NASA Astrophysics Data System (ADS)
Lopez-Baeza, E.; Monsoriu Torres, A.; Font, J.; Alonso, O.
2009-04-01
The ESA SMOS (Soil Moisture and Ocean Salinity) Mission is planned to be launched in July 2009. The satellite will measure soil moisture over the continents and surface salinity of the oceans at resolutions that are sufficient for climatological-type studies. This paper describes the procedure to be used at the Spanish SMOS Level 3 and 4 Data Processing Centre (CP34) to generate Soil Moisture and other Land Surface Product maps from SMOS Level 2 data. This procedure can be used to map Soil Moisture, Vegetation Water Content and Soil Dielectric Constant data into different pre-defined spatial grids with fixed temporal frequency. The L3 standard Land Surface Products to be generated at CP34 are: Soil Moisture products: maximum spatial resolution with no spatial averaging, temporal averaging of 3 days, daily generation maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. b': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month), generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation Seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation Vegetation Water Content products: maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. a': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month) using simple averaging method over the L2 products in ISEA grid, generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation Dielectric Constant products: (the dielectric constant products are delivered together with soil moisture products, with the same averaging periods and generation frequency): maximum spatial resolution with no spatial averaging, temporal averaging of 3 days, daily generation maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. b': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month), generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation.
Kabara, J F; Bonds, A B
2001-12-01
Responses of cat striate cortical cells to a drifting sinusoidal grating were modified by the superimposition of a second, perturbing grating (PG) that did not excite the cell when presented alone. One consequence of the presence of a PG was a shift in the tuning curves. The orientation tuning of all 41 cells exposed to a PG and the spatial frequency tuning of 83% of the 23 cells exposed to a PG showed statistically significant dislocations of both the response function peak and center of mass from their single grating values. As found in earlier reports, the presence of PGs suppressed responsiveness. However, reductions measured at the single grating optimum orientation or spatial frequency were on average 1.3 times greater than the suppression found at the peak of the response function modified by the presence of the PG. Much of the loss in response seen at the single grating optimum is thus a result of a shift in the tuning function rather than outright suppression. On average orientation shifts were repulsive and proportional (approximately 0.10 deg/deg) to the angle between the perturbing stimulus and the optimum single grating orientation. Shifts in the spatial frequency response function were both attractive and repulsive, resulting in an overall average of zero. For both simple and complex cells, PGs generally broadened orientation response function bandwidths. Similarly, complex cell spatial frequency response function bandwidths broadened. Simple cell spatial frequency response functions usually did not change, and those that did broadened only 4% on average. These data support the hypothesis that additional sinusoidal components in compound stimuli retune cells' response functions for orientation and spatial frequency.
Multi-sensor image fusion algorithm based on multi-objective particle swarm optimization algorithm
NASA Astrophysics Data System (ADS)
Xie, Xia-zhu; Xu, Ya-wei
2017-11-01
On the basis of DT-CWT (Dual-Tree Complex Wavelet Transform - DT-CWT) theory, an approach based on MOPSO (Multi-objective Particle Swarm Optimization Algorithm) was proposed to objectively choose the fused weights of low frequency sub-bands. High and low frequency sub-bands were produced by DT-CWT. Absolute value of coefficients was adopted as fusion rule to fuse high frequency sub-bands. Fusion weights in low frequency sub-bands were used as particles in MOPSO. Spatial Frequency and Average Gradient were adopted as two kinds of fitness functions in MOPSO. The experimental result shows that the proposed approach performances better than Average Fusion and fusion methods based on local variance and local energy respectively in brightness, clarity and quantitative evaluation which includes Entropy, Spatial Frequency, Average Gradient and QAB/F.
NASA Astrophysics Data System (ADS)
Lakshmi Madhavan, Bomidi; Deneke, Hartwig; Witthuhn, Jonas; Macke, Andreas
2017-03-01
The time series of global radiation observed by a dense network of 99 autonomous pyranometers during the HOPE campaign around Jülich, Germany, are investigated with a multiresolution analysis based on the maximum overlap discrete wavelet transform and the Haar wavelet. For different sky conditions, typical wavelet power spectra are calculated to quantify the timescale dependence of variability in global transmittance. Distinctly higher variability is observed at all frequencies in the power spectra of global transmittance under broken-cloud conditions compared to clear, cirrus, or overcast skies. The spatial autocorrelation function including its frequency dependence is determined to quantify the degree of similarity of two time series measurements as a function of their spatial separation. Distances ranging from 100 m to 10 km are considered, and a rapid decrease of the autocorrelation function is found with increasing frequency and distance. For frequencies above 1/3 min-1 and points separated by more than 1 km, variations in transmittance become completely uncorrelated. A method is introduced to estimate the deviation between a point measurement and a spatially averaged value for a surrounding domain, which takes into account domain size and averaging period, and is used to explore the representativeness of a single pyranometer observation for its surrounding region. Two distinct mechanisms are identified, which limit the representativeness; on the one hand, spatial averaging reduces variability and thus modifies the shape of the power spectrum. On the other hand, the correlation of variations of the spatially averaged field and a point measurement decreases rapidly with increasing temporal frequency. For a grid box of 10 km × 10 km and averaging periods of 1.5-3 h, the deviation of global transmittance between a point measurement and an area-averaged value depends on the prevailing sky conditions: 2.8 (clear), 1.8 (cirrus), 1.5 (overcast), and 4.2 % (broken clouds). The solar global radiation observed at a single station is found to deviate from the spatial average by as much as 14-23 (clear), 8-26 (cirrus), 4-23 (overcast), and 31-79 W m-2 (broken clouds) from domain averages ranging from 1 km × 1 km to 10 km × 10 km in area.
Temporal-frequency tuning of cross-orientation suppression in the cat striate cortex.
Allison, J D; Smith, K R; Bonds, A B
2001-01-01
A sinusoidal mask grating oriented orthogonally to and superimposed onto an optimally oriented base grating reduces a cortical neuron's response amplitude. The spatial selectivity of cross-orientation suppression (XOR) has been described, so for this paper we investigated the temporal properties of XOR. We recorded from single striate cortical neurons (n = 72) in anesthetized and paralyzed cats. After quantifying the spatial and temporal characteristics of each cell's excitatory response to a base grating, we measured the temporal-frequency tuning of XOR by systematically varying the temporal frequency of a mask grating placed at a null orientation outside of the cell's excitatory orientation domain. The average preferred temporal frequency of the excitatory response of the neurons in our sample was 3.8 (+/- 1.5 S.D.) Hz. The average cutoff frequency for the sample was 16.3 (+/- 1.7) Hz. The average preferred temporal frequency (7.0 +/- 2.6 Hz) and cutoff frequency (20.4 +/- 6.9 Hz) of the XOR were significantly higher. The differences averaged 1.1 (+/- 0.6) octaves for the peaks and 0.3 (+/- 0.4) octaves for the cutoffs. The XOR mechanism's preference for high temporal frequencies suggests a possible extrastriate origin for the effect and could help explain the low-pass temporal-frequency response profile displayed by most striate cortical neurons.
Spatial-frequency dependent binocular imbalance in amblyopia
Kwon, MiYoung; Wiecek, Emily; Dakin, Steven C.; Bex, Peter J.
2015-01-01
While amblyopia involves both binocular imbalance and deficits in processing high spatial frequency information, little is known about the spatial-frequency dependence of binocular imbalance. Here we examined binocular imbalance as a function of spatial frequency in amblyopia using a novel computer-based method. Binocular imbalance at four spatial frequencies was measured with a novel dichoptic letter chart in individuals with amblyopia, or normal vision. Our dichoptic letter chart was composed of band-pass filtered letters arranged in a layout similar to the ETDRS acuity chart. A different chart was presented to each eye of the observer via stereo-shutter glasses. The relative contrast of the corresponding letter in each eye was adjusted by a computer staircase to determine a binocular Balance Point at which the observer reports the letter presented to either eye with equal probability. Amblyopes showed pronounced binocular imbalance across all spatial frequencies, with greater imbalance at high compared to low spatial frequencies (an average increase of 19%, p < 0.01). Good test-retest reliability of the method was demonstrated by the Bland-Altman plot. Our findings suggest that spatial-frequency dependent binocular imbalance may be useful for diagnosing amblyopia and as an outcome measure for recovery of binocular vision following therapy. PMID:26603125
Spatial-frequency dependent binocular imbalance in amblyopia.
Kwon, MiYoung; Wiecek, Emily; Dakin, Steven C; Bex, Peter J
2015-11-25
While amblyopia involves both binocular imbalance and deficits in processing high spatial frequency information, little is known about the spatial-frequency dependence of binocular imbalance. Here we examined binocular imbalance as a function of spatial frequency in amblyopia using a novel computer-based method. Binocular imbalance at four spatial frequencies was measured with a novel dichoptic letter chart in individuals with amblyopia, or normal vision. Our dichoptic letter chart was composed of band-pass filtered letters arranged in a layout similar to the ETDRS acuity chart. A different chart was presented to each eye of the observer via stereo-shutter glasses. The relative contrast of the corresponding letter in each eye was adjusted by a computer staircase to determine a binocular Balance Point at which the observer reports the letter presented to either eye with equal probability. Amblyopes showed pronounced binocular imbalance across all spatial frequencies, with greater imbalance at high compared to low spatial frequencies (an average increase of 19%, p < 0.01). Good test-retest reliability of the method was demonstrated by the Bland-Altman plot. Our findings suggest that spatial-frequency dependent binocular imbalance may be useful for diagnosing amblyopia and as an outcome measure for recovery of binocular vision following therapy.
Directional spatial frequency analysis of lipid distribution in atherosclerotic plaque
NASA Astrophysics Data System (ADS)
Korn, Clyde; Reese, Eric; Shi, Lingyan; Alfano, Robert; Russell, Stewart
2016-04-01
Atherosclerosis is characterized by the growth of fibrous plaques due to the retention of cholesterol and lipids within the artery wall, which can lead to vessel occlusion and cardiac events. One way to evaluate arterial disease is to quantify the amount of lipid present in these plaques, since a higher disease burden is characterized by a higher concentration of lipid. Although therapeutic stimulation of reverse cholesterol transport to reduce cholesterol deposits in plaque has not produced significant results, this may be due to current image analysis methods which use averaging techniques to calculate the total amount of lipid in the plaque without regard to spatial distribution, thereby discarding information that may have significance in marking response to therapy. Here we use Directional Fourier Spatial Frequency (DFSF) analysis to generate a characteristic spatial frequency spectrum for atherosclerotic plaques from C57 Black 6 mice both treated and untreated with a cholesterol scavenging nanoparticle. We then use the Cauchy product of these spectra to classify the images with a support vector machine (SVM). Our results indicate that treated plaque can be distinguished from untreated plaque using this method, where no difference is seen using the spatial averaging method. This work has the potential to increase the effectiveness of current in-vivo methods of plaque detection that also use averaging methods, such as laser speckle imaging and Raman spectroscopy.
Findlay, R P; Dimbylow, P J
2009-04-21
If an antenna is located close to a person, the electric and magnetic fields produced by the antenna will vary in the region occupied by the human body. To obtain a mean value of the field for comparison with reference levels, the Institute of Electrical and Electronic Engineers (IEEE) and International Commission on Non-Ionizing Radiation Protection (ICNIRP) recommend spatially averaging the squares of the field strength over the height the body. This study attempts to assess the validity and accuracy of spatial averaging when used for half-wave dipoles at frequencies between 65 MHz and 2 GHz and distances of lambda/2, lambda/4 and lambda/8 from the body. The differences between mean electric field values calculated using ten field measurements and that of the true averaged value were approximately 15% in the 600 MHz to 2 GHz range. The results presented suggest that the use of modern survey equipment, which takes hundreds rather than tens of measurements, is advisable to arrive at a sufficiently accurate mean field value. Whole-body averaged and peak localized SAR values, normalized to calculated spatially averaged fields, were calculated for the NORMAN voxel phantom. It was found that the reference levels were conservative for all whole-body SAR values, but not for localized SAR, particularly in the 1-2 GHz region when the dipole was positioned very close to the body. However, if the maximum field is used for normalization of calculated SAR as opposed to the lower spatially averaged value, the reference levels provide a conservative estimate of the localized SAR basic restriction for all frequencies studied.
