Sample records for average soluble reactive

  1. Synthesis, Characterization and Reactivity of a Hexane-Soluble Silver Salt

    ERIC Educational Resources Information Center

    Stockland, Robert A. Jr.; Wilson, Brian D.; Goodman, Caton C.; Giese, Barret J.; Shrimp, Frederick L., II

    2007-01-01

    The connectivity of a hexane-soluble silver salt is established by using NMR spectroscopy to describe the synthesis, characterization and reactivity of the salt. The results found hexane-soluble silver to be an effective transfer agent.

  2. Characterization of oxidized tannins: comparison of depolymerization methods, asymmetric flow field-flow fractionation and small-angle X-ray scattering.

    PubMed

    Vernhet, Aude; Dubascoux, Stéphane; Cabane, Bernard; Fulcrand, Hélène; Dubreucq, Eric; Poncet-Legrand, Céline

    2011-09-01

    Condensed tannins are a major class of plant polyphenols. They play an important part in the colour and taste of foods and beverages. Due to their chemical reactivity, tannins are not stable once extracted from plants. A number of chemical reactions can take place, leading to structural changes of the native structures to give so-called derived tannins and pigments. This paper compares results obtained on native and oxidized tannins with different techniques: depolymerization followed by high-performance liquid chromatography analysis, small-angle X-ray scattering (SAXS) and asymmetric flow field-flow fractionation (AF4). Upon oxidation, new macromolecules were formed. Thioglycolysis experiments showed no evidence of molecular weight increase, but thioglycolysis yields drastically decreased. When oxidation was performed at high concentration (e.g., 10 g L(-1)), the weight average degree of polymerization determined from SAXS increased, whereas it remained stable when oxidation was done at low concentration (0.1 g L(-1)), indicating that the reaction was intramolecular, yet the conformations were different. Differences in terms of solubility were observed; ethanol being a better solvent than water. We also separated soluble and non-water-soluble species of a much oxidized fraction. Thioglycolysis showed no big differences between the two fractions, whereas SAXS and AF4 showed that insoluble macromolecules have a weight average molecular weight ten times higher than the soluble ones.

  3. Relationship between reactive oxygen species and water-soluble organic compounds: Time-resolved benzene carboxylic acids measurement in the coastal area during the KORUS-AQ campaign.

    PubMed

    Bae, Min-Suk; Schauer, James J; Lee, Taehyoung; Jeong, Ju-Hee; Kim, Yoo-Keun; Ro, Chul-Un; Song, Sang-Keun; Shon, Zang-Ho

    2017-12-01

    This study investigated the relationship between water-soluble organic compounds of ambient particulate matter (PM) and cellular redox activity collected from May 28 to June 20 of 2016 at the west coastal site in the Republic of Korea during the KORea-US Air Quality (KORUS-AQ) campaign. Automatic four-hour integrated samples operated at a flow rate of 92 L per minute for the analysis of organic carbon (OC), water-soluble organic carbon (WSOC), elemental carbon (EC), water-soluble ions (WSIs), and benzene carboxylic acids (BCAs) were collected on a 47 mm quartz fiber filter. The influence of atmospheric transport processes was assessed by the Weather Research and Forecasting (WRF) model. OC, EC, WSOC, and BCA were determined by SUNET carbon analyzer, total organic carbon (TOC) analyzer, and liquid chromatography-mass spectrometry mass spectrometry (LC-MSMS), respectively. Twenty-four-hour integrated samples were collected for reactive oxygen species (ROS) analysis using a fluorogenic cell-based method to investigate the main chemical classes of toxicity. The results illustrate that WSOC and specific water-soluble species are associated with the oxidative potential of particulate matter. Pairwise correlation scatterplots between the daily-averaged WSOC and ROS (r 2 of 0.81), and 135-BCA and ROS (r 2 of 0.84), indicate that secondary organic aerosol production was highly associated with ROS activity. In addition, X-ray spectral analysis together with secondary electron images (SEIs) of PM 2.5 particles collected during high ROS concentration events clearly indicate that water-soluble organic aerosols are major contributors to PM 2.5 mass. This study provides insight into the components of particulate matter that are drivers of the oxidative potential of atmospheric particulate matter and potential tracers for this activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Coal desulfurization

    NASA Technical Reports Server (NTRS)

    Corcoran, William H. (Inventor); Vasilakos, Nicholas P. (Inventor); Lawson, Daniel D. (Inventor)

    1982-01-01

    A method for enhancing solubilizing mass transport of reactive agents into and out of carbonaceous materials, such as coal. Solubility parameters of mass transfer and solvent media are matched to individual peaks in the solubility parameter spectrum of coals to enhance swelling and/or dissolution. Methanol containing reactive agent carriers are found particularly effective for removing organic sulfur from coals by chlorinolysis.

  5. Plasmatic antioxidant capacity due to ascorbate using TEMPO scavenging and electron spin resonance.

    PubMed

    Piehl, Lidia L; Facorro, Graciela B; Huarte, Mónica G; Desimone, Martín F; Copello, Guillermo J; Díaz, Luis E; de Celis, Emilio Rubín

    2005-09-01

    Ascorbate is the most effective water-soluble antioxidant and its plasma concentration is usually measured by different methods including colorimetric assays, HPLC or capillary electrophoresis. Plasma antioxidant capacity is determined by indexes such as total reactive antioxidant potential, total antioxidant reactivity, oxygen radical absorbance capacity, etc. We developed an alternative method for the evaluation of the plasma antioxidant status due to ascorbate. TEMPO kinetics scavenging analyzed by ESR spectroscopy was performed on plasma samples in different antioxidant situations. Plasma ascorbate concentrations were determined by capillary electrophoresis. Ascorbyl radical levels were measured by ESR. Plasma reactivity with TEMPO (PR-T) reflected plasma ascorbate levels. Average PR-T for normal plasmas resulted 85+/-27 micromol/l (n=43). PR-T during ascorbic acid intake (1 g/day) increased to an average value of 130+/-20 micromol/l (p<0.001, n=20). PR-T correlated with the plasmatic ascorbate levels determined by capillary electrophoresis (r=0.92), presenting as an advantage the avoiding of the deproteination step. Plasma ascorbyl radical levels increase from 16+/-2 to 24+/-3 nmol/l (p<0.005, n=14) after ascorbate intake. PR-T could be considered as a measure of the plasmatic antioxidant capacity due to the plasma ascorbate levels and could be useful to investigate different antioxidant situations.

  6. Central arterial stiffness is associated with systemic inflammation among Asians with type 2 diabetes.

    PubMed

    Zhang, Xiao; Liu, Jian Jun; Fang Sum, Chee; Ying, Yeoh Lee; Tavintharan, Subramaniam; Ng, Xiao Wei; Su, Chang; Low, Serena; Lee, Simon Bm; Tang, Wern Ee; Lim, Su Chi

    2016-07-01

    To examine the relationship between inflammation and central arterial stiffness in a type 2 diabetes Asian cohort. Central arterial stiffness was estimated by carotid-femoral pulse wave velocity and augmentation index. Linear regression model was used to evaluate the association of high-sensitivity C-reactive protein and soluble receptor for advanced glycation end products with pulse wave velocity and augmentation index. High-sensitivity C-reactive protein was analysed as a continuous variable and categories (<1, 1-3, and >3 mg/L). There is no association between high-sensitivity C-reactive protein and pulse wave velocity. Augmentation index increased with high-sensitivity C-reactive protein as a continuous variable (β = 0.328, p = 0.049) and categories (β = 1.474, p = 0.008 for high-sensitivity C-reactive protein: 1-3 mg/L and β = 1.323, p = 0.019 for high-sensitivity C-reactive protein: >3 mg/L) after multivariable adjustment. No association was observed between augmentation index and soluble receptor for advanced glycation end products. Each unit increase in natural log-transformed soluble receptor for advanced glycation end products was associated with 0.328 m/s decrease in pulse wave velocity after multivariable adjustment (p = 0.007). Elevated high-sensitivity C-reactive protein and decreased soluble receptor for advanced glycation end products are associated with augmentation index and pulse wave velocity, respectively, suggesting the potential role of systemic inflammation in the pathogenesis of central arterial stiffness in type 2 diabetes. © The Author(s) 2016.

  7. A method of calculating quartz solubilities in aqueous sodium chloride solutions

    USGS Publications Warehouse

    Fournier, R.O.

    1983-01-01

    The aqueous silica species that form when quartz dissolves in water or saline solutions are hydrated. Therefore, the amount of quartz that will dissolve at a given temperature is influenced by the prevailing activity of water. Using a standard state in which there are 1,000 g of water (55.51 moles) per 1,000 cm3 of solution allows activity of water in a NaCl solution at high temperature to be closely approximated by the effective density of water, pe, in that solution, i.e. the product of the density of the NaCl solution times the weight fraction of water in the solution, corrected for the amount of water strongly bound to aqueous silica and Na+ as water of hydration. Generally, the hydration of water correction is negligible. The solubility of quartz in pure water is well known over a large temperature-pressure range. An empirical formula expresses that solubility in terms of temperature and density of water and thus takes care of activity coefficient and pressure-effect terms. Solubilities of quartz in NaCl solutions can be calculated by using that equation and substituting pe, for the density of pure water. Calculated and experimentally determined quartz solubilities in NaCl solutions show excellent agreement when the experiments were carried out in non-reactive platinum, gold, or gold plus titanium containers. Reactive metal containers generally yield dissolved silica concentrations higher than calculated, probably because of the formation of metal chlorides plus NaOH and H2. In the absence of NaOH there appears to be no detectable silica complexing in NaCl solutions, and the variation in quartz solubility with NaCl concentration at constant temperature can be accounted for entirely by variations in the activity of water. The average hydration number per molecule of dissolved SiO2 in liquid water and NaCl solutions decreases from about 2.4 at 200??C to about 2.1 at 350??C. This suggests that H4SiO4 may be the dominant aqueous silica species at 350??C, but other polymeric forms become important at lower temperatures. ?? 1983.

  8. [Effects of low-intensity infrared impulse laser therapy on inflammation activity markers in patients with rheumatoid arthritis].

    PubMed

    Ilich-Stoianovich, O; Nasonov, E L; Balabanova, R M

    2000-01-01

    To evaluate effects of low-intensity infrared impulse laser therapy (IRILT) on concentration of immunity activation [not readable: see text] (soluble receptors of TNF-alpha and neopterin) and indicator of the inflammation activity (concentration of C-reactive protein) in patients with rheumatoid arthritis (RA). Enzyme immunoassay, radioimmunoassay, enzyme immunoassay and radial immunodiffusion were used to measure soluble receptors of TNF-alpha, neopterin and C-reactive protein in 38 females with verified RA receiving IRILT or sham procedures. IRILT induced lowering of neopterin, TNF-alpha soluble receptors (p < 0.01) and C-reactive protein (p < 0.01). The findings give pathogenetical grounds for IRILT use in RA as this treatment suppresses functional activity of macrophages which serve the main source of neopterin and the receptors synthesis.

  9. NUCLEAR REACTOR

    DOEpatents

    Breden, C.R.; Dietrich, J.R.

    1961-06-20

    A water-soluble non-volatile poison may be introduced into a reactor to nullify excess reactivity. The poison is removed by passing a side stream of the water containing the soluble poison to an evaporation chamber. The vapor phase is returned to the reactor to decrease the concentration of soluble poison and the liquid phase is returned to increase the concentration of soluble poison.

  10. Chronic exposure to biomass fuel smoke and markers of endothelial inflammation

    PubMed Central

    Caravedo, Maria A; Herrera, Phabiola M; Mongilardi, Nicole; de Ferrari, Aldo; Davila-Roman, Victor G; Gilman, Robert H; Wise, Robert A; Miele, Catherine H; Miranda, J Jaime; Checkley, William

    2016-01-01

    Indoor smoke exposure may affect cardiovascular disease (CVD) risk via lung-mediated inflammation, oxidative stress, and endothelial inflammation. We sought to explore the association between indoor smoke exposure from burning biomass fuels and a selected group of markers for endothelial inflammation. We compared serum concentrations of amyloid A protein, E-selectin, soluble ICAM-1 and VCAM-1, von Willebrand factor (VWF), and high sensitivity C-reactive protein (hs-CRP) in 228 biomass exposed vs. 228 non-exposed participants living in Puno, Peru. Average age was 56 years (SD=13), average BMI was 26.5 kg/m2 (SD=4.4), 48% were male, 59.4% completed high school and 2% reported a physician diagnosis of CVD. In unadjusted analysis, serum levels of soluble ICAM-1 (330 vs. 302 ng/mL; p<0.001), soluble VCAM-1 (403 vs. 362 ng/mL; p<0.001), and E-selectin (54.2 vs. 52.7 ng/mL; p=0.05) were increased in biomass exposed vs. non-exposed participants, respectively; whereas serum levels of vWF (1148 vs. 1311 mU/mL; p<0.001) and hs-CRP (2.56 vs. 3.12 mg/L; p<0.001) were decreased, respectively. In adjusted analyses, chronic exposure to biomass fuels remained positively associated with serum levels of soluble ICAM-1 (p=0.03) and VCAM-1 (p=0.05) and E-selectin (p=0.05), and remained negatively associated with serum levels of vWF (p=0.02) and hs-CRP (p<0.001). Daily exposure to biomass fuel smoke was associated with important differences in specific biomarkers of endothelial inflammation and may help explain accelerated atherosclerosis among those who are chronically exposed. PMID:26476302

  11. Reactive Transport in a Pipe in Soluble Rock: a Theoretical and Experimental Study

    NASA Astrophysics Data System (ADS)

    Li, W.; Opolot, M.; Sousa, R.; Einstein, H. H.

    2015-12-01

    Reactive transport processes within the dominant underground flow pathways such as fractures can lead to the widening or narrowing of rock fractures, potentially altering the flow and transport processes in the fractures. A flow-through experiment was designed to study the reactive transport process in a pipe in soluble rock to serve as a simplified representation of a fracture in soluble rock. Assumptions were made to formulate the problem as three coupled, one-dimensional partial differential equations: one for the flow, one for the transport and one for the radius change due to dissolution. Analytical and numerical solutions were developed to predict the effluent concentration and the change in pipe radius. The positive feedback of the radius increase is captured by the experiment and the numerical model. A comparison between the experiment and the simulation results demonstrates the validity of the analytical and numerical models.

  12. Ferricyanide-based analysis of aqueous lignin suspension revealed sequestration of water-soluble lignin moieties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshua, C. J.; Simmons, B. A.; Singer, S. W.

    This study describes the application of a ferricyanide-based assay as a simple and inexpensive assay for rapid analysis of aqueous lignin samples. The assay measures the formation of Prussian blue from the redox reaction between a mixture of potassium ferricyanide and ferric chloride, and phenolic hydroxyl groups of lignin or lignin-derived phenolic moieties. This study revealed that soluble lignin moieties exhibited stronger ferricyanide reactivity than insoluble aggregates. The soluble lignin moieties exhibited higher ferricyanide reactivity because of increased access of the phenolic hydroxyl groups to the ferricyanide reagents. Ferricyanide reactivity of soluble lignin moieties correlated inversely with the molecular weightmore » distributions of the molecules, probably due to the involvement of phenolic hydroxyl groups in bond formation. The insoluble lignin aggregates exhibited low ferricyanide reactivity due to sequestration of the phenolic hydroxyl groups within the solid matrix. The study also highlighted the sequestration of polydispersed water-soluble lignin moieties by insoluble aggregates. The sequestered moieties were released by treatment with 0.01 M NaOH at 37 °C for 180 min. The redox assay was effective on different types of lignin extracts such as Klason lignin from switchgrass, ionic-liquid derived lignin from Eucalyptus and alkali lignin extracts. The assay generated a distinct profile for each lignin sample that was highly reproducible. The assay was also used to monitor consumption of syringic acid by Sphingobium sp. SYK-6. The simplicity and reproducibility of this assay makes it an excellent and versatile tool for qualitative and semi-quantitative characterization and comparative profiling of aqueous lignin samples.« less

  13. Ferricyanide-based analysis of aqueous lignin suspension revealed sequestration of water-soluble lignin moieties

    DOE PAGES

    Joshua, C. J.; Simmons, B. A.; Singer, S. W.

    2016-06-02

    This study describes the application of a ferricyanide-based assay as a simple and inexpensive assay for rapid analysis of aqueous lignin samples. The assay measures the formation of Prussian blue from the redox reaction between a mixture of potassium ferricyanide and ferric chloride, and phenolic hydroxyl groups of lignin or lignin-derived phenolic moieties. This study revealed that soluble lignin moieties exhibited stronger ferricyanide reactivity than insoluble aggregates. The soluble lignin moieties exhibited higher ferricyanide reactivity because of increased access of the phenolic hydroxyl groups to the ferricyanide reagents. Ferricyanide reactivity of soluble lignin moieties correlated inversely with the molecular weightmore » distributions of the molecules, probably due to the involvement of phenolic hydroxyl groups in bond formation. The insoluble lignin aggregates exhibited low ferricyanide reactivity due to sequestration of the phenolic hydroxyl groups within the solid matrix. The study also highlighted the sequestration of polydispersed water-soluble lignin moieties by insoluble aggregates. The sequestered moieties were released by treatment with 0.01 M NaOH at 37 °C for 180 min. The redox assay was effective on different types of lignin extracts such as Klason lignin from switchgrass, ionic-liquid derived lignin from Eucalyptus and alkali lignin extracts. The assay generated a distinct profile for each lignin sample that was highly reproducible. The assay was also used to monitor consumption of syringic acid by Sphingobium sp. SYK-6. The simplicity and reproducibility of this assay makes it an excellent and versatile tool for qualitative and semi-quantitative characterization and comparative profiling of aqueous lignin samples.« less

  14. Spectroscopic and solubility characteristics of oxidized soots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chughtai, A.R.; Jassim, J.A.; Peterson, J.H.

    1991-01-01

    Spectroscopic and solubility studies of reaction products of soot (black carbon) with O{sub 3}, NO{sub 2}/N{sub 2}O{sub 4}, and SO{sub 2} have revealed a relationship between reactivity and product solubility and structure. A remarkably high solubility of ozonated n-hexane soot has its origin in the formation of anhydride and lactone surface structures and their subsequent hydrolysis to carboxylic acid species. Calculations indicate that the rate of surface carboxylation of 0.1-{mu}m diameter spheroidal soot particles, in the presence of 50 ppbv ozone at ambient temperature, is such that solubilization may occur within a 30-minute time frame. Measurements on ambient air aerosolmore » samples in metropolitan Denver are consistent with these observations and demonstrate the high reactivity of soot with ozone even at very low levels in natural systems.« less

  15. The influence of cosolvent and heat on the solubility and reactivity of organophosphorous pesticide DNAPL alkaline hydrolysis.

    PubMed

    Muff, Jens; MacKinnon, Leah; Durant, Neal D; Bennedsen, Lars Frausing; Rügge, Kirsten; Bondgaard, Morten; Pennell, Kurt

    2016-11-01

    The presented research concerned the compatibility of cosolvents with in situ alkaline hydrolysis (ISAH) for treatment of organophosphorous (OPP) pesticide contaminated sites. In addition, the influence of moderate temperature heat increments was studied as a possible enhancement method. A complex dense non-aqueous phase liquid (DNAPL) of primarily parathion (~50 %) and methyl parathion (~15 %) obtained from the Danish Groyne 42 site was used as a contaminant source, and ethanol and propan-2-ol (0, 25, and 50 v/v%) was used as cosolvents in tap water and 0.34 M NaOH. Both cosolvents showed OPP solubility enhancement at 50 v/v% cosolvent content, with slightly higher OPP concentrations reached with propan-2-ol. Data on hydrolysis products did not show a clear trend with respect to alkaline hydrolysis reactivity in the presence of cosolvents. Results indicated that the hydrolysis rate of methyl-parathion (MP3) decreased with addition of cosolvent, whereas the hydrolysis rate of ethyl-parathion (EP3) remained constant, and overall indications were that the hydrolysis reactions were limited by the rate of hydrolysis rather than NAPL dissolution. In addition to cosolvents, the influence of low-temperature heating on ISAH was studied. Increasing reaction temperature from 10 to 30 °C provided an average rate of hydrolysis enhancement by a factor of 1.4-4.8 dependent on the base of calculation. When combining 50 v/v% cosolvent addition and heating to 30 °C, EP3 solubility was significantly enhanced and results for O,O-diethyl-thiophosphoric acid (EP2 acid) showed a significant enhancement of hydrolysis as well. However, this could not be supported by para-nitrophenol (PNP) data indicating the instability of this product in the presence of cosolvent.

  16. Freezing and drying effects on potential plant contributions to phosphorus in runoff.

    PubMed

    Roberson, Tiffany; Bundy, Larry G; Andraski, Todd W

    2007-01-01

    Phosphorus (P) in runoff from landscapes can promote eutrophication of natural waters. Soluble P released from plant material can contribute significant amounts of P to runoff particularly after plant freezing or drying. This study was conducted to evaluate P losses from alfalfa or grass after freezing or drying as potential contributors to runoff P. Alfalfa (Medicago sativa L.) and grass (principally, Agropyron repens L.) plant samples were subjected to freezing and drying treatments to determine P release. Simulated rainfall runoff and natural runoff from established alfalfa fields and a grass waterway were collected to study P contributions from plant tissue to runoff. The effects of freezing and drying on P released from plant tissue were simulated by a herbicide treatment in selected experiments. Soluble reactive P (SP) extracted from alfalfa and grass samples was markedly increased by freezing or drying. In general, SP extracted from plant samples increased in the order fresh < frozen < frozen/thawed < dried, and averaged 1, 8, 14, and 26% of total P in alfalfa, respectively. Soluble reactive P extracted from alfalfa after freezing or drying increased with increasing soil test P (r(2) = 0.64 to 0.68), suggesting that excessive soil P levels increased the risk of plant P contributions to runoff losses. In simulated rainfall studies, paraquat (1,1'-dimethyl-4, 4''-bipyridinium ion) treatment of alfalfa increased P losses in runoff, and results suggested that this treatment simulated the effects of drying on plant P loss. In contrast to the simulated rainfall results, natural runoff studies over 2 yr did not show higher runoff P losses that could be attributed to P from alfalfa. Actual P losses likely depend on the timing and extent of plant freezing and drying and of precipitation events after freezing.

  17. Geochemical Modeling of Zinc Silicate Ore Formation from Sedimentary Hydrothermal Fluids

    NASA Astrophysics Data System (ADS)

    Appold, M. S.

    2008-12-01

    Sediment-hosted zinc deposits dominated by willemite (Zn2SiO4) instead of sphalerite (ZnS) are known from several prominent occurrences worldwide, including Vazante, Brazil, the Aroona Trend, Australia, Kabwe, Zambia, Berg Aukas, Namibia, and Abu Samar, Sudan. Although willemite-dominant zinc deposits appear to be much less common and are on average smaller than sphalerite-dominant zinc deposits, they nonetheless represent major enrichments of zinc in the Earth's crust, reaching sizes on the order of 1's to 10's of millions of tons and grades commonly between 20 and 40%. Sediment-hosted willemite- and sphalerite-dominant deposits share many similarities including their predominantly carbonate host rocks, gangue mineralogy, presumed derivation from sedimentary basinal brines, and spatial proximity. However, the conditions and processes that led to one style of mineralization versus the other have only recently begun to be investigated. The current study presents solubility, reaction path, and reactive transport modeling results that attempt to define more clearly the conditions that favor willemite ore formation in sedimentary basins, with a focus on the Vazante deposit. Solubility calculations for willemite and sphalerite as a function of temperature, pH, salinity, and oxidation potential were carried out using a simple 3 molal NaCl solution saturated with respect to quartz. The results show that (1) willemite solubility is relatively insensitive to changes in temperature and oxidation potential whereas sphalerite solubility decreases sharply with decreasing temperature and oxidation potential, (2) willemite solubility decreases more strongly than sphalerite with increasing pH, (3) willemite and sphalerite have a similar strong decrease in solubility with decreasing salinity. The results support a previously proposed genetic model for a willemite-dominant, sphalerite-subordinate ore body like Vazante in which a hot, acidic, metal-rich ore fluid mixed with a cooler, more oxidizing, dilute, and basic fluid. This scenario was investigated further with reaction path and reactive transport modeling. In these models, a more complex ore fluid was used that was assumed to have a major element composition similar to the global average for Mississippi Valley-type (MVT) deposits determined from the literature, modified by heating from 150 to 300° C, saturated with respect to dolomite and quartz, moderately acidic, and an oxidation potential near the value defined by magnetite-hematite equilibrium. The ore fluid was allowed to mix with a second, possibly meteoric fluid with about three orders of magnitude lower salinity, neutral pH, and a temperature of 50° C. The modeling results showed general agreement with the mineral assemblage observed at Vazante, and confirmed the need for a strong pH increase to induce willemite precipitation, and no more than a moderate increase in oxidation potential to allow some sphalerite to precipitate. The localization of mineralization within a shear zone was found to depend strongly on the shear zone having acted as a high permeability conduit for the ore fluid from deeper parts of the sedimentary basin.

  18. Evaluation of gastrointestinal solubilization of petroleum hydrocarbon residues in soil using an in vitro physiologically based model.

    PubMed

    Holman, Hoi-Ying N; Goth-Goldstein, Regine; Aston, David; Yun, Mao; Kengsoontra, Jenny

    2002-03-15

    Petroleum hydrocarbon residues in weathered soils may pose risks to humans through the ingestion pathway. To understand the factors controlling their gastrointestinal (GI) absorption, a newly developed experimental extraction protocol was used to model the GI solubility of total petroleum hydrocarbon (TPH) residues in highly weathered soils from different sites. The GI solubility of TPH residues was significantly higher for soil contaminated with diesel than with crude oil. Compared to the solubility of TPH residues during fasted state,the solubility of TPH residues during fat digestion was much greater. Diesel solubility increased from an average of 8% during the "gallbladder empty" phase of fasting (and less than 0.2% during the otherfasting phase) to an average of 16% during fat digestion. For crude oil, the solubility increased from an average of 1.2% during the gallbladder empty phase of fasting (and undetectable during the other fasting phase) to an average of 4.5% during fat digestion. Increasing the concentration of bile salts also increased GI solubility. GI solubility was reduced by soil organic carbon but enhanced by the TPH content.

  19. The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US

    NASA Astrophysics Data System (ADS)

    Knote, C.; Hodzic, A.; Jimenez, J. L.

    2015-01-01

    The effect of dry and wet deposition of semi-volatile organic compounds (SVOCs) in the gas phase on the concentrations of secondary organic aerosol (SOA) is reassessed using recently derived water solubility information. The water solubility of SVOCs was implemented as a function of their volatility distribution within the WRF-Chem regional chemistry transport model, and simulations were carried out over the continental United States for the year 2010. Results show that including dry and wet removal of gas-phase SVOCs reduces annual average surface concentrations of anthropogenic and biogenic SOA by 48 and 63% respectively over the continental US. Dry deposition of gas-phase SVOCs is found to be more effective than wet deposition in reducing SOA concentrations (-40 vs. -8% for anthropogenics, and -52 vs. -11% for biogenics). Reductions for biogenic SOA are found to be higher due to the higher water solubility of biogenic SVOCs. The majority of the total mass of SVOC + SOA is actually deposited via the gas phase (61% for anthropogenics and 76% for biogenics). Results are sensitive to assumptions made in the dry deposition scheme, but gas-phase deposition of SVOCs remains crucial even under conservative estimates. Considering reactivity of gas-phase SVOCs in the dry deposition scheme was found to be negligible. Further sensitivity studies where we reduce the volatility of organic matter show that consideration of gas-phase SVOC removal still reduces average SOA concentrations by 31% on average. We consider this a lower bound for the effect of gas-phase SVOC removal on SOA concentrations. A saturation effect is observed for Henry's law constants above 108 M atm-1, suggesting an upper bound of reductions in surface level SOA concentrations by 60% through removal of gas-phase SVOCs. Other models that do not consider dry and wet removal of gas-phase SVOCs would hence overestimate SOA concentrations by roughly 50%. Assumptions about the water solubility of SVOCs made in some current modeling systems (H* = H* (CH3COOH); H* = 105 M atm-1; H* = H* (HNO3)) still lead to an overestimation of 35%/25%/10% compared to our best estimate.

  20. Structural equation modeling of the inflammatory response to traffic air pollution

    PubMed Central

    Baja, Emmanuel S.; Schwartz, Joel D.; Coull, Brent A.; Wellenius, Gregory A.; Vokonas, Pantel S.; Suh, Helen H.

    2015-01-01

    Several epidemiological studies have reported conflicting results on the effect of traffic-related pollutants on markers of inflammation. In a Bayesian framework, we examined the effect of traffic pollution on inflammation using structural equation models (SEMs). We studied measurements of C-reactive protein (CRP), soluble vascular cell adhesion molecule-1 (sVCAM-1), and soluble intracellular adhesion molecule-1 (sICAM-1) for 749 elderly men from the Normative Aging Study. Using repeated measures SEMs, we fit a latent variable for traffic pollution that is reflected by levels of black carbon, carbon monoxide, nitrogen monoxide and nitrogen dioxide to estimate its effect on a latent variable for inflammation that included sICAM-1, sVCAM-1 and CRP. Exposure periods were assessed using 1-, 2-, 3-, 7-, 14- and 30-day moving averages previsit. We compared our findings using SEMs with those obtained using linear mixed models. Traffic pollution was related to increased inflammation for 3-, 7-, 14- and 30-day exposure periods. An inter-quartile range increase in traffic pollution was associated with a 2.3% (95% posterior interval (PI): 0.0–4.7%) increase in inflammation for the 3-day moving average, with the most significant association observed for the 30-day moving average (23.9%; 95% PI: 13.9–36.7%). Traffic pollution adversely impacts inflammation in the elderly. SEMs in a Bayesian framework can comprehensively incorporate multiple pollutants and health outcomes simultaneously in air pollution–cardiovascular epidemiological studies. PMID:23232970

  1. Flexible Reactive Berm (FRBerm) for Removal of Heavy Metals from Runoff Water

    DTIC Science & Technology

    2016-10-01

    contamination, runoff, variable terrain requirements, reactive filter barrier. Unclassified Unclassified UU UL 47 Dr. Steve Larson 601-634-3431 Page...Figure 1. Illustration of a Sediment Control Filter Sock ............................................................... 1 Figure 2. Conceptual...Design of the Flexible Reactive Filter Barriers to Remove Soluble and Sediment Bound Metal(loids) in Stormwater Runoff

  2. Pore scale study of multiphase multicomponent reactive transport during CO 2 dissolution trapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li; Wang, Mengyi; Kang, Qinjun

    Solubility trapping is crucial for permanent CO 2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO 2-water two-phase flow, multicomponent (CO 2(aq), H +, HCO 3 –, CO 3 2 – and OH –) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO 2(aq) concentration, scCO 2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is requiredmore » by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Lastly, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO 2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.« less

  3. Pore scale study of multiphase multicomponent reactive transport during CO 2 dissolution trapping

    DOE PAGES

    Chen, Li; Wang, Mengyi; Kang, Qinjun; ...

    2018-04-26

    Solubility trapping is crucial for permanent CO 2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO 2-water two-phase flow, multicomponent (CO 2(aq), H +, HCO 3 –, CO 3 2 – and OH –) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO 2(aq) concentration, scCO 2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is requiredmore » by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Lastly, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO 2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.« less

  4. Pore scale study of multiphase multicomponent reactive transport during CO2 dissolution trapping

    NASA Astrophysics Data System (ADS)

    Chen, Li; Wang, Mengyi; Kang, Qinjun; Tao, Wenquan

    2018-06-01

    Solubility trapping is crucial for permanent CO2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO2-water two-phase flow, multicomponent (CO2(aq), H+, HCO3-, CO32- and OH-) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO2(aq) concentration, scCO2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is required by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Finally, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.

  5. The Role of Legacy Effects and Reactive Amendments on Phosphorus Retention Within Riparian Zones

    NASA Astrophysics Data System (ADS)

    Surridge, B.; Habibiandehkordi, R.; Quinton, J.

    2014-12-01

    Undisturbed riparian zones, including river floodplains and field buffer strips, can significantly reduce phosphorus (P) export associated with agricultural production. However, riparian zones are frequently disturbed, including through conversion to agricultural land. Restoring disturbed riparian zones is promoted widely within agri-environment schemes. However, restoration presents significant challenges, two of which are considered in this paper: understanding the impacts of restoration on legacy P within riparian zone soils; and maximising the efficacy of riparian zones for removal of all P fractions, including the more immediately bioavailable soluble P fractions. Firstly, we examine changes in porewater soluble P concentration following re-wetting of a river floodplain in Norfolk, UK, using laboratory mesocosms and in-situ field monitoring. Substantial release of P from sediment to porewater was observed following re-wetting (porewater soluble P concentration exceeded 6.5 mg P L-1), probably associated with reductive-dissolution of iron-bound P within floodplain sediments. Export of soluble P from porewater into adjacent receiving waters was observed following both natural hydrological events and management of the hydrological regime within the floodplain. Secondly, we examine how retention of soluble P with grass buffer strips can be enhanced through application of reactive industrial by-products, focussing on ochre and aluminium-based water treatment residuals. Application of these by-products to buffer strips increased removal of soluble P from surface runoff by over 50% compared to non-amended buffer strips. The long-term effectiveness of reactive amendments is also considered, using repeated runoff events under field conditions. Taken together, the research offers new insights into riparian zone P biogeochemistry within agricultural landscapes.

  6. Lipopolysaccharide-binding protein, lipopolysaccharide, and soluble CD14 in sepsis of critically ill neonates and children.

    PubMed

    Pavcnik-Arnol, Maja; Hojker, Sergej; Derganc, Metka

    2007-06-01

    To compare the diagnostic accuracy of lipopolysaccharide-binding protein (LBP) for sepsis in critically ill neonates and children with the two markers participating in the same inflammatory pathway, lipopolysaccharide and soluble CD14. Prospective, observational study in a multidisciplinary neonatal and pediatric intensive care unit. 47 critically ill neonates and 49 critically ill children with systemic inflammatory response syndrome (SIRS) and suspected sepsis, classified into two groups: those with and those without sepsis. Serum LBP, lipopolysaccharide, soluble CD14, C-reactive protein, and procalcitonin were measured on 2 consecutive days. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and predictive values were evaluated. AUC for LBP on the first day of suspected infection was 0.97 in neonates aged under 48 h, 0.93 in neonates over 48 h and 0.82 in children. AUCs for lipopolysaccharide and soluble CD14 were 0.77 and 0.74 in neonates under 48 h, 0.53 and 0.76 in neonates over 48 h, and 0.72 and 0.53 in children. AUCs for procalcitonin and C-reactive protein were 0.65 and 0.89 in neonates under 48 h, 0.65 and 0.91 in neonates over 48 h, and 0.76 and 0.69 in children. In critically ill neonates and children LBP concentration on the first day of suspected sepsis is a better marker of sepsis than lipopolysaccharide, soluble CD14, procalcitonin, and in neonates younger than 48 h and children, also a better marker than C-reactive protein. Lipopolysaccharide and soluble CD14 are not suitable markers for the differentiation of infectious and noninfectious SIRS.

  7. Water soluble biocompatible vesicles based on polysaccharides and oligosaccharides inclusion complexes for carotenoid delivery.

    PubMed

    Polyakov, Nikolay E; Kispert, Lowell D

    2015-09-05

    Since carotenoids are highly hydrophobic, air- and light-sensitive hydrocarbon compounds, developing methods for increasing their bioavailability and stability towards irradiation and reactive oxygen species is an important goal. Application of inclusion complexes of "host-guest" type with polysaccharides and oligosaccharides such as arabinogalactan, cyclodextrins and glycyrrhizin minimizes the disadvantages of carotenoids when these compounds are used in food processing (colors and antioxidant capacity) as well as for production of therapeutic formulations. Cyclodextrin complexes which have been used demonstrated enhanced storage stability but suffered from poor solubility. Polysaccharide and oligosaccharide based inclusion complexes play an important role in pharmacology by providing increased solubility and stability of lipophilic drugs. In addition they are used as drug delivery systems to increase absorption rate and bioavailability of the drugs. In this review we summarize the existing data on preparation methods, analysis, and chemical reactivity of carotenoids in inclusion complexes with cyclodextrin, arabinogalactan and glycyrrhizin. It was demonstrated that incorporation of carotenoids into the "host" macromolecule results in significant changes in their physical and chemical properties. In particular, polysaccharide complexes show enhanced photostability of carotenoids in water solutions. A significant decrease in the reactivity towards metal ions and reactive oxygen species in solution was also detected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Wet Deposition Flux of Reactive Organic Carbon

    NASA Astrophysics Data System (ADS)

    Safieddine, S.; Heald, C. L.

    2016-12-01

    Reactive organic carbon (ROC) is the sum of non-methane volatile organic compounds (NMVOCs) and primary and secondary organic aerosols (OA). ROC plays a key role in driving the chemistry of the atmosphere, affecting the hydroxyl radical concentrations, methane lifetime, ozone formation, heterogeneous chemical reactions, and cloud formation, thereby impacting human health and climate. Uncertainties on the lifecycle of ROC in the atmosphere remain large. In part this can be attributed to the large uncertainties associated with the wet deposition fluxes. Little is known about the global magnitude of wet deposition as a sink of both gas and particle phase organic carbon, making this an important area for research and sensitivity testing in order to better understand the global ROC budget. In this study, we simulate the wet deposition fluxes of the reactive organic carbon of the troposphere using a global chemistry transport model, GEOS-Chem. We start by showing the current modeled global distribution of ROC wet deposition fluxes and investigate the sensitivity of these fluxes to variability in Henry's law solubility constants and spatial resolution. The average carbon oxidation state (OSc) is a useful metric that depicts the degree of oxidation of atmospheric reactive carbon. Here, we present for the first time the simulated gas and particle phase OSc of the global troposphere. We compare the OSc in the wet deposited reactive carbon flux and the dry deposited reactive carbon flux to the OSc of atmospheric ROC to gain insight into the degree of oxidation in deposited material and, more generally, the aging of organic material in the troposphere.

  9. Effects of salt pond restoration on benthic flux: Sediment as a source of nutrients to the water column

    USGS Publications Warehouse

    Topping, Brent R.; Kuwabara, James S.; Carter, James L.; Garrettt, Krista K.; Mruz, Eric; Piotter, Sarah; Takekawa, John Y.

    2016-01-01

    Understanding nutrient flux between the benthos and the overlying water (benthic flux) is critical to restoration of water quality and biological resources because it can represent a major source of nutrients to the water column. Extensive water management commenced in the San Francisco Bay, Beginning around 1850, San Francisco Bay wetlands were converted to salt ponds and mined extensively for more than a century. Long-term (decadal) salt pond restoration efforts began in 2003. A patented device for sampling porewater at varying depths, to calculate the gradient, was employed between 2010 and 2012. Within the former ponds, the benthic flux of soluble reactive phosphorus and that of dissolved ammonia were consistently positive (i.e., moving out of the sediment into the water column). The lack of measurable nitrate or nitrite concentration gradients across the sediment-water interface suggested negligible fluxes for dissolved nitrate and nitrite. The dominance of ammonia in the porewater indicated anoxic sediment conditions, even at only 1 cm depth, which is consistent with the observed, elevated sediment oxygen demand. Nearby openestuary sediments showed much lower benthic flux values for nutrients than the salt ponds under resortation. Allochthonous solute transport provides a nutrient advective flux for comparison to benthic flux. For ammonia, averaged for all sites and dates, benthic flux was about 80,000 kg/year, well above the advective flux range of −50 to 1500 kg/year, with much of the variability depending on the tidal cycle. By contrast, the average benthic flux of soluble reactive phosphorus was about 12,000 kg/year, of significant magnitude, but less than the advective flux range of 21,500 to 30,000 kg/year. These benthic flux estimates, based on solute diffusion across the sediment-water interface, reveal a significant nutrient source to the water column of the pond which stimulates algal blooms (often autotrophic). This benthic source may be augmented further by bioturbation, bioirrigation and episodic sediment resuspension events.

  10. Complexation of morin with three kinds of cyclodextrin. A thermodynamic and reactivity study

    NASA Astrophysics Data System (ADS)

    Jullian, Carolina; Orosteguis, Teresita; Pérez-Cruz, Fernanda; Sánchez, Paulina; Mendizabal, Fernando; Olea-Azar, Claudio

    2008-11-01

    Properties of inclusion complexes between morin (M) and β-cyclodextrin (βCD), 2-hydroxypropyl-β-cyclodextrin (HPβCD) and Heptakis (2,6- O-di methyl) β-cyclodextrin (DMβCD) such as aqueous solubility and the association constants of this complex have been determined. The water solubility of morin was increased by inclusion with cyclodextrins. The phase-solubility diagrams drawn from UV spectral measurements are of the A L-type. Also ORAC FL studies were done. An increase in the antioxidant reactivity is observed when morin form inclusion complex with the three cyclodextrin studied. Finally, thermodynamics studies of cyclodextrin complexes indicated that for DMβCD the inclusion is primarily enthalpy-driven process meanwhile βCD and HPβCD are entropy-driven processes. This is corroborated by the different inclusion geometries obtained by 2D-NMR.

  11. Contribution of dissolved organic matter to submicron water-soluble organic aerosols in the marine boundary layer over the eastern equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yuzo; Coburn, Sean; Ono, Kaori; Ho, David T.; Pierce, R. Bradley; Kawamura, Kimitaka; Volkamer, Rainer

    2016-06-01

    Stable carbon isotopic compositions of water-soluble organic carbon (WSOC) and organic molecular markers were measured to investigate the relative contributions of the sea surface sources to the water-soluble fraction of submicron organic aerosols collected over the eastern equatorial Pacific during the Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated VOCs (TORERO)/KA-12-01 cruise. On average, the water-soluble organic fraction of the total carbon (TC) mass in submicron aerosols was ˜ 30-35 % in the oceans with the low chlorophyll a (Chl a) concentrations, whereas it was ˜ 60 % in the high-Chl a regions. The average stable carbon isotope ratio of WSOC (δ13CWSOC) was -19.8 ± 2.0 ‰, which was systematically higher than that of TC (δ13CTC) (-21.8 ± 1.4 ‰). We found that in the oceans with both high and low Chl a concentrations the δ13CWSOC was close to the typical values of δ13C for dissolved organic carbon (DOC), ranging from -22 to -20 ‰ in surface seawater of the tropical Pacific Ocean. This suggests an enrichment of marine biological products in WSOC aerosols in the study region regardless of the oceanic area. In particular, enhanced levels of WSOC and biogenic organic marker compounds together with high values of WSOC / TC ( ˜ 60 %) and δ13CWSOC were observed over upwelling areas and phytoplankton blooms, which was attributed to planktonic tissues being more enriched in δ13C. The δ13C analysis estimated that, on average, marine sources contribute ˜ 90 ± 25 % of the aerosol carbon, indicating the predominance of marine-derived carbon in the submicron WSOC. This conclusion is supported by Lagrangian trajectory analysis, which suggests that the majority of the sampling points on the ship had been exposed to marine boundary layer (MBL) air for more than 80 % of the time during the previous 7 days. The combined analysis of the δ13C and monosaccharides, such as glucose and fructose, demonstrated that DOC concentration was closely correlated with the concentration levels of submicron WSOC across the study region regardless of the oceanic area. The result implies that DOC may characterize background organic aerosols in the MBL over the study region.

  12. The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US

    DOE PAGES

    Knote, C.; Hodzic, A.; Jimenez, J. L.

    2015-01-06

    The effect of dry and wet deposition of semi-volatile organic compounds (SVOCs) in the gas phase on the concentrations of secondary organic aerosol (SOA) is reassessed using recently derived water solubility information. The water solubility of SVOCs was implemented as a function of their volatility distribution within the WRF-Chem regional chemistry transport model, and simulations were carried out over the continental United States for the year 2010. Results show that including dry and wet removal of gas-phase SVOCs reduces annual average surface concentrations of anthropogenic and biogenic SOA by 48 and 63% respectively over the continental US. Dry deposition ofmore » gas-phase SVOCs is found to be more effective than wet deposition in reducing SOA concentrations (−40 vs. −8% for anthropogenics, and −52 vs. −11% for biogenics). Reductions for biogenic SOA are found to be higher due to the higher water solubility of biogenic SVOCs. The majority of the total mass of SVOC + SOA is actually deposited via the gas phase (61% for anthropogenics and 76% for biogenics). Results are sensitive to assumptions made in the dry deposition scheme, but gas-phase deposition of SVOCs remains crucial even under conservative estimates. Considering reactivity of gas-phase SVOCs in the dry deposition scheme was found to be negligible. Further sensitivity studies where we reduce the volatility of organic matter show that consideration of gas-phase SVOC removal still reduces average SOA concentrations by 31% on average. We consider this a lower bound for the effect of gas-phase SVOC removal on SOA concentrations. A saturation effect is observed for Henry's law constants above 10 8 M atm −1, suggesting an upper bound of reductions in surface level SOA concentrations by 60% through removal of gas-phase SVOCs. Other models that do not consider dry and wet removal of gas-phase SVOCs would hence overestimate SOA concentrations by roughly 50%. Assumptions about the water solubility of SVOCs made in some current modeling systems ( H * = H * (CH 3COOH); H * = 10 5 M atm −1; H * = H * (HNO 3)) still lead to an overestimation of 35%/25%/10% compared to our best estimate.« less

  13. Abacavir increases platelet reactivity via competitive inhibition of soluble guanylyl cyclase

    PubMed Central

    Baum, Paul D.; Sullam, Paul M.; Stoddart, Cheryl A.; McCune, Joseph M.

    2011-01-01

    Objective To provide a molecular mechanism that explains the association of the antiretroviral guanosine analogue, abacavir, with an increased risk of myocardial infarction. Design Drug effects were studied with biochemical and cellular assays. Methods Human platelets were incubated with nucleoside analogue drugs ex vivo. Platelet activation stimulated by ADP was studied by measuring surface P-selectin with flow cytometry. Inhibition of purified soluble guanylyl cyclase was quantified using an ELISA to measure cGMP production. Results Pre-incubation of platelets in abacavir significantly increased activation in response to ADP in a time and dose-dependent manner. The active anabolite of abacavir, carbovir triphosphate, competitively inhibited soluble guanylyl cyclase activity with a Ki of 55 μmol/l. Conclusion Abacavir competitively inhibits guanylyl cyclase, leading to platelet hyper-reactivity. This may explain the observed increased risk of myocardial infarction in HIV patients taking abacavir. PMID:21941165

  14. Effect of heat damage in an autoclave on the reactive lysine contents of soy products and corn distillers dried grains with solubles. Use of the results to check on lysine damage in common qualities of these ingredients.

    PubMed

    Fontaine, Johannes; Zimmer, Ulrike; Moughan, Paul J; Rutherfurd, Shane M

    2007-12-26

    The suitability of the homoarginine reaction for determining the reactive lysine in soy products and corn distillers dried grain with solubles (DDGS) was tested. For this purpose, some batches were subjected to deliberate heat damage for up to 30 min in an autoclave with 135 degrees C hot steam, and the samples were analyzed for total lysine and reactive lysine. In addition, 84 samples of common soy and 80 samples of corn DDGS were tested for their content of total and reactive lysine, and the contents were compared with those of the autoclave tests. For soy products conclusive results were obtained. In the case of heat treatment, both total lysine and reactive lysine decrease, but the latter is clearly a more sensitive indicator of lysine damage. Most normal products are quite similar, with toasting-induced damage to reactive lysine of ca. 15% compared to untoasted beans. The cause of the constantly occurring residual lysine after guanidination and the poorer reaction balance in the case of damage were explained. For common DDGS samples, however, less favorable results were obtained. Reactive and total lysine decreased almost in parallel due to heat damage, showing a great gap between them. Results showed indeed that variation of total and reactive lysine in DDGS is high, proving that its production conditions are not yet optimal for a feed ingredient.

  15. Fusion Blanket Coolant Section Criteria, Methodology, and Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMuth, J. A.; Meier, W. R.; Jolodosky, A.

    2015-10-02

    The focus of this LDRD was to explore potential Li alloys that would meet the tritium breeding and blanket cooling requirements but with reduced chemical reactivity, while maintaining the other attractive features of pure Li breeder/coolant. In other fusion approaches (magnetic fusion energy or MFE), 17Li- 83Pb alloy is used leveraging Pb’s ability to maintain high TBR while lowering the levels of lithium in the system. Unfortunately this alloy has a number of potential draw-backs. Due to the high Pb content, this alloy suffers from very high average density, low tritium solubility, low system energy, and produces undesirable activation productsmore » in particular polonium. The criteria considered in the selection of a tritium breeding alloy are described in the following section.« less

  16. Effect of a prolonged endurance marathon on vascular endothelial and inflammation markers in runners with exercise-induced hypertension.

    PubMed

    Jee, Haemi; Park, Jaehyun; Oh, Jae-Gun; Lee, Yoon-Hee; Shin, Kyung-A; Kim, Young-Joo

    2013-06-01

    The aim of this study was to observe the changes in endothelial and inflammatory markers in middle-aged male runners with exercise-induced hypertension (EIH) at baseline and at 100-km, 200-km, and 308-km checkpoints during a prolonged endurance ultramarathon. Among a total of 62 ultramarathon volunteers, 8 with systolic blood pressure higher than 210 mm Hg and 8 with normal systolic blood pressure were selected for this study. The subjects were designated to EIH and control (CON) groups. Blood was collected for the analysis of soluble vascular cell adhesion molecule-1, soluble E-selectin, leukocytes, creatine kinase, and high-sensitivity C-reactive protein. Soluble vascular cell adhesion molecule-1 showed a significantly greater increase in the EIH group than in the CON group at 100 km and 200 km. Soluble E-selectin also showed a significantly greater increase in the EIH group than in the CON group at 100 km. Leukocytes significantly increased in the EIH group than in the CON group at 308 km. Creatine kinase and high-sensitivity C-reactive protein showed no group differences. Leukocytes, creatine kinase, and high-sensitivity C-reactive protein showed delayed-onset increases in both groups. Increased exercise intensity may stimulate greater endothelial responses independent of the inflammatory markers in EIH. The loss of a protective effect may be greater in those with EIH than in CONs. Acknowledging and prescribing proper exercise intensity may be critical in preventing possible vascular-related complications in runners with EIH.

  17. An analysis of manganese as an indicator for heavy metal removal in passive treatment using laboratory spent mushroom compost columns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, B.A.; Unz, R.F.; Dempsey, B.A.

    1999-07-01

    The National Pollution Discharge Elimination System (NPDES) dictates removal of manganese in mine drainage to less than 4 mg/1 daily or less than 2 mg/1 on a monthly average. Owing to its high solubility at low and circumneutral pH, removal of manganese is often the most difficult of the NPDES discharge standards. This has lead to the use of Mn(II) as a surrogate for metal removal. However, recent studies concluded that zinc or nickel may be more appropriate indicators for removal of other metals. Previous field studies showed zinc removal to be highly correlated to the removal of copper, cobalt,more » and nickel in a sulfate reducing subsurface loaded wetland, whereas manganese removal was poorly correlated. The objective of this study was to evaluate zinc and manganese retention under sulfate reducing conditions in bench scale columns containing fresh spent mushroom compost. Column effluent data were analyzed using an EPA geochemical computer model (MINTEQ) over the pH range of 6.0 to 6.8. Under these conditions, zinc and manganese displayed distinctly reactivities. Zn(II) was supersaturated with respect to ZnS{sub s} and the Zn(HS){sub 2}{degree} and Zn(HS){sub 3}{sup minus} complexes dominated solubility. Soluble zinc concentrations were inversely correlated to sulfide. Mn(II) remained as soluble Mn{sup +2}. During early column operation at pH > 7, MnCO{sup 3(s)} was supersaturated. Manganese concentrations did not correlate with pH or sulfide. Given these fundamental differences in removal mechanisms between Zn and Mn under sulfate reducing conditions, the use of manganese removal as a surrogate for heavy metal removal in passive treatment of mine drainage seems unjustified.« less

  18. Time-resolved molecular characterization of organic aerosols by PILS + UPLC/ESI-Q-TOFMS

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Dalleska, N. F.; Huang, D. D.; Bates, K. H.; Sorooshian, A.; Flagan, R. C.; Seinfeld, J. H.

    2016-04-01

    Real-time and quantitative measurement of particulate matter chemical composition represents one of the most challenging problems in the field of atmospheric chemistry. In the present study, we integrate the Particle-into-Liquid Sampler (PILS) with Ultra Performance Liquid Chromatography/Electrospray ionization Quadrupole Time-of-Flight High-Resolution/Mass Spectrometry (UPLC/ESI-Q-TOFMS) for the time-resolved molecular speciation of chamber-derived secondary organic aerosol (SOA). The unique aspect of the combination of these two well-proven techniques is to provide quantifiable molecular-level information of particle-phase organic compounds on timescales of minutes. We demonstrate that the application of the PILS + UPLC/ESI-Q-TOFMS method is not limited to water-soluble inorganic ions and organic carbon, but is extended to slightly water-soluble species through collection efficiency calibration together with sensitivity and linearity tests. By correlating the water solubility of individual species with their O:C ratio, a parameter that is available for aerosol ensembles as well, we define an average aerosol O:C ratio threshold of 0.3, above which the PILS overall particulate mass collection efficiency approaches ∼0.7. The PILS + UPLC/ESI-Q-TOFMS method can be potentially applied to probe the formation and evolution mechanism of a variety of biogenic and anthropogenic SOA systems in laboratory chamber experiments. We illustrate the application of this method to the reactive uptake of isoprene epoxydiols (IEPOX) on hydrated and acidic ammonium sulfate aerosols.

  19. Pumpable/injectable phosphate-bonded ceramics

    DOEpatents

    Singh, Dileep; Wagh, Arun S.; Perry, Lamar; Jeong, Seung-Young

    2001-01-01

    A pumpable ceramic composition is provided comprising an inorganic oxide, potassium phosphate, and an oxide coating material. Also provided is a method for preparing pumpable ceramic-based waste forms comprising selecting inorganic oxides based on solubility, surface area and morphology criteria; mixing the selected oxides with phosphate solution and waste to form a first mixture; combining an additive to the first mixture to create a second mixture; adding water to the second mixture to create a reactive mixture; homogenizing the reactive mixture; and allowing the reactive mixture to cure.

  20. Integration of advanced preparation with coal liquefaction. Second quarterly technical progress report, January 1-March 31, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steedman, W.G.; Longanbach, J.R.; Muralidhara, H.S.

    Standard reaction conditions of 427 C, 5 minutes reaction time, 2:1 solvent/coal ratio and 1000 psig (r.t.) hydrogen overpressure result in good, but not maximum, conversions to THF soluble with both Illinois No. 6 and Wyodak (upper seam) coals. The cumulative effects of the pretreatment steps were also examined using feedstocks which were dried in a vacuum oven at room temperature under nitrogen before liquefaction to remove the effects of moisture. Chloride removal followed by drying had a positive effect on liquefaction. Oil agglomeration followed by drying also improved liquefaction reactivity significantly. Solvent drying also resulted in a small increasemore » in liquefaction reactivity. The overall reactivity of coal treated in sequence with each pretreatment step was slightly less than that of the dry ground coal. Liquefaction under a high partial pressure of hydrogen sulfide in hydrogen also results in a significant increase in conversion to THF solubles. 1 reference, 12 figures, 7 tables.« less

  1. The inositol-1,2-cyclic phosphate moiety of the cross-reacting determinant, carbohydrate chains, and proteinaceous components are all responsible for the cross-reactivity of trypanosome variant surface glycoproteins.

    PubMed

    Escalona, José L; Uzcanga, Graciela L; Carrasquel, Liomary M; Bubis, José

    2018-01-24

    Salivarian trypanosomes evade the host immune system by continually swapping their protective variant surface glycoprotein (VSG) coat. Given that VSGs from various trypanosome stocks exhibited cross-reactivity (Camargo et al., Vet. Parasitol. 207, 17-33, 2015), we analyzed here which components are the antigenic determinants for this cross-reaction. Soluble forms of VSGs were purified from four Venezuelan animal trypanosome isolates: TeAp-N/D1, TeAp-ElFrio01, TeAp-Mantecal01, and TeGu-Terecay323. By using the VSG soluble form from TeAp-N/D1, we found that neither the inositol-1,2-cyclic phosphate moiety of the cross-reacting determinant nor the carbohydrate chains were exclusively responsible for its cross-reactivity. Then, all four purified glycoproteins were digested with papain and the resulting peptides were separated by high-performance liquid chromatography. Dot blot evaluation of the fractions using sera from trypanosome-infected animals yielded peptides that possessed cross-reaction activity, demonstrating for the first time that proteinaceous epitopes are also responsible for the cross-reactivity of trypanosome VSGs.

  2. Incorporation of Mg and Ca into nanostructured Fe2O3 improves Fe solubility in dilute acid and sensory characteristics in foods.

    PubMed

    Hilty, Florentine M; Knijnenburg, Jesper T N; Teleki, Alexandra; Krumeich, Frank; Hurrell, Richard F; Pratsinis, Sotiris E; Zimmermann, Michael B

    2011-01-01

    Iron deficiency is one of the most common micronutrient deficiencies worldwide. Food fortification can be an effective and sustainable strategy to reduce Fe deficiency but selection of iron fortificants remains a challenge. Water-soluble compounds, for example, FeSO(4), usually demonstrate high bioavailability but they often cause unacceptable sensory changes in foods. On the other hand, poorly acid-soluble Fe compounds, for example FePO(4), may cause fewer adverse sensory changes in foods but are usually not well bioavailable since they need to be dissolved in the stomach prior to absorption. The solubility and the bioavailability of poorly acid-soluble Fe compounds can be improved by decreasing their primary particle size and thereby increasing their specific surface area. Here, Fe oxide-based nanostructured compounds with added Mg or Ca were produced by scalable flame aerosol technology. The compounds were characterized by nitrogen adsorption, X-ray diffraction, transmission electron microscopy, and Fe solubility in dilute acid. Sensory properties of the Fe-based compounds were tested in 2 highly reactive, polyphenol-rich food matrices: chocolate milk and fruit yoghurt. The Fe solubility of nanostructured Fe(2)O(3) doped with Mg or Ca was higher than that of pure Fe(2)O(3). Since good solubility in dilute acid was obtained despite the inhomogeneity of the powders, inexpensive precursors, for example Fe- and Ca-nitrates, can be used for their manufacture. Adding Mg or Ca lightened powder color, while sensory changes when added to foods were less pronounced than for FeSO(4). The combination of high Fe solubility and low reactivity in foods makes these flame-made nanostructured compounds promising for food fortification. Practical Application: The nanostructured iron-containing compounds presented here may prove useful for iron fortification of certain foods; they are highly soluble in dilute acid and likely to be well absorbed in the gut but cause less severe color changes than FeSO(4) when added to difficult-to-fortify foods.

  3. Grazers: biocatalysts of terrestrial silica cycling

    PubMed Central

    Vandevenne, Floor Ina; Barão, Ana Lúcia; Schoelynck, Jonas; Smis, Adriaan; Ryken, Nick; Van Damme, Stefan; Meire, Patrick; Struyf, Eric

    2013-01-01

    Silica is well known for its role as inducible defence mechanism countering herbivore attack, mainly through precipitation of opaline, biogenic silica (BSi) bodies (phytoliths) in plant epidermal tissues. Even though grazing strongly interacts with other element cycles, its impact on terrestrial silica cycling has never been thoroughly considered. Here, BSi content of ingested grass, hay and faeces of large herbivores was quantified by performing multiple chemical extraction procedures for BSi, allowing the assessment of chemical reactivity. Dissolution experiments with grass and faeces were carried out to measure direct availability of BSi for dissolution. Average BSi and readily soluble silica numbers were higher in faeces as compared with grass or hay, and differences between herbivores could be related to distinct digestive strategies. Reactivity and dissolvability of BSi increases after digestion, mainly due to degradation of organic matrices, resulting in higher silica turnover rates and mobilization potential from terrestrial to aquatic ecosystems in non-grazed versus grazed pasture systems (2 versus 20 kg Si ha−1 y−1). Our results suggest a crucial yet currently unexplored role of herbivores in determining silica export from land to ocean, where its availability is linked to eutrophication events and carbon sequestration through C–Si diatom interactions. PMID:24107532

  4. Enhancement of bismuth antibacterial activity with lipophilic thiol chelators.

    PubMed Central

    Domenico, P; Salo, R J; Novick, S G; Schoch, P E; Van Horn, K; Cunha, B A

    1997-01-01

    The antibacterial properties of bismuth are greatly enhanced when bismuth is combined with certain lipophilic thiol compounds. Antibacterial activity was enhanced from 25- to 300-fold by the following seven different thiols, in order of decreasing synergy: 1,3-propanedithiol, dimercaprol (BAL), dithiothreitol, 3-mercapto-2-butanol, beta-mercaptoethanol, 1-monothioglycerol, and mercaptoethylamine. The dithiols produced the greatest synergy with bismuth at optimum bismuth-thiol molar ratios of from 3:1 to 1:1. The monothiols were generally not as synergistic and required molar ratios of from 1:1 to 1:4 for optimum antibacterial activity. The most-active mono- or dithiols were also the most soluble in butanol. The intensity of the yellow formed by bismuth-thiol complexes reflected the degree of chelation and correlated with antibacterial potency at high molar ratios. The bismuth-BAL compound (BisBAL) was active against most bacteria, as assessed by broth dilution, agar diffusion, and agar dilution analyses. Staphylococci (MIC, 5 to 7 microM Bi3+) and Helicobacter pylori (MIC, 2.2 microM) were among the most sensitive bacteria. Gram-negative bacteria were sensitive (MIC, < 17 microM). Enterococci were relatively resistant (MIC, 63 microM Bi3+). The MIC range for anaerobes was 15 to 100 microM Bi3+, except for Clostridium difficile (MIC, 7.5 microM). Bactericidal activity averaged 29% above the MIC. Bactericidal activity increased with increasing pH and/or increasing temperature. Bismuth-thiol solubility, stability, and antibacterial activity depended on pH and the bismuth-thiol molar ratio. BisBAL was stable but ineffective against Escherichia coli at pH 4. Activity and instability (reactivity) increased with increasing alkalinity. BisBAL was acid soluble at a molar ratio of greater than 3:2 and alkaline soluble at a molar ratio of less than 2:3. In conclusion, certain lipophilic thiol compounds enhanced bismuth antibacterial activity against a broad spectrum of bacteria. The activity, solubility, and stability of BisBAL were strongly dependent on the pH, temperature, and molar ratio. Chelation of bismuth with certain thiol agents enhanced the solubility and lipophilicity of this cationic heavy metal, thereby significantly enhancing its potency and versatility as an antibacterial agent. PMID:9257744

  5. Human soluble phospholipase A2 receptor is an inhibitor of the integrin-mediated cell migratory response to collagen-I.

    PubMed

    Watanabe, Kazunori; Watanabe, Kazuhiro; Watanabe, Yosuke; Fujioka, Daisuke; Nakamura, Takamitsu; Nakamura, Kazuto; Obata, Jun-Ei; Kugiyama, Kiyotaka

    2018-05-23

    Murine membrane-bound phospholipase A 2 receptor 1 (PLA 2 R) is shed and released into plasma in a soluble form that retains all of the extracellular domains. Relatively little is known about human PLA 2 R. This study examined whether human soluble PLA 2 R may have biological functions and whether soluble PLA 2 R may exist in human plasma. Here, we showed that human recombinant soluble PLA 2 R (rsPLA 2 R) bound to collagen-I and inhibited interaction of collagen-I with the extracellular domain of integrin β1 on the cell surface of HEK293 cells. As a result, rsPLA 2 R suppressed integrin β1-mediated migratory responses of HEK293 cells to collagen-I in Boyden chamber experiments. Inhibition of phosphorylation of FAK Tyr397 was also observed. Similar results were obtained with experiments using soluble PLA 2 R released from HEK293 cells transfected with a construct encoding human soluble PLA 2 R. rsPLA 2 R lacking the fibronectin-like type II (FNII) domain had no inhibitory effects on cell responses to collagen-I, suggesting an important role of the FNII domain in the interaction of rsPLA 2 R with collagen-I. In addition, rsPLA 2 R suppressed the migratory response to collagen-IV and binding of collagen-IV to the cell surface of human podocytes that endogenously express membrane-bound full-length PLA 2 R. Immunoprecipitation and Western blotting showed the existence of immuno-reactive PLA 2 R in human plasma. In conclusion, human recombinant soluble PLA 2 R inhibits integrin β1-mediated cell responses to collagens. Further studies are warranted to elucidate whether immuno-reactive PLA 2 R in human plasma has the same properties as rsPLA 2 R.

  6. Novel carbon-rich additives preparation by degradative solvent extraction of biomass wastes for coke-making.

    PubMed

    Zhu, Xianqing; Li, Xian; Xiao, Li; Zhang, Xiaoyong; Tong, Shan; Wu, Chao; Ashida, Ryuichi; Liu, Wenqiang; Miura, Kouichi; Yao, Hong

    2016-05-01

    In this work, two extracts (Soluble and Deposit) were produced by degradative solvent extraction of biomass wastes from 250 to 350°C. The feasibilities of using Soluble and Deposit as additives for coke-making were investigated for the first time. The Soluble and Deposit, having significantly higher carbon content, lower oxygen content and extremely lower ash content than raw biomasses. All Solubles and most of Deposits can melt completely at the temperature ranged from 80 to 120°C and 140 to 180°C, respectively. The additions of Soluble or Deposit into the coke-making coal significantly improved their thermoplastic properties with as high as 9°C increase of the plastic range. Furthermore, the addition of Deposit or Soluble also markedly enhanced the coke quality through increasing coke strength after reaction (CSR) and reducing coke reactivity index (CRI). Therefore, the Soluble and Deposit were proved to be good additives for coke-making. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Method for determining processability of a hydrocarbon containing feedstock

    DOEpatents

    Schabron, John F.; Rovani, Jr., Joseph F.

    2013-09-10

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock reactivity for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes.

  8. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF-β

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastad, Jessica L.

    2016-12-15

    Monocytic myeloid-derived suppressor cells (M-MDSCs) were increased during LP-BM5 retroviral infection, and were capable of suppressing not only T-cell, but also B-cell responses. In addition to previously demonstrating iNOS- and VISTA-dependent M-MDSC mechanisms, in this paper, we detail how M-MDSCs utilized soluble mediators, including the reactive oxygen and nitrogen species superoxide, peroxynitrite, and nitric oxide, and TGF-β, to suppress B cells in a predominantly contact-independent manner. Suppression was independent of cysteine-depletion and hydrogen peroxide production. When two major mechanisms of suppression (iNOS and VISTA) were eliminated in double knockout mice, M-MDSCs from LP-BM5-infected mice were able to compensate using other,more » soluble mechanisms in order to maintain suppression of B cells. The IL-10 producing regulatory B-cell compartment was among the targets of M-MDSC-mediated suppression. -- Highlights: •LP-BM5-expanded M-MDSCs utilized soluble mediators nitric oxide, superoxide, peroxynitrite, and TGF-β to suppress B cells. •When two major mechanisms of suppression were eliminated through knockouts, M-MDSCs maintained suppression. •M-MDSCs from LP-BM5-infected mice decreased proliferation of IL-10 producing regulatory B cells.« less

  9. Changes in serum interleukin-6, C-reactive protein and thrombomodulin levels under periodontal ultrasonic debridement.

    PubMed

    Ushida, Yuka; Koshy, Geena; Kawashima, Yoko; Kiji, Makoto; Umeda, Makoto; Nitta, Hiroshi; Nagasawa, Toshiyuki; Ishikawa, Isao; Izumi, Yuichi

    2008-11-01

    This study aimed to compare the effect of single-visit full-mouth mechanical debridement (FMD) and quadrant-wise mechanical debridement (QMD) on the levels of serum interleukin (IL)-6, C-reactive protein (CRP) and soluble thrombomodulin. Thirty-six subjects with chronic periodontitis were randomly allocated to three groups: undergoing QMD, single-visit FMD with povidone iodine or with water. Serum IL-6 and soluble thrombomodulin were measured by enzyme-linked immunosorbent assay, and serum CRP was measured by the latex-enhanced nephelometric method. Serum IL-6 level increased significantly immediately after debridement in all the three groups, with this increase being greatest in the full-mouth groups. However, the increase in the full-mouth groups was not significantly higher than that of quadrant-wise group. In the quadrant-wise group, serum IL-6 level decreased significantly 1 month after debridement compared with baseline. Serum-soluble thrombomodulin decreased significantly in the full-mouth groups but not in the quadrant-wise group. Changes in CRP level were not significant at baseline or after debridement in all the three groups. FMD increased serum IL-6 and reduced serum-soluble thrombomodulin to a greater extent than QMD, suggesting that the former technique has stronger transient effects on systemic vascular endothelial functions than the latter.

  10. Half-of-the-Sites Reactivity of the Castor Δ9-18:0-Acyl Carrier Protein Desaturase.

    PubMed

    Liu, Qin; Chai, Jin; Moche, Martin; Guy, Jodie; Lindqvist, Ylva; Shanklin, John

    2015-09-01

    Fatty acid desaturases regulate the unsaturation status of cellular lipids. They comprise two distinct evolutionary lineages, a soluble class found in the plastids of higher plants and an integral membrane class found in plants, yeast (Saccharomyces cerevisiae), animals, and bacteria. Both classes exhibit a dimeric quaternary structure. Here, we test the functional significance of dimeric organization of the soluble castor Δ9-18:0-acyl carrier protein desaturase, specifically, the hypothesis that the enzyme uses an alternating subunit half-of-the-sites reactivity mechanism whereby substrate binding to one subunit is coordinated with product release from the other subunit. Using a fluorescence resonance energy transfer assay, we demonstrated that dimers stably associate at concentrations typical of desaturase assays. An active site mutant T104K/S202E, designed to occlude the substrate binding cavity, was expressed, purified, and its properties validated by x-ray crystallography, size exclusion chromatography, and activity assay. Heterodimers comprising distinctly tagged wild-type and inactive mutant subunits were purified at 1:1 stoichiometry. Despite having only one-half the number of active sites, purified heterodimers exhibit equivalent activity to wild-type homodimers, consistent with half-of-the-sites reactivity. However, because multiple rounds of turnover were observed, we conclude that substrate binding to one subunit is not required to facilitate product release from the second subunit. The observed half-of-the-sites reactivity could potentially buffer desaturase activity from oxidative inactivation. That soluble desaturases require only one active subunit per dimer for full activity represents a mechanistic difference from the membrane class of desaturases such as the Δ9-acyl-CoA, Ole1p, from yeast, which requires two catalytically competent subunits for activity. © 2015 American Society of Plant Biologists. All Rights Reserved.

  11. Half-of-the-Sites Reactivity of the Castor Δ9-18:0-Acyl Carrier Protein Desaturase1[OPEN

    PubMed Central

    Liu, Qin; Chai, Jin; Moche, Martin; Guy, Jodie; Lindqvist, Ylva; Shanklin, John

    2015-01-01

    Fatty acid desaturases regulate the unsaturation status of cellular lipids. They comprise two distinct evolutionary lineages, a soluble class found in the plastids of higher plants and an integral membrane class found in plants, yeast (Saccharomyces cerevisiae), animals, and bacteria. Both classes exhibit a dimeric quaternary structure. Here, we test the functional significance of dimeric organization of the soluble castor Δ9-18:0-acyl carrier protein desaturase, specifically, the hypothesis that the enzyme uses an alternating subunit half-of-the-sites reactivity mechanism whereby substrate binding to one subunit is coordinated with product release from the other subunit. Using a fluorescence resonance energy transfer assay, we demonstrated that dimers stably associate at concentrations typical of desaturase assays. An active site mutant T104K/S202E, designed to occlude the substrate binding cavity, was expressed, purified, and its properties validated by x-ray crystallography, size exclusion chromatography, and activity assay. Heterodimers comprising distinctly tagged wild-type and inactive mutant subunits were purified at 1:1 stoichiometry. Despite having only one-half the number of active sites, purified heterodimers exhibit equivalent activity to wild-type homodimers, consistent with half-of-the-sites reactivity. However, because multiple rounds of turnover were observed, we conclude that substrate binding to one subunit is not required to facilitate product release from the second subunit. The observed half-of-the-sites reactivity could potentially buffer desaturase activity from oxidative inactivation. That soluble desaturases require only one active subunit per dimer for full activity represents a mechanistic difference from the membrane class of desaturases such as the Δ9-acyl-CoA, Ole1p, from yeast, which requires two catalytically competent subunits for activity. PMID:26224800

  12. The diagnostic performance of recombinant Trypanosoma cruzi ribosomal P2beta protein is influenced by its expression system.

    PubMed

    Marcipar, Iván S; Olivares, María Laura; Robles, Lucía; Dekanty, Andrés; Marcipar, Alberto; Silber, Ariel M

    2004-03-01

    In the present work, we have determined the effect of expression vectors and their corresponding host bacteria on the antigenic performance of Trypanosoma cruzi P2beta (TcP2beta) full-length recombinant protein. The gene encoding the TcP2beta ribosomal protein was cloned in pMAL-c2 and pET-32a vectors that allow the expression of high levels of soluble fusion proteins. A panel of 32 positive and 32 negative sera was assayed with the purified proteins expressed using pMal-c2 (TcP2beta-MBP) and pET-32a (TcP2beta-TRX) vectors and with MBP and TRX purified from pMAL-c2 and pET-32a vectors, respectively. The antigenic behavior of each TcP2beta recombinant protein differed in the diagnostic performance in terms of DI(+) (93.7 for TcP2beta-MBP vs 100% for TcP2beta-TRX), in DI(-) (90.5 for TcP2beta-MBP vs 100% for TcP2beta-TRX) and in cross-reaction with negative sera. To determine if the higher reactivity of expressed pMAL-c2 protein was due to folding during protein expression or to a steric effect related to the protein adsorption at the titration plate, the reactivity of sera against soluble proteins was assessed by ELISA inhibition assays. As each soluble protein preserved its level of reactivity, we concluded that differences in reactivity were due to intrinsic characteristics of the proteins and not to differences in patterns of adsorption to the plates.

  13. Are soluble factors relevant for polymorphonuclear leukocyte dysregulation in septicemia?

    PubMed Central

    Wenisch, C; Graninger, W

    1995-01-01

    Polymorphonuclear leukocytes (PMNs) of twelve patients with gram-negative septicemia exhibited a decreased capacity to phagocytize Escherichia coli and generate reactive oxygen products which normalized within 7 days of treatment. Ex vivo exchange of plasma from age-, sex-, and blood-group-identical normal controls resulted in an increase of both phagocytic capacity and reactive oxygen intermediate generation in PMNs of septicemic patients and transiently reduced phagocytosis and reactive oxygen intermediate production in PMNs of normal controls. These results suggest that extrinsic factors are crucial for PMN function. PMID:7697538

  14. Ideal gas solubilities and solubility selectivities in a binary mixture of room-temperature ionic liquids.

    PubMed

    Finotello, Alexia; Bara, Jason E; Narayan, Suguna; Camper, Dean; Noble, Richard D

    2008-02-28

    This study focuses on the solubility behaviors of CO2, CH4, and N2 gases in binary mixtures of imidazolium-based room-temperature ionic liquids (RTILs) using 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][Tf2N]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim][BF4]) at 40 degrees C and low pressures (approximately 1 atm). The mixtures tested were 0, 25, 50, 75, 90, 95, and 100 mol % [C2mim][BF4] in [C2mim][Tf2N]. Results show that regular solution theory (RST) can be used to describe the gas solubility and selectivity behaviors in RTIL mixtures using an average mixture solubility parameter or an average measured mixture molar volume. Interestingly, the solubility selectivity, defined as the ratio of gas mole fractions in the RTIL mixture, of CO2 with N2 or CH4 in pure [C2mim][BF4] can be enhanced by adding 5 mol % [C2mim][Tf2N].

  15. Inhibitory effect on HT-29 colon cancer cells of a water-soluble polysaccharide obtained from highland barley.

    PubMed

    Cheng, Dai; Zhang, Xinyu; Meng, Meng; Han, Lirong; Li, Caijiao; Hou, Lihua; Qi, Wentao; Wang, Chunling

    2016-11-01

    A water-soluble polysaccharide (BP-1) was obtained from highland barley (Hordeum vulgare L.) by hot water extraction and purification of sepharose column chromatography. BP-1 had an average molecular weight of about 6.7×10 4 Da and was composed of glucose (Glc), xylose (Xyl), arabinose (Ara) and rhamnose (Rha) with a relative molar ratio of 8.82:1.92:1.50:1.00. It was found that BP-1 inhibited proliferation of human colon cancer cells (HT-29) in a time- and dose-dependent manner with half maximal inhibitory concentration at 48h of 48.18μg/mL. Western blotting results showed that BP-1 enhanced the phosphorylation of c-Jun N-terminal kinase (JNK), processes associated with the reactive oxygen species (ROS) formation and inhibited nuclear factor-κB (NF-κB) translocation from cytoplasm into nucleus. Meanwhile, the BP-1-induced apoptosis was related to the regulation of apoptosis-associated proteins, such as B-cell lymphoma-2 (Bcl-2), release of cytochrome C from mitochondria to cytoplasm and activation of caspase-8 and caspase-9. These results suggest that BP-1-induced HT-29 apoptosis through ROS-JNK and NF-κB-mediated caspase pathways. Copyright © 2016. Published by Elsevier B.V.

  16. TIBC, UIBC and Transferrin

    MedlinePlus

    ... 28 weeks to delivery) Primary Aldosteronism (Conn Syndrome) Prostate Cancer Protein in Urine (Proteinuria) Reactive Arthritis Rheumatoid Arthritis ... Blood Count (CBC) Hemoglobin Hematocrit Reticulocytes Soluble Transferrin Receptor Conditions Anemia Hemochromatosis Elsewhere On The Web American ...

  17. Levels and indoor-outdoor relationships of PM 10 and soluble inorganic ions in Beirut, Lebanon

    NASA Astrophysics Data System (ADS)

    Saliba, N. A.; Atallah, M.; Al-Kadamany, G.

    2009-03-01

    PM 10, which is considered among the major indoor and outdoor pollutants, was measured in several residential homes and corresponding outdoor environments in the Great Beirut area over the summer and winter seasons of 2005. Few studies on PM 10 levels indoors in Beirut are restricted to short-term periods in public places. In this study, 78 PM 10 samples were collected on Teflon filters using an active sampler at a flow rate of 5 L/min. PM 10 mass concentrations were determined by gravimetric analysis, and inorganic chemical speciation was carried out using ion chromatography. Outdoors, PM 10 elevated mass concentrations correlated well with high traffic density. The observed high intra-site temporal variation (minimum of 34 and a maximum of 120 μg/m 3) was attributed to the dynamic air masses passing over the Eastern Mediterranean region. Indoors, PM 10 levels were highly affected by outdoor levels, but were enhanced over those of outdoors when smoking activities were recorded. In winter, the overall average outdoor concentration dropped by 19%, whereas the average indoor concentration increased by 50% over the ones calculated for the summer. Ventilation and air exchange rates were found to be approximately equal to unity during summer since most doors and windows remain open. This rate drops to almost half during winter. As for particulate ions namely nitrates and sulfates, the former showed concentrations that are higher than the values reported in the region in both winter and summer seasons, suggesting high emissions from local vehicles. However, SO 42- average concentrations were comparable to values reported in other studies conducted in Eastern Mediterranean sites. Soluble particulate nitrates and sulfates exhibited similar indoor and outdoor levels in non-smoking homes (IO ~ 1), but in smoking homes the drop in nitrate concentrations reached around 70%, indicating a high anionic reactivity with tobacco smokes.

  18. Prodrugs of herpes simplex thymidine kinase inhibitors.

    PubMed

    Yanachkova, Milka; Xu, Wei-Chu; Dvoskin, Sofya; Dix, Edward J; Yanachkov, Ivan B; Focher, Federico; Savi, Lida; Sanchez, M Dulfary; Foster, Timothy P; Wright, George E

    2015-04-01

    Because guanine-based herpes simplex virus thymidine kinase inhibitors are not orally available, we synthesized various 6-deoxy prodrugs of these compounds and evaluated them with regard to solubility in water, oral bioavailability, and efficacy to prevent herpes simplex virus-1 reactivation from latency in a mouse model. Organic synthesis was used to prepare compounds, High Performance Liquid Chromatography (HPLC) to analyze hydrolytic conversion, Mass Spectrometry (MS) to measure oral bioavailability, and mouse latent infection and induced reactivation to evaluate the efficacy of a specific prodrug. Aqueous solubilities of prodrugs were improved, oxidation of prodrugs by animal cytosols occurred in vitro, and oral absorption of the optimal prodrug sacrovir™ (6-deoxy-mCF3PG) in the presence of the aqueous adjuvant Soluplus® and conversion to active compound N(2)-[3-(trifluoromethyl)pheny])guanine (mCF3PG) were accomplished in mice. Treatment of herpes simplex virus-1 latent mice with sacrovir™ in 1% Soluplus in drinking water significantly suppressed herpes simplex virus-1 reactivation and viral genomic replication. Ad libitum oral delivery of sacrovir™ was effective in suppressing herpes simplex virus-1 reactivation in ocularly infected latent mice as measured by the numbers of mice shedding infectious virus at the ocular surface, numbers of trigeminal ganglia positive for infectious virus, number of corneas that had detectable infectious virus, and herpes simplex virus-1 genome copy numbers in trigeminal ganglia following reactivation. These results demonstrate the statistically significant effect of the prodrug on suppressing herpes simplex virus-1 reactivation in vivo. © The Author(s) 2015.

  19. Effect of tungsten metal particle sizes on the solubility of molten alloy melt: Experimental observation of Gibbs-Thomson effect in nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, M. H.; Das, J.; Sordelet, D. J.; Eckert, J.; Hurd, A. J.

    2012-09-01

    We investigated the effect of tungsten particle sizes on the thermal stability and reactivity of uniformly dispersed W particles in molten Hf-based alloy melt at elevated temperature (1673 K). The solubility of particles less than 100 nm in radius is significantly enhanced. In case of fine W particles with 20 nm diameter, their solubility increases remarkably around 700% compared to that of coarse micrometer-scale particles. The mechanisms and kinetics of this dynamic growth of particle are discussed as well as techniques developed to obtain frozen microstructure of particle-reinforced composites by rapid solidification.

  20. Study of mechanism involved in synthesis of graphene oxide and reduced graphene oxide from graphene nanoplatelets

    NASA Astrophysics Data System (ADS)

    Sharma, Bhasha; Shekhar, Shashank; Malik, Parul; Jain, Purnima

    2018-06-01

    Graphene, a wonder material has inspired quest among researchers due to its numerous applications and exceptional properties. This paper highlights the mechanism and chemistry behind the fabrication of graphene oxide by using phosphoric acid. Chemical functionalization is of prime importance which avoids agglomeration of nanoparticles to attain inherent properties. As non-homogeneous dispersion limits its utilization due to interfacial interactions which restrict reactive sites to produce intercalated network. Thus, chemically functionalized graphene leads to stable dispersion and enhances thermal, mechanical and electrical properties of the resultant polymer composite materials. Solubility of graphene in aqueous solution is the major issue because graphene is hydrophobic, to rectify this oxygen containing hydrophilic groups must be introduced to make it compatible and this can be attained by covalent functionalization. Among all nanofiller GO has shown average particle size i.e. 95 nm and highest surface charge density. The characteristic changes were estimated using Raman spectra.

  1. Synthesis of a thiol-β-cyclodextrin, a potential agent for controlling enzymatic browning in fruits and vegetables.

    PubMed

    Manta, Carmen; Peralta-Altier, Gabriela; Gioia, Larissa; Méndez, María F; Seoane, Gustavo; Ovsejevi, Karen

    2013-11-27

    A thiol-β-cyclodextrin was synthesized by a simple and environmentally friendly three-step method comprising epoxy activation of β-cyclodextrin, thiosulfate-mediated oxirane opening, and further reduction of the S-alkyl thiosulfate to a thiol group. The final step was optimized by using thiopropyl-agarose, a solid phase reducing agent with many advantages over soluble ones. β-Cyclodextrin thiolation was confirmed by titration with a thiol-reactive reagent, NMR studies, and MALDI-TOF/TOF. Thiolated cyclodextrin had an average value of one thiol group per molecule. Thiol-β-cyclodextrin proved to be an excellent agent for controlling polyphenol oxidase activity. This copper-containing enzyme is responsible for browning in fruits and vegetables. Under the same conditions, thiol-β-cyclodextrin generated a reductive microenvironment that increased the antibrowning effect on Red Delicious apples compared to unmodified β-cyclodextrin.

  2. Characterization of organic nitrogen in aerosols at a forest site in the southern Appalachian Mountains

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Xie, Mingjie; Hays, Michael D.; Edgerton, Eric; Schwede, Donna; Walker, John T.

    2018-05-01

    This study investigates the composition of organic particulate matter in PM2.5 in a remote montane forest in the southeastern US, focusing on the role of organic nitrogen (N) in sulfur-containing secondary organic aerosol (nitrooxy-organosulfates) and aerosols associated with biomass burning (nitro-aromatics). Bulk water-soluble organic N (WSON) represented ˜ 14 % w/w of water-soluble total N (WSTN) in PM2.5 on average across seasonal measurement campaigns conducted in the spring, summer, and fall of 2015. The largest contributions of WSON to WSTN were observed in spring ( ˜ 18 % w/w) and the lowest in the fall ( ˜ 10 % w/w). On average, identified nitro-aromatic and nitrooxy-organosulfate compounds accounted for a small fraction of WSON, ranging from ˜ 1 % in spring to ˜ 4 % in fall, though were observed to contribute as much as 28 % w/w of WSON in individual samples that were impacted by local biomass burning. The highest concentrations of oxidized organic N species occurred during summer (average of 0.65 ng N m-3) along with a greater relative abundance of higher-generation oxygenated terpenoic acids, indicating an association with more aged aerosol. The highest concentrations of nitro-aromatics (e.g., nitrocatechol and methyl-nitrocatechol), levoglucosan, and aged SOA tracers were observed during fall, associated with aged biomass burning plumes. Nighttime nitrate radical chemistry is the most likely formation pathway for nitrooxy-organosulfates observed at this low NOx site (generally < 1 ppb). Isoprene-derived organosulfate (MW216, 2-methyltetrol derived), which is formed from isoprene epoxydiols (IEPOX) under low NOx conditions, was the most abundant individual organosulfate. Concentration-weighted average WSON / WSOC ratios for nitro-aromatics + organosulfates + terpenoic acids were 1 order of magnitude lower than the overall aerosol WSON / WSOC ratio, indicating the presence of other uncharacterized higher-N-content species. Although nitrooxy-organosulfates and nitro-aromatics contributed a small fraction of WSON, our results provide new insight into the atmospheric formation processes and sources of these largely uncharacterized components of atmospheric organic N, which also helps to advance the atmospheric models to better understand the chemistry and deposition of reactive N.

