magnetic separator. Four different ferrofluid concentrations, i.e. 0.5, 1.0, 2.0 and 3.0 Molar (M) were synthesized through a co-precipitation method and then dispersed in tetramethyl ammonium hydroxide (TMAH) as surfactant. The fractal aggregates in ferrofluid samples were observed from their SANS scattering distributions confirming the correlations to their concentrations. The mass fractal dimension changed from about 3 to 2 as ferrofluid concentration increased showing a deviation slope at intermediate scattering vector q range. The size of primary magnetic particle as a building block was determined by fitting the scattering profiles with a log-normal sphere model calculation. The mean average size of those magnetic particles is about 60 - 100 Å in diameter with a particle size distribution σ = 0.5.
Observations of Coherent Flow Structures Over Subaqueous High- and Low- Angle Dunes
NASA Astrophysics Data System (ADS)
Kwoll, E.; Venditti, J. G.; Bradley, R. W.; Winter, C.
2017-11-01
Large-scale coherent flow structures (CFSs) above dunes are the dominant source of flow resistance and constitute the principal mechanism for sediment transport and mixing in sand bed river and estuarine systems. Based on laboratory observations, CFS formation has been previously linked to flow separation downstream of high-angle dunes with lee slopes of 30°. How CFSs form in natural, deep rivers and estuaries where dunes exhibit lower lee slopes and intermittent flow separation is not well understood. Here we present particle image velocimetry measurements from an experiment where dune lee slope was systematically varied (30°, 20°, and 10°), while other geometric and hydraulic parameters were held constant. We show that CFSs form downstream of all three dune geometries from shear layer vortices in the dune lee. The mode of CFS formation undergoes a low-frequency oscillation with periods of intense vortex shedding interspersed with periods of rare vortex shedding. Streamwise alignment of several vortices during periods of intense shedding results in wedge-shaped CFSs that are advected above the dune stoss side. Streamwise length scales of wedge-shaped CFS correspond to large-scale motions (LSMs). We hypothesize that the advection of LSM over the dune crest triggers the periods of intense shedding in the dune lee. LSMs are weaker and smaller above low-angle dunes; however, the low-frequency oscillation in CFS formation periods persists. The formation of smaller and weaker CFS results in a reduction of flow resistance over low-angle dunes.
Locomotor Behavior of Chickens Anticipating Incline Walking
LeBlanc, Chantal; Tobalske, Bret; Szkotnicki, Bill; Harlander-Matauschek, Alexandra
2018-01-01
Keel bone damage (KBD) is prevalent in hens raised for egg production, and ramps between different tiers in aviaries have potential to reduce the frequency of falls resulting in KBD. Effective use of ramps requires modulation of locomotion in anticipation of the incline. Inadequate adaptive locomotion may be one explanation why domestic layer hens (Gallus gallus domesticus) exhibit high rates of KBD. To improve understanding of the capacity of hens to modulate their locomotion in anticipation of climbing, we measured the effects of incline angle upon the mechanics of the preparatory step before ascending a ramp. Because the energetic challenge of climbing increases with slope, we predicted that as angle of incline increased, birds during foot contact with the ground before starting to climb would increase their peak force and duration of contact and reduce variation in center of pressure (COP) under their foot. We tested 20 female domestic chickens on ramp inclines at slopes of +0°, +40°, and +70° when birds were 17, 21, 26, 31, and 36 weeks of age. There were significantly higher vertical peak ground reaction forces in preparation at the steepest slope, and ground contact time increased significantly with each increase in ramp angle. Effects upon variation in COP were not apparent; likewise, effects of limb length, age, body mass were not significant. Our results reveal that domestic chickens are capable of modulating their locomotion in response to incline angle. PMID:29376060
Loaded transducer for downhole drilling components
Hall, David R [Provo, UT; Fox, Joe [Spanish Fork, UT; Daly, Jeffery E [Cypress, TX
2009-05-05
A system for transmitting information between downhole components has a first downhole component with a first mating surface and a second downhole component having a second mating surface configured to substantially mate with the first mating surface. The system also has a first transmission element with a first communicating surface and is mounted within a recess in the first mating surface. The first transmission element also has an angled surface. The recess has a side with multiple slopes for interacting with the angled surface, each slope exerting a different spring force on the first transmission element. A second transmission element has a second communicating surface mounted proximate the second mating surface and adapted to communicate with the first communicating surface.
Aeroelastic Tailoring with Composites Applied to Forward Swept Wings
1981-11-01
M AIR FORCE SYSTEMS COMMAND J 9 1982 , S- WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433 K 82 06 09 036 NOTICE When Govervomnant drawing, specifications...orients these materials in optimum directions. In a paper presented at the 1975 AIAA Aircraft Systems and Technology Meeting, Krone analytically...ith slope of load versus angle of attack lines 0 fiber angle (usually angle under study) viii SECTION I INTRODUCTION "When a weapon system is compared
NASA Astrophysics Data System (ADS)
Weng, C. H.; Lin, M. L.; Hsieh, P. C.
2016-12-01
In recent years, landslides have attracted much attention in the engineering field in Taiwan. As previous studies, landslides are induced by earthquakes, rainfall, and groundwater. That groundwater flows into upper layer through vertical joints, upward groundwater, erodes the slope and reduces its stability. Nevertheless, in the literature, the impact of upward groundwater to the location of sliding surface and the behaviors of dip slope failure has not be investigated. In this study, physical model tests with water flow inclinometers are used to investigate the kinematics of dip slope failures under various conditions and to identify the failure modes of specimens (Fig. 1). Besides, the mechanics of one landslide case owing to upward groundwater is studied by numerical simulation. In the physical tests, the effects of upward groundwater on slope stability are investigated with different angles of inclinometers, different position of joints on specimens and different locations of upward seepage. The test results suggest that the upward water pressure becomes lower when the number of joints increases. As the water pressure increases to 3.8 times the weight of one block of the specimen, the block will slide. Another, when the specimen is covered by one granular content layer (see Fig. 2), the failure surface tends to develop at the granular content layer, and its kinematics is similar to debris slide; when the clay seam is below of the specimen, the translational slide occurs along the bottom of the blocks. Moreover, one dip slope case, Taiwan's National Highway No. 3 landslide event, are studied by numerical simulation. According to the results, some points are concluded: water pressure makes tension cracks on the top of the vertical joints on weathered sandstones; with anchor attenuation, the sandstone moves downslope, which makes the shear strain of the slope toe region increases (see Fig. 3). If friction angle of the slope decreases, the slide surface occurs along the weak surface, and it develops to the toe of the slope.
Hippocampal place cell encoding of sloping terrain.
Porter, Blake S; Schmidt, Robert; Bilkey, David K
2018-05-21
Effective navigation relies on knowledge of one's environment. A challenge to effective navigation is accounting for the time and energy costs of routes. Irregular terrain in ecological environments poses a difficult navigational problem as organisms ought to avoid effortful slopes to minimize travel costs. Route planning and navigation have previously been shown to involve hippocampal place cells and their ability to encode and store information about an organism's environment. However, little is known about how place cells may encode the slope of space and associated energy costs as experiments are traditionally carried out in flat, horizontal environments. We set out to investigate how dorsal-CA1 place cells in rats encode systematic changes to the slope of an environment by tilting a shuttle box from flat to 15° and 25° while minimizing external cue change. Overall, place cell encoding of tilted space was as robust as their encoding of flat ground as measured by traditional place cell metrics such as firing rates, spatial information, coherence, and field size. A large majority of place cells did, however, respond to slope by undergoing partial, complex remapping when the environment was shifted from one tilt angle to another. The propensity for place cells to remap did not, however, depend on the vertical distance the field shifted. Changes in slope also altered the temporal coding of information as measured by the rate of theta phase precession of place cell spikes, which decreased with increasing tilt angles. Together these observations indicate that place cells are sensitive to relatively small changes in terrain slope and that terrain slope may be an important source of information for organizing place cell ensembles. The terrain slope information encoded by place cells could be utilized by efferent regions to determine energetically advantageous routes to goal locations. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Landslides triggered by the 14 November 2016 Mw 7.8 Kaikōura Earthquake, New Zealand
Massey, C.; Townsend, D.; Rathje, Ellen M.; Allstadt, Kate E.; Lukovic, B.; Kaneko, Yoshihiro; Bradley, Brendon A.; Wartman, J.; Jibson, Randall W.; Petley, D. N.; Horspool, Nick; Hamling, I.; Carey, J.; Cox, S.; Davidson, John; Dellow, S.; Godt, Jonathan W.; Holden, Christopher; Jones, Katherine D.; Kaiser, Anna E.; Little, M.; Lyndsell, B.; McColl, S.; Morgenstern, R.; Rengers, Francis K.; Rhoades, D.; Rosser, B.; Strong, D.; Singeisen, C.; Villeneuve, M.
2018-01-01
The 14 November 2016 Mw">MwMw 7.8 Kaikōura earthquake generated more than 10,000 landslides over a total area of about 10,000 km2">10,000 km210,000 km2, with the majority concentrated in a smaller area of about 3600 km2">3600 km23600 km2. The largest landslide triggered by the earthquake had an approximate volume of 20(±2) M m3">20(±2) M m320(±2) M m3, with a runout distance of about 2.7 km, forming a dam on the Hapuku River. In this article, we present version 1.0 of the landslide inventory we have created for this event. We use the inventory presented in this article to identify and discuss some of the controls on the spatial distribution of landslides triggered by the Kaikōura earthquake. Our main findings are (1) the number of medium to large landslides (source area ≥10,000 m2">≥10,000 m2≥10,000 m2) triggered by the Kaikōura earthquake is smaller than for similar‐sized landslides triggered by similar magnitude earthquakes in New Zealand; (2) seven of the largest eight landslides (from 5 to 20 M m3">20 M m320 M m3) occurred on faults that ruptured to the surface during the earthquake; (3) the average landslide density within 200 m of a mapped surface fault rupture is three times that at a distance of 2500 m or more from a mapped surface fault rupture; (4) the “distance to fault” predictor variable, when used as a proxy for ground‐motion intensity, and when combined with slope angle, geology, and elevation variables, has more power in predicting landslide probability than the modeled peak ground acceleration or peak ground velocity; and (5) for the same slope angles, the coastal slopes have landslide point densities that are an order of magnitude greater than those in similar materials on the inland slopes, but their source areas are significantly smaller.
WAVDRAG- ZERO-LIFT WAVE DRAG OF COMPLEX AIRCRAFT CONFIGURATIONS
NASA Technical Reports Server (NTRS)
Craidon, C. B.
1994-01-01
WAVDRAG calculates the supersonic zero-lift wave drag of complex aircraft configurations. The numerical model of an aircraft is used throughout the design process from concept to manufacturing. WAVDRAG incorporates extended geometric input capabilities to permit use of a more accurate mathematical model. With WAVDRAG, the engineer can define aircraft components as fusiform or nonfusiform in terms of non-intersecting contours in any direction or more traditional parallel contours. In addition, laterally asymmetric configurations can be simulated. The calculations in WAVDRAG are based on Whitcomb's area-rule computation of equivalent-bodies, with modifications for supersonic speed. Instead of using a single equivalent-body, WAVDRAG calculates a series of equivalent-bodies, one for each roll angle. The total aircraft configuration wave drag is the integrated average of the equivalent-body wave drags through the full roll range of 360 degrees. WAVDRAG currently accepts up to 30 user-defined components containing a maximum of 50 contours as geometric input. Each contour contains a maximum of 50 points. The Mach number, angle-of-attack, and coordinates of angle-of-attack rotation are also input. The program warns of any fusiform-body line segments having a slope larger than the Mach angle. WAVDRAG calculates total drag and the wave-drag coefficient of the specified aircraft configuration. WAVDRAG is written in FORTRAN 77 for batch execution and has been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 63K (octal) of 60 bit words. This program was developed in 1983.
Eames, I; Small, I; Frampton, A; Cottenden, A M
2003-01-01
The spread of fluid from a localized source on to a flat fibrous sheet is studied. The sheet is inclined at an angle, alpha, to the horizontal, and the areal flux of the fluid released is Qa. A new experimental study is described where the dimensions of the wetted region are measured as a function of time t, Qa and alpha (>0). The down-slope length, Y, grows according to Y approximately (Qa t)(2/3) (sin alpha)(1/3); for high discharge rates and low angles of inclination, the cross-slope width, X, grows as approximately (Qa t)(1/2), while for low discharge rates or high angles of inclination, the cross-slope transport is dominated by infiltration and X approximately 2(2Ks psi* t)(1/2), where Ks is the saturated permeability and psi* is the characteristic value of capillary pressure. A scaling analysis of the underlying non-linear advection diffusion equation describing the infiltration process confirms many of the salient features of the flow observed. Good agreement is observed between the collapse of the numerical solutions and experimental results. The broader implications of these results for incontinence bed-pad research are briefly discussed.
NASA Technical Reports Server (NTRS)
2004-01-01
This image taken at NASA's Jet Propulsion Laboratory shows a rover test drive up a manmade slope. The slope simulates one that the Mars Exploration Rover Opportunity will face on Mars if it is sent commands to explore rock outcrop that lies farther into 'Endurance Crater.' Using sand, dirt and rocks, scientists and engineers at JPL constructed the overall platform of the slope at a 25-degree angle, with a 40-degree step in the middle. The test rover successfully descended and climbed the platform, adding confidence that Opportunity could cross a similar hurdle in Endurance Crater.NASA Technical Reports Server (NTRS)
Werner, Charles L.; Wegmueller, Urs; Small, David L.; Rosen, Paul A.
1994-01-01
Terrain slopes, which can be measured with Synthetic Aperture Radar (SAR) interferometry either from a height map or from the interferometric phase gradient, were used to calculate the local incidence angle and the correct pixel area. Both are required for correct thematic interpretation of SAR data. The interferometric correlation depends on the pixel area projected on a plane perpendicular to the look vector and requires correction for slope effects. Methods for normalization of the backscatter and interferometric correlation for ERS-1 SAR are presented.
NASA Astrophysics Data System (ADS)
Clerici, Aldo; Perego, Susanna; Tellini, Claudio; Vescovi, Paolo
2006-08-01
Among the many GIS based multivariate statistical methods for landslide susceptibility zonation, the so called “Conditional Analysis method” holds a special place for its conceptual simplicity. In fact, in this method landslide susceptibility is simply expressed as landslide density in correspondence with different combinations of instability-factor classes. To overcome the operational complexity connected to the long, tedious and error prone sequence of commands required by the procedure, a shell script mainly based on the GRASS GIS was created. The script, starting from a landslide inventory map and a number of factor maps, automatically carries out the whole procedure resulting in the construction of a map with five landslide susceptibility classes. A validation procedure allows to assess the reliability of the resulting model, while the simple mean deviation of the density values in the factor class combinations, helps to evaluate the goodness of landslide density distribution. The procedure was applied to a relatively small basin (167 km2) in the Italian Northern Apennines considering three landslide types, namely rotational slides, flows and complex landslides, for a total of 1,137 landslides, and five factors, namely lithology, slope angle and aspect, elevation and slope/bedding relations. The analysis of the resulting 31 different models obtained combining the five factors, confirms the role of lithology, slope angle and slope/bedding relations in influencing slope stability.
NASA Astrophysics Data System (ADS)
He, Hong-Sen; Chen, Zhen; Li, Hong-Bin; Dong, Jun
2018-05-01
A high repetition rate, nanosecond, pulsed optical vortex beam has been generated in a Cr,Nd:YAG self-Q-switched microchip laser pumped by the annular-beam formed with a hollow focus lens. The lasing threshold for vortex pulses is 0.9 W. A pulse width of 6.5 ns and a repetition rate of over 330 kHz have been achieved. The average output power of 1 W and the slope efficiency of 46.6% have been obtained. The helicity of the optical vortices has been controlled by adjusting the tilted angle between Cr,Nd:YAG crystal and output coupler. The work provides a new method for developing pulsed optical vortices for potential applications on quantum communication and optical trapping.
Variable Cadence Walking and Ground Adaptive Standing with a Powered Ankle Prosthesis
Shultz, Amanda H.; Lawson, Brian E.; Goldfarb, Michael
2015-01-01
Abstract This paper describes a control approach that provides walking and standing functionality for a powered ankle prosthesis, and demonstrates the efficacy of the approach in experiments in which a unilateral transtibial amputee subject walks with the prosthesis at variable cadences, and stands on various slopes. Both controllers incorporate a finite-state structure that emulates healthy ankle joint behavior via a series of piecewise passive impedance functions. The walking controller incorporates an algorithm to modify impedance parameters based on estimated cadence, while the standing controller incorporates an algorithm to modulate the ankle equilibrium angle in order to adapt to the ground slope and user posture, and the supervisory controller selects between the walking and standing controllers. The system is shown to reproduce several essential biomechanical features of the healthy joint during walking, particularly relative to a passive prosthesis, and is shown to adapt to variable cadences. The system is also shown to adapt to slopes over a range of ± 15 deg and to provide support to the user in a manner that is biomimetic, as validated by quasi-static stiffness measurements recorded by the prosthesis. Data from standing trials indicate that the user places more weight on the powered prosthesis than on his passive prosthesis when standing on sloped surfaces, particularly at angles of 10 deg or greater. The authors also demonstrated that the prosthesis typically began providing support within 1 s of initial contact with the ground. Further, the supervisory controller was shown to be effective in switching between walking and standing, as well as in determining ground slope just prior to the transition from the standing controller to the walking controller, where the estimated ground slope was within 1.25 deg of the actual ground slope for all trials. PMID:25955789
Simulation and Analysis of Topographic Effect on Land Surface Albedo over Mountainous Areas
NASA Astrophysics Data System (ADS)
Hao, D.; Wen, J.; Xiao, Q.
2017-12-01
Land surface albedo is one of the significant geophysical variables affecting the Earth's climate and controlling the surface radiation budget. Topography leads to the formation of shadows and the redistribution of incident radiation, which complicates the modeling and estimation of the land surface albedo. Some studies show that neglecting the topography effect may lead to significant bias in estimating the land surface albedo for the sloping terrain. However, for the composite sloping terrain, the topographic effects on the albedo remain unclear. Accurately estimating the sub-topographic effect on the land surface albedo over the composite sloping terrain presents a challenge for remote sensing modeling and applications. In our study, we focus on the development of a simplified estimation method for land surface albedo including black-sky albedo (BSA) and white-sky albedo (WSA) of the composite sloping terrain at a kilometer scale based on the fine scale DEM (30m) and quantitatively investigate and understand the topographic effects on the albedo. The albedo is affected by various factors such as solar zenith angle (SZA), solar azimuth angle (SAA), shadows, terrain occlusion, and slope and aspect distribution of the micro-slopes. When SZA is 30°, the absolute and relative deviations between the BSA of flat terrain and that of rugged terrain reaches 0.12 and 50%, respectively. When the mean slope of the terrain is 30.63° and SZA=30°, the absolute deviation of BSA caused by SAA can reach 0.04. The maximal relative and relative deviation between the WSA of flat terrain and that of rugged terrain reaches 0.08 and 50%. These results demonstrate that the topographic effect has to be taken into account in the albedo estimation.
Yoshino, Takaiko; Fukuchi, Takeo; Togano, Tetsuya; Sakaue, Yuta; Seki, Masaaki; Tanaka, Takayuki; Ueda, Jun
2016-03-01
We evaluated the rate of progression of total, upper, and lower visual field defects in patients with treated primary open-angle glaucoma (POAG) with high myopia (HM). Seventy eyes of 70 POAG patients with HM [≤-8 diopters (D)] were examined. The mean deviation (MD) slope and the upper and lower total deviation (upper TD, lower TD) slopes of the Humphrey Field Analyzer were calculated in patients with high-tension glaucoma (HTG) (>21 mmHg) versus normal-tension glaucoma (NTG) (≤21 mmHg). The mean age of all the patients (29 eyes with HTG and 41 eyes with NTG) was 48.5 ± 9.6 years. The MD slope, and upper and lower TD slopes of the HM group were compared to those of the non-HM group (NHM) (>-8 D) selected from 544 eyes in 325 age-matched POAG patients. In all, 70 eyes with HM and NHM were examined. The mean MD slope was -0.33 ± 0.33 dB/year in the HM, and -0.38 ± 0.49 dB/year in the NHM. There were no statistical differences between the HM and NHM (p = 0.9565). In the comparison of HTG versus NTG patients in both groups, the MD slope, and upper and lower TD slopes were similar. The rate of progression of total, upper, and lower visual field defects was similar among patients with HM and NHM. Although HM is a risk factor for the onset of glaucoma, HM may not be a risk factor for progression of visual field defects as assessed by the progression rate under treatment.
River meanders - Theory of minimum variance
Langbein, Walter Basil; Leopold, Luna Bergere
1966-01-01
Meanders are the result of erosion-deposition processes tending toward the most stable form in which the variability of certain essential properties is minimized. This minimization involves the adjustment of the planimetric geometry and the hydraulic factors of depth, velocity, and local slope.The planimetric geometry of a meander is that of a random walk whose most frequent form minimizes the sum of the squares of the changes in direction in each successive unit length. The direction angles are then sine functions of channel distance. This yields a meander shape typically present in meandering rivers and has the characteristic that the ratio of meander length to average radius of curvature in the bend is 4.7.Depth, velocity, and slope are shown by field observations to be adjusted so as to decrease the variance of shear and the friction factor in a meander curve over that in an otherwise comparable straight reach of the same riverSince theory and observation indicate meanders achieve the minimum variance postulated, it follows that for channels in which alternating pools and riffles occur, meandering is the most probable form of channel geometry and thus is more stable geometry than a straight or nonmeandering alinement.
Controls over aboveground forest carbon density on Barro Colorado Island, Panama
NASA Astrophysics Data System (ADS)
Mascaro, J.; Asner, G. P.; Muller-Landau, H. C.; van Breugel, M.; Hall, J.; Dahlin, K.
2010-12-01
Despite the importance of tropical forests to the global carbon cycle, ecological controls over landscape-level variation in live aboveground carbon density (ACD) in tropical forests are poorly understood. Here, we conducted a spatially comprehensive analysis of ACD variation for a mainland tropical forest - Barro Colorado Island, Panama (BCI) - and tested site factors that may control such variation. We mapped ACD over 98% of BCI (~1500 ha) using airborne Light Detection and Ranging (LiDAR), which was well-correlated with ground-based measurements of ACD in Panamanian forests of various ages (r2 = 0.77, RMSE = 29 Mg C ha-1, P < 0.0001). We used multiple regression to examine controls over LiDAR-derived ACD, including slope angle, bedrock, soil texture, and forest age. Collectively, these variables explained 14% of the variation in ACD at 30-m resolution, and explained 33% at 100-m resolution. At all resolutions, slope (linked to underlying bedrock variation) was the strongest driving factor; standing carbon stocks were generally higher on steeper slopes, where erosion rates tend to exceed weathering rates, compared to gentle slopes, where weathering in place produces deep, oxic soils. This result suggests that physiography may be more important in controlling ACD variation in Neotropical forests than currently thought. Although BCI has been largely undisturbed by humans for a century, past land-use over approximately half of the island still influences ACD variation, with younger forests (80-130 years old) averaging ~15% less carbon storage than old-growth forests (>400 years old). If other regions of relatively old tropical secondary forests also store less carbon aboveground than primary forests, the effects on the global carbon cycle could be substantial and difficult to detect with satellite monitoring.
Mendoza-Lattes, Sergio; Ries, Zachary; Gao, Yubo; Weinstein, Stuart L
2011-01-01
Background Proximal junctional kyphosis (PJK) is defined as: 1) Proximal junction sagittal Cobb angle >≥10°, and 2) Proximal junction sagittal Cobb angle of at least 10° greater than the pre-operative measurement PJK is a common complication which develops in 39% of adults following surgery for spinal deformity. The pathogenesis, risk factors and prevention of this complication are unclear. Methods Of 54 consecutive adults treated with spinal deformity surgery (age≥59.3±10.1 years), 19 of 54 (35%) developed PJK. The average follow-up was 26.8months (range 12 - 42). Radiographic parameters were measured at the pre-operative, early postoperative (4-6 weeks), and final follow-up visits. Sagittal alignment was measured by the ratio between the C7-plumbline and the sacral-femoral distance. Binary logistic regression model with predictor variables included: Age, BMI, C7-plumbline, and whether lumbar lordosis, thoracic kyphosis and sacral slope were present Results Patients who developed PJK and those without PJK presented with comparable age, BMI, pelvic incidence and sagittal imbalance before surgery. They also presented with comparable sacral slope and lumbar lordosis. The average magnitude of thoracic kyphosis was significantly larger than the lumbar lordosis in the proximal junctional kyphosis group, both at baseline and in the early postoperative period, as represented by [(-lumbar )lordosis - (thoracic kyphosis)]; no- PJK versus PJK; 6.6°±23.2° versus -6.6°±14.2°; p≥0.012. This was not effectively addressed with surgery in the PJK group [(-LL-TK): 6.2°±13.1° vs. -5.2°±9.6°; p≥0.004]. This group also presented with signs of pelvic retroversion with a sacral slope of 29.3°±8.2° pre-operatively that was unchanged after surgery (30.4°±8.5° postoperatively). Logistic regression determined that the magnitude of thoracic kyphosis and sagittal balance (C7-plumbline) was the most important predictor of proximal junctional kyphosis. Conclusions Proximal junctional kyphosis developed in those patients where the thoracic kyphosis remained greater in magnitude relative to the lumbar lordosis, and where the sagittal balance seemed corrected, but part of thise correction was secondary to pelvic retroversion. Level of Evidence Prognostic case-control study – Level III. PMID:22096442
Effect of regional slope on drainage networks
NASA Astrophysics Data System (ADS)
Phillips, Loren F.; Schumm, S. A.
1987-09-01
Drainage networks that develop under conditions of no structural control and homogeneous lithology are generally dendritic, depending upon the shape and inclination of the surface on which they form. An experimental study was designed to investigate the effect of an increase of slope on the evolution and development of dendritic drainage patterns. As slope steepens, the pattern changes from dendritic at 1% slope, to subdendritic at 2%, to subparallel at 3%, to parallel at 5% and higher. The change from a dendritic-type pattern to a parallel-type pattern occurs at a low slope, between 2% and 3%, and primary channel junction angles decrease abruptly from about 60° to 43°. *Present address: U.S. Army Environmental Hygiene Agency, Attn: HSHB-ME-WM, Aberdeen Proving Ground, Maryland 21010-5422
Martin, Raymond G.
1973-01-01
The objectives of this study were to determine the general configuration of the salt surface beneath the Texas-Louisiana continental slope and to isopach the Mesozoic-Cenozoic sedimentary section lying upon it. The structure contour map discloses that the entire slope province between the shelf edge and Sigsbee Escarpment is underlain by salt structures which interconnect at relatively shallow subbottom depths. Salt structures on the slope south of Louisiana and eastern Texas can be grouped according to structural relief and size which define morphological belts of decreasing deformational maturity in a downslope direction. Off northern Mexico and southernmost Texas, salt structures are anticlinal and their trends suggest a structural relationship with the folds of the Mexican Ridge province to the south. Structural trends in the two slope areas meet in the corner of the northwestern gulf where salt structure may have been influenced by a seaward extension of the San Marcos Arch, or an abrupt change in subsalt structural topography. Sediment thickness above the top of salt on the slope averages about 1,400 m (4,620 ft) which is a smaller average than expected from previous estimates. In some synclinal basins between salt structures, sediments may be as thick as 4,000-5,000 m (12,000-17,000 ft). On the average, sedimentary deposits in basins on the upper slope are thicker than on the lower slope. From the isopach map of sediments above salt it is estimated that the U.S. continental slope off Texas and Louisiana contains a sedimentary volume of about 170,000 km3 (41,000 mi3). The bulk of this volume is situated in synclinal basins between domes and principally in those beneath the upper and middle slope regions.
Origin of Slope Failure in the Ursa Region, Northern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Stigall, J.; Dugan, B.
2008-12-01
We use one-dimensional fluid flow and stability models to predict the evolution of overpressure and stability conditions of IODP Expedition Sites U1322 and U1324 in the Ursa region, northern Gulf of Mexico. Simulations of homogenous mud deposited at 3 and 12 mm/yr for Sites U1322 and U1324, with permeability (k) on the order of 10-17m2 and bulk compressibility of .4 /MPa, predict overpressures up to .45MPa and 1MPa in shallow sediments (<200m below sea floor). With limit equilibrium calculations for an infinite slope, these overpressures equate to a factor of safety (FS) greater than 10 and 4.5 for a internal friction angle of 26° and a seafloor slope of 2°. This implies stability throughout the last 50,000 years. Seismic and core observations, however, document major slope failures that span the entire Ursa region. Permeability in this region is well constrained by laboratory experiments, so we investigate how pulsed (high-to-low) sedimentation rates could have created unstable conditions, FS <1. Models with periods of high sedimentation generate overpressure that create unstable conditions while maintaining the time-averaged sedimentation rates. Other factors which are not possible to simulate in one dimension, such as a complex basin geometry, also influence the conditions that caused the past failures. A two-dimensional model linking lateral flow between the sites with the interpreted geometry from seismic stratigraphy gives a better picture of the flow field and instability within the basin. Asymmetrical loading of permeable sediments could have created a lateral difference in pore pressures which would have driven lateral flow from Site U1324 to Site U1322 where overpressures are higher than our one-dimensional models suggest. We anticipate that two-dimensional models with transient sedimentation patterns will enhance our understanding of flow in marginally stable environments and triggers of slope failures in passive margin systems.
Correction for slope in point and transect relascope sampling of downed coarse woody debris
Goran Stahl; Anna Ringvall; Jeffrey H. Gove; Mark J. Ducey
2002-01-01
In this article, the effect of sloping terrain on estimates in point and transect relascope sampling (PRS and TRS, respectively) is studied. With these inventory methods, a wide angle relascope is used either from sample points (PRS) or along survey lines (TRS). Characteristics associated with line-shaped objects on the ground are assessed, e.g., the length or volume...
Kinetics of cross-slope running.
Willwacher, Steffen; Fischer, Katina Mira; Benker, Rita; Dill, Stephan; Brüggemann, Gert-Peter
2013-11-15
The purpose of the present study was to identify kinetic responses to running on mediolaterally elevated (cross-sloped) running surfaces. Ground reaction forces (GRFs), GRF lever arms and joint moment characteristics of 19 male runners were analyzed when running at 3.5m/s on a custom-made, tiltable runway. Tilt angles of 3° and 6° for medial and lateral elevation were analyzed using a 10 camera Vicon Nexus system and a force platform. The point of force application of the GRF showed a systematic shift in the order of 1-1.5cm to either the lateral or medial aspect of the foot for lateral or medial inclinations, respectively. Consequently, the strongest significant effects of tilt orientation and level on joint kinetics and ground reaction force lever arms were identified at the ankle, knee and hip joint in the frontal plane of movement. External eversion moments at the ankle were significantly increased by 35% for 6° of lateral elevation and decreased by 16% for 6° of medial elevation. Altering the cross-slope of the running surface changed the pattern of ankle joint moments in the transversal plane. Effect sizes were on average larger for laterally elevated conditions, indicating a higher sensitivity of kinetic parameters to this kind of surface tilt. These alterations in joint kinetics should be considered in the choice of the running environment, especially for specific risk groups, like runners in rehabilitation processes. © 2013 Elsevier Ltd. All rights reserved.
Platform for Testing Robotic Vehicles on Simulated Terrain
NASA Technical Reports Server (NTRS)
Lindemann, Randel
2006-01-01
The variable terrain tilt platform (VTTP) is a means of providing simulated terrain for mobility testing of engineering models of the Mars Exploration Rovers. The VTTP could also be used for testing the ability of other robotic land vehicles (and small vehicles in general) to move across terrain under diverse conditions of slope and surface texture, and in the presence of obstacles of various sizes and shapes. The VTTP consists mostly of a 16-ft-(4.88-m)-square tilt table. The tilt can be adjusted to any angle between 0 (horizontal) and 25 . The test surface of the table can be left bare; can be covered with hard, high-friction material; or can be covered with sand, gravel, and/or other ground-simulating material or combination of materials to a thickness of as much as 6 in. (approx. 15 cm). Models of rocks, trenches, and other obstacles can be placed on the simulated terrain. For example, for one of the Mars- Rover tests, a high-friction mat was attached to the platform, then a 6-in.- ( 15 cm) deep layer of dry, loose beach sand was deposited on the mat. The choice of these two driving surface materials was meant to bound the range of variability of terrain that the rover was expected to encounter on the Martian surface. At each of the different angles at which tests were performed, for some of the tests, rocklike concrete obstacles ranging in height from 10 to 25 cm were placed in the path of the rover (see figure). The development of the VTTP was accompanied by development of a methodology of testing to characterize the performance and modes of failure of a vehicle under test. In addition to variations in slope, ground material, and obstacles, testing typically includes driving up-slope, down-slope, cross-slope, and at intermediate angles relative to slope. Testing includes recording of drive-motor currents, wheel speeds, articulation of suspension mechanisms, and the actual path of the vehicle over the simulated terrain. The collected data can be used to compute curves that summarize torque, speed, power-demand, and slip characteristics of wheels during the traverse.
Artificial phototropism based on a photo-thermo-responsive hydrogel
NASA Astrophysics Data System (ADS)
Gopalakrishna, Hamsini
Solar energy is leading in renewable energy sources and the aspects surrounding the efforts to harvest light are gaining importance. One such aspect is increasing the light absorption, where heliotropism comes into play. Heliotropism, the ability to track the sun across the sky, can be integrated with solar cells for more efficient photon collection and other optoelectronic systems. Inspired by plants, which optimize incident sunlight in nature, several researchers have made artificial heliotropic and phototropic systems. This project aims to design, synthesize and characterize a material system and evaluate its application in a phototropic system. A gold nanoparticle (Au NP) incorporated poly(N-isopropylacrylamide) (PNIPAAm) hydrogel was synthesized as a photo-thermo-responsive material in our phototropic system. The Au NPs generate heat from the incident via plasmonic resonance to induce a volume phase change of the thermo-responsive hydrogel PNIPAAm. PNIPAAm shrinks or swells at temperature above or below 32°C. Upon irradiation, the Au NP-PNIPAAm micropillar actuates, specifically bending toward the incident light and precisely following the varying incident angle. Swelling ratio tests, bending angle tests with a static incident light and bending tests with varying angles were carried out on hydrogel samples with varying Au NP concentrations. Swelling ratios ranging from 1.45 to 2.9 were recorded for pure hydrogel samples and samples with very low Au NP concentrations. Swelling ratios of 2.41 and 3.37 were calculated for samples with low and high concentrations of Au NPs, respectively. A bending of up to 88° was observed in Au NP-hydrogel pillars with a low Au NP concentration with a 90° incident angle. The light tracking performance was assessed by the slope of the pillar Bending angle (response angle) vs. Incident light angle plot. A slope of 1 indicates ideal tracking with top of the pillar being normal to the incident light, maximizing the photon absorption. Slopes of 0.82 and 0.56 were observed for the low and high Au NP concentration samples. The rapid and precise incident light tracking of our system has shown the promise in phototropic applications.
Effects of large deep-seated landslides on hillslope morphology, western Southern Alps, New Zealand
NASA Astrophysics Data System (ADS)
Korup, Oliver
2006-03-01
Morphometric analysis and air photo interpretation highlight geomorphic imprints of large landslides (i.e., affecting ≥1 km2) on hillslopes in the western Southern Alps (WSA), New Zealand. Large landslides attain kilometer-scale runout, affect >50% of total basin relief, and in 70% are slope clearing, and thus relief limiting. Landslide terrain shows lower mean local relief, relief variability, slope angles, steepness, and concavity than surrounding terrain. Measuring mean slope angle smoothes out local landslide morphology, masking any relationship between large landslides and possible threshold hillslopes. Large failures also occurred on low-gradient slopes, indicating persistent low-frequency/high-magnitude hillslope adjustment independent of fluvial bedrock incision. At the basin and hillslope scale, slope-area plots partly constrain the effects of landslides on geomorphic process regimes. Landslide imprints gradually blend with relief characteristics at orogen scale (102 km), while being sensitive to length scales of slope failure, topography, sampling, and digital elevation model resolution. This limits means of automated detection, and underlines the importance of local morphologic contrasts for detecting large landslides in the WSA. Landslide controls on low-order drainage include divide lowering and shifting, formation of headwater basins and hanging valleys, and stream piracy. Volumes typically mobilized, yet still stored in numerous deposits despite high denudation rates, are >107 m3, and theoretically equal to 102 years of basin-wide debris production from historic shallow landslides; lack of absolute ages precludes further estimates. Deposit size and mature forest cover indicate residence times of 101-104 years. On these timescales, large landslides require further attention in landscape evolution models of tectonically active orogens.
Effect of table top slope and height on body posture and muscular activity pattern.
Hassaïne, M; Hamaoui, A; Zanone, P-G
2015-04-01
The objective of this study was to assess the effect of table top slope and height on body posture and muscular activity pattern. Twelve asymptomatic participants performed a 5-min reading task while sitting, in six experimental conditions manipulating the table top slope (20° backward slope, no slope) and its height (low, medium, up). EMGs recordings were taken on 9 superficial muscles located at the trunk and shoulder level, and the angular positions of the head, trunk and pelvis were assessed using an inertial orientation system. Results revealed that the sloping table top was associated with a higher activity of deltoideus pars clavicularis (P<0.05) and a smaller flexion angle of the head (P<0.05). A tentative conclusion is that a sloping table top induces a more erect posture of the head and the neck, but entails an overload of the shoulder, which might be harmful on the long run. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
A Laboratory Study of Slope Flows Dynamics
NASA Astrophysics Data System (ADS)
Capriati, Andrea; Cenedese, Antonio; Monti, Paolo
2003-11-01
Slope flows currents can contribute significantly in the diurnal circulation and air quality of complex terrain regions (mountains, valleys, etc.). During the daytime, solar heating warms the valley sides, causing up-slope (or anabatic) winds. In contrast, radiative cooling of the valley sides results in cold down-slope (drainage or katabatic) flows, characterized by small vertical extensions (usually 10-200 m) and with the typical features of dense gravity currents. In this paper, some preliminary results on slope flows obtained by means of a series of experiments conducted in the laboratory using a temperature controlled water tank are shown. Rakes of thermocouples are used to determine the temperature structure and particle tracking velocimetry is used for the velocity measurements. A simple slope consisting of a plate in which the temperature is forced via a set of Peltier Cells is used. The analysis is performed considering different slope angles, background thermal stratifications and surface heat fluxes as well. Comparisons with theoretical and empirical laws found in literature are reported.
Comparison of different passive knee extension torque-angle assessments.
Freitas, Sandro R; Vaz, João R; Bruno, Paula M; Valamatos, Maria J; Mil-Homens, Pedro
2013-11-01
Previous studies have used isokinetic dynamometry to assess joint torques and angles during passive extension of the knee, often without reporting upon methodological errors and reliability outcomes. In addition, the reliability of the techniques used to measure passive knee extension torque-angle and the extent to which reliability may be affected by the position of the subjects is also unclear. Therefore, we conducted an analysis of the intra- and inter-session reliability of two methods of assessing passive knee extension: (A) a 2D kinematic analysis coupled to a custom-made device that enabled the direct measurement of resistance to stretch and (B) an isokinetic dynamometer used in two testing positions (with the non-tested thigh either flexed at 45° or in the neutral position). The intra-class correlation coefficients (ICCs) of torque, the slope of the torque-angle curve, and the parameters of the mathematical model that were fit to the torque-angle data for the above conditions were measured in sixteen healthy male subjects (age: 21.4 ± 2.1 yr; BMI: 22.6 ± 3.3 kg m(-2); tibial length: 37.4 ± 3.4 cm). The results found were: (1) methods A and B led to distinctly different torque-angle responses; (2) passive torque-angle relationship and stretch tolerance were influenced by the position of the non-tested thigh; and (3) ICCs obtained for torque were higher than for the slope and for the mathematical parameters that were fit to the torque-angle curve. In conclusion, the measurement method that is used and the positioning of subjects can influence the passive knee extension torque-angle outcome.
Relation between self-organized criticality and grain aspect ratio in granular piles
NASA Astrophysics Data System (ADS)
Denisov, D. V.; Villanueva, Y. Y.; Lőrincz, K. A.; May, S.; Wijngaarden, R. J.
2012-05-01
We investigate experimentally whether self-organized criticality (SOC) occurs in granular piles composed of different grains, namely, rice, lentils, quinoa, and mung beans. These four grains were selected to have different aspect ratios, from oblong to oblate. As a function of aspect ratio, we determined the growth (β) and roughness (α) exponents, the avalanche fractal dimension (D), the avalanche size distribution exponent (τ), the critical angle (γ), and its fluctuation. At superficial inspection, three types of grains seem to have power-law-distributed avalanches with a well-defined τ. However, only rice is truly SOC if we take three criteria into account: a power-law-shaped avalanche size distribution, finite size scaling, and a universal scaling relation relating characteristic exponents. We study SOC as a spatiotemporal fractal; in particular, we study the spatial structure of criticality from local observation of the slope angle. From the fluctuation of the slope angle we conclude that greater fluctuation (and thus bigger avalanches) happen in piles consisting of grains with larger aspect ratio.
Branching pattern in natural drainage network
NASA Astrophysics Data System (ADS)
Hooshyar, M.; Singh, A.; Wang, D.
2017-12-01
The formation and growth of river channels and their network evolution are governed by the erosional and depositional processes operating on the landscape due to movement of water. The branching structure of drainage network is an important feature related to the network topology and contain valuable information about the forming mechanisms of the landscape. We studied the branching patterns in natural drainage networks, extracted from 1 m Digital Elevation Models (DEMs) of 120 catchments with minimal human impacts across the United States. We showed that the junction angles have two distinct modes an the observed modes are physically explained as the optimal angles that result in minimum energy dissipation and are linked to the exponent characterizing slope-area curve. Our findings suggest that the flow regimes, debris-flow dominated or fluvial, have distinct characteristic angles which are functions of the scaling exponent of the slope-area curve. These findings enable us to understand the geomorphological signature of hydrological processes on drainage networks and develop more refined landscape evolution models.
NASA Astrophysics Data System (ADS)
Rauch, H. P.; Sutili, F. J.; Aschbacher, M.; Müller, B.
2009-04-01
Cutting plantation is a very common method of soil bioengineering techniques. The potential of vegetative reproduction is used to install a vegetation cover on eroded slopes to prevent surface erosion. The development of above and below biomass from parts of the stock plant in a very short time and the fast and easy propagation are one of the most important advantages of this soil bioengineering type. Several handbooks (Schiechtl, 1992; Florineth, 2004 and Zeh, 2007) suggest potential plants for vegetative reproduction and describe the procedure of plantation in detail. It is recommended that the cuttings are not driven vertically into the ground. A flat implementation angle guarantees a more uniform rooting of the cutting part driven into the soil, however there are no systematically investigations of the impact of the implementation angle on the biomass performance and consequently on the performance as a surface erosion protection measure. This paper shows results from field investigations focusing on the problem of the impact of the implementation angle of cuttings. In sum 75 specimens of the species of Phyllanthus sellowianus. The plant species was recommended as a native potential soil bioengineering plant by Sutili (s. Sutili, 2006). The cuttings were planted with an average length of 50 cm and diameter of 2 cm. The implementation angle differences between 90 (vertical) 45 and 10 degree. Two months after plantation all plants were excavated and the relevant plant data sets were collected in order to analyse the biomass performance. The field investigations are part of an integrated research project of the University of Natural Resources and Applied Life Sciences, Vienna and the Federal University of Santa Maria, Rio Grande do Sul - Brazil.
Yokoo, Takeshi; Bydder, Mark; Hamilton, Gavin; Middleton, Michael S.; Gamst, Anthony C.; Wolfson, Tanya; Hassanein, Tarek; Patton, Heather M.; Lavine, Joel E.; Schwimmer, Jeffrey B.; Sirlin, Claude B.
2009-01-01
Purpose: To assess the accuracy of four fat quantification methods at low-flip-angle multiecho gradient-recalled-echo (GRE) magnetic resonance (MR) imaging in nonalcoholic fatty liver disease (NAFLD) by using MR spectroscopy as the reference standard. Materials and Methods: In this institutional review board–approved, HIPAA-compliant prospective study, 110 subjects (29 with biopsy-confirmed NAFLD, 50 overweight and at risk for NAFLD, and 31 healthy volunteers) (mean age, 32.6 years ± 15.6 [standard deviation]; range, 8–66 years) gave informed consent and underwent MR spectroscopy and GRE MR imaging of the liver. Spectroscopy involved a long repetition time (to suppress T1 effects) and multiple echo times (to estimate T2 effects); the reference fat fraction (FF) was calculated from T2-corrected fat and water spectral peak areas. Imaging involved a low flip angle (to suppress T1 effects) and multiple echo times (to estimate T2* effects); imaging FF was calculated by using four analysis methods of progressive complexity: dual echo, triple echo, multiecho, and multiinterference. All methods except dual echo corrected for T2* effects. The multiinterference method corrected for multiple spectral interference effects of fat. For each method, the accuracy for diagnosis of fatty liver, as defined with a spectroscopic threshold, was assessed by estimating sensitivity and specificity; fat-grading accuracy was assessed by comparing imaging and spectroscopic FF values by using linear regression. Results: Dual-echo, triple-echo, multiecho, and multiinterference methods had a sensitivity of 0.817, 0.967, 0.950, and 0.983 and a specificity of 1.000, 0.880, 1.000, and 0.880, respectively. On the basis of regression slope and intercept, the multiinterference (slope, 0.98; intercept, 0.91%) method had high fat-grading accuracy without statistically significant error (P > .05). Dual-echo (slope, 0.98; intercept, −2.90%), triple-echo (slope, 0.94; intercept, 1.42%), and multiecho (slope, 0.85; intercept, −0.15%) methods had statistically significant error (P < .05). Conclusion: Relaxation- and interference-corrected fat quantification at low-flip-angle multiecho GRE MR imaging provides high diagnostic and fat-grading accuracy in NAFLD. © RSNA, 2009 PMID:19221054
A Quasi-Steady Lifting Line Theory for Insect-Like Hovering Flight
Nabawy, Mostafa R. A.; Crowthe, William J.
2015-01-01
A novel lifting line formulation is presented for the quasi-steady aerodynamic evaluation of insect-like wings in hovering flight. The approach allows accurate estimation of aerodynamic forces from geometry and kinematic information alone and provides for the first time quantitative information on the relative contribution of induced and profile drag associated with lift production for insect-like wings in hover. The main adaptation to the existing lifting line theory is the use of an equivalent angle of attack, which enables capture of the steady non-linear aerodynamics at high angles of attack. A simple methodology to include non-ideal induced effects due to wake periodicity and effective actuator disc area within the lifting line theory is included in the model. Low Reynolds number effects as well as the edge velocity correction required to account for different wing planform shapes are incorporated through appropriate modification of the wing section lift curve slope. The model has been successfully validated against measurements from revolving wing experiments and high order computational fluid dynamics simulations. Model predicted mean lift to weight ratio results have an average error of 4% compared to values from computational fluid dynamics for eight different insect cases. Application of an unmodified linear lifting line approach leads on average to a 60% overestimation in the mean lift force required for weight support, with most of the discrepancy due to use of linear aerodynamics. It is shown that on average for the eight insects considered, the induced drag contributes 22% of the total drag based on the mean cycle values and 29% of the total drag based on the mid half-stroke values. PMID:26252657
Estimating Slopes In Images Of Terrain By Use Of BRDF
NASA Technical Reports Server (NTRS)
Scholl, Marija S.
1995-01-01
Proposed method of estimating slopes of terrain features based on use of bidirectional reflectivity distribution function (BRDF) in analyzing aerial photographs, satellite video images, or other images produced by remote sensors. Estimated slopes integrated along horizontal coordinates to obtain estimated heights; generating three-dimensional terrain maps. Method does not require coregistration of terrain features in pairs of images acquired from slightly different perspectives nor requires Sun or other source of illumination to be low in sky over terrain of interest. On contrary, best when Sun is high. Works at almost all combinations of illumination and viewing angles.
NASA Astrophysics Data System (ADS)
Teixeira Guerra, A. J.; Rodrigues Bezerra, J. F.; da Mota Lima, L. D.; Silva Mendonça, J. K.; Vieira Souza, U. D.; Teixeira Guerra, T.
2009-04-01
The aim of this paper is to assess the stages of rehabilitation of a degraded site by erosion, in Salina/Sacavém district, São Luís City, considering geomorphologic characteristics and soil bioengineering techniques. This technique has been applied in different situations to rehabilitate degraded areas, with positive results from the use of biodegradable materials (e.g. vegetal fibres, wooden stakes and re-vegetation). These techniques stabilize the soil at low cost and improve the environment. Bioengineering involves the planned and strategic application of selected materials, involving biodegradable materials, often in combination with 'hard engineering' structures constructed from stone, concrete and steel. The settlement of São Luís was established in 1612 and has evolved in distinct phases. Rapid urban growth was associated with industrialization in the second half of the 18th Century. Rapid population and urban growth has intensified problems, compounded by poor planning and improper soil use. São Luís, like many other Brazilian cities, has experienced rapid population growth in recent decades, which has created a series of socio-economic and environmental problems, including accelerated soil erosion. Sacavém is one of these communities where natural and human factors contribute to the severe gully erosion. The local lithology is mainly Tertiary sandstones and, to a lesser extent, shales, argillites and siltstones, all of which belong to the Barreiras Formation. Weathering on these rocks produces erodible soils, including lithosols, latosols, concretionary red/yellow clay soils and concretionary plinthosols. Thus, erodible soils and regolith are subject to high erosion rates, especially on steeper slopes subject to additional human interventions. Furthermore, although regional slopes are quite gentle, there is localized high relative relief. Sacavém vegetation, in the gullied area, consists of brushwood. Secondary mixed forest and brushwood are the dominant vegetal cover adjacent to the urban gullies. The local climate is humid tropical, with average annual temperatures of 26°C, reaching higher values in October to December and lower from April to June. Rainfall distribution throughout the year is irregular, marked by two very distinct seasons (rainy and dry). The highly seasonal erosive rains incise a complex series of soil erosion landforms, mainly gullies in this area. The following procedures have been carried out: fieldwork with monitoring of gully head erosion; Environmental Education Program; handcraft workshop regarding the prodution of geotextiles from Buriti fiber. The rehabilitation of this degraded site, follows these stages: 1. Acquisition of equipment and materials; 2. Contracting workers; 3. Reshaping selected gully walls; 4. Adding organic palm materials to the topsoil and ~30 kg of grass seeds; 5. Application of geotextile anchored on the ground by using wooden stakes; 6. Maintenance work with photographic records; 7. Photo comparison to measure the vegetal cover percentage, with the aid of geoprocessing software. Some of the gully walls presented steep slopes, around 90 degrees, and therefore, it was necessary to reshape them for the application of soil bioengineering techniques. It was selected a sample area of 2.000 m2 to be rehabilitated. The knowledge of soil and geomorphological characteristics was essential to understand surface runoff, considering the direction of water flows. Due to the difficulties in diverting the flows, which would require more extensive engineering works, the channel was maintained, and the base of the slopes was strengthened to support the flows. In the upper part of this area, which had ~8° slope angle, contour lines were surveyed and barriers of wooden stakes were used to retard runoff velocity from adjacent vegetated slopes. Some slopes in this part had a 45° slope angle, due to the local topography. However, this angle is considered too steep for the application of palm-mats. In some parts of gully, work was completed to reshape the gullies and construct the ~12 m high terraces using the gully material. Tractor work was impeded, because on the second terrace the tractor had difficulty in working, because of the high sand content, which made the slope unstable. These terraces are crossed by a flow convergence area, which was formed by men inserting sand bags, decomposing palm leaves and grass seeds, to form a vegetated channel after grass growth. Key-words: Rehabilitation, gully, geotextile, soil bioengineering.
3. Elevation view of entire midsection using ultrawide angle lens. ...
3. Elevation view of entire midsection using ultrawide angle lens. Note opened south doors and closed north doors. The following photo WA-203-C-4 is similar except the camera position was moved right to include the slope of the south end. - Puget Sound Naval Shipyard, Munitions Storage Bunker, Naval Ammunitions Depot, South of Campbell Trail, Bremerton, Kitsap County, WA
4. Elevation view of Bunker 104 with ultrawide angle lens ...
4. Elevation view of Bunker 104 with ultrawide angle lens shows about 70 percent of east facade including entire south end with steps and doors. View shows slope of south end and vegetation growing atop building. See also photo WA-203-C-3. - Puget Sound Naval Shipyard, Munitions Storage Bunker, Naval Ammunitions Depot, South of Campbell Trail, Bremerton, Kitsap County, WA
Determination of important topographic factors for landslide mapping analysis using MLP network.
Alkhasawneh, Mutasem Sh; Ngah, Umi Kalthum; Tay, Lea Tien; Mat Isa, Nor Ashidi; Al-batah, Mohammad Subhi
2013-01-01
Landslide is one of the natural disasters that occur in Malaysia. Topographic factors such as elevation, slope angle, slope aspect, general curvature, plan curvature, and profile curvature are considered as the main causes of landslides. In order to determine the dominant topographic factors in landslide mapping analysis, a study was conducted and presented in this paper. There are three main stages involved in this study. The first stage is the extraction of extra topographic factors. Previous landslide studies had identified mainly six topographic factors. Seven new additional factors have been proposed in this study. They are longitude curvature, tangential curvature, cross section curvature, surface area, diagonal line length, surface roughness, and rugosity. The second stage is the specification of the weight of each factor using two methods. The methods are multilayer perceptron (MLP) network classification accuracy and Zhou's algorithm. At the third stage, the factors with higher weights were used to improve the MLP performance. Out of the thirteen factors, eight factors were considered as important factors, which are surface area, longitude curvature, diagonal length, slope angle, elevation, slope aspect, rugosity, and profile curvature. The classification accuracy of multilayer perceptron neural network has increased by 3% after the elimination of five less important factors.
NASA Technical Reports Server (NTRS)
Decker, William A.; Bray, Richard S.; Simmons, Rickey C.; Tucker, George E.
1993-01-01
A piloted simulation experiment was conducted using the NASA Ames Research Center Vertical Motion Simulator to evaluate two cockpit display formats designed for manual control on steep instrument approaches for a civil transport tiltrotor aircraft. The first display included a four-cue (pitch, roll, power lever position, and nacelle angle movement prompt) flight director. The second display format provided instantaneous flight path angle information together with other symbols for terminal area guidance. Pilots evaluated these display formats for an instrument approach task which required a level flight conversion from airplane-mode flight to helicopter-mode flight while decelerating to the nominal approach airspeed. Pilots tracked glide slopes of 6, 9, 15 and 25 degrees, terminating in a hover for a vertical landing on a 150 feet square vertipad. Approaches were conducted with low visibility and ceilings and with crosswinds and turbulence, with all aircraft systems functioning normally and were carried through to a landing. Desired approach and tracking performance was achieved with generally satisfactory handling qualities using either display format on glide slopes up through 15 degrees. Evaluations with both display formats for a 25 degree glide slope revealed serious problems with glide slope tracking at low airspeeds in crosswinds and the loss of the intended landing spot from the cockpit field of view.
Determination of Important Topographic Factors for Landslide Mapping Analysis Using MLP Network
Alkhasawneh, Mutasem Sh.; Ngah, Umi Kalthum; Mat Isa, Nor Ashidi; Al-batah, Mohammad Subhi
2013-01-01
Landslide is one of the natural disasters that occur in Malaysia. Topographic factors such as elevation, slope angle, slope aspect, general curvature, plan curvature, and profile curvature are considered as the main causes of landslides. In order to determine the dominant topographic factors in landslide mapping analysis, a study was conducted and presented in this paper. There are three main stages involved in this study. The first stage is the extraction of extra topographic factors. Previous landslide studies had identified mainly six topographic factors. Seven new additional factors have been proposed in this study. They are longitude curvature, tangential curvature, cross section curvature, surface area, diagonal line length, surface roughness, and rugosity. The second stage is the specification of the weight of each factor using two methods. The methods are multilayer perceptron (MLP) network classification accuracy and Zhou's algorithm. At the third stage, the factors with higher weights were used to improve the MLP performance. Out of the thirteen factors, eight factors were considered as important factors, which are surface area, longitude curvature, diagonal length, slope angle, elevation, slope aspect, rugosity, and profile curvature. The classification accuracy of multilayer perceptron neural network has increased by 3% after the elimination of five less important factors. PMID:24453846
Sensitivity of EAS measurements to the energy spectrum of muons
NASA Astrophysics Data System (ADS)
Espadanal, J.; Cazon, L.; Conceição, R.
2017-01-01
We have studied how the energy spectrum of muons at production affects some of the most common measurements related to muons in extensive air shower studies, namely, the number of muons at the ground, the slope of the lateral distribution of muons, the apparent muon production depth, and the arrival time delay of muons at ground. We found that by changing the energy spectrum by an amount consistent with the difference between current models (namely EPOS-LHC and QGSJET-II.04), the muon surface density at ground increases 5% at 20° zenith angle and 17% at 60° zenith angle. This effect introduces a zenith angle dependence on the reconstructed number of muons which might be experimentally observed. The maximum of the muon production depth distribution at 40° increases ∼ 10 g/cm2 and ∼ 0 g/cm2 at 60°, which, from pure geometrical considerations, increases the arrival time delay of muons. There is an extra contribution to the delay due to the subluminal velocities of muons of the order of ∼ 3 ns at all zenith angles. Finally, changes introduced in the logarithmic slope of the lateral density function are less than 2%.
A study of the surface energy balance on slopes in a tallgrass prairie
NASA Technical Reports Server (NTRS)
Nie, D.; Demetriades-Shah, T.; Kanemasu, E. T.
1990-01-01
Four slopes (north, south, east, and west) were selected on the Konza Prairie Research Natural Area to study the effect of topography on surface energy balance and other micrometeorological variables. Energy fluxes, air temperature, and vapor pressure were measured on the sloped throughout the 1988 growing season. Net radiation was the highest on the south-facing slope and lowest on the north-facing slope, and the difference was more than 150 W/sq m (20 to 30 percent) at solar noon. For daily averages, the difference was 25 W/sq m (15 percent) early in the season and increased to 60 W/sq m (30 to 50 percent) in September. The east-facing and west-facing slopes had the same daily average net radiation, but the time of day when maximum net radiation occurred was one hour earlier for the east-facing slope and one hour later for the west-facing slope relative to solar noon. Soil heat fluxes were similar for all the slopes. The absolute values of sensible heat flux (h) was consistently lower on the north-facing slope compared with other slopes. Typical difference in the values of H between the north-facing and the south-facing slopes was 15 to 30 W/sq m. The south-facing slope had the greatest day to day fluctuation in latent heat flux as a result of interaction of net radiation, soil moisture, and green leaf area. The north-facing slope had higher air temperatures during the day and higher vapor pressures both during the day and at night when the wind was from the south.