NASA Astrophysics Data System (ADS)
Zhao, Songyuan; Goldie, D. J.; Withington, S.; Thomas, C. N.
2018-01-01
We have solved numerically the diffusive Usadel equations that describe the spatially varying superconducting proximity effect in Ti-Al thin-film bi- and trilayers with thickness values that are suitable for kinetic inductance detectors (KIDs) to operate as photon detectors with detection thresholds in the frequency range of 50-90 GHz. Using Nam’s extension of the Mattis-Bardeen calculation of the superconductor complex conductivity, we show how to calculate the surface impedance for the spatially varying case, and hence the surface impedance quality factor. In addition, we calculate energy-and spatially-averaged quasiparticle lifetimes at temperatures well-below the transition temperature and compare to calculation in Al. Our results for the pair-breaking threshold demonstrate differences between bilayers and trilayers with the same total film thicknesses. We also predict high quality factors and long multilayer-averaged quasiparticle recombination times compared to thin-film Al. Our calculations give a route for designing KIDs to operate in this scientifically-important frequency regime.
Interocular transfer of spatial adaptation is weak at low spatial frequencies.
Baker, Daniel H; Meese, Tim S
2012-06-15
Adapting one eye to a high contrast grating reduces sensitivity to similar target gratings shown to the same eye, and also to those shown to the opposite eye. According to the textbook account, interocular transfer (IOT) of adaptation is around 60% of the within-eye effect. However, most previous studies on this were limited to using high spatial frequencies, sustained presentation, and criterion-dependent methods for assessing threshold. Here, we measure IOT across a wide range of spatiotemporal frequencies, using a criterion-free 2AFC method. We find little or no IOT at low spatial frequencies, consistent with other recent observations. At higher spatial frequencies, IOT was present, but weaker than previously reported (around 35%, on average, at 8c/deg). Across all conditions, monocular adaptation raised thresholds by around a factor of 2, and observers showed normal binocular summation, demonstrating that they were not binocularly compromised. These findings prompt a reassessment of our understanding of the binocular architecture implied by interocular adaptation. In particular, the output of monocular channels may be available to perceptual decision making at low spatial frequencies. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cohen, Michael X
2015-09-01
The purpose of this paper is to compare the effects of different spatial transformations applied to the same scalp-recorded EEG data. The spatial transformations applied are two referencing schemes (average and linked earlobes), the surface Laplacian, and beamforming (a distributed source localization procedure). EEG data were collected during a speeded reaction time task that provided a comparison of activity between error vs. correct responses. Analyses focused on time-frequency power, frequency band-specific inter-electrode connectivity, and within-subject cross-trial correlations between EEG activity and reaction time. Time-frequency power analyses showed similar patterns of midfrontal delta-theta power for errors compared to correct responses across all spatial transformations. Beamforming additionally revealed error-related anterior and lateral prefrontal beta-band activity. Within-subject brain-behavior correlations showed similar patterns of results across the spatial transformations, with the correlations being the weakest after beamforming. The most striking difference among the spatial transformations was seen in connectivity analyses: linked earlobe reference produced weak inter-site connectivity that was attributable to volume conduction (zero phase lag), while the average reference and Laplacian produced more interpretable connectivity results. Beamforming did not reveal any significant condition modulations of connectivity. Overall, these analyses show that some findings are robust to spatial transformations, while other findings, particularly those involving cross-trial analyses or connectivity, are more sensitive and may depend on the use of appropriate spatial transformations. Copyright © 2014 Elsevier B.V. All rights reserved.
Correlation of Spatially Filtered Dynamic Speckles in Distance Measurement Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenov, Dmitry V.; Nippolainen, Ervin; Kamshilin, Alexei A.
2008-04-15
In this paper statistical properties of spatially filtered dynamic speckles are considered. This phenomenon was not sufficiently studied yet while spatial filtering is an important instrument for speckles velocity measurements. In case of spatial filtering speckle velocity information is derived from the modulation frequency of filtered light power which is measured by photodetector. Typical photodetector output is represented by a narrow-band random noise signal which includes non-informative intervals. Therefore more or less precious frequency measurement requires averaging. In its turn averaging implies uncorrelated samples. However, conducting research we found that correlation is typical property not only of dynamic speckle patternsmore » but also of spatially filtered speckles. Using spatial filtering the correlation is observed as a response of measurements provided to the same part of the object surface or in case of simultaneously using several adjacent photodetectors. Found correlations can not be explained using just properties of unfiltered dynamic speckles. As we demonstrate the subject of this paper is important not only from pure theoretical point but also from the point of applied speckle metrology. E.g. using single spatial filter and an array of photodetector can greatly improve accuracy of speckle velocity measurements.« less
Temporal Instabilities in Amblyopic Perception: A Quantitative Approach.
Thiel, Aylin; Iftime, Adrian
2016-04-01
The purpose of this study is to quantify the temporal characteristics of spatial misperceptions in human amblyopia. Twenty-two adult participants with strabismus, strabismic, anisometropic, or mixed amblyopia were asked to describe their subjective percept of static geometrical patterns with different spatial frequencies and shapes, as seen with their non-dominant eye. We generated digital reconstructions of their perception (static images or movies) that were subsequently validated by the subjects using consecutive matching sessions. We calculated the Shannon entropy variation in time for each recorded movie, as a measure of temporal instability. Nineteen of the 22 subjects perceived temporal instabilities that can be broadly classified in two categories. We found that the average frequency of the perceived temporal instabilities is ∼1 Hz. The stimuli with higher spatial frequencies yielded more often temporally unstable perceptions with higher frequencies. We suggest that type and amount of temporal instabilities in amblyopic vision are correlated with the etiology and spatial frequency of the stimulus.
NASA Technical Reports Server (NTRS)
Heppner, J. P.; Liebrecht, M. C.; Maynard, N. C.; Pfaff, R. F.
1993-01-01
The high-latitude spatial distributions of average signal intensities in 12 frequency channels between 4 Hz and 512 kHz as measured by the ac electric field spectrometers on the DE-2 spacecraft are analyzed for 18 mo of measurements. In MLT-INL (magnetic local time-invariant latitude) there are three distinct distributions that can be identified with 4-512 Hz signals from spatial irregularities and Alfven waves, 256-Hz to 4.1-kHz signals from ELF hiss, and 4.1-64 kHz signals from VLF auroral hiss, respectively. Overlap between ELF hiss and spatial irregularity signals occurs in the 256-512 Hz band. VLF hiss signals extend downward in frequency into the 1.0-4.1 kHz band and upward into the frequency range 128-512 kHz. The distinctly different spatial distribution patterns for the three bands, 4-256 Hz, 512-1204 Hz, and 4.1-64 kHz, indicate a lack of any causal relationships between VLF hiss, ELF hiss, and lower-frequency signals from spatial irregularities and Alfven waves.
Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system.
Zhang, Ziyi; Bao, Xiaoyi
2008-07-07
A fully distributed optical fiber vibration sensor is demonstrated based on spectrum analysis of Polarization-OTDR system. Without performing any data averaging, vibration disturbances up to 5 kHz is successfully demonstrated in a 1km fiber link with 10m spatial resolution. The FFT is performed at each spatial resolution; the relation of the disturbance at each frequency component versus location allows detection of multiple events simultaneously with different and the same frequency components.
Steady-state VEP responses to uncomfortable stimuli.
O'Hare, Louise
2017-02-01
Periodic stimuli, such as op-art, can evoke a range of aversive sensations included in the term visual discomfort. Illusory motion effects are elicited by fixational eye movements, but the cortex might also contribute to effects of discomfort. To investigate this possibility, steady-state visually evoked responses (SSVEPs) to contrast-matched op-art-based stimuli were measured at the same time as discomfort judgements. On average, discomfort reduced with increasing spatial frequency of the pattern. In contrast, the peak amplitude of the SSVEP response was around the midrange spatial frequencies. Like the discomfort judgements, SSVEP responses to the highest spatial frequencies were lowest amplitude, but the relationship breaks down between discomfort and SSVEP for the lower spatial frequency stimuli. This was not explicable by gross eye movements as measured using the facial electrodes. There was a weak relationship between the peak SSVEP responses and discomfort judgements for some stimuli, suggesting that discomfort can be explained in part by electrophysiological responses measured at the level of the cortex. However, there is a breakdown of this relationship in the case of lower spatial frequency stimuli, which remains unexplained. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Henning, G. Bruce
2004-04-01
A modification and extension of Kortum and Geisler's model [Vision Res. 35, 1595 (1995)] of early visual nonlinearities that incorporates an expansive nonlinearity (consistent with neurophysiological findings [Vision Res. 35, 2725 (1995)], a normalization based on a local average retinal illumination, similar to Mach's proposal [F. Ratliff, Mach Bands: Quantitative Studies on Neural Networks in the Retina (Holden-Day, San Francisco, Calif., 1965)], and a subsequent compression suggested by Henning et al. [J. Opt. Soc. Am A 17, 1147 (2000)] captures a range of hitherto unexplained interactions between a sinusoidal grating of low spatial frequency and a contrast-modulated grating 2 octaves higher in spatial frequency.
Trends in 1970-2010 southern California surface maximum temperatures: extremes and heat waves
NASA Astrophysics Data System (ADS)
Ghebreegziabher, Amanuel T.
Daily maximum temperatures from 1970-2010 were obtained from the National Climatic Data Center (NCDC) for 28 South Coast Air Basin (SoCAB) Cooperative Network (COOP) sites. Analyses were carried out on the entire data set, as well as on the 1970-1974 and 2006-2010 sub-periods, including construction of spatial distributions and time-series trends of both summer-average and annual-maximum values and of the frequency of two and four consecutive "daytime" heat wave events. Spatial patterns of average and extreme values showed three areas consistent with climatological SoCAB flow patterns: cold coastal, warm inland low-elevation, and cool further-inland mountain top. Difference (2006-2010 minus 1970-1974) distributions of both average and extreme-value trends were consistent with the shorter period (1970-2005) study of previous study, as they showed the expected inland regional warming and a "reverse-reaction" cooling in low elevation coastal and inland areas open to increasing sea breeze flows. Annual-extreme trends generally showed cooling at sites below 600 m and warming at higher elevations. As the warming trends of the extremes were larger than those of the averages, regional warming thus impacts extremes more than averages. Spatial distributions of hot-day frequencies showed expected maximum at inland low-elevation sites. Regional warming again thus induced increases at both elevated-coastal areas, but low-elevation areas showed reverse-reaction decreases.