  3. Behavioral Response Generation and Selection of Rejected-Reactive Aggressive, Rejected-Nonaggressive, and Average Status Children.

    ERIC Educational Resources Information Center

    Wood, C. Nannette; Gross, Alan M.

    2002-01-01

    Examines response decision processes of rejected-reactive aggressive, rejected-nonaggressive and average children in terms of the presence or absence of behavioral response alternatives. Congruent with previous research, rejected-reactive aggressive children made significantly more hostile attributions and generated a higher number of aggressive…

  4. Soluble triggering receptor expressed on myeloid cells 1 and the diagnosis of sepsis.

    PubMed

    Barati, Mitra; Bashar, Farshid Rahimi; Shahrami, Reza; Zadeh, Mohammad Hossein Jarrah; Taher, Mahshid Talebi; Nojomi, Marzieh

    2010-06-01

    Early diagnosis and assessment of the systemic inflammatory response to infection are difficult with usual markers (fever, leukocytosis, C-reactive protein [CRP]). Triggering receptor expressed on myeloid cells-1 (TREM-1) expression on phagocytes is up-regulated by microbial products. We studied the ability of soluble TREM-1 (sTREM-1) to identify patients with sepsis. Plasma samples were obtained on intensive care unit admission from patients with systemic inflammatory response syndrome for sTREM-1 measurement. Soluble TREM-1, CRP concentrations and erythrocyte sedimentation rate (ESR) were higher in the sepsis group (n = 52) than in the non-infectious systemic inflammatory response syndrome group (n = 43; P = .00, .02, and .001, respectively). Soluble TREM-1, CRP concentrations, white blood cell count and ESR were higher in the sepsis group than in the non SIRS group (n = 37; P = .04, .00, .01, and .00, respectively). In a receiver-operating characteristic curve analysis, ESR, CRP and sTREM-1 had an area under the curve larger than 0.65 (P = .00), in distinguishing between septic and non-infectious SIRS patients. CRP, ESR, sTREM-1 had a sensitivity of 60%, 70% and 70% and a specificity of 60%, 69% and, 60% respectively in diagnosing infection in SIRS. C-reactive protein and ESR performed better than sTREM-1 and white blood cell count in diagnosing infection. Copyright (c) 2010. Published by Elsevier Inc.

  5. Panel reactive HLA antibodies, soluble CD30 levels, and acute rejection six months following renal transplant.

    PubMed

    Domingues, Elizabeth M F L; Matuck, Teresa; Graciano, Miguel L; Souza, Edison; Rioja, Suzimar; Falci, Mônica C; Monteiro de Carvalho, Deise B; Porto, Luís Cristóvão

    2010-01-01

    Specific anti-human leukocyte antigen antibodies (HLA) in the post-transplant period may be present with acute rejection episodes (ARE), and high soluble CD30 (sCD30) serum levels may be a risk factor for ARE and graft loss. HLA cross-matching, panel reactive antibodies (PRA), and sCD30 levels were determined prior to transplantation in 72 patients. Soluble CD30 levels and PRA were re-assessed at day 7, 14, 21, and 28, and monthly up to the sixth.   Twenty-four subjects had a positive PRA and 17 experienced ARE. Nine of 17 ARE subjects demonstrated positive PRA and 16 had HLA mismatches. Positive PRA was more frequent in ARE subjects (p = 0.03). Eight subjects with ARE had donor-specific antibodies (DSA) in serum samples pre-transplantation, two subjects developed DSA. Three subjects without ARE had positive PRA only in post-transplantation samples. Soluble CD30 levels were higher in pre-transplant samples and ARE subjects than non-ARE subjects (p = 0.03). Post-transplant sCD30 levels were elevated in subjects who experienced rejection and were significantly higher at seven d (p = 0.0004) and six months (p = 0.03). Higher sCD30 levels following transplant were associated with ARE. Elevated sCD30 levels may represent a risk factor for acute rejection. © 2009 John Wiley & Sons A/S.

  6. The strategic significance of wastewater sources to pollutant phosphorus levels in English rivers and to environmental management for rural, agricultural and urban catchments.

    PubMed

    Neal, Colin; Jarvie, Helen P; Withers, Paul J A; Whitton, Brian A; Neal, Margaret

    2010-03-01

    The relationship between soluble and particulate phosphorus was examined for 9 major UK rivers including 26 major tributaries and 68 monitoring points, covering wide-ranging rural and agricultural/urban impacted systems with catchment areas varying from 1 to 6000km(2) scales. Phosphorus concentrations in Soluble Reactive (SRP), Total Dissolved (TDP), Total (TP), Dissolved Hydrolysable (DHP) and Particulate (PP) forms correlated with effluent markers (sodium and boron) and SRP was generally dominant signifying the importance of sewage sources. Low flows were particularly enriched in SRP, TDP and TP for average SRP>100microg/l indicating low effluent dilution. At particularly low average concentrations, SRP increased with flow but effluent sources were still implicated as the effluent markers (boron in particular) increased likewise. For rural areas, DHP had proportionately high concentrations and SRP+DHP concentrations could exceed environmental thresholds currently set for SRP. Given DHP has a high bioavailability the environmental implications need further consideration. PP concentrations were generally highest at high flows but PP in the suspended solids was generally at its lowest and in general PP correlated with particulate organic carbon and more so than the suspended sediment in total. Separation of pollutant inputs solely between effluent and diffuse (agriculture) components is misleading, as part of the "diffuse" term comprises effluents flushed from the catchments during high flow. Effluent sources of phosphorus supplied directly or indirectly to the river coupled with within-river interactions between water/sediment/biota largely determine pollutant levels. The study flags the fundamental need of placing direct and indirect effluent sources and contaminated storage with interchange to/from the river at the focus for remediation strategies for UK rivers in relation to eutrophication and the WFD.

  7. Cross-shift changes in blood inflammatory markers occur in the absence of airway obstruction in workers exposed to grain dust.

    PubMed

    Borm, P J; Schins, R P; Derhaag, T J; Kant, I; Jorna, T H

    1996-04-01

    Grain dust is well known to cause both acute and chronic respiratory disorders, and endotoxins are considered key components in this. Since endotoxins are known to elicit proinflammatory mediators, we investigated cytokine (tumor necrosis factor [TNF], interleukin-6, interleukin-8) release and a number of proinflammatory and anti-inflammatory proteins (soluble TNF receptors, lipopolysaccharide (LPS) binding protein, bactericidal permeability increasing protein (BPI), C-reactive protein) in plasma of workers exposed to grain dust. In two surveys during 1 week, lung function was measured daily before and after the shift, using flow-volume curves and/or forced oscillation measurements. On Monday and Friday, blood samples (30 mL) were drawn and cytokine release was determined by enzyme-linked immunosorbent assay in supernatant of isolated monocytes or whole blood culture, either unstimulated or on the ex vivo stimulation with 3 ng/mL or 1,000 ng/mL endotoxin. Individual exposures were determined from stationary dust measurements at every workplace combined with personal task analysis during all shifts. In both surveys, no cross-week change in lung function parameters was observed. In the first survey (average exposure: 20.2 mg/m3), monocyte spontaneous TNF release was increased sevenfold cross week (p<0.001) and was significantly related both to individual dust exposure (r=0.62) of that week and the increase in soluble TNF receptor 75 kD (r=0.85). In the second survey, where average exposure was much lower (3.67 mg/m3), impedance parameters indicated a significant improvement of airway function, and cross-week changes in inflammatory markers were minimal. Therefore, we conclude that inflammatory events can be used to monitor adverse respiratory effects of moderate grain dust exposure.

  8. Medical expert system for assessment of coronary heart disease destabilization based on the analysis of the level of soluble vascular adhesion molecules

    NASA Astrophysics Data System (ADS)

    Serkova, Valentina K.; Pavlov, Sergey V.; Romanava, Valentina A.; Monastyrskiy, Yuriy I.; Ziepko, Sergey M.; Kuzminova, Nanaliya V.; Wójcik, Waldemar; DzierŻak, RóŻa; Kalizhanova, Aliya; Kashaganova, Gulzhan

    2017-08-01

    Theoretical and practical substantiation of the possibility of the using the level of soluble vascular adhesion molecules (sVCAM) is performed. Expert system for the assessment of coronary heart disease (CHD) destabilization on the base of the analysis of soluble vascular adhesion molecules level is developed. Correlation between the increase of VCAM level and C-reactive protein (CRP) in patients with different variants of CHD progression is established. Association of chronic nonspecific vascular inflammation activation and CHD destabilization is shown. The expedience of parallel determination of sVCAM and CRP levels for diagnostics of CHD destabilization and forecast elaboration is noted.

  9. Phototransformation of estrogens mediated by Mn(III), not by reactive oxygen species, in the presence of humic acids.

    PubMed

    Wang, Xinghao; Yao, Jiayi; Wang, Siyuan; Pan, Xiaoxue; Xiao, Ruiyang; Huang, Qingguo; Wang, Zunyao; Qu, Ruijuan

    2018-06-01

    Photodegradation of pollutants is classically explained by reaction with reactive oxygen species. However Mn(III) may also remove pollutants, but direct evidence is actually lacking. Here we investigated the role of soluble Mn(III) on phototransformation of four typical estrogens, namely estrone (E1), 17β-estradiol (E2), estriol (E3), and 17α-ethynylestradiol (EE2), in the presence of Mn(II) and humic acid. Conversion rates of 60.2%, 89.0%, 87.6%, and 80.2% were achieved for E1, E2, E3, and EE2, respectively, after 72 h visible light irradiation. A detailed quenching experiments revealed that soluble Mn(III), and not reactive oxygen species, was the oxidant responsible for estrogen removal. The determination of Mn(III) concentration provided direct proof of the role of Mn(III)-based oxidizers in the conversion of estrogens. Soluble Mn(III) can form complexes with humic acid, and about 6.51 μM of Mn(III)-humic acid was formed from 20 μM of Mn(II) in the presence of 5 mg/L of humic acid. Furthermore, product identification and theoretical computation demonstrated that estrogens are mainly converted into oligomers (dimers, trimers, tetramers, etc.) via a single-electron process. According to these results, the oxidation of Mn(II) to Mn(III) is initiated by superoxide ion (O 2 •- ) generated from dissolved oxygen in the presence of humic acid under visible light irradiation. The formed soluble Mn(III) strips the estrogens of a single electron to generate phenoxyl radicals, which undergo oligomerization, while leads to regeneration of Mn(II). Hence, the photochemical Mn(II)-Mn(III) redox cycling may significantly influence the fate and transformation of estrogens in waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Pulmonary Inflammatory Responses to Acute Meteorite Dust Exposures - to Acute Meteorite Dust Exposures - Exploration

    NASA Technical Reports Server (NTRS)

    Harrington, A. D.; McCubbin, F. M.; Kaur, J.; Smirnov, A.; Galdanes, K.; Schoonen, M. A. A.; Chen, L. C.; Tsirka, S. E.; Gordon, T.

    2017-01-01

    New initiatives to begin lunar and martian colonization within the next few decades are illustrative of the resurgence of interest in space travel. One of NASA's major concerns with extended human space exploration is the inadvertent and repeated exposure to unknown dust. This highly interdisciplinary study evaluates both the geochemical reactivity (e.g. iron solubility and acellular reactive oxygen species (ROS) generation) and the relative toxicity (e.g. in vitro and in vivo pulmonary inflammation) of six meteorite samples representing either basalt or regolith breccia on the surface of the Moon, Mars, and Asteroid 4Vesta. Terrestrial mid-ocean ridge basalt (MORB) is also used for comparison. The MORB demonstrated higher geochemical reactivity than most of the meteorite samples but caused the lowest acute pulmonary inflammation (API). Notably, the two martian meteorites generated some of the highest API but only the basaltic sample is significantly reactive geochemically. Furthermore, while there is a correlation between a meteorite's soluble iron content and its ability to generate acellular ROS, there is no direct correlation between a particle's ability to generate ROS acellularly and its ability to generate API. However, assorted in vivo API markers did demonstrate strong positive correlations with increasing bulk Fenton metal content. In summary, this comprehensive dataset allows for not only the toxicological evaluation of astromaterials but also clarifies important correlations between geochemistry and health.

  11. Modeling the oxidative capacity of the atmosphere of the south coast air basin of California. 1. Ozone formation metrics.

    PubMed

    Griffin, Robert J; Revelle, Meghan K; Dabdub, Donald

    2004-02-01

    Metrics associated with ozone (O3) formation are investigated using the California Institute of Technology (CIT) three-dimensional air-quality model. Variables investigated include the O3 production rate (P(O3)), O3 production efficiency (OPE), and total reactivity (the sum of the reactivity of carbon monoxide (CO) and all organic gases that react with the hydroxyl radical). Calculations are spatially and temporally resolved; surface-level and vertically averaged results are shown for September 9, 1993 for three Southern California locations: Central Los Angeles, Azusa, and Riverside. Predictions indicate increasing surface-level O3 concentrations with distance downwind, in line with observations. Surface-level and vertically averaged P(O3) values peak during midday and are highest downwind; surface P(O3) values are greater than vertically averaged values. Surface OPEs generally are highest downwind and peak during midday in downwind locations. In contrast, peaks occur in early morning and late afternoon in the vertically averaged case. Vertically averaged OPEs tend to be greater than those for the surface. Total reactivities are highest in upwind surface locations and peak during rush hours; vertically averaged reactivities are smaller and tend to be more uniform temporally and spatially. Total reactivity has large contributions from CO, alkanes, alkenes, aldehydes, unsubstituted monoaromatics, and secondary organics. Calculations using estimated emissions for 2010 result in decreases in P(O3) values and reactivities but increases in OPEs.

  12. The relationship between surface tension and the industrial performance of water-soluble polymers prepared from acid hydrolysis lignin, a saccharification by-product from woody materials.

    PubMed

    Matsushita, Yasuyuki; Imai, Masanori; Iwatsuki, Ayuko; Fukushima, Kazuhiko

    2008-05-01

    In this study, water-soluble anionic and cationic polymers were prepared from sulfuric acid lignin (SAL), an acid hydrolysis lignin, and the relationship between the surface tension of these polymers and industrial performance was examined. The SAL was phenolized (P-SAL) to enhance its solubility and reactivity. Sulfonation and the Mannich reaction with aminocarboxylic acids produced water-soluble anionic polymers and high-dispersibility gypsum paste. The dispersing efficiency increased as the surface tension decreased, suggesting that the fluidity of the gypsum paste increased with the polymer adsorption on the gypsum particle surface. Water-soluble cationic polymers were prepared using the Mannich reaction with dimethylamine. The cationic polymers showed high sizing efficiency under neutral papermaking conditions; the sizing efficiency increased with the surface tension. This suggests that the polymer with high hydrophilicity spread in the water and readily adhered to the pulp surface and the rosin, showing good retention.

  13. Ursolic acid isolated from guava leaves inhibits inflammatory mediators and reactive oxygen species in LPS-stimulated macrophages.

    PubMed

    Kim, Min-Hye; Kim, Jin Nam; Han, Sung Nim; Kim, Hye-Kyeong

    2015-06-01

    Psidium guajava (guava) leaves have been frequently used for the treatment of rheumatism, fever, arthritis and other inflammatory conditions. The purpose of this study was to identify major anti-inflammatory compounds from guava leaf extract. The methanol extract and its hexane-, dichloromethane-, ethylacetate-, n-butanol- and water-soluble phases derived from guava leaves were evaluated to determine their inhibitory activity on nitric oxide (NO) production by RAW 264.7 cells stimulated with lipopolysaccharide (LPS). The methanol extract decreased NO production in a dose-dependent manner without cytotoxicity at a concentration range of 0-100 μg/mL. The n-butanol soluble phase was the most potent among the five soluble phases. Four compounds were isolated by reversed-phase HPLC from the n-butanol soluble phase and identified to be avicularin, guaijaverin, leucocyanidin and ursolic acid by their NMR spectra. Among these compounds, ursolic acid inhibited LPS-induced NO production in a dose-dependent manner without cytotoxity at a concentration range of 1-10 µM, but the other three compounds had no effect. Ursolic acid also inhibited LPS-induced prostaglandin E2 production. A western blot analysis showed that ursolic acid decreased the LPS-stimulated inducible nitric oxide synthase and cyclooxygenase protein levels. In addition, ursolic acid suppressed the production of intracellular reactive oxygen species in LPS-stimulated RAW 264.7 cells, as measured by flow cytometry. Taken together, these results identified ursolic acid as a major anti-inflammatory compound in guava leaves.

  14. Gas sorption and barrier properties of polymeric membranes from molecular dynamics and Monte Carlo simulations.

    PubMed

    Cozmuta, Ioana; Blanco, Mario; Goddard, William A

    2007-03-29

    It is important for many industrial processes to design new materials with improved selective permeability properties. Besides diffusion, the molecule's solubility contributes largely to the overall permeation process. This study presents a method to calculate solubility coefficients of gases such as O2, H2O (vapor), N2, and CO2 in polymeric matrices from simulation methods (Molecular Dynamics and Monte Carlo) using first principle predictions. The generation and equilibration (annealing) of five polymer models (polypropylene, polyvinyl alcohol, polyvinyl dichloride, polyvinyl chloride-trifluoroethylene, and polyethylene terephtalate) are extensively described. For each polymer, the average density and Hansen solubilities over a set of ten samples compare well with experimental data. For polyethylene terephtalate, the average properties between a small (n = 10) and a large (n = 100) set are compared. Boltzmann averages and probability density distributions of binding and strain energies indicate that the smaller set is biased in sampling configurations with higher energies. However, the sample with the lowest cohesive energy density from the smaller set is representative of the average of the larger set. Density-wise, low molecular weight polymers tend to have on average lower densities. Infinite molecular weight samples do however provide a very good representation of the experimental density. Solubility constants calculated with two ensembles (grand canonical and Henry's constant) are equivalent within 20%. For each polymer sample, the solubility constant is then calculated using the faster (10x) Henry's constant ensemble (HCE) from 150 ps of NPT dynamics of the polymer matrix. The influence of various factors (bad contact fraction, number of iterations) on the accuracy of Henry's constant is discussed. To validate the calculations against experimental results, the solubilities of nitrogen and carbon dioxide in polypropylene are examined over a range of temperatures between 250 and 650 K. The magnitudes of the calculated solubilities agree well with experimental results, and the trends with temperature are predicted correctly. The HCE method is used to predict the solubility constants at 298 K of water vapor and oxygen. The water vapor solubilities follow more closely the experimental trend of permeabilities, both ranging over 4 orders of magnitude. For oxygen, the calculated values do not follow entirely the experimental trend of permeabilities, most probably because at this temperature some of the polymers are in the glassy regime and thus are diffusion dominated. Our study also concludes large confidence limits are associated with the calculated Henry's constants. By investigating several factors (terminal ends of the polymer chains, void distribution, etc.), we conclude that the large confidence limits are intimately related to the polymer's conformational changes caused by thermal fluctuations and have to be regarded--at least at microscale--as a characteristic of each polymer and the nature of its interaction with the solute. Reducing the mobility of the polymer matrix as well as controlling the distribution of the free (occupiable) volume would act as mechanisms toward lowering both the gas solubility and the diffusion coefficients.

  15. Reactivity of coal in direct hydrogenation processes: Technical progress report, March-May 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, R.M.; Miller, R.L.

    Research during the past quarter centered on continuation of two facets related to the study of coal reactivity in direct hydrogenation liquefaction processes. Five coals from the Argonne Premium coal collection were liquefied at three temperature levels in order to gather data for kinetic analysis purposes. Conversion of these coals to THF-, toluene-, and hexane-solubles was determined at temperatures of 425, 400, and 375 C, and nominal reaction times of 3, 5, 10, 15, and 40 minutes in the microautoclave batch reaction system. Preliminary mathematical modeling of the data using simple irreversible rate expressions and more complex formulations based onmore » a statistical distribution of activation energies was initiated in order to investigate the feasibility of utilizing activation energy as an additional reactivity screening factor. Use of complex models such as the Anthony-Howard formulation for purposes of activation energy determination from liquefaction data at one temperature level was further examined. Five of the 21 coals from the Penn State Premium coal sample bank were liquefied at the standard reactivity screening conditions, and the rate and extent of conversion to THF-, and toluene-, and hexane-solubles quantified. These data were added to the existing data base containing similar information for the prior coal suites from the Exxon and Argonne collections, and preliminary correlational efforts for reactivity vs. coal properties were initiated. Prior conclusions regarding the effect of rank on the rate and extent of conversion were qualitatively verified from the data collected. 1 ref., 13 figs., 2 tabs.« less

  16. The effects of chronic radiation of gamma ray on protein expression and oxidative stress in Brachypodium distachyon.

    PubMed

    Kim, Dae Yeon; Hong, Min Jeong; Park, Cheong-Sool; Seo, Yong Weon

    2015-05-01

    To compare the effects of gamma-irradiation on biochemical responses and growth, six-week-old Brachypodium plants were chronically exposed to gamma-irradiation for 30 days at various dosages. Growth surveys of Brachypodium plants in response to different dosages of gamma-irradiation were conducted to compare physiological changes between irradiated and non-irradiated plants. Photosynthetic pigments, soluble sugar content, activities of antioxidant enzymes, and malonaldehyde (MDA) induced by reactive oxygen species (ROS) production were also measured. Gamma-irradiation had a negative influence on the average plant height, leaf length, leaf width, and fresh weight. Photosynthetic pigment levels decreased with increasing dosages of gamma-irradiation, while soluble sugar content slightly increased. Gamma-irradiation responsive proteins were detected and identified by two-dimensional gel electrophoresis (2D-PAGE) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF). The proteins had a role in photosynthetic carbon fixation, anabolic pathway glycolysis, mitochondrial ATP production, and oxidative stress response regulation. MDA levels and activities of antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and peroxidase (POD) increased with the increase in gamma-irradiation dosage level. This study provides some basic information regarding responses to gamma-irradiation, and provides valuable physiological and biological data on the effects of different gamma-irradiation dosages on Triticeae species.

  17. Solubility of NaCl and KCl in aqueous HCl from 20 to 85°C

    USGS Publications Warehouse

    Potter, Robert W.; Clynne, Michael A.

    1980-01-01

    The solubilities of NaCl and KCl in aqueous HCl solutions were determined from 20 to 85°C at concentrations ranging from 0 to 20 g of HCl/100 g of solution. Equations are given that describe the solubilities over the range of conditions studied. For NaCl and KCl respectively measured solubilities show an average deviation from these equations of ??0.10 and ??0.08 g/100 g of saturated solution.

  18. The reactivation time in the treatment of AMD: a forgotten key parameter?

    PubMed

    Real, J P; Luna, J D; Palma, S D

    2018-06-01

    Summarize and compare the available evidence on the reactivation times in patients with age-related macular degeneration treated with Ranibizumab (RNB). Systematic review of studies that reported the reactivation time of patients (direct method) or the number of injections received in a certain period of follow-up (indirect method). Only 18 of 89 selected studies reported the average reactivation time of patients in a manifest form, without the need of any calculation. The average calculated, weighted reactivation time was 101.8 days with the direct method and 99.8 days in the indirect method (84 studies included). With both methods, it was found that the average reactivation time of the RCTs was between 2 and 3 weeks less than the average time identified in the observational studies. These differences are also reflected in the clinical results, there being a correlation between the number of doses received and the change in BCVA. The analysis of 11 comparative studies showed a difference in reactivation times between patients treated with RNB or Bevacizumab (BVZ). There are few direct studies of reactivation time, but calculation from the PRN dose number turns out to be a good approximation for retrospective study of the variable. The use of the PRN, with criteria not based on optical coherence tomography scans, delays the application of doses between 2 or 3 weeks, and patients suffer loss of clinical benefits. RNB enables patients to receive less injections than BVZ throughout treatment.

  19. Improving Physical Properties via C–H Oxidation: Chemical and Enzymatic Approaches

    PubMed Central

    Michaudel, Quentin; Journot, Guillaume; Regueiro-Ren, Alicia; Goswami, Animesh; Guo, Zhiwei; Tully, Thomas P.; Zou, Lufeng; Ramabhadran, Raghunath O.; Houk, Kendall N.

    2014-01-01

    Physicochemical properties constitute a key factor for the success of a drug candidate. Whereas many strategies to improve the physicochemical properties of small heterocycle-type leads exist, complex hydrocarbon skeletons are more challenging to derivatize due to the absence of functional groups. A variety of C–H oxidation methods have been explored on the betulin skeleton to improve the solubility of this very bioactive, yet poorly water soluble, natural product. Capitalizing on the innate reactivity of the molecule, as well as the few molecular handles present on the core, allowed for oxidations at different positions across the pentacyclic structure. Enzymatic oxidations afforded several orthogonal oxidations to chemical methods. Solubility measurements showed an enhancement for many of the synthesized compounds. PMID:25244630

  20. Solubility Enhancement of a Poorly Water Soluble Drug by Forming Solid Dispersions using Mechanochemical Activation

    PubMed Central

    Rojas-Oviedo, I.; Retchkiman-Corona, B.; Quirino-Barreda, C. T.; Cárdenas, J.; Schabes-Retchkiman, P. S.

    2012-01-01

    Mechanochemical activation is a practical cogrinding operation used to obtain a solid dispersion of a poorly water soluble drug through changes in the solid state molecular aggregation of drug-carrier mixtures and the formation of noncovalent interactions (hydrogen bonds) between two crystalline solids such as a soluble carrier, lactose, and a poorly soluble drug, indomethacin, in order to improve its solubility and dissolution rate. Samples of indomethacin and a physical mixture with a weight ratio of 1:1 of indomethacin and lactose were ground using a high speed vibrating ball mill. Particle size was determined by electron microscopy, the reduction of crystallinity was determined by calorimetry and transmission electron microscopy, infrared spectroscopy was used to find evidence of any interactions between the drug and the carrier and the determination of apparent solubility allowed for the corroboration of changes in solubility. Before grinding, scanning electron microscopy showed the drug and lactose to have an average particle size of around 50 and 30 μm, respectively. After high speed grinding, indomethacin and the mixture had a reduced average particle size of around 5 and 2 μm, respectively, showing a morphological change. The ground mixture produced a solid dispersion that had a loss of crystallinity that reached 81% after 30 min of grinding while the drug solubility of indomethacin within the solid dispersion increased by 2.76 fold as compared to the pure drug. Drug activation due to hydrogen bonds between the carboxylic group of the drug and the hydroxyl group of lactose as well as the decrease in crystallinity of the solid dispersion and the reduction of the particle size led to a better water solubility of indomethacin. PMID:23798775

  1. Toxicity evaluation of boron nitride nanospheres and water-soluble boron nitride in Caenorhabditis elegans

    PubMed Central

    Wang, Ning; Wang, Hui; Tang, Chengchun; Lei, Shijun; Shen, Wanqing; Wang, Cong; Wang, Guobin; Wang, Zheng; Wang, Lin

    2017-01-01

    Boron nitride (BN) nanomaterials have been increasingly explored for potential biological applications. However, their toxicity remains poorly understood. Using Caenorhabditis elegans as a whole-animal model for toxicity analysis of two representative types of BN nanomaterials – BN nanospheres (BNNSs) and highly water-soluble BN nanomaterial (named BN-800-2) – we found that BNNSs overall toxicity was less than soluble BN-800-2 with irregular shapes. The concentration thresholds for BNNSs and BN-800-2 were 100 µg·mL−1 and 10 µg·mL−1, respectively. Above this concentration, both delayed growth, decreased life span, reduced progeny, retarded locomotion behavior, and changed the expression of phenotype-related genes to various extents. BNNSs and BN-800-2 increased oxidative stress levels in C. elegans by promoting reactive oxygen species production. Our results further showed that oxidative stress response and MAPK signaling-related genes, such as GAS1, SOD2, SOD3, MEK1, and PMK1, might be key factors for reactive oxygen species production and toxic responses to BNNSs and BN-800-2 exposure. Together, our results suggest that when concentrations are lower than 10 µg·mL−1, BNNSs are more biocompatible than BN-800-2 and are potentially biocompatible material. PMID:28860759

  2. Toxicity evaluation of boron nitride nanospheres and water-soluble boron nitride in Caenorhabditis elegans.

    PubMed

    Wang, Ning; Wang, Hui; Tang, Chengchun; Lei, Shijun; Shen, Wanqing; Wang, Cong; Wang, Guobin; Wang, Zheng; Wang, Lin

    2017-01-01

    Boron nitride (BN) nanomaterials have been increasingly explored for potential biological applications. However, their toxicity remains poorly understood. Using Caenorhabditis elegans as a whole-animal model for toxicity analysis of two representative types of BN nanomaterials - BN nanospheres (BNNSs) and highly water-soluble BN nanomaterial (named BN-800-2) - we found that BNNSs overall toxicity was less than soluble BN-800-2 with irregular shapes. The concentration thresholds for BNNSs and BN-800-2 were 100 µg·mL -1 and 10 µg·mL -1 , respectively. Above this concentration, both delayed growth, decreased life span, reduced progeny, retarded locomotion behavior, and changed the expression of phenotype-related genes to various extents. BNNSs and BN-800-2 increased oxidative stress levels in C. elegans by promoting reactive oxygen species production. Our results further showed that oxidative stress response and MAPK signaling-related genes, such as GAS1 , SOD2 , SOD3 , MEK1 , and PMK1 , might be key factors for reactive oxygen species production and toxic responses to BNNSs and BN-800-2 exposure. Together, our results suggest that when concentrations are lower than 10 µg·mL -1 , BNNSs are more biocompatible than BN-800-2 and are potentially biocompatible material.

  3. Comparisons of IL-8, ROS and p53 responses in human lung epithelial cells exposed to two extracts of PM2.5 collected from an e-waste recycling area, China

    NASA Astrophysics Data System (ADS)

    Yang, Fangxing; Jin, Shiwei; Xu, Ying; Lu, Yuanan

    2011-04-01

    To identify the different effects of organic-soluble and water-soluble pollutants adsorbed on PM2.5 (PM: particulate matter) released from e-waste (electrical/electronic waste) on inflammatory response, oxidative stress and DNA damage, interleukin-8 (IL-8), reactive oxygen species (ROS) and p53 protein levels were determined and compared in human lung epithelial A549 cells exposed to extracts of PM2.5 collected from two sampling sites in an e-waste recycling area in China. It is found that both extracts induced increases of IL-8 release, ROS production and p53 protein expression. The differences between the organic-soluble and water-soluble extracts were determined as of significance for ROS production (p < 0.05) and p53 protein expression (p < 0.01). The ROS production and p53 protein expression induced by the organic-soluble extracts were found to be greater than those induced by the water-soluble extracts, for both sampling sites. The results indicated that PM2.5 collected from the e-waste recycling areas could lead to inflammatory response, oxidative stress and DNA damage, and the organic-soluble extracts had higher potential to induce such adverse effects on human health.

  4. Calculating the Solubilities of Drugs and Drug-Like Compounds in Octanol.

    PubMed

    Alantary, Doaa; Yalkowsky, Samuel

    2016-09-01

    A modification of the Van't Hoff equation is used to predict the solubility of organic compounds in dry octanol. The new equation describes a linear relationship between the logarithm of the solubility of a solute in octanol to its melting temperature. More than 620 experimentally measured octanol solubilities, collected from the literature, are used to validate the equation without using any regression or fitting. The average absolute error of the prediction is 0.66 log units. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. Soluble CD30 and ELISA-detected human leukocyte antigen antibodies for the prediction of acute rejection in pediatric renal transplant recipients.

    PubMed

    Billing, Heiko; Sander, Anja; Süsal, Caner; Ovens, Jörg; Feneberg, Reinhard; Höcker, Britta; Vondrak, Karel; Grenda, Ryszard; Friman, Stybjorn; Milford, David V; Lucan, Mihai; Opelz, Gerhard; Tönshoff, Burkhard

    2013-03-01

    Biomarker-based post-transplant immune monitoring for the prediction of impending graft rejection requires validation in specific patient populations. Serum of 28 pediatric renal transplant recipients within the framework of a well-controlled prospective randomized trial was analyzed pre- and post-transplant for soluble CD30 (sCD30), a biomarker reflecting mainly T-cell reactivity, and anti-human leukocyte antigen (anti-HLA) antibody reactivity, a biomarker for B-cell activation. A sCD30 concentration ≥40.3 U/ml on day 14 was able to discriminate between patients with or without biopsy-proven acute rejection (BPAR) with a sensitivity of 100% and a specificity of 76%. Six of seven patients (86%) with BPAR showed a sCD30 above this cut-off, whereas only 3/21 patients (14%) without BPAR had a sCD30 above this cut-off (P = 0.004). For pre- and post-transplant anti-HLA class II reactivities by enzyme-linked immunosorbent assay, a cut-off value of 140 optical density was able to discriminate rejecters from nonrejecters with a sensitivity of 86% or 71% and a specificity of 81% or 90%, respectively. Withdrawal of steroids was associated with a approximately twofold higher serum sCD30 compared to controls, but did not affect anti-HLA reactivities. An increased post-transplant sCD30 serum concentration and positive pre- and post-transplant anti-HLA class II reactivities are informative biomarkers for impending BPAR in pediatric renal transplant recipients. (TWIST, Clinical Trial No: FG-506-02-43). © 2012 The Authors Transplant International © 2012 European Society for Organ Transplantation. Published by Blackwell Publishing Ltd.

  6. The reactivity of Fe(II) associated with goethite formed during short redox cycles toward Cr(VI) reduction under oxic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomaszewski, Elizabeth J.; Lee, Seungyeol; Rudolph, Jared

    Chromium (Cr) is a toxic metal that causes a myriad of health problems and enters the environment as a result of anthropogenic activities and/or natural processes. The toxicity and solubility of chromium is linked to its oxidation state; Cr(III) is poorly soluble and relatively nontoxic, while Cr(VI) is soluble and a known carcinogen. Solid Fe(II) in iron-bearing minerals, such as pyrite, magnetite, and green rusts, reduce the oxidation state of chromium, reducing its toxicity and mobility. However, these minerals are not the only potential sources of solid-associated Fe(II) available for Cr(VI) reduction. For example, ferric (Fe(III)) (hydr)oxides, such as goethitemore » or hematite, can have Fe(II) in the solid without phase transformation; however, the reactivity of Fe(II) within Fe(III) (hydr)oxides with contaminants, has not been previously investigated. Here, we cyclically react goethite with dissolved Fe(II) followed by dissolved O2, leading to the formation of reactive Fe(II) associated with goethite. In separate reactors, the reactivity of this Fe(II) is probed under oxic conditions, by exposure to chromate (CrO42 -) after either one, two, three or four redox cycles. Cr is not present during redox cycling; rather, it is introduced to a subset of the solid after each oxidation half-cycle. Analysis of X-ray absorption near edge structure (XANES) spectra reveals that the extent of Cr(VI) reduction to Cr(III) depends not only on solid Fe(II) content but also surface area and mean size of ordered crystalline domains, determined by BET surface area analysis and X-ray diffraction (XRD), respectively. Shell-by-shell fitting of the extended X-ray absorption fine structure (EXAFS) spectra demonstrates chromium forms both single and double corner sharing complexes on the surface of goethite, in addition to sorbed Cr(III) species. Finally, transmission electron microscope (TEM) imaging and X-ray energy-dispersive spectroscopy (EDS) illustrate that Cr preferentially localizes on the (100) face of goethite, independent of the number of redox cycles goethite undergoes. This work demonstrates that under oxic conditions, solid Fe(II) associated with goethite resulting from rapid redox cycling is reactive and available for electron transfer to Cr(VI), suggesting Fe(III) (hydr)oxides may act as reservoirs of reactive electron density, even in oxygen saturated environments.« less

  7. A Global Assessment of Dissolved Organic Carbon in Precipitation

    NASA Astrophysics Data System (ADS)

    Safieddine, Sarah A.; Heald, Colette L.

    2017-11-01

    Precipitation is the largest physical removal pathway of atmospheric reactive organic carbon in the form of dissolved organic carbon (DOC). We present the first global DOC distribution simulated with a global model. A total of 85 and 188 Tg C yr-1 are deposited to the ocean and the land, respectively, with DOC ranging between 0.1 and 10 mg C L-1 in this GEOS-Chem simulation. We compare the 2010 simulated DOC to a 30 year synthesis of measurements. Despite limited measurements and imperfect temporal matching, the model is able to reproduce much of the spatial variability of DOC (r = 0.63), with a low bias of 35%. We present the global average carbon oxidation state (OSc>¯) as a simple metric for describing the chemical composition. In the atmosphere, -1.8≤OSc>¯≤-0.6, and the increase in solubility upon oxidation leads to a global increase in OSc>¯ in precipitation with -0.6≤OSc>¯DOC≤0.

  8. Reaction of gelatin and chitosan with water soluble carbodiimides

    USDA-ARS?s Scientific Manuscript database

    Earlier research from this laboratory has demonstrated the feasibility of using chemical and enzymatic treatments on protein and carbohydrate waste products for the purpose of making fillers to enhance the properties of leather. In our ongoing studies, we examined the reactivity of various concentr...

  9. Ecological periodic tables for estuarine habitats

    EPA Science Inventory

    Southwood (1977; J Anim Ecol 46: 337-365) compared the situation in ecology to that in chemistry before the development of the periodic table when each fact, for example, the solubility or reactivity of a chemical element, had to be discovered independently and remembered in isol...

  10. Using aquatic vegetation to remediate nitrate, ammonium, and soluble reactive phosphorus in simulated runoff

    USDA-ARS?s Scientific Manuscript database

    Within the agriculturally-intensive Mississippi River Basin of the United States, significant conservation efforts have focused on management practices that reduce nutrient runoff into receiving aquatic ecosystems. Only a small fraction of those efforts have focused on phytoremediation techniques. ...

  11. Modeling the partitioning of organic chemical species in cloud phases with CLEPS (1.1)

    NASA Astrophysics Data System (ADS)

    Rose, Clémence; Chaumerliac, Nadine; Deguillaume, Laurent; Perroux, Hélène; Mouchel-Vallon, Camille; Leriche, Maud; Patryl, Luc; Armand, Patrick

    2018-02-01

    The new detailed aqueous-phase mechanism Cloud Explicit Physico-chemical Scheme (CLEPS 1.0), which describes the oxidation of isoprene-derived water-soluble organic compounds, is coupled with a warm microphysical module simulating the activation of aerosol particles into cloud droplets. CLEPS 1.0 was then extended to CLEPS 1.1 to include the chemistry of the newly added dicarboxylic acids dissolved from the particulate phase. The resulting coupled model allows the prediction of the aqueous-phase concentrations of chemical compounds originating from particle scavenging, mass transfer from the gas-phase and in-cloud aqueous chemical reactivity. The aim of the present study was more particularly to investigate the effect of particle scavenging on cloud chemistry. Several simulations were performed to assess the influence of various parameters on model predictions and to interpret long-term measurements conducted at the top of Puy de Dôme (PUY, France) in marine air masses. Specific attention was paid to carboxylic acids, whose predicted concentrations are on average in the lower range of the observations, with the exception of formic acid, which is rather overestimated in the model. The different sensitivity runs highlight the fact that formic and acetic acids mainly originate from the gas phase and have highly variable aqueous-phase reactivity depending on the cloud acidity, whereas C3-C4 carboxylic acids mainly originate from the particulate phase and are supersaturated in the cloud.

  12. Effects of dietary tannins on total and extractable nutrients from manure.

    PubMed

    Halvorson, J J; Kronberg, S L; Hagerman, A E

    2017-08-01

    The effects of condensed tannins on N dynamics in ruminants have been a topic of research for some time, but much less work has focused on their impacts on other nutrients in manure. A 4 × 4 Latin square trial was used to determine if intake of sericea lespedeza (; SL; a condensed tannin source), at 0, 10, 20, or 40% of the diet (as-fed basis), would affect concentrations of nutrients in manure and patterns of total excretion when offered with alfalfa (; ALF) to sheep. With SL additions, average daily manure production increased linearly ( ≤ 0.01), from 40 to 50% of the diet mass. The concentrations of total C, total N, soluble P, total and soluble Na, total and soluble S, total and soluble Mn, and total and soluble B in feces increased ( ≤ 0.05) while soluble N, total Ca, total and soluble Mg, soluble Zn, total and soluble Fe, total and soluble Cu decreased ( ≤ 0.02). Total P, total and soluble K, soluble Ca, and total Zn were less affected ( > 0.05). Comparing diets containing 0 to 40% SL, average daily outputs of total C, total N, soluble P, soluble K, total and soluble Na, and total Mn increased linearly ( ≤ 0.01) by 42.0, 71.2, 93.3, 45.2, 111, 148, and 52.4 percentage points, respectively. Total K, total and soluble S, soluble Mn, and total and soluble B increased quadratically ( ≤ 0.02) by 26.1, 52.3, 26.7, 147, 100, and 19.5 percentage points, respectively. Conversely, outputs of soluble Zn and total Fe decreased linearly ( ≤ 0.01), by -51.5 and -24.8 percentage points, while total Ca, total and soluble Mg, soluble Fe, and soluble Cu decreased quadratically ( ≤ 0.05) by -15.7, -12.3, -40.0, -89.9, and -60.3 percentage points, respectively. Outputs of soluble N, total P, soluble Ca, total Zn, and total Cu remained unchanged ( ≥ 0.14). Ratios of manure outputs to feed inputs for C, N, K, and B increased ( ≤ 0.02) but those for P and Mg were unchanged ( ≥ 0.10). Ratios of soluble to total manure outputs (S:O) increased ( ≤ 0.01) for P, Ca, Na, Mn; decreased ( ≤ 0.05) for N, S, Mg, Zn, Fe, Cu, and B; and were unaffected by treatment ( ≤ 0.16) for K. Decreasing S:O ratios are consistent with the formation of complexes that adsorb these nutrients to insoluble fiber fractions of manure and could thus affect mineralization rates. This study suggests that dietary tannins, found in forages like SL, can alter the concentrations, total excretion rates and throughput efficiency of nutrients in manure.

  13. Immunochemical characterization of alkaline-soluble polysaccharide, P-1, from the kernels of Prunus mume Sieb. et Zucc.

    PubMed

    Dogasaki, C; Nishijima, M; Ohno, N; Yadomae, T; Miyazaki, T

    1996-07-01

    Polyclonal antibodies against P-1, a pectic polysaccharide fraction extracted with 0.5 M NaOH from the kernels of Prunus mume and consisted of arabino-galacturonan, and I-3, the partial acid (0.1 M trifluoroacetic acid) hydrolysate of P-1, were prepared in Japanese white rabbits. Competitive ELISA experiments strongly suggested that anti P-1 and anti I-3 antibodies were different but P-1 and I-3 cross-reacted with each other to recognize a partly similar epitope structure. The reactivities of polysaccharide fractions from the raw flesh of P. mume, and the kernels of apricot and peach extracted with either water or sodium hydroxide were examined using both antisera by the indirect competitive ELISA method. The polysaccharide fractions extracted with sodium hydroxide solutions had the reactivities but not those extracted with cold and hot water. These facts suggested that the similar structure of polysaccharides to P-1 was present in the flesh of P. mume and the kernels of apricot and peach. However, neither pectin of apple nor citrus had reactivity with each antiserum. P-1 would be different in chemical structure from a commercially available pectin, a water-soluble polysaccharide from apple and citrus.

  14. Improving physical properties via C-H oxidation: chemical and enzymatic approaches.

    PubMed

    Michaudel, Quentin; Journot, Guillaume; Regueiro-Ren, Alicia; Goswami, Animesh; Guo, Zhiwei; Tully, Thomas P; Zou, Lufeng; Ramabhadran, Raghunath O; Houk, Kendall N; Baran, Phil S

    2014-11-03

    Physicochemical properties constitute a key factor for the success of a drug candidate. Whereas many strategies to improve the physicochemical properties of small heterocycle-type leads exist, complex hydrocarbon skeletons are more challenging to derivatize because of the absence of functional groups. A variety of C-H oxidation methods have been explored on the betulin skeleton to improve the solubility of this very bioactive, yet poorly water-soluble, natural product. Capitalizing on the innate reactivity of the molecule, as well as the few molecular handles present on the core, allowed oxidations at different positions across the pentacyclic structure. Enzymatic oxidations afforded several orthogonal oxidations to chemical methods. Solubility measurements showed an enhancement for many of the synthesized compounds. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enzyme-resistant dextrins from potato starch for potential application in the beverage industry.

    PubMed

    Jochym, Kamila Kapusniak; Nebesny, Ewa

    2017-09-15

    The objective of this study was to produce soluble enzyme-resistant dextrins by microwave heating of potato starch acidified with small amounts of hydrochloric and citric acids and to characterize their properties. Twenty five samples were initially made and their solubility was determined. Three samples with the highest water solubility were selected for physico-chemical (dextrose equivalent, molecular weight distribution, pasting characteristics, retrogradation tendency), total dietary fiber (TDF) analysis, and stability tests. TDF content averaged 25%. Enzyme-resistant dextrins practically did not paste, even at 20% samples concentration, and were characterized by low retrogradation tendency. The stability of the samples, expressed as a percentage increase of initial and final reducing sugar content, at low pH and during heating at low pH averaged 10% and 15% of the initial value, respectively. The results indicate that microwave heating could be an effective and efficient method of producing highly-soluble, low-viscous, and enzyme-resistant potato starch dextrins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Intensive atmospheric mercury measurements at Terra Nova Bay in Antarctica during November and December 2000

    NASA Astrophysics Data System (ADS)

    Sprovieri, F.; Pirrone, N.; Hedgecock, I. M.; Landis, M. S.; Stevens, R. K.

    2002-12-01

    It is well known that due to its long atmospheric residence time, mercury is distributed on a global scale and aeolian transport is believed to be the major contributor to mercury in polar environments. No measurements of reactive gaseous mercury (RGM) at all have ever been performed in the Antarctic before. Hg0(g) concentrations were in the range 0.29 to 2.3 ng m-3, with an average value of 0.9 ± 0.3 ng m-3. RGM was measured using KCl-coated annular denuders and a speciation unit coupled to a TGM analyzer; concentrations ranged from 10.5 to 334 pg m-3, with an average of 116.2 ± 77.8 pg m-3. The Hg0(g) measurements are in good agreement with the few data available for such southerly latitudes. The RGM concentrations are as high as those found in some industrial environments; the high concentrations in the absence of local sources (anthropogenic or natural) show that in situ gas phase oxidation of Hg0 is the most important factor influencing RGM production and therefore also Hg deposition. The toxicity of Hg means that the consequences of high concentrations of oxidized and soluble Hg species depositing in the fragile Antarctic environment could be serious indeed.

  17. New NIR Calibration Models Speed Biomass Composition and Reactivity Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-09-01

    Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. This highlight describes NREL's work to use near-infrared (NIR) spectroscopy and partial least squares multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. This highlight is being developed for the September 2015 Alliance S&T Board meeting.

  18. Correlation of published data on the solubility of methane in H/sub 2/O-NaCl solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coco, L.T.; Johnson, A.E. Jr.; Bebout, D.G.

    1981-01-01

    A new correlation of the available published data for the solubility of methane in water was developed, based on fundamental thermodynamic relationships. An empirical relationship for the salting-out coefficient of NaCl for methane solubility in water was determined as a function of temperature. Root mean square and average deviations for the new correlation, the Haas correlation, and the revised Blount equation are compared.

  19. A possible trade-off between clean air and clean water

    USDA-ARS?s Scientific Manuscript database

    Harmful algal blooms in Lake Erie have increased since 2002, coincidentally during this same period soluble reactive phosphorus loads have increased from rivers that flow into the lake. Also during this time, reductions in atmospheric sulfur emissions have resulted in marked increases in rainfall p...

  20. ANTIOXIDANT SUPPLEMENTATION AND NASAL INFLAMMATORY RESPONSES AMONG YOUNG ASTHMATICS EXPOSED TO HIGH LEVELS OF OZONE

    EPA Science Inventory

    Background: Recent studies examining the inflammatory response in atopic asthma to ozone suggest a release of soluble mediators of inflammation factors that might be related to reactive oxygen species (ROS). Antioxidant could prove useful in subjects exposed to additional oxidati...

  1. The origin of jarosite associated with a gossan on Archean gneiss in Southwest Greenland

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Pratt, L. M.; Young, S. A.; Cadieux, S. B.; White, J. R.

    2013-12-01

    The mineral Jarosite [KFe3(SO4)2(OH)6] since its discovery, by Opportunity rover at Meridiani Planum on Mars, has been the subject of intense geochemical and environmental study over the last 5-10 years. Jarosite requires highly acidic, K-enriched, and oxidizing aqueous conditions for formation. Stable isotopes of O, H, and S of jarosite have the ability to record the temperatures of formation, environments of deposition, fluids, and fluid/atmospheric interactions. Therefore, the origin of jarosite is important for understanding present and past environmental conditions on Mars. Unfortunately, the origin of jarosite on Mars remains unclear. Jarosite is commonly found on Earth in the weathering zones of pyrite-bearing ore deposits, near-surface playa sediments in acid-saline lakes, or epithermal environments and hot springs. Here, we report the occurrence of jarosite in association with a gossan overlying weathered Archean gneiss and Paleoproterozoic mafic dikes at the ice-free margin of southwestern Greenland. In our 2012 field campaign, we excavated soil pits to a depth of 40 cm with a high vertical sampling resolution. No visible pyrite was found in the nearby outcroppings of gneiss in the field. XRD data show that all samples were composed of anorthite, quartz, albite, jarosite, muscovite, and microcline. Jarosite was the only sulfur-bearing mineral identified by XRD, with abundance of jarosite increasing with depth (up to 8.4 wt. %) in the soil pits. Water soluble and acid soluble sulfate were sequentially extracted using 10% NaCl and 2N HCl solutions, respectively. Pyrite was then subsequently extracted from insoluble residues by a chromium reduction method. The average abundance of water soluble sulfate, acid soluble sulfate, and pyrite were 100 ppm, 7 wt. %, and 10 ppm, respectively. The δ34S values of water soluble sulfate, acid soluble sulfate, and pyrite range from -0.7‰ to 3.1‰ (average= 1.5‰), -1.2 to 1.5‰ (average= 0.7‰), and 0.3‰ to 6.7‰ (average= 2.6‰) respectively. δ34S values of all water soluble sulfate and pyrite, were higher than acid soluble sulfate. δ34S values of pyrite were higher than all water soluble sulfate except the surficial sample (0-10 cm depth). The δ34S values of water soluble sulfate and acid soluble sulfate did not change with depth while δ34S values of pyrite increased with depth from 2.4‰ to 6.7 ‰ (peak at 10-15 cm) and dropped to 2.0‰. Preliminary data indicate that the acid soluble sulfate was dominated by jarosite while the water soluble sulfate fraction may have been a mixture of leached jarosite and other sulfate sources, such as atmospheric sulfate. Jarosite formation may result from the oxidative weathering of pyrite inferred to originate from localized, stratiform, hydrothermal mineralization. To constrain the origin of jarosite, a new profile containing soil, permafrost, and bedrock was collected at the same location during the summer 2013 field campaign by drilling ~ 1.0 meter into the permafrost zone. We will employ multiple sulfur isotope and triple oxygen isotope of sulfate and pyrite, which can define the source of sulfur and oxygen. A greater understanding of the formation of jarosite on this ice-free margin of Greenland will provide an insightful potential analogue for jarosite formation and on Mars.

  2. Water-soluble triazabutadienes that release diazonium species upon protonation under physiologically relevant conditions.

    PubMed

    Kimani, Flora W; Jewett, John C

    2015-03-23

    Triazabutadienes are an understudied structural motif that have remarkable reactivity once rendered water-soluble. It is shown that these molecules readily release diazonium species in a pH-dependent manner in a series of buffer solutions with pH ranges similar to those found in cells. Upon further development, we expect that this process will be well suited to cargo-release strategies and organelle-specific bioconjugation reactions. These compounds offer one of the mildest ways of generating diazonium species in aqueous solutions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Flaxseed and cardiovascular health.

    PubMed

    Prasad, Kailash

    2009-11-01

    Flaxseed and its components may improve cardiovascular health because of their numerous attributes. Flaxseed contains 35% of its mass as oil, of which 55% is alpha-linolenic acid (ALA). Flax meal, which is devoid of oil, contains the lignan secoisolariciresinol diglucoside (SDG). Flaxseed, flaxseed with very low ALA, flaxseed oil, flax lignan complex (FLC), and SDG reduce the development of hypercholesterolemic atherosclerosis by 46%, 69%, 0%, 73%, and 34%, respectively, in the rabbit model. FLC and SDG slow the progression of atherosclerosis but have no effect in regression of atherosclerosis. Suppression of atherosclerosis by flaxseed is the result of its lignan content and not the result of ALA content. Suppression of atherosclerosis is associated with lowering of serum lipids and antioxidant activity. Effects of flaxseed on serum lipids in experimental animals are variable from no change to slight reduction. Flaxseed oil does not affect serum lipids, except for a slight reduction in serum triglycerides. Lignan in general reduces serum total cholesterol and low-density lipoprotein cholesterol and raises serum high-density lipoprotein cholesterol. SDG and its metabolites have antioxidant activity. Flaxseed and flaxseed oil do not have antioxidant activity except they suppress oxygen radical production by white blood cells. Flaxseed oil/ALA has variable effects on inflammatory mediators/markers (interleukin [IL]-1beta, IL-2, IL-4, IL-6, IL-10, tumor necrosis factor-alpha, interferon-gamma, C-reactive protein, and serum amyloid A). Doses of ALA less than 14 g/d do not affect inflammatory mediators/markers, but 14 g/d or greater reduce inflammatory mediators/markers. Flaxseed oil decreases soluble vascular cell adhesion molecule-1 but has no effect on soluble intracellular adhesion molecule-1, soluble E-selectin, and monocyte colony-stimulating factor. Flaxseed has variable effects on IL-6, high-sensitivity C-reactive protein, and soluble vascular cell adhesion molecule-1. FLC reduces plasma levels of C-reactive protein but has no effects on IL-6, tumor necrosis factor-alpha, soluble intracellular adhesion molecule-1, soluble vascular cell adhesion molecule-1, or monocyte chemoattractant protein. Flaxseed has a very small hypotensive effect, but flaxseed oil does not lower blood pressure. However, SDG is a very potent hypotensive agent. Flaxseed oil decreases platelet aggregation and increases platelet activating inhibitor-1 and bleeding time. Flaxseed and FLC have no effect on the hemopoietic system. SDG is a potent angiogenic and antiapoptotic agent that may have a role in cardioprotection in ischemic heart disease. In conclusion, flaxseed, FLC, and SDG, but not flaxseed oil, suppress atherosclerosis, and FLC and SDG slow progression of atherosclerosis but have no effect on regression. Flaxseed oil suppresses oxygen radical production by white blood cells, prolongs bleeding time, and in higher doses suppresses serum levels of inflammatory mediators and does not lower serum lipids.

  4. Macrophage reactive oxygen species activity of water-soluble and water-insoluble fractions of ambient coarse, PM2.5 and ultrafine particulate matter (PM) in Los Angeles

    NASA Astrophysics Data System (ADS)

    Wang, Dongbin; Pakbin, Payam; Shafer, Martin M.; Antkiewicz, Dagmara; Schauer, James J.; Sioutas, Constantinos

    2013-10-01

    This study describes an investigation of the relative contributions of water-soluble and water-insoluble portions of ambient particulate matter (PM) to cellular redox activity. Size-fractionated ambient PM samples (coarse, PM2.5 and ultrafine PM) were collected in August-September of 2012 at an urban site in Los Angeles, using the Versatile Aerosol Concentration Enrichment System (VACES)/BioSampler tandem system. In this system, size-fractionated ambient PM was concentrated and collected directly into an aqueous suspension, thereby eliminating the need for solvent extraction required for PM collected on filter substrates. Separation of water-soluble and water-insoluble fractions of PM was achieved by 10 kilo-Delton ultra-filtration of the collected suspension slurries. Chemical analysis, including organic carbon, metals and trace elements, and inorganic ions, as well as measurement of macrophage reactive oxygen species (ROS) activity were performed on the slurries. Correlation between ROS activity and different chemical components of PM was evaluated to identify the main drivers of PM toxicity. Results from this study illustrate that both water-soluble and water-insoluble portions of PM play important roles in influencing potential cellular toxicity. While the water-soluble species contribute the large majority of the ROS activity per volume of sampled air, the highest intrinsic ROS activity (i.e. expressed per PM mass) is observed for the water-insoluble portions. Organic compounds in both water-soluble and water-insoluble portions of ambient PM, as well as transition metals, several with recognized redox activity (Mn, V, Cu and Zn), are highly correlated with ROS activity. These results may underscore the potential of these chemicals in driving the toxicity of ambient PM. Results from this study also suggest that collection of particles directly into a liquid suspension for toxicological analysis may be superior to conventional filtration by eliminating the need for extraction and by potentially reducing the losses of semi-volatile and redox active species such as organic compounds.

  5. Oxidative stress and inflammatory response increase during coronary artery bypass grafting with extracorporeal circulation.

    PubMed

    Melek, Flora Eli; Baroncini, Liz Andréa Villela; Repka, João Carlos Domingus; Nascimento, Celso Soares; Précoma, Dalton Bertolim

    2012-01-01

    Thiobarbituric acid-reactive substance is a marker of oxidative stress and has cytotoxic and genotoxic actions. C- reactive protein is used to evaluate the acute phase of inflammatory response. To assess the thiobarbituric acid-reactive substance and C-reactive protein levels during extracorporeal circulation in patients submitted to cardiopulmonary bypass. Twenty-five consecutive surgical patients (16 men and nine women; mean age 61.2 ± 9.7 years) with severe coronary artery disease diagnosed by angiography scheduled for myocardial revascularization surgery with extracorporeal circulation were selected. Blood samples were collected immediately before initializing extracorporeal circulation, T0; in 10 minutes, T10; and in 30 minutes, T30. The thiobarbituric acid-reactive substance levels increased after extracorporeal circulation (P=0.001), with average values in T0=1.5 ± 0.07; in T10=5.54 ± 0.35; and in T30=3.36 ± 0.29 mmoles/mg of serum protein. The C-reactive protein levels in T0 were negative in all samples; in T10 average was 0.96 ± 0.7 mg/dl; and in T30 average was 0.99 ± 0.76 mg/dl. There were no significant differences between the dosages in T10 and T30 (P=0.83). C-reactive protein and thiobarbituric acid-reactive substance plasma levels progressively increased during extracorporeal circulation, with maximum values of thiobarbituric acid-reactive substance at 10 min and of C-reactive protein at 30 min. It suggests that there are an inflammatory response and oxidative stress during extracorporeal circulation.

  6. An investigation on the effects of air on electron energy in atmospheric pressure helium plasma jets

    NASA Astrophysics Data System (ADS)

    Liu, Yadi; Tan, Zhenyu; Chen, Xinxian; Li, Xiaotong; Zhang, Huimin; Pan, Jie; Wang, Xiaolong

    2018-03-01

    In this work, the effects of air on electron energy in the atmospheric pressure helium plasma jet produced by a needle-plane discharge system have been investigated by means of the numerical simulation based on a two-dimensional fluid model, and the air concentration dependences of the reactive species densities have also been calculated. In addition, the synergistic effects of the applied voltage and air concentration on electron energy have been explored. The present work gives the following significant results. For a fixed applied voltage, the averaged electron energy is basically a constant at air concentrations below about 0.5%, but it evidently decreases above the concentration of 0.5%. Furthermore, the averaged densities of four main reactive species O, O(1D), O2(1Δg), and N2(A3Σu+) increase with the increasing air concentration, but the increase becomes slow at air concentrations above 0.5%. The air concentration dependences of the averaged electron energy under different voltage amplitudes are similar, and for a given air concentration, the averaged electron energy increases with the increase in the voltage amplitude. For the four reactive species, the effects of the air concentration on their averaged densities are similar for a given voltage amplitude. In addition, the averaged densities of the four reactive species increase with increasing voltage amplitude for a fixed air concentration. The present work suggests that a combination of high voltage amplitude and the characteristic air concentration, 0.5% in the present discharge system, allows an expected electron energy and also generates abundant reactive species.

  7. Evaluating Chemical Reactivity And Mechanical Stability Of Nano Palladized Iron Embedded In Activated Carbon On Dechlorination Of Polychlorinated Biphenyls

    EPA Science Inventory

    Remediation of contaminated sites with hydrophobic organic compounds such as polychlorinated biphenyls (PCBs) remains a scientific and technical challenge. The high stability, low aqueous solubility, and high organic affinity of PCBs make them difficult to treat. Many physical,...

  8. KINETICS OF SOLUBLE CHROMIUM REMOVAL FROM CONTAMINATED WATER BY ZEROVALENT IRON MEDIA: CORROSION INHIBITION AND PASSIVE OXIDE EFFECTS. (R825223)

    EPA Science Inventory

    Permeable reactive barriers containing zerovalent iron are being increasingly
    employed for in situ remediation of groundwater contaminated with redox active
    metals and chlorinated organic compounds. This research investigated the effect
    of chromate concentration on...

  9. Ecological periodic tables for US Pacific Northwest estuarine habitats

    EPA Science Inventory

    In his presidential address to the British Ecological Society, T.R.E. Southwood (1977; J Anim Ecol (1977), 46: 337-365) compared the situation in ecology to that in chemistry before the development of the periodic table when each fact, for example, the solubility or reactivity of...

  10. Highly Acidic Ambient Particles, Soluble Metals, and Oxidative Potential: A Link between Sulfate and Aerosol Toxicity.

    PubMed

    Fang, Ting; Guo, Hongyu; Zeng, Linghan; Verma, Vishal; Nenes, Athanasios; Weber, Rodney J

    2017-03-07

    Soluble transition metals in particulate matter (PM) can generate reactive oxygen species in vivo by redox cycling, leading to oxidative stress and adverse health effects. Most metals, such as those from roadway traffic, are emitted in an insoluble form, but must be soluble for redox cycling. Here we present the mechanism of metals dissolution by highly acidic sulfate aerosol and the effect on particle oxidative potential (OP) through analysis of size distributions. Size-segregated ambient PM were collected from a road-side and representative urban site in Atlanta, GA. Elemental and organic carbon, ions, total and water-soluble metals, and water-soluble OP were measured. Particle pH was determined with a thermodynamic model using measured ionic species. Sulfate was spatially uniform and found mainly in the fine mode, whereas total metals and mineral dust cations were highest at the road-side site and in the coarse mode, resulting in a fine mode pH < 2 and near neutral coarse mode. Soluble metals and OP peaked at the intersection of these modes demonstrating that sulfate plays a key role in producing highly acidic fine aerosols capable of dissolving primary transition metals that contribute to aerosol OP. Sulfate-driven metals dissolution may account for sulfate-health associations reported in past studies.

  11. Use of hydrostatic pressure for modulation of protein chemical modification and enzymatic selectivity.

    PubMed

    Makarov, Alexey A; Helmy, Roy; Joyce, Leo; Reibarkh, Mikhail; Maust, Mathew; Ren, Sumei; Mergelsberg, Ingrid; Welch, Christopher J

    2016-05-11

    Using hydrostatic pressure to induce protein conformational changes can be a powerful tool for altering the availability of protein reactive sites and for changing the selectivity of enzymatic reactions. Using a pressure apparatus, it has been demonstrated that hydrostatic pressure can be used to modulate the reactivity of lysine residues of the protein ubiquitin with a water-soluble amine-specific homobifunctional coupling agent. Fewer reactive lysine residues were observed when the reaction was carried out under elevated pressure of 3 kbar, consistent with a pressure-induced conformational change of ubiquitin that results in fewer exposed lysine residues. Additionally, modulation of the stereoselectivity of an enzymatic transamination reaction was observed at elevated hydrostatic pressure. In one case, the minor diasteromeric product formed at atmospheric pressure became the major product at elevated pressure. Such pressure-induced alterations of protein reactivity may provide an important new tool for enzymatic reactions and the chemical modification of proteins.

  12. An autoclave treatment reduces the solubility and antigenicity of an allergenic protein found in buckwheat flour.

    PubMed

    Tomotake, Hiroyuki; Yamazaki, Rikio; Yamato, Masayuki

    2012-06-01

    The effects of an autoclave treatment of buckwheat flour on a 24-kDa allergenic protein were investigated by measuring reduction in solubility and antibody binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed that the intensity of the major bands, including that of the 24-kDa allergen, was reduced by the autoclave treatment. The protein solubility in buckwheat flour was variably decreased by the autoclave treatment. Enzyme-linked immunosorbent assay analysis using a monoclonal antibody specific for buckwheat 24-kDa protein showed that the reactivity of protein extracts (10 μg/ml) from buckwheat flour was lowered by the autoclave treatment. The autoclave treatment may reduce the major allergen content of buckwheat. Future studies will determine if autoclaving treatments affect the allergenicity of the 24-kDa buckwheat protein.

  13. Design of water-soluble, thiol-reactive polymers of controlled molecular weight: a novel multivalent scaffold

    NASA Astrophysics Data System (ADS)

    Carrillo, Alvaro; Gujraty, Kunal V.; Rai, Prakash R.; Kane, Ravi S.

    2005-07-01

    Multivalent molecules, i.e. scaffolds presenting multiple copies of a suitable ligand, constitute an emerging class of nanoscale therapeutics. We present a novel approach for the design of multivalent ligands, which allows the biofunctionalization of polymers with proteins or peptides in a controlled orientation. It consists of the synthesis of water-soluble, activated polymer scaffolds of controlled molecular weight, which can be biofunctionalized with various thiolated ligands in aqueous media under mild conditions. These polymers were synthesized by ring-opening metathesis polymerization (ROMP) and further modified to make them water-soluble. The incorporation of chloride groups activated the polymers to react with thiol-containing peptides or proteins, and the formation of multivalent ligands in aqueous media was demonstrated. This strategy represents a convenient route for synthesizing multivalent ligands of controlled dimensions and valency.

  14. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil.

    PubMed

    Seshadri, B; Bolan, N S; Choppala, G; Kunhikrishnan, A; Sanderson, P; Wang, H; Currie, L D; Tsang, Daniel C W; Ok, Y S; Kim, G

    2017-10-01

    Shooting range soils contain mixed heavy metal contaminants including lead (Pb), cadmium (Cd), and zinc (Zn). Phosphate (P) compounds have been used to immobilize these metals, particularly Pb, thereby reducing their bioavailability. However, research on immobilization of Pb's co-contaminants showed the relative importance of soluble and insoluble P compounds, which is critical in evaluating the overall success of in situ stabilization practice in the sustainable remediation of mixed heavy metal contaminated soils. Soluble synthetic P fertilizer (diammonium phosphate; DAP) and reactive (Sechura; SPR) and unreactive (Christmas Island; CPR) natural phosphate rocks (PR) were tested for Cd, Pb and Zn immobilization and later their mobility and bioavailability in a shooting range soil. The addition of P compounds resulted in the immobilization of Cd, Pb and Zn by 1.56-76.2%, 3.21-83.56%, and 2.31-74.6%, respectively. The reactive SPR significantly reduced Cd, Pb and Zn leaching while soluble DAP increased their leachate concentrations. The SPR reduced the bioaccumulation of Cd, Pb and Zn in earthworms by 7.13-23.4% and 14.3-54.6% in comparison with earthworms in the DAP and control treatment, respectively. Bioaccessible Cd, Pb and Zn concentrations as determined using a simplified bioaccessibility extraction test showed higher long-term stability of P-immobilized Pb and Zn than Cd. The differential effect of P-induced immobilization between P compounds and metals is due to the variation in the solubility characteristics of P compounds and nature of metal phosphate compounds formed. Therefore, Pb and Zn immobilization by P compounds is an effective long-term remediation strategy for mixed heavy metal contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of stainless steel manual metal arc welding fume on free radical production, DNA damage, and apoptosis induction.

    PubMed

    Antonini, James M; Leonard, Stephen S; Roberts, Jenny R; Solano-Lopez, Claudia; Young, Shih-Houng; Shi, Xianglin; Taylor, Michael D

    2005-11-01

    Questions exist concerning the potential carcinogenic effects after welding fume exposure. Welding processes that use stainless steel (SS) materials can produce fumes that may contain metals (e.g., Cr, Ni) known to be carcinogenic to humans. The objective was to determine the effect of in vitro and in vivo welding fume treatment on free radical generation, DNA damage, cytotoxicity and apoptosis induction, all factors possibly involved with the pathogenesis of lung cancer. SS welding fume was collected during manual metal arc welding (MMA). Elemental analysis indicated that the MMA-SS sample was highly soluble in water, and a majority (87%) of the soluble metal was Cr. Using electron spin resonance (ESR), the SS welding fume had the ability to produce the biologically reactive hydroxyl radical (*OH), likely as a result of the reduction of Cr(VI) to Cr(V). In vitro treatment with the MMA-SS sample caused a concentration-dependent increase in DNA damage and lung macrophage death. In addition, a time-dependent increase in the number of apoptotic cells in lung tissue was observed after in vivo treatment with the welding fume. In summary, a soluble MMA-SS welding fume was found to generate reactive oxygen species and cause DNA damage, lung macrophage cytotoxicity and in vivo lung cell apoptosis. These responses have been shown to be involved in various toxicological and carcinogenic processes. The effects observed appear to be related to the soluble component of the MMA-SS sample that is predominately Cr. A more comprehensive in vivo animal study is ongoing in the laboratory that is continuing these experiments to try to elucidate the potential mechanisms that may be involved with welding fume-induced lung disease.

  16. Differential effects of low-carbohydrate and low-fat diets on inflammation and endothelial function in diabetes.

    PubMed

    Davis, Nichola J; Crandall, Jill P; Gajavelli, Srikanth; Berman, Joan W; Tomuta, Nora; Wylie-Rosett, Judith; Katz, Stuart D

    2011-01-01

    To characterize acute (postprandial) and chronic (after a 6-month period of weight loss) effects of a low-carbohydrate vs. a low-fat diet on subclinical markers of cardiovascular disease (CVD) in adults with type 2 diabetes. At baseline and 6 months, measures of C-reactive protein (CRP), interleukin-6 (IL-6), soluble intercellular adhesion molecule (sICAM) and soluble E-selectin were obtained from archived samples (n = 51) of participants randomized in a clinical trial comparing a low-carbohydrate and a low-fat diet. In a subset of participants (n = 27), postprandial measures of these markers were obtained 3 h after a low-carbohydrate or low-fat liquid meal. Endothelial function was also measured by reactive hyperemic peripheral arterial tonometry during the meal test. Paired t tests and unpaired t tests compared within- and between-group changes. There were no significant differences observed in postprandial measures of inflammation or endothelial function. After 6 months, CRP (mean ± S.E.) decreased in the low-fat arm from 4.0 ± 0.77 to 3.0 ± 0.77 (P = .01). In the low-carbohydrate arm, sICAM decreased from 234 ± 22 to 199 ± 23 (P = .001), and soluble E-selectin decreased from 93 ± 10 to 82 ± 10 (P = .05.) A significant correlation between change in high-density lipoprotein and change in soluble E-selectin (r = -0.33, P = .04) and with the change in ICAM (r = -0.43, P = .01) was observed. Low-carbohydrate and low-fat diets both have beneficial effects on CVD markers. There may be different mechanisms through which weight loss with these diets potentially reduces CVD risk. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Soluble metals in residual oil fly ash alter innate and adaptive pulmonary immune responses to bacterial infection in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Jenny R.; Young, Shih-Houng; Castranova, Vincent

    2007-06-15

    The soluble metals of the pollutant, residual oil fly ash (ROFA), have been shown to alter pulmonary bacterial clearance in rats. The goal of this study was to determine the potential effects on both the innate and adaptive lung immune responses after bacterial infection in rats pre-exposed to the soluble metals in ROFA. Sprague-Dawley rats were intratracheally dosed (i.t.) at day 0 with ROFA (R-Total) (1.0 mg/100 g body weight), the soluble fraction of ROFA (R-Soluble), the soluble sample subject to a chelator (R-Chelex), or phosphate-buffered saline (Saline). On day 3, rats were administered an i.t. dose of 5 xmore » 10{sup 4} Listeria monocytogenes. On days 6, 8, and 10, bacterial pulmonary clearance was monitored and bronchoalveolar lavage (BAL) was performed on days 3 (pre-infection), 6, 8, and 10. A concentrated first fraction of lavage fluid was retained for analysis of lactate dehydrogenase and albumin to assess lung injury. BAL cell number, phenotype, and production of reactive oxygen (ROS) and nitrogen species (RNS) were assessed, and a variety of cytokines were measured in the BAL fluid. Rats pre-treated with R-Soluble showed elevated lung injury/cytotoxicity and increased cellular influx into the lungs. R-Soluble-treatment also altered ROS, RNS, and cytokine levels, and caused a degree of macrophage and T cell inhibition. These effects of R-Soluble result in increased pulmonary bacterial burden after infection. The results suggest that soluble metals in ROFA increase lung injury and inflammation, and alter both innate and adaptive pulmonary immune responses.« less

  18. Palladium(II) complexes with highly basic imidazolin-2-imines and their reactivity toward small bio-molecules.

    PubMed

    Bogojeski, Jovana; Volbeda, Jeroen; Freytag, Matthias; Tamm, Matthias; Bugarčić, Živadin D

    2015-10-21

    A series of novel Pd(ii) complexes with chelating mono(imidazolin-2-imine) and bis(imidazolin-2-imine) ligands were synthesized. The crystal structures of [Pd(DMEAIm(iPr))Cl2] and [Pd(DPENIm(iPr))Cl2] were determined by X-ray diffraction analysis. The reactivity of the six Pd(ii) complexes, namely, [Pd(en)Cl2], [Pd(EAIm(iPr))Cl2], [Pd(DMEAIm(iPr))Cl2], [Pd(DPENIm(iPr))Cl2], [Pd(BL(iPr))Cl2] and [Pd(DACH(Im(iPr))2)Cl2], were investigated. Spectrophotometric acid-base titrations were performed to determine the pKa values of the coordinated water molecules in [Pd(en)(H2O)2](2+), [Pd(EAIm(iPr))(H2O)2](2+), [Pd(DMEAIm(iPr))(H2O)2](2+), [Pd(DPENIm(iPr))(H2O)2](2+), [Pd(BL(iPr))(H2O)2](2+) and [Pd(DACH(Im(iPr))2)(H2O)2](2+). The substitution of the chloride ligands in these complexes by TU, l-Met, l-His and Gly was studied under pseudo-first-order conditions as a function of the nucleophile concentration and temperature using stopped-flow techniques; the sulfur-donor nucleophiles have shown better reactivity than nitrogen-donor nucleophiles. The obtained results indicate that there is a clear correlation between the nature of the imidazolin-2-imine ligands and the acid-base characteristics and reactivity of the resulting Pd(ii) complexes; the order of reactivity of the investigated Pd(ii) complexes is: [Pd(en)Cl2] > [Pd(EAIm(iPr))Cl2] > [Pd(DMEAIm(iPr))Cl2] > [Pd(DPENIm(iPr))Cl2] > [Pd(BL(iPr))Cl2] > [Pd(DACH(Im(iPr))2)Cl2]. The solubility measurements revealed good solubility of the studied imidazolin-2-imine complexes in water, despite the fact that these Pd(ii) complexes are neutral complexes. Based on the performed studies, three unusual features of the novel imidazolin-2-imine Pd(ii) complexes are observed, that is, good solubility in water, very low reactivity and high pKa values. The coordination geometries around the palladium atoms are distorted square-planar; the [Pd(DMEAIm(iPr))Cl2] complex displays Pd-N distances of 2.013(2) and 2.076(2) Å, while the [Pd(DPENIm(iPr))Cl2] complex displays similar Pd-N distances of 2.034(4) and 2.038(3) Å. The studied systems are of interest because little is known about the substitution behavior of imidazolin-2-imine Pd(ii) complexes with bio-molecules under physiological conditions.

  19. Instrumental and Reactive Functions and Overt and Relational Forms of Aggression: Developmental Trajectories and Prospective Associations during Middle School

    ERIC Educational Resources Information Center

    Ojanen, Tiina; Kiefer, Sarah

    2013-01-01

    This study examined the development of adolescent self-reported instrumental-overt, instrumental-relational, reactive-overt, and reactive-relational aggression during middle school ("N" = 384; 12-14 years; 53% boys). Growth modeling indicated average increases in instrumental-relational aggression, and decreases in reactive-overt and…

  20. Evidence for existence in human tissues of monomers for plastics and rubber manufacture.

    PubMed Central

    Wolff, M S

    1976-01-01

    Although exposure to many industrially important monomers is controlled by law, few of these reactive chemicals have been determined in human tissues. Analogy with other fat-soluble organic substances strongly implies that these monomers may be retained in tissue, subject to the usual physiological constraints of metabolism, solubility and volatility. The storage of DDT and PCBs is discussed, as well as tetrachloro-ethylene (PCE) and trichloroethylene (TCE), which are chemically similar to many industrially used monomers. Styrene in blood and breath and its metabolites in urine have been studied in humans. Styrene and vinyl chloride have been measured in fat tissue of polymerization workers. PMID:829070

  1. Allergic contact dermatitis associated with reactive dyes in a dark garment: a case report.

    PubMed

    Moreau, Linda; Goossens, An

    2005-09-01

    In this study, we present a case of a patient who has not been occupationally exposed to reactive dyes, but did present with a dermatitis from wearing a dark cotton garment. The patient experienced reactivation of his dermatitis when rewearing a new unwashed dark T-shirt made of 100% cotton (in fact, the patient reported that it had to be washed at least 3 times before the skin reaction disappeared). He presented positive patch tests to 6 reactive dyes from Chemotechnique textile series. The clothing could not be proved as the true cause of the dermatitis, but resolution occurred upon removal of the suspected garment. This suggests that contact allergy to the reactive dyes (he did not react to any other dyes and his garment was a natural fabric) was likely responsible. With this report, we would like to emphasize that reactive dyes, as a class, should be considered as potential allergens, both occupationally and from non-occupational exposure such as garments. If garments containing reactive dyes are not properly rinsed in the manufacturing process, we believe that excess of dye can be retained that may cause allergic contact dermatitis (ACD). As the reactive dyes and their hydrolysis products are very water-soluble, they can be easily washed off to prevent ACD.

  2. Identification of a thermal processing-induced modification site on the Ana o 3 cashew allergen

    USDA-ARS?s Scientific Manuscript database

    Cashew nuts are a common cause of food allergy and reactions to cashew nuts can be severe. Thermal processing can alter the properties of food allergens including their structure, solubility, and cause non-enzymatic reactions between reactive sugar carbonyl groups and amino groups within proteins. ...

  3. 21 CFR 184.1428 - Magnesium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... addition of sodium hydroxide to a water soluble magnesium salt or by hydration of reactive grades of... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium hydroxide. 184.1428 Section 184.1428... GRAS § 184.1428 Magnesium hydroxide. (a) Magnesium hydroxide (Mg(OH)2, CAS Reg. No. 1309-42-8) occurs...

  4. In vitro digestion of soluble cashew proteins and characterization of surviving IgE-reactive peptides

    USDA-ARS?s Scientific Manuscript database

    The stability of food allergens to digestion varies; and the ability of food proteins to cause an allergic reaction may be affected by the susceptibility of the allergen to digestion by proteases, including pepsin and trypsin. Recent studies have demonstrated that cashew nut allergens are often a ca...

  5. Decline of phosphorus, copper, and zinc in anaerobic lagoon columns receiving pretreated influent

    USDA-ARS?s Scientific Manuscript database

    In a 15-month meso-scale column study, we evaluated the effect of manure pretreatment on reduction of total suspended solids (TSS), total phosphorus (TP), soluble reactive phosphorus (SRP), copper (Cu) and zinc (Zn) in swine lagoons using (i) enhanced solid–liquid separation with polymer (SS) and (i...

  6. Dosimetry of nasal uptake of soluble and reactive gases: A first study of inter-human variability (Journal Article)

    EPA Science Inventory

    Anatomically accurate human child and adult nasal tract models will be used in concert with computationally simulated air flow information to investigate the influence of age-related differences in anatomy on inhalation dosimetry in the upper and lower airways. The findings of t...

  7. Effects of Endogenous Formaldehyde in Nasal Tissues on Inhaled Formmaldehyde Dosimetry Predictions in the Rat, Monkey, and Human Nasal Passages

    EPA Science Inventory

    ABSTRACT Formaldehyde, a nasal carcinogen, is also an endogenous compound that is present in all living cells. Due to its high solubility and reactivity, quantitative risk estimates for inhaled formaldehyde rely on internal dose calculations in the upper respiratory tract which ...

  8. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process.

    PubMed

    Thakur, Ranjit; Gupta, Ram B

    2006-02-03

    Nanoparticles are of significant importance in drug delivery. Rapid expansion of supercritical solution (RESS) process can produce pure and high-quality drug particles. However, due to extremely low solubility of polar drugs in supercritical CO(2) (sc CO(2)), RESS has limited commercial applicability. To overcome this major limitation, a modified process rapid expansion of supercritical solution with solid cosolvent (RESS-SC) is proposed which uses a solid cosolvent. Here, the new process is tested for phenytoin drug using menthol solid cosolvent. Phenytoin solubility in pure sc CO(2) is only 3 micromol/mol but when menthol solid cosolvent is used the solubility is enhanced to 1,302 micromol/mol, at 196 bar and 45 degrees C. This 400-fold increase in the solubility can be attributed to the interaction between phenytoin and menthol. Particle agglomeration in expansion zone is another major issue with conventional RESS process. In proposed RESS-SC process solid cosolvent hinders the particle growth resulting in the formation of small nanoparticles. For example, the average particle size of phenytoin in conventional RESS process is 200 nm whereas, with RESS-SC process, the average particle size is 120 nm, at 96 bar and 45 degrees C. Similarly at 196 bar and 45 degrees C, 105 nm average particles were obtained by RESS and 75 nm average particles were obtained in RESS-SC process. The particles obtained were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS) and differential scanning calorimetery (DSC) analyses. Phenytoin nanoparticle production rate in RESS-SC is about 400-fold more in comparison to that in RESS process.

  9. Propagation of gaseous detonation waves in a spatially inhomogeneous reactive medium

    NASA Astrophysics Data System (ADS)

    Mi, XiaoCheng; Higgins, Andrew J.; Ng, Hoi Dick; Kiyanda, Charles B.; Nikiforakis, Nikolaos

    2017-05-01

    Detonation propagation in a compressible medium wherein the energy release has been made spatially inhomogeneous is examined via numerical simulation. The inhomogeneity is introduced via step functions in the reaction progress variable, with the local value of energy release correspondingly increased so as to maintain the same average energy density in the medium and thus a constant Chapman-Jouguet (CJ) detonation velocity. A one-step Arrhenius rate governs the rate of energy release in the reactive zones. The resulting dynamics of a detonation propagating in such systems with one-dimensional layers and two-dimensional squares are simulated using a Godunov-type finite-volume scheme. The resulting wave dynamics are analyzed by computing the average wave velocity and one-dimensional averaged wave structure. In the case of sufficiently inhomogeneous media wherein the spacing between reactive zones is greater than the inherent reaction zone length, average wave speeds significantly greater than the corresponding CJ speed of the homogenized medium are obtained. If the shock transit time between reactive zones is less than the reaction time scale, then the classical CJ detonation velocity is recovered. The spatiotemporal averaged structure of the waves in these systems is analyzed via a Favre-averaging technique, with terms associated with the thermal and mechanical fluctuations being explicitly computed. The analysis of the averaged wave structure identifies the super-CJ detonations as weak detonations owing to the existence of mechanical nonequilibrium at the effective sonic point embedded within the wave structure. The correspondence of the super-CJ behavior identified in this study with real detonation phenomena that may be observed in experiments is discussed.

  10. Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation

    NASA Astrophysics Data System (ADS)

    Hilty, Florentine M.; Arnold, Myrtha; Hilbe, Monika; Teleki, Alexandra; Knijnenburg, Jesper T. N.; Ehrensperger, Felix; Hurrell, Richard F.; Pratsinis, Sotiris E.; Langhans, Wolfgang; Zimmermann, Michael B.

    2010-05-01

    Effective iron fortification of foods is difficult, because water-soluble compounds that are well absorbed, such as ferrous sulphate (FeSO4), often cause unacceptable changes in the colour or taste of foods. Poorly water-soluble compounds, on the other hand, cause fewer sensory changes, but are not well absorbed. Here, we show that poorly water-soluble nanosized Fe and Fe/Zn compounds (specific surface area ~190 m2 g-1) made by scalable flame aerosol technology have in vivo iron bioavailability in rats comparable to FeSO4 and cause less colour change in reactive food matrices than conventional iron fortificants. The addition of Zn to FePO4 and Mg to Fe/Zn oxide increases Fe absorption from the compounds, and doping with Mg also improves their colour. After feeding rats with nanostructured iron-containing compounds, no stainable Fe was detected in their gut wall, gut-associated lymphatics or other tissues, suggesting no adverse effects. Nanosizing of poorly water-soluble Fe compounds sharply increases their absorption and nutritional value.

  11. Non-native Soluble Oligomers of Cu/Zn Superoxide Dismutase (SOD1) Contain a Conformational Epitope Linked to Cytotoxicity in Amyotrophic Lateral Sclerosis (ALS)

    PubMed Central

    2015-01-01

    Soluble misfolded Cu/Zn superoxide dismutase (SOD1) is implicated in motor neuron death in amyotrophic lateral sclerosis (ALS); however, the relative toxicities of the various non-native species formed by SOD1 as it misfolds and aggregates are unknown. Here, we demonstrate that early stages of SOD1 aggregation involve the formation of soluble oligomers that contain an epitope specific to disease-relevant misfolded SOD1; this epitope, recognized by the C4F6 antibody, has been proposed as a marker of toxic species. Formation of potentially toxic oligomers is likely to be exacerbated by an oxidizing cellular environment, as evidenced by increased oligomerization propensity and C4F6 reactivity when oxidative modification by glutathione is present at Cys-111. These findings suggest that soluble non-native SOD1 oligomers, rather than native-like dimers or monomers, share structural similarity to pathogenic misfolded species found in ALS patients and therefore represent potential cytotoxic agents and therapeutic targets in ALS. PMID:24660965

  12. Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation.