Discrepancy Between ASTER- and MODIS- Derived Land Surface Temperatures: Terrain Effects
Liu, Yuanbo; Noumi, Yousuke; Yamaguchi, Yasushi
2009-01-01
The MODerate resolution Imaging Spectroradiometer (MODIS) and the Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) are onboard the same satellite platform NASA TERRA. Both MODIS and ASTER offer routine retrieval of land surface temperatures (LSTs), and the ASTER- and MODIS-retrieved LST products have been used worldwide. Because a large fraction of the earth surface consists of mountainous areas, variations in elevation, terrain slope and aspect angles can cause biases in the retrieved LSTs. However, terrain-induced effects are generally neglected in most satellite retrievals, which may generate discrepancy between ASTER and MODIS LSTs. In this paper, we reported the terrain effects on the LST discrepancy with a case examination over a relief area at the Loess Plateau of China. Results showed that the terrain-induced effects were not major, but nevertheless important for the total LST discrepancy. A large local slope did not necessarily lead to a large LST discrepancy. The angle of emitted radiance was more important than the angle of local slope in generating the LST discrepancy. Specifically, the conventional terrain correction may be unsuitable for densely vegetated areas. The distribution of ASTER-to-MODIS emissivity suggested that the terrain correction was included in the generalized split window (GSW) based approach used to rectify MODIS LSTs. Further study should include the classification-induced uncertainty in emissivity for reliable use of satellite-retrieved LSTs over relief areas. PMID:22399955
NASA Astrophysics Data System (ADS)
Contreras-Reyes, Eduardo; Maksymowicz, Andrei; Lange, Dietrich; Grevemeyer, Ingo; Muñoz-Linford, Pamela; Moscoso, Eduardo
2017-11-01
Subduction megathrust earthquakes show complex rupture behaviour and large lateral variations of slip. However, the factors controlling seismic slip are still under debate. Here, we present 2-D velocity-depth tomographic models across four trench-perpendicular wide angle seismic profiles complemented with high resolution bathymetric data in the area of maximum coseismic slip of the Mw 8.8 Maule 2010 megathrust earthquake (central Chile, 34°-36°S). Results show an abrupt lateral velocity gradient in the trench-perpendicular direction (from 5.0 to 6.0 km/s) interpreted as the contact between the accretionary prism and continental framework rock whose superficial expression spatially correlates with the slope-shelf break. The accretionary prism is composed of two bodies: (1) an outer accretionary wedge (5-10 km wide) characterized by low seismic velocities of 1.8-3.0 km/s interpreted as an outer frontal prism of poorly compacted and hydrated sediment, and (2) the middle wedge (∼50 km wide) with velocities of 3.0-5.0 km/s interpreted as a middle prism composed by compacted and lithified sediment. In addition, the maximum average coseismic slip of the 2010 megathrust event is fairly coincident with the region where the accretionary prism and continental slope are widest (50-60 km wide), and the continental slope angle is low (<5°). We observe a similar relation along the rupture area of the largest instrumentally recorded Valdivia 1960 Mw 9.5 megathrust earthquake. For the case of the Maule event, published differential multibeam bathymetric data confirms that coseismic slip must have propagated up to ∼6 km landwards of the deformation front and hence practically the entire base of the middle prism. Sediment dewatering and compaction processes might explain the competent rheology of the middle prism allowing shallow earthquake rupture. In contrast, the outer frontal prism made of poorly consolidated sediment has impeded the rupture up to the deformation front as high resolution seismic reflection and multibeam bathymetric data have not showed evidence for new deformation in the trench region.
Ucar, Faruk Izzet; Buyuk, Suleyman Kutalmis; Ozer, Torun; Uysal, Tancan
2013-01-01
Objective To evaluate lower incisor position and bony support between patients with Class II average- and high-angle malocclusions and compare with the patients presenting Class I malocclusions. Methods CBCT records of 79 patients were divided into 2 groups according to sagittal jaw relationships: Class I and II. Each group was further divided into average- and high-angle subgroups. Six angular and 6 linear measurements were performed. Independent samples t-test, Kruskal-Wallis, and Dunn post-hoc tests were performed for statistical comparisons. Results Labial alveolar bone thickness was significantly higher in Class I group compared to Class II group (p = 0.003). Lingual alveolar bone angle (p = 0.004), lower incisor protrusion (p = 0.007) and proclination (p = 0.046) were greatest in Class II average-angle patients. Spongious bone was thinner (p = 0.016) and root apex was closer to the labial cortex in high-angle subgroups when compared to the Class II average-angle subgroup (p = 0.004). Conclusions Mandibular anterior bony support and lower incisor position were different between average- and high-angle Class II patients. Clinicians should be aware that the range of lower incisor movement in high-angle Class II patients is limited compared to average- angle Class II patients. PMID:23814708
Baysal, Asli; Ucar, Faruk Izzet; Buyuk, Suleyman Kutalmis; Ozer, Torun; Uysal, Tancan
2013-06-01
To evaluate lower incisor position and bony support between patients with Class II average- and high-angle malocclusions and compare with the patients presenting Class I malocclusions. CBCT records of 79 patients were divided into 2 groups according to sagittal jaw relationships: Class I and II. Each group was further divided into average- and high-angle subgroups. Six angular and 6 linear measurements were performed. Independent samples t-test, Kruskal-Wallis, and Dunn post-hoc tests were performed for statistical comparisons. Labial alveolar bone thickness was significantly higher in Class I group compared to Class II group (p = 0.003). Lingual alveolar bone angle (p = 0.004), lower incisor protrusion (p = 0.007) and proclination (p = 0.046) were greatest in Class II average-angle patients. Spongious bone was thinner (p = 0.016) and root apex was closer to the labial cortex in high-angle subgroups when compared to the Class II average-angle subgroup (p = 0.004). Mandibular anterior bony support and lower incisor position were different between average- and high-angle Class II patients. Clinicians should be aware that the range of lower incisor movement in high-angle Class II patients is limited compared to average- angle Class II patients.
Curtis L. VanderSchaaf; Harold E. Burkhart
2010-01-01
Maximum size-density relationships (MSDR) provide natural resource managers useful information about the relationship between tree density and average tree size. Obtaining a valid estimate of how maximum tree density changes as average tree size changes is necessary to accurately describe these relationships. This paper examines three methods to estimate the slope of...
Tidally induced residual current over the Malin Sea continental slope
NASA Astrophysics Data System (ADS)
Stashchuk, Nataliya; Vlasenko, Vasiliy; Hosegood, Phil; Nimmo-Smith, W. Alex M.
2017-05-01
Tidally induced residual currents generated over shelf-slope topography are investigated analytically and numerically using the Massachusetts Institute of Technology general circulation model. Observational support for the presence of such a slope current was recorded over the Malin Sea continental slope during the 88-th cruise of the RRS ;James Cook; in July 2013. A simple analytical formula developed here in the framework of time-averaged shallow water equations has been validated against a fully nonlinear nonhydrostatic numerical solution. A good agreement between analytical and numerical solutions is found for a wide range of input parameters of the tidal flow and bottom topography. In application to the Malin Shelf area both the numerical model and analytical solution predicted a northward moving current confined to the slope with its core located above the 400 m isobath and with vertically averaged maximum velocities up to 8 cm s-1, which is consistent with the in-situ data recorded at three moorings and along cross-slope transects.
Bedform migration in steep channels: from local avalanches to large scale changes
NASA Astrophysics Data System (ADS)
Mettra, F.; Heyman, J.; Ancey, C.
2013-12-01
Many studies have emphasized the strength of bedload transport fluctuations in steep streams, especially at low and intermediate transport conditions (relative to the threshold of incipient motion). The origins of these fluctuations, which appear on a wide range of time scales, are still not well understood. In this study, we present the data obtained from a 2D idealized laboratory experiment with the objective of simultaneously recording the channel bed evolution and bedload transport rate at a high temporal resolution. A 3-m long by 8-cm wide transparent flume filled with well-sorted natural gravel (d50=6.5 mm) was used. An efficient technique using accelerometers has been developed to record the arrival time of every particle at the outlet of the flume for long experimental durations (up to a few days). In addition, bed elevation was monitored using cameras filming from the side of the channel, allowing the observation of global aggradation/degradation as well as bedform migration. The experimental parameters were the water discharge, the flume inclination (from 2° to 5°) and the constant feeding rate of sediments. Large-scale bed evolution showed successive aggradation and rapid degradation periods. Indeed, the measured global channel slope, i.e. mean slope over the flume length, fluctuated continuously within a range sometimes wider than 1° (experimental parameters were constant over the entire run). The analysis of these fluctuations provides evidence that steep channels behave like metastable systems, similarly to grain piles. The metastable effects increased for steeper channels and lower transport conditions. In this measurement campaign, we mainly observed upstream-migrating antidunes. For each run, various antidune heights and celerities were measured. On average, the mean antidune migration rate increased with decreasing channel slope and increasing sediment feeding rate. Relatively rare tall and fast-moving antidunes appeared more frequently at high flume angles and produced intense solid discharge pulses. Moreover, small avalanches occurred on the steep lee sides of antidunes. From these results, we infer a mechanism of steep channel evolution. The time- and space-averaged profile of the bed in the streamwise direction depends on the experimental parameters. Variations in the profile result mainly from bedform migration. The instantaneous global state of the bed (which can be characterized by the global channel slope) controls the growth of bedforms, which can be seen as local instabilities. When the global channel slope approaches its critical value, local instabilities of higher amplitude can develop and create intense bedload transport pulses, leading to a less steep, but more stable bed profile.
Barbadoro, P; Ensini, A; Leardini, A; d'Amato, M; Feliciangeli, A; Timoncini, A; Amadei, F; Belvedere, C; Giannini, S
2014-12-01
Unicompartmental knee arthroplasty (UKA) has shown a higher rate of revision compared with total knee arthroplasty. The success of UKA depends on prosthesis component alignment, fixation and soft tissue integrity. The tibial cut is the crucial surgical step. The hypothesis of the present study is that tibial component malalignment is correlated with its risk of loosening in UKA. This study was performed in twenty-three patients undergoing primary cemented unicompartmental knee arthroplasties. Translations and rotations of the tibial component and the maximum total point motion (MTPM) were measured using radiostereometric analysis at 3, 6, 12 and 24 months. Standard radiological evaluations were also performed immediately before and after surgery. Varus/valgus and posterior slope of the tibial component and tibial-femoral axes were correlated with radiostereometric micro-motion. A survival analysis was also performed at an average of 5.9 years by contacting patients by phone. Varus alignment of the tibial component was significantly correlated with MTPM, anterior tibial sinking, varus rotation and anterior and medial translations from radiostereometry. The posterior slope of the tibial component was correlated with external rotation. The survival rate at an average of 5.9 years was 89%. The two patients who underwent revision presented a tibial component varus angle of 10° for both. There is correlation between varus orientation of the tibial component and MTPM from radiostereometry in unicompartmental knee arthroplasties. Particularly, a misalignment in varus larger than 5° could lead to risk of loosening the tibial component. Prognostic studies-retrospective study, Level II.
Landscape Evolution Associated with Recurring Slope Lineae (RSL) on Mars
NASA Astrophysics Data System (ADS)
McEwen, A. S.; Dundas, C. M.; Chojnacki, M.; Ojha, L.
2016-12-01
RSL are low-albedo features that initiate at bedrock outcrops and extend down steep slopes. Individual slopes may have hundreds of lineae, with widths up to 5 m and lengths up to 1.5 km. RSL appear and lengthen gradually or incrementally, fade when inactive, and recur each year, normally in the warmest season. Small channels (1-20 m wide) are often present and control RSL paths. We have also detected newly-formed topographic land slumps associated with RSL fans in at least 7 locations—4 around a hill in Juventae Chasma, 2 in Garni crater in Melas Chasma, and 1 along wall slopes in Coprates Chasma. This distinctive landform assemblage is seen at several other locations within central and eastern Valles Marineris (VM): Small channels on most slope aspects of isolated hills or crater walls, extending very nearly to the tops of the hills or crater rim, associated with RSL that match the channels in size, and with a set of lobate deposits at the base of RSL fans. RSL activity in VM changes slope aspect with season—N-facing slopes in northern summer and S-facing slopes in southern summer. The slumps form midway down the RSL fans, and have a different seasonality—most active from Ls 0-120, the coldest time of year in VM. Assuming this association between gullies, RSL, and slumps is not coincidental, an integrated landscape evolution model is needed. Perhaps RSL activity carves the small gullies and deposits sediment near the base of angle-of-repose slopes, locally oversteepening the slope, which episodically slumps. RSL activity is seasonal and associated with the transient presence of hydrated salts, which indicates some role for salty water. If the RSL were caused by fluid flow, they should not be precisely confined to angle-of-repose or steeper slopes (>28 deg.), so these seem to be dry granular flows whose activity is triggered by or somehow associated with small amounts of water. There are multiple mysteries, such as how the activity recurs at the same locations for multiple Mars years, how it is nearly synchronized for many individual flows, how dry granular flows could create channels, and why the slumps happen in the cold season. This set of processes does not have a documented terrestrial analog and may prove important to understanding ancient as well as present-day Mars.
The Three-Dimensional (3D) Numerical Stability Analysis of Hyttemalmen Open-Pit
NASA Astrophysics Data System (ADS)
Cała, Marek; Kowalski, Michał; Stopkowicz, Agnieszka
2014-10-01
The purpose of this paper was to perform the 3D numerical calculations allowing slope stability analysis of Hyttemalmen open pit (location Kirkenes, Finnmark Province, Norway). After a ramp rock slide, which took place in December 2010, as well as some other small-scale rock slope stability problems, it proved necessary to perform a serious stability analyses. The Hyttemalmen open pit was designed with a depth up to 100 m, a bench height of 24 m and a ramp width of 10 m. The rock formation in the iron mining district of Kirkenes is called the Bjornevaten Group. This is the most structurally complicated area connected with tectonic process such as folding, faults and metamorphosis. The Bjornevaten Group is a volcano-sedimentary sequence. Rock slope stability depends on the mechanical properties of the rock, hydro-geological conditions, slope topography, joint set systems and seismic activity. However, rock slope stability is mainly connected with joint sets. Joints, or general discontinuities, are regarded as weak planes within rock which have strength reducing consequences with regard to rock strength. Discontinuities within the rock mass lead to very low tensile strength. Several simulations were performed utilising the RocLab (2007) software to estimate the gneiss cohesion for slopes of different height. The RocLab code is dedicated to estimate rock mass strength using the Hoek-Brown failure criterion. Utilising both the GSI index and the Hoek-Brown strength criterion the equivalent Mohr-Coulomb parameters (cohesion and angle of internal friction) can be calculated. The results of 3D numerical calculations (with FLA3D code) show that it is necessary to redesign the slope-bench system in the Hyttemalmen open pit. Changing slope inclination for lower stages is recommended. The minimum factor of safety should be equal 1.3. At the final planned stage of excavation, the factor of safety drops to 1.06 with failure surface ranging through all of the slopes. In the case of a slope angle 70° for lower stages, FS = 1.26, which is not enough to provide slope stability. Another series of calculations were therefore performed taking water table lowering into consideration, which increases the global safety factor. It was finally evaluated, that for a water table level of 72 m the factor of safety equals 1.3, which is enough to assure global open-pit stability.
NASA Astrophysics Data System (ADS)
Idier, Déborah; Falqués, Albert; Rohmer, Jérémy; Arriaga, Jaime
2017-09-01
The instability mechanisms for self-organized kilometer-scale shoreline sand waves have been extensively explored by modeling. However, while the assumed bathymetric perturbation associated with the sand wave controls the feedback between morphology and waves, its effect on the instability onset has not been explored. In addition, no systematic investigation of the effect of the physical parameters has been done yet. Using a linear stability model, we investigate the effect of wave conditions, cross-shore profile, closure depth, and two perturbation shapes (P1: cross-shore bathymetric profile shift, and P2: bed level perturbation linearly decreasing offshore). For a P1 perturbation, no instability occurs below an absolute critical angle θc0≈ 40-50°. For a P2 perturbation, there is no absolute critical angle: sand waves can develop also for low-angle waves. In fact, the bathymetric perturbation shape plays a key role in low-angle wave instability: such instability only develops if the curvature of the depth contours offshore the breaking zone is larger than the shoreline one. This can occur for the P2 perturbation but not for P1. The analysis of bathymetric data suggests that both curvature configurations could exist in nature. For both perturbation types, large wave angle, small wave period, and large closure depth strongly favor instability. The cross-shore profile has almost no effect with a P1 perturbation, whereas large surf zone slope and gently sloping shoreface strongly enhance instability under low-angle waves for a P2 perturbation. Finally, predictive statistical models are set up to identify sites prone to exhibit either a critical angle close to θc0 or low-angle wave instability.
Naito, Tomoko; Yoshikawa, Keiji; Mizoue, Shiro; Nanno, Mami; Kimura, Tairo; Suzumura, Hirotaka; Takeda, Ryuji; Shiraga, Fumio
2015-01-01
To analyze the relationship between consecutive deterioration of mean deviation (MD) value and glaucomatous visual field (VF) progression in open-angle glaucoma (OAG), including primary OAG and normal tension glaucoma. The subjects of the study were patients undergoing treatment for OAG who had performed VF tests at least 10 times with a Humphrey field analyzer (SITA standard, C30-2 program). The VF progression was defined by a significantly negative MD slope (MD slope worsening) at the final VF test during the follow-up period. The relationship between the MD slope worsening and the consecutive deterioration of MD value were retrospectively analyzed. A total of 165 eyes of 165 patients were included in the analysis. Significant progression of VF defects was observed in 72 eyes of 72 patients (43.6%), while no significant progression was evident in 93 eyes of 93 patients (56.4%). There was significant relationship between the frequency of consecutive deterioration of MD value and MD slope worsening (P<0.0001, Cochran-Armitage trend test). A significant association was observed for MD slope worsening in the eyes with three (odds ratio: 2.1, P=0.0224) and four (odds ratio: 3.6, P=0.0008) consecutive deterioration of MD value in multiple logistic regression analysis, but no significant association in the eyes with two consecutive deterioration (odds ratio: 1.1, P=0.8282). The eyes with VF progression had significantly lower intraocular pressure reduction rate (P<0.01). This retrospective study has shown that three or more consecutive deterioration of MD value might be a predictor to future significant MD slope worsening in OAG.
Noh, Dong Koog; You, Joshua Sung-H; Koh, Jae-Hyun; Kim, Hoseong; Kim, Donghyun; Ko, Sung-Mok; Shin, Ji-Youn
2014-01-01
To compare the therapeutic effects of a 3-dimensional corrective spinal technique (CST) and a conventional exercise program (CE) on altered spinal curvature and health related quality-of-life in patients with adolescent idiopathic scoliosis (AIS). Adolescents with idiopathic scoliosis (N=32, 6 males and 26 females) between 10 and 19 years of age (14.34 ± 2.60 years) were recruited and underwent the CST or CE for 60 minutes/day, 2-3 times a week, and an average of total 30 sessions. Diagnostic X-ray imaging technique was used to determine intervention-related changes in the Cobb angle, thoracic kyphosis angle, lumbar lordosis angle, sacral slope, pelvic tilt, pelvic incidence, and vertebral rotation (Nash-Moe method). The Scoliosis Research Society-22 (SRS-22) health related quality-of-life questionnaire was used. Data were analysed using independent t-test, paired t-test, and non-parametric Mann-Whitney U-test at p < 0.05. CST showed greater improvements in Cobb angle (p=0.003), vertebral rotation (p=0.000), and SRS-22 scores (self-image and treatment satisfaction subscale scores and total score, p=0.026, p=0.039, and p=0.041, respectively) as compared to the controls. There were no significant changes in the other measures between the two groups. This is the first clinical trial to investigate the effects of the 3-dimensional CST on spinal curvatures and health related quality-of-life in AIS, providing the important clinical rationale and compelling evidence for the effective management of AIS.
Empirical Model for Predicting Rockfall Trajectory Direction
NASA Astrophysics Data System (ADS)
Asteriou, Pavlos; Tsiambaos, George
2016-03-01
A methodology for the experimental investigation of rockfall in three-dimensional space is presented in this paper, aiming to assist on-going research of the complexity of a block's response to impact during a rockfall. An extended laboratory investigation was conducted, consisting of 590 tests with cubical and spherical blocks made of an artificial material. The effects of shape, slope angle and the deviation of the post-impact trajectory are examined as a function of the pre-impact trajectory direction. Additionally, an empirical model is proposed that estimates the deviation of the post-impact trajectory as a function of the pre-impact trajectory with respect to the slope surface and the slope angle. This empirical model is validated by 192 small-scale field tests, which are also presented in this paper. Some important aspects of the three-dimensional nature of rockfall phenomena are highlighted that have been hitherto neglected. The 3D space data provided in this study are suitable for the calibration and verification of rockfall analysis software that has become increasingly popular in design practice.
Siddiqi, Ariba; Poosapadi Arjunan, Sridhar; Kumar, Dinesh Kant
2018-01-16
This study describes a new model of the force generated by tibialis anterior muscle with three new features: single-fiber action potential, twitch force, and pennation angle. This model was used to investigate the relative effects and interaction of ten age-associated neuromuscular parameters. Regression analysis (significance level of 0.05) between the neuromuscular properties and corresponding simulated force produced at the footplate was performed. Standardized slope coefficients were computed to rank the effect of the parameters. The results show that reduction in the average firing rate is the reason for the sharp decline in the force and other factors, such as number of muscle fibers, specific force, pennation angle, and innervation ratio. The fast fiber ratio affects the simulated force through two significant interactions. This study has ranked the individual contributions of the neuromuscular factors to muscle strength decline of the TA and identified firing rate decline as the biggest cause followed by decrease in muscle fiber number and specific force. The strategy for strength preservation for the elderly should focus on improving firing rate. Graphical abstract Neuromuscular properties of Tibialis Anterior on force generated during ankle dorsiflexion.
Kwun, Jun-Dae; Kim, Hee-June; Park, Jaeyoung; Park, Il-Hyung; Kyung, Hee-Soo
2017-01-01
The purpose of this study was to evaluate the usefulness of three-dimensional (3D) printed models for open wedge high tibial osteotomy (HTO) in porcine bone. Computed tomography (CT) images were obtained from 10 porcine knees and 3D imaging was planned using the 3D-Slicer program. The osteotomy line was drawn from the three centimeters below the medial tibial plateau to the proximal end of the fibular head. Then the osteotomy gap was opened until the mechanical axis line was 62.5% from the medial border along the width of the tibial plateau, maintaining the posterior tibial slope angle. The wedge-shaped 3D-printed model was designed with the measured angle and osteotomy section and was produced by the 3D printer. The open wedge HTO surgery was reproduced in porcine bone using the 3D-printed model and the osteotomy site was fixed with a plate. Accuracy of osteotomy and posterior tibial slope was evaluated after the osteotomy. The mean mechanical axis line on the tibial plateau was 61.8±1.5% from the medial tibia. There was no statistically significant difference (P=0.160). The planned and post-osteotomy correction wedge angles were 11.5±3.2° and 11.4±3.3°, and the posterior tibial slope angle was 11.2±2.2° pre-osteotomy and 11.4±2.5° post-osteotomy. There were no significant differences (P=0.854 and P=0.429, respectively). This study showed that good results could be obtained in high tibial osteotomy by using 3D printed models of porcine legs. Copyright © 2016 Elsevier B.V. All rights reserved.
Assessing slope dynamics in a climate-sensitive high arctic region with Sentinel-1 dataset
NASA Astrophysics Data System (ADS)
Mantovani, Matteo; Pasuto, Alessandro; Soldati, Mauro; Popovic, Radmil; Berthling, Ivar
2017-04-01
As witnessed by an increasing number of studies, the evidence of ongoing climate change and its geomorphological effects is unquestionable. In the Svalbard archipelago, the Arctic amplification of global warming trends currently has a significant effect on permafrost temperatures and active layer thickness. Combined with altered intensity and variability of precipitation, slopes are likely to become more active in terms of both rapid and slow (creep) processes - at least as a temporary effect where the ice-rich transient layer of soils or jointed permafrost rock walls are starting to thaw. The slopes of the Kongsfjorden area aroundNy-Ålesund, NW Spitzbergen comprise a variable set of slopes systems on which to evaluate current modifications of slope sediment transfer; from low-angle fined-grained vegetated slopes to steep rock walls, talus slopes and rock glaciers. In addition, systems influenced by currently retreating glaciers and thermokarst processes are also found, in some settings interfering with the rock wall and talus slope systems. Within the framework of the SLOPES project, we provide baseline data on slope geometry from detailed terrestrial laser scanning and drone aerial image acquisition. Further, in order to document current dynamics, we employ interferometric analysis of data gathered by the new ESA mission SENTINEL. This presentation will report on data from the interferometric analysis.
Side-sloped surfaces substantially affect lower limb running kinematics.
Damavandi, Mohsen; Eslami, Mansour; Pearsall, David J
2017-03-01
Running on side-sloped surfaces is a common obstacle in the environment; however, how and to what extent the lower extremity kinematics adapt is not well known. The purpose of this study was to determine the effects of side-sloped surfaces on three-dimensional kinematics of hip, knee, and ankle during stance phase of running. Ten healthy adult males ran barefoot along an inclinable runway in level (0°) and side-sloped (10° up-slope and down-slope inclinations, respectively) configurations. Right hip, knee, and ankle angles along with their time of occurrence were analysed using repeated measures MANOVA. Up-slope hip was more adducted (p = 0.015) and internally rotated (p = 0.030). Knee had greater external rotations during side-sloped running at heel-strike (p = 0.005), while at toe-off, it rotated externally and internally during up-slope and down-slope running, respectively (p = 0.001). Down-slope ankle had greatest plantar flexion (p = 0.001). Up-slope ankle had greatest eversion compared with down-slope (p = 0.043), while it was more externally rotated (p = 0.030). These motion patterns are necessary to adjust the lower extremity length during side-sloped running. Timing differences in the kinematic events of hip adduction and external rotation, and ankle eversion were observed (p = 0.006). Knowledge on these alterations is a valuable tool in adopting strategies to enhance performance while preventing injury.
Changes in the body posture of women occurring with age
2013-01-01
Background A current topic in the field of geriatrics still needing a great deal of study is the changes in body posture occurring with age. Symptoms of these changes can be observed starting between the ages of 40–50 years with a slow progression that increases after 60 years of age. The aims of this study were to evaluate parameters characterizing the posture of women over the age of 60 years compared with a control group and to determine the dynamics of body posture changes in the following decades. Methods The study included 260 randomly selected women. The study group consisted of 130 women between the ages of 60–90 years (Older Women). The control group (Younger Women) consisted of 130 women between the ages of 20–25 years (posture stabilization period). The photogrammetric method was used to evaluate body posture using the phenomenon of the projection chamber. The study was conducted according to generally accepted principles. Results In the analysis of parameters characterizing individual slope curves, results were varied among different age groups. The lumbar spine slope did not show significant differences between different age groups (p = 0.6952), while statistically significant differences (p = 0.0000) were found in the thoracic-lumbar spine slope (p = 0.0033) and upper thoracic spine slope. Body angle was shown to increase with age (p = 0.0000). Thoracic kyphosis depth significantly deepened with age (p = 0.0002), however, the thoracic kyphosis angle decreased with age (p = 0.0000). An increase in asymmetries was noticed, provided by a significantly higher angle of the shoulder line (p = 0.0199) and the difference in height of the lower shoulder blade angle (p = 0.0007) measurements in the group of older women. Conclusions Changes in the parameters describing body posture throughout consecutive decades were observed. Therapy for women over the age of 60 years should involve strengthening of the erector spinae muscles and controlling body posture with the aim of reducing trunk inclination and deepening of thoracic kyphosis. Moreover, exercises shaping lumbar lordosis should be performed to prevent its flattening. PMID:24119004
Allouche, M H; Millet, S; Botton, V; Henry, D; Ben Hadid, H; Rousset, F
2015-12-01
Squire's theorem, which states that the two-dimensional instabilities are more dangerous than the three-dimensional instabilities, is revisited here for a flow down an incline, making use of numerical stability analysis and Squire relationships when available. For flows down inclined planes, one of these Squire relationships involves the slopes of the inclines. This means that the Reynolds number associated with a two-dimensional wave can be shown to be smaller than that for an oblique wave, but this oblique wave being obtained for a larger slope. Physically speaking, this prevents the possibility to directly compare the thresholds at a given slope. The goal of the paper is then to reach a conclusion about the predominance or not of two-dimensional instabilities at a given slope, which is of practical interest for industrial or environmental applications. For a Newtonian fluid, it is shown that, for a given slope, oblique wave instabilities are never the dominant instabilities. Both the Squire relationships and the particular variations of the two-dimensional wave critical curve with regard to the inclination angle are involved in the proof of this result. For a generalized Newtonian fluid, a similar result can only be obtained for a reduced stability problem where some term connected to the perturbation of viscosity is neglected. For the general stability problem, however, no Squire relationships can be derived and the numerical stability results show that the thresholds for oblique waves can be smaller than the thresholds for two-dimensional waves at a given slope, particularly for large obliquity angles and strong shear-thinning behaviors. The conclusion is then completely different in that case: the dominant instability for a generalized Newtonian fluid flowing down an inclined plane with a given slope can be three dimensional.
GIS for Predicting the Avalanche Zones in the Mountain Regions of Kazakhstan
NASA Astrophysics Data System (ADS)
Omirzhanova, Zh. T.; Urazaliev, A. S.; Aimenov, A. T.
2015-10-01
Foothills of Trans Ili Alatau is a recreational area with buildings and sports facilities and resorts, sanatoriums, etc. In summer and winter there are a very large number of skiers, climbers, tourists and workers of organizations which located in the mountains. In this regard, forecasting natural destructive phenomena using GIS software is an important task of many scientific fields. The formation of avalanches, except meteorological conditions, such as temperature, wind speed, snow thickness, especially affecting mountainous terrain. Great importance in the formation of avalanches play steepness (slope) of the slope and exposure. If steep slopes contribute to the accumulation of snow in some places, increase the risk of flooding of the slope, the various irregularities can delay an avalanche. According to statistics, the bulk of the avalanche is formed on the slopes steeper than 30°. In the course of research a 3D model of the terrain was created with the help of programs ArcGIS and Surfer. Identified areas with steep slopes, the exposure is made to the cardinal. For dangerous terrain location is divided into three groups: favorable zone, danger zone and the zone of increased risk. The range of deviations from 30-45° is dangerous, since the angle of inclination of more than 30°, there is a maximum thickness of sliding snow, water, the upper layer of the surface and there is an increase rate of moving array, and the mountain slopes at an angle 450 above are the area increased risk. Created on DTM data are also plotted Weather Service for the winter of current year. The resulting model allows to get information upon request and display it on map base, assess the condition of the terrain by avalanches, as well as to solve the problem of life safety in mountainous areas, to develop measures to prevent emergency situations and prevent human losses.
Optimization of radar imaging system parameters for geological analysis
NASA Technical Reports Server (NTRS)
Waite, W. P.; Macdonald, H. C.; Kaupp, V. H.
1981-01-01
The use of radar image simulation to model terrain variation and determine optimum sensor parameters for geological analysis is described. Optimum incidence angle is determined by the simulation, which evaluates separately the discrimination of surface features possible due to terrain geometry and that due to terrain scattering. Depending on the relative relief, slope, and scattering cross section, optimum incidence angle may vary from 20 to 80 degrees. Large incident angle imagery (more than 60 deg) is best for the widest range of geological applications, but in many cases these large angles cannot be achieved by satellite systems. Low relief regions require low incidence angles (less than 30 deg), so a satellite system serving a broad range of applications should have at least two selectable angles of incidence.
Controls over aboveground forest carbon density on Barro Colorado Island, Panama
NASA Astrophysics Data System (ADS)
Mascaro, J.; Asner, G. P.; Muller-Landau, H. C.; van Breugel, M.; Hall, J.; Dahlin, K.
2011-06-01
Despite the importance of tropical forests to the global carbon cycle, ecological controls over landscape-level variation in live aboveground carbon density (ACD) in tropical forests are poorly understood. Here, we conducted a spatially comprehensive analysis of ACD variation for a continental tropical forest - Barro Colorado Island, Panama (BCI) - and tested site factors that may control such variation. We mapped ACD over 1256 ha of BCI using airborne Light Detection and Ranging (LiDAR), which was well-correlated with ground-based measurements of ACD in Panamanian forests of various ages (r2 = 0.84, RMSE = 17 Mg C ha-1, P < 0.0001). We used multiple regression to examine controls over LiDAR-derived ACD, including slope angle, forest age, bedrock, and soil texture. Collectively, these variables explained 14 % of the variation in ACD at 30-m resolution, and explained 33 % at 100-m resolution. At all resolutions, slope (linked to underlying bedrock variation) was the strongest driving factor; standing carbon stocks were generally higher on steeper slopes. This result suggests that physiography may be more important in controlling ACD variation in Neotropical forests than currently thought. Although BCI has been largely undisturbed by humans for a century, past land-use over approximately half of the island still influences ACD variation, with younger forests (80-130 years old) averaging ~15 % less carbon storage than old-growth forests (>400 years old). If other regions of relatively old tropical secondary forests also store less carbon aboveground than primary forests, the effects on the global carbon cycle could be substantial and difficult to detect with traditional satellite monitoring.
Influence of TiO2(110) surface roughness on growth and stability of thin organic films.
Szajna, K; Kratzer, M; Wrana, D; Mennucci, C; Jany, B R; Buatier de Mongeot, F; Teichert, C; Krok, F
2016-10-14
We have investigated the growth and stability of molecular ultra-thin films, consisting of rod-like semiconducting para-hexaphenyl (6P) molecules vapor deposited on ion beam modified TiO 2 (110) surfaces. The ion bombarded TiO 2 (110) surfaces served as growth templates exhibiting nm-scale anisotropic ripple patterns with controllable parameters, like ripple depth and length. In turn, by varying the ripple depth one can tailor the average local slope angle and the local step density/terrace width of the stepped surface. Here, we distinguish three types of substrates: shallow, medium, and deep rippled surfaces. On these substrates, 6P sub-monolayer deposition was carried out in ultra-high vacuum by organic molecular beam evaporation (OMBE) at room temperature leading to the formation of islands consisting of upright standing 6P molecules, which could be imaged by scanning electron microscopy and atomic force microscopy (AFM). It has been found that the local slope and terrace width of the TiO 2 template strongly influences the stability of OMBE deposited 6P islands formed on the differently rippled substrates. This effect is demonstrated by means of tapping mode AFM, where an oscillating tip was used as a probe for testing the stability of the organic structures. We conclude that by increasing the local slope of the TiO 2 (110) surface the bonding strength between the nearest neighbor standing molecules is weakened due to the presence of vertical displacement in the molecular layer in correspondence to the TiO 2 atomic step height.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sartore, R.G.
1996-12-31
In the evaluation of GaAs devices from the MMIC (Monolithic Microwave Integrated Circuits) program for Army applications, there was a requirement to obtain accurate linewidth measurements on the nominal 0.5 micrometer gate lengths used to fabricate these devices. Preliminary measurements indicated a significant variation (typically 10% to 30% but could be more) in the critical dimensional measurements of the gate length, gate to source distance and gate to drain distance. Passivation introduced a margin of error, which was removed by plasma etching. Additionally, the high aspect ratio (4-5) of the thick gold (Au) conductors also introduced measurement difficulties. The finalmore » measurements were performed were performed after the thick gold conductor was removed and only the barrier metal remained, which was approximately 250 nanometer thick platinum on GaAs substrate. The thickness was measured using the penetration voltage method. Linescan of the secondary electron signal as it scans across the gate is shown in Figure 1. This linescan is an average of 5 linescans in the immediate vicinity to reduce noise levels. A SEM image of the area is shown in Figure 2. To obtain a rough estimate of the slopes of the gate lines at the edges, the sample was tilted to 75 degrees and the image in Figure 3 was obtained. From this figure a rough estimate of the sloped edges, using a protractor, was obtained, approximately 27 degrees, +/-5 degrees.« less
2016-01-01
Tsunamis generated by landslides and volcanic island collapses account for some of the most catastrophic events recorded, yet critically important field data related to the landslide motion and tsunami evolution remain lacking. Landslide-generated tsunami source and propagation scenarios are physically modelled in a three-dimensional tsunami wave basin. A unique pneumatic landslide tsunami generator was deployed to simulate landslides with varying geometry and kinematics. The landslides were generated on a planar hill slope and divergent convex conical hill slope to study lateral hill slope effects on the wave characteristics. The leading wave crest amplitude generated on a planar hill slope is larger on average than the leading wave crest generated on a convex conical hill slope, whereas the leading wave trough and second wave crest amplitudes are smaller. Between 1% and 24% of the landslide kinetic energy is transferred into the wave train. Cobble landslides transfer on average 43% more kinetic energy into the wave train than corresponding gravel landslides. Predictive equations for the offshore propagating wave amplitudes, periods, celerities and lengths generated by landslides on planar and divergent convex conical hill slopes are derived, which allow an initial rapid tsunami hazard assessment. PMID:27274697
McFall, Brian C; Fritz, Hermann M
2016-04-01
Tsunamis generated by landslides and volcanic island collapses account for some of the most catastrophic events recorded, yet critically important field data related to the landslide motion and tsunami evolution remain lacking. Landslide-generated tsunami source and propagation scenarios are physically modelled in a three-dimensional tsunami wave basin. A unique pneumatic landslide tsunami generator was deployed to simulate landslides with varying geometry and kinematics. The landslides were generated on a planar hill slope and divergent convex conical hill slope to study lateral hill slope effects on the wave characteristics. The leading wave crest amplitude generated on a planar hill slope is larger on average than the leading wave crest generated on a convex conical hill slope, whereas the leading wave trough and second wave crest amplitudes are smaller. Between 1% and 24% of the landslide kinetic energy is transferred into the wave train. Cobble landslides transfer on average 43% more kinetic energy into the wave train than corresponding gravel landslides. Predictive equations for the offshore propagating wave amplitudes, periods, celerities and lengths generated by landslides on planar and divergent convex conical hill slopes are derived, which allow an initial rapid tsunami hazard assessment.
SLOPE STABILITY EVALUATION AND EQUIPMENT SETBACK DISTANCES FOR BURIAL GROUND EXCAVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
MCSHANE DS
2010-03-25
After 1970 Transuranic (TRU) and suspect TRU waste was buried in the ground with the intention that at some later date the waste would be retrieved and processed into a configuration for long term storage. To retrieve this waste the soil must be removed (excavated). Sloping the bank of the excavation is the method used to keep the excavation from collapsing and to provide protection for workers retrieving the waste. The purpose of this paper is to document the minimum distance (setback) that equipment must stay from the edge of the excavation to maintain a stable slope. This evaluation examinesmore » the equipment setback distance by dividing the equipment into two categories, (1) equipment used for excavation and (2) equipment used for retrieval. The section on excavation equipment will also discuss techniques used for excavation including the process of benching. Calculations 122633-C-004, 'Slope Stability Analysis' (Attachment A), and 300013-C-001, 'Crane Stability Analysis' (Attachment B), have been prepared to support this evaluation. As shown in the calculations the soil has the following properties: Unit weight 110 pounds per cubic foot; and Friction Angle (natural angle of repose) 38{sup o} or 1.28 horizontal to 1 vertical. Setback distances are measured from the top edge of the slope to the wheels/tracks of the vehicles and heavy equipment being utilized. The computer program utilized in the calculation uses the center of the wheel or track load for the analysis and this difference is accounted for in this evaluation.« less
Kirk, R.L.; Howington-Kraus, E.; Redding, B.; Galuszka, D.; Hare, T.M.; Archinal, B.A.; Soderblom, L.A.; Barrett, J.M.
2003-01-01
We analyzed narrow-angle Mars Orbiter Camera (MOC-NA) images to produce high-resolution digital elevation models (DEMs) in order to provide topographic and slope information needed to assess the safety of candidate landing sites for the Mars Exploration Rovers (MER) and to assess the accuracy of our results by a variety of tests. The mapping techniques developed also support geoscientific studies and can be used with all present and planned Mars-orbiting scanner cameras. Photogrammetric analysis of MOC stereopairs yields DEMs with 3-pixel (typically 10 m) horizontal resolution, vertical precision consistent with ???0.22 pixel matching errors (typically a few meters), and slope errors of 1-3??. These DEMs are controlled to the Mars Orbiter Laser Altimeter (MOLA) global data set and consistent with it at the limits of resolution. Photoclinometry yields DEMs with single-pixel (typically ???3 m) horizontal resolution and submeter vertical precision. Where the surface albedo is uniform, the dominant error is 10-20% relative uncertainty in the amplitude of topography and slopes after "calibrating" photoclinometry against a stereo DEM to account for the influence of atmospheric haze. We mapped portions of seven candidate MER sites and the Mars Pathfinder site. Safety of the final four sites (Elysium, Gusev, Isidis, and Meridiani) was assessed by mission engineers by simulating landings on our DEMs of "hazard units" mapped in the sites, with results weighted by the probability of landing on those units; summary slope statistics show that most hazard units are smooth, with only small areas of etched terrain in Gusev crater posing a slope hazard.
NASA Technical Reports Server (NTRS)
Morgan, Julia K.; McGovern, Patrick J.
2005-01-01
We have carried out two-dimensional particle dynamics simulations of granular piles subject to frictional Coulomb failure criteria to gain a first-order understanding of different modes of gravitational deformation within volcanoes. Under uniform basal and internal strength conditions, granular piles grow self-similarly, developing distinctive stratigraphies, morphologies, and structures. Piles constructed upon cohesive substrates exhibit particle avalanching, forming outward dipping strata and angle of repose slopes. Systematic decreases in basal strength lead to progressively deeper and steeper internal detachment faults and slip along a basal decollement; landslide forms grade from shallow slumps to deep-seated landslide and, finally, to axial subsidence and outward flank displacements, or volcanic spreading. Surface slopes decrease and develop concave up morphologies with decreasing decollement strength; depositional layers tilt progressively inward. Spatial variations in basal strength cause lateral transitions in pile structure, stratigraphy, and morphology. This approximation of volcanoes as Coulomb granular piles reproduces the richness of deformational structures and surface morphologies in many volcanic settings. The gentle slopes of Hawaiian volcanoes and Olympus Mons on Mars suggest weak basal decollements that enable volcanic spreading. High-angle normal faults, favored above weak decollements, are interpreted in both settings and may explain catastrophic sector collapse in Hawaii and broad aureole deposits surrounding Olympus Mons. In contrast, steeper slopes and shallow detachment faults predominate in the Canary Islands, thought to lack a weak decollement, favoring smaller, more frequent slope failures than predicted for Hawaii. The numerical results provide a useful predictive tool for interpreting dynamic behavior and associated geologic hazards of active volcanoes.
Trouble with diffusion: Reassessing hillslope erosion laws with a particle-based model
NASA Astrophysics Data System (ADS)
Tucker, Gregory E.; Bradley, D. Nathan
2010-03-01
Many geomorphic systems involve a broad distribution of grain motion length scales, ranging from a few particle diameters to the length of an entire hillslope or stream. Studies of analogous physical systems have revealed that such broad motion distributions can have a significant impact on macroscale dynamics and can violate the assumptions behind standard, local gradient flux laws. Here, a simple particle-based model of sediment transport on a hillslope is used to study the relationship between grain motion statistics and macroscopic landform evolution. Surface grains are dislodged by random disturbance events with probabilities and distances that depend on local microtopography. Despite its simplicity, the particle model reproduces a surprisingly broad range of slope forms, including asymmetric degrading scarps and cinder cone profiles. At low slope angles the dynamics are diffusion like, with a short-range, thin-tailed hop length distribution, a parabolic, convex upward equilibrium slope form, and a linear relationship between transport rate and gradient. As slope angle steepens, the characteristic grain motion length scale begins to approach the length of the slope, leading to planar equilibrium forms that show a strongly nonlinear correlation between transport rate and gradient. These high-probability, long-distance motions violate the locality assumption embedded in many common gradient-based geomorphic transport laws. The example of a degrading scarp illustrates the potential for grain motion dynamics to vary in space and time as topography evolves. This characteristic renders models based on independent, stationary statistics inapplicable. An accompanying analytical framework based on treating grain motion as a survival process is briefly outlined.
Wu, Lei; Qiao, Shanshan; Peng, Mengling; Ma, Xiaoyi
2018-05-01
Soil and nutrient loss is a common natural phenomenon but it exhibits unclear understanding especially on bare loess soil with variable rainfall intensity and slope gradient, which makes it difficult to design control measures for agricultural diffuse pollution. We employ 30 artificial simulated rainfalls (six rainfall intensities and five slope gradients) to quantify the coupling loss correlation of runoff-sediment-adsorbed and dissolved nitrogen and phosphorus on bare loess slope. Here, we show that effects of rainfall intensity on runoff yield was stronger than slope gradient with prolongation of rainfall duration, and the effect of slope gradient on runoff yield reduced gradually with increased rainfall intensity. But the magnitude of initial sediment yield increased significantly from an average value of 6.98 g at 5° to 36.08 g at 25° with increased slope gradient. The main factor of sediment yield would be changed alternately with the dual increase of slope gradient and rainfall intensity. Dissolved total nitrogen (TN) and dissolved total phosphorus (TP) concentrations both showed significant fluctuations with rainfall intensity and slope gradient, and dissolved TP concentration was far less than dissolved TN. Under the double influences of rainfall intensity and slope gradient, adsorbed TN concentration accounted for 7-82% of TN loss concentration with an average of 58.6% which was the main loss form of soil nitrogen, adsorbed TP concentration accounted for 91.8-98.7% of TP loss concentration with an average of 96.6% which was also the predominant loss pathway of soil phosphorus. Nitrate nitrogen (NO 3 - -N) accounted for 14.59-73.92% of dissolved TN loss, and ammonia nitrogen (NH 4 + -N) accounted for 1.48-18.03%. NO 3 - -N was the main loss pattern of TN in runoff. Correlation between dissolved TN, runoff yield, and rainfall intensity was obvious, and a significant correlation was also found between adsorbed TP, sediment yield, and slope gradient. Our results provide the underlying insights needed to guide the control of nitrogen and phosphorus loss on loess hills.
A method for determining average beach slope and beach slope variability for U.S. sandy coastlines
Doran, Kara S.; Long, Joseph W.; Overbeck, Jacquelyn R.
2015-01-01
The U.S. Geological Survey (USGS) National Assessment of Hurricane-Induced Coastal Erosion Hazards compares measurements of beach morphology with storm-induced total water levels to produce forecasts of coastal change for storms impacting the Gulf of Mexico and Atlantic coastlines of the United States. The wave-induced water level component (wave setup and swash) is estimated by using modeled offshore wave height and period and measured beach slope (from dune toe to shoreline) through the empirical parameterization of Stockdon and others (2006). Spatial and temporal variability in beach slope leads to corresponding variability in predicted wave setup and swash. For instance, seasonal and storm-induced changes in beach slope can lead to differences on the order of 1 meter (m) in wave-induced water level elevation, making accurate specification of this parameter and its associated uncertainty essential to skillful forecasts of coastal change. A method for calculating spatially and temporally averaged beach slopes is presented here along with a method for determining total uncertainty for each 200-m alongshore section of coastline.
Levee reliability analyses for various flood return periods - a case study in southern Taiwan
NASA Astrophysics Data System (ADS)
Huang, W.-C.; Yu, H.-W.; Weng, M.-C.
2015-04-01
In recent years, heavy rainfall conditions have caused disasters around the world. To prevent losses by floods, levees have often been constructed in inundation-prone areas. This study performed reliability analyses for the Chiuliao First Levee in southern Taiwan. The failure-related parameters were the water level, the scouring depth, and the in situ friction angle. Three major failure mechanisms were considered: the slope sliding failure of the levee and the sliding and overturning failures of the retaining wall. When the variability of the in situ friction angle and the scouring depth are considered for various flood return periods, the variations of the factor of safety for the different failure mechanisms show that the retaining wall sliding and overturning failures are more sensitive to the change of the friction angle. When the flood return period is greater than 2 years, the levee could fail with slope sliding for all values of the water level difference. The results of levee stability analysis considering the variability of different parameters could aid engineers in designing the levee cross sections, especially with potential failure mechanisms in mind.
NASA Technical Reports Server (NTRS)
Fung, A. K.; Dome, G.; Moore, R. K.
1977-01-01
The paper compares the predictions of two different types of sea scatter theories with recent scatterometer measurements which indicate the variations of the backscattering coefficient with polarization, incident angle, wind speed, and azimuth angle. Wright's theory (1968) differs from that of Chan and Fung (1977) in two major aspects: (1) Wright uses Phillips' sea spectrum (1966) while Chan and Fung use that of Mitsuyasu and Honda, and (2) Wright uses a modified slick sea slope distribution by Cox and Munk (1954) while Chan and Fung use the slick sea slope distribution of Cox and Munk defined with respect to the plane perpendicular to the look direction. Satisfactory agreements between theory and experimental data are obtained when Chan and Fung's model is used to explain the wind and azimuthal dependence of the scattering coefficient.
Fundamental aerodynamic characteristics of delta wings with leading-edge vortex flows
NASA Technical Reports Server (NTRS)
Wood, R. M.; Miller, D. S.
1985-01-01
An investigation of the aerodynamics of sharp leading-edge delta wings at supersonic speeds has been conducted. The supporting experimental data for this investigation were taken from published force, pressure, and flow-visualization data in which the Mach number normal to the wing leading edge is always less than 1.0. The individual upper- and lower-surface nonlinear characteristics for uncambered delta wings are determined and presented in three charts. The upper-surface data show that both the normal-force coefficient and minimum pressure coefficient increase nonlinearly with a decreasing slope with increasing angle of attack. The lower-surface normal-force coefficient was shown to be independent of Mach number and to increase nonlinearly, with an increasing slope, with increasing angle of attack. These charts are then used to define a wing-design space for sharp leading-edge delta wings.
Controls on stream network branching angles, tested using landscape evolution models
NASA Astrophysics Data System (ADS)
Theodoratos, Nikolaos; Seybold, Hansjörg; Kirchner, James W.
2016-04-01
Stream networks are striking landscape features. The topology of stream networks has been extensively studied, but their geometry has received limited attention. Analyses of nearly 1 million stream junctions across the contiguous United States [1] have revealed that stream branching angles vary systematically with climate and topographic gradients at continental scale. Stream networks in areas with wet climates and gentle slopes tend to have wider branching angles than in areas with dry climates or steep slopes, but the mechanistic linkages underlying these empirical correlations remain unclear. Under different climatic and topographic conditions different runoff generation mechanisms and, consequently, transport processes are dominant. Models [2] and experiments [3] have shown that the relative strength of channel incision versus diffusive hillslope transport controls the spacing between valleys, an important geometric property of stream networks. We used landscape evolution models (LEMs) to test whether similar factors control network branching angles as well. We simulated stream networks using a wide range of hillslope diffusion and channel incision parameters. The resulting branching angles vary systematically with the parameters, but by much less than the regional variability in real-world stream networks. Our results suggest that the competition between hillslope and channeling processes influences branching angles, but that other mechanisms may also be needed to account for the variability in branching angles observed in the field. References: [1] H. Seybold, D. H. Rothman, and J. W. Kirchner, 2015, Climate's watermark in the geometry of river networks, Submitted manuscript. [2] J. T. Perron, W. E. Dietrich, and J. W. Kirchner, 2008, Controls on the spacing of first-order valleys, Journal of Geophysical Research, 113, F04016. [3] K. E. Sweeney, J. J. Roering, and C. Ellis, 2015, Experimental evidence for hillslope control of landscape scale, Science, 349(6243), 51-53.
Relationship of individual scapular anatomy and degenerative rotator cuff tears.
Moor, Beat K; Wieser, Karl; Slankamenac, Ksenija; Gerber, Christian; Bouaicha, Samy
2014-04-01
The etiology of rotator cuff disease is age related, as documented by prevalence data. Despite conflicting results, growing evidence suggests that distinct scapular morphologies may accelerate the underlying degenerative process. The purpose of the present study was to evaluate the predictive power of 5 commonly used radiologic parameters of scapular morphology to discriminate between patients with intact rotator cuff tendons and those with torn rotator cuff tendons. A pre hoc power analysis was performed to determine the sample size. Two independent readers measured the acromion index, lateral acromion angle, and critical shoulder angle on standardized anteroposterior radiographs. In addition, the acromial morphology according to Bigliani and the acromial slope were determined on true outlet views. Measurements were performed in 51 consecutive patients with documented degenerative rotator cuff tears and in an age- and sex-matched control group of 51 patients with intact rotator cuff tendons. Receiver operating characteristic analyses were performed to determine cutoff values and to assess the sensitivity and specificity of each parameter. Patients with degenerative rotator cuff tears demonstrated significantly higher acromion indices, smaller lateral acromion angles, and larger critical shoulder angles than patients with intact rotator cuffs. However, no difference was found between the acromial morphology according to Bigliani and the acromial slope. With an area under the receiver operating characteristic curve of 0.855 and an odds ratio of 10.8, the critical shoulder angle represented the strongest predictor for the presence of a rotator cuff tear. The acromion index, lateral acromion angle, and critical shoulder angle accurately predict the presence of degenerative rotator cuff tears. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
An approach to enhance the conservation-compatibility of solar energy development.
Cameron, D Richard; Cohen, Brian S; Morrison, Scott A
2012-01-01
The rapid pace of climate change poses a major threat to biodiversity. Utility-scale renewable energy development (>1 MW capacity) is a key strategy to reduce greenhouse gas emissions, but development of those facilities also can have adverse effects on biodiversity. Here, we examine the synergy between renewable energy generation goals and those for biodiversity conservation in the 13 M ha Mojave Desert of the southwestern USA. We integrated spatial data on biodiversity conservation value, solar energy potential, and land surface slope angle (a key determinant of development feasibility) and found there to be sufficient area to meet renewable energy goals without developing on lands of relatively high conservation value. Indeed, we found nearly 200,000 ha of lower conservation value land below the most restrictive slope angle (<1%); that area could meet the state of California's current 33% renewable energy goal 1.8 times over. We found over 740,000 ha below the highest slope angle (<5%)--an area that can meet California's renewable energy goal seven times over. Our analysis also suggests that the supply of high quality habitat on private land may be insufficient to mitigate impacts from future solar projects, so enhancing public land management may need to be considered among the options to offset such impacts. Using the approach presented here, planners could reduce development impacts on areas of higher conservation value, and so reduce trade-offs between converting to a green energy economy and conserving biodiversity.
An Approach to Enhance the Conservation-Compatibility of Solar Energy Development
Cameron, D. Richard; Cohen, Brian S.; Morrison, Scott A.
2012-01-01
The rapid pace of climate change poses a major threat to biodiversity. Utility-scale renewable energy development (>1 MW capacity) is a key strategy to reduce greenhouse gas emissions, but development of those facilities also can have adverse effects on biodiversity. Here, we examine the synergy between renewable energy generation goals and those for biodiversity conservation in the 13 M ha Mojave Desert of the southwestern USA. We integrated spatial data on biodiversity conservation value, solar energy potential, and land surface slope angle (a key determinant of development feasibility) and found there to be sufficient area to meet renewable energy goals without developing on lands of relatively high conservation value. Indeed, we found nearly 200,000 ha of lower conservation value land below the most restrictive slope angle (<1%); that area could meet the state of California’s current 33% renewable energy goal 1.8 times over. We found over 740,000 ha below the highest slope angle (<5%) – an area that can meet California’s renewable energy goal seven times over. Our analysis also suggests that the supply of high quality habitat on private land may be insufficient to mitigate impacts from future solar projects, so enhancing public land management may need to be considered among the options to offset such impacts. Using the approach presented here, planners could reduce development impacts on areas of higher conservation value, and so reduce trade-offs between converting to a green energy economy and conserving biodiversity. PMID:22685568
Aerodynamic Characteristics of Low-Aspect-Ratio Wings in Close Proximity to the Ground
NASA Technical Reports Server (NTRS)
Fink, Marvin P.; Lastinger, James L.
1961-01-01
A wind-tunnel investigation has been conducted to determine the effect of ground proximity on the aerodynamic characteristics of thick highly cambered rectangular wings with aspect ratios of 1. 2, 4, and 6. The results showed that, for these aspect ratios, as the ground war, approached all wings experienced increases in lift-curve slope and reductions in induced drag which resulted in increases in lift-drag ratio. Although an increase in lift-curve slope was obtained for all aspect ratios as the ground was approached, the lift coefficient at an angle of attack of 0 deg for any given aspect ratio remained nearly constant. The experimental results were in general agreement with Wieselsberger's ground-effect theory (NACA Technical Memorandum 77). As the wings approached the ground, there was an increase in static longitudinal stability at positive angles of attack. When operating in ground effect, all the wings had stability of height at positive angles of attack and instability of height at negative angles of attack. Wing-tip fairings on the wings with aspect ratios of 1 and 2 produced small increases in lift-drag ratio in ground effect. End plates extending only below the chord plane on the wing with an aspect ratio of 1 provided increases in lift coefficient and in lift-drag ratio in ground effect.
Optimisation of Substrate Angles for Multi-material and Multi-functional Inkjet Printing.
Vaithilingam, Jayasheelan; Saleh, Ehab; Wildman, Ricky D; Hague, Richard J M; Tuck, Christopher J
2018-06-13
Three dimensional inkjet printing of multiple materials for electronics applications are challenging due to the limited material availability, inconsistencies in layer thickness between dissimilar materials and the need to expose the printed tracks of metal nanoparticles to temperature above 100 °C for sintering. It is envisaged that instead of printing a dielectric and a conductive material on the same plane, by printing conductive tracks on an angled dielectric surface, the required number of silver layers and consequently, the exposure of the polymer to high temperature and the build time of the component can be significantly reduced. Conductive tracks printed with a fixed print height (FH) showed significantly better resolution for all angles than the fixed slope (FS) sample where the print height varied to maintain the slope length. The electrical resistance of the tracks remained under 10Ω up to 60° for FH; whereas for the FS samples, the resistance remained under 10Ω for samples up to 45°. Thus by fixing the print height to 4 mm, precise tracks with low resistance can be printed at substrate angles up to 60°. By adopting this approach, the build height "Z" can be quickly attained with less exposure of the polymer to high temperature.
Extracting accurate and precise topography from LROC narrow angle camera stereo observations
NASA Astrophysics Data System (ADS)
Henriksen, M. R.; Manheim, M. R.; Burns, K. N.; Seymour, P.; Speyerer, E. J.; Deran, A.; Boyd, A. K.; Howington-Kraus, E.; Rosiek, M. R.; Archinal, B. A.; Robinson, M. S.
2017-02-01
The Lunar Reconnaissance Orbiter Camera (LROC) includes two identical Narrow Angle Cameras (NAC) that each provide 0.5 to 2.0 m scale images of the lunar surface. Although not designed as a stereo system, LROC can acquire NAC stereo observations over two or more orbits using at least one off-nadir slew. Digital terrain models (DTMs) are generated from sets of stereo images and registered to profiles from the Lunar Orbiter Laser Altimeter (LOLA) to improve absolute accuracy. With current processing methods, DTMs have absolute accuracies better than the uncertainties of the LOLA profiles and relative vertical and horizontal precisions less than the pixel scale of the DTMs (2-5 m). We computed slope statistics from 81 highland and 31 mare DTMs across a range of baselines. For a baseline of 15 m the highland mean slope parameters are: median = 9.1°, mean = 11.0°, standard deviation = 7.0°. For the mare the mean slope parameters are: median = 3.5°, mean = 4.9°, standard deviation = 4.5°. The slope values for the highland terrain are steeper than previously reported, likely due to a bias in targeting of the NAC DTMs toward higher relief features in the highland terrain. Overlapping DTMs of single stereo sets were also combined to form larger area DTM mosaics that enable detailed characterization of large geomorphic features. From one DTM mosaic we mapped a large viscous flow related to the Orientale basin ejecta and estimated its thickness and volume to exceed 300 m and 500 km3, respectively. Despite its ∼3.8 billion year age the flow still exhibits unconfined margin slopes above 30°, in some cases exceeding the angle of repose, consistent with deposition of material rich in impact melt. We show that the NAC stereo pairs and derived DTMs represent an invaluable tool for science and exploration purposes. At this date about 2% of the lunar surface is imaged in high-resolution stereo, and continued acquisition of stereo observations will serve to strengthen our knowledge of the Moon and geologic processes that occur across all of the terrestrial planets.
The Effect of Uphill and Downhill Slopes on Weight Transfer, Alignment and Shot Outcome in Golf.
Blenkinsop, Glen M; Liang, Ying; Gallimore, Nicholas J; Hiley, Michael J
2018-04-13
The aim of the study was to examine changes in weight transfer, alignment and shot outcome during golf shots from flat, uphill, and downhill slopes. Twelve elite male golfers hit 30 shots with a six-iron from a computer assisted rehabilitation environment (CAREN) used to create 5° slopes while collecting 3D kinematics and kinetics of the swing. A launch monitor measured performance outcomes. A shift in the centre of pressure was found throughout the swing when performed on a slope, with the mean position moving approximately 9% closer to the lower foot. The golfers attempted to remain perpendicular to the slope, resulting in the weight transfer towards the lower foot. The golfers adopted a wider stance in the sloped conditions and moved the ball towards the higher foot at address. Ball speed was not significantly affected by the slope, but launch angle and ball spin were. As predicted by the coaching literature, golfers were more likely to hit shots to the left from an uphill slope and to the right for a downhill slope. No consistent compensatory adjustments in alignment at address or azimuth were found, with the change in final shot dispersion due to the lateral spin of the ball.
Changes in Pelvic Incidence, Pelvic Tilt, and Sacral Slope in Situations of Pelvic Rotation.