Nagle, Samuel M; Sundar, Guru; Schafer, Mark E; Harris, Gerald R; Vaezy, Shahram; Gessert, James M; Howard, Samuel M; Moore, Mary K; Eaton, Richard M
2013-11-01
This article examines the challenges associated with making acoustic output measurements at high ultrasound frequencies (>20 MHz) in the context of regulatory considerations contained in the US Food and Drug Administration industry guidance document for diagnostic ultrasound devices. Error sources in the acoustic measurement, including hydrophone calibration and spatial averaging, nonlinear distortion, and mechanical alignment, are evaluated, and the limitations of currently available acoustic measurement instruments are discussed. An uncertainty analysis of acoustic intensity and power measurements is presented, and an example uncertainty calculation is done on a hypothetical 30-MHz high-frequency ultrasound system. This analysis concludes that the estimated measurement uncertainty of the acoustic intensity is +73%/-86%, and the uncertainty in the mechanical index is +37%/-43%. These values exceed the respective levels in the Food and Drug Administration guidance document of 30% and 15%, respectively, which are more representative of the measurement uncertainty associated with characterizing lower-frequency ultrasound systems. Recommendations made for minimizing the measurement uncertainty include implementing a mechanical positioning system that has sufficient repeatability and precision, reconstructing the time-pressure waveform via deconvolution using the hydrophone frequency response, and correcting for hydrophone spatial averaging.
Spatial adaptation of the cortical visual evoked potential of the cat.
Bonds, A B
1984-06-01
Adaptation that is spatially specific for the adapting pattern has been seen psychophysically in humans. This is indirect evidence for independent analyzers (putatively single units) that are specific for orientation and spatial frequency in the human visual system, but it is unclear how global adaptation characteristics may be related to single unit performance. Spatially specific adaptation was sought in the cat visual evoked potential (VEP), with a view towards relating this phenomenon with what we know of cat single units. Adaptation to sine-wave gratings results in a temporary loss of cat VEP amplitude, with induction and recovery similar to that seen in human psychophysical experiments. The amplitude loss was specific for both the spatial frequency and orientation of the adapting pattern. The bandwidth of adaptation was not unlike the average selectivity of a population of cat single units.
Multimodal Medical Image Fusion by Adaptive Manifold Filter.
Geng, Peng; Liu, Shuaiqi; Zhuang, Shanna
2015-01-01
Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. The modified local contrast information is proposed to fuse multimodal medical images. Firstly, the adaptive manifold filter is introduced into filtering source images as the low-frequency part in the modified local contrast. Secondly, the modified spatial frequency of the source images is adopted as the high-frequency part in the modified local contrast. Finally, the pixel with larger modified local contrast is selected into the fused image. The presented scheme outperforms the guided filter method in spatial domain, the dual-tree complex wavelet transform-based method, nonsubsampled contourlet transform-based method, and four classic fusion methods in terms of visual quality. Furthermore, the mutual information values by the presented method are averagely 55%, 41%, and 62% higher than the three methods and those values of edge based similarity measure by the presented method are averagely 13%, 33%, and 14% higher than the three methods for the six pairs of source images.
Welbourne, Lauren E; Morland, Antony B; Wade, Alex R
2018-02-15
The spatial sensitivity of the human visual system depends on stimulus color: achromatic gratings can be resolved at relatively high spatial frequencies while sensitivity to isoluminant color contrast tends to be more low-pass. Models of early spatial vision often assume that the receptive field size of pattern-sensitive neurons is correlated with their spatial frequency sensitivity - larger receptive fields are typically associated with lower optimal spatial frequency. A strong prediction of this model is that neurons coding isoluminant chromatic patterns should have, on average, a larger receptive field size than neurons sensitive to achromatic patterns. Here, we test this assumption using functional magnetic resonance imaging (fMRI). We show that while spatial frequency sensitivity depends on chromaticity in the manner predicted by behavioral measurements, population receptive field (pRF) size measurements show no such dependency. At any given eccentricity, the mean pRF size for neuronal populations driven by luminance, opponent red/green and S-cone isolating contrast, are identical. Changes in pRF size (for example, an increase with eccentricity and visual area hierarchy) are also identical across the three chromatic conditions. These results suggest that fMRI measurements of receptive field size and spatial resolution can be decoupled under some circumstances - potentially reflecting a fundamental dissociation between these parameters at the level of neuronal populations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Spatial filtering, color constancy, and the color-changing dress.
Dixon, Erica L; Shapiro, Arthur G
2017-03-01
The color-changing dress is a 2015 Internet phenomenon in which the colors in a picture of a dress are reported as blue-black by some observers and white-gold by others. The standard explanation is that observers make different inferences about the lighting (is the dress in shadow or bright yellow light?); based on these inferences, observers make a best guess about the reflectance of the dress. The assumption underlying this explanation is that reflectance is the key to color constancy because reflectance alone remains invariant under changes in lighting conditions. Here, we demonstrate an alternative type of invariance across illumination conditions: An object that appears to vary in color under blue, white, or yellow illumination does not change color in the high spatial frequency region. A first approximation to color constancy can therefore be accomplished by a high-pass filter that retains enough low spatial frequency content so as to not to completely desaturate the object. We demonstrate the implications of this idea on the Rubik's cube illusion; on a shirt placed under white, yellow, and blue illuminants; and on spatially filtered images of the dress. We hypothesize that observer perceptions of the dress's color vary because of individual differences in how the visual system extracts high and low spatial frequency color content from the environment, and we demonstrate cross-group differences in average sensitivity to low spatial frequency patterns.
Futia, Gregory L; Schlaepfer, Isabel R; Qamar, Lubna; Behbakht, Kian; Gibson, Emily A
2017-07-01
Detection of circulating tumor cells (CTCs) in a blood sample is limited by the sensitivity and specificity of the biomarker panel used to identify CTCs over other blood cells. In this work, we present Bayesian theory that shows how test sensitivity and specificity set the rarity of cell that a test can detect. We perform our calculation of sensitivity and specificity on our image cytometry biomarker panel by testing on pure disease positive (D + ) populations (MCF7 cells) and pure disease negative populations (D - ) (leukocytes). In this system, we performed multi-channel confocal fluorescence microscopy to image biomarkers of DNA, lipids, CD45, and Cytokeratin. Using custom software, we segmented our confocal images into regions of interest consisting of individual cells and computed the image metrics of total signal, second spatial moment, spatial frequency second moment, and the product of the spatial-spatial frequency moments. We present our analysis of these 16 features. The best performing of the 16 features produced an average separation of three standard deviations between D + and D - and an average detectable rarity of ∼1 in 200. We performed multivariable regression and feature selection to combine multiple features for increased performance and showed an average separation of seven standard deviations between the D + and D - populations making our average detectable rarity of ∼1 in 480. Histograms and receiver operating characteristics (ROC) curves for these features and regressions are presented. We conclude that simple regression analysis holds promise to further improve the separation of rare cells in cytometry applications. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
NASA Technical Reports Server (NTRS)
Xi, Baike; Dong, Xiquan; Minnis, P.; Khaiyer, M.
2010-01-01
Analysis of a decade of ARM radar-lidar and GOES observations at the SGP site reveal that 0.5 and 4-hr averages of the surface cloud fraction correspond closely to 0.5deg and 2.5deg averages of GOES cloudiness, respectively. The long-term averaged surface and GOES cloud fractions agree to within 0.5%. Cloud frequency increases and cloud amount decreases as the temporal and spatial averaging scales increase. Clouds occurred most often during winter and spring. Single-layered clouds account for 61.5% of the total cloud frequency. There are distinct bimodal vertical distributions of clouds with a lower peak around 1 km and an upper one that varies from 7.5 to 10.8 km between winter and summer, respectively. The frequency of occurrence for nighttime GOES high-cloud tops agree well with the surface observations, but are underestimated during the day.
Spatial frequency dependence of target signature for infrared performance modeling
NASA Astrophysics Data System (ADS)
Du Bosq, Todd; Olson, Jeffrey
2011-05-01
The standard model used to describe the performance of infrared imagers is the U.S. Army imaging system target acquisition model, based on the targeting task performance metric. The model is characterized by the resolution and sensitivity of the sensor as well as the contrast and task difficulty of the target set. The contrast of the target is defined as a spatial average contrast. The model treats the contrast of the target set as spatially white, or constant, over the bandlimit of the sensor. Previous experiments have shown that this assumption is valid under normal conditions and typical target sets. However, outside of these conditions, the treatment of target signature can become the limiting factor affecting model performance accuracy. This paper examines target signature more carefully. The spatial frequency dependence of the standard U.S. Army RDECOM CERDEC Night Vision 12 and 8 tracked vehicle target sets is described. The results of human perception experiments are modeled and evaluated using both frequency dependent and independent target signature definitions. Finally the function of task difficulty and its relationship to a target set is discussed.
Tack, Ayco J. M.; Mononen, Tommi; Hanski, Ilkka
2015-01-01
Climate change is known to shift species' geographical ranges, phenologies and abundances, but less is known about other population dynamic consequences. Here, we analyse spatio-temporal dynamics of the Glanville fritillary butterfly (Melitaea cinxia) in a network of 4000 dry meadows during 21 years. The results demonstrate two strong, related patterns: the amplitude of year-to-year fluctuations in the size of the metapopulation as a whole has increased, though there is no long-term trend in average abundance; and there is a highly significant increase in the level of spatial synchrony in population dynamics. The increased synchrony cannot be explained by increasing within-year spatial correlation in precipitation, the key environmental driver of population change, or in per capita growth rate. On the other hand, the frequency of drought during a critical life-history stage (early larval instars) has increased over the years, which is sufficient to explain the increasing amplitude and the expanding spatial synchrony in metapopulation dynamics. Increased spatial synchrony has the general effect of reducing long-term metapopulation viability even if there is no change in average metapopulation size. This study demonstrates how temporal changes in weather conditions can lead to striking changes in spatio-temporal population dynamics. PMID:25854888
Infrasonic wind-noise reduction by barriers and spatial filters.
Hedlin, Michael A H; Raspet, Richard
2003-09-01
This paper reports experimental observations of wind speed and infrasonic noise reduction inside a wind barrier. The barrier is compared with "rosette" spatial filters and with a reference site that uses no noise reduction system. The barrier is investigated for use at International Monitoring System (IMS) infrasound array sites where spatially extensive noise-reducing systems cannot be used because of a shortage of suitable land. Wind speed inside a 2-m-high 50%-porous hexagonal barrier coated with a fine wire mesh is reduced from ambient levels by 90%. If the infrasound wind-noise level reductions are all plotted versus the reduced frequency given by f*L/v, where L is the characteristic size of the array or barrier, f is the frequency, and v is the wind speed, the reductions at different wind speeds are observed to collapse into a single curve for each wind-noise reduction method. The reductions are minimal below a reduced frequency of 0.3 to 1, depending on the device, then spatial averaging over the turbulence structure leads to increased reduction. Above the reduced corner frequency, the barrier reduces infrasonic noise by up to 20 to 25 dB. Below the corner frequency the barrier displays a small reduction of about 4 dB. The rosettes display no reduction below the corner frequency. One other advantage of the wind barrier over rosette spatial filters is that the signal recorded inside the barrier enters the microbarometer from free air and is not integrated, possibly out of phase, after propagation through a system of narrow pipes.
NASA Technical Reports Server (NTRS)
Meneghini, Robert; Kim, Hyokyung
2016-01-01
For an airborne or spaceborne radar, the precipitation-induced path attenuation can be estimated from the measurements of the normalized surface cross section, sigma 0, in the presence and absence of precipitation. In one implementation, the mean rain-free estimate and its variability are found from a lookup table (LUT) derived from previously measured data. For the dual-frequency precipitation radar aboard the global precipitation measurement satellite, the nominal table consists of the statistics of the rain-free 0 over a 0.5 deg x 0.5 deg latitude-longitude grid using a three-month set of input data. However, a problem with the LUT is an insufficient number of samples in many cells. An alternative table is constructed by a stepwise procedure that begins with the statistics over a 0.25 deg x 0.25 deg grid. If the number of samples at a cell is too few, the area is expanded, cell by cell, choosing at each step that cell that minimizes the variance of the data. The question arises, however, as to whether the selected region corresponds to the smallest variance. To address this question, a second type of variable-averaging grid is constructed using all possible spatial configurations and computing the variance of the data within each region. Comparisons of the standard deviations for the fixed and variable-averaged grids are given as a function of incidence angle and surface type using a three-month set of data. The advantage of variable spatial averaging is that the average standard deviation can be reduced relative to the fixed grid while satisfying the minimum sample requirement.