    PubMed

    Hilty, Florentine M; Arnold, Myrtha; Hilbe, Monika; Teleki, Alexandra; Knijnenburg, Jesper T N; Ehrensperger, Felix; Hurrell, Richard F; Pratsinis, Sotiris E; Langhans, Wolfgang; Zimmermann, Michael B

    2010-05-01

    Effective iron fortification of foods is difficult, because water-soluble compounds that are well absorbed, such as ferrous sulphate (FeSO(4)), often cause unacceptable changes in the colour or taste of foods. Poorly water-soluble compounds, on the other hand, cause fewer sensory changes, but are not well absorbed. Here, we show that poorly water-soluble nanosized Fe and Fe/Zn compounds (specific surface area approximately 190 m(2) g(-1)) made by scalable flame aerosol technology have in vivo iron bioavailability in rats comparable to FeSO(4) and cause less colour change in reactive food matrices than conventional iron fortificants. The addition of Zn to FePO(4) and Mg to Fe/Zn oxide increases Fe absorption from the compounds, and doping with Mg also improves their colour. After feeding rats with nanostructured iron-containing compounds, no stainable Fe was detected in their gut wall, gut-associated lymphatics or other tissues, suggesting no adverse effects. Nanosizing of poorly water-soluble Fe compounds sharply increases their absorption and nutritional value.

  13. Advancing the Food-Energy-Water Nexus: Closing Nutrient Loops in Arid River Corridors.

    PubMed

    Mortensen, Jacob G; González-Pinzón, Ricardo; Dahm, Clifford N; Wang, Jingjing; Zeglin, Lydia H; Van Horn, David J

    2016-08-16

    Closing nutrient loops in terrestrial and aquatic ecosystems is integral to achieve resource security in the food-energy-water (FEW) nexus. We performed multiyear (2005-2008), monthly sampling of instream dissolved inorganic nutrient concentrations (NH4-N, NO3-N, soluble reactive phosphorus-SRP) along a ∼ 300-km arid-land river (Rio Grande, NM) and generated nutrient budgets to investigate how the net source/sink behavior of wastewater and irrigated agriculture can be holistically managed to improve water quality and close nutrient loops. Treated wastewater on average contributed over 90% of the instream dissolved inorganic nutrients (101 kg/day NH4-N, 1097 kg/day NO3-N, 656 kg/day SRP). During growing seasons, the irrigation network downstream of wastewater outfalls retained on average 37% of NO3-N and 45% of SRP inputs, with maximum retention exceeding 60% and 80% of NO3-N and SRP inputs, respectively. Accurate quantification of NH4-N retention was hindered by low loading and high variability. Nutrient retention in the irrigation network and instream processes together limited downstream export during growing seasons, with total retention of 33-99% of NO3-N inputs and 45-99% of SRP inputs. From our synoptic analysis, we identify trade-offs associated with wastewater reuse for agriculture within the scope of the FEW nexus and propose strategies for closing nutrient loops in arid-land rivers.

  14. Modeling and sensitivity analysis of mass transfer in active multilayer polymeric film for food applications

    NASA Astrophysics Data System (ADS)

    Bedane, T.; Di Maio, L.; Scarfato, P.; Incarnato, L.; Marra, F.

    2015-12-01

    The barrier performance of multilayer polymeric films for food applications has been significantly improved by incorporating oxygen scavenging materials. The scavenging activity depends on parameters such as diffusion coefficient, solubility, concentration of scavenger loaded and the number of available reactive sites. These parameters influence the barrier performance of the film in different ways. Virtualization of the process is useful to characterize, design and optimize the barrier performance based on physical configuration of the films. Also, the knowledge of values of parameters is important to predict the performances. Inverse modeling and sensitivity analysis are sole way to find reasonable values of poorly defined, unmeasured parameters and to analyze the most influencing parameters. Thus, the objective of this work was to develop a model to predict barrier properties of multilayer film incorporated with reactive layers and to analyze and characterize their performances. Polymeric film based on three layers of Polyethylene terephthalate (PET), with a core reactive layer, at different thickness configurations was considered in the model. A one dimensional diffusion equation with reaction was solved numerically to predict the concentration of oxygen diffused into the polymer taking into account the reactive ability of the core layer. The model was solved using commercial software for different film layer configurations and sensitivity analysis based on inverse modeling was carried out to understand the effect of physical parameters. The results have shown that the use of sensitivity analysis can provide physical understanding of the parameters which highly affect the gas permeation into the film. Solubility and the number of available reactive sites were the factors mainly influencing the barrier performance of three layered polymeric film. Multilayer films slightly modified the steady transport properties in comparison to net PET, giving a small reduction in the permeability and oxygen transfer rate values. Scavenging capacity of the multilayer film increased linearly with the increase of the reactive layer thickness and the oxygen absorption reaction at short times decreased proportionally with the thickness of the external PET layer.

  15. Modeling and sensitivity analysis of mass transfer in active multilayer polymeric film for food applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedane, T.; Di Maio, L.; Scarfato, P.

    The barrier performance of multilayer polymeric films for food applications has been significantly improved by incorporating oxygen scavenging materials. The scavenging activity depends on parameters such as diffusion coefficient, solubility, concentration of scavenger loaded and the number of available reactive sites. These parameters influence the barrier performance of the film in different ways. Virtualization of the process is useful to characterize, design and optimize the barrier performance based on physical configuration of the films. Also, the knowledge of values of parameters is important to predict the performances. Inverse modeling and sensitivity analysis are sole way to find reasonable values ofmore » poorly defined, unmeasured parameters and to analyze the most influencing parameters. Thus, the objective of this work was to develop a model to predict barrier properties of multilayer film incorporated with reactive layers and to analyze and characterize their performances. Polymeric film based on three layers of Polyethylene terephthalate (PET), with a core reactive layer, at different thickness configurations was considered in the model. A one dimensional diffusion equation with reaction was solved numerically to predict the concentration of oxygen diffused into the polymer taking into account the reactive ability of the core layer. The model was solved using commercial software for different film layer configurations and sensitivity analysis based on inverse modeling was carried out to understand the effect of physical parameters. The results have shown that the use of sensitivity analysis can provide physical understanding of the parameters which highly affect the gas permeation into the film. Solubility and the number of available reactive sites were the factors mainly influencing the barrier performance of three layered polymeric film. Multilayer films slightly modified the steady transport properties in comparison to net PET, giving a small reduction in the permeability and oxygen transfer rate values. Scavenging capacity of the multilayer film increased linearly with the increase of the reactive layer thickness and the oxygen absorption reaction at short times decreased proportionally with the thickness of the external PET layer.« less

  16. Urinary excretion levels of water-soluble vitamins in pregnant and lactating women in Japan.

    PubMed

    Shibata, Katsumi; Fukuwatari, Tsutomu; Sasaki, Satoshi; Sano, Mitsue; Suzuki, Kahoru; Hiratsuka, Chiaki; Aoki, Asami; Nagai, Chiharu

    2013-01-01

    Recent studies have shown that the urinary excretion levels of water-soluble vitamins can be used as biomarkers for the nutritional status of these vitamins. To determine changes in the urinary excretion levels of water-soluble vitamins during pregnant and lactating stages, we surveyed and compared levels of nine water-soluble vitamins in control (non-pregnant and non-lactating women), pregnant and lactating women. Control women (n=37), women in the 2nd (16-27 wk, n=24) and 3rd trimester of pregnancy (over 28 wk, n=32), and early- (0-5 mo, n=54) and late-stage lactating (6-11 mo, n=49) women took part in the survey. The mean age of subjects was ~30 y, and mean height was ~160 cm. A single 24-h urine sample was collected 1 d after the completion of a validated, self-administered comprehensive diet history questionnaire to measure water-soluble vitamins or metabolites. The average intake of each water-soluble vitamin was ≍ the estimated average requirement value and adequate intake for the Japanese Dietary Reference Intakes in all life stages, except for vitamin B6 and folate intakes during pregnancy. No change was observed in the urinary excretion levels of vitamin B2, vitamin B6, vitamin B12, biotin or vitamin C among stages. Urine nicotinamide and folate levels were higher in pregnant women than in control women. Urine excretion level of vitamin B1 decreased during lactation and that of pantothenic acid decreased during pregnancy and lactation. These results provide valuable information for setting the Dietary Reference Intakes of water-soluble vitamins for pregnant and lactating women.

  17. Influence of the physicochemical and aromatic properties on the chemical reactivity and its relation with carcinogenic and anticoagulant effect of 17β-aminoestrogens

    NASA Astrophysics Data System (ADS)

    Soriano-Correa, Catalina; Raya, Angélica; Barrientos-Salcedo, Carolina; Esquivel, Rodolfo O.

    2014-06-01

    Activity of steroid hormones is dependent upon a number of factors, as solubility, transport and metabolism. The functional differences caused by structural modifications could exert an influence on the chemical reactivity and biological effect. The goal of this work is to study the influence of the physicochemical and aromatic properties on the chemical reactivity and its relation with the carcinogenic risk that can associate with the anticoagulant effect of 17β-aminoestrogens using quantum-chemical descriptors at the DFT-B3LYP, BH&HLYP and M06-2X levels. The relative acidity of (H1) of the hydroxyl group increases with electron-withdrawing groups. Electron-donor groups favor the basicity. The steric hindrance of the substituents decreases the aromatic character and consequently diminution the carcinogenic effect. Density descriptors: hardness, electrophilic index, atomic charges, molecular orbitals, electrostatic potential and their geometric parameters permit analyses of the chemical reactivity and physicochemical features and to identify some reactive sites of 17β-aminoestrogens.

  18. Direct functionalization of pristine single-walled carbon nanotubes by diazonium-based method with various five-membered S- or N- heteroaromatic amines

    NASA Astrophysics Data System (ADS)

    Leinonen, Heli; Lajunen, Marja

    2012-09-01

    Reactivity of five-membered, variously substituted, heteroaromatic diazonium salts was studied toward pristine single-walled carbon nanotubes (SWCNTs), prepared by high-pressure CO conversion (HiPCO) method. Average size range of individual HiPCO SWCNTs was 0.8-1.2 nm (diameter) and 100-1,000 nm (length). Functionalizations were performed by a one-pot diazotization-dediazotization method with methyl-2-aminothiophene-3-carboxylate, 2-aminothiophene-3-carbonitrile, 2-aminoimidazole sulfate, or 3-aminopyrazole in acetic acid using sodium nitrite at room temperature or by heating. According to Raman and Fourier transform infrared spectroscopy, all used heterocyclic diazonium salts formed a covalent bond with SWCNTs and yielded new kinds of five-membered heterocycle-functionalized SWCNTs. Methyl-2-thiophenyl-3-carboxylate-functionalized SWCNTs formed a highly soluble, stable dispersion in tetrahydrofuran (THF), 3-pyrazoyl-functionalized SWCNTs in ethanol, and 2-imidazoyl- or 2-thiophenyl-3-carbonitrile-functionalized SWCNTs in ethanol and THF. The thermogravimetric analysis as well as energy-filtered transmission electron microscopy imaging of the products confirmed the successful functionalization of SWCNTs.

  19. Soluble leaf apoplastic constituents of O3-sensitive and tolerant soybeans and snap beans

    USDA-ARS?s Scientific Manuscript database

    Upon entry into leaves, ozone (O3) and reactive oxygen species (ROS) derived from O3 must pass through the leaf apoplast and cell wall before reacting with the plasma membrane to initiate plant responses. The leaf apoplast, therefore, represents a first line of defense in detoxifying ROS and prevent...

  20. Solubility and crystallization of xylose isomerase from Streptomyces rubiginosus

    NASA Astrophysics Data System (ADS)

    Vuolanto, Antti; Uotila, Sinikka; Leisola, Matti; Visuri, Kalevi

    2003-10-01

    We have studied the crystallization and crystal solubility of xylose isomerase (XI) from Streptomyces rubiginosus. In this paper, we show a rational approach for developing a large-scale crystallization process for XI. Firstly, we measured the crystal solubility in salt solutions with respect to salt concentration, temperature and pH. In ammonium sulfate the solubility of XI decreased logarithmically when increasing the salt concentration. Surprisingly, the XI crystals had a solubility minimum at low concentration of magnesium sulfate. The solubility of XI in 0.17 M magnesium sulfate was less than 0.5 g l -1. The solubility of XI increased logarithmically when increasing the temperature. We also found a solubility minimum around pH 7. This is far from the isoelectric point of XI (pH 3.95). Secondly, based on the solubility study, we developed a large-scale crystallization process for XI. In a simple and economical cooling crystallization of XI from 0.17 M magnesium sulfate solution, the recovery of crystalline active enzyme was over 95%. Moreover, we developed a process for production of uniform crystals and produced homogenous crystals with average crystal sizes between 12 and 360 μm.

  1. Solubility of caffeine from green tea in supercritical CO2: a theoretical and empirical approach.

    PubMed

    Gadkari, Pravin Vasantrao; Balaraman, Manohar

    2015-12-01

    Decaffeination of fresh green tea was carried out with supercritical CO2 in the presence of ethanol as co-solvent. The solubility of caffeine in supercritical CO2 varied from 44.19 × 10(-6) to 149.55 × 10(-6) (mole fraction) over a pressure and temperature range of 15 to 35 MPa and 313 to 333 K, respectively. The maximum solubility of caffeine was obtained at 25 MPa and 323 K. Experimental solubility data were correlated with the theoretical equation of state models Peng-Robinson (PR), Soave Redlich-Kwong (SRK), and Redlich-Kwong (RK). The RK model had regressed experimental data with 15.52 % average absolute relative deviation (AARD). In contrast, Gordillo empirical model regressed the best to experimental data with only 0.96 % AARD. Under supercritical conditions, solubility of caffeine in tea matrix was lower than the solubility of pure caffeine. Further, solubility of caffeine in supercritical CO2 was compared with solubility of pure caffeine in conventional solvents and a maximum solubility 90 × 10(-3) mol fraction was obtained with chloroform.

  2. Kinetics of the inhibitory interaction of organophosphorus neuropathy inducers and non-inducers in soluble esterases in the avian nervous system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangas, Iris; Vilanova, Eugenio; Estevez, Jorge, E-mail: jorge.estevez@umh.es

    2011-11-15

    Some published studies suggest that low level exposure to organophosphorus esters (OPs) may cause neurological and neurobehavioral effects at long term exposure. These effects cannot be explained by action on known targets. In this work, the interactions (inhibition, spontaneous reactivation and 'ongoing inhibition') of two model OPs (paraoxon, non neuropathy-inducer, and mipafox, neuropathy-inducer) with the chicken brain soluble esterases were evaluated. The best-fitting kinetic model with both inhibitors was compatible with three enzymatic components. The amplitudes (proportions) of the components detected with mipafox were similar to those obtained with paraoxon. These observations confirm the consistency of the results and themore » model applied and may be considered an external validation. The most sensitive component (E{alpha}) for paraoxon (11-23% of activity, I{sub 50} (30 min) = 9-11 nM) is also the most sensitive for mipafox (I{sub 50} (30 min) = 4 nM). This component is spontaneously reactivated after inhibition with paraoxon. The second sensitive component to paraoxon (E{beta}, 71-84% of activity; I{sub 50} (30 min) = 1216 nM) is practically resistant to mipafox. The third component (E{gamma}, 5-8% of activity) is paraoxon resistant and has I{sub 50} (30 min) of 3.4 {mu}M with mipafox, similar to NTE (neuropathy target esterase). The role of these esterases remains unknown. Their high sensitivity suggests that they may either play a role in toxicity in low-level long-term exposure of organophosphate compounds or have a protective effect related with the spontaneous reactivation. They will have to be considered in further metabolic and toxicological studies. -- Research Highlights: Black-Right-Pointing-Pointer Paraoxon and mipafox interactions have been evaluated with chicken soluble brain esterases. Black-Right-Pointing-Pointer The paraoxon inhibition was analyzed considering the simultaneous spontaneous reactivation. Black-Right-Pointing-Pointer The best-fitting kinetic models were compatible with a three enzymatic components. Black-Right-Pointing-Pointer The amplitudes of the components were similar in paraoxon and mipafox experiments. Black-Right-Pointing-Pointer It is suggested they may play a role in toxicity in low-level long-term exposure of these compounds.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beavin, P. Jr.

    A previously published method for determining zirconium in antiperspirant aerosols was collaboratively studied by 7 laboratories. The method consists of 2 procedures: a rapid dilution procedure for soluble zirconium compounds or a lengthier fusion procedure for total zirconium followed by colorimetric determination. The collaborators were asked to perform the following: Spiking materials representing 4 levels of soluble zirconium were added to weighed portions of a zirconium-free cream base concentrate and the portions were assayed by the dilution procedure. Spiking materials representing 4 levels of zirconium in either the soluble or the insoluble form (or as a mixture) were also addedmore » to portions of the same concentrate and these portions were assayed by the fusion procedure. They were also asked to concentrate and assay, by both procedures, 2 cans each of 2 commercial aerosol antiperspirants containing zirconyl hydroxychloride. The average percent recoveries and standard deviations for spiked samples were 99.8-100.2 and 1.69-2.71, respectively, for soluble compounds determined by the dilution procedure, and 93.8-97.4 and 3.09-4.78, respectively, for soluble and/or insoluble compounds determined by the fusion procedure. The average perent zirconium found by the dilution procedure in the 2 commercial aerosol products was 0.751 and 0.792. Insufficient collaborative results were received for the fusion procedure for statistical evaluation. The dilution procedure has been adopted as official first action.« less

  4. Feeding fat from distillers dried grains with solubles to dairy heifers: I. Effects on growth performance and total tract digestibility of nutrients

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine if increased dietary fat from dried distillers grains with solubles (DDGS) in diets of growing heifers affected dry matter intake (DMI), average daily gain (ADG), growth performance, and nutrient digestibility. Thirty-three Holstein heifers (133 ± 18 d ol...

  5. Production of low-molecular weight soluble yeast β-glucan by an acid degradation method.

    PubMed

    Ishimoto, Yuina; Ishibashi, Ken-Ichi; Yamanaka, Daisuke; Adachi, Yoshiyuki; Kanzaki, Ken; Iwakura, Yoichiro; Ohno, Naohito

    2018-02-01

    β-glucan is widely distributed in nature as water soluble and insoluble forms. Both forms of β-glucan are utilized in several fields, especially for functional foods. Yeast β-glucan is a medically important insoluble particle. Solubilization of yeast β-glucan may be valuable for improving functional foods and in medicinal industries. In the present study, we applied an acid degradation method to solubilize yeast β-glucan and found that β-glucan was effectively solubilized to low-molecular weight β-glucans by 45% sulfuric acid treatment at 20°C. The acid-degraded soluble yeast β-glucan (ad-sBBG) was further fractionated into a higher-molecular weight fraction (ad-sBBG-high) and a lower-molecular weight fraction (ad-sBBG-low). Since ad-sBBG-high contained mannan, while ad-sBBG-low contained it only scarcely, it was possible to prepare low-molecular weight soluble β-glucan with higher purity. In addition, ad-sBBG-low bound to dectin-1, which is an innate immunity receptor of β-glucan, and showed antagonistic activity against reactive oxygen production and cytokine synthesis by macrophages. Thus, this acid degradation method is an important procedure for generating immune-modulating, low-molecular weight, soluble yeast β-glucan. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Two chemically distinct light-absorbing pools of urban organic aerosols: A comprehensive multidimensional analysis of trends.

    PubMed

    Paula, Andreia S; Matos, João T V; Duarte, Regina M B O; Duarte, Armando C

    2016-02-01

    The chemical and light-absorption dynamics of organic aerosols (OAs), a master variable in the atmosphere, have yet to be resolved. This study uses a comprehensive multidimensional analysis approach for exploiting simultaneously the compositional changes over a molecular size continuum and associated light-absorption (ultraviolet absorbance and fluorescence) properties of two chemically distinct pools of urban OAs chromophores. Up to 45% of aerosol organic carbon (OC) is soluble in water and consists of a complex mixture of fluorescent and UV-absorbing constituents, with diverse relative abundances, hydrophobic, and molecular weight (Mw) characteristics between warm and cold periods. In contrast, the refractory alkaline-soluble OC pool (up to 18%) is represented along a similar Mw and light-absorption continuum throughout the different seasons. Results suggest that these alkaline-soluble chromophores may actually originate from primary OAs sources in the urban site. This work shows that the comprehensive multidimensional analysis method is a powerful and complementary tool for the characterization of OAs fractions. The great diversity in the chemical composition and optical properties of OAs chromophores, including both water-soluble and alkaline-soluble OC, may be an important contribution to explain the contrasting photo-reactivity and atmospheric behavior of OAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Gas phase acid, ammonia and aerosol ionic and trace element concentrations at Cape Verde during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) 2007 intensive sampling period

    NASA Astrophysics Data System (ADS)

    Sander, R.; Pszenny, A. A. P.; Keene, W. C.; Crete, E.; Deegan, B.; Long, M. S.; Maben, J. R.; Young, A. H.

    2013-07-01

    We report mixing ratios of soluble reactive trace gases sampled with mist chambers and the chemical composition of bulk aerosol and volatile inorganic bromine (Brg) sampled with filter packs during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) field campaign at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente island in the tropical North Atlantic in May and June 2007. The gas-phase data include HCl, HNO3, HONO, HCOOH, CH3COOH, NH3, and volatile reactive chlorine other than HCl (Cl*). Aerosol samples were analyzed by neutron activation (Na, Al, Cl, V, Mn, and Br) and ion chromatography (SO42-, Cl-, Br-, NH4+, Na+, K+, Mg2+, and Ca2+). Content and quality of the data, which are available under doi:10.5281/zenodo.6956, are presented and discussed.

  8. Gas phase acid, ammonia and aerosol ionic and trace element concentrations at Cape Verde during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) 2007 intensive sampling period

    NASA Astrophysics Data System (ADS)

    Sander, R.; Pszenny, A. A. P.; Keene, W. C.; Crete, E.; Deegan, B.; Long, M. S.; Maben, J. R.; Young, A. H.

    2013-12-01

    We report mixing ratios of soluble reactive trace gases sampled with mist chambers and the chemical composition of bulk aerosol and volatile inorganic bromine (Brg) sampled with filter packs during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) field campaign at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente island in the tropical North Atlantic in May and June 2007. The gas-phase data include HCl, HNO3, HONO, HCOOH, CH3COOH, NH3, and volatile reactive chlorine other than HCl (Cl*). Aerosol samples were analyzed by neutron activation (Na, Al, Cl, V, Mn, and Br) and ion chromatography (SO42-, Cl-, Br-, NH4+, Na+, K+, Mg2+, and Ca2+). Content and quality of the data, which are available under doi:10.5281/zenodo.6956, are presented and discussed.

  9. Design and implementation of a simple nuclear power plant simulator

    NASA Astrophysics Data System (ADS)

    Miller, William H.

    1983-02-01

    A simple PWR nuclear power plant simulator has been designed and implemented on a minicomputer system. The system is intended for students use in understanding the power operation of a nuclear power plant. A PDP-11 minicomputer calculates reactor parameters in real time, uses a graphics terminal to display the results and a keyboard and joystick for control functions. Plant parameters calculated by the model include the core reactivity (based upon control rod positions, soluble boron concentration and reactivity feedback effects), the total core power, the axial core power distribution, the temperature and pressure in the primary and secondary coolant loops, etc.

  10. Protein solubility modeling

    NASA Technical Reports Server (NTRS)

    Agena, S. M.; Pusey, M. L.; Bogle, I. D.

    1999-01-01

    A thermodynamic framework (UNIQUAC model with temperature dependent parameters) is applied to model the salt-induced protein crystallization equilibrium, i.e., protein solubility. The framework introduces a term for the solubility product describing protein transfer between the liquid and solid phase and a term for the solution behavior describing deviation from ideal solution. Protein solubility is modeled as a function of salt concentration and temperature for a four-component system consisting of a protein, pseudo solvent (water and buffer), cation, and anion (salt). Two different systems, lysozyme with sodium chloride and concanavalin A with ammonium sulfate, are investigated. Comparison of the modeled and experimental protein solubility data results in an average root mean square deviation of 5.8%, demonstrating that the model closely follows the experimental behavior. Model calculations and model parameters are reviewed to examine the model and protein crystallization process. Copyright 1999 John Wiley & Sons, Inc.

  11. Titanium in UK rural, agricultural and urban/industrial rivers: geogenic and anthropogenic colloidal/sub-colloidal sources and the significance of within-river retention.

    PubMed

    Neal, Colin; Jarvie, Helen; Rowland, Philip; Lawler, Alan; Sleep, Darren; Scholefield, Paul

    2011-04-15

    Operationally defined dissolved Titanium [Ti] (the <0.45μm filtered fraction) in rivers draining rural, agricultural, urban and industrial land-use types in the UK averaged 2.1μg/l with a range in average of 0.55 to 6.48μg/l. The lowest averages occurred for the upland areas of mid-Wales the highest just downstream of major sewage treatment works (STWs). [Ti] in rainfall and cloud water in mid-Wales averaged 0.2 and 0.7μg/l, respectively. Average, baseflow and stormflow [Ti] were compared with two markers of sewage effluent and thus human population: soluble reactive phosphorus (SRP) and boron (B). While B reflects chemically conservative mixing, SRP declined downstream of STW inputs due to in-stream physico-chemical and biological uptake. The results are related to colloidal and sub-colloidal Ti inputs from urban/industrial conurbations coupled with diffuse background (geological) sources and within-river removal/retention under low flows as a result of processes of aggregation and sedimentation. The urban/industrial inputs increased background [Ti] by up to eleven fold, but the total anthropogenic Ti input might well have been underestimated owing to within-river retention. A baseline survey using cross-flow ultrafiltration revealed that up to 79% of the [Ti] was colloidal/nanoparticulate (>1kDa i.e. >c. 1-2nm) for the rural areas, but as low as 28% for the urban/industrial rivers. This raises fundamental issues of the pollutant inputs of Ti, with the possibility of significant complexation of Ti in the sewage effluents and subsequent breakdown within the rivers, as well as the physical dispersion of fine colloids down to the macro-molecular scale. Although not directly measured, the particulate Ti can make an important contribution to the net Ti flux. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Reactivity at the Lithium–Metal Anode Surface of Lithium–Sulfur Batteries

    DOE PAGES

    Camacho-Forero, Luis E.; Smith, Taylor W.; Bertolini, Samuel; ...

    2015-11-11

    Due to their high energy density and reduced cost, lithium–sulfur batteries are promising alternatives for applications such as electrical vehicles. However, a number of technical challenges need to be overcome in order to make them feasible for commercial uses. These challenges arise from the battery highly interconnected chemistry, which besides the electrochemical reactions includes side reactions at both electrodes and migration of soluble polysulfide (PS) species produced at the cathode to the anode side. The presence of such PS species alters the already complex reactivity of the Li anode. In this paper, interfacial reactions occurring at the surface of Limore » metal anodes due to electrochemical instability of the electrolyte components and PS species are investigated with density functional theory and ab initio molecular dynamics methods. It is found that the bis(trifluoromethane)sulfonimide lithium salt reacts very fast when in contact with the Li surface, and anion decomposition precedes salt dissociation. The anion decomposition mechanisms are fully elucidated. Two of the typical solvents used in Li–S technology, 1,3-dioxolane and 1,2-dimethoxyethane, are found stable during the entire simulation length, in contrast with the case of ethylene carbonate that is rapidly decomposed by sequential 2- or 4-electron mechanisms. Finally, on the other hand, the fast reactivity of the soluble PS species alters the side reactions because the PS totally decomposes before any of the electrolyte components forming Li 2S on the anode surface.« less

  13. Effect of welding fume solubility on lung macrophage viability and function in vitro.

    PubMed

    Antonini, J M; Lawryk, N J; Murthy, G G; Brain, J D

    1999-11-26

    It was shown previously that fumes generated from stainless steel (SS) welding induced more pneumotoxicity and were cleared from the lungs at a slower rate than fumes collected from mild steel (MS) welding. These differences in response may be attributed to the metal composition of SS and MS welding fumes. In this study, fumes with vastly different metal profiles were collected during gas metal arc (GMA) or flux-covered manual metal arc (MMA) welding using two different consumable electrodes, SS or MS. The collected samples were suspended in saline, incubated for 24 h at 37 degrees C, and centrifuged. The supernatant (soluble components) and pellets (insoluble particulates) were separated, and their effects on lung macrophage viability and the release of reactive oxygen species (ROS) by macrophages were examined in vitro. The soluble MMA-SS sample was shown to be the most cytotoxic to macrophages and to have the greatest effect on their function as compared to the GMA-SS and GMA-MS fumes. Neither the soluble nor insoluble forms of the GMA-MS sample had any marked effect on macrophage viability. The flux-covered MMA-SS fume was found to be much more water soluble as compared to either the GMA-SS or the GMA-MS fumes. The soluble fraction of the MMA-SS samples was comprised almost entirely of Cr. The small fraction of the GMA-MS sample that was soluble contained Mn with little Fe, while a more complex mixture was observed in the soluble portion of the GMA-SS sample, which contained Mn, Ni, Fe, Cr, and Cu. Data show that differences in the solubility of welding fumes influence the viability and ROS production of macrophages. The presence of soluble metals, such as Fe, Cr, Ni, Cu, and Mn, and the complexes formed by these different metals are likely important in the pulmonary responses observed after welding fume exposure.

  14. Can antibodies with specificity for soluble antigens mimic the therapeutic effects of intravenous IgG in the treatment of autoimmune disease?

    PubMed Central

    Siragam, Vinayakumar; Brinc, Davor; Crow, Andrew R.; Song, Seng; Freedman, John; Lazarus, Alan H.

    2005-01-01

    Intravenous Ig (IVIg) mediates protection from the effects of immune thrombocytopenic purpura (ITP) as well as numerous other autoimmune states; however, the active antibodies within IVIg are unknown. There is some evidence that antibodies specific for a cell-associated antigen on erythrocytes are responsible, at least in part, for the therapeutic effect of IVIg in ITP. Yet whether an IVIg directed to a soluble antigen can likewise be beneficial in ITP or other autoimmune diseases is also unknown. A murine model of ITP was used to determine the effectiveness of IgG specific to soluble antigens in treating immune thrombocytopenic purpura. Mice experimentally treated with soluble OVA + anti-OVA versus mice treated with OVA conjugated to rbcs (OVA-rbcs) + anti-OVA were compared. In both situations, mice were protected from ITP. Both these experimental therapeutic regimes acted in a complement-independent fashion and both also blocked reticuloendothelial function. In contrast to OVA-rbcs + anti-OVA, soluble OVA + anti-OVA (as well as IVIg) did not have any effect on thrombocytopenia in mice lacking the inhibitory receptor FcγRIIB (FcγRIIB–/– mice). Similarly, antibodies reactive with the endogenous soluble antigens albumin and transferrin also ameliorated ITP in an FcγRIIB-dependent manner. Finally, broadening the significance of these experiments was the finding that anti-albumin was protective in a K/BxN serum–induced arthritis model. We conclude that IgG antibodies directed to soluble antigens ameliorated 2 disparate IVIg-treatable autoimmune diseases. PMID:15630455

  15. Wavelet assessment of cerebrospinal compensatory reserve and cerebrovascular pressure reactivity

    NASA Astrophysics Data System (ADS)

    Latka, M.; Turalska, M.; Kolodziej, W.; Latka, D.; West, B.

    2006-03-01

    We employ complex continuous wavelet transforms to develop a consistent mathematical framework capable of quantifying both cerebrospinal compensatory reserve and cerebrovascular pressure--reactivity. The wavelet gain, defined as the frequency dependent ratio of time averaged wavelet coefficients of intracranial (ICP) and arterial blood pressure (ABP) fluctuations, characterizes the dampening of spontaneous arterial blood oscillations. This gain is introduced as a novel measure of cerebrospinal compensatory reserve. For a group of 10 patients who died as a result of head trauma (Glasgow Outcome Scale GOS =1) the average gain is 0.45 calculated at 0.05 Hz significantly exceeds that of 16 patients with favorable outcome (GOS=2): with gain of 0.24 with p=4x10-5. We also study the dynamics of instantaneous phase difference between the fluctuations of the ABP and ICP time series. The time-averaged synchronization index, which depends upon frequency, yields the information about the stability of the phase difference and is used as a cerebrovascular pressure--reactivity index. The average phase difference for GOS=1 is close to zero in sharp contrast to the mean value of 30^o for patients with GOS=2. We hypothesize that in patients who died the impairment of cerebral autoregulation is followed by the break down of residual pressure reactivity.

  16. Identification of water-soluble heavy crude oil organic-acids, bases, and neutrals by electrospray ionization and field desorption ionization fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Stanford, Lateefah A; Kim, Sunghwan; Klein, Geoffrey C; Smith, Donald F; Rodgers, Ryan P; Marshall, Alan G

    2007-04-15

    We identify water-soluble (23 degrees C) crude oil NSO nonvolatile acidic, basic, and neutral crude oil hydrocarbons by negative-ion ESI and continuous flow FD FT-ICR MS at an average mass resolving power, m/deltam50% = 550,000. Of the 7000+ singly charged acidic species identified in South American crude oil, surprisingly, many are water-soluble, and much more so in pure water than in seawater. The truncated m/z distributions for water-soluble components exhibit preferential molecular weight, size, and heteroatom class influences on hydrocarbon solubility. Acidic water-soluble heteroatomic classes detected at >1% relative abundance include O, O2, O3, O4, OS, O2S, O3S, O4S, NO2, NO3, and NO4. Parent oil class abundance does not directly relate to abundance in the water-soluble fraction. Acidic oxygen-containing classes are most prevalent in the water-solubles, whereas acidic nitrogen-containing species are least soluble. In contrast to acidic nitrogen-containing heteroatomic classes, basic nitrogen classes are water-soluble. Water-soluble heteroatomic basic classes detected at >1% relative abundance include N, NO, NO2, NS, NS2, NOS, NO2S, N2, N2O, N2O2, OS, O2S, and O2S2.

  17. Solubility, ionization, and partitioning behavior of unsymmetrical disulfide compounds: alkyl 2-imidazolyl disulfides.

    PubMed

    Hashash, Ahmad; Kirkpatrick, D Lynn; Lazo, John S; Block, Lawrence H

    2002-07-01

    Alkyl 2-imidazolyl disulfide compounds are novel antitumor agents, one of which is currently being evaluated in Phase I clinical trials. These molecules contain an unsymmetrical disulfide fragment, the lipophilic and electronic contributions of which are still not defined in the literature. Lipophilicity, ionization, and solubility of a number of alkyl 2-imidazolyl disulfides were studied. Based on the additivity of lipophilicity and ionization properties, the contribution of the unsymmetrical disulfide fragment to lipophilicity and ionization was elucidated. The unsymmetrical disulfide fragment contributed a Rekker's hydrophobic constant of 0.761 to the lipophilicity of these compounds and an approximated Hammett constant (sigma) of 0.30 to their ionization. The applicability of the general solubility equation (GSE) proposed by Jain and Yalkowsky in predicting the aqueous solubility of these analogs was evaluated. The GSE correctly ranked the aqueous solubilities of these compounds and estimated their log molar solubilities with an average absolute error of 0.35. Copyright 2002 Wiley-Liss Inc.

  18. Estimating the Aqueous Solubility of Pharmaceutical Hydrates

    PubMed Central

    Franklin, Stephen J.; Younis, Usir S.; Myrdal, Paul B.

    2016-01-01

    Estimation of crystalline solute solubility is well documented throughout the literature. However, the anhydrous crystal form is typically considered with these models, which is not always the most stable crystal form in water. In this study an equation which predicts the aqueous solubility of a hydrate is presented. This research attempts to extend the utility of the ideal solubility equation by incorporating desolvation energetics of the hydrated crystal. Similar to the ideal solubility equation, which accounts for the energetics of melting, this model approximates the energy of dehydration to the entropy of vaporization for water. Aqueous solubilities, dehydration and melting temperatures, and log P values were collected experimentally and from the literature. The data set includes different hydrate types and a range of log P values. Three models are evaluated, the most accurate model approximates the entropy of dehydration (ΔSd) by the entropy of vaporization (ΔSvap) for water, and utilizes onset dehydration and melting temperatures in combination with log P. With this model, the average absolute error for the prediction of solubility of 14 compounds was 0.32 log units. PMID:27238488

  19. Screening of the chemical reactivity of three different graphite sources using the formation of reductively alkylated graphene as a model reaction.

    PubMed

    Knirsch, Kathrin C; Englert, Jan M; Dotzer, Christoph; Hauke, Frank; Hirsch, Andreas

    2013-11-28

    Reductive alkylation of three graphite starting materials G(flake), G(powder), and G(spherical) reveals pronounced differences in the obtained covalently functionalized graphene with respect to the degree of functionalization, exfoliation efficiency and product homogeneity, as demonstrated by statistical Raman microscopy (SRM), TGA/MS, IR-spectroscopy and solubility behavior.

  20. Enhanced wet air oxidation : synergistic rate acceleration upon effluent recirculation

    Treesearch

    Matthew J. Birchmeier; Charles G. Hill; Carl J. Houtman; Rajai H. Atalla; Ira A. Weinstock

    2000-01-01

    Wet air oxidation (WAO) reactions of cellobiose, phenol, and syringic acid were carried out under mild conditions (155°C; 0.93MPa 02; soluble catalyst, Na5[PV2Mo10O40]). Initial oxidation rates were rapid but decreased to small values as less reactive oxidation products accumulated. Recalcitrant oxidation products were consumed more rapidly, however, if additional...

  1. Specific detection of soluble EphA2 fragments in blood as a new biomarker for pancreatic cancer.

    PubMed

    Koshikawa, Naohiko; Minegishi, Tomoko; Kiyokawa, Hirofumi; Seiki, Motoharu

    2017-10-26

    Because membrane type 1-matrix metalloproteinase 1 (MT1-MMP) and erythropoietin-producing hepatocellular receptor 2 (EphA2) expression are upregulated by the Ras/mitogen-activated protein kinase pathway, they are frequently coexpressed in malignant tumors. MT1-MMP cleaves the N-terminal ligand-binding domain of EphA2 and inactivates its ligand-dependent tumor-suppressing activity. Therefore, specific detection of the cleaved N-terminal EphA2 fragment in blood might be an effective biomarker to diagnose malignant tumors. To evaluate this possibility, we developed three monoclonal antibodies against the soluble EphA2 fragment. One of them recognized this fragment specifically, with negligible cross-reactivity to the intact form. We used the cleaved form-specific antibody to develop a quantitative enzyme-linked immunosorbent assay and confirmed the linear reactivity to the recombinant fragment. We applied this assay on commercially available serum specimens obtained from patients with several types of cancer including gastric, pancreatic, esophageal, gastroesophageal, and head-and-neck cancers, and healthy donors. Soluble EphA2 fragment levels in cancer-patient sera were higher than those in healthy donors (n=50). In particular, levels of eight out of nine (89%) pancreatic cancer patients and ten out of seventeen (59%) gastric cancer patients significantly exceeded cutoff values obtained from the healthy donors, whereas those of esophageal and head-and-neck cancer-patient sera were low. The preliminary receiver operating characteristic curve analysis for pancreatic cancer demonstrated that the sensitivity and specificity were 89.0% and 90.0%, respectively, whereas those of the conventional digestive tumor marker CA19-9 were 88.9% and 72.0%, respectively. These results indicated that specific detection of soluble EphA2 fragment levels in serum could be potentially useful as a biomarker to diagnose pancreatic cancer.

  2. Computationally guided discovery of a reactive, hydrophilic trans-5-oxocene dienophile for bioorthogonal labeling† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ob01707c

    PubMed Central

    Lambert, William D.; Scinto, Samuel L.; Dmitrenko, Olga; Boyd, Samantha J.; Magboo, Ronald; Mehl, Ryan A.

    2017-01-01

    The use of organic chemistry principles and prediction techniques has enabled the development of new bioorthogonal reactions. As this “toolbox” expands to include new reaction manifolds and orthogonal reaction pairings, the continued development of existing reactions remains an important objective. This is particularly important in cellular imaging, where non-specific background fluorescence has been linked to the hydrophobicity of the bioorthogonal moiety. Here we report that trans-5-oxocene (oxoTCO) displays enhanced reactivity and hydrophilicity compared to trans-cyclooctene (TCO) in the tetrazine ligation reaction. Aided by ab initio calculations we show that the insertion of a single oxygen atom into the trans-cyclooctene (TCO) ring system is sufficient to impart aqueous solubility and also results in significant rate acceleration by increasing angle strain. We demonstrate the rapid and quantitative cycloaddition of oxoTCO using a water-soluble tetrazine derivative and a protein substrate containing a site-specific genetically encoded tetrazine moiety both in vitro and in vivo. We anticipate that oxoTCO will find use in studies where hydrophilicity and fast bioconjugation kinetics are paramount. PMID:28752889

  3. Estradiol and inflammatory markers in older men.

    PubMed

    Maggio, Marcello; Ceda, Gian Paolo; Lauretani, Fulvio; Bandinelli, Stefania; Metter, E Jeffrey; Artoni, Andrea; Gatti, Elisa; Ruggiero, Carmelinda; Guralnik, Jack M; Valenti, Giorgio; Ling, Shari M; Basaria, Shehzad; Ferrucci, Luigi

    2009-02-01

    Aging is characterized by a mild proinflammatory state. In older men, low testosterone levels have been associated with increasing levels of proinflammatory cytokines. It is still unclear whether estradiol (E2), which generally has biological activities complementary to testosterone, affects inflammation. We analyzed data obtained from 399 men aged 65-95 yr enrolled in the Invecchiare in Chianti study with complete data on body mass index (BMI), serum E2, testosterone, IL-6, soluble IL-6 receptor, TNF-alpha, IL-1 receptor antagonist, and C-reactive protein. The relationship between E2 and inflammatory markers was examined using multivariate linear models adjusted for age, BMI, smoking, physical activity, chronic disease, and total testosterone. In age-adjusted analysis, log (E2) was positively associated with log (IL-6) (r = 0.19; P = 0.047), and the relationship was statistically significant (P = 0.032) after adjustments for age, BMI, smoking, physical activity, chronic disease, and serum testosterone levels. Log (E2) was not significantly associated with log (C-reactive protein), log (soluble IL-6 receptor), or log (TNF-alpha) in both age-adjusted and fully adjusted analyses. In older men, E2 is weakly positively associated with IL-6, independent of testosterone and other confounders including BMI.

  4. ATP diphosphohydrolase from Schistosoma mansoni egg: characterization and immunocytochemical localization of a new antigen.

    PubMed

    Faria-Pinto, P; Meirelles, M N L; Lenzi, H L; Mota, E M; Penido, M L O; Coelho, P M Z; Vasconcelos, E G

    2004-07-01

    The fact that the Schistosoma mansoni egg has two ATP diphosphohydrolase (EC 3.6.1.5) isoforms with different net charges and an identical molecular weight of 63,000, identified by non-denaturing polyacrylamide gel electrophoresis and immunological cross-reactivity with potato apyrase antibodies, is shown. In soluble egg antigen (SEA), only the isoform with the lower net negative charge was detected and seemed to be the predominant species in this preparation. By confocal fluorescence microscopy, using anti-potato apyrase antibodies, the S. mansoni egg ATP diphosphohydrolase was detected on the external surface of miracidium and in von Lichtenberg's envelope. Intense fluorescence was also seen in the outer side of the egg-shell, entrapped by the surface microspines, suggesting that a soluble isoform is secreted. ATP diphosphohydrolase antigenicity was tested using the vegetable protein as antigen. The purified potato apyrase was recognized in Western blots by antibodies present in sera from experimentally S. mansoni-infected mice. In addition, high levels of IgG anti-ATP diphosphohydrolase antibodies were detected by ELISA in the same sera. This work represents the first demonstration of antigenic properties of S. mansoni ATP diphosphohydrolase and immunological cross-reactivity between potato apyrase and sera from infected individuals.

  5. Enhanced water-solubility and antibacterial activity of novel chitosan derivatives modified with quaternary phosphonium salt.

    PubMed

    Zhu, Dan; Cheng, Honghao; Li, Jianna; Zhang, Wenwen; Shen, Yuanyuan; Chen, Shaojun; Ge, Zaochuan; Chen, Shiguo

    2016-04-01

    Chitosan (CS) has been widely recognized as an important biomaterial due to its good antimicrobial activity, biocompatibility and biodegradability. However, CS is insoluble in water in neutral and alkaline aqueous solution due to the linear aggregation of chain molecules and the formation of crystallinity. This is one of the key factors that limit its practical applications. Therefore, improving the solubility of CS in neutral and alkaline aqueous solution is a primary research direction for biomedical applications. In this paper, a reactive antibacterial compound (4-(2,5-Dioxo-pyrrolidin-1-yloxycarbonyl)-benzyl)-triphenyl-phosphonium bromide (NHS-QPS) was synthesized for chemical modification of CS, and a series of novel polymeric antimicrobial agents, N-quaternary phosphonium chitosan derivatives (N-QPCSxy, x=1-2,y=1-4) were obtained. The water solubilities and antibacterial activities of N-QPCSxy against Escherichia coli and Staphylococcus aureus were evaluated compare to CS. The water solubility of N-QPCSxy was all better than that of CS at neutral pH aqueous solution, particularly, N-QPCS14 can be soluble in water over the pH range of 3 to 12. The antibacterial activities of CS derivatives were improved by introducing quaternary phosphonium salt, and antibacterial activity of N-QPCSxy increases with degree of substitution. Overall, N-QPCS14 represents a novel antibacterial polymer material with good antibacterial activity, waters solubility and low cytotoxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Methanol Uptake by Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Essin, A. M.; Golden, D. M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The global methanol budget is currently unbalanced, with source terms significantly larger than the sinks terms. To evaluate possible losses of gaseous methanol to sulfate aerosols, the solubility and reactivity of methanol in aqueous sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosols is under investigation. Methanol will partition into sulfate aerosols according to its Henry's law solubility. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H*, for cold (196 - 220 K) solutions ranging between 45 and 70 wt % H2SO4. We have found that methanol solubility ranges from approx. 10(exp 5) - 10(exp 7) M/atm for UT/LS conditions. Solubility increases with decreasing temperature and with increasing sulfuric acid content. Although methanol is slightly more soluble than are acetone and formaldehyde, current data indicate that uptake by clean aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These solubility measurements include uptake due to physical solvation and any rapid equilibria which are established in solution. Reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H is not significant over our experimental time scale for solutions below 80 wt % H2SO4. To confirm this directly, results obtained using a complementary equilibrium measurement technique will also be presented.

  7. Individual Differences in Emotional Reactivity and Academic Achievement: A Psychophysiological Study

    ERIC Educational Resources Information Center

    Scrimin, Sara; Altoè, Gianmarco; Moscardino, Ughetta; Pastore, Massimiliano; Mason, Lucia

    2016-01-01

    Factors related to grade point average (GPA) are of great importance for students' success. Yet, little is known about the impact of individual differences in emotional reactivity on students' academic performance. We aimed to examine the emotional reactivity-GPA link and to assess whether self-esteem and psychological distress moderate this…

  8. Hydrocarbon-soluble calcium hydride: a "worker-bee" in calcium chemistry.

    PubMed

    Spielmann, Jan; Harder, Sjoerd

    2007-01-01

    The reactivity of the hydrocarbon-soluble calcium hydride complex [{CaH(dipp-nacnac)(thf)}(2)] (1; dipp-nacnac=CH{(CMe)(2,6-iPr(2)C(6)H(3)N)}(2)) with a large variety of substrates has been investigated. Addition of 1 to C=O and C=N functionalities gave easy access to calcium alkoxide and amide complexes. Similarly, reduction of the C[triple chemical bond]N bond in a cyanide or an isocyanide resulted in the first calcium aldimide complexes [Ca{N=C(H)R}(dipp-nacnac)] and [Ca{C(H)=NR}(dipp-nacnac)], respectively. Complexation of 1 with borane or alane Lewis acids gave the borates and alanates as contact ion pairs. In reaction with epoxides, nucleophilic ring-opening is observed as the major reaction. The high reactivity of hydrocarbon-soluble 1 with most functional groups contrasts strongly with that of insoluble CaH(2), which is essentially inert and is used as a common drying agent. Crystal structures of the following products are presented: [{Ca{OC(H)Ph(2)}(dipp-nacnac)}(2)], [{Ca{N=C(H)Ph}(dipp-nacnac)}(2)], [{Ca{C(H)=NC(Me)(2)CH(2)C(Me)(3)}(dipp-nacnac)}(2)], [{Ca{C(H)=NCy}(dipp-nacnac)}(2)], [Ca(dipp-nacnac)(thf)](+)[H(2)BC(8)H(14)](-) and [{Ca(OCy)(dipp-nacnac)}(2)]. The generally smooth and clean conversions of 1 with a variety of substrates and the stability of most intermediates against ligand exchange make 1 a valuable key precursor in the syntheses of a wide variety of beta-diketiminate calcium complexes.

  9. A supermolecular curcumin for enhanced antiproliferative and proapoptotic activities: molecular characteristics, computer modeling and in vivo pharmacokinetics

    NASA Astrophysics Data System (ADS)

    Tan, Qunyou; Wu, Jianyong; Li, Yi; Mei, Hu; Zhao, Chunjing; Zhang, Jingqing

    2013-01-01

    The supermolecular curcumin (SMCCM) exhibiting remarkably improved solubility and release characteristics was fabricated to increase the oral bioavailability in rat as well as the antiproliferative and proapoptotic activities of curcumin (CCM) against human lung adenocarcinoma cell A549. SMCCM was characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, morphology and structure, aqueous solubility, and release behavior in vitro. Computer modeling of the supermolecular structure was performed. The pharmacokinetics, antiproliferative and proapoptotic activities of SMCCM were evaluated. The mechanisms by which SMCCM inhibited proliferation and induced apoptosis were identified. The formation of SMCCM was testified and the supermolecular structure was studied by a computer modeling technique. Compared to free CCM, SMCCM with much higher aqueous solubility exhibited obviously enhanced release and more favorable pharmacokinetic profiles, and, furthermore, SMCCM showed higher anticancer efficacy, enhanced induction of G2/M-phase arrest and apoptosis in A549 cells, which might be involved with the increases in reactive oxygen species production and intracellular Ca2+ accumulation, and a decrease in mitochondrial membrane potential. SMCCM remarkably enhanced not only the oral bioavailability but also the antiproliferative and proapoptotic activities of CCM along with improved solubility and release characteristics of CCM.

  10. A supermolecular curcumin for enhanced antiproliferative and proapoptotic activities: molecular characteristics, computer modeling and in vivo pharmacokinetics.

    PubMed

    Tan, Qunyou; Wu, Jianyong; Li, Yi; Mei, Hu; Zhao, Chunjing; Zhang, Jingqing

    2013-01-25

    The supermolecular curcumin (SMCCM) exhibiting remarkably improved solubility and release characteristics was fabricated to increase the oral bioavailability in rat as well as the antiproliferative and proapoptotic activities of curcumin (CCM) against human lung adenocarcinoma cell A549. SMCCM was characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, morphology and structure, aqueous solubility, and release behavior in vitro. Computer modeling of the supermolecular structure was performed. The pharmacokinetics, antiproliferative and proapoptotic activities of SMCCM were evaluated. The mechanisms by which SMCCM inhibited proliferation and induced apoptosis were identified. The formation of SMCCM was testified and the supermolecular structure was studied by a computer modeling technique. Compared to free CCM, SMCCM with much higher aqueous solubility exhibited obviously enhanced release and more favorable pharmacokinetic profiles, and, furthermore, SMCCM showed higher anticancer efficacy, enhanced induction of G2/M-phase arrest and apoptosis in A549 cells, which might be involved with the increases in reactive oxygen species production and intracellular Ca(2+) accumulation, and a decrease in mitochondrial membrane potential. SMCCM remarkably enhanced not only the oral bioavailability but also the antiproliferative and proapoptotic activities of CCM along with improved solubility and release characteristics of CCM.

  11. Simultaneous quantification of 21 water soluble vitamin circulating forms in human plasma by liquid chromatography-mass spectrometry.

    PubMed

    Meisser Redeuil, Karine; Longet, Karin; Bénet, Sylvie; Munari, Caroline; Campos-Giménez, Esther

    2015-11-27

    This manuscript reports a validated analytical approach for the quantification of 21 water soluble vitamins and their main circulating forms in human plasma. Isotope dilution-based sample preparation consisted of protein precipitation using acidic methanol enriched with stable isotope labelled internal standards. Separation was achieved by reversed-phase liquid chromatography and detection performed by tandem mass spectrometry in positive electrospray ionization mode. Instrumental lower limits of detection and quantification reached <0.1-10nM and 0.2-25nM, respectively. Commercially available pooled human plasma was used to build matrix-matched calibration curves ranging 2-500, 5-1250, 20-5000 or 150-37500nM depending on the analyte. The overall performance of the method was considered adequate, with 2.8-20.9% and 5.2-20.0% intra and inter-day precision, respectively and averaged accuracy reaching 91-108%. Recovery experiments were also performed and reached in average 82%. This analytical approach was then applied for the quantification of circulating water soluble vitamins in human plasma single donor samples. The present report provides a sensitive and reliable approach for the quantification of water soluble vitamins and main circulating forms in human plasma. In the future, the application of this analytical approach will give more confidence to provide a comprehensive assessment of water soluble vitamins nutritional status and bioavailability studies in humans. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Aluminum in Precipitation, Streams, and Shallow Groundwater in the New Jersey Pine Barrens

    NASA Astrophysics Data System (ADS)

    Budd, W. W.; Johnson, A. H.; Huss, J. B.; Turner, R. S.

    1981-08-01

    Total (acid reactive) aluminum deposited in bulk precipitation in the McDonalds Branch (New Jersey) basin was 140 mg m-2 yr-1 for the period May 1978-May 1980. Stream and groundwater outputs for the same period were 149 and 110 mg m-2 yr-1, respectively. Aluminum inputs and outputs were highest during summer months because of elevated concentrations coupled with increased precipitation and streamflow. Median acid reactive Al concentrations in precipitation, stream water, and groundwater were 100, 350, and 230 μg 1-1, respectively. In streams, acid reactive Al concentration is correlated with dissolved organic matter concentration, suggesting that Al is transported as an organometallic complex. Shallow groundwater Al concentration is apparently controlled by gibbsite solubility in mineral soils and thus is pH dependent. The relatively high Al concentrations are attributable to acid conditions and mobile organic matter.

  13. Solar photolysis of soluble microbial products as precursors of disinfection by-products in surface water.

    PubMed

    Wu, Jie; Ye, Jian; Peng, Huanlong; Wu, Meirou; Shi, Weiwei; Liang, Yongmei; Liu, Wei

    2018-06-01

    In the Pearl River Delta area, the upstream municipal wastewater is commonly discharged into rivers which are a pivotal source of downstream drinking water. Solar irradiation transforms some of the dissolved organic matter discharged from the wastewater, also affecting the formation of disinfection by-products in subsequent drinking water treatment plants. The effect of simulated solar radiation on soluble microbial products extracted from activated sludge was documented in laboratory experiments. Irradiation was found to degrade macromolecules in the effluent, yielding smaller, more reactive intermediate species which reacted with chlorine or chloramine to form higher levels of noxious disinfection by-products. The soluble microbial products were found to be more active in formation of disinfection by-products regard than naturally-occurring organic matter. The results show that solar irradiation induced the formation of more trihalomethane (THMs), chloral hydrate (CH) and trichloronitromethane (TCNM), causing greater health risks for downstream drinking water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Curcumin-carrying nanoparticles prevent ischemia-reperfusion injury in human renal cells.

    PubMed

    Xu, Yong; Hu, Ning; Jiang, Wei; Yuan, Hong-Fang; Zheng, Dong-Hui

    2016-12-27

    Renal ischemia-reperfusion injury (IRI) is a major complication in clinical practice. However, despite its frequency, effective preventive/treatment strategies for this condition are scarce. Curcumin possesses antioxidant properties and is a promising potential protective agent against renal IRI, but its poor water solubility restricts its application. In this study, we constructed curcumin-carrying distearoylphosphatidylethanolamine-polyethylene glycol nanoparticles (Cur-NPs), and their effect on HK-2 cells exposed to IRI was examined in vitro. Curcumin encapsulated in NPs demonstrated improved water solubility and slowed release. Compared with the IRI and Curcumin groups, Cur-NP groups displayed significantly improved cell viability, downregulated protein expression levels of caspase-3 and Bax, upregulated expression of Bcl-2 protein, increased antioxidant superoxide dismutase level, and reduced apoptotic rate, reactive oxygen species level, and malondialdehyde content. Results clearly showed that Cur-NPs demonstrated good water solubility and slow release, as well as exerted protective effects against oxidative stress in cultured HK-2 cells exposed to IRI.

  15. The effect of oxygen fugacity on the solubility of carbon-oxygen fluids in basaltic melt

    NASA Technical Reports Server (NTRS)

    Pawley, Alison R.; Holloway, John R.; Mcmillan, Paul F.

    1992-01-01

    The solubility of CO2-CO fluids in a midocean ridge basalt have been measured at 1200 C, 500-1500 bar, and oxygen fugacities between NNO and NNO-4. In agreement with results of previous studies, the results reported here imply that, at least at low pressures, CO2 dissolves in basaltic melt only in the form of carbonate groups. The dissolution reaction is heterogeneous, with CO2 molecules in the fluid reacting directly with reactive oxygens in the melt to produce CO3(2-). CO, on the other hand, is insoluble, dissolving neither as carbon, molecular CO, nor CO3(2-). It is shown that, for a given pressure and temperature, the concentration of dissolved carbon-bearing species in basaltic melt in equilibrium with a carbon-oxygen fluid is proportional to the mole fraction of CO2 in the fluid, which is a function of fO2. At low pressures CO2 solubility is a linear function of CO2 fugacity at constant temperatures.

  16. Soluble CD163 is increased in patients with acute pancreatitis independent of disease severity.

    PubMed

    Karrasch, Thomas; Brünnler, Tanja; Hamer, Okka W; Schmid, Karin; Voelk, Markus; Herfarth, Hans; Buechler, Christa

    2015-10-01

    Macrophages are crucially involved in the pathophysiology of acute pancreatitis. Soluble CD163 (sCD163) is specifically released from macrophages and systemic levels are increased in inflammatory diseases. Here, sCD163 was measured in serum of 50 patients with acute pancreatitis to find out possible associations with disease activity. Admission levels of systemic sCD163 were nearly three-fold higher in patients with acute pancreatitis compared to controls. In patients sCD163 did not correlate with C-reactive protein and leukocyte count as established markers of inflammation. Levels were not associated with disease severity assessed by the Schroeder score, Balthazar score, Acute Physiology, Age, and Chronic Health Evaluation (Apache) II score and peripancreatic necrosis score. Soluble CD163 was not related to complications of acute pancreatitis. These data show that serum sCD163 is increased in acute pancreatitis indicating activation of macrophages but is not associated with disease severity and outcome. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Remediation of RDX- and HMX-contaminated groundwater using organic mulch permeable reactive barriers.

    PubMed

    Ahmad, Farrukh; Schnitker, Stephen P; Newell, Charles J

    2007-02-20

    Organic mulch is a complex organic material that is typically populated with its own consortium of microorganisms. The organisms in mulch breakdown complex organics to soluble carbon, which can then be used by these and other microorganisms as an electron donor for treating RDX and HMX via reductive pathways. A bench-scale treatability study with organic mulch was conducted for the treatment of RDX- and HMX-contaminated groundwater obtained from a plume at the Pueblo Chemical Depot (PCD) in Pueblo, Colorado. The site-specific cleanup criteria of 0.55 ppb RDX and 602 ppb HMX were used as the logical goals of the study. Column flow-through tests were run to steady-state at the average site seepage velocity, using a 70%:30% (vol.:vol.) mulch:pea gravel packing to approach the formation's permeability. Significant results included: (1) Complete removal of 90 ppb influent RDX and 8 ppb influent HMX in steady-state mulch column effluent; (2) pseudo-first-order steady-state kinetic rate constant, k, of 0.20 to 0.27 h(-1) based on RDX data, using triplicate parallel column runs; (3) accumulation of reduced RDX intermediates in the steady-state column effluent at less than 2% of the influent RDX mass; (4) no binding of RDX to the column fill material; and (5) no leaching of RDX, HMX or reduction intermediates from the column fill material. The results of the bench-scale study will be used to design and implement a pilot-scale organic mulch/pea gravel permeable reactive barrier (PRB) at the site.

  18. Synthesis of a water-soluble analog of 6-methyl-3-N-alkyl catechol labeled with carbon 13: NMR approach to the reactivity of poison ivy/oak sensitizers toward proteins.

    PubMed

    Goetz, G; Meschkat, E; Lepoittevin, J P

    1999-04-19

    A 13-C labeled water soluble derivative of alkylcatechol was synthesized and reacted with human serum albumin in phosphate buffer at pH 7.4 in air to allow a slow oxidation of the catechol into orthoquinone. The formation of several adducts was evidenced by a combination of 13C and 1H-13C correlation NMR. Although some adducts could result from a classical o-quinone formation - Michael type addition, our results suggest that a second pathway, involving a direct reaction of a carbon centered radical with proteins could be an important mechanism in the formation of modified proteins.

  19. Decline in Soluble Phosphorus Mobility from Land-Applied Dairy Manure - Modeling and Practical Applications

    NASA Astrophysics Data System (ADS)

    Archibald, J. A.; Walter, M. T.; Peterson, M.; Richards, B. K.; Giri, S. K.

    2014-12-01

    Non-point source transport of soluble-reactive phosphorus (SRP) from agricultural systems to freshwater ecosystems is a significant water quality concern. Although farmers are encouraged to avoid manure or fertilizer application before runoff events, the implications of these management choices remain largely unquantified. We conducted soil box experiments to test how manure application timing and temperature or moisture conditions impact SRP concentration in runoff. We found that SRP concentrations dropped off exponentially over time, and that higher temperatures accelerated the decline in SRP in overland runoff over time. During the first runoff events after manure application, infiltration depth prior to runoff was not a primary driver of SRP concentrations. This research has implications for incorporating manure spreading timing into watershed models.

  20. N-Benzoyl-D-phenylalanine attenuates brain acetylcholinesterase in neonatal streptozotocin-diabetic rats.

    PubMed

    Ashokkumar, Natarajan; Pari, Leelavinothan; Ramkumar, Kunga Mohan

    2006-09-01

    The effect of hyperglycaemia due to experimental diabetes in male Wistar rats causes a decrease in the level of acetylcholinesterase (AChE) with significant increase in lipid peroxidative markers: thiobarbituric acid-reactive substances (TBARS) and hydroperoxides in brains of experimental animals. The decreased activity of both salt soluble and detergent soluble acetylcholinesterase observed in diabetes may be attributed to lack of insulin which causes specific alterations in the level of neurotransmitter, thus causing brain dysfunction. Administration of non-sulfonylurea drug N-benzoyl-D-phenylalanine (NBDP) could protect against direct action of lipid peroxidation on brain AChE and in this way it might be useful in the prevention of cholinergic neural dysfunction, which is one of the major complications in diabetes.

  1. Preparation and evaluation of lignosulfonates as a dispersant for gypsum paste from acid hydrolysis lignin.

    PubMed

    Matsushita, Yasuyuki; Yasuda, Seiichi

    2005-03-01

    In order to effectively utilize a by-product of the acid saccharification process of woody materials, the chemical conversion of guaiacyl sulfuric acid lignin (SAL), one of the acid hydrolysis lignins, into water-soluble sulfonated products with high dispersibitity was investigated. At first, SAL was phenolated (P-SAL) to enhance the solubility and reactivity. Lignosulfonates were prepared from P-SAL by three methods of hydroxymethylation followed by neutral sulfonation (two-step method), sulfomethylation (one-step method) and arylsulfonation. Surprisingly, all prepared lignosulfonates possessed 30 to 70% higher dispersibility for gypsum paste than the commercial lignosulfonate. Evaluation of the preparations for gypsum paste suggested that the higher molecular weights and sulfur contents of the preparations increased their dispersibility.

  2. Radionuclide removal by apatite

    DOE PAGES

    Rigali, Mark J.; Brady, Patrick V.; Moore, Robert C.

    2016-12-01

    In this study, a growing body of research supports widespread future reliance on apatite for radioactive waste cleanup. Apatite is a multi-functional radionuclide sorbent that lowers dissolved radionuclide concentrations by surface sorption, ion exchange, surface precipitation, and by providing phosphate to precipitate low-solubility radionuclide-containing minerals. Natural apatites are rich in trace elements, and apatite’s stability in the geologic record suggest that radionuclides incorporated into apatite, whether in a permeable reactive barrier or a waste form, are likely to remain isolated from the biosphere for long periods of time. Here we outline the mineralogic and surface origins of apatite-radionuclide reactivity andmore » show how apatites might be used to environmental advantage in the future.« less

  3. Photoactivatable Rhodamine Spiroamides and Diazoketones Decorated with "Universal Hydrophilizer" or Hydroxyl Groups.

    PubMed

    Roubinet, Benoit; Bischoff, Matthias; Nizamov, Shamil; Yan, Sergey; Geisler, Claudia; Stoldt, Stefan; Mitronova, Gyuzel Y; Belov, Vladimir N; Bossi, Mariano L; Hell, Stefan W

    2018-05-11

    Photoactivatable rhodamine spiroamides and spirocyclic diazoketones emerged recently as synthetic markers applicable in multicolor superresolution microscopy. However, their applicability in single molecule localization microscopy (SMLM) is often limited by aggregation, unspecific adhesion and low reactivity caused by insufficient solubility and precipitation from aqueous solutions. We report here two synthetic modifications increasing the polarity of compact polycyclic and hydrophobic labels decorated with a reactive group: attachment of 3-sulfo-L-alanyl - beta-alanine dipeptide (a "universal hydrophilizer") or allylic hydroxylation in photosensitive rhodamine diazoketones (and spiroamides). The superresolution images of tubulin and keratin filaments in fixed and living cells exemplify the performance of "blinking" spiroamides derived from N,N,N',N'-tetramethyl rhodamine.

  4. Aircraft measurements of nitrogen and phosphorus in and around the Lake Tahoe Basin: implications for possible sources of atmospheric pollutants to Lake Tahoe.

    PubMed

    Zhang, Qi; Carroll, John J; Dixon, Alan J; Anastasio, Cort

    2002-12-01

    Atmospheric deposition of nitrogen (N) and phosphorus (P) into Lake Tahoe appears to have been a major factor responsible for the shifting of the lake's nutrient response from N-limited to P-limited. To characterize atmospheric N and P in and around the Lake Tahoe Basin during summer, samples were collected using an instrumented aircraft flown over three locations: the Sierra Nevada foothills east of Sacramento ("low-Sierra"), further east and higher in the Sierra ("mid-Sierra"), and in the Tahoe Basin. Measurements were also made within the smoke plume downwind of an intense forest fire just outside the Tahoe Basin. Samples were collected using a denuder-filter pack sampling system (DFP) and analyzed for gaseous and water-soluble particle components including HNO3/ NO3-, NH3 /NH4+, organic N (ON), total N, SRP (soluble reactive phosphate) and total P. The average total gaseous and particulate N concentrations (+/- 1sigma) measured over the low- and mid-Sierra were 660 (+/- 270) and 630 (+/- 350) nmol N/m3-air, respectively. Total airborne N concentrations in the Tahoe samples were one-half to one-fifth of these values. The forest fire plume had the highest concentration of atmospheric N (860 nmol N/m3-air) and a greater contribution of organic N (ON) to the total N compared to nonsmoky conditions. Airborne P was rarely observed over the low- and mid-Sierra but was present at low concentrations over Lake Tahoe, with average +/- 1sigma) concentrations of 2.3 +/- 2.9 and 2.8 +/- 0.8 nmol P/m3-air under typical clear air and slightly smoky air conditions, respectively. Phosphorus in the forestfire plume was present at concentrations approximately 10 times greater than over the Tahoe Basin. P in these samples included both fine and coarse particulate phosphate as well as unidentified, possibly organic, gaseous P species. Overall, our results suggest that out-of-basin emissions could be significant sources of nitrogen to Lake Tahoe during the summer and that forest fires could be important sources of both N and P.

  5. Interactions of soil-derived dissolved organic matter with phenol in peroxidase-catalyzed oxidative coupling reactions.

    PubMed

    Huang, Qingguo; Weber, Walter J

    2004-01-01

    The influence of dissolved soil organic matter (DSOM) derived from three geosorbents of different chemical composition and diagenetic history on the horseradish peroxidase (HRP) catalyzed oxidative coupling reactions of phenol was investigated. Phenol conversion and precipitate-product formation were measured, respectively, by HPLC and radiolabeled species analysis. Fourier transform infrared (FTIR) spectroscopy and capillary electrophoresis (CE) were used to characterize the products of enzymatic coupling, and the acute toxicities of the soluble products were determined by Microtox assay. Phenol conversion and precipitate formation were both significantly influenced by cross-coupling of phenol with dissolved organic matter, particularly in the cases of the more reactive and soluble DSOMs derived from two diagenetically "young" humic-type geosorbents. FTIR and CE characterizations indicate that enzymatic cross-coupling in these two cases leads to incorporation of phenol in DSOM macromolecules, yielding nontoxic soluble products. Conversely, cross-coupling appears to proceed in parallel with self-coupling in the presence of the relatively inert and more hydrophobic DSOM derived from a diagenetically "old" kerogen-type shale material. The products formed in this system have lower solubility and precipitate more readily, although their soluble forms tend to be more toxic than those formed by dominant cross-coupling reactions in the humic-type DSOM solutions. Several of the findings reported may be critically important with respect to feasibility evaluations and the engineering design of associated remediation schemes.

  6. Photoinactivation of Latent Herpes Simplex Virus in Rabbit Kidney Cells

    PubMed Central

    Kelleher, J. J.; Varani, J.

    1976-01-01

    The photoinactivation of actively and nonactively growing herpes simplex virus by neutral red and proflavine was studied in rabbit kidney cells. Active virus growth was inhibited by both dyes under conditions which did not destroy the cells. Neutral red caused a much greater inhibition than proflavine. Neutral red also caused a reduction in the reactivation rate of latent virus when the infected cells were treated during the latent period. In the treated cultures that did reactivate virus, the average length of the latent period was increased over the control value. Proflavine treatment did not reduce the rate of reactivation of latent virus and did not increase the average latent period of the treated cultures. PMID:185948

  7. LES study of the impact of moist thermals on the oxidative capacity of the atmosphere in southern West Africa

    NASA Astrophysics Data System (ADS)

    Brosse, Fabien; Leriche, Maud; Mari, Céline; Couvreux, Fleur

    2018-05-01

    The hydroxyl radical (OH) is a highly reactive species and plays a key role in the oxidative capacity of the atmosphere. We explore the potential impact of a convective boundary layer on reconciling the calculation-measurement differences for OH reactivity (the inverse of OH lifetime) attributable to the segregation of OH and its reactants by thermals and the resulting modification of averaged reaction rates. The large-eddy simulation version of the Meso-NH model is used, coupled on-line with a detailed chemistry mechanism to simulate two contrasted biogenic and urban chemical regimes. In both environments, the top of the boundary layer is the region with the highest calculated segregation intensities but with the opposite sign. In the biogenic environment, the inhomogeneous mixing of isoprene and OH leads to a maximum decrease of 30 % of the mean reaction rate in this zone. In the anthropogenic case, the effective rate constant for OH reacting with aldehydes is 16 % higher than the averaged value. OH reactivity is always higher by 15 to 40 % inside thermals in comparison to their surroundings as a function of the chemical environment and time of the day. Since thermals occupy a small fraction of the simulated domain, the impact of turbulent motions on domain-averaged total OH reactivity reaches a maximum decrease of 9 % for the biogenic case and a maximum increase of 5 % for the anthropogenic case. Accounting for the segregation of air masses by turbulent motions in regional and global models may increase OH reactivity in urban environments but lower OH reactivity in biogenic environments. In both cases, segregation alone is insufficient for resolving the underestimation between observed and modeled OH reactivity.

  8. ROS-generating/ARE-activating capacity of metals in roadway particulate matter deposited in urban environment.

    PubMed

    Shuster-Meiseles, Timor; Shafer, Martin M; Heo, Jongbae; Pardo, Michal; Antkiewicz, Dagmara S; Schauer, James J; Rudich, Assaf; Rudich, Yinon

    2016-04-01

    In this study we investigated the possible causal role for soluble metal species extracted from roadway traffic emissions in promoting particulate matter (PM)-induced reactive oxygen species (ROS) production and antioxidant response element (ARE) promoter activation. To this end, these responses have been evaluated in alveolar macrophage and epithelial lung cells that have been exposed to 'Unfiltered', 'Filtered' and 'Filtered+Chelexed' water extracts of PM samples collected from the roadway urban environments of Thessaloniki, Milan and London. Except for Thessaloniki, our results demonstrate that filtration resulted in a minor decrease in ROS activity of the fine PM fraction, suggesting that ROS activity is attributed mainly to water-soluble PM species. In contrast to ROS, ARE activity was mediated predominantly by the water-soluble component of PM present in both the fine and coarse extracts. Further removal of metals by Chelex treatment from filtered water extracts showed that soluble metal species are the major factors mediating ROS and ARE activities of the soluble fraction, especially in the London PM extracts. Finally, utilizing step-wise multiple-regression analysis, we show that 87% and 78% of the total variance observed in ROS and ARE assays, respectively, is accounted for by changes in soluble metal concentration. Using a statistical analysis we find that As, Zn and Fe best predict the ROS-generating/ARE-activating capacity of the near roadway particulate matter in the pulmonary cells studied. Collectively, our findings imply that soluble metals present in roadside PM are potential drivers of both pro- and anti-oxidative effects of PM in respiratory tract. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Air pollution upregulates endothelial cell procoagulant activity via ultrafine particle-induced oxidant signaling and tissue factor expression.

    PubMed

    Snow, S J; Cheng, W; Wolberg, A S; Carraway, M S

    2014-07-01

    Air pollution exposure is associated with cardiovascular events triggered by clot formation. Endothelial activation and initiation of coagulation are pathophysiological mechanisms that could link inhaled air pollutants to vascular events. Here we investigated the underlying mechanisms of increased endothelial cell procoagulant activity following exposure to soluble components of ultrafine particles (soluble UF). Human coronary artery endothelial cells (HCAEC) were exposed to soluble UF and assessed for their ability to trigger procoagulant activity in platelet-free plasma. Exposed HCAEC triggered earlier thrombin generation and faster fibrin clot formation, which was abolished by an anti-tissue factor (TF) antibody, indicating TF-dependent effects. Soluble UF exposure increased TF mRNA expression without compensatory increases in key anticoagulant proteins. To identify early events that regulate TF expression, we measured endothelial H2O2 production following soluble UF exposure and identified the enzymatic source. Soluble UF exposure increased endothelial H2O2 production, and antioxidants attenuated UF-induced upregulation of TF, linking the procoagulant responses to reactive oxygen species (ROS) formation. Chemical inhibitors and RNA silencing showed that NOX-4, an important endothelial source of H2O2, was involved in UF-induced upregulation of TF mRNA. These data indicate that soluble UF exposure induces endothelial cell procoagulant activity, which involves de novo TF synthesis, ROS production, and the NOX-4 enzyme. These findings provide mechanistic insight into the adverse cardiovascular effects associated with air pollution exposure. Published by Oxford University Press on behalf of Toxicological Sciences 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  10. Soluble transition metals cause the pro-inflammatory effects of welding fumes in vitro.

    PubMed

    McNeilly, Jane D; Heal, Mathew R; Beverland, Iain J; Howe, Alan; Gibson, Mark D; Hibbs, Leon R; MacNee, William; Donaldson, Ken

    2004-04-01

    Epidemiological studies have consistently reported a higher incidence of respiratory illnesses such as bronchitis, metal fume fever (MFF), and chronic pneumonitis among welders exposed to high concentrations of metal-enriched welding fumes. Here, we studied the molecular toxicology of three different metal-rich welding fumes: NIMROD 182, NIMROD c276, and COBSTEL 6. Fume toxicity in vitro was determined by exposing human type II alveolar epithelial cell line (A549) to whole welding fume, a soluble extract of fume or the "washed" particulate. All whole fumes were significantly toxic to A549 cells at doses >63 microg ml(-1) (TD 50; 42, 25, and 12 microg ml(-1), respectively). NIMROD c276 and COBSTEL 6 fumes increased levels of IL-8 mRNA and protein at 6 h and protein at 24 h, as did the soluble fraction alone, whereas metal chelation of the soluble fraction using chelex beads attenuated the effect. The soluble fraction of all three fumes caused a rapid depletion in intracellular glutathione following 2-h exposure with a rebound increase by 24 h. In addition, both nickel based fumes, NIMROD 182 and NIMROD c276, induced significant reactive oxygen species (ROS) production in A549 cells after 2 h as determined by DCFH fluorescence. ICP analysis confirmed that transition metal concentrations were similar in the whole and soluble fractions of each fume (dominated by Cr), but significantly less in both the washed particles and chelated fractions. These results support the hypothesis that the enhanced pro-inflammatory responses of welding fume particulates are mediated by soluble transition metal components via an oxidative stress mechanism.

  11. The adult brain tissue response to hollow fiber membranes of varying surface architecture with or without cotransplanted cells

    NASA Astrophysics Data System (ADS)

    Zhang, Ning

    A variety of biomaterials have been chronically implanted into the central nervous system (CNS) for repair or therapeutic purposes. Regardless of the application, chronic implantation of materials into the CNS induces injury and elicits a wound healing response, eventually leading to the formation of a dense extracellular matrix (ECM)-rich scar tissue that is associated with the segregation of implanted materials from the surrounding normal tissue. Often this reaction results in impaired performance of indwelling CNS devices. In order to enhance the performance of biomaterial-based implantable devices in the CNS, this thesis investigated whether adult brain tissue response to implanted biomaterials could be manipulated by changing biomaterial surface properties or further by utilizing the biology of co-transplanted cells. Specifically, the adult rat brain tissue response to chronically implanted poly(acrylonitrile-vinylchloride) (PAN-PVC) hollow fiber membranes (HFMs) of varying surface architecture were examined temporally at 2, 4, and 12 weeks postimplantation. Significant differences were discovered in the brain tissue response to the PAN-PVC HFMs of varying surface architecture at 4 and 12 weeks. To extend this work, whether the soluble factors derived from a co-transplanted cellular component further affect the brain tissue response to an implanted HFM in a significant way was critically exploited. The cells used were astrocytes, whose ability to influence scar formation process following CNS injury by physical contact with the host tissue had been documented in the literature. Data indicated for the first time that astrocyte-derived soluble factors ameliorate the adult brain tissue reactivity toward HFM implants in an age-dependent manner. While immature astrocytes secreted soluble factors that suppressed the brain tissue reactivity around the implants, mature astrocytes secreted factors that enhanced the gliotic response. These findings prove the feasibility of ameliorating the CNS tissue reactivity toward biomaterials implants by varying biomaterial surface properties or incorporating scar-reductive factors derived from functional cells into implant constructs, therefore, provide guidance in the design of more integrative biomaterial-based implantable devices for CNS repair.

  12. Efficient Formation of Light-Absorbing Polymeric Nanoparticles from the Reaction of Soluble Fe(III) with C4 and C6 Dicarboxylic Acids.

    PubMed

    Tran, Ashley; Williams, Geoffrey; Younus, Shagufta; Ali, Nujhat N; Blair, Sandra L; Nizkorodov, Sergey A; Al-Abadleh, Hind A

    2017-09-05

    The role of transition metals in the formation and aging of secondary organic aerosol (SOA) from aliphatic and aromatic precursors in heterogeneous/multiphase reactions is not well understood. The reactivity of soluble Fe(III) toward known benzene photooxidation products that include fumaric (trans-butenedioic) and muconic (trans,trans-2,4-hexadienedioic) acids was investigated. Efficient formation of brightly colored nanoparticles was observed that are mostly rod- or irregular-shaped depending on the structure of the organic precursor. The particles were characterized for their optical properties, growth rate, elemental composition, iron content, and oxidation state. Results indicate that these particles have mass absorption coefficients on the same order as black carbon and larger than that of biomass burning aerosols. The particles are also amorphous in nature and consist of polymeric chains of Fe centers complexed to carboxylate groups. The oxidation state of Fe was found to be in between Fe(III) and Fe(II) in standard compounds. The organic reactant to iron molar ratio and pH were found to affect the particle growth rate. Control experiments using maleic acid (cis-butenedioic acid) and succinic acid (butanedioic acid) produced no particles. The formation of particles reported herein could account for new pathways that lead to SOA and brown carbon formation mediated by transition metals. In addition, the multiple chemically active components in these particles (iron, organics, and acidic groups) may have an effect on their chemical reactivity (enhanced uptake of trace gases, catalysis, and production of reactive oxygen species) and their likely poor cloud/ice nucleation properties.

  13. Specificity of Toxocara ELISA in tropical populations.

    PubMed

    Lynch, N R; Wilkes, L K; Hodgen, A N; Turner, K J

    1988-05-01

    The diagnosis of human infection by Toxocara canis relies heavily upon serological tests, the specificity of which can be inadequate in regions of endemic helminthiasis. When different population groups of tropical Venezuela were evaluated using ELISA based upon Toxocara excretory-secretory antigen (TcESA), solid-phase adsorption of the sera with extracts of a wide variety of non-homologous parasites revealed the existence of significant cross-reactivity. This was effectively and conveniently overcome when the test sera were incubated in the presence of the soluble parasite extracts in a competitive inhibition ELISA. The mean reduction of ELISA values caused by pre-adsorption of the sera tested was 32.2%, and that caused by competitive inhibition was 42.3%, the effects of these two procedures being strongly correlated (r = 0.83). The magnitude of the reduction was inversely proportional to the actual ELISA value (r = -0.55), and ranged from a mean of 68.0% in sera from apparently healthy individuals of medium-high socio-economic level, down to 28.1% in heavily parasitized Amazon indians. Ascaris showed the greatest degree of cross-reactivity in these tests, although under conditions of competitive inhibition even sera with high levels of antibody against this parasite could be negative in Toxocara ELISA. Western blotting revealed a major 81,400 D component that was shared between Ascaris and TcESA. Our results indicate that the competitive inhibition of cross-reactivity by soluble non-homologous parasite extracts provides a convenient and economical means of increasing the specificity of ELISA for the determination of the seroprevalence of toxocariasis in tropical populations.

  14. Stress reactivity and personality in extreme sport athletes: The psychobiology of BASE jumpers.

    PubMed

    Monasterio, Erik; Mei-Dan, Omer; Hackney, Anthony C; Lane, Amy R; Zwir, Igor; Rozsa, Sandor; Cloninger, C Robert

    2016-12-01

    This is the first report of the psychobiology of stress in BASE jumpers, one of the most dangerous forms of extreme sport. We tested the hypotheses that indicators of emotional style (temperament) predict salivary cortisol reactivity, whereas indicators of intentional goal-setting (persistence and character) predict salivary alpha-amylase reactivity during BASE jumping. Ninety-eight subjects completed the Temperament and Character Inventory (TCI) the day before the jump, and 77 also gave salivary samples at baseline, pre-jump on the bridge over the New River Gorge, and post-jump upon landing. Overall BASE jumpers are highly resilient individuals who are highly self-directed, persistent, and risk-taking, but they are heterogeneous in their motives and stress reactivity in the Hypothalamic-Pituitary-Adrenal (HPA) stress system (cortisol reactivity) and the sympathetic arousal system (alpha-amylase reactivity). Three classes of jumpers were identified using latent class analysis based on their personality profiles, prior jumping experience, and levels of cortisol and alpha-amylase at all three time points. "Masterful" jumpers (class 1) had a strong sense of self-directedness and mastery, extensive prior experience, and had little alpha-amylase reactivity and average cortisol reactivity. "Trustful" jumpers (class 2) were highly cooperative and trustful individuals who had little cortisol reactivity coincident with the social support they experienced prior to jumping. "Courageous" jumpers (class 3) were determined despite anxiety and inexperience, and they had high sympathetic reactivity but average cortisol activation. We conclude that trusting social attachment (Reward Dependence) and not jumping experience predicted low cortisol reactivity, whereas persistence (determination) and not jumping experience predicted high alpha-amylase reactivity. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Estimating the Aqueous Solubility of Pharmaceutical Hydrates.

    PubMed

    Franklin, Stephen J; Younis, Usir S; Myrdal, Paul B

    2016-06-01

    Estimation of crystalline solute solubility is well documented throughout the literature. However, the anhydrous crystal form is typically considered with these models, which is not always the most stable crystal form in water. In this study, an equation which predicts the aqueous solubility of a hydrate is presented. This research attempts to extend the utility of the ideal solubility equation by incorporating desolvation energetics of the hydrated crystal. Similar to the ideal solubility equation, which accounts for the energetics of melting, this model approximates the energy of dehydration to the entropy of vaporization for water. Aqueous solubilities, dehydration and melting temperatures, and log P values were collected experimentally and from the literature. The data set includes different hydrate types and a range of log P values. Three models are evaluated, the most accurate model approximates the entropy of dehydration (ΔSd) by the entropy of vaporization (ΔSvap) for water, and utilizes onset dehydration and melting temperatures in combination with log P. With this model, the average absolute error for the prediction of solubility of 14 compounds was 0.32 log units. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles.

    PubMed

    He, Hongkun; Gao, Chao

    2010-11-01

    The amazing properties of graphene are triggering extensive interests of both scientists and engineers, whereas how to fully utilize the unique attributes of graphene to construct novel graphene-based composites with tailor-made, integrated functions remains to be a challenge. Here, we report a facile approach to multifunctional iron oxide nanoparticle-attached graphene nanosheets (graphene@Fe(3)O(4)) which show the integrated properties of strong supraparamagnetism, electrical conductivity, highly chemical reactivity, good solubility, and excellent processability. The synthesis method is efficient, scalable, green, and controllable and has the feature of reduction of graphene oxide and formation of Fe(3)O(4) nanoparticles in one step. When the feed ratios are adjusted, the average diameter of Fe(3)O(4) nanoparticles (1.2-6.3 nm), the coverage density of Fe(3)O(4) nanoparticles on graphene nanosheets (5.3-57.9%), and the saturated magnetization of graphene@Fe(3)O(4) (0.5-44.1 emu/g) can be controlled readily. Because of the good solubility of the as-prepared graphene@Fe(3)O(4), highly flexible and multifunctional films composed of polyurethane and a high content of graphene@Fe(3)O(4) (up to 60 wt %) were fabricated by the solution-processing technique. The graphene@Fe(3)O(4) hybrid sheets showed electrical conductivity of 0.7 S/m and can be aligned into a layered-stacking pattern in an external magnetic field. The versatile graphene@Fe(3)O(4) nanosheets hold great promise in a wide range of fields, including magnetic resonance imaging, electromagnetic interference shielding, microwave absorbing, and so forth.