Jin, Hai-Ming; Xu, Dao-Liang; Xuan, Jun; Chen, Jiao-Xiang; Chen, Kai; Goswami, Amit; Chen, Yu; Kong, Qiu-Yan; Wang, Xiang-Yang
2017-08-01
Digitally reconstructed radiograph-based study. Using a computer-based method to determine what degree of pelvic rotation is acceptable for measuring the pelvic incidence (PI), pelvic tilt (PT), and sacral slope (SS). The effectiveness of a geometrical formula used to calculate the angle of pelvic rotation proposed in a previous article was assessed. It is unclear whether PI, PT, and SS are valid with pelvic rotation while acquiring a radiograph. Ten 3-dimensionally reconstructed models were established with software and placed in a neutral orientation to orient all of the bones in a standing position. Next, 140 digitally reconstructed radiographs were obtained by rotating the models around the longitudinal axis of each pelvis in the software from 0 to 30 degrees at 2.5-degree intervals. PI, PT, and SS were measured. The rotation angle was considered to be acceptable when the change in the measured angle (compared with the "correct" position) was <6 degrees. The rotation angle (α) on the images was calculated by a geometrical formula. Consistency between the measured value and the set angle was assessed. The acceptable maximum angle of rotation for reliable measurements of PI was 17.5 degrees, and the changes in PT and SS were within an acceptable range (<6 degrees) when the pelvic rotation increased from 0 to 30 degrees. The effectiveness of the geometrical formula was shown by the consistency between the set and the calculated rotation angles of the pelvis (intraclass correlation coefficient=0.99). Our study provides insight into the influence of pelvic rotation on the PI, PT, and SS. PI changes with pelvic rotation. The acceptable maximum angle for reliable values of PI, PT, and SS was 17.5 degrees, and the rotation angle of the pelvis on a lateral spinopelvic radiograph can be calculated reliably.
Pinsornsak, Piya; Harnroongroj, Thos
2016-11-01
The specialized instrument system used in minimally invasive surgery (MIS) has been developed for reducing soft tissue trauma in total knee arthroplasty (TKA). Compared with front-cutting MIS instruments, side-cutting quadriceps sparing MIS instruments have the advantage of creating a smaller incision and causing fewer traumas to the quadriceps tendon. However, the accuracy of side-cutting instruments concerns surgeons in prosthesis malalignment. To compare the accuracy of side-cutting quadriceps sparing instruments versus front-cutting instruments in MIS-TKA. In this prospective randomized controlled study, we compared the accuracy of side-cutting quadriceps sparing instruments versus the front-cutting instruments used in MIS-TKA. Sixty knees were included in the study, with 30 knees in each group. All the operations were performed by single surgeon. Coronal alignment (tibiofemoral angle, lateral distal femoral angle, and medial proximal tibial angle), and sagittal alignment (femoral component flexion and tibial posterior slope) were measured and compared. Tibiofemoral angle, lateral distal femoral angle, and medial proximal tibial angle, all of which are considered in the assessment of acceptable coronal radiographic alignment, were not different between groups (p = 0.353, 0.500, and 0.177, respectively). However, side-cutting quadriceps sparing instruments produced less acceptable sagittal radiographic alignment, femoral component flexion (63% vs. 93%, p = 0.005), and tibial posterior slope (73% vs. 93%, p = 0.04). Side-cutting quadriceps sparing MIS-TKA instruments had similar accuracy to front-cutting MIS-TKA instruments for coronal alignment but is less accurate for sagittal alignment.
Slope Stability Analysis of Mountain Pine Beetle Impacted Areas
NASA Astrophysics Data System (ADS)
Bogenschuetz, N. M.; Bearup, L. A.; Maxwell, R. M.; Santi, P. M.
2015-12-01
The mountain pine beetle (MPB), Dendroctonus ponderosae, has caused significant tree mortality within North America. Specifically, the MPB affects ponderosa pine and lodgepole pine forests within the Rocky Mountains with approximately 3.4 million acres of forest impacted over the past 20 years. The full impacts of such unprecedented tree mortality on hydrology and slope stability is not well understood. This work studies the affects of MPB infestation on slope instability. A large-scale statistical analysis of MPB and slope stability is combined with a more in-depth analysis of the factors that contribute to slope stability. These factors include: slope aspect, slope angle, root decay, regrowth and hydrologic properties, such as water table depth and soil moisture. Preliminary results show that MPB may affect a greater number of north- and east-facing slopes. This is in accordance with more water availability and a higher MPB impacted tree density on north-facing slopes which, in turn, could potentially increase the probability of slope failure. Root strength is predicted to decrease as the roots stop transpiring 3-4 years proceeding infestation. However, this effect on the hillslope is likely being counterbalanced by the regrowth of grasses, forbs, shrubs, and trees. In addition, the increase in water table height from the lack of transpiring trees is adding a driving force to the slopes. The combination of all these factors will be used in order to assess the effects of MPB tree mortality on slope stability.
Physiological Interpretation of the Slope during an Isokinetic Fatigue Test.
Bosquet, L; Gouadec, K; Berryman, N; Duclos, C; Gremeaux, V; Croisier, J-L
2015-07-01
To assess the relationship between selected measures (the slope and average performance) obtained during a high intensity isokinetic fatigue test of the knee (FAT) and relevant measures of anaerobic and aerobic capacities. 20 well-trained cyclists performed 3 randomly ordered sessions involving a FAT consisting in 30 reciprocal maximal concentric contractions of knee flexors and extensors at 180°.s(-1), a maximal continuous graded exercise test (GXT), and a Wingate anaerobic test (WAnT). The slope calculated from peak torque (PT) and total work (TW) of knee extensors was highly associated to maximal PT (r=-0.86) and maximal TW (r=-0.87) measured during FAT, and moderately associated to peak power output measured during the WAnT (r=-0.64 to -0.71). Average PT and average TW were highly associated to maximal PT (r=0.93) and maximal TW (r=0.96), to mean power output measured during WAnT (r=0.83-0.90) and moderately associated to maximal oxygen uptake (0.58-0.67). In conclusion, the slope is mainly determined by maximal anaerobic power, while average performance is a composite measure depending on both aerobic and anaerobic energy systems according to proportions that are determined by the duration of the test. © Georg Thieme Verlag KG Stuttgart · New York.
Harvesting impacts on steep slopes in Virginia
W.B. Stuart; S.L. Carr
1991-01-01
Ten tracts in the mountains of western Virginia were intensively sampled to determine the type and extent of soil disturbance from ground-based logging and the attendant erosion risk. Average slopes for the tracts ranged from 21 to 43 percent. Logged slopes exceeded 50 percent. All tracts surveyed were logged prior to the push for voluntary Best Management Practices...
30 CFR 56.3131 - Pit or quarry wall perimeter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Ground Control... performing their assigned tasks, loose or unconsolidated material shall be sloped to the angle of repose or...
30 CFR 56.3131 - Pit or quarry wall perimeter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Ground Control... performing their assigned tasks, loose or unconsolidated material shall be sloped to the angle of repose or...
Characteristics of large particles and their effects on the submarine light field
NASA Astrophysics Data System (ADS)
Hou, Weilin
Large particles play important roles in the ocean by modifying the underwater light field and effecting material transfer. The particle size distribution of large particles has been measured in-situ with multiple- camera video microscopy and the automated particle sizing and recognition software developed. Results show that there are more large particles in coastal waters than previously thaught, based upon by a hyperbolic size- distribution curve with a (log-log) slope parameter of close to 3 instead of 4 for the particles larger than 100μm diameter. Larger slopes are more typical for particles in the open ocean. This slope permits estimation of the distribution into the small-particle size range for use in correcting the beam-attenuation measurements for near-forward scattering. The large- particle slope and c-meter were used to estimate the small-particle size distributions which nearly matched those measured with a Coulter Counteroler (3.05%). There is also a fair correlation (r2=0.729) between the slope of the distribution and its concentration parameters. Scattering by large particles is influenced by not only the concentrations of these particles, but also the scattering phase functions. This first in-situ measurement of large-particle scattering with multiple angles reveals that they scatter more in the backward direction than was previously believed, and the enhanced backscattering can be explained in part by multiple scattering of aggregated particles. Proper identification of these large particles can be of great help in understanding the status of the ecosystem. By extracting particle features using high-resolution video images via moment-invariant functions and applying this information to lower-resolution images, we increase the effective sample volume without severely degrading classification efficiency. Traditional pattern recognition algorithms of images classified zooplankton with results within 24% of zooplankton collected using bottle samples. A faster particle recognition scheme using optical scattering is introduced and test results are satisfactory with an average error of 32%. This method promises given that the signal-to-noise ratio of the observations can be improved.
Anomalously-dense firn in an ice-shelf channel revealed by wide-angle radar
NASA Astrophysics Data System (ADS)
Drews, R.; Brown, J.; Matsuoka, K.; Witrant, E.; Philippe, M.; Hubbard, B.; Pattyn, F.
2015-10-01
The thickness of ice shelves, a basic parameter for mass balance estimates, is typically inferred using hydrostatic equilibrium for which knowledge of the depth-averaged density is essential. The densification from snow to ice depends on a number of local factors (e.g. temperature and surface mass balance) causing spatial and temporal variations in density-depth profiles. However, direct measurements of firn density are sparse, requiring substantial logistical effort. Here, we infer density from radio-wave propagation speed using ground-based wide-angle radar datasets (10 MHz) collected at five sites on Roi Baudouin Ice Shelf (RBIS), Dronning Maud Land, Antarctica. Using a novel algorithm including traveltime inversion and raytracing with a prescribed shape of the depth-density relationship, we show that the depth to internal reflectors, the local ice thickness and depth-averaged densities can reliably be reconstructed. For the particular case of an ice-shelf channel, where ice thickness and surface slope change substantially over a few kilometers, the radar data suggests that firn inside the channel is about 5 % denser than outside the channel. Although this density difference is at the detection limit of the radar, it is consistent with a similar density anomaly reconstructed from optical televiewing, which reveals 10 % denser firn inside compared to outside the channel. The denser firn in the ice-shelf channel should be accounted for when using the hydrostatic ice thickness for determining basal melt rates. The radar method presented here is robust and can easily be adapted to different radar frequencies and data-acquisition geometries.
Biophysical and spectral modeling for crop identification and assessment
NASA Technical Reports Server (NTRS)
Goel, N. S. (Principal Investigator)
1984-01-01
The development of a technique for estimating all canopy parameters occurring in a canopy reflectance model from the measured canopy reflectance data is summarized. The Suits and the SAIL model for a uniform and homogeneous crop canopy were used to determine if the leaf area index and the leaf angle distribution could be estimated. Optimal solar/view angles for measuring CR were also investigated. The use of CR in many wavelengths or spectral bands and of linear and nonlinear transforms of CRs for various solar/view angles and various spectral bands is discussed as well as the inversion of rediance data inside the canopy, angle transforms for filtering out terrain slope effects, and modification of one dimensional models.
NASA Astrophysics Data System (ADS)
Figueroa Albornoz, L. J.; Mortera-Gutierrez, C. A.; Bandy, W. L.; Escobar-Briones, E. G.; Godfroy, A.; Fouquet, Y.
2013-05-01
Recently several hydrothermal and gas seeps systems has been located precisely at the Sonora margin within the Guaymas Basin (GB), Gulf of California. Since late 1970's , several marine studies had reported two main hydrothermal systems in the Guaymas Rift (one at the Northern Rift, and other at the Southern Rift) and a cold seeps system at the Satellite Basin in the Sonora-margin lower edge. During the campaign BIG10, onboard the IFREMER vessel, NO L'Atalante, the EM122 echo-sounder log more than 30,000 water column acoustic images, which allows us to create a data base of the bubble plumes active systems on the northern part of the GB and the Sonora Margin. These plumes are the expression on the water column of an active seeps site during the cruise time. These images document the presence of the cold seep activity around the scarp of the Guaymas Transform Fault (GTF), and within the Satellite Basin. Few active plumes are first located off-axis, on both sides of the Northern Rift. Although it is not observed any plume within NR. Sub-bottom profiles and bathymetric data logged during the campaign GUAYRIV10, onboard the UNAM vessel, BO EL PUMA, are analyzed to determine the shallow tectonic-stratigraphy of GB near the Sonora Margin. We analyze 17 high-resolution seismic profiles (13 with NE-SW strike and 3 with NW-SE strike). From this data set, the continental shelf stratigraphy at the Sonora Margin tilts toward the slope, showing 3 low angle unconformities due to tectonics and slope angle changes. The strata slope changes angle up to 60°. However, the constant trans-tension shear along the GTF causes gravitation instability on the slope, generating a few submarine landslides close to the Northern Rift, and the rotation of blocks, tilting toward the shelf. To the north, the GTF splits in two fault escarpments, forming a narrow pull-apart basin, known as Satellite Basin. The submarine canyon from the Sonora River flows through the Satellite Basin into the GB, being a sediment source and an erosional mechanism. On the GB stratification, we observe a low angle unconformity given by a transparent acoustical layer. Also, the reflectors at the GB edge and adjacent to GTF structure suggest that the stratification till upward to the scarp. Nevertheless, that GTF scarp represents the eroded paleo-slope of the Sonora Margin, exposing the cutting layers on its facing north slope. The plumes observed near to the Satellite Basin correspond to gas seeps released on the north slope of the scarp of the GTF, where layers of the GB are exposed, and giving the absence of a seal layer. The observed inner plumes in the Satellite Basin probably use the disrupted layers of the facing south scarp of the GTF to release the gas bubbles. The new plume system found off-axis on the Northern Rift has not enough data to explain their origin and release process.
NASA Technical Reports Server (NTRS)
2004-01-01
This image taken at NASA's Jet Propulsion Laboratory shows engineers rehearsing the sol 133 (June 8, 2004) drive into 'Endurance' crater by NASA's Mars Exploration Rover Opportunity. Engineers and scientists have recreated the martian surface and slope the rover will encounter using a combination of bare and thinly sand-coated rocks, simulated martian 'blueberries' and a platform tilted at a 25-degree angle. The results of this test convinced engineers that the rover was capable of driving up and down a straight slope before it attempted the actual drive on Mars.The importance of source area mapping for rockfall hazard analysis
NASA Astrophysics Data System (ADS)
Valagussa, Andrea; Frattini, Paolo; Crosta, Giovanni B.
2013-04-01
A problem in the characterization of the area affected by rockfall is the correct source areas definition. Different positions or different size of the source areas along a cliff result in different possibilities of propagation and diverse interaction with passive countermeasures present in the area. Through the use of Hy-Stone (Crosta et al., 2004), a code able to perform 3D numerical modeling of rockfall processes, different types of source areas were tested on a case study slope along the western flank of the Mt. de La Saxe (Courmayeur, AO), developing between 1200 and 2055 m s.l.m. The first set of source areas consists of unstable rock masses identified on the basis of field survey and Terrestrial Laser Scanning (IMAGEO, 2011). A second set of source areas has been identified by using different thresholds of slope gradient. We tested slope thresholds between 50° and 75° at 5° intervals. The third source area dataset has been generating by performing a kinematic stability analysis. For this analysis, we mapped the join sets along the rocky cliff by means of the software COLTOP 3D (Jaboyedoff, 2004), and then we identified the portions of rocky cliff where planar/wedge and toppling failures are possible assuming an average friction angle of 35°. Through the outputs of the Hy-Stone models we extracted and analyzed the kinetic energy, height of fly and velocity of the blocks falling along the rocky cliff in order to compare the controls of different source areas. We observed strong variations of kinetic energy and fly height among the different models, especially when using unstable masses identified through Terrestrial Laser Scanning. This is mainly related to the size of the blocks identified as susceptible to failure. On the contrary, the slope gradient thresholds does not have a strong impact on rockfall propagation. This contribution highlights the importance of a careful and appropriate mapping of rockfall source area for rockfall hazard analysis and the design of passive countermeasures.
Zand, Kevin A.; Shah, Amol; Heba, Elhamy; Wolfson, Tanya; Hamilton, Gavin; Lam, Jessica; Chen, Joshua; Hooker, Jonathan C.; Gamst, Anthony C.; Middleton, Michael S.; Schwimmer, Jeffrey B.; Sirlin, Claude B.
2015-01-01
Purpose To assess accuracy of magnitude-based magnetic resonance imaging (M-MRI) in children to estimate hepatic proton density fat fraction (PDFF) using two to six echoes, with magnetic resonance spectroscopy (MRS)-measured PDFF as a reference standard. Materials and Methods This was an IRB-approved, HIPAA-compliant, single-center, cross-sectional, retrospective analysis of data collected prospectively between 2008 and 2013 in children with known or suspected non-alcoholic fatty liver disease (NAFLD). Two hundred and eighty-six children (8 – 20 [mean 14.2 ± 2.5] yrs; 182 boys) underwent same-day MRS and M-MRI. Unenhanced two-dimensional axial spoiled gradient-recalled-echo images at six echo times were obtained at 3T after a single low-flip-angle (10°) excitation with ≥ 120-ms recovery time. Hepatic PDFF was estimated using the first two, three, four, five, and all six echoes. For each number of echoes, accuracy of M-MRI to estimate PDFF was assessed by linear regression with MRS-PDFF as reference standard. Accuracy metrics were regression intercept, slope, average bias, and R2. Results MRS-PDFF ranged from 0.2 – 40.4% (mean 13.1 ± 9.8%). Using three to six echoes, regression intercept, slope, and average bias were 0.46 – 0.96%, 0.99 – 1.01, and 0.57 – 0.89%, respectively. Using two echoes, these values were 2.98%, 0.97, and 2.72%, respectively. R2 ranged 0.98 – 0.99 for all methods. Conclusion Using three to six echoes, M-MRI has high accuracy for hepatic PDFF estimation in children. PMID:25847512
Zand, Kevin A; Shah, Amol; Heba, Elhamy; Wolfson, Tanya; Hamilton, Gavin; Lam, Jessica; Chen, Joshua; Hooker, Jonathan C; Gamst, Anthony C; Middleton, Michael S; Schwimmer, Jeffrey B; Sirlin, Claude B
2015-11-01
To assess accuracy of magnitude-based magnetic resonance imaging (M-MRI) in children to estimate hepatic proton density fat fraction (PDFF) using two to six echoes, with magnetic resonance spectroscopy (MRS) -measured PDFF as a reference standard. This was an IRB-approved, HIPAA-compliant, single-center, cross-sectional, retrospective analysis of data collected prospectively between 2008 and 2013 in children with known or suspected nonalcoholic fatty liver disease (NAFLD). Two hundred eighty-six children (8-20 [mean 14.2 ± 2.5] years; 182 boys) underwent same-day MRS and M-MRI. Unenhanced two-dimensional axial spoiled gradient-recalled-echo images at six echo times were obtained at 3T after a single low-flip-angle (10°) excitation with ≥ 120-ms recovery time. Hepatic PDFF was estimated using the first two, three, four, five, and all six echoes. For each number of echoes, accuracy of M-MRI to estimate PDFF was assessed by linear regression with MRS-PDFF as reference standard. Accuracy metrics were regression intercept, slope, average bias, and R(2) . MRS-PDFF ranged from 0.2-40.4% (mean 13.1 ± 9.8%). Using three to six echoes, regression intercept, slope, and average bias were 0.46-0.96%, 0.99-1.01, and 0.57-0.89%, respectively. Using two echoes, these values were 2.98%, 0.97, and 2.72%, respectively. R(2) ranged 0.98-0.99 for all methods. Using three to six echoes, M-MRI has high accuracy for hepatic PDFF estimation in children. © 2015 Wiley Periodicals, Inc.
Secondary Channel Bifurcation Geometry: A Multi-dimensional Problem
NASA Astrophysics Data System (ADS)
Gaeuman, D.; Stewart, R. L.
2017-12-01
The construction of secondary channels (or side channels) is a popular strategy for increasing aquatic habitat complexity in managed rivers. Such channels, however, frequently experience aggradation that prevents surface water from entering the side channels near their bifurcation points during periods of relatively low discharge. This failure to maintain an uninterrupted surface water connection with the main channel can reduce the habitat value of side channels for fish species that prefer lotic conditions. Various factors have been proposed as potential controls on the fate of side channels, including water surface slope differences between the main and secondary channels, the presence of main channel secondary circulation, transverse bed slopes, and bifurcation angle. A quantitative assessment of more than 50 natural and constructed secondary channels in the Trinity River of northern California indicates that bifurcations can assume a variety of configurations that are formed by different processes and whose longevity is governed by different sets of factors. Moreover, factors such as bifurcation angle and water surface slope vary with discharge level and are continuously distributed in space, such that they must be viewed as a multi-dimensional field rather than a single-valued attribute that can be assigned to a particular bifurcation.
A Partially Saturated Constitutive Theory for Compacted Fills
2004-06-01
degree of Doctor of Philosophy. COL James R. Rowan, EN , was Commander and Executive Director of ERDC, and Dr. James R. Houston was Director. CHAPTER...Reconsolidation Index CR Slope of the reconsolidation line Maximum Friction Angle of3 Friction Angle PHILIM traMaterial Ratio of minimum to maximum4 Phi Ratio PH ...Josa, A., (1988). "Un modelo elastoplastico para suelos no saturados," Tesis Doctorae, Universitat Politecnica de Catalunya, Barcelons, Spain. Lawton
"Teaching" an Industrial Robot To Spray
NASA Technical Reports Server (NTRS)
Evans, A. R.; Sweet, G. K.
1982-01-01
Teaching device, consisting of spacer rod or tube with three-pointed tip and line level, is used during pattern "teach-in" to make sure that robot manipulator holds spray gun perpendicular to surface to be sprayed and at right distance from it. For slanted surfaces angle adapter is added between spacer rod and line-level indicator. Angle is determined by slope of surface to be sprayed, thus allowing a perpendicular spray pattern against even slanted surfaces.
NASA Astrophysics Data System (ADS)
Salim, Samir; Boquien, Médéric; Lee, Janice C.
2018-05-01
We study the dust attenuation curves of 230,000 individual galaxies in the local universe, ranging from quiescent to intensely star-forming systems, using GALEX, SDSS, and WISE photometry calibrated on the Herschel ATLAS. We use a new method of constraining SED fits with infrared luminosity (SED+LIR fitting), and parameterized attenuation curves determined with the CIGALE SED-fitting code. Attenuation curve slopes and UV bump strengths are reasonably well constrained independently from one another. We find that {A}λ /{A}V attenuation curves exhibit a very wide range of slopes that are on average as steep as the curve slope of the Small Magellanic Cloud (SMC). The slope is a strong function of optical opacity. Opaque galaxies have shallower curves—in agreement with recent radiative transfer models. The dependence of slopes on the opacity produces an apparent dependence on stellar mass: more massive galaxies have shallower slopes. Attenuation curves exhibit a wide range of UV bump amplitudes, from none to Milky Way (MW)-like, with an average strength one-third that of the MW bump. Notably, local analogs of high-redshift galaxies have an average curve that is somewhat steeper than the SMC curve, with a modest UV bump that can be, to first order, ignored, as its effect on the near-UV magnitude is 0.1 mag. Neither the slopes nor the strengths of the UV bump depend on gas-phase metallicity. Functional forms for attenuation laws are presented for normal star-forming galaxies, high-z analogs, and quiescent galaxies. We release the catalog of associated star formation rates and stellar masses (GALEX–SDSS–WISE Legacy Catalog 2).
Analysing hydro-mechanical behaviour of reinforced slopes through centrifuge modelling
NASA Astrophysics Data System (ADS)
Veenhof, Rick; Wu, Wei
2017-04-01
Every year, slope instability is causing casualties and damage to properties and the environment. The behaviour of slopes during and after these kind of events is complex and depends on meteorological conditions, slope geometry, hydro-mechanical soil properties, boundary conditions and the initial state of the soils. This study describes the effects of adding reinforcement, consisting of randomly distributed polyolefin monofilament fibres or Ryegrass (Lolium), on the behaviour of medium-fine sand in loose and medium dense conditions. Direct shear tests were performed on sand specimens with different void ratios, water content and fibre or root density, respectively. To simulate the stress state of real scale field situations, centrifuge model tests were conducted on sand specimens with different slope angles, thickness of the reinforced layer, fibre density, void ratio and water content. An increase in peak shear strength is observed in all reinforced cases. Centrifuge tests show that for slopes that are reinforced the period until failure is extended. The location of shear band formation and patch displacement behaviour indicate that the design of slope reinforcement has a significant effect on the failure behaviour. Future research will focus on the effect of plant water uptake on soil cohesion.
Yue, De-bo; E, Sen; Wang, Bai-liang; Wang, Wei-guo; Guo, Wan-shou; Zhang, Qi-dong
2013-05-07
To retrospectively explore the correlation between anterior cruciate ligament (ACL)-ruptured knees, stability of ACL-rupture knee and posterior tibial slope (PTS). From January 2008 to October 2012, 150 knees with ACL rupture underwent arthroscopic surgery for ACL reconstruction. A control group was established for subjects undergoing arthroscopic surgery without ACL rupture during the same period. PTS was measured on a digitalized lateral radiograph. Lachman and mechanized pivot shift tests were performed for assessing the stability of knee. There was significant difference (P = 0.007) in PTS angle between the patients with ACL rupture (9.5 ± 2.2 degrees) and the control group (6.6 ± 1.8 degrees). Only among females, increased slope of tibial plateau had effect on the Lachman test. There was a higher positive rate of pivot shift test in patients of increased posterior slope in the ACL rupture group. Increased posterior tibial slope (>6.6) appears to contribute to non-contact ACL injuries in females. And the changes of tibial slope have no effect upon the Lachman test. However, large changes in tibial slope affect pivot shift.
NASA Astrophysics Data System (ADS)
Nayamatullah, M.; Rao Pillalamarri, Narasimha; Bhaganagar, Kiran
2018-04-01
A numerical investigation was performed to understand the flow dynamics of 2D density currents over sloping surfaces. Large eddy simulation was conducted for lock-exchange (L-E) release currents and overflows. 2D Navier-Stokes equations were solved using the Boussinesq approximation. The effects of the lock aspect-ratio (height/length of lock), slope, and Reynolds number on the flow structures and turbulence mixing have been analyzed. Results have confirmed buoyancy within the head of the two-dimensional currents is not conserved which contradicts the classical thermal theory. The lock aspect-ratio dictates the fraction of initial buoyancy which is carried by the head of the current at the beginning of the slumping (horizontal) and accelerating phase (over a slope), which has important implications on turbulence kinetic energy production, and hence mixing in the current. For L-E flows over a slope, increasing slope angle enhances the turbulence production. Increasing slope results in shear reversal within the density current resulting in shear-instabilities. Differences in turbulence production mechanisms and flow structures exist between the L-E and constant-flux release currents resulting in significant differences in the flow characteristics between different releases.
Klier, Eliana M; Angelaki, Dora E; Hess, Bernhard J M
2005-07-01
Primates are able to localize a briefly flashed target despite intervening movements of the eyes, head, or body. This ability, often referred to as updating, requires extraretinal signals related to the intervening movement. With active roll rotations of the head from an upright position it has been shown that the updating mechanism is 3-dimensional, robust, and geometrically sophisticated. Here we examine whether such a rotational updating mechanism operates during passive motion both with and without inertial cues about head/body position in space. Subjects were rotated from either an upright or supine position, about a nasal-occipital axis, briefly shown a world-fixed target, rotated back to their original position, and then asked to saccade to the remembered target location. Using this paradigm, we tested subjects' abilities to update from various tilt angles (0, +/-30, +/-45, +/-90 degrees), to 8 target directions and 2 target eccentricities. In the upright condition, subjects accurately updated the remembered locations from all tilt angles independent of target direction or eccentricity. Slopes of directional errors versus tilt angle ranged from -0.011 to 0.15, and were significantly different from a slope of 1 (no compensation for head-in-space roll) and a slope of 0.9 (no compensation for eye-in-space roll). Because the eyes, head, and body were fixed throughout these passive movements, subjects could not use efference copies or neck proprioceptive cues to assess the amount of tilt, suggesting that vestibular signals and/or body proprioceptive cues suffice for updating. In the supine condition, where gravitational signals could not contribute, slopes ranged from 0.60 to 0.82, indicating poor updating performance. Thus information specifying the body's orientation relative to gravity is critical for maintaining spatial constancy and for distinguishing body-fixed versus world-fixed reference frames.
Simulation of a slope adapting ankle prosthesis provided by semi-active damping.
LaPrè, Andrew K; Sup, Frank
2011-01-01
Modern passive prosthetic foot/ankles cannot adapt to variations in ground slope. The lack of active adaptation significantly compromises an amputee's balance and stability on uneven terrains. To address this deficit, this paper proposes an ankle prosthesis that uses semi-active damping as a mechanism to provide active slope adaptation. The conceptual ankle prosthesis consists of a modulated damper in series with a spring foot that allows the foot to conform to the angle of the surface in the sagittal plane. In support of this approach, biomechanics data is presented showing unilateral transtibial amputees stepping on a wedge with their daily-use passive prosthesis. Based on this data, a simulation of the ankle prosthesis with semi-active damping is developed. The model shows the kinematic adaptation of the prosthesis to sudden changes in ground slope. The results show the potential of an ankle prosthesis with semi-active damping to actively adapt to the ground slope at each step.
Plant Functional Type Shifts in Big Sagebrush Ecosystems: Impacts on Dryland Ecosystem Water Balance
NASA Astrophysics Data System (ADS)
Bogenschuetz, N. M.; Bearup, L. A.; Maxwell, R. M.; Santi, P. M.
2014-12-01
The mountain pine beetle (MPB), Dendroctonus ponderosae, has caused significant tree mortality within North America. Specifically, the MPB affects ponderosa pine and lodgepole pine forests within the Rocky Mountains with approximately 3.4 million acres of forest impacted over the past 20 years. The full impacts of such unprecedented tree mortality on hydrology and slope stability is not well understood. This work studies the affects of MPB infestation on slope instability. A large-scale statistical analysis of MPB and slope stability is combined with a more in-depth analysis of the factors that contribute to slope stability. These factors include: slope aspect, slope angle, root decay, regrowth and hydrologic properties, such as water table depth and soil moisture. Preliminary results show that MPB may affect a greater number of north- and east-facing slopes. This is in accordance with more water availability and a higher MPB impacted tree density on north-facing slopes which, in turn, could potentially increase the probability of slope failure. Root strength is predicted to decrease as the roots stop transpiring 3-4 years proceeding infestation. However, this effect on the hillslope is likely being counterbalanced by the regrowth of grasses, forbs, shrubs, and trees. In addition, the increase in water table height from the lack of transpiring trees is adding a driving force to the slopes. The combination of all these factors will be used in order to assess the effects of MPB tree mortality on slope stability.
Impact of slope inclination on salt accumulation
NASA Astrophysics Data System (ADS)
Nachshon, Uri
2017-04-01
Field measurements indicated on high variability in salt accumulation along natural and cultivated slopes, even for relatively homogeneous soil conditions. It was hypothesised that slope inclination has an impact on the location of salt accumulation along the slope. A set of laboratory experiments and numerical models were used to explore the impact of slope inclination on salt accumulation. It was shown, experimentally, that for conditions of saline water source at the lower boundary of the slope - salt accumulates in low concentrations and homogeneously along the entire slope, for moderate slopes. However, as inclination increases high salt concentrations were observed at the upper parts of the slope, leaving the lower parts of the slope relatively free of salt. The traditional flow and transport models did not predict the experimental observations as they indicated also for the moderate slopes on salt accumulation in the elevated parts of the slope, away of the saline water source. Consequently - a conceptual model was raised to explain the laboratory observations. It was suggested that the interactions between slope angle, evaporation rates, hydraulic conductivity of the medium and distribution of wetness along the slope affect the saline water flow path through the medium. This lead to preferential flow path close to the soil-atmosphere interface for the steep slopes, which leads to constant wash of the salts from the evaporation front upward towards the slope upper parts, whereas for the moderate slopes, flow path is below the soil-atmosphere interface, therefore salt that accumulates at the evaporation front is not being transported upward. Understanding of salt dynamics along slopes is important for agricultural and natural environments, as well as for civil engineering purposes. Better understanding of the salt transport processes along slopes will improve our ability to minimize and to cope with soil salinization processes. The laboratory experiments and the new conceptual model fit the field observations and may explain the high variability of salt accumulation along slopes as observed in the field.
Dip-slope and Dip-slope Failures in Taiwan - a Review
NASA Astrophysics Data System (ADS)
Lee, C.
2011-12-01
Taiwan is famous for dip-slope and dip-slope slides. Dip-slopes exist at many places in the fold-and-thrust belt of Taiwan. Under active cutting of stream channels and man-made excavations, a dip-slope may become unstable and susceptible for mass sliding. Daylight of a bedding parallel clay seam is the most dangerous type for dip-slope sliding. Buckling or shear-off features may also happen at toe of a long dip-slope. Besides, a dip-slope is also dangerous for shallow debris slides, if the slope angle is between 25 to 45 degrees and the debris (colluvium or slope wash) is thick (>1m). These unstable slopes may slide during a triggering event, earthquake or typhoon storm; or even slide without a triggering event, like the 2010 Tapu case. Initial buckling feature had been found in the dip-slope of the Feitsui arch dam abutment after detailed explorations. Shear-off feature have also been found in dip-slope located in right bank of the Nahua reservoir after field investigation and drilling. The Chiufengerhshan slide may also be shear-off type. On the other hand, the Tapu, the Tsaoling slides and others are of direct slide type. The Neihoo Bishan slide is a shallow debris slide on dip-slope. All these cases demonstrate the four different types of dip-slope slide. The hazard of a dip-slope should be investigated to cover these possible types of failure. The existence of bedding parallel clay seams is critical for the stability of a dip-slope, either for direct slide or buckling or shear-off type of failure, and is a hot point during investigation. Because, the stability of a dip-slope is changing with time, therefore, detailed explorations to including weathering and erosion rates are also very necessary to ensure the long-term stability of a dip-slope.
NASA Astrophysics Data System (ADS)
Sahraoui, F.; Huang, S.
2017-12-01
Large surveys of power spectral density (PSD) of the magnetic fluctuations in the solar wind have reported different slopes distributions at MHD, sub-ion and sub-electron scales; the smaller the scale the broader the distribution. Several explanations of the variability the slopes at sub-ion scales have been proposed. Here, we present a new one that has been overlooked in the literature, which is based on the relative importance of the dispersive effects w.r.t. the Doppler shift due to the flow speed. We build a toy model based on a dispersion relation of a linear mode that matches at high frequency (ω ≳ ω ci) the Alfvén (resp. whistler) mode at high oblique (resp. quasi-parallel) propagation angles θ kB. Starting with double power-law spectrum of turbulence {k⊥}-1.66 in the inertial range and {k⊥}-2.8 at the sub-ion scales, the transformed spectrum (in frequency f) as it would be measured in the spacecraft frame shows a broad range of slopes at the sub-ion scales that depend both on the angle θ kB and the flow speed V. Varying θ kB in the range 10o-100o and V in the range 400-800 km/s, the resulting distribution of slopes at the sub-ion scales reproduces quite well the observed one in the solar wind. Fluctuations in the solar wind speed and the anisotropy of the turbulence may explain (or at least contribute to) the variability of the spectral slopes reported in the solar wind.
Bae, Hyoung Won; Rho, Seungsoo; Lee, Hye Sun; Lee, Naeun; Hong, Samin; Seong, Gong Je; Sung, Kyung Rim; Kim, Chan Yun
2014-04-29
To classify medically treated open-angle glaucoma (OAG) by the pattern of progression using hierarchical cluster analysis, and to determine OAG progression characteristics by comparing clusters. Ninety-five eyes of 95 OAG patients who received medical treatment, and who had undergone visual field (VF) testing at least once per year for 5 or more years. OAG was classified into subgroups using hierarchical cluster analysis based on the following five variables: baseline mean deviation (MD), baseline visual field index (VFI), MD slope, VFI slope, and Glaucoma Progression Analysis (GPA) printout. After that, other parameters were compared between clusters. Two clusters were made after a hierarchical cluster analysis. Cluster 1 showed -4.06 ± 2.43 dB baseline MD, 92.58% ± 6.27% baseline VFI, -0.28 ± 0.38 dB per year MD slope, -0.52% ± 0.81% per year VFI slope, and all "no progression" cases in GPA printout, whereas cluster 2 showed -8.68 ± 3.81 baseline MD, 77.54 ± 12.98 baseline VFI, -0.72 ± 0.55 MD slope, -2.22 ± 1.89 VFI slope, and seven "possible" and four "likely" progression cases in GPA printout. There were no significant differences in age, sex, mean IOP, central corneal thickness, and axial length between clusters. However, cluster 2 included more high-tension glaucoma patients and used a greater number of antiglaucoma eye drops significantly compared with cluster 1. Hierarchical cluster analysis of progression patterns divided OAG into slow and fast progression groups, evidenced by assessing the parameters of glaucomatous progression in VF testing. In the fast progression group, the prevalence of high-tension glaucoma was greater and the number of antiglaucoma medications administered was increased versus the slow progression group. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Structural evolution of deep-water submarine intraplate volcanoes / Azores
NASA Astrophysics Data System (ADS)
Stakemann, Josefine; Huebscher, Christian; Beier, Christoph; Hildenbrand, Anthony; Nomikou, Paraskevi; Terrinha, Pedro; Weiß, Benedikt
2017-04-01
We present multibeam and high-resolution reflection seismic data which elucidate the architecture of three submarine intraplate volcanoes located in the southern Azores Archipelago. Data have been collected during RV Meteor cruise M113 in 2015. Four GI-Guns served as the seismic source. The digital streamer comprised 144 channels distributed over a length of 600 m. The three cones are situated in a depth down to 2300 m with heights varying between 200 m and 243 m, an average diameter of 1360 m and an average slope angle of ca. 22°. All three circular cones are surrounded by a circular channel. These features, previously named "fried eggs" were previously interpreted as impact crater (Dias et al., 2009). A comparison with nearby submarine volcanoes close to São Miguel island (Weiß et al., 2015), however, strongly suggests a volcanic origin. The seismic data indicate that the volcanic cones formed on top of a ca. 100 m thick pelagic succession covering the igneous basement. Magma ascent deformed the volcanic basement, displaced the pelagic sediments and a first eruption phase formed a small, seismically transparent volcanic cone. Further eruptions created a volcanic cone with rather transparent reflections within the inferior region changing to strong reflection amplitudes with a chaotic pattern in the superior area. Compared to the igneous basement internal reflection amplitudes are mainly weak. The seismic transparency and slope angle exclude the presence of effusive rocks, since lavas usually create strong impedance contrasts. A comparison of the seismic characteristics with those from submarine Kolumbo volcano (Hübscher et al., 2015) suggests volcaniclastic lithologies from explosive eruptions. The circular channel around the volcanic cone shows the characteristics of a moat channel created by bottom currents. References: Dias, F.C., Lourenco, N., Lobo, A., Santos de Campos, A., Pinto de Abreu, M., 2009. "Fried Egg": An Oceanic Impact Crater in the Mid-Atlantic?. EOS, American Geophysical Union. Bibcode: 2009AGUFM.P43B1435D. ISSN 0096-394. Hübscher, C., Ruhnau, M., Nomikou, P., 2015. Volcano-tectonic evolution of the polygenetic Kolumbo submarine volcano / Santorini (Aegean Sea). J. Volcanol. Geotherm. Res. 291, 101-111. Weiß, B., Hübscher, C., Wolf, D., Lüdmann, T., 2015. Submarine explosive volcanism in the southeastern Terceira Rift / São Miguel Region (Azores). J. Volcanol. Geotherm. Res. 303, 79-91.
Measurements of wind-waves under transient wind conditions.
NASA Astrophysics Data System (ADS)
Shemer, Lev; Zavadsky, Andrey
2015-11-01
Wind forcing in nature is always unsteady, resulting in a complicated evolution pattern that involves numerous time and space scales. In the present work, wind waves in a laboratory wind-wave flume are studied under unsteady forcing`. The variation of the surface elevation is measured by capacitance wave gauges, while the components of the instantaneous surface slope in across-wind and along-wind directions are determined by a regular or scanning laser slope gauge. The locations of the wave gauge and of the laser slope gauge are separated by few centimeters in across-wind direction. Instantaneous wind velocity was recorded simultaneously using Pitot tube. Measurements are performed at a number of fetches and for different patterns of wind velocity variation. For each case, at least 100 independent realizations were recorded for a given wind velocity variation pattern. The accumulated data sets allow calculating ensemble-averaged values of the measured parameters. Significant differences between the evolution patterns of the surface elevation and of the slope components were found. Wavelet analysis was applied to determine dominant wave frequency of the surface elevation and of the slope variation at each instant. Corresponding ensemble-averaged values acquired by different sensors were computed and compared. Analysis of the measured ensemble-averaged quantities at different fetches makes it possible to identify different stages in the wind-wave evolution and to estimate the appropriate time and length scales.
NASA Astrophysics Data System (ADS)
Robl, Jörg; Prasicek, Günther; Stüwe, Kurt; Hergarten, Stefan
2014-05-01
The topography of the European Alps reflects continental collision, crustal thickening and buoyancy driven surface uplift, overprinted by erosional processes. Topographic gradients generally steepen from the valley floors up to about 1500 m - 2000 m followed by an unexpected decrease in slope up to about 2900 m and a further increase to the highest summits of the range. Several studies have interpreted this pattern and the accompanied maximum in the hypsometric curve in terms of either the critical slope stability angle, the prematurity of the Alps caused by recent tectonic uplift, or the effect of the glacial "buzz saw" related to the Pleistocene glaciation cycles. There is consensus that the lithological inventory represents a first order parameter for the steepness of fluvial channels and the angle of hillslopes in steady state and that the response time of a transient landscape is controlled by lithology. In this study we systematically explore the slope-elevation distributions for several hundred continuous domains of the major structural units of the Alps. For this, we apply a novel numerical code to determine the predominant cause for the observed peculiar topography. We compare adjacent alpine domains with contrasting lithology to explore lithological effects on the limiting slope stability angle. We analyze domains with different lithology in the non-glaciated parts of the orogen to highlight the state of maturity related to a recent uplift event. We evaluate the glacial effects on the landscape by the comparison of areas belonging to the same structural units but affected by a variable amount of glacial imprint. The results show that lithology has a major impact on the morphometric characteristics of the European Alps. Adjacent but different structural units show a significant variability in their slope-elevation distributions although they have experienced the same uplift history and the same amount of glacial imprint. This suggests that the response time and process rates in transient landscapes are predominantly governed by the lithological inventory. Areas belonging to the same structural unit show similar characteristics in the slope-elevation distribution independent from their spatial position within the orogen (e.g. external massifs). These similarities are probably caused by the vertical position of the Pleistocene equilibrium line altitude - an observation well in line with the glacial "buzz saw" hypothesis. However, several non-glaciated regions at the eastern and south-western border of the Alps show a slope-elevation relation similar to formerly glaciated domains. However, in contrast to the glaciated realm, the inflection point in the slope-elevation distribution is located at various elevation levels and is consistent with a reported recent pulse of uplift with spatial and/or temporal variations in uplift rate and initiation. Therefore, we interpret the slope-elevation distribution of the European Alps to be mainly caused by glacial erosion. The morphological record of a recent uplift event in the Alps has probably been overprinted by Pleistocene glaciations and may therefore only be detectable in non-glaciated regions of the peripheral parts of the Alps and in subsurface structures.
The use of the T1 sagittal angle in predicting overall sagittal balance of the spine.
Knott, Patrick T; Mardjetko, Steven M; Techy, Fernando
2010-11-01
A balanced sagittal alignment of the spine has been shown to strongly correlate with less pain, less disability, and greater health status scores. To restore proper sagittal balance, one must assess the position of the occiput relative to the sacrum. The assessment of spinal balance preoperatively can be challenging, whereas predicting postoperative balance is even more difficult. This study was designed to evaluate and quantify multiple factors that influence sagittal balance. Retrospective analysis of existing spinal radiographs. A retrospective review of 52 adult spine patient records was performed. All patients had full-column digital radiographs that showed all the important skeletal landmarks necessary for accurate measurement. The average age of the patient was 53 years. Both genders were equally represented. The radiographs were measured using standard techniques to obtain the following parameters: scoliosis in the coronal plane; lordosis or kyphosis of the cervical, thoracic, and lumbar spine; the T1 sagittal angle (angle between a horizontal line and the superior end plate of T1); the angle of the dens in the sagittal plane; the angle of the dens in relation to the occiput; the sacral slope; the pelvic incidence; the femoral-sacral angle; and finally, the sagittal vertical axis (SVA) measured from both the dens of C2 and from C7. It was found that the SVA when measured from the dens was on average 16 mm farther forward than the SVA measured from C7 (p<.0001). The dens plumb line (SVA(dens)) was then used in the study. An analysis was done to examine the relationship between SVA(dens) and each of the other measurements. The T1 sagittal angle was found to have a moderate positive correlation (r=0.65) with SVA(dens), p<.0001, indicating that the amount of sagittal T1 tilt can be used as a good predictor of overall sagittal balance. When examining the other variables, it was found that cervical lordosis had a weak correlation (r=0.37) with SVA(dens) that was unexpected, given that cervical lordosis determines head position. Thoracic kyphosis also had a weak correlation (r=0.26) with SVA(C1), which was equally surprising. Lumbar lordosis had a slightly higher correlation (r=0.38), p=.006, than the cervical or thoracic spine. A multiple regression was run on the data to examine the relationship that all these independent variables have on SVA(dens). SPSS (SPSS, Inc., Chicago, IL, USA) was used to create a regression equation using the independent variables of T1 sagittal angle, cervical lordosis, thoracic kyphosis, lumbar lordosis, sacral slope, pelvic incidence, and femoral-sacral angle and the dependent variable of SVA(dens). The model had a strong correlation (r=0.80, r(2)=0.64) and was statistically significant (p<.0001). The T1 sagittal angle was the variable that had the strongest correlation with the SVA(dens) Spearman r=0.65, p<.0001, followed by pelvic incidence, p=.002, and lumbar lordosis, p=.006. We also observed that when the T1 tilt was higher than 25°, all patients had at least 10 cm of positive sagittal imbalance. In addition, patients with negative sagittal balance had mostly low T1 tilt values, usually lower than 13°. The other variables were not shown to have a statically significant influence on SVA. This analysis shows that many factors influence the overall sagittal balance of the patient, but it may be the position of the pelvis and lower spine that have a stronger influence than the position of the upper back and neck. Unfortunately, to our knowledge, there are no studies to date that have established a normal sagittal T1 tilt angle. However, our analysis has shown that when the T1 tilt was higher than 25°, all patients had at least 10 cm of positive sagittal imbalance. It also showed that patients with negative sagittal balance had mostly low T1 tilt values, usually below 13° of angulation. The T1 sagittal angle is a measurement that may be very useful in evaluating sagittal balance, as it was the measure that most strongly correlated with SVA(dens). It has its great utility where long films cannot be obtained. Patients whose T1 tilt falls outside the range 13° to 25° should be sent for full-column radiographs for a complete evaluation of their sagittal balance. On the other hand, a T1 tilt within the above range does not guarantee a normal sagittal balance, and further investigation should be performed at the surgeon's discretion. Copyright © 2010 Elsevier Inc. All rights reserved.
A data base approach for prediction of deforestation-induced mass wasting events
NASA Technical Reports Server (NTRS)
Logan, T. L.
1981-01-01
A major topic of concern in timber management is determining the impact of clear-cutting on slope stability. Deforestation treatments on steep mountain slopes have often resulted in a high frequency of major mass wasting events. The Geographic Information System (GIS) is a potentially useful tool for predicting the location of mass wasting sites. With a raster-based GIS, digitally encoded maps of slide hazard parameters can be overlayed and modeled to produce new maps depicting high probability slide areas. The present investigation has the objective to examine the raster-based information system as a tool for predicting the location of the clear-cut mountain slopes which are most likely to experience shallow soil debris avalanches. A literature overview is conducted, taking into account vegetation, roads, precipitation, soil type, slope-angle and aspect, and models predicting mass soil movements. Attention is given to a data base approach and aspects of slide prediction.
Experimental test of theory for the stability of partially saturated vertical cut slopes
Morse, Michael M.; Lu, N.; Wayllace, Alexandra; Godt, Jonathan W.; Take, W.A.
2014-01-01
This paper extends Culmann's vertical-cut analysis to unsaturated soils. To test the extended theory, unsaturated sand was compacted to a uniform porosity and moisture content in a laboratory apparatus. A sliding door that extended the height of the free face of the slope was lowered until the vertical cut failed. Digital images of the slope cross section and upper surface were acquired concurrently. A recently developed particle image velocimetry (PIV) tool was used to quantify soil displacement. The PIV analysis showed strain localization at varying distances from the sliding door prior to failure. The areas of localized strain were coincident with the location of the slope crest after failure. Shear-strength and soil-water-characteristic parameters of the sand were independently tested for use in extended analyses of the vertical-cut stability and of the failure plane angle. Experimental failure heights were within 22.3% of the heights predicted using the extended theory.
Observations of Sea Surface Mean Square Slope During the Southern Ocean Waves Experiment
NASA Technical Reports Server (NTRS)
Walsh, E. J.; Vandemark, D. C.; Hines, D. E.; Banner, M. L.; Chen, W.; Swift, R. N.; Scott, J. F.; Jensen, J.; Lee, S.; Fandry, C.
1999-01-01
For the Southern Ocean Waves Experiment (SOWEX), conducted in June 1992 out of Hobart, Tasmania, the 36 GHz (8.3 mm) NASA Scanning Radar Altimeter (SRA) was shipped to Australia and installed on a CSIRO Fokker F-27 research aircraft instrumented to make comprehensive surface layer measurements of air-sea interaction fluxes. The sea surface mean square slope (mss), which is predominantly caused by the short waves, was determined from the backscattered power falloff with incidence angle measured by the SRA in the plane normal to the aircraft heading. On each flight, data were acquired at 240 m altitude while the aircraft was in a 7 deg roll attitude, interrogating off-nadir incidence angles from -15 deg through nadir to +29 deg. The aircraft turned azimuthally through 810 deg in this attitude, mapping the azimuthal dependence of the backscattered power falloff with incidence angle. Two sets of turning data were acquired on each day, before and after the aircraft measured wind stress at low altitude (12 m to 65 m). Wave topography and backscattered power for mss were also acquired during those level flight segments whenever the aircraft altitude was above the SRA minimum range of 35 m. A unique feature of this experiment was the use of a nadir-directed low-gain horn antenna (35 deg beamwidth) to acquire azimuthally integrated backscattered power data versus incidence angle before and after the turn data.
NASA Astrophysics Data System (ADS)
Link, T. E.; Kumar, M.; Pomeroy, J. W.; Seyednasrollah, B.; Ellis, C. R.; Lawler, R.; Essery, R.
2012-12-01
In mountainous, forested environments, vegetation exerts a strong control on snowcover dynamics that affect ecohydrological processes, streamflow regimes, and riparian health. Snowcover deposition and ablation patterns in forests are controlled by a complex combination of canopy interception processes coupled with radiative and turbulent heat flux patterns related to topographic and canopy cover variations. In seasonal snow environments, snowcover ablation dynamics in forests are dominated by net radiation. Recent research indicates that in small canopy gaps a net radiation minima relative to both open and forested environments can occur, but depends strongly on solar angle, gap size, slope, canopy height and stem density. The optimal gap size to minimize radiation to snow was estimated to have a diameter between 1 and 2 times the surrounding vegetation height. Physically-based snowmelt simulations indicate that gaps may increase SWE and desynchronize snowmelt by approximately 3 weeks between north and south facing slopes, relative to undisturbed forests. On east and west facing slopes, small gaps cause melt to be slightly delayed relative to intact forests, and have a minimal effect on melt synchronicity between slopes. Recent research focused on canopy thinning also indicates that a net radiation minima occurs in canopies of intermediate densities. Physically-based radiative transfer simulations using a discrete tree-based model indicate that in mid-latitude level forests, the annually-integrated radiative minima occurs at a tree spacing of 2.65 relative to the canopy height. The radiative minima was found to occur in denser forests on south-facing slopes and sparser forests on north-facing slopes. The radiative minimums in thinned forests are controlled by solar angle, crown geometry and density, tree spacing, slope, and aspect. These results indicate that both gap and homogeneous forest thinning may be used to reduce snowmelt rates or alter melt synchronicity, but the exact configuration will be highly spatially variable. Development of management strategies to conserve water on the landscape to enhance forest and riparian health in a changing climate must also rigorously evaluate the effects of canopy thinning and specific hydrometeorological conditions on net radiation, turbulent fluxes, and snow interception processes.
Naito, Tomoko; Yoshikawa, Keiji; Mizoue, Shiro; Nanno, Mami; Kimura, Tairo; Suzumura, Hirotaka; Umeda, Yuzo; Shiraga, Fumio
2016-01-01
To analyze the relationship between visual field (VF) progression and baseline refraction in Japanese patients with primary open-angle glaucoma (POAG) including normal-tension glaucoma. In this retrospective study, the subjects were patients with POAG who had undergone VF tests at least ten times with a Humphrey Field Analyzer (Swedish interactive thresholding algorithm standard, Central 30-2 program). VF progression was defined as a significantly negative value of mean deviation (MD) slope at the final VF test. Multivariate logistic regression models were applied to detect an association between MD slope deterioration and baseline refraction. A total of 156 eyes of 156 patients were included in this analysis. Significant deterioration of MD slope was observed in 70 eyes of 70 patients (44.9%), whereas no significant deterioration was evident in 86 eyes of 86 patients (55.1%). The eyes with VF progression had significantly higher baseline refraction compared to those without apparent VF progression (-1.9±3.8 diopter [D] vs -3.5±3.4 D, P=0.0048) (mean ± standard deviation). When subject eyes were classified into four groups by the level of baseline refraction applying spherical equivalent (SE): no myopia (SE > -1D), mild myopia (-1D ≥ SE > -3D), moderate myopia (-3D ≥ SE > -6D), and severe myopia (-6D ≥ SE), the Cochran-Armitage trend analysis showed a decreasing trend in the proportion of MD slope deterioration with increasing severity of myopia (P=0.0002). The multivariate analysis revealed that baseline refraction (P=0.0108, odds ratio [OR]: 1.13, 95% confidence interval [CI]: 1.03-1.25) and intraocular pressure reduction rate (P=0.0150, OR: 0.97, 95% CI: 0.94-0.99) had a significant association with MD slope deterioration. In the current analysis of Japanese patients with POAG, baseline refraction was a factor significantly associated with MD slope deterioration as well as intraocular pressure reduction rate. When baseline refraction was classified into four groups, MD slope in myopia groups was less deteriorated as compared to those in the emmetropic/hyperopic group.
Chansangpetch, Sunee; Nguyen, Anwell; Mora, Marta; Badr, Mai; He, Mingguang; Porco, Travis C; Lin, Shan C
2018-03-01
To assess the interdevice agreement between swept-source Fourier-domain and time-domain anterior segment optical coherence tomography (AS-OCT). Fifty-three eyes from 41 subjects underwent CASIA2 and Visante OCT imaging. One hundred eighty-degree axis images were measured with the built-in two-dimensional analysis software for the swept-source Fourier-domain AS-OCT (CASIA2) and a customized program for the time-domain AS-OCT (Visante OCT). In both devices, we examined the angle opening distance (AOD), trabecular iris space area (TISA), angle recess area (ARA), anterior chamber depth (ACD), anterior chamber width (ACW), and lens vault (LV). Bland-Altman plots and intraclass correlation (ICC) were performed. Orthogonal linear regression assessed any proportional bias. ICC showed strong correlation for LV (0.925) and ACD (0.992) and moderate agreement for ACW (0.801). ICC suggested good agreement for all angle parameters (0.771-0.878) except temporal AOD500 (0.743) and ARA750 (nasal 0.481; temporal 0.481). There was a proportional bias in nasal ARA750 (slope 2.44, 95% confidence interval [CI]: 1.95-3.18), temporal ARA750 (slope 2.57, 95% CI: 2.04-3.40), and nasal TISA500 (slope 1.30, 95% CI: 1.12-1.54). Bland-Altman plots demonstrated in all measured parameters a minimal mean difference between the two devices (-0.089 to 0.063); however, evidence of constant bias was found in nasal AOD250, nasal AOD500, nasal AOD750, nasal ARA750, temporal AOD500, temporal AOD750, temporal ARA750, and ACD. Among the parameters with constant biases, CASIA2 tends to give the larger numbers. Both devices had generally good agreement. However, there were proportional and constant biases in most angle parameters. Thus, it is not recommended that values be used interchangeably.
Streit, M; Reinhardt, F; Thaller, G; Bennewitz, J
2013-01-01
Genotype by environment interaction (G × E) has been widely reported in dairy cattle. If the environment can be measured on a continuous scale, reaction norms can be applied to study G × E. The average herd milk production level has frequently been used as an environmental descriptor because it is influenced by the level of feeding or the feeding regimen. Another important environmental factor is the level of udder health and hygiene, for which the average herd somatic cell count might be a descriptor. In the present study, we conducted a genome-wide association analysis to identify single nucleotide polymorphisms (SNP) that affect intercept and slope of milk protein yield reaction norms when using the average herd test-day solution for somatic cell score as an environmental descriptor. Sire estimates for intercept and slope of the reaction norms were calculated from around 12 million daughter records, using linear reaction norm models. Sires were genotyped for ~54,000 SNP. The sire estimates were used as observations in the association analysis, using 1,797 sires. Significant SNP were confirmed in an independent validation set consisting of 500 sires. A known major gene affecting protein yield was included as a covariable in the statistical model. Sixty (21) SNP were confirmed for intercept with P ≤ 0.01 (P ≤ 0.001) in the validation set, and 28 and 11 SNP, respectively, were confirmed for slope. Most but not all SNP affecting slope also affected intercept. Comparison with an earlier study revealed that SNP affecting slope were, in general, also significant for slope when the environment was modeled by the average herd milk production level, although the two environmental descriptors were poorly correlated. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Chen, Jian-Jun; Yi, Shu-Hua; Qin, Yu; Wang, Xiao-Yun
2014-06-01
This paper retrieved the fractional vegetation cover of alpine grassland in the source region of the Shule River Basin based on Chinese environmental satellite (HJ-1A/1B) images and field data, and analyzed the response of the vegetation cover to topographic factors and types of frozen ground. The results showed that the vegetation coverage of this region was low with large spatial heterogeneity and high degree of dispersion. The landscape consisted mainly of non-vegetation surface types, eg. ice, snow, the bare rock gravel land and bare land. Slopes and aspects were the main limiting factors of vegetation distribution. The average vegetation coverage decreased with the increase of slope. The average vegetation coverage was the lowest on the sunny slope, and the highest on the shady slope. There were significant differences of vegetation coverage among different types of frozen ground. The distribution of vegetation coverage presented a reversed "U" curve trend by extremely stable permafrost, stable permafrost, sub-stable permafrost, transition permafrost, unstable permafrost and seasonal frost, and the average vegetation coverage was the highest in the sub-stable permafrost.
Volkán-Kacsó, Sándor; Marcus, Rudolph A.
2015-01-01
A theoretical model of elastically coupled reactions is proposed for single molecule imaging and rotor manipulation experiments on F1-ATPase. Stalling experiments are considered in which rates of individual ligand binding, ligand release, and chemical reaction steps have an exponential dependence on rotor angle. These data are treated in terms of the effect of thermodynamic driving forces on reaction rates, and lead to equations relating rate constants and free energies to the stalling angle. These relations, in turn, are modeled using a formalism originally developed to treat electron and other transfer reactions. During stalling the free energy profile of the enzymatic steps is altered by a work term due to elastic structural twisting. Using biochemical and single molecule data, the dependence of the rate constant and equilibrium constant on the stall angle, as well as the Børnsted slope are predicted and compared with experiment. Reasonable agreement is found with stalling experiments for ATP and GTP binding. The model can be applied to other torque-generating steps of reversible ligand binding, such as ADP and Pi release, when sufficient data become available. PMID:26483483
NASA Astrophysics Data System (ADS)
Nicolet, Marcel
A study comparing, in the spectral UVB region, the various components of the solar radiation field in order to explain the large difference obtained in Apr. 1939 by Goetz in Chur (green meadows), Nicolet in Arosa (adequate location in the snow) and Penndorf on the Weisshorn (above the ski slopes) (Switzerland) is presented. Numerical results from detailed theoretical calculations aimed at evaluating the various absolute effects associated with height, solar zenith angle and surface albedo were obtained for the standard atmosphere. The variations with solar zenith angles from 0 to 90 deg and albedos between 0 and 1 are presented for a spherical terrestrial atmosphere at selected wavelengths between 301 and 325 nm in the UVB region. From simultaneous measurements made at the same solar zenith angles, it was found that the values obtained in Arosa were between 5 and 10 times those obtained in Chur and on the Weisshorn. Such results are explained by a maximum of reflectivity of the snow covering the slope facing the relatively low Sun and its associated multiple scattered radiation in addition to the multiple molecular scattering of the atmosphere.