Statistical analysis of the surface figure of the James Webb Space Telescope
NASA Astrophysics Data System (ADS)
Lightsey, Paul A.; Chaney, David; Gallagher, Benjamin B.; Brown, Bob J.; Smith, Koby; Schwenker, John
2012-09-01
The performance of an optical system is best characterized by either the point spread function (PSF) or the optical transfer function (OTF). However, for system budgeting purposes, it is convenient to use a single scalar metric, or a combination of a few scalar metrics to track performance. For the James Webb Space Telescope, the Observatory level requirements were expressed in metrics of Strehl Ratio, and Encircled Energy. These in turn were converted to the metrics of total rms WFE and rms WFE within spatial frequency domains. The 18 individual mirror segments for the primary mirror segment assemblies (PMSA), the secondary mirror (SM), tertiary mirror (TM), and Fine Steering Mirror have all been fabricated. They are polished beryllium mirrors with a protected gold reflective coating. The statistical analysis of the resulting Surface Figure Error of these mirrors has been analyzed. The average spatial frequency distribution and the mirror-to-mirror consistency of the spatial frequency distribution are reported. The results provide insight to system budgeting processes for similar optical systems.
Lessons Learned from OMI Observations of Point Source SO2 Pollution
NASA Technical Reports Server (NTRS)
Krotkov, N.; Fioletov, V.; McLinden, Chris
2011-01-01
The Ozone Monitoring Instrument (OMI) on NASA Aura satellite makes global daily measurements of the total column of sulfur dioxide (SO2), a short-lived trace gas produced by fossil fuel combustion, smelting, and volcanoes. Although anthropogenic SO2 signals may not be detectable in a single OMI pixel, it is possible to see the source and determine its exact location by averaging a large number of individual measurements. We describe new techniques for spatial and temporal averaging that have been applied to the OMI SO2 data to determine the spatial distributions or "fingerprints" of SO2 burdens from top 100 pollution sources in North America. The technique requires averaging of several years of OMI daily measurements to observe SO2 pollution from typical anthropogenic sources. We found that the largest point sources of SO2 in the U.S. produce elevated SO2 values over a relatively small area - within 20-30 km radius. Therefore, one needs higher than OMI spatial resolution to monitor typical SO2 sources. TROPOMI instrument on the ESA Sentinel 5 precursor mission will have improved ground resolution (approximately 7 km at nadir), but is limited to once a day measurement. A pointable geostationary UVB spectrometer with variable spatial resolution and flexible sampling frequency could potentially achieve the goal of daily monitoring of SO2 point sources and resolve downwind plumes. This concept of taking the measurements at high frequency to enhance weak signals needs to be demonstrated with a GEOCAPE precursor mission before 2020, which will help formulating GEOCAPE measurement requirements.
Exposure assessment in front of a multi-band base station antenna.
Kos, Bor; Valič, Blaž; Kotnik, Tadej; Gajšek, Peter
2011-04-01
This study investigates occupational exposure to electromagnetic fields in front of a multi-band base station antenna for mobile communications at 900, 1800, and 2100 MHz. Finite-difference time-domain method was used to first validate the antenna model against measurement results published in the literature and then investigate the specific absorption rate (SAR) in two heterogeneous, anatomically correct human models (Virtual Family male and female) at distances from 10 to 1000 mm. Special attention was given to simultaneous exposure to fields of three different frequencies, their interaction and the additivity of SAR resulting from each frequency. The results show that the highest frequency--2100 MHz--results in the highest spatial-peak SAR averaged over 10 g of tissue, while the whole-body SAR is similar at all three frequencies. At distances > 200 mm from the antenna, the whole-body SAR is a more limiting factor for compliance to exposure guidelines, while at shorter distances the spatial-peak SAR may be more limiting. For the evaluation of combined exposure, a simple summation of spatial-peak SAR maxima at each frequency gives a good estimation for combined exposure, which was also found to depend on the distribution of transmitting power between the different frequency bands. Copyright © 2010 Wiley-Liss, Inc.
Pattern of ground deformation in Kathmandu valley during 2015 Gorkha Earthquake, central Nepal
NASA Astrophysics Data System (ADS)
Ghimire, S.; Dwivedi, S. K.; Acharya, K. K.
2016-12-01
The 25th April 2015 Gorkha Earthquake (Mw=7.8) epicentered at Barpak along with thousands of aftershocks released seismic moment nearly equivalent to an 8.0 Magnitude earthquake rupturing a 150km long fault segment. Although Kathmandu valley was supposed to be severely devastated by such major earthquake, post earthquake scenario is completely different. The observed destruction is far less than anticipated as well as the spatial pattern is different than expected. This work focuses on the behavior of Kathmandu valley sediments during the strong shaking by the 2015 Gorkha Earthquake. For this purpose spatial pattern of destruction is analyzed at heavily destructed sites. To understand characteristics of subsurface soil 2D-MASW survey was carried out using a 24-channel seismograph system. An accellerogram recorded by Nepal Seismological Center was analyzed to characterize the strong ground motion. The Kathmandu valley comprises fluvio-lacustrine deposit with gravel, sand, silt and clay along with few exposures of basement rocks within the sediments. The observations show systematic repetition of destruction at an average interval of 2.5km mostly in sand, silt and clay dominated formations. Results of 2D-MASW show the sites of destruction are characterized by static deformation of soil (liquefaction and southerly dipping cracks). Spectral analysis of the accelerogram indicates maximum power associated with frequency of 1.0Hz. The result of this study explains the observed spatial pattern of destruction in Kathmandu valley. This is correlated with the seismic energy associated with the frequency of 1Hz, which generates an average wavelength of 2.5km with an average S-wave velocity of 2.5km/s. The cumulative effect of dominant frequency and associated wavelength resulted in static deformation of surface soil layers at an average interval of 2.5km. This phenomenon clearly describes the reason for different scenario than that was anticipated in Kathmandu valley.
Distortions in recall from visual memory: two classes of attractors at work.
Huang, Jie; Sekuler, Robert
2010-02-24
In a trio of experiments, a matching procedure generated direct, analogue measures of short-term memory for the spatial frequency of Gabor stimuli. Experiment 1 showed that when just a single Gabor was presented for study, a retention interval of just a few seconds was enough to increase the variability of matches, suggesting that noise in memory substantially exceeds that in vision. Experiment 2 revealed that when a pair of Gabors was presented on each trial, the remembered appearance of one of the Gabors was influenced by: (1) the relationship between its spatial frequency and the spatial frequency of the accompanying, task-irrelevant non-target stimulus; and (2) the average spatial frequency of Gabors seen on previous trials. These two influences, which work on very different time scales, were approximately additive in their effects, each operating as an attractor for remembered appearance. Experiment 3 showed that a timely pre-stimulus cue allowed selective attention to curtail the influence of a task-irrelevant non-target, without diminishing the impact of the stimuli seen on previous trials. It appears that these two separable attractors influence distinct processes, with perception being influenced by the non-target stimulus and memory being influenced by stimuli seen on previous trials.
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Katz, R.; Wilson, J. W.
1998-01-01
An analytic method is described for evaluating the average radial electron spectrum and the radial and total frequency-event spectrum for high-energy ions. For high-energy ions, indirect events make important contributions to frequency-event spectra. The method used for evaluating indirect events is to fold the radial electron spectrum with measured frequency-event spectrum for photons or electrons. The contribution from direct events is treated using a spatially restricted linear energy transfer (LET). We find that high-energy heavy ions have a significantly reduced frequency-averaged final energy (yF) compared to LET, while relativistic protons have a significantly increased yF and dose-averaged lineal energy (yD) for typical site sizes used in tissue equivalent proportional counters. Such differences represent important factors in evaluating event spectra with laboratory beams, in space- flight, or in atmospheric radiation studies and in validation of radiation transport codes. The inadequacy of LET as descriptor because of deviations in values of physical quantities, such as track width, secondary electron spectrum, and yD for ions of identical LET is also discussed.
Recent Developments in the Analysis of Couple Oscillator Arrays
NASA Technical Reports Server (NTRS)
Pogorzelski, Ronald J.
2000-01-01
This presentation considers linear arrays of coupled oscillators. Our purpose in coupling oscillators together is to achieve high radiated power through the spatial power combining which results when the oscillators are injection locked to each other. York, et. al. have shown that, left to themselves, the ensemble of injection locked oscillators oscillate at the average of the tuning frequencies of all the oscillators. Coupling these arrays achieves high radiated power through coherent spatial power combining. The coupled oscillators are usually designed to produce constant aperture phase. Oscillators are injection locked to each other or to a master oscillator to produce coherent radiation. Oscillators do not necessarily oscillate at their tuning frequency.
Method for extracting long-equivalent wavelength interferometric information
NASA Technical Reports Server (NTRS)
Hochberg, Eric B. (Inventor)
1991-01-01
A process for extracting long-equivalent wavelength interferometric information from a two-wavelength polychromatic or achromatic interferometer. The process comprises the steps of simultaneously recording a non-linear sum of two different frequency visible light interferograms on a high resolution film and then placing the developed film in an optical train for Fourier transformation, low pass spatial filtering and inverse transformation of the film image to produce low spatial frequency fringes corresponding to a long-equivalent wavelength interferogram. The recorded non-linear sum irradiance derived from the two-wavelength interferometer is obtained by controlling the exposure so that the average interferogram irradiance is set at either the noise level threshold or the saturation level threshold of the film.
Topological chaos of the spatial prisoner's dilemma game on regular networks.
Jin, Weifeng; Chen, Fangyue
2016-02-21
The spatial version of evolutionary prisoner's dilemma on infinitely large regular lattice with purely deterministic strategies and no memories among players is investigated in this paper. Based on the statistical inferences, it is pertinent to confirm that the frequency of cooperation for characterizing its macroscopic behaviors is very sensitive to the initial conditions, which is the most practically significant property of chaos. Its intrinsic complexity is then justified on firm ground from the theory of symbolic dynamics; that is, this game is topologically mixing and possesses positive topological entropy on its subsystems. It is demonstrated therefore that its frequency of cooperation could not be adopted by simply averaging over several steps after the game reaches the equilibrium state. Furthermore, the chaotically changing spatial patterns via empirical observations can be defined and justified in view of symbolic dynamics. It is worth mentioning that the procedure proposed in this work is also applicable to other deterministic spatial evolutionary games therein. Copyright © 2015 Elsevier Ltd. All rights reserved.
Classifying visuomotor workload in a driving simulator using subject specific spatial brain patterns
Dijksterhuis, Chris; de Waard, Dick; Brookhuis, Karel A.; Mulder, Ben L. J. M.; de Jong, Ritske
2013-01-01
A passive Brain Computer Interface (BCI) is a system that responds to the spontaneously produced brain activity of its user and could be used to develop interactive task support. A human-machine system that could benefit from brain-based task support is the driver-car interaction system. To investigate the feasibility of such a system to detect changes in visuomotor workload, 34 drivers were exposed to several levels of driving demand in a driving simulator. Driving demand was manipulated by varying driving speed and by asking the drivers to comply to individually set lane keeping performance targets. Differences in the individual driver's workload levels were classified by applying the Common Spatial Pattern (CSP) and Fisher's linear discriminant analysis to frequency filtered electroencephalogram (EEG) data during an off line classification study. Several frequency ranges, EEG cap configurations, and condition pairs were explored. It was found that classifications were most accurate when based on high frequencies, larger electrode sets, and the frontal electrodes. Depending on these factors, classification accuracies across participants reached about 95% on average. The association between high accuracies and high frequencies suggests that part of the underlying information did not originate directly from neuronal activity. Nonetheless, average classification accuracies up to 75–80% were obtained from the lower EEG ranges that are likely to reflect neuronal activity. For a system designer, this implies that a passive BCI system may use several frequency ranges for workload classifications. PMID:23970851
Spatial resolution of a hard x-ray CCD detector.