  17. Rainfall intensity and phosphorus source effects on phosphorus transport in surface runoff from soil trays.

    PubMed

    Shigaki, Francirose; Sharpley, Andrew; Prochnow, Luis Ignacio

    2007-02-01

    Phosphorus runoff from agricultural fields amended with mineral fertilizers and manures has been linked to freshwater eutrophication. A rainfall simulation study was conducted to evaluate the effects of different rainfall intensities and P sources differing in water soluble P (WSP) concentration on P transport in runoff from soil trays packed with a Berks loam and grassed with annual ryegrass (Lolium multiflorum Lam.). Triple superphosphate (TSP; 79% WSP), low-grade super single phosphate (LGSSP; 50% WSP), North Carolina rock phosphate (NCRP; 0.5% WSP) and swine manure (SM; 70% WSP), were broadcast (100 kg total P ha-1) and rainfall applied at 25, 50 and 75 mm h-1 1, 7, 21, and 56 days after P source application. The concentration of dissolved reactive (DRP), particulate (PP), and total P (TP) was significantly (P<0.01) greater in runoff with a rainfall intensity of 75 than 25 mm h-1 for all P sources. Further, runoff DRP increased as P source WSP increased, with runoff from a 50 mm h-1 rain 1 day after source application having a DRP concentration of 0.25 mg L-1 for NCRP and 28.21 mg L-1 for TSP. In contrast, the proportion of runoff TP as PP was greater with low (39% PP for NCRP) than high WSP sources (4% PP for TSP) averaged for all rainfall intensities. The increased PP transport is attributed to the detachment and transport of undissolved P source particles during runoff. These results show that P source water solubility and rainfall intensity can influence P transport in runoff, which is important in evaluating the long-term risks of P source application on P transport in surface runoff.

  18. Tunable Enzymatic Activity and Enhanced Stability of Cellulase Immobilized in Biohybrid Nanogels.

    PubMed

    Peng, Huan; Rübsam, Kristin; Jakob, Felix; Schwaneberg, Ulrich; Pich, Andrij

    2016-11-14

    This paper reports a facile approach for encapsulation of enzymes in nanogels. Our approach is based on the use of reactive copolymers able to get conjugated with enzyme and build 3D colloidal networks or biohybrid nanogels. In a systematic study, we address the following question: how the chemical structure of nanogel network influences the biocatalytic activity of entrapped enzyme? The developed method allows precise control of the enzyme activity and improvement of enzyme resistance against harsh store conditions, chaotropic agents, and organic solvents. The nanogels were constructed via direct chemical cross-linking of water-soluble reactive copolymers poly(N-vinylpyrrolidone-co-N-methacryloxysuccinimide) with proteins such as enhanced green fluorescent protein (EGFP) and cellulase in water-in-oil emulsion. The water-soluble reactive copolymers with controlled amount of reactive succinimide groups and narrow dispersity were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Poly(ethylene glycol) bis(3-aminopropyl) and branched polyethylenimine were utilized as model cross-linkers to optimize synthesis of nanogels with different architectures in the preliminary experiments. Biofluorescent nanogels with different loading amount of EGFP and varying cross-linking densities were obtained. We demonstrate that the biocatalytic activity of cellulase-conjugated nanogels (CNG) can be elegantly tuned by control of their cross-linking degrees. Circular dichroism (CD) spectra demonstrated that the secondary structures of the immobilized cellulase were changed in the aspect of α-helix contents. The secondary structures of cellulase in highly cross-linked nanogels were strongly altered compared with loosely cross-linked nanogels. The fluorescence resonance energy transfer (FRET) based study further revealed that nanogels with lower cross-linking degree enable higher substrate transport rate, providing easier access to the active site of the enzyme. The biohybrid nanogels demonstrated significantly improved stability in preserving enzymatic activity compared with free cellulase. The functional biohybrid nanogels with tunable enzymatic activity and improved stability are promising candidates for applications in biocatalysis, biomass conversion, or energy utilization fields.

  19. Photochemical modeling of emissions trading of highly reactive volatile organic compounds in Houston, Texas. 1. Reactivity based trading and potential for ozone hot spot formation.

    PubMed

    Wang, Linlin; Thompson, Tammy; McDonald-Buller, Elena C; Webb, Alba; Allen, David T

    2007-04-01

    As part of the State Implementation Plan for attaining the National Ambient Air Quality Standard for ozone, the Texas Commission of Environmental Quality has created a Highly Reactive Volatile Organic Compounds (HRVOC) Emissions Cap and Trade Program for industrial point sources in the Houston/Galveston/Brazoria area. This program has a number of unique features, including its focus on a limited group of ozone precursors and its provisions for trading emissions based on atmospheric reactivity. This series of papers examines the potential air quality impacts of this new emission trading program through photochemical modeling of potential trading scenarios; this first paper in the series describes the air quality modeling methods used to assess potential trades, the potential for localized increases in ozone concentrations (ozone "hot spots") due to HRVOC emission trading, and the use of reactivity scales in the trading. When HRVOC emissions are traded on a mass basis, the simulations indicate that trading of HRVOC allowances between facilities resulted in less than 0.15 ppb (<0.13%) and 0.06 ppb (<0.06%) increases in predicted maximum, area-wide 1-h averaged and 8-h averaged ozone concentrations, respectively. Maximum decreases in ozone concentrations associated with trading, as opposed to across-the-board reductions, were larger than the increases. All of these changes are small compared to the maximum changes in ozone concentrations due to the VOC emissions from these sources (up to 5-10 ppb for 8 h averages; up to 30 ppb for 1-h averages). When emissions of HRVOCs are traded for other, less reactive emissions, on a reactivity weighted basis, air quality simulations indicate that daily maximum ozone concentrations increased by less than 0.3%. Because these relatively small changes (< 1%) are for unlikely trading scenarios designed to produce a maximum change in ozone concentrations (all emissions traded into localized regions), the simulations indicate that the implementation of the trading program, as currently configured and possibly expanded, is unlikely to cause localized increases in ozone concentrations ("hot spots").

  20. Sources of reactive nitrogen in marine aerosol over the Northwest Pacific Ocean in spring

    NASA Astrophysics Data System (ADS)

    Luo, Li; Kao, Shuh-Ji; Bao, Hongyan; Xiao, Huayun; Xiao, Hongwei; Yao, Xiaohong; Gao, Huiwang; Li, Jiawei; Lu, Yangyang

    2018-05-01

    Atmospheric deposition of long-range transport of anthropogenic reactive nitrogen (Nr, mainly comprised of NHx, NOy and water-soluble organic nitrogen, WSON) from continents may have profound impact on marine biogeochemistry. In addition, surface ocean dissolved organic nitrogen (DON) may also contribute to aerosol WSON in the overlying atmosphere. Despite the importance of off-continent dispersion and Nr interactions at the atmosphere-ocean boundary, our knowledge of the sources of various nitrogen species in the atmosphere over the open ocean remains limited due to insufficient observations. We conducted two cruises in the spring of 2014 and 2015 from the coast of China through the East China seas (ECSs, i.e. the Yellow Sea and East China Sea) to the open ocean (i.e. the Northwest Pacific Ocean, NWPO). Concentrations of water-soluble total nitrogen (WSTN), NO3- and NH4+, as well as the δ15N of WSTN and NO3- in marine aerosol, were measured during both cruises. In the spring of 2015, we also analysed the concentrations and δ15N of NO3- and the DON of surface seawater (SSW; at a depth of 5 m) along the cruise track. Aerosol NO3-, NH4+ and WSON decreased logarithmically (1-2 orders of magnitude) with distance from the shore, reflecting strong anthropogenic emission sources of NO3-, NH4+ and WSON in China. Average aerosol NO3- and NH4+ concentrations were significantly higher in 2014 (even in the remote NWOP) than in 2015 due to the stronger wind field in 2014, underscoring the role of the Asian winter monsoon in the seaward transport of anthropogenic NO3- and NH4+. However, the background aerosol WSON over the NWPO in 2015 (13.3 ± 8.5 nmol m-3) was similar to that in 2014 (12.2 ± 6.3 nmol m-3), suggesting an additional non-anthropogenic WSON source in the open ocean. Obviously, marine DON emissions should be considered in model and field assessments of net atmospheric WSON deposition in the open ocean. This study contributes information on parallel isotopic marine DON composition and aerosol Nr datasets, but more research is required to explore complex Nr sources and deposition processes in order to advance our understanding of anthropogenic influences on the marine nitrogen cycle and nitrogen exchange at land-ocean and atmosphere-ocean interfaces.

  1. Trans-hemispheric contribution of C2-C10 α, ω-dicarboxylic acids, and related polar compounds to water-soluble organic carbon in the western Pacific aerosols in relation to photochemical oxidation reactions

    NASA Astrophysics Data System (ADS)

    SempéRé, Richard; Kawamura, Kimitaka

    2003-06-01

    Marine aerosol samples were collected during a western Pacific cruise covering the latitude range between 35°N and 40°S (140°E-180°E). They were analyzed for total carbon (TC), total nitrogen (TN), water-soluble organic carbon (WSOC) along with the molecular distributions of C2-C10 α, ω-dicarboxylic acids, and related polar compounds, mainly, ω-oxocarboxylic acids (C2-C9) and α-dicarbonyls (C2-C3). Oxalic acid (C2) was the most abundant followed by malonic (C3) and succinic (C4) acids. The total diacid concentration range was 7-605 ng m-3 (av. 85 ng m-3) and the diacid-carbon accounted for 2-15% (average 8%) of WSOC which comprised 29-55% (average 40%) of TC. Dry depositions of total diacids over the northern and southern Pacific Ocean were estimated to be 256-1907 μg m-2 yr-1 (average 735; n = 4) and 22-396 μg m-2 yr-1 (average 134; n = 14), respectively, whereas the air-to-sea flux of oxalic acid was 18-1351 μg m-2 yr-1 (average 466 μg m-2 yr-1) and 7.5-275 μg m-2 yr-1 (average 75 μg m-2 yr-1) in the Northern and Southern Hemispheres. We observed that the concentration ratios of diacid-C/WSOC, azelaic acid (C9)/ω-oxononanoic acid, maleic acid (iC4cis)/fumaric (iC4trans) acid and succinic acid (C4)/total diacids were correlated with air temperature. These findings showed that the intensity of photochemical oxidation reactions and thus the variation in sunlight intensity characterized here by air temperature, significantly control the molecular distribution of water-soluble organic compounds during the long-range transport of anthropogenic and/or biogenic higher molecular weight organic compounds.

  2. Influence of Saharan dust outbreaks and carbon content on oxidative potential of water-soluble fractions of PM2.5 and PM10

    NASA Astrophysics Data System (ADS)

    Chirizzi, Daniela; Cesari, Daniela; Guascito, Maria Rachele; Dinoi, Adelaide; Giotta, Livia; Donateo, Antonio; Contini, Daniele

    2017-08-01

    Exposure to atmospheric particulate matter (PM) leads to adverse health effects although the exact mechanisms of toxicity are still poorly understood. Several studies suggested that a large number of PM health effects could be due to the oxidative potential (OP) of ambient particles leading to high concentrations of reactive oxygen species (ROS). The contribution to OP of specific anthropogenic sources like road traffic, biomass burning, and industrial emissions has been investigated in several sites. However, information about the OP of natural sources are scarce and no data is available regarding the OP during Saharan dust outbreaks (SDO) in Mediterranean regions. This work uses the a-cellular DTT (dithiothreitol) assay to evaluate OP of the water-soluble fraction of PM2.5 and PM10 collected at an urban background site in Southern Italy. OP values in three groups of samples were compared: standard characterised by concentrations similar to the yearly averages; high carbon samples associated to combustion sources (mainly road traffic and biomass burning) and SDO events. DTT activity normalised by sampled air volume (DTTV), representative of personal exposure, and normalised by collected aerosol mass (DTTM), representing source-specific characteristics, were investigated. The DTTV is larger for high PM concentrations. DTTV is well correlated with secondary organic carbon concentration. An increased DTTV response was found for PM2.5 compared to the coarse fraction PM2.5-10. DTTV is larger for high carbon content samples but during SDO events is statistically comparable with that of standard samples. DTTM is larger for PM2.5 compared to PM10 and the relative difference between the two size fractions is maximised during SDO events. This indicates that Saharan dust advection is a natural source of particles having a lower specific OP with respect to the other sources acting on the area (for water-soluble fraction). OP should be taken into account in epidemiological studies to evaluate the potential health risks associated to ROS in regions affected by high pollution events due to Saharan dust advection.

  3. Experimental measurement and thermodynamic modeling of the solubility of carbon dioxide in aqueous blends of monoethanolamine and diethanolamine

    NASA Astrophysics Data System (ADS)

    Suleman, Humbul; Maulud, Abdulhalim Shah; Man, Zakaria

    2017-12-01

    In this study, the solubilities of carbon dioxide in aqueous mixtures of monoethanolamine (MEA) and diethanolamine (DEA) were determined using a high pressure vapor-liquid equilibrium apparatus. The carbon dioxide loadings (mole of CO2/mole of amine mixture) were reported for a wide range of temperature (303.15, 323.15, 343.15 K) and pressure (100 - 4100 kPa). The carbon dioxide solubility shows an increase with increase in pressure and amine concentration and a decrease with increase in temperature in the aqueous blends of MEA and DEA. At carbon dioxide loadings above 1.0, the carbon dioxide solubility becomes a weak function of pressure and follows the general trend of carbon dioxide solubility in aqueous alkanolamines. The new experimental data points determined in this study were correlated by using a recently developed, enhanced Kent-Eisenberg model. An average absolute relative error of 9.4 % was observed between the model results and experimental data, indicating good correlative capability of the thermodynamic model.

  4. The joint influence of emotional reactivity and social interaction quality on cardiovascular responses to daily social interactions in working adults.

    PubMed

    Cornelius, Talea; Birk, Jeffrey L; Edmondson, Donald; Schwartz, Joseph E

    2018-05-01

    Social interaction quality is related to cardiovascular functioning. Trait emotional reactivity may amplify cardiovascular responses to social interactions, but is often examined as a tendency to react to negative events. We took a broader approach by examining the joint effects of positive and negative emotional reactivity and social interaction quality on ambulatory blood pressure (ABP) and heart rate (HR) responses to daily social interactions. Participants were part of a larger study on BP and cardiovascular health (N = 805; M Age  = 45.3; 40.1% male). Participants completed a measure of emotional reactivity (BIS/BAS) and 24-hour ABP monitoring accompanied by ecological momentary assessments (EMA) about just-experienced social interactions and their pleasantness. Multilevel models tested the associations of emotional reactivity, average pleasantness, and momentary pleasantness with BP and HR. Participants who reported more pleasant interactions on average had lower BP (systolic BP: B = -0.51 mmHg; diastolic BP: B = -0.46 mmHg). These effects did not depend on emotional reactivity. The effect of momentary pleasantness depended on BIS/BAS; in less reactive participants, greater pleasantness was associated with lower HR, B = -0.13 bpm; in more reactive participants, greater pleasantness was associated with increased HR, B = 0.16). Participants who had more pleasant social interactions throughout the day had lower mean ABP. The acute effect of a given social interaction on HR depended on emotional reactivity: HR increased for participants high in emotional reactivity during pleasant interactions. Thus, emotional reactivity may influence cardiovascular responses to social stimuli. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Measurements of total hydroxyl radical reactivity during the UCAS winter campaign 2016 at Huairou (northeast Beijing)

    NASA Astrophysics Data System (ADS)

    Novelli, Anna; Tan, Zhaofeng; Ma, Xuefei; Holland, Frank; Broch, Sebastian; Bachner, Mathias; Rohrer, Franz; Lu, Keding; Liu, Ying; Wu, Yusheng; Zhang, Yingson; Hofzumahaus, Andreas; Fucks, Hendrik; Wahner, Andreas; Kiendler-Scarr, Astrid

    2017-04-01

    The total OH reactivity is the total OH loss rate coefficient that can be calculated from the sum of the concentration of all OH reactive species weighted by their rate coefficient with OH. The total loss rate is an important parameter as it allows the investigation of the budget of the atmosphere's primary oxidant (OH), placing a constraint on the OH production processes. Typically, calculations of this parameter are challenging in ambient air due to the lack of measurements for all the OH reactive species and, therefore, direct measurements of the total OH reactivity are desirable. Many studies have shown a discrepancy between the measured and the calculated OH reactivity indicating our understanding of both OH chemistry and volatile organic compound composition is not complete. Measurements of the total OH reactivity were performed with a laser photolysis - laser induced fluorescence (LP-LIF) technique during the winter season, from January to March 2016, in the densely populated North China Plain. The site was located northeast of Beijing (Huairou) and was impacted by the alternation of relatively clean air coming from the mountains and highly polluted air characterized by high particle concentration transported over populated areas in the North China Plain. This allowed the investigation of the OH reactivity budget in chemically distinct conditions. Total OH reactivity was on average 18 s-1 in polluted wind sectors with a contribution from nitric oxide and dioxide (NOx) and carbon monoxide (CO) of more than 60%. In contrast, the cleaner sectors showed an average value of 6 s-1 with a larger fraction of unexplained OH reactivity. The comparison between the measured and the calculated (from a large number of ancillary measurements) OH reactivity together with the particle concentration in different chemical regimes will be presented.

  6. Direct measurement of NO3 radical reactivity in a boreal forest

    NASA Astrophysics Data System (ADS)

    Liebmann, Jonathan; Karu, Einar; Sobanski, Nicolas; Schuladen, Jan; Ehn, Mikael; Schallhart, Simon; Quéléver, Lauriane; Hellen, Heidi; Hakola, Hannele; Hoffmann, Thorsten; Williams, Jonathan; Fischer, Horst; Lelieveld, Jos; Crowley, John N.

    2018-03-01

    We present the first direct measurements of NO3 reactivity (or inverse lifetime, s-1) in the Finnish boreal forest. The data were obtained during the IBAIRN campaign (Influence of Biosphere-Atmosphere Interactions on the Reactive Nitrogen budget) which took place in Hyytiälä, Finland during the summer/autumn transition in September 2016. The NO3 reactivity was generally very high with a maximum value of 0.94 s-1 and displayed a strong diel variation with a campaign-averaged nighttime mean value of 0.11 s-1 compared to a daytime value of 0.04 s-1. The highest nighttime NO3 reactivity was accompanied by major depletion of canopy level ozone and was associated with strong temperature inversions and high levels of monoterpenes. The daytime reactivity was sufficiently large that reactions of NO3 with organic trace gases could compete with photolysis and reaction with NO. There was no significant reduction in the measured NO3 reactivity between the beginning and end of the campaign, indicating that any seasonal reduction in canopy emissions of reactive biogenic trace gases was offset by emissions from the forest floor. Observations of biogenic hydrocarbons (BVOCs) suggested a dominant role for monoterpenes in determining the NO3 reactivity. Reactivity not accounted for by in situ measurement of NO and BVOCs was variable across the diel cycle with, on average, ≈ 30 % missing during nighttime and ≈ 60 % missing during the day. Measurement of the NO3 reactivity at various heights (8.5 to 25 m) both above and below the canopy, revealed a strong nighttime, vertical gradient with maximum values closest to the ground. The gradient disappeared during the daytime due to efficient vertical mixing.

  7. Serum amyloid A forms stable oligomers that disrupt vesicles at lysosomal pH and contribute to the pathogenesis of reactive amyloidosis

    PubMed Central

    Gantz, Donald L.; Haupt, Christian; Gursky, Olga

    2017-01-01

    Serum amyloid A (SAA) is an acute-phase plasma protein that functions in innate immunity and lipid homeostasis. SAA is a protein precursor of reactive AA amyloidosis, the major complication of chronic inflammation and one of the most common human systemic amyloid diseases worldwide. Most circulating SAA is protected from proteolysis and misfolding by binding to plasma high-density lipoproteins. However, unbound soluble SAA is intrinsically disordered and is either rapidly degraded or forms amyloid in a lysosome-initiated process. Although acidic pH promotes amyloid fibril formation by this and many other proteins, the molecular underpinnings are unclear. We used an array of spectroscopic, biochemical, and structural methods to uncover that at pH 3.5–4.5, murine SAA1 forms stable soluble oligomers that are maximally folded at pH 4.3 with ∼35% α-helix and are unusually resistant to proteolysis. In solution, these oligomers neither readily convert into mature fibrils nor bind lipid surfaces via their amphipathic α-helices in a manner typical of apolipoproteins. Rather, these oligomers undergo an α-helix to β-sheet conversion catalyzed by lipid vesicles and disrupt these vesicles, suggesting a membranolytic potential. Our results provide an explanation for the lysosomal origin of AA amyloidosis. They suggest that high structural stability and resistance to proteolysis of SAA oligomers at pH 3.5–4.5 help them escape lysosomal degradation, promote SAA accumulation in lysosomes, and ultimately damage cellular membranes and liberate intracellular amyloid. We posit that these soluble prefibrillar oligomers provide a missing link in our understanding of the development of AA amyloidosis. PMID:28743750

  8. Contribution of transition metals in the reactive oxygen species activity of PM emissions from retrofitted heavy-duty vehicles

    NASA Astrophysics Data System (ADS)

    Verma, Vishal; Shafer, Martin M.; Schauer, James J.; Sioutas, Constantinos

    2010-12-01

    We assessed the contribution of water-soluble transition metals to the reactive oxygen species (ROS) activity of diesel exhaust particles (DEPs) from four heavy-duty vehicles in five retrofitted configurations (V-SCRT, Z-SCRT, DPX, hybrid, and school bus). A heavy-duty truck without any control device served as the baseline vehicle. Particles were collected from all vehicle-configurations on a chassis dynamometer under three driving conditions: cruise (80 km h -1), transient UDDS, and idle. A sensitive macrophage-based in vitro assay was used to determine the ROS activity of collected particles. The contribution of water-soluble transition metals in the measured activity was quantified by their removal using a Chelex ® complexation method. The study demonstrates that despite an increase in the intrinsic ROS activity (per mass basis) of exhaust PM with use of most control technologies, the overall ROS activity (expressed per km or per h) was substantially reduced for retrofitted configurations compared to the baseline vehicle. Chelex treatment of DEPs water extracts removed a substantial (≥70%) and fairly consistent fraction of the ROS activity, which ascertains the dominant role of water-soluble metals in PM-induced cellular oxidative stress. However, relatively lower removal of the activity in few vehicle-configurations (V-SCRT, DPX and school bus idle), despite a large aggregate metals removal, indicated that not all species were associated with the measured activity. A univariate regression analysis identified several transition metals (Fe, Cr, Co and Mn) as significantly correlated ( R > 0.60; p < 0.05) with the ROS activity. Multivariate linear regression model incorporating Fe, Cr and Co explained 90% of variability in ROS levels, with Fe accounting for the highest (84%) fraction of the variance.

  9. Oxidative potential of ambient water-soluble PM2.5 measured by Dithiothreitol (DTT) and Ascorbic Acid (AA) assays in the southeastern United States: contrasts in sources and health associations

    NASA Astrophysics Data System (ADS)

    Fang, T.; Verma, V.; Bates, J. T.; Abrams, J.; Klein, M.; Strickland, M. J.; Sarnat, S. E.; Chang, H. H.; Mulholland, J. A.; Tolbert, P. E.; Russell, A. G.; Weber, R. J.

    2015-11-01

    The ability of certain components of particulate matter to induce oxidative stress through catalytic generation of reactive oxygen species (ROS) in vivo may be one mechanism accounting for observed linkages between ambient aerosols and adverse health outcomes. A variety of assays have been used to measure this so-called aerosol oxidative potential. We developed a semi-automated system to quantify oxidative potential of filter aqueous extracts utilizing the dithiothreitol (DTT) assay and have recently developed a similar semi-automated system using the ascorbic acid (AA) assay. Approximately 500 PM2.5 filter samples collected in contrasting locations in the southeastern US were analyzed using both assays. We found that water-soluble DTT activity on a per air volume basis was more spatially uniform than water-soluble AA activity. DTT activity was higher in winter than in summer/fall, whereas AA activity was higher in summer/fall compared to winter, with highest levels near highly trafficked highways. DTT activity was correlated with organic and metal species, whereas AA activity was correlated with water-soluble metals (especially water-soluble Cu, r=0.70-0.91 at most sites). Source apportionment models, Positive Matrix Factorization (PMF) and a Chemical Mass Balance Method with ensemble-averaged source impact profiles (CMB-E), suggest a strong contribution from secondary processes (e.g., organic aerosol oxidation or metal mobilization by formation of an aqueous particle with secondary acids) and traffic emissions to both DTT and AA activities in urban Atlanta. Biomass burning was a large source for DTT activity, but insignificant for AA. DTT activity was well correlated with PM2.5 mass (r=0.49-0.86 across sites/seasons), while AA activity did not co-vary strongly with mass. A linear model was developed to estimate DTT and AA activities for the central Atlanta Jefferson Street site, based on the CMB-E sources that are statistically significant with positive coefficients. The model was used to estimate oxidative potential at this site over the period 1998-2009. Time-series epidemiological analyses were conducted to assess daily emergency department (ED) visits data for the five-county Atlanta metropolitan area based on the estimated 10 year backcast oxidative potential. Results suggest that estimated DTT activity was associated with ED visits for both asthma/wheeze and congestive heart failure, while AA activity was not linked to any health outcomes. The findings point to the importance of both organic components and transition metals from biomass burning and mobile sources to adverse health outcomes in this region.

  10. TitaniQ recrystallized: experimental confirmation of the original Ti-in-quartz calibrations

    NASA Astrophysics Data System (ADS)

    Thomas, Jay B.; Watson, E. Bruce; Spear, Frank S.; Wark, D. A.

    2015-03-01

    Several studies have reported the P- T dependencies of Ti-in-quartz solubility, and there is close agreement among three of the four experimental calibrations. New experiments were conducted in the present study to identify potential experimental disequilibrium, and to determine which Ti-in-quartz solubility calibration is most accurate. Crystals of quartz, rutile and zircon were grown from SiO2-, TiO2-, and ZrSiO4-saturated aqueous fluids in an initial synthesis experiment at 925 °C and 10 kbar in a piston-cylinder apparatus. A range of quartz crystal sizes was produced in this experiment; both large and small examples were analyzed by electron microprobe to determine whether Ti concentrations are correlated with crystal size. Cathodoluminescence images and EPMA measurements show that intercrystalline and intracrystalline variations in Ti concentrations are remarkably small regardless of crystal size. The average Ti-in-quartz concentration from the synthesis experiment is 392 ± 1 ppmw Ti, which is within 95 % confidence interval of data from the 10 kbar isobar of Wark and Watson (Contrib Mineral Petrol 152:743-754, 2006) and Thomas et al. (Contrib Mineral Petrol 160:743-759, 2010). As a cross-check on the Ti-in-quartz calibration, we also measured the concentration of Zr in rutile from the synthesis experiment. The average Zr-in-rutile concentration is 4337 ± 32 ppmw Zr, which is also within the 95 % confidence interval of the Zr-in-rutile solubility calibration of Ferry and Watson (Contrib Mineral Petrol 154:429-437, 2007). The P- T dependencies of Ti solubility in quartz and Zr solubility in rutile were applied as a thermobarometer to the experimental sample. The average Ti-in-quartz isopleth calculated from the calibration of Thomas et al. (Contrib Mineral Petrol 160:743-759, 2010) and the average Zr-in-rutile isopleth calculated from the calibration of Tomkins et al. (J Metamorph Geol 25:703-713, 2007) cross at 9.5 kbar and 920 °C, which is in excellent agreement with the P- T conditions of the synthesis experiment. Separates of the high-Ti quartz from the initial synthesis experiment described above were used as starting material in subsequent experiments at 20 kbar, at which pressure the solubility of Ti in quartz is expected to be significantly lower in the recrystallized quartz. These recrystallization experiments were conducted under wet and dry conditions at 925 °C, and under wet conditions at 850 °C. Both wet and dry recrystallization experiments produced polycrystalline quartzites. Rutile occurs as inclusions in quartz, and as individual crystals dispersed along quartz grain boundaries. Quartz that grew during the recrystallization experiments has dark cathodoluminescence indicating substantially lower Ti concentrations. The average Ti concentrations in quartz from the recrystallization experiments are within the 95 % confidence interval of a linear fit to the 20 kbar data of Thomas et al. (Contrib Mineral Petrol 160:743-759, 2010). Collectively, the results from the synthesis and recrystallization experiments confirm that the Ti-in-quartz concentrations used to calibrate the P- T dependencies of Ti-in-quartz solubility in Thomas et al.'s (Contrib Mineral Petrol 160:743-759, 2010) calibration represent the equilibrium concentrations of Ti in quartz.

  11. Buparvaquone Nanostructured Lipid Carrier: Development of an Affordable Delivery System for the Treatment of Leishmaniases.

    PubMed

    Monteiro, Lis Marie; Löbenberg, Raimar; Cotrim, Paulo Cesar; Barros de Araujo, Gabriel Lima; Bou-Chacra, Nádia

    2017-01-01

    Buparvaquone (BPQ), a veterinary drug, was formulated as nanostructured lipid carriers (NLC) for leishmaniases treatment. The formulation design addressed poor water solubility of BPQ and lack of human drug delivery system. The DSC/TG and microscopy methods were used for solid lipids screening. Softisan® 154 showed highest BPQ solubility in both methods. The BPQ solubility in liquid lipids using HPLC revealed Miglyol® 812 as the best option. Response surface methodology (RSM) was used to identify the optimal Softisan154 : Miglyol 812 ratios (7 : 10 to 2 : 1) and Kolliphor® P188 and Tween® 80 concentration (>3.0% w/w) aiming for z -average in the range of 100-300 nm for macrophage delivery. The NLC obtained by high-pressure homogenization showed low z -averages (<350 nm), polydispersity (<0.3), and encapsulation efficiency close to 100%. DSC/TG and microscopy in combination proved to be a powerful tool to select the solid lipid. The relationship among the variables, demonstrated by a linear mathematical model using RSM, allowed generating a design space. This design space showed the limits in which changes in the variables influenced the z -average. Therefore, these drug delivery systems have the potential to improve the availability of affordable medicines due to the low cost of raw materials, using well established, reliable, and feasible scale-up technology.

  12. Tuning a physically-based model of the air-sea gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Jeffery, C. D.; Robinson, I. S.; Woolf, D. K.

    Air-sea gas transfer velocities are estimated for one year using a 1-D upper-ocean model (GOTM) and a modified version of the NOAA-COARE transfer velocity parameterization. Tuning parameters are evaluated with the aim of bringing the physically based NOAA-COARE parameterization in line with current estimates, based on simple wind-speed dependent models derived from bomb-radiocarbon inventories and deliberate tracer release experiments. We suggest that A = 1.3 and B = 1.0, for the sub-layer scaling parameter and the bubble mediated exchange, respectively, are consistent with the global average CO 2 transfer velocity k. Using these parameters and a simple 2nd order polynomial approximation, with respect to wind speed, we estimate a global annual average k for CO 2 of 16.4 ± 5.6 cm h -1 when using global mean winds of 6.89 m s -1 from the NCEP/NCAR Reanalysis 1 1954-2000. The tuned model can be used to predict the transfer velocity of any gas, with appropriate treatment of the dependence on molecular properties including the strong solubility dependence of bubble-mediated transfer. For example, an initial estimate of the global average transfer velocity of DMS (a relatively soluble gas) is only 11.9 cm h -1 whilst for less soluble methane the estimate is 18.0 cm h -1.

  13. A quantum chemistry study on surface reactivity of pristine and carbon-substituted AlN nanotubes

    NASA Astrophysics Data System (ADS)

    Mahdaviani, Amir; Esrafili, Mehdi D.; Esrafili, Ali; Behzadi, Hadi

    2013-09-01

    A density functional theory investigation was performed to predict the surface reactivity of pristine and carbon-substituted (6,0) single-walled aluminum nitride nanotubes (AlNNTs). The properties determined include the electrostatic potentials VS(r) and average local ionization energies ĪS(r) on the surfaces of the investigated tubes. According to computed VS(r) results, the Al/N atoms in edge or cap regions show a different reactivity pattern than those at the middle portion of the tubes. Due to the carbon-substitution at the either Al or N sites of the tubes, the negative regions associated with nitrogen atoms are stronger than before. The prediction of surface reactivity and regioselectivity using average local ionization energies has been verified by atomic hydrogen chemisorption energies calculated for AlNNTs at the B3LYP/6-31 G* level. There is an acceptable correlation between the minima of ĪS(r) and the atomic hydrogen chemisorption energies, demonstrating that ĪS(r) provides an effective means for rapidly and economically assessing the relative reactivities of finite sized AlNNTs.

  14. 2007 Global Demilitarization Symposium and Exhibition

    DTIC Science & Technology

    2007-05-17

    system! Defines reactive properties ! www.biorex.se Heavy metals • Water soluble • Easily spread • Elements • Not degradable • Hazardous • In high or low...Activated sludge Oat by-products Juniper fibre Sawdust Agro-based fibres Seaweed Grape stalk fibres Marine algae Husk of black gram www.biorex.se Sorbent...Description Reactor Illustration 18 inch diameter reactor 120 inches high Single diameter throughout entire reactor length 19 resistance heaters Alloy 600

  15. POLYMERIZATION AND COPOLYMERIZATION OF TETRACYANOETHYLENE UNDER THE EFFECT OF POLYMERS WITH A CONJUGATED SYSTEM,

    DTIC Science & Technology

    reactivity monomers such as tetracyanoethylene (I), anthracene, naphthacene and pentacene . I was polymerized alone or copolymerized with anthracene...naphthacene, or pentacene . Soluble fractions of polyphenylene or polyanthryl were used as the catalyst in various concentrations so as to vary the...magnitude as high as that of anthracene, and had an activation energy of 8-11 kcal/mol. Naphthacene, pentacene , and polyphenylene also copolymerized

  16. Lignin transformations and reactivity upon ozonation in aqueous media

    NASA Astrophysics Data System (ADS)

    Khudoshin, A. G.; Mitrofanova, A. N.; Lunin, V. V.

    2012-03-01

    The reaction of ozone with lignin in aqueous acidic solutions is investigated. The Danckwerst model is used to describe the kinetics of gas/liquid processes occurring in a bubble reactor. The efficient ozonation rate of a soluble lignin analog, sodium lignosulfate, is determined. The main lines of the reaction between ozone and lignin are revealed on the basis of kinetic analysis results and IR and UV spectroscopy data.

  17. Amyloid beta 25-35 impairs reconsolidation of object recognition memory in rats and this effect is prevented by lithium carbonate.

    PubMed

    Álvarez-Ruíz, Yarummy; Carrillo-Mora, Paul

    2013-08-26

    Previous studies in transgenic mice models of Alzheimer's disease (AD) have demonstrated an age dependent memory reconsolidation failure, suggesting that this may be an additional mechanism that contributes to the memory impairment observed in AD. However, so far it is unknown whether this effect can be caused by exogenous administration of amyloid beta (Aβ). The purpose was to determine the effects of soluble Aβ 25-35 on reconsolidation of object recognition memory (ORM) in rats, and assess whether these effects can be prevented by lithium carbonate (LiCa). In this study, male Wistar rats were used and the following groups were formed (N=6-13): (a) control, given saline solution; (b) [NMDA antagonist] MK-801 (0.1 mg/kg); (c) LiCa (350 mg/kg); (d) Aβ 25-35 (100 μM) injected into both hippocampi; and (e) Aβ 25-35+LiCa. In all cases, treatments were administered with or without reactivation of memory. The results showed that soluble Aβ 25-35 produces ORM impairment similar to MK-801 when given shortly after memory reactivation, and this effect is prevented by prior administration of LiCa. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Estradiol and Inflammatory Markers in Older Men

    PubMed Central

    Maggio, Marcello; Ceda, Gian Paolo; Lauretani, Fulvio; Bandinelli, Stefania; Metter, E. Jeffrey; Artoni, Andrea; Gatti, Elisa; Ruggiero, Carmelinda; Guralnik, Jack M.; Valenti, Giorgio; Ling, Shari M.; Basaria, Shehzad; Ferrucci, Luigi

    2009-01-01

    Background: Aging is characterized by a mild proinflammatory state. In older men, low testosterone levels have been associated with increasing levels of proinflammatory cytokines. It is still unclear whether estradiol (E2), which generally has biological activities complementary to testosterone, affects inflammation. Methods: We analyzed data obtained from 399 men aged 65–95 yr enrolled in the Invecchiare in Chianti study with complete data on body mass index (BMI), serum E2, testosterone, IL-6, soluble IL-6 receptor, TNF-α, IL-1 receptor antagonist, and C-reactive protein. The relationship between E2 and inflammatory markers was examined using multivariate linear models adjusted for age, BMI, smoking, physical activity, chronic disease, and total testosterone. Results: In age-adjusted analysis, log (E2) was positively associated with log (IL-6) (r = 0.19; P = 0.047), and the relationship was statistically significant (P = 0.032) after adjustments for age, BMI, smoking, physical activity, chronic disease, and serum testosterone levels. Log (E2) was not significantly associated with log (C-reactive protein), log (soluble IL-6 receptor), or log (TNF-α) in both age-adjusted and fully adjusted analyses. Conclusions: In older men, E2 is weakly positively associated with IL-6, independent of testosterone and other confounders including BMI. PMID:19050054

  19. Plasmatic Soluble Receptor for Advanced Glycation End Products as a New Oxidative Stress Biomarker in Patients with Prosthetic-Joint-Associated Infections?

    PubMed Central

    2017-01-01

    Prosthetic joint infection (PJI) is the most common cause of failure of total joint arthroplasty, but a gold standard for PJI diagnosis is still lacking. Advanced glycation end products (AGEs) are proinflammatory molecules inducing intracellular oxidative stress (OS) after binding to their cell membrane receptors (RAGE). The aim of this study was to evaluate plasmatic soluble receptor for advanced glycation end products (sRAGE), as a new OS and infection marker correlating sRAGE to the level of OS and antioxidant defenses, in PJI, in order to explore the possible application of this new biomarker in the early diagnosis of PJI. Plasmatic sRAGE levels (by ELISA assay), plasma antioxidant total defenses (by lag time method), plasma reactive oxygen species (ROS), and thiobarbituric acid reactive substance (TBARS) levels (by colorimetric assay) were evaluated in 11 PJI patients and in 30 matched controls. ROS and TBARS were significantly higher (p < 0.001) while plasma total antioxidant capacity and sRAGE were significantly lower (p < 0.01) in patients with PJI compared to controls. Our results confirm the OS in PJI and show a strong negative correlation between the level of sRAGE and oxidative status, suggesting the plasmatic sRAGE as a potential marker for improving PJI early diagnosis. PMID:29386700

  20. Plasmatic Soluble Receptor for Advanced Glycation End Products as a New Oxidative Stress Biomarker in Patients with Prosthetic-Joint-Associated Infections?

    PubMed

    Massaccesi, Luca; Bonomelli, Barbara; Marazzi, Monica Gioia; Drago, Lorenzo; Romanelli, Massimiliano Marco Corsi; Erba, Daniela; Papini, Nadia; Barassi, Alessandra; Goi, Giancarlo; Galliera, Emanuela

    2017-01-01

    Prosthetic joint infection (PJI) is the most common cause of failure of total joint arthroplasty, but a gold standard for PJI diagnosis is still lacking. Advanced glycation end products (AGEs) are proinflammatory molecules inducing intracellular oxidative stress (OS) after binding to their cell membrane receptors (RAGE). The aim of this study was to evaluate plasmatic soluble receptor for advanced glycation end products (sRAGE), as a new OS and infection marker correlating sRAGE to the level of OS and antioxidant defenses, in PJI, in order to explore the possible application of this new biomarker in the early diagnosis of PJI. Plasmatic sRAGE levels (by ELISA assay), plasma antioxidant total defenses (by lag time method), plasma reactive oxygen species (ROS), and thiobarbituric acid reactive substance (TBARS) levels (by colorimetric assay) were evaluated in 11 PJI patients and in 30 matched controls. ROS and TBARS were significantly higher ( p < 0.001) while plasma total antioxidant capacity and sRAGE were significantly lower ( p < 0.01) in patients with PJI compared to controls. Our results confirm the OS in PJI and show a strong negative correlation between the level of sRAGE and oxidative status, suggesting the plasmatic sRAGE as a potential marker for improving PJI early diagnosis.

  1. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolodosky, A.; Fratoni, M.

    2014-11-20

    Pre-conceptual fusion blanket designs require research and development to reflect important proposed changes in the design of essential systems, and the new challenges they impose on related fuel cycle systems. One attractive feature of using liquid lithium as the breeder and coolant is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. If the chemical reactivity of lithium could be overcome, the result would have a profound impact on fusion energy and associated safety basis.more » The overriding goal of this project is to develop a lithium-based alloy that maintains beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns. To minimize the number of alloy combinations that must be explored, only those alloys that meet certain nuclear performance metrics will be considered for subsequent thermodynamic study. The specific scope of this study is to evaluate the neutronics performance of lithium-based alloys in the blanket of an inertial confinement fusion (ICF) engine. The results of this study will inform the development of lithium alloys that would guarantee acceptable neutronics performance while mitigating the chemical reactivity issues of pure lithium.« less

  2. Soluble CD30 concentrations in ESRD patients with and without panel reactive HLA antibodies.

    PubMed

    Vaidya, Smita; Partlow, David; Barnes, Titus; Thomas, Phillip; Gugliuzza, Kristin

    2006-01-01

    In this retrospective study we compared accuracy of panel reactive antibodies (PRA) with serum soluble CD30 (sCD30) contents in predicting acute rejection crisis post-renal transplant. Pre-transplant sera from 115 patients were evaluated for their PRA and sCD30 concentrations. All patients received calcineurin inhibitor-based immunosuppressive therapy. Objective measurements for rejection were biopsy-proven acute rejection (AR) episodes within first six months of the transplant. Post-transplant sera of patients with AR were tested for the presence of donor-specific HLA antibodies (DSA). Overall AR rate was 16% (18/115). Patients positive for PRA and sCD30 tests were at significantly higher risk for AVR compared with those patients negative for both the tests (36% vs. 5%, p=0.01). Among negative PRA patients risk for AR was significantly elevated if they were also tested positive for sCD30 concentrations (21% vs. 5%, p=0.04). Of the 18 patients with AR, 14 were positive for sCD30, and 13 of them (93%) developed DSA post-transplant (p=0.001). These data showed that patients positive for sCD30 contents are at high risk for the development of DSA and AR post-transplant regardless of their pre-transplant PRA.

  3. Do intestinal parasites interfere with the seroepidemiologic surveillance of Schistosoma mansoni infection?

    PubMed Central

    Alarcón de Noya, B.; Colmenares, C.; Losada, S.; Fermin, Z.; Masroua, G.; Ruiz, L.; Soto, L.; Noya, O.

    1996-01-01

    In view of the known cross-reactivity of sera from patients with intestinal parasites to some Schistosoma mansoni antigens, field work was conducted in an area of Venezuela non-endemic for schistosomiasis using the routine immunoenzymatic assay (ELISA) with soluble egg antigen (SEA). False positive reactions represented 15.3% of the total population as determined by SEA-ELISA. SEA-immunoblotting of the false positive sera indicated that protein fractions of 91 and 80 kDa appear to be responsible for cross-reactivity. Sera from hookworm infected individuals produced a higher frequency and intensity of cross-reaction than other sera. SEA-fractions of 105, 54, 46, 42, 32, 25 and 15 kDa were the most specific. Images Fig. 2 PMID:8666077

  4. Polymerization reactivity of sulfomethylated alkali lignin modified with horseradish peroxidase.

    PubMed

    Yang, Dongjie; Wu, Xiaolei; Qiu, Xueqing; Chang, Yaqi; Lou, Hongming

    2014-03-01

    Alkali lignin (AL) was employed as raw materials in the present study. Sulfomethylation was conducted to improve the solubility of AL, while sulfomethylated alkali lignin (SAL) was further polymerized by horseradish peroxidase (HRP). HRP modification caused a significant increase in molecular weight of SAL which was over 20 times. It was also found to increase the amount of sulfonic and carboxyl groups while decrease the amount of phenolic and methoxyl groups in SAL. The adsorption quantity of self-assembled SAL film was improved after HRP modification. Sulfonation and HRP modification were mutually promoted. The polymerization reactivity of SAL in HRP modification was increased with its sulfonation degree. Meanwhile, HRP modification facilitated SAL's radical-sulfonation reaction. Copyright © 2014. Published by Elsevier Ltd.

  5. Solubility of some alkali and alkaline earth chlorides in water at moderate temperatures

    USGS Publications Warehouse

    Clynne, M.A.; Potter, R.W.

    1979-01-01

    Solubilities for the binary systems, salt-H2O, of the chlorides of lithium, rubidium, cesium, magnesium, calcium, strontium, and barium from near 0??C to the saturated boiling point are reported. The experimental data and coefficients of an equation for a smoothed curve describing each system are listed in the tables. The data are improvements on those previously reported in the literature, having a precision on the average of ??0.09%.

  6. Can land use intensification in the Mallee, Australia increase the supply of soluble iron to the Southern Ocean?

    PubMed Central

    Bhattachan, Abinash; D'Odorico, Paolo

    2014-01-01

    The supply of soluble iron through atmospheric dust deposition limits the productivity of the Southern Ocean. In comparison to the Northern Hemisphere, the Southern Hemisphere exhibits low levels of dust activity. However, given their proximity to the Southern Ocean, dust emissions from continental sources in the Southern Hemisphere could have disproportionate impact on ocean productivity. Australia is the largest source of dust in the Southern Hemisphere and aeolian transport of dust has major ecological, economic and health implications. In the Mallee, agriculture is a major driver of dust emissions and dust storms that affect Southeastern Australia. In this study, we assess the dust generating potential of the sediment from the Mallee, analyze the sediment for soluble iron content and determine the likely depositional region of the emitted dust. Our results suggest that the Mallee sediments have comparable dust generating potential to other currently active dust sources in the Southern Hemisphere and the dust-sized fraction is rich in soluble iron. Forward trajectory analyses show that this dust will impact the Tasman Sea and the Australian section of the Southern Ocean. This iron-rich dust could stimulate ocean productivity in future as more areas are reactivated as a result of land-use and droughts. PMID:25109703

  7. New investigations into the genotoxicity of cobalt compounds and their impact on overall assessment of genotoxic risk.

    PubMed

    Kirkland, David; Brock, Tom; Haddouk, Hasnaà; Hargeaves, Victoria; Lloyd, Melvyn; Mc Garry, Sarah; Proudlock, Raymond; Sarlang, Séverine; Sewald, Katherina; Sire, Guillaume; Sokolowski, Andrea; Ziemann, Christina

    2015-10-01

    The genotoxicity of cobalt metal and cobalt compounds has been widely studied. Several publications show induction of chromosomal aberrations, micronuclei or DNA damage in mammalian cells in vitro in the absence of S9. Mixed results were seen in gene mutation studies in bacteria and mammalian cells in vitro, and in chromosomal aberration or micronucleus assays in vivo. To resolve these inconsistencies, new studies were performed with soluble and poorly soluble cobalt compounds according to OECD-recommended protocols. Induction of chromosomal damage was confirmed in vitro, but data suggest this may be due to oxidative stress. No biologically significant mutagenic responses were obtained in bacteria, Tk(+/-) or Hprt mutation tests. Negative results were also obtained for chromosomal aberrations (in bone marrow and spermatogonia) and micronuclei at maximum tolerated doses in vivo. Poorly soluble cobalt compounds do not appear to be genotoxic. Soluble compounds do induce some DNA and chromosomal damage in vitro, probably due to reactive oxygen. The absence of chromosome damage in robust GLP studies in vivo suggests that effective protective processes are sufficient to prevent oxidative DNA damage in whole mammals. Overall, there is no evidence of genetic toxicity with relevance for humans of cobalt substances and cobalt metal. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Extractive biotransformation for production of metabolites of poorly soluble compounds: synthesis of 32-hydroxy-rifalazil.

    PubMed

    Mozhaev, Vadim V; Mozhaeva, Lyudmila V; Michels, Peter C; Khmelnitsky, Yuri L

    2008-10-01

    A novel reaction system was developed for the production of metabolites of poorly water-soluble parent compounds using mammalian liver microsomes. The system includes the selection and use of an appropriate hydrophobic polymeric resin as a reservoir for the hydrophobic parent compounds and its metabolites. The utility of the extractive biotransformation approach was shown for the production of a low-yielding, synthetically challenging 32-hydroxylated metabolite of the antibiotic rifalazil using mouse liver microsomes. To address the low solubility and reactivity of rifalazil in the predominantly aqueous microsomal catalytic system, a variety of strategies were tested for the enhanced delivery of hydrophobic substrates, including the addition of mild detergents, polyvinylpyrrolidone, glycerol, bovine serum albumin, and hydrophobic polymeric resins. The latter strategy was identified as the most suitable for the production of 32-hydroxy-rifalazil, resulting in up to 13-fold enhancement of the volumetric productivity compared with the standard aqueous system operating at the solubility limit of rifalazil. The production process was optimized for a wide range of reaction parameters; the most important for improving volumetric productivity included the type and amount of the polymeric resin, cofactor recycling system, concentrations of the biocatalyst and rifalazil, reaction temperature, and agitation rate. The optimized extractive biotransformation system was used to synthesize 32-hydroxy-rifalazil on a multimilligram scale.

  9. Hydroxylamine hydrochloride-acetic acid-soluble and -insoluble fractions of pelagic sediment: Readsorption revisited

    USGS Publications Warehouse

    Piper, D.Z.; Wandless, G.A.

    1992-01-01

    The extraction of the rare earth elements (REE) from deep-ocean pelagic sediment, using hydroxylamine hydrochloride-acetic acid, leads to the separation of approximately 70% of the bulk REE content into the soluble fraction and 30% into the insoluble fraction. The REE pattern of the soluble fraction, i.e., the content of REE normalized to average shale on an element-by-element basis and plotted against atomic number, resembles the pattern for seawater, whereas the pattern, as well as the absolute concentrations, in the insoluble fraction resembles the North American shale composite. These results preclude significant readsorption of the REE by the insoluble phases during the leaching procedure.

  10. Photochemical modeling of emissions trading of highly reactive volatile organic compounds in Houston, Texas. 2. Incorporation of chlorine emissions.

    PubMed

    Wang, Linlin; Thompson, Tammy; McDonald-Buller, Elena C; Allen, David T

    2007-04-01

    As part of the State Implementation Plan for attaining the National Ambient Air Quality Standard for ozone, the Texas Commission of Environmental Quality has created a Highly Reactive Volatile Organic Compounds (HRVOC) Emissions Cap and Trade Program for industrial point sources in the Houston/Galveston/Brazoria area. This series of papers examines the potential air quality impacts of this new emission trading program through photochemical modeling of potential trading scenarios; this paper examines the air quality impact of allowing facilities to trade chlorine emission reductions for HRVOC allocations on a reactivity weighted basis. The simulations indicate that trading of anthropogenic chlorine emission reductions for HRVOC allowances at a single facility or between facilities, in general, resulted in improvements in air quality. Decreases in peak 1-h averaged and 8-h averaged ozone concentrations associated with trading chlorine emissions for HRVOC allocations on a Maximum Incremental Reactivity (MIR) basis were up to 0.74 ppb (0.63%) and 0.56 ppb (0.61%), respectively. Air quality metrics based on population exposure decreased by up to 3.3% and 4.1% for 1-h and 8-h averaged concentrations. These changes are small compared to the maximum changes in ozone concentrations due to the VOC emissions from these sources (5-10 ppb for 8-h averages; up to 30 ppb for 1-h averages) and the chlorine emissions from the sources (5-10 ppb for maximum concentrations over wide areas and up to 70 ppb in localized areas). The simulations indicate that the inclusion of chlorine emissions in the trading program is likely to be beneficial to air quality and is unlikely to cause localized increases in ozone concentrations ("hot spots").

  11. Dissolved CO2 Increases Breakthrough Porosity in Natural Porous Materials.

    PubMed

    Yang, Y; Bruns, S; Stipp, S L S; Sørensen, H O

    2017-07-18

    When reactive fluids flow through a dissolving porous medium, conductive channels form, leading to fluid breakthrough. This phenomenon is caused by the reactive infiltration instability and is important in geologic carbon storage where the dissolution of CO 2 in flowing water increases fluid acidity. Using numerical simulations with high resolution digital models of North Sea chalk, we show that the breakthrough porosity is an important indicator of dissolution pattern. Dissolution patterns reflect the balance between the demand and supply of cumulative surface. The demand is determined by the reactive fluid composition while the supply relies on the flow field and the rock's microstructure. We tested three model scenarios and found that aqueous CO 2 dissolves porous media homogeneously, leading to large breakthrough porosity. In contrast, solutions without CO 2 develop elongated convective channels known as wormholes, with low breakthrough porosity. These different patterns are explained by the different apparent solubility of calcite in free drift systems. Our results indicate that CO 2 increases the reactive subvolume of porous media and reduces the amount of solid residual before reactive fluid can be fully channelized. Consequently, dissolved CO 2 may enhance contaminant mobilization near injection wellbores, undermine the mechanical sustainability of formation rocks and increase the likelihood of buoyance driven leakage through carbonate rich caprocks.

  12. Cross-Reactivity between Schistosoma mansoni Antigens and the Latex Allergen Hev b 7: Putative Implication of Cross-Reactive Carbohydrate Determinants (CCDs)

    PubMed Central

    Doenhoff, Michael J.; El-Faham, Marwa; Liddell, Susan; Fuller, Heidi R.; Stanley, Ronald G.; Schramm, Gabriele; Igetei, Joseph E.

    2016-01-01

    IgG antibodies produced by rabbits immunized against S. mansoni antigens cross-reacted with aqueous soluble constituents of a variety of allergens. The antibody cross-reactivity was largely sensitive to degradation by treatment of the target antigens with sodium meta-periodate, suggesting the cross-reactivity was due to carbohydrate determinants that were common to both the schistosome and the allergens (CCDs). The reaction between the rabbit antibodies and a 43 kDa molecule in a rubber latex extract was analysed further: tandem mass spectrometry identified the latex molecule as allergen Hev b 7. Rabbit anti-schistosome IgG antibodies purified by acid-elution from solid-phase latex Hev b 7 reacted with the S. mansoni egg antigens IPSE/alpha-1 and kappa-5 and cercarial antigens SPO-1 and a fatty acid-binding protein. Moreover, purified anti-S. mansoni egg, latex cross-reactive antibodies reacted with antigenic constituents of some fruits, a result of potential relevance to the latex-fruit syndrome of allergic reactions. We propose that IgG anti-schistosome antibodies that cross-react with allergens may be able to block IgE-induced allergic reactions and thus provide a possible explanation for the hygiene hypothesis. PMID:27467385

  13. Modeling the Kinetics of Contaminants Oxidation and the Generation of Manganese(III) in the Permanganate/Bisulfite Process.

    PubMed

    Sun, Bo; Dong, Hongyu; He, Di; Rao, Dandan; Guan, Xiaohong

    2016-02-02

    Permanganate can be activated by bisulfite to generate soluble Mn(III) (noncomplexed with ligands other than H2O and OH(-)) which oxidizes organic contaminants at extraordinarily high rates. However, the generation of Mn(III) in the permanganate/bisulfite (PM/BS) process and the reactivity of Mn(III) toward emerging contaminants have never been quantified. In this work, Mn(III) generated in the PM/BS process was shown to absorb at 230-290 nm for the first time and disproportionated more easily at higher pH, and thus, the utilization rate of Mn(III) for decomposing organic contaminant was low under alkaline conditions. A Mn(III) generation and utilization model was developed to get the second-order reaction rate parameters of benzene oxidation by soluble Mn(III), and then, benzene was chosen as the reference probe to build a competition kinetics method, which was employed to obtain the second-order rate constants of organic contaminants oxidation by soluble Mn(III). The results revealed that the second-order rate constants of aniline and bisphenol A oxidation by soluble Mn(III) were in the range of 10(5)-10(6) M(-1) s(-1). With the presence of soluble Mn(III) at micromolar concentration, contaminants could be oxidized with the observed rates several orders of magnitude higher than those by common oxidation processes, implying the great potential application of the PM/BS process in water and wastewater treatment.

  14. Benchscale Assessment of the Efficacy of a Reactive Core Mat to Isolate PAH-spiked Aquatic Sediments.

    PubMed

    Meric, Dogus; Barbuto, Sara; Sheahan, Thomas C; Shine, James P; Alshawabkeh, Akram N

    2014-01-01

    This paper describes the results of a benchscale testing program to assess the efficacy of a reactive core mat (RCM) for short term isolation and partial remediation of contaminated, subaqueous sediments. The 1.25 cm thick RCM (with a core reactive material such as organoclay with filtering layers on top and bottom) is placed on the sediment, and approximately 7.5 - 10 cm of overlying soil is placed on the RCM for stability and protection. A set of experiments were conducted to measure the sorption characteristics of the mat core (organoclay) and sediment used in the experiments, and to determine the fate of semi-volatile organic contaminants and non-reactive tracers through the sediment and reactive mat. The experimental study was conducted on naphthalene-spiked Neponset River (Milton, MA) sediment. The results show nonlinear sorption behavior for organoclay, with sorption capacity increasing with increasing naphthalene concentration. Neponset River sediment showed a notably high sorption capacity, likely due to the relatively high organic carbon fraction (14%). The fate and transport experiments demonstrated the short term efficiency of the reactive mat to capture the contamination that is associated with the post-capping period during which the highest consolidation-induced advective flux occurs, driving solid particles, pore fluid and soluble contaminants toward the reactive mat. The goal of the mat placement is to provide a physical filtering and chemically reactive layer to isolate contamination from the overlying water column. An important finding is that because of the high sorption capacity of the Neponset River sediment, the physical filtering capability of the mat is as critical as its chemical reactive capacity.

  15. Atmospheric deposition of beryllium in Central Europe: comparison of soluble and insoluble fractions in rime and snow across a pollution gradient.

    PubMed

    Bohdalkova, Leona; Novak, Martin; Voldrichova, Petra; Prechova, Eva; Veselovsky, Frantisek; Erbanova, Lucie; Krachler, Michael; Komarek, Arnost; Mikova, Jitka

    2012-11-15

    Little is known about atmospheric input of beryllium (Be) into ecosystems, despite its highly toxic behavior. For three consecutive winters (2009-2011), we measured Be concentrations in horizontal deposition (rime) and vertical deposition (snow) at 10 remote mountain-top locations in the Czech Republic, Central Europe. Beryllium was determined both in filtered waters, and in HF digests of insoluble particles. Across the sites, soluble Be concentrations in rime were 7 times higher, compared to snow (6.1 vs. 0.9ng·L(-1)). Rime scavenged the pollution-rich lower segments of clouds. The lowest Be concentrations were detected in the soluble fraction of snow. Across the sites, 34% of total Be deposition occurred in the form of soluble (bioavailable) Be, the rest were insoluble particles. Beryllium fluxes decreased in the order: vertical dry deposition insoluble>vertical dry deposition soluble>horizontal deposition soluble>vertical wet deposition insoluble>vertical wet deposition soluble>horizontal deposition insoluble. The average contributions of these Be forms to total deposition were 56, 21, 8, 7, 5 and 3%, respectively. Sites in the northeast were more Be-polluted than the rest of the country with sources of pollution in industrial Silesia. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. The effect of selenium on spoil suitability as root zone material at Navajo Mine, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, J.R.; Buchanan, B.A.; Ramsey, T.C.

    1995-09-01

    The root zone suitability limits for spoil Se at Navajo Mine in northwest New Mexico are currently 0.8 ppm total Se and 0.15 ppm hot-water soluble Se. These criteria were largely developed by the Office of Surface Mining using data from the Northern Great Plains. Applying these values, approximately 23% of the spoil volume and 47% of the spoil area sampled at Navajo Mine from 1985 to December 1993 were determined to be unsuitable as root zone material. Secondary Se accumulator plants (Atriplex canescens) growing in both undisturbed and reclaimed areas were randomly sampled for selenium from 1985 to Decembermore » 1993. In most cases the undisturbed soil and reclaimed spoil at these plant sampling sites were sampled for both total and hot-water soluble Se. Selenium values for Atriplex canescens samples collected on the undisturbed sites averaged 0.64 ppm and ranged from 0.20 ppm to 2.5 ppm. Selenium values for the plants growing on spoil ranged from 0.02 ppm to 7.75 ppm and averaged 1.07 ppm. Total and hot-water Se values for spoil averaged 0.66 ppm and 0.06 ppm respectively, and ranged from 0.0 to 14.2 for total Se and 0.0 ppm to 0.72 ppm for hot-water soluble Se. The plant Se values were poorly correlated to both total and hot-water soluble Se values for both soil and spoil. Therefore, predicting suitable guidelines using normal regression techniques was ineffective. Based on background Se levels in native soils, and levels found on reclaimed areas with Atriplex canescens, it is suggested that a total Se level of 2.0 ppm and a hot-water soluble Se level of 0.25 ppm should be used to represent the suitability limits for Se at Navajo Mine. If these Se values are used, it is estimated that less than 1% of the spoil volume would be unsuitable. This volume of spoil seems to be a more accurate estimate of the amount of spoil with unsuitable levels of Se than the estimated 23% using the current guidelines.« less

  17. Biopharmaceutical characterisation of ciprofloxacin-metallic ion interactions: comparative study into the effect of aluminium, calcium, zinc and iron on drug solubility and dissolution.

    PubMed

    Stojković, Aleksandra; Tajber, Lidia; Paluch, Krzysztof J; Djurić, Zorica; Parojčić, Jelena; Corrigan, Owen I

    2014-03-01

    Ciprofloxacin bioavailability may be reduced when ciprofloxacin is co-administered with metallic ion containing preparations. In our previous study, physicochemical interaction between ciprofloxacin and ferrous sulphate was successfully simulated in vitro. In the present work, comparative in vitro ciprofloxacin solubility and dissolution studies were performed in the reactive media containing aluminium hydroxide, calcium carbonate or zinc sulphate. Solid phases collected from the dissolution vessel with aluminium hydroxide, calcium carbonate and zinc sulphate were investigated for their properties. The results obtained indicate that different types of adducts may form and retard ciprofloxacin solubility and dissolution. In the case of aluminium, no phase changes were observed. The solid phase generated in the presence of calcium carbonate was identified as hydrated ciprofloxacin base. Similarly to iron, a new complex consistent with Zn(SO4)2(Cl)2(ciprofloxacin)2 × nH2O stoichiometry was generated in the presence of relatively high concentrations of ciprofloxacin hydrochloride and zinc sulphate, indicating that small volume dissolution experiments can be useful for biorelevant dissolution tests.

  18. Candida albicans-induced inflammatory response in human keratinocytes.

    PubMed

    Wollina, U; Künkel, W; Bulling, L; Fünfstück, C; Knöll, B; Vennewald, I; Hipler, U-C

    2004-06-01

    Candida albicans strains 3153a, ATCC 48867, CBS 2730, DSM 70014, and Vir 13 were cultivated and sterile C. albicans filtrates were produced. The interaction of soluble Candida factors of these infiltrates with human HaCaT keratinocytes was assayed in vitro. The following parameters were analyzed: cell proliferation, protein synthesis, nuclear matrix protein (NMP) 41 release, cytokine release (IL-1beta, soluble IL-2 receptor, IL-6, and IL-8), and reactive oxygen species (ROS). Cell counts at 1, 12, and 24 h were significantly lower for C. albicans strains CBS 2730 and VIR 13 (P < 0.05). There was no significant change for the remaining strains. Neither the protein synthesis nor the NMP-41 release was significantly affected. IL-6 and IL-8 were stimulated by C. albicans filtrates to different amounts with higher levels in strains of low virulence. There was no effect on the other cytokines. The production of ROS by HaCaT keratinocytes was suppressed. The induction of an inflammatory keratinocyte response by soluble C. albicans factors may play a role among the host-yeast interactions.

  19. Study on great northern beans (Phaseolus vulgaris): effect of drum drying process on bean flour properties and effect on gamma radiation on bean starch properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rayas-Solis, P.

    Great Northern bean (Phaseolus vulgaris L.) drum dried flours at native pH of 6.54, pH 6 and 7 showed reduced activities of trypsin inhibitor, ..cap alpha..-amylase inhibitor, hemagglutinating titer, and nitrogen solubility. Electrophoretic analyses showed a slight modification of the native bean proteins, and the presence of at least four trypsin inhibitors. The study of the effect of 2.5-20 kGy irradiation doses on Great Northern beans showed essentially no modification of the electrophoretic mobility of the storage proteins or the trypsin inhibitors. Nitrogen solubility and hemagglutinating activity were essentially unchanged. With the 20 kGy dose, decrease in ..cap alpha..-amylase inhibitormore » activity, decrease reactive/available lysine content, and decrease cooking time of the irradiated beans after 11 months of storage were observed. Taste panel results indicated that the control and 20 kGy irradiated bean were significantly different at 5% level. At 20 kGy dose, the beans developed a partially water soluble brown color.« less

  20. Versatile Organic Chemistry on Vanadium-Based Multi-Electron Reservoirs.

    PubMed

    Nachtigall, Olaf; Spandl, Johann

    2018-02-21

    We report the synthesis, post-functionalization, and redox behavior of two organically functionalized aggregates, [V 6 O 7 (OMe) 9 {(OCH 2 ) 3 C-CH 2 N 3 }] and [V 6 O 7 (OMe) 9 {(OCH 2 ) 3 C-NH 2 }]. All twelve μ 2 -oxo groups on the edges of the Lindqvist-type {V 6 O 19 } core were replaced by alkoxo ligands. The absence of a negative charge and the closed organic shell make these neutral mixed-valence compounds very stable towards hydrolysis and well soluble in almost all common organic solvents. These are important advantages over classical POMs. By post-functionalization through copper(I)-catalyzed Huisgen cycloaddition or imine formation, various organic moieties could be introduced. Even a well-soluble trimer composed of three hexanuclear vanadium units connected through an aromatic triimino core was synthesized and studied. The diverse redox behavior, the versatile reactivity, the good stability, and the excellent solubility make our vanadium compounds highly interesting for applications as building blocks in macromolecular chemistry as well as redox labels in biochemistry. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Circulating soluble LIGHT/TNFSF14 is increased and associated with IL-8 concentration in chronic spontaneous urticaria.

    PubMed

    Kasperska-Zając, Alicja; Damasiewicz-Bodzek, Aleksandra; Grzanka, Ryszard; Skrzypulec-Frankel, Agnieszka; Bieniek, Katarzyna; Sikora-Żydek, Agnieszka; Jochem, Jerzy

    2018-01-01

    LIGHT (homologous to lymphotoxins, exhibiting inducible expression, and competing with herpes simplex virus (HSV) glycoprotein D for herpes virus entry mediator (HVEM), a receptor expressed by T lymphocytes) has been involved in various autoimmune and inflammatory disorders. LIGHT induces the expression of interleukin-8 (IL-8), which is up-regulated in chronic spontaneous urticaria (CSU). To determine circulating soluble LIGHT concentration and its relationship with IL-8 concentration in patients with CSU. Concentrations of LIGHT, IL-8, and C-reactive protein (CRP) were determined in plasma or serum of CSU patients by an enzyme-linked immunosorbent assay. LIGHT plasma concentration was significantly higher in moderate-severe CSU patients as compared with the healthy subjects, but not with mild CSU patients. There were significant correlations between increased LIGHT and IL-8 concentrations, but not with increased CRP in CSU patients. Enhanced plasma concentrations of soluble LIGHT and its association with IL-8 concentration suggest the role of LIGHT in systemic inflammatory activation in CSU patients. We hypothesize that LIGHT-mediated immune-inflammatory response plays a role in severe phenotypes of the disease.

  2. In Vitro and In Vivo Demonstration of Human-Ovarian-Cancer Necrosis through a Water-Soluble and Near-Infrared-Absorbing Chlorin.

    PubMed

    Marydasan, Betsy; Madhuri, Bollapalli; Cherukommu, Shirisha; Jose, Jedy; Viji, Mambattakkara; Karunakaran, Suneesh C; Chandrashekar, Tavarekere K; Rao, Kunchala Sridhar; Rao, Ch Mohan; Ramaiah, Danaboyina

    2018-06-14

    With the objective of developing efficient sensitizers for therapeutic applications, we synthesized a water-soluble 5,10,15,20-tetrakis(3,4-dihydroxyphenyl)chlorin (TDC) and investigated its in vitro and in vivo biological efficacy, comparing it with the commercially available sensitizers. TDC showed high water solubility (6-fold) when compared with that of Foscan and exhibited excellent triplet-excited-state (84%) and singlet-oxygen (80%) yields. In vitro photobiological investigations in human-ovarian-cancer cell lines SKOV-3 showed high photocytotoxicity, negligible dark toxicity, rapid cellular uptake, and specific localization of TDC in neoplastic cells as assessed by flow-cytometric cell-cycle and propidium iodide staining analysis. The photodynamic effects of TDC include confirmed reactive-oxygen-species-induced mitochondrial damage leading to necrosis in SKOV-3 cell lines. The in vivo photodynamic activity in nude-mouse models demonstrated abrogation of tumor growth without any detectable pathology in the skin, liver, spleen, or kidney, thereby demonstrating TDC application as an efficient and safe photosensitizer.

  3. The allergens of Schistosoma mansoni

    PubMed Central

    Harris, W. G.

    1973-01-01

    Ten antigen fractions were prepared from adult Schistosoma mansoni by extraction into borate-buffered saline, precipitation at pH 4.6 and separation on Sephadex G-100. The allergic activity of these antigens was assayed by a modified Prausnitz—Kustner type reaction in rats; this test system was found to be sensitive and consistent, allowing differences in allergenicity between antigens to be accurately assessed. Skin-reactivity was detected in both acid-soluble and acid-insoluble fractions. Specific allergenicity was located in peak 3 of a G-100 separation of the acid-soluble fraction and in peaks 1 and 2 of a G-100 separation of the acid-insoluble fraction suggesting that the allergens of S. mansoni were of at least two types: (1) a protein of mol. wt above 150,000 precipitated at pH 4.6, and (2) a protein of mol. wt 20–30,000 remaining in solution at this pH. It is suggested that both these allergens are glycoproteins. Non-specific histamine-releasing agents were found in peak 1 of the G-100 separation of the acid-soluble material. ImagesFIG. 1 PMID:4122335

  4. Isolation and characterization of a novel human scFv inhibiting EGFR vIII expressing cancers.

    PubMed

    Rahbarnia, Leila; Farajnia, Safar; Babaei, Hossein; Majidi, Jafar; Dariushnejad, Hassan; Hosseini, Mohammad Kazem

    2016-12-01

    EGFRvIII, a mutant form of epidermal growth factor receptor is highly expressed in glioblastoma, carcinoma of the breast, ovary, and lung but not in normal cells. This tumor specific antigen has emerged as a promising candidate for antibody based therapy of several cancers. The aim of the present study was isolation and characterization of a human single chain antibody against EGFRvIII as a promising target for cancer therapy. For this, a synthetic peptide corresponding to EGFRvIII protein was used for screening the naive human scFv phage library. Selection was performed using a novel screening strategy for enrichment of rare specific clones. After five rounds of screening, six positive scFv clones against EGFRvIII were selected using monoclonal phage ELISA, among them, a clone with an amber mutation in VH CDR2 coding sequence showed higher reactivity. The mutation was corrected through site directed mutagenesis and then scFv fragment was expressed after subcloning into the bacterial expression vector. Expression in BL21 pLysS resulted in a highly soluble scFv appeared in soluble fraction of E. coli lysate. Bioinformatic in silico analysis between scFv and EGFRvIII sequences confirmed specific binding of desired scFv to EGFRvIII in CDR regions. The specific reactivity of the purified scFv with native EGFRvIII was confirmed by cell based ELISA and western blot. In conclusion, human anti- EGFRvIII scFv isolated from a scFv phage library displayed high reactivity with EGFRvIII. The scFv isolated in this study can be the groundwork for developing more effective diagnostic and therapeutic agents against EGFRvIII expressing cancers. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  5. Meal-induced platelet activation in Type 2 diabetes mellitus: effects of treatment with repaglinide and glibenclamide.

    PubMed

    Yngen, M; Ostenson, C-G; Hjemdahl, P; Wallén, N H

    2006-02-01

    To compare the effects of treatment with repaglinide and glibenclamide on platelet function and endothelial markers in patients with Type 2 diabetes mellitus, before and after a standardized meal. Fifteen patients with Type 2 diabetes were investigated on three occasions: at baseline without oral hypoglycaemic drug treatment, and after 6 weeks' treatment with repaglinide or glibenclamide, respectively, in an open randomized cross-over study. Agonist-induced platelet P-selectin expression and platelet aggregation, urinary thromboxane, soluble P-selectin, von Willebrand factor (VWF), soluble E-selectin, intercellular adhesion molecule (ICAM-1) and C-reactive protein (CRP) were measured. In addition, pre-meal data were compared with non-diabetic control subjects (n = 15), matched for sex, age and BMI. Adenosine diphosphate (ADP)-induced platelet P-selectin expression increased post-meal in Type 2 diabetic patients both at baseline and after treatment with repaglinide and glibenclamide (P < 0.01 for all; repeated measures anova). Repaglinide treatment reduced fasting ADP-induced P-selectin expression compared with baseline (P = 0.01), but did not influence meal-induced platelet hyper-reactivity (P = 0.32). No significant anti-platelet effects of glibenclamide treatment were found. Plasma concentrations of VWF and ICAM-1 were elevated in patients with Type 2 diabetes compared with control subjects (P < 0.05 for both) and were reduced during treatment with repaglinide (P < 0.01 for both) but did not change during glibenclamide treatment. The post-meal state is associated with enhanced platelet reactivity in patients with Type 2 diabetes mellitus. Pre-meal treatment with repaglinide or glibenclamide does not inhibit postprandial platelet activation, but repaglinide treatment is associated with attenuated platelet and endothelial activity in the fasting state.

  6. Fat-soluble Vitamin Deficiencies and Inflammatory Bowel Disease: Systematic Review and Meta-Analysis.

    PubMed

    Fabisiak, Natalia; Fabisiak, Adam; Watala, Cezary; Fichna, Jakub

    Vitamin deficiency is frequently associated with inflammatory bowel disease (IBD). Supplementation of vitamins could thus serve as an adjunctive therapy. The present meta-analysis reviews the deficiencies and alterations in serum fat-soluble vitamins (A, D, E, and K) reported in IBD patients. PubMed database search was performed to identify all primary studies up to January 2015 that evaluated the serum concentrations of fat-soluble vitamin levels in IBD patients compared with healthy individuals. We estimated pooled mean differences between groups and estimated their relations with some compounding variables (age, disease duration, C-reactive protein, albumin), using a meta-regression analysis. Nineteen case-control studies met selection criteria. In patients with Crohn's disease (CD), vitamin A, D, E, K status was lower than in controls [D=212 μg/L.92; 95% confidence interval (CI), 95.36-330.48 μg/L, P=0.0002; D=6.97 nmol/L, 95% CI, 1.61-12.32 nmol/L, P=0.01; D=4.72 μmol/L, 95% CI, 1.60-7.84 μmol/L, P=0.003; D=1.46 ng/mL, 95% CI, 0.48-2.43 ng/mL, P=0.003, respectively]. Patients with ulcerative colitis had lower levels of vitamin A than controls (D=223.22 μg/L, 95% CI, 44.32-402.12 μg/L, P=0.01). Patients suffering from CD for a longer time had lower levels of vitamins A (95% CI=7.1-67.58 y, P=0.02) and K (95% CI, 0.09-0.71 y, P=0.02). Meta-regression analysis demonstrated statistically significant associations between the levels of inflammatory biomarkers: C-reactive protein (P=0.03, 95% CI, -9.74 to -0.6 mgl/L) and albumin (P=0.0003, 95% CI, 402.76-1361.98 g/dL), and vitamin A status in CD patients. Our meta-analysis shows that the levels of fat-soluble vitamins are generally lower in patients with inflammatory bowel diseases and their supplementation is undoubtedly indicated.

  7. Scavenging of reactive oxygen species and prevention of oxidative neuronal cell damage by a novel gallotannin, pistafolia A.

    PubMed

    Wei, Taotao; Sun, Handong; Zhao, Xingyu; Hou, Jingwu; Hou, Aijun; Zhao, Qinshi; Xin, Wenjuan

    2002-03-08

    Pistafolia A is a novel gallotannin isolated from the leaf extract of Pistacia weinmannifolia. In the present investigation, the ability of Pistafolia A to scavenge reactive oxygen species including hydroxyl radicals and superoxide anion was measured by ESR spin trapping technique. The inhibition effect on iron-induced lipid peroxidaiton in liposomes was studied. The protective effects of Pistafolia A against oxidative neuronal cell damage and apoptosis induced by peroxynitrite were also assessed. The results showed that Pistafolia A could scavenge both hydroxyl radicals and superoxide anion dose-dependently and inhibit lipid peroxidation effectively. In cerebellar granule cells pretreated with Pistafolia A, peroxynitrite-induced oxidative neuronal damage and apoptosis were prevented markedly. The antioxidant capacity of Pistafolia A was much more potent then that of the water-soluble analog of vitamin E, Trolox. The results suggested that Pistafolia A might be used as an effective natural antioxidant for the prevention and cure of neuronal diseases associated with the production of peroxynitrite and related reactive oxygen species.

  8. Reactivation of Escherichia coli cells, inactivated by ultraviolet rays, with cell extracts of propionic acid bacteria: Fractionation of the extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorob`eva, L.I.; Khodzhaev, E.Yu.; Ponomareva, G.M.

    1995-01-01

    Separation of Propionibacterium shermanii extract into fractions and testing them for their reactivating effect on UV-inactivated Escherichia coli AB-1157 cells showed that the activity was associated with the fraction of soluble proteins. The activity was not demonstrated in the fractions of RNA, DNA, ribosomes, or cell walls. Fractional salting out and subsequent testing of the fractions showed two active protein fractions: fraction I (20-40% of ammonium sulfate saturating concentration) and fraction II (60-80%). These fractions were separated by HPLC into seven and eight subfractions, respectively. Reactivating activity was showed in subfraction 4 (fraction I) and subfractions 5 and 6 (fractionmore » II). Electrophoresis showed five and four polypeptides in subfractions 4 and 5, respectively. Subfraction 6 (fraction II) contained one protein with a molecular mass of about 30 kDa. This protein, apparently, was responsible for the protective properties of fraction II. 9 refs., 2 figs., 4 tabs.« less

  9. Species difference in reactivity to lignin-like enzymatically polymerized polyphenols on interferon-γ synthesis and involvement of interleukin-2 production in mice.

    PubMed

    Yamanaka, Daisuke; Ishibashi, Ken-Ichi; Adachi, Yoshiyuki; Ohno, Naohito

    2016-09-01

    Recent studies have revealed that lignin-like polymerized polyphenols can activate innate immune systems. In this study, we aimed to evaluate whether these polymerized polyphenols could activate leukocytes from different murine strains. Splenocytes from 12 mouse strains were investigated. Our results revealed species differences in reactivity to phenolic polymers on interferon-γ (IFN-γ) release. Mice that possessed the H2(a) or H2(k) haplotype antigens were the highly responsive strains. To clarify these different points in soluble factors, multiplex cytokine profiling analysis was carried out and we identified interleukin (IL)-2 as a key molecule for IFN-γ induction by polymerized polyphenols. Furthermore, inhibition of IL-2 and IL-2Rα by neutralizing antibodies significantly decreased cytokine production in the highly responsive mice strains. Our results indicate that species difference in reactivity to phenolic polymers is mediated by adequate release of IL-2 and its receptor, IL-2Rα. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. New Fukui, dual and hyper-dual kernels as bond reactivity descriptors.

    PubMed

    Franco-Pérez, Marco; Polanco-Ramírez, Carlos-A; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2017-06-21

    We define three new linear response indices with promising applications for bond reactivity using the mathematical framework of τ-CRT (finite temperature chemical reactivity theory). The τ-Fukui kernel is defined as the ratio between the fluctuations of the average electron density at two different points in the space and the fluctuations in the average electron number and is designed to integrate to the finite-temperature definition of the electronic Fukui function. When this kernel is condensed, it can be interpreted as a site-reactivity descriptor of the boundary region between two atoms. The τ-dual kernel corresponds to the first order response of the Fukui kernel and is designed to integrate to the finite temperature definition of the dual descriptor; it indicates the ambiphilic reactivity of a specific bond and enriches the traditional dual descriptor by allowing one to distinguish between the electron-accepting and electron-donating processes. Finally, the τ-hyper dual kernel is defined as the second-order derivative of the Fukui kernel and is proposed as a measure of the strength of ambiphilic bonding interactions. Although these quantities have never been proposed, our results for the τ-Fukui kernel and for τ-dual kernel can be derived in zero-temperature formulation of the chemical reactivity theory with, among other things, the widely-used parabolic interpolation model.

  11. Impact of fog processing on water soluble organic aerosols.

    NASA Astrophysics Data System (ADS)

    Tripathi, S. N.; Chakraborty, A.; Gupta, T.

    2017-12-01

    Fog is a natural meteorological phenomenon that occurs all around the world, and contains a substantial quantity of liquid water. Fog is generally seen as a natural cleansing agent but can also form secondary organic aerosols (SOA) via aqueous processing of ambient organics. Few field studies have reported elevated O/C ratio and SOA mass during or after fog events. However, mechanism behind aqueous SOA formation and its contribution to total organic aerosols (OA) still remains unclear. In this study we have tried to explore the impact of fog/aqueous processing on the characteristics of water soluble organic aerosols (WSOC), which to our knowledge has not been studied before. To assess this, both online (using HR-ToF-AMS) and offline (using a medium volume PM2.5 sampler and quartz filter) aerosol sampling were carried out at Kanpur, India from 15 December 2014 - 10 February 2015. Further, offline analysis of the aqueous extracts of the collected filters were carried out by AMS to characterize the water soluble OA (WSOA). Several (17) fog events occurred during the campaign and high concentrations of OA (151 ± 68 µg/m3) and WSOA (47 ± 19 µg/m3) were observed. WSOA/OA ratios were similar during fog (0.36 ± 0.14) and nofog (0.34 ± 0.15) periods. WSOA concentrations were also similar (slightly higher) during foggy (49 ± 18 µg/m3) and non-foggy periods (46 ± 20 µg/m3), in spite of fog scavenging. However, WSOA was more oxidized during foggy period (average O/C = 0.81) than non foggy periods (average O/C = 0.70). Like WSOA, OA was also more oxidized during foggy periods (average O/C = 0.64) than non foggy periods (average O/C = 0.53). During fog, WSOA to WIOA (water insoluble OA) ratios were higher (0.65 ± 0.16) compared to non foggy periods (0.56 ± 0.15). These observations clearly showed that WSOA become more dominant and processed during fog events, possibly due to the presence of fog droplets. This study highlights that fog processing of soluble organics can affect the overall chemical characteristics of the entire aerosol population.

  12. Iron‐Based Electrodes Meet Water‐Based Preparation, Fluorine‐Free Electrolyte and Binder: A Chance for More Sustainable Lithium‐Ion Batteries?

    PubMed Central

    Liivat, Anti; Eriksson, Henrik; Tai, Cheuk‐Wai; Edström, Kristina

    2017-01-01

    Abstract Environmentally friendly and cost‐effective Li‐ion cells are fabricated with abundant, non‐toxic LiFePO4 cathodes and iron oxide anodes. A water‐soluble alginate binder is used to coat both electrodes to reduce the environmental footprint. The critical reactivity of LiPF6‐based electrolytes toward possible traces of H2O in water‐processed electrodes is overcome by using a lithium bis(oxalato)borate (LiBOB) salt. The absence of fluorine in the electrolyte and binder is a cornerstone for improved cell chemistry and results in stable battery operation. A dedicated approach to exploit conversion‐type anodes more effectively is also disclosed. The issue of large voltage hysteresis upon conversion/de‐conversion is circumvented by operating iron oxide in a deeply lithiated Fe/Li2O form. Li‐ion cells with energy efficiencies of up to 92 % are demonstrated if LiFePO4 is cycled versus such anodes prepared through a pre‐lithiation procedure. These cells show an average energy efficiency of approximately 90.66 % and a mean Coulombic efficiency of approximately 99.65 % over 320 cycles at current densities of 0.1, 0.2 and 0.3 mA cm−2. They retain nearly 100 % of their initial discharge capacity and provide an unmatched operation potential of approximately 2.85 V for this combination of active materials. No occurrence of Li plating was detected in three‐electrode cells at charging rates of approximately 5C. Excellent rate capabilities of up to approximately 30C are achieved thanks to the exploitation of size effects from the small Fe nanoparticles and their reactive boundaries. PMID:28296133

  13. A Global Assessment of Rain-Dissolved Organic Carbon

    NASA Astrophysics Data System (ADS)

    Safieddine, S.; Heald, C. L.

    2017-12-01

    Precipitation is the largest physical removal pathway of atmospheric organic carbon from the atmosphere. The removed carbon is transferred to the land and ocean in the form of dissolved organic carbon (DOC). Limited measurements have hindered efforts to characterize global DOC. In this poster presentation, we show the first simulated global DOC distribution based on a GEOS-Chem model simulation of the atmospheric reactive carbon budget. Over the ocean, simulated DOC concentrations are between 0.1 to 1 mgCL-1 with a total of 85 TgCyr-1 deposited. DOC concentrations are higher inland, ranging between 1 and 10 mgCL-1, producing a total of 188 TgCyr-1 terrestrial organic wet deposition. We compare the 2010 simulated DOC to a 30-year synthesis of available DOC measurements over different environments. Despite imperfect matching of observational and simulated time intervals, the model is able to reproduce much of the spatial variability of DOC (r= 0.63), with a low bias of 35%. We compare the global average carbon oxidation state (OSc) of both atmospheric and dissolved organic carbon, as a simple metric for describing the chemical composition of organics. In the global atmosphere reactive organic carbon (ROC) is dominated by hydrocarbons and ketones, and OSc, ranges from -1.8 to -0.6. In the dissolved form, formaldehyde, formic acid, primary and secondary semi-volatiles organic aerosol dominate the DOC concentrations. The increase in solubility upon oxidation leads to a global increase in OSc in rainwater with -0.6<=OSc <=0. This simulation provides new insight into the current model representation of the flow of atmospheric and rain-dissolved organic carbon, and new opportunities to use observations and simulations to understand the DOC reaching land and ocean.

  14. Intra-/inter-laboratory validation study on reactive oxygen species assay for chemical photosafety evaluation using two different solar simulators.