Levee reliability analyses for various flood return periods - a case study in Southern Taiwan
NASA Astrophysics Data System (ADS)
Huang, W.-C.; Yu, H.-W.; Weng, M.-C.
2015-01-01
In recent years, heavy rainfall conditions have caused damages around the world. To prevent damages by floods, levees have often been constructed in prone-to-inundation areas. This study performed reliability analyses for the Chiuliao 1st Levee located in southern Taiwan. The failure-related parameters were the water level, the scouring depth, and the in-situ friction angle. Three major failure mechanisms were considered, including the slope sliding failure of the levee, and the sliding and overturning failures of the retaining wall. When the variabilities of the in-situ friction angle and the scouring depth are considered for various flood return periods, the variations of the factor of safety (FS) for the different failure mechanisms show that the retaining wall sliding and overturning failures are more sensitive to the variability of the friction angle. When the flood return period is greater than 2 years, the levee can undergo slope sliding failure for all values of the water level difference. The results for levee stability analysis considering the variability of different parameters could assist engineers in designing the levee cross sections, especially with potential failure mechanisms in mind.
Multiple incidence angle SIR-B experiment over Argentina Mapping of forest units
NASA Technical Reports Server (NTRS)
Cimino, J.; Casey, D.; Wall, S. D.; Brandani, A.; Rabassa, J.
1986-01-01
Multiple incidence angle SIR-B data of the Cordon la Grasa region of the Chubut Province of Argentina are used to discriminate various forest types by their relative brightness versus incidence angle signatures. The region consists of several species of Nothofagas which change in canopy structure with elevation, slope, and exposure. In general, the factors that appear to impact the radar response most are canopy structure, density, and ground cover (presence or absence of dead trunks and branches in particular). The results of this work indicate that (1) different forest species, and structures of a single species, may be discriminated using multiple incidence angle radar imagery and (2) it is essential to consider the variation in backscatter due to incidence angle when analyzing the comparing data collected at varying frequencies and polarizations.
NASA Technical Reports Server (NTRS)
McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Bodnarik, J.; Droege, G.; Evans, L. G.; Golovin, D.; Hamara, D.; Harshman, K.;
2015-01-01
The Lunar Exploration Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) detects a widespread suppression of the epithermal neutron leakage flux that is coincident with the pole-facing slopes (PFS) of the Moon's southern hemisphere. Suppression of the epithermal neutron flux is consistent with an interpretation of enhanced concentrations of hydrogen-bearing volatiles within the upper meter of the regolith. Localized flux suppression in PFS suggests that the reduced solar irradiation and lowered temperature on PFS constrains volatility to a greater extent than in surrounding regions. Epithermal neutron flux mapped with LEND's Collimated Sensor for Epithermal Neutrons (CSETN) was analyzed as a function of slope geomorphology derived from the Lunar Orbiting Laser Altimeter (LOLA) and the results compared to co-registered maps of diurnally averaged temperature from the Diviner Lunar Radiometer Experiment and an averaged illumination map derived from LOLA. The suppression in the average south polar epithermal neutron flux on equator-facing slopes (EFS) and PFS (85-90 deg S) is 3.3 +/- 0.04% and 4.3 +/- 0.05% respectively (one-sigma-uncertainties), relative to the average count-rate in the latitude band 45-90 deg S. The discrepancy of 1.0 +/- 0.06% between EFS and PFS neutron flux corresponds to an average of approximately 23 parts-per-million-by-weight (ppmw) more hydrogen on PFS than on EFS. Results show that the detection of hydrogen concentrations on PFS is dependent on their spatial scale. Epithermal flux suppression on large scale PFS was found to be enhanced to 5.2 +/- 0.13%, a discrepancy of approximately 45 ppmw hydrogen relative to equivalent EFS. Enhanced poleward hydration of PFS begins between 50 deg S and 60 deg S latitude. Polar regolith temperature contrasts do not explain the suppression of epithermal neutrons on pole-facing slopes. The Supplemental on-line materials include supporting results derived from the uncollimated Lunar Prospector Neutron Spectrometer and the LEND Sensor for Epithermal Neutrons.
Lin, Tao; Shao, Wei; Zhang, Ke; Gao, Rui; Zhou, Xuhui
2018-03-01
To compare outcomes of anterior-only (AO), posterior-only (PO), and anteroposterior (AP) surgical approaches for treatment of dystrophic cervical kyphosis in patients with neurofibromatosis 1 (NF1). This retrospective observational study included 81 patients with dystrophic cervical kyphosis secondary to NF1. Length of kyphosis, duration of halo traction, Cobb angle, C2-7-sagittal vertical axis (SVA), T1 slope, Neck Disability Index score, and postoperative complications were evaluated before and, if possible, after each surgical approach. AP approach provided the best outcomes (average spinal Cobb angle was corrected from 61.2 ± 9.1° to 5.7 ± 3.2°, P < 0.05); there was no significant difference between AO and PO approaches (P > 0.05). With regard to cervical sagittal balance, AP approach had the most improvements of C2-7-SVA (mean C2-7-SVA was corrected from 3.2 ± 9.2 mm to 12.8 ± 2.6 mm, P < 0.05); the difference between AO and PO approaches was not significant (P > 0.05). T1 slope results were similar to C2-7-SVA. Neck Disability Index score of all patients improved significantly after surgery (P < 0.05); specifically, patients who had an AP approach constituted the largest portion of the satisfied patient group. Postoperative junctional kyphosis occurred in 11 patients (1 AP approach, 6 AO approach, 4 PO approach); these findings correlated with patients with ≤5 fused segments. AP approach surgery provided the best correction of dystrophic cervical kyphosis and sagittal balance for patients with NF1. Patients undergoing an AP approach were more satisfied with their outcomes. Junctional kyphosis can be prevented effectively using an AP approach in patients with >5 fused segments. Copyright © 2017 Elsevier Inc. All rights reserved.
Buratti, B.J.; Sotin, Christophe; Brown, R.H.; Hicks, M.D.; Clark, R.N.; Mosher, J.A.; McCord, T.B.; Jaumann, R.; Baines, K.H.; Nicholson, P.D.; Momary, T.; Simonelli, D.P.; Sicardy, B.
2006-01-01
Cassini observations of the surface of Titan offer unprecedented views of its surface through atmospheric windows in the 1-5 ??m region. Images obtained in windows for which the haze opacity is low can be used to derive quantitative photometric parameters such as albedo and albedo distribution, and physical properties such as roughness and particle characteristics. Images from the early Titan flybys, particularly T0, Ta, and T5 have been analyzed to create albedo maps in the 2.01 and 2.73 ??m windows. We find the average normal reflectance at these two wavelengths to be 0.15??0.02 and 0.035??0.003, respectively. Titan's surface is bifurcated into two albedo regimes, particularly at 2.01 ??m. Analysis of these two regimes to understand the physical character of the surface was accomplished with a macroscopic roughness model. We find that the two types of surface have substantially different roughness, with the low-albedo surface exhibiting mean slope angles of ???18??, and the high-albedo terrain having a much more substantial roughness with a mean slope angle of ???34??. A single-scattering phase function approximated by a one-term Henyey-Greenstein equation was also fit to each unit. Titan's surface is back-scattering (g???0.3-0.4), and does not exhibit substantially different backscattering behavior between the two terrains. Our results suggest that two distinct geophysical domains exist on Titan: a bright region cut by deep drainage channels and a relatively smooth surface. The two terrains are covered by a film or a coating of particles perhaps precipitated from the satellite's haze layer and transported by eolian processes. Our results are preliminary: more accurate values for the surface albedo and physical parameters will be derived as more data is gathered by the Cassini spacecraft and as a more complete radiative transfer model is developed from both Cassini orbiter and Huygens Lander measurements. ?? 2006 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, H. B.; Li, J. W.; Zhou, B.; Yuan, Z. Q.; Chen, Y. P.
2013-03-01
In the last few decades, the development of Geographical Information Systems (GIS) technology has provided a method for the evaluation of landslide susceptibility and hazard. Slope units were found to be appropriate for the fundamental morphological elements in landslide susceptibility evaluation. Following the DEM construction in a loess area susceptible to landslides, the direct-reverse DEM technology was employed to generate 216 slope units in the studied area. After a detailed investigation, the landslide inventory was mapped in which 39 landslides, including paleo-landslides, old landslides and recent landslides, were present. Of the 216 slope units, 123 involved landslides. To analyze the mechanism of these landslides, six environmental factors were selected to evaluate landslide occurrence: slope angle, aspect, the height and shape of the slope, distance to river and human activities. These factors were extracted in terms of the slope unit within the ArcGIS software. The spatial analysis demonstrates that most of the landslides are located on convex slopes at an elevation of 100-150 m with slope angles from 135°-225° and 40°-60°. Landslide occurrence was then checked according to these environmental factors using an artificial neural network with back propagation, optimized by genetic algorithms. A dataset of 120 slope units was chosen for training the neural network model, i.e., 80 units with landslide presence and 40 units without landslide presence. The parameters of genetic algorithms and neural networks were then set: population size of 100, crossover probability of 0.65, mutation probability of 0.01, momentum factor of 0.60, learning rate of 0.7, max learning number of 10 000, and target error of 0.000001. After training on the datasets, the susceptibility of landslides was mapped for the land-use plan and hazard mitigation. Comparing the susceptibility map with landslide inventory, it was noted that the prediction accuracy of landslide occurrence is 93.02%, whereas units without landslide occurrence are predicted with an accuracy of 81.13%. To sum up, the verification shows satisfactory agreement with an accuracy of 86.46% between the susceptibility map and the landslide locations. In the landslide susceptibility assessment, ten new slopes were predicted to show potential for failure, which can be confirmed by the engineering geological conditions of these slopes. It was also observed that some disadvantages could be overcome in the application of the neural networks with back propagation, for example, the low convergence rate and local minimum, after the network was optimized using genetic algorithms. To conclude, neural networks with back propagation that are optimized by genetic algorithms are an effective method to predict landslide susceptibility with high accuracy.
The world is not flat: can people reorient using slope?
Nardi, Daniele; Newcombe, Nora S; Shipley, Thomas F
2011-03-01
Studies of spatial representation generally focus on flat environments and visual input. However, the world is not flat, and slopes are part of most natural environments. In a series of 4 experiments, we examined whether humans can use a slope as a source of allocentric, directional information for reorientation. A target was hidden in a corner of a square, featureless enclosure tilted at a 5° angle. Finding it required using the vestibular, kinesthetic, and visual cues associated with the slope gradient. In Experiment 1, the overall sample performed above chance, showing that slope is sufficient for reorientation in a real environment. However, a sex difference emerged; men outperformed women by 1.4 SDs because they were more likely to use a slope-based strategy. In Experiment 2, attention was drawn to the slope, and participants were prompted to rely on it to solve the task; however, men still outperformed women, indicating a greater ability to use slope. In Experiment 3, we excluded the possibility that women's disadvantage was due to wearing heeled footwear. In Experiment 4, women required more time than men to identify the uphill direction of the slope gradient; this suggests that, in a bottom-up fashion, a perceptual or attentional difficulty underlies women's disadvantage in the ability to use slope and their decreased reliance on this cue. Overall, a bi-coordinate representation was used to find the goal: The target was encoded primarily with respect to the vertical axis and secondarily with respect to the orthogonal axis of the slope. 2011 APA, all rights reserved
NASA Astrophysics Data System (ADS)
Tucker, G. E.; Bradley, D. N.
2008-12-01
Many geomorphic transport laws assume that the transport process is local, meaning that the space and time scales of particle displacement are short relative to those of the system as a whole. This assumption allows one to express sediment flux in terms of at-a-point properties such as the local surface gradient. However, while this assumption is quite reasonable for some processes (for example, grain displacement by raindrop impact), it is questionable for others (such as landsliding). Moreover, particle displacement distance may also depend on slope angle, becoming longer as gradient increases. For example, the average motion distance during sediment ravel events on very steep slopes may approach the length of the entire hillslope. In such cases, the mass flux through a given point may depend not only on the local topography but also on topography some distance upslope, thus violating the locality assumption. Here we use a stochastic, particle- based model of hillslope evolution to gain insight into the potential for, and consequences of, nonlocality in sediment transport. The model is designed as a simple analogy for a host of different processes that displace sediment grains on hillslopes. The hillslope is represented as a two-dimensional pile of particles. These particles undergo quasi-random motion according to the following rules: (1) during each iteration, a particle and a direction are selected at random; (2) the particle hops in the direction of motion with a probability that depends on the its height relative to that of its immediate neighbor; (3) the particle continues making hops in the same direction and with the same probability dependence, until coming to rest or exiting the base of the slope. The topography and motion statistics that emerge from these rules show a range of behavior that depends on a dimensionless relief parameter. At low relief, hillslope shape is parabolic, mean displacement length is on the order of two particle widths, and the probability distribution of displacement length is thin- tailed (approximately exponential). At high relief, hillslopes become planar, average displacement length increases by an order of magnitude, and the displacement-length distribution becomes heavy-tailed (albeit truncated at the slope length). Across the spectrum of relief values, the relationship between mean flux and gradient resembles the family of nonlinear flux-gradient curves that has been used to model hillslope evolution. We compare the emergent morphology and transport statistics with linear, nonlinear, and fractional diffusion models of hillslope transport.
Geomorphological features of rootless cones in Myvatn, Iceland in comparison with Martian candidates
NASA Astrophysics Data System (ADS)
Noguchi, R.; Kurita, K.
2015-12-01
Rootless cones (RC) have not been paid much attention so far because of their limited locations and their small size. They are formed by repeated phreatovolcanic explosions by lava-waterlogged sediments interactions. While the distribution is limited on the Earth, they have been pervasively recognized on Mars (e.g., Greeley and Fagents, 2001) and considered as a key marker in identifying lava flow. Although in-depth morphological comparisons are necessary, the terrestrial standard is not sufficient. Recent studies have clarified detailed characteristics of the distribution in the context of lava flow dynamics in Laki, Iceland (Hamilton et al., 2010a,b). However, we are still lacking of sufficient data of the morphology. To construct the terrestrial reference, we performed survey in Myvatn, Iceland.About 2300 years ago, lava flowed into old-Lake Myvatn, then formed RCs (Thorarinsson, 1953). There exists 3 morphological types; Single Cone (SC), a conical edifice with a summit crater, Double Cone (DC), composed of an inner cone with a summit crater within the summit crater of an outer cone, and multiple cone, similar to DC but with several inner cones. Through aerial photo survey, 1154 RCs (1056 are SC, 78 are DC and 20 are multiple one) are identified in this area. To know high-resolution topography of them, we apply kinematic GPS. Constituent materials of RCs are analyzed focusing on their bulk density, vesicularity, and grain size distribution.Geomorphological features of RCs are strongly correlated with its location and constituent materials. The crater diameter/bottom diameter ratio of cone, which is considered as an indicator of the explosivity, is larger around the lake and smaller far way from the lava source. This suggests an importance of available thermal energy as well as the water supply. The edifice morphology is grouped into 5 types; I: constant slopes that reach the repose angle; II: constant slopes lower than the repose angle; III: variable slopes with a step; IV: variable slopes that get steeper with higher altitude; and V: variable and small slope angles. We found these types correspond to their constituent materials and volumes. In this presentation, we show the relationship between RC morphology and other parameters, which can be useful as well as the planetary volcanology.
Additional spectra of asteroid 1996 FG3, backup target of the ESA MarcoPolo-R mission
NASA Astrophysics Data System (ADS)
de León, J.; Lorenzi, V.; Alí-Lagoa, V.; Licandro, J.; Pinilla-Alonso, N.; Campins, H.
2013-08-01
Context. Near-Earth binary asteroid (175706) 1996 FG3 is the current backup target of the ESA MarcoPolo-R mission, selected for the study phase of ESA M3 missions. It is a primitive (C-type) asteroid that shows significant variation in its visible and near-infrared spectra. Aims: Here we present new visible and near-infrared spectra of 1996 FG3. We compare our new data with other published spectra, analysing the variation in the spectral slope. The asteroid will not be observable again over the next three years at least. Methods: We obtained visible and near-infrared spectra using DOLORES and NICS instruments, respectively, at the Telescopio Nazionale Galileo (TNG), a 3.6 m telescope located at El Roque de los Muchachos Observatory in La Palma, Spain. To compare with other published spectra of the asteroid, we computed the spectral slope S', and studied any plausible correlation of this quantity with the phase angle (α). Results: In the case of visible spectra, we find a variation in spectral slope of ΔS' = 0.15 ± 0.10%/103 Å/° for 3°<α< 18°, which is in good agreement with the values found in the literature for the phase reddening effect. In the case of the near-infrared, there seems to be a trend between the reddening of the spectra and the phase angle, excluding one point. We find a variation in the slope of ΔS' = 0.04 ± 0.08%/103 Å/° for 6° < α < 51°. Our computed variation in S' is in good agreement with the only two values found in the literature for the phase reddening in the near-infrared. Conclusions: The variation in the spectral slope of asteroid 1996 FG3 shows a trend with the phase angle at the time of the observations, both in the visible and the near-infrared. It is worth noting that, to fully explain this spectral variability we should take into account other factors, like the position of the secondary component of the binary asteroid 1999 FG3 with respect to the primary, or the spin axis orientation at the time of the observations. More data are necessary for an analysis of this kind.
SU-E-J-49: Distal Edge Activity Fall Off Of Proton Therapy Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmekawy, A; Ewell, L; Butuceanu, C
2014-06-01
Purpose: To characterize and quantify the distal edge activity fall off, created in a phantom by a proton therapy beam Method and Materials: A 30x30x10cm polymethylmethacrylate phantom was irradiated with a proton therapy beam using different ranges and beams. The irradiation volume is approximated by a right circular cylinder of diameter 7.6cm and varying lengths. After irradiation, the phantom was scanned via a Philips Gemini Big Bore™ PET-CT for isotope activation. Varian Eclipse™ treatment planning system as well as ImageJ™ were used to analyze the resulting PET and CT scans. The region of activity within the phantom was longitudinally measuredmore » as a function of PET slice number. Dose estimations were made via Monte Carlo (GATE) simulation. Results: For both the spread out Bragg peak (SOBP) and the mono-energetic pristine Bragg peak proton beams, the proximal activation rise was steep: average slope −0.735 (average intensity/slice number) ± 0.091 (standard deviation) for the pristine beams and −1.149 ± 0.117 for the SOBP beams. In contrast, the distal fall offs were dissimilar. The distal fall off in activity for the pristine beams was fit well by a linear curve: R{sup 2} (Pierson Product) was 0.9968, 0.9955 and 0.9909 for the 13.5, 17.0 and 21.0cm range beams respectively. The good fit allows for a slope comparison between the different ranges. The slope varied as a function of range from 1.021 for the 13.5cm beam to 0.8407 (average intensity/slice number) for the 21.0cm beam. This dependence can be characterized: −0.0234(average intensity/slice number/cm range). For the SOBP beams, the slopes were significantly less and were also less linear: average slope 0.2628 ± 0.0474, average R{sup 2}=0.9236. Conclusion: The distal activation fall off edge for pristine proton beams was linear and steep. The corresponding quantities for SOBP beams were shallower and less linear. Philips has provided support for this work.« less
Analytical and numerical analysis of the slope of von Mises planar trusses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalina, M.; Frantík, P.
2016-06-08
In the present paper, there are presented post-critical stress states which will occur at loading by vertical shift of the top joint in the direction downwards. The formation of certain stress states depends on the size of the angle formed by a straight beam of the von Mises planar truss with horizontal plane. Numerical and analytical methods and their problems with finding the angle were described. The numerical solution applies the method of searching for a minimum of potential energy.
Response mechanism of post-earthquake slopes under heavy rainfall
NASA Astrophysics Data System (ADS)
Qiu, Hong-zhi; Kong, Ji-ming; Wang, Ren-chao; Cui, Yun; Huang, Sen-wang
2017-07-01
This paper uses the catastrophic landslide that occurred in Zhongxing Town, Dujiangyan City, as an example to study the formation mechanism of landslides induced by heavy rainfall in the post-Wenchuan earthquake area. The deformation characteristics of a slope under seismic loading were investigated via a shaking table test. The results show that a large number of cracks formed in the slope due to the tensile and shear forces of the vibrations, and most of the cracks had angles of approximately 45° with respect to the horizontal. A series of flume tests were performed to show how the duration and intensity of rainfall influence the responses of the shaken and non-shaken slopes. Wetting fronts were recorded under different rainfall intensities, and the depth of rainfall infiltration was greater in the shaken slope than in the non-shaken slope because the former experienced a greater extreme rainfall intensity under the same early rainfall and rainfall duration conditions. At the beginning of the rainfall infiltration experiment, the pore water pressure in the slope was negative, and settling occurred at the top of the slope. With increasing rainfall, the pore water pressure changed from negative to positive, and cracks were observed on the back surface of the slope and the shear outlet of the landslide on the front of the slope. The shaken slope was more susceptible to crack formation than the non-shaken slope under the same rainfall conditions. A comparison of the responses of the shaken and non-shaken slopes under heavy rainfall revealed that cracks formed by earthquakes provided channels for infiltration. Soil particles in the cracks of slopes were washed away, and the pore water pressure increased rapidly, especially the transient pore water pressure in the slope caused by short-term concentrated rainfall which decreased rock strength and slope stability.
Infinite slope stability under steady unsaturated seepage conditions
Lu, Ning; Godt, Jonathan W.
2008-01-01
We present a generalized framework for the stability of infinite slopes under steady unsaturated seepage conditions. The analytical framework allows the water table to be located at any depth below the ground surface and variation of soil suction and moisture content above the water table under steady infiltration conditions. The framework also explicitly considers the effect of weathering and porosity increase near the ground surface on changes in the friction angle of the soil. The factor of safety is conceptualized as a function of the depth within the vadose zone and can be reduced to the classical analytical solution for subaerial infinite slopes in the saturated zone. Slope stability analyses with hypothetical sandy and silty soils are conducted to illustrate the effectiveness of the framework. These analyses indicate that for hillslopes of both sandy and silty soils, failure can occur above the water table under steady infiltration conditions, which is consistent with some field observations that cannot be predicted by the classical infinite slope theory. A case study of shallow slope failures of sandy colluvium on steep coastal hillslopes near Seattle, Washington, is presented to examine the predictive utility of the proposed framework.
Zonation of Landslide-Prone Using Microseismic Method and Slope Analysis in Margoyoso, Magelang
NASA Astrophysics Data System (ADS)
Aditya, Muchamad Reza; Fauqi Romadlon, Arriqo’; Agra Medika, Reymon; Alfontius, Yosua; Delva Jannet, Zukhruf; Hartantyo, Eddy
2018-04-01
Margoyoso Village, Salaman Sub-district, Magelang Regency, Central Java is one of the villages that were included in landslide prone areas. The steep slopes and land use in this village were quite apprehensive. There were fractures with 5 cm in width and a length of 50 m. Moreover, these fractures appeared in the home residents. Although the local government has established a disaster response organization, this village is still not getting adequate information about the landslide prone areas. Based on the description before, we conducted research with geophysical methods and geotechnical analysis to minimize the danger of landslides. The geophysical method used in this research was microseismic method and geotechnical analysis. The microseismic measurement and slope stability analysis at Margoyoso village was a step in analysing the landslide-prone zone boundary. The results of this research indicated that landslide potential areas had a low peak ground acceleration values with a range from 36 gal to 46 gal. Measurement of slope stability indicated that a slope angle values between 55°-78° are a potential landslide slope because the soil in this village has very loose properties so it is very easy to move.
Cycle-time equation for the Koller K300 cable yarder operating on steep slopes in the Northeast
Neil K. Huyler; Chris B. LeDoux
1997-01-01
Describes a delay-free-cycle time equation for the Koller K300 skyline yarder operating on steep slopes in the Northeast. Using the equation, the average delay-free-cycle time was 5.72 minutes. This means that about 420 cubic feet of material per hour can be produced. The important variables used in the equation were slope yarding distance, lateral yarding distance,...
Geotechnical properties of ash deposits near Hilo, Hawaii
Wieczorek, G.F.; Jibson, R.W.; Wilson, R.C.; Buchanan-Banks, J. M.
1982-01-01
Two holes were hand augered and sampled in ash deposits near Hilo, Hawaii. Color, water content and sensitivity of the ash were measured in the field. The ash alternated between reddish brown and dark reddish brown in color and had water contents as high as 392%. A downhole vane shear device measured sensitivities as high as 6.9. A series of laboratory tests including grain size distribution, Atterberg limits, X-ray diffraction analysis, total carbon determination, vane shear, direct shear and triaxial tests were performed to determine the composition and geotechnical properties of the ash. The ash is very fine grained, highly plastic and composed mostly of gibbsite and amorphous material presumably allophane. The ash has a high angle of internal friction ranging from 40-43? and is classified as medium to very sensitive. A series of different ash layers was distinguished on the basis of plasticity and other geotechnical properties. Sensitivity may be due to a metastable fabric, cementation, leaching, high organic content, and thixotropy. The sensitivity of the volcanic ash deposits near Hilo is consistent with documented slope instability during earthquakes in Hawaii. The high angles of internal friction and cementation permit very steep slopes under static conditions. However, because of high sensitivity of the ash, these slopes are particularly susceptible to seismically-induced landsliding.
Arctic Sea Ice Variability and Trends, 1979-2006
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.; Cavalieri, Donald J.
2008-01-01
Analysis of Arctic sea ice extents derived from satellite passive-microwave data for the 28 years, 1979-2006 yields an overall negative trend of -45,100 +/- 4,600 km2/yr (-3.7 +/- 0.4%/decade) in the yearly averages, with negative ice-extent trends also occurring for each of the four seasons and each of the 12 months. For the yearly averages the largest decreases occur in the Kara and Barents Seas and the Arctic Ocean, with linear least squares slopes of -10,600 +/- 2,800 km2/yr (-7.4 +/- 2.0%/decade) and -10,100 +/- 2,200 km2/yr (-1.5 +/- 0.3%/decade), respectively, followed by Baffin Bay/Labrador Sea, with a slope of -8,000 +/- 2,000 km2/yr) -9.0 +/- 2.3%/decade), the Greenland Sea, with a slope of -7,000 +/- 1,400 km2/yr (-9.3 +/- 1.9%/decade), and Hudson Bay, with a slope of -4,500 +/- 900 km2/yr (-5.3 +/- 1.1%/decade). These are all statistically significant decreases at a 99% confidence level. The Seas of Okhotsk and Japan also have a statistically significant ice decrease, although at a 95% confidence level, and the three remaining regions, the Bering Sea, Canadian Archipelago, and Gulf of St. Lawrence, have negative slopes that are not statistically significant. The 28-year trends in ice areas for the Northern Hemisphere total are also statistically significant and negative in each season, each month, and for the yearly averages.
Gibson Panorama by Spirit at Home Plate
2006-03-06
This image shows finely layered rocks interspersed with sand sloping downward and inward toward the center of the panorama from either side. Here and there on the outcrop, a chunk of rock has become displaced and lies at an angle on the surface
Correction of broadband snow albedo measurements affected by unknown slope and sensor tilts
NASA Astrophysics Data System (ADS)
Weiser, Ursula; Olefs, Marc; Schöner, Wolfgang; Weyss, Gernot; Hynek, Bernhard
2016-04-01
Geometric effects induced by the underlying terrain slope or by tilt errors of the radiation sensors lead to an erroneous measurement of snow or ice albedo. Consequently, artificial diurnal albedo variations in the order of 1-20 % are observed. The present paper proposes a general method to correct tilt errors of albedo measurements in cases where tilts of both the sensors and the slopes are not accurately measured or known. We demonstrate that atmospheric parameters for this correction model can either be taken from a nearby well-maintained and horizontally levelled measurement of global radiation or alternatively from a solar radiation model. In a next step the model is fitted to the measured data to determine tilts and directions of sensors and the underlying terrain slope. This then allows us to correct the measured albedo, the radiative balance and the energy balance. Depending on the direction of the slope and the sensors a comparison between measured and corrected albedo values reveals obvious over- or underestimations of albedo. It is also demonstrated that differences between measured and corrected albedo are generally highest for large solar zenith angles.
NASA Astrophysics Data System (ADS)
Zhang, Ke; Cao, Ping; Ma, Guowei; Fan, Wenchen; Meng, Jingjing; Li, Kaihui
2016-07-01
Using the Chengmenshan Copper Mine as a case study, a new methodology for open pit slope design in karst-prone ground conditions is presented based on integrated stochastic-limit equilibrium analysis. The numerical modeling and optimization design procedure contain a collection of drill core data, karst cave stochastic model generation, SLIDE simulation and bisection method optimization. Borehole investigations are performed, and the statistical result shows that the length of the karst cave fits a negative exponential distribution model, but the length of carbonatite does not exactly follow any standard distribution. The inverse transform method and acceptance-rejection method are used to reproduce the length of the karst cave and carbonatite, respectively. A code for karst cave stochastic model generation, named KCSMG, is developed. The stability of the rock slope with the karst cave stochastic model is analyzed by combining the KCSMG code and the SLIDE program. This approach is then applied to study the effect of the karst cave on the stability of the open pit slope, and a procedure to optimize the open pit slope angle is presented.
Slope maps of the San Francisco Bay region, California a digital database
Graham, Scott E.; Pike, Richard J.
1998-01-01
PREFACE: Topography, the configuration of the land surface, plays a major role in various natural processes that have helped shape the ten-county San Francisco Bay region and continue to affect its development. Such processes include a dangerous type of landslide, the debris flow (Ellen and others, 1997) as well as other modes of slope failure that damage property but rarely threaten life directly?slumping, translational sliding, and earthflow (Wentworth and others, 1997). Different types of topographic information at both local and regional scales are helpful in assessing the likelihood of slope failure and the mapping the extent of its past activity, as well as addressing other issues in hazard mitigation and land-use policy. The most useful information is quantitative. This report provides detailed digital data and plottable map files that depict in detail the most important single measure of ground-surface form for the Bay region, slope angle. We computed slope data for the entire region and each of its constituent counties from a new set of 35,000,000 digital elevations assembled from 200 local contour maps.
Kaewpornsawan, Kamolporn; Tangsataporn, Suksan; Jatunarapit, Ratiporn
2005-10-01
To find the effectiveness of the early surgery (2-3 years of age)as a very important prognostic factor affecting the outcomes in Thai children with infantile tibia vara and all the prognostic factors including the usefulness of arthrographic study in correcting the deformity. From 1994 to 2004, sixteen children aged average 3.61 years old (2.08-7.0) were treated in Siriraj Hospital and diagnosed as infantile tibia vara by Langenskiold radiographic staging were included in the present study and retrospectively reviewed with an average of 6.4 years follow up (range 6 month - 11.1 years). All cases were initially treated by surgery because of low compliance for brace or brace failure. They consisted of 3 boys and 13 girls. There were 24 legs including the bilateral involvement in 8 cases (2 boy and 6 girls). After arihrography, the midshaft fibular osteotomy was performed then the proximal tibial dome-shaped valgus osteotomy was done and fixed with 2 pins. The desired position was 12 degree knee valgus . The patients were divided in two groups, 1)group A,the successful group with the knee becoming normal without any deformity after single osteotomy, 2)group B,the recurrent group with recurrence of the varus deformity required further corrective osteotomies to make normal axis of the knee. All variables were analyzed and compared between group A and group B. The general characteristics and radiographic findings were recorded in 1)age, 2)sex, 3)side, 4)weight in kilogram and in percentage of normal or overweight(obesity) compared with the standard Thai weight chart, 5)tibiofemoral angle (TFA) pre and postoperative treatment, 6) metaphyseal diaphyseal angle (MDA), 7)the medial physeal slope angle (MPS, 8)The preoperative arthrographic articulo-diaphyseal angle (ADA), 9.arthrographic articulo-medial physeal angle (AMPA). There were 14 legs in group A and the remaining 10 legs were in group B (average 2.4 operations). All cases healed in good alignment of the legs without major complication. All patients who were operated on early before 3 years old were 100% cured by single osteotomy in group A(11 legs). Arthrography was useful in evaluating the knee joint and drawing the angle. Considering the prognostic factors affecting the outcomes after surgery, there were 6 prognostic factors . First, the age less than 3 years old (P<0.001). Second, the normal weight (P<0.047). Third, the Langenskiold stage 1-2 (P=0.002). Fourth, the MPS angle equal or less than 59 degree (P < 0.001). Fifth, the ADA preperative angle equal or less than 18 degrees (P<0.001). Sixth and the last factor, the TFA angle postoperative treatment, equal or more than 10 degrees valgus (mean 13 degrees valgus) (P=0.009).In multivariate analysis with stepwise logistic regression of these 6 prosnostic factors, the MPS angle had the most important significance. The proximal tibial valgus osteotomy was a very important factor(P < 0.001). The 6 prognostic factors and usefulness of arthrography were identified. The authors suggest that surgery should be performed early in Thai children who have met these criterias 1)age of the patients more than 2 years old, 2)Langenskiold roentgenographic characteristics of infantile tibia vara stage 2 or more at the time of diagnosis, 3)Low compliance for brace treatment.or brace failure but not more than 3 years old. The surgery should not be delayed more than 3 years of age by waiting for effectiveness of brace treatment in Thai children with infantile tibia vara. The early proximal valgus dome- shaped osteotomy was a very important controllable prognostic factor by surgeon decision.
NASA Astrophysics Data System (ADS)
Naghibi, Seyed Amir; Moradi Dashtpagerdi, Mostafa
2017-01-01
One important tool for water resources management in arid and semi-arid areas is groundwater potential mapping. In this study, four data-mining models including K-nearest neighbor (KNN), linear discriminant analysis (LDA), multivariate adaptive regression splines (MARS), and quadric discriminant analysis (QDA) were used for groundwater potential mapping to get better and more accurate groundwater potential maps (GPMs). For this purpose, 14 groundwater influence factors were considered, such as altitude, slope angle, slope aspect, plan curvature, profile curvature, slope length, topographic wetness index (TWI), stream power index, distance from rivers, river density, distance from faults, fault density, land use, and lithology. From 842 springs in the study area, in the Khalkhal region of Iran, 70 % (589 springs) were considered for training and 30 % (253 springs) were used as a validation dataset. Then, KNN, LDA, MARS, and QDA models were applied in the R statistical software and the results were mapped as GPMs. Finally, the receiver operating characteristics (ROC) curve was implemented to evaluate the performance of the models. According to the results, the area under the curve of ROCs were calculated as 81.4, 80.5, 79.6, and 79.2 % for MARS, QDA, KNN, and LDA, respectively. So, it can be concluded that the performances of KNN and LDA were acceptable and the performances of MARS and QDA were excellent. Also, the results depicted high contribution of altitude, TWI, slope angle, and fault density, while plan curvature and land use were seen to be the least important factors.
Empirical parameterization of setup, swash, and runup
Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H.
2006-01-01
Using shoreline water-level time series collected during 10 dynamically diverse field experiments, an empirical parameterization for extreme runup, defined by the 2% exceedence value, has been developed for use on natural beaches over a wide range of conditions. Runup, the height of discrete water-level maxima, depends on two dynamically different processes; time-averaged wave setup and total swash excursion, each of which is parameterized separately. Setup at the shoreline was best parameterized using a dimensional form of the more common Iribarren-based setup expression that includes foreshore beach slope, offshore wave height, and deep-water wavelength. Significant swash can be decomposed into the incident and infragravity frequency bands. Incident swash is also best parameterized using a dimensional form of the Iribarren-based expression. Infragravity swash is best modeled dimensionally using offshore wave height and wavelength and shows no statistically significant linear dependence on either foreshore or surf-zone slope. On infragravity-dominated dissipative beaches, the magnitudes of both setup and swash, modeling both incident and infragravity frequency components together, are dependent only on offshore wave height and wavelength. Statistics of predicted runup averaged over all sites indicate a - 17 cm bias and an rms error of 38 cm: the mean observed runup elevation for all experiments was 144 cm. On intermediate and reflective beaches with complex foreshore topography, the use of an alongshore-averaged beach slope in practical applications of the runup parameterization may result in a relative runup error equal to 51% of the fractional variability between the measured and the averaged slope.
NASA Astrophysics Data System (ADS)
Uchida, Naoki; Kirby, Stephen H.; Umino, Norihito; Hino, Ryota; Kazakami, Tomoe
2016-09-01
The aftershock distribution of the 1933 Sanriku-oki outer trench earthquake is estimated by using modern relocation methods and a newly developed velocity structure to examine the spatial extent of the source-fault and the possibility of a triggered interplate seismicity. In this study, we first examined the regional data quality of the 1933 earthquake based on smoked-paper records and then relocated the earthquakes by using the 3-D velocity structure and double-difference method. The improvements of hypocentre locations using these methods were confirmed by the examination of recent earthquakes that are accurately located based on ocean bottom seismometer data. The results show that the 1933 aftershocks occurred under both the outer- and inner-trench-slope regions. In the outer-trench-slope region, aftershocks are distributed in a ˜280-km-long area and their depths are shallower than 50 km. Although we could not constrain the fault geometry from the hypocentre distribution, the depth distribution suggests the whole lithosphere is probably not under deviatoric tension at the time of the 1933 earthquake. The occurrence of aftershocks under the inner trench slope was also confirmed by an investigation of waveform frequency difference between outer and inner trench earthquakes as recorded at Mizusawa. The earthquakes under the inner trench slope were shallow (depth ≦30 km) and the waveforms show a low-frequency character similar to the waveforms of recent, precisely located earthquakes in the same area. They are also located where recent activity of interplate thrust earthquakes is high. These suggest that the 1933 outer-trench-slope main shock triggered interplate earthquakes, which is an unusual case in the order of occurrence in contrast with the more common pairing of a large initial interplate shock with subsequent outer-slope earthquakes. The off-trench earthquakes are distributed about 80 km width in the trench perpendicular direction. This wide width cannot be explained from a single high-angle fault confined at a shallow depth (depth ≦50 km). The upward motion of the 1933 tsunami waveform records observed at Sanriku coast also cannot be explained from a single high-angle west-dipping normal fault. If we consider additional fault, involvement of high-angle, east-dipping normal faults can better explain the tsunami first motion and triggering of the aftershock in a wide area under the outer trench slope. Therefore multiple off-trench normal faults may have activated during the 1933 earthquake. We also relocated recent (2001-2012) seismicity by the same method. The results show that the present seismicity in the outer-trench-slope region can be divided into several groups along the trench. Comparison of the 1933 rupture dimensions based on our aftershock relocations with the morphologies of fault scarps in the outer trench slope suggest that the rupture was limited to the region where fault scarps are largely trench parallel and cross cut the seafloor spreading fabric. These findings imply that bending geometry and structural segmentation of the incoming plate largely controls the spatial extent of the 1933 seismogenic faulting. In this shallow rupture model for this largest outer trench earthquake, triggered seismicity in the forearc and structural control of faulting represent an important deformation styles for off-trench and shallow megathrust zones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westover, B.; Lawrence Livermore National Laboratory, Livermore, California 94550; Chen, C. D.
2014-03-15
Experiments on the Titan laser (∼150 J, 0.7 ps, 2 × 10{sup 20} W cm{sup −2}) at the Lawrence Livermore National Laboratory were carried out in order to study the properties of fast electrons produced by high-intensity, short pulse laser interacting with matter under conditions relevant to Fast Ignition. Bremsstrahlung x-rays produced by these fast electrons were measured by a set of compact filter-stack based x-ray detectors placed at three angles with respect to the target. The measured bremsstrahlung signal allows a characterization of the fast electron beam spectrum, conversion efficiency of laser energy into fast electron kinetic energy and angular distribution. A Monte Carlo codemore » Integrated Tiger Series was used to model the bremsstrahlung signal and infer a laser to fast electron conversion efficiency of 30%, an electron slope temperature of about 2.2 MeV, and a mean divergence angle of 39°. Simulations were also performed with the hybrid transport code ZUMA which includes fields in the target. In this case, a conversion efficiency of laser energy to fast electron energy of 34% and a slope temperature between 1.5 MeV and 4 MeV depending on the angle between the target normal direction and the measuring spectrometer are found. The observed temperature of the bremsstrahlung spectrum, and therefore the inferred electron spectrum are found to be angle dependent.« less
NASA Technical Reports Server (NTRS)
Brown, Clarence A , Jr
1957-01-01
A full- scale rocket-powered model of a cruciform canard missile configuration with a low- aspect - ratio wing and blunt nose has been flight tested by the Langley Pilotless Aircraft Research Division. Static and dynamic longitudinal stability and control derivatives of this interdigitated canard-wing missile configuration were determined by using the pulsed- control technique at low angles of attack and for a Mach number range of 1.2 to 2.1. The lift - curve slope showed only small nonlinearities with changes in control deflection or angle of attack but indicated a difference in lift- .curve slope of approximately 7 percent for the two control deflections of delta = 3.0 deg and delta= -0.3 deg . The large tail length of the missile tested was effective in producing damping in pitch throughout the Mach number range tested. The aerodynamic- center location was nearly constant with Mach number for the two control deflections but was shown to be less stable with the larger control deflection. The increment of lift produced by the controls was small and positive throughout the Mach number range tested, whereas the pitching moment produced by the controls exhibited a normal trend of reduced effectiveness with increasing Mach number.The effectiveness of the controls in producing angle of attack, lift, and pitching moment was good at all Mach numbers tested.
NASA Technical Reports Server (NTRS)
Brown, C. A., Jr.
1957-01-01
A full-scale rocket-powered model of a cruciform canard missile configuration with a low-aspect-ratio wing and blunt nose has been flight tested by the Langley Pilotless Aircraft Research Division. Static and dynamic longitudinal stability and control derivatives of this interdigitated canard-wing missile configuration were determined by using the pulsed-control technique at low angles of attack and for a Mach number range of 1.2 to 2.1. The lift-curve slope showed only small nonlinearities with changes in control deflection or angle of attack but indicated a difference in lift-curve slope of approximately 7 percent for the two control deflections of delta = 3.0 deg and delta = -0.3 deg. The large tail length of the missile tested was effective in producing damping in pitch throughout the Mach number range tested. The aerodynamic-center location was nearly constant with Mach number for the two control deflections but was shown to be less stable with the larger control deflection. The increment of lift produced by the controls was small and positive throughout the Mach number range tested, whereas the pitching moment produced by the controls exhibited a normal trend of reduced effectiveness with increasing Mach number. The effectiveness of the controls in producing angle of attack, lift, and pitching moment was good at all Mach numbers tested.
Soil erosion and significance for carbon fluxes in a mountainous Mediterranean-climate watershed.
Smith, S V; Bullock, S H; Hinojosa-Corona, A; Franco-Vizcaíno, E; Escoto-Rodríguez, M; Kretzschmar, T G; Farfán, L M; Salazar-Ceseña, J M
2007-07-01
In topographically complex terrains, downslope movement of soil organic carbon (OC) can influence local carbon balance. The primary purpose of the present analysis is to compare the magnitude of OC displacement by erosion with ecosystem metabolism in such a complex terrain. Does erosion matter in this ecosystem carbon balance? We have used the Revised Universal Soil Loss Equation (RUSLE) erosion model to estimate lateral fluxes of OC in a watershed in northwestern Mexico. The watershed (4900 km2) has an average slope of 10 degrees +/- 9 degrees (mean +/- SD); 45% is >10 degrees, and 3% is >30 degrees. Land cover is primarily shrublands (69%) and agricultural lands (22%). Estimated bulk soil erosion averages 1350 Mg x km(-2) x yr(-1). We estimate that there is insignificant erosion on slopes < 2 degrees and that 20% of the area can be considered depositional. Estimated OC erosion rates are 10 Mg x km(-2) x yr(-1) for areas steeper than 2 degrees. Over the entire area, erosion is approximately 50% higher on shrublands than on agricultural lands, but within slope classes, erosion rates are more rapid on agricultural areas. For the whole system, estimated OC erosion is approximately 2% of net primary production (NPP), increasing in high-slope areas to approximately 3% of NPP. Deposition of eroded OC in low-slope areas is approximately 10% of low-slope NPP. Soil OC movement from erosional slopes to alluvial fans alters the mosaic of OC metabolism and storage across the landscape.
Aubin, Carl-Eric; Bellefleur, Christian; Joncas, Julie; de Lanauze, Dominic; Kadoury, Samuel; Blanke, Kathy; Parent, Stefan; Labelle, Hubert
2011-05-20
Radiographic software measurement analysis in adult scoliosis. To assess the accuracy as well as the intra- and interobserver reliability of measuring different indices on preoperative adult scoliosis radiographs using a novel measurement software that includes a calibration procedure and semiautomatic features to facilitate the measurement process. Scoliosis requires a careful radiographic evaluation to assess the deformity. Manual and computer radiographic process measures have been studied extensively to determine the reliability and reproducibility in adolescent idiopathic scoliosis. Most studies rely on comparing given measurements, which are repeated by the same user or by an expert user. A given measure with a small intra- or interobserver error might be deemed as good repeatability, but all measurements might not be truly accurate because the ground-truth value is often unknown. Thorough accuracy assessment of radiographic measures is necessary to assess scoliotic deformities, compare these measures at different stages or to permit valid multicenter studies. Thirty-four sets of adult scoliosis digital radiographs were measured two times by three independent observers using a novel radiographic measurement software that includes semiautomatic features to facilitate the measurement process. Twenty different measures taken from the Spinal Deformity Study Group radiographic measurement manual were performed on the coronal and sagittal images. Intra- and intermeasurer reliability for each measure was assessed. The accuracy of the measurement software was also assessed using a physical spine model in six different scoliotic configurations as a true reference. The majority of the measures demonstrated good to excellent intra- and intermeasurer reliability, except for sacral obliquity. The standard variation of all the measures was very small: ≤ 4.2° for Cobb angles, ≤ 4.2° for the kyphosis, ≤ 5.7° for the lordosis, ≤ 3.9° for the pelvic angles, and ≤5.3° for the sacral angles. The variability in the linear measurements (distances) was <4 mm. The variance of the measures was 1.7 and 2.6 times greater, respectively, for the angular and linear measures between the inter- and intrameasurer reliability. The image quality positively influenced the intermeasurer reliability especially for the proximal thoracic Cobb angle, T10-L2 lordosis, sacral slope and L5 seating. The accuracy study revealed that on average the difference in the angular measures was < 2° for the Cobb angles, and < 4° for the other angles, except T2-T12 kyphosis (5.3°). The linear measures were all <3.5 mm difference on average. The majority of the measures, which were analyzed in this study demonstrated good to excellent reliability and accuracy. The novel semiautomatic measurement software can be recommended for use for clinical, research or multicenter study purposes.
Wannop, John W; Worobets, Jay T; Ruiz, Rodrigo; Stefanyshyn, Darren J
2014-01-01
Outdoor activities are a popular form of recreation, with hiking being the most popular outdoor activity as well as being the most prevalent in terms of injury. Over the duration of a hike, trekkers will encounter many different sloped terrains. Not much is known about the required traction or foot-floor kinematics during locomotion on these sloped surfaces, therefore, the purpose was to determine the three-dimensional foot-floor kinematics and required traction during level, downhill, uphill and cross-slope walking. Ten participants performed level, uphill, downhill and cross-slope walking along a 19° inclined walkway. Ground reaction force data as well as 3D positions of retro reflective markers attached to the shoe were recorded using a Motion Analysis System. Peak traction coefficients and foot-floor kinematics during sloped walking were compared to level walking. When walking along different sloped surfaces, the required traction coefficients at touchdown were not different from level walking, therefore, the increased likelihood of heel slipping during hiking is potentially due to the presence of loose material (rocks, dirt) on hiking slopes, rather than the overall lack of traction. Differences in required traction were seen at takeoff, with uphill and cross-sloped walking requiring a greater amount of traction compared to level walking. Changes in sagittal plane, frontal plane and transverse plane foot-floor angles were seen while walking on the sloped surfaces. Rapid foot-floor eversion was observed during cross-slope walking which could place the hiker at risk of injury with a misstep or if there was a slight slip. Copyright © 2014 Elsevier B.V. All rights reserved.
Gibson Panorama by Spirit at Home Plate False Color
2006-03-06
This image shows finely layered rocks interspersed with sand sloping downward and inward toward the center of the panorama from either side. Here and there on the outcrop, a chunk of rock has become displaced and lies at an angle on the surface
ERIC Educational Resources Information Center
Walker, Jearl
1985-01-01
Discusses how the sun's reflection from water offers a means for calculating sloped of waves. Experiments using angles of reflection from a tilted mirror are suggested and explained. A method of counterbalancing dominoes in a stack beyond the edge of a table (using Euler's constant) is also described. (DH)
Lee, Sang-Yeol
2016-09-01
[Purpose] The purpose of this study was to provide basic data for research on selective muscle strengthening by identifying mean muscle activities and calculating muscle ratios for use in developing strengthening methods. [Subjects and Methods] Twenty-one healthy volunteers were included in this study. Muscle activity was measured during a one-leg stance under 6 conditions of slope angle: 0°, 5°, 10°, 15°, 20°, and 25°. The data used in the analysis were root mean square and % total muscle activity values. [Results] There were significant differences in the root mean square of the gluteus medius, the hamstring, and the medial gastrocnemius muscles. There were significant differences in % total muscle activity of the medial gastrocnemius. [Conclusion] Future studies aimed at developing selective muscle strengthening methods are likely to yield more effective results by using muscle activity ratios based on electromyography data.
Combined pitching and yawing motion of airplanes
NASA Technical Reports Server (NTRS)
Baranoff, A V; Hopf, L
1931-01-01
This report treats the following problems: The beginning of the investigated motions is always a setting of the lateral controls, i.e., the rudder or the ailerons. Now, the first interesting question is how the motion would proceed if these settings were kept unchanged for some time; and particularly, what upward motion would set in, how soon, and for how long, since therein lie the dangers of yawing. Two different motions ensue with a high rate of turn and a steep down slope of flight path in both but a marked difference in angle of attack and consequently different character in the resultant aerodynamic forces: one, the "corkscrew" dive at normal angle, and the other, the "spin" at high angle.
2010-08-01
levee crown and flood-side slope toe would have to be greater than 20 ft to maintain a suitable freeboard and still have waves break directly on...dike slope is smooth, and the toe of the flood-side slope is usually dry except during storm events (on average 20 per year). The presence of the...sides to complete the 5-m (16.4 ft) flume width. There was an asphalt covered surface from the toe of the slope up to the +2 m (+6.6 ft) elevation. The
Hapke, Cheryl J.; Green, Krystal R.
2004-01-01
The average coastal cliff retreat rate along the Big Sur coast is 18 ? 6 cm/yr as measured over a 52-year time period. The erosion reference features measured as the cliff edge include the well-defined cliff edges common to marine terraces, slight breaks in the slope defining the upper edge of the active lower slope, and the road grade. Cliff erosion and retreat are focused in isolated erosion hotspots that account for most of the calculated average retreat.
A radiographic assessment of lumbar spine posture in four different upright standing positions.
Gallagher, Kaitlin M; Sehl, Michael; Callaghan, Jack P
2016-08-01
Approximately 50% of a sample population will develop prolonged standing induced low back pain. The cause of this pain may be due to their lumbar spine posture. The purpose of this study was to investigate differences in lumbar posture between 17 participants categorized as a pain or non-pain developers during level ground standing. A secondary purpose was to evaluate the influence of two standing aids (an elevated surface to act as a foot rest and declined sloped surface) on lumbopelvic posture. Four sagittal plane radiographs were taken: a normal standing position on level ground, when using an elevated foot rest, using a declined sloped surface, and maximum lumbar spine extension as a reference posture. Lumbosacral lordosis, total lumbar lordosis, and L1/L2 and L5/S1 intervertebral joint angles were measured on each radiograph. There was a significant difference between the lumbosacral lordosis angle and L5/S1 angles in upright versus maximum extension; however, this was independent of pain group. The elevated surface was most effective at causing lumbosacral spine flexion. Potentially successful postures for eliminating low back pain during prolonged standing mainly influence the lower lumbar lordosis. Future work should assess the influence of hip posture on low back pain development during standing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sun, Hao; Zhou, Lin; Li, Fengsheng; Duan, Jun
2017-02-01
Young active patients with medial knee osteoarthritis (OA) combined with varus leg alignment can be treated with high tibial osteotomy (HTO) to stop the progression of OA and avoid or postpone total knee arthroplasty (TKA). Closing-wedge osteotomy (CWO) and opening-wedge osteotomy (OWO) are the most commonly used osteotomy techniques. The purpose of this study was to compare the clinical and radiologic outcomes and complications between OWO and CWO. We retrospectively evaluated 23 studies including 17 clinical trials from published databases from their inception to May 2015. We evaluated the clinical outcomes including operation time, visual analog scale (VAS), maximal flexion, and hospital for special surgery knee (HSS) score. The radiologic outcomes included patellar height measured by posterior tibial slope angle, hip-knee-ankle (HKA) angle, femorotibial (FT) axis, and limb length. Complications recorded included the incidence of deep vein thrombosis (DVT), common peroneal nerve injury, opposite cortical fracture, etc. There were no differences in most of the clinical outcomes except the operation time. OWO increased the posterior slope angle and limb length, decreased the patellar height, and provided higher accuracy of correction. CWO led to a higher incidence of opposite cortical fracture. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Design and analysis of solar thermoelectric power generation system
NASA Astrophysics Data System (ADS)
Vatcharasathien, Narong; Hirunlabh, Jongjit; Khedari, Joseph; Daguenet, Michel
2005-09-01
This article reports on the design and performance analysis of a solar thermoelectric power generation plant (STEPG). The system considers both truncated compound parabolic collectors (CPCs) with a flat receiver and conventional flat-plate collectors, thermoelectric (TE) cooling and power generator modules and appropriate connecting pipes and control devices. The design tool uses TRNSYS IIsibat-15 program with a new component we developed for the TE modules. The main input data of the system are the specifications of TE module, the maximum hot side temperature of TE modules, and the desired power output. Examples of the design using truncated CPC and flat-plate collectors are reported and discussed for various slope angle and half-acceptance angle of CPC. To minimize system cost, seasonal adjustment of the slope angle between 0° and 30° was considered, which could give relatively high power output under Bangkok ambient condition. Two small-scale STEPGs were built. One of them uses electrical heater, whereas the other used a CPC with locally made aluminum foil reflector. Measured data showed reasonable agreement with the model outputs. TE cooling modules were found to be more appropriate. Therefore, the TRNSYS software and the developed TE component offer an extremely powerful tool for the design and performance analysis of STEPG plant.
Stability of sulfur slopes on Io
NASA Technical Reports Server (NTRS)
Clow, G. D.; Carr, M. H.
1980-01-01
The mechanical properties of elemental sulfur are such that the upper crust of Io cannot be primarily sulfur. For heat flows in the range 100-1000 ergs/sq cm sec sulfur becomes ductile within several hundred meters of the surface and would prevent the formation of calderas with depths greater than this. However, the one caldera for which precise depth data are available is 2 km deep, and this value may be typical. A study of the mechanical equilibrium of simple slopes shows that the depth to the zone of rapid ductile flow strongly controls the maximum heights for sulfur slopes. Sulfur scarps with heights greater than 1 km will fail for all heat flows greater than 180 ergs/sq cm sec and slope angles greater than 22.5 deg. The observed relief on Io is inconsistent with that anticipated for a predominantly sulfur crust. However, a silicate crust with several percent sulfur included satisfies both the mechanical constraints and the observed presence of sulfur on Io.
Formation of recurring slope lineae on Mars by rarefied gas-triggered granular flows
NASA Astrophysics Data System (ADS)
Schmidt, F.; Andrieu, F.; Costard, F.; Kocifaj, M.; Meresescu, A. G.
2017-09-01
Recurring Slope Linae or RSL are seasonal dark features appearing when the soil reaches its maximum temperature. They appear on various slopes at the equator of Mars, in orientation depending on the season. Today, liquid water related processes have been promoted, such as deliquescence of salts. Nevertheless external atmospheric source of water is inconsistent with the observations. Internal source is also very unlikely. We take into consideration here the force occurring when the sun illuminates granular soil in rarefied gas conditions to produce a Knudsen pump. This process significantly lowers the angle of repose of sandy material. Hence, relatively low slope could start to flow. RSL seems to originate from rough terrains and boulders. We propose that the local shadows due to boulders over the soil, is the triggering phenomena. In this case, the Knudsen pump is magnified and could lead to flow. This new exotic dry process involving neither water nor CO2 and is consistent with the seasonal and facet's orientation appearance of RSL.
NASA Astrophysics Data System (ADS)
Biggs, T. W.; Dunne, T.; Holmes, K.; Martinelli, L. A.
2001-12-01
Topography plays an important role in determining soil properties, stream solute concentrations and landscape denudation rates. Stallard (1985) suggested that catchment denudation rates should depend on soil thickness. Areas with low slopes are limited by the rate of transport of sediment, and typically contain thick soils that prevent interaction of stream waters with underlying bedrock [Stallard 1985]. Steep areas typically have thin soils, but a lower hydrologic residence time that may prevent soil water from coming into thermodynamic equilibrium with the soil-rock complex. In a survey of streams in the Brazilian Amazon basin, Biggs et al. (2001) found that stream solute concentrations correlate with soil cation contents in the humid tropics, but the mechanism underlying the correlation has not been determined. We combine chemical analyses of water samples from ~40 different streams with soil surveys, geology maps, and a 100m resolution DEM to examine the relationship between topography, rock type, soil cation contents, and stream solute concentrations in the Brazilian Amazon state of Rondônia. The basins are all more than 60% forested at the time of stream sampling and lie on granite-gneiss rocks, tertiary sediments, or sandstone. The catchment-averaged slope correlates positively with both soil cation contents and stream concentrations of P, Na, Ca, Mg, K, Si, ANC, and pH. Though we have no data about the relationship between soil depth and average slope, we assume an inverse correlation, so the data demonstrates that thick soils yield lower solute concentrations. Stream concentrations of Ca, Mg, ANC and pH reach a maximum at intermediate average slopes (3 degrees), suggesting that denudation rates may increase with slope up to a maximum, when the catchment becomes limited by the weathering rate of the basement rock. Catchments on mica-schists or mafic rocks have low average slopes and higher concentrations of Ca, Mg, Si, ANC, and pH than catchments on granite-gneiss, tertiary sediments or sandstone.
Chen, Nan-Kuang; Hsu, Kuei-Chu; Liaw, Shien-Kuei; Lai, Yinchieh; Chi, Sien
2008-08-01
A tapered fiber with a depressed-index outer ring is fabricated and dispersion engineered to generate a widely tunable (1250-1650 nm) fundamental-mode leakage loss with a high cutoff slope (-1.2 dB/nm) and a high attenuation for stop band (>50 dB) by modification of both waveguide and material dispersions. The higher cutoff slope is achieved with a larger cross angle between the two refractive index dispersion curves of the tapered fiber and surrounding optical liquids through the use of depressed-index outer ring structures in double-cladding fibers.