Seely, John F; Pereira, Nino R; Weber, Bruce V; Schumer, Joseph W; Apruzese, John P; Hudson, Lawrence T; Szabo, Csilla I; Boyer, Craig N; Skirlo, Scott
2010-08-10
The spatial resolution of an x-ray CCD detector was determined from the widths of the tungsten x-ray lines in the spectrum formed by a crystal spectrometer in the 58 to 70 keV energy range. The detector had 20 microm pixel, 1700 by 1200 pixel format, and a CsI x-ray conversion scintillator. The spectral lines from a megavolt x-ray generator were focused on the spectrometer's Rowland circle by a curved transmission crystal. The line shapes were Lorentzian with an average width after removal of the natural and instrumental line widths of 95 microm (4.75 pixels). A high spatial frequency background, primarily resulting from scattered gamma rays, was removed from the spectral image by Fourier analysis. The spectral lines, having low spatial frequency in the direction perpendicular to the dispersion, were enhanced by partially removing the Lorentzian line shape and by fitting Lorentzian curves to broad unresolved spectral features. This demonstrates the ability to improve the spectral resolution of hard x-ray spectra that are recorded by a CCD detector with well-characterized intrinsic spatial resolution.
A periodic spatio-spectral filter for event-related potentials.
Ghaderi, Foad; Kim, Su Kyoung; Kirchner, Elsa Andrea
2016-12-01
With respect to single trial detection of event-related potentials (ERPs), spatial and spectral filters are two of the most commonly used pre-processing techniques for signal enhancement. Spatial filters reduce the dimensionality of the data while suppressing the noise contribution and spectral filters attenuate frequency components that most likely belong to noise subspace. However, the frequency spectrum of ERPs overlap with that of the ongoing electroencephalogram (EEG) and different types of artifacts. Therefore, proper selection of the spectral filter cutoffs is not a trivial task. In this research work, we developed a supervised method to estimate the spatial and finite impulse response (FIR) spectral filters, simultaneously. We evaluated the performance of the method on offline single trial classification of ERPs in datasets recorded during an oddball paradigm. The proposed spatio-spectral filter improved the overall single-trial classification performance by almost 9% on average compared with the case that no spatial filters were used. We also analyzed the effects of different spectral filter lengths and the number of retained channels after spatial filtering. Copyright © 2016. Published by Elsevier Ltd.
Comprehensive time average digital holographic vibrometry
NASA Astrophysics Data System (ADS)
Psota, Pavel; Lédl, Vít; Doleček, Roman; Mokrý, Pavel; Vojtíšek, Petr; Václavík, Jan
2016-12-01
This paper presents a method that simultaneously deals with drawbacks of time-average digital holography: limited measurement range, limited spatial resolution, and quantitative analysis of the measured Bessel fringe patterns. When the frequency of the reference wave is shifted by an integer multiple of frequency at which the object oscillates, the measurement range of the method can be shifted either to smaller or to larger vibration amplitudes. In addition, phase modulation of the reference wave is used to obtain a sequence of phase-modulated fringe patterns. Such fringe patterns can be combined by means of phase-shifting algorithms, and amplitudes of vibrations can be straightforwardly computed. This approach independently calculates the amplitude values in every single pixel. The frequency shift and phase modulation are realized by proper control of Bragg cells and therefore no additional hardware is required.
Skupsky, S.; Kessler, T.J.; Short, R.W.; Craxton, S.; Letzring, S.A.; Soures, J.
1991-09-10
In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies (''colors'') cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers. 8 figures.
Skupsky, Stanley; Kessler, Terrance J.; Short, Robert W.; Craxton, Stephen; Letzring, Samuel A.; Soures, John
1991-01-01
In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies ("colors") cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers.
Wang, Ven-Shing; Lo, Ei-Wen; Liang, Chih-Hsiang; Chao, Keh-Ping; Bao, Bo-Ying; Chang, Ta-Yuan
2016-12-01
Road traffic noise exposure has been associated with auditory and non-auditory health effects, but few studies report noise characteristics. This study determines 24-h noise levels and analyzes their frequency components to investigate associations between seasons, meteorology, land-use types, and traffic. We set up 50 monitoring stations covering ten different land-use types and conducted measurements at three times of the year to obtain 24-h-average A-weighted equivalent noise levels (L Aeq , 24h ) and frequency analyses from 2013 to 2014 in Taichung, Taiwan. Information on land-use types, road parameters, traffic flow rates, and meteorological variables was also collected for analysis with the annual averages of road traffic noise and its frequency components. The annual average L Aeq , 24h in Taichung was 66.4 ± 4.7 A-weighed decibels (dBA). Significant differences in L Aeq , 24h and frequency components were observed between land-use types (all p-values < 0.001), but not between seasons, with the highest two noise levels of 71.2 ± 1.0 dBA and 70.0 ± 2.6 dBA measured in stream-channel and commercial areas, with the highest component being 61.4 ± 5.3 dBA at 1000 Hz. Road width, traffic flow rates, and land-use types were significantly associated with annual average L Aeq , 24h (all p-values < 0.050). Noise levels at 125 Hz had the highest correlation with total traffic (Spearman's coefficient = 0.795) and the highest prediction in the multiple linear regression (R 2 = 0.803; adjusted R 2 = 0.765). These findings reveal the spatial variation in road traffic noise exposure in Taichung. The highest correlation and predictive capacity was observed between this variation and noise levels at 125 Hz. We recommend that governmental agencies should take actions to reduce noise levels from traffic vehicles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Anatomical and functional assemblies of brain BOLD oscillations
Baria, Alexis T.; Baliki, Marwan N.; Parrish, Todd; Apkarian, A. Vania
2011-01-01
Brain oscillatory activity has long been thought to have spatial properties, the details of which are unresolved. Here we examine spatial organizational rules for the human brain oscillatory activity as measured by blood oxygen level-dependent (BOLD). Resting state BOLD signal was transformed into frequency space (Welch’s method), averaged across subjects, and its spatial distribution studied as a function of four frequency bands, spanning the full bandwidth of BOLD. The brain showed anatomically constrained distribution of power for each frequency band. This result was replicated on a repository dataset of 195 subjects. Next, we examined larger-scale organization by parceling the neocortex into regions approximating Brodmann Areas (BAs). This indicated that BAs of simple function/connectivity (unimodal), vs. complex properties (transmodal), are dominated by low frequency BOLD oscillations, and within the visual ventral stream we observe a graded shift of power to higher frequency bands for BAs further removed from the primary visual cortex (increased complexity), linking frequency properties of BOLD to hodology. Additionally, BOLD oscillation properties for the default mode network demonstrated that it is composed of distinct frequency dependent regions. When the same analysis was performed on a visual-motor task, frequency-dependent global and voxel-wise shifts in BOLD oscillations could be detected at brain sites mostly outside those identified with general linear modeling. Thus, analysis of BOLD oscillations in full bandwidth uncovers novel brain organizational rules, linking anatomical structures and functional networks to characteristic BOLD oscillations. The approach also identifies changes in brain intrinsic properties in relation to responses to external inputs. PMID:21613505
Community, time-series epidemiology typically uses either 24-hour integrated particulate matter (PM) concentrations averaged across several monitors in a city or data obtained at a central monitoring site to relate PM concentrations to human health effects. If 24-hour integrated...
An "oblique effect" in the visual evoked potential of the cat.
Bonds, A B
1982-01-01
An oblique effect was observed in the amplitude of the VEP recorded from area 17 of the cat. The ratio of the responses to oblique gratings compared with responses to horizontal and vertical gratings averaged 0.77. Orientation dependence was strongest at low spatial frequencies, unlike the effect found in primates.
Mobile phone types and SAR characteristics of the human brain.
Lee, Ae-Kyoung; Hong, Seon-Eui; Kwon, Jong-Hwa; Choi, Hyung-Do; Cardis, Elisabeth
2017-04-07
Mobile phones differ in terms of their operating frequency, outer shape, and form and location of the antennae, all of which affect the spatial distributions of their electromagnetic field and the level of electromagnetic absorption in the human head or brain. For this paper, the specific absorption rate (SAR) was calculated for four anatomical head models at different ages using 11 numerical phone models of different shapes and antenna configurations. The 11 models represent phone types accounting for around 86% of the approximately 1400 commercial phone models released into the Korean market since 2002. Seven of the phone models selected have an internal dual-band antenna, and the remaining four possess an external antenna. Each model was intended to generate an average absorption level equivalent to that of the same type of commercial phone model operating at the maximum available output power. The 1 g peak spatial SAR and ipsilateral and contralateral brain-averaged SARs were reported for all 11 phone models. The effects of the phone type, phone position, operating frequency, and age of head models on the brain SAR were comprehensively determined.
Mobile phone types and SAR characteristics of the human brain
NASA Astrophysics Data System (ADS)
Lee, Ae-Kyoung; Hong, Seon-Eui; Kwon, Jong-Hwa; Choi, Hyung-Do; Cardis, Elisabeth
2017-04-01
Mobile phones differ in terms of their operating frequency, outer shape, and form and location of the antennae, all of which affect the spatial distributions of their electromagnetic field and the level of electromagnetic absorption in the human head or brain. For this paper, the specific absorption rate (SAR) was calculated for four anatomical head models at different ages using 11 numerical phone models of different shapes and antenna configurations. The 11 models represent phone types accounting for around 86% of the approximately 1400 commercial phone models released into the Korean market since 2002. Seven of the phone models selected have an internal dual-band antenna, and the remaining four possess an external antenna. Each model was intended to generate an average absorption level equivalent to that of the same type of commercial phone model operating at the maximum available output power. The 1 g peak spatial SAR and ipsilateral and contralateral brain-averaged SARs were reported for all 11 phone models. The effects of the phone type, phone position, operating frequency, and age of head models on the brain SAR were comprehensively determined.
Predictions of lithium interactions with earth's bow shock in the presence of wave activity
NASA Technical Reports Server (NTRS)
Decker, R. B.; Lui, A. T. Y.; Vlahos, L.
1984-01-01
The results of a test-particle simulation studying the movement of a lithium tracer ion injected upstream of the bow shock are reported. Wave activity consists of parallel and antiparallel propagating Alfven waves characterized by a frequency power spectrum within a frequency or range of amplitudes defined separately in the upstream and downstream regions. The results show that even a moderate level of wave activity can substantially change the results obtained in the absence of waves. Among the effects observed are: (1) increased ion transmission; (2) both the average energy gain and spread about the average are increased for transmitted and reflected particles; (3) the average final pitch angle for transmitted particles tends to 90 deg, and the spread of reflected particles is reduced; and (4) the spatial dispersion of the ions on the bow shock after a single encounter is increased.
NASA Astrophysics Data System (ADS)
Jha, S. K.; Brockman, R. A.; Hoffman, R. M.; Sinha, V.; Pilchak, A. L.; Porter, W. J.; Buchanan, D. J.; Larsen, J. M.; John, R.