    PubMed

    Onoue, Satomi; Hosoi, Kazuhiro; Toda, Tsuguto; Takagi, Hironori; Osaki, Naoto; Matsumoto, Yasuhiro; Kawakami, Satoru; Wakuri, Shinobu; Iwase, Yumiko; Yamamoto, Toshinobu; Nakamura, Kazuichi; Ohno, Yasuo; Kojima, Hajime

    2014-06-01

    A previous multi-center validation study demonstrated high transferability and reliability of reactive oxygen species (ROS) assay for photosafety evaluation. The present validation study was undertaken to verify further the applicability of different solar simulators and assay performance. In 7 participating laboratories, 2 standards and 42 coded chemicals, including 23 phototoxins and 19 non-phototoxic drugs/chemicals, were assessed by the ROS assay using two different solar simulators (Atlas Suntest CPS series, 3 labs; and Seric SXL-2500V2, 4 labs). Irradiation conditions could be optimized using quinine and sulisobenzone as positive and negative standards to offer consistent assay outcomes. In both solar simulators, the intra- and inter-day precisions (coefficient of variation; CV) for quinine were found to be below 10%. The inter-laboratory CV for quinine averaged 15.4% (Atlas Suntest CPS) and 13.2% (Seric SXL-2500V2) for singlet oxygen and 17.0% (Atlas Suntest CPS) and 7.1% (Seric SXL-2500V2) for superoxide, suggesting high inter-laboratory reproducibility even though different solar simulators were employed for the ROS assay. In the ROS assay on 42 coded chemicals, some chemicals (ca. 19-29%) were unevaluable because of limited solubility and spectral interference. Although several false positives appeared with positive predictivity of ca. 76-92% (Atlas Suntest CPS) and ca. 75-84% (Seric SXL-2500V2), there were no false negative predictions in both solar simulators. A multi-center validation study on the ROS assay demonstrated satisfactory transferability, accuracy, precision, and predictivity, as well as the availability of other solar simulators. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability.

    PubMed

    Turner, Andrew; Mawji, Edward

    2005-05-01

    The lipid-like, amphiphilic solvent, n-octanol, has been used to determine a hydrophobic fraction of dissolved and particulate trace metals (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) in contaminated rivers. In a sample from the River Clyde, southwest Scotland, octanol-solubility was detected for all dissolved metals except Co, with conditional octanol-water partition coefficients, D(ow), ranging from about 0.2 (Al and Cu) to 1.25 (Pb). In a sample taken from the River Mersey, northwest England, octanol-solubility was detected for dissolved Al and Pb, but only after sample aliquots had been spiked with individual ionic metal standards and equilibrated. Spiking of the River Clyde sample revealed competition among different metals for hydrophobic ligands. Metal displacement from hydrophobic complexes was generally most significant following the addition of ionic Al or Pb, although the addition of either of these metals had little effect on the octanol-solubility of the other. In both river water samples hydrophobic metals were detected on the suspended particles retained by filtration following their extraction in n-octanol. In general, particulate Cu and Zn (up to 40%) were most available, and Al, Co and Pb most resistant (<1%) to octanol extraction. Distribution coefficients defining the concentration ratio of octanol-soluble particle-bound metal to octanol-soluble dissolved metal were in the range 10(3.3)-10(5.3)mlg(-1). The presence of hydrophobic dissolved and particulate metal species has implications for our understanding of the biogeochemical behaviour of metals in aquatic environments. Specifically, such species are predicted to exhibit characteristics of non-polar organic contaminants, including the potential to penetrate the lipid bilayer. Current strategies for assessing the bioavailability and toxicity of dissolved and particulate trace metals in natural waters may, therefore, require revision.

  16. Phosphorus runoff from waste water treatment biosolids and poultry litter applied to agricultural soils.

    PubMed

    White, John W; Coale, Frank J; Sims, J Thomas; Shober, Amy L

    2010-01-01

    Differences in the properties of organic phosphorus (P) sources, particularly those that undergo treatment to reduce soluble P, can affect soil P solubility and P transport in surface runoff. This 2-yr field study investigated soil P solubility and runoff P losses from two agricultural soils in the Mid-Atlantic region after land application of biosolids derived from different waste water treatment processes and poultry litter. Phosphorus speciation in the biosolids and poultry litter differed due to treatment processes and significantly altered soil P solubility and dissolved reactive P (DRP) and bioavailable P (FeO-P) concentrations in surface runoff. Runoff total P (TP) concentrations were closely related to sediment transport. Initial runoff DRP and FeO-P concentrations varied among the different biosolids and poultry litter applied. Over time, as sediment transport declined and DRP concentrations became an increasingly important component of runoff FeO-P and TP, total runoff P was more strongly influenced by the type of biosolids applied. Throughout the study, application of lime-stabilized biosolids and poultry litter increased concentrations of soil-soluble P, readily desorbable P, and soil P saturation, resulting in increased DRP and FeO-P concentrations in runoff. Land application of biosolids generated from waste water treatment processes that used amendments to reduce P solubility (e.g., FeCl(3)) did not increase soil P saturation and reduced the potential for DRP and FeO-P transport in surface runoff. These results illustrate the importance of waste water treatment plant process and determination of specific P source coefficients to account for differential P availability among organic P sources.

  17. Circulating Biomarkers of Inflammation, Antioxidant Activity, and Platelet Activation Are Associated with Primary Combustion Aerosols in Subjects with Coronary Artery Disease

    PubMed Central

    Delfino, Ralph J.; Staimer, Norbert; Tjoa, Thomas; Polidori, Andrea; Arhami, Mohammad; Gillen, Daniel L.; Kleinman, Micheal T.; Vaziri, Nosratola D.; Longhurst, John; Zaldivar, Frank; Sioutas, Constantinos

    2008-01-01

    Background Biomarkers of systemic inflammation have been associated with risk of cardiovascular morbidity and mortality. Objectives We aimed to clarify associations of particulate matter (PM) air pollution with systemic inflammation using models based on size-fractionated PM mass and markers of primary and secondary aerosols. Methods We followed a panel of 29 nonsmoking elderly subjects with a history of coronary artery disease (CAD) living in retirement communities in the Los Angeles, California, air basin. Blood plasma biomarkers were measured weekly over 12 weeks and included C-reactive protein (CRP), fibrinogen, tumor necrosis factor-α (TNF-α) and its soluble receptor-II (sTNF-RII), interleukin-6 (IL-6) and its soluble receptor (IL-6sR), fibrin D-dimer, soluble platelet selectin (sP-selectin), soluble vascular cell adhesion molecule-1 (sVCAM-1), intracellular adhesion molecule-1 (sICAM-1), and myeloperoxidase (MPO). To assess changes in antioxidant capacity, we assayed erythrocyte lysates for glutathione peroxidase-1 (GPx-1) and copper-zinc superoxide dismutase (Cu,Zn-SOD) activities. We measured indoor and outdoor home daily size-fractionated PM mass, and hourly pollutant gases, total particle number (PN), fine PM elemental carbon (EC) and organic carbon (OC), estimated secondary organic aerosol (SOA) and primary OC (OCpri) from total OC, and black carbon (BC). We analyzed data with mixed models controlling for temperature and excluding weeks with infections. Results We found significant positive associations for CRP, IL-6, sTNF-RII, and sP-selectin with outdoor and/or indoor concentrations of quasi-ultrafine PM ≤ 0.25 μm in diameter, EC, OCpri, BC, PN, carbon monoxide, and nitrogen dioxide from the current-day and multiday averages. We found consistent positive but largely nonsignificant coefficients for TNF-α, sVCAM-1, and sICAM-1, but not fibrinogen, IL-6sR, or D-dimer. We found inverse associations for erythrocyte Cu,Zn-SOD with these pollutants and other PM size fractions (0.25–2.5 and 2.5–10 μm). Inverse associations of GPx-1 and MPO with pollutants were largely nonsignificant. Indoor associations were often stronger for estimated indoor EC, OCpri, and PN of outdoor origin than for uncharacterized indoor measurements. There was no evidence for positive associations with SOA. Conclusions Results suggest that traffic emission sources of OCpri and quasi-ultrafine particles lead to increased systemic inflammation and platelet activation and decreased antioxidant enzyme activity in elderly people with CAD. PMID:18629312

  18. Mirrored continuum and molecular scale simulations of the ignition of high-pressure phases of RDX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kibaek; Stewart, D. Scott, E-mail: santc@illinois.edu, E-mail: dss@illinois.edu; Joshi, Kaushik

    2016-05-14

    We present a mirrored atomistic and continuum framework that is used to describe the ignition of energetic materials, and a high-pressure phase of RDX in particular. The continuum formulation uses meaningful averages of thermodynamic properties obtained from the atomistic simulation and a simplification of enormously complex reaction kinetics. In particular, components are identified based on molecular weight bin averages and our methodology assumes that both the averaged atomistic and continuum simulations are represented on the same time and length scales. The atomistic simulations of thermally initiated ignition of RDX are performed using reactive molecular dynamics (RMD). The continuum model ismore » based on multi-component thermodynamics and uses a kinetics scheme that describes observed chemical changes of the averaged atomistic simulations. Thus the mirrored continuum simulations mimic the rapid change in pressure, temperature, and average molecular weight of species in the reactive mixture. This mirroring enables a new technique to simplify the chemistry obtained from reactive MD simulations while retaining the observed features and spatial and temporal scales from both the RMD and continuum model. The primary benefit of this approach is a potentially powerful, but familiar way to interpret the atomistic simulations and understand the chemical events and reaction rates. The approach is quite general and thus can provide a way to model chemistry based on atomistic simulations and extend the reach of those simulations.« less

  19. Modeling the dose effects of soybean oil in salad dressing on carotenoid and fat-soluble vitamin bioavailability in salad vegetables.

    PubMed

    White, Wendy S; Zhou, Yang; Crane, Agatha; Dixon, Philip; Quadt, Frits; Flendrig, Leonard M

    2017-10-01

    Background: Previously, we showed that vegetable oil is necessary for carotenoid absorption from salad vegetables. Research is needed to better define the dose effect and its interindividual variation for carotenoids and fat-soluble vitamins. Objective: The objective was to model the dose-response relation between the amount of soybean oil in salad dressing and the absorption of 1 ) carotenoids, phylloquinone, and tocopherols in salad vegetables and 2 ) retinyl palmitate formed from the provitamin A carotenoids. Design: Women ( n = 12) each consumed 5 vegetable salads with salad dressings containing 0, 2, 4, 8, or 32 g soybean oil. Blood was collected at selected time points. The outcome variables were the chylomicron carotenoid and fat-soluble vitamin area under the curve (AUC) and maximum content in the plasma chylomicron fraction ( C max ). The individual-specific and group-average dose-response relations were investigated by fitting linear mixed-effects random coefficient models. Results: Across the entire 0-32-g range, soybean oil was linearly related to the chylomicron AUC and C max values for α-carotene, lycopene, phylloquinone, and retinyl palmitate. Across 0-8 g of soybean oil, there was a linear increase in the chylomicron AUC and C max values for β-carotene. Across a more limited 0-4-g range of soybean oil, there were minor linear increases in the chylomicron AUC for lutein and α- and total tocopherol. Absorption of all carotenoids and fat-soluble vitamins was highest with 32 g oil ( P < 0.002). For 32 g oil, the interindividual rank order of the chylomicron AUCs was consistent across the carotenoids and fat-soluble vitamins ( P < 0.0001). Conclusions: Within the linear range, the average absorption of carotenoids and fat-soluble vitamins could be largely predicted by the soybean oil effect. However, the effect varied widely, and some individuals showed a negligible response. There was a global soybean oil effect such that those who absorbed more of one carotenoid and fat-soluble vitamin also tended to absorb more of the others. This trial was registered at clinicaltrials.gov as NCT02867488. © 2017 American Society for Nutrition.

  20. Chemistry of peroxide compounds

    NASA Technical Reports Server (NTRS)

    Volnov, I. I.

    1981-01-01

    The history of Soviet research from 1866 to 1967 on peroxide compounds is reviewed. This research dealt mainly with peroxide kinetics, reactivity and characteristics, peroxide production processes, and more recently with superoxides and ozonides and emphasis on the higher oxides of group 1 and 2 elements. Solid state fluidized bed synthesis and production of high purity products based on the relative solubilities of the initial, intermediate, and final compounds and elements in liquid ammonia are discussed.

  1. Rubber-Modified Epoxies: Transitions and Morphology.

    DTIC Science & Technology

    1980-09-01

    Hill. New Jersey 07974 i .i -2- INTRODUCTION Low levels of carboxyl-terminated reactive liquid rubber copolymers of butadiene and acrylonitrile ( CTBN ...parts per hundred parts resin (phr) of CTBN , and 5 phr piperidine is homo- geneous at the start of cure if the cure temperature is above some critical...solubility temperature (which is designated Tso). In the presence of piperidine there is a rapid reaction of the carboxyl end groups of the CTBN with

  2. Soluble and insoluble carbon content in fog: a 16 year long study in the Po Valley (Italy)

    NASA Astrophysics Data System (ADS)

    Fuzzi, S.; Facchini, C.; Giulianelli, L.; Gilardoni, S.

    2015-12-01

    Fog samples have been collected throughout the fall-winter season during each dense fog episode since 1989 at the field station of San Pietro Capofiume (Bologna, Italy) located in a rural area in the south-eastern part of the Po Valley. Since the fall-winter season 1997/98 both soluble and insoluble carbon content was also measured and now a sixteen years long dataset is available. Carbonaceous matter accounts for a significant fraction of the insoluble material suspended in fog water. The sum of EC and water insoluble organic mass accounts on average for 46%-56% of the mass of total suspended material. Insoluble carbonaceous material is composed mainly by organic matter, EC accounting on average only for 17% of the total insoluble carbon. A good correlation observed between EC and OC through the different years, suggests that anthropogenic combustion processes, which represent the main source of EC, are also the most important source of OC in fog droplets. Recent results also show that a potential important contribution to WSOC in for water is derived by aqueous secondary organic aerosol from biomass burning emissions. The water soluble organic carbon (WSOC) represents on average 25% of the total solute mass and its contribution to the total organic carbon (TOC) ranges from 52 to 95% with an average of 86%. The high amount of carbonaceous compounds in the Po Valley fog detected and the simultaneous decrease of the main inorganic species concentration (Giulianelli et al., 2014) in the last two decades highlight the potential influence of organics on the decrease of fog frequency. Giulianelli L., Gilardoni S., Tarozzi L., Rinaldi M., Decesari S, Carbone C., Facchini M.C. and Fuzzi S., Atmos. Environ. 98, 394-401.

  3. Secondary formation of water-soluble organic acids and α-dicarbonyls and their contributions to total carbon and water-soluble organic carbon: Photochemical aging of organic aerosols in the Arctic spring

    NASA Astrophysics Data System (ADS)

    Kawamura, Kimitaka; Kasukabe, Hideki; Barrie, Leonard A.

    2010-11-01

    Water-soluble dicarboxylic acids (C2-C12), ketocarboxylic acids (C2-C6, C9), and α-dicarbonyls (glyoxal and methylglyoxal) were determined in the Arctic aerosols collected in winter to early summer, as well as aerosol total carbon (TC) and water-soluble organic carbon (WSOC). Concentrations of TC and WSOC gradually decreased from late February to early June with a peak in spring, indicating a photochemical formation of water-soluble organic aerosols at a polar sunrise. We found that total (C2-C11) diacids (7-84 ng m-3) increased at polar sunrise by a factor of 4 and then decreased toward summer. Their contributions to TC (average 4.0%) peaked in early April and mid-May. The contribution of total diacids to WSOC was on average 7.1%. It gradually increased from February (5%) to a maximum in April (12.7%) with a second peak in mid-May (10.4%). Although oxalic acid (C2) is the dominant diacid until April, its predominance was replaced by succinic acid (C4) after polar sunrise. This may indicate that photochemical production of C2 was overwhelmed by its degradation when solar radiation was intensified and the atmospheric transport of its precursors from midlatitudes to the Arctic was ended in May. Interestingly, the contributions of azelaic (C9) and ω-oxobutanoic acids to WSOC increased in early summer possibly due to an enhanced emission of biogenic unsaturated fatty acids from the ocean followed by photochemical oxidation in the atmosphere. An enhanced contribution of diacids to TC and WSOC at polar sunrise may significantly alter the hygroscopic properties of organic aerosols in the Arctic.

  4. An in vitro method for detecting chemical sensitization using human reconstructed skin models and its applicability to cosmetic, pharmaceutical, and medical device safety testing.

    PubMed

    McKim, James M; Keller, Donald J; Gorski, Joel R

    2012-12-01

    Chemical sensitization is a serious condition caused by small reactive molecules and is characterized by a delayed type hypersensitivity known as allergic contact dermatitis (ACD). Contact with these molecules via dermal exposure represent a significant concern for chemical manufacturers. Recent legislation in the EU has created the need to develop non-animal alternative methods for many routine safety studies including sensitization. Although most of the alternative research has focused on pure chemicals that possess reasonable solubility properties, it is important for any successful in vitro method to have the ability to test compounds with low aqueous solubility. This is especially true for the medical device industry where device extracts must be prepared in both polar and non-polar vehicles in order to evaluate chemical sensitization. The aim of this research was to demonstrate the functionality and applicability of the human reconstituted skin models (MatTek Epiderm(®) and SkinEthic RHE) as a test system for the evaluation of chemical sensitization and its potential use for medical device testing. In addition, the development of the human 3D skin model should allow the in vitro sensitization assay to be used for finished product testing in the personal care, cosmetics, and pharmaceutical industries. This approach combines solubility, chemical reactivity, cytotoxicity, and activation of the Nrf2/ARE expression pathway to identify and categorize chemical sensitizers. Known chemical sensitizers representing extreme/strong-, moderate-, weak-, and non-sensitizing potency categories were first evaluated in the skin models at six exposure concentrations ranging from 0.1 to 2500 µM for 24 h. The expression of eight Nrf2/ARE, one AhR/XRE and two Nrf1/MRE controlled gene were measured by qRT-PCR. The fold-induction at each exposure concentration was combined with reactivity and cytotoxicity data to determine the sensitization potential. The results demonstrated that both the MatTek and SkinEthic models performed in a manner consistent with data previously reported with the human keratinocyte (HaCaT) cell line. The system was tested further by evaluating chemicals known to be associated with the manufacture of medical devices. In all cases, the human skin models performed as well or better than the HaCaT cell model previously evaluated. In addition, this study identifies a clear unifying trigger that controls both the Nrf2/ARE pathway and essential biochemical events required for the development of ACD. Finally, this study has demonstrated that by utilizing human reconstructed skin models, it is possible to evaluate non-polar extracts from medical devices and low solubility finished products.

  5. Markers of inflammation, oxidative stress, and endothelial dysfunction and the 20-year cumulative incidence of early age-related macular degeneration: the Beaver Dam Eye Study.

    PubMed

    Klein, Ronald; Myers, Chelsea E; Cruickshanks, Karen J; Gangnon, Ronald E; Danforth, Lorraine G; Sivakumaran, Theru A; Iyengar, Sudha K; Tsai, Michael Y; Klein, Barbara E K

    2014-04-01

    IMPORTANCE Modifying levels of factors associated with age-related macular degeneration (AMD) may decrease the risk for visual impairment in older persons. OBJECTIVE To examine the relationships of markers of inflammation, oxidative stress, and endothelial dysfunction to the 20-year cumulative incidence of early AMD. DESIGN, SETTING, AND PARTICIPANTS This longitudinal population-based cohort study involved a random sample of 975 persons in the Beaver Dam Eye Study without signs of AMD who participated in the baseline examination in 1988-1990 and up to 4 follow-up examinations in 1993-1995, 1998-2000, 2003-2005, and 2008-2010. EXPOSURES Serum markers of inflammation (high-sensitivity C-reactive protein, tumor necrosis factor-α receptor 2, interleukin-6, and white blood cell count), oxidative stress (8-isoprostane and total carbonyl content), and endothelial dysfunction (soluble vascular cell adhesion molecule-1 and soluble intercellular adhesion molecule-1) were measured. Interactions with complement factor H (rs1061170), age-related maculopathy susceptibility 2 (rs10490924), complement component 3 (rs2230199), and complement component 2/complement factor B (rs4151667) were examined using multiplicative models. Age-related macular degeneration was assessed from fundus photographs. MAIN OUTCOMES AND MEASURES Early AMD defined by the presence of any size drusen and the presence of pigmentary abnormalities or by the presence of large-sized drusen (≥125-μm diameter) in the absence of late AMD. RESULTS The 20-year cumulative incidence of early AMD was 23.0%. Adjusting for age, sex, and other risk factors, high-sensitivity C-reactive protein (odds ratio comparing fourth with first quartile, 2.18; P = .005), tumor necrosis factor-α receptor 2 (odds ratio, 1.78; P = .04), and interleukin-6 (odds ratio, 1.78; P = .03) were associated with the incidence of early AMD. Increased incidence of early AMD was associated with soluble vascular cell adhesion molecule-1 (odds ratio per SD on the logarithmic scale, 1.21; P = .04). CONCLUSIONS AND RELEVANCE We found modest evidence of relationships of serum high-sensitivity C-reactive protein, tumor necrosis factor-α receptor 2, interleukin-6, and soluble vascular cell adhesion molecule-1 to the 20-year cumulative incidence of early AMD independent of age, smoking status, and other factors. It is not known whether these associations represent a cause and effect relationship or whether other unknown confounders accounted for the findings. Even if inflammatory processes are a cause of early AMD, it is not known whether interventions that reduce systemic inflammatory processes will reduce the incidence of early AMD.

  6. Quantitative structure-activity relationships of the antimalarial agent artemisinin and some of its derivatives - a DFT approach.

    PubMed

    Rajkhowa, Sanchaita; Hussain, Iftikar; Hazarika, Kalyan K; Sarmah, Pubalee; Deka, Ramesh Chandra

    2013-09-01

    Artemisinin form the most important class of antimalarial agents currently available, and is a unique sesquiterpene peroxide occurring as a constituent of Artemisia annua. Artemisinin is effectively used in the treatment of drug-resistant Plasmodium falciparum and because of its rapid clearance of cerebral malaria, many clinically useful semisynthetic drugs for severe and complicated malaria have been developed. However, one of the major disadvantages of using artemisinins is their poor solubility either in oil or water and therefore, in order to overcome this difficulty many derivatives of artemisinin were prepared. A comparative study on the chemical reactivity of artemisinin and some of its derivatives is performed using density functional theory (DFT) calculations. DFT based global and local reactivity descriptors, such as hardness, chemical potential, electrophilicity index, Fukui function, and local philicity calculated at the optimized geometries are used to investigate the usefulness of these descriptors for understanding the reactive nature and reactive sites of the molecules. Multiple regression analysis is applied to build up a quantitative structure-activity relationship (QSAR) model based on the DFT based descriptors against the chloroquine-resistant, mefloquine-sensitive Plasmodium falciparum W-2 clone.

  7. Thermal Stability of Distillate Hydrocarbon Fuels. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Reddy, Kishenkumar Tadisina; Cernansky, Nicholas P.

    1987-01-01

    Thermal stability of fuels is expected to become a severe problem in the future due to the anticipated use of broadened specification and alternative fuels. Future fuels will have higher contents of heteroatomic species which are reactive constituents and are known to influence fuel degradation. To study the degradation chemistry of selected model fuels, n-dodecane and n-dodecane plus heteroatoms were aerated by bubbling air through the fuels amd stressed on a modified Jet Fuel Thermal Oxidation Tester facility operating at heater tube temperatures between 200 to 400 C. The resulting samples were fractionated to concentrate the soluble products and then analyzed using gas chromatographic and mass spectrometric techniques to quantify and identify the stable reaction intermediate and product specifically. Heteroatom addition showed that the major soluble products were always the same, with and without heteroatoms, but their distributions varied considerably.

  8. A large OH sink in summertime surface air of the northern Indo-Gangetic plain revealed through in-situ total OH Reactivity measurements

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Garg, S.; Chandra, P.; Sinha, V.

    2013-12-01

    The summertime surface air in the Northern Indo-Gangetic plain is characterized by high temperatures (up to 47 oC) and strong solar radiation (up to 765 Watt/m2), which together with large urban and agricultural emissions in the densely populated region, lead to intense photochemistry. The hydroxyl radical (OH) is the primary atmospheric oxidant responsible for oxidizing gaseous emissions and hence direct measurements of the total OH reactivity are necessary for understanding reactive emission budgets and constraining instantaneous ozone production regimes. Here, we present the first dataset of direct OH reactivity measurements from a regional surface site in the northern India-Gangetic plain (30.667°N, 76.729°E; 310 m above mean sea level). The measurements were performed in April-May 2013 using the comparative reactivity method [1]. A single PTRMS was used for sequential measurements of the total OH reactivity and circa 20 ambient VOCs. Nitrogen oxides (NO and NO2), sulphur dioxide, carbon monoxide, ozone and meteorological parameters were measured concomitantly using the IISER Mohali atmospheric chemistry facility. Air masses impacting the site arrived from rural and agricultural regions at high wind speeds of up to 24 m/s. A large variability was observed in the diel hourly averaged OH reactivity spanning an interquartile range of 36 s-1 - 120 s-1. The daily average and median total OH reactivity was 76 s-1 and 73 s-1, respectively corresponding to average and median OH chemical lifetimes of 13.1 milliseconds and 13.6 milliseconds, respectively. The five highest individual OH sinks measured were: acetaldehyde > isoprene+furan > NO2 > trimethyl benzene > CO. The measured OH reactivity did not show a pronounced diel cycle but remarkably the highest missing OH reactivity fraction (> 50 %) was observed during afternoon hours (12-16 local time) on very sunny days with low RH. This suggests that a significant fraction of secondary oxidation products formed due to photochemical oxidation reactions remain unmeasured. Likely compounds that could help explain the missing OH reactivity but were not covered by the measurement suite during the study period will be discussed in the presentation. Employing the ratio of the measured OH reactivity due to VOCs and due to NOx respectively [2], the peak ozone production at the site currently appears to be limited by the availability of NOx. References 1. V. Sinha et al., The Comparative Reactivity Method - a new tool to measure total OH Reactivity in ambient air. Atmos. Chem. Phys, 2008: p. 2213-2227. 2. V. Sinha,et al., Constraints on instantaneous ozone production rates and regimes during DOMINO derived using in-situ OH reactivity measurements, Atmos. Chem. Phys., 12, 7269-7283, doi:10.5194/acp-12-7269-2012, 2012. Acknowledgements: We acknowledge financial support from MHRD, India, and IISER Mohali-MPI-DST partner group and thank Chinmoy Sarkar.

  9. Buparvaquone Nanostructured Lipid Carrier: Development of an Affordable Delivery System for the Treatment of Leishmaniases

    PubMed Central

    Löbenberg, Raimar; Cotrim, Paulo Cesar

    2017-01-01

    Buparvaquone (BPQ), a veterinary drug, was formulated as nanostructured lipid carriers (NLC) for leishmaniases treatment. The formulation design addressed poor water solubility of BPQ and lack of human drug delivery system. The DSC/TG and microscopy methods were used for solid lipids screening. Softisan® 154 showed highest BPQ solubility in both methods. The BPQ solubility in liquid lipids using HPLC revealed Miglyol® 812 as the best option. Response surface methodology (RSM) was used to identify the optimal Softisan154 : Miglyol 812 ratios (7 : 10 to 2 : 1) and Kolliphor® P188 and Tween® 80 concentration (>3.0% w/w) aiming for z-average in the range of 100–300 nm for macrophage delivery. The NLC obtained by high-pressure homogenization showed low z-averages (<350 nm), polydispersity (<0.3), and encapsulation efficiency close to 100%. DSC/TG and microscopy in combination proved to be a powerful tool to select the solid lipid. The relationship among the variables, demonstrated by a linear mathematical model using RSM, allowed generating a design space. This design space showed the limits in which changes in the variables influenced the z-average. Therefore, these drug delivery systems have the potential to improve the availability of affordable medicines due to the low cost of raw materials, using well established, reliable, and feasible scale-up technology. PMID:28255558

  10. Treatment of low-strength soluble wastewater using an anaerobic baffled reactor (ABR).

    PubMed

    Gopala Krishna, G V T; Kumar, Pramod; Kumar, Pradeep

    2009-01-01

    Treatment of low-strength soluble wastewater (COD approximately 500 mg/L) was studied using an eight chambered anaerobic baffled reactor (ABR). At pseudo steady-state (PSS), the average total and soluble COD values (COD(T) and COD(S)) at 8h hydraulic retention time (HRT) were found to be around 50 and 40 mg/L, respectively, while at 10h HRT average COD(T) and COD(S) values were of the order of 47 and 37 mg/L, respectively. COD and BOD (3 day, 27 degrees C) removal averaged more than 90%. Effluent conformed to Indian standards laid down for BOD (less than 30 mg/L). Reactor effluent characteristics exhibited very low values of standard deviation indicating excellent reactor stability at PSS in terms of effluent characteristics. Based on mass balance calculations, more than 60% of raw wastewater COD was estimated to be recovered as CH(4) in the gas phase. Compartment-wise profiles indicated that most of the BOD and COD got reduced in the initial compartments only. Sudden drop in pH (7.8-6.7) and formation of volatile fatty acids (VFA) (53-85 mg/L) were observed in the first compartment due to acidogenesis and acetogenesis. The pH increased and VFA concentration decreased longitudinally down the reactor. Residence time distribution (RTD) studies revealed that the flow pattern in the ABR was neither completely plug-flow nor perfectly mixed. Observations from scanning electron micrographs (SEM) suggest that distinct phase separation takes place in an ABR.

  11. Cariogenicity of soluble starch in oral in vitro biofilm and experimental rat caries studies: a comparison.

    PubMed

    Thurnheer, T; Giertsen, E; Gmür, R; Guggenheim, B

    2008-09-01

    Common belief suggests that starch is less cariogenic than sugar; however, the related literature is quite controversial. We aimed to compare cariogenic and microbiological effects of soluble starch in both a standard animal model and an oral biofilm system, and to assess the possible substitution of the animal model. Six-species biofilms were grown anaerobically on enamel discs in saliva and medium with glucose/sucrose, starch (average molecular weight of 5000, average polymerization grade of 31), or mixtures thereof. After 64.5 h of biofilm formation, the microbiota were quantitated by cultivation and demineralization was measured by quantitative light-induced fluorescence. To assess caries incidence in rats, the same microbiota as in the biofilm experiments were applied. The animals were fed diets containing either glucose, glucose/sucrose, glucose/sucrose/starch or starch alone. Results with both models show that demineralization was significantly smaller with starch than sucrose. The data demonstrate that soluble starch is substantially less cariogenic than glucose/sucrose. By leading to the same scientific evidence as its in vivo counterpart, the described in vitro biofilm system provides an interesting and valuable tool in the quest to reduce experimentation with animals.

  12. Antigenic cross-reactivity between Schistosoma mansoni and peanut: a role for cross-reactive carbohydrate determinants (CCDs) and implications for the hygiene hypothesis.

    PubMed

    Igetei, Joseph E; El-Faham, Marwa; Liddell, Susan; Doenhoff, Michael J

    2017-04-01

    The antigenic reactivity of constituents of Schistosoma mansoni and peanut (Arachis hypogaea) was investigated to determine whether identical antigenic epitopes possessed by both organisms provided a possible explanation for the negative correlation between chronic schistosome infection and atopy to allergens. Aqueous extracts of peanuts were probed in Western immunoblots with rabbit IgG antibodies raised against the egg, cercarial and adult worm stages of S. mansoni. Several molecules in the peanut extract were antigenically reactive with antibodies from the various rabbit anti-schistosome sera. A pair of cross-reactive peanut molecules at ~30 000-33 000 molecular weight was purified and both proteins were identified by mass spectrometric analysis as the peanut allergen Ara h 1. Anti-S. mansoni soluble egg antigen antibodies that were eluted off the peanut molecules reacted with two S. mansoni egg antigens identified by mass spectrometry as IPSE/α-1 and κ-5. Alignments of the amino acid sequences of Ara h 1 and either IPSE/α-1 or κ-5 revealed a low level of peptide sequence identity. Incubation of nitrocellulose paper carrying electrophoresed peanut molecules, six constituents of other allergic plants and S. mansoni egg antigens in a mild solution of sodium metaperiodate before probing with antibodies, inhibited most of the cross-reactivities. The results are consistent with the antigenic cross-reactive epitopes of S. mansoni egg antigens, peanut and other allergic plants being cross-reactive carbohydrate determinants (CCDs). These findings are novel and an explanation based on 'blocking antibodies' could provide an insight for the inverse relationship observed between schistosome infection and allergies. © 2017 John Wiley & Sons Ltd.

  13. Wetland management reduces sediment and nutrient loading to the upper Mississippi River

    USGS Publications Warehouse

    Kreiling, Rebecca M.; Schubauer-Berigan, Joseph P.; Richardson, William B.; Bartsch, Lynn; Hughes, Peter E.; Strauss, Eric A.

    2013-01-01

    Restored riparian wetlands in the Upper Mississippi River basin have potential to remove sediment and nutrients from tributaries before they flow into the Mississippi River. For 3 yr we calculated retention efficiencies of a marsh complex, which consisted of a restored marsh and an adjacent natural marsh that were connected to Halfway Creek, a small tributary of the Mississippi. We measured sediment, N, and P removal through a mass balance budget approach, N removal through denitrification, and N and P removal through mechanical soil excavation. The marsh complex had average retention rates of approximately 30 Mg sediment ha−1 yr−1, 26 kg total N ha−1 yr−1, and 20 kg total P ha−1 yr−1. Water flowed into the restored marsh only during high-discharge events. Although the majority of retention occurred in the natural marsh, portions of the natural marsh were hydrologically disconnected at low discharge due to historical over-bank sedimentation. The natural marsh removed >60% of sediment, >10% of P, and >5% of N loads (except the first year, when it was a N source). The marsh complex was a source of NH4+ and soluble reactive P. The average denitrification rate for the marsh complex was 2.88 mg N m−2 h−1. Soil excavation removed 3600 Mg of sediment, 5.6 Mg of N, and 2.7 Mg of P from the restored marsh. The marsh complex was effective in removing sediment and nutrients from storm flows; however, retention could be increased if more water was diverted into both restored and natural marshes before entering the river.

  14. NUCLEAR REACTOR

    DOEpatents

    Christy, R.F.

    1958-07-15

    A nuclear reactor of the homogeneous liquid fuel type is described wherein the fissionable isotope is suspended or dissolved in a liquid moderator such as water. The reactor core is comprised essentially of a spherical vessel for containing the reactive composition surrounded by a reflector, preferably of beryllium oxide. The reactive composition may be an ordinary water solution of a soluble salt of uranium, the quantity of fissionable isotope in solution being sufficient to provide a critical mass in the vessel. The liquid fuel is stored in a tank of non-crtttcal geometry below the reactor vessel and outside of the reflector and is passed from the tank to the vessel through a pipe connecting the two by air pressure means. Neutron absorbing control and safety rods are operated within slots in the reflector adjacent to the vessel.

  15. Analysis and prediction of structure-reactive toxicity relationships of substituted aromatic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z.T.; Wang, L.S.; Chen, S.P.

    1996-12-31

    The fundamental differentiation of toxicity is between reactive and nonreactive toxicity. Reactive toxicity is associated with a specific mechanism for the reaction with an enzyme or inhibition of a metabolic pathway, and nonreactive toxicity is related directly to the quantity of toxicant acting upon the cell. The quantitative structure-activity relationships (QSARs) have been successfully used in the nonreactive toxicity, such as prediction of the toxicity of nonreactive compounds based on their solubility in the lipids of organisms. The elements of molecular structure that are most closely related to nonreactive toxicity are those that describe the partitioning of the toxicant intomore » the organism, while QSARs for the reactive toxicity are less common in the environmental toxicology literature. With the recent increase in the use of synthetic substituted benzenes as industrial chemicals, the accurate analysis of the effect of reactive toxic chemicals has become recognized with QSAR. For this purpose, we selected the fish (Carassias auratus) as the test organism, measured the acute toxicity of 50% lethal concentration (LC{sub 50}) of the chemicals and the adenosine triphosphate (ATP) content of the liver cells for the organism. These determined the relationships of the acute toxicity of some substituted benzenes with their physicochemical structural parameters. The effects on the ATP content was also compared to predict biological reactivities of the chemicals, so as to find some clues to explain the mode of mechanism of the toxicity. 17 refs., 1 tab.« less

  16. Supramolecular curcumin-barium prodrugs for formulating with ceramic particles.

    PubMed

    Kamalasanan, Kaladhar; Anupriya; Deepa, M K; Sharma, Chandra P

    2014-10-01

    A simple and stable curcumin-ceramic combined formulation was developed with an aim to improve curcumin stability and release profile in the presence of reactive ceramic particles for potential dental and orthopedic applications. For that, curcumin was complexed with barium (Ba(2+)) to prepare curcumin-barium (BaCur) complex. Upon removal of the unbound curcumin and Ba(2+) by dialysis, a water-soluble BaCur complex was obtained. The complex was showing [M+1](+) peak at 10,000-20,000 with multiple fractionation peaks of MALDI-TOF-MS studies, showed that the complex was a supramolecular multimer. The (1)H NMR and FTIR studies revealed that, divalent Ba(2+) interacted predominantly through di-phenolic groups of curcumin to form an end-to-end complex resulted in supramolecular multimer. The overall crystallinity of the BaCur was lower than curcumin as per XRD analysis. The complexation of Ba(2+) to curcumin did not degrade curcumin as per HPLC studies. The fluorescence spectrum was blue shifted upon Ba(2+) complexation with curcumin. Monodisperse nanoparticles with size less than 200dnm was formed, out of the supramolecular complex upon dialysis, as per DLS, and upon loading into pluronic micelles the size was remaining in similar order of magnitude as per DLS and AFM studies. Stability of the curcumin was improved greater than 50% after complexation with Ba(2+) as per UV/Vis spectroscopy. Loading of the supramloecular nanoparticles into pluronic micelles had further improved the stability of curcumin to approx. 70% in water. These BaCur supramolecule nanoparticles can be considered as a new class of prodrugs with improved solubility and stability. Subsequently, ceramic nanoparticles with varying chemical composition were prepared for changing the material surface reactivity in terms of the increase in, degradability, surface pH and protein adsorption. Further, these ceramic particles were combined with curcumin prodrug formulations and optimized the curcumin release properties in the combined formulations. Our proof concept study shows that, the conversion of curcumin to a metal-organic supramolecular prodrug improved the solubility, stability and release profile of curcumin. The prodrug approach with the micellisation strategy appears to be more appropriate to deliver intact curcumin in the presence of ceramic particles of varying surface reactivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Stability and Interaction of Coherent Structure in Supersonic Reactive Wakes

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1983-01-01

    A theoretical formulation and analysis is presented for a study of the stability and interaction of coherent structure in reacting free shear layers. The physical problem under investigation is a premixed hydrogen-oxygen reacting shear layer in the wake of a thin flat plate. The coherent structure is modeled as a periodic disturbance and its stability is determined by the application of linearized hydrodynamic stability theory which results in a generalized eigenvalue problem for reactive flows. Detailed stability analysis of the reactive wake for neutral, symmetrical and antisymmetrical disturbance is presented. Reactive stability criteria is shown to be quite different from classical non-reactive stability. The interaction between the mean flow, coherent structure and fine-scale turbulence is theoretically formulated using the von-Kaman integral technique. Both time-averaging and conditional phase averaging are necessary to separate the three types of motion. The resulting integro-differential equations can then be solved subject to initial conditions with appropriate shape functions. In the laminar flow transition region of interest, the spatial interaction between the mean motion and coherent structure is calculated for both non-reactive and reactive conditions and compared with experimental data wherever available. The fine-scale turbulent motion determined by the application of integral analysis to the fluctuation equations. Since at present this turbulence model is still untested, turbulence is modeled in the interaction problem by a simple algebraic eddy viscosity model. The applicability of the integral turbulence model formulated here is studied parametrically by integrating these equations for the simple case of self-similar mean motion with assumed shape functions. The effect of the motion of the coherent structure is studied and very good agreement is obtained with previous experimental and theoretical works for non-reactive flow. For the reactive case, lack of experimental data made direct comparison difficult. It was determined that the growth rate of the disturbance amplitude is lower for reactive case. The results indicate that the reactive flow stability is in qualitative agreement with experimental observation.

  18. QSPR analysis of the partitioning of vaporous chemicals in a water-gas phase system and the water solubility of liquid and solid chemicals on the basis of fragment and physicochemical similarity and hybot descriptors.

    PubMed

    Raevsky, O; Andreeva, E; Raevskaja, O; Skvortsov, V; Schaper, K

    2005-01-01

    QSPR analyses of the solubility in water of 558 vapors, 786 liquids and 2045 solid organic neutral chemicals and drugs are presented. Simultaneous consideration of H-bond acceptor and donor factors leads to a good description of the solubility of vapors and liquids. A volume-related term was found to have an essential negative contribution to the solubility of liquids. Consideration of polarizability, H-bond acceptor and donor factors and indicators for a few functional groups, as well as the experimental solubility values of structurally nearest neighbors yielded good correlations for liquids. The application of Yalkowsky's "General Solubility Equation" to 1063 solid chemicals and drugs resulted in a correlation of experimental vs calculated log S values with only modest statistical criteria. Two approaches to derive predictive models for solubility of solid chemicals and drugs were tested. The first approach was based on the QSPR for liquids together with indicator variables for different functional groups. Furthermore, a calculation of enthalpies for intermolecular complexes in crystal lattices, based on new H-bond potentials, was carried out for the better consideration of essential solubility- decreasing effects in the solid state, as compared with the liquid state. The second approach was based on a combination of similarity considerations and traditional QSPR. Both approaches lead to high quality predictions with average absolute errors on the level of experimental log S determination.

  19. Characteristics of size-fractionated atmospheric metals and water-soluble metals in two typical episodes in Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Qingqing; Ma, Yongliang; Tan, Jihua; Zheng, Naijia; Duan, Jingchun; Sun, Yele; He, Kebin; Zhang, Yuanxun

    2015-10-01

    The abundance and behaviour of metals and water-soluble metals (V, Cr, Mn, Fe, Cu, Zn, As, Sr, Ag, Cd, Sn, Sb, Ba and Pb) in size-fractionated aerosols were investigated during two typical episodes in Beijing. Water-soluble inorganic ions (Na+, K+, Mg2+, Ca2+, NH4+, F-, Cl-, SO42- and NO3-) were also measured. Atmospheric metals and water-soluble metals were both found at high levels; for PM2.5, average As, Cr, Cd, Cu, Mn and Pb concentrations were 14.8, 203.3, 2.5, 18.5, 42.6 and 135.3 ng/m3, respectively, and their water-soluble components were 11.1, 1.7, 2.4, 14.5, 19.8 and 97.8 ng/m3, respectively. Daily concentrations of atmospheric metals and water-soluble metals were generally in accordance with particle mass. The highest concentrations of metals and water-soluble metals were generally located in coarse mode and droplet mode, respectively. The lowest mass of metals and water-soluble metals was mostly in Aitken mode. The water solubility of all metals was low in Aitken and coarse modes, indicating that freshly emitted metals have low solubility. Metal water solubility generally increased with the decrease in particle size in the range of 0.26-10 μm. The water solubility of metals for PM10 was: 50% ≤ Cd, As, Sb, Pb; 26% < V, Mn, Cu, Zn and Sr ≤ 50%; others ≤20%. Most metals, water-soluble metals and their water solubility increased when polluted air mass came from the near west, near north-west, south-west and south-east of the mainland, and decreased when clean air mass came from the far north-west and far due south. The influence of dust-storms and clean days on water-soluble metals and size distribution was significant; however, the influence of rainfall was negligible. Aerosols with high concentrations of SO42-, K+ and NH4+ might indicate increased potential for human health effects because of their high correlation with water-soluble metals. Industrial emissions contribute substantially to water-soluble metal pollution as water-soluble metals show higher correlation with Cd, Sn, Sb and Pb that are mainly derived from industrial sources.

  20. Solubility enhancement of BCS Class II drug by solid phospholipid dispersions: Spray drying versus freeze-drying.

    PubMed

    Fong, Sophia Yui Kau; Ibisogly, Asiye; Bauer-Brandl, Annette

    2015-12-30

    The poor aqueous solubility of BCS Class II drugs represents a major challenge for oral dosage form development. Using celecoxib (CXB) as model drug, the current study adopted a novel solid phospholipid nanoparticle (SPLN) approach and compared the effect of two commonly used industrial manufacturing methods, spray- and freeze-drying, on the solubility and dissolution enhancement of CXB. CXB was formulated with Phospholipoid E80 (PL) and trehalose at different CXB:PL:trehalose ratios, of which 1:10:16 was the optimal formulation. Spherical amorphous SPLNs with average diameters <1μm were produced by spray-drying; while amorphous 'matrix'-like structures of solid PL dispersion with larger particle sizes were prepared by freeze-drying. Formulations from both methods significantly enhanced the dissolution rates, apparent solubility, and molecularly dissolved concentration of CXB in phosphate buffer (PBS, pH 6.5) and in biorelevant fasted state simulated intestinal fluid (FaSSIF, pH 6.5) (p<0.05). While similar dissolution rates were found, the spray-dried SPLNs had a larger enhancement in apparent solubility (29- to 132-fold) as well as molecular solubility (18-fold) of CXB at equilibrium (p<0.05). The strong capability of the spray-dried SPLNs to attain 'true' supersaturation state makes them a promising approach for bioavailability enhancement of poorly soluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Carbonaceous and inorganic aerosols over a sub-urban site in peninsular India: Temporal variability and source characteristics

    NASA Astrophysics Data System (ADS)

    Aswini, A. R.; Hegde, Prashant; Nair, Prabha R.

    2018-01-01

    PM10 aerosol samples collected from a sub-urban site in Coimbatore during pre-monsoon, monsoon, post-monsoon and winter from 2014 to 2016 showed a large variability from 7.6 to 89 μg m- 3 with an annual average of 41 ± 21 μg m- 3 (N = 69). High abundance of PM10 and other components were recorded during winter and lowest during monsoon period. Total carbonaceous aerosols and water soluble ionic species contributed to 31% and 45% of PM10 mass respectively. SO42 - was the most abundant species (average 9.8 ± 4.8 μg m- 3) and constituted for 24% of total mass. Organic Carbon (OC) was the next most abundant species ranging from 1 to 16 μg m- 3 with an average of 7 ± 3.6 μg m- 3 accounting for 17% of PM10 mass concentration. POC (primary organic carbon) and SOC (secondary organic carbon) accounted for 56% and 44% of OC respectively. A major portion of OC ( 60%) was found to be water soluble. The correlation between OC and EC (elemental carbon) was found to be higher for night-time compared to daytime suggesting their origin from common sources during night-time. K+ was found to be strongly correlated with OC during night-time. WSOC showed good correlation with POC and K+ which was high especially during night-time. WSON (water soluble organic nitrogen) accounted for 34% of water soluble total nitrogen (WSTN). HCO3- exhibited significant positive correlation with Ca2 + during daytime indicating their crustal origin. The observations suggest that the region is influenced by biomass burning sources, however during day-time, secondary production and terrestrial sources (due to high temperature and wind) significantly influence the atmospheric aerosols over this region.

  2. Drug-like properties and the causes of poor solubility and poor permeability.

    PubMed

    Lipinski, C A

    2000-01-01

    There are currently about 10000 drug-like compounds. These are sparsely, rather than uniformly, distributed through chemistry space. True diversity does not exist in experimental combinatorial chemistry screening libraries. Absorption, distribution, metabolism, and excretion (ADME) and chemical reactivity-related toxicity is low, while biological receptor activity is higher dimensional in chemistry space, and this is partly explainable by evolutionary pressures on ADME to deal with endobiotics and exobiotics. ADME is hard to predict for large data sets because current ADME experimental screens are multi-mechanisms, and predictions get worse as more data accumulates. Currently, screening for biological receptor activity precedes or is concurrent with screening for properties related to "drugability." In the future, "drugability" screening may precede biological receptor activity screening. The level of permeability or solubility needed for oral absorption is related to potency. The relative importance of poor solubility and poor permeability towards the problem of poor oral absorption depends on the research approach used for lead generation. A "rational drug design" approach as exemplified by Merck advanced clinical candidates leads to time-dependent higher molecular weight, higher H-bonding properties, unchanged lipophilicity, and, hence, poorer permeability. A high throughput screening (HTS)-based approach as exemplified by unpublished data on Pfizer (Groton, CT) early candidates leads to higher molecular weight, unchanged H-bonding properties, higher lipophilicity, and, hence, poorer aqueous solubility.

  3. Phosphorus Concentrations in Stream-Water and Reference Samples - An Assessment of Laboratory Comparability

    USGS Publications Warehouse

    McHale, Michael R.; McChesney, Dennis

    2007-01-01

    In 2003, a study was conducted to evaluate the accuracy and precision of 10 laboratories that analyze water-quality samples for phosphorus concentrations in the Catskill Mountain region of New York State. Many environmental studies in this region rely on data from these different laboratories for water-quality analyses, and the data may be used in watershed modeling and management decisions. Therefore, it is important to determine whether the data reported by these laboratories are of comparable accuracy and precision. Each laboratory was sent 12 samples for triplicate analysis for total phosphorus, total dissolved phosphorus, and soluble reactive phosphorus. Eight of these laboratories reported results that met comparability criteria for all samples; the remaining two laboratories met comparability criteria for only about half of the analyses. Neither the analytical method used nor the sample concentration ranges appeared to affect the comparability of results. The laboratories whose results were comparable gave consistently comparable results throughout the concentration range analyzed, and the differences among methods did not diminish comparability. All laboratories had high data precision as indicated by sample triplicate results. In addition, the laboratories consistently reported total phosphorus values greater than total dissolved phosphorus values, and total dissolved phosphorus values greater than soluble reactive phosphorus values, as would be expected. The results of this study emphasize the importance of regular laboratory participation in sample-exchange programs.

  4. Seasonal variation of limnological features and trophic state index of two oligotrophic reservoirs of southeast Brazil.

    PubMed

    Oliveira, S A; Bicudo, C E M

    2017-01-01

    Limnological features of two reservoirs were studied in dry (August 2013) and rainy (January 2014) periods to evaluate the water quality that supply the city of Guarulhos, southeast Brazil. Water samples were collected in three depths and the following characteristics were measured: alkalinity, dissolved O2, free and total CO2, HCO3, soluble reactive silica, dissolved and total nitrogen and phosphorus, and chlorophyll-a. Water transparency was also measured and temperature, pH and electric conductivity profiles were obtained. Great seasonal and low spatial variability of the water characteristics occurred in the reservoirs. High values of water transparency, free CO2 availability, and low of pH, soluble reactive silica and total and dissolved nutrients values were recorded at the dry period, and different conditions were found at the rainy season. The two reservoirs were characterized by low nutrients, chlorophyll-a and turbidity, and high transparency, these features being typical of oligotrophic systems. The two reservoirs still remain under low anthropogenic impact conditions, and are presently considered reference systems for the SPMR, São Paulo Metropolitan Region. The need for actions that will reduce the input of nutrients from the neighboring cities and the main tributaries of the hydrographic basin is emphasized to maintain the ecological quality of the reservoirs and their reference conditions among the SPRM reservoirs.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corley, Richard A; Minard, Kevin R; Kabilan, Senthil

    The percentages of total airflows over the nasal respiratory and olfactory epithelium of female rabbits were calculated from computational fluid dynamics (CFD) simulations of steady-state inhalation. These airflows calculations, along with nasal airway geometry determinations, are critical parameters for hybrid CFD/physiologically based pharmacokinetic models that describe the nasal dosimetry of water-soluble or reactive gases and vapors in rabbits. CFD simulations were based upon three-dimensional computational meshes derived from magnetic resonance images of three adult female New Zealand White (NZW) rabbits. In the anterior portion of the nose, the maxillary turbinates of rabbits are considerably more complex than comparable regions inmore » rats, mice, monkeys, or humans. This leads to a greater surface area to volume ratio in this region and thus the potential for increased extraction of water soluble or reactive gases and vapors in the anterior portion of the nose compared to many other species. Although there was considerable interanimal variability in the fine structures of the nasal turbinates and airflows in the anterior portions of the nose, there was remarkable consistency between rabbits in the percentage of total inspired airflows that reached the ethmoid turbinate region (~50%) that is presumably lined with olfactory epithelium. These latter results (airflows reaching the ethmoid turbinate region) were higher than previous published estimates for the male F344 rat (19%) and human (7%). These differences in regional airflows can have significant implications in interspecies extrapolations of nasal dosimetry.« less

  6. Pore-scale dynamics of enzyme adsorption, swelling and reactive dissolution determine sugar yield in hemicellulose hydrolysis for biofuel production

    PubMed Central

    Dutta, Sajal Kanti; Chakraborty, Saikat

    2016-01-01

    Hemicelluloses are the earth’s second most abundant structural polymers, found in lignocellulosic biomass. Efficient enzymatic depolymerization of xylans by cleaving their β-(1 → 4)-glycosidic bonds to produce soluble sugars is instrumental to the cost-effective production of liquid biofuels. Here we show that the multi-scale two-phase process of enzymatic hydrolysis of amorphous hemicelluloses is dominated by its smallest scale–the pores. In the crucial first five hours, two to fourfold swelling of the xylan particles allow the enzymes to enter the pores and undergo rapid non-equilibrium adsorption on the pore surface before they hydrolyze the solid polymers, albeit non-competitively inhibited by the products xylose and xylobiose. Rapid pore-scale reactive dissolution increases the solid carbohydrate’s porosity to 80–90%. This tightly coupled experimental and theoretical study quantifies the complex temporal dynamics of the transport and reaction processes coupled across scales and phases to show that this unique pore-scale phenomenon can be exploited to accelerate the depolymerization of hemicelluloses to monomeric sugars in the first 5–6 h. We find that an ‘optimal substrate loading’ of 5 mg/ml (above which substrate inhibition sets in) accelerates non-equilibrium enzyme adsorption and solid hemicellulose depolymerization at the pore-scale, which contributes three-quarters of the soluble sugars produced for bio-alcohol fermentation. PMID:27905534

  7. Pore-scale dynamics of enzyme adsorption, swelling and reactive dissolution determine sugar yield in hemicellulose hydrolysis for biofuel production

    NASA Astrophysics Data System (ADS)

    Dutta, Sajal Kanti; Chakraborty, Saikat

    2016-12-01

    Hemicelluloses are the earth’s second most abundant structural polymers, found in lignocellulosic biomass. Efficient enzymatic depolymerization of xylans by cleaving their β-(1 → 4)-glycosidic bonds to produce soluble sugars is instrumental to the cost-effective production of liquid biofuels. Here we show that the multi-scale two-phase process of enzymatic hydrolysis of amorphous hemicelluloses is dominated by its smallest scale-the pores. In the crucial first five hours, two to fourfold swelling of the xylan particles allow the enzymes to enter the pores and undergo rapid non-equilibrium adsorption on the pore surface before they hydrolyze the solid polymers, albeit non-competitively inhibited by the products xylose and xylobiose. Rapid pore-scale reactive dissolution increases the solid carbohydrate’s porosity to 80-90%. This tightly coupled experimental and theoretical study quantifies the complex temporal dynamics of the transport and reaction processes coupled across scales and phases to show that this unique pore-scale phenomenon can be exploited to accelerate the depolymerization of hemicelluloses to monomeric sugars in the first 5-6 h. We find that an ‘optimal substrate loading’ of 5 mg/ml (above which substrate inhibition sets in) accelerates non-equilibrium enzyme adsorption and solid hemicellulose depolymerization at the pore-scale, which contributes three-quarters of the soluble sugars produced for bio-alcohol fermentation.

  8. Effect of Sodium Sulfite, Sodium Dodecyl Sulfate, and Urea on the Molecular Interactions and Properties of Whey Protein Isolate-Based Films

    PubMed Central

    Schmid, Markus; Prinz, Tobias K.; Stäbler, Andreas; Sängerlaub, Sven

    2017-01-01

    Whey protein coatings and cast films are promising for use as food packaging materials. Ongoing research is endeavoring to reduce their permeability. The intention of this study was to evaluate the effect of the reactive additives sodium sulfite, sodium dodecyl sulfate (SDS), and urea on the oxygen barrier, water vapor barrier, and protein solubility of whey protein cast films. The concentration of the reactive additives was 1 to 20 wt.-%. Dried whey protein cast films were used as substrate materials. The water vapor transmission rate, the oxygen permeability, and the protein solubility were measured. Effective diffusion coefficients and effective sorption coefficients were calculated from the results of the water vapor sorption experiments. The presence of sodium sulfite resulted in an increased number of hydrophobic interactions and hydrogen bonds and a slightly decreased number of disulfide bonds. The oxygen permeability decreased from 68 to 46 cm3 (STP/standard temperature and pressure) 100 μm (m2 d bar)−1 for 1 wt.-% SDS in the whey protein cast film. The water vapor transmission rate decreased from 165 to 44 g 100 μm (m2 d)−1 measured at 50 to 0% r. h. for 20 wt.-% SDS in the whey protein cast film. The reduction in the water vapor transmission rate correlated with the lower effective diffusion coefficient. PMID:28149835

  9. Effect of sodium sulfite, sodium dodecyl sulfate, and urea on the molecular interactions and properties of whey protein isolate-based films

    NASA Astrophysics Data System (ADS)

    Schmid, Markus; Prinz, Tobias K.; Stäbler, Andreas; Sängerlaub, Sven

    2016-12-01

    Whey protein coatings and cast films are promising for use as food packaging materials. Ongoing research is endeavoring to reduce their permeability. The intention of this study was to evaluate the effect of the reactive additives sodium sulfite, sodium dodecyl sulfate (SDS), and urea on the oxygen barrier, water vapor barrier, and protein solubility of whey protein cast films. The concentration of the reactive additives was 1 to 20 wt.-%. Dried whey protein cast films were used as substrate materials. The water vapor transmission rate, the oxygen permeability, and the protein solubility were measured. Effective diffusion coefficients and effective sorption coefficients were calculated from the results of the water vapor sorption experiments. The presence of sodium sulfite resulted in an increased number of hydrophobic interactions and hydrogen bonds and a slightly decreased number of disulfide bonds. The oxygen permeability decreased from 68 to 46 cm³ (STP / standard temperature and pressure) 100 µm (m² d bar)-1 for 1 wt.-% SDS in the whey protein cast film. The water vapor transmission rate decreased from 165 to 44 g 100 µm (m² d)-1 measured at 50 to 0 % r. h. for 20 wt.-% SDS in the whey protein cast film. The reduction in the water vapor transmission rate correlated with the lower effective diffusion coefficient.

  10. Development, characterization and first deployment of an improved online reactive oxygen species analyzer

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Bruns, Emily A.; Zotter, Peter; Stefenelli, Giulia; Prévôt, André S. H.; Baltensperger, Urs; El-Haddad, Imad; Dommen, Josef

    2018-01-01

    Inhalation of atmospheric particles is linked to human diseases. Reactive oxygen species (ROS) present in these atmospheric aerosols may play an important role. However, the ROS content in aerosols and their formation pathways are still largely unknown. Here, we have developed an online and offline ROS analyzer using a 2',7'-dichlorofluorescin (DCFH) based assay. The ROS analyzer was calibrated with H2O2 and its sensitivity was characterized using a suite of model organic compounds. The instrument detection limit determined as 3 times the noise is 1.3 nmol L-1 for offline analysis and 2 nmol m-3 of sampled air when the instrument is operated online at a fluorescence response time of approximately 8 min, while the offline method detection limit is 18 nmol L-1. Potential interferences from gas-phase O3 and NO2 as well as matrix effects of particulate SO42- and NO3- were tested, but not observed. Fe3+ had no influence on the ROS signal, while soluble Fe2+ reduced it if present at high concentrations in the extracts. Both online and offline methods were applied to identify the ROS content of different aerosol types, i.e., ambient aerosols as well as fresh and aged aerosols from wood combustion emissions. The stability of the ROS was assessed by comparing the ROS concentration measured by the same instrumentation online in situ with offline measurements. We also analyzed the evolution of ROS in specific samples by conducting the analysis after storage times of up to 4 months. The ROS were observed to decay with increasing storage duration. From their decay behavior, ROS in secondary organic aerosol (SOA) can be separated into short- and long-lived fractions. The half-life of the short-lived fraction was 1.7 ± 0.4 h, while the half-life of the long-lived fraction could not be determined with our uncertainties. All these measurements showed consistently that on average 60 ± 20 % of the ROS were very reactive and disappeared during the filter storage time. This demonstrates the importance of a fast online measurement of ROS.

  11. An earlier time of scan is associated with greater threat-related amygdala reactivity.

    PubMed

    Baranger, David A A; Margolis, Seth; Hariri, Ahmad R; Bogdan, Ryan

    2017-08-01

    Time-dependent variability in mood and anxiety suggest that related neural phenotypes, such as threat-related amygdala reactivity, may also follow a diurnal pattern. Here, using data from 1,043 young adult volunteers, we found that threat-related amygdala reactivity was negatively coupled with time of day, an effect which was stronger in the left hemisphere (β = -0.1083, p-fdr = 0.0012). This effect was moderated by subjective sleep quality (β = -0.0715, p-fdr = 0.0387); participants who reported average and poor sleep quality had relatively increased left amygdala reactivity in the morning. Bootstrapped simulations suggest that similar cross-sectional samples with at least 300 participants would be able to detect associations between amygdala reactivity and time of scan. In control analyses, we found no associations between time and V1 activation. Our results provide initial evidence that threat-related amygdala reactivity may vary diurnally, and that this effect is potentiated among individuals with average to low sleep quality. More broadly, our results suggest that considering time of scan in study design or modeling time of scan in analyses, as well as collecting additional measures of circadian variation, may be useful for understanding threat-related neural phenotypes and their associations with behavior, such as fear conditioning, mood and anxiety symptoms, and related phenotypes. © The Author (2017). Published by Oxford University Press.

  12. Variation in Behavioral Reactivity Is Associated with Cooperative Restraint Training Efficiency

    PubMed Central

    Bliss-Moreau, Eliza; Moadab, Gilda

    2016-01-01

    Training techniques that prepare laboratory animals to participate in testing via cooperation are useful tools that have the potential to benefit animal wellbeing. Understanding how animals systematically vary in their cooperative training trajectories will help trainers to design effective and efficient training programs. In the present report we document an updated method for training rhesus monkeys to cooperatively participate in restraint in a ‘primate chair.’ We trained 14 adult male macaques to raise their head above a yoke and accept yoke closure in an average of 6.36 training days in sessions that lasted an average of 10.52 min. Behavioral observations at 2 time points prior to training (approximately 3 y and 1.3 y prior) were used to quantify behavioral reactivity directed toward humans and toward other macaques. Individual differences in submissive–affiliative reactivity to humans but not reactivity toward other monkeys were related to learning outcomes. Macaques that were more reactive to humans were less willing to participate in training, were less attentive to the trainer, were more reactive during training sessions, and required longer training sessions, longer time to yoke, and more instances of negative reinforcement. These results suggest that rhesus macaques can be trained to cooperate with restraint rapidly and that individual difference data can be used to structure training programs to accommodate variation in animal temperament. PMID:26817979

  13. An earlier time of scan is associated with greater threat-related amygdala reactivity

    PubMed Central

    Baranger, David A. A.; Margolis, Seth; Hariri, Ahmad R.

    2017-01-01

    Abstract Time-dependent variability in mood and anxiety suggest that related neural phenotypes, such as threat-related amygdala reactivity, may also follow a diurnal pattern. Here, using data from 1,043 young adult volunteers, we found that threat-related amygdala reactivity was negatively coupled with time of day, an effect which was stronger in the left hemisphere (β = −0.1083, p-fdr = 0.0012). This effect was moderated by subjective sleep quality (β = −0.0715, p-fdr = 0.0387); participants who reported average and poor sleep quality had relatively increased left amygdala reactivity in the morning. Bootstrapped simulations suggest that similar cross-sectional samples with at least 300 participants would be able to detect associations between amygdala reactivity and time of scan. In control analyses, we found no associations between time and V1 activation. Our results provide initial evidence that threat-related amygdala reactivity may vary diurnally, and that this effect is potentiated among individuals with average to low sleep quality. More broadly, our results suggest that considering time of scan in study design or modeling time of scan in analyses, as well as collecting additional measures of circadian variation, may be useful for understanding threat-related neural phenotypes and their associations with behavior, such as fear conditioning, mood and anxiety symptoms, and related phenotypes. PMID:28379578

  14. Iron oxide nanoparticles in geomicrobiology: from biogeochemistry to bioremediation.

    PubMed

    Braunschweig, Juliane; Bosch, Julian; Meckenstock, Rainer U

    2013-09-25

    Iron oxides are important constituents of soils and sediments and microbial iron reduction is considered to be a significant anaerobic respiration process in the subsurface, however low microbial reduction rates of macroparticulate Fe oxides in laboratory studies led to an underestimation of the role of Fe oxides in the global Fe redox cycle. Recent studies show the high potential of nano-sized Fe oxides in the environment as, for example, electron acceptor for microbial respiration, electron shuttle between different microorganisms, and scavenger for heavy metals. Biotic and abiotic reactivity of iron macroparticles differ significantly from nano-sized Fe oxides, which are usually much more reactive. Factors such as particle size, solubility, ferrous iron, crystal structure, and organic molecules were identified to influence the reactivity. This review discusses factors influencing the microbial reactivity of Fe oxides. It highlights the differences between natural and synthetic Fe oxides especially regarding the presence of organic molecules such as humic acids and natural organic matter. Attention is given to the transport behavior of Fe oxides in laboratory systems and in the environment, because of the high affinity of different contaminants to Fe oxide surfaces and associated co-transport of pollutants. The high reactivity of Fe oxides and their potential as adsorbents for different pollutants are discussed with respect to application and development of remediation technologies. Copyright © 2013. Published by Elsevier B.V.

  15. Rate of coal hydroliquefaction: correlation to coal structure. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, R.M.; Voorhees, K.J.; Durfee, S.L.

    This report summarizes the research carried out on DOE grant No. FG22-83PC60784. The work was divided into two phases. The first phase consisted of a series of coal liquefaction rate measurements on seven different coals from the Exxon sample bank, followed by correlation with parent coal properties. The second phase involved characterization of the coals by pyrolysis/mass spectrometry and subsequent correlations of the Py/MS patterns with various liquefaction reactivity parameters. The hydroliquefaction reactivities for a suite of 7 bituminous and subbituminous coals were determined on a kinetic basis. These reactivities were correlated fairly successfully with the following parent coal properties:more » volatile matter, H/C and O/C ratios, vitrinite reflectance, and calorific value. The total surface areas of the coals were experimentally determined. Reactivity was shown to be independent of surface area. Following completion of the batch reactor experiments, the seven coals investigated were analyzed by pyrolysis/mass spectrometry. The pyrolysis spectra were then submitted to factor analysis in order to extract significant features of the coal for use in correlational efforts. These factors were then related to a variety of liquefaction reactivity definitions, including both rate and extent of liquefaction to solvent solubility classifications (oils, asphaltenes, preasphaltenes, etc.). In general, extent of reaction was found to correlate best with the Py/MS data. 37 refs., 25 figs., 11 tabs.« less

  16. Evaluation of structure-reactivity descriptors and biological activity spectra of 4-(6-methoxy-2-naphthyl)-2-butanone using spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Agrawal, Megha; Deval, Vipin; Gupta, Archana; Sangala, Bagvanth Reddy; Prabhu, S. S.

    2016-10-01

    The structure and several spectroscopic features along with reactivity parameters of the compound 4-(6-methoxy-2-naphthyl)-2-butanone (Nabumetone) have been studied using experimental techniques and tools derived from quantum chemical calculations. Structure optimization is followed by force field calculations based on density functional theory (DFT) at the B3LYP/6-311++G(d,p) level of theory. The vibrational spectra have been interpreted with the aid of normal coordinate analysis. UV-visible spectrum and the effect of solvent have been discussed. The electronic properties such as HOMO and LUMO energies have been determined by TD-DFT approach. In order to understand various aspects of pharmacological sciences several new chemical reactivity descriptors - chemical potential, global hardness and electrophilicity have been evaluated. Local reactivity descriptors - Fukui functions and local softnesses have also been calculated to find out the reactive sites within molecule. Aqueous solubility and lipophilicity have been calculated which are crucial for estimating transport properties of organic molecules in drug development. Estimation of biological effects, toxic/side effects has been made on the basis of prediction of activity spectra for substances (PASS) prediction results and their analysis by Pharma Expert software. Using the THz-TDS technique, the frequency-dependent absorptions of NBM have been measured in the frequency range up to 3 THz.

  17. Quantifying the impact of septic tank systems on eutrophication risk in rural headwaters.

    PubMed

    Withers, P J A; Jarvie, H P; Stoate, C

    2011-04-01

    Septic tank systems (STS) are a potential source of nutrient emissions to surface waters but few data exist in the UK to quantify their significance for eutrophication. We monitored the impact of STS on nutrient concentrations in a stream network around a typical English village over a 1-year period. Septic tank effluent discharging via a pipe directly into one stream was highly concentrated in soluble N (8-63mgL(-1)) and P (<1-14mgL(-1)) and other nutrients (Na, K, Cl, B and Mn) typical of detergent and household inputs. Ammonium-N (NH(4)N) and soluble reactive P (SRP) fractions were dominant (70-85% of total) and average concentrations of nitrite-N (NO(2)N) were above levels considered harmful to fish (0.1mgL(-1)). Lower nutrient concentrations were recorded at a ditch and a stream site, but range and average values downstream of rural habitation were still 4 to 10-fold greater than those in upstream sections. At the ditch site, where flow volumes were low, annual flow-weighted concentrations of NH(4)N and SRP increased from 0.04 and 0.07mgL(-1), respectively upstream to 0.55 and 0.21mgL(-1) downstream. At the stream site, flow volumes were twice as large and flow-weighted concentrations increased much less; from 0.04 to 0.21mgL(-1) for NH(4)N and from 0.06 to 0.08mgL(-1) for SRP. At all sites, largest nutrient concentrations were recorded under low flow and stream discharge was the most important factor determining the eutrophication impact of septic tank systems. The very high concentrations, intercorrelation and dilution patterns of SRP, NH(4)-N and the effluent markers Na and B suggested that soakaways in the heavy clay catchment soils were not retaining and treating the septic tank effluents efficiently, with profound implications for stream biodiversity. Water companies, water regulators and rural communities therefore need to be made more aware of the potential impacts of STS on water quality so that their management can be optimised to reduce the risk of potential eutrophication and toxicity to aquatic ecosystems during summer low flow periods. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Water soluble aerosols and gases at a UK background site - Part 1: Controls of PM2.5 and PM10 aerosol composition

    NASA Astrophysics Data System (ADS)

    Twigg, M. M.; Di Marco, C. F.; Leeson, S.; van Dijk, N.; Jones, M. R.; Leith, I. D.; Morrison, E.; Coyle, M.; Proost, R.; Peeters, A. N. M.; Lemon, E.; Frelink, T.; Braban, C. F.; Nemitz, E.; Cape, J. N.

    2015-07-01

    There is limited availability of long-term, high temporal resolution, chemically speciated aerosol measurements which can provide further insight into the health and environmental impacts of particulate matter. The Monitor for AeRosols and Gases (MARGA, Applikon B.V., NL) allows for the characterisation of the inorganic components of PM10 and PM2.5 (NH4+, NO3-, SO42-, Cl-, Na+, K+, Ca2+, Mg2+) and inorganic reactive gases (NH3, SO2, HCl, HONO and HNO3) at hourly resolution. The following study presents 6.5 years (June 2006 to December 2012) of quasi-continuous observations of PM2.5 and PM10 using the MARGA at the UK EMEP supersite, Auchencorth Moss, SE Scotland. Auchencorth Moss was found to be representative of a remote European site with average total water soluble inorganic mass of PM2.5 of 3.82 μg m-3. Anthropogenically derived secondary inorganic aerosols (sum of NH4+, NO3- and nss-SO42-) were the dominating species (63 %) of PM2.5. In terms of equivalent concentrations, NH4+ provided the single largest contribution to PM2.5 fraction in all seasons. Sea salt was the main component (73 %) of the PMcoarse fraction (PM10-PM2.5), though NO3- was also found to make a relatively large contribution to the measured mass (17 %) providing evidence of considerable processing of sea salt in the coarse mode. There was on occasions evidence of aerosol from combustion events being transported to the site in 2012 as high K+ concentrations (deviating from the known ratio in sea salt) coincided with increases in black carbon at the site. Pollution events in PM10 (defined as concentrations > 12 μg m-3) were on average dominated by NH4+ and NO3-, where smaller loadings at the site tended to be dominated by sea salt. As with other western European sites, the charge balance of the inorganic components resolved were biased towards cations, suggesting the aerosol was basic or more likely that organic acids contributed to the charge balance. This study demonstrates the UK background atmospheric composition is primarily driven by meteorology with sea salt dominating air masses from the Atlantic Ocean and the Arctic, whereas secondary inorganic aerosols tended to dominate air masses from continental Europe.

  19. A green chemistry approach for synthesizing biocompatible gold nanoparticles.

    PubMed

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin-Hoi

    2014-01-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp. We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp. mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge, this is the first report to describe the synthesis of monodispersed, biocompatible, and soluble AuNPs with an average size of 20 nm using Ganoderma spp. This study opens up new possibilities of using an inexpensive and non-toxic mushroom extract as a reducing and stabilizing agent for the synthesis of size-controlled, large-scale, biocompatible, and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.

  20. A green chemistry approach for synthesizing biocompatible gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin-Hoi

    2014-05-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp . We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp . mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge, this is the first report to describe the synthesis of monodispersed, biocompatible, and soluble AuNPs with an average size of 20 nm using Ganoderma spp. This study opens up new possibilities of using an inexpensive and non-toxic mushroom extract as a reducing and stabilizing agent for the synthesis of size-controlled, large-scale, biocompatible, and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.

  1. Unexpected seasonality in quantity and composition of Amazon rainforest air reactivity

    PubMed Central

    Nölscher, A. C.; Yañez-Serrano, A. M.; Wolff, S.; de Araujo, A. Carioca; Lavrič, J. V.; Kesselmeier, J.; Williams, J.

    2016-01-01

    The hydroxyl radical (OH) removes most atmospheric pollutants from air. The loss frequency of OH radicals due to the combined effect of all gas-phase OH reactive species is a measureable quantity termed total OH reactivity. Here we present total OH reactivity observations in pristine Amazon rainforest air, as a function of season, time-of-day and height (0–80 m). Total OH reactivity is low during wet (10 s−1) and high during dry season (62 s−1). Comparison to individually measured trace gases reveals strong variation in unaccounted for OH reactivity, from 5 to 15% missing in wet-season afternoons to mostly unknown (average 79%) during dry season. During dry-season afternoons isoprene, considered the dominant reagent with OH in rainforests, only accounts for ∼20% of the total OH reactivity. Vertical profiles of OH reactivity are shaped by biogenic emissions, photochemistry and turbulent mixing. The rainforest floor was identified as a significant but poorly characterized source of OH reactivity. PMID:26797390

  2. Unexpected seasonality in quantity and composition of Amazon rainforest air reactivity.

    PubMed

    Nölscher, A C; Yañez-Serrano, A M; Wolff, S; de Araujo, A Carioca; Lavrič, J V; Kesselmeier, J; Williams, J

    2016-01-22

    The hydroxyl radical (OH) removes most atmospheric pollutants from air. The loss frequency of OH radicals due to the combined effect of all gas-phase OH reactive species is a measureable quantity termed total OH reactivity. Here we present total OH reactivity observations in pristine Amazon rainforest air, as a function of season, time-of-day and height (0-80 m). Total OH reactivity is low during wet (10 s(-1)) and high during dry season (62 s(-1)). Comparison to individually measured trace gases reveals strong variation in unaccounted for OH reactivity, from 5 to 15% missing in wet-season afternoons to mostly unknown (average 79%) during dry season. During dry-season afternoons isoprene, considered the dominant reagent with OH in rainforests, only accounts for ∼20% of the total OH reactivity. Vertical profiles of OH reactivity are shaped by biogenic emissions, photochemistry and turbulent mixing. The rainforest floor was identified as a significant but poorly characterized source of OH reactivity.

  3. Influence of traps on the deuterium behaviour in the low activation martensitic steels F82H and Batman

    NASA Astrophysics Data System (ADS)

    Serra, E.; Perujo, A.; Benamati, G.

    1997-06-01

    A time dependent permeation method is used to measure the permeability, diffusivity and solubility of deuterium in the low activation martensitic steels F82H and Batman. The measurements cover the temperature range from 373 to 743 K which includes the onset of deuterium trapping effects on diffusivity and solubility. The results are interpreted using a trapping model. The number of trap sites and their average energies for deuterium in F82H and Batman steels are determined.

  4. In vitro and in vivo antioxidant activity of a water-soluble polysaccharide from dendrobium denneanum

    USGS Publications Warehouse

    Luo, A.; Ge, Z.; Fan, Y.; Chun, Z.; Jin, He X.

    2011-01-01

    The water-soluble crude polysaccharide (DDP) obtained from the aqueous extracts of the stem of Dendrobium denneanum through hot water extraction followed by ethanol precipitation, was found to have an average molecular weight (Mw) of about 484.7 kDa. Monosaccharide analysis revealed that DDP was composed of arabinose, xylose, mannose, glucose and galactose in a molar ratio of 1.00:2.66:8.92:34.20:10.16. The investigation of antioxidant activity both in vitro and in vivo showed that DDP is a potential antioxidant. ?? 2011.

  5. In vitro Antioxidant of a Water-Soluble Polysaccharide from Dendrobium fimhriatum Hook.var.oculatum Hook

    PubMed Central

    Luo, Aoxue; Fan, Yijun

    2011-01-01

    A water-soluble crude polysaccharide (DFHP) obtained from the aqueous extracts of the stem of Dendrobium fimhriatum Hook.var.oculatum Hook through hot water extraction followed by ethanol precipitation, was found to have an average molecular weight (Mw) of about 209.3 kDa. Monosaccharide analysis revealed that DFHP was composed of mannose, glucose and galactose in a content ratio of 37.52%; 43.16%; 19.32%. The investigation of antioxidant activity in vitro showed that DFHP is a potential antioxidant. PMID:21747725

  6. Process Improvement of Reactive Dye Synthesis Using Six Sigma Concept

    NASA Astrophysics Data System (ADS)

    Suwanich, Thanapat; Chutima, Parames

    2017-06-01

    This research focuses on the problem occurred in the reactive dye synthesis process of a global manufacturer in Thailand which producing various chemicals for reactive dye products to supply global industries such as chemicals, textiles and garments. The product named “Reactive Blue Base” is selected in this study because it has highest demand and the current chemical yield shows a high variation, i.e. yield variation of 90.4% - 99.1% (S.D. = 2.405 and Cpk = -0.08) and average yield is 94.5% (lower than the 95% standard set by the company). The Six Sigma concept is applied aiming at increasing yield and reducing variation of this process. This approach is suitable since it provides a systematic guideline with five improvement phases (DMAIC) to effectively tackle the problem and find the appropriate parameter settings of the process. Under the new parameter settings, the process yield variation is reduced to range between 96.5% - 98.5% (S.D. = 0.525 and Cpk = 1.83) and the average yield is increased to 97.5% (higher than the 95% standard set by the company).

  7. Impact of aromatics and monoterpenes on simulated tropospheric ozone and total OH reactivity

    NASA Astrophysics Data System (ADS)

    Porter, William C.; Safieddine, Sarah A.; Heald, Colette L.

    2017-11-01

    The accurate representation of volatile organic compounds (VOCs) in models is an important step towards the goal of understanding and predicting many changes in atmospheric constituents relevant to climate change and human health. While isoprene is the most abundant non-methane VOC, many other compounds play a large role in governing pollutant formation and the overall oxidative capacity of the atmosphere. We quantify the impacts of aromatics and monoterpenes, two classes of VOC not included in the standard gas-phase chemistry of the chemical transport model GEOS-Chem, on atmospheric composition. We find that including these compounds increases mean total summer OH reactivity by an average of 11% over the United States, Europe, and Asia. This increased reactivity results in higher simulated levels of O3, raising maximum daily 8-h average O3 in the summer by up to 14 ppb at some NOx-saturated locations.

  8. Calcium-based multi-element chemistry for grid-scale electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Ouchi, Takanari; Kim, Hojong; Spatocco, Brian L.; Sadoway, Donald R.

    2016-03-01

    Calcium is an attractive material for the negative electrode in a rechargeable battery due to its low electronegativity (high cell voltage), double valence, earth abundance and low cost; however, the use of calcium has historically eluded researchers due to its high melting temperature, high reactivity and unfavorably high solubility in molten salts. Here we demonstrate a long-cycle-life calcium-metal-based rechargeable battery for grid-scale energy storage. By deploying a multi-cation binary electrolyte in concert with an alloyed negative electrode, calcium solubility in the electrolyte is suppressed and operating temperature is reduced. These chemical mitigation strategies also engage another element in energy storage reactions resulting in a multi-element battery. These initial results demonstrate how the synergistic effects of deploying multiple chemical mitigation strategies coupled with the relaxation of the requirement of a single itinerant ion can unlock calcium-based chemistries and produce a battery with enhanced performance.

  9. Calcium-based multi-element chemistry for grid-scale electrochemical energy storage

    PubMed Central

    Ouchi, Takanari; Kim, Hojong; Spatocco, Brian L.; Sadoway, Donald R.

    2016-01-01

    Calcium is an attractive material for the negative electrode in a rechargeable battery due to its low electronegativity (high cell voltage), double valence, earth abundance and low cost; however, the use of calcium has historically eluded researchers due to its high melting temperature, high reactivity and unfavorably high solubility in molten salts. Here we demonstrate a long-cycle-life calcium-metal-based rechargeable battery for grid-scale energy storage. By deploying a multi-cation binary electrolyte in concert with an alloyed negative electrode, calcium solubility in the electrolyte is suppressed and operating temperature is reduced. These chemical mitigation strategies also engage another element in energy storage reactions resulting in a multi-element battery. These initial results demonstrate how the synergistic effects of deploying multiple chemical mitigation strategies coupled with the relaxation of the requirement of a single itinerant ion can unlock calcium-based chemistries and produce a battery with enhanced performance. PMID:27001915

  10. Calcium-based multi-element chemistry for grid-scale electrochemical energy storage.

    PubMed

    Ouchi, Takanari; Kim, Hojong; Spatocco, Brian L; Sadoway, Donald R

    2016-03-22

    Calcium is an attractive material for the negative electrode in a rechargeable battery due to its low electronegativity (high cell voltage), double valence, earth abundance and low cost; however, the use of calcium has historically eluded researchers due to its high melting temperature, high reactivity and unfavorably high solubility in molten salts. Here we demonstrate a long-cycle-life calcium-metal-based rechargeable battery for grid-scale energy storage. By deploying a multi-cation binary electrolyte in concert with an alloyed negative electrode, calcium solubility in the electrolyte is suppressed and operating temperature is reduced. These chemical mitigation strategies also engage another element in energy storage reactions resulting in a multi-element battery. These initial results demonstrate how the synergistic effects of deploying multiple chemical mitigation strategies coupled with the relaxation of the requirement of a single itinerant ion can unlock calcium-based chemistries and produce a battery with enhanced performance.

  11. Water-Soluble Phosphinothiols for Traceless Staudinger Ligation and Integration with Expressed Protein Ligation

    PubMed Central

    Tam, Annie; Soellner, Matthew B.; Raines, Ronald T.

    2010-01-01

    The traceless Staudinger ligation is an effective means to synthesize an amide bond between two groups of otherwise orthogonal reactivity: a phosphinothioester and an azide. An important application of the Staudinger ligation is in the ligation of peptides at a variety of residues. Here, we demonstrate that the traceless Staudinger ligation can be achieved in water with a water-soluble reagent. Those reagents that provide a high yield of amide product discourage protonation of the nitrogen in the key iminophosphorane intermediate. The most efficacious reagent, bis(p-dimethylaminoethylphenyl)phosphinomethanethiol, mediates the rapid ligation of equimolar substrates in water. This reagent is also able to perform a transthioesterification reaction with the thioester intermediate formed during intein-mediated protein splicing. Hence, the traceless Staudinger ligation can be integrated with expressed protein ligation, extending the reach of modern protein chemistry. PMID:17713909

  12. Study of antioxidant properties of a water-soluble Vitamin E derivative-tocopherol monoglucoside (TMG) by differential pulse voltammetry.

    PubMed

    Korotkova, E I; Avramchik, O A; Kagiya, T V; Karbainov, Y A; Tcherdyntseva, N V

    2004-06-17

    Study of antioxidant properties of tocopherol monoglucoside (TMG), a water-soluble Vitamin E derivative, by differential pulse voltammetry has been carried out in this work. The pH influence on the antioxidant properties of TMG has been also investigated. It was observed that the antioxidant activity of TMG is greater at 6.90

  13. Hemolysis in a patient with alkaptonuria and chronic kidney failure.

    PubMed

    Heng, Anne-Elisabeth; Courbebaisse, Marie; Kemeny, Jean Louis; Matesan, Raluca; Bonniol, Claude; Deteix, Patrice; Souweine, Bertrand

    2010-07-01

    In alkaptonuria, the absence of homogentisic acid oxidase results in the accumulation of homogentisic acid (HGA) in the body. Fatal disease cases are infrequent, and death often results from kidney or cardiac complications. We report a 24-year-old alkaptonuric man with severe decreased kidney function who developed fatal metabolic acidosis and intravascular hemolysis. Hemolysis may have been caused by rapid and extensive accumulation of HGA and subsequent accumulation of plasma soluble melanins. Toxic effects of plasma soluble melanins, their intermediates, and reactive oxygen side products are increased when antioxidant mechanisms are overwhelmed. A decrease in serum antioxidative activity has been reported in patients with chronic decreased kidney function. However, despite administration of large doses of an antioxidant agent and ascorbic acid and intensive kidney support, hemolysis and acidosis could not be brought under control and hemolysis led to the death of the patient.

  14. The coordination chemistry of group 15 element ligand complexes--a developing area.

    PubMed

    Scheer, Manfred

    2008-09-07

    A survey of the contemporary challenges of the field of unsubstituted group 15 element ligand complexes (excluding N) is given. The focus of the article is on the coordination chemistry behaviour of such E(n) ligand complexes. This field is subdivided into two areas of reactivity: E(n) ligand complexes with (i) noncoordinated Lewis-acidic cations and (ii) Lewis-acidic coordination compounds containing at least one permanently coordinating ligand. In the latter case, insoluble 1D and 2D polymers respectively are obtained; however, under special conditions soluble, spherical, fullerene-like giant molecules are formed. These nano-sized molecules are up to 2.4 nm in diameter and are able to encapsulate small molecules in their holes. In contrast, the first-mentioned field uses weakly coordinating anions to obtain readily soluble di- and polycationic products. These show depolymerisation tendencies in solution under the formation of oligomer-monomer equilibria and thus reveal dynamic supramolecular aggregation processes.