Vertical and lateral particle and element fluxes across soil catenas in southern Brazil
NASA Astrophysics Data System (ADS)
Schoonejans, Jerome; Vanacker, Veerle; Opfergelt, Sophie
2016-04-01
At the Earth's surface, mechanical disaggregation and chemical weathering transform bedrock into mobile regolith and soil. Downslope translocation of weathering products by lateral transport of soil particles and elements are determinant for the development of soil catenas. To grasp the rates of soil formation and development along catenas, we need better constraints on the vertical and lateral fluxes of particles and nutrients along hillslopes. Our study aims to analyze soil catena development in a spatio-temporal framework. The data are collected in the central part of the Rio Grande do Sul State in southern Brazil. The sampling area is located on the Serra Geral plateau composed by rhyodacite rocks (˜700 m.a.s.l). The climate is humid subtropical (Cfa), and the natural vegetation is characterized by deciduous tropical forest and native Araucaria angustifolia forests. Two soil catenas with different slope morphology were selected: a steep slope of 190m long with maximum slope angle of 24° , and a gentle one of 140m long with a maximum slope angle of 11° . In total, eight soil profiles were sampled and 67 soil and 8 saprock or bedrock samples have been analysed for total element composition. Bulk densities were determined on undisturbed soil samples. The soil thickness varies along catenas with soil depths of about 90 cm on the ridge top, 30 cm on the convex nose of the steep slope and >2 m on the foot slope. Chemical mass balance techniques are used to constrain chemical weathering intensities (CDF) and absolute chemical mass losses or gains (δj,w). In each one of the eight soil profiles, we notice important absolute chemical mass losses for the most mobile elements (Na, K and Ca). The mass transfer coefficients of Al and Fe do not show a clear pattern, and largely depend on soil depth and position along the soil catena. The weathering intensity of the soil and the absolute chemical mass transfer are correlated with the residence time of the soil. Our data show a systematic increase in chemical weathering intensity with distance from the ridge top.
Influence of Terraced area DEM Resolution on RUSLE LS Factor
NASA Astrophysics Data System (ADS)
Zhang, Hongming; Baartman, Jantiene E. M.; Yang, Xiaomei; Gai, Lingtong; Geissen, Viollette
2017-04-01
Topography has a large impact on the erosion of soil by water. Slope steepness and slope length are combined (the LS factor) in the universal soil-loss equation (USLE) and its revised version (RUSLE) for predicting soil erosion. The LS factor is usually extracted from a digital elevation model (DEM). The grid size of the DEM will thus influence the LS factor and the subsequent calculation of soil loss. Terracing is considered as a support practice factor (P) in the USLE/RUSLE equations, which is multiplied with the other USLE/RUSLE factors. However, as terraces change the slope length and steepness, they also affect the LS factor. The effect of DEM grid size on the LS factor has not been investigated for a terraced area. We obtained a high-resolution DEM by unmanned aerial vehicles (UAVs) photogrammetry, from which the slope steepness, slope length, and LS factor were extracted. The changes in these parameters at various DEM resolutions were then analysed. The DEM produced detailed LS-factor maps, particularly for low LS factors. High (small valleys, gullies, and terrace ridges) and low (flats and terrace fields) spatial frequencies were both sensitive to changes in resolution, so the areas of higher and lower slope steepness both decreased with increasing grid size. Average slope steepness decreased and average slope length increased with grid size. Slope length, however, had a larger effect than slope steepness on the LS factor as the grid size varied. The LS factor increased when the grid size increased from 0.5 to 30-m and increased significantly at grid sizes >5-m. The LS factor was increasingly overestimated as grid size decreased. The LS factor decreased from grid sizes of 30 to 100-m, because the details of the terraced terrain were gradually lost, but the factor was still overestimated.
Yin, Huayan; Ben-Abu, Yuval; Wang, Hongwei; Li, Anfei; Nevo, Eviatar; Kong, Lingrang
2015-01-01
Background “Evolution Canyon” (ECI) at Lower Nahal Oren, Mount Carmel, Israel, is an optimal natural microscale model for unraveling evolution in action highlighting the basic evolutionary processes of adaptation and speciation. A major model organism in ECI is wild emmer, Triticum dicoccoides, the progenitor of cultivated wheat, which displays dramatic interslope adaptive and speciational divergence on the tropical-xeric “African” slope (AS) and the temperate-mesic “European” slope (ES), separated on average by 250 m. Methods We examined 278 single sequence repeats (SSRs) and the phenotype diversity of the resistance to powdery mildew between the opposite slopes. Furthermore, 18 phenotypes on the AS and 20 phenotypes on the ES, were inoculated by both Bgt E09 and a mixture of powdery mildew races. Results In the experiment of genetic diversity, very little polymorphism was identified intra-slope in the accessions from both the AS or ES. By contrast, 148 pairs of SSR primers (53.23%) amplified polymorphic products between the phenotypes of AS and ES. There are some differences between the two wild emmer wheat genomes and the inter-slope SSR polymorphic products between genome A and B. Interestingly, all wild emmer types growing on the south-facing slope (SFS=AS) were susceptible to a composite of Blumeria graminis, while the ones growing on the north-facing slope (NFS=ES) were highly resistant to Blumeria graminis at both seedling and adult stages. Conclusion/Significance Remarkable inter-slope evolutionary divergent processes occur in wild emmer wheat, T. dicoccoides at EC I, despite the shot average distance of 250 meters. The AS, a dry and hot slope, did not develop resistance to powdery mildew, whereas the ES, a cool and humid slope, did develop resistance since the disease stress was strong there. This is a remarkable demonstration in host-pathogen interaction on how resistance develops when stress causes an adaptive result at a micro-scale distance. PMID:25856164
Yin, Huayan; Ben-Abu, Yuval; Wang, Hongwei; Li, Anfei; Nevo, Eviatar; Kong, Lingrang
2015-01-01
"Evolution Canyon" (ECI) at Lower Nahal Oren, Mount Carmel, Israel, is an optimal natural microscale model for unraveling evolution in action highlighting the basic evolutionary processes of adaptation and speciation. A major model organism in ECI is wild emmer, Triticum dicoccoides, the progenitor of cultivated wheat, which displays dramatic interslope adaptive and speciational divergence on the tropical-xeric "African" slope (AS) and the temperate-mesic "European" slope (ES), separated on average by 250 m. We examined 278 single sequence repeats (SSRs) and the phenotype diversity of the resistance to powdery mildew between the opposite slopes. Furthermore, 18 phenotypes on the AS and 20 phenotypes on the ES, were inoculated by both Bgt E09 and a mixture of powdery mildew races. In the experiment of genetic diversity, very little polymorphism was identified intra-slope in the accessions from both the AS or ES. By contrast, 148 pairs of SSR primers (53.23%) amplified polymorphic products between the phenotypes of AS and ES. There are some differences between the two wild emmer wheat genomes and the inter-slope SSR polymorphic products between genome A and B. Interestingly, all wild emmer types growing on the south-facing slope (SFS=AS) were susceptible to a composite of Blumeria graminis, while the ones growing on the north-facing slope (NFS=ES) were highly resistant to Blumeria graminis at both seedling and adult stages. Remarkable inter-slope evolutionary divergent processes occur in wild emmer wheat, T. dicoccoides at EC I, despite the shot average distance of 250 meters. The AS, a dry and hot slope, did not develop resistance to powdery mildew, whereas the ES, a cool and humid slope, did develop resistance since the disease stress was strong there. This is a remarkable demonstration in host-pathogen interaction on how resistance develops when stress causes an adaptive result at a micro-scale distance.
Tectonic uplift, threshold hillslopes, and denudation rates in a developing mountain range
Binnie, S.A.; Phillips, W.M.; Summerfield, M.A.; Fifield, L.K.
2007-01-01
Studies across a broad range of drainage basins have established a positive correlation between mean slope gradient and denudation rates. It has been suggested, however, that this relationship breaks down for catchments where slopes are at their threshold angle of stability because, in such cases, denudation is controlled by the rate of tectonic uplift through the rate of channel incision and frequency of slope failure. This mechanism is evaluated for the San Bernardino Mountains, California, a nascent range that incorporates both threshold hill-slopes and remnants of pre-uplift topography. Concentrations of in situ-produced cosmogenic 10Be in alluvial sediments are used to quantify catchment-wide denudation rates and show a broadly linear relationship with mean slope gradient up to ???30??: above this value denudation rates vary substantially for similar mean slope gradients. We propose that this decoupling in the slope gradient-denudation rate relationship marks the emergence of threshold topography and coincides with the transition from transport-limited to detachment-limited denudation. The survival in the San Bernardino Mountains of surfaces formed prior to uplift provides information on the topographic evolution of the range, in particular the transition from slope-gradient-dependent rates of denudation to a regime where denudation rates are controlled by rates of tectonic uplift. This type of transition may represent a general model for the denudational response to orogenic uplift and topographic evolution during the early stages of mountain building. ?? 2007 The Geological Society of America.
Danjon, Frédéric; Khuder, Hayfa; Stokes, Alexia
2013-01-01
This study aims at assessing the influence of slope angle and multi-directional flexing and their interaction on the root architecture of Robinia pseudoacacia seedlings, with a particular focus on architectural model and trait plasticity. 36 trees were grown from seed in containers inclined at 0° (control) or 45° (slope) in a glasshouse. The shoots of half the plants were gently flexed for 5 minutes a day. After 6 months, root systems were excavated and digitized in 3D, and biomass measured. Over 100 root architectural traits were determined. Both slope and flexing increased significantly plant size. Non-flexed trees on 45° slopes developed shallow roots which were largely aligned perpendicular to the slope. Compared to the controls, flexed trees on 0° slopes possessed a shorter and thicker taproot held in place by regularly distributed long and thin lateral roots. Flexed trees on the 45° slope also developed a thick vertically aligned taproot, with more volume allocated to upslope surface lateral roots, due to the greater soil volume uphill. We show that there is an inherent root system architectural model, but that a certain number of traits are highly plastic. This plasticity will permit root architectural design to be modified depending on external mechanical signals perceived by young trees. PMID:24386227
The growth and erosion of cinder cones in Guatemala and El Salvador: Models and statistics
NASA Astrophysics Data System (ADS)
Bemis, Karen; Walker, Jim; Borgia, Andrea; Turrin, Brent; Neri, Marco; Swisher, Carl, III
2011-04-01
Morphologic data for 147 cinder cones in southern Guatemala and western El Salvador are compared with data from the San Francisco volcanic field, Arizona (USA), Cima volcanic field, California (USA), Michoácan-Guanajuato volcanic field, Mexico, and the Lamongan volcanic field, East Java. The Guatemala cones have an average height of 110 +/- 50 m, an average basal diameter of 660 +/- 230 m and an average top diameter of 180 +/- 150 m. The general morphology of these cones can be described by their average cone angle of slope (24 +/- 7), average height-to-radius ratio (0.33 +/- 0.09) and their flatness (0.24 +/- 0.18). Although the mean values for the Guatemalan cones are similar to those for other volcanic fields (e.g., San Francisco volcanic field, Arizona; Cima volcanic field, California; Michoácan-Guanajuato volcanic field, Mexico; and Lamongan volcanic field, East Java), the range of morphologies encompasses almost all of those observed worldwide for cinder cones. Three new 40Ar/ 39Ar age dates are combined with 19 previously published dates for cones in Guatemala and El Salvador. There is no indication that the morphologies of these cones have changed over the last 500-1000 ka. Furthermore, a re-analysis of published data for other volcanic fields suggests that only in the Cima volcanic field (of those studied) is there clear evidence of degradation with age. Preliminary results of a numerical model of cinder cone growth are used to show that the range of morphologies observed in the Guatemalan cinder cones could all be primary, that is, due to processes occurring at the time of eruption.
NASA Astrophysics Data System (ADS)
Esposito, C.; Bianchi-Fasani, G.; Martino, S.; Scarascia-Mugnozza, G.
2013-10-01
This paper focuses on a study aimed at defining the role of geological-structural setting and Quaternary morpho-structural evolution on the onset and development of a deep-seated gravitational slope deformation which affects the western slope of Mt. Genzana ridge (Central Apennines, Italy). This case history is particularly significant as it comprises several aspects of such gravitational processes both in general terms and with particular reference to the Apennines. In fact: i) the morpho-structural setting is representative of widespread conditions in Central Apennines; ii) the deforming slope partially evolved in a large rockslide-avalanche; iii) the deformational process provides evidence of an ongoing state of activity; iv) the rockslide-avalanche debris formed a stable natural dam, thus implying significant variations in the morphologic, hydraulic and hydrogeological setting; v) the gravitational deformation as well as the rockslide-avalanche reveal a strong structural control. The main study activities were addressed to define a detailed geological model of the gravity-driven process, by means of geological, structural, geomorphological and geomechanical surveys. As a result, a robust hypothesis about the kinematics of the process was possible, with particular reference to the identification of geological-structural constraints. The process, in fact, involves a specific section of the slope exactly where a dextral transtensional structure is present, thus implying local structural conditions that favor sliding processes: the rock mass is intensively jointed by high angle discontinuity sets and the bedding attitude is quite parallel to the slope angle. Within this frame the gravitational process can be classified as a structurally constrained translational slide, locally evolved into a rockslide-avalanche. The activation of such a deformation can be in its turn related to the Quaternary morphological evolution of the area, which was affected by a significant topographic stress increase, testified by stratigraphic and morphologic evidence.
Connecting Slope, Steepness, and Angles
ERIC Educational Resources Information Center
Nagle, Courtney R.; Moore-Russo, Deborah
2013-01-01
All teachers, especially high school teachers, face the challenge of ensuring that students have opportunities to relate and connect the various representations and notions of mathematics concepts developed over the course of the pre-K-12 mathematics curriculum. NCTM's (2000) Representation Standard emphasizes the importance of students being…
NASA Astrophysics Data System (ADS)
Albaba, Adel; Lambert, Stéphane; Faug, Thierry
2018-05-01
The present paper investigates the mean impact force exerted by a granular mass flowing down an incline and impacting a rigid wall of semi-infinite height. First, this granular flow-wall interaction problem is modeled by numerical simulations based on the discrete element method (DEM). These DEM simulations allow computing the depth-averaged quantities—thickness, velocity, and density—of the incoming flow and the resulting mean force on the rigid wall. Second, that problem is described by a simple analytic solution based on a depth-averaged approach for a traveling compressible shock wave, whose volume is assumed to shrink into a singular surface, and which coexists with a dead zone. It is shown that the dead-zone dynamics and the mean force on the wall computed from DEM can be reproduced reasonably well by the analytic solution proposed over a wide range of slope angle of the incline. These results are obtained by feeding the analytic solution with the thickness, the depth-averaged velocity, and the density averaged over a certain distance along the incline rather than flow quantities taken at a singular section before the jump, thus showing that the assumption of a shock wave volume shrinking into a singular surface is questionable. The finite length of the traveling wave upstream of the grains piling against the wall must be considered. The sensitivity of the model prediction to that sampling length remains complicated, however, which highlights the need of further investigation about the properties and the internal structure of the propagating granular wave.
NASA Technical Reports Server (NTRS)
Brunt, Kelly M.; Neumann, Thomas Allen; Walsh, Kaitlin M.; Markus, Thorsten
2013-01-01
The greatest changes in elevation in Greenland and Antarctica are happening along the margins of the ice sheets where the surface frequently has significant slopes. For this reason, the upcoming Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission utilizes pairs of laser altimeter beams that are perpendicular to the flight direction in order to extract slope information in addition to elevation. The Multiple Altimeter Beam Experimental Lidar (MABEL) is a high-altitude airborne laser altimeter designed as a simulator for ICESat-2. The MABEL design uses multiple beams at fixed angles and allows for local slope determination. Here, we present local slopes as determined by MABEL and compare them to those determined by the Airborne Topographic Mapper (ATM) over the same flight lines in Greenland. We make these comparisons with consideration for the planned ICESat-2 beam geometry. Results indicate that the mean slope residuals between MABEL and ATM remain small (< 0.05 degrees) through a wide range of localized slopes using ICESat-2 beam geometry. Furthermore, when MABEL data are subsampled by a factor of 4 to mimic the planned ICESat-2 transmit-energy configuration, the results are indistinguishable from the full-data-rate analysis. Results from MABEL suggest that ICESat-2 beam geometry and transmit-energy configuration are appropriate for the determination of slope on approx. 90-m spatial scales, a measurement that will be fundamental to deconvolving the effects of surface slope from the ice-sheet surface change derived from ICESat-2.
NASA Technical Reports Server (NTRS)
Brunt, Kelly M.; Neumann, Thomas A.; Walsh, Kaitlin M.; Markus, Thorsten
2014-01-01
The greatest changes in elevation in Greenland and Antarctica are happening along the margins of the ice sheets where the surface frequently has significant slopes. For this reason, the upcoming Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission utilizes pairs of laser altimeter beams that are perpendicular to the flight direction in order to extract slope information in addition to elevation. The Multiple Altimeter Beam Experimental Lidar (MABEL) is a high-altitude airborne laser altimeter designed as a simulator for ICESat-2. The MABEL design uses multiple beams at fixed angles and allows for local slope determination. Here, we present local slopes as determined by MABEL and compare them to those determined by the Airborne Topographic Mapper (ATM) over the same flight lines in Greenland. We make these comparisons with consideration for the planned ICESat-2 beam geometry. Results indicate that the mean slope residuals between MABEL and ATM remain small (< 0.05?) through a wide range of localized slopes using ICESat-2 beam geometry. Furthermore, when MABEL data are subsampled by a factor of 4 to mimic the planned ICESat-2 transmit-energy configuration, the results are indistinguishable from the full-data-rate analysis. Results from MABEL suggest that ICESat-2 beam geometry and transmit-energy configuration are appropriate for the determination of slope on 90-m spatial scales, a measurement that will be fundamental to deconvolving the effects of surface slope from the ice-sheet surface change derived from ICESat-2.
Constraining Depositional Slope From Sedimentary Structures in Sandy Braided Streams
NASA Astrophysics Data System (ADS)
Lynds, R. M.; Mohrig, D.; Heller, P. L.
2003-12-01
Determination of paleoslopes in ancient fluvial systems has potentially broad application to quantitatively constraining the history of tectonics and paleoclimate in continental sequences. Our method for calculating paleoslopes for sandy braided streams is based upon a simple physical model that establishes depositional skin-frictional shear stresses from assemblages of sedimentary structures and their associated grain size distributions. The addition of a skin-frictional shear stress, with a geometrically determined form-drag shear stress results in a total boundary shear stress which is directly related to water-surface slope averaged over an appropriate spatial scale. In order to apply this model to ancient fluvial systems, it is necessary to measure the following: coarsest suspended sediment size, finest grain size carried in bed load, flow depth, dune height, and dune length. In the rock record, suspended load and bed load can be accurately assessed by well-preserved suspended load deposits ("low-energy" ripples) and bed load deposits (dune foresets). This model predicts an average slope for the North Loup River near Taylor, Nebraska (modern case study) of 2.7 x 10-3. The measured reach-averaged water surface slope for the same reach of the river is 1.37 x 10-3. We suggest that it is possible to calculate the depositional slope of a sandy fluvial system by a factor of approximately two. Additionally, preliminary application of this model to the Lower Jurassic Kayenta Formation throughout the Colorado Plateau provides a promising and consistent evaluation of paleoslope in an ancient and well-preserved, sandy braided stream deposit.
Apparent-contact-angle model at partial wetting and evaporation: impact of surface forces.
Janeček, V; Nikolayev, V S
2013-01-01
This theoretical and numerical study deals with evaporation of a fluid wedge in contact with its pure vapor. The model describes a regime where the continuous wetting film is absent and the actual line of the triple gas-liquid-solid contact appears. A constant temperature higher than the saturation temperature is imposed at the solid substrate. The fluid flow is solved in the lubrication approximation. The introduction of the surface forces in the case of the partial wetting is discussed. The apparent contact angle (the gas-liquid interface slope far from the contact line) is studied numerically as a function of the substrate superheating, contact line velocity, and parameters related to the solid-fluid interaction (Young and microscopic contact angles, Hamaker constant, etc.). The dependence of the apparent contact angle on the substrate temperature is in agreement with existing approaches. For water, the apparent contact angle may be 20° larger than the Young contact angle for 1 K superheating. The effect of the surface forces on the apparent contact angle is found to be weak.
Apparent-contact-angle model at partial wetting and evaporation: Impact of surface forces
NASA Astrophysics Data System (ADS)
Janeček, V.; Nikolayev, V. S.
2013-01-01
This theoretical and numerical study deals with evaporation of a fluid wedge in contact with its pure vapor. The model describes a regime where the continuous wetting film is absent and the actual line of the triple gas-liquid-solid contact appears. A constant temperature higher than the saturation temperature is imposed at the solid substrate. The fluid flow is solved in the lubrication approximation. The introduction of the surface forces in the case of the partial wetting is discussed. The apparent contact angle (the gas-liquid interface slope far from the contact line) is studied numerically as a function of the substrate superheating, contact line velocity, and parameters related to the solid-fluid interaction (Young and microscopic contact angles, Hamaker constant, etc.). The dependence of the apparent contact angle on the substrate temperature is in agreement with existing approaches. For water, the apparent contact angle may be 20∘ larger than the Young contact angle for 1 K superheating. The effect of the surface forces on the apparent contact angle is found to be weak.
Slope gradient and shape effects on soil profiles in the northern mountainous forests of Iran
NASA Astrophysics Data System (ADS)
Fazlollahi Mohammadi, M.; Jalali, S. G. H.; Kooch, Y.; Said-Pullicino, D.
2016-12-01
In order to evaluate the variability of the soil profiles at two shapes (concave and convex) and five positions (summit, shoulder, back slope, footslope and toeslope) of a slope, a study of a virgin area was made in a Beech stand of mountain forests, northern Iran. Across the slope positions, the soil profiles demonstrated significant changes due to topography for two shape slopes. The solum depth of the convex slope was higher than the concave one in all five positions, and it decreased from the summit to shoulder and increased from the mid to lower slope positions for both convex and concave slopes. The thin solum at the upper positions and concave slope demonstrated that pedogenetic development is least at upper slope positions and concave slope where leaching and biomass productivity are less than at lower slopes and concave slope. A large decrease in the thickness of O and A horizons from the summit to back slope was noted for both concave and convex slopes, but it increased from back slope toward down slope for both of them. The average thickness of B horizons increased from summit to down slopes in the case of the concave slope, but in the case of convex slope it decreased from summit to shoulder and afterwards it increased to the down slope. The thicknesses of the different horizons varied in part in the different positions and shape slopes because they had different plant species cover and soil features, which were related to topography.
NASA Astrophysics Data System (ADS)
Ersöz, Timur; Topal, Tamer
2017-04-01
Rocks containing pore spaces, fractures, joints, bedding planes and faults are prone to weathering due to temperature differences, wetting-drying, chemistry of solutions absorbed, and other physical and chemical agents. Especially cut slopes are very sensitive to weathering activities because of disturbed rock mass and topographical condition by excavation. During and right after an excavation process of a cut slope, weathering and erosion may act on this newly exposed rock material. These acting on the material may degrade and change its properties and the stability of the cut slope in its engineering lifetime. In this study, the effect of physical and chemical weathering agents on shear strength parameters of the rocks are investigated in order to observe the differences between weathered and unweathered rocks. Also, slope stability assessment of cut slopes affected by these weathering agents which may disturb the parameters like strength, cohesion, internal friction angle, unit weight, water absorption and porosity are studied. In order to compare the condition of the rock materials and analyze the slope stability, the parameters of weathered and fresh rock materials are found with in-situ tests such as Schmidt hammer and laboratory tests like uniaxial compressive strength, point load and direct shear. Moreover, slake durability and methylene blue tests are applied to investigate the response of the rock to weathering and presence of clays in rock materials, respectively. In addition to these studies, both rock strength parameters and any kind of failure mechanism are determined by probabilistic approach with the help of SSPC system. With these observations, the performances of the weathered and fresh zones of the cut slopes are evaluated and 2-D slope stability analysis are modeled with further recommendations for the cut slopes. Keywords: 2-D Modeling, Rock Strength, Slope Stability, SSPC, Weathering
Limitations of Lifting-Line Theory for Estimation of Aileron Hinge-Moment Characteristics
NASA Technical Reports Server (NTRS)
Swanson, Robert S.; Gillis, Clarence L.
1943-01-01
Hinge-moment parameters for several typical ailerons were calculated from section data with the aspect-ratio correction as usually determined from lifting-line theory. The calculations showed that the agreement between experimental and calculated results was unsatisfactory. An additional aspect-ratio correction, calculated by the method of lifting-surface theory, was applied to the slope of the curve of hinge-moment coefficient against angle of attack at small angles of attack. This so-called streamline-curvature correction brought the calculated and experimental results into satisfactory agreement.
NASA Astrophysics Data System (ADS)
Yermolaev, Y. I.; Lodkina, I. G.; Yermolaev, M. Y.
2018-06-01
This work is a continuation of our previous articles (Yermolaev et al. in J. Geophys. Res. 120, 7094, 2015 and Yermolaev et al. in Solar Phys. 292, 193, 2017), which describe the average temporal profiles of interplanetary plasma and field parameters in large-scale solar-wind (SW) streams: corotating interaction regions (CIRs), interplanetary coronal mass ejections (ICMEs, including both magnetic clouds (MCs) and ejecta), and sheaths as well as interplanetary shocks (ISs). Changes in the longitude angle, φ, in CIRs from -2 to 2° agree with earlier results ( e.g. Gosling and Pizzo, 1999). We have also analyzed the average temporal profiles of the bulk velocity angles in sheaths and ICMEs. We have found that the angle φ in ICMEs changes from 2 to -2°, while in sheaths it changes from -2 to 2° (similar to the change in CIRs), i.e. the angle in CIRs and sheaths deflects in the opposite sense to ICMEs. When averaging the latitude angle θ on all the intervals of the chosen SW types, the angle θ is almost constant at {˜} 1°. We made for the first time a selection of SW events with increasing and decreasing θ and found that the average θ temporal profiles in the selected events have the same "integral-like" shape as for φ. The difference in φ and θ average profiles is explained by the fact that most events have increasing profiles for the angle in the ecliptic plane as a result of solar rotation, while for the angle in the meridional plane, the numbers of events with increasing and decreasing profiles are equal.
Noctilucent cloud polarimetry: Twilight measurements in a wide range of scattering angles
NASA Astrophysics Data System (ADS)
Ugolnikov, Oleg S.; Maslov, Igor A.; Kozelov, Boris V.; Dlugach, Janna M.
2016-06-01
Wide-field polarization measurements of the twilight sky background during several nights with bright and extended noctilucent clouds in central and northern Russia in 2014 and 2015 are used to build the phase dependence of the degree of polarization of sunlight scattered by cloud particles in a wide range of scattering angles (from 40° to 130°). This range covers the linear polarization maximum near 90° and large-angle slope of the curve. The polarization in this angle range is most sensitive to the particle size. The method of separation of scattering on cloud particles from the twilight background is presented. Results are compared with T-matrix simulations for different sizes and shapes of ice particles; the best-fit model radius of particles (0.06 μm) and maximum radius (about 0.1 μm) are estimated.
A GIS-based numerical simulation of the March 2014 Oso landslide fluidized motion
NASA Astrophysics Data System (ADS)
Fukuoka, H.; Ogbonnaya, I.; Wang, C.
2014-12-01
Sliding and flowing are the major movement type after slope failures. Landslides occur when slope-froming material moves downhill after failing along a sliding surface. Most debris flows originally occur in the form of rainfall-induced landslides before they move into valley channel. Landslides that mobilize into debris flows usually are characterized by high-speed movement and long run-out distance and may present the greatest risk to human life. The 22 March 2014 Oso landslide is a typical case of landside transformint to debris flow. The landslide was triggered on the edge of a plateau about 200 m high composed of glacial sediments after excessive prolonged rainfall of 348 in March 2014. After its initiation, portions of the landslide materials transitioned into a rapidly moving debris flow which traveled long distances across the downslope floodplain. U.S. Geological Survey estimated the volume of the slide to be about 7 million m3, and it traveled about 1 km from the toe of the slope. The apparent friction angle measured by the energy line drawn from the crown of the head scarp to the toe of the deposits which reached largest distance, was only 5~6 degrees. we performed two numerical modeling to predicting the runout distance and to get insight into the behaviour of the landslide movement. One is GIS-based revised Hovland's 3D limit equilibrium model which is used to simulate the movement and stoppage of a landslide. In this research, sliding is defined by a slip surface which cuts through the slope, causing the mass of earth to move above it. The factor of safety will be calculated step by step during the sliding process simulation. Stoppage is defined by the factor of safety much greater than one and the velocity equal zero. The other is GIS-based depth-averaged 2D numerical model using a coupled viscous and Coulomb type law to simulate a debris flow from initiation to deposition. We compared our simulaiton results with the results of preliminary computer simulation of the Oso landslide movement which was produced by David L. George and Richard M. Iverson on April 10, 2014.
Compensation for z-directional non-uniformity of a monopole antenna at 7T MRI
NASA Astrophysics Data System (ADS)
Kim, Nambeom; Woo, Myung-Kyun; Kang, Chang-Ki
2016-06-01
The research was conducted to find ways to compensate for z-directional non-uniformity at a monopole antenna array (MA) coil by using a tilted optimized non-saturating excitation (TONE) pulse and to evaluate the feasibility of using the MA coil with the TONE pulse for anatomical and angiographic imaging. The sensitivity of a MA coil along the z-direction was measured by using an actual flip angle imaging pulse sequence with an oil phantom to evaluate the flip angle distributions of the MA coil for 7T magnetic resonance imaging (MRI). The effects on the z-directional uniformity were examined by using slow and fast TONE pulses, i.e., TONE SLOW and TONE FAST. T1- and T2* -weighted images of the human brain were also examined. The z-directional profiles of the TONE pulses were analyzed by using the average signal intensity throughout the brain. The effect of the TONE pulses on cerebral vessels was further examined by analyzing maximal intensity projections of T1-weighted images. With increasing the applied flip angles, the sensitivity slope slightly increased (0.044 per degree). For the MA coil, the TONE SLOWpulse yielded a compensated profile along the z-direction while the TONE HIGH pulse, which has a flat excitation profile along the z-direction, exhibited a tilted signal intensity toward the coil end, clearly indicating an intrinsic property of the MA coil. Similar to the phantom study, human brain images revealed z-directional symmetry around the peak value for the averaged signal intensity of the TONE SLOW pulse while the TONE HIGH pulse exhibited a tilted signal intensity toward the coil end. In vascular system imaging, the MA coil also clearly demonstrated a beneficial effect on the cerebral vessels, either with or without the TONE pulses. This study demonstrates that TONE pulses could compensate for the intrinsic z-directional non-uniformity of MA coils that exhibit strong uniformity in the x-y plane. Furthermore, tilted pulses, such as TONE pulses, were utilized for visualizing small vessels. Appropriately combining MA coils and TONE pulses could help advance micro-vessel visualization.
Influence of the posterior tibial slope on the flexion gap in total knee arthroplasty.
Okazaki, Ken; Tashiro, Yasutaka; Mizu-uchi, Hideki; Hamai, Satoshi; Doi, Toshio; Iwamoto, Yukihide
2014-08-01
Adjusting the joint gap length to be equal in both extension and flexion is an important issue in total knee arthroplasty (TKA). It is generally acknowledged that posterior tibial slope affects the flexion gap; however, the extent to which changes in the tibial slope angle directly affect the flexion gap remains unclear. This study aimed to clarify the influence of tibial slope changes on the flexion gap in cruciate-retaining (CR) or posterior-stabilizing (PS) TKA. The flexion gap was measured using a tensor device with the femoral trial component in 20 cases each of CR- and PS-TKA. A wedge plate with a 5° inclination was placed on the tibial cut surface by switching its front-back direction to increase or decrease the tibial slope by 5°. The flexion gap after changing the tibial slope was compared to that of the neutral slope measured with a flat plate that had the same thickness as that of the wedge plate center. When the tibial slope decreased or increased by 5°, the flexion gap decreased or increased by 1.9 ± 0.6mm or 1.8 ± 0.4mm, respectively, with CR-TKA and 1.2 ± 0.4mm or 1.1 ± 0.3mm, respectively, with PS-TKA. The influence of changing the tibial slope by 5° on the flexion gap was approximately 2mm with CR-TKA and 1mm with PS-TKA. This information is useful when considering the effect of manipulating the tibial slope on the flexion gap when performing CR- or PS-TKA. Copyright © 2014 Elsevier B.V. All rights reserved.
Cinematic modeling of local morphostructures evolution
NASA Astrophysics Data System (ADS)
Bronguleev, Vadim
2013-04-01
With the use of a simple 3-dimensional cinematic model of slope development some characteristic features of morphostructure evolution were shown. We assume that the velocity of slope degradation along normal vector to a surface is determined by three morphological parameters: slope angle, its profile curvature and its plan curvature. This leads to the equation of parabolic type: where h=h(x,y,t) is the altitude of slope surface, Kpr(x,y,t)is the profile curvature of the slope, Kpl(x,y,t) is the plan curvature, f(x,y,t) is the velocity of tectonic deformation (or base level movement), A, B, and C are the coefficients which may depend on coordinates and time. The first term in the right part of the equation describes parallel slope retreat, typical to arid environment, the second term describes slope vertical grading due to viscous flow, typical to humid conditions, and the third term is responsible for slope plan grading due to such processes as desquamation, frost weathering, etc. This simple model describes a wide range of local morphostructures evolution: stepped slopes and piedmont benchlands, lithogenic forms - terraces and passages, flattened summits and rounded hills. Using different types of the function f (block rise, swell, tilt), we obtained interesting reformations of initial tectonic landforms during the concurrent action of denudation processes. The result of such action differs from that of the successive action of tectonic movements and denudation. The relation of rates of the endogenous and exogenous processes strongly affects the formation of local morphostructures. Preservation of initial features of slope such as steps or bends as well as their formation due to tectonics or lithology is possible if coefficients B and Care small in comparison toA.
NASA Astrophysics Data System (ADS)
Weider, Shoshana Z.; Nittler, Larry R.; Starr, Richard D.; McCoy, Timothy J.; Solomon, Sean C.
2014-06-01
We present measurements of Mercury's surface composition from the analysis of MESSENGER X-Ray Spectrometer data acquired during 55 large solar flares, which each provide a statistically significant detection of Fe X-ray fluorescence. The Fe/Si data display a clear dependence on phase angle, for which the results are empirically corrected. Mercury's surface has a low total abundance of Fe, with a mean Fe/Si ratio of ˜0.06 (equivalent to ˜1.5 wt% Fe). The absolute Fe/Si values are subject to a number of systematic uncertainties, including the phase-angle correction and possible mineral mixing effects. Individual Fe/Si measurements have an intrinsic error of ˜10%. Observed Fe/Si values display small variations (significant at two standard deviations) from the planetary average value across large regions in Mercury's southern hemisphere. Larger differences are observed between measured Fe/Si values from more spatially resolved footprints on volcanic smooth plains deposits in the northern hemisphere and from those in surrounding terrains. Fe is most likely contained as a minor component in sulfide phases (e.g., troilite, niningerite, daubréelite) and as Fe metal, rather than within mafic silicates. Variations in surface reflectance (i.e., differences in overall reflectance and spectral slope) across Mercury are unlikely to be caused by variations in the abundance of Fe.
Morphology and Dynamics of Jets of Comet 67P Churyumov-Gerasimenko: Early Phase Development
NASA Astrophysics Data System (ADS)
Lin, Zhong-Yi; Ip, Wing-Huen; Lai, Ian-Lin; Lee, Jui-Chi; Pajola, Maurizio; Lara, Luisa; Gutierrez, Pedro; Rodrigo, Rafael; Bodewits, Dennis; A'Hearn, Mike; Vincent, Jean-Baptiste; Agarwal, Jessica; Keller, Uwe; Mottola, Stefano; Bertini, Ivano; Lowry, Stephen; Rozek, Agata; Liao, Ying; Rosetta Osiris Coi Team
2015-04-01
The scientific camera, OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System), onboard the Rosetta spacecraft comprises a Narrow Angle Camera (NAC) for nucleus surface and dust studies and a Wide Angle Camera (WAC) for the wide field of dust and gas coma investigations. The dynamical behavior of jets in the dust coma continuously monitored by using dust filters from the arrival at the comet (August 2014) throughout the mapping phase (Oct. 2014) is described here. The analysis will cover the study of the time variability of jets, the source regions of these jets, the excess brightness of jets relative to the averaged coma brightness, and the brightness distribution of dust jets along the projected distance. The jets detected between August and September originated mostly from the neck region (Hapi). Morphological changes appeared over a time scale of several days in September. The brightness slope of the dust jets is much steeper than the background coma. This might be related to the sublimation or fragmentation of the emitted dust grains. Inter-comparison with results from other experiments will be necessary to understand the difference between the dust emitted from Hapi and those from the head and the body of the nucleus surface. The physical properties of the Hapi jets will be compared to dust jets (and their source regions) to emerge as comet 67P moves around the perihelion.
NASA Astrophysics Data System (ADS)
Macias Fauria, M.; Johnson, E. A.
2009-12-01
Altitudinal treelines occur on mountain slopes. The geological history of mountain systems sets both the distribution of slope angles, aspects and lengths, and the physical characteristics of the bedrock and regolith on which trees have to establish and grow. We show that altitudinal treeline is largely controlled at an ecosystem level by structural and slope (i.e. gravitational) geomorphic processes operating at a range of temporal and spatial scales, which have direct influence on the hydrological properties of the substrate (affecting the trees’ water and energy budget), as well as on substrate stability, both of which affect recruitment and growth of trees. The study was conducted over a relatively large area of > 200 km2 in the Front Ranges of the Canadian Rocky Mountains, selected to contain the regional diversity of slopes and substrates, which is the result of hundreds of millions of years of sea deposition, subsequent mountain building, and deep erosion by glaciations. Very high-resolution remote sensing data (LiDAR), aerial orthophotos taken at several times since the late 1940s, and ground truthing were employed to classify the terrain into process-based geomorphic units. High resolution, landscape-scale treeline studies are able avoid potential biases in site selection (i.e. selection of sites that are not representative of the overall regional treeline), and consequently capture the coupling between trees and the environment at an ecosystem (regional) level. Moreover, explicitly accounting for slope and substrate-related processes occurring in the studied mountain region is paramount in order to understand the dynamics of trees at their altitudinal distribution limit. Presence of trees in each unit was found to be controlled by a set of parameters relevant to both hydrological and slope processes, such as contributing area, slope angle, regolith transmissivity, and aspect. Our results show no treeline advance over the last 60 years in the region, as most of the area is controlled by geological processes and not by physiological temperature thresholds. Temperature could potentially affect presence of trees at high elevations through its effects on the physical properties of the slopes on which trees grow. However, this effect is at a much longer timescale than those implied in current studies of treeline response to global warming. Finally, continuous recruitment of trees following lightning-caused wildfires during the first half of the 20th century has resulted in increased high altitude forest stand density.
Do Recurring Slope Lineae (RSL) Shape their Local Landscapes?
NASA Astrophysics Data System (ADS)
McEwen, A. S.; Dundas, C. M.; Chojnacki, M.; Ojha, L.
2017-12-01
RSL are low-albedo features on Mars that initiate at or near bedrock outcrops and extend down steep slopes, with widths up to 5 m and lengths up to 1.5 km. RSL appear and lengthen gradually or incrementally, fade when inactive, and recur each martian year in the warmest season. There are hundreds of likely RSL sites, each with up to hundreds of lineae. Small gullies (1-20 m wide) are often present and control RSL paths; such small, fresh gullies are otherwise rare in equatorial regions. The RSL flow out to the ends of distinctive fans, which may get reworked by wind-driven ripples or dunes. The fans are often relatively bright but transiently become darker, and may have a distinctive color. We have detected newly-formed topographic slumps associated with RSL fans in 12 locations in Valles Marineris (VM). A distinctive landform assemblage is seen within central and eastern VM: Small channels occur on most slope aspects of isolated hills or crater walls, extend very nearly to the tops of the hills or crater rims, are associated with seasonal RSL that extend the full length of the channels and fans, and there is a set of lobate deposits (from slumps) at the base of RSL fans. RSL activity in VM changes slope aspect with season to favor warm temperatures, but the slumps are most active from Ls 0-120, the coldest time of year in VM, especially on south-facing slopes where most of the new slumps have been seen. This association between gullies, RSL, fans, and slumps suggests integrated landscape evolution. Perhaps RSL activity erodes the small gullies and deposits sediment, creating angle-of-repose sloping fans, sometimes oversteepening the fans to cause slumping. RSL activity is associated with the transient presence of hydrated salts, which may indicate some role for salty water. If the RSL mark fluid flow, they should not be precisely confined to angle-of-repose or steeper slopes (>28°), so these must be dry granular flows with activity possibly triggered by or somehow associated with small amounts of water. There are multiple mysteries, such as how the activity recurs at the same locations for multiple Mars years, how activity is nearly synchronized for many individual flows, why similar hill slopes lack RSL, how they erode narrow gullies, why RSL fans transiently darken, and why the slumps form in the cold season.
NASA Astrophysics Data System (ADS)
Teixeira, Manuel; Roque, Cristina; Terrinha, Pedro; Rodrigues, Sara; Ercilla, Gemma; Casas, David
2017-04-01
Slope instability, expressed by landslide activity, is an important natural hazard both onshore as well as offshore. Offshore processes create great concern on coastal areas constituting one of the major and most prominent hazards, directly by the damages they generate and indirectly by the possibility of generating tsunamis, which may affect the coast line. The Southwest Portuguese Continental Margin has been identified as an area where several mass movements occurred from Late Pleistocene to Present. Recently, an area of 52 km long by 34 km wide, affected by slope failure has been recognized in the Sines contourite drift located off the Alentejo. SWIM and CONDRIBER multibeam swath bathymetry has been used for the geomorphologic analysis and for recognition of mass movement scars on the seabed. Scars' areas and volumes were calculated by reconstructing paleo-bathymetry. The net gain and net loss were calculated using both paleo and present day bathymetry. Geomorphologically, the study area presents 4 morphologic domains with landslide scars: I) Shelf and upper slope display an irregular boundary with domain II with a sharp step ( 150m - 600m); II) Smooth area with gentle slope angles making the transition from smoother area to the continental slope (scarp), with large scars, suggesting slow rate and distributed mass wasting processes over this area ( 600 - 1200m); III) Scarp with high rates of retrograding instability, where faster processes are verified and a great number of gullies is feeding downslope area (1200m - 3200m); IV) Lebre Basin where mass movements deposits accumulate (> 3200m). A total of 51 landslide scars were identified with a total affected area of 137.67 km2, with 80.9 km2 being located in the continental slope with about 59% of the disrupted area, between 1200 and 3200m, and 41% (56.6 km2) lies in the continental shelf and upper slope, on a range of depths between 150 and 800m. The mean scar area is 2.7 km2 and the maximum area recorded on a scar is 7.63 km2, while the minimum is 0.14 km2. About 43% of the scars present areas below 2 km2 and 63% below 3 km2. Only 3.9% of the scars present areas higher than 7 km2. There is a total volume of displaced material of 4.46 km3 with a mean volume of 0.1 km3. The maximum volume recorded on a scar is 0.45 km3, while the minimum is 0.01 km3. The volume of material removed is quite variable, although the major part of the scars corresponds to a very small volume of removed material, with 69% of the scars presenting less than 0.1 km3. About 55% of the scars are located in slopes <=7° and 20% in slopes between 0 and 2°, while 24% of the scars belong to the class of slope gradient between 1.5 and 3°. We may conclude that there is, apparently, a reverse relationship between slope angle and scar area, meaning that slope is not the main condition for big landslide scars and that the areas with steep slopes, such as fault escarpments, favour continuous fast retrograde erosion. Publication supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz
NASA Astrophysics Data System (ADS)
Renner, Maik; Hassler, Sibylle; Blume, Theresa; Weiler, Markus; Hildebrandt, Anke; Guderle, Marcus; Schymanski, Stan; Kleidon, Axel
2016-04-01
Roberts (1983) found that forest transpiration is relatively uniform across different climatic conditions and suggested that forest transpiration is a conservative process compensating for environmental heterogeneity. Here we test this hypothesis at a steep valley cross-section composed of European Beech in the Attert basin in Luxemburg. We use sapflow, soil moisture, biometric and meteorological data from 6 sites along a transect to estimate site scale transpiration rates. Despite opposing hillslope orientation, different slope angles and forest stand structures, we estimated relatively similar transpiration responses to atmospheric demand and seasonal transpiration totals. This similarity is related to a negative correlation between sap velocity and site-average sapwood area. At the south facing sites with an old, even-aged stand structure and closed canopy layer, we observe significantly lower sap velocities but similar stand-average transpiration rates compared to the north-facing sites with open canopy structure, tall dominant trees and dense understorey. This suggests that plant hydraulic co-ordination allows for flexible responses to environmental conditions leading to similar transpiration rates close to the water and energy limits despite the apparent heterogeneity in exposition, stand density and soil moisture. References Roberts, J. (1983). Forest transpiration: A conservative hydrological process? Journal of Hydrology 66, 133-141.
NASA Astrophysics Data System (ADS)
Adib, M. R. M.; Amirza, A. R. M.; Wardah, T.; Junaidah, A.
2016-07-01
Hydraulic control gate structure plays an important role in regulating the flow of water in river, canal or water reservoir. One of the most appropriate structures in term of resolving the problem of flood occured is the construction of circular fibre steel flap gate. Therefore, an experiment has been conducted by using an open channel model at laboratory. In this case, hydraulic jump and backwater were the method to determined the hydraulic characteristics of circular fibre steel flap gate in an open channel model. From the experiment, the opening angle of flap gate can receive discharges with the highest flow rate of 0.035 m3/s with opening angle was 47°. The type of jump that occurs at the slope of 1/200 for a distance of 5.0 m is a standing jump or undulating wave. The height of the backwater can be identified based on the differences of specific force which is specific force before jump, F1 and specific force after jump, F2 from the formation of backwater. Based on the research conducted, the tendency of incident backwater wave occurred was high in every distance of water control location from water inlet is flap slope and the slope of 1/300 which is 0.84 m/s and 0.75 m/s of celerity in open channel model.
Shoreline Erosion Processes: Orwell Lake, Minnesota.
1984-12-01
1976) and Savat ( 1981 ) found such splash layer Will absorb much of the impact of the rain- erosion to increase with increasing slope angle, but...pp. 188-196. U.S. Army Corps of Engineers (1979) Flood control, Savat , J. ( 1981 ) Work done by splash: Laboratory Orwell Dam, Otter Tail River
14 CFR 29.177 - Static directional stability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static directional stability. 29.177... Static directional stability. (a) The directional controls must operate in such a manner that the sense... versus directional control position curve may have a negative slope within a small range of angles around...
14 CFR 27.177 - Static directional stability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static directional stability. 27.177... directional stability. (a) The directional controls must operate in such a manner that the sense and direction... sideslip angle versus directional control position curve may have a negative slope within a small range of...
Adaptive pitch control for variable speed wind turbines
Johnson, Kathryn E [Boulder, CO; Fingersh, Lee Jay [Westminster, CO
2012-05-08
An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.
Coordinated Body Bending Improves Performance of a Salamander-like Robot
NASA Astrophysics Data System (ADS)
Ozkan Aydin, Yasemin; Chong, Baxi; Gong, Chaohui; Rieser, Jennifer M.; Choset, Howie; Goldman, Daniel I.
Analyzing body morphology and limb-body coordination in animals that can both swim and walk is important to understand the evolutionary transition from an aquatic to a terrestrial environment. Based on previous salamander experiments (a modern analog to early tetrapods and performed by Hutchinson's group at RVC in the UK) we built a robophysical model of a salamander and tested its performance on yielding granular media (GM) of poppy seeds. Our servo-driven robot (405 g, 38 cm long) has four limbs, a flexible body, and an active tail. Each limb has two servo motors to control up/down and fore/aft positions of limb. A joint in the middle of the body controls horizontal bending. We assessed performance of the robot by changing the body bending limit from 0°to 90°and measured body displacement and power consumption over a few limb cycles at 0°and 10°sandy slope. We fixed the angle of the legs according to body to test the effect of body bending directly. On GM, step length increased from 0 to 9.5 cm at 0° and 0 to 7 cm at 10°slope while the average power consumption increased 50 % . A geometric mechanics model revealed that on level GM body bending was most beneficial when phase offset 180°from leg movements; increasing the maximum body angular bend from 45°to 90° led to step length increases of up to 90 % .
Geological hazard zonation in a marble exploitation area (Apuan Alps, Italy)
NASA Astrophysics Data System (ADS)
Francioni, M.; Salvini, R.; Riccucci, S.
2011-12-01
The present paper describes the hazard mapping of an exploitation area sited in the Apuan Alps marble district (Italy) carried out by the integration of various survey and analysis methodologies. The research, supported by the Massa and Carrara Local Sanitary Agency responsible for workplace health and safety activities, aimed to reduce the high degree hazard of rock fall caused by the presence of potentially unstable blocks located on slopes overhanging the marble quarries. The study of rocky fronts bases on the knowledge of both the structural setting and the physical-mechanical properties of intact material and its discontinuities. In this work the main difficulty in obtaining this information was the inaccessibility of the slope overhanging the area (up to 500 meters high). For this reason, the structural and geological-engineering surveys were integrated by outcomes from digital photogrammetry carried out through terrestrial stereoscopic photos acquired from an aerostatic balloon and a helicopter. In this way, it was possible to derive the geometrical characteristics of joints (such as discontinuities dip, dip direction, spacing and persistence), blocks volumes and slopes morphology also in inaccessible areas. This information, combined with data coming from the geological-engineering survey, was used to perform the stability analysis of the slope. Subsequently, using the topographic map at the scale of 1:2,000, the Digital Terrain Model (DTM) of the slopes and several topographic profiles along it were produced. Assuming that there is a good correspondence between travelling paths and maximum down slope angle, probable trajectories of rock fall along the slope were calculated on the DTM by means of a GIS procedure which utilizes the ArcHydro module of EsriTM ArcMap software. When performing such a 2D numerical modelling of rock falls, lateral dispersion of trajectories has often been hampered by the "a priori" choice of the travelling path. Such a choice can be assessed largely subjective and it leads to possible errors. Thus, rock fall hazard zonation needs spatially distributed analyses including a reliable modelling of lateral dispersion. In this research Conefall software, a freeware QuanterraTM code that estimates the potential run out areas by means of a "so-called" cone method, was used to compute the spatial distribution of rock falls frequency, velocities and kinetic energies. In this way, a modelling approach based on local morphologies was employed to assess the accuracy of the 2D analysis by profiles created "a priori" along the maximum down slope angle. Final results about slope stability and run out analysis allowed to create rock fall hazard map and to advise the most suitable protection works to mitigate the hazard in the most risky sites.
Munier, M; Donnez, M; Ollivier, M; Flecher, X; Chabrand, P; Argenson, J-N; Parratte, S
2017-04-01
Treatment of medial tibiofemoral osteoarthritis with a high-tibial osteotomy (HTO) is most effective when the optimal angular correction is achieved. However, conventional instrumentation is limited when multiplanar correction is needed. Use of patient-specific cutting guides (PSCGs) for HTO provides an accurate correction (difference<2°) relative to the preoperative planning. Between February 2014 and February 2015, 10 patients (mean age: 46 years [range: 31-59]; grade 1 or 2 osteoarthritis in Ahlbäck's classification) were included prospectively in this reliability and safety study. All patients were operated using the same medial opening-wedge osteotomy technique. Preoperative planning was based on long-leg radiographs and CT scans with 3D reconstruction. The PSGCs were used to align the osteotomy cut and position the screw holes for the plate. The desired correction was achieved in the three planes when the holes on the plate were aligned with the holes drilled based on the PSCG. Preoperatively, the mean HKA angle was 171.9° (range: 166-179°), the mean proximal tibial angle was 87° (86-88°) and the mean tibial slope was 7.8° (1-22°). The postoperative correction was compared to the planned correction using 3D CT scan transformations. Intraoperative and postoperative complications were assessed at a minimum follow-up of 1 year. The procedure was successfully carried out in all patients with the PSCGs. On postoperative long-leg radiographs, the mean HKA was 182.3° (180-185°); on the CT scan, the mean tibial mechanical angle was 94° (90-98°) and the mean tibial slope was 7.1° (4-11°). In 19 out of 20 postoperative HKA and slope measurements, the difference between the planned and achieved correction was <2° based on the 3D analysis of the three planes in space; in the other case, the slope was 13° instead of the planned 10°. The intra-class correlation coefficients between the postoperative and planned parameters were 0.98 [0.92-0.99] for the HKA and 0.96 [0.79-0.99] for the tibial slope. There were no surgical site infections; one patient had a postoperative hematoma that resolved spontaneously. The results of this study showed that use of PSCGs in HTO procedures helps to achieve optimal correction in a safe and reliable manner. IV - Prospective cohort study. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
On the spatial coherence of temperature within and above a vineyard under drainage conditions
NASA Astrophysics Data System (ADS)
Everard, K.; Giometto, M. G.; Christen, A.; Oldroyd, H. J.; Parlange, M. B.
2017-12-01
We show that turbulent exchange within vineyards under nighttime drainage conditions is controlled by large-scale coherent structures arising from a mixing-layer type instability at the canopy top, h. A combination of measurements and large-eddy simulations (LESs) are here used to characterize the onset and development of such structures as a function of the approaching wind angle over an organized canopy during drainage flows. Measurements were carried out over a west-facing 7° vineyard slope near Oliver, BC, Canada in the Okanagan Valley between July 5 and July 22, 2016. The vineyard canopy had an average height of h = 2.3 m, with parallel rows oriented in the local downslope direction (i.e. east-west). The set-up consisted of an array of five vertically arranged ultrasonic anemometers at z/h = 0.19, 0.39, 0.65, 1.02, and 2.06, and a 2-D grid of 40 fine-wire thermocouples arranged at the same heights as the ultrasonic anemometer array on 8 separate masts extending in the upslope direction at locations up to x/h = 13.91 from the flux tower. To complement observations, pressure-driven open-channel flow LESs are performed over a regular domain where vegetation is accounted for via a space dependent drag force. The drainage flow regime is emulated via a tuned pressure-gradient forcing, and different approaching wind angles are considered. Linear stability analyses show that the most unstable mode at the canopy top strongly depends on the approaching wind angle. Space-lagged correlations from measurements show that the lifetime of such eddies within the canopy also depends on the approaching wind direction, with longer lifetimes observed when wind angles are directed along the vine-rows. LESs are compared with measured quantities to ensure matching, and then used to investigate in detail the influence of the above-canopy wind vectors on eddy lifetimes. The impact of the observed coherent structures on momentum and heat exchange coefficients are also discussed.
Warrick, J.A.; Milliman, John D.; Walling, D.E.; Wasson, R.J.; Syvitski, J.P.M.; Arno, Stephen F.
2014-01-01
Recent synthesis of 10Be-derived denudation rates by Willenbring et al. (2013) suggests that the “flat” areas of the world, those with average slopes of 2) using landscape slope as the controlling variable. We suggest that these findings are incorrect on several grounds.
Booth, James S.; O'Leary, Dennis W.
1992-01-01
An analysis of 179 mass movements on the North American Atlantic continental slope and upper rise shows that slope failures have occurred throughout the geographic extent of the outer margin. Although the slope failures show no striking affinity for a particular depth as an origination level, there is a broad, primary mode centered at about 900 m. The resulting slides terminate at almost all depths and have a primary mode at 1100 m, but the slope/rise boundary (at 2200 m) also is an important mode. Slope failures have occurred at declivities ranging from 1° to 30° (typically, 4°); the resultant mass movement deposits vary in width from 0.2 to 50 km (typically, 1-2 km) and in length from 0.3 to 380 km (typically, 2–4 km), and they have been reported to be as thick as 650 m. On a numeric basis, mass movements are slightly more prevalent on open slopes than in other physiographic settings, and both translational and rotational failure surfaces are common. The typical mass movement is disintegrative in nature. Open slope slides tend to occur at lower slope angles and are larger than canyon slides. Further, large‐scale slides rather than small‐scale slides tend to originate on gentle slopes (≍ 3-4°). Rotational slope failures appear to have a slightly greater chance of occurring in canyons, but there is no analogous bias associated with translational failures. Similarly, disintegrative slides seem more likely to be associated with rotational slope failures than translational ones and are longer than their nondisintegrative counterparts. The occurrence of such a variety of mass movements at low declivities implies that a regional failure mechanism has prevailed. We suggest that earthquakes or, perhaps in some areas, gas hydrates are the most likely cause of the slope failures.
Posterior tibial slope as a risk factor for anterior cruciate ligament rupture in soccer players.
Senişik, Seçkin; Ozgürbüz, Cengizhan; Ergün, Metin; Yüksel, Oğuz; Taskiran, Emin; Işlegen, Cetin; Ertat, Ahmet
2011-01-01
Anterior cruciate ligament (ACL) is the primary stabilizer of the knee. An impairment of any of the dynamic or static stability providing factors can lead to overload on the other factors and ultimately to deterioration of knee stability. This can result in anterior tibial translation and rupture of the ACL. The purpose of this study was to examine the influence of tibial slope on ACL injury risk on soccer players. A total of 64 elite soccer players and 45 sedentary controls were included in this longitudinal and controlled study. The angle between the tibial mid-diaphysis line and the line between the anterior and posterior edges of the medial tibial plateau was measured as the tibial slope via lateral radiographs. Individual player exposure, and injuries sustained by the participants were prospectively recorded. Eleven ACL injuries were documented during the study period. Tibial slope was not different between soccer players and sedentary controls. Tibial slope in the dominant and non-dominant legs was greater for the injured players compared to the uninjured players. The difference reached a significant level only for the dominant legs (p < 0.001). While the tibial slopes of the dominant and non-dominant legs were not different on uninjured players (p > 0.05), a higher tibial slope was observed in dominant legs of injured players (p < 0.05). Higher tibial slope on injured soccer players compared to the uninjured ones supports the idea that the tibial slope degree might be an important risk factor for ACL injury. Key pointsDominant legs' tibial slopes of the injured players were significantly higher compared to the uninjured players (p < 0.001).Higher tibial slope was determined in dominant legs compared to the non-dominant side, for the injured players (p = 0.042). Different tibial slope measures in dominant and non-dominant legs might be the result of different loading and/or adaptation patterns in soccer.
Analysis of the multigroup model for muon tomography based threat detection
NASA Astrophysics Data System (ADS)
Perry, J. O.; Bacon, J. D.; Borozdin, K. N.; Fabritius, J. M.; Morris, C. L.
2014-02-01
We compare different algorithms for detecting a 5 cm tungsten cube using cosmic ray muon technology. In each case, a simple tomographic technique was used for position reconstruction, but the scattering angles were used differently to obtain a density signal. Receiver operating characteristic curves were used to compare images made using average angle squared, median angle squared, average of the squared angle, and a multi-energy group fit of the angular distributions for scenes with and without a 5 cm tungsten cube. The receiver operating characteristic curves show that the multi-energy group treatment of the scattering angle distributions is the superior method for image reconstruction.
NASA Astrophysics Data System (ADS)
Holland, A.; Moses, C.; Sear, D. A.; Cope, S.
2016-12-01
As sediments containing significant gravel portions are increasingly used for beach replenishment projects globally, the total number of beaches classified as `mixed sand and gravel' (MSG) increases. Calculations for required replenishment sediment volumes usually assume a uniform layer of sediment transport across and along the beach, but research into active layer (AL) depth has shown variations both across shore and according to sediment size distribution. This study addresses the need for more accurate calculations of sediment transport volumes on MSG beaches by using more precise measurements of AL depth and width, and virtual velocity of tracer pebbles. Variations in AL depth were measured along three main profile lines (from MHWS to MLWN) at Eastoke, Hayling Island (Hampshire, UK). Passive Integrated Transponder (PIT) tagged pebbles were deployed in columns, and their new locations repeatedly surveyed with RFID technology. These data were combined with daily dGPS beach profiles and sediment sampling for detailed analysis of the influence of beach morphodynamics on sediment transport volumes. Data were collected over two consecutive winter seasons: 2014-15 (relatively calm, average wave height <1 m) and 2015-16 (prolonged periods of moderate storminess, wave heights of 1-2 m). The active layer was, on average, 22% of wave height where beach slope (tanβ) is 0.1, with variations noted according to slope angle, sediment distribution, and beach groundwater level. High groundwater levels and a change in sediment proportions in the sandy lower foreshore reduced the AL to 10% of wave height in this area. The disparity in AL depth across the beach profile indicates that traditional models are not accurately representing bulk sediment transport on MSG beaches. It is anticipated that by improving model inputs, beach managers will be better able to predict necessary volumes and sediment grain size proportions of replenishment material for effective management of MSG beaches.