2018-05-01
Principal component analysis and fuzzy c-means clustering algorithms were applied to slip-induced strain and geometric metric data in an attempt to discover unique microstructural configurations and their frequencies of occurrence in statistically representative instantiations of a titanium alloy microstructure. Grain-averaged fatigue indicator parameters were calculated for the same instantiation. The fatigue indicator parameters strongly correlated with the spatial location of the microstructural configurations in the principal components space. The fuzzy c-means clustering method identified clusters of data that varied in terms of their average fatigue indicator parameters. Furthermore, the number of points in each cluster was inversely correlated to the average fatigue indicator parameter. This analysis demonstrates that data-driven methods have significant potential for providing unbiased determination of unique microstructural configurations and their frequencies of occurrence in a given volume from the point of view of strain localization and fatigue crack initiation.
Song, Pan-Pan; Xiang, Jing; Jiang, Li; Chen, Heng-Sheng; Liu, Ben-Ke; Hu, Yue
2016-01-01
To analyze spectral and spatial signatures of high frequency oscillations (HFOs), which include ripples and fast ripples (FRs, >200 Hz) by quantitatively assessing average and peak spectral power in a rat model of different stages of epileptogenesis. The lithium-pilocarpine model of temporal lobe epilepsy was used. The acute phase of epilepsy was assessed by recording intracranial electroencephalography (EEG) activity for 1 day after status epilepticus (SE). The chronic phase of epilepsy, including spontaneous recurrent seizures (SRSs), was assessed by recording EEG activity for 28 days after SE. Average and peak spectral power of five frequency bands of EEG signals in CA1, CA3, and DG regions of the hippocampus were analyzed with wavelet and digital filter. FRs occurred in the hippocampus in the animal model. Significant dynamic changes in the spectral power of FRS were identified in CA1 and CA3. The average spectral power of ripples increased at 20 min before SE ( p < 0.05), peaked at 10 min before diazepam injection. It decreased at 10 min after diazepam ( p < 0.05) and returned to baseline after 1 h. The average spectral power of FRs increased at 30 min before SE ( p < 0.05) and peaked at 10 min before diazepam. It decreased at 10 min after diazepam ( p < 0.05) and returned to baseline at 2 h after injection. The dynamic changes were similar between average and peak spectral power of FRs. Average and peak spectral power of both ripples and FRs in the chronic phase showed a gradual downward trend compared with normal rats 14 days after SE. The spectral power of HFOs may be utilized to distinguish between normal and pathologic HFOs. Ictal average and peak spectral power of FRs were two parameters for predicting acute epileptic seizures, which could be used as a new quantitative biomarker and early warning marker of seizure. Changes in interictal HFOs power in the hippocampus at the chronic stage may be not related to seizure occurrence.
Linear optical quantum computing in a single spatial mode.
Humphreys, Peter C; Metcalf, Benjamin J; Spring, Justin B; Moore, Merritt; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Walmsley, Ian A
2013-10-11
We present a scheme for linear optical quantum computing using time-bin-encoded qubits in a single spatial mode. We show methods for single-qubit operations and heralded controlled-phase (cphase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn [Nature (London) 409, 46 (2001)] scheme. Our protocol is suited to currently available photonic devices and ideally allows arbitrary numbers of qubits to be encoded in the same spatial mode, demonstrating the potential for time-frequency modes to dramatically increase the quantum information capacity of fixed spatial resources. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84±0.07.
Rice, Tyler B.; Konecky, Soren D.; Owen, Christopher; Choi, Bernard; Tromberg, Bruce J.
2012-01-01
Laser Speckle Imaging (LSI) is fast, noninvasive technique to image particle dynamics in scattering media such as biological tissue. While LSI measurements are independent of the overall intensity of the laser source, we find that spatial variations in the laser source profile can impact measured flow rates. This occurs due to differences in average photon path length across the profile, and is of significant concern because all lasers have some degree of natural Gaussian profile in addition to artifacts potentially caused by projecting optics. Two in vivo measurement are performed to show that flow rates differ based on location with respect to the beam profile. A quantitative analysis is then done through a speckle contrast forward model generated within a coherent Spatial Frequency Domain Imaging (cSFDI) formalism. The model predicts remitted speckle contrast as a function of spatial frequency, optical properties, and scattering dynamics. Comparison with experimental speckle contrast images were done using liquid phantoms with known optical properties for three common beam shapes. cSFDI is found to accurately predict speckle contrast for all beam shapes to within 5% root mean square error. Suggestions for improving beam homogeneity are given, including a widening of the natural beam Gaussian, proper diffusing glass spreading, and flat top shaping using microlens arrays. PMID:22741080
Melmer, Tamara; Amirshahi, Seyed A.; Koch, Michael; Denzler, Joachim; Redies, Christoph
2013-01-01
The spatial characteristics of letters and their influence on readability and letter identification have been intensely studied during the last decades. There have been few studies, however, on statistical image properties that reflect more global aspects of text, for example properties that may relate to its aesthetic appeal. It has been shown that natural scenes and a large variety of visual artworks possess a scale-invariant Fourier power spectrum that falls off linearly with increasing frequency in log-log plots. We asked whether images of text share this property. As expected, the Fourier spectrum of images of regular typed or handwritten text is highly anisotropic, i.e., the spectral image properties in vertical, horizontal, and oblique orientations differ. Moreover, the spatial frequency spectra of text images are not scale-invariant in any direction. The decline is shallower in the low-frequency part of the spectrum for text than for aesthetic artworks, whereas, in the high-frequency part, it is steeper. These results indicate that, in general, images of regular text contain less global structure (low spatial frequencies) relative to fine detail (high spatial frequencies) than images of aesthetics artworks. Moreover, we studied images of text with artistic claim (ornate print and calligraphy) and ornamental art. For some measures, these images assume average values intermediate between regular text and aesthetic artworks. Finally, to answer the question of whether the statistical properties measured by us are universal amongst humans or are subject to intercultural differences, we compared images from three different cultural backgrounds (Western, East Asian, and Arabic). Results for different categories (regular text, aesthetic writing, ornamental art, and fine art) were similar across cultures. PMID:23554592
Spatial methods for deriving crop rotation history
NASA Astrophysics Data System (ADS)
Mueller-Warrant, George W.; Trippe, Kristin M.; Whittaker, Gerald W.; Anderson, Nicole P.; Sullivan, Clare S.
2017-08-01
Benefits of converting 11 years of remote sensing classification data into cropping history of agricultural fields included measuring lengths of rotation cycles and identifying specific sequences of intervening crops grown between final years of old grass seed stands and establishment of new ones. Spatial and non-spatial methods were complementary. Individual-year classification errors were often correctable in spreadsheet-based non-spatial analysis, whereas their presence in spatial data generally led to exclusion of fields from further analysis. Markov-model testing of non-spatial data revealed that year-to-year cropping sequences did not match average frequencies for transitions among crops grown in western Oregon, implying that rotations into new grass seed stands were influenced by growers' desires to achieve specific objectives. Moran's I spatial analysis of length of time between consecutive grass seed stands revealed that clustering of fields was relatively uncommon, with high and low value clusters only accounting for 7.1 and 6.2% of fields.
Martinuzzi, Sebastian; Allstadt, Andrew J.; Bateman, Brooke L.; Heglund, Patricia J.; Pidgeon, Anna M.; Thogmartin, Wayne E.; Vavrus, Stephen J.; Radeloff, Volker C.
2016-01-01
Climate change is a major challenge for managers of protected areas world-wide, and managers need information about future climate conditions within protected areas. Prior studies of climate change effects in protected areas have largely focused on average climatic conditions. However, extreme weather may have stronger effects on wildlife populations and habitats than changes in averages. Our goal was to quantify future changes in the frequency of extreme heat, drought, and false springs, during the avian breeding season, in 415 National Wildlife Refuges in the conterminous United States. We analyzed spatially detailed data on extreme weather frequencies during the historical period (1950–2005) and under different scenarios of future climate change by mid- and late-21st century. We found that all wildlife refuges will likely experience substantial changes in the frequencies of extreme weather, but the types of projected changes differed among refuges. Extreme heat is projected to increase dramatically in all wildlife refuges, whereas changes in droughts and false springs are projected to increase or decrease on a regional basis. Half of all wildlife refuges are projected to see increases in frequency (> 20% higher than the current rate) in at least two types of weather extremes by mid-century. Wildlife refuges in the Southwest and Pacific Southwest are projected to exhibit the fastest rates of change, and may deserve extra attention. Climate change adaptation strategies in protected areas, such as the U.S. wildlife refuges, may need to seriously consider future changes in extreme weather, including the considerable spatial variation of these changes.
Sources and Propagation of High Frequency Waves in the Solar Photosphere and Chromosphere
NASA Astrophysics Data System (ADS)
Lawrence, John K.; Cadavid, A. C.
2009-05-01
We study the spatial distribution of oscillatory power in two sequences of high-cadence, high-resolution images taken by the Solar Optical Telescope on board Hinode. The sequences consist of simultaneous, co-registered G-Band (GB) and Ca II H-Line (HL) images with pixel scale 80 km and fields of view 40 x 40 Mm and 80 x 40 Mm. The first sequence has cadence 21 s over 3 hours on 2007 April 14; the other has cadence 24 s over 2 hours on 2007 March 30. Both sequences include network and internetwork at heliocentric angle 35 degrees. Time averaging of Morlet wavelet transforms gives smoothed Fourier spectra for each spatial location in the GB and HL data. We averaged over four different frequency bands to highlight different physical regimes: "evolutionary” timescales (f < 1.2 mHz); evanescent frequencies just below the acoustic cutoff ( 2.6 mHz < f < 4.2 mHz); high frequencies just above the cutoff (5.5 mHz
Increased Anatomical Specificity of Neuromodulation via Modulated Focused Ultrasound
Mehić, Edin; Xu, Julia M.; Caler, Connor J.; Coulson, Nathaniel K.; Moritz, Chet T.; Mourad, Pierre D.
2014-01-01
Transcranial ultrasound can alter brain function transiently and nondestructively, offering a new tool to study brain function now and inform future therapies. Previous research on neuromodulation implemented pulsed low-frequency (250–700 kHz) ultrasound with spatial peak temporal average intensities (ISPTA) of 0.1–10 W/cm2. That work used transducers that either insonified relatively large volumes of mouse brain (several mL) with relatively low-frequency ultrasound and produced bilateral motor responses, or relatively small volumes of brain (on the order of 0.06 mL) with relatively high-frequency ultrasound that produced unilateral motor responses. This study seeks to increase anatomical specificity to neuromodulation with modulated focused ultrasound (mFU). Here, ‘modulated’ means modifying a focused 2-MHz carrier signal dynamically with a 500-kHz signal as in vibro-acoustography, thereby creating a low-frequency but small volume (approximately 0.015 mL) source of neuromodulation. Application of transcranial mFU to lightly anesthetized mice produced various motor movements with high spatial selectivity (on the order of 1 mm) that scaled with the temporal average ultrasound intensity. Alone, mFU and focused ultrasound (FUS) each induced motor activity, including unilateral motions, though anatomical location and type of motion varied. Future work should include larger animal models to determine the relative efficacy of mFU versus FUS. Other studies should determine the biophysical processes through which they act. Also of interest is exploration of the potential research and clinical applications for targeted, transcranial neuromodulation created by modulated focused ultrasound, especially mFU’s ability to produce compact sources of ultrasound at the very low frequencies (10–100s of Hertz) that are commensurate with the natural frequencies of the brain. PMID:24504255
Quantitative analysis of a frequency-domain nonlinearity indicator.