  15. Re-evaluation of Sepharose-insulin as a tool for the study of insulin action.

    PubMed Central

    Kolb, H J; Renner, R; Hepp, K D; Weiss, L; Wieland, O H

    1975-01-01

    The biological activity of Sepharose-insulin in different assays in vitro, e.g., stimulation of glucose oxidation, lipogenesis, and antilipolysis and activation of pyruvate dehydrogenase (EC 1.2.4.1) activity, has been investigated. According to amino acid analysis, between 270 and 330 mug (6.9-8.2 U) of insulin were coupled per ml of packed beads. Related to the total insulin content, 0.2-0.7% of the insulin was biologically active. Comparable biological activity was observed with isolated fat cells and fat pad pieces. After incubation with tissue or cells, Sepharose-insulin particles were separated by centrifugation from the medium. The clear supernatant was assayed for biologically and immunologically reactive insulin and contained soluble insulin activity. A quantitative evaluation of the soluble biological and immunological insulin activity in the supernatant accounted for the total insulin activity of Sepharose-insulin. PMID:1054501

  16. Influence of pectins on the solubility and the molar mass distribution of dehydrogenative polymers (DHPs, lignin model compounds).

    PubMed

    Cathala, B; Monties, B

    2001-07-19

    Dehydrogenation polymers (DHPs, lignin model compounds) were synthesized in the presence of increasing pectin concentrations using two different methods. The first method ('Zutropfverfahren', ZT) consists in the slow adding of monomers whereas in the second method ('Zulaufverfahren', ZL) all the reactants are added simultaneously. DHPs solubility increases with the pectin concentration in the ZT experiments and remains stable in the ZL experiments. Covalent bonds between pectin and DHP are formed during ZT polymerization resulting in lignin carbohydrate complex (LCC) which keeps the unbound DHPs in solution by the formation of aggregate or micelle-like structures. In contrast LCC are not formed during the ZL process which behave like the DHP reference. The ZT DHP molar masses increase observed is attributed to the reactivity of the high molar mass polymer solubilized by the LCC whereas ZL higher molar mass polymers are precipitated out of the solution and cannot react further.

  17. Novel water-soluble near-infrared cyanine dyes: synthesis, spectral properties, and use in the preparation of internally quenched fluorescent probes.

    PubMed

    Bouteiller, Cédric; Clavé, Guillaume; Bernardin, Aude; Chipon, Bertrand; Massonneau, Marc; Renard, Pierre-Yves; Romieu, Anthony

    2007-01-01

    In this paper, we describe the synthesis and the photophysical properties of two novel near-infrared (NIR) cyanine dyes (NIR5.5-2 and NIR7.0-2) which are water soluble potential substitutes of the commercially available Cy 5.5 and Cy 7.0 fluorescent labels respectively. For each one of these cyanine dyes, the synthetic strategy relies on the postsynthetic derivatization of a cyanine precursor in order to introduce the key functionalities required for bioconjugation of these NIR fluorophores. For NIR5.5-2, a reactive amino group was acylated with an original trisulfonated linker for water solubility. For NIR7.0-2, a vinylic chlorine atom was derivatized through a SRN1 reaction for the introduction of a monoreactive carboxyl group for labeling purposes. Unexpectedly, when these two fluorophores were closely associated within a peptidic architecture, mutual fluorescence quenching between NIR5.5-2 and NIR7.0-2 was observed both at 705 (NIR5.5-2) and 798 nm (NIR7.0-2). On the basis of this property, a novel internally quenched caspase-3-sensitive NIR fluorescent probe was prepared.

  18. Phosphate-Linked Silibinin Dimers (PLSd): New Promising Modified Metabolites.

    PubMed

    Romanucci, Valeria; Gravante, Raffaele; Cimafonte, Martina; Marino, Cinzia Di; Mailhot, Gilles; Brigante, Marcello; Zarrelli, Armando; Fabio, Giovanni Di

    2017-08-11

    By exploiting the regioselective protection of the hydroxyl groups of silibinin along with the well-known phosphoramidite chemistry, we have developed an efficient strategy for the synthesis of new silibinin-modified species, which we have named Phosphate-Linked Silibinin Dimers (PLSd), in which the monomer units are linked by phosphodiester bonds. The antioxidant abilities of the new PLSd were estimated on HepG2 cells using DPPH free radical scavenging and xanthine/xanthine oxidase assays. The new phosphate-metabolites showed a higher anti-oxidant activity than the silibinin, as well as very low toxicity. The ability to scavenge reactive oxygen species (ROS) such as singlet oxygen () and hydroxyl radical () reveals that the two dimers are able to scavenge about two times more effectively than silibinin. Finally, solubility studies have shown that the PLSd present good water solubility (more than 20 mg·L -1 ) under circumneutral pH values, whereas the silibinin was found to be very poorly soluble (less than 0.4 mg·L -1 ) and not stable under alkaline conditions. Together, the above promising results warrant further investigation of the future potential of the PLSd as anti-oxidant metabolites within the large synthetic polyphenols field.

  19. Soluble Human Leukocyte Antigen-G in the Bronchoalveolar Lavage of Lung Cancer Patients.

    PubMed

    Montilla, Dayana; Pérez, Mario; Borges, Lérida; Bianchi, Guillermo; Cova, José-Angel

    2016-08-01

    The main function of the HLA-G molecule in its membrane-bound and soluble forms is to inhibit the immune response by acting on CD4+ T cells, cytotoxic T cells, NK cells and dendritic cells. Lung cancer is a leading cause of death worldwide, and annual incidence is high in both women and men. Some studies have reported an increase of HLA-G serum levels in lung cancer, probably generated by tumor cells escaping the antitumor immune response. In this study the concentration of soluble HLA-G in bronchoalveolar lavage (BAL) in patients with primary and metastatic lung cancer was measured to determine its relation with tumor histological type and overall patient status according to the Karnofsky scale. Thirty-one lung cancer patients were included. A tumor biopsy was obtained by bronchoscopy and the tumor type was determined by hematoxylin and eosin staining. BAL samples were obtained to measure soluble HLA-G concentrations in an ELISA sandwich assay. The average value of soluble HLA-G was 49.04ng/mL. No correlation between soluble HLA-G levels and age, gender or smoking was observed. A highly significant difference was observed in the levels of soluble HLA-G in BAL from patients with different histological types of lung cancer, especially in metastatic tumors. The Karnofsky index showed a significant and inverse correlation with soluble HLA-G levels in BAL. Soluble HLA-G protein is significantly associated with metastatic tumors and patients with lower Karnofsky index and may be useful as a prognostic marker in lung cancer. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Chemical characterization of extractable water soluble matter associated with PM10 from Mexico City during 2000.

    PubMed

    Gutiérrez-Castillo, M E; Olivos-Ortiz, M; De Vizcaya-Ruiz, A; Cebrián, M E

    2005-11-01

    We report the chemical composition of PM10-associated water-soluble species in Mexico City during the second semester of 2000. PM10 samples were collected at four ambient air quality monitoring sites in Mexico City. We determined soluble ions (chloride, nitrate, sulfate, ammonium, sodium, potassium), ionizable transition metals (Zn, Fe, Ti, Pb, Mn, V, Ni, Cr, Cu) and soluble protein. The higher PM(10) levels were observed in Xalostoc (45-174 microg m(-3)) and the lowest in Pedregal (19-54 microg m(-3)). The highest SO2 average concentrations were observed in Tlalnepantla, NO2 in Merced and O3 and NO(x) in Pedregal. The concentration range of soluble sulfate was 6.7-7.9 and 19-25.5 microg m(-3) for ammonium, and 14.8-29.19 for soluble V and 3.2-7.7 ng m(-3) for Ni, suggesting a higher contribution of combustion sources. PM-associated soluble protein levels varied between 0.038 and 0.169 mg m(-3), representing a readily inhalable constituent that could contribute to adverse outcomes. The higher levels for most parameters studied were observed during the cold dry season, particularly in December. A richer content of soluble metals was observed when they were expressed by mass/mass units rather than by air volume units. Significant correlations between Ni-V, Ni-SO4(-2), V-SO4(-2), V-SO2, Ni-SO2 suggest the same type of emission source. The variable soluble metal and ion concentrations were strongly influenced by the seasonal meteoclimatic conditions and the differential contribution of emission sources. Our data support the idea that PM10 mass concentration by itself does not provide a clear understanding of a local PM air pollution problem.

  1. [Efficacy of the treatment for latent tuberculosis infection and delayed reactivation of tuberculosis].

    PubMed

    Toyota, Makoto

    2013-09-01

    To evaluate the efficacy of treatment for latent tuberculosis infection and delayed reactivation of tuberculosis. During a large tuberculosis outbreak, 129 individuals who were in close contact with tuberculosis patients and subsequently tested strongly positive by the tuberculin skin test were followed up for 10 years after identification of the source case. Of the 129 individuals, 105 received treatment for latent tuberculosis infection for 6 months as per recommendation, while the remaining 24 did not receive treatment, because most of them were above 30 years of age and were therefore discouraged from receiving treatment, as was done in the earlier times in Japan. Of the 105 individuals, 5 (4.8%) were newly diagnosed with tuberculosis, and the average duration from identification of the source case to reactivation of tuberculosis was 53 months. Of the 24 individuals who did not receive treatment for latent tuberculosis infection, 6 (25.0%) were newly diagnosed with tuberculosis, and the average duration from identification of the source case to reactivation of tuberculosis was 8.2 months. The risk of active tuberculosis was reduced by 81.0% with treatment for latent tuberculosis infection, compared with that without treatment. Delayed reactivation of tuberculosis was observed among patients treated with isoniazid for latent tuberculosis infection for 6 months.

  2. Phosphorus and nitrogen legacy in a restoration wetland, upper Klamath lake, Oregon

    USGS Publications Warehouse

    Duff, J.H.; Carpenter, K.D.; Snyder, D.T.; Lee, Karl K.; Avanzino, R.J.; Triska, F.J.

    2009-01-01

    The effects of sediment, ground-water, and surface-water processes on the timing, quantity, and mechanisms of N and P fluxes were investigated in the Wood River Wetland 57 years after agricultural practices ceased and seasonal and permanent wetland hydrologies were restored. Nutrient concentrations in standing water largely reflected ground water in winter, the largest annual water source in the closed-basin wetland. High concentrations of total P (22 mg L -1) and total N (30 mg L-1) accumulated in summer when water temperature, air temperature, and evapotranspiration were highest. High positive benthic fluxes of soluble reactive P and ammonium (NH4-N) were measured in two sections of the study area in June and August, averaging 46 and 24 mg m-2 d-1, respectively. Nonetheless, a wetland mass balance simultaneously indicated a net loss of P and N by assimilation, denitrification (1.110.1 mg N m-2 h-1), or solute repartitioning. High nutrient concentrations pose a risk for water quality management. Shifts in the timing and magnitude of water inflows and outflows may improve biogeochemical function and water quality by optimizing seed germination and aquatic plant distribution, which would be especially important if the Wood River Wetland was reconnected with hyper-eutrophic Agency Lake. ?? 2009, The Society of Wetland Scientists.

  3. Mineralogical and microstructural studies of mortars from the bath complex of the Roman villa rustica near Mosnje (Slovenia)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramar, Sabina, E-mail: sabina.kramar@rescen.si; Zalar, Vesna; Urosevic, Maja

    This study deals with the characterization of mortars collected from bath complex of the Roman villa rustica from an archeological site near Mosnje (Slovenia). The mortar layers of the mosaics, wall paintings and mortar floors were investigated. A special aggregate consisting of brick fragments was present in the mortars studied. The mineralogical and petrographic compositions of the mortars were determined by means of optical microscopy, X-ray powder diffraction and FTIR spectroscopy. Analysis of aggregate-binder interfaces using SEM-EDS revealed various types of reactivity rims. In order to assess the hydraulic characteristics of the mortars, the acid-soluble fractions were determined by ICP-OES.more » Furthermore, the results of Hg-porosimetry and gas sorption isotherms showed that mortars with a higher content of brick fragments particles exhibited a higher porosity and a greater BET surface area but a lower average pore diameter compared to mortars lacking this special aggregate. - Highlights: {yields} Mineral and microstructural characterizations of brick-lime mortars. {yields} Hydraulic character of mortars in Roman baths complex. {yields} Reaction rims were observed around brick fragments and dolomitic grains. {yields} Higher content of brick particles yielded a higher BET surface area. {yields} Addition of brick particles increased porosity and diminished pore size diameter.« less

  4. Bacterial production and their role in the removal of dissolved organic matter from tributaries of drinking water reservoirs.

    PubMed

    Kamjunke, Norbert; Oosterwoud, Marieke R; Herzsprung, Peter; Tittel, Jörg

    2016-04-01

    Enhanced concentrations of dissolved organic matter (DOM) in freshwaters are an increasing problem in drinking water reservoirs. In this study we investigated bacterial DOM degradation rates in the tributaries of the reservoirs and tested the hypotheses that (1) DOM degradation is high enough to decrease DOM loads to reservoirs considerably, (2) DOM degradation is affected by stream hydrology, and (3) phosphorus addition may stimulate bacterial DOM degradation. Bacterial biomass production, which was used as a measure of DOM degradation, was highest in summer, and was usually lower at upstream than at downstream sites. An important proportion of bacterial production was realized in epilithic biofilms. Production of planktonic and biofilm bacteria was related to water temperature. Planktonic production weakly correlated to DOM quality and to total phosphorus concentration. Addition of soluble reactive phosphorus did not stimulate bacterial DOM degradation. Overall, DOM was considerably degraded in summer at low discharge levels, whereas degradation was negligible during flood events (when DOM load in reservoirs was high). The ratio of DOM degradation to total DOM release was negatively related to discharge. On annual average, only 0.6-12% of total DOM released by the catchments was degraded within the tributaries. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Nanoparticles modified with multiple organic acids

    NASA Technical Reports Server (NTRS)

    Luebben, Silvia DeVito (Inventor); Cook, Ronald Lee (Inventor); Wilson, Carolina (Inventor); Meiser, Manfred (Inventor); Myers, Andrew William (Inventor); Smith, Bryan Matthew (Inventor); Elliott, Brian John (Inventor); Kreutzer, Cory (Inventor)

    2007-01-01

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  6. Nanoparticles modified with multiple organic acids

    DOEpatents

    Cook, Ronald Lee [Lakewood, CO; Luebben, Silvia DeVito [Golden, CO; Myers, Andrew William [Arvada, CO; Smith, Bryan Matthew [Boulder, CO; Elliott, Brian John [Superior, CO; Kreutzer, Cory [Brighton, CO; Wilson, Carolina [Arvada, CO; Meiser, Manfred [Aurora, CO

    2007-07-17

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  7. Microscale Solubility Measurements of Matrix-Assisted Laser Desorption-Ionization (MALDI) Matrices Using Attenuated Total Reflection (ATR) Fourier Transform Infrared Spectroscopy (FT-IR) Coupled with Partial Least Squares (PLS) Analysis.

    PubMed

    Gorre, Elsa; Owens, Kevin G

    2016-11-01

    In this work an attenuated total reflection Fourier transform infrared (FT-IR) absorption based method is used to measure the solubility of two matrix-assisted laser desorption-ionization (MALDI) matrices in a few pure solvents and mixtures of acetonitrile and water using low microliter amounts of solution. Results from a method that averages the values obtained from multiple calibration curves created by manual peak picking are compared to those predicted using a partial least squares (PLS) chemometrics approach. The PLS method provided solubility values that were in good agreement with the manual method with significantly greater ease of analysis. As a test, the solubility of adipic acid in acetone was measured using the two methods of analysis, and the values are in good agreement with solubility values reported in literature. The solubilities of the MALDI matrices α-cyano-4-hydroxy cinnamic acid (CHCA) and sinapinic acid (SA) were measured in a series of mixtures made from acetonitrile (ACN) and water; surprisingly, the results show a highly nonlinear trend. While both CHCA and SA show solubility values of less than 10 mg/mL in the pure solvents, the solubility value for SA increases to 56.3 mg/mL in a 75:25 v/v ACN:water mixture. This can have a significant effect on the matrix-to-analyte ratios in the MALDI experiment when sample protocols call for preparation of a saturated solution of the matrix in the chosen solvent system. © The Author(s) 2016.

  8. Cobalt Modification of Thin Rutile Films Magnetron-Sputtered in Vacuum

    NASA Astrophysics Data System (ADS)

    Afonin, N. N.; Logacheva, V. A.

    2018-04-01

    Using X-ray phase analysis, atomic force microscopy, and secondary ion mass-spectrometry, the phase formation and component distribution in a Co-TiO2 film system have been investigated during magnetron sputtering of the metal on the oxide and subsequent vacuum annealing. It has been found that cobalt diffuses deep into titanium oxide to form complex oxides CoTi2O5 and CoTiO3. A mechanism behind their formation at grain boundaries throughout the thickness of the TiO2 film is suggested. It assumes the reactive diffusion of cobalt along grain boundaries in the oxide. A quantitative model of reactive interdiffusion in a bilayer polycrystalline metal-oxide film system with limited solubility of components has been developed. The individual diffusion coefficients of cobalt and titanium have been determined in the temperature interval 923-1073 K.

  9. Passive Reactive Berm (PRBerm) to Provide Low Maintenance Lead Containment at Active Small Arms Firing Ranges

    DTIC Science & Technology

    2011-10-01

    CO3 )2, hydrocerrusite]. Overall lead solubility in a natural system is fundamentally determined by the concentrations of the anions in solution (e.g...with a potential seed crystal for heterogeneous nucleation of lead-pyromorphites (Wright et al. 2004). Depending on the presence of certain metals in...comparison will be $ per running foot of PRBerm as compared to $ per running foot of earthen berm and purchase and installation of a single steel bullet trap

  10. More arrows in the quiver: new pathways and old problems with heavy alkaline earth metal diphenylmethanides.

    PubMed

    Alexander, Jacob S; Ruhlandt-Senge, Karin

    2004-03-05

    Progress in the field of sigma-bonded alkaline earth organometallics has been handicapped by numerous complications, such as high reactivity, low solubility, and the limited availability of suitable starting materials. Here we present two synthetic methods, hydrocarbon elimination and desilylation, as alternative routes into this chemistry. A novel barium diphenylmethanide was prepared using these routes delineating that both methods provide a powerful, versatile synthetic access route to an extended library of organometallic alkaline earth derivatives.

  11. Micro/Nanoscale Parallel Patterning of Functional Biomolecules, Organic Fluorophores and Colloidal Nanocrystals

    PubMed Central

    2009-01-01

    We describe the design and optimization of a reliable strategy that combines self-assembly and lithographic techniques, leading to very precise micro-/nanopositioning of biomolecules for the realization of micro- and nanoarrays of functional DNA and antibodies. Moreover, based on the covalent immobilization of stable and versatile SAMs of programmable chemical reactivity, this approach constitutes a general platform for the parallel site-specific deposition of a wide range of molecules such as organic fluorophores and water-soluble colloidal nanocrystals. PMID:20596482

  12. Copper(II) carboxylate promoted intramolecular diamination of terminal alkenes: improved reaction conditions and expanded substrate scope.

    PubMed

    Zabawa, Thomas P; Chemler, Sherry R

    2007-05-10

    The copper(II) carboxylate promoted diamination reaction has been improved by the use of the organic soluble copper(II) neodecanoate [Cu(ND)2]. Cu(ND)2 allowed the less-polar solvent dichloroethane (DCE) to be used, and as a consequence, decomposition of less-reactive substrates could be avoided. High diastereoselectivity was observed in the synthesis of 2,5-disubstituted pyrrolidines. Ureas, bis(anilines), and alpha-amido pyrroles derived from 2-allylaniline could also participate in the diamination reaction.

  13. A Comparative Study of Sediment Quality in Four Reservoirs.

    DTIC Science & Technology

    1984-02-01

    same time as the reservoir samples. Precision for interstitial water samples was initially measured using soil - solution samples. As interstitial...Variable Composite Sample hean, ma&L Replicates Deviation, ma L Deviation. Ammonium nitrogen Soil solution 0.07 12 0.01 14 DeGray composite 2.00 10 0.01...0.5 Nitrate nitrite Filtered wastewater 0.04 10 0.01 25 nitrogen Soluble reactive Soil solution 0.04 12 0.01 25 phosphorus DeGray composite 0.16 10 0.01

  14. Investigating ebullition in a sand column using dissolved gas analysis and reactive transport modeling

    USGS Publications Warehouse

    Amos, Richard T.; Mayer, K. Ulrich

    2006-01-01

    Ebullition of gas bubbles through saturated sediments can enhance the migration of gases through the subsurface, affect the rate of biogeochemical processes, and potentially enhance the emission of important greenhouse gases to the atmosphere. To better understand the parameters controlling ebullition, methanogenic conditions were produced in a column experiment and ebullition through the column was monitored and quantified through dissolved gas analysis and reactive transport modeling. Dissolved gas analysis showed rapid transport of CH4 vertically through the column at rates several times faster than the bromide tracer and the more soluble gas CO2, indicating that ebullition was the main transport mechanism for CH4. An empirically derived formulation describing ebullition was integrated into the reactive transport code MIN3P allowing this process to be investigated on the REV scale in a complex geochemical framework. The simulations provided insights into the parameters controlling ebullition and show that, over the duration of the experiment, 36% of the CH4 and 19% of the CO2 produced were transported to the top of the column through ebullition.

  15. End-Member Formulation of Solid Solutions and Reactive Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtner, Peter C.

    2015-09-01

    A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed tomore » correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.« less

  16. Valorization of Waste Obtained from Oil Extraction in Moringa Oleifera Seeds: Coagulation of Reactive Dyes in Textile Effluents.

    PubMed

    Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2014-09-12

    Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%-75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl₃ and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results.

  17. Valorization of Waste Obtained from Oil Extraction in Moringa Oleifera Seeds: Coagulation of Reactive Dyes in Textile Effluents

    PubMed Central

    Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2014-01-01

    Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%–75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl3 and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results. PMID:28788199

  18. INSOLUBILITY AND ALTERATION OF ALLERGENIC ACTIVITY OF WHEAT PROTEINS IN PROCESSED FOODS.

    PubMed

    Tanaka, Kajiyo; Kanie, Yuuki; Naitou, Michita; Suzuki, Misa; Umemura, Harue; Tagami, Kazunori; Sakai, Kazunori; Furuta, Tomoko; Yamada, Chikako; Izumi, Hidehiko; Yokooji, Tomoharu; Matsuo, Hiroaki; Ito, Komei

    2017-01-01

    Food processing causes decomposition, denaturation or polymerization of protein, which may alter an allergic reaction. This study aimed to investigate the insolubility and alteration of wheat allergens in processed foods and the reactivity to patient sera. We extracted proteins from wheat flour, udon and bread using different extracts and conducted SDS-polyacrylamide gel electrophoresis. IgE-immunoblotting was also conducted using sera from children with wheat allergy. Soluble protein was extracted from wheat flour, and gluten fractions were also extracted by adding SDS. However, no proteins were able to be extracted from udon or bread witout severing the disulfide bonds under reducing condition. Only trace amounts of protein were detected in the water after boiling udon noodles. The reactivity of IgE antibody to the extracted protein did not differ among the different processed food types. Wheat allergens became strongly insolubilized after gluten formation and heating. However, the reactivity of IgE antibody to each allergen was not affected by food processing. Further studies are needed for the effects on clinical symptoms.

  19. Quartz Solubility and Thermodynamics Above the Upper Critical End Point

    NASA Astrophysics Data System (ADS)

    Hunt, J. D.; Manning, C. E.

    2010-12-01

    Silica is among the most abundant solutes in crustal and mantle fluids, especially at conditions nearing the upper critical end point of the SiO2-H2O system (~10 kbar, 1080 °C). However, the solubility of silica is not well determined at higher pressures. In addition, the thermodynamic mixing relations of the supercritical SiO2-H2O system are poorly known. We made new measurements on quartz solubility in H2O at 15 and 20 kbar at 900-1100 °C. At SiO2 mole fraction below 0.1, solubility was determined by weight loss of single crystals equilibrated with H2O. At higher SiO2 concentrations, solubility was determined by bracketing the presence of absence of quartz in charges with known bulk SiO2 concentration. The measured solubilities imply that there is a solubility minimum above 1050 °C between 10 and 20 kbar. Quartz solubility measurements from Manning (1994), Newton and Manning (2003; 2008), Nakamura (1975) and this study were fitted to a modified sub-regular solution model. A term representing the Gibbs free energy (ΔGr) of the reaction 1/2 H2O + 1/2 O2- = OH- (the depolymerization reaction that occurs when silica is dissolved in water) was added to the free energy of mixing parameterization. Thirteen independent parameters describe the T and P variation of the weak sub-regular interaction terms (Ws and Wh) and the strong interaction term (ΔGr). Nine of the parameters are linear in T and P, and the other four are quadratic: Ws and ΔGr vary with P2, and ΔGr also varies with T2 and PT. The average error between the data and the model is 5%. Because the Gibbs free energy change of the depolymerization reaction is included in the fit, the model predicts an average state of aqueous silica polymerization of solutions in equilibrium with quartz at P between 10 and 20 kbar and T above 500 °C. The results also highlight what can be inferred from the steep hydrothermal melting curve of quartz - that while pressure does determine whether the system is subcritical or supercritical, it has a comparatively minor effect on the transition from an H2O-rich fluid to an SiO2-rich fluid. Whether due to melting or complete miscibility, the composition of a fluid in equilibrium with quartz increases dramatically between 900 and 1100 °C.

  20. Cloud condensation nuclei activity and hygroscopicity of fresh and aged cooking organic aerosol

    NASA Astrophysics Data System (ADS)

    Li, Yanwei; Tasoglou, Antonios; Liangou, Aikaterini; Cain, Kerrigan P.; Jahn, Leif; Gu, Peishi; Kostenidou, Evangelia; Pandis, Spyros N.

    2018-03-01

    Cooking organic aerosol (COA) is potentially a significant fraction of organic particulate matter in urban areas. COA chemical aging experiments, using aerosol produced by grilling hamburgers, took place in a smog chamber in the presence of UV light or excess ozone. The water solubility distributions, cloud condensation nuclei (CCN) activity, and corresponding hygroscopicity of fresh and aged COA were measured. The average mobility equivalent activation diameter of the fresh particles at 0.4% supersaturation ranged from 87 to 126 nm and decreased for aged particles, ranging from 65 to 88 nm. Most of the fresh COA had water solubility less than 0.1 g L-1, even though the corresponding particles were quite CCN active. After aging, the COA fraction with water solubility greater than 0.1 g L-1 increased more than 2 times. Using the extended Köhler theory for multiple partially soluble components in order to predict the measured activation diameters, the COA solubility distribution alone could not explain the CCN activity. Surface tensions less than 30 dyn cm-1 were required to explain the measured activation diameters. In addition, COA particles appear to not be spherical, which can introduce uncertainties into the corresponding calculations.

  1. [Fast separation and analysis of water-soluble vitamins in spinach by capillary electrophoresis with high voltage].

    PubMed

    Hu, Xiaoqin; You, Huiyan

    2009-11-01

    In capillary electrophoresis, 0-40 kV (even higher) voltage can be reached by a connecting double-model high voltage power supply. In the article, water-soluble vitamins, VB1, VB2, VB6, VC, calcium D-pantothenate, D-biotin, nicotinic acid and folic acid in vegetable, were separated by using the high voltage power supply under the condition of electrolyte water solution as running buffer. The separation conditions, such as voltage, the concentration of buffer and pH value etc. , were optimized during the experiments. The results showed that eight water-soluble vitamins could be baseline separated in 2.2 min at 40 kV applied voltage, 25 mmol/L sodium tetraborate buffer solution (pH 8.8). The water-soluble vitamins in spinach were quantified and the results were satisfied. The linear correlation coefficients of the water-soluble vitamins ranged from 0.9981 to 0.9999. The detection limits ranged from 0.2 to 0.3 mg/L. The average recoveries ranged from 88.0% to 100.6% with the relative standard deviations (RSD) range of 1.15%-4.13% for the spinach samples.

  2. Effect of static porosity fluctuations on reactive transport in a porous medium

    NASA Astrophysics Data System (ADS)

    L'Heureux, Ivan

    2018-02-01

    Reaction-diffusive transport phenomena in porous media are ubiquitous in engineering applications, biological and geochemical systems. The porosity field is usually random in space, but most models consider the porosity field as a well-defined deterministic function of space and time and ignore the porosity fluctuations. They use a reaction-diffusion equation written in terms of an average porosity and average concentration fields. In this contribution, we treat explicitly the effect of spatial porosity fluctuations on the dynamics of a concentration field for the case of a one-dimensional reaction-transport system with nonlinear kinetics. Three basic assumptions are considered. (i) The porosity fluctuations are assumed to have Gaussian properties and an arbitrary variance; (ii) we assume that the noise correlation length is small compared to the relevant macroscopic length scale; (iii) and we assume that the kinetics of the reactive term in the equations for the fluctuations is a self-consistently determined constant. Elimination of the fluctuating part of the concentration field from the dynamics leads to a renormalized equation involving the average concentration field. It is shown that the noise leads to a renormalized (generally smaller) diffusion coefficient and renormalized kinetics. Within the framework of the approximations used, numerical simulations are in agreement with our theory. We show that the porosity fluctuations may have a significant effect on the transport of a reactive species, even in the case of a homogeneous average porosity.

  3. TitaniQ in reverse: backing out the equilibrium solubility of titanium in quartz

    NASA Astrophysics Data System (ADS)

    Thomas, J. B.

    2014-12-01

    There is close agreement among three of the four experimental studies that have 'calibrated' the P-T dependencies of Ti-in-quartz solubility. New experiments were conducted to identify potential experimental disequilibrium, and determine which Ti-in-quartz solubility calibration is most accurate. Quartz and rutile were synthesized from SiO2- and TiO2saturated aqueous fluids in a forward-type experiment at 925°C and 10 kbar in a piston-cylinder apparatus. A range of crystal sizes was examined to determine if growth rate affected Ti incorporation in quartz. Cathodoluminescence (CL) images and electron microprobe measurements show that intercrystalline and intracrystalline variations in Ti concentrations are remarkably small regardless of crystal size. The average Ti-in-quartz concentration from the forward-type experiment is 392±1 ppm Ti, which is within 95% confidence interval of data from the 10 kbar isobar of Wark and Watson (2006) and Thomas et al. (2010). Quartz from the forward-type experiment was used as starting material for reversal-type experiments. The high-Ti quartz starting material was recrystallized at 925°C and 20 kbar to reduce the solubility of Ti in recrystallized quartz to the equilibrium solubility concentration of the reversed P-T condition. The 'dry' and 'wet' reversal experiments produced polycrystalline quartzites. Rutile occurs as inclusions in quartz, and as individual crystals dispersed along quartz/quartz grain boundaries. Quartz that recrystallized during the reversal-type experiment has substantially lower Ti concentrations than the quartz starting material because Ti solubility at 20 kbar is significantly lower than at 10 kbar. Dark cathodoluminescent quartz with low Ti concentrations shows that extensive quartz recrystallization occurred at the reversal P-T condition. The average Ti concentration in quartz from reversal experiments is 94±2 ppm Ti, which is within the 95% confidence interval of a linear fit to the 20 kbar data of Thomas et al. (2010). Thomas JB, Watson EB, Spear FS, Shemella FS, Nayak SK, Lanzirotti A (2010) Contrib Mineral Petrol 160:743-759 Wark DA, Watson EB (2006) Contrib Mineral Petrol 152:743-754

  4. Global impact of mineral dust on cloud droplet number concentration

    NASA Astrophysics Data System (ADS)

    Karydis, Vlassis A.; Tsimpidi, Alexandra P.; Bacer, Sara; Pozzer, Andrea; Nenes, Athanasios; Lelieveld, Jos

    2017-05-01

    The importance of wind-blown mineral dust for cloud droplet formation is studied by considering (i) the adsorption of water on the surface of insoluble particles, (ii) particle coating by soluble material (atmospheric aging) which augments cloud condensation nuclei (CCN) activity, and (iii) the effect of dust on inorganic aerosol concentrations through thermodynamic interactions with mineral cations. The ECHAM5/MESSy Atmospheric Chemistry (EMAC) model is used to simulate the composition of global atmospheric aerosol, while the ISORROPIA-II thermodynamic equilibrium model treats the interactions of K+-Ca2+-Mg2+-NH4+-Na+-SO42--NO3--Cl--H2O aerosol with gas-phase inorganic constituents. Dust is considered a mixture of inert material with reactive minerals and its emissions are calculated online by taking into account the soil particle size distribution and chemical composition of different deserts worldwide. The impact of dust on droplet formation is treated through the unified dust activation parameterization that considers the inherent hydrophilicity from adsorption and acquired hygroscopicity from soluble salts during aging. Our simulations suggest that the presence of dust increases cloud droplet number concentration (CDNC) over major deserts (e.g., up to 20 % over the Sahara and the Taklimakan desert) and decreases CDNC over polluted areas (e.g., up to 10 % over southern Europe and 20 % over northeastern Asia). This leads to a global net decrease in CDNC by 11 %. The adsorption activation of insoluble aerosols and the mineral dust chemistry are shown to be equally important for the cloud droplet formation over the main deserts; for example, these effects increase CDNC by 20 % over the Sahara. Remote from deserts the application of adsorption theory is critically important since the increased water uptake by the large aged dust particles (i.e., due to the added hydrophilicity by the soluble coating) reduce the maximum supersaturation and thus cloud droplet formation from the relatively smaller anthropogenic particles (e.g., CDNC decreases by 10 % over southern Europe and 20 % over northeastern Asia by applying adsorption theory). The global average CDNC decreases by 10 % by considering adsorption activation, while changes are negligible when accounting for the mineral dust chemistry. Sensitivity simulations indicate that CDNC is also sensitive to the mineral dust mass and inherent hydrophilicity, and not to the chemical composition of the emitted dust.

  5. Embryo-endometrial interactions during early development after embryonic diapause in the marsupial tammar wallaby.

    PubMed

    Renfree, Marilyn B; Shaw, Geoff

    2014-01-01

    The marsupial tammar wallaby has the longest period of embryonic diapause of any mammal. Reproduction in the tammar is seasonal, regulated by photoperiod and also lactation. Reactivation is triggered by falling daylength after the austral summer solstice in December. Young are born late January and commence a 9-10-month lactation. Females mate immediately after birth. The resulting conceptus develops over 6- 7 days to form a unilaminar blastocyst of 80-100 cells and enters lactationally, and later seasonally, controlled diapause. The proximate endocrine signal for reactivation is an increase in progesterone which alters uterine secretions. Since the diapausing blastocyst is surrounded by the zona and 2 other acellular coats, the mucoid layer and shell coat, the uterine signals that maintain or terminate diapause must involve soluble factors in the secretions rather than any direct cellular interaction between uterus and embryo. Our studies suggest involvement of a number of cytokines in the regulation of diapause in tammars. The endometrium secretes platelet activating factor (PAF) and leukaemia inhibitory factor, which increase after reactivation. Receptors for PAF are low on the blastocyst during diapause but are upregulated at reactivation. Conversely, there is endometrial expression of the muscle segment homeobox gene MSX2 throughout diapause, but it is rapidly downregulated at reactivation. These patterns are consistent with those observed in diapausing mice and mink after reactivation, despite the very different patterns of endocrine control of diapause in these 3 divergent species. These common patterns suggest a similar underlying mechanism for diapause, perhaps common to all mammals, but which is activated in only a few.

  6. Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility

    NASA Astrophysics Data System (ADS)

    Zappoli, S.; Andracchio, A.; Fuzzi, S.; Facchini, M. C.; Gelencsér, A.; Kiss, G.; Krivácsy, Z.; Molnár, Á.; Mészáros, E.; Hansson, H.-C.; Rosman, K.; Zebühr, Y.

    A chemical mass balance of fine aerosol (<1.5 μm AED) collected at three European sites was performed with reference to the water solubility of the different aerosol classes of components. The sampling sites are characterised by different pollution conditions and aerosol loading in the air. Aspvreten is a background site in central Sweden, K-puszta is a rural site in the Great Hungarian Plain and San Pietro Capofiume is located in the polluted Po Valley, northern Italy. The average fine aerosol mass concentration was 5.9 μg m -3 at the background site Aspvreten, 24 μg m -3 at the rural K-puszta and 38 μg m -3 at the polluted site San Pietro Capofiume. However, a similarly high soluble fraction of the aerosol (65-75%) was measured at the three sites, while the percentage of water soluble organic species with respect to the total soluble mass was much higher at the background site (ca. 50%) than at the other two sites (ca. 25%). A very high fraction (over 70%) of organic compounds in the aerosol consisted of polar species. The presence of water soluble macromolecular compounds was revealed in the samples from K-puszta and San Pietro Capofiume. At both sites these species accounted for between ca. 20-50% of the water soluble organic fraction. The origin of the compounds was tentatively attributed to biomass combustion.

  7. Influence of mechanical and chemical polishing in the solubility of acrylic resins polymerized by microwave irradiation and conventional water bath.

    PubMed

    Machado, Cristiane; Rizzatti-Barbosa, Célia M; Gabriotti, Morgana N; Joia, Fábio A; Ribeiro, Margarete C; Sousa, Rodrigo L S

    2004-07-01

    The aim of this work was to evaluate the solubility of acrylic resin activated by microwave irradiation (MI) or water bath (WB), when submitted to chemical (CP) or mechanical (MP) polishing. Forty acrylic resin samples were made and processed either by water bath (74 +/- 1 degrees C, 9 h) or microwave irradiation (500 W, 3 min). After deflasking, the samples were finished with aluminum oxide sandpapers in decreasing granulations till reaching similar dimensions. The samples were divided into four groups according to the association between kind of polymerization and polishing: A (WB + CP), B (WB + MP), C (MI + CP) and D (MI + MP). Solubility test was performed for each group and percentile solubility was calculated. Data were statistically analyzed using variance analysis and Kruskal-Wallis. The average of percentile solubility (%) was obtained: A = 0.07, B = 0.02, C = 0.04, D = -0.14, however, no significant difference was found between types of polishing in the samples polymerized by water bath (A and B). When processed by microwave irradiation (C and D), there was significant difference between the applied methods of polishing, so that mechanical polishing lead to a lower solubility. Solubility is a property of acrylic resins, representing not reacted substances releasing that could promote tissular reactions in prosthesis users. The association between polymerization by microwave irradiation and mechanical polishing showed less residual substances releasing for heat-cured acrylic resins, reducing the probability of developing tissular reactions.

  8. Water soluble organic aerosols in the Colorado Rocky Mountains, USA: composition, sources and optical properties

    PubMed Central

    Xie, Mingjie; Mladenov, Natalie; Williams, Mark W.; Neff, Jason C.; Wasswa, Joseph; Hannigan, Michael P.

    2016-01-01

    Atmospheric aerosols have been shown to be an important input of organic carbon and nutrients to alpine watersheds and influence biogeochemical processes in these remote settings. For many remote, high elevation watersheds, direct evidence of the sources of water soluble organic aerosols and their chemical and optical characteristics is lacking. Here, we show that the concentration of water soluble organic carbon (WSOC) in the total suspended particulate (TSP) load at a high elevation site in the Colorado Rocky Mountains was strongly correlated with UV absorbance at 254 nm (Abs254, r = 0.88 p < 0.01) and organic carbon (OC, r = 0.95 p < 0.01), accounting for >90% of OC on average. According to source apportionment analysis, biomass burning had the highest contribution (50.3%) to average WSOC concentration; SOA formation and motor vehicle emissions dominated the contribution to WSOC in the summer. The source apportionment and backward trajectory analysis results supported the notion that both wildfire and Colorado Front Range pollution sources contribute to the summertime OC peaks observed in wet deposition at high elevation sites in the Colorado Rocky Mountains. These findings have important implications for water quality in remote, high-elevation, mountain catchments considered to be our pristine reference sites. PMID:27991554

  9. Online monitoring of water-soluble ionic composition of PM10 during early summer over Lanzhou City.

    PubMed

    Fan, Jin; Yue, Xiaoying; Jing, Yi; Chen, Qiang; Wang, Shigong

    2014-02-01

    Lanzhou is one of the most aerosol-polluted cities in China. In this study, an online analyzer for Monitoring for AeRosols and GAses was deployed to measure major water-soluble inorganic ions in PM10 at 1-hour time resolution, and 923 samples were obtained from Apr 1 to May 24, 2011. During the field campaign, air pollution days were encountered with Air Quality Index more than 100 and daily average concentration of PM10 exceeding 150 microg/m3. Based on the variation of water-soluble ions and results of Positive Matrix Factorization 3.0 model execution, the air pollution days were classified as crustal species- or secondary aerosol-induced, and the different formation mechanisms of these two air pollution types were studied. During the crustal species pollution days, the content of Ca2+ increased and was about 2.3 times higher than the average on clear days, and the air parcel back trajectory was used to analyze the sources of crustal species. Data on sulfate, trace gases and meteorological factors were used to reveal the formation mechanism of secondary aerosol pollution. The sulfur oxidation ratio (SOR) was derived from the 923 samples, and the SOR had high positive correlation with relative humidity in early summer in Lanzhou.

  10. Cytokine responses induced by diesel exhaust particles are suppressed by PAR-2 silencing and antioxidant treatment, and driven by polar and non-polar soluble constituents.

    PubMed

    Bach, Nicolai; Bølling, Anette Kocbach; Brinchmann, Bendik C; Totlandsdal, Annike I; Skuland, Tonje; Holme, Jørn A; Låg, Marit; Schwarze, Per E; Øvrevik, Johan

    2015-10-14

    Adsorbed soluble organics seem to be the main drivers of inflammatory responses induced by diesel exhaust particles (DEP). The specific compounds contributing to this process and the cellular mechanisms behind DEP-induced inflammation are not well known. We have assessed pro-inflammatory effects of DEP and various soluble DEP fractions, in human bronchial epithelial cells (BEAS-2B). DEP increased the expression of interleukin (IL)-6 and CXCL8. Silencing of the aryl hydrocarbon receptor (AhR) by siRNA or pretreatment with AhR-antagonists did not attenuate DEP-induced IL-6 and CXCL8 responses. However, the halogenated aromatic hydrocarbon (HAH)-selective AhR antagonist CH223191 caused a considerable reduction in DEP-induced CYP1A1 expression indicating that this response may be due to dioxin or dioxin-like constituents in DEP. Knock-down of protease activated receptor (PAR)-2 attenuated IL-6 responses without affecting CXCL8. Antioxidants did not affect IL-6 expression after 4h DEP-exposure and only partly reduced CXCL8 expression. However, after 24h exposure antioxidant treatment partly suppressed IL-6 protein release and completely blocked CXCL8 release. Furthermore, a heptane-soluble (non-polar) extract of DEP induced both IL-6 and CXCL8 release, whereas a PBS-soluble (highly polar) extract induced only IL-6. Thus, pro-inflammatory responses in DEP-exposed epithelial cells appear to be the result of both reactive oxygen species and receptor signaling, mediated through combinatorial effects between both non-polar and polar constituents adhered to the particle surface. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Site specific oxidation of amino acid residues in rat lens γ-crystallin induced by low-dose γ-irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ingu; Saito, Takeshi; Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494

    Although cataracts are a well-known age-related disease, the mechanism of their formation is not well understood. It is currently thought that eye lens proteins become abnormally aggregated, initially causing clumping that scatters the light and interferes with focusing on the retina, and ultimately resulting in a cataract. The abnormal aggregation of lens proteins is considered to be triggered by various post-translational modifications, such as oxidation, deamidation, truncation and isomerization, that occur during the aging process. Such modifications, which are also generated by free radical and reactive oxygen species derived from γ-irradiation, decrease crystallin solubility and lens transparency, and ultimately leadmore » to the development of a cataract. In this study, we irradiated young rat lenses with low-dose γ-rays and extracted the water-soluble and insoluble protein fractions. The water-soluble and water-insoluble lens proteins were digested with trypsin, and the resulting peptides were analyzed by LC-MS. Specific oxidation sites of methionine, cysteine and tryptophan in rat water-soluble and -insoluble γE and γF-crystallin were determined by one-shot analysis. The oxidation sites in rat γE and γF-crystallin resemble those previously identified in γC and γD-crystallin from human age-related cataracts. Our study on modifications of crystallins induced by ionizing irradiation may provide useful information relevant to human senile cataract formation. - Highlights: • Low-dose γ-rays induced oxidation at specific residues in γE- and γF-crystallin. • The number of oxidation sites was higher in insoluble than soluble crystallins. • γ-Irradiation closely mimics the oxidation that occur in senile human cataracts.« less

  12. Anti-soluble liver antigen (SLA) antibodies in chronic HCV infection.

    PubMed

    Vitozzi, Susana; Lapierre, Pascal; Djilali-Saiah, Idriss; Marceau, Gabriel; Beland, Kathie; Alvarez, Fernando

    2004-05-01

    Hepatitis C infection is associated with autoimmune disorders, such as the production of autoantibodies. Anti-LKM1 and anti-LC1, immunomarkers of type 2 autoimmune hepatitis, have been previously associated with a HCV infection. Anti-Soluble-Liver-Antigen autoantibodies (SLA) are specifically associated with type 1 and type 2 autoimmune hepatitis and more closely related to patients who relapse after steroid therapy. The recent molecular cloning of the soluble liver antigen provides the opportunity to develop more specific tests for the detection of antibodies against it. The aim of this work is to characterize anti-soluble-liver autoantibodies in sera from patients chronically infected by HCV. A recombinant cDNA from activated Jurkat cells coding for the full length tRNP(Ser)Sec/SLA antigen was obtained. ELISA, Western Blot and immunoprecipitation tests were developed and used to search for linear and conformational epitopes recognized by anti-SLA antibodies in sera from patients chronically infected by HCV. Anti-soluble liver antigen antibodies were found in sera from 10.4% of HCV-infected patients. The prevalence was significantly increased to 27% when anti-LKM1 was also present. Most anti-SLA reactivity was directed against conformational epitopes on the antigen. The means titers by ELISA were lower than those obtained in type 2 AIH. The result of autoantibody isotyping showed a subclass restriction to IgG1 and also IgG4. This study shows the presence of anti-SLA antibodies in approximately 10% of HCV infected patients. The prevalence of SLA autoantibodies in HCV infected patients increases when LKM1 autoantibodies are also present. The relationship between the prevalence of this characteristic autoimmune hepatitis autoantibody and the implication of an autoimmune phenomenon in the liver injury of patients chronically infected by HCV needs further investigation.

  13. Development of Low Density Titanium Alloys for Structural Applications

    NASA Technical Reports Server (NTRS)

    Froes, F. H.; Suryanarayana, C.; Powell, C.; Ward-Close, C. Malcolm; Wilkes, D. M. J.

    1996-01-01

    In this report the results of a program designed to reduce the density of titanium by adding magnesium are presented. Because these two elements are immiscible under conventional ingot metallurgy techniques, two specialized powder metallurgy methods namely, mechanical alloying (MA) and physical vapor deposition (PVD) were implemented. The mechanical alloying experiments were done both at the University of Idaho and at the Defense Research Agency in UK. Since titanium is reactive with interstitial elements, a secondary goal of this research was to correlate solubility extensions with interstitial contamination content, especially oxygen and nitrogen. MA was carried out in SPEX 8000 shaker mils and different milling containers were utilized to control the level of contamination. Results showed that solubilities of Mg in Ti were obtained up to 28 at.% (16.4 wt. %) Mg in Ti for Ti-39.6 at. % (25 wt. %) Mg alloys, which greatly exceed those obtained under equilibrium conditions. This reflects a density reduction of approximately 26 %. Contamination of oxygen and nitrogen seemed to increase the solubility of magnesium in titanium in some cases; however, we were not able to make a clear correlation between contamination levels with solubilities. Work at the DRA has emphasized optimization of present PVD equipment, specifically composition and temperature control. Preliminary PVD data has shown Ti-Mg deposits have successfully been made up to 2 mm thick and that solubility extensions were achieved. The potential for density reduction of titanium by alloying with magnesium has been demonstrated; however, this work has only scratched the surface of the development of such low density alloys. Much research is needed before such alloys could be implemented into industry. Further funding is required in order to optimize the MA/PVD processes including contamination control, determination of optimal alloy compositions, microstructure development, and mechanical property determination.

  14. Water-soluble Coenzyme Q10 formulation (Q-ter) promotes outer hair cell survival in a guinea pig model of noise induced hearing loss (NIHL).

    PubMed

    Fetoni, Anna Rita; Piacentini, Roberto; Fiorita, Antonella; Paludetti, Gaetano; Troiani, Diana

    2009-02-27

    The mitochondrial respiratory chain is a powerful source of reactive oxygen species (ROS) also in noise induced hearing loss (NIHL) and anti-oxidants and free-radicals scavengers have been shown to attenuate the damage. Coenzyme Q(10) (CoQ(10)) or ubiquinone has a bioenergetic role as a component of the mithocondrial respiratory chain, it inhibits mitochondrial lipid peroxidation, inducing ATP production and it is involved in ROS removal and prevention of oxidative stress-induced apoptosis. However the therapeutic application of CoQ(10) is limited by the lack of solubility and poor bio- availability, therefore it is a challenge to improve its water solubility in order to ameliorate the efficacy in tissues and fluids. This study was conducted in a model of acoustic trauma in the guinea pig where the effectiveness of CoQ(10) was compared with a soluble formulation of CoQ(10) (multicomposite CoQ(10) Terclatrate, Q-ter) given intraperitoneally 1 h before and once daily for 3 days after pure tone noise exposure (6 kHz for 1 h at 120 dB SPL). Functional and morphological studies were carried out by measuring auditory brainstem responses, scanning electron microscopy for hair cell loss count, active caspase 3 staining and terminal deoxynucleotidyl transferase-mediated dUTP labelling assay in order to identify initial signs of apoptosis. Treatments decreased active caspase 3 expression and the number of apoptotic cells, but animals injected with Q-ter showed a greater degree of activity in preventing apoptosis and thus in improving hearing. These data confirm that solubility of Coenzyme Q(10) improves the ability of CoQ(10) in preventing oxidative injuries that result from mitochondrial dysfunction.

  15. Chemical aging of single and multicomponent biomass burning aerosol surrogate-particles by OH: Implications for cloud condensation nucleus activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thalman, R.; Thalman, R.; Wang, J.

    Multiphase OH and O₃ oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low soluble single-component OA by OH and O₃ can increase their water-solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water-solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate-particles exposed to OH andmore » O₃ is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH/O₃ exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O₃ exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~0.1, indicating that chemically-aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally-mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH exposed MNC-coated KS particles is similar to the OH unexposed atomized 1:1 by mass MNC: KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical aging has no significant impact on OA hygroscopicity. The organic compounds exhibiting low solubility behave as if they are infinitely soluble when mixed with a sufficient amount of water-soluble compounds. At and beyond this point, the particles' CCN activity is governed entirely by the water-soluble fraction and not influenced by the oxidized organic fraction. Our results have important implications for heterogeneous oxidation and its impact on cloud formation given that atmospheric aerosol is a complex mixture of organic and inorganic compounds exhibiting a wide-range of solubilities.« less

  16. Chemical aging of single and multicomponent biomass burning aerosol surrogate particles by OH: implications for cloud condensation nucleus activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slade, J. H.; Thalman, R.; Wang, J.

    Multiphase OH and O 3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low-soluble single-component OA by OH and O 3 can increase their water solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate particlesmore » exposed to OH and O 3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH and O 3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O 3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~ 0.1, indicating that chemically aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH-exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical aging has no significant impact on OA hygroscopicity. The organic compounds exhibiting low solubility behave as if they are infinitely soluble when mixed with a sufficient number of water-soluble compounds. At and beyond this point, the particles' CCN activity is governed entirely by the water-soluble fraction and is not influenced by the oxidized organic fraction. Our results have important implications for heterogeneous oxidation and its impact on cloud formation given that atmospheric aerosol is a complex mixture of organic and inorganic compounds exhibiting a wide range of solubilities.« less

  17. Chemical aging of single and multicomponent biomass burning aerosol surrogate particles by OH: implications for cloud condensation nucleus activity

    DOE PAGES

    Slade, J. H.; Thalman, R.; Wang, J.; ...

    2015-09-14

    Multiphase OH and O 3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low-soluble single-component OA by OH and O 3 can increase their water solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate particlesmore » exposed to OH and O 3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH and O 3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O 3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~ 0.1, indicating that chemically aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH-exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical aging has no significant impact on OA hygroscopicity. The organic compounds exhibiting low solubility behave as if they are infinitely soluble when mixed with a sufficient number of water-soluble compounds. At and beyond this point, the particles' CCN activity is governed entirely by the water-soluble fraction and is not influenced by the oxidized organic fraction. Our results have important implications for heterogeneous oxidation and its impact on cloud formation given that atmospheric aerosol is a complex mixture of organic and inorganic compounds exhibiting a wide range of solubilities.« less

  18. Chemical aging of single and multicomponent biomass burning aerosol surrogate-particles by OH: Implications for cloud condensation nucleus activity

    DOE PAGES

    Thalman, R.; Thalman, R.; Wang, J.; ...

    2015-03-06

    Multiphase OH and O₃ oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low soluble single-component OA by OH and O₃ can increase their water-solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water-solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate-particles exposed to OH andmore » O₃ is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH/O₃ exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O₃ exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~0.1, indicating that chemically-aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally-mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH exposed MNC-coated KS particles is similar to the OH unexposed atomized 1:1 by mass MNC: KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical aging has no significant impact on OA hygroscopicity. The organic compounds exhibiting low solubility behave as if they are infinitely soluble when mixed with a sufficient amount of water-soluble compounds. At and beyond this point, the particles' CCN activity is governed entirely by the water-soluble fraction and not influenced by the oxidized organic fraction. Our results have important implications for heterogeneous oxidation and its impact on cloud formation given that atmospheric aerosol is a complex mixture of organic and inorganic compounds exhibiting a wide-range of solubilities.« less

  19. Soy Food Intake and Circulating Levels of Inflammatory Markers in Chinese Women

    PubMed Central

    Wu, Sheng Hui; Shu, Xiao Ou; Chow, Wong-Ho; Xiang, Yong-Bing; Zhang, Xianglan; Li, Hong-Lan; Cai, Qiuyin; Ji, Bu-Tian; Cai, Hui; Rothman, Nathaniel; Gao, Yu-Tang; Zheng, Wei; Yang, Gong

    2013-01-01

    Background Soy and some of its constituents, such as isoflavones, have been shown to affect the inflammatory process in animal studies. The association between soy food intake and inflammatory markers has not been evaluated adequately in humans. Objective Our aim was to evaluate whether higher intake of soy foods was inversely associated with inflammatory markers in 1,005 middle-aged Chinese women. Design In this cross-sectional study, dietary intake of soy foods was assessed by a validated food frequency questionnaire and by a 24-hour recall when biospecimens were procured. A general linear model was used to estimate the geometric means of selected inflammatory markers, including interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α (TNFα), soluble IL-6 receptor, soluble GP130, soluble TNF receptors 1 and 2, and C-reactive protein, across categories of soy food intake after adjusting for age, lifestyle and dietary factors, and history of infectious or inflammation-related diseases. Results We found that multivariable-adjusted geometric mean concentrations of IL-6 and TNFα were inversely associated with quintiles of soy food intake, with a difference between the highest and lowest quintiles of 25.5% for IL-6 (P for trend = 0.008) and 14% for TNFα (P for trend = 0.04). Similar inverse associations were found for TNFα (P for trend = 0.003), soluble TNF receptor 1 (P for trend=0.01), soluble TNF receptor 2 (P for trend=0.02), IL-1β (P for trend=0.05), and IL-6 (P for trend=0.04) when soy food consumption was assessed by the frequency of consumption in the preceding 24 hours. No significant associations were found for other markers studied. Conclusions This study suggests that soy food consumption is related to lower circulating levels of IL-6, TNFα, and soluble TNF receptors 1 and 2 in Chinese women. PMID:22889631

  20. 7 CFR 51.1177 - U.S. Grade A Juice.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... per standard packed box of 13/5 bushels. (b) The average juice content for any lot of fruit shall have not less than 9 percent total soluble solids, and not less than one-half of 1 percent anhydrous citric...

  1. Reducing soil phosphorus fertility brings potential long-term environmental gains: A UK analysis

    NASA Astrophysics Data System (ADS)

    Withers, Paul J. A.; Hodgkinson, Robin A.; Rollett, Alison; Dyer, Chris; Dils, Rachael; Collins, Adrian L.; Bilsborrow, Paul E.; Bailey, Geoff; Sylvester-Bradley, Roger

    2017-05-01

    Soil phosphorus (P) fertility arising from historic P inputs is a major driver of P mobilisation in agricultural runoff and increases the risk of aquatic eutrophication. To determine the environmental benefit of lowering soil P fertility, a meta-analysis of the relationship between soil test P (measured as Olsen-P) and P concentrations in agricultural drainflow and surface runoff in mostly UK soils was undertaken in relation to current eutrophication control targets (30-35 µg P L-1). At agronomic-optimum Olsen P (16-25 mg kg-1), concentrations of soluble reactive P (SRP), total dissolved P (TDP), total P (TP) and sediment-P (SS-P) in runoff were predicted by linear regression analysis to vary between 24 and 183 µg L-1, 38 and 315 µg L-1, 0.2 and 9.6 mg L-1, and 0.31 and 3.2 g kg-1, respectively. Concentrations of SRP and TDP in runoff were much more sensitive to changes in Olsen-P than were TP and SS-P concentrations, which confirms that separate strategies are required for mitigating the mobilisation of dissolved and particulate P forms. As the main driver of eutrophication, SRP concentrations in runoff were reduced on average by 60 µg L-1 (71%) by lowering soil Olsen-P from optimum (25 mg kg-1) to 10 mg kg-1. At Olsen-P concentrations below 12 mg kg-1, dissolved hydrolysable P (largely organic) became the dominant form of soluble P transported. We concluded that maintaining agronomic-optimum Olsen-P could still pose a eutrophication risk, and that a greater research focus on reducing critical soil test P through innovative agro-engineering of soils, crops and fertilisers would give long-term benefits in reducing the endemic eutrophication risk arising from legacy soil P. Soil P testing should become compulsory in priority catchments suffering, or sensitive to, eutrophication to ensure soil P reserves are fully accounted for as part of good fertiliser and manure management.

  2. Carbollide solubility and chemical compatibility summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, D.J.

    1993-08-17

    This report examines the value of the cobalt dicarbollide anion as an effective form of in-tank precipitation. The cobalt dicarbollide anion (CDC) has been investigated for the possible replacement of tetraphenyl borate anion (TPB) for precipitation of cesium in SRS High Level Waste (HLW). The solubility of the cesium CDC in 5 M salt solutions and the reactivity with caustic have been studied extensively. The solubility of CSCDC in a mixture of 4 M sodium nitrate and 1 m sodium hydroxide is {approximately}2 {times} 10{sup {minus}3} M at 40{degrees}C. Furthermore, the CDC decomposes in 1 M sodium hydroxide solution withmore » apparent first order kinetics with a half-life of 7.3 days at 60 {degrees}C and 94 days at 40{degrees}C. Tank temperatures are currently estimated to approach 60{degrees}C during the ITP filtration cycle. This solubility and rapid decomposition of the CDC under highly alkaline conditions and high temperature would require increasing the quantity of CDC and nonradioactive cesium which must be added, increasing the cost of production. Increasing the quantity of CDC would necessitate recovery of the material, probably using a solvent extraction system. Due to the large amount of nonradioactive cesium which must be added, the total amount of precipitate formed exceeds that for TPB precipitation. Also, formation of sodium and/or potassium precipitates compete with cesium salt precipitation in 5 M salt solutions at lower temperature (<30{degrees}C). Decomposition generates hydrogen, which may lead to process complications.« less

  3. Site specific oxidation of amino acid residues in rat lens γ-crystallin induced by low-dose γ-irradiation.

    PubMed

    Kim, Ingu; Saito, Takeshi; Fujii, Norihiko; Kanamoto, Takashi; Chatake, Toshiyuki; Fujii, Noriko

    2015-10-30

    Although cataracts are a well-known age-related disease, the mechanism of their formation is not well understood. It is currently thought that eye lens proteins become abnormally aggregated, initially causing clumping that scatters the light and interferes with focusing on the retina, and ultimately resulting in a cataract. The abnormal aggregation of lens proteins is considered to be triggered by various post-translational modifications, such as oxidation, deamidation, truncation and isomerization, that occur during the aging process. Such modifications, which are also generated by free radical and reactive oxygen species derived from γ-irradiation, decrease crystallin solubility and lens transparency, and ultimately lead to the development of a cataract. In this study, we irradiated young rat lenses with low-dose γ-rays and extracted the water-soluble and insoluble protein fractions. The water-soluble and water-insoluble lens proteins were digested with trypsin, and the resulting peptides were analyzed by LC-MS. Specific oxidation sites of methionine, cysteine and tryptophan in rat water-soluble and -insoluble γE and γF-crystallin were determined by one-shot analysis. The oxidation sites in rat γE and γF-crystallin resemble those previously identified in γC and γD-crystallin from human age-related cataracts. Our study on modifications of crystallins induced by ionizing irradiation may provide useful information relevant to human senile cataract formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Derivation and Validation of a Biomarker-Based Clinical Algorithm to Rule Out Sepsis From Noninfectious Systemic Inflammatory Response Syndrome at Emergency Department Admission: A Multicenter Prospective Study.

    PubMed

    Mearelli, Filippo; Fiotti, Nicola; Giansante, Carlo; Casarsa, Chiara; Orso, Daniele; De Helmersen, Marco; Altamura, Nicola; Ruscio, Maurizio; Castello, Luigi Mario; Colonetti, Efrem; Marino, Rossella; Barbati, Giulia; Bregnocchi, Andrea; Ronco, Claudio; Lupia, Enrico; Montrucchio, Giuseppe; Muiesan, Maria Lorenza; Di Somma, Salvatore; Avanzi, Gian Carlo; Biolo, Gianni

    2018-05-07

    To derive and validate a predictive algorithm integrating a nomogram-based prediction of the pretest probability of infection with a panel of serum biomarkers, which could robustly differentiate sepsis/septic shock from noninfectious systemic inflammatory response syndrome. Multicenter prospective study. At emergency department admission in five University hospitals. Nine-hundred forty-seven adults in inception cohort and 185 adults in validation cohort. None. A nomogram, including age, Sequential Organ Failure Assessment score, recent antimicrobial therapy, hyperthermia, leukocytosis, and high C-reactive protein values, was built in order to take data from 716 infected patients and 120 patients with noninfectious systemic inflammatory response syndrome to predict pretest probability of infection. Then, the best combination of procalcitonin, soluble phospholypase A2 group IIA, presepsin, soluble interleukin-2 receptor α, and soluble triggering receptor expressed on myeloid cell-1 was applied in order to categorize patients as "likely" or "unlikely" to be infected. The predictive algorithm required only procalcitonin backed up with soluble phospholypase A2 group IIA determined in 29% of the patients to rule out sepsis/septic shock with a negative predictive value of 93%. In a validation cohort of 158 patients, predictive algorithm reached 100% of negative predictive value requiring biomarker measurements in 18% of the population. We have developed and validated a high-performing, reproducible, and parsimonious algorithm to assist emergency department physicians in distinguishing sepsis/septic shock from noninfectious systemic inflammatory response syndrome.

  5. Biochemical characterization of soluble proteins in pecan [Carya illinoinensis (Wangenh.) K. Koch].

    PubMed

    Venkatachalam, Mahesh; Roux, Kenneth H; Sathe, Shridhar K

    2008-09-10

    Pecans (cv. Desirable) contained approximately 10% protein on a dry weight basis. The minimum nitrogen solubility (5.9-7.5%) at 0.25-0.75 M trichloroacetic acid represented the nonprotein nitrogen. Among the solvents assessed for protein solubilization, 0.1 M NaOH was the most effective, while borate saline buffer (pH 8.45) was judged to be optimal for protein solubilization. The protein solubility was minimal in the pH range of 3-7 and significantly increased on either side of this pH range. Increasing the NaCl concentration from 0 to 4 M significantly improved ( approximately 8-fold increase) protein solubilization. Following Osborne protein fractionation, the alkali-soluble glutelin fraction (60.1%) accounted for a major portion of pecan proteins followed by globulin (31.5%), prolamin (3.4%), and albumin (1.5%), respectively. The majority of pecan polypeptides were in the molecular mass range of 12-66 kDa and in the pI range of 4.0-8.3. The pecan globulin fraction was characterized by the presence of several glycoprotein polypeptides. Lysine was the first limiting essential amino acid in the defatted flour, globulin, prolamin, and alkaline glutelin fractions. Leucine and tryptophan were the first limiting essential amino acids in albumin and acid glutelin fractions, respectively. Rabbit polyclonal antibodies detected a range of pecan polypeptides in the 12-60 kDa range, of which the globulin fraction contained the most reactive polypeptides.

  6. New biocide guanidine-containing nanocomposites

    NASA Astrophysics Data System (ADS)

    Gorbunova, Marina; Lemkina, Larisa

    2014-08-01

    New water-soluble nanocomposites based on Ag and copolymers of 2,2-diallyl-1,1,3,3-tetraethylguanidiniumchloride with N-vinylpyrrolidone [poly(AGC-VP)] and vinylacetate [poly(AGC-VA)] have been developed. The average silver particle size ranged from 52 to 62 nm for poly(AGC-VA) and from 28 to 30 nm for poly(AGC-VP), with the corresponding UV-vis absorption peak position at 405-410 nm. The using of copolymers resulted in improvement in bactericide properties of composites. Following these results, the newly developed nanocomposite scaffold may be considered for new water-soluble medicines and biocides.

  7. Weekday/weekend differences in ambient aerosol level and chemical characteristics of water-soluble components in the city centre

    NASA Astrophysics Data System (ADS)

    Khoder, M. I.; Hassan, S. K.

    Weekday and weekend ambient aerosol samples were collected from the city centre of Cairo, namely "Ramsis" during the summer season of the year 2006, and have been analyzed for water-soluble ionic species. The average concentrations of the total suspended particulate matter (TSP) and their water-soluble components were higher during weekdays than on weekends, indicating that the decreased traffic density on weekends leads to a decrease in the levels of the TSP and their water-soluble ionic species. The average concentrations of the TSP were 454 μg m -3 on weekdays and 298 μg m -3 on weekends. The weekday/weekend concentration ratios were 1.52 for TSP, 1.27 for SO 42-, 1.64 for Cl -, 1.54 for NO 3-, 1.17 for NH 4+, 1.67 for Ca 2+, 1.83 for Na +, 1.75 for K + and 1.73 for Mg 2+. City centre of Cairo has high levels of the TSP and their water-soluble ionic species compared with many polluted cities in the world. Among all of the measured water-soluble components, SO 42- was the most abundant species followed by Ca 2+ on weekdays and weekends. The average mass ratios of NO 3-/SO 42- in the TSP were 0.41 on weekdays and 0.34 on weekends, suggesting that the stationary source emissions were more predominant. The NH 4+/SO 42- molar ratios and its relation with the concentrations of TSP and Ca 2+ during the weekdays and weekends indicate that the chemical form of sulfate and ammonium in aerosol particles varies with TSP and Ca 2+ levels. At high TSP and Ca 2+ levels, and NH 4+/SO 42- molar ratios less than one, SO 42- in aerosol particles may be present as CaSO 4 and (NH 4) 2SO 4·CaSO 4·2H 2O, whereas it is expected to be present as (NH 4) 2SO 4, (NH 4) 2SO 4·CaSO 4·2H 2O and CaSO 4 at low levels of TSP and Ca 2+, and NH 4+/SO 42- molar ratios between 1 and 2. The mean pH values of the TSP were 7.65 on weekdays and 6.97 on weekends, indicating that aerosol particles brought a large amount of crustal species, and might alleviate the tendency of acidification. The relationships between the concentrations of acidic components (NO 3- and SO 42-) and basic components (NH 4+, Ca 2+ and Mg 2+) on weekdays and weekends indicate that the acidity of aerosol particles is neutralized. Ca 2+ and NH 4+ are the most dominant neutralization substances in Cairo atmosphere.

  8. Wetland management reduces sediment and nutrient loading to the upper Mississippi river.

    PubMed

    Kreiling, Rebecca M; Schubauer-Berigan, Joseph P; Richardson, William B; Bartsch, Lynn A; Hughes, Peter E; Cavanaugh, Jennifer C; Strauss, Eric A

    2013-01-01

    Restored riparian wetlands in the Upper Mississippi River basin have potential to remove sediment and nutrients from tributaries before they flow into the Mississippi River. For 3 yr we calculated retention efficiencies of a marsh complex, which consisted of a restored marsh and an adjacent natural marsh that were connected to Halfway Creek, a small tributary of the Mississippi. We measured sediment, N, and P removal through a mass balance budget approach, N removal through denitrification, and N and P removal through mechanical soil excavation. The marsh complex had average retention rates of approximately 30 Mg sediment ha yr, 26 kg total N ha yr, and 20 kg total P ha yr. Water flowed into the restored marsh only during high-discharge events. Although the majority of retention occurred in the natural marsh, portions of the natural marsh were hydrologically disconnected at low discharge due to historical over-bank sedimentation. The natural marsh removed >60% of sediment, >10% of P, and >5% of N loads (except the first year, when it was a N source). The marsh complex was a source of NH and soluble reactive P. The average denitrification rate for the marsh complex was 2.88 mg N m h. Soil excavation removed 3600 Mg of sediment, 5.6 Mg of N, and 2.7 Mg of P from the restored marsh. The marsh complex was effective in removing sediment and nutrients from storm flows; however, retention could be increased if more water was diverted into both restored and natural marshes before entering the river. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Chemical characteristics and source apportionment of PM2.5 between heavily polluted days and other days in Zhengzhou, China.

    PubMed

    Jiang, Nan; Li, Qiang; Su, Fangcheng; Wang, Qun; Yu, Xue; Kang, Panru; Zhang, Ruiqin; Tang, Xiaoyan

    2018-04-01

    PM 2.5 samples were collected in Zhengzhou during 3years of observation, and chemical characteristics and source contribution were analyzed. Approximately 96% of the daily PM 2.5 concentrations and annual average values exceeded the Chinese National Ambient Air Quality Daily and Annual Standards, indicating serious PM 2.5 pollution. The average concentration of water-soluble inorganic ions was 2.4 times higher in heavily polluted days (daily PM 2.5 concentrations>250μg/m 3 and visibility <3km) than that in other days, with sulfate, nitrate, and ammonium as major ions. According to the ratio of NO 3 - /SO 4 2- , stationary sources are still the dominant source of PM 2.5 and vehicle emission could not be ignored. The ratio of secondary organic carbon to organic carbon indicated that photochemical reactivity in heavily polluted days was more intense than in other days. Crustal elements were the most abundant elements, accounting for more than 60% of 23 elements. Chemical Mass Balance results indicated that the contributions of major sources (i.e., nitrate, sulfate, biomass, carbon and refractory material, coal combustion, soil dust, vehicle, and industry) of PM 2.5 were 13%, 16%, 12%, 2%, 14%, 8%, 7%, and 8% in heavily polluted days and 20%, 18%, 9%, 2%, 27%, 14%, 15%, and 9% in other days, respectively. Extensive combustion activities were the main sources of polycyclic aromatic hydrocarbons during the episode (Jan 1-9, 2015) and the total benzo[a]pyrene equivalency concentrations in heavily polluted days present significant health threat. Because of the effect of regional transport, the pollution level of PM 2.5 in the study area was aggravated. Copyright © 2017. Published by Elsevier B.V.

  10. Phosphorus and nitrogen concentrations and loads at Illinois River south of Siloam Springs, Arkansas, 1997-1999

    USGS Publications Warehouse

    Green, W. Reed; Haggard, Brian E.

    2001-01-01

    Water-quality sampling consisting of every other month (bimonthly) routine sampling and storm event sampling (six storms annually) is used to estimate annual phosphorus and nitrogen loads at Illinois River south of Siloam Springs, Arkansas. Hydrograph separation allowed assessment of base-flow and surfacerunoff nutrient relations and yield. Discharge and nutrient relations indicate that water quality at Illinois River south of Siloam Springs, Arkansas, is affected by both point and nonpoint sources of contamination. Base-flow phosphorus concentrations decreased with increasing base-flow discharge indicating the dilution of phosphorus in water from point sources. Nitrogen concentrations increased with increasing base-flow discharge, indicating a predominant ground-water source. Nitrogen concentrations at higher base-flow discharges often were greater than median concentrations reported for ground water (from wells and springs) in the Springfield Plateau aquifer. Total estimated phosphorus and nitrogen annual loads for calendar year 1997-1999 using the regression techniques presented in this paper (35 samples) were similar to estimated loads derived from integration techniques (1,033 samples). Flow-weighted nutrient concentrations and nutrient yields at the Illinois River site were about 10 to 100 times greater than national averages for undeveloped basins and at North Sylamore Creek and Cossatot River (considered to be undeveloped basins in Arkansas). Total phosphorus and soluble reactive phosphorus were greater than 10 times and total nitrogen and dissolved nitrite plus nitrate were greater than 10 to 100 times the national and regional averages for undeveloped basins. These results demonstrate the utility of a strategy whereby samples are collected every other month and during selected storm events annually, with use of regression models to estimate nutrient loads. Annual loads of phosphorus and nitrogen estimated using regression techniques could provide similar results to estimates using integration techniques, with much less investment.

  11. Regional trends in the fractional solubility of Fe and other metals from North Atlantic aerosols (GEOTRACES cruises GA01 and GA03) following a two-stage leach

    NASA Astrophysics Data System (ADS)

    Shelley, Rachel U.; Landing, William M.; Ussher, Simon J.; Planquette, Helene; Sarthou, Geraldine

    2018-04-01

    The fractional solubility of aerosol-derived trace elements deposited to the ocean surface is a key parameter of many marine biogeochemical models. Despite this, it is currently poorly constrained, in part due to the complex interplay between the various processes that govern the solubilisation of aerosol trace elements. In this study, we used a sequential two-stage leach to investigate the regional variability in fractional solubility of a suite of aerosol trace elements (Al, Ti, Fe, Mn, Co, Ni, Cu, Zn, Cd, and Pb) from samples collected during three GEOTRACES cruises to the North Atlantic Ocean (GA01, GA03-2010, and GA03-2011). We present aerosol trace element solubility data from two sequential leaches that provide a solubility window, covering a conservative lower limit to an upper limit, the maximum potentially soluble fraction, and discuss why this upper limit of solubility could be used as a proxy for the bioavailable fraction in some regions. Regardless of the leaching solution used in this study (mild versus strong leach), the most heavily loaded samples generally had the lowest solubility. However, there were exceptions. Manganese fractional solubility was relatively uniform across the full range of atmospheric loading (32 ± 13 and 49 ± 13 % for ultra high-purity water and 25 % acetic acid leaches, respectively). This is consistent with other marine aerosol studies. Zinc and Cd fractional solubility also appeared to be independent of atmospheric loading. Although the average fractional solubilities of Zn and Cd (37 ± 28 and 55 ± 30 % for Zn and 39 ± 23 and 58 ± 26 % for Cd, for ultra high-purity water and 25 % acetic acid leaches, respectively) were similar to Mn, the range was greater, with several samples being 100 % soluble after the second leach. Finally, as the objective of this study was to investigate the regional variability in TE solubility, the samples were grouped according to air mass back trajectories (AMBTs). However, we conclude that AMBTs are not sufficiently discriminating to identify the aerosol sources or the potential effects of atmospheric processing on the physicochemical composition and solubility of the aerosols.

  12. How big is the influence of biogenic silicon pools on short-term changes in water-soluble silicon in soils? Implications from a study of a 10-year-old soil-plant system

    NASA Astrophysics Data System (ADS)

    Puppe, Daniel; Höhn, Axel; Kaczorek, Danuta; Wanner, Manfred; Wehrhan, Marc; Sommer, Michael

    2017-11-01

    The significance of biogenic silicon (BSi) pools as a key factor for the control of Si fluxes from terrestrial to aquatic ecosystems has been recognized for decades. However, while most research has been focused on phytogenic Si pools, knowledge of other BSi pools is still limited. We hypothesized that different BSi pools influence short-term changes in the water-soluble Si fraction in soils to different extents. To test our hypothesis we took plant (Calamagrostis epigejos, Phragmites australis) and soil samples in an artificial catchment in a post-mining landscape in the state of Brandenburg, Germany. We quantified phytogenic (phytoliths), protistic (diatom frustules and testate amoeba shells) and zoogenic (sponge spicules) Si pools as well as Tiron-extractable and water-soluble Si fractions in soils at the beginning (t0) and after 10 years (t10) of ecosystem development. As expected the results of Tiron extraction showed that there are no consistent changes in the amorphous Si pool at Chicken Creek (Hühnerwasser) as early as after 10 years. In contrast to t0 we found increased water-soluble Si and BSi pools at t10; thus we concluded that BSi pools are the main driver of short-term changes in water-soluble Si. However, because total BSi represents only small proportions of water-soluble Si at t0 (< 2 %) and t10 (2.8-4.3 %) we further concluded that smaller (< 5 µm) and/or fragile phytogenic Si structures have the biggest impact on short-term changes in water-soluble Si. In this context, extracted phytoliths (> 5 µm) only amounted to about 16 % of total Si contents of plant materials of C. epigejos and P. australis at t10; thus about 84 % of small-scale and/or fragile phytogenic Si is not quantified by the used phytolith extraction method. Analyses of small-scale and fragile phytogenic Si structures are urgently needed in future work as they seem to represent the biggest and most reactive Si pool in soils. Thus they are the most important drivers of Si cycling in terrestrial biogeosystems.

  13. The [NiFe]-Hydrogenase of Pyrococcus furiosus Exhibits a New Type of Oxygen Tolerance.

    PubMed

    Kwan, Patrick; McIntosh, Chelsea L; Jennings, David P; Hopkins, R Chris; Chandrayan, Sanjeev K; Wu, Chang-Hao; Adams, Michael W W; Jones, Anne K

    2015-10-28

    We report the first direct electrochemical characterization of the impact of oxygen on the hydrogen oxidation activity of an oxygen-tolerant, group 3, soluble [NiFe]-hydrogenase: hydrogenase I from Pyrococcus furiosus (PfSHI), which grows optimally near 100 °C. Chronoamperometric experiments were used to probe the sensitivity of PfSHI hydrogen oxidation activity to both brief and prolonged exposure to oxygen. For experiments between 15 and 80 °C, following short (<200 s) exposure to 14 μM O2 under oxidizing conditions, PfSHI always maintains some fraction of its initial hydrogen oxidation activity; i.e., it is oxygen-tolerant. Reactivation experiments show that two inactive states are formed by interaction with oxygen and both can be quickly (<150 s) reactivated. Analogous experiments, in which the interval of oxygen exposure is extended to 900 s, reveal that the response is highly temperature-dependent. At 25 °C, under sustained 1% O2/ 99% H2 exposure, the H2oxidation activity drops nearly to zero. However, at 80 °C, up to 32% of the enzyme's oxidation activity is retained. Reactivation of PfSHI following sustained exposure to oxygen occurs on a much longer time scale (tens of minutes), suggesting that a third inactive species predominates under these conditions. These results stand in contrast to the properties of oxygen-tolerant, group 1 [NiFe]-hydrogenases, which form a single state upon reaction with oxygen, and we propose that this new type of hydrogenase should be referred to as oxygen-resilient. Furthermore, PfSHI, like other group 3 [NiFe]-hydrogenases, does not possess the proximal [4Fe3S] cluster associated with the oxygen tolerance of some group 1 enzymes. Thus, a new mechanism is necessary to explain the observed oxygen tolerance in soluble, group 3 [NiFe]-hydrogenases, and we present a model integrating both electrochemical and spectroscopic results to define the relationships of these inactive states.

  14. Optimization of burnable poison design for Pu incineration in fully fertile free PWR core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fridman, E.; Shwageraus, E.; Galperin, A.

    2006-07-01

    The design challenges of the fertile-free based fuel (FFF) can be addressed by careful and elaborate use of burnable poisons (BP). Practical fully FFF core design for PWR reactor has been reported in the past [1]. However, the burnable poison option used in the design resulted in significant end of cycle reactivity penalty due to incomplete BP depletion. Consequently, excessive Pu loading were required to maintain the target fuel cycle length, which in turn decreased the Pu burning efficiency. A systematic evaluation of commercially available BP materials in all configurations currently used in PWRs is the main objective of thismore » work. The BP materials considered are Boron, Gd, Er, and Hf. The BP geometries were based on Wet Annular Burnable Absorber (WABA), Integral Fuel Burnable Absorber (IFBA), and Homogeneous poison/fuel mixtures. Several most promising combinations of BP designs were selected for the full core 3D simulation. All major core performance parameters for the analyzed cases are very close to those of a standard PWR with conventional UO{sub 2} fuel including possibility of reactivity control, power peaking factors, and cycle length. The MTC of all FFF cores was found at the full power conditions at all times and very close to that of the UO{sub 2} core. The Doppler coefficient of the FFF cores is also negative but somewhat lower in magnitude compared to UO{sub 2} core. The soluble boron worth of the FFF cores was calculated to be lower than that of the UO{sub 2} core by about a factor of two, which still allows the core reactivity control with acceptable soluble boron concentrations. The main conclusion of this work is that judicial application of burnable poisons for fertile free fuel has a potential to produce a core design with performance characteristics close to those of the reference PWR core with conventional UO{sub 2} fuel. (authors)« less

  15. Comparison of a New Multiplex Immunoassay for Measurement of Ferritin, Soluble Transferrin Receptor, Retinol-Binding Protein, C-Reactive Protein and α1-Acid-glycoprotein Concentrations against a Widely-Used s-ELISA Method

    PubMed Central

    Henderson, Amanda M.; Samson, Kaitlyn L. I.; Aljaadi, Abeer M.; Devlin, Angela M.; Becquey, Elodie; Wirth, James P.

    2018-01-01

    Recently, a multiplex ELISA (Quansys Biosciences) was developed that measures ferritin, soluble transferrin receptor (sTfR), retinol-binding protein (RBP), C-reactive protein (CRP), α1-acid glycoprotein (AGP), thyroglobulin, and histidine-rich protein 2. Our primary aim was to conduct a method-comparison study to compare five biomarkers (ferritin, sTfR, RBP, CRP, and AGP) measured with the Quansys assay and a widely-used s-ELISA (VitMin Lab, Willstaett, Germany) with use of serum samples from 180 women and children from Burkina Faso, Cambodia, and Malaysia. Bias and concordance were used to describe the agreement in values measured by the two methods. We observed poor overall agreement between the methods, both with regard to biomarker concentrations and deficiency prevalence estimates. Several measurements were outside of the limit of detection with use of the Quansys ELISA (total n = 42 for ferritin, n = 2 for sTfR, n = 0 for AGP, n = 5 for CRP, n = 22 for RBP), limiting our ability to interpret assay findings. Although the Quansys ELISA has great potential to simplify laboratory analysis of key nutritional and inflammation biomarkers, there are some weaknesses in the procedures. Overall, we found poor comparability of results between methods. Besides addressing procedural issues, additional validation of the Quansys against a gold standard method is warranted for future research. PMID:29393894

  16. Planktonic cyanobacteria of the tropical karstic lake Lagartos from the Yucatan Peninsula, Mexico.

    PubMed

    Valadez, Francisco; Rosiles-González, Gabriela; Almazán-Becerril, Antonio; Merino-Ibarra, Martin

    2013-06-01

    The tropical karstic lakes on the Mexican Caribbean Sea coast are numerous. However, there is an enormous gap of knowledge about their limnological conditions and micro-algae communities. In the present study, surface water samples were collected monthly from November 2007 to September 2008 to provide taxonomical composition and biovolume of planktonic cyanobacteria of the lake Lagartos from State of Quintana Roo, Mexico. Water temperature, pH, conductivity, salinity, soluble reactive phosphorus (SRP), dissolved inorganic nitrogen (DIN), and soluble reactive silica (SRSi) levels were also analyzed. A total of 22 species were identified. Chroococcales and Oscillatoriales dominated the phytoplankton assemblages during the study period. Chroococcus pulcherrimus, Coelosphaerium confertum, Cyanodyction iac, Phormidium pachydermaticum and Planktolyngbya contorta were recorded for the first time in Mexico. A surplus of DIN (mean value of 42.7 microM) and low concentrations of SRP (mean value of 1.0 microM) promoted the enhanced growth and bloom formation of cyanobacteria. The mean biovolume was 3.22 x 10(8) microm3/mL, and two biovolume peaks were observed; the first was dominated by Microcystis panniformis in November 2007 (7.40 x 10(8) microm3/mL), and the second was dominated by Oscillatoriaprinceps in April 2008 (6.55 x 10(8) microm3/mL). Water quality data, nitrates enrichment, and trophic state based on biovolume, indicated that Lagartos is a hyposaline, secondarily phosphorus-limited, and eutrophic lake, where the cyanobacteria flora was composed mainly by non-heterocystous groups.

  17. Inhibitory activities of soluble and bound millet seed phenolics on free radicals and reactive oxygen species.

    PubMed

    Chandrasekara, Anoma; Shahidi, Fereidoon

    2011-01-12

    Oxidative stress, caused by reactive oxygen species (ROS), is responsible for modulating several pathological conditions and aging. Soluble and bound phenolic extracts of commonly consumed millets, namely, kodo, finger (Ravi), finger (local), foxtail, proso, little, and pearl, were investigated for their phenolic content and inhibition of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and ROS, namely, hydroxyl radical, peroxyl radical, hydrogen peroxide (H(2)O(2)), hypochlorous acid (HOCl), and singlet oxygen ((1)O(2)). Inhibition of DPPH and hydroxyl radicals was detrmined using electron paramagnetic resonance (EPR) spectroscopy. The peroxyl radical inhibitory activity was measured using the oxygen radical absorbance capacity (ORAC) assay. The scavenging of H(2)O(2), HOCl, and (1)O(2) was evaluated using colorimetric methods. The results were expressed as micromoles of ferulic acid equivalents (FAE) per gram of grain on a dry weight basis. In addition, major hydroxycinnamic acids were identified and quantified using high-performance liquid chromatography (HPLC) and HPLC-mass spectrometry (MS). All millet varieties displayed effective radical and ROS inhibition activities, which generally positively correlated with phenolic contents, except for hydroxyl radical. HPLC analysis revealed the presence of ferulic and p-coumaric acids as major hydroxycinnamic acids in phenolic extract and responsible for the observed effects. Bound extracts of millet contributed 38-99% to ROS scavenging, depending on the variety and the test system employed. Hence, bound phenolics must be included in the evaluation of the antioxidant activity of millets and other cereals.