Yu, Bi-yun; Zhang, Wen-hui; He, Ting; You, Jian-jian; Li, Gang
2014-12-01
Typical sampling method was conducted to survey the effects of forest gap size on branch architecture, leaf characteristics and their vertical distribution of Quercus variablis seedlings from different size gaps in natural secondary Q. variablis thinning forest, on the south slope of Qinling Mountains. The results showed that gap size significantly affected the diameter, crown area of Q. variablis seedlings. The gap size positively correlated with diameter and negatively correlated with crown area, while it had no significant impact on seedling height, crown length and crown rates. The overall bifurcation ratio, stepwise bifurcation ratio, and ratio of branch diameter followed as large gap > middle gap > small gap > understory. The vertical distribution of first-order branches under different size gaps mainly concentrated at the middle and upper part of trunk, larger diameter first-order branches were mainly distributed at the lower part of trunk, and the angle of first-order branch increased at first and then declined with the increasing seedling height. With the increasing forest gap size, the leaf length, leaf width and average leaf area of seedlings all gradually declined, while the average leaf number per plant and relative total leaf number increased, the leaf length-width ratio kept stable, the relative leaf number was mainly distributed at the middle and upper parts of trunk, the changes of leaf area index was consistent with the change of the relative total number of leaves. There was no significant difference between the diameters of middle gap and large gap seedlings, but the diameter of middle gap seedlings was higher than that of large gap, suggesting the middle gap would benefit the seedlings regeneration and high-quality timber cultivation. To promote the regeneration of Q. variabilis seedlings, and to cultivate high-quality timber, appropriate thinning should be taken to increase the number of middle gaps in the management of Q. variabilis forest.
NASA Astrophysics Data System (ADS)
Azzam, R. M. A.; Howlader, M. M. K.; Georgiou, T. Y.
1995-08-01
A transparent or absorbing substrate can be coated with a transparent thin film to produce a linear reflectance-versus-angle-of-incidence response over a certain range of angles. Linearization at and near normal incidence is a special case that leads to a maximally flat response for p -polarized, s -polarized, or unpolarized light. For midrange and high-range linearization with moderate and high slopes, respectively, the best results are obtained when the incident light is s polarized. Application to a Si substrate that is coated with a SiO2 film leads to novel passive and active reflection rotation sensors. Experimental results and an error analysis of this rotation sensor are presented.
Multi-Angle Snowflake Camera Value-Added Product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shkurko, Konstantin; Garrett, T.; Gaustad, K
The Multi-Angle Snowflake Camera (MASC) addresses a need for high-resolution multi-angle imaging of hydrometeors in freefall with simultaneous measurement of fallspeed. As illustrated in Figure 1, the MASC consists of three cameras, separated by 36°, each pointing at an identical focal point approximately 10 cm away. Located immediately above each camera, a light aims directly at the center of depth of field for its corresponding camera. The focal point at which the cameras are aimed lies within a ring through which hydrometeors fall. The ring houses a system of near-infrared emitter-detector pairs, arranged in two arrays separated vertically by 32more » mm. When hydrometeors pass through the lower array, they simultaneously trigger all cameras and lights. Fallspeed is calculated from the time it takes to traverse the distance between the upper and lower triggering arrays. The trigger electronics filter out ambient light fluctuations associated with varying sunlight and shadows. The microprocessor onboard the MASC controls the camera system and communicates with the personal computer (PC). The image data is sent via FireWire 800 line, and fallspeed (and camera control) is sent via a Universal Serial Bus (USB) line that relies on RS232-over-USB serial conversion. See Table 1 for specific details on the MASC located at the Oliktok Point Mobile Facility on the North Slope of Alaska. The value-added product (VAP) detailed in this documentation analyzes the raw data (Section 2.0) using Python: images rely on OpenCV image processing library and derived aggregated statistics rely on some clever averaging. See Sections 4.1 and 4.2 for more details on what variables are computed.« less
Modeling soil erosion processes on a hillslope with dendritic rill network
NASA Astrophysics Data System (ADS)
Chen, L.; Wu, S.
2017-12-01
The effect of planform of dendritic rill network on hillslope rainfall-runoff and soil erosion processes was usually neglected in previous studies, which, however, could dramatically alter the mechanisms of the hydrologic and geomorphic processes. In the present study, the interrill areas were treated as two-dimensional (2D), while the complicated rill network was represented by a piecewise one-dimensional (1D) rill retaining the characteristic of rill network (the rill density and average rill deflection angle). Based on a 2D diffusive wave overland flow model, and the WEPP erosion theory, the 1D and 2D coupling model was developed to simulate the hillslope runoff and soil erosion on both the interrill areas and the representative rill. The rill number and rill inclination angle were introduced in the model to reflect the actual rill density, rill length, rill slope gradient, and confluence processes from the interrill areas to the rill. The excess rainfall and sediment load coming into the representative rill were not only from the two lateral interrill areas but also from the upstream interrill areas. The model was successfully tested against experimental data obtained from a hillslope with complicated rill network. Comparison of the results obtained from the present model with WEPP indicates that WEPP calculated the hillslope runoff yield accurately but overestimated the amount of rill erosion. Moreover, the effects of rill deflection angle and rill number distribution on both interrill and rill erosions were examined and found neglecting the planar characteristic of rill network has a considerable impact on soil erosion prediction. It is expected that the model can extend the scope of WEPP application and predict more accurately the runoff and erosion yield on a hillslope with complicated rill network.
Wahal, Naman; Gaba, Sahil; Malhotra, Rajesh; Kumar, Vijay; Pegg, Elise C; Pandit, Hemant
2018-02-01
A small proportion of patients with mobile unicompartmental knee arthroplasty (UKA) report poor functional outcomes in spite of optimal component alignment on postoperative radiographs. The purpose of this study is to assess whether there is a correlation between functional outcome and knee kinematics. From a cohort of consecutive cases of 150 Oxford medial UKA, patients with fair/poor functional outcome at 1-year postsurgery (Oxford Knee Score [OKS] < 34, n = 15) were identified and matched for age, gender, preoperative clinical scores, and follow-up period with a cohort of patients with good/excellent outcome (OKS ≥ 34, n = 15). In vivo kinematic assessment was performed using step-up and deep knee bend exercises under fluoroscopic imaging. The fluoroscopic videos were analyzed using MATLAB software to measure the variation in time taken to complete the exercises, patellar tendon angle, and bearing position with knee flexion angle. Mean OKS in the fair/poor group was 29.9 and the mean OKS in the good/excellent group was 41.1. The tibial slope, time taken to complete the exercises, and patellar tendon angle trend over the flexion range were similar in both the groups; however, bearing position and the extent of bearing excursion differed significantly. The total bearing excursion in the OKS < 34 group was significantly smaller than the OKS ≥ 34 group (35%). Furthermore, on average, the bearing was positioned 1.7 mm more posterior on the tibia in the OKS < 34 group. This study provides evidence that abnormal knee kinematics, in particular bearing excursion and positioning, are associated with worse functional outcomes after mobile UKA. Copyright © 2017 Elsevier Inc. All rights reserved.
Threshold setting by the surround of cat retinal ganglion cells.
Barlow, H B; Levick, W R
1976-08-01
1. The slope of curves relating the log increment threshold to log background luminance in cat retinal ganglion cells is affected by the area and duration of the test stimulus, as it is in human pyschophysical experiments. 2. Using large area, long duration stimuli the slopes average 0-82 and approach close to 1 (Weber's Law) in the steepest cases. Small stimuli gave an average of 0-53 for on-centre units using brief stimuli, and 0-56 for off-centre units, using long stimuli. Slopes under 0-5 (square root law) were not found over an extended range of luminances. 3. On individual units the slope was generally greater for larger and longer test stimulus, but no unit showed the full extent of change from slope of 0-5 to slope of 1. 4. The above differences hold for objective measures of quantum/spike ratio, as well as for thresholds either judged by ear or assessed by calculation. 5. The steeper slope of the curves for large area, long duration test stimuli compared with small, long duration stimuli, is associated with the increased effectiveness of antagonism from the surround at high backgrounds. This change may be less pronounced in off-centre units, one of which (probably transient Y-type) showed no difference of slope, and gave parallel area-threshold curves at widely separated background luminances, confirming the importance of differential surround effectiveness in changing the slope of the curves. 6. In on-centre units, the increased relative effectiveness of the surround is associated with the part of the raised background light that falls on the receptive field centre. 7. It is suggested that the variable surround functions as a zero-offset control that sets the threshold excitation required for generating impulses, and that this is separate from gain-setting adaptive mechanisms. This may be how ganglion cells maintain high incremental sensitivity in spite of a strong maintained excitatory drive that would otherwise cause compressive response non-linearities.
NASA Technical Reports Server (NTRS)
Michal, David H.
1950-01-01
An investigation of the static and dynamic longitudinal stability characteristics of 1/3.7 scale rocket-powered model of the Bell MX-776A has been made for a Mach number range from 0.8 to 1.6. Two models were tested with all control surfaces at 0 degree deflection and centers of gravity located 1/4 and 1/2 body diameters, respectively, ahead of the equivalent design location. Both models were stable about the trim conditions but did not trim at 0 degree angle of attack because of slight constructional asymmetries. The results indicated that the variation of lift and pitching moment was not linear with angle of attack. Both lift-curve slope and pitching-moment-curve slope were of the smallest magnitude near 0 degree angle of attack. In general, an increase in angle of attack was accompanied by a rearward movement of the aerodynamic center as the rear wing moved out of the downwash from the forward surfaces. This characteristic was more pronounced in the transonic region. The dynamic stability in the form of total damping factor varied with normal-force coefficient but was greatest for both models at a Mach number of approximately 1.25. The damping factor was greater at the lower trim normal-force coefficients except at a Mach number of 1.0. At that speed the damping factor was of about the same magnitude for both models. The drag coefficient increased with trim normal-force coefficient and was largest in the transonic region.
Guo, Ming-ming; Wang, Wen-long; Li, Jian-ming; Huang, Peng-fei; Zhu, Bao-cai; Wang, Zhen; Luo, Ting
2015-02-01
Non-hardened roads formed in the production of the Shenfu Coalfield have a unique condition of underlying surface. The road surface is composed of a regolith layer with a certain thickness resulted from long-term rolling and thus, is characterized by weakened anti-scourabilty and anti-erodibility. In contrast, soil layer below the regolith has a higher bulk density and anti-erodibility. The processes of soil erosion on the non-hardened roads exhibit some differences under rainfall condition. The process of sediment transport and the relationship between sediment transport rate and erosion factors at different erosion stages were studied on non-hardened roads with slope degrees ranging from 3° to 12° (3°, 6°, 9°, 12°) by a field experiment under artificial rainfall. Results showed that the first peak of sediment transport on the regolith surface was observed at the sheet erosion stage. Sheet erosion occurred only at 3° slope degree, with an average variation coefficient of 0.07 for sediment transport rate. Rills in every testing began to develop at slope degrees of 6° to 12° about 15 min after runoff initiation. At the sheet erosion stage, the process of sediment transport fluctuated considerably at rainfall intensities of > 1.5 mm · min(-1), but the differences in its variation were little at the three slope degrees, with average variation coefficients of 0.20, 0.19 and 0.16, respectively. Rainfall intensity had a more significant impact on sediment transport rate than slope degree. The process of sediment transport at the rill erosion stage fluctuated, but the fluctuation was obviously smaller than that at the sheet erosion stage, with average variation coefficients of 0.05, 0.09 and 0.10 at the three slope degrees. Many wide and shallow rills evolved at the rill erosion stage. The sediment transport rate could be well predicted by a power function of rainfall intensity and slope degree at the sheet and rill erosion stages. The stable sediment transport rate for all the tests was linearly related to runoff rate and sediment concentration.
Comment on de-averaged back-angle heavy-ion elastic scattering excitation functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussein, M.S.; Canto, L.F.; Donangelo, R.
1984-06-01
It is suggested that the de-averaged 180/sup 0/ excitation function of /sup 16/O+ /sup 28/Si, recently considered by Frahn and Kaufmann, is strongly model dependent. Within a multistep ..cap alpha..-transfer description of the back-angle anomaly, we obtain a de-averaged 180/sup 0/ excitation function that exhibits a more regular gross structure.
First metatarsal length change after basilar closing wedge osteotomy for hallux valgus.
Day, Thomas; Charlton, Timothy P; Thordarson, David B
2011-05-01
Hallux valgus deformities with large intermetatarsal angles require a more proximal metatarsal procedure to adequately correct the deformity. Due to the relative ease of a closing wedge osteotomy, this technique was adopted but with concern over first metatarsal shortening. In this study, we primarily evaluated angular correction and first metatarsal shortening. We evaluated 70 feet in 57 patients (average age, 54 years) with 52 female and five male. The average followup was 14 (range, 6 to 45) months. The charts were reviewed for the presence of metatarsalgia. Digital radiographic measurements were made for pre- and postoperative hallux valgus and intermetatarsal angles, dorsiflexion angle of the first metatarsal, and absolute and relative shortening of the first metatarsal. The average hallux valgus angle improved from 31 to 11 degrees (p < 0.0001) and intermetatarsal angle from 13.2 to 4.4 angles (p < 0.0001). The absolute shortening of the first metatarsal was 2.2 mm and relative shortening was 0.6 mm. There was 1.3 degrees of dorsiflexion on average. Excellent correction of the deformity with minimal dorsiflexion or new complaints of metatarsalgia was found with this technique. The new method of assessing the relative shortening found to be less than the absolute shortening, which we feel more accurately reflects the functional length of the first metatarsal.
Consequence assessment of large rock slope failures in Norway
NASA Astrophysics Data System (ADS)
Oppikofer, Thierry; Hermanns, Reginald L.; Horton, Pascal; Sandøy, Gro; Roberts, Nicholas J.; Jaboyedoff, Michel; Böhme, Martina; Yugsi Molina, Freddy X.
2014-05-01
Steep glacially carved valleys and fjords in Norway are prone to many landslide types, including large rockslides, rockfalls, and debris flows. Large rockslides and their secondary effects (rockslide-triggered displacement waves, inundation behind landslide dams and outburst floods from failure of landslide dams) pose a significant hazard to the population living in the valleys and along the fjords shoreline. The Geological Survey of Norway performs systematic mapping of unstable rock slopes in Norway and has detected more than 230 unstable slopes with significant postglacial deformation. This large number necessitates prioritisation of follow-up activities, such as more detailed investigations, periodic displacement measurements, continuous monitoring and early-warning systems. Prioritisation is achieved through a hazard and risk classification system, which has been developed by a panel of international and Norwegian experts (www.ngu.no/en-gb/hm/Publications/Reports/2012/2012-029). The risk classification system combines a qualitative hazard assessment with a consequences assessment focusing on potential life losses. The hazard assessment is based on a series of nine geomorphological, engineering geological and structural criteria, as well as displacement rates, past events and other signs of activity. We present a method for consequence assessment comprising four main steps: 1. computation of the volume of the unstable rock slope; 2. run-out assessment based on the volume-dependent angle of reach (Fahrböschung) or detailed numerical run-out modelling; 3. assessment of possible displacement wave propagation and run-up based on empirical relations or modelling in 2D or 3D; and 4. estimation of the number of persons exposed to rock avalanches or displacement waves. Volume computation of an unstable rock slope is based on the sloping local base level technique, which uses a digital elevation model to create a second-order curved surface between the mapped extent of the unstable rock slope. This surface represents the possible basal sliding surface of an unstable rock slope. The elevation difference between this surface and the topographic surface estimates the volume of the unstable rock slope. A tool has been developed for the present study to adapt the curvature parameters of the computed surface to local geological and structural conditions. The obtained volume is then used to define the angle of reach of a possible rock avalanche from the unstable rock slope by using empirical derived values of angle of reach vs. volume relations. Run-out area is calculated using FlowR; the software is widely used for run-out assessment of debris flows and is adapted here for assessment of rock avalanches, including their potential to ascend opposing slopes. Under certain conditions, more sophisticated and complex numerical run-out models are also used. For rock avalanches with potential to reach a fjord or a lake the propagation and run-up area of triggered displacement waves is assessed. Empirical relations of wave run-up height as a function of rock avalanche volume and distance from impact location are derived from a national and international inventory of landslide-triggered displacement waves. These empirical relations are used in first-level hazard assessment and where necessary, followed by 2D or 3D displacement wave modelling. Finally, the population exposed in the rock avalanche run-out area and in the run-up area of a possible displacement wave is assessed taking into account different population groups: inhabitants, persons in critical infrastructure (hospitals and other emergency services), persons in schools and kindergartens, persons at work or in shops, tourists, persons on ferries and so on. Exposure levels are defined for each population group and vulnerability values are set for the rock avalanche run-out area (100%) and the run-up area of a possible displacement wave (70%). Finally, the total number of persons within the hazard area is calculated taking into account exposure and vulnerability. The method for consequence assessment is currently tested through several case studies in Norway and, thereafter, applied to all unstable rock slopes in the country to assess their risk level. Follow-up activities (detailed investigations, periodic displacement measurements or continuous monitoring and early-warning systems) can then be prioritized based on the risk level and with a standard approach for whole Norway.
NASA Astrophysics Data System (ADS)
Jaiswal, P.; van Westen, C. J.; Jetten, V.
2011-06-01
A quantitative procedure for estimating landslide risk to life and property is presented and applied in a mountainous area in the Nilgiri hills of southern India. Risk is estimated for elements at risk located in both initiation zones and run-out paths of potential landslides. Loss of life is expressed as individual risk and as societal risk using F-N curves, whereas the direct loss of properties is expressed in monetary terms. An inventory of 1084 landslides was prepared from historical records available for the period between 1987 and 2009. A substantially complete inventory was obtained for landslides on cut slopes (1042 landslides), while for natural slopes information on only 42 landslides was available. Most landslides were shallow translational debris slides and debris flowslides triggered by rainfall. On natural slopes most landslides occurred as first-time failures. For landslide hazard assessment the following information was derived: (1) landslides on natural slopes grouped into three landslide magnitude classes, based on landslide volumes, (2) the number of future landslides on natural slopes, obtained by establishing a relationship between the number of landslides on natural slopes and cut slopes for different return periods using a Gumbel distribution model, (3) landslide susceptible zones, obtained using a logistic regression model, and (4) distribution of landslides in the susceptible zones, obtained from the model fitting performance (success rate curve). The run-out distance of landslides was assessed empirically using landslide volumes, and the vulnerability of elements at risk was subjectively assessed based on limited historic incidents. Direct specific risk was estimated individually for tea/coffee and horticulture plantations, transport infrastructures, buildings, and people both in initiation and run-out areas. Risks were calculated by considering the minimum, average, and maximum landslide volumes in each magnitude class and the corresponding minimum, average, and maximum run-out distances and vulnerability values, thus obtaining a range of risk values per return period. The results indicate that the total annual minimum, average, and maximum losses are about US 44 000, US 136 000 and US 268 000, respectively. The maximum risk to population varies from 2.1 × 10-1 for one or more lives lost to 6.0 × 10-2 yr-1 for 100 or more lives lost. The obtained results will provide a basis for planning risk reduction strategies in the Nilgiri area.
Determination of the Basic Friction Angle of Rock Surfaces by Tilt Tests
NASA Astrophysics Data System (ADS)
Jang, Hyun-Sic; Zhang, Qing-Zhao; Kang, Seong-Seung; Jang, Bo-An
2018-04-01
Samples of Hwangdeung granite from Korea and Berea sandstone from USA, both containing sliding planes, were prepared by saw-cutting or polishing using either #100 or #600 grinding powders. Their basic friction angles were measured by direct shear testing, triaxial compression testing, and tilt testing. The direct shear tests and triaxial compression tests on the saw-cut, #100, and #600 surfaces indicated that the most reliable results were obtained from the #100 surface: basic friction angle of 29.4° for granite and 34.1° for sandstone. To examine the effect of surface conditions on the friction angle in tilt tests, the sliding angles were measured 50 times with two surface conditions (surfaces cleaned and not cleaned after each measurement). The initial sliding angles were high regardless of rock type and surface conditions and decreased exponentially as measurements continued. The characteristics of the sliding angles, differences between tilt tests, and dispersion between measurements in each test indicated that #100 surface produced the most reliable basic friction angle measurement. Without cleaning the surfaces, the average angles for granite (32 measurements) and sandstone (23 measurements) were similar to the basic friction angle. When 20-50 measurements without cleaning were averaged, the basic friction angle was within ± 2° for granite and ± 3° for sandstone. Sliding angles using five different tilting speeds were measured but the average was similar, indicating that tilting speed (between 0.2° and 1.6°/s) has little effect on the sliding angle. Sliding angles using four different sample sizes were measured with the best results obtained for samples larger than 8 × 8 cm.
Topography and stratigraphy of Martian polar layered deposits
NASA Technical Reports Server (NTRS)
Blasius, K. R.; Cutts, J. A.; Howard, A. D.
1982-01-01
The first samples of high resolution Viking Orbiter topographic and stratigraphic data for the layered polar deposits of Mars are presented, showing that these deposits are with respect to both slopes and angular relief similar to those in the south. It is also demonstrated that, in conjunction with stereophotogrammetry, photoclinometry holds promise as a tool for detailed layered deposit studies. The spring season photography, which lends itself to photoclinometric analysis, covers the entire area of the north polar deposits. Detailed tests of layered terrain evolution hypotheses will be made, upon refinement of the data by comparison with stereo data. A more promising refining technique will make use of averaging perpendicular to selected sections to enhance SNR. Local reliefs of 200-800 m, and slopes of 1-8 deg, lead to initial calculations of average layer thickness which yields results of 14-46 m, linearly correlated with slope.
Vegetation of steep slopes in the shrub-steppe region of south-central Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sauer, R H; Rickard, W H
1977-01-01
This paper presents data and conclusions concerning the vegetation and soils of steep natural slopes of arid regions. Cover by species and soil physical and chemical properties were taken from 10 canyons along the Columbia River north of Pasco, Washington. Vegetative cover was significantly different and averaged 25 percent on the south-facing and 72 percent on the north-facing slopes. The mean number of species were significantly different. Four species were restricted to the south slopes, 10 were restricted to the north slopes, and 23 were common to both. Poa sandbergii and Agropyron spicatum, native perennial grasses, dominated the north-facing slopesmore » and Bromus tectorum, an alien annual grass, dominated the south-facing slopes. Soils were shallower and rockier on the south-facing slopes. Even though vegetative cover and number of species were different, the similar number of dominant species suggest community functions are nonetheless similar in these contrasting environments.« less
An analytic solution for periodic thermally-driven flows over an infinite slope
NASA Astrophysics Data System (ADS)
Zardi, Dino; Serafin, Stefano
2013-04-01
The flow generated along an infinite slope in an unperturbed stably stratified atmosphere at rest by a time periodic surface temperature forcing is examined. Following Defant (1949), a set of equations is derived which extends Prandtl's (1942) theory to allow for nonstationary conditions. Uniform boundary conditions are conducive to an along-slope parallel flow, governed by a periodically reversing local imbalance between along-slope advection and slope-normal fluxes of momentum and heat. Solutions include both a transient part and a subsequent periodic regime. The former can only be expressed in an integral form, whereas the latter is a combination of exponential and sine or cosine functions of time and height normal to the slope. Key parameters are the quantity Nα = N sinα (where α is the slope angle, and N is the Brunt-Väisälä frequency of the unperturbed atmosphere) and the angular frequency of the driving surface temperature cycle, ?. Three different flow regimes may occur, namely subcritical (Nα < ?), critical (Nα = ?) and supercritical (Nα > ?). The properties of the solutions in each regime are examined and discussed. The relationship between the present solutions and the earlier time-dependent slope flow model by Defant (1949) is also discussed. References Defant, F., 1949: Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. [A theory of slope winds, along with remarks on the theory of mountain winds and valley winds]. Arch. Meteor. Geophys. Bioclimatol., Ser. A, 1, 421-450 (Theoretical and Applied Climatology). [English translation: Whiteman, C.D., and E. Dreiseitl, 1984: Alpine meteorology: Translations of classic contributions by A. Wagner, E. Ekhart and F. Defant. PNL-5141 / ASCOT-84-3. Pacific Northwest Laboratory, Richland, Washington, 121 pp]. Prandtl, L., 1942: Strömungslehre [Flow Studies]. Vieweg und Sohn, Braunschweig, 382 pp.
NASA Technical Reports Server (NTRS)
Junkin, B. G. (Principal Investigator)
1979-01-01
A method is presented for the processing and analysis of digital topography data that can subsequently be entered in an interactive data base in the form of slope, slope length, elevation, and aspect angle. A discussion of the data source and specific descriptions of the data processing software programs are included. In addition, the mathematical considerations involved in the registration of raw digitized coordinate points to the UTM coordinate system are presented. Scale factor considerations are also included. Results of the processing and analysis are illustrated using the Shiprock and Gallup Quadrangle test data.
Sea Surface Scattering of Radar Signals in Ku- and C-Bands: the Role of Breaking Waves
NASA Astrophysics Data System (ADS)
Voronovich, A.; Zavorotny, V.
2001-05-01
A small-slope approximation (SSA) is used for numerical calculations of a radar backscattering cross section of the ocean surface for both Ku- and C-bands for wind speeds ranging from 5 m/s to 15 m/s as a function of an incident angle. Both the lowest order of the SSA and the one that includes the next-order correction to it are considered. The initial calculations were made assuming Gaussian statistics of sea surface and the Elfouhaily et al. surface-height spectrum for fully developed seas (T. Elfouhaily et al., J. Geophys. Res., vol.102, pp.15,781-15,796 (1997)). Empirical scattering models CMOD2-I3 and SASS-II are used for comparison. Theoretical calculations are in good overall agreement with the experiment, being within a 2 dB accuracy on average with a 3 dB maximal discrepancy. The only exception is HH-polarization in the upwind direction where discrepancies reach 5.7 dB for an incidence angle of 60{° }. Note that the SSA allows controlling the accuracy of calculations by comparing the results of the lowest order approximation with corrections originated from higher order terms. The discrepancy between our calculations and empirical data for HH polarization appears to be significantly larger then accuracy of the calculations. Hence, the reason for it should be attributed to the inadequate sea-roughness model. We have checked a hypothesis that steep waves are responsible for this effect. We assumed that the contribution from steep waves could be evaluated in the geometric optics approximation. This allowed us to retrieve the probability density function of large slopes based on comparison of theoretical calculations and experimental data for Ku-band at HH polarization. It was found that in the upwind direction this function could be approximated by a simple relationship: \\[ \\text{Log}_{10}P(a_{x},0) = -2.84 + 0.097ṡ U + 1.33ṡ a_{x}, \\] where U is wind speed in m/s and ax>0.8 is the appropriate slope. Note that such large slopes cannot belong to steady waves and rather correspond to breaking ones. Calculations were performed again for both bands and polarizations with the contribution from breakers included. Corrections to VV-polarization appeared to be relatively small, since the level of backscattering from the background roughness (without breakers) is large as compared to the case of HH-polarization. With the contribution from steep waves included, the backscattering cross section corresponds to experimental results within a 1-2 dB accuracy for winds ranging between 5 m/s and 15 m/s, for both polarizations in both wave bands. Another conclusion drawn from this research is that the Elfouhaily et al. spectrum seems to overestimate the spectral density by 2-4 dB in the case of short, centimeter-range, waves in the cross-wind direction for low winds.
Kammersgaard, T S; Malmkvist, J; Pedersen, L J
2013-12-01
Hypothermia is a major cause of mortality in neonatal pigs. Infrared (IR) thermography is a promising non-invasive method to assess thermal status, but has not been evaluated for use on neonatal pigs from birth. The aim of this study was to evaluate the application of IR thermography as a non-invasive tool to estimate body temperature and assess the thermal status in newborn pigs by (1) estimating the relationship between surface temperature and rectal temperature (RT) in neonatal pigs; and (2) estimating the influence of air temperature (AT), birth weight and the time from birth on the relationship between surface temperature and RT. The method was evaluated on the basis of 1695 thermograms and 915 RTs on 91 neonatal pigs born in loose farrowing pens with floor heating at 34°C, and three different ATs (15°C, 20°C and 25°C). Full-body thermograms of the back and the side of the pigs and RT were acquired at 11 sampling times between birth and 48 h after birth. The maximum (IRmax), minimum, average of the full body and ear minimum IR surface temperatures were derived from the thermograms. IRmax had the highest correlation with RT (0.82) and was therefore used in the statistical analysis. The relation of RT by IRmax depended on time at: 0 h (slope: 0.20°C, P<0.001), 0.25 h (slope: 0.42°C, P<0.01), and 0.5 and 1 h after birth (slope: 0.68°C, P<0.001). After the 1st hour (1.5 to 48 h) the relation of RT by IRmax was no longer affected by time (slope: 0.63°C, P<0.001). The agreement between RT and IRmax was improved (P<0.001) after the 1st hour (RT-IRmax 0 to 1 h: 2.02 (1.44)°C; 1.5 to 48 h: 0.95 (0.85)°C). IRmax below 30°C was indicative of piglets having RT<32°C (91.3%). The location of IRmax was identified predominantly at the base of the ears (27/50), other sites in the region of the head (12/50) and the axilla area (8/50). There was a small but significant effect of the angle as IRmax_side-IRmax_back: mean 0.20°C (P<0.001). On the basis of the low difference between IRmax from back and side view thermograms, and the location of IRmax, the angle seems less important and thus the method has the potential to be used without the need for manual restraint of the pigs. On the basis of the results of this study, we propose that IRmax temperature from full-body thermograms has implication as a valid tool to assess the thermal status in neonatal piglets but not as an identical substitute for RT.
NASA Astrophysics Data System (ADS)
Bourrel, L.; Darrozes, J.; Guyot, J.; Christophoul, F.; Bondoux, F.
2007-05-01
The Beni river drains a catchment area of 282 000 km2 of which 40 percent are located in the Cordillera of the Bolivian and Peruvian Andes, and the rest in the Amazonian plain : the studied reaches runs from Guanay (Andean Piedmont) to Riberalta (junction with Madre de Dios river) that represents a distance by the river of 1055 km. The Napo river starts in the Ecuadorian Andes and leaves Ecuador in Nuevo Rocafuerte (27 400 km2) and enters in Peru until its junction with the Amazon river : the studied section runs from Misahualli (Andean Piedmont) to this junction, that represents a distance by the river of 995 km. The GPS data were acquired using a mobile GPS embarked on a boat and 4 fixed bases located along the Beni river, 6 along the Napo river and the two rivers profile calculated from post-treated differential GPS solutions. For the Beni river, two sectors were identified: - the upstream sector (~230 km) between Guanay (414 m) and 50 km downstream Rurrenabaque (245 m) is located in Andean Piedmont, which consists in a series of thrusts associated with anticlines and synclines (the subandean zone), and presents slope values range between 135 cm/km and 10 cm/km and an average index of sinuosity (IS) of 1.29, - the downstream sector (~ 820 km) which runs in Amazonian plain (until Riberalta -165 m-), is characterized by an average slope of 8 cm/km and an average IS of 2.06 (this sector is much more homogeneous and the Beni river shows a meandering channel). For the Napo River, three sectors were identified: - the first sector (~140 km) between Misahualli (401 m) and Coca (265 m), is located in Andean Piedmont (subandean zone) and presents slope values range between 170 cm/km and 30 cm/km and an average IS of 1.6, - the second sector (~250 km) between Coca (when the Napo river enters in the Amazonian plain) and Nuevo Rocafuerte (190 m), presents slope values range between 30 cm/km and 20 cm/km and an average IS of 1.2, and a convex-up shape profile corresponding to the preserved part of the Pastaza-Napo Megafan, not yet affected by headwater erosion, - the third sector (~600 km) between Nuevo Rocafuerte and the confluence with the Amazon river (101 m), where the Napo river flows through the quaternary deposits of the Pastaza-Napo Megafan, presents slope values ranging from 20 to 10 cm/km and an average IS of 1.2, and is characterized by a more classical concave-up shape profile. Our main results established using DGPS data (an important difference between the slope and IS averages of the Napo and the Beni rivers in their Amazonian part, respectively ~20 cm/km and ~8 cm/km, ie a ratio ~2.5, 1.2 and 2.06, ie a ratio ~0.6) bring an additional explanation to the results obtained by the preceding authors, with balance methods, and confirm respectively the erosion and the sedimentation behaviour of the Napo and the Beni rivers.
Rochelle B. Renken
1997-01-01
I examined the species composition, species richness, and relative abundance of herpetofaunal communities on southwest-facing and northeast-facing slopes on the MOFEP sites. For the landscape-scale investigations, herpetofaunal communities on southwest- facing slopes were relatively similar, averaged 23.4 species/site, and had relative abundance estimates ranging from...
Measuring Directional Wave Spectra and Wind Speed with a Scanning Radar Altimeter
NASA Technical Reports Server (NTRS)
Walsh, E. J.; Vandemark, D.; Wright, C. W.; Swift, R. N.; Scott, J. F.; Hines, D. E.
1999-01-01
The geometry for the NASA Scanning Radar Altimeter (SRA) is shown. It transmits a 8-ns duration pulse at Ka-band (8.3 mm) and measures time of flight as it scans a 1 degree (two-way) beam from left to right across the aircraft ground track. The most recent configuration determines the surface elevation at 64 points spaced at uniform angular intervals of about 0.7 across a swath whose width is about 0.8 times the aircraft altitude. The system generates these raster lines of the surface topography beneath the aircraft at about a 10 Hz rate. In postflight processing the SRA wave topographic data are transformed with a two-dimensional Fast Fourier Transformation (FFT) and Doppler corrected to produce directional wave spectra. The SRA is not absolutely calibrated in power, but by measuring the relative fall-off of backscatter with increasing incidence angle, the SRA can also determine the mean square slope (mss) of the sea surface, a surrogate for wind speed. For the slope-dependent specular point model of radar sea surface scattering, an expression approximated by a geometric optics form, for the relative variation with incidence angle of the normalized backscatter radar cross section would be sigma (sup 0) (sub rel) = sec (exp 4) theta exp (-tan squared theta/mss) where theta is the off-nadir incidence angle.
NASA Astrophysics Data System (ADS)
Yan, Qiushuang; Zhang, Jie; Fan, Chenqing; Wang, Jing; Meng, Junmin
2018-01-01
The collocated normalized radar backscattering cross-section measurements from the Global Precipitation Measurement (GPM) Ku-band precipitation radar (KuPR) and the winds from the moored buoys are used to study the effect of different sea-surface slope probability density functions (PDFs), including the Gaussian PDF, the Gram-Charlier PDF, and the Liu PDF, on the geometrical optics (GO) model predictions of the radar backscatter at low incidence angles (0 deg to 18 deg) at different sea states. First, the peakedness coefficient in the Liu distribution is determined using the collocations at the normal incidence angle, and the results indicate that the peakedness coefficient is a nonlinear function of the wind speed. Then, the performance of the modified Liu distribution, i.e., Liu distribution using the obtained peakedness coefficient estimate; the Gaussian distribution; and the Gram-Charlier distribution is analyzed. The results show that the GO model predictions with the modified Liu distribution agree best with the KuPR measurements, followed by the predictions with the Gaussian distribution, while the predictions with the Gram-Charlier distribution have larger differences as the total or the slick filtered, not the radar filtered, probability density is included in the distribution. The best-performing distribution changes with incidence angle and changes with wind speed.
Perry, Bonnie E; Evans, Emily K; Stokic, Dobrivoje S
2017-02-17
Armeo®Spring exoskeleton is widely used for upper extremity rehabilitation; however, weight compensation provided by the device appears insufficiently characterized to fully utilize it in clinical and research settings. Weight compensation was quantified by measuring static force in the sagittal plane with a load cell attached to the elbow joint of Armeo®Spring. All upper spring settings were examined in 5° increments at the minimum, maximum, and two intermediate upper and lower module length settings, while keeping the lower spring at minimum. The same measurements were made for minimum upper spring setting and maximum lower spring setting at minimum and maximum module lengths. Weight compensation was plotted against upper module angles, and slope was analyzed for each condition. The Armeo®Spring design prompted defining the slack angle and exoskeleton balance angle, which, depending on spring and length settings, divide the operating range into different unloading and loading regions. Higher spring tensions and shorter module lengths provided greater unloading (≤6.32 kg of support). Weight compensation slope decreased faster with shorter length settings (minimum length = -0.082 ± 0.002 kg/°; maximum length = -0.046 ± 0.001 kg/°) independent of spring settings. Understanding the impact of different settings on the Armeo®Spring weight compensation should help define best clinical practice and improve fidelity of research.
Influence of filling-drawdown cycles of the Vajont reservoir on Mt. Toc slope stability
NASA Astrophysics Data System (ADS)
Paronuzzi, Paolo; Rigo, Elia; Bolla, Alberto
2013-06-01
In the present work, the 1963 Vajont landslide has been back-analyzed in detail to examine the influence of reservoir operations (filling and drawdown) on Mt. Toc slope stability. The combined seepage-slope stability analyses carried out show that the main destabilizing factor that favored the 1963 Vajont landslide was the reservoir-induced water table that formed as a consequence of rapid seepage inflow within the submerged toe of the slope — decrease in the factor of safety (FOS) up to 12% compared to the initial slope stability condition, i.e., in the absence of the Vajont reservoir. Rainfall would only have been a decisive factor if the initial stability condition of the Mt. Toc slope had already been very close to failure (decrease in FOS caused by heavy or prolonged rainfall is about 3-4%, for the worst case scenario analyzed). The permeability of the shear zone material occurring at the base of the prehistoric Vajont rockslide has been evaluated at 5 × 10- 4 m/s, and back-calculated values of the friction angles Φ range from 17.5° to 27.5°. When considering mountain reservoirs, slope failures can occur during both filling and drawdown phases. In the Vajont case, owing to the highly permeable materials of the shear zone, slope stability decreased during filling and increased during drawdown. Another displacement-dependent phenomenon of a mechanical nature - progressive failure of the NE landslide constraint - has to be considered to understand the slope collapse that occurred during the last drawdown (26 September-9 October 1963). The results of the combined seepage-slope stability models indicate that permeability of bank-forming material and filling-drawdown rates of reservoirs can strongly influence slope stability. Slow lowering of the reservoir level is a necessary measure to reduce the occurrence of very dangerous transient negative peaks of FOS.
Comparison of university students' understanding of graphs in different contexts
NASA Astrophysics Data System (ADS)
Planinic, Maja; Ivanjek, Lana; Susac, Ana; Milin-Sipus, Zeljka
2013-12-01
This study investigates university students’ understanding of graphs in three different domains: mathematics, physics (kinematics), and contexts other than physics. Eight sets of parallel mathematics, physics, and other context questions about graphs were developed. A test consisting of these eight sets of questions (24 questions in all) was administered to 385 first year students at University of Zagreb who were either prospective physics or mathematics teachers or prospective physicists or mathematicians. Rasch analysis of data was conducted and linear measures for item difficulties were obtained. Average difficulties of items in three domains (mathematics, physics, and other contexts) and over two concepts (graph slope, area under the graph) were computed and compared. Analysis suggests that the variation of average difficulty among the three domains is much smaller for the concept of graph slope than for the concept of area under the graph. Most of the slope items are very close in difficulty, suggesting that students who have developed sufficient understanding of graph slope in mathematics are generally able to transfer it almost equally successfully to other contexts. A large difference was found between the difficulty of the concept of area under the graph in physics and other contexts on one side and mathematics on the other side. Comparison of average difficulty of the three domains suggests that mathematics without context is the easiest domain for students. Adding either physics or other context to mathematical items generally seems to increase item difficulty. No significant difference was found between the average item difficulty in physics and contexts other than physics, suggesting that physics (kinematics) remains a difficult context for most students despite the received instruction on kinematics in high school.
Laser probe for measuring 2-D wave slope spectra of ocean capillary waves
NASA Technical Reports Server (NTRS)
Palm, C. S.; Anderson, R. C.; Reece, A. M.
1977-01-01
A laser-optical instrument for use in determining the two-dimensional wave-slope spectrum of ocean capillary waves is described. The instrument measures up to a 35-deg tip angle of the surface normal by measuring the position of a refracted laser beam directed vertically upward through a water surface. A telescope, a continuous two-dimensional Schottky barrier photodiode, and a pair of analog dividers render the signals independent of water height and insensitive to laser-beam intensity fluctuations. Calibration is performed entirely in the laboratory before field use. Sample records and wave-slope spectra are shown for one-dimensional wave-tank tests and for two-dimensional ocean tests. These are presented along with comparison spectra for calm and choppy water conditions. A mechanical wave follower was used to adjust the instrument position in the presence of large ocean swell and tides.
Sekine, Hiroshi; Kobayashi, Masahiro; Onuki, Yusuke; Kawabata, Kazunari; Tsuboi, Toshiki; Matsuno, Yasushi; Takahashi, Hidekazu; Inoue, Shunsuke; Ichikawa, Takeshi
2017-12-09
CMOS image sensors (CISs) with global shutter (GS) function are strongly required in order to avoid image degradation. However, CISs with GS function have generally been inferior to the rolling shutter (RS) CIS in performance, because they have more components. This problem is remarkable in small pixel pitch. The newly developed 3.4 µm pitch GS CIS solves this problem by using multiple accumulation shutter technology and the gentle slope light guide structure. As a result, the developed GS pixel achieves 1.8 e - temporal noise and 16,200 e - full well capacity with charge domain memory in 120 fps operation. The sensitivity and parasitic light sensitivity are 28,000 e - /lx·s and -89 dB, respectively. Moreover, the incident light angle dependence of sensitivity and parasitic light sensitivity are improved by the gentle slope light guide structure.
Structural Optimization of the Retractable Dome for Four Meter Telescope (FMT)
NASA Astrophysics Data System (ADS)
Pan, Nian; Li, Yuxi; Fan, Yue; Ma, Wenli; Huang, Jinlong; Jiang, Ping; Kong, Sijie
2017-03-01
Dome seeing degrades the image quality of ground-based telescopes. To achieve dome seeing of the Four Meter Telescope (FMT) less than 0.5 arcsec, structural optimizations based on computational fluid dynamics (CFD) simulation were proposed. The results of the simulation showed that dome seeing of FMT was 0.42 arcsec, which was mainly caused by the slope angle of the dome when the slope angle was 15° and the wind speed was 10 m/s. Furthermore, the lower the air speed was, the less dome seeing would be. Wind tunnel tests (WT) with a 1:120 scaled model of the retractable dome and FMT indicated that the calculated deviations of the CFD simulation used in this paper were less than 20% and the same variations of the refractive index derived from the WT would be a convincing argument for the validity of the simulations. Thus, the optimization of the retractable dome was reliable and the method expressed in this paper provided a reference for the design of next generation of ground-based telescope dome.
NASA Technical Reports Server (NTRS)
Crabill, Norman L.
1956-01-01
The National Advisory Committee for Aeronautics has conducted a flight test of a model approximating the McDonnell F3H-lN airplane configuration to determine its pitch-up and buffet boundaries, as well as the usual longitudinal stability derivatives obtainable from the pulsed- tail technique. The test was conducted by the freely flying rocket- boosted model technique developed at the Langley Laboratory; results were obtained at Mach numbers from 0.40 to 1.27 at corresponding Reynolds numbers of 2.6 x 10(exp 6) and 9.0 x 10(exp 6). The phenomena of pitch-up, buffet, and maximum lift were encountered at Mach numbers between 0.42 and 0.85. The lift-curve slope and wing-root bending-moment slope increased with increasing angle of attack, whereas the static stability decreased with angle of attack at subsonic speeds and increased at transonic speeds. There was little change in trim at low lift at transonic speeds.
Upper bound on the slope of steady water waves with small adverse vorticity
NASA Astrophysics Data System (ADS)
So, Seung Wook; Strauss, Walter A.
2018-03-01
We consider the angle of inclination (with respect to the horizontal) of the profile of a steady 2D inviscid symmetric periodic or solitary water wave subject to gravity. There is an upper bound of 31.15° in the irrotational case [1] and an upper bound of 45° in the case of favorable vorticity [13]. On the other hand, if the vorticity is adverse, the profile can become vertical. We prove here that if the adverse vorticity is sufficiently small, then the angle still has an upper bound which is slightly larger than 45°.
Theoretical antisymmetric span loading for wings of arbitrary plan form at subsonic speeds
NASA Technical Reports Server (NTRS)
Deyoung, John
1951-01-01
A simplified lifting-surface theory that includes effects of compressibility and spanwise variation of section lift-curve slope is used to provide charts with which antisymmetric loading due to arbitrary antisymmetric angle of attack can be found for wings having symmetric plan forms with a constant spanwise sweep angle of the quarter-chord line. Consideration is given to the flexible wing in roll. Aerodynamic characteristics due to rolling, deflected ailerons, and sideslip of wings with dihedral are considered. Solutions are presented for straight-tapered wings for a range of swept plan forms.
Toward a new paradigm for boulder dislodgement during storms
NASA Astrophysics Data System (ADS)
Weiss, Robert; Sheremet, Alex
2017-07-01
Boulders are an important coastal hazard event deposit because they can only be moved by tsunamis and energetic storms effects of storms. Storms and tsunami are competing processes for coastal change along many shorelines. Therefore, distinguishing the boulders that were moved during a storm from those moved by a tsunami is important. In this contribution, we present the results of a parameter study based on the TRIADS model for wave shoaling on mildly sloping beaches, coupled with a boulder-dislodgement model that is based on Newton's Second Law of Motion. The results show how smaller slopes expose the waves longer to the nonlinear processes, thus increasing the energy in the infragravity wave band. More energy in the infragravity wave band means that there are more energy wave lengths that can dislodge larger boulders. At the same time, a steeper slope lowers the threshold for boulder dislodgement (critical angle of dislodgement), making it more likely for larger boulders to be dislodged on a steeper slope. The competition between these two processes govern boulder dislodgement during storms and is investigated inhere.
A geomorphic process law for detachment-limited hillslopes
NASA Astrophysics Data System (ADS)
Turowski, Jens
2015-04-01
Geomorphic process laws are used to assess the shape evolution of structures at the Earth's surface over geological time scales, and are routinely used in landscape evolution models. There are two currently available concepts on which process laws for hillslope evolution rely. In the transport-limited concept, the evolution of a hillslope is described by a linear or a non-linear diffusion equation. In contrast, in the threshold slope concept, the hillslope is assumed to collapse to a slope equal to the internal friction angle of the material when the load due to the relief exists the material strength. Many mountains feature bedrock slopes, especially in the high mountains, and material transport along the slope is limited by the erosion of the material from the bedrock. Here, I suggest a process law for detachment-limited or threshold-dominated hillslopes, in which the erosion rate is a function of the applied stress minus the surface stress due to structural loading. The process law leads to the prediction of an equilibrium form that compares well to the shape of many mountain domes.
NASA Astrophysics Data System (ADS)
Kaur, Ramanpreet; Sharma, Sapna
2018-06-01
The complexity of traffic flow phenomena on curved road with slope is investigated and a new lattice model is presented with the addition of driver's anticipation effect for two lane system. The condition under which the free flow turns into the jammed one, is obtained theoretically by using stability analysis. The results obtained through linear analysis indicates that the stable region increases (decreases) corresponding to uphill (downhill) case due to increasing slope angle for fixed anticipation parameter. It is found that when the vehicular density becomes higher than a critical value, traffic jam appears in the form of kink antikink density waves. Analytically, the kink antikink density waves are described by the solution of mKdV equation obtained from non linear analysis. In addition, the theoretical results has been verified through numerical simulation, which confirm that the slope on a curved highway significantly influence the traffic dynamics and traffic jam can be suppressed efficiently by considering the anticipation parameter in a two lane lattice model when lane changing is allowed.
NASA Astrophysics Data System (ADS)
Zambon, Francesca; Carli, Cristian; Galluzzi, Valentina; Capaccioni, Fabrizio; Filacchione, Gianrico; Giacomini, Lorenza; Massirioni, Matteo; Palumbo, Pasquale
2016-04-01
Mercury has been explored by two spatial missions. Mariner 10 acquired 45% of the surface during three Hermean flybys in 1974, giving a first close view of the planet. The recent MESSENGER mission globally mapped the planet and contributed to understand many unsolved issues about Mercury (Solomon et al., 2007). Nevertheless, even after MESSENGER, Mercury surface composition remains still unclear, and the correlation between morphology and compositional heterogeneity is not yet well understood. Thanks to the Mercury Dual Imaging System (MDIS), onboard MESSENGER, a global coverage of Mercury surface with variable spatial resolution has been done. MDIS is equipped with a Narrow Angle Camera (NAC), dedicated to the high-resolution study of the surface morphology and a Wide Angle Camera (WAC) with 12 filters useful to investigate the surface composition (Hawkins et al., 2007). Several works were focused on the different terrains present on Mercury, in particular, Denevi et al. (2013) observes that ~27% of Hermean surface is covered by volcanic origin smooth plains. These plains show differences in composition associated to spectral slope variation. High-reflectance red plains (HRP), with spectral slope greater than the average and low-reflectance blue plains (LBP), with spectral slope lesser than the average has been identified. This spectral variations could be correlated with different chemical composition. The X-Ray Spectrometer (XRS) data show that HRP-type areas are associated with a low-Fe basalt-like composition, while the LBP are also Fe poor but are rich in Mg/Si and Ca/Si and with lower Al/Si and are interpreted as more ultramafic (Nittler et al., 2011; Weider et al., 2012; Denevi at al., 2013, Weider et al., 2014). In these work we produce high resolution multicolor mosaic to found a possible link between morphology and composition. The spectral properties have been used to define the principal units of Mercury's surface or to characterize other globally distributed distinct spectral units. Therefore, integrating the spectral variability to a well defined morpho-stratigraphic (photo-interpreted) map will permit to improve the geologic map itself, defining sub-units, and associating spectral properties to analogue deposits. We are working to produce quadrangles color mosaics and high resolution color mosaics of smaller areas to define color products (common planetary geologic map) and obtain an "advanced" geologic map. The mapping process permits integration of different geological surface information to better understand the planet crust formation and evolution. Merging data from different instruments provides additional information about lithological composition, contributing to the construction of a more complete geological map (e.g., Giacomini et al., 2012). These work has been done in support of the BepiColombo Mission, which has an innovative Spectrometer and Imagers Integrated Observatory SYStem (SIMBIO-SYS). SIMBIO-SYS is composed by three instruments, the visible-near-infrared imaging spectrometer (VIHI), the high-resolution imager (HRIC) and the stereo imaging system (STC) which will be albe to improve the knowledge of Mercury surface form the geological and compositional point of view. This research was supported by the Italian Space Agency (ASI) within the SIMBIOSYS project (ASI-INAF agreement no. I/022/10/0)
NASA Astrophysics Data System (ADS)
Hoffert, Michael J.; Weise, Eric; Clow, Jenna; Hirzel, Jacquelyn; Leeder, Brett; Molyneux, Scott; Scutti, Nicholas; Spartalis, Sarah; Tokuhara, Corey
2014-05-01
Six beginning astronomy students, part of an undergraduate stellar astronomy course, one advanced undergraduate student assistant, and a professor measured the position angles and separations of Washington Double Stars (WDS) 05460 + 2119 (also known as ARY 6 AD and ARY 6 AE). The measurements were made at the Manzanita Observatory (116° 20'42" W, 32° 44' 5" N) of the Tierra Astronomical Institute on 10 Blackwood Rd. in Boulevard, California (www.youtube.com/watch?v=BHVdcMGBGDU), at an elevation of 4,500 ft. A Celestron 11" HD Edge telescope was used to measure the position angles and separations of ARY 6 AD and ARY 6 AE. The averages of our measurements are as follows: separation AD: trial 1 124.1 arcseconds and trial 2 124.5 arcseconds. The average of separation for AE: trial 1 73.3 arcseconds and trial 2 73.8 arcseconds. The averages of position angle for AD: trial 1 159.9 degrees and trial 2 161.3 degrees. The averages of position angle for AE: trial 1 232.6 degrees and trial 2 233.7 degrees.
Fanourakis, Dimitrios; Briese, Christoph; Max, Johannes Fj; Kleinen, Silke; Putz, Alexander; Fiorani, Fabio; Ulbrich, Andreas; Schurr, Ulrich
2014-04-11
Light curtain arrays (LC), a recently introduced phenotyping method, yield a binary data matrix from which a shoot silhouette is reconstructed. We addressed the accuracy and applicability of LC in assessing leaf area and maximum height (base to the highest leaf tip) in a phenotyping platform. LC were integrated to an automated routine for positioning, allowing in situ measurements. Two dicotyledonous (rapeseed, tomato) and two monocotyledonous (maize, barley) species with contrasting shoot architecture were investigated. To evaluate if averaging multiple view angles helps in resolving self-overlaps, we acquired a data set by rotating plants every 10° for 170°. To test how rapid these measurements can be without loss of information, we evaluated nine scanning speeds. Leaf area of overlapping plants was also estimated to assess the possibility to scale this method for plant stands. The relation between measured and calculated maximum height was linear and nearly the same for all species. Linear relations were also found between plant leaf area and calculated pixel area. However, the regression slope was different between monocotyledonous and dicotyledonous species. Increasing the scanning speed stepwise from 0.9 to 23.4 m s-1 did not affect the estimation of maximum height. Instead, the calculated pixel area was inversely proportional to scanning speed. The estimation of plant leaf area by means of calculated pixel area became more accurate by averaging consecutive silhouettes and/or increasing the angle between them. Simulations showed that decreasing plant distance gradually from 20 to 0 cm, led to underestimation of plant leaf area owing to overlaps. This underestimation was more important for large plants of dicotyledonous species and for small plants of monocotyledonous ones. LC offer an accurate estimation of plant leaf area and maximum height, while the number of consecutive silhouettes that needs to be averaged is species-dependent. A constant scanning speed is important for leaf area estimations by using LC. Simulations of the effect of varying plant spacing gave promising results for method application in sets of partly overlapping plants, which applies also to field conditions during and after canopy closure for crops sown in rows.
Surface energy fluxes on four slope sites during FIFE 1988
NASA Technical Reports Server (NTRS)
Nie, D.; Demetriades-Shah, T.; Kanemasu, E. T.
1992-01-01
Four slopes (facing north, south, east, and west) in the Konza Prairie Research Natural Area were selected to study the effect of topography on surface energy balance and other micrometeorological variables. Energy fluxes, air temperature, and vapor pressure were measured on the slopes throughout the 1988 growing season. Net radiation was highest on the south facing slope and lowest on the north facing slope, and the difference was more than 150 W/sq m (20-30 percent) at solar noon. For daily averages the difference was about 25 W/sq m (15 percent) early in the season and increased to about 60 W/sq m (30-50 percent) in September. Soil heat fluxes were similar for all the slopes. The absolute values of sensible heat flux were consistently lower on the north facing slope compared with other slopes. The south facing slope had the greatest day-to-day fluctuation in latent heat flux as a result of the interaction of net radiation, soil moisture, and green leaf area. Differences were found in the partitioning of the available energy among the slopes, and the north facing slope had a higher percentage of energy dissipated into latent heat flux. The north facing slope had higher air temperatures during the day and higher vapor pressures both during the day and at night when the wind was from the south.
Photometric properties of Ceres from telescopic observations using Dawn Framing Camera color filters
NASA Astrophysics Data System (ADS)
Reddy, Vishnu; Li, Jian-Yang; Gary, Bruce L.; Sanchez, Juan A.; Stephens, Robert D.; Megna, Ralph; Coley, Daniel; Nathues, Andreas; Le Corre, Lucille; Hoffmann, Martin
2015-11-01
The dwarf planet Ceres is likely differentiated similar to the terrestrial planets but with a water/ice dominated mantle and an aqueously altered crust. Detailed modeling of Ceres' phase function has never been performed to understand its surface properties. The Dawn spacecraft began orbital science operations at the dwarf planet in April 2015. We observed Ceres with flight spares of the seven Dawn Framing Camera color filters mounted on ground-based telescopes over the course of three years to model its phase function versus wavelength. Our analysis shows that the modeled geometric albedos derived from both the IAU HG model and the Hapke model are consistent with a flat and featureless spectrum of Ceres, although the values are ∼10% higher than previous measurements. Our models also suggest a wavelength dependence of Ceres' phase function. The IAU G-parameter and the Hapke single-particle phase function parameter, g, are both consistent with decreasing (shallower) phase slope with increasing wavelength. Such a wavelength dependence of phase function is consistent with reddening of spectral slope with increasing phase angle, or phase-reddening. This phase reddening is consistent with previous spectra of Ceres obtained at various phase angles archived in the literature, and consistent with the fact that the modeled geometric albedo spectrum of Ceres is the bluest of all spectra because it represents the spectrum at 0° phase angle. Ground-based FC color filter lightcurve data are consistent with HST albedo maps confirming that Ceres' lightcurve is dominated by albedo and not shape. We detected a positive correlation between 1.1-μm absorption band depth and geometric albedo suggesting brighter areas on Ceres have absorption bands that are deeper. We did not see the "extreme" slope values measured by Perna et al. (Perna, D., et al. [2015]. Astron. Astrophys. 575 (L1-6)), which they have attributed to "resurfacing episodes" on Ceres.
A model for the geomorphic development of normal-fault facets
NASA Astrophysics Data System (ADS)
Tucker, G. E.; Hobley, D. E. J.; McCoy, S. W.
2014-12-01
Triangular facets are among the most striking landforms associated with normal faulting. The genesis of facets is of great interest both for the information facets contain about tectonic motion, and because the progressive emergence of facets makes them potential recorders of both geomorphic and tectonic history. In this report, we present observations of triangular facets in the western United States and in the Italian Central Apennines. Facets in these regions typically form quasi-planar surfaces that are aligned in series along and above the trace of an active fault. Some facet surfaces consist mainly of exposed bedrock, with a thin and highly discontinuous cover of loose regolith. Other facets are mantled by a several-decimeter-thick regolith cover. Over the course of its morphologic development, a facet slope segment may evolve from a steep (~60 degree) bedrock fault scarp, well above the angle of repose for soil, to a gentler (~20-40 degree) slope that can potentially sustain a coherent regolith cover. This evolutionary trajectory across the angle of repose renders nonlinear diffusion theory inapplicable. To formulate an alternative process-based theory for facet evolution, we use a particle-based approach that acknowledges the possibility for both short- and long-range sediment-grain motions, depending on the topography. The processes of rock weathering, grain entrainment, and grain motion are represented as stochastic state-pair transitions with specified transition rates. The model predicts that facet behavior can range smoothly along the spectrum from a weathering-limited mode to a transport-limited mode, depending on the ratio of fault-slip rate to bare-bedrock regolith production rate. The model also implies that facets formed along a fault with pinned tips should show systematic variation in slope angle that correlates with along-fault position and slip rate. Preliminary observations from central Italy and the eastern Basin and Range are consistent with this prediction.
NASA Astrophysics Data System (ADS)
Flemings, P. B.; Song, I.; Saffer, D. M.
2012-04-01
Integrated Ocean Drilling Program (IODP) Expedition 308 was dedicated to the study of fluid flow, overpressure, and slope stability in the Ursa Basin, on the continental slope of the Gulf of Mexico. In this location, turbidite channel levees deposited a wedge-shaped body: the deposition rate in the thick part of the wedge exceeded 12 mm/yr. This rapid deposition of fine grained sediments generated excess pore pressure observed near the seafloor. IODP drilling focused on three Sites: U1322, U1323, and U1324, along the steepest slope (2°) on the eastern section of the Ursa Canyon levee deposits. In this study, we conducted a suite of deformation experiments on samples from Site 1324, to understand the stress-strain behavior and stress history of the recovered core material. Our samples were taken from depths of 30-160 meters below seafloor, and are composed of ~40% silt and ~60% clay, with porosities ranging from ~42-55%. We first conducted uniaxial consolidation tests to determine pre-consolidation stresses and define deformation behavior due to simulated vertical loading. In a subset of tests, we subjected the samples to undrained shearing following consolidation, to define the friction angle and define relationships between stress state and deformation. We find that the lateral effective stress during uniaxial compression is 56-64% of the vertical effective stress (avg. K0=0.6). Pre-consolidation stresses suggest that pore pressure is hydrostatic to 50 mbsf (meters below seafloor), and is overpressured below this, with excess pressures up to 70% of the hydrostatic effective vertical stress (λ*=0.7) at 160 mbsf. The time coefficient of consolidation (cv) in these experiments is ~2.2x10-8 m2/s. Undrained shear tests define a failure envelope with a residual friction angle (φ) of 23° and zero cohesion. In our shearing tests, we observed no pore pressure change during initial (primarily elastic) shear deformation, but note a monotonic increase in pore pressure during the later plastic shear deformation, possibly due to re-organization of sediment grains. Our consolidated undrained tests suggest that the slope in the study area should remain stable during sedimentation, despite the high overpressure (λ*=0.7). However, this stress condition could be affected by gravitational and seepage forces that cause horizontal extension along the slope. In this case, a reduction in horizontal confining stress would render the slope sediments unstable (drive them to active failure) as defined by the Coulomb criterion. If shear strain during slope failure leads to plastic deformation of the sediments, this would also induce a pore pressure increase, further decreasing the factor of safety (FS) for landslides. For the landslides of the slope (i.e., FS=1.0), the overpressure rate λ* should reach 0.92 for the given slope (2°). However, active normal faulting takes place at lower values of λ* (0.2-0.8). Our analysis suggests that the instability of the slope may arise more likely from normal faults dipping stiff (45°+φ/2) than from landslides slipping on a plane parallel to such a gentle slope of seafloor.