Reichman, Brent O; Gee, Kent L; Neilsen, Tracianne B; Miller, Kyle G
2016-05-01
In this paper, quantitative understanding of a frequency-domain nonlinearity indicator is developed. The indicator is derived from an ensemble-averaged, frequency-domain version of the generalized Burgers equation, which can be rearranged in order to directly compare the effects of nonlinearity, absorption, and geometric spreading on the pressure spectrum level with frequency and distance. The nonlinear effect is calculated using pressure-squared-pressure quadspectrum. Further theoretical development has given an expression for the role of the normalized quadspectrum, referred to as Q/S by Morfey and Howell [AIAA J. 19, 986-992 (1981)], in the spatial rate of change of the pressure spectrum level. To explore this finding, an investigation of the change in level for initial sinusoids propagating as plane waves through inviscid and thermoviscous media has been conducted. The decibel change with distance, calculated through Q/S, captures the growth and decay of the harmonics and indicates that the most significant changes in level occur prior to sawtooth formation. At large distances, the inviscid case results in a spatial rate of change that is uniform across all harmonics. For thermoviscous media, large positive nonlinear gains are observed but offset by absorption, which leads to a greater overall negative spatial rate of change for higher harmonics.
Cooperation of a Dissatisfied Adaptive Prisoner's Dilemma in Spatial Structures
NASA Astrophysics Data System (ADS)
Zhang, Wen; Li, Yao-Sheng; Du, Peng; Xu, Chen
2013-10-01
We study the cooperative behavior of a dissatisfied adaptive prisoner's dilemma via a pair updating rule. We compare two kinds of relationship among the competing agents, one is the well-mixed population and the other is the two-dimensional square lattice. It is found that the cooperation emerges in both the cases and the frequency of cooperation is enhanced in the square lattice. Though it is impossible for the cooperators to have a higher average payoff than that of the defectors in the well-mixed case, the cooperators in the spatial square lattice could have higher average payoffs in certain regions of the game parameters. We theoretically analyze the well-mixed case exactly and the square lattice by pair approximation. The theoretic results are in agreement with the simulation data.
The frequency-difference and frequency-sum acoustic-field autoproducts.
Worthmann, Brian M; Dowling, David R
2017-06-01
The frequency-difference and frequency-sum autoproducts are quadratic products of solutions of the Helmholtz equation at two different frequencies (ω + and ω - ), and may be constructed from the Fourier transform of any time-domain acoustic field. Interestingly, the autoproducts may carry wave-field information at the difference (ω + - ω - ) and sum (ω + + ω - ) frequencies even though these frequencies may not be present in the original acoustic field. This paper provides analytical and simulation results that justify and illustrate this possibility, and indicate its limitations. The analysis is based on the inhomogeneous Helmholtz equation and its solutions while the simulations are for a point source in a homogeneous half-space bounded by a perfectly reflecting surface. The analysis suggests that the autoproducts have a spatial phase structure similar to that of a true acoustic field at the difference and sum frequencies if the in-band acoustic field is a plane or spherical wave. For multi-ray-path environments, this phase structure similarity persists in portions of the autoproduct fields that are not suppressed by bandwidth averaging. Discrepancies between the bandwidth-averaged autoproducts and true out-of-band acoustic fields (with potentially modified boundary conditions) scale inversely with the product of the bandwidth and ray-path arrival time differences.
Orientation tuning of binocular summation: a comparison of colour to achromatic contrast
Gheiratmand, Mina; Cherniawsky, Avital S.; Mullen, Kathy T.
2016-01-01
A key function of the primary visual cortex is to combine the input from the two eyes into a unified binocular percept. At low, near threshold, contrasts a process of summation occurs if the visual inputs from the two eyes are similar. Here we measure the orientation tuning of binocular summation for chromatic and equivalent achromatic contrast. We derive estimates of orientation tuning by measuring binocular summation as a function of the orientation difference between two sinusoidal gratings presented dichoptically to different eyes. We then use a model to estimate the orientation bandwidth of the neural detectors underlying the binocular combination. We find that orientation bandwidths are similar for chromatic and achromatic stimuli at both low (0.375 c/deg) and mid (1.5 c/deg) spatial frequencies, with an overall average of 29 ± 3 degs (HWHH, s.e.m). This effect occurs despite the overall greater binocular summation found for the low spatial frequency chromatic stimuli. These results suggest that similar, oriented processes underlie both chromatic and achromatic binocular contrast combination. The non-oriented detection process found in colour vision at low spatial frequencies under monocular viewing is not evident at the binocular combination stage. PMID:27168119
Improving the surface metrology accuracy of optical profilers by using multiple measurements
NASA Astrophysics Data System (ADS)
Xu, Xudong; Huang, Qiushi; Shen, Zhengxiang; Wang, Zhanshan
2016-10-01
The performance of high-resolution optical systems is affected by small angle scattering at the mid-spatial-frequency irregularities of the optical surface. Characterizing these irregularities is, therefore, important. However, surface measurements obtained with optical profilers are influenced by additive white noise, as indicated by the heavy-tail effect observable on their power spectral density (PSD). A multiple-measurement method is used to reduce the effects of white noise by averaging individual measurements. The intensity of white noise is determined using a model based on the theoretical PSD of fractal surface measurements with additive white noise. The intensity of white noise decreases as the number of times of multiple measurements increases. Using multiple measurements also increases the highest observed spatial frequency; this increase is derived and calculated. Additionally, the accuracy obtained using multiple measurements is carefully studied, with the analysis of both the residual reference error after calibration, and the random errors appearing in the range of measured spatial frequencies. The resulting insights on the effects of white noise in optical profiler measurements and the methods to mitigate them may prove invaluable to improve the quality of surface metrology with optical profilers.
Postural stability changes in the elderly with cataract simulation and refractive blur.
Anand, Vijay; Buckley, John G; Scally, Andy; Elliott, David B
2003-11-01
To determine the influence of cataractous and refractive blur on postural stability and limb-load asymmetry (LLA) and to establish how postural stability changes with the spatial frequency and contrast of the visual stimulus. Thirteen elderly subjects (mean age, 70.76 +/- 4.14 [SD] years) with no history of falls and normal vision were recruited. Postural stability was determined as the root mean square [RMS] of the center of pressure (COP) signal in the anterior-posterior (A-P) and medial-lateral directions and LLA was determined as the ratio of the average body weight placed on the more-loaded limb to the less-loaded limb, recorded during a 30-second period. Data were collected under normal standing conditions and with somatosensory system input disrupted. Measurements were repeated with four visual targets with high (8 cyc/deg) or low (2 cyc/deg) spatial frequency and high (Weber contrast, approximately 95%) or low (Weber contrast, approximately 25%) contrast. Postural stability was measured under conditions of binocular refractive blur of 0, 1, 2, 4, and 8 D and with cataract simulation. The data were analyzed in a population-averaged linear model. The cataract simulation caused significant increases in postural instability equivalent to that caused by 8-D blur conditions, and its effect was greater when the input from the somatosensory system was disrupted. High spatial frequency targets increased postural instability. Refractive blur, cataract simulation, or eye closure had no effect on LLA. Findings indicate that cataractous and refractive blur increase postural instability, and show why the elderly, many of whom have poor vision along with musculoskeletal and central nervous system degeneration, are at greater risk of falling. Findings also highlight that changes in contrast sensitivity rather than resolution changes are responsible for increasing postural instability. Providing low spatial frequency information in certain environments may be useful in maintaining postural stability. Correcting visual impairment caused by uncorrected refractive error and cataracts could be a useful intervention strategy to help prevent falls and fall-related injuries in the elderly.
Evaluation techniques and metrics for assessment of pan+MSI fusion (pansharpening)
NASA Astrophysics Data System (ADS)
Mercovich, Ryan A.
2015-05-01
Fusion of broadband panchromatic data with narrow band multispectral data - pansharpening - is a common and often studied problem in remote sensing. Many methods exist to produce data fusion results with the best possible spatial and spectral characteristics, and a number have been commercially implemented. This study examines the output products of 4 commercial implementations with regard to their relative strengths and weaknesses for a set of defined image characteristics and analyst use-cases. Image characteristics used are spatial detail, spatial quality, spectral integrity, and composite color quality (hue and saturation), and analyst use-cases included a variety of object detection and identification tasks. The imagery comes courtesy of the RIT SHARE 2012 collect. Two approaches are used to evaluate the pansharpening methods, analyst evaluation or qualitative measure and image quality metrics or quantitative measures. Visual analyst evaluation results are compared with metric results to determine which metrics best measure the defined image characteristics and product use-cases and to support future rigorous characterization the metrics' correlation with the analyst results. Because pansharpening represents a trade between adding spatial information from the panchromatic image, and retaining spectral information from the MSI channels, the metrics examined are grouped into spatial improvement metrics and spectral preservation metrics. A single metric to quantify the quality of a pansharpening method would necessarily be a combination of weighted spatial and spectral metrics based on the importance of various spatial and spectral characteristics for the primary task of interest. Appropriate metrics and weights for such a combined metric are proposed here, based on the conducted analyst evaluation. Additionally, during this work, a metric was developed specifically focused on assessment of spatial structure improvement relative to a reference image and independent of scene content. Using analysis of Fourier transform images, a measure of high-frequency content is computed in small sub-segments of the image. The average increase in high-frequency content across the image is used as the metric, where averaging across sub-segments combats the scene dependent nature of typical image sharpness techniques. This metric had an improved range of scores, better representing difference in the test set than other common spatial structure metrics.
Low frequency noise fiber delay stabilized laser with reduced sensitivity to acceleration
NASA Astrophysics Data System (ADS)
Argence, B.; Clivati, C.; Dournaux, J.-L.; Holleville, D.; Faure, B.; Lemonde, P.; Santarelli, G.
2017-11-01
Lasers with sub-hertz line-width and fractional frequency instability around 1×10-15 for 0.1 s to 10 s averaging time are currently realized by locking onto an ultra-stable Fabry-Perot cavity using the Pound-Drever-Hall method. This powerful method requires tight alignment of free space optical components, precise polarization adjustment and spatial mode matching. To circumvent these issues, we use an all-fiber Michelson interferometer with a long fiber spool as a frequency reference and a heterodyne detection technique with a fibered acousto optical modulator (AOM)1. At low Fourier frequencies, the frequency noise of our system is mainly limited by mechanical vibrations, an issue that has already been explored in the field of optoelectronic oscillators.2,3,4
How wide is a road? The association of roads and mass-wasting in a forested montane environment
Larsen, M.C.; Parks, J.E.
1997-01-01
A spatial data base of 1609 landslides was analysed using a geographic information system to determine landslide frequency in relation to highways. A 126 km long transportation network in a 201km2 area of humid-tropical, mountainous, forested terrain in Puerto Rico was used in conjunction with a series of 20 buffer (disturbance) zones varying from 5 to 400m in length, measured perpendicular to the highways. Average landslide frequency in the study area at distances greater than 85m from roads was about six landslides per square kilometre. At distances of 85m or less on either side of a highway, landslide frequency was about 30 landslides per square kilometre. On average, this elevated disturbance rate affected 330m2km-2a-1 within the 170m swath. The mass-wasting rate outside of the disturbance zone affected 40m2km-2 a-1. These results indicate that the rate of mass-wasting disturbance is increased from five to eight times in a 170m wide swath along road corridors. The lateral extent of the environmental impact of roads in the study area is greater than is commonly perceived. The approach described herein demonstrates a simple method to assess the spatial association of mass-wasting with highways. ?? 1997 by John Wiley & Sons, Ltd.
Comparing Optical Oscillators across the Air to Milliradians in Phase and 10^{-17} in Frequency.