  18. Magnetic resonance imaging and computational fluid dynamics (CFD) simulations of rabbit nasal airflows for the development of hybrid CFD/PBPK models.

    PubMed

    Corley, R A; Minard, K R; Kabilan, S; Einstein, D R; Kuprat, A P; Harkema, J R; Kimbell, J S; Gargas, M L; Kinzell, John H

    2009-05-01

    The percentages of total airflows over the nasal respiratory and olfactory epithelium of female rabbits were calculated from computational fluid dynamics (CFD) simulations of steady-state inhalation. These airflow calculations, along with nasal airway geometry determinations, are critical parameters for hybrid CFD/physiologically based pharmacokinetic models that describe the nasal dosimetry of water-soluble or reactive gases and vapors in rabbits. CFD simulations were based upon three-dimensional computational meshes derived from magnetic resonance images of three adult female New Zealand White (NZW) rabbits. In the anterior portion of the nose, the maxillary turbinates of rabbits are considerably more complex than comparable regions in rats, mice, monkeys, or humans. This leads to a greater surface area to volume ratio in this region and thus the potential for increased extraction of water soluble or reactive gases and vapors in the anterior portion of the nose compared to many other species. Although there was considerable interanimal variability in the fine structures of the nasal turbinates and airflows in the anterior portions of the nose, there was remarkable consistency between rabbits in the percentage of total inspired airflows that reached the ethmoid turbinate region (approximately 50%) that is presumably lined with olfactory epithelium. These latter results (airflows reaching the ethmoid turbinate region) were higher than previous published estimates for the male F344 rat (19%) and human (7%). These differences in regional airflows can have significant implications in interspecies extrapolations of nasal dosimetry.

  19. Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes.

    PubMed

    Li, Xueqin; Cheng, Youdong; Zhang, Haiyang; Wang, Shaofei; Jiang, Zhongyi; Guo, Ruili; Wu, Hong

    2015-03-11

    A novel multi-permselective mixed matrix membrane (MP-MMM) is developed by incorporating versatile fillers functionalized with ethylene oxide (EO) groups and an amine carrier into a polymer matrix. The as-prepared MP-MMMs can separate CO2 efficiently because of the simultaneous enhancement of diffusivity selectivity, solubility selectivity, and reactivity selectivity. To be specific, MP-MMMs were fabricated by incorporating polyethylene glycol- and polyethylenimine-functionalized graphene oxide nanosheets (PEG-PEI-GO) into a commercial low-cost Pebax matrix. The PEG-PEI-GO plays multiple roles in enhancing membrane performance. First, the high-aspect ratio GO nanosheets in a polymer matrix increase the length of the tortuous path of gas diffusion and generate a rigidified interface between the polymer matrix and fillers, enhancing the diffusivity selectivity. Second, PEG consisting of EO groups has excellent affinity for CO2 to enhance the solubility selectivity. Third, PEI with abundant primary, secondary, and tertiary amine groups reacts reversibly with CO2 to enhance reactivity selectivity. Thus, the as-prepared MP-MMMs exhibit excellent CO2 permeability and CO2/gas selectivity. The MP-MMM doped with 10 wt % PEG-PEI-GO displays optimal gas separation performance with a CO2 permeability of 1330 Barrer, a CO2/CH4 selectivity of 45, and a CO2/N2 selectivity of 120, surpassing the upper bound lines of the Robeson study of 2008 (1 Barrer = 10(-10) cm(3) (STP) cm(-2) s(-1) cm(-1) Hg).

  20. Physical-chemical properties and the reactivity of pyridoxine and pyrrolidone carboxylate and their protolytic forms.

    PubMed

    Golovenko, N Ya; Larionov, V B; Karpova, O V

    2016-01-01

    Preparation Methadoxine is equimolar salt, which cationic component (pyridoxine) is 3-oxypyridine derivative, possessing B6-vitamine like activity, while anionic component is the cyclic lactame of glutamic acid. Since biopharmaceutical and pharmacological properties of this drug depend on biochemical transformation its components, of the aim of this work was to determine the structure of possible ionized pyridoxine and pyrrolidone carboxylate forms and their reaction ability in biochemical processes. Physical-chemical properties of compounds (pKa, logP, logD, proton donor/acceptor quantity, solubility (g/l)) were calculated with ACD/pKaDB program or obtained from Pub-Med physical/chemical properties database. UV spectra of compounds were obtained after dissolution in different pH solutions (1.0, 4.5 and 6.8). It was found that at different pH values one can observe changes of the absorption spectra due to the presence of prevailing amount of the protonated form. An analysis of both pKa, logP and logD indicators and reactive functional groups of Methadoxine components has revealed that they can be protonated in different regions of gastro-intestinal tract, that influences their solubility in hydrophilic and lypophilic media. Pharmacological properties of pyridoxine and pyrrolidone carboxylate themselves are performed after their preliminary biotransformation to active metabolites. Only ionic interaction between Methadoxine components in the substance composition can appear, that provides its pharmaceutical stability and ensures its activity only in the organism conditions.

  1. C4B gene influences intestinal microbiota through complement activation in patients with paediatric-onset inflammatory bowel disease.

    PubMed

    Nissilä, E; Korpela, K; Lokki, A I; Paakkanen, R; Jokiranta, S; de Vos, W M; Lokki, M-L; Kolho, K-L; Meri, S

    2017-12-01

    Complement C4 genes are linked to paediatric inflammatory bowel disease (PIBD), but the mechanisms have remained unclear. We examined the influence of C4B gene number on intestinal microbiota and in-vitro serum complement activation by intestinal microbes in PIBD patients. Complement C4A and C4B gene numbers were determined by genomic reverse transcription-polymerase chain reaction (RT-PCR) from 64 patients with PIBD (Crohn's disease or ulcerative colitis). The severity of the disease course was determined from faecal calprotectin levels. Intestinal microbiota was assessed using the HITChip microarray. Complement reactivity in patients was analysed by incubating their sera with Yersinia pseudotuberculosis and Akkermansia muciniphila and determining the levels of C3a and soluble terminal complement complex (SC5b-9) using enzyme immunoassays. The microbiota diversity was wider in patients with no C4B genes than in those with one or two C4B genes, irrespective of intestinal inflammation. C4B and total C4 gene numbers correlated positively with soluble terminal complement complex (TCC, SC5b-9) levels when patient serum samples were stimulated with bacteria. Our results suggest that the C4B gene number associates positively with inflammation in patients with PIBD. Multiple copies of the C4B gene may thus aggravate the IBD-associated dysbiosis through escalated complement reactivity towards the microbiota. © 2017 British Society for Immunology.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, K.T.; Monticello, T.M.

    The nasal passages of laboratory animals and man are complex, and lesions induced in the delicate nasal lining by inhaled air pollutants vary considerably in location and nature. The distribution of nasal lesions is generally a consequence of regional deposition of the inhaled material, local tissue susceptibility, or a combination of these factors. Nasal uptake and regional deposition are are influenced by numerous factors including the physical and chemical properties of the inhaled material, such as water solubility and reactivity; airborne concentration and length of exposure; the presence of other air contaminants such as particulate matter; nasal metabolism, and bloodmore » and mucus flow. For certain highly water-soluble or reactive gases, nasal airflow patterns play a major role in determining lesion distribution. Studies of nasal airflow in rats and monkeys, using casting and molding techniques combined with a water-dye model, indicate that nasal airflow patterns are responsible for characteristic differences in the distribution of nasal lesions induced by formaldehyde in these species. Local tissue susceptibility is also a complex issue that may be a consequence of many factors, including physiologic and metabolic characteristics of the diverse cell populations that comprise each of the major epithelial types lining the airways. Identification of the principal factors that influence the distribution and nature of nasal lesions is important when attempting the difficult process of determining potential human risks using data derived from laboratory animals. Toxicologic pathologists can contribute to this process by carefully identifying the site and nature of nasal lesions induced by inhaled materials. 61 references.« less

  3. Experimental pain ratings and reactivity of cortisol and soluble tumor necrosis factor-α receptor II following a trial of hypnosis: Results of a randomized controlled pilot study

    PubMed Central

    Goodin, Burel R.; Quinn, Noel B.; Kronfli, Tarek; King, Christopher D.; Page, Gayle G.; Haythornthwaite, Jennifer A.; Edwards, Robert R.; Stapleton, Laura M.; McGuire, Lynanne

    2011-01-01

    Objective Current evidence supports the efficacy of hypnosis for reducing the pain associated with experimental stimulation and various acute and chronic conditions; however, the mechanisms explaining how hypnosis exerts its effects remain less clear. The hypothalamic-pituitary-adrenal (HPA) axis and pro-inflammatory cytokines represent potential targets for investigation given their purported roles in the perpetuation of painful conditions; yet, no clinical trials have thus far examined the influence of hypnosis on these mechanisms. Design Healthy participants, highly susceptible to the effects of hypnosis, were randomized to either a hypnosis intervention or a no-intervention control. Using a cold pressor task, assessments of pain intensity and pain unpleasantness were collected prior to the intervention (Pre) and following the intervention (Post) along with pain-provoked changes in salivary cortisol and the soluble receptor of tumor necrosis factor-α (sTNFαRII). Results Compared to the no-intervention control, data analyses revealed that hypnosis significantly reduced pain intensity and pain unpleasantness. Hypnosis was not significantly associated with suppression of cortisol or sTNFαRII reactivity to acute pain from Pre to Post; however, the effect sizes for these associations were medium-sized. Conclusions Overall, the findings from this randomized controlled pilot study support the importance of a future large-scale study on the effects of hypnosis for modulating pain-related changes of the HPA axis and pro-inflammatory cytokines. PMID:22233394

  4. Lipid peroxidation and cytotoxicity induced by respirable volcanic ash.

    PubMed

    Cervini-Silva, Javiera; Antonio-Nieto-Camacho; Gomez-Vidales, Virginia; Ramirez-Apan, María Teresa; Palacios, Eduardo; Montoya, Ascención; Kaufhold, Stephan; Abidin, Zeanal; Theng, Benny K G

    2014-06-15

    This paper reports that the main component of respirable volcanic ash, allophane, induces lipid peroxidation (LP), the oxidative degradation of lipids in cell membranes, and cytotoxicity in murin monocyle/macrophage cells. Naturally-occurring allophane collected from New Zealand, Japan, and Ecuador was studied. The quantification of LP was conducted using the Thiobarbituric Acid Reactive Substances (TBARS) assay. The cytotoxic effect was determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay. Electron-Paramagnetic Resonance (EPR) determinations of naturally-occurring allophane confirmed the incorporation in the structure and clustering of structural Fe(3+), and nucleation and growth of small-sized Fe (oxyhydr)oxide or gibbsite. LP induced by allophane varied with time, and solid concentration and composition, reaching 6.7 ± 0.2 nmol TBARS mg prot(-1). LP was surface controlled but not restricted by structural or surface-bound Fe(3+), because redox processes induced by soluble components other than perferryl iron. The reactivity of Fe(3+) soluble species stemming from surface-bound Fe(3+) or small-sized Fe(3+) refractory minerals in allophane surpassed that of structural Fe(3+) located in tetrahedral or octahedral sites of phyllosilicates or bulk iron oxides. Desferrioxamine B mesylate salt (DFOB) or ethylenediaminetetraacetic acid (EDTA) inhibited LP. EDTA acted as a more effective inhibitor, explained by multiple electron transfer pathways. Registered cell-viability values were as low as 68.5 ± 6.7%. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Kidney graft recipients with pretransplantation HLA CLASS I antibodies and high soluble CD30 are at high risk for graft loss.

    PubMed

    Rodríguez, Libia M; París, Sara C; Arbeláez, Mario; Cotes, José M; Süsal, Caner; Torres, Yolanda; García, Luís F

    2007-08-01

    In the present study, we investigated whether pretransplantation HLA class I and class II antibodies and pretransplantation levels of soluble CD30 (sCD30) and IgA anti-Fab autoantibodies are predictive of kidney allograft survival. Pretransplantation sera of 504 deceased-donor kidney recipients were tested for IgG HLA class I and class II antibodies, sCD30, and IgA anti-Fab levels using the CTS 4 ELISA kit. Kidney graft survival was estimated by Kaplan-Meier method and multivariate Cox regression. Regardless of the presence of HLA class II antibodies, recipients with high HLA class I reactivity had lower 1-year graft survival than recipients with low reactivity (p < 0.01). Recipients with high sCD30 had lower 5-year graft survival rate than those with low sCD30 (p < 0.01). The sCD30 effect was observed in presensitized and nonsensitized recipients, demonstrated a synergistic effect with HLA class I antibodies (p < 0.001), and appeared to be neutralized in recipients with no HLA class II mismatches. IgA anti-Fab did not influence kidney graft survival. Our results indicate that high pretransplantation sCD30 levels and HLA class I positivity increase the risk of kidney graft loss regardless of other factors. Consequently, such determinations should be routinely performed to estimate recipients' risks of graft rejection before transplantation.

  6. CdS quantum dots as fluorescence probes for the sensitive and selective detection of highly reactive HSe- ions in aqueous solution.

    PubMed

    Wu, Chuan-Liu; Zhao, Yi-Bing

    2007-06-01

    Water-soluble cadmium sulfide (CdS) quantum dots (QDs) capped by mercaptoacetic acid were synthesized by aqueous-phase arrested precipitation, and characterized by transmission electron microscopy, spectrofluorometry, and UV-Vis spectrophotometry. The prepared luminescent water-soluble CdS QDs were evaluated as fluorescence probes for the detection of highly reactive hydrogen selenide ions (HSe(-) ions). The quenching of the fluorescence emission of CdS QDs with the addition of HSe(-) ions is due to the elimination of the S(2-) vacancies which are luminescence centers. Quantitative analysis based on chemical interaction between HSe(-) ions and the surface of CdS QDs is very simple, easy to develop, and has demonstrated very high sensitivity and selectivity features. The effect of foreign ions (common anions and biologically relevant cations) on the fluorescence of the CdS QDs was examined to evaluate the selectivity. Only Cu(2+) and S(2-) ions exhibit significant effects on the fluorescence of CdS QDs. With the developed method, we are able to determine the concentration of HSe(-) ions in the range from 0.10 to 4.80 micromol L(-1), and the limit of detection is 0.087 micromol L(-1). The proposed method was successfully applied to monitor the obtained HSe(-) ions from the reaction of glutathione with selenite. To the best of our knowledge, this is the first report on fluorescence analysis of HSe(-) ions in aqueous solution.

  7. Construction and characterization of a highly reactive chicken-derived single-chain variable fragment (scFv) antibody against Staphylococcus aureus developed with the T7 phage display system.

    PubMed

    Li, Jingquan; Xu, Yongping; Wang, Xitao; Li, Yuan; Wang, Lili; Li, Xiaoyu

    2016-06-01

    The purpose of this study was to construct a single-chain variable fragment (scFv) antibody from chicken egg yolk immunoglobulin (IgY) by means of genetic engineering and subsequent panning for a specific antibody against Staphylococcus aureus. We amplified the scFv using blood and spleen obtained from 100-day-old Roman chickens immunized with inactivated S. aureus and subsequently constructed a T7 phage display antibody library using phage display technology. Four non-repeated blood scFv and 6 spleen scFv were obtained following 3 rounds of panning of the T7 phage display antibody library, enzyme-linked immunosorbent assay and sequencing. These 10 scFv were cloned into the prokaryotic expression vector pCold I with expression induced at a low temperature. Four soluble proteins were obtained. Among them, soluble protein SFV6 derived from the spleen showed good reactivity against S. aureus using indirect ELISA and produced a particularly strong antibacterial effect in vitro. We were successful in isolating a highly specific scFv antibody against S. aureus from the spleen phage display library. This study provides a simple and rapid method for the quick preparation of a large number of antibodies against S. aureus and provides the foundation for the positioning of antibodies in the organism and the study of the antibacterial mechanism through which the antibody functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Changes in microbial biomass and P fractions in biogenic household waste compost amended with inorganic P fertilizers.

    PubMed

    Khan, Khalid Saifullah; Joergensen, Rainer Georg

    2009-01-01

    The present study was conducted to evaluate the changes in microbial biomass indices (C, N, and especially P) and in P fractions in compost amended with inorganic P fertilizers. In the non-amended control, the average contents of microbial biomass C, N, and P were 1744, 193, and 63 microg g(-1) compost, respectively. On average, 1.3% of total P was stored as microbial biomass P. The addition of KH(2)PO(4) and TSP (triple super phosphate) led to immediate significant increases in microbial biomass C, N, and P. Approximately, 4.6% of the added TSP and 5.8% of the added KH(2)PO(4) were incorporated on average into the microbial biomass throughout the incubation. Approximately, 4.7% of the 1mg and 5.8% of the 2mg addition rate were incorporated on average into the microbial biomass. In the amendment treatments, the average contents of microbial biomass C, N, and P declined by 44%, 64%, and 49%, respectively. Initially, the average size of the P fractions in the non-amended compost increased in the order (% of total P in brackets) resin P (0.7%)

  9. Diabetes enhances vulnerability to particulate air pollution-associated impairment in vascular reactivity and endothelial function.

    PubMed

    O'Neill, Marie S; Veves, Aristidis; Zanobetti, Antonella; Sarnat, Jeremy A; Gold, Diane R; Economides, Panayiotis A; Horton, Edward S; Schwartz, Joel

    2005-06-07

    Epidemiological studies suggest that people with diabetes are vulnerable to cardiovascular health effects associated with exposure to particle air pollution. Endothelial and vascular function is impaired in diabetes and may be related to increased cardiovascular risk. We examined whether endothelium-dependent and -independent vascular reactivity was associated with particle exposure in individuals with and without diabetes. Study subjects were 270 greater-Boston residents. We measured 24-hour average ambient levels of air pollution (fine particles [PM2.5], particle number, black carbon, and sulfates [SO4(2-)]) approximately 500 m from the patient examination site. Pollutant concentrations were evaluated for associations with vascular reactivity. Linear regressions were fit to the percent change in brachial artery diameter (flow mediated and nitroglycerin mediated), with the particulate pollutant index, apparent temperature, season, age, race, sex, smoking history, and body mass index as predictors. Models were fit to all subjects and then stratified by diagnosed diabetes versus at risk for diabetes. Six-day moving averages of all 4 particle metrics were associated with decreased vascular reactivity among patients with diabetes but not those at risk. Interquartile range increases in SO4(2-) were associated with decreased flow-mediated (-10.7%; 95% CI, -17.3 to -3.5) and nitroglycerin-mediated (-5.4%; 95% CI, -10.5 to -0.1) vascular reactivity among those with diabetes. Black carbon increases were associated with decreased flow-mediated vascular reactivity (-12.6%; 95% CI, -21.7 to -2.4), and PM2.5 was associated with nitroglycerin-mediated reactivity (-7.6%; 95% CI, -12.8 to -2.1). Effects were stronger in type II than type I diabetes. Diabetes confers vulnerability to particles associated with coal-burning power plants and traffic.

  10. Sources, composition and absorption Ångström exponent of light-absorbing organic components in aerosol extracts from the Los Angeles Basin.

    PubMed

    Zhang, Xiaolu; Lin, Ying-Hsuan; Surratt, Jason D; Weber, Rodney J

    2013-04-16

    We investigate the sources, chemical composition, and spectral properties of light-absorbing organic aerosol extracts (i.e., brown carbon, or BrC) in the Los Angeles (LA) Basin during the CalNex-2010 field campaign. Light absorption of PM2.5 water-soluble components at 365 nm (Abs365), used as a proxy for water-soluble BrC, was well correlated with water-soluble organic carbon (WSOC) (r(2) = 0.55-0.65), indicating secondary organic aerosol (SOA) formation from anthropogenic emissions was the major source of water-soluble BrC in this region. Normalizing Abs365 to WSOC mass yielded an average solution mass absorption efficiency (MAE365) of 0.71 m(2) g(-1) C. Detailed chemical speciation of filter extracts identified eight nitro-aromatic compounds that were correlated with Abs365. These compounds accounted for ∼4% of the overall water-soluble BrC absorption. Methanol-extracted BrC in LA was approximately 3 and 21 times higher than water-soluble BrC at 365 and 532 nm, respectively, and had a MAE365 of 1.58 m(2) g(-1) C (Abs365 normalized to organic carbon mass). The water-insoluble BrC was strongly correlated with ambient elemental carbon concentration, suggesting similar sources. Absorption Ångström exponent (Å(a)) (fitted between 300 and 600 nm wavelengths) was 3.2 (±1.2) for the PILS water-soluble BrC measurement, compared to 4.8 (±0.5) and 7.6 (±0.5) for methanol- and water-soluble BrC from filter extracts, respectively. These results show that fine particle BrC was prevalent in the LA basin during CalNex, yet many of its properties and potential impacts remain unknown.

  11. Formulation of a poorly water-soluble drug in sustained-release hollow granules with a high viscosity water-soluble polymer using a fluidized bed rotor granulator.

    PubMed

    Asada, Takumi; Yoshihara, Naoki; Ochiai, Yasushi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-25

    Water-soluble polymers with high viscosity are frequently used in the design of sustained-release formulations of poorly water-soluble drugs to enable complete release of the drug in the gastrointestinal tract. Tablets containing matrix granules with a water-soluble polymer are preferred because tablets are easier to handle and the multiple drug-release units of the matrix granules decreases the influences of the physiological environment on the drug. However, matrix granules with a particle size of over 800 μm sometimes cause a content uniformity problem in the tableting process because of the large particle size. An effective method of manufacturing controlled-release matrix granules with a smaller particle size is desired. The aim of this study was to develop tablets containing matrix granules with a smaller size and good controlled-release properties, using phenytoin as a model poorly water-soluble drug. We adapted the recently developed hollow spherical granule granulation technology, using water-soluble polymers with different viscosities. The prepared granules had an average particle size of 300 μm and sharp particle size distribution (relative width: 0.52-0.64). The values for the particle strength of the granules were 1.86-1.97 N/mm 2 , and the dissolution profiles of the granules were not affected by the tableting process. The dissolution profiles and the blood concentration levels of drug released from the granules depended on the viscosity of the polymer contained in the granules. We succeeded in developing the desired controlled-release granules, and this study should be valuable in the development of sustained-release formulations of poorly water-soluble drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Measuring Physical Activity with Pedometers in Older Adults with Intellectual Disability: Reactivity and Number of Days

    ERIC Educational Resources Information Center

    Hilgenkamp, Thessa; Van Wijck, Ruud; Evenhuis, Heleen

    2012-01-01

    The minimum number of days of pedometer monitoring needed to estimate valid average weekly step counts and reactivity was investigated for older adults with intellectual disability. Participants (N = 268) with borderline to severe intellectual disability ages 50 years and older were instructed to wear a pedometer for 14 days. The outcome measure…

  13. 7 CFR 51.1177 - U.S. Grade A Juice.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (17.0 liters) of juice per standard packed box of 13/5 bushels. (b) The average juice content for any lot of fruit shall have not less than 9 percent total soluble solids, and not less than one-half of 1...

  14. Cross-reactive antigens and lectin as determinants of symbiotic specificity in the Rhizobium-clover association.

    PubMed Central

    Dazzo, F B; Hubbell, D H

    1975-01-01

    Cross-reactive antigens of clover roots and Rhizobium trifolii were detected on their cell surfaces by tube agglutination, immunofluorescent, and radioimmunoassay techniques. Anti-clover root antiserum had a higher agglutinating titer with infective strains of R. trifolii than with noninfective strains. The root antiserum previously adsorbed with noninfective R. trifolii cells remained reactive only with infective cells, including infective revertants. When adsorbed with infective cells, the root antiserum was reactive with neither infective nor noninfective cells. Other Rhizobium species incapable of infecting clover did not demonstrate surface antigens cross-reactive with clover. Radioimmunoassay indicated twice as much antigenic cross-reactivity of clover roots and R. trifolii 403 (infective) than R. trifolii Bart A (noninfective). Immunofluorescence with anti-R. trifolii (infective) antiserum was detected on the exposed surface of the root epidermal cells and diminished at the root meristem. The immunofluorescent crossreaction on clover roots was totally removed by adsorption of anti-R. trifolii (infective) antiserum with encapsulated infective cells but not with noninfective cells. The cross-reactive capsular antigens from R. trifolii strains were extracted and purified. The ability of these antigens to induce clover root hair deformation was much greater when they were obtained from the infective than noninfective strains. The cross-reactive capsular antigen of R. trifolii 403 was characterized as a high-molecular-weight (greater than 4.6 times 10(6) daltons), beta-linked, acidic heteropolysaccharide containing 2-deoxyglucose, galactose, glucose, and glucuronic acid. A soluble, nondialyzable, substance (clover lectin) capable of binding to the cross-reactive antigen and agglutinating only infective cells of R. trifolii was extracted from white clover seeds. This lectin was sensitive to heat, Pronase, and trypsin. inhibition studies indicated that 2-deoxyglucose was the most probable haptenic determinant of the cross-reactive capsular antigen capable of binding to the root antiserum and the clover lectin. A model is proposed suggesting the preferential adsorption of infective versus noninfective cells of R. trifolii on the surface of clover roots by a cross-bridging of their common surface antigens with a multivalent clover lectin. Images PMID:55100

  15. Dirt in the Wound: Evaluating the Role of Iron in Antibacterial Minerals

    NASA Astrophysics Data System (ADS)

    Morrison, K. D.; Williams, L. B.

    2013-12-01

    The recent discovery of antibacterial clay deposits which are effective in killing antibiotic resistant bacteria may lead to the discovery of mineral based antibacterial mechanisms. These antibacterial clays have been shown to prevent the growth of a broad spectrum of bacteria, including methicillin-resistant Staphylococcus aureus MRSA and extended-spectrum beta lactamase (ESBL) Escherichia coli (antibiotic resistant strains) when tested in vitro. This study investigates the first antibacterial mineral deposit identified in the United States, the Oregon Mineral Technologies (OMT) mine, which formed from the hydrothermal alteration of porphyry andesites. Our hypothesis is that mixed-layered clay minerals containing nano-iron sulfides can release soluble transition metals at low pH which are antibacterial due to the rapid influx and precipitation of intracellular metal-oxides while generating reactive oxygen species (ROS) and damaging bacterial membranes. To test this hypothesis, E. coli (ATCC 25922) was reacted with clay suspensions and clay leachates (solutions equilibrated with clays for 24 hrs). Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure the soluble transition metals that are leaching from the clays. Bioimaging using scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS) and scanning transmission X-ray microscopy (STXM) were used to investigate the precipitation of intracellular mineral particles and redox state of the soluble metals reacting with the bacteria. Reactive oxygen species (ROS) were measured using a spectrophotometric hydrogen peroxide assay (H2O2) assay. Aldehydes were measured using HPLC-UV-Vis (high-performance liquid chromatography-ultraviolet-visible). Antibacterial susceptibility testing and ICP-MS elemental analysis of the leachates reveals that low pH (2.5-3.1) samples containing mM levels of soluble Fe, Al and Ca are antibacterial. All other potential toxins are below the minimum inhibitory concentrations for bactericide. The acidic pH is not the only factor contributing to the antibacterial effect. The intracellular particles observed upon cell death were determined to be Fe-oxides by STEM-EELS. STXM iron maps of single cells indicate that soluble Fe2+ and Fe3+ are adsorbing to the bacterial cell walls. The adsorption of reduced iron to the cell walls of bacteria can result in lipid peroxidation and the concurrent release of toxic aldehydes. Results from the HPLC-UV-Vis aldehyde assay reveal that the antibacterial leachates cause lipid peroxidation and the release of mono-aldehydes at μM levels from bacterial cell walls. The hydrogen peroxide and ferrous/ferric iron assay of the mineral leachates indicates that H2O2 is being generated in the presence of Fe2+, ultimately generating hydroxyl radicals which are toxic to bacterial lipids, proteins and DNA.

  16. Identification of candidate vaccine antigens of bovine hemoparasites Theileria parva and Babesia bovis by use of helper T cell clones.

    PubMed

    Brown, W C; Zhao, S; Logan, K S; Grab, D J; Rice-Ficht, A C

    1995-03-01

    Current vaccines for bovine hemoparasites utilize live attenuated organisms or virulent organisms administered concurrently with antiparasitic drugs. Although such vaccines can be effective, for most hemoparasites the mechanisms of acquired resistance to challenge infection with heterologous parasite isolates have not been clearly defined. Selection of potentially protective antigens has traditionally made use of antibodies to identify immunodominant proteins. However, numerous studies have indicated that induction of high antibody titers neither predicts the ability of an antigen to confer protective immunity nor correlates with protection. Because successful parasites have evolved antibody evasion tactics, alternative strategies to identify protective immunogens should be used. Through the elaboration of cytokines, T helper 1-(Th1)-like T cells and macrophages mediate protective immunity against many intracellular parasites, and therefore most likely play an important role in protective immunity against bovine hemoparasites. CD4+ T cell clones specific for soluble or membrane antigens of either Theileria parva schizonts or Babesia bovis merozoites were therefore employed to identify parasite antigens that elicit strong Th cell responses in vitro. Soluble cytosolic parasite antigen was fractionated by gel filtration, anion exchange chromatography or hydroxylapatite chromatography, or a combination thereof, and fractions were tested for the ability to induce proliferation of Th cell clones. This procedure enabled the identification of stimulatory fractions containing T. parva proteins of approximately 10 and 24 kDa. Antisera raised against the purified 24 kDa band reacted with a native schizont protein of approximately 30 kDa. Babesia bovis-specific Th cell clones tested against fractionated soluble Babesia bovis merozoite antigen revealed the presence of at least five distinct antigenic epitopes. Proteins separated by gel filtration revealed four patterns of reactivity, and proteins separated by anion exchange revealed two patterns of reactivity when selected T cell clones were assayed for stimulation by antigenic fractions. Studies using a continuous-flow electrophoresis apparatus have indicated the feasibility of identifying T cell-stimulatory proteins from parasite membranes as well as from the cytosolic fraction of B. bovis merozoites. The Th cell clones reactive with these different hemoparasites expressed either unrestricted or Th1 cytokine profiles, and were generally characterized by the production of high levels of IFN-gamma. A comprehensive study of T cell and macrophage responses to defined parasite antigens will help elucidate the reasons for vaccine failure or success, and provide clues to the mechanisms of acquired immunity that are needed for vaccine development.

  17. Decontamination formulation with sorbent additive

    DOEpatents

    Tucker; Mark D. , Comstock; Robert H.

    2007-10-16

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator, a sorbent additive, and water. The highly adsorbent, water-soluble sorbent additive (e.g., sorbitol or mannitol) is used to "dry out" one or more liquid ingredients, such as the liquid bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate) and convert the activator into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  18. Investigations of blue light-induced reactive oxygen species from flavin mononucleotide on inactivation of E. coli.

    PubMed

    Liang, Ji-Yuan; Cheng, Chien-Wei; Yu, Chin-Hao; Chen, Liang-Yü

    2015-02-01

    The micronutrients in many cellular processes, riboflavin, flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD) are photo-sensitive to UV and visible light for generating reactive oxygen species (ROS). Produced from phosphorylation of riboflavin, FMN is more water-soluble and rapidly transformed into free riboflavin after ingestion. This study investigated the application of visible blue light with FMN to development of an effective antimicrobial treatment. The photosensitization of bacterial viability with FMN was investigated by light quality, intensity, time, and irradiation dosage. The blue light-induced photochemical reaction with FMN could inactivate Escherichiacoli by the generated ROS in damaging nucleic acids, which was validated. This novel photodynamic technique could be a safe practice for photo-induced inactivation of environmental microorganism to achieve hygienic requirements in food processing. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Modifying sulfomethylated alkali lignin by horseradish peroxidase to improve the dispersibility and conductivity of polyaniline

    NASA Astrophysics Data System (ADS)

    Yang, Dongjie; Huang, Wenjing; Qiu, Xueqing; Lou, Hongming; Qian, Yong

    2017-12-01

    Pine and wheat straw alkali lignin (PAL and WAL) were sulfomethylated to improve water solubility, polymerized with horseradish peroxidase (HRP) to improve the molecular weight (Mw) and applied to dope and disperse polyaniline (PANI). The structural effect of lignin from different origins on the reactivities of sulfomethylation and HRP polymerization was investigated. The results show that WAL with less methoxyl groups and lower Mw have higher reactivity in sulfomethylation (SWAL). More phenolic hydroxyl groups and lower Mw benefit the HRP polymerization of sulfomethylated PAL (SPAL). Due to the natural three-dimensional aromatic structure and introduced sulfonic groups, SPAL and SWAL could effectively dope and disperse PANI in water by π-π stacking and electrostatic interaction. HRP modified SPAL (HRP-SPAL) with much higher sulfonation degree and larger Mw significantly increased the conductivity and dispersibility of lignin/PANI composites.

  20. Reactive extraction at liquid-liquid systems

    NASA Astrophysics Data System (ADS)

    Wieszczycka, Karolina

    2018-01-01

    The chapter summarizes the state of knowledge about a metal transport in two-phase system. The first part of this review focuses on the distribution law and main factors determination in classical solvent extraction (solubility and polarity of the solute, as well as inter- and intramolecules interaction. Next part of the chapter is devoted to the reactive solvent extraction and the molecular modeling requiring knowledge on type of extractants, complexation mechanisms, metals ions speciation and oxidation during complexes forming, and other parameters that enable to understand the extraction process. Also the kinetic data that is needed for proper modeling, simulation and design of processes needed for critical separations are discussed. Extraction at liquid-solid system using solvent impregnated resins is partially identical as in the case of the corresponding solvent extraction, therefore this subject was also presented in all aspects of separation process (equilibrium, mechanism, kinetics).

  1. Recycling cellulase towards industrial application of enzyme treatment on hardwood kraft-based dissolving pulp.

    PubMed

    Wang, Qiang; Liu, Shanshan; Yang, Guihua; Chen, Jiachuan; Ji, Xingxiang; Ni, Yonghao

    2016-07-01

    Cost-effectiveness is vital for enzymatic treatment of dissolving pulp towards industrial application. The strategy of cellulase recycling with fresh cellulase addition was demonstrated in this work to activate the dissolving pulp, i.e. decreasing viscosity and increasing Fock reactivity. Results showed that 48.8-35.1% of cellulase activity can be recovered from the filtered liquor in five recycle rounds, which can be reused for enzymatic treatment of dissolving pulp. As a result, the recycling cellulase with addition fresh cellulase of 1mg/g led to the pulp of viscosity 470mL/g and Fock reactivity 80%, which is comparable with cellulase charge of 2mg/g. Other pulp properties such as alpha-cellulose, alkaline solubility and molecular weight distribution were also determined. Additionally, a zero-release of recycling cellulase treatment was proposed to integrate into the dissolving pulp production process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. EPR and Structural Characterization of Water-Soluble Mn2+-Doped Si Nanoparticles

    PubMed Central

    2016-01-01

    Water-soluble poly(allylamine) Mn2+-doped Si (SiMn) nanoparticles (NPs) were prepared and show promise for biologically related applications. The nanoparticles show both strong photoluminescence and good magnetic resonance contrast imaging. The morphology and average diameter were obtained through transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM); spherical crystalline Si NPs with an average diameter of 4.2 ± 0.7 nm were observed. The doping maximum obtained through this process was an average concentration of 0.4 ± 0.3% Mn per mole of Si. The water-soluble SiMn NPs showed a strong photoluminescence with a quantum yield up to 13%. The SiMn NPs had significant T1 contrast with an r1 relaxivity of 11.1 ± 1.5 mM–1 s–1 and r2 relaxivity of 32.7 ± 4.7 mM–1 s–1 where the concentration is in mM of Mn2+. Dextran-coated poly(allylamine) SiMn NPs produced NPs with T1 and T2 contrast with a r1 relaxivity of 27.1 ± 2.8 mM–1 s–1 and r2 relaxivity of 1078.5 ± 1.9 mM–1 s–1. X-band electron paramagnetic resonance spectra are fit with a two-site model demonstrating that there are two types of Mn2+ in these NP’s. The fits yield hyperfine splittings (A) of 265 and 238 MHz with significant zero field splitting (D and E terms). This is consistent with Mn in sites of symmetry lower than tetrahedral due to the small size of the NP’s. PMID:28154618

  3. Proanthocyanidins of mountain birch leaves: quantification and properties.

    PubMed

    Ossipova, S; Ossipov, V; Haukioja, E; Loponen, J; Pihlaja, K

    2001-01-01

    Proanthocyanidins (PAs; condensed tannins) are present in mountain birch leaves in soluble and cell wall-bound forms. Crude preparations of soluble PAs were isolated from birch leaves and purified by chromatography on a Sephadex LH-20 column with a yield of about 7% of leaf dry mass. Some chemical characteristics were elucidated with 13C-NMR and HPLC-ECI-MS. Birch leaf PAs were mainly delphinidin type oligo- and polymers with average molecular mass of about 3000. In order to quantify PAs, the method involving heating PA-containing materials in 1-butanol:hydrochloric acid (95:5, v/v), and spectrophotometric determination of the anthocyanidin monomers so formed was modified and optimised. Mature leaves were characterised by a relatively high content of PAs: mean values for soluble and bound PAs were 103 and 40 mg/g dry mass, respectively. In mature leaves the soluble PAs determined the total protein precipitation capacity (PPC) of extracts. In young leaves, the contribution of PAs to the total content of phenolics and the total PPC of tannins was about 20-25% only.

  4. Development of a solid self-microemulsifying drug delivery system (SMEDDS) for solubility enhancement of naproxen.

    PubMed

    Čerpnjak, Katja; Zvonar, Alenka; Vrečer, Franc; Gašperlin, Mirjana

    2015-01-01

    Comparative evaluation of liquid and solid self-microemulsifying drug delivery systems (SMEDDS) as promising approaches for solubility enhancement. The aim of this work was to develop, characterize, and evaluate a solid SMEDDS prepared via spray-drying of a liquid SMEDDS based on Gelucire® 44/14 to improve the solubility and dissolution rate of naproxen. Various oils and co-surfactants in combination with Gelucire® 44/14 were evaluated during excipient selection study, solubility testing, and construction of (pseudo)ternary diagrams. The selected system was further evaluated for naproxen solubility, self-microemulsification ability, and in vitro dissolution of naproxen. In addition, its transformation into a solid SMEDDS by spray-drying using maltodextrin as a solid carrier was performed. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to evaluate the physical characteristics of the solid SMEDDS obtained. The selected formulation of SMEDDS was comprised of Miglyol 812®, Peceol™, Gelucire® 44/14, and Solutol® HS 15. The liquid and solid SMEDDS formed a microemulsion after dilution with comparable average droplet size and exhibited uniform droplet size distribution. In the solid SMEDDS, liquid SMEDDS was adsorbed onto the surface of maltodextrin and formed smooth granular particles with the encapsulated drug predominantly in a dissolved state and partially in an amorphous state. Overall, incorporation of naproxen in SMEDDS, either liquid or solid, resulted in improved solubility and dissolution rate compared to pure naproxen. This study indicates that a liquid and solid SMEDDS is a strategy for solubility enhancement in the future development of orally delivered dosage forms.

  5. Gaseous and particulate water-soluble organic and inorganic nitrogen in rural air in southern Scotland

    NASA Astrophysics Data System (ADS)

    González Benítez, Juan M.; Cape, J. Neil; Heal, Mathew R.

    2010-04-01

    Simultaneous daily measurements of water-soluble organic nitrogen (WSON), ammonium and nitrate were made between July and November 2008 at a rural location in south-east Scotland, using a 'Cofer' nebulizing sampler for the gas phase and collection on an open-face PTFE membrane for the particle phase. Average concentrations of NH 3 were 82 ± 17 nmol N m -3 (error is s.d. of triplicate samples), while oxidised N concentrations in the gas phase (from trapping NO 2 and HNO 3) were smaller, at 2.6 ± 2.2 nmol N m -3, and gas-phase WSON concentrations were 18 ± 11 nmol N m -3. The estimated collection efficiency of the nebulizing samplers for the gas phase was 88 (±8) % for NH 3, 37 (±16) % for NO 2 and 57 (±7) % for WSON; reported average concentrations have not been corrected for sampling efficiency. Concentrations in the particle phase were smaller, except for nitrate, at 21 ± 9, 10 ± 6 and 8 ± 9 nmol N m -3, respectively. The absence of correlation in either phase between WSON and either (NH 3 + NH 4+) or NO 3- concentrations suggests atmospheric WSON has diverse sources. During wet days, concentrations of gas and particle-phase inorganic N were lower than on dry days, whereas the converse was true for WSON. These data represent the first reports of simultaneous measurements of gas and particle phase water-soluble nitrogen compounds in rural air on a daily basis, and show that WSON occurs in both phases, contributing 20-25% of the total water-soluble nitrogen in air, in good agreement with earlier data on the contribution of WSON to total dissolved N in rainfall in the UK.

  6. Characterization of water-soluble organic matter isolated from atmospheric fine aerosol

    NASA Astrophysics Data System (ADS)

    Kiss, Gyula; Varga, BáLint; Galambos, IstváN.; Ganszky, Ildikó

    2002-11-01

    Atmospheric fine aerosol (dp < 1.5 μm) was collected at a rural site in Hungary from January to September 2000. The total carbon concentration ranged from 5 to 13 μg m-3 and from 3 to 6 μg m-3 in the first three months and the rest of the sampling period, respectively. On average, water-soluble organic carbon (WSOC) accounted for 66% of the total carbon concentration independent of the season. A variable fraction of the water-soluble organic constituents (38-72% of WSOC depending on the sample) was separated from inorganic ions and isolated in pure organic form by using solid phase extraction on a copolymer sorbent. This fraction was experimentally characterized by an organic matter to organic carbon mass ratio of 1.9, and this value did not change with the seasons. Furthermore, the average elemental composition (molar ratio) of C:H:N:O ≈ 24:34:1:14 of the isolated fraction indicated the predominance of oxygenated functional groups, and the low hydrogen to carbon ratio implied the presence of unsaturated or polyconjugated structures. These conclusions were confirmed by UV, fluorescence, and Fourier transform infrared (FTIR) studies. On the basis of theoretical considerations, the organic matter to organic carbon mass ratio was estimated to be 2.3 for the nonisolated water-soluble organic fraction, resulting in an overall ratio of 2.1 for the WSOC. In order to extend the scope of this estimation to the total organic carbon, which is usually required in mass closure calculations, the aqueous extraction was followed by sequential extraction with acetone and 0.01 M NaOH solution. As a result, a total organic matter to total organic carbon mass ratio of 1.9-2.0 was estimated, but largely on the basis of experimental data.

  7. Development of an Ion-Pairing Reagent and HPLC-UV Method for the Detection and Quantification of Six Water-Soluble Vitamins in Animal Feed.

    PubMed

    Kim, Ho Jin

    2016-01-01

    A novel and simple method for detecting six water-soluble vitamins in animal feed using high performance liquid chromatography equipped with a photodiode array detector (HPLC/PDA) and ion-pairing reagent was developed. The chromatographic peaks of the six water-soluble vitamins were successfully identified by comparing their retention times and UV spectra with reference standards. The mobile phase was composed of buffers A (5 mM PICB-6 in 0.1% CH3COOH) and B (5 mM PICB-6 in 65% methanol). All peaks were detected using a wavelength of 270 nm. Method validation was performed in terms of linearity, sensitivity, selectivity, accuracy, and precision. The limits of detection (LODs) for the instrument employed in these experiments ranged from 25 to 197 μg/kg, and the limits of quantification (LOQs) ranged from 84 to 658 μg/kg. Average recoveries of the six water-soluble vitamins ranged from 82.3% to 98.9%. Method replication resulted in intraday and interday peak area variation of <5.6%. The developed method was specific and reliable and is therefore suitable for the routine analysis of water-soluble vitamins in animal feed.

  8. CD and MCD studies of the effects of component B variant binding on the biferrous active site of methane monooxygenase.

    PubMed

    Mitić, Natasa; Schwartz, Jennifer K; Brazeau, Brian J; Lipscomb, John D; Solomon, Edward I

    2008-08-12

    The multicomponent soluble form of methane monooxygenase (sMMO) catalyzes the oxidation of methane through the activation of O 2 at a nonheme biferrous center in the hydroxylase component, MMOH. Reactivity is limited without binding of the sMMO effector protein, MMOB. Past studies show that mutations of specific MMOB surface residues cause large changes in the rates of individual steps in the MMOH reaction cycle. To define the structural and mechanistic bases for these observations, CD, MCD, and VTVH MCD spectroscopies coupled with ligand-field (LF) calculations are used to elucidate changes occurring near and at the MMOH biferrous cluster upon binding of MMOB and the MMOB variants. Perturbations to both the CD and MCD are observed upon binding wild-type MMOB and the MMOB variant that similarly increases O 2 reactivity. MMOB variants that do not greatly increase O 2 reactivity fail to cause one or both of these changes. LF calculations indicate that reorientation of the terminal glutamate on Fe2 reproduces the spectral perturbations in MCD. Although this structural change allows O 2 to bridge the diiron site and shifts the redox active orbitals for good overlap, it is not sufficient for enhanced O 2 reactivity of the enzyme. Binding of the T111Y-MMOB variant to MMOH induces the MCD, but not CD changes, and causes only a small increase in reactivity. Thus, both the geometric rearrangement at Fe2 (observed in MCD) coupled with a more global conformational change that may control O 2 access (probed by CD), induced by MMOB binding, are critical factors in the reactivity of sMMO.

  9. 7 CFR 51.1176 - U.S. Grade AA Juice (Double A).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (18.9 liters) of juice per standard packed box of 13/5 bushels. (b) The average juice content for any lot of fruit shall have not less than 10 percent total soluble solids, and not less than one-half of 1...

  10. Determination of the solubility and size distribution of radioactive aerosols in the uranium processing plant at NRCN.

    PubMed

    Kravchik, T; Oved, S; Paztal-Levy, O; Pelled, O; Gonen, R; German, U; Tshuva, A

    2008-01-01

    Inhalation is the main route of internal exposure to radioactive aerosols in the nuclear industry. To assess the radiation dose from the intake of these aerosols, it is necessary to know their physical (aerodynamic diameter distribution) and chemical (dissolution rate in extracellular lung fluid) characteristics. Air samples were taken from the uranium processing plant at the Nuclear Research Center, Negev. Measurements of aerodynamic diameter distribution using a cascade impactor indicated an average activity median aerodynamic diameter value close to 5 microm, in accordance with the recent recommended values of International Commission on Radiological Protection (ICRP) model. Solubility profiles of these aerosols were determined by performing in vitro solubility tests over 100 d in a simultant solution of the extracellular fluid. The tests indicated that the uranium aerosols should be assigned to an absorption between Types M and S (as defined by the ICRP Publication 66 model).

  11. A Lagrangian Transport Eulerian Reaction Spatial (LATERS) Markov Model for Prediction of Effective Bimolecular Reactive Transport

    NASA Astrophysics Data System (ADS)

    Sund, Nicole; Porta, Giovanni; Bolster, Diogo; Parashar, Rishi

    2017-11-01

    Prediction of effective transport for mixing-driven reactive systems at larger scales, requires accurate representation of mixing at small scales, which poses a significant upscaling challenge. Depending on the problem at hand, there can be benefits to using a Lagrangian framework, while in others an Eulerian might have advantages. Here we propose and test a novel hybrid model which attempts to leverage benefits of each. Specifically, our framework provides a Lagrangian closure required for a volume-averaging procedure of the advection diffusion reaction equation. This hybrid model is a LAgrangian Transport Eulerian Reaction Spatial Markov model (LATERS Markov model), which extends previous implementations of the Lagrangian Spatial Markov model and maps concentrations to an Eulerian grid to quantify closure terms required to calculate the volume-averaged reaction terms. The advantage of this approach is that the Spatial Markov model is known to provide accurate predictions of transport, particularly at preasymptotic early times, when assumptions required by traditional volume-averaging closures are least likely to hold; likewise, the Eulerian reaction method is efficient, because it does not require calculation of distances between particles. This manuscript introduces the LATERS Markov model and demonstrates by example its ability to accurately predict bimolecular reactive transport in a simple benchmark 2-D porous medium.

  12. Soluble Programmed Death 1 (PD-1) Is Decreased in Patients With Immune Thrombocytopenia (ITP): Potential Involvement of PD-1 Pathway in ITP Immunopathogenesis.

    PubMed

    Birtas Atesoglu, Elif; Tarkun, Pinar; Demirsoy, Esra Terzi; Geduk, Ayfer; Mehtap, Ozgur; Batman, Adnan; Kaya, Fatih; Cekmen, Mustafa Baki; Gulbas, Zafer; Hacıhanefioglu, Abdullah

    2016-04-01

    Immune thrombocytopenia (ITP) is an autoimmune disease characterized by dysregulation of T cells. Programmed death (PD) 1 and programmed death 1 ligand 1 (PD-L1) are cosignaling molecules, and the major role of the PD-1 pathway is the inhibition of self-reactive T cells and to protect against autoimmune diseases. We measured levels of serum soluble PD 1 (sPD-1) and serum soluble PD-L1 (sPD-L1) in 67 patients with ITP (24 newly diagnosed ITP [ndITP], 43 chronic ITP [cITP]) and 21 healthy controls (HCs). We determined decreased serum sPD-1 levels both in patients with ndITP and in patients with cITP when compared to HC. Moreover, there was a positive correlation between sPD-1 levels and platelet counts. The sPD-L1 levels were decreased in patients with ndITP when compared to patients with cITP. This is the first study investigating PD-1 signaling pathway in ITP. Decreased sPD-1 levels may have a role in ITP pathogenesis as without the inhibitory regulation of PD-1, sustained activation of T cells may cause inflammatory responses which is the case in ITP. © The Author(s) 2014.

  13. Nanocompounds of iron and zinc: their potential in nutrition

    NASA Astrophysics Data System (ADS)

    Zimmermann, Michael B.; Hilty, Florentine M.

    2011-06-01

    Recent studies suggest nanostructured oxides and phosphates of Fe and atomically mixed Fe/Zn may be useful for nutritional applications. These compounds may have several advantages over existing fortificants, such as ferrous sulfate (FeSO4), NaFeEDTA and electrolytic iron. Because of their very low solubility and formation of soft agglomerates of micron size at neutral pH as well as their light native color, they tend to be less reactive in difficult-to-fortify foods and thus have superior sensory performance. At gastric pH the soft agglomerates break up and the Fe compounds rapidly and completely dissolve due to their very high surface area. This results in in vitro solubility and in vivo bioavailability comparable to FeSO4. Doping with Mg and/or Ca may increase solubility and improve sensory characteristics by lightening color. Feeding the nanostructured compounds at 150-400 µg Fe day-1 for 15 days to weanling rats in two studies did not induce measurable histological or biochemical adverse effects. No significant Fe was detected in the submucosa of the gastrointestinal tract or lymphatic tissues, suggesting that the nanosized Fe is absorbed through usual non-heme Fe absorption pathways. Thus, these novel compounds show promise as food fortificants or supplements.

  14. Excipient-assisted vinpocetine nanoparticles: experiments and molecular dynamic simulations.

    PubMed

    Li, Cai-Xia; Wang, Hao-Bo; Oppong, Daniel; Wang, Jie-Xin; Chen, Jian-Feng; Le, Yuan

    2014-11-03

    Hydrophilic excipients can be used to increase the solubility and bioavailability of poorly soluble drugs. In this work, the conventional water-soluble pharmaceutical excipients hydroxypropylmethylcellulose (HPMC), polyvinylpyrrolidone (PVP), and lactose (LAC) were used as solid supports to prevent drug nanoparticles from aggregation and enhance drug dissolution. Excipient-assisted vinpocetine (VIN) nanoparticles were prepared by reactive precipitation. The analysis results indicated that HPMC was a suitable excipient to prepare VIN nanoparticles. VIN/HPMC nanoparticles had a mean size of 130 nm within a narrow distribution. The dissolution rate of VIN nanoparticles was significantly faster than those of a physical mixture of VIN/HPMC and raw VIN. VIN/HPMC nanoparticles had a higher dissolution profile than VIN/PVP and VIN/LAC nanoparticles. Besides, molecular dynamics (MD) simulation was applied to investigate the molecular interactions between VIN and excipients. The calculated results revealed that VIN interacted with excipients by Coulomb and Lennard-Jones (LJ) interactions. Few hydrogen bonds were formed between VIN and excipients. The HPMC affording smaller particle size may be a result of the stronger interactions between VIN and HPMC (mainly LJ interaction) and the property of HPMC. These characteristics may greatly influence the adsorption behavior and may be the crucial parameter for the better performance of HPMC.

  15. Activation of the innate immune receptor Dectin-1 upon formation of a “phagocytic synapse”

    PubMed Central

    Goodridge, Helen S.; Reyes, Christopher N.; Becker, Courtney A.; Katsumoto, Tamiko R.; Ma, Jun; Wolf, Andrea J.; Bose, Nandita; Chan, Anissa S. H.; Magee, Andrew S.; Danielson, Michael E.; Weiss, Arthur; Vasilakos, John P.; Underhill, David M.

    2011-01-01

    Innate immune cells must be able to distinguish between direct binding to microbes and detection of components shed from the surface of microbes located at a distance. Dectin-1 is a pattern recognition receptor expressed by myeloid phagocytes (macrophages, dendritic cells and neutrophils) that detects β-glucans in fungal cell walls and triggers direct cellular anti-microbial activity, including phagocytosis and production of reactive oxygen species1, 2. In contrast to inflammatory responses stimulated upon detection of soluble ligands by other pattern recognition receptors, such as Toll-like receptors (TLRs), these responses are only useful when a cell comes into direct contact with a microbe and must not be spuriously activated by soluble stimuli. In this study we show that despite its ability to bind both soluble and particulate β-glucan polymers, Dectin-1 signalling is only activated by particulate β-glucans, which cluster the receptor in synapse-like structures from which regulatory tyrosine phosphatases CD45 and CD148 are excluded (Supplementary Figure 1). The “phagocytic synapse” now provides a model mechanism by which innate immune receptors can distinguish direct microbial contact from detection of microbes at a distance, thereby initiating direct cellular anti-microbial responses only when they are required. PMID:21525931

  16. Transdermal Delivery of Iron Using Soluble Microneedles: Dermal Kinetics and Safety.

    PubMed

    Modepalli, Naresh; Shivakumar, H Nanjappa; McCrudden, Maeliosa T C; Donnelly, Ryan F; Banga, Ajay; Murthy, S Narasimha

    2016-03-01

    Currently, the iron compounds are administered via oral and parenteral routes in patients of all ages, to treat iron deficiency. Despite continued efforts to supplement iron via these conventional routes, iron deficiency still remains the most prevalent nutritional disorder all over the world. Transdermal replenishment of iron is a novel, potential approach of iron replenishment. Ferric pyrophosphate (FPP) was found to be a suitable source of iron for transdermal replenishment. The safety of FPP was assessed in this project by challenging the dermal fibroblast cells with high concentration of FPP. The cell viability assay and reactive oxygen species assay were performed. The soluble microneedle array was developed, incorporated with FPP and the kinetics of free iron in the skin; extracellular fluid following dermal administration of microneedle array was investigated in hairless rats. From the cell based assays, FPP was selected as one of the potential iron sources for transdermal delivery. The microneedles were found to dissolve in the skin fluid within 3 hours of administration. The FPP concentration in the dermal extracellular fluid declined after complete dissolution of the microneedle array. Overall, the studies demonstrated the safety of FPP for dermal delivery and the feasibility of soluble microneedle approach for transdermal iron replenishment therapy. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Impacts of Groundwater Discharge at Myora Springs (North Stradbroke Island, Australia) on the Phenolic Metabolism of Eelgrass, Zostera muelleri, and Grazing by the Juvenile Rabbitfish, Siganus fuscescens

    PubMed Central

    Arnold, Thomas; Freundlich, Grace; Weilnau, Taylor; Verdi, Arielle; Tibbetts, Ian R.

    2014-01-01

    Myora Springs is one of many groundwater discharge sites on North Stradbroke Island (Queensland, Australia). Here spring waters emerge from wetland forests to join Moreton Bay, mixing with seawater over seagrass meadows dominated by eelgrass, Zostera muelleri. We sought to determine how low pH / high CO2 conditions near the spring affect these plants and their interactions with the black rabbitfish (Siganus fuscescens), a co-occurring grazer. In paired-choice feeding trials S. fuscescens preferentially consumed Z. muelleri shoots collected nearest to Myora Springs. Proximity to the spring did not significantly alter the carbon and nitrogen contents of seagrass tissues but did result in the extraordinary loss of soluble phenolics, including Folin-reactive phenolics, condensed tannins, and phenolic acids by ≥87%. Conversely, seagrass lignin contents were, in this and related experiments, unaffected or increased, suggesting a shift in secondary metabolism away from the production of soluble, but not insoluble, (poly)phenolics. We suggest that groundwater discharge sites such as Myora Springs, and other sites characterized by low pH, are likely to be popular feeding grounds for seagrass grazers seeking to reduce their exposure to soluble phenolics. PMID:25127379

  18. Solvent recyclability in a multistep direct liquefaction process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hetland, M.D.; Rindt, J.R.

    1995-12-31

    Direct liquefaction research at the Energy & Environmental Research Center (EERC) has, for a number of years, concentrated on developing a direct liquefaction process specifically for low-rank coals (LRCs) through the use of hydrogen-donating solvents and solvents similar to coal-derived liquids, the water/gas shift reaction, and lower-severity reaction conditions. The underlying assumption of all of the research was that advantage could be taken of the reactivity and specific qualities of LRCs to produce a tetrahydrofuran (THF)-soluble material that might be easier to upgrade than the soluble residuum produced during direct liquefaction of high-rank coals. A multistep approach was taken tomore » produce the THF-soluble material, consisting of (1) preconversion treatment to prepare the coal for solubilization, (2) solubilization of the coal in the solvent, and (3) polishing to complete solubilization of the remaining material. The product of these three steps can then be upgraded during a traditional hydrotreatment step. The results of the EERC`s research indicated that additional studies to develop this process more fully were justified. Two areas were targeted for further research: (1) determination of the recyclability of the solvent used during solubilization and (2) determination of the minimum severity required for hydrotreatment of the liquid product. The current project was funded to investigate these two areas.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouyer-Fessard, P.; Garel, M.C.; Domenget, C.

    The soluble pool of alpha hemoglobin chains present in blood or bone marrow cells was measured with a new affinity method using a specific probe, beta A hemoglobin chain labeled with ({sup 3}H)N-ethylmaleimide. This pool of soluble alpha chains was 0.067 {plus minus} 0.017% of hemoglobin in blood of normal adult, 0.11 {plus minus} 0.03% in heterozygous beta thalassemia and ranged from 0.26 to 1.30% in homozygous beta thalassemia intermedia. This elevated pool of soluble alpha chains observed in human beta thalassemia intermedia decreased 33-fold from a value of 10% of total hemoglobin in bone marrow cells to 0.3% inmore » the most dense red blood cells. The amount of insoluble alpha chains was measured by using the polyacrylamide gel electrophoresis in urea and Triton X-100. In beta thalassemia intermedia the amount of insoluble alpha chains was correlated with the decreased spectrin content of red cell membrane and was associated with a decrease in ankyrin and with other abnormalities of the electrophoretic pattern of membrane proteins. The loss and topology of the reactive thiol groups of membrane proteins was determined by using ({sup 3}H)N-ethylmaleimide added to membrane ghosts prior to urea and Triton X-100 electrophoresis. Spectrin and ankyrin were the major proteins with the most important decrease of thiol groups.« less

  20. Bifunctional Catalysts for CO2 Reduction

    DTIC Science & Technology

    2014-09-30

    hexane soluble material was crystallized at –35 ºC permitting characterization by X-ray diffraction to identify [(tbsL) Co3 (µ 3- N)]NBu4 as the product...of the trinuclear core and make atom and group-transfer processes even more facile. To probe this we investigated the reactivity of (tbsL) Co3 (py...Reaction of (tbsL) Co3 (py) with with Bu4N[N3] yields the azide adduct Bu4N[( tbsL) Co3 (µ 3-N3)] which features a C3-symmetric, paramagnetically shifted

  1. Copper(II) Carboxylate Promoted Intramolecular Diamination of Terminal Alkenes: Improved Reaction Conditions and Expanded Substrate Scope

    PubMed Central

    Zabawa, Thomas P.

    2008-01-01

    The copper(II) carboxylate promoted diamination reaction has been improved by the use of the organic soluble copper(II) neodecanoate [Cu(ND)2]. Cu(ND)2 allowed the less polar solvent, dichloroethane (DCE) to be used, and as a consequence, decomposition of less reactive substrates could be avoided. High diastereoselectivity was observed in the synthesis of 2,5-disubstituted pyrrolidines. Ureas, bis(anilines) and α-amido pyrroles derived from 2-allylaniline could also participate in the diamination reaction. PMID:17447781

  2. Resin-Bound Crypto-Thioester for Native Chemical Ligation.

    PubMed

    Naruse, Naoto; Ohkawachi, Kento; Inokuma, Tsubasa; Shigenaga, Akira; Otaka, Akira

    2018-04-20

    The resin-bound N-sulfanylethylanilide (SEAlide) peptide was found to function as a crypto-thioester peptide. Exposure of the peptide resin to an aqueous solution under neutral conditions in the presence of thiols affords thioesters without accompanying racemization of C-terminal amino acids. Furthermore, the resin-bound SEAlide peptides react with N-terminal cysteinyl peptides in the absence of phosphate salts to afford ligated products, whereas soluble SEAlide peptides do not. This unexpected difference in reactivity of the SEAlide peptides allows for a one-pot/three-fragment ligation using resin-bound and unbound peptides.

  3. Clinical evaluation of multiple inflammation biomarkers for diagnosis and prognosis for patients with systemic inflammatory response syndrome.

    PubMed

    Reichsoellner, M; Raggam, R B; Wagner, J; Krause, R; Hoenigl, M

    2014-11-01

    A multiplexed biomarker bundle consisting of nine different inflammation markers was evaluated regarding their diagnostic and prognostic performances in 159 adult systemic inflammatory response syndrome (SIRS) patients enrolled at the emergency department. Fibronectin, interleukin-8 (IL-8), biotin, and neutrophil gelatinase-associated lipocalin (NGAL) were the most robust markers but were not superior to the already established markers IL-6, C-reactive protein (CRP), procalcitonin (PCT), and soluble urokinase plasminogen activator receptor (suPAR). Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Soluble β-1,3/1,6-glucan in seaweed from the southern hemisphere and its immunomodulatory effect.

    PubMed

    Bobadilla, Francisca; Rodriguez-Tirado, Carolina; Imarai, Mónica; Galotto, María José; Andersson, Roger

    2013-01-30

    Five types of macroalgae from the southern hemisphere were analysed for the presence of β-1,3/1,6-glucan and its immunostimulant properties. We were able to extract soluble β-1,3/1,6-D-glucan from Durvillaea antarctica (Chamisso) Hariot (DA). The morphology of the brown algae influenced extraction, and the highest percentage of β-glucan was found in the fronds. The content of β-glucan in the stipes and holdfast was on average 33% and <5%, respectively, of that in the fronds. A simple laboratory extraction process was developed. A highly pure water-soluble polysaccharide, mainly composed of glucose residues, was obtained with a dominant average molecular weight of 6.9 kDa. NMR spectroscopy confirmed the polysaccharide structure to be of β-1,3/1,6-glucan type, comprising a β-1,3-glucan backbone and 21% degree of branching of β-1,6-glucan side chains. Mouse cells were exposed to four DA extract concentrations in water (50, 100, 250 and 500 μg/mL) and no adverse effects on survival were noted. Remarkably, the β-glucan induced a 16.9% increase in activated CD19+ B lymphocytes compared with the control sample. The optimal concentration for maximum activity was 100 μg DA extract/mL. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Experimental determination of sorption in fractured flow systems

    NASA Astrophysics Data System (ADS)

    Zimmerman, Mitchell D.; Bennett, Philip C.; Sharp, John M.; Choi, Wan-Joo

    2002-09-01

    Fracture "skins" are alteration zones on fracture surfaces created by a variety of biological, chemical, and physical processes. Skins increase surface area, where sorption occurs, compared to the unaltered rock matrix. This study examines the sorption of organic solutes on altered fracture surfaces in an experimental fracture-flow apparatus. Fracture skins containing abundant metal oxides, clays, and organic material from the Breathitt Formation (Kentucky, USA) were collected in a manner such that skin surface integrity was maintained. The samples were reassembled in the lab in a flow-through apparatus that simulated ˜2.7 m of a linear fracture "conduit." A dual-tracer injection scheme was utilized with the sorbing or reactive tracer compared to a non-reactive tracer (chloride) injected simultaneously. Sorption was assessed from the ratio of the first temporal moments of the breakthrough curves and from the loss of reactive tracer mass and evaluated as a function of flow velocity and solute type. The breakthrough curves suggest dual-flow regimes in the fracture with both sorbing and non-sorbing flow fields. Significant sorption occurs for the reactive components, and sorption increased with decreasing flow rate and decreasing compound solubility. Based on moment analysis, however, there was little retardation of the center of solute mass. These data suggest that non-equilibrium sorption processes dominate and that slow desorption and boundary layer diffusion cause extensive tailing in the breakthrough curves.

  6. Thermodynamic responses of electronic systems.

    PubMed

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2017-09-07

    We present how the framework of the temperature-dependent chemical reactivity theory can describe the panorama of different types of interactions between an electronic system and external reagents. The key reactivity indicators are responses of an appropriate state function (like the energy or grand potential) to the variables that determine the state of the system (like the number of electrons/chemical potential, external potential, and temperature). We also consider the response of the average electron density to appropriate perturbations. We present computable formulas for these reactivity indicators and discuss their chemical utility for describing electronic, electrostatic, and thermal changes associated with chemical processes.

  7. Thermodynamic responses of electronic systems

    NASA Astrophysics Data System (ADS)

    Franco-Pérez, Marco; Ayers, Paul W.; Gázquez, José L.; Vela, Alberto

    2017-09-01

    We present how the framework of the temperature-dependent chemical reactivity theory can describe the panorama of different types of interactions between an electronic system and external reagents. The key reactivity indicators are responses of an appropriate state function (like the energy or grand potential) to the variables that determine the state of the system (like the number of electrons/chemical potential, external potential, and temperature). We also consider the response of the average electron density to appropriate perturbations. We present computable formulas for these reactivity indicators and discuss their chemical utility for describing electronic, electrostatic, and thermal changes associated with chemical processes.

  8. Higher platelet reactivity and platelet-monocyte complex formation in Gram-positive sepsis compared to Gram-negative sepsis.

    PubMed

    Tunjungputri, Rahajeng N; van de Heijden, Wouter; Urbanus, Rolf T; de Groot, Philip G; van der Ven, Andre; de Mast, Quirijn

    2017-09-01

    Platelets may play a role in the high risk for vascular complications in Gram-positive sepsis. We compared the platelet reactivity of 15 patients with Gram-positive sepsis, 17 with Gram-negative sepsis and 20 healthy controls using a whole blood flow cytometry-based assay. Patients with Gram-positive sepsis had the highest median fluorescence intensity (MFI) of the platelet membrane expression of P-selectin upon stimulation with high dose adenosine diphosphate (ADP; P = 0.002 vs. Gram-negative and P = 0.005 vs. control groups) and cross-linked collagen-related peptide (CRP-XL; P = 0.02 vs. Gram-negative and P = 0.0001 vs. control groups). The Gram-positive group also demonstrated significantly higher ADP-induced fibrinogen binding (P = 0.001), as wll as platelet-monocyte complex formation (P = 0.02), compared to the Gram-negative group and had the highest plasma levels of platelet factor 4, β-thromboglobulin and soluble P-selectin. In contrast, thrombin-antithrombin complex and C-reactive protein levels were comparable in both patient groups. In conclusion, common Gram-positive pathogens induce platelet hyperreactivity, which may contribute to a higher risk for vascular complications.

  9. Method to Prepare Processable Polymides with Reactive Endgroups using 1,3-Bis (3-Aminophenoxy) Benzene

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor)

    2000-01-01

    Polyimide copolymers were obtained containing 1,3-bis(3-aminophenoxy)benzene (APB) and other diamines and dianhydrides and terminating with the appropriate amount of reactive endcapper. The reactive endcappers studied include but should not be limited to 4-phenylethynyl phthalic anhydride (PEPA ), 3-aminophenoxy- 4'-phenylethynylbenzophenone (3-APEB), maleic anhydride (MA) and nadic anhydride (5-norbomene-2,3-dicarboxylic anhydride, NA). Homopolymers containing only other diamines and dianhydrides which are not processable under conditions described previously can be made processable by incorporating various amounts of APB, depending on the chemical structures of the diamines and dianhydrides used. By simply changing the ratio of APB to the other diamine in the polyimide backbone, a material with a unique combination of solubility, Tg, Tm, melt viscosity, toughness and elevated temperature mechanical properties can be prepared. The copolymers that result from using APB to enhance processability have a unique combination of properties that include low pressure processing (200 psi and below), long term melt stability (several hours at 300 C. for the phenylethynyl terminated polymers), high toughness, improved solvent resistance, improved adhesive properties, and improved composite mechanical properties. These copolyimides are eminently suitable as adhesives, composite matrices, moldings, films and coatings.

  10. Reactivity of pi-complexes of Ti, V, and Nb towards dithioacetic acid: Synthesis and structure of novel metal sulfur-containing complexes

    NASA Technical Reports Server (NTRS)

    Duraj, Stan A.; Andras, Maria T.; Hepp, Aloysius F.

    1990-01-01

    In order to use sulfur-containing resources economically and with minimal environmental damage, it is important to understand the desulfurization processes. Hydrodesulfurization, for example, is carried out on the surface of a heterogeneous metal sulfide catalyst. Studies of simple, soluble inorganic systems provide information regarding the structure and reactivity of sulfur-containing compounds with metal complexes. Further, consistent with recent trends in materials chemistry, many model compounds warrant further study as catalyst precursors. The reactivity of low-valent organometallic sandwich pi-complexes toward dithiocarboxylic acids is described. For example, treatment of bisbenzene vanadium with CH3CSSH affords a divanadium tetrakis(dithioacetate) complex. The crystallographically determined V-V bond distance, 2.800(2), is nearly the same as the V-V bond distance in a V(mu-nu squared-S2)2V' unit in the mineral patonite (VS4)n. The stability of the V2S4 core in the dimer is demonstrated by evidence of V2S4(+) in the mass spectrum (70 eV, solid probe) of the vanadium dimer. Several other systems relevant to HDS catalysis are also discussed.

  11. Formation of hydroxyl radical from San Joaquin Valley particles extracted in a cell-free solution

    NASA Astrophysics Data System (ADS)

    Shen, H.; Anastasio, C.

    2011-06-01

    Previous studies have suggested that the adverse health effects from ambient particulate matter (PM) are linked to the formation of reactive oxygen species (ROS) by PM. While hydroxyl radical (•OH) is the most reactive of the ROS species, there are few quantitative studies of •OH generation from PM. Here we report on •OH formation from PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California. We quantified •OH in PM extracts using a cell-free, phosphate-buffered saline (PBS) solution with or without 50 μM ascorbate (Asc). The results show that generally the urban Fresno PM generates much more •OH than the rural Westside PM. The presence of Asc at a physiologically relevant concentration in the extraction solution greatly enhances •OH formation from all the samples. Fine PM (PM2.5) generally makes more •OH than the corresponding coarse PM (PMcf, i.e., 2.5 to 10 μm) normalized by air volume collected, while the coarse PM typically generates more •OH normalized by PM mass. •OH production by SJV PM is reduced on average by (97 ± 6) % when the transition metal chelator desferoxamine (DSF) is added to the extraction solution, indicating a dominant role of transition metals. By measuring calibration curves of •OH generation from copper and iron, and quantifying copper and iron concentrations in our particle extracts, we find that PBS-soluble copper is primarily responsible for •OH production by the SJV PM, while iron often makes a significant contribution. Extrapolating our results to expected burdens of PM-derived •OH in human lung lining fluid suggests that typical daily PM exposures in the San Joaquin Valley are unlikely to result in a high amount of pulmonary •OH, although high PM events could produce much higher levels of •OH, which might lead to cytotoxicity.

  12. Formation of hydroxyl radical from San Joaquin Valley particles extracted in a cell-free surrogate lung fluid

    NASA Astrophysics Data System (ADS)

    Shen, H.; Anastasio, C.

    2011-09-01

    Previous studies have suggested that the adverse health effects from ambient particulate matter (PM) are linked to the formation of reactive oxygen species (ROS) by PM in cardiopulmonary tissues. While hydroxyl radical (•OH) is the most reactive of the ROS species, there are few quantitative studies of •OH generation from PM. Here we report on •OH formation from PM collected at an urban (Fresno) and rural (Westside) site in the San Joaquin Valley (SJV) of California. We quantified •OH in PM extracts using a cell-free, phosphate-buffered saline (PBS) solution with or without 50 μM ascorbate (Asc). The results show that generally the urban Fresno PM generates much more •OH than the rural Westside PM. The presence of Asc at a physiologically relevant concentration in the extraction solution greatly enhances •OH formation from all the samples. Fine PM (PM2.5) generally makes more •OH than the corresponding coarse PM (PMcf, i.e. with diameters of 2.5 to 10 μm) normalized by air volume collected, while the coarse PM typically generates more •OH normalized by PM mass. •OH production by SJV PM is reduced on average by (97 ± 6) % when the transition metal chelator desferoxamine (DSF) is added to the extraction solution, indicating a dominant role of transition metals. By measuring calibration curves of •OH generation from copper and iron, and quantifying copper and iron concentrations in our particle extracts, we find that PBS-soluble copper is primarily responsible for •OH production by the SJV PM, while iron often makes a significant contribution. Extrapolating our results to expected burdens of PM-derived •OH in human lung lining fluid suggests that typical daily PM exposures in the San Joaquin Valley are unlikely to result in a high amount of pulmonary •OH, although high PM events could produce much higher levels of •OH, which might lead to cytotoxicity.

  13. Aluminium substitution in iron(II-III)-layered double hydroxides: Formation and cationic order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruby, Christian; Abdelmoula, Mustapha; Aissa, Rabha

    The formation and the modifications of the structural properties of an aluminium-substituted iron(II-III)-layered double hydroxide (LDH) of formula Fe{sub 4}{sup II}Fe{sub (2-6y)}{sup III}Al{sub 6y}{sup III} (OH){sub 12} SO{sub 4}, 8H{sub 2}O are followed by pH titration curves, Moessbauer spectroscopy and high-resolution X-ray powder diffraction using synchrotron radiation. Rietveld refinements allow to build a structural model for hydroxysulphate green rust, GR(SO{sub 4}{sup 2-}), i.e. y=0, in which a bilayer of sulphate anions points to the Fe{sup 3+} species. A cationic order is proposed to occur in both GR(SO{sub 4}{sup 2-}) and aluminium-substituted hydroxysulphate green rust when y<0.08. Variation of the cellmore » parameters and a sharp decrease in average crystal size and anisotropy are detected for an aluminium content as low as y=0.01. The formation of Al-GR(SO{sub 4}{sup 2-}) is preceded by the successive precipitation of Fe{sup III} and Al{sup III} (oxy)hydroxides. Adsorption of more soluble Al{sup III} species onto the initially formed ferric oxyhydroxide may be responsible for this slowdown of crystal growth. Therefore, the insertion of low aluminium amount (y{approx}0.01) could be an interesting way for increasing the surface reactivity of iron(II-III) LDH that maintains constant the quantity of the reactive Fe{sup II} species of the material. - Graphical abstract: (a) Crystallographical structure of sulphated green rust: SO{sub 4}{sup 2-} point to the Fe{sup 3+} cations (red) that form an ordered array with the Fe{sup 2+} cations (green). (b) Width and asymmetry of the synchrotron XRD peaks increase rapidly when some Al{sup 3+} species substitute the Fe{sup 3+} cations; z is molar ratio Al{sup 3+}/Fe{sup 3+}.« less

  14. Comprehensive measurements of atmospheric OH reactivity and trace species within a suburban forest near Tokyo during AQUAS-TAMA campaign

    NASA Astrophysics Data System (ADS)

    Ramasamy, Sathiyamurthi; Nagai, Yoshihide; Takeuchi, Nobuhiro; Yamasaki, Shohei; Shoji, Koki; Ida, Akira; Jones, Charlotte; Tsurumaru, Hiroshi; Suzuki, Yuhi; Yoshino, Ayako; Shimada, Kojiro; Nakashima, Yoshihiro; Kato, Shungo; Hatakeyama, Shiro; Matsuda, Kazuhide; Kajii, Yoshizumi

    2018-07-01

    Total OH reactivity, which gives the instantaneous loss rate of OH radicals due to reactive species, is an invaluable technique to understand regional air quality, as it gives the overall reactivity of the air mass, the fraction of each trace species reactive to OH, the fraction of missing sinks, O3 formation potential, etc. Total OH reactivity measurement was conducted in a small suburban forest located ∼30 km from Tokyo during the air quality study at field museum TAMA (AQUAS-TAMA) campaign in early autumn 2012 and summer 2013. The average measured OH reactivities during that autumn and summer were 7.4 s-1 and 11.4 s-1, respectively. In summer, isoprene was the major contributor, accounting for 28.2% of the OH reactivity, as a result of enhanced light-dependent biogenic emission, whereas NO2 was major contributor in autumn, accounting for 19.6%, due to the diminished contribution from isoprene as a result of lower solar strength. Higher missing OH reactivity 34% was determined in summer, and linear regression analysis showed that oxygenated VOCs could be the potential candidates for missing OH reactivity. Lower missing OH reactivity 25% was determined in autumn and it was significantly reduced (11%) if the interference of peroxy radicals to the measured OH reactivity were considered.

  15. Anticancer effects of garlic and garlic-derived compounds for breast cancer control.

    PubMed

    Tsubura, Airo; Lai, Yen-Chang; Kuwata, Maki; Uehara, Norihisa; Yoshizawa, Katsuhiko

    2011-03-01

    Garlic and garlic-derived compounds reduce the development of mammary cancer in animals and suppress the growth of human breast cancer cells in culture. Oil-soluble compounds derived from garlic, such as diallyl disulfide (DADS), are more effective than water-soluble compounds in suppressing breast cancer. Mechanisms of action include the activation of metabolizing enzymes that detoxify carcinogens, the suppression of DNA adduct formation, the inhibition of the production of reactive oxygen species, the regulation of cell-cycle arrest and the induction of apoptosis. Selenium-enriched garlic or organoselenium compounds provide more potent protection against mammary carcinogenesis in rats and greater inhibition of breast cancer cells in culture than natural garlic or the respective organosulfur analogues. DADS synergizes the effect of eicosapentaenoic acid, a breast cancer suppressor, and antagonizes the effect of linoleic acid, a breast cancer enhancer. Moreover, garlic extract reduces the side effects caused by anti-cancer agents. Thus, garlic and garlic-derived compounds are promising candidates for breast cancer control.

  16. How is edaravone effective against acute ischemic stroke and amyotrophic lateral sclerosis?

    PubMed Central

    Watanabe, Kazutoshi; Tanaka, Masahiko; Yuki, Satoshi; Hirai, Manabu; Yamamoto, Yorihiro

    2018-01-01

    Edaravone is a low-molecular-weight antioxidant drug targeting peroxyl radicals among many types of reactive oxygen species. Because of its amphiphilicity, it scavenges both lipid- and water-soluble peroxyl radicals by donating an electron to the radical. Thus, it inhibits the oxidation of lipids by scavenging chain-initiating water-soluble peroxyl radicals and chain-carrying lipid peroxyl radicals. In 2001, it was approved in Japan as a drug to treat acute-phase cerebral infarction, and then in 2015 it was approved for amyotrophic lateral sclerosis (ALS). In 2017, the U.S. Food and Drug Administration also approved edaravone for treatment of patients with ALS. Its mechanism of action was inferred to be scavenging of peroxynitrite. In this review, we focus on the radical-scavenging characteristics of edaravone in comparison with some other antioxidants that have been studied in clinical trials, and we summarize its pharmacological action and clinical efficacy in patients with acute cerebral infarction and ALS. PMID:29371752

  17. Enhanced inhibition of bacterial biofilm formation and reduced leukocyte toxicity by chloramphenicol:β-cyclodextrin:N-acetylcysteine complex.

    PubMed

    Aiassa, Virginia; Zoppi, Ariana; Becerra, M Cecilia; Albesa, Inés; Longhi, Marcela R

    2016-11-05

    The purpose of this study was to improve the physicochemical and biological properties of chloramphenicol (CP) by multicomponent complexation with β-cyclodextrin (β-CD) and N-acetylcysteine (NAC). The present work describes the ability of solid multicomponent complex (MC) to decrease biomass and cellular activity of Staphylococcus by crystal violet and XTT assay, and leukocyte toxicity, measuring the increase of reactive oxygen species by chemiluminescence, and using 123-dihydrorhodamine. In addition, MC was prepared by the freeze-drying or physical mixture methods, and then characterized by scanning electron microscopy and powder X-ray diffraction. Nuclear magnetic resonance and phase solubility studies provided information at the molecular level on the structure of the MC and its association binding constants, respectively. The results obtained allowed us to conclude that MC formation is an effective pharmaceutical strategy that can reduce CP toxicity against leukocytes, while enhancing its solubility and antibiofilm activity. Copyright © 2016. Published by Elsevier Ltd.

  18. Intracellular distribution and mechanisms of actions of photosensitizer Zinc(II)-phthalocyanine solubilized in Cremophor EL against human hepatocellular carcinoma HepG2 cells.

    PubMed

    Shao, Jingwei; Dai, Yongchao; Zhao, Wenna; Xie, Jingjing; Xue, Jinping; Ye, Jianhui; Jia, Lee

    2013-03-01

    Zinc(II)-phthalocyanine (ZnPc) is a metal photosensitizer. In the present study, we formulated the poorly-soluble ZnPc in Cremophor EL solution to enhance its solubility and determined its intracellular distribution and mechanisms of action on human hepatocellular carcinoma HepG2 cells. ZnPc uptake by the cells reached a plateau by 8h. ZnPc primarily located in mitochondria, lysosome and endoplasmic reticulum. The concentration-growth inhibition curves of ZnPc on the cell lines were pharmacodynamically enhanced by 10-50 folds by irradiation. Once irradiated, ZnPc produced significant amount of reactive oxygen species (ROS), activated caspase-3 and caspase-9, arrested cell cycle mainly at G2/M stage, and decreased membrane potential (ΔΨm) of HepG2 cells. In conclusion, the present study first elucidated cellular and molecular mechanisms of ZnPc on HepG2 cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Transferrin-functionalized nanographene oxide for delivery of platinum complexes to enhance cancer-cell selectivity and apoptosis-inducing efficacy.

    PubMed

    Zhu, Hai; Zhou, Binwei; Chan, Leung; Du, Yanxin; Chen, Tianfeng

    2017-01-01

    Rational design and construction of delivery nanosystems for anticancer metal complexes is a crucial strategy to improve solubility under physiological conditions and permeability and retention behavior in tumor cells. Therefore, in this study, we designed and synthesize a transferrin (Tf)-conjugated nanographene oxide (NGO) nanosystem as a cancer-targeted nanocarrier of Pt complexes (Tf-NGO@Pt). This nanodelivery system exhibited good solubility under physiological conditions. Moreover, Tf-NGO@Pt showed higher anticancer efficacy against MCF human breast cancer cells than the free Pt complex, and effectively inhibited cancer-cell migration and invasion, with involvement of reactive oxygen species overproduction. In addition, nanolization also enhanced the penetration ability and inhibitory effect of the Pt complex toward MCF7 breast cancer-cell tumor spheroids. The enhancement of anticancer efficacy was positively correlated with increased cellular uptake and cellular drug retention. This study provides a new strategy to facilitate the future application of metal complexes in cancer therapy.

  20. Role of excess ligand and effect of thermal treatment in hybrid inorganic-organic EUV resists

    NASA Astrophysics Data System (ADS)

    Mattson, Eric C.; Rupich, Sara M.; Cabrera, Yasiel; Chabal, Yves J.

    2018-03-01

    The chemical structure and thermal reactivity of recently discovered inorganic-organic hybrid resist materials are characterized using a combination of in situ and ex situ infrared (IR) spectroscopy and x-ray photoemission spectroscopy (XPS). The materials are comprised of a small HfOx core capped with methacrylic acid ligands that form a combined hybrid cluster, HfMAA. The observed IR modes are consistent with the calculated modes predicted from the previously determined x-ray crystal structure of the HfMAA-12 cluster, but also contain extrinsic hydroxyl groups. We find that the water content of the films is dependent on the concentration of excess ligand added to the solution. The effect of environment used during post-application baking (PAB) is studied and correlated to changes in solubility of the films. In doing so, we find that hydroxylation of the clusters results in formation of additional Hf-O-Hf linkages upon heating, which in turn impacts the solubility of the films.

  1. Induction of virulence factors in Giardia duodenalis independent of host attachment

    PubMed Central

    Emery, Samantha J.; Mirzaei, Mehdi; Vuong, Daniel; Pascovici, Dana; Chick, Joel M.; Lacey, Ernest; Haynes, Paul A.