Minimally invasive (MIS) Tönnis osteotomy- A technical annotation and review of short term results.
Balakumar, Balasubramanian; Racy, Malek; Madan, Sanjeev
2018-03-01
We detail a modified single incision approach to perform the Tonnis triple pelvic osteotomy by a minimally invasive approach. 12 children underwent minimally invasive Tonnis Osteotomy. There were five boys and seven girls in this study group. Average age was 11 years (9-15 years) at the time of surgery. Mean follow-up was 20.5 months (13-39 months). The average preoperative Antero-Posterior (AP) Centre Edge (CE) angle was -8.8° (-38.6°-18°), the average post-operative AP CE angle was 29.7° (25.1°-43.7°). The average preoperative lateral CE angle was -4.7° (-16°-0°), the average postoperative Lateral CE angle was 28.5° (21.3°-37.4°). The Sharp's angle before and after surgery were 55.7° (51.3°-66°) and 32.4° (16.1°-40.1°) respectively. The mean Tönnis angle before and after the osteotomy were 28.86° (19.7°-43.4°) and 6.3° (0.5°-9.4°) respectively. There was one major complication with sciatic nerve palsy which is in the recovery phase on followup and six minor complications including two cases of transient lateral femoral cutaneous nerve injury, two cases of ischial non-union, over granulation of the wound in one case, and metalwork irritation in one case. We have described a minimally invasive Tonnis osteotomy as a viable option based on our results. This technique is recommended for those who are conversant with the traditional pelvicosteotomies.
Evaluation of the Orogenic Belt Hypothesis for the Formation of Thaumasia, Mars
NASA Astrophysics Data System (ADS)
Nahm, A. L.; Schultz, R. A.
2008-12-01
The Thaumasia Highlands (TH) and Solis Planum are two of the best-known examples of compressional tectonics on Mars. The TH is a region of high topography located in the southern portion of the Tharsis Province, Mars. Solis Planum is located in eastern Thaumasia. Two hypotheses for the formation of this region have been suggested: sliding on a weak horizon or thrusting analogous to orogenic wedges on Earth. Both hypotheses require a shallowly dipping to sub-horizontal weak horizon below Thaumasia. Wrinkle ridges in Solis Planum are also inferred to sole into a décollement. If Thaumasia formed by thrusting related to sliding on a décollement, then certain conditions must be met as in critical taper wedge mechanics (CTWM) theory. If the angle between the surface slope and the basal décollement is less than predicted by the critical taper equation, the 'subcritical' wedge will deform internally until critical taper is achieved. Once the critical taper has been achieved, internal deformation ceases and the wedge will slide along its base. Formation of orogenic belts on Earth (such as the Central Mountains in Taiwan) can be described using CTWM. This method is applied here to the Thaumasia region on Mars. The surface slope (alpha) was measured in three locations: Syria Planum-Thaumasia margin, Solis Planum, and the TH. Topographic slopes were compared to the results from the critical taper equation. Because the dip of the basal décollement (beta) cannot be measured directly as on Earth, the dip angle was varied at 0 - 10 degrees; these values span the range of likely values based on terrestrial wedges. Pore fluid pressure (lambda) was varied between 0 (dry) and 0.9 (overpressured); these values span the full range of this important unknown parameter. Material properties, such as the coefficients of internal friction and of the basal décollement, were varied using reasonable values. Preliminary results show that for both reasonable (such as lambda = 0, mu b = 0.85, beta = 0 deg) and extreme (such as lambda = 0.9, mu b = 0.1, beta greater than 0 deg) values of the parameters for Mars, the predicted critical taper angle was typically lower than the measured slope, rendering the orogenic belt hypothesis for the formation of the TH invalid. Comparable analysis of Solis Planum shows it also lacks a décollement.
Quasi-Steady Evolution of Hillslopes in Layered Landscapes: An Analytic Approach
NASA Astrophysics Data System (ADS)
Glade, R. C.; Anderson, R. S.
2018-01-01
Landscapes developed in layered sedimentary or igneous rocks are common on Earth, as well as on other planets. Features such as hogbacks, exposed dikes, escarpments, and mesas exhibit resistant rock layers adjoining more erodible rock in tilted, vertical, or horizontal orientations. Hillslopes developed in the erodible rock are typically characterized by steep, linear-to-concave slopes or "ramps" mantled with material derived from the resistant layers, often in the form of large blocks. Previous work on hogbacks has shown that feedbacks between weathering and transport of the blocks and underlying soft rock can create relief over time and lead to the development of concave-up slope profiles in the absence of rilling processes. Here we employ an analytic approach, informed by numerical modeling and field data, to describe the quasi-steady state behavior of such rocky hillslopes for the full spectrum of resistant layer dip angles. We begin with a simple geometric analysis that relates structural dip to erosion rates. We then explore the mechanisms by which our numerical model of hogback evolution self-organizes to meet these geometric expectations, including adjustment of soil depth, erosion rates, and block velocities along the ramp. Analytical solutions relate easily measurable field quantities such as ramp length, slope, block size, and resistant layer dip angle to local incision rate, block velocity, and block weathering rate. These equations provide a framework for exploring the evolution of layered landscapes and pinpoint the processes for which we require a more thorough understanding to predict their evolution over time.
Kingston, David C; Riddell, Maureen F; McKinnon, Colin D; Gallagher, Kaitlin M; Callaghan, Jack P
2016-02-01
We evaluated the effect of work surface angle and input hardware on upper-limb posture when using a hybrid computer workstation. Offices use sit-stand and/or tablet workstations to increase worker mobility. These workstations may have negative effects on upper-limb joints by increasing time spent in non-neutral postures, but a hybrid standing workstation may improve working postures. Fourteen participants completed office tasks in four workstation configurations: a horizontal or sloped 15° working surface with computer or tablet hardware. Three-dimensional right upper-limb postures were recorded during three tasks: reading, form filling, and writing e-mails. Amplitude probability distribution functions determined the median and range of upper-limb postures. The sloped-surface tablet workstation decreased wrist ulnar deviation by 5° when compared to the horizontal-surface computer when reading. When using computer input devices (keyboard and mouse), the shoulder, elbow, and wrist were closest to neutral joint postures when working on a horizontal work surface. The elbow was 23° and 15° more extended, whereas the wrist was 6° less ulnar deviated, when reading compared to typing forms or e-mails. We recommend that the horizontal-surface computer configuration be used for typing and the sloped-surface tablet configuration be used for intermittent reading tasks in this hybrid workstation. Offices with mobile employees could use this workstation for alternating their upper-extremity postures; however, other aspects of the device need further investigation. © 2015, Human Factors and Ergonomics Society.
Rainier Mesa CAU Infiltration Model using INFILv3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levitt, Daniel G.; Kwicklis, Edward M.
The outline of this presentation are: (1) Model Inputs - DEM, Precipitation, Air temp, Soil props, Surface geology, Vegetation; (2) Model Pre-processing - Runoff Routing and sinks, Slope and Azimuth, Soil Ksat reduction with slope (to mitigate bathtub ring), Soil-Bedrock Interface permeabilities; (3) Model Calibration - ET using PEST, Chloride mass balance data, Streamflow using PEST; (4) Model Validation - Streamflow data not used for calibration; (5) Uncertainty Analysis; and (6) Results. Conclusions are: (1) Average annual infiltration rates =11 to 18 mm/year for RM domain; (2) Average annual infiltration rates = 7 to 11 mm/year for SM domain; (3)more » ET = 70% of precipitation for both domains; (4) Runoff = 8-9% for RM; and 22-24% for SM - Apparently high average runoff is caused by the truncation of the lowerelevation portions of watersheds where much of the infiltration of runoff waters would otherwise occur; (5) Model results are calibrated to measured ET, CMB data, and streamflow observations; (6) Model results are validated using streamflow observations discovered after model calibration was complete; (7) Use of soil Ksat reduction with slope to mitigate bathtub ring was successful (based on calibration results); and (8) Soil-bedrock K{_}interface is innovative approach.« less
NASA Astrophysics Data System (ADS)
Hoffman, A.; Williams, D. G.; Albeke, S. E.; McMurray, J. A.
2016-12-01
Increased anthropogenic nitrogen (N) deposition can lead to N saturation of ecosystems, altering water quality, biogeochemical cycling and biodiversity. Although some N deposition (Ndep) is natural, there has been an increase in Ndep in the Greater Yellowstone Ecosystem (GYE), largely due to local and regional intensification of agricultural activity, which releases ammonia (NHx), and transportation and industrial processes, which release nitrogen oxides (NOx). The climate, topography, and sources of Ndep in the region likely create heterogeneous patterns of Ndep in the GYE, where nutrient-limited alpine ecosystems are especially susceptible to Ndep. Epiphytic lichens obtain their nutrients from the air and record local scale patterns of Ndep. The objective of our research was to understand patterns and sources of Ndep in the GYE and multiple spatial scales. We established ion exchange resin (IER) collectors during summer 2016 at 15 sites in the western GYE, where we also collected lichens (Usnea lapponica and Letharia vulpina) to establish the relationship between lichen N and IER N. We then collected lichens from across the GYE to expand the spatial extent of our understanding of variation and sources of Ndep. We expected to find higher levels of Ndep in the southwest GYE due to major agricultural sources of N in the Snake River Plains. Additionally, we expected to find higher Ndep at higher elevations, especially on western slopes, because of increased precipitation due to orographic effects. Finally we expected increased 15N in lichen tissues and IER collections with higher Ndep because anthropogenic sources of N tend to have more 15N than natural sources of nitrogen. U. lapponica samples collected in June 2016 on west facing slopes adjacent to the Snake River Plains had average δ15N values of -10.2±7.8 ‰ and on average contained 1.2±.5 %N (n=9), while those on east facing slopes had average δ15N values of -13.1±1.7 ‰ and on average contained 1.3±.3 % N (n=11). L. vulpina samples from west facing slopes on average contained 1.3±.3 %N and had δ15N values of -13.8±2.3 ‰ (n=12), while those on east facing slopes had 1.3±.3 %N and δ15N values of -11.3±1.5 ‰ (n=6).
Applied Analytical Methods for Solving Some Problems of Wave Propagation in the Coastal Areas
NASA Astrophysics Data System (ADS)
Gagoshidze, Shalva; Kodua, Manoni
2016-04-01
Analytical methods, easy for application, are proposed for the solution of the following four classical problems of coastline hydro mechanics: 1. Refraction of waves on coast slopes of arbitrary steepness; 2. Wave propagation in tapering water areas; 3. Longitudinal waves in open channels; 4. Long waves on uniform and non-uniform flows of water. The first three of these problems are solved by the direct Galerkin-Kantorovich method with a choice , of basic functions which completely satisfy all boundary conditions. This approach leads to obtaining new evolutionary equations which can be asymptotically solved by the WKB method. The WKB solution of the first problem enables us to easily determine the three-dimensional field of velocities and to construct the refraction picture of the wave surface near the coast having an arbitrary angle of slope to the horizon varying from 0° to 180°. This solution, in particular for a vertical cliff, fully agrees with Stoker's particular but difficult solution. Moreover, it is shown for the first time that our Schrödinger type evolutionary equation leads to the formation of the so-called "potential wells" if the angle of coast slope to the horizon exceeds 45°, while the angle given at infinity (i.e. at a large distance from the shore) between the wave crests and the coastline exceeds 75°. This theoretical result expressed in terms of elementary functions is well consistent with the experimental observations and with lot of aerial photographs of waves in the coastal zones of the oceans [1,2]. For the second problem we introduce the notions of "wide" and "narrow" water areas. It is shown that Green's law on the wave height growth holds only for the narrow part of the water area, whereas in the wide part the tapering of the water area leads to an insignificant decrease of the wave height. For the third problem, the bank slopes of trapezoidal channels are assumed to have an arbitrary angle of steepness. So far we have known the practically applicable solutions (obtained by MacDonald and Kelland) only for triangular channels whose lateral slopes to the horizon are 30°and 45°. For the fourth problem, a number of unique results are obtained by the correct linearization of shallow water equations. These results include in particular the following: the wave propagation against the flow is blocked by a stream with a Froude number Fr >2/3, but not with Fr > 1, as thought previously. New relations are derived for the conjugate depths of all types of hydraulic jumps and discontinuous roll-waves. References: 1.Stoker,J.J.1957 Water waves.The mathematical theory with application. New York: Interscience Publ., 567 p., (Figures 5.6.2, 5.6.3 and 5.6.5). 2.Hodgins,D.O., Le Blond, P.H. and Huntley, D.A., 1985, Shallow-water wave calculations. Canadian Contractor Report of Hydrography and Ocean Sciences, 10,75 p.,(Figure 3.5). The work supported by Grant Do/77/3-109/14 of the Georgian National Science Foundation
NASA Astrophysics Data System (ADS)
McKinney, E.; Moon, S.
2017-12-01
Tectonically active, soil mantled, and often fire-scorched landscapes of the Los Angeles region are susceptible to slope failures, such as mudflow and landslides, during high-intensity precipitation events. During 2016-2017, this area received a precipitation rate that was 90 mm higher than the long-term precipitation rates averaged over 30 years. These precipitation rates were 24 % higher than the long-term averages and 245 % higher than those over the 2011-2016 period of drought. In this study, we examined the occurrences of slopes failures near Los Angeles in response to high rainfall rates over 2016-2017. We composited time series of high-resolution Planetscope satellite images with resolutions of 3 - 4 m/pixel for 4 selected locations after reviewing 190,000 km2 area in total. We mapped the surface changes by comparing satellite images before and after the winter 2016-2017. Preliminary analysis using spectral bands highlighted the surface changes made by mudflows, landslides, lake levels and land developments. We compared these changes across 2016-2017 with those over a period of recent drought (2011-2016) to assess the influence of high rainfall rates on slope failures.
Observational study of surface wind along a sloping surface over mountainous terrain during winter
NASA Astrophysics Data System (ADS)
Lee, Young-Hee; Lee, Gyuwon; Joo, Sangwon; Ahn, Kwang-Deuk
2018-03-01
The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongchang during February and March using surface wind data. The outdoor venues are located in a complex, mountainous terrain, and hence the near-surface winds form intricate patterns due to the interplay between large-scale and locally forced winds. During February and March, the dominant wind at the ridge level is westerly; however, a significant wind direction change is observed along the sloping surface at the venues. The winds on the sloping surface are also influenced by thermal forcing, showing increased upslope flow during daytime. When neutral air flows over the hill, the windward and leeward flows show a significantly different behavior. A higher correlation of the wind speed between upper- and lower-level stations is shown in the windward region compared with the leeward region. The strong synoptic wind, small width of the ridge, and steep leeward ridge slope angle provide favorable conditions for flow separation at the leeward foot of the ridge. The gust factor increases with decreasing surface elevation and is larger during daytime than nighttime. A significantly large gust factor is also observed in the leeward region.
NASA Astrophysics Data System (ADS)
Iannacone, J.; Berti, M.; Allievi, J.; Del Conte, S.; Corsini, A.
2013-12-01
Space borne InSAR has proven to be very valuable for landslides detection. In particular, extremely slow landslides (Cruden and Varnes, 1996) can be now clearly identified, thanks to the millimetric precision reached by recent multi-interferometric algorithms. The typical approach in radar interpretation for landslides mapping is based on average annual velocity of the deformation which is calculated over the entire times series. The Hotspot and Cluster Analysis (Lu et al., 2012) and the PSI-based matrix approach (Cigna et al., 2013) are examples of landslides mapping techniques based on average annual velocities. However, slope movements can be affected by non-linear deformation trends, (i.e. reactivation of dormant landslides, deceleration due to natural or man-made slope stabilization, seasonal activity, etc). Therefore, analyzing deformation time series is crucial in order to fully characterize slope dynamics. While this is relatively simple to be carried out manually when dealing with small dataset, the time series analysis over regional scale dataset requires automated classification procedures. Berti et al. (2013) developed an automatic procedure for the analysis of InSAR time series based on a sequence of statistical tests. The analysis allows to classify the time series into six distinctive target trends (0=uncorrelated; 1=linear; 2=quadratic; 3=bilinear; 4=discontinuous without constant velocity; 5=discontinuous with change in velocity) which are likely to represent different slope processes. The analysis also provides a series of descriptive parameters which can be used to characterize the temporal changes of ground motion. All the classification algorithms were integrated into a Graphical User Interface called PSTime. We investigated an area of about 2000 km2 in the Northern Apennines of Italy by using SqueeSAR™ algorithm (Ferretti et al., 2011). Two Radarsat-1 data stack, comprising of 112 scenes in descending orbit and 124 scenes in ascending orbit, were processed. The time coverage lasts from April 2003 to November 2012, with an average temporal frequency of 1 scene/month. Radar interpretation has been carried out by considering average annual velocities as well as acceleration/deceleration trends evidenced by PSTime. Altogether, from ascending and descending geometries respectively, this approach allowed detecting of 115 and 112 potential landslides on the basis of average displacement rate and 77 and 79 landslides on the basis of acceleration trends. In conclusion, time series analysis resulted to be very valuable for landslide mapping. In particular it highlighted areas with marked acceleration in a specific period in time while still being affected by low average annual velocity over the entire analysis period. On the other hand, even in areas with high average annual velocity, time series analysis was of primary importance to characterize the slope dynamics in terms of acceleration events.
Patient-specific instrumentation versus conventional instrumentation in total knee arthroplasty.
Chan, W Cw; Pinder, E; Loeffler, M
2016-08-01
To compare patient-specific instrumentation (PSI) with conventional instrumentation in total knee arthroplasty (TKA) in terms of component alignment, operating time, and the learning curve required in a non-teaching hospital. Records of 33 men and 29 women aged 50 to 88 (mean, 71) years who underwent TKA for osteoarthritis using PSI (n=31) or conventional instrumentation (n=31) by a single surgeon were reviewed. The choice of instrumentation was made by the patient; the surgeon did not express any preference and had not used PSI before. All patients used the same cemented, cruciate-retaining system. The PSI and conventional instrumentation groups were comparable in terms of age, body mass index (BMI), American Society of Anesthesiologists grade, pre- and post-operative haemoglobin level, and the need for blood transfusion. Compared with conventional instrumentation, PSI resulted in a smaller coronal femoral component angle (7.7º vs. 6.4º, p=0.003) and posterior tibial slope angle (6.4º vs. 3.2º, p=0.0001), and smaller variance of the respective angles (p=0.006 and p=0.003). In patients with a BMI ≥30, PSI still resulted in a smaller posterior tibial slope angle (5.8º vs. 3.1º, p=0.015) and variance of the angle (p=0.02). The mean tourniquet time was shorter in the PSI group in all patients (p=0.013) and in patients with BMI ≥30 kg/m2 (p=0.0008), and its variance was also smaller in the PSI group (p=0.0004). There was no learning curve required. PSI was simple to use, with no learning curve required. It can be used in non-teaching hospitals and in patients with a high BMI and in cases where the use of an intramedullary alignment guide would be problematic due to previous femoral trauma.
NASA Astrophysics Data System (ADS)
Cook, K. L.; Suppe, J.
2009-12-01
The 1999 magnitude 7.6 Chi-Chi earthquake resulted in significant surface uplift along the rupture zone in western Taiwan. At northeastern-most end of the rupture zone, near the town of Cholan, motion on the Chelungpu fault was accommodated by growth of the Tungshi Anticline, resulting in up to 10m of surface uplift in the channel of the Da’an River. Where the river crosses the anticline, the zone of uplift is approximately 1 km wide, with a gently sloping downstream (western) limb about 400 m long and an abrupt upstream (eastern) limb less than 50 m long. The bedrock consists of the Pliocene Cholan Formation, composed of alternating sandstone, siltstone, and mudstone beds. The bedrock is quite weak and is also pervasively fractured, making it extremely easy to erode. In response to the 1999 uplift, the Da’an River has cut a dramatic gorge, with more than 20 m of incision over a very short period. The rapid pace of incision allows us to directly observe how factors such as lithology, structure, and discharge influence the evolution of an actively incising gorge. We use a series of aerial photographs to map out the development of the gorge since 1999. We monitor the more recent evolution of the system with RTK GPS surveys to measure channel profiles, laser rangefinder measurements of channel width, and terrestrial LIDAR surveys to quantify changes in the gorge walls. The channel can currently be divided into four segments: 1) A broad network of braided alluvial channels upstream of the gorge with an average slope of 1.5 cm/km, 2) A steep knickzone about 600 m long with an average slope of 2.7 cm/km, about 8 meters of ‘excess’ incision, and abundant bedrock in the channel, 3) A lower gorge zone with low slopes, averaging between 0.6 and 1.1 cm/km, a significant amount of aggradation, and relatively narrow width, as flow is confined to the incised gorge, and 4) A broad network of braided alluvial channels downstream of the gorge with an average slope of 1.5 cm/km. The morphology of the gorge is heavily influenced by structure and lithology. Individual waterfalls within the knickzone are localized on thick beds of the more resistant sandstone, and the propagation and morphology of knickpoints have been influenced by lithologic variations and by changes in the dip of the bedding across the anticline. Steep fractures within the bedrock play a significant role in channel widening, which occurs primarily by wall collapse, particularly where the fractures dip toward the channel wall. The extremely rapid erosion rates in the gorge also provide an excellent opportunity to examine the co-evolution of channel slope and channel width in the lower section of the gorge. The presence of large amounts of bedload in the channel allow for rapid adjustment of channel slope in the wake of the knickpoint; however, the slope within the lower part of the gorge remains shallower than the reaches above and below the gorge by 0.4 to 0.9 cm/km, illustrating the influence of channel width on streampower and equilibrium slope. We expect that as the gorge continues to widen, the slopes in this segment of the gorge will steepen.
Experimental Research on Boundary Shear Stress in Typical Meandering Channel
NASA Astrophysics Data System (ADS)
Chen, Kai-hua; Xia, Yun-feng; Zhang, Shi-zhao; Wen, Yun-cheng; Xu, Hua
2018-06-01
A novel instrument named Micro-Electro-Mechanical System (MEMS) flexible hot-film shear stress sensor was used to study the boundary shear stress distribution in the generalized natural meandering open channel, and the mean sidewall shear stress distribution along the meandering channel, and the lateral boundary shear stress distribution in the typical cross-section of the meandering channel was analysed. Based on the measurement of the boundary shear stress, a semi-empirical semi-theoretical computing approach of the boundary shear stress was derived including the effects of the secondary flow, sidewall roughness factor, eddy viscosity and the additional Reynolds stress, and more importantly, for the first time, it combined the effects of the cross-section central angle and the Reynolds number into the expressions. Afterwards, a comparison between the previous research and this study was developed. Following the result, we found that the semi-empirical semi-theoretical boundary shear stress distribution algorithm can predict the boundary shear stress distribution precisely. Finally, a single factor analysis was conducted on the relationship between the average sidewall shear stress on the convex and concave bank and the flow rate, water depth, slope ratio, or the cross-section central angle of the open channel bend. The functional relationship with each of the above factors was established, and then the distance from the location of the extreme sidewall shear stress to the bottom of the open channel was deduced based on the statistical theory.
Effect of drop volume and surface statistics on the superhydrophobicity of randomly rough substrates
NASA Astrophysics Data System (ADS)
Afferrante, L.; Carbone, G.
2018-01-01
In this paper, a simple theoretical approach is developed with the aim of evaluating shape, interfacial pressure, apparent contact angle and contact area of liquid drops gently deposed on randomly rough surfaces. This method can be useful to characterize the superhydrophobic properties of rough substrates, and to investigate the contact behavior of impacting drops. We assume that (i) the size of the apparent liquid-solid contact area is much larger than the micromorphology of the substrate, and (ii) a composite interface is always formed at the microscale. Results show apparent contact angle and liquid-solid area fraction are slightly influenced by the drop volume only at relatively high values of the root mean square roughness h rms, whereas the effect of volume is practically negligible at small h rms. The main statistical quantity affecting the superhydrophobic properties is found to be the Wenzel roughness parameter r W, which depends on the average slope of the surface heights. Moreover, transition from the Cassie-Baxter state to the Wenzel one is observed when r W reduces below a certain critical value, and theoretical predictions are found to be in good agreement with experimental data. Finally, the present method can be conveniently exploited to evaluate the occurrence of pinning phenomena in the case of impacting drops, as the Wenzel critical pressure for liquid penetration gives an estimation of the maximum impact pressure tolerated by the surface without pinning occurring.
Geomorphology and seismic risk
NASA Astrophysics Data System (ADS)
Panizza, Mario
1991-07-01
The author analyses the contributions provided by geomorphology in studies suited to the assessment of seismic risk: this is defined as function of the seismic hazard, of the seismic susceptibility, and of the vulnerability. The geomorphological studies applicable to seismic risk assessment can be divided into two sectors: (a) morpho-neotectonic investigations conducted to identify active tectonic structures; (b) geomorphological and morphometric analyses aimed at identifying the particular situations that amplify or reduce seismic susceptibility. The morpho-neotectonic studies lead to the identification, selection and classification of the lineaments that can be linked with active tectonic structures. The most important geomorphological situations that can condition seismic susceptibility are: slope angle, debris, morphology, degradational slopes, paleo-landslides and underground cavities.
NASA Technical Reports Server (NTRS)
Tanner, C. S.; Glass, R. E.
1974-01-01
A series of noise measurements were made during engineering evaluation tests of two-segment approaches in a 727-200 aircraft equipped with acoustically treated nacelles. A two-segment approach having a 6-degree upper glide slope angle intercepting the Instrument Landing System (ILS) 2.9-degree glide slope at an altitude of 690 feet gave a 5-EPNdB decrease in measured noise at distances greater than 3 nautical miles from the runway threshold when compared with a normal ILS approach. Several of the noise measurements were taken under adverse weather conditions which were outside the specified limits of FAR Part 36. This may introduce uncertainties into the data from several approaches.
Düzgünoglu, Muzaffer; Hönle, Wolfgang; Scheller, Alexander; Schuh, Alexander
2018-05-18
The aim of the study is to show whether there are any changes in quality or incidence of complications in total knee arthroplasty (TKA) after establishing a centre for endoprothesis (EPZ). We conducted a retrospective study comparing 100 TKAs one year before establishing an EPZ (Group I) with 100 TKAs one year after establishing an EPZ (group II). Data were collected by analysing our electronic documentation system, and the report of the rehabilitation hospital. The following parameters were documented which are necessary to establish an EPZ: existence of X-rays before and after operation. Existence of full length weight bearing X-ray before operation or using a navigation device. Existence of preoperative planning, duration of TKA below 100 minutes. The following complications were documented: Periprosthetic infections, occurrence of periprosthetic fissures/fractures, thrombembolism, neurologic complications, patients' satisfaction rate with the hospital stay and mortality rate. Additionally femorotibial angle, femoral angle, tibial angle and tibial slope were measured. Statistical analysis was performed with SPSS 22.0. using the Kolmogorov-Smirnov test, the Qui-Square test and the Mann-Whitney U test. There were no statistical differences in local or systemic complications. The mean duration of operation was 82.9 min in group I (min.: 55, max.: 141) und 81.5 min in group II (min.: 57, max.: 129; p > 0.05). In group I, there were 20/100 cases (20%) with operation time longer than 100 minutes, in group II 13/100 cases (13%; p < 0.001). Analysis of anatomical femorotibial angle, femur angle, tibial angle and tibial slope showed no significant differences. The rate of documented survey of patients' satisfaction rate improved from 62% in group I to 98% in group II (p < 0.001). By establishing an EPZ, we achieved a significant improvement in the parameters operation time > 100 minutes and documented survey of patients' satisfaction rate, but not in complication rate. Georg Thieme Verlag KG Stuttgart · New York.
Shallow translational slides hazard evaluation in Santa Marta de Penaguião (Douro valley - Portugal)
NASA Astrophysics Data System (ADS)
Pereira, Susana; Luís Zêzere, José; Bateira, Carlos
2010-05-01
The present study is developed for the municipality of Santa Marta de Penaguião (70 square kilometers), located in the Douro Valley region (Northern Portugal). In the past, several destructive landslides occurred in this area, and were responsible for deaths and destruction of houses and roads. Despite these losses, mitigation and landslide zonation programs are missing, and the land use planning at the municipal level did not solve yet the problem. The study area is mainly composed by metamorphic rocks (e.g., schist and quartzite). These rocks are strongly fractured, and weathered materials are abundant in clayed schist, mainly in those areas where agricultural terraces were constructed centuries ago for the vineyard monoculture. From the geomorphologic point of view, the study area is characterized by deep incised valleys, tectonic depressions and slopes controlled by the geological structure. Elevation ranges from 49 m to 1416 m. The main landslide triggering factor is rainfall and the mean annual precipitation ranges from 700 mm (in the bottom of fluvial valleys) to 2500 mm (in the mountains top). A landslide inventory was performed in 2005-2009 using aerial photo-interpretation (1/5.000 scale) and field work. The inventory includes 848 landslides, most of shallow translational slide type (85% of total slope movements). The landslide density is 10.5 events/square kilometers, and the average landslide area is 535 square meters. The susceptibility to shallow translational slide occurrence was assessed at the 1: 10 000 scale in a GIS environment. Two different bivariate statistical methods were used to evaluate landslide susceptibility: the Information Value and the Fuzzy Logic Gamma operator. Eight conditioning factors were weighted and integrated to model susceptibility: slope angle, slope aspect, slope curvature, lithology, geomorphologic units, fault density, land use and terrace structures build in slopes. The susceptibility results were validated using a random partition of the total set of shallow translational slides in two groups (training group and validation group, which were randomly defined, each corresponding to 50% of the complete landslide population.). This strategy allows the independent validation of landslide susceptibility models and the construction of prediction rate curves. The best prediction results were obtained using the information value method (Area Under Curve - AUC = 0.78). The landslide susceptibility map was classified in 5 susceptibility classes using the slope breaks within the best prediction curve. The empirical probability for each class was also estimated. Landslide hazard was assessed based on empirical probabilities, using an instability scenario similar to the event occurred in January 2001, which generated 603 shallow translational slides with a total unstable area of 93,029 square meters. This landslide event was triggered by 1064 mm of cumulative rainfall in 90 days, having 18 years of return period. Therefore, we assume that future occurrence of such rainfall amount will generate the same consequences regarding slope instability in the study area (i.e., the same number of landslides and equivalent total unstable area). The landslide hazard was also calculated per year to allow hazard comparison with other areas. The obtained results have short temporal validity and must be carefully analyzed due to rapid changes in land use in order to get more space for vineyard plantations. In recent years, the slope structures which sustained the soil erosion have been replaced systematically by terraces without soil support structures. In this context, the conditioning factors, susceptibility and hazard maps need to be regularly reassessed.
NASA Astrophysics Data System (ADS)
Chavarrías, C.; Vaquero, J. J.; Sisniega, A.; Rodríguez-Ruano, A.; Soto-Montenegro, M. L.; García-Barreno, P.; Desco, M.
2008-09-01
We propose a retrospective respiratory gating algorithm to generate dynamic CT studies. To this end, we compared three different methods of extracting the respiratory signal from the projections of small-animal cone-beam computed tomography (CBCT) scanners. Given a set of frames acquired from a certain axial angle, subtraction of their average image from each individual frame produces a set of difference images. Pixels in these images have positive or negative values (according to the respiratory phase) in those areas where there is lung movement. The respiratory signals were extracted by analysing the shape of the histogram of these difference images: we calculated the first four central and non-central moments. However, only odd-order moments produced the desired breathing signal, as the even-order moments lacked information about the phase. Each of these curves was compared to a reference signal recorded by means of a pneumatic pillow. Given the similar correlation coefficients yielded by all of them, we selected the mean to implement our retrospective protocol. Respiratory phase bins were separated, reconstructed independently and included in a dynamic sequence, suitable for cine playback. We validated our method in five adult rat studies by comparing profiles drawn across the diaphragm dome, with and without retrospective respiratory gating. Results showed a sharper transition in the gated reconstruction, with an average slope improvement of 60.7%.
NASA Astrophysics Data System (ADS)
Carjan, Nicolae; Rizea, Margarit; Talou, Patrick
2017-09-01
Prompt fission neutrons (PFN) angular and energy distributions for the reaction 235U(nth,f) are calculated as a function of the mass asymmetry of the fission fragments using two extreme assumptions: 1) PFN are released during the neck rupture due to the diabatic coupling between the neutron degree of freedom and the rapidly changing neutron-nucleus potential. These unbound neutrons are faster than the separation of the nascent fragments and most of them leave the fissioning system in few 10-21 sec. i.e., at the begining of the acceleration phase. Surrounding the fissioning nucleus by a sphere one can calculate the radial component of the neutron current density. Its time integral gives the angular distribution with respect to the fission axis. The average energy of each emitted neutron is also calculated using the unbound part of each neutron wave packet. The distribution of these average energies gives the general trends of the PFN spectrum: the slope, the range and the average value. 2) PFN are evaporated from fully accelerated, fully equilibrated fission fragments. To follow the de-excitation of these fragments via neutron and γ-ray sequential emissions, a Monte Carlo sampling of the initial conditions and a Hauser-Feshbach statistical approach is used. Recording at each step the emission probability, the energy and the angle of each evaporated neutron one can construct the PFN energy and the PFN angular distribution in the laboratory system. The predictions of these two methods are finally compared with recent experimental results obtained for a given fragment mass ratio.
Robot path planning using a genetic algorithm
NASA Technical Reports Server (NTRS)
Cleghorn, Timothy F.; Baffes, Paul T.; Wang, Liu
1988-01-01
Robot path planning can refer either to a mobile vehicle such as a Mars Rover, or to an end effector on an arm moving through a cluttered workspace. In both instances there may exist many solutions, some of which are better than others, either in terms of distance traversed, energy expended, or joint angle or reach capabilities. A path planning program has been developed based upon a genetic algorithm. This program assumes global knowledge of the terrain or workspace, and provides a family of good paths between the initial and final points. Initially, a set of valid random paths are constructed. Successive generations of valid paths are obtained using one of several possible reproduction strategies similar to those found in biological communities. A fitness function is defined to describe the goodness of the path, in this case including length, slope, and obstacle avoidance considerations. It was found that with some reproduction strategies, the average value of the fitness function improved for successive generations, and that by saving the best paths of each generation, one could quite rapidly obtain a collection of good candidate solutions.
Sagittal lumbar and pelvic alignment in the standing and sitting positions.
Endo, Kenji; Suzuki, Hidekazu; Nishimura, Hirosuke; Tanaka, Hidetoshi; Shishido, Takaaki; Yamamoto, Kengo
2012-11-01
The sitting position has become the most common posture in today's workplace. In relation to this position, kinematic analysis of the lumbar spine is helpful in understanding the causes of low back pain and its prevention. In this study, we investigated the relationship between sagittal lumbar alignment and pelvic alignment in the standing and sitting positions for 50 healthy adults. Lumbar lordotic angle (LLA), sacral slope (SS), pelvic tilt (PT), and pelvic incidence (PI) were measured on lateral lumbar spine standing and sitting radiographs. Regarding changes from the standing to sitting positions, average LLA, SS, and PT were -16.6° (-49.8 %), -18.7° (-50.3 %), and 18.3° (284.8 %), respectively (P < 0.01). In the sitting position, lumbar lordosis was reduced and pelvic rotation became posterior. This study showed that LLA decreased by approximately 50 % and PT increased by approximately 25 % in the sitting position compared with the standing position. No significant gender differences were observed for LLA, SS, and PT in the standing position. In the sitting position, however, LLA and SS were markedly larger for women.
Influence of magnetic cohesion on the stability of granular slopes.
Taylor, K; King, P J; Swift, Michael R
2008-09-01
We use a molecular dynamics model to simulate the formation and evolution of a granular pile in two dimensions in order to gain a better understanding of the role of magnetic interactions in avalanche dynamics. We find that the angle of repose increases only slowly with magnetic field; the increase in angle is small even for intergrain cohesive forces many times stronger than gravity. The magnetic forces within the bulk of the pile partially cancel as a result of the anisotropic nature of the dipole-dipole interaction between grains. However, we show that this cancellation effect is not sufficiently strong to explain the discrepancy between the angle of repose in wet systems and magnetically cohesive systems. In our simulations we observe shearing deep within the pile, and we argue that it is this motion that prevents the angle of repose from increasing dramatically. We also investigate different implementations of friction with the front and back walls of the container, and conclude that the nature of the friction dramatically affects the influence of magnetic cohesion on the angle of repose.
Advanced wind turbine with lift-destroying aileron for shutdown
Coleman, Clint; Juengst, Theresa M.; Zuteck, Michael D.
1996-06-18
An advanced aileron configuration for wind turbine rotors featuring an aileron with a bottom surface that slopes upwardly at an angle toward the nose region of the aileron. The aileron rotates about a center of rotation which is located within the envelope of the aileron, but does not protrude substantially into the air flowing past the aileron while the aileron is deflected to angles within a control range of angles. This allows for strong positive control of the rotation of the rotor. When the aileron is rotated to angles within a shutdown range of deflection angles, lift-destroying, turbulence-producing cross-flow of air through a flow gap, and turbulence created by the aileron, create sufficient drag to stop rotation of the rotor assembly. The profile of the aileron further allows the center of rotation to be located within the envelope of the aileron, at or near the centers of pressure and mass of the aileron. The location of the center of rotation optimizes aerodynamically and gyroscopically induced hinge moments and provides a fail safe configuration.
Centrifuge Modeling of Rainfall Induced Slope Failure
NASA Astrophysics Data System (ADS)
Ling, H.; Wu, M.
2006-12-01
Rainfall induces slope failure and debris flow which are considered as one of the major natural disasters. The scope of such failure is very large and it cannot be studied easily in the laboratory. Traditionally, small scale model tests are used to study such problem. Knowing that the behavior of soil is affected by the stress level, centrifuge modeling technique has been used to simulate more realistically full scale earth structures. In this study, two series of tests were conducted on slopes under the centrifugal field with and without the presence of rainfall. The soil used was a mixture of sand and 15 percent fines. The slopes of angle 60 degrees were prepared at optimum water content in order to achieve the maximum density. In the first series of tests, three different slope heights of 10 cm, 15 cm and 20 cm were used. The gravity was increased gradually until slope failure in order to obtain the prototype failure height. The slope model was cut after the test in order to obtain the configuration of failure surface. It was found that the slope geometry normalized by the height at failure provided unique results. Knowing the slope height or gravity at failure, the second series of tests with rainfall were conducted slightly below the critical height. That is, after attaining the desired gravity, the rainfall was induced in the centrifuge. Special nozzles were used and calibrated against different levels of gravity in order to obtain desired rainfall intensity. Five different rainfall intensities were used on the 15-cm slopes at 80g and 60g, which corresponded to 12 m and 9 m slope height, respectively. The duration until failure for different rainfall intensities was obtained. Similar to the first series of tests, the slope model was cut and investigated after the test. The results showed that the failure surface was not significantly affected by the rainfall. That is, the excess pore pressure induced by rainfall generated slope failure. The prediction curves of rainfall intensity versus duration were obtained from the test results. Such curves are extremely useful for disaster management. This study indicated feasibilities of using centrifuge modeling technique in simulating rainfall induced slope failure. The results obtained may also be used for validating numerical tools.
The Polarization Orientation Shift Estimation and Compensation of PolSAR Data in Forest Area
NASA Astrophysics Data System (ADS)
Zhao, Lei; Chen, Erxue; Li, Zengyuan; Li, Lan; Gu, Xinzhi
2016-08-01
Polarization orientation angle (POA) is a major parameter of electromagnetic wave. This angle will be shift due to azimuth slopes, which will affect the radiometric quality of PolSAR data. Under the assumption of reflection symmetrical medium, the shift value of polarization orientation angle (POAs) can be estimated by Circular Polarization Method (CPM). Then, the shift angle can be used to compensate PolSAR data or extract DEM information. However, it is less effective when using high-frequency SAR (L-, C-band) in the forest area. The main reason is that the polarization orientation angle shift of forest area not only influenced by topography, but also affected by the forest canopy. Among them, the influence of the former belongs to the interference information should be removed, but the impact of the latter belongs to the polarization feature information needs to be retained. The ALOS2 PALSAR2 L-band full polarimetric SAR data was used in this study. Base on the Circular Polarization and DEM-based method, we analyzed the variation of shift value of polarization orientation angle and developed the polarization orientation shift estimation and compensation of PolSAR data in forest.
Ocular Biometrics of Myopic Eyes With Narrow Angles.
Chong, Gabriel T; Wen, Joanne C; Su, Daniel Hsien-Wen; Stinnett, Sandra; Asrani, Sanjay
2016-02-01
The purpose of this study was to compare the ocular biometrics between myopic patients with and without narrow angles. Patients with a stable myopic refraction (myopia worse than -1.00 D spherical equivalent) were prospectively recruited. Angle status was assessed using gonioscopy and biometric measurements were performed using an anterior segment optical coherence tomography and an IOLMaster. A total of 29 patients (58 eyes) were enrolled with 13 patients (26 eyes) classified as having narrow angles and 16 patients (32 eyes) classified as having open angles. Baseline demographics of age, sex, and ethnicity did not differ significantly between the 2 groups. The patients with narrow angles were on average older than those with open angles but the difference did not reach statistical significance (P=0.12). The central anterior chamber depth was significantly less in the eyes with narrow angles (P=0.05). However, the average lens thickness, although greater in the eyes with narrow angles, did not reach statistical significance (P=0.10). Refractive error, axial lengths, and iris thicknesses did not differ significantly between the 2 groups (P=0.32, 0.47, 0.15). Narrow angles can occur in myopic eyes. Routine gonioscopy is therefore recommended for all patients regardless of refractive error.
NASA Technical Reports Server (NTRS)
Markey, Melvin F; Carpini, Thomas D
1957-01-01
A hydrodynamic rough-water impact-loads investigation of a fixed-trim V-bottom float with a beam-loading coefficient of 5.78 and dead-rise angle of 10 degrees was made at the Langley impact basin. The size of the waves varied from approximately 10 to 60 feet in length and 1 to 2 feet in height. Time histories were obtained showing the position of the model relative to the wave throughout the impact and typical examples are presented. The load coefficient was found to vary primarily with the slope of the impacting wave.
NASA Technical Reports Server (NTRS)
1976-01-01
An experimental and analytical aerodynamic program to develop predesign guides for irregular planform wings is reported. The benefits are linearization of subsonic lift curve slope to high angles of attack and avoidance of subsonic pitch instabilities at high lift by proper tailoring of the planform fillet wing combination while providing the desired hypersonic trim angle and stability. The two prime areas of concern are to optimize shuttle orbiter landing and entry characteristics. Basic longitudinal aerodynamic characteristics at high supersonic speeds are developed.
Ruggles, C.A.
1957-08-27
A swinging arm gage designed to measure radial angles, tapering, sloping, or arcuate concave surfaces is described. The principle of the swinging arm gage is that in any spherical system, radii and radial lines established by them pass through the center of the sphere. Thus if an arm be made to pivot at the sphere center, the path of the swinging end can be guided by a can so set as to establish the proper center angle, and dial indicators on the arm can be zeroed on a master object, angular and dimensional manufacturing errors can be determined on a duplicate object. This device makes possible a considerable saving of time in measuring complex arcuate contours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genet, Helene; McGuire, A. David; Barrett, K.
There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and testedmore » a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layercaused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness of 1.1 m on average by 2100. The combination of warming and fire led to a simulated cumulative loss of 9.6 kgC m 2 on average by 2100. Our analysis suggests that ecosystem carbon storage in boreal forests in interior Alaska is particularly vulnerable, primarily due to the combustion of organic layer thickness in fire and the related increase in active layer thickness that exposes previously protected permafrost soil carbon to decomposition.« less
Lamb, B C; Saleem, M; Scott, W; Thapa, N; Nevo, E
1998-05-01
We have studied whether there is natural genetic variation for mutation frequencies, and whether any such variation is environment-related. Mutation frequencies differed significantly between wild strains of the fungus Sordaria fimicola isolated from a harsher or a milder microscale environment in "Evolution Canyon," Israel. Strains from the harsher, drier, south-facing slope had higher frequencies of new spontaneous mutations and of accumulated mutations than strains from the milder, lusher, north-facing slope. Collective total mutation frequencies over many loci for ascospore pigmentation were 2.3, 3.5 and 4.4% for three strains from the south-facing slope, and 0.9, 1.1, 1.2, 1.3 and 1.3% for five strains from the north-facing slope. Some of this between-slope difference was inherited through two generations of selfing, with average spontaneous mutation frequencies of 1.9% for south-facing slope strains and 0.8% for north-facing slope strains. The remainder was caused by different frequencies of mutations arising in the original environments. There was also significant heritable genetic variation in mutation frequencies within slopes. Similar between-slope differences were found for ascospore germination-resistance to acriflavine, with much higher frequencies in strains from the south-facing slope. Such inherited variation provides a basis for natural selection for optimum mutation rates in each environment.
Lamb, B C; Saleem, M; Scott, W; Thapa, N; Nevo, E
1998-01-01
We have studied whether there is natural genetic variation for mutation frequencies, and whether any such variation is environment-related. Mutation frequencies differed significantly between wild strains of the fungus Sordaria fimicola isolated from a harsher or a milder microscale environment in "Evolution Canyon," Israel. Strains from the harsher, drier, south-facing slope had higher frequencies of new spontaneous mutations and of accumulated mutations than strains from the milder, lusher, north-facing slope. Collective total mutation frequencies over many loci for ascospore pigmentation were 2.3, 3.5 and 4.4% for three strains from the south-facing slope, and 0.9, 1.1, 1.2, 1.3 and 1.3% for five strains from the north-facing slope. Some of this between-slope difference was inherited through two generations of selfing, with average spontaneous mutation frequencies of 1.9% for south-facing slope strains and 0.8% for north-facing slope strains. The remainder was caused by different frequencies of mutations arising in the original environments. There was also significant heritable genetic variation in mutation frequencies within slopes. Similar between-slope differences were found for ascospore germination-resistance to acriflavine, with much higher frequencies in strains from the south-facing slope. Such inherited variation provides a basis for natural selection for optimum mutation rates in each environment. PMID:9584088
Aperture alignment in autocollimator-based deflectometric profilometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geckeler, R. D., E-mail: Ralf.Geckeler@ptb.de; Just, A.; Kranz, O.
2016-05-15
During the last ten years, deflectometric profilometers have become indispensable tools for the precision form measurement of optical surfaces. They have proven to be especially suitable for characterizing beam-shaping optical surfaces for x-ray beamline applications at synchrotrons and free electron lasers. Deflectometric profilometers use surface slope (angle) to assess topography and utilize commercial autocollimators for the contactless slope measurement. To this purpose, the autocollimator beam is deflected by a movable optical square (or pentaprism) towards the surface where a co-moving aperture limits and defines the beam footprint. In this paper, we focus on the precise and reproducible alignment of themore » aperture relative to the autocollimator’s optical axis. Its alignment needs to be maintained while it is scanned across the surface under test. The reproducibility of the autocollimator’s measuring conditions during calibration and during its use in the profilometer is of crucial importance to providing precise and traceable angle metrology. In the first part of the paper, we present the aperture alignment procedure developed at the Advanced Light Source, Lawrence Berkeley National Laboratory, USA, for the use of their deflectometric profilometers. In the second part, we investigate the topic further by providing extensive ray tracing simulations and calibrations of a commercial autocollimator performed at the Physikalisch-Technische Bundesanstalt, Germany, for evaluating the effects of the positioning of the aperture on the autocollimator’s angle response. The investigations which we performed are crucial for reaching fundamental metrological limits in deflectometric profilometry.« less
Martian and Terrestrial Rock Abrasion from Wind Tunnel and Field Studies
NASA Technical Reports Server (NTRS)
Bridges, N. T.; Greeley, R.; Eddlemon, E.; Laity, J. E.; Meyer, C.; Phoreman, J.; White, B. R.
2003-01-01
Earth and Mars exhibit ventifacts, rocks that have been abraded by saltating sand. Previous theoretical and laboratory studies have determined abrasion susceptibilities of rocks as a function of sand type and impact angle and rock material strengths. For the last two years we have been engaged in wind tunnel and field studies to better understand the fundamental factors which control and influence rock abrasion and ventifact formation on Earth and Mars. In particular, we are examining: 1) What types of rocks (composition, texture, and shape) preferentially erode and what are the relative rates of one type vs. another? 2) What are the controlling factors of the aeolian sand cloud (flux, particle speed, surface roughness, etc) which favor rock abrasion?, 3) How do specific ventifact characteristics tie into their mode of formation and rock properties? We find several important factors: 1) Initial rock shape controls the rate of abrasion, with steeper faces abrading faster than shallower ones. The relationship is partly dependent on angle-dependent flux (proportional to sin[theta]) but exhibits additional non-linear effects from momentum transfer efficiency and rebound effects that vary with incidence angle. 2) Irregular targets with pits or grooves abrade at greater rates than targets with smooth surfaces, with indentations generally enlarging with time. Surfaces become rougher with time. 3) Targets also abrade via slope retreat, which is roughly dependent on the slope of the front face. The formation of basal sills is common, as observed on terrestrial and Martian ventifacts.
BIMOS transistor solutions for ESD protection in FD-SOI UTBB CMOS technology
NASA Astrophysics Data System (ADS)
Galy, Philippe; Athanasiou, S.; Cristoloveanu, S.
2016-01-01
We evaluate the Electro-Static Discharge (ESD) protection capability of BIpolar MOS (BIMOS) transistors integrated in ultrathin silicon film for 28 nm Fully Depleted SOI (FD-SOI) Ultra Thin Body and BOX (UTBB) high-k metal gate technology. Using as a reference our measurements in hybrid bulk-SOI structures, we extend the BIMOS design towards the ultrathin silicon film. Detailed study and pragmatic evaluations are done based on 3D TCAD simulation with standard physical models using Average Current Slope (ACS) method and quasi-static DC stress (Average Voltage Slope AVS method). These preliminary 3D TACD results are very encouraging in terms of ESD protection efficiency in advanced FD-SOI CMOS.
Using wood creep data to discuss the contribution of cell-wall reinforcing material.
Gril, Joseph; Hunt, David; Thibaut, Bernard
2004-01-01
Longitudinal four-point creep bending tests were performed on small clear-wood spruce specimens having various microfibrillar angles. Cell-wall compliance was deduced from macroscopic data by accounting for porosity. Time-dependent compliance was converted into complex compliance and rigidity using the value and the slope of the compliance versus logarithm of time. Complex rigidity plots of all specimens, for the time range 10(3)-10(6) s, could be superimposed by a horizontal shift depending on the microfibrillar angle. The shape of complex trajectories allowed a decomposition of the cell-wall relaxation modulus as the sum of an elastic contribution function of the microfibrillar angle and a time-dependent term unrelated to it, and suggested a discussion on the contribution of the various cell-wall layers to the observed relaxation process.
2015-02-09
The exterior of this unnamed crater is in shadow, while the inner wall and terraces bask in the sunshine. Terraces form just after the crater has been excavated, when oversteepened slopes slump back down. This image was acquired as part of the MDIS low-altitude imaging campaign. During MESSENGER's second extended mission, the spacecraft makes a progressively closer approach to Mercury's surface than at any previous point in the mission, enabling the acquisition of high-spatial-resolution data. For spacecraft altitudes below 350 kilometers, NAC images are acquired with pixel scales ranging from 20 meters to as little as 2 meters. Date acquired: January 23, 2015 Image Mission Elapsed Time (MET): 64352478 Image ID: 7849599 Instrument: Narrow Angle Camera (NAC) of the Mercury Dual Imaging System (MDIS) Center Latitude: 31.48° Center Longitude: 81.89° E Resolution: 6 meters/pixel Scale: This scene is approximately 6.3 km (3.9 miles) from top to bottom Incidence Angle: 82.6° Emission Angle: 0.1° Phase Angle: 82.7° http://photojournal.jpl.nasa.gov/catalog/PIA19196
Analysis of slope stabilization by soil bioengineering method
NASA Astrophysics Data System (ADS)
Switala, Barbara Maria; Wu, Wei
2013-04-01
The aim of the project is to create a numerical model which will include the impact of vegetation on the slope stability analysis, considering both mechanical and hydrological factors. This will enrich the current knowledge about how roots reinforce the soil layers on the slope and how it influences the increase of shear strength of the soil. This has to be combined together with hydrological effects caused by evapotranspiration: modified soil moisture regime, dissipation of excess pore pressure and established matric suction. Coupled analyses (mechanical and hydrological) are rarely conducted, or only outdated models are used, which leads to overestimation of the additional shear strength of soil. That is why there is a need to support this branch of landslide hazard assessment and develop a new model. This research will help to raise awareness, that soil bioengineering methods of slope stabilization can in some cases be more appropriate and less expensive than traditional methods. As an input to the model, the appropriate slope geometry and soil properties have to be chosen. It is also important to consider different plant types and root properties, as well as different levels of groundwater table. To assess the effect of evapotranspiration it is necessary to know the geographical location of the slope and the weather conditions in the chosen region. The final output of the model, which will help to quantitatively assess the impact of vegetation on the slope stability, is the factor of safety (FOS) for vegetated slope for different types of soil and degrees of saturation. Results may then be compared with different conditions and factors of safety, calculated for the corresponding non-vegetated slope. It will be possible to specify the most favorable and unfavorable conditions. Moreover, the calculations provide also information on changes of cohesion, caused by mechanical and hydrological effects, as well as the change in the friction angle of soil.
NASA Astrophysics Data System (ADS)
Lantz, C. A.; Atkinson, M. J.; Winn, C. W.; Kahng, S. E.
2014-03-01
There is an interest in developing approaches to "ecosystem-based" management for coral reefs. One aspect of ecosystem performance is to monitor carbon metabolism of whole communities. In an effort to explore robust techniques to monitor the metabolism of fringing reefs, especially considering the possible effects of ocean acidification, a yearlong study of the carbonate chemistry of a nearshore fringing reef in Hawaii was conducted. Diurnal changes in seawater carbonate chemistry were measured once a week in an algal-dominated and a coral-dominated reef flat on the Waimanalo fringing reef, Hawaii, from April of 2010 until May of 2011. Calculated rates of gross primary production (GPP) and net community calcification ( G) were similar to previous estimates of community metabolism for other coral reefs (GPP 971 mmol C m-2 d-1; G 186 mmol CaCO3 m-2 d-1) and indicated that this reef was balanced in terms of organic metabolism, exhibited net calcification, and was a net source of CO2 to the atmosphere. Average slopes of total alkalinity versus dissolved inorganic carbon (TA-DIC slope) for the coral-dominated reef flat exhibited a greater calcification-to-net photosynthesis ratio than for the algal-dominated reef flat (coral slope vs. algal slope). Over the course of the time series, TA-DIC slopes remained significantly different between sites and were not correlated with diurnal averages in reef-water residence time or solar irradiance. These characteristic slopes for each reef flat reflect the relationship between carbon and carbonate community metabolism and can be used as a tool to monitor ecosystem function in response to ocean acidification.
The role of topography and surface cover upon soil formation along hillslopes in arid climates
NASA Astrophysics Data System (ADS)
Yair, Aaron
1990-09-01
Two north-facing soil toposequences were selected from within the northern Negev desert, Israel, where average annual rainfall ranges from 70 to 200 mm. Both slopes are composed of an upper rocky and a lower colluvial section. Similar trends were found along both slopes. A high salt content was characteristic of soils at the top of the slope; salinity decreased downslope within the rocky slope section. The opposite occurred along the colluvial slopes, with salinity increasing sharply downslope. At any location along the slopes the northernmost soil toposequence site (160 mm average annual rainfall) represents, from a pedological point of view, an environment which is far more arid than its climatologically drier, more southern counterpart. The explanation provided for the variation of soil proporties at the scale of single hillslopes and at the regional scale is the same. It is contended that water input into the soil, and therefore leaching intensity, is positively related to the ratio of bedrock/soil cover. Rocky areas have limited infiltration, thus yielding high runoff rates into adjoining soil-covered areas, and contribute to water concentration, deeper infiltration and leaching intensity. Soil or sediment-covered areas having relatively high absorption capacities will experience reduced runoff, shallow infiltration and decreased water availability for leaching. This leads over time to salt accumulation at a shallow depth. The decrease in rock/soil ratio downslope within the colluvium is therefore held responsible for the corresponding increase in salinity. Similarly, the greater salinity of the soils in the northern site is explained by the fact that its rock/soil ratio is lower than in the southern area. The theoretical and practical implications regarding the relationship between climatic change and landscape evolution in arid areas are briefly discussed.
NASA Astrophysics Data System (ADS)
Smirnova, M. A.; Gennadiev, A. N.
2017-08-01
A detailed study of the soil cover of a sinkhole (300 m2) in the dry steppe landscape of the Bogdinsk-Baskunchak Natural Reserve in Astrakhan oblast has been performed, and the factors of its differentiation have been analyzed. The indices of pedodiversity have been calculated and compared for karst sinkholes in the dry steppe and northern taiga landscapes. Quantitative parameters of the lateral migration of solid soil substances on the slopes of the sinkhole have been determined. The rate of soil erosion decreases from the slope of southern aspect to the slopes of western, northern, and eastern aspects. On the average, it is estimated at 0.4 mm/yr. The average rate of accumulation of solid substances on the lower parts of the slopes and in the bottom of the sinkhole reaches 0.74 mm/yr. A comparative analysis of the soil properties attests to their dependence on the particular position of a given soil within the sinkhole. Downward the slopes of the sinkhole, full-profile brown arid soils (Cambic Calcisols) are replaced by sierozem-like soils (Haplic Calcisols), light-humus poorly developed soils (Luvisols), lithozems (Leptosols), and stratified soils (stratozems, or Colluvic Regosols). The soils within the upper ring-shape soil microzone are more diverse and contrasting with respect to their morphological, physical, chemical, and physicochemical properties. The degree of soil contrasts decreases down the slopes of the sinkhole towards its bottom. The studied sinkhole is characterized by considerable pedodiversity. Quantitative parameters of pedodiversity for the sinkhole in the dry steppe zone are higher than those form the sinkholes in the northern taiga zone.
Groundwater phosphorus in forage-based landscape with cow-calf operation.
Sigua, Gilbert C; Chase, Chad C
2014-02-01
Forage-based cow-calf operations may have detrimental impacts on the chemical status of groundwater and streams and consequently on the ecological and environmental status of surrounding ecosystems. Assessing and controlling phosphorus (P) inputs are, thus, considered the key to reducing eutrophication and managing ecological integrity. In this paper, we monitored and evaluated P concentrations of groundwater (GW) compared to the concentration of surface water (SW) P in forage-based landscape with managed cow-calf operations for 3 years (2007-2009). Groundwater samples were collected from three landscape locations along the slope gradient (GW1 10-30% slope, GW2 5-10% slope, and GW3 0-5% slope). Surface water samples were collected from the seepage area (SW 0% slope) located at the bottom of the landscape. Of the total P collected (averaged across year) in the landscape, 62.64% was observed from the seepage area or SW compared with 37.36% from GW (GW1 = 8.01%; GW2 = 10.92%; GW3 = 18.43%). Phosphorus in GW ranged from 0.02 to 0.20 mg L(-1) while P concentration in SW ranged from 0.25 to 0.71 mg L(-1). The 3-year average of P in GW of 0.09 mg L(-1) was lower than the recommended goal or the Florida's numeric nutrients standards (NNS) of 0.12 mg P L(-1). The 3-year average of P concentration in SW of 0.45 mg L(-1) was about fourfold higher than the Florida's NNS value. Results suggest that cow-calf operation in pasture-based landscape would contribute more P to SW than in the GW. The risk of GW contamination by P from animal agriculture production system is limited, while the solid forms of P subject to loss via soil erosion could be the major water quality risk from P.