    2016-01-01

    Giardia duodenalis is responsible for the majority of parasitic gastroenteritis in humans worldwide. Host-parasite interaction models in vitro provide insights into disease and virulence and help us to understand pathogenesis. Using HT-29 intestinal epithelial cells (IEC) as a model we have demonstrated that initial sensitisation by host secretions reduces proclivity for trophozoite attachment, while inducing virulence factors. Host soluble factors triggered up-regulation of membrane and secreted proteins, including Tenascins, Cathepsin-B precursor, cystatin, and numerous Variant-specific Surface Proteins (VSPs). By comparison, host-cell attached trophozoites up-regulated intracellular pathways for ubiquitination, reactive oxygen species (ROS) detoxification and production of pyridoxal phosphate (PLP). We reason that these results demonstrate early pathogenesis in Giardia involves two independent host-parasite interactions. Motile trophozoites respond to soluble secreted signals, which deter attachment and induce expression of virulence factors. Trophozoites attached to host cells, in contrast, respond by up-regulating intracellular pathways involved in clearance of ROS, thus anticipating the host defence response. PMID:26867958

  2. Effect of freezing on electrical properties and quality of thawed chicken breast meat

    PubMed Central

    Wei, Ran; Wang, Peng; Han, Minyi; Chen, Tianhao; Xu, Xinglian; Zhou, Guanghong

    2017-01-01

    Objective The objective of this research was to study the electrical properties and quality of frozen-thawed chicken breast meat and to investigate the relationship between these parameters at different times of frozen storage. Methods Thawed samples of chicken breast muscles were evaluated after being kept in frozen storage at −18°C for different periods of time (1, 2, 3, 4, 5, 6, 7, and 8 months). Results The results showed that water-holding capacity (WHC) and protein solubility decreased while thiobarbituric acid-reactive substances content increased with increasing storage time. The impedance module of samples decreased during 8-month frozen storage. Pearson correlation coefficients showed that the impedance change ratio (Q value) was significantly (p<0.05) related to pH, color, WHC, lipid oxidation and protein solubility, indicating a good relationship between the electrical properties and qualities of frozen-thawed chicken breast meat. Conclusion Impedance measurement has a potential to assess the quality of frozen chicken meat combining with quality indices. PMID:27554358

  3. A theoretical study of a series of water-soluble triphenylamine photosensitizers for two-photon photodynamic therapy.

    PubMed

    Wang, Xin; Yin, Xue; Lai, Xiao-Yong; Liu, Ying-Tao

    2018-10-05

    In this study, the therapeutic activity of a series of water-soluble triphenylamine (TP) photosensitizers (Ps) was explored by using theoretical simulations. The key photophysical parameters which determined the efficiency of Ps, such as absorption electronic spectra, singlet-triplet energy gaps and spin-orbit matrix elements were calculated at density functional theory and its time-dependent extension (DFT, TD-DFT). The calculated results showed that these TP photosensitizers possessed large two-photon absorption cross-section in the near-infrared region (NIR), efficient intersystem crossing (ISC) transition from the first singlet excited state to the low lying triplet excited states and sufficient energy for generating reactive oxygen species (ROS). These suitable features made these TP series holding great promise for applications in two-photon photodynamic therapy (PDT). These TP photosensitizers studied here in principle extended the application range of two-photon PDT in water solution. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Antibody to soluble 1,3/1,6-beta-D-glucan, SCG in sera of naive DBA/2 mice.

    PubMed

    Harada, Toshie; Nagi Miura, Noriko; Adachi, Yoshiyuki; Nakajima, Mitsuhiro; Yadomae, Toshiro; Ohno, Naohito

    2003-08-01

    A branched beta-glucan from Sparassis crispa (SCG) is a major 6-branched 1,3-beta-D-glucan showing antitumor activity. In the present study, we examined the anti-SCG antibody in naive mice by ELISA. Using SCG coated plate, sera of naive DBA/1 and DBA/2 mice contained significantly higher titers of antibody than other strains of mice. Anti-SCG Ab titers of each DBA/1 and DBA/2 mice were significantly varied. Using various polysaccharide-coated plate, sera of DBA/2 mice also reacted with a beta-glucan from Candida spp. (CSBG) having 1,3-beta and 1,6-beta-glucosidic linkages. The SCG specific immunoglobulin (Ig) M but G was detected in sera. The reactivity of sera to coated SCG was neutralized by adding soluble SCG and CSBG as competitor. These results suggested that DBA/1 and DBA/2 strains carry specific and unique immunological characteristics to branched 1,3-/1,6-beta-glucan.

  5. Marination and Physicochemical Characteristics of Vacuum-aged Duck Breast Meat.

    PubMed

    Khan, Muhammad Issa; Lee, Hyun Jung; Kim, Hyun-Joo; Young, Hae In; Lee, Haelim; Jo, Cheorun

    2016-11-01

    We investigated marinade absorption and physicochemical characteristics of vacuum-aged duck breasts that were halved and individually vacuum-packed for chiller aging at 4°C for 14 d. One half was marinated for 0, 7, or 14 d, while the second half was used as a control. Marinade absorption, cooking loss, cooking yield, texture profile, pH, color, protein solubility, and thiobarbituric acid reactive substances (TBARS) values were evaluated, and protein sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed. Marinade absorption and pH did not vary significantly after 14 d of aging. Marination increased the pH, color (a* and b*) values, and cooking yield and reduced cooking loss. TBARS values significantly increased with aging time, but were significantly reduced by marination. Myofibril and total protein solubility increased with aging and marination, while SDS-PAGE showed protein degradation. Hence, aging and marination can be used simultaneously to improve physicochemical quality and cooking yield of vacuum-aged duck breast.

  6. Soluble CD30 for the prediction and detection of kidney transplant rejection.

    PubMed

    Arjona, Alvaro

    2009-09-01

    Although safer and more effective immunosuppressants as well as enhanced immunosuppressive protocols are continuously being developed in order to increase graft survival, they come at the steep price of drug-related complications and important side effects. In addition, the value of panel reactive antibodies determination, which at present is the single most used indicator of an increased risk of transplant rejection, is now being reevaluated. Therefore, effective tailoring of immunosuppressive therapy minimizing the above-mentioned pitfalls requires the existence of dependable biomarkers that adequately monitor rejection risk both before and after transplantation. Here we review the data yielded by studies assessing the usefulness of measuring soluble CD30 levels (sCD30) in kidney transplant rejection. These data collectively show that sCD30 serum content has a considerable predictive/diagnostic value for acute rejection of renal grafts, particularly when measured a few days after transplantation. Copyright 2009 Prous Science, S.A.U. or its licensors. All rights reserved.

  7. Controlled Growth of CdS Quantum Dot in an Amphiphilic Diblock Copolymer Poly(2-Vinyl Pyridine)-b-Poly(n-Hexyl Isocyanate) Reversed Micelle Nanoreactor.

    PubMed

    Samal, Monica; Mohapatra, Priya Ranjan; Yun, Kyu Sik

    2015-09-01

    A diblock copolymer poly(2-vinyl pyridine)-b-poly(n-hexyl isocyanate) (P2VP-b-PHIC) is used for the present study. It has two blocks; a rod-shaped PHIC block that adopts a helical conformation, and a coil shaped P2VP block. In a polar solvent such as THF both PHIC and P2VP blocks are soluble. In mixtures of two solvents, such as THF and methanol, while the solubility of P2VP component is augmented that of PHIC is decreased leading to formation of reversed micelles. The pyridine nitrogen in P2VP block is a reactive site. It forms complexes with a suitable metal ion, such as Cd2+. The micelle is employed as a nanoreactor for synthesis of CdS quantum dot (QD). In this paper, the micellization behaviour of the copolymer and the use of the micelles for synthesis and controlled growth of CdS nanocrystals are demonstrated.

  8. Can tintinnids be used for discriminating water quality status in marine ecosystems?

    PubMed

    Feng, Meiping; Zhang, Wuchang; Wang, Weiding; Zhang, Guangtao; Xiao, Tian; Xu, Henglong

    2015-12-30

    Ciliated protozoa have many advantages in bioassessment of water quality. The ability of tintinnids for assessing water quality status was studied during a 7-yearcycle in Jiaozhou Bay of the Yellow Sea, northern China. The samples were collected monthly at four sites with a spatial gradient of environmental pollution. Environmental variables, e.g., temperature, salinity, chlorophyll a (Chl a), dissolved inorganic nitrogen, soluble reactive phosphate (SRP), and soluble active silicate (SRSi), were measured synchronously for comparison with biotic parameters. Results showed that: (1) tintinnid community structures represented significant differences among the four sampling sites; (2) spatial patterns of the tintinnid communities were significantly correlated with environmental variables, especially SRSi and nutrients; and (3) the community structural parameters and the five dominant species were significantly correlated with SRSi and nutrients. We suggested that tintinnids may be used as a potential bioindicator for discriminating water quality status in marine ecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Api m 10, a genuine A. mellifera venom allergen, is clinically relevant but underrepresented in therapeutic extracts.

    PubMed

    Blank, S; Seismann, H; Michel, Y; McIntyre, M; Cifuentes, L; Braren, I; Grunwald, T; Darsow, U; Ring, J; Bredehorst, R; Ollert, M; Spillner, E

    2011-10-01

    Generalized systemic reactions to stinging hymenoptera venom constitute a potentially fatal condition in venom-allergic individuals. Hence, the identification and characterization of all allergens is imperative for improvement of diagnosis and design of effective immunotherapeutic approaches. Our aim was the immunochemical characterization of the carbohydrate-rich protein Api m 10, an Apis mellifera venom component and putative allergen, with focus on the relevance of glycosylation. Furthermore, the presence of Api m 10 in honeybee venom (HBV) and licensed venom immunotherapy preparations was addressed. Api m 10 was produced as soluble, aglycosylated protein in Escherichia coli and as differentially glycosylated protein providing a varying degree of fucosylation in insect cells. IgE reactivity and basophil activation of allergic patients were analyzed. For detection of Api m 10 in different venom preparations, a monoclonal human IgE antibody was generated. Both, the aglycosylated and the glycosylated variant of Api m 10 devoid of cross-reactive carbohydrate determinants (CCD), exhibited IgE reactivity with approximately 50% of HBV-sensitized patients. A corresponding reactivity could be documented for the activation of basophils. Although the detection of the native protein in crude HBV suggested content comparable to other relevant allergens, three therapeutical HBV extracts lacked detectable amounts of this component. Api m 10 is a genuine allergen of A. mellifera venom with IgE sensitizing potential in a significant fraction of allergic patients independent of CCD reactivity. Thus, Api m 10 could become a key element for component-resolved diagnostic tests and improved immunotherapeutic approaches in hymenoptera venom allergy. © 2011 John Wiley & Sons A/S.

  10. Total OH reactivity measurements in ambient air in a southern Rocky Mountain ponderosa pine forest during BEACHON-SRM08 summer campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakashima, Yoshihiro; Kato, Shungo; Greenberg, Jim

    2014-03-01

    Total OH reactivity was measured during the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen-Southern Rocky Mountain 2008 field campaign (BEACHON-SRM08) held at Manitou Experimental Forest (MEF) in Colorado USA during the summer season in August, 2008. The averaged total OH reactivity was 6.8 s-1, smaller than that measured in urban or suburban areas, while sporadically high OH reactivity was also observed during some evenings. The total OH reactivity measurements were accompanied by observations of traces species such as CO, NO, NOy, O3 and SO2 and VOCs. From the calculation of OH reactivity based on the analysis ofmore » these trace species, 35.3-46.3% of OH reactivity for VOCs came from biogenic species that are dominated by 2-methyl-3-butene-2-ol (MBO), and monoterpenes. MBO was the most prominent contribution to OH reactivity of any other trace species. A comparison of observed and calculated OH reactivity shows that the calculated OH reactivity is 29.5-34.8% less than the observed value, implying the existence of missing OH sink. One of the candidates of missing OH was thought to be the oxidation products of biogenic species.« less

  11. Single-Molecule Fluorescence Imaging for Studying Organic, Organometallic, and Inorganic Reaction Mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blum, Suzanne A.

    2016-05-24

    The reactive behavior of individual molecules is seldom observed, because we usually measure the average properties of billions of molecules. What we miss is important: the catalytic activity of less than 1% of the molecules under observation can dominate the outcome of a chemical reaction seen at a macroscopic level. Currently available techniques to examine reaction mechanisms (such as nuclear magnetic resonance spectroscopy and mass spectrometry) study molecules as an averaged ensemble. These ensemble techniques are unable to detect minor components (under ~1%) in mixtures or determine which components in the mixture are responsible for reactivity and catalysis. In themore » field of mechanistic chemistry, there is a resulting heuristic device that if an intermediate is very reactive in catalysis, it often cannot be observed (termed “Halpern’s Rule” ). Ultimately, the development of single-molecule imaging technology could be a powerful tool to observe these “unobservable” intermediates and active catalysts. Single-molecule techniques have already transformed biology and the understanding of biochemical processes. The potential of single-molecule fluorescence microscopy to address diverse chemical questions, such as the chemical reactivity of organometallic or inorganic systems with discrete metal complexes, however, has not yet been realized. In this respect, its application to chemical systems lags significantly behind its application to biophysical systems. This transformative imaging technique has broad, multidisciplinary impact with the potential to change the way the chemistry community studies reaction mechanisms and reactivity distributions, especially in the core area of catalysis.« less

  12. In vitro Reactivity to Implant Metals Demonstrates a Person Dependent Association with both T-Cell and B-Cell Activation

    PubMed Central

    Hallab, Nadim James; Caicedo, Marco; Epstein, Rachael; McAllister, Kyron; Jacobs, Joshua J

    2009-01-01

    Hypersensitivity to metallic implants remains relatively unpredictable and poorly understood. We initially hypothesized that metal-induced lymphocyte proliferation responses to soluble metal challenge (ions) are mediated exclusively by early T-cell activation (not B-cells), typical of a Delayed-Type-Hypersensitivity response. We tested this by comparing proliferation (6-days) of primary lymphocytes with early T-cell and B-cell activation (48-hours) in three groups of subjects likely to demonstrate elevated metal-reactivity: Group 1(n=12) history of metal-sensitivity with no implant; Group 2a(n=6) well performing metal-on-metal THRs, and Group 2b(n=20) subjects with poorly performing metal-on-polymer total joint arthroplasties (TJA). Group 1 showed 100%(12/12) metal reactivity (Stimulation Index>2) to Ni. Group 2a&2b were 83%(5/6) and 75%(15/22) metal reactive (to Co, Cr or Ni) respectively. Of the n=32 metal reactive subjects to Co, Cr or Ni (SI>2), n=22/32 demonstrated >2-fold elevations in % of T-cell or B-cell activation (CD25+,CD69+) to metal challenge compared to untreated control. 18/22 metal-activated subjects demonstrated an exclusively T-cell or B-cell activation response to metal challenge, where 6/18 demonstrated exclusively B-cell activation and 12/18 demonstrated a T-cell only response, as measured by surface activation markers CD25+ and CD69+. However, there was no direct correlation (R2<0.1) between lymphocyte proliferation and % T-cell or B-cell activation (CD25+:CD69+). Proliferation assays (LTT) showed greater ability to detect metal reactivity than did subject-dependent results of flow-cytometry analysis of T-cell or B-cell activation. The high incidence of lymphocyte reactivity and activation, indicate that more complex than initially hypothesized immune responses may contribute to the etiology of debris induced osteolysis in metal-sensitive individuals. PMID:19235773

  13. Short communication: Serum composition of milk subjected to re-equilibration by dialysis at different temperatures, after pH adjustments.

    PubMed

    Zhao, Zhengtao; Corredig, Milena

    2016-04-01

    The objective of this work was to investigate the properties of casein micelles after pH adjustment and their re-equilibration to the original pH and serum composition. Re-equilibration was carried out by dialyzing against skim milk at 2 different temperatures (4 or 22 °C). Turbidity, the average radius of the casein micelles, and the composition of the soluble phase were measured at different pH values, ranging between 5.5 and 8. Acidification led to the solubilization of colloidal calcium phosphate and decrease of the average radius of the micelles. With re-equilibration, casein dissociation occurred. In milk with pH values greater than 6.0, the average radius was recovered after re-equilibration. At pH values greater than neutral, an increase of the radius of casein micelles and increased dissociation of the casein were found. After re-equilibration, the radius of micelles and soluble protein in the serum decreased. The results were not affected by the temperature of re-equilibration. The changes to the calcium phosphate equilibrium and the dissociation of the micelles will have important consequences to the functionality of casein micelles. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. 40 CFR 125.60 - Primary or equivalent treatment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... relatively high (although nonexcessive) inflow and infiltration; relatively high soluble to insoluble BOD... applicant's control shall not include less concentrated wastewater due to excessive inflow and infiltration... infiltration) is less than 275 gallons per capita per day. (2) In no event shall averaging on a less frequent...

  15. 40 CFR 125.60 - Primary or equivalent treatment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... relatively high (although nonexcessive) inflow and infiltration; relatively high soluble to insoluble BOD... applicant's control shall not include less concentrated wastewater due to excessive inflow and infiltration... infiltration) is less than 275 gallons per capita per day. (2) In no event shall averaging on a less frequent...

  16. 40 CFR 125.60 - Primary or equivalent treatment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... relatively high (although nonexcessive) inflow and infiltration; relatively high soluble to insoluble BOD... applicant's control shall not include less concentrated wastewater due to excessive inflow and infiltration... infiltration) is less than 275 gallons per capita per day. (2) In no event shall averaging on a less frequent...

  17. 40 CFR 125.60 - Primary or equivalent treatment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... relatively high (although nonexcessive) inflow and infiltration; relatively high soluble to insoluble BOD... applicant's control shall not include less concentrated wastewater due to excessive inflow and infiltration... infiltration) is less than 275 gallons per capita per day. (2) In no event shall averaging on a less frequent...

  18. 40 CFR 125.60 - Primary or equivalent treatment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... relatively high (although nonexcessive) inflow and infiltration; relatively high soluble to insoluble BOD... applicant's control shall not include less concentrated wastewater due to excessive inflow and infiltration... infiltration) is less than 275 gallons per capita per day. (2) In no event shall averaging on a less frequent...

  19. Microbes make average 2 nanometer diameter crystalline UO2 particles.

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Kelly, S. D.; Kemner, K. M.; Banfield, J. F.

    2001-12-01

    It is well known that phylogenetically diverse groups of microorganisms are capable of catalyzing the reduction of highly soluble U(VI) to highly insoluble U(IV), which rapidly precipitates as uraninite (UO2). Because biological uraninite is highly insoluble, microbial uranyl reduction is being intensively studied as the basis for a cost-effective in-situ bioremediation strategy. Previous studies have described UO2 biomineralization products as amorphous or poorly crystalline. The objective of this study is to characterize the nanocrystalline uraninite in detail in order to determine the particle size, crystallinity, and size-related structural characteristics, and to examine the implications of these for reoxidation and transport. In this study, we obtained U-contaminated sediment and water from an inactive U mine and incubated them anaerobically with nutrients to stimulate reductive precipitation of UO2 by indigenous anaerobic bacteria, mainly Gram-positive spore-forming Desulfosporosinus and Clostridium spp. as revealed by RNA-based phylogenetic analysis. Desulfosporosinus sp. was isolated from the sediment and UO2 was precipitated by this isolate from a simple solution that contains only U and electron donors. We characterized UO2 formed in both of the experiments by high resolution-TEM (HRTEM) and X-ray absorption fine structure analysis (XAFS). The results from HRTEM showed that both the pure and the mixed cultures of microorganisms precipitated around 1.5 - 3 nm crystalline UO2 particles. Some particles as small as around 1 nm could be imaged. Rare particles around 10 nm in diameter were also present. Particles adhere to cells and form colloidal aggregates with low fractal dimension. In some cases, coarsening by oriented attachment on \\{111\\} is evident. Our preliminary results from XAFS for the incubated U-contaminated sample also indicated an average diameter of UO2 of 2 nm. In nanoparticles, the U-U distance obtained by XAFS was 0.373 nm, 0.012 nm smaller than found in the bulk structure of UO2 (0.385 nm). This indicates contraction within the nanoparticles due to tensile surface stress. Microbially formed UO2 is highly reactive, thus will be oxidized quickly as redox conditions change. Our findings support a growing number of studies that indicate that biominerals formed as the result of enzyme-mediated redox reactions are nanoparticulate. Preliminary results suggest that these particles will be readily transported through sandy aquifers, especially when conditions prevent high degrees of flocculation. Thus, despite its low (but size-dependent) solubility, UO2 nanoparticle transport may exert a fundamental control on mobility of U in contaminated environments.

  20. Water soluble aerosols and gases at a UK background site - Part 1: Controls of PM2.5 and PM10 aerosol composition

    NASA Astrophysics Data System (ADS)

    Twigg, M. M.; Di Marco, C. F.; Leeson, S.; van Dijk, N.; Jones, M. R.; Leith, I. D.; Morrison, E.; Coyle, M.; Proost, R.; Peeters, A. N. M.; Lemon, E.; Frelink, T.; Braban, C. F.; Nemitz, E.; Cape, J. N.

    2015-02-01

    There is limited availability of long-term, high temporal resolution, chemically speciated aerosol measurements, which can lead to further insight into the health and environmental impacts of particulate matter. The Monitor for AeRosols and Gases (MARGA, Applikon B.V., NL) allows characterisation of the inorganic components of PM10 and PM2.5 (NH4+, NO3-, SO42-, Cl-, Na+, K+, Ca2+, Mg2+) and inorganic reactive gases (NH3, SO2, HCl, HONO and HNO3) at hourly resolution. The following study presents 6.5 years (June 2006 to December 2012) of quasi-continuous observations of PM2.5 and PM10 using the MARGA at the UK EMEP "Supersite", Auchencorth Moss, SE Scotland. Auchencorth Moss was found to be representative of a remote European site with average total water soluble inorganic mass of PM2.5 of 3.82 μg m-3. Anthropogenically derived secondary inorganic aerosols (sum of NH4+, NO3- and nss-SO42-), were the dominating species (63%) of PM2.5. In terms of equivalent concentrations, NH4+ provided the single largest contribution to PM2.5 fraction in all seasons. Sea salt, was the main component (73%) of the PMcoarse fraction (PM10-PM2.5), though NO3- was also found to make a relatively large contribution to the measured mass (17%) as providing evidence of considerable processing of sea salt in the coarse mode. There was on occasions evidence of aerosol from combustion events being transported to the site in 2012 as high K+ concentrations (deviating from the known ratio in sea salt) coincided with increases in black carbon at the site. Pollution events in PM10 (defined as concentrations > 12 μg m-3) were on average dominated by NH4+ and NO3-, where as smaller loadings at the site tended to be dominated by sea salt. As with other Western European sites, the charge balance of the inorganic components resolved were biased towards cations, suggesting the aerosol was basic or more likely, that organic acids contributed to the charge balance. This study demonstrates the UK background atmospheric composition is primarily driven by meteorology with sea salt dominating air masses from the Atlantic Ocean and the Arctic, whereas secondary inorganic aerosols tended to dominate air masses from continental Europe.

  1. Diminished heart rate reactivity to acute psychological stress is associated with enhanced carotid intima-media thickness through adverse health behaviors.

    PubMed

    Ginty, Annie T; Williams, Sarah E; Jones, Alexander; Roseboom, Tessa J; Phillips, Anna C; Painter, Rebecca C; Carroll, Douglas; de Rooij, Susanne R

    2016-06-01

    Recent evidence demonstrates that individuals with low heart rate (HR) reactions to acute psychological stress are more likely to be obese or smokers. Smoking and obesity are established risk factors for increased carotid intima-media thickness (IMT). The aim of this study was to examine the potential pathways linking intima-media thickness, smoking, body mass index (BMI), and HR stress reactivity. A total of 552 participants, 47.6% male, M (SD) age = 58.3 (0.94) years, were exposed to three psychological stress tasks (Stroop, mirror drawing, and speech) preceded by a resting baseline period; HR was recorded throughout. HR reactivity was calculated as the average response across the three tasks minus average baseline HR. Smoking status, BMI, and IMT were determined by trained personnel. Controlling for important covariates (e.g., socioeconomic status), structural equation modeling revealed that BMI and smoking mediated the negative relationship between HR reactivity and IMT. The hypothesized model demonstrated a good overall fit to the data, χ(2) (8) = 0.692, p = .403; CFI = 1.00; TLI = 1.00 SRMR = .01; RMSEA < .001 (90% CI < 0.01-0.11). HR reactivity was negatively related to BMI (β = -.16) and smoking (β = -.18), and these in turn were positively associated with IMT (BMI: β = .10; smoking: β = .17). Diminished HR stress reactivity appears to be a marker for enlarged IMT and appears to be exerting its impact through already established risks. Future research should examine this relationship longitudinally and aim to intervene early. © 2016 Society for Psychophysiological Research.

  2. Maximum likelihood Bayesian model averaging and its predictive analysis for groundwater reactive transport models

    USGS Publications Warehouse

    Curtis, Gary P.; Lu, Dan; Ye, Ming

    2015-01-01

    While Bayesian model averaging (BMA) has been widely used in groundwater modeling, it is infrequently applied to groundwater reactive transport modeling because of multiple sources of uncertainty in the coupled hydrogeochemical processes and because of the long execution time of each model run. To resolve these problems, this study analyzed different levels of uncertainty in a hierarchical way, and used the maximum likelihood version of BMA, i.e., MLBMA, to improve the computational efficiency. This study demonstrates the applicability of MLBMA to groundwater reactive transport modeling in a synthetic case in which twenty-seven reactive transport models were designed to predict the reactive transport of hexavalent uranium (U(VI)) based on observations at a former uranium mill site near Naturita, CO. These reactive transport models contain three uncertain model components, i.e., parameterization of hydraulic conductivity, configuration of model boundary, and surface complexation reactions that simulate U(VI) adsorption. These uncertain model components were aggregated into the alternative models by integrating a hierarchical structure into MLBMA. The modeling results of the individual models and MLBMA were analyzed to investigate their predictive performance. The predictive logscore results show that MLBMA generally outperforms the best model, suggesting that using MLBMA is a sound strategy to achieve more robust model predictions relative to a single model. MLBMA works best when the alternative models are structurally distinct and have diverse model predictions. When correlation in model structure exists, two strategies were used to improve predictive performance by retaining structurally distinct models or assigning smaller prior model probabilities to correlated models. Since the synthetic models were designed using data from the Naturita site, the results of this study are expected to provide guidance for real-world modeling. Limitations of applying MLBMA to the synthetic study and future real-world modeling are discussed.

  3. Airflow, gas deposition, and lesion distribution in the nasal passages.

    PubMed Central

    Morgan, K T; Monticello, T M

    1990-01-01

    The nasal passages of laboratory animals and man are complex, and lesions induced in the delicate nasal lining by inhaled air pollutants vary considerably in location and nature. The distribution of nasal lesions is generally a consequence of regional deposition of the inhaled material, local tissue susceptibility, or a combination of these factors. Nasal uptake and regional deposition are are influenced by numerous factors including the physical and chemical properties of the inhaled material, such as water solubility and reactivity; airborne concentration and length of exposure; the presence of other air contaminants such as particulate matter; nasal metabolism, and blood and mucus flow. For certain highly water-soluble or reactive gases, nasal airflow patterns play a major role in determining lesion distribution. Studies of nasal airflow in rats and monkeys, using casting and molding techniques combined with a water-dye model, indicate that nasal airflow patterns are responsible for characteristic differences in the distribution of nasal lesions induced by formaldehyde in these species. Local tissue susceptibility is also a complex issue that may be a consequence of many factors, including physiologic and metabolic characteristics of the diverse cell populations that comprise each of the major epithelial types lining the airways. Identification of the principal factors that influence the distribution and nature of nasal lesions is important when attempting the difficult process of determining potential human risks using data derived from laboratory animals. Toxicologic pathologists can contribute to this process by carefully identifying the site and nature of nasal lesions induced by inhaled materials. Images FIGURE 4. FIGURE 6. FIGURE 7. PMID:2200663

  4. Stable, polymer-directed and SPION-nucleated magnetic amphiphilic block copolymer nanoprecipitates with readily reversible assembly in magnetic fields

    NASA Astrophysics Data System (ADS)

    Giardiello, Marco; Hatton, Fiona L.; Slater, Rebecca A.; Chambon, Pierre; North, Jocelyn; Peacock, Anita K.; He, Tao; McDonald, Tom O.; Owen, Andrew; Rannard, Steve P.

    2016-03-01

    The formation of inorganic-organic magnetic nanocomposites using reactive chemistry often leads to a loss of super-paramagnetisim when conducted in the presence of iron oxide nanoparticles. We present here a low energy and chemically-mild process of co-nanoprecipitation using SPIONs and homopolymers or amphiphilic block copolymers, of varying architecture and hydrophilic/hydrophobic balance, which efficiently generates near monodisperse SPION-containing polymer nanoparticles with complete retention of magnetism, and highly reversible aggregation and redispersion behaviour. When linear and branched block copolymers with inherent water-solubility are used, a SPION-directed nanoprecipitation mechanism appears to dominate the nanoparticle formation presenting new opportunities for tailoring and scaling highly functional systems for a range of applications.The formation of inorganic-organic magnetic nanocomposites using reactive chemistry often leads to a loss of super-paramagnetisim when conducted in the presence of iron oxide nanoparticles. We present here a low energy and chemically-mild process of co-nanoprecipitation using SPIONs and homopolymers or amphiphilic block copolymers, of varying architecture and hydrophilic/hydrophobic balance, which efficiently generates near monodisperse SPION-containing polymer nanoparticles with complete retention of magnetism, and highly reversible aggregation and redispersion behaviour. When linear and branched block copolymers with inherent water-solubility are used, a SPION-directed nanoprecipitation mechanism appears to dominate the nanoparticle formation presenting new opportunities for tailoring and scaling highly functional systems for a range of applications. Electronic supplementary information (ESI) available: Additional experimental details, NMR spectra, GPC chromatograms, kinetics experiments, graphs of nanopreciptate aggregation and cycling studies and SPION characterisation. See DOI: 10.1039/c6nr00788k

  5. The monoclonal antibody that recognizes an epitope in the C-terminal region of the fibrinogen alpha-chain reacts with soluble fibrin and fibrin monomer generated by thrombin but not with those formed as plasmin degradation products.

    PubMed

    Suzuki, Akiko; Ebinuma, Hiroyuki; Matsuo, Masanao; Miyazaki, Osamu; Yago, Hirokazu

    2007-01-01

    The presence of soluble fibrin (SF) provides evidence of thrombin activation in the blood; therefore, SF is a useful marker for diagnosing blood coagulation diseases such as disseminated intravascular coagulation (DIC). The antibody that specifically detects SF could be a useful tool for diagnosing thrombotic diseases. By using an acid-solubilized desAA-FM (fibrin monomer) as an immunogen, we developed a monoclonal antibody, namely J2-23, which specifically reacts with SF and FM. We examined the specificity of J2-23 by ELISA and immunoblotting and confirmed the reactivity of J2-23 with SF and FM by gel filtration. J2-23 specifically reacted with SF, but not with fibrinogen or plasmic fibrinogen-derived Fbg-X, Fbg-Y, Fbg-E, and D; thrombin-treated Fbn-X, Fbn-Y, and Fbn-E; and plasmic cross-linked fibrin (DD, XDP). The epitope recognized by J2-23 was located within the Aalpha 502-521 region on the C-terminal of the fibrinogen alpha-chain. The reactivity of J2-23 disappeared following the action of the fibrinolytic enzyme plasmin. Furthermore, J2-23 reacted not only with SF but also with FM in plasma from DIC patients. This indicated that J2-23 specifically detected coagulation without reflecting the plasmin action. We demonstrated the potential of J2-23 as a useful antibody for detecting SF for diagnosing blood coagulation.

  6. Hypochlorite-Mediated Modulation of Photoinduced Electron Transfer in a Phenothiazine-Boron dipyrromethene Electron Donor-Acceptor Dyad: A Highly Water Soluble "Turn-On" Fluorescent Probe for Hypochlorite.

    PubMed

    Soni, Disha; Duvva, Naresh; Badgurjar, Deepak; Roy, Tapta Kanchan; Nimesh, Surendra; Arya, Geeta; Giribabu, Lingamallu; Chitta, Raghu

    2018-04-16

    A highly water-soluble phenothiazine (PTZ)-boron dipyrromethene (BODIPY)-based electron donor-acceptor dyad (WS-Probe), which contains BODIPY as the signaling antennae and PTZ as the OCl - reactive group, was designed and used as a fluorescent chemosensor for the detection of OCl - . Upon addition of incremental amounts of NaOCl, the quenched fluorescence of WS-Probe was enhanced drastically, which indicated the inhibition of reductive photoinduced electron transfer (PET) from PTZ to 1 BODIPY*; the detection limit was calculated to be 26.7 nm. Selectivity studies with various reactive oxygen species, cations, and anions revealed that WS-Probe was able to detect OCl - selectively. Steady-state fluorescence studies performed at varied pH suggested that WS-Probe can detect NaOCl and exhibits maximum fluorescence in the pH range of 7 to 8, similar to physiological conditions. ESI-MS analysis and 1 H NMR spectroscopy titrations showed the formation of sulfoxide as the major oxidized product upon addition of hypochlorite. More interestingly, when WS-Probe was treated with real water samples, the fluorescence response was clearly visible with tap water and disinfectant, which indicated the presence of OCl - in these samples. The in vitro cell viability assay performed with human embryonic kidney 293 (HEK 293) cells suggested that WS-probe is non-toxic up to 10 μm and implicates the use of the probe for biological applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Influence of lidocaine forms (salt vs. freebase) on properties of drug-eudragit® L100-55 extrudates prepared by reactive melt extrusion.

    PubMed

    Liu, Xu; Ma, Xiangyu; Kun, Eucharist; Guo, Xiaodi; Yu, Zhongxue; Zhang, Feng

    2018-06-05

    This study examines the preparation of sustained-release lidocaine polyelectrolyte complex using reactive melt extrusion. Eudragit L100-55 was selected as the ionic polymer. The influence of drug forms (freebase vs. hydrochloride salt) on lidocaine-Eudragit L100-55 interactions, physical stability, and dissolution properties of extrudates was investigated. It was confirmed by DSC, FT-IR and Raman spectroscopy that polyelectrolyte could only form via the acid-base reaction between Eudragit L100-55 and lidocaine freebase. Due to this ionic interaction, the lidocaine extrudate was physically more stable than the lidocaine hydrochloride extrudate during the storage under stressed condition. Drug release from lidocaine extrudate was a function of drug solubility, polymer solubility, drug-polymer interaction, and drug-induced microenvironment pH. At 30% drug loading, extrudate exhibited sustained release in aqueous media at pH 1.2 and 4.5. Due to the alkaline microenvironment pH induced by dissolved lidocaine, Eudragit L100-55 was solubilized and sustained-release was not achieved in water and aqueous media at pH 5.5. In comparison, lidocaine hydrochloride induced an acidic microenvironment. Drug release of lidocaine hydrochloride extrudate was similar at pH 1.2, 4.5, 5.5 and water with drug being released over 10 h. The release of lidocaine hydrochloride from the extrudates in these media was primarily controlled by microenvironment pH. It is concluded that different forms of lidocaine resulted in different drug-polymer interactions and distinctive physicochemical properties of extrudates. Copyright © 2018. Published by Elsevier B.V.

  8. Serum soluble ST2 as diagnostic marker of systemic inflammatory reactive syndrome of bacterial etiology in children.

    PubMed

    Calò Carducci, Francesca Ippolita; Aufiero, Lelia Rotondi; Folgori, Laura; Vittucci, Anna Chiara; Amodio, Donato; De Luca, Maia; Li Pira, Giuseppina; Bergamini, Alberto; Pontrelli, Giuseppe; Finocchi, Andrea; D'Argenio, Patrizia

    2014-02-01

    Accurate and timely diagnosis of community-acquired bacterial versus viral infections in children with systemic inflammatory response syndrome (SIRS) remains challenging both for clinician and laboratory. In the quest of new biochemical markers to distinguish bacterial from viral infection, we have explored the possible role of the soluble secreted form of ST2 (sST2). This explorative prospective cohort study included children with SIRS who were suspected of having community-acquired infections. Plasma samples for sST2 measurement were obtained from 64 hospitalized children, 41 of whom had SIRS of bacterial etiology and 23 SIRS of viral etiology, and from 20 healthy, age- and sex-matched control children. sST2 measurement was carried out by enzyme-linked immunosorbent assay in parallel with standard measurements of procalcitonin (PCT) and C reactive protein (CRP). Our findings demonstrate that children with SIRS associated with bacterial infection present significantly increased levels of sST2, when compared with patients with SIRS of viral etiology and healthy children. More important, receiver operating characteristic curve analysis indicated that sST2 has a significant diagnostic performance with respect to early identification of SIRS of bacterial etiology, which was similar to that of PCT and greater than that of CRP. Finally, the combination of sST2 plus PCT and/or CRP, and PCT plus CRP increased their sensitivity and negative predictive value compared with sST2, PCT and CRP alone. In conclusion, sST2 level may prove useful in predicting bacterial etiology in children with SIRS.

  9. Water soluble ions in aerosols (TSP) : Characteristics, sources and seasonal variation over the central Himalayas, Nepal

    NASA Astrophysics Data System (ADS)

    Tripathee, Lekhendra; Kang, Shichang; Zhang, Qianggong; Rupakheti, Dipesh

    2016-04-01

    Atmspheric pollutants transported from South Asia could have adverse impact on the Himalayan ecosystems. Investigation of aerosol chemistry in the Himalayan region in Nepal has been limited on a temporal and spatial scale to date. Therefore, the water-soluble ionic composition of aerosol using TSP sampler was investigated for a year period from April 2013 to March 2014 at four sites Bode, Dhunche, Lumbini and Jomsom characterized as an urban, rural, semi-urban and remote sites in Nepal. During the study period, the highest concentration of major cation was Ca2+ with an average concentration of 8.91, 2.17, 7.85 and 6.42 μg m-3 and the highest concentration of major anion was SO42- with an average of 10.96, 4.06, 6.85 and 3.30 μg m-3 at Bode, Dhunche, Lumbini and Jomsom respectively. The soluble ions showed the decrease in concentrations from urban to the rural site. Correlations and PCA analysis suggested that that SO42-, NO3- and NH4+ were derived from the anthropogenic sources where as the Ca2+ and Mg2+ were from crustal sources. Our results also suggest that the largest acid neutralizing agent at our sampling sites in the central Himalayas are Ca2+ followed by NH4+. Seasonal variations of soluble ions in aerosols showed higher concentrations during pre-monsoon and winter (dry-periods) due to limited precipitation amount and lower concentrations during the monsoon which can be explained by the dilution effect, higher the precipitation lower the concentration. K+ which is regarded as the tracer of biomss burning had a significant peaks during pre-monsoon season when the forest fires are active around the regions. In general, the results of this study suggests that the atmospheric chemistry is influenced by natural and anthropogenic sources. Thus, soluble ionic concentrations in aerosols from central Himalayas, Nepal can provide a useful database to assess atmospheric environment and its impacts on human health and ecosystem in the southern side of central Himalayas, Nepal. Key words: TSP; Aerosol; Seasonal variation ; Monsoon ; Himalayas, Nepal

  10. Wavelet assessment of cerebrospinal compensatory reserve and cerebrovascular reactivity.

    PubMed

    Latka, M; Kolodziej, W; Turalska, M; Latka, D; Zub, W; West, B J

    2007-05-01

    We introduce a wavelet transfer model to relate spontaneous arterial blood pressure (ABP) fluctuations to intracranial pressure (ICP) fluctuations. We employ a complex continuous wavelet transform to develop a consistent mathematical framework capable of parametrizing both cerebral compensatory reserve and cerebrovascular reactivity. The frequency-dependent gain and phase of the wavelet transfer function are introduced because of the non-stationary character of the ICP and ABP time series. The gain characterizes the dampening of spontaneous ABP fluctuations and is interpreted as a novel measure of cerebrospinal compensatory reserve. For a group of 12 patients who died as a result of cerebral lesions (Glasgow Outcome Scale (GOS) = 1) the average gain in the low-frequency (0.02- 0.07 Hz) range was 0.51 +/- 0.13 and significantly exceeded that of 17 patients with GOS = 2 having an average gain of 0.26 +/- 0.11 with p = 1x10(-4) (Kruskal-Wallis test). A time-averaged synchronization index (which may vary from 0 to 1) defined in terms of the wavelet transfer function phase yields information about the stability of the phase difference of the ABP and ICP signals and is used as a cerebrovascular reactivity index. A low value of synchronization index reflects a normally reactive vascular bed, while a high value indicates pathological entrainment of ABP and ICP fluctuations. Such entrainment is strongly pronounced in patients with fatal outcome (for this group the low-frequency synchronization index was 0.69 +/- 0.17). The gain and synchronization parameters define a cerebral hemodynamic state space (CHS) in which the patients with GOS = 1 are to large extent partitioned away from those with GOS = 2. The concept of CHS elucidates the interplay of vascular and compensatory mechanisms.

  11. Post-exposure administration of diazepam combined with soluble epoxide hydrolase inhibition stops seizures and modulates neuroinflammation in a murine model of acute TETS intoxication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vito, Stephen T., E-mail: stvito@ucdavis.edu; Austin, Adam T., E-mail: aaustin@ucdavis.edu; Banks, Christopher N., E-mail: Christopher.Banks@oehha.ca.gov

    Tetramethylenedisulfotetramine (TETS) is a potent convulsant poison for which there is currently no approved antidote. The convulsant action of TETS is thought to be mediated by inhibition of type A gamma-aminobutyric acid receptor (GABA{sub A}R) function. We, therefore, investigated the effects of post-exposure administration of diazepam, a GABA{sub A}R positive allosteric modulator, on seizure activity, death and neuroinflammation in adult male Swiss mice injected with a lethal dose of TETS (0.15 mg/kg, ip). Administration of a high dose of diazepam (5 mg/kg, ip) immediately following the second clonic seizure (approximately 20 min post-TETS injection) effectively prevented progression to tonic seizuresmore » and death. However, this treatment did not prevent persistent reactive astrogliosis and microglial activation, as determined by GFAP and Iba-1 immunoreactivity and microglial cell morphology. Inhibition of soluble epoxide hydrolase (sEH) has been shown to exert potent anti-inflammatory effects and to increase survival in mice intoxicated with other GABA{sub A}R antagonists. The sEH inhibitor TUPS (1 mg/kg, ip) administered immediately after the second clonic seizure did not protect TETS-intoxicated animals from tonic seizures or death. Combined administration of diazepam (5 mg/kg, ip) and TUPS (1 mg/kg, ip, starting 1 h after diazepam and repeated every 24 h) prevented TETS-induced lethality and influenced signs of neuroinflammation in some brain regions. Significantly decreased microglial activation and enhanced reactive astrogliosis were observed in the hippocampus, with no changes in the cortex. Combining an agent that targets specific anti-inflammatory mechanisms with a traditional antiseizure drug may enhance treatment outcome in TETS intoxication. - Highlights: • Acute TETS intoxication causes delayed and persistent neuroinflammation. • Diazepam given post-TETS prevents lethal tonic seizures but not neuroinflammation. • A soluble epoxide hydrolase inhibitor alters TETS-induced neuroinflammation. • Acute TETS intoxication may be more effectively treated by a combinatorial therapy.« less

  12. Seasonal and spatial variation in reactive oxygen species activity of quasi-ultrafine particles (PM0.25) in the Los Angeles metropolitan area and its association with chemical composition

    NASA Astrophysics Data System (ADS)

    Saffari, Arian; Daher, Nancy; Shafer, Martin M.; Schauer, James J.; Sioutas, Constantinos

    2013-11-01

    Seasonal and spatial variation in redox activity of quasi-ultrafine particles (PM0.25) and its association with chemical species was investigated at 9 distinct sampling sites across the Los Angeles metropolitan area. Biologically reactive oxygen species (ROS) assay (generation of ROS in rat alveolar macrophage cells) was employed in order to assess the redox activity of PM0.25 samples. Seasonally, fall and summer displayed higher volume-based ROS activity (i.e. ROS activity per unit volume of air) compared to spring and winter. ROS levels were generally higher at near source and urban background sites compared to rural receptor locations, except for summer when comparable ROS activity was observed at the rural receptor sites. Univariate linear regression analysis indicated association (R > 0.7) between ROS activity and organic carbon (OC), water soluble organic carbon (WSOC) and water soluble transition metals (including Fe, V, Cr, Cd, Ni, Zn, Mn, Pb and Cu). A multivariate regression method was also used to obtain a model to predict the ROS activity of PM0.25, based on its water-soluble components. The most important species associated with ROS were Cu and La at the source site of Long Beach, and Fe and V at urban Los Angeles sites. These metals are tracers of road dust enriched with vehicular emissions (Fe and Cu) and residual oil combustion (V and La). At Riverside, a rural receptor location, WSOC and Ni (tracers of secondary organic aerosol and metal plating, respectively) were the dominant species driving the ROS activity. At Long Beach, the multivariate model was able to reconstruct the ROS activity with a high coefficient of determination (R2 = 0.82). For Los Angeles and Riverside, however, the regression models could only explain 63% and 68% of the ROS activity, respectively. The unexplained portion of the measured ROS activity is likely attributed to the nature of organic species not captured in the organic carbon (OC) measurement as well as non-linear effects, which were not included in our linear model.

  13. Circulating interleukin-6 and high-sensitivity C-reactive protein decrease after periodontal therapy in otherwise healthy subjects.

    PubMed

    Marcaccini, Andrea M; Meschiari, César A; Sorgi, Carlos A; Saraiva, Maria C P; de Souza, Ana M; Faccioli, Lúcia H; Tanus-Santos, José E; Novaes, Arthur B; Gerlach, Raquel F

    2009-04-01

    Periodontal disease has been associated with many chronic inflammatory systemic diseases, and a common chronic inflammation pathway has been suggested for these conditions. However, few studies have evaluated whether periodontal disease, in the absence of other known inflammatory conditions and smoking, affects circulating markers of chronic inflammation. This study compared chronic inflammation markers in control individuals and patients with periodontal disease and observed whether non-surgical periodontal therapy affected inflammatory disease markers after 3 months. Plasma and serum of 20 controls and 25 patients with periodontal disease were obtained prior to and 3 months after non-surgical periodontal therapy. All patients were non-smokers, they did not use any medication, and they had no history or detectable signs and symptoms of systemic diseases. Periodontal and systemic parameters included probing depth, bleeding on probing, clinical attachment level, hematologic parameters, as well as the following inflammatory markers: interleukin (IL)-6, high-sensitivity C-reactive protein (hs-CRP), CD40 ligand, monocyte chemoattractant protein (MCP)-1, soluble P-selectin (sP-selectin), soluble vascular adhesion molecule (sVCAM)-1, and soluble intercellular adhesion molecule (sICAM)-1. There were no differences in the hematologic parameters of the patients in the control and periodontal disease groups. Among the tested inflammatory markers, IL-6 concentrations were higher in the periodontal disease group at baseline compared to the controls (P = 0.006). Therapy was highly effective (P <0.001 for all the analyzed clinical parameters), and a decrease in circulating IL-6 and hs-CRP concentrations was observed 3 months after therapy (P = 0.001 and P = 0.006, respectively). Our results also suggest that the CD40 ligand marker may have been different in the control and periodontal disease groups prior to the therapy (P = 0.009). In apparently otherwise healthy patients, periodontal disease is associated with increased circulating concentrations of IL-6 and hs-CRP, which decreased 3 months after non-surgical periodontal therapy. With regard to the CD40 ligand, MCP-1, sP-selectin, sVCAM-1, and sICAM-1, no changes were seen in the periodontal disease group between baseline and 3 months after therapy.

  14. Subcellular Distribution of S-Nitrosylated H-Ras in Differentiated and Undifferentiated PC12 Cells during Hypoxia.

    PubMed

    Barbakadze, Tamar; Goloshvili, Galina; Narmania, Nana; Zhuravliova, Elene; Mikeladze, David

    2017-10-01

    Hypoxia or exposure to excessive reactive oxygen or nitrogen species could induce S-nitrosylation of various target proteins, including GTPases of the Ras-superfamily. Under hypoxic conditions, the Ras-protein is translocated to the cytosol and interacts with the Golgi complex, endoplasmic reticulum, mitochondria. The mobility/translocation of Ras depend on the cells oxidative status. However, the importance of relocated Snitrosylated- H-Ras (NO-H-Ras) in proliferation/differentiation processes is not completely understood. We have determined the content of soluble- and membrane-bound-NO-HRas in differentiated (D) and undifferentiated (ND) rat pheochromocytoma (PC12) cells under hypoxic and normoxic conditions. In our experimental study, we analyzed NO-H-Ras levels under hypoxic/normoxic conditions in membrane and soluble fractions of ND and D PC12 cells with/without nitric oxide donor, sodium nitroprusside (SNP) treatment. Cells were analyzed by the S-nitrosylated kit, immunoprecipitation, and Western blot. We assessed the action of NO-H-Ras on oxidative metabolism of isolated mitochondria by determining mitochondrial hydrogen peroxide generation via the scopoletin oxidation method and ATPproduction as estimated by the luminometric method. Hypoxia did not influence nitrosylation of soluble H-Ras in ND PC12 cells. Under hypoxic conditions, the nitrosylation of soluble-H-Ras greatly decreased in D PC12 cells. SNP didn't change the levels of nitrosylation of soluble-H-Ras, in either hypoxic or normoxic conditions. On the other hand, hypoxia, per se, did not affect the nitrosylation of membrane-bound-H-Ras in D and ND PC12 cells. SNP-dependent nitrosylation of membrane-bound-H-Ras greatly increased in D PC12 cells. Both unmodified normal and mutated H-Ras enhanced the mitochondrial synthesis of ATP, whereas the stimulatory effects on ATP synthesis were eliminated after S-nitrosylation of H-Ras. According to the results, it may be proposed that hypoxia can decrease S-nitrosylation of soluble-H-Ras in D PC12 cells and abolish the inhibitory effect of NO-HRas in mitochondrial oxidative metabolism. Copyright© by Royan Institute. All rights reserved.

  15. Photoaddition of N-substituted piperazines to C60: an efficient approach to the synthesis of water-soluble fullerene derivatives.

    PubMed

    Troshina, Olesya A; Troshin, Pavel A; Peregudov, Alexander S; Kozlovski, Viacheslav I; Lyubovskaya, Rimma N

    2006-07-17

    An oxidative radical photoaddition of mono N-substituted piperazines to [60]fullerene was systematically investigated. Reactions of C60 with piperazines bearing bulky electron-withdrawing groups (2-pyridyl, 2-pyrimidinyl) were found to be the most selective and yielded C60(amine)4O as major products along with small amounts of C60(amine)2. In contrast, interactions of fullerene with N-methylpiperazine and N-(tert-butoxycarbonyl)piperazine were found to have low selectivity due to different side reactions. Tetraaminofullerene derivative C60(N-(2-pyridyl)piperazine)4O was found to react readily with organic and inorganic acids to yield highly water-soluble salts (solubility approximately 150 mg mL(-1)). In contrast, C60(N-(2-pyrimidinyl)piperazine)4O undergoes hydrolysis under the same conditions and results in a complex mixture of compounds with an average composition of C60(N-(2-pyrimidinyl)piperazine)2(OH)2O. Radical photoaddition of N-(2-pyridyl)piperazine to fullerene derivatives can be used as a facile route for their transformation into water-soluble compounds. Two model fullerene cycloadducts (a methanofullerene and a pyrrolidinofullerene) were easily converted into mixtures of regioisomers of A=C60(N-(2-pyridyl)piperazine)4O (A=cyclic addend) that give highly water-soluble salts under acid treatment.

  16. Soluble reactive phosphorus transport and retention in tropical, rainforest streams draining a volcanic and geothermally active landscape in Costa Rica.: Long-term concentration patterns, pore water environment and response to ENSO events

    USGS Publications Warehouse

    Triska, F.J.; Pringle, C.M.; Duff, J.H.; Avanzino, R.J.; Ramirez, A.; Ardon, M.; Jackman, A.P.

    2006-01-01

    Soluble reactive phosphorus (SRP) transport/retention was determined at four sites in three rainforest streams draining La Selva Biological Station, Costa Rica. La Selva is located at the base of the last remaining intact rainforest transect from 30 m above sea level to 3000 m along the entire Caribbean slope of Central America. Steam SRP levels can be naturally high there due to regional, geothermal groundwater discharged at ambient temperature. Monitoring since 1988 has revealed distinctive long-term differences in background SRP and total P (TP) for three streams in close proximity, and identified the impact of ENSO (El Nino Southern Oscillation) events on SRP-enriched reaches. Mean interannual SRP concentrations (?? standard deviation) were 89 ?? 53??g/l in the Salto (1988-1996), 21 ?? 39??g/l in the Pantano (1988-1998), and 26 ?? 35??g/l in the Sabalo (1988-1996). After January, 1997 the separate upland-lowland contributions to discharge and SRP load were determined monthly in the Salto. SRP in Upper Salto was low (19 ?? 8??g/l, 1997-2002) until enriched at the upland-lowland transition by regional groundwater. Mean SRP concentration in Lower Salto (108 ?? 104??g/l) was typically highest February-April, the driest months, and lowest July-September, the wettest. SRP concentration was positively correlated to the inverse of discharge in Lower Salto when ENSO data were omitted (1992 and 1998-1999), but not in the Upper Salto, Pantano, or Sabalo. TP was positively correlated to the inverse of discharge in all three streams when ENSO data were omitted. High SRP springs and seeps along the Lower Salto contributed 36% of discharge but 85% of SRP export 1997-2001. Annual SRP flux from the total Salto watershed (1997-2001) averaged 2.9 kg/ha year, but only 0.6 kg/ha year from the Upper Salto. A dye tracer injection showed that pore water environments were distinctly different between Upper and Lower Salto. Upper Salto had high surface water-pore water exchange, high dissolved oxygen, low SRP, and low conductivity similar to surface water, and Lower Salto had low surface water-pore water exchange, low dissolved oxygen, high SRP, and high conductivity reflecting geothermal groundwater influence. SRP export from the Salto was controlled by regional groundwater transfer, which in similar volcanic settings could be a significant P source. However, ENSO events modified the SRP concentration in the Salto suggesting that long-term monitoring is required to understand underlying SRP dynamics and P flux to downstream communities. ?? 2006 Springer Science+Business Media, Inc.

  17. Modeling of glycine solubility in aqueous HCl-MgCl2 system and its application in phase transition of glycine by changing media and supersaturation

    NASA Astrophysics Data System (ADS)

    Ansari, Ziaul Haque; Zeng, Yan; Zhang, Yan; Demopoulos, George P.; Li, Zhibao

    2017-06-01

    The solubility of glycine in HCl and HCl-MgCl2 solutions was measured from 283.15 to 343.15 K and found to increase with temperature and increase linearly with the concentration of HCl. The MSE model integrated in the OLI platform was modified by regressing the experimental and literature solubility data through the adjustment of the middle-range interaction parameters. After parameterization, the model can accurately calculate the solubility with the average absolute deviation lower than 3.5% and thus be able to predict supersaturation of glycine. Crystallization of different polymorphs of glycine in water, HCl, NaOH, MgCl2, and HCl-MgCl2 aqueous solutions was performed. The effects of medium, temperature, supersaturation, and time on the crystallization were investigated. It was found that only in the HCl solution the formation of single α-glycine phase was achieved under all the investigated temperature and holding time. α-glycine or its mixture with γ-glycine or C4H18N2O4·HCl was produced in systems other than HCl solution depending on the conditions.

  18. Characterization of humoral responses to soluble trimeric HIV gp140 from a clade A Ugandan field isolate

    PubMed Central

    2013-01-01

    Trimeric soluble forms of HIV gp140 envelope glycoproteins represent one of the closest molecular structures compared to native spikes present on intact virus particles. Trimeric soluble gp140 have been generated by several groups and such molecules have been shown to induce antibodies with neutralizing activity against homologous and heterologous viruses. In the present study, we generated a recombinant trimeric soluble gp140, derived from a previously identified Ugandan A-clade HIV field isolate (gp14094UG018). Antibodies elicited in immunized rabbits show a broad binding pattern to HIV envelopes of different clades. An epitope mapping analysis reveals that, on average, the binding is mostly focused on the C1, C2, V3, V5 and C5 regions. Immune sera show neutralization activity to Tier 1 isolates of different clades, demonstrating cross clade neutralizing activity which needs to be further broadened by possible structural modifications of the clade A gp14094UG018. Our results provide a rationale for the design and evaluation of immunogens and the clade A gp14094UG018 shows promising characteristics for potential involvement in an effective HIV vaccine with broad activity. PMID:23835244

  19. Characterization of humoral responses to soluble trimeric HIV gp140 from a clade A Ugandan field isolate.

    PubMed

    Visciano, Maria Luisa; Tagliamonte, Maria; Stewart-Jones, Guillaume; Heyndrickx, Leo; Vanham, Guido; Jansson, Marianne; Fomsgaard, Anders; Grevstad, Berit; Ramaswamy, Meghna; Buonaguro, Franco M; Tornesello, Maria Lina; Biswas, Priscilla; Scarlatti, Gabriella; Buonaguro, Luigi

    2013-07-08

    Trimeric soluble forms of HIV gp140 envelope glycoproteins represent one of the closest molecular structures compared to native spikes present on intact virus particles. Trimeric soluble gp140 have been generated by several groups and such molecules have been shown to induce antibodies with neutralizing activity against homologous and heterologous viruses. In the present study, we generated a recombinant trimeric soluble gp140, derived from a previously identified Ugandan A-clade HIV field isolate (gp14094UG018). Antibodies elicited in immunized rabbits show a broad binding pattern to HIV envelopes of different clades. An epitope mapping analysis reveals that, on average, the binding is mostly focused on the C1, C2, V3, V5 and C5 regions. Immune sera show neutralization activity to Tier 1 isolates of different clades, demonstrating cross clade neutralizing activity which needs to be further broadened by possible structural modifications of the clade A gp14094UG018. Our results provide a rationale for the design and evaluation of immunogens and the clade A gp14094UG018 shows promising characteristics for potential involvement in an effective HIV vaccine with broad activity.

  20. Measurement and correlation of the solubility of gossypol acetic acid and gossypol acetic acid of optical activity in different solvents

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Tang, H.; Liu, X. Y.; Zhai, X.; Yao, X. C.

    2018-01-01

    The equilibrium method was used to measure the solubility of gossypol acetic acid and gossypol acetic acid of optical activity in isopropyl alcohol, ethanol, acetic acid and ethyl acetate at temperature from 288.15 to 315.15. The Empirical equation and the Apelblat equation model were adopted to correlate the experimental data. For gossypol acetic acid, the root-mean-square deviations (RMSD) were observed in the range of 0.023-4.979 and 0.0112-0.614 for the Empirical equation and the Apelblat equation, respectively. For gossypol acetic acid of optical activity, the RMSD were observed in the range of 0.021-2.211 and 0.021-2.243 for the Empirical equation and the Apelblat equation, individually. And the maximum relative average deviation was 7.5%. Both equations offered an accurate mathematical expression of the experimental results. The calculated solubility showed a good relationship with the experimental solubility for most of solvents. This study provided valuable datas not only for optimizing the process of purification of gossypol acetic acid of optical activity in industry but also for further theoretical studies.

  1. Solubility of xenon in amino-acid solutions. II. Nine less-soluble amino acids

    NASA Astrophysics Data System (ADS)

    Kennan, Richard P.; Himm, Jeffrey F.; Pollack, Gerald L.

    1988-05-01

    Ostwald solubility (L) of xenon gas, as the radioisotope 133Xe, has been measured as a function of solute concentration, at 25.0 °C, in aqueous solutions of nine amino acids. The amino-acid concentrations investigated covered much of their solubility ranges in water, viz., asparagine monohydrate (0-0.19 M), cysteine (0-1.16 M), glutamine (0-0.22 M), histidine (0-0.26 M), isoleucine (0-0.19 M), methionine (0-0.22 M), serine (0-0.38 M), threonine (0-1.4 M), and valine (0-0.34 M). We have previously reported solubility results for aqueous solutions of six other, generally more soluble, amino acids (alanine, arginine, glycine, hydroxyproline, lysine, and proline), of sucrose and sodium chloride. In general, L decreases approximately linearly with increasing solute concentration in these solutions. If we postulate that the observed decreases in gas solubility are due to hydration, the results under some assumptions can be used to calculate hydration numbers (H), i.e., the number of H2O molecules associated with each amino-acid solute molecule. The average values of hydration number (H¯) obtained at 25.0 °C are 15.3±1.5 for asparagine, 6.8±0.3 for cysteine, 11.5±1.1 for glutamine, 7.3±0.7 for histidine, 5.9±0.4 for isoleucine, 10.6±0.8 for methionine, 11.2±1.3 for serine, 7.7± 1.0 for threonine, and 6.6±0.6 for valine. We have also measured the temperature dependence of solubility L(T) from 5-40 °C for arginine, glycine, and proline, and obtained hydration numbers H¯(T) in this range. Between 25-40 °C, arginine has an H¯ near zero. This may be evidence for an attractive interaction between xenon and arginine molecules in aqueous solution.

  2. The influence of water-soluble As(III) and As(V) on dehydrogenase activity in soils affected by mine tailings.

    PubMed

    Fernández, Pilar; Sommer, Irene; Cram, Silke; Rosas, Irma; Gutiérrez, Margarita

    2005-09-15

    Dehydrogenase activity (DHA) in soils contaminated by arsenic-bearing tailings was correlated with total arsenic and total water-soluble arsenic (As(III)+As(V)) to evaluate the impact of tailings dispersion on the oxidative capacity of soil microorganisms. Georeferenced surface soil samples (0-10 cm depth) were collected at different distances from a tailings dam. In the samples farthest from the dam, all water-soluble arsenic (avg. 0.6+/-0.1 mg kg(-1)) was As(V). The highest concentration of water-soluble As(III)+As(V) (>1.9 mg kg(-1)) was found where As(III) was present. DHA averaged 438.9+/-79.3 microg INTF g(-1) h(-1) at the greatest distance from the dam and decreased to 92.3+/-27.1 microg INTF g(-1) h(-1) with decreasing distance from the dam. Pearson correlation coefficient between DHA and samples containing water-soluble As(V) (r=-0.87) was greater than that between DHA and total water-soluble arsenic (r=-0.57). The correlation between DHA and soluble arsenic containing both As(V) and As(III) was not significant (r=0.24). In soils with detectable As(III) concentrations where wet conditions prevail (i.e., reducing conditions), there is an abiotic response in addition to a biotic one. The correlation between DHA and total water-soluble As(III)+ As(V) was higher (r=-0.79) when the abiotic response was excluded. Our study demonstrated the importance of distinguishing between total and available fraction and its species and the need to evaluate biological functions in addition to purely geochemical analyses. DHA bioassay combined with other microbial properties offers a good tool for evaluating soil microbial activity and status and is a suitable indicator of the oxidative capacity of soil microorganisms affected by tailings in an oxidizing environment; however, under reducing conditions, abiotic responses must also be studied.

  3. The use of reactive material for limiting P-leaching from green roof substrate.

    PubMed

    Bus, Agnieszka; Karczmarczyk, Agnieszka; Baryła, Anna

    2016-01-01

    The aim of the study is to assess the influence of drainage layer made of reactive material Polonite(®) on the water retention and P-PO(4) concentration in runoff. A column experiment was performed for extensive substrate underlined by 2 cm of Polonite(®) layer (SP) and the same substrate without supporting layer as a reference (S). The leakage phosphorus concentration ranged from 0.001 to 0.082 mg P-PO(4)·L(-1), with average value 0.025 P-PO(4)·L(-1) of S experiment and 0.000-0.004 P-PO(4)·L(-1) and 0.001 P-PO(4)·L(-1) of SP experiment, respectively. The 2 cm layer of Polonite(®) was efficient in reducing P outflow from green roof substrate by 96%. The average effluent volumes from S and SP experiments amounted 61.1 mL (5.8-543.3 mL) and 46.4 mL (3.3-473.3 mL) with the average irrigation rate of 175.5 mL (6.3-758.0 mL). The substrate retention ability of S and SP experiments was 65% and 74%, respectively. Provided with reactive materials, green roof layers implemented in urban areas for rain water retention and delaying runoff also work for protection of water quality.

  4. Goethite surface reactivity: a macroscopic investigation unifying proton, chromate, carbonate, and lead(II) adsorption.

    PubMed

    Villalobos, Mario; Pérez-Gallegos, Ayax

    2008-10-15

    The goethite surface structure has been extensively studied, but no convincing quantitative description of its highly variable surface reactivity as inversely related to its specific surface area (SSA) has been found. The present study adds experimental evidence and provides a unified macroscopic explanation to this anomalous behavior from differences in average adsorption capacities, and not in average adsorption affinities. We investigated the chromate anion and lead(II) cation adsorption behavior onto three different goethites with SSA varying from 50 to 94 m(2)/g, and analyzed an extensive set of published anion adsorption and proton charging data for variable SSA goethites. Maximum chromate adsorption was found to occupy on average from 3.1 to 9.7 sites/nm(2), inversely related to SSA. Congruency of oxyanion and Pb(II) adsorption behavior based on fractional site occupancy using these values, and a site density analysis suggest that: (i) ion binding occurs to singly and doubly coordinated sites, (ii) proton binding occurs to singly and triply coordinated sites (ranging from 6.2 to 8 total sites/nm(2), in most cases), and (iii) a predominance of (210) and/or (010) faces explains the high reactivity of low SSA goethites. The results imply that the macroscopic goethite adsorption behavior may be predicted without a need to investigate extensive structural details of each specific goethite of interest.

  5. Human periodontal ligament fibroblasts synthesize C-reactive protein and Th-related cytokines in response to interleukin (IL)-6 trans-signalling.

    PubMed

    Hernández-Caldera, A; Vernal, R; Paredes, R; Veloso-Matta, P; Astorga, J; Hernández, M

    2018-06-01

    To characterize the potential of human periodontal ligament fibroblasts (HPLF) to synthesize CRP and Th-related cytokines in response to IL-6 in periodontal health and apical inflammation. Primary HPLF stimulated with IL-6, soluble(s) IL-6 receptor (R) and controls were assayed for CRP, Th1, Th2, Th17 and Treg-related cytokines by quantitative real-time PCR and ELISA, respectively. IL-6R mRNA expression and its soluble protein levels were screened in HPLF cultures, and ex vivo samples of healthy periodontal ligaments (n = 5) and apical lesions (n = 13). Data were analysed with ANOVA or unpaired t-test. 0.5 ng mL -1 IL-6 plus 1 ng mL -1 of its soluble receptor (sIL-6R) for 24 h was effective in inducing CRP production. IL-6 alone had a mild dose-dependent effect; co-stimulation with sIL-6R significantly enhanced this effect, whereas it was completely abolished by the addition of IL-6R blocking antibody (P < 0.05). Similarly, higher mRNA expression and protein levels of Th1, Th17 and partially Treg-related cytokines were found for IL-6 combined with its soluble receptor versus the nonstimulated group and IL-6R antibody (P < 0.05). IL-6R mRNA expression was slightly induced by IL-6 compared to THP-1 cells, but sILR-6 protein could not be detected in HPLF. High sIL-6R levels were detected in apical lesions and were immunolocalized to mononuclear inflammatory cells and proliferating epithelium. IL-6 trans-signalling induced Th1 and Th17-related cytokines and represents an extra-hepatic mechanism for PCR synthesis in human periodontal ligament fibroblasts, contributing to explain the bone-destructive phenotype of apical lesions and eventually its systemic complications. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  6. The effects of vitamin E-coated membrane dialyzer compared to simvastatin in patients on chronic hemodialysis.

    PubMed

    Kirmizis, Dimitrios; Papagianni, Aikaterini; Dogrammatzi, Fani; Belechri, Anna-Maria; Alexopoulos, Efstathios; Efstratiadis, Georgios; Memmos, Dimitrios

    2012-01-01

    We investigated the effects of the use of vitamin E-coated membrane (VEM) dialyzer in comparison to simvastatin on markers of chronic inflammation, oxidative stress, and endothelial cell apoptosis in ten patients on chronic hemodialysis (HD), aiming at distinguishing the different treatment effects and their time sequence on these pathogenetic routes. Ten HD patients were sequentially submitted to a 6-month treatment with the use of VEM and 10 mg of simvastatin daily, interrupted by a 3-month washout period. At baseline, at 3, and 6 months of each trial, serum C-reactive protein (CRP), apolipoprotein (Apo) A1 and B, lipoprotein-a [Lp(a)], high-sensitivity interleukin-6 (hsIL-6), monocyte chemoattractant protein-1 (MCP-1), soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble E-selectin (sE-selectin), soluble Fas (sFas), soluble Fas ligand (sFasL), and plasma oxidized low-density lipoproteins (oxLDL) levels were determined. VEM treatment resulted in a significant decrease in CRP, IL-6, sICAM-1 at 3 months, and oxLDL at 6 months, compared to baseline. Simvastatin resulted in a significant decrease in CRP, which correlated with decreases in both total (r = 0.87, p < 0.05) and low-density lipoprotein cholesterol, IL-6, sICAM-1, sVCAM-1, oxLDL, and sFas at 6 months, compared to baseline. Simvastatin effects on sVCAM-1 (mean difference = 652 ng/mL; 95% CI = 294 to 2686; p < 0.05) and sFas (mean difference = 1284 pg/mL; 95% CI = 510 to 1910; p < 0.05) differed significantly from the corresponding VEM effects. The 6-month use of VEM resulted in more direct and immediate anti-inflammatory effects compared with those caused by the 6-month treatment with simvastatin. Simvastatin caused a more intense decrease in the markers of inflammation, which was in part correlated with its lipid-lowering effects.

  7. Reactivating Neural Circuits with Clinically Accessible Stimulation to Restore Hand Function in Persons with Tetraplegia

    DTIC Science & Technology

    2017-09-01

    AWARD NUMBER: W81XWH-16-1-0395 TITLE: Reactivating Neural Circuits with Clinically Accessible Stimulation to Restore Hand Function in...estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data...Clinically Accessible Stimulation to Restore Hand Function in Persons with Tetraplegia 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  8. Evaluation of the furosine and homoarginine methods for determining reactive lysine in rumen-undegraded protein.

    PubMed

    Boucher, S E; Pedersen, C; Stein, H H; Schwab, C G

    2009-08-01

    Three samples of soybean meal (SBM), 3 samples of expeller SBM (SoyPlus, West Central Cooperative, Ralston, IA), 5 samples of distillers dried grains with solubles (DDGS), and 5 samples of fish meal were used to evaluate the furosine and homoarginine procedures to estimate reactive Lys in the rumen-undegraded protein fraction (RUP-Lys). One sample each of SBM, expeller SBM, and DDGS were subjected to additional heat treatment in the lab to ensure there was a wide range in reactive RUP-Lys content among the samples. Furosine is a secondary product of the initial stages of the Maillard reaction and can be used to calculate blocked Lys. Homoarginine is formed via the reaction of reactive Lys with O-methylisourea and can be used to calculate the concentration of reactive Lys. In previous experiments, each sample was ruminally incubated in situ for 16 h, and standardized RUP-Lys digestibility of the samples was determined in cecectomized roosters. All rumen-undegraded residue (RUR) samples were analyzed for furosine and Lys; however, only 9 of the 16 samples contained furosine, and only the 4 unheated DDGS samples contained appreciable amounts of furosine. Blocked RUP-Lys was calculated from the furosine and Lys concentrations of the RUR. Both the intact feed and RUR samples were evaluated using the homoarginine method. All samples were incubated with an O-methylisourea/BaOH solution for 72 h and analyzed for Lys and homoarginine concentrations. Reactive Lys concentrations of the intact feeds and RUR were calculated. Results of the experiment indicate that blocked RUP-Lys determined via the furosine method was negatively correlated with standardized RUP-Lys digestibility, and reactive RUP-Lys determined via the guanidination method was positively correlated with standardized RUP-Lys digestibility. Reactive Lys concentrations of the intact samples were also highly correlated with RUP-Lys digestibility. In conclusion, the furosine assay is useful in predicting RUP-Lys digestibility of DDGS samples, and the guanidination procedure can be used to predict RUP-Lys digestibility of SBM, expeller SBM, DDGS, and fish meal samples.

  9. High Contributions of Secondary Inorganic Aerosols to PM2.5 under Polluted Levels at a Regional Station in Northern China.

    PubMed

    Li, Yang; Tao, Jun; Zhang, Leiming; Jia, Xiaofang; Wu, Yunfei

    2016-12-15

    Daily PM 2.5 samples were collected at Shangdianzi (SDZ) regional site in Beijing-Tianjin-Hebei (BTH) region in 2015. Samples were subject to chemical analysis for organic carbon (OC), elemental carbon (EC), and major water-soluble inorganic ions. The annual average PM 2.5 mass concentration was 53 ± 36 μg·m -3 with the highest seasonal average concentration in spring and the lowest in summer. Water-soluble inorganic ions and carbonaceous aerosols accounted for 34% ± 15% and 33% ± 9%, respectively, of PM 2.5 mass on annual average. The excellent, good, lightly polluted, moderately polluted, and heavily polluted days based on the Air Quality Index (AQI) of PM 2.5 accounted for 40%, 42%, 11%, 4%, and 3%, respectively, of the year. The sum of the average concentration of sulfate, nitrate, and ammonium (SNA) increased from 4.2 ± 2.9 μg·m -3 during excellent days to 85.9 ± 22.4 μg·m -3 during heavily polluted days, and their contributions to PM 2.5 increased from 15% ± 8% to 49% ± 10% accordingly. In contrast, the average concentration of carbonaceous aerosols increased from 9.2 ± 2.8 μg·m -3 to 51.2 ± 14.1 μg·m -3 , and their contributions to PM 2.5 decreased from 34% ± 6% to 29% ± 7%. Potential source contribution function (PSCF) analysis revealed that the major sources for high PM 2.5 and its dominant chemical components were within the area mainly covering Shandong, Henan, and Hebei provinces. Regional pollutant transport from Shanxi province and Inner Mongolia autonomous region located in the west direction of SDZ was also important during the heating season.

  10. Wintertime water-soluble aerosol composition and particle water content in Fresno, California

    NASA Astrophysics Data System (ADS)

    Parworth, Caroline L.; Young, Dominique E.; Kim, Hwajin; Zhang, Xiaolu; Cappa, Christopher D.; Collier, Sonya; Zhang, Qi

    2017-03-01

    The composition and concentrations of water-soluble gases and ionic aerosol components were measured from January to February 2013 in Fresno, CA, with a particle-into-liquid sampler with ion chromatography and annular denuders. The average (±1σ) ionic aerosol mass concentration was 15.0 (±9.4) µg m-3, and dominated by nitrate (61%), followed by ammonium, sulfate, chloride, potassium, nitrite, and sodium. Aerosol-phase organic acids, including formate and glycolate, and amines including methylaminium, triethanolaminium, ethanolaminium, dimethylaminium, and ethylaminium were also detected. Although the dominant species all came from secondary aerosol formation, there were primary sources of ionic aerosols as well, including biomass burning for potassium and glycolate, sea spray for sodium, chloride, and dimethylamine, and vehicles for formate. Particulate methanesulfonic acid was also detected and mainly associated with terrestrial sources. On average, the molar concentration of ammonia was 49 times greater than nitric acid, indicating that ammonium nitrate formation was limited by nitric acid availability. Particle water was calculated based on the Extended Aerosol Inorganics Model (E-AIM) thermodynamic prediction of inorganic particle water and κ-Köhler theory approximation of organic particle water. The average (±1σ) particle water concentration was 19.2 (±18.6) µg m-3, of which 90% was attributed to inorganic species. The fractional contribution of particle water to total fine particle mass averaged at 36% during this study and was greatest during early morning and night and least during the day. Based on aqueous-phase concentrations of ions calculated by using E-AIM, the average (±1σ) pH of particles in Fresno during the winter was estimated to be 4.2 (±0.2).

  11. Assessment of historical exposures in a nickel refinery in Norway.

    PubMed

    Grimsrud, T K; Berge, S R; Resmann, F; Norseth, T; Andersen, A

    2000-08-01

    The aim of the study was, on the basis of new information on nickel species and exposure levels, to generate a specific exposure matrix for epidemiologic analyses in a cohort of Norwegian nickel-refinery workers with a known excess of respiratory cancer. A department-time-exposure matrix was constructed with average exposure to total nickel estimated as the arithmetic mean of personal measurements for periods between 1973 and 1994. From 1972 back to the start of production in 1910, exposure concentrations were estimated through retrograde calculation with multiplication factors developed on the basis of reported changes in the metallurgical process and work environment. The relative distribution of water-soluble nickel salts (sulfates and chlorides), metallic nickel, and particulates with limited solubility (sulfides and oxides) was mainly derived from speciation analyses conducted in the 1990s. The average concentration of nickel in the breathing zone was < or = 0.7 mg/m3 for all workers after 1978. Exposure levels for smelter and roaster day workers were 2-6 mg/m3 before 1970, while workers in nickel electrolysis and electrolyte purification were exposed to concentrations in the range of 0.15-1.2 mg/m3. The level of water-soluble nickel was of the same order for workers in the smelting and roasting departments as in some of the electrolyte purification departments. Compared with earlier estimates, the present matrix probably offers a more reliable description of past exposures at the plant.

  12. Marine biogenic sources of organic nitrogen and water-soluble organic aerosols over the western North Pacific in summer

    NASA Astrophysics Data System (ADS)

    Miyazaki, Y.; Kawamura, K.; Sawano, M.

    2009-12-01

    Size-segregated aerosol samples of organic nitrogen (ON) as well as water-soluble organic compounds were obtained over the western North Pacific in the summer of 2008. Mass contributions of organics to the total aerosol mass were 20-40% in the supermicron mode and 45-60% in the submicron mode. ON as well as diacids and water-soluble organic carbon (WSOC) showed bimodal size distributions over the remote ocean, where high values of chlorophyll-a concentrations and depth-integrated primary production were observed. The ON concentrations increased with increasing biogenic tracer compounds such as methanesulfuric acid (MSA) and azelaic acid (C9). The average concentrations of ON and organic carbon (OC) in aerosols more influenced by marine biological activity were found to be about two times greater than those in biologically less influenced aerosols. These results provide evidence of marine biogenic sources of ON as well as OC. An average ON/OC ratio in biologically more influenced aerosols was as high as 0.49±0.11, which is higher than that in biologically less influenced aerosols (0.35±0.10). This result indicates that organic aerosol in this region is enriched in organic nitrogen, which linked to oceanic biological activity and comparable in magnitude to the marine biogenic OC source. We discuss possible processes for primary and secondary production of ON and OC in these samples, and stable nitrogen and carbon isotope ratios for total nitrogen (TN) and total carbon (TC).

  13. Micronization, characterization and in-vitro dissolution of shellac from PGSS supercritical CO2 technique.

    PubMed

    Labuschagne, Philip W; Naicker, Brendon; Kalombo, Lonji

    2016-02-29

    The purpose of this investigation was to determine whether shellac, a naturally occurring material with enteric properties, could be processed in supercritical CO2 (sc-CO2) using the particles from gas saturated solution (PGSS) process and how process parameters affect the physico-chemical properties of shellac. In-situ attenuated total reflection fourier transform infra-red (ATR-FTIR) spectroscopy showed that CO2 dissolves in shellac with solubility reaching a maximum of 13% (w/w) at 300 bar pressure and 40 °C and maximum swelling of 28%. The solubility of sc-CO2 in shellac allowed for the formation of porous shellac structures of which the average pore diameter and pore density could be controlled by adjustment of operating pressure and temperature. In addition, it was possible to produce shellac microparticles ranging in average diameter from 180 to 300 μm. It was also shown that processing shellac in sc-CO2 resulted in accelerated esterification reactions, potentially limiting the extent of post-processing "ageing" and thus greater stability. Due to additional hydrolysis reactions enhanced by the presence of sc-CO2, the solubility of shellac at pH 7.5 was increased by between 4 and 7 times, while dissolution rates were also increased. It was also shown that the in-vitro dissolution profiles of shellac could be modified by slight adjustment in operating temperatures. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Mass spectrometric identification of water-soluble gold nanocluster fractions from sequential size-selective precipitation.

    PubMed

    Yang, Xiupei; Su, Yan; Paau, Man Chin; Choi, Martin M F

    2012-02-07

    This paper presents a simple and convenient methodology to separate and characterize water-soluble gold nanocluster stabilized with penicillamine ligands (AuNC-SR) in aqueous medium by sequential size-selective precipitation (SSSP) and mass spectrometry (MS). The highly polydisperse crude AuNC-SR product with an average core diameter of 2.1 nm was initially synthesized by a one-phase solution method. AuNCs were then precipitated and separated successively from larger to smaller ones by progressively increasing the concentration of acetone in the aqueous AuNCs solution. The SSSP fractions were analyzed by UV-vis spectroscopy, matrix-assisted laser desorption/ionization time-of-flight-MS, and thermogravimetric analysis (TGA). The MS and TGA data confirmed that the fractions precipitated from 36, 54, 72, and 90% v/v acetone (F(36%), F(54%), F(72%), and F(90%)) comprised families of close core size AuNCs with average molecular formulas of Au(38)(SR)(18), Au(28)(SR)(15), Au(18)(SR)(12), and Au(11)(SR)(8), respectively. In addition, F(36%), F(54%), F(72%), and F(90%) contained also the typical magic-sized gold nanoparticles of Au(38), Au(25), Au(18), and Au(11), respectively, together with some other AuNCs. This study shed light on the potential use of SSSP for simple and large-scale preliminary separation of polydisperse water-soluble AuNCs into different fractions with a relatively narrower size distribution. © 2012 American Chemical Society

  15. Biocompatible silicon quantum dots by ultrasound-induced solution route

    NASA Astrophysics Data System (ADS)

    Lee, Soojin; Cho, Woon-Jo

    2004-10-01

    The water-soluble silicon quantum dots (QDs) of average diameter ~3 nm were prepared in organic solvent by ultrasound-induced solution route. This speedy rout produces the silicon QDs in the size range from 2 nm to 4 nm at room temperature and ambient pressure. The product yield of QDs was estimated to be higher than 60 % based on the initial NaSi weight. The surfaces of QDs were terminated with organic molecules including biocompatible ending groups (hydroxyl, amine and carboxyl) during simple preparation. Covalent attached molecules were characterized by FT-IR spectroscopy. These water-soluble passivation of QDs has just a little effect on the optical properties of original QDs.

  16. Role of organic aerosols in CCN activation and closure over a rural background site in Western Ghats, India

    NASA Astrophysics Data System (ADS)

    Singla, V.; Mukherjee, S.; Safai, P. D.; Meena, G. S.; Dani, K. K.; Pandithurai, G.

    2017-06-01

    The cloud condensation nuclei (CCN) closure study was performed to exemplify the effect of aerosol chemical composition on the CCN activity of aerosols at Mahabaleshwar, a high altitude background site in the Western Ghats, India. For this, collocated aerosol, CCN, Elemental Carbon (EC), Organic Carbon (OC), sub-micron aerosol chemical speciation for the period from 3rd June to 19th June 2015 was used. The chemical composition of non-refractory particulate matter (<1 μm) as measured by Time of Flight - Aerosol Chemical Speciation Monitor (ToF-ACSM) was dominated by organics with average concentration of 3.81 ± 1.6, 0.32 ± 0.06, 0.15 ± 0.02, 0.13 ± 0.03 and 0.95 ± 0.12 μg m-3 for organics, ammonium, chloride, nitrate and sulphate, respectively. The PM1 number concentration as obtained by Wide Range Aerosol Spectrometer (WRAS) varied from 750 to 6480 cm-3. The average mass concentration of elemental carbon (EC) as measured by OC-EC analyzer was 1.16 ± 0.4 μg m-3. The average CCN concentrations obtained from CCN counter (CCNC) at five super-saturations (SS's) was 118 ± 58 cm-3 (0.1% SS), 873 ± 448 cm-3 (0.31% SS), 1308 ± 603 cm-3 (0.52% SS), 1610 ± 838 cm-3 (0.73% SS) and 1826 ± 985 cm-3 (0.94% SS). The CCN concentrations were predicted using Köhler theory on the basis of measured aerosol particle number size distribution, size independent NR-PM1 chemical composition and calculated hygroscopicity. The CCN closure study was evaluated for 3 scenarios, B-I (all soluble inorganics), B-IO (all soluble organics and inorganics) and B-IOOA (all soluble inorganic and soluble oxygenated organic aerosol, OOA). OOA component was derived from the positive matrix factorization (PMF) analysis of organic aerosol mass spectra. Considering the bulk composition as internal mixture, CCN closure study was underestimated by 16-39% for B-I and overestimated by 47-62% for B-IO. The CCN closure result was appreciably improved for B-IOOA where the knowledge of OOA fraction was introduced and uncertainty reduced to within 8-10%.

  17. Nutrient inputs from the watershed and coastal eutrophication in the Florida Keys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaPointe, B.E.; Clark, M.W.

    1992-12-01

    Widespread use of septic tanks in the Florida Keys increase the nutrient concentrations of limestone ground waters that discharge into shallow nearshore waters, resulting in coastal eutrophication. This study characterizes watershed nutrient inputs, transformations, and effects along a land-sea gradient stratified into four ecosystems that occur with increasing distance from land: manmade canal systems, seagrass meadows, patch reefs, and offshore bank reefs. Soluble reactive phosphorus (SRP), the primary limiting nutrient, was significantly elevated in canal systems, while dissolved inorganic nitrogen (DIN; NH[sub 4][sup =] and NO[sub 3][sup [minus

  18. Use of deuterated water as a conservative artificial ground water tracer

    USGS Publications Warehouse

    Becker, M.W.; Coplen, T.B.

    2001-01-01

    Conservative tracers are necessary to obtain groundwater transport velocities at the field scale. Deuterated water is an effective tracer for this purpose due to its similarity to water, chemical stability, non-reactivity, ease of handling and sampling, relatively neutral buoyancy, and reasonable price. Reliable detection limits of 0.1 mg deuterium/L may be obtained in field tests. A field example is presented in which deuterated water, bromide, and pentafluorobenzoic acid are used as groundwater tracers. Deuterated water appeared to be transported conservatively, producing almost identical breakthrough curves as that of other soluble tracers. ?? Springer-Verlag 2001.

  19. General protein-protein cross-linking.

    PubMed

    Alegria-Schaffer, Alice

    2014-01-01

    This protocol describes a general protein-to-protein cross-linking procedure using the water-soluble amine-reactive homobifunctional BS(3) (bis[sulfosuccinimidyl] suberate); however, the protocol can be easily adapted using other cross-linkers of similar properties. BS(3) is composed of two sulfo-NHS ester groups and an 11.4 Å linker. Sulfo-NHS ester groups react with primary amines in slightly alkaline conditions (pH 7.2-8.5) and yield stable amide bonds. The reaction releases N-hydroxysuccinimide (see an application of NHS esters on Labeling a protein with fluorophores using NHS ester derivitization). © 2014 Elsevier Inc. All rights reserved.

  20. Antioxidant modulation in response to heavy metal induced oxidative stress in Cladophora glomerata.

    PubMed

    Murugan, K; Harish, S R

    2007-11-01

    The present investigation was carried out to study the induction of oxidative stress subjected to heavy metal environment. Lipoperoxides showed positive correlation at heavy metal accumulation sites indicating the tissue damage resulting from the reactive oxygen species and resulted in unbalance to cellular redox status. The high activities of ascorbate peroxidase and superoxide dismutase probably counter balance this oxidative stress. Glutathione and soluble phenols decreased, whereas dehydroascorbate content increased in the algae from polluted sites. The results suggested that alga responded to heavy metals effectively by antioxidant compounds and scavenging enzymes.

Top