Landslides and dam damage resulting from the Jiuzhaigou earthquake (8 August 2017), Sichuan, China
Wang, Yun-sheng; Luo, Yong-hong; Li, Jia; Zhang, Xin; Shen, Tong
2018-01-01
At 21.19 on 8 August 2017, an Ms 7.0 earthquake struck the Jiuzhaigou scenic spot in northwestern Sichuan Province, China. The Jiuzhaigou earthquake is a strike-slip earthquake with a focal depth of 20 km at 33.20° N and 103.82° E, and was caused by two concealed faults. According to emergency investigations and remote sensing interpretations, the Jiuzhaigou earthquake triggered 1780 landslides, damaged one dam (Nuorilang Waterfall) and broke one dam (Huohua Lake). The landslides mainly occurred in the Rize Valley and Shuzheng Valley and in Jiuzhai Paradise. The landslides involved hanging wall and back-slope effects, and the slope angle, slope aspect, seismic faults and valley trend were obviously related to the occurrence of the landslides. Specifically, most of the landslides were shallow landslides, rockfalls and rock avalanches and were small in scale. The failure modes of landslides mainly include wedge rock mass failure, residual deposit failure, relaxed rock mass failure and weathered rock mass failure. The initial low stability of the dam coupled with the topographic effect, back-slope effect and excess pore water pressure led to damage to the Nuorilang Waterfall dam. PMID:29657755
Landslides and dam damage resulting from the Jiuzhaigou earthquake (8 August 2017), Sichuan, China
NASA Astrophysics Data System (ADS)
Zhao, Bo; Wang, Yun-sheng; Luo, Yong-hong; Li, Jia; Zhang, Xin; Shen, Tong
2018-03-01
At 21.19 on 8 August 2017, an Ms 7.0 earthquake struck the Jiuzhaigou scenic spot in northwestern Sichuan Province, China. The Jiuzhaigou earthquake is a strike-slip earthquake with a focal depth of 20 km at 33.20° N and 103.82° E, and was caused by two concealed faults. According to emergency investigations and remote sensing interpretations, the Jiuzhaigou earthquake triggered 1780 landslides, damaged one dam (Nuorilang Waterfall) and broke one dam (Huohua Lake). The landslides mainly occurred in the Rize Valley and Shuzheng Valley and in Jiuzhai Paradise. The landslides involved hanging wall and back-slope effects, and the slope angle, slope aspect, seismic faults and valley trend were obviously related to the occurrence of the landslides. Specifically, most of the landslides were shallow landslides, rockfalls and rock avalanches and were small in scale. The failure modes of landslides mainly include wedge rock mass failure, residual deposit failure, relaxed rock mass failure and weathered rock mass failure. The initial low stability of the dam coupled with the topographic effect, back-slope effect and excess pore water pressure led to damage to the Nuorilang Waterfall dam.
Landslides and dam damage resulting from the Jiuzhaigou earthquake (8 August 2017), Sichuan, China.
Zhao, Bo; Wang, Yun-Sheng; Luo, Yong-Hong; Li, Jia; Zhang, Xin; Shen, Tong
2018-03-01
At 21.19 on 8 August 2017, an Ms 7.0 earthquake struck the Jiuzhaigou scenic spot in northwestern Sichuan Province, China. The Jiuzhaigou earthquake is a strike-slip earthquake with a focal depth of 20 km at 33.20° N and 103.82° E, and was caused by two concealed faults. According to emergency investigations and remote sensing interpretations, the Jiuzhaigou earthquake triggered 1780 landslides, damaged one dam (Nuorilang Waterfall) and broke one dam (Huohua Lake). The landslides mainly occurred in the Rize Valley and Shuzheng Valley and in Jiuzhai Paradise. The landslides involved hanging wall and back-slope effects, and the slope angle, slope aspect, seismic faults and valley trend were obviously related to the occurrence of the landslides. Specifically, most of the landslides were shallow landslides, rockfalls and rock avalanches and were small in scale. The failure modes of landslides mainly include wedge rock mass failure, residual deposit failure, relaxed rock mass failure and weathered rock mass failure. The initial low stability of the dam coupled with the topographic effect, back-slope effect and excess pore water pressure led to damage to the Nuorilang Waterfall dam.
Submarine Mass Wasting on Hovgaard Ridge, Fram Strait, European Arctic
NASA Astrophysics Data System (ADS)
Forwick, M.; Laberg, J. S.; Husum, K.; Gales, J. A.
2015-12-01
Hovgaard Ridge is an 1800 m high bathymetric high in the Fram Strait, the only deep-water gateway between the Arctic Ocean and the other World's oceans. The slopes of the ridge provide evidence of various types of sediment reworking, including 1) up to 12 km wide single and merged slide scars with maximum ~30 m high headwalls and some secondary escarpments; 2) maximum 3 km wide and 130 m deep slide scars with irregular internal morphology, partly narrowing towards the foot of the slope; 3) up to 130 m deep, 1.5 km wide and maximum 8 km long channels/gullies originating from areas of increasing slope angle at the margins of a plateau on top of the ridge. Most slide scars result presumably from retrogressive failure related to weak layers in contourites or ash. The most likely trigger mechanism is seismicity related to tectonic activity within the nearby mid-ocean fracture zone. Gully/channel formation is suggested to result from cascading water masses and/or from sediment gravity flows originating from failure at the slope break after winnowing on the plateau of the ridge.
Transverse momentum distributions of baryons at LHC energies
NASA Astrophysics Data System (ADS)
Bylinkin, A. A.; Piskounova, O. I.
2016-04-01
Transverse momentum spectra of protons and anti-protons from RHIC (√{ s} = 62 and 200 GeV) and LHC experiments (√{ s} = 0.9 and 7 TeV) have been considered. The data are fitted in the low pT region with the universal formula that includes the value of exponent slope as main parameter. It is seen that the slope of low pT distributions is changing with energy. This effect impacts on the energy dependence of average transverse momenta, which behaves approximately as s0.06 that is similar to the previously observed behavior of Λ-baryon spectra. In addition, the available data on Λc production from LHCb at √{ s} = 7 TeV were also studied. The estimated average
Development of a high resolution optical-fiber tilt sensor by F-P filter
NASA Astrophysics Data System (ADS)
Pan, Jianjun; Nan, Qiuming; Li, Shujie; Hao, Zhonghua
2017-04-01
A high-resolution tilt sensor is developed, which is composed of a pair of optical fiber collimators and a simple pendulum with an F-P filter. The tilt angle is measured by demodulating the shift of center wavelength of F-P filter, which is caused by incidence angle changing. The relationship between tilted angle and the center wavelength is deduced. Calibration experiment results also confirm the deduction, and show that it is easy to obtain a high resolution. Setting the initial angle to 6degree, the measurement range is ±3degree, its average sensitivity is 1104pm/degree, and its average resolution is as high as 0.0009degree.
Kato, Haruhisa; Nakamura, Ayako; Takahashi, Kayori; Kinugasa, Shinichi
2012-01-01
Accurate determination of the intensity-average diameter of polystyrene latex (PS-latex) by dynamic light scattering (DLS) was carried out through extrapolation of both the concentration of PS-latex and the observed scattering angle. Intensity-average diameter and size distribution were reliably determined by asymmetric flow field flow fractionation (AFFFF) using multi-angle light scattering (MALS) with consideration of band broadening in AFFFF separation. The intensity-average diameter determined by DLS and AFFFF-MALS agreed well within the estimated uncertainties, although the size distribution of PS-latex determined by DLS was less reliable in comparison with that determined by AFFFF-MALS. PMID:28348293
Cooperative Three-Robot System for Traversing Steep Slopes
NASA Technical Reports Server (NTRS)
Stroupe, Ashley; Huntsberger, Terrance; Aghazarian, Hrand; Younse, Paulo; Garrett, Michael
2009-01-01
Teamed Robots for Exploration and Science in Steep Areas (TRESSA) is a system of three autonomous mobile robots that cooperate with each other to enable scientific exploration of steep terrain (slope angles up to 90 ). Originally intended for use in exploring steep slopes on Mars that are not accessible to lone wheeled robots (Mars Exploration Rovers), TRESSA and systems like TRESSA could also be used on Earth for performing rescues on steep slopes and for exploring steep slopes that are too remote or too dangerous to be explored by humans. TRESSA is modeled on safe human climbing of steep slopes, two key features of which are teamwork and safety tethers. Two of the autonomous robots, denoted Anchorbots, remain at the top of a slope; the third robot, denoted the Cliffbot, traverses the slope. The Cliffbot drives over the cliff edge supported by tethers, which are payed out from the Anchorbots (see figure). The Anchorbots autonomously control the tension in the tethers to counter the gravitational force on the Cliffbot. The tethers are payed out and reeled in as needed, keeping the body of the Cliffbot oriented approximately parallel to the local terrain surface and preventing wheel slip by controlling the speed of descent or ascent, thereby enabling the Cliffbot to drive freely up, down, or across the slope. Due to the interactive nature of the three-robot system, the robots must be very tightly coupled. To provide for this tight coupling, the TRESSA software architecture is built on a combination of (1) the multi-robot layered behavior-coordination architecture reported in "An Architecture for Controlling Multiple Robots" (NPO-30345), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 65, and (2) the real-time control architecture reported in "Robot Electronics Architecture" (NPO-41784), NASA Tech Briefs, Vol. 32, No. 1 (January 2008), page 28. The combination architecture makes it possible to keep the three robots synchronized and coordinated, to use data from all three robots for decision- making at each step, and to control the physical connections among the robots. In addition, TRESSA (as in prior systems that have utilized this architecture) , incorporates a capability for deterministic response to unanticipated situations from yet another architecture reported in Control Architecture for Robotic Agent Command and Sensing (NPO-43635), NASA Tech Briefs, Vol. 32, No. 10 (October 2008), page 40. Tether tension control is a major consideration in the design and operation of TRESSA. Tension is measured by force sensors connected to each tether at the Cliffbot. The direction of the tension (both azimuth and elevation) is also measured. The tension controller combines a controller to counter gravitational force and an optional velocity controller that anticipates the motion of the Cliffbot. The gravity controller estimates the slope angle from the inclination of the tethers. This angle and the weight of the Cliffbot determine the total tension needed to counteract the weight of the Cliffbot. The total needed tension is broken into components for each Anchorbot. The difference between this needed tension and the tension measured at the Cliffbot constitutes an error signal that is provided to the gravity controller. The velocity controller computes the tether speed needed to produce the desired motion of the Cliffbot. Another major consideration in the design and operation of TRESSA is detection of faults. Each robot in the TRESSA system monitors its own performance and the performance of its teammates in order to detect any system faults and prevent unsafe conditions. At startup, communication links are tested and if any robot is not communicating, the system refuses to execute any motion commands. Prior to motion, the Anchorbots attempt to set tensions in the tethers at optimal levels for counteracting the weight of the Cliffbot; if either Anchorbot fails to reach its optimal tension level within a specified time, it sends message to the other robots and the commanded motion is not executed. If any mechanical error (e.g., stalling of a motor) is detected, the affected robot sends a message triggering stoppage of the current motion. Lastly, messages are passed among the robots at each time step (10 Hz) to share sensor information during operations. If messages from any robot cease for more than an allowable time interval, the other robots detect the communication loss and initiate stoppage.
Organic geochemistry of sediments of deep Gulf of Mexico basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, J.; Sassen, R.; Nunn, J.
1989-09-01
An analysis of 716 core samples from DSDP (Deep Sea Drilling Project) Leg 96 in the Mississippi submarine fan and the Orca and Pigmy basins in the Louisiana continental slope was done using a Rock-Eval pyrolysis unit with TOC (total organic carbon) module. The analysis allows computation of the hydrogen index (HI), TOC, and kerogen type, and assessment of the oil-generative capacity of the sediments in the Louisiana continental slope. No samples are obviously oil prone. TOC content ranges from 0.12 to 2.29%, with an overall average of 0.82%. HI values are generally less than 150 mg HC/g TOC. T{submore » max} (temperature of the maximum of the S{sub 2} peak) values (425{degree}C average) show the sediments are immature throughout the study area. Hydrocarbon-generative potential of the sediments ranges from 492 to 1,107 ppm, with an average of 854 ppm. Because of organic lean, thermally immature, and gas-prone terrestrial organic matter, there is little reason to assume that the sediments from the Mississippi fan can provide oil source rock for the Gulf Coast basin, and that sediments of anoxic basins in the Louisiana continental slope are analogs to the past environments where source rocks for crude oil have been deposited.« less
Zhi-Qing, Deng; Xiao-Dong, Tan; Shi-Bo, Kong; Kai, Wu; Ming-Xing, Xu; Hua-Tang, Luo
2017-01-06
To investigate the Oncomelania hupensis snail control effect of schistosomiasis control engineering in marshland within Wuhan City. The engineering measures including surface barrier removal, molluscicide, flatting surface, topsoil stripping, topsoil covering and ditch renovation were applied to transform Hankou marshland. Then the corresponding technical parameters of engineering measures were put forward. The situation of snails was analyzed before and after the transform project. The total length and area of the project were 6 015 m and 87.21 hm 2 , respectively, including 17.44 hm 2 of topsoil landfill, 52.08 hm 2 of topsoil covering and 23 new ditches. After the transformation, the average length of the new groove, the groove top width, groove depth, height difference, and the average values of slopes and ditch bottom slope were all increased, while the average values of the width and height of the ditch were decreased. At the same time, the marshland beach surface had a new slope that the embankment was higher than the river and no living O. hupensis snails were found then. The snail breeding environment in Hankou marshland has been effectively changed by the project. However, the constant monitoring and engineering management are still needed to consolidate the effect.
An improved tree height measurement technique tested on mature southern pines
Don C. Bragg
2008-01-01
Virtually all techniques for tree height determination follow one of two principles: similar triangles or the tangent method. Most people apply the latter approach, which uses the tangents of the angles to the top and bottom and a true horizontal distance to the subject tree. However, few adjust this method for ground slope, tree lean, crown shape, and crown...
Multiple factors affect aspen regeneration on the Uncompahgre Plateau, west-central Colorado
Barry C. Johnston
2001-01-01
In 1996, I inventoried over 90 aspen stands in 12 timber sales that had been clearcut >3 years previously. Units that regenerated adequately were larger, had higher slope angles, and had soils with a thick Mollic surface layer. Units that regenerated inadequately often had plant species that indicated high water tables. The factors associated with inadequate...
NASA Technical Reports Server (NTRS)
Runckel, Jack F.; Hieser, Gerald
1961-01-01
An investigation has been conducted at the Langley 16-foot transonic tunnel to determine the loading characteristics of flap-type ailerons located at inboard, midspan, and outboard positions on a 45 deg. sweptback-wing-body combination. Aileron normal-force and hinge-moment data have been obtained at Mach numbers from 0.80 t o 1.03, at angles of attack up to about 27 deg., and at aileron deflections between approximately -15 deg. and 15 deg. Results of the investigation indicate that the loading over the ailerons was established by the wing-flow characteristics, and the loading shapes were irregular in the transonic speed range. The spanwise location of the aileron had little effect on the values of the slope of the curves of hinge-moment coefficient against aileron deflection, but the inboard aileron had the greatest value of the slope of the curves of hinge-moment coefficient against angle of attack and the outboard aileron had the least. Hinge-moment and aileron normal-force data taken with strain-gage instrumentation are compared with data obtained with pressure measurements.
Factors that affect coseismic folds in an overburden layer
NASA Astrophysics Data System (ADS)
Zeng, Shaogang; Cai, Yongen
2018-03-01
Coseismic folds induced by blind thrust faults have been observed in many earthquake zones, and they have received widespread attention from geologists and geophysicists. Numerous studies have been conducted regarding fold kinematics; however, few have studied fold dynamics quantitatively. In this paper, we establish a conceptual model with a thrust fault zone and tectonic stress load to study the factors that affect coseismic folds and their formation mechanisms using the finite element method. The numerical results show that the fault dip angle is a key factor that controls folding. The greater the dip angle is, the steeper the fold slope. The second most important factor is the overburden thickness. The thicker the overburden is, the more gradual the fold. In this case, folds are difficult to identify in field surveys. Therefore, if a fold can be easily identified with the naked eye, the overburden is likely shallow. The least important factors are the mechanical parameters of the overburden. The larger the Young's modulus of the overburden is, the smaller the displacement of the fold and the fold slope. Strong horizontal compression and vertical extension in the overburden near the fault zone are the main mechanisms that form coseismic folds.
Thoracic Inlet Parameters for Degenerative Cervical Spondylolisthesis Imaging Measurement.
Wang, Quanbing; Wang, Xiao-Tao; Zhu, Lei; Wei, Yu-Xi
2018-04-05
BACKGROUND The aim of this study was to explore the diagnostic value of sagittal measurement of thoracic inlet parameters for degenerative cervical spondylolisthesis (DCS). MATERIAL AND METHODS We initially included 65 patients with DCS and the same number of health people as the control group by using cervical radiograph evaluations. We analyzed the x-ray and computer tomographic (CT) data in prone and standing position at the same time. Measurement of cervical sagittal parameters was carried out in a standardized supine position. Multivariate logistic regression analysis was performed to evaluate these parameters as a diagnostic index for DCS. RESULTS There were 60 cases enrolled in the DCS group, and 62 cases included in the control group. The T1 slope and thoracic inlet angle (TIA) were significantly greater for the DCS group compared to the control group (24.33±2.85º versus 19.59±2.04º, p=0.00; 76.11±9.82º versus 72.86±7.31º, p=0.03, respectively). We observed no significant difference for the results of the neck tilt (NT), C2-C7 angle in the control and the DSC group (p>0.05). Logistic regression analysis and receiver operating characteristic (ROC) curve revealed that preoperative T1 slope of more than 22.0º showed significantly diagnostic value for the DCS group (p<0.05). CONCLUSIONS Patients with preoperative sagittal imbalance of thoracic inlet have a statistically significant increased risk of DCS. T1 slope of more than 22.0º showed significantly diagnostic value for the incidence of DCS.
NASA Astrophysics Data System (ADS)
Mantz, A. B.; Allen, S. W.; Morris, R. G.
2016-10-01
This is the fifth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot in Papers I and II of this series. Here we use constraints on cluster mass profiles from X-ray data to test some of the basic predictions of cosmological structure formation in the cold dark matter (CDM) paradigm. We present constraints on the concentration-mass relation for massive clusters, finding a power-law mass dependence with a slope of κm = -0.16 ± 0.07, in agreement with CDM predictions. For this relaxed sample, the relation is consistent with a constant as a function of redshift (power-law slope with 1 + z of κζ = -0.17 ± 0.26), with an intrinsic scatter of σln c = 0.16 ± 0.03. We investigate the shape of cluster mass profiles over the radial range probed by the data (typically ˜50 kpc-1 Mpc), and test for departures from the simple Navarro-Frenk-White (NFW) form, for which the logarithmic slope of the density profile tends to -1 at small radii. Specifically, we consider as alternatives the generalized NFW (GNFW) and Einasto parametrizations. For the GNFW model, we find an average value of (minus) the logarithmic inner slope of β = 1.02 ± 0.08, with an intrinsic scatter of σβ = 0.22 ± 0.07, while in the Einasto case we constrain the average shape parameter to be α = 0.29 ± 0.04 with an intrinsic scatter of σα = 0.12 ± 0.04. Our results are thus consistent with the simple NFW model on average, but we clearly detect the presence of intrinsic, cluster-to-cluster scatter about the average.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mantz, A. B.; Allen, S. W.; Morris, R. G.
This is the fifth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot in Papers I and II of this series. Here we use constraints on cluster mass profiles from X-ray data to test some of the basic predictions of cosmological structure formation in the cold dark matter (CDM) paradigm. In addition, we present constraints on the concentration–mass relation for massive clusters, finding a power-law mass dependence with a slope of κ m = –0.16 ± 0.07, in agreement with CDMmore » predictions. For this relaxed sample, the relation is consistent with a constant as a function of redshift (power-law slope with 1 + z of κ ζ = –0.17 ± 0.26), with an intrinsic scatter of σln c = 0.16 ± 0.03. We investigate the shape of cluster mass profiles over the radial range probed by the data (typically ~50 kpc–1 Mpc), and test for departures from the simple Navarro–Frenk–White (NFW) form, for which the logarithmic slope of the density profile tends to –1 at small radii. Specifically, we consider as alternatives the generalized NFW (GNFW) and Einasto parametrizations. For the GNFW model, we find an average value of (minus) the logarithmic inner slope of β = 1.02 ± 0.08, with an intrinsic scatter of σ β = 0.22 ± 0.07, while in the Einasto case we constrain the average shape parameter to be α = 0.29 ± 0.04 with an intrinsic scatter of σ α = 0.12 ± 0.04. Our results are thus consistent with the simple NFW model on average, but we clearly detect the presence of intrinsic, cluster-to-cluster scatter about the average.« less
Biomarkers in sedimentary sequences: Indicators to track sediment sources over decadal timescales
NASA Astrophysics Data System (ADS)
Chen, F. X.; Fang, N. F.; Wang, Y. X.; Tong, L. S.; Shi, Z. H.
2017-02-01
Long-term sedimentary sequence research can reveal how human activities and climate interact to affect catchment vegetation, flooding, soil erosion, and sediment sources. In this study, a biomarker sediment fingerprinting technique based on n-alkanes was used to identify long timescale (decadal) sediment sources in a small agricultural catchment. However, the highly saline carbonate environment and bacterial and algal activities elevated the levels of even-chain n-alkanes in the sediments, leading to an obvious even-over-odd predominance of short and middle components (C15-C26). Therefore, by analyzing three odd, long-chain n-alkanes (C27, C29 and C31) in 27 source samples from cropland, gully, and steep slope areas and one sediment sequence (one cultivated horizon and 47 flood couplets), a composite fingerprinting method and genetic algorithm optimization were applied to find the optimal source contributions to sediments. The biomarker fingerprinting results demonstrated that the primary sediment source is gullies, followed by cropland and steep slope areas. The average median source contributions associated with 47 flood couples collected from sediment core samples ranged from 0 ± 0.1% to 91.9 ± 0.4% with an average of 45.0% for gullies, 0 ± 0.4% to 95.6 ± 1.6% with an average of 38.2% for cropland, and 0 ± 2.1% to 60.7 ± 0.4% with an average of 16.8% for steep slopes. However, because farmers were highly motivated to manage the cropland after the 1980s, over half the sediments were derived from cropland in the 1980s. Biomarkers have significant advantages in the identification of sediments derived from different landscape units (e.g., gully and steep slope areas), and n-alkanes have considerable potential in high-resolution research of environmental change based on soil erosion in the hilly Loess Plateau region.
Mantz, A. B.; Allen, S. W.; Morris, R. G.
2016-07-15
This is the fifth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot in Papers I and II of this series. Here we use constraints on cluster mass profiles from X-ray data to test some of the basic predictions of cosmological structure formation in the cold dark matter (CDM) paradigm. In addition, we present constraints on the concentration–mass relation for massive clusters, finding a power-law mass dependence with a slope of κ m = –0.16 ± 0.07, in agreement with CDMmore » predictions. For this relaxed sample, the relation is consistent with a constant as a function of redshift (power-law slope with 1 + z of κ ζ = –0.17 ± 0.26), with an intrinsic scatter of σln c = 0.16 ± 0.03. We investigate the shape of cluster mass profiles over the radial range probed by the data (typically ~50 kpc–1 Mpc), and test for departures from the simple Navarro–Frenk–White (NFW) form, for which the logarithmic slope of the density profile tends to –1 at small radii. Specifically, we consider as alternatives the generalized NFW (GNFW) and Einasto parametrizations. For the GNFW model, we find an average value of (minus) the logarithmic inner slope of β = 1.02 ± 0.08, with an intrinsic scatter of σ β = 0.22 ± 0.07, while in the Einasto case we constrain the average shape parameter to be α = 0.29 ± 0.04 with an intrinsic scatter of σ α = 0.12 ± 0.04. Our results are thus consistent with the simple NFW model on average, but we clearly detect the presence of intrinsic, cluster-to-cluster scatter about the average.« less
Measurement of Angle Kappa Using Ultrasound Biomicroscopy and Corneal Topography.
Yeo, Joon Hyung; Moon, Nam Ju; Lee, Jeong Kyu
2017-06-01
To introduce a new convenient and accurate method to measure the angle kappa using ultrasound biomicroscopy (UBM) and corneal topography. Data from 42 eyes (13 males and 29 females) were analyzed in this study. The angle kappa was measured using Orbscan II and calculated with UBM and corneal topography. The angle kappa of the dominant eye was compared with measurements by Orbscan II. The mean patient age was 36.4 ± 13.8 years. The average angle kappa measured by Orbscan II was 3.98° ± 1.12°, while the average angle kappa calculated with UBM and corneal topography was 3.19° ± 1.15°. The difference in angle kappa measured by the two methods was statistically significant (p < 0.001). The two methods showed good reliability (intraclass correlation coefficient, 0.671; p < 0.001). Bland-Altman plots were used to demonstrate the agreement between the two methods. We designed a new method using UBM and corneal topography to calculate the angle kappa. This method is convenient to use and allows for measurement of the angle kappa without an expensive device. © 2017 The Korean Ophthalmological Society
Measurement of Angle Kappa Using Ultrasound Biomicroscopy and Corneal Topography
Yeo, Joon Hyung; Moon, Nam Ju
2017-01-01
Purpose To introduce a new convenient and accurate method to measure the angle kappa using ultrasound biomicroscopy (UBM) and corneal topography. Methods Data from 42 eyes (13 males and 29 females) were analyzed in this study. The angle kappa was measured using Orbscan II and calculated with UBM and corneal topography. The angle kappa of the dominant eye was compared with measurements by Orbscan II. Results The mean patient age was 36.4 ± 13.8 years. The average angle kappa measured by Orbscan II was 3.98° ± 1.12°, while the average angle kappa calculated with UBM and corneal topography was 3.19° ± 1.15°. The difference in angle kappa measured by the two methods was statistically significant (p < 0.001). The two methods showed good reliability (intraclass correlation coefficient, 0.671; p < 0.001). Bland-Altman plots were used to demonstrate the agreement between the two methods. Conclusions We designed a new method using UBM and corneal topography to calculate the angle kappa. This method is convenient to use and allows for measurement of the angle kappa without an expensive device. PMID:28471103
Monitoring and Early Warning of the 2012 Preonzo Catastrophic Rockslope Failure
NASA Astrophysics Data System (ADS)
Loew, Simon; Gschwind, Sophie; Keller-Signer, Alexandra; Valenti, Giorgio
2015-04-01
In this contribution we describe the accelerated creep stage and early warning system of a 210'000 m3 rock slope failure that occurred in May 2012 above the village of Preonzo (Swiss Alps). The very rapid failure occurred from a larger and retrogressive instability in high-grade metamorphic ortho-gneisses and amphibolites with a total volume of about 350'000 m3 located at an alpine meadow called Alpe di Roscioro. This instability showed clearly visible signs of movements since 1989 and accelerated creep with significant hydro-mechanical forcing since about 1999. Because the instability at Preonzo threatened a large industrial facility and important transport routes a cost-effective early warning system was installed in 2010. The alarm thresholds for pre-alarm, general public alarm and evacuation were derived from 10 years of continuous displacement monitoring with crack extensometers and an automated total station. These thresholds were successfully applied to evacuate the industrial facility and close important roads a few days before the catastrophic slope failure of May 15th, 2012. The rock slope failure occurred in two events, exposing a planar rupture plane dipping 42° and generating deposits in the mid-slope portion with a travel angle of 38°. Two hours after the second rockslide, the fresh colluvial deposits became reactivated in a devastating de-bris avalanche reaching the foot of the slope.
NASA Astrophysics Data System (ADS)
Hazelton, A.; Rogers, R.; Hart, R. E.
2013-12-01
Recently, it has become apparent that typical methods for analyzing tropical cyclones (TCs), such as track and intensity, are insufficient for evaluating TC structural evolution and numerical model forecasts of that evolution. Many studies have analyzed different metrics related to TC inner-core structure in an attempt to better understand the processes that drive changes in core structure. One important metric related to vertical TC structure is the slope of the eyewall. Hazelton and Hart (2013) discussed azimuthal mean eyewall slope based on radar reflectivity data, and its relationship with TC intensity and core structure. That study also noted significant azimuthal variation in slopes, but did not significantly explore reasons for this variation. Accordingly, in this study, we attempt to quantify the role of vertical wind shear in causing azimuthal variance of slope, using research quality Doppler radar composites from the NOAA Hurricane Research Division (HRD). We analyze the slope of the 20 dBZ surface as in Hazelton and Hart (2013), and also look at azimuthal variation in other measures of eyewall slope, such as the slope of the radius of maximum winds (RMW), which has been analyzed in an azimuthal mean sense by Stern and Nolan (2009), and an angular momentum surface. The shear-relative slopes are quantified by separating the radar data into four quadrants relative to the vertical shear vector: Downshear Left (DSL), Upshear Left (USL), Upshear Right (USR), and Downshear Right (DSR). This follows the method employed in shear-relative analyses of other aspects of TC core structure, such as Rogers et al. (2013) and Reasor et al. (2013). The data suitable for use in this study consist of 36 flights into 15 different TCs (14 Atlantic, 1 Eastern Pacific) between 1997 and 2010. Preliminary results show apparent shear-induced asymmetries in eyewall slope. The slope of the RMW shows an asymmetry due to the tilt of the vortex approximately along the shear vector, with an average slope (in ° from vertical) in the two downshear quadrants of 36.5° and an average slope of 16.3° in the two upshear quadrants (p < 0.05). This result is consistent with a case-study analysis by Rogers and Uhlhorn (2008) of changes in RMW slope in the lower levels of Hurricane Rita. In addition, the slope of an angular momentum surface shows a similar pattern to the RMW. The slope of the 20 dBZ surface does not show as well-defined a signal. However, by separating the cases into TCs that were strengthening or weakening/steady, we found that the difference between dBZ slope and M slope is important in distinguishing between the sets. The 20 dBZ surface tended to be more upright than an M surface in the azimuthal mean and in two of the four quadrants for intensifying cases, and less upright than the M surface for weakening/steady-state cases (p < 0.05). This result is consistent with a conceptual model for intensifying vs. steady-state TCs described in Rogers et al. (2013). Further analysis will continue to explore methods to quantify the effects of vertical shear on the TC secondary circulation using the metric of eyewall slope.
Tamai, Koji; Romanu, Joshua; Grisdela, Phillip; Paholpak, Permsak; Zheng, Pengfei; Nakamura, Hiroaki; Buser, Zorica; Wang, Jeffrey C
2018-01-31
Cervical sagittal vertical axis (cSVA) of ≥40 mm is recognized as the key factor of poor health-related quality of life, poor surgical outcomes, and correction loss after surgery for cervical deformity. However, little is known about the radiological characteristics of patients with cSVA≥40 mm. The purpose of this study was to identify the radiological characteristics of patients with cervical imbalance. Retrospective analysis of weight-bearing cervical magnetic resonance (MR) images. Consecutive 1,500 MR images of symptomatic patients in weight-bearing position. Cervical sagittal vertical axis, cervical alignment, cervical balance parameters (T1 slope, Co-C2 angle, C2-C7 angle, C7-T1 angle, neck tilt, and thoracic inlet angle), disc degeneration (Pfirmann and Suzuki classification), end plate degeneration (Modic change), spondylolisthesis (antero- and retrolisthesis), anteroposterior (AP) diameter of dural sac, cross-sectional area (CSA), and fat infiltration ratio of the transversospinalis muscles at C4 and C7 levels. Patients were divided into two groups: cSVA≥40 mm and cSVA<40 mm. Gender, age, and cervical alignment were analyzed. Subsequently, matched imbalance (cSVA≥40 mm) and control (<40 mm) groups were created using the propensity score to adjust for age, gender, and cervical alignment. Cervicothoracic angular parameters, disc degeneration, Modic change, spondylolisthesis, and degeneration of the transversospinalis muscles at C4 and C7 were compared. Variables with p<.05 were included in the multinomial logistic regression model to identify factors that relate to the cervical balance grouping. The incidence of patients with cervical imbalance was 2.5% (37 patients). Those patients had a higher incidence of kyphosis, were older, and there were more male patients. In the matched imbalance group, the T1 slope was greater (p=.028), C7-T1 lordotic angle was smaller (p<.001), the number of anterolisthesis was greater (p=.012), and the fat infiltration ratio at C4 and C7 was higher (p=.023, 0.030) compared with the control. Logistic regression analysis showed that the C7-T1 angle (adjusted odds ratio [aOR]=0.592, p=.001) and fat infiltration ratio at C7 level (aOR=1.178, p=.030) were significant independent variables. Smaller C7-T1 lordotic angle and severe muscle degeneration at C7 level were independent characteristics of patients with cervical imbalance. Copyright © 2018 Elsevier Inc. All rights reserved.
Rockfall activity of cliff inferred from deposit and cone method
NASA Astrophysics Data System (ADS)
Jaboyedoff, M.; Baillifard, F.; Rouiller, J.-D.
2003-04-01
Assuming that fresh scree slopes are significant indicators of recent rockfall activity, they can be used as activity indicators for a given rockfall source area. Using simple geometric rules and a DTM (digital elevation model), the propagation zone can be estimated by considering that each potential rockfall source cell (corresponding to the entire cliff) can generate a scree slope within a cone with a slope ranging from 27° to 37°. Thus, the count of pixels representing rockfall deposits that are contained in this cone represents a relative scale of recent rockfall activity. According to Evans and Hungr (1993), the source cell can be chosen at the bottom of the cliff, with lower angles. Choosing the entire cliff or the bottom of the cliff as source area depends on the morphology of the slope situated below the cliff. The cone can also be laterally limited in order to avoid the counting of illogical rock slope trajectories (+-20°). In Switzerland, the vectorized 1:25,000 topographic map (vector25) can provide scree slope and cliff area data sets. Results obtained using this method show good agreement with field observations, although it is evident that the highest topographic reliefs are favored by this method, as verified in the Alps. Compared to the method of Menendéz Duarte and Marquínez (2002), which uses GIS-calculated watersheds as propagation areas, the present method does not take small changes of topography into account. References Evans, S.G. and Hungr, O. The assessment of rockfall hazard at the base of talus slopes. Canadian Geotechnical Journal, 30/4, 620-636, 1993. Menendéz Duarte, R. and Marquínez, J. The influence of environmental and lithologic factors on rockfall at a regional scale: an evaluation using GIS. Geomorphology, 43, 117-136, 2002.
Observation of Snow cover glide on Sub-Alpine Coniferous Forests in Mount Zao, Northeastern Japan
NASA Astrophysics Data System (ADS)
Sasaki, A.; Suzuki, K.
2017-12-01
This is the study to clarify the snow cover glide behavior in the sub-alpine coniferous forests on Mount Zao, Northeastern Japan, in the winter of 2014-2015. We installed the glide-meter which is sled type, and measured the glide motion on the slope of Abies mariesii forest and its surrounding slope. In addition, we observed the air temperature, snow depth, density of snow, and snow temperature to discuss relationship between weather conditions and glide occurrence. The snow cover of the 2014-15 winter started on November 13th and disappeared on April 21st. The maximum snow depth was 242 cm thick, it was recorded at February 1st. The snow cover glide in the surrounding slope was occurred first at February 10th, although maximum snow depth recorded on February 1st. The glide motion in the surrounding slope is continuing and its velocity was 0.4 cm per day. The glide in the surrounding slope stopped at March 16th. The cumulative amount of the glide was 21.1 cm. The snow cover glide in the A. mariesii forest was even later occurred first at February 21st. The glide motion of it was intermittent and extremely small. On sub-alpine zone of Mount Zao, snow cover glide intensity is estimated to be 289 kg/m2 on March when snow water equivalent is maximum. At same period, maximum snow cover glide intensity is estimated to be about 1000 kg/m2 at very steep slopes where the slope angle is about 35 degree. Although potential of snow cover glide is enough high, the snow cover glide is suppressed by stem of A. mariesii trees, in the sub-alpine coniferous forest.
The cam impinging femur has multiple morphologic abnormalities.
Ellis, Andrew R; Noble, Philip C; Schroder, Steven J; Thompson, Matthew T; Stocks, Gregory W
2011-09-01
This study was performed to establish whether the "cam" impinging femur has a single deformity of the head-neck junction or multiple abnormalities. Average dimensions (anteversion angle, α angle of Notzli, β angle of Beaulé, normalized anterior head offset) were compared between normal and impinging femora. The results demonstrated that impinging femora had wider necks, larger heads, and decreased head-neck ratios. There was no difference in neck-shaft angle or anteversion angle. Forty-six percent of impinging femora had significant posterior head displacement (>2mm), which averaged 1.93 mm for the cam impinging group, and 0.78 mm for the normal group. In conclusion, surgical treatment limited to localized recontouring of the head-neck profile may fail to address significant components of the underlying abnormality. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Olson, L.; Pogue, K. R.; Bader, N.
2012-12-01
The Columbia Basin of Washington and Oregon is one of the most productive grape-growing areas in the United States. Wines produced in this region are influenced by their terroir - the amalgamation of physical and cultural elements that influence grapes grown at a particular vineyard site. Of the physical factors, climate, and in particular air temperature, has been recognized as a primary influence on viticulture. Air temperature directly affects ripening in the grapes. Proper fruit ripening, which requires precise and balanced levels of acid and sugar, and the accumulation of pigment in the grape skin, directly correlates with the quality of wine produced. Many features control air temperature within a particular vineyard. Elevation, latitude, slope, and aspect all converge to form complex relationships with air temperatures; however, the relative degree to which these attributes affect temperatures varies between regions and is not well understood. This study examines the influence of geography and geomorphology on air temperatures within the American Viticultural Areas (AVAs) of the Columbia Basin in eastern Washington and Oregon. The premier vineyards within each AVA, which have been recognized for producing high-quality wine, were equipped with air temperature monitoring stations that collected hourly temperature measurements. A variety of temperature statistics were calculated, including daily average, maximum, and minimum temperatures. From these values, average diurnal variation and growing degree-days (10°C) were calculated. A variety of other statistics were computed, including date of first and last frost and time spent below a minimum temperature threshold. These parameters were compared to the vineyard's elevation, latitude, slope, aspect, and local topography using GPS, ArcCatalog, and GIS in an attempt to determine their relative influences on air temperatures. From these statistics, it was possible to delineate two trends of temperature variation controlled by elevation. In some AVAs, such as Walla Walla Valley and Red Mountain, average air temperatures increased with elevation because of the effect of cold air pooling on valley floors. In other AVAs, such as Horse Heaven Hills, Lake Chelan and Columbia Gorge, average temperatures decreased with elevation due to the moderating influences of the Columbia River and Lake Chelan. Other temperature statistics, including average diurnal range and maximum and minimum temperature, were influenced by relative topography, including local topography and slope. Vineyards with flat slopes that had low elevations relative to their surroundings had larger diurnal variations and lower maximum and minimum temperatures than vineyards with steeper slopes that were high relative to their surroundings.
NASA Astrophysics Data System (ADS)
Comegna, Luca; Damiano, Emilia; Greco, Roberto; Olivares, Lucio; Piccolo, Marco; Picarelli, Luciano
2017-04-01
Loose pyroclastic soils in Campania cover a large amount of steep slopes in the area surrounding the volcanic complex of Somma-Vesuvius. The stability of such slopes is assured by the contribution of suction to soil shear strength, which decreases during rainy periods till the possible attainment of a failure condition. The resulting landslide may evolve in form of a fast flow, if at the onset of instability the soil is nearly saturated and undrained conditions establish, so that soil liquefaction arises. The attainment of instability near saturation is not uncommon, as it requires the slope to have an inclination close to the friction angle of the soil constituting the deposit. The pyroclastic ashes of Campania are typically silty sands with friction angle between 36° and 38°, and small or even null cohesion. Many of the flow-like landslides, occurred during the last decades, were indeed triggered along slopes with inclination around 40°, which are quite common in Campania. As a suction of few kPa may be enough to guarantee the stability of a slope, knowledge of the water retention curve of the soil constituting the deposit is mandatory to correctly predict soil conditions at failure. Several studies report that the pyroclastic ashes of Campania exhibit a quite complex water retention behavior, showing a bimodal porosity distribution and, in some cases, a marked hysteresis domain, possibly enhanced by air entrapment during the infiltration of steep wetting fronts. In this study, a series of vertical infiltration and evaporation cycles have been carried out over two reconstituted specimens, both 20cm high, of pyroclastic ashes collected at the slope of Cervinara. TDR probes and minitensiometers were buried at various depths to provide coupled measurements of soil water content and suction. In order to highlight the possible hysteretic effects due to air entrapment, different hydraulic boundary conditions were established at the base of the two specimens: in one case a pervious boundary was realized by means of a geogrid covered with a geotextile layer in free contact with atmosphere; in the other case, the impervious boundary was constituted by a plexiglass panel. The obtained results indicate that the water retention curves followed by the soil during the wetting and drying phases were different, and that such a difference is more pronounced in the specimen with impervious bottom, thus confirming that air entrapment may be significant, especially during fast transient infiltration. In the field, where the infiltration front penetrates at much larger depths, the effect of air entrapment is expected to be even higher, leading to infiltration processes evolving under smaller suction at a given water content, and approaching a smaller saturated water content. Hence, the establishment of slope instability in unsaturated conditions is favored, and the evolution of the landslide in form of a flow is more unlikely.
Coupling between Inclusions and Membranes at the Nanoscale
NASA Astrophysics Data System (ADS)
Bories, Florent; Constantin, Doru; Galatola, Paolo; Fournier, Jean-Baptiste
2018-03-01
The activity of cell membrane inclusions (such as ion channels) is influenced by the host lipid membrane, to which they are elastically coupled. This coupling concerns the hydrophobic thickness of the bilayer (imposed by the length of the channel, as per the hydrophobic matching principle) but also its slope at the boundary of the inclusion. However, this parameter has never been measured so far. We combine small-angle x-ray scattering data and a complete elastic model to measure the slope for the model gramicidin channel and show that it is surprisingly steep in two membrane systems with very different elastic properties. This conclusion is confirmed and generalized by the comparison with recent results in the simulation literature and with conductivity measurements.
Laboratory simulations of Martian gullies on sand dunes
NASA Astrophysics Data System (ADS)
Védie, E.; Costard, F.; Font, M.; Lagarde, J. L.
2008-11-01
Small gullies, observed on Mars, could be formed by groundwater seepage from an underground aquifer or may result from the melting of near-surface ground ice at high obliquity. To test these different hypotheses, a cold room-based laboratory simulation has been performed. The experimental slope was designed to simulate debris flows on sand dune slopes at a range of angles, different granulometry and permafrost characteristics. Preliminary results suggest that the typical morphology of gullies observed on Mars can best be reproduced by the formation of linear debris flows related to the melting of a near-surface ground ice with silty materials. This physical modelling highlights the role of the periglacial conditions, especially the active-layer thickness during debris-flow formation.
GIS/RS-based Rapid Reassessment for Slope Land Capability Classification
NASA Astrophysics Data System (ADS)
Chang, T. Y.; Chompuchan, C.
2014-12-01
Farmland resources in Taiwan are limited because about 73% is mountainous and slope land. Moreover, the rapid urbanization and dense population resulted in the highly developed flat area. Therefore, the utilization of slope land for agriculture is more needed. In 1976, "Slope Land Conservation and Utilization Act" was promulgated to regulate the slope land utilization. Consequently, slope land capability was categorized into Class I-IV according to 4 criteria, i.e., average land slope, effective soil depth, degree of soil erosion, and parent rock. The slope land capability Class I-VI are suitable for cultivation and pasture. Whereas, Class V should be used for forestry purpose and Class VI should be the conservation land which requires intensive conservation practices. The field survey was conducted to categorize each land unit as the classification scheme. The landowners may not allow to overuse land capability limitation. In the last decade, typhoons and landslides frequently devastated in Taiwan. The rapid post-disaster reassessment of the slope land capability classification is necessary. However, the large-scale disaster on slope land is the constraint of field investigation. This study focused on using satellite remote sensing and GIS as the rapid re-evaluation method. Chenyulan watershed in Nantou County, Taiwan was selected to be a case study area. Grid-based slope derivation, topographic wetness index (TWI) and USLE soil loss calculation were used to classify slope land capability. The results showed that GIS-based classification give an overall accuracy of 68.32%. In addition, the post-disaster areas of Typhoon Morakot in 2009, which interpreted by SPOT satellite imageries, were suggested to classify as the conservation lands. These tools perform better in the large coverage post-disaster update for slope land capability classification and reduce time-consuming, manpower and material resources to the field investigation.
Topographical scattering of gravity waves
NASA Astrophysics Data System (ADS)
Miles, J. W.; Chamberlain, P. G.
1998-04-01
A systematic hierarchy of partial differential equations for linear gravity waves in water of variable depth is developed through the expansion of the average Lagrangian in powers of [mid R:][nabla del, Hamilton operator][mid R:] (h=depth, [nabla del, Hamilton operator]h=slope). The first and second members of this hierarchy, the Helmholtz and conventional mild-slope equations, are second order. The third member is fourth order but may be approximated by Chamberlain & Porter's (1995) ‘modified mild-slope’ equation, which is second order and comprises terms in [nabla del, Hamilton operator]2h and ([nabla del, Hamilton operator]h)2 that are absent from the mild-slope equation. Approximate solutions of the mild-slope and modified mild-slope equations for topographical scattering are determined through an iterative sequence, starting from a geometrical-optics approximation (which neglects reflection), then a quasi-geometrical-optics approximation, and on to higher-order results. The resulting reflection coefficient for a ramp of uniform slope is compared with the results of numerical integrations of each of the mild-slope equation (Booij 1983), the modified mild-slope equation (Porter & Staziker 1995), and the full linear equations (Booij 1983). Also considered is a sequence of sinusoidal sandbars, for which Bragg resonance may yield rather strong reflection and for which the modified mild-slope approximation is in close agreement with Mei's (1985) asymptotic approximation.
Assessment of Rainfall-induced Landslide Potential and Spatial Distribution
NASA Astrophysics Data System (ADS)
Chen, Yie-Ruey; Tsai, Kuang-Jung; Chen, Jing-Wen; Chiang, Jie-Lun; Hsieh, Shun-Chieh; Chue, Yung-Sheng
2016-04-01
Recently, due to the global climate change, most of the time the rainfall in Taiwan is of short duration but with high intensity. Due to Taiwan's steep terrain, rainfall-induced landslides often occur and lead to human causalities and properties loss. Taiwan's government has invested huge reconstruction funds to the affected areas. However, after rehabilitation they still face the risk of secondary sediment disasters. Therefore, this study assesses rainfall-induced (secondary) landslide potential and spatial distribution in watershed of Southern Taiwan under extreme climate change. The study areas in this research are Baolai and Jianshan villages in the watershed of the Laonongxi River Basin in the Southern Taiwan. This study focused on the 3 years after Typhoon Morakot (2009 to 2011). During this period, the study area experienced six heavy rainfall events including five typhoons and one heavy rainfall. The genetic adaptive neural network, texture analysis and GIS were implemented in the analysis techniques for the interpretation of satellite images and to obtain surface information and hazard log data and to analyze land use change. A multivariate hazards evaluation method was applied to quantitatively analyze the weights of various natural environmental and slope development hazard factors. Furthermore, this study established a slope landslide potential assessment model and depicted a slope landslide potential diagram by using the GIS platform. The interaction between (secondary) landslide mechanism, scale, and location was analyzed using association analysis of landslide historical data and regional environmental characteristics. The results of image classification before and after six heavy rainfall events show that the values of coefficient of agreement are at medium-high level. By multivariate hazards evaluation method, geology and the effective accumulative rainfall (EAR) are the most important factors. Slope, distance from fault, aspect, land disturbance, and elevation are the secondary important factors. Under the different rainfall, the greater the average of EAR, the more the landslide occurrence and area increments. The determination coefficients of trend lines on the charts of the average of EAR versus number and area of landslide increment are 0.83 and 0.92, respectively. The relations between landslide potential level, degree of land disturbance, and the ratio of number and area of landslide increment corresponding six heavy rainfall events are positive and the determination coefficients of trend lines are 0.82 and 0.72, respectively. The relation between the average of EAR and the area of landslide increment corresponding five heavy rainfall events (excluding Morakot) is positive and the determination coefficient of trend line is 0.98. Furthermore, the relation between the area increment of secondary landslide, average of EAR or the slope disturbance is positive. Under the same slope disturbance, the greater the EAR, the more the area increment of secondary landslide. Contrarily, under the same EAR, the greater the slope disturbance, the more the area increment of secondary landslide. The results of the analysis of this study can be a reference for the government for subsequent countermeasures for slope sediment disaster sensitive area to reduce the number of casualties and significantly reduce the social cost of post-disaster.
Analysis of Snow Bidirectional Reflectance from ARCTAS Spring-2008 Campaign
NASA Technical Reports Server (NTRS)
Lyapustin, A.; Gatebe, C. K.; Redemann, J.; Kahn, R.; Brandt, R.; Russell, P.; King, M. D.; Pedersen, C. A.; Gerland, S.; Poudyal, R.;
2010-01-01
The spring 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) experiment was one of major intensive field campaigns of the International Polar Year aimed at detailed characterization of atmospheric physical and chemical processes in the Arctic region. A part of this campaign was a unique snow bidirectional reflectance experiment on the NASA P-3B aircraft conducted on 7 and 15 April by the Cloud Absorption Radiometer (CAR) jointly with airborne Ames Airborne Tracking Sunphotometer (AATS) and ground-based Aerosol Robotic Network (AERONET) sunphotometers. The CAR data were atmospherically corrected to derive snow bidirectional reflectance at high 1 degree angular resolution in view zenith and azimuthal angles along with surface albedo. The derived albedo was generally in good agreement with ground albedo measurements collected on 15 April. The CAR snow bidirectional reflectance factor (BRF) was used to study the accuracy of analytical Ross-Thick Li-Sparse (RTLS), Modified Rahman-Pinty-Verstraete (MRPV) and Asymptotic Analytical Radiative Transfer (AART) BRF models. Except for the glint region (azimuthal angles phi less than 40 degrees), the best fit MRPV and RTLS models fit snow BRF to within 0.05. The plane-parallel radiative transfer (PPRT) solution was also analyzed with the models of spheres, spheroids, randomly oriented fractal crystals, and with a synthetic phase function. The latter merged the model of spheroids for the forward scattering angles with the fractal model in the backscattering direction. The PPRT solution with synthetic phase function provided the best fit to measured BRF in the full range of angles. Regardless of the snow grain shape, the PPRT model significantly over-/underestimated snow BRF in the glint/backscattering regions, respectively, which agrees with other studies. To improve agreement with experiment, we introduced a model of macroscopic snow surface roughness by averaging the PPRT solution over the slope distribution function and by adding a simple model of shadows. With macroscopic roughness described by two parameters, the AART model achieved an accuracy of about plus or minus 0.05 with a possible bias of plus or minus 0.03 in the spectral range 0.4-2.2 micrometers. This high accuracy holds at view zenith angles below 55-60 degrees covering the practically important range for remote sensing applications, and includes both glint and backscattering directions.
Risk factors for medial meniscus posterior root tear.
Hwang, Byoung-Yoon; Kim, Sung-Jae; Lee, Sang-Won; Lee, Ha-Eun; Lee, Choon-Key; Hunter, David J; Jung, Kwang-Am
2012-07-01
Medial meniscus posterior root tears (MMPRT) have a different clinical effect from other types of meniscal tears. These tears are very common among Asian people and may be related to the frequent use of postures such as the lotus position or squatting. The present study was designed to identify the risk factors for MMPRT among an Asian sample. Cohort study; Level of evidence, 3. An observational study was performed of 476 consecutive patients undergoing an arthroscopic procedure on their medial meniscus from January 2010 to December 2010. One hundred four patients had MMPRT (group 1), and the other patients had other types of medial meniscal tears (group 2). Demographic characteristics (age, sex, body mass index [BMI]), radiographic features (mechanical axis angle, tibia vara angle, tibial slope angle, Kellgren-Lawrence grade [KLG]), and environmental factors (occupation, trauma history, sports activity level, table use or not, bed use or not-variables that are representative of the oriental lifestyle of lotus position and squatting) were surveyed. We assessed the relation of these risk factors to the type of meniscal tear (group 1 or 2). In group 1, there were 7 male and 97 female patients, with an average age of 58.2 years (range, 39-78 years) and BMI of 26.7 ± 3.4 kg/m2. In group 2, there were 136 male and 236 female patients (P < .01 compared with group 1), with an average age of 54.3 years (range, 17-77 years; P < .01) and a BMI of 24.9 ± 3.1 kg/m2 (P < .01). With regard to radiographic features, the mechanical axis angle demonstrated a significantly increased varus alignment in group 1 (4.5° ± 3.4°) compared with group 2 (2.4° ± 2.7°; P < .01), and the KLG was 1.4 ± 0.8 in group 1 and 0.9 ± 0.6 in group 2 (P < .01). Environmental factors showed no differences in occupation, table use or not, and bed use or not, except sports activity level. There were 41 patients (42.7%) in group 1 and 77 patients (20.6%) in group 2 who did not participate in any recreational activity (P < .01). Multiple logistic regression analysis showed that female sex was associated with a 5.9-fold increase in risk (95% confidence interval [CI], 2.138-16.575), a varus mechanical axis angle with a 3.3-fold increase (95% CI, 1.492-7.153), a BMI more than 30 kg/m2 with a 4.9-fold increase (95% CI, 1.160-20.955), and lower sports activity level with a 2.7-fold increase (95% CI, 1.011-7.163) for MMPRT. Persons with MMPRT had significantly increased age, female sex predominance, higher BMI, increased KLG, greater varus mechanical axis angle, and lower sports activity level compared with persons with other types of meniscal tear. After adjusting for other factors, sex, BMI, mechanical axis angle, and lower sports activity level remained strong determinants of MMPRT. Interestingly, oriental postural positions including the lotus position and squatting showed no contribution to increased risk of MMPRT. This suggests that intrinsic risk factors (similar to those that predispose to osteoarthritis) predispose to MMPRT.
NASA Astrophysics Data System (ADS)
Morgan, Gareth A.; Head, James W.; Forget, François; Madeleine, Jean-Baptiste; Spiga, Aymeric
2010-08-01
The unusual 80 km diameter Noachian-aged Asimov crater in Noachis Terra (46°S, 5°E) is characterized by extensive Noachian-Hesperian crater fill and a younger superposed annulus of valleys encircling the margins of the crater floor. These valleys provide an opportunity to study the relationships of gully geomorphology as a function of changing slope orientation relative to solar insolation. We found that the level of development of gullies was highly correlated with slope orientation and solar insolation. The largest and most complex gully systems, with the most well-developed fluvial landforms, are restricted to pole-facing slopes. In contrast, gullies on equator-facing slopes are smaller, more poorly developed and integrated, more highly degraded, and contain more impact craters. We used a 1D version of the Laboratoire de Météorologie Dynamique GCM, and slope geometries (orientation and angle), driven by predicted spin-axis/orbital parameter history, to assess the distribution and history of surface temperatures in these valleys during recent geological history. Surface temperatures on pole-facing slopes preferential for water ice accumulation and subsequent melting are predicted to occur as recently as 0.5-2.1 Ma, which is consistent with age estimates of gully activity elsewhere on Mars. In contrast, the 1D model predicts that water ice cannot accumulate on equator-facing slopes until obliquities exceed 45°, suggesting they are unlikely to have been active over the last 5 Ma. The correlation of the temperature predictions and the geological evidence for age differences suggests that there were two phases of gully formation in the last few million years: an older phase in which top-down melting occurred on equator-facing slopes and a younger more robust phase on pole-facing slopes. The similarities of small-scale fluvial erosion features seen in the gullies on Mars and those observed in gullies cut by seasonal and perennial snowmelt in the Antarctic Dry Valleys supports a top-down melting origin for these gullies on Mars.
Adam, Emma K; Quinn, Meghan E; Tavernier, Royette; McQuillan, Mollie T; Dahlke, Katie A; Gilbert, Kirsten E
2017-09-01
Changes in levels of the stress-sensitive hormone cortisol from morning to evening are referred to as diurnal cortisol slopes. Flatter diurnal cortisol slopes have been proposed as a mediator between chronic psychosocial stress and poor mental and physical health outcomes in past theory and research. Surprisingly, neither a systematic nor a meta-analytic review of associations between diurnal cortisol slopes and health has been conducted to date, despite extensive literature on the topic. The current systematic review and meta-analysis examined associations between diurnal cortisol slopes and physical and mental health outcomes. Analyses were based on 179 associations from 80 studies for the time period up to January 31, 2015. Results indicated a significant association between flatter diurnal cortisol slopes and poorer health across all studies (average effect size, r=0.147). Further, flatter diurnal cortisol slopes were associated with poorer health in 10 out of 12 subtypes of emotional and physical health outcomes examined. Among these subtypes, the effect size was largest for immune/inflammation outcomes (r=0.288). Potential moderators of the associations between diurnal cortisol slopes and health outcomes were examined, including type of slope measure and study quality indices. The possible roles of flatter slopes as either a marker or a mechanism for disease etiology are discussed. We argue that flatter diurnal cortisol slopes may both reflect and contribute to stress-related dysregulation of central and peripheral circadian mechanisms, with corresponding downstream effects on multiple aspects of biology, behavior, and health. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Xun-Wen; Wong, James Tsz-Fung; Ng, Charles Wang-Wai; Wong, Ming-Hung
2016-04-01
Due to the increasing concerns on global warming, scarce land for agriculture, and contamination impacts on human health, biochar application is being considered as one of the possible measures for carbon sequestration, promoting higher crop yield and contamination remediation. Significant amount of researches focusing on these three aspects have been conducted during recent years. Biochar as a soil amendment is effective in promoting plant performance and sustainability, by enhancing nutrient bioavailability, contaminants immobilization, and microbial activities. The features of biochar in changing soil physical and biochemical properties are essential in affecting the sustainability of an ecosystem. Most studies showed positive results and considered biochar application as an effective and promising measure for above-mentioned interests. Bio-engineered man-made filled slope and landfill slope increasingly draw the attention of geologists and geotechnical engineers. With increasing number of filled slopes, sustainability, low maintenance, and stability are the major concerns. Biochar as a soil amendment changes the key factors and parameters in ecology (plant development, soil microbial community, nutrient/contaminant cycling, etc.) and slope engineering (soil weight, internal friction angle and cohesion, etc.). This paper reviews the studies on the production, physical and biochemical properties of biochar and suggests the potential areas requiring study in balancing ecology and man-made filled slope and landfill cover engineering. Biochar-amended soil should be considered as a new type of soil in terms of soil mechanics. Biochar performance depends on soil and biochar type which imposes challenges to generalize the research outcomes. Aging process and ecotoxicity studies of biochar are strongly required.
Seismic stratigraphy of the Mississippi-Alabama shelf and upper continental slope
Kindinger, J.L.
1988-01-01
The Mississippi-Alabama shelf and upper continental slope contain relatively thin Upper Pleistocene and Holocene deposits. Five stages of shelf evolution can be identified from the early Wisconsinan to present. The stages were controlled by glacioeustatic or relative sea-level changes and are defined by the stratigraphic position of depositional and erosional episodes. The stratigraphy was identified on seismic profiles by means of geomorphic pattern, high-angle clinoform progradational deposits, buried stream entrenchments, planar conformities, and erosional unconformities. The oldest stage (stage 1) of evolution occurred during the early Wisconsinan lowstand; the subaerially exposed shelf was eroded to a smooth seaward-sloping surface. This paleosurface is overlain by a thin (< 10 m) drape of transgressive deposits (stage 2). Stage 3 occurred in three phases as the late Wisconsinan sea retreated: (1) fluvial channel systems eroded across the shelf, (2) deposited a thick (90 m) shelf-margin delta, and (3) contemporaneously deposited sediments on the upper slope. Stage 4 included the rapid Holocene sea-level rise that deposited a relatively thin transgressive facies over parts of the shelf. The last major depositional episode (stage 5) was the progradation of the St. Bernard delta over the northwestern and central parts of the area. A depositional hiatus has occurred since the St. Bernard progradation. These Upper Quaternary shelf and slope deposits provide models for analogous deposits in the geologic record. Primarily, they are examples of cyclic sedimentation caused by changes in sea level and may be useful in describing short-term, sandy depositional episodes in prograding shelf and slope sequences. ?? 1988.