Sinclair, Laura C; Bergeron, Hugo; Swann, William C; Baumann, Esther; Deschênes, Jean-Daniel; Newbury, Nathan R
2018-02-02
We demonstrate carrier-phase optical two-way time-frequency transfer (carrier-phase OTWTFT) through the two-way exchange of frequency comb pulses. Carrier-phase OTWTFT achieves frequency comparisons with a residual instability of 1.2×10^{-17} at 1 s across a turbulent 4-km free space link, surpassing previous OTWTFT by 10-20 times and enabling future high-precision optical clock networks. Furthermore, by exploiting the carrier phase, this approach is able to continuously track changes in the relative optical phase of distant optical oscillators to 9 mrad (7 as) at 1 s averaging, effectively extending optical phase coherence over a broad spatial network for applications such as correlated spectroscopy between distant atomic clocks.
Lateral variation of seismic attenuation in Sikkim Himalaya
NASA Astrophysics Data System (ADS)
Thirunavukarasu, Ajaay; Kumar, Ajay; Mitra, Supriyo
2017-01-01
We use data from local earthquakes (mb ≥ 3.0) recorded by the Sikkim broad-band seismograph network to study the frequency-dependent attenuation of the crust and uppermost mantle. These events have been relocated using body wave phase data from local and regional seismograms. The decay of coda amplitudes at a range of central frequencies (1 to 12 Hz) has been measured for 74 earthquake-receiver pairs. These measurements are combined to estimate the frequency-dependent coda Q of the form Q( f) = Q0 f η. The estimated Q0 values range from 80 to 200, with an average of 123 ± 29; and η ranges from 0.92 to 1.04, with an average of 0.98 ± 0.04. To study the lateral variation of Q0 and η, we regionalized the measured Q values by combining all the earthquake-receiver path measurements through a back projection algorithm. We consider a single back-scatter model for the coda waves with elliptical sampling and parametrize the sampled area using 0.2° square grids. A nine-point spatial smoothening (similar to spatial Gaussian filter) is applied to stabilize the inversion. This is done at every frequency to observe the spatial variation of Q( f) and subsequently combined to obtain η variations. Results of our study reveal that the Sikkim Himalaya is characterized by low Q0 (80-100) compared to the foreland basin to its south (150-200) and the Nepal Himalaya to its west (140-160). The low Q and high η in Sikkim Himalaya is attributed to extrinsic scattering attenuation from structural heterogeneity and active faults within the crust, and intrinsic attenuation due to anelasticity in the hotter lithosphere beneath the actively deforming mountain belt. Similar low Q and high η values had also been observed in northwest and Garhwal-Kumaun Himalaya.
Capturing Chromosome Conformation
NASA Astrophysics Data System (ADS)
Dekker, Job; Rippe, Karsten; Dekker, Martijn; Kleckner, Nancy
2002-02-01
We describe an approach to detect the frequency of interaction between any two genomic loci. Generation of a matrix of interaction frequencies between sites on the same or different chromosomes reveals their relative spatial disposition and provides information about the physical properties of the chromatin fiber. This methodology can be applied to the spatial organization of entire genomes in organisms from bacteria to human. Using the yeast Saccharomyces cerevisiae, we could confirm known qualitative features of chromosome organization within the nucleus and dynamic changes in that organization during meiosis. We also analyzed yeast chromosome III at the G1 stage of the cell cycle. We found that chromatin is highly flexible throughout. Furthermore, functionally distinct AT- and GC-rich domains were found to exhibit different conformations, and a population-average 3D model of chromosome III could be determined. Chromosome III emerges as a contorted ring.
Linda Tedrow; Wendel J. Hann
2015-01-01
The Fire Regime Condition Class (FRCC) is a composite departure measure that compares current vegetation structure and fire regime to historical reference conditions. FRCC is computed as the average of: 1) Vegetation departure (VDEP) and 2) Regime (frequency and severity) departure (RDEP). In addition to the FRCC rating, the Vegetation Condition Class (VCC) and Regime...
Assessment of surface runoff depth changes in S\\varǎţel River basin, Romania using GIS techniques
NASA Astrophysics Data System (ADS)
Romulus, Costache; Iulia, Fontanine; Ema, Corodescu
2014-09-01
S\\varǎţel River basin, which is located in Curvature Subcarpahian area, has been facing an obvious increase in frequency of hydrological risk phenomena, associated with torrential events, during the last years. This trend is highly related to the increase in frequency of the extreme climatic phenomena and to the land use changes. The present study is aimed to highlight the spatial and quantitative changes occurred in surface runoff depth in S\\varǎţel catchment, between 1990-2006. This purpose was reached by estimating the surface runoff depth assignable to the average annual rainfall, by means of SCS-CN method, which was integrated into the GIS environment through the ArcCN-Runoff extension, for ArcGIS 10.1. In order to compute the surface runoff depth, by CN method, the land cover and the hydrological soil classes were introduced as vector (polygon data), while the curve number and the average annual rainfall were introduced as tables. After spatially modeling the surface runoff depth for the two years, the 1990 raster dataset was subtracted from the 2006 raster dataset, in order to highlight the changes in surface runoff depth.
Schmid, G; Lager, D; Preiner, P; Uberbacher, R; Cecil, S
2007-01-01
In order to estimate typical radio frequency exposures from indoor used wireless communication technologies applied in homes and offices, WLAN, Bluetooth and Digital Enhanced Cordless Telecommunications systems, as well as baby surveillance devices and wireless headphones for indoor usage, have been investigated by measurements and numerical computations. Based on optimised measurement methods, field distributions and resulting exposure were assessed on selected products and real exposure scenarios. Additionally, generic scenarios have been investigated on the basis of numerical computations. The obtained results demonstrate that under usual conditions the resulting spatially (over body dimensions) averaged and 6-min time-averaged exposure for persons in the radio frequency fields of the considered applications is below approximately 0.1% of the reference level for power density according to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines published in 1998. Spatial and temporal peak values can be considerably higher by 2-3 orders of magnitude. In case of some transmitting devices operated in close proximity to the body (e.g. WLAN transmitters), local exposure can reach the same order of magnitude as the basic restriction; however, none of the devices considered in this study exceeded the limits according to the ICNIRP guidelines.
Pederson, Gregory T.; Reardon, Blase; Caruso, C.J.; Fagre, Daniel B.
2006-01-01
Effective design of avalanche hazard mitigation measures requires long-term records of natural avalanche frequency and extent. Such records are also vital for determining whether natural avalanche frequency and extent vary over time due to climatic or biophysical changes. Where historic records are lacking, an accepted substitute is a chronology developed from tree-ring responses to avalanche-induced damage. This study evaluates a method for using tree-ring chronologies to provide spatially explicit differentiations of avalanche frequency and temporally explicit records of avalanche extent that are often lacking. The study area - part of John F. Stevens Canyon on the southern border of Glacier National Park – is within a heavily used railroad and highway corridor with two dozen active avalanche paths. Using a spatially geo-referenced network of avalanche-damaged trees (n=109) from a single path, we reconstructed a 96-year tree-ring based chronology of avalanche extent and frequency. Comparison of the chronology with historic records revealed that trees recorded all known events as well as the same number of previously unidentified events. Kriging methods provided spatially explicit estimates of avalanche return periods. Estimated return periods for the entire avalanche path averaged 3.2 years. Within this path, return intervals ranged from ~2.3 yrs in the lower track, to ~9-11 yrs and ~12 to >25 yrs in the runout zone, where the railroad and highway are located. For avalanche professionals, engineers, and transportation managers this technique proves a powerful tool in landscape risk assessment and decision making.
NASA Astrophysics Data System (ADS)
Steyn-Ross, Moira L.; Steyn-Ross, D. A.
2016-02-01
Mean-field models of the brain approximate spiking dynamics by assuming that each neuron responds to its neighbors via a naive spatial average that neglects local fluctuations and correlations in firing activity. In this paper we address this issue by introducing a rigorous formalism to enable spatial coarse-graining of spiking dynamics, scaling from the microscopic level of a single type 1 (integrator) neuron to a macroscopic assembly of spiking neurons that are interconnected by chemical synapses and nearest-neighbor gap junctions. Spiking behavior at the single-neuron scale ℓ ≈10 μ m is described by Wilson's two-variable conductance-based equations [H. R. Wilson, J. Theor. Biol. 200, 375 (1999), 10.1006/jtbi.1999.1002], driven by fields of incoming neural activity from neighboring neurons. We map these equations to a coarser spatial resolution of grid length B ℓ , with B ≫1 being the blocking ratio linking micro and macro scales. Our method systematically eliminates high-frequency (short-wavelength) spatial modes q ⃗ in favor of low-frequency spatial modes Q ⃗ using an adiabatic elimination procedure that has been shown to be equivalent to the path-integral coarse graining applied to renormalization group theory of critical phenomena. This bottom-up neural regridding allows us to track the percolation of synaptic and ion-channel noise from the single neuron up to the scale of macroscopic population-average variables. Anticipated applications of neural regridding include extraction of the current-to-firing-rate transfer function, investigation of fluctuation criticality near phase-transition tipping points, determination of spatial scaling laws for avalanche events, and prediction of the spatial extent of self-organized macrocolumnar structures. As a first-order exemplar of the method, we recover nonlinear corrections for a coarse-grained Wilson spiking neuron embedded in a network of identical diffusively coupled neurons whose chemical synapses have been disabled. Intriguingly, we find that reblocking transforms the original type 1 Wilson integrator into a type 2 resonator whose spike-rate transfer function exhibits abrupt spiking onset with near-vertical takeoff and chaotic dynamics just above threshold.
Change of spatial information under rescaling: A case study using multi-resolution image series
NASA Astrophysics Data System (ADS)
Chen, Weirong; Henebry, Geoffrey M.
Spatial structure in imagery depends on a complicated interaction between the observational regime and the types and arrangements of entities within the scene that the image portrays. Although block averaging of pixels has commonly been used to simulate coarser resolution imagery, relatively little attention has been focused on the effects of simple rescaling on spatial structure and the explanation and a possible solution to the problem. Yet, if there are significant differences in spatial variance between rescaled and observed images, it may affect the reliability of retrieved biogeophysical quantities. To investigate these issues, a nested series of high spatial resolution digital imagery was collected at a research site in eastern Nebraska in 2001. An airborne Kodak DCS420IR camera acquired imagery at three altitudes, yielding nominal spatial resolutions ranging from 0.187 m to 1 m. The red and near infrared (NIR) bands of the co-registered image series were normalized using pseudo-invariant features, and the normalized difference vegetation index (NDVI) was calculated. Plots of grain sorghum planted in orthogonal crop row orientations were extracted from the image series. The finest spatial resolution data were then rescaled by averaging blocks of pixels to produce a rescaled image series that closely matched the spatial resolution of the observed image series. Spatial structures of the observed and rescaled image series were characterized using semivariogram analysis. Results for NDVI and its component bands show, as expected, that decreasing spatial resolution leads to decreasing spatial variability and increasing spatial dependence. However, compared to the observed data, the rescaled images contain more persistent spatial structure that exhibits limited variation in both spatial dependence and spatial heterogeneity. Rescaling via simple block averaging fails to consider the effect of scene object shape and extent on spatial information. As the features portrayed by pixels are equally weighted regardless of the shape and extent of the underlying scene objects, the rescaled image retains more of the original spatial information than would occur through direct observation at a coarser sensor spatial resolution. In contrast, for the observed images, due to the effect of the modulation transfer function (MTF) of the imaging system, high frequency features like edges are blurred or lost as the pixel size increases, resulting in greater variation in spatial structure. Successive applications of a low-pass spatial convolution filter are shown to mimic a MTF. Accordingly, it is recommended that such a procedure be applied prior to rescaling by simple block averaging, if insufficient image metadata exist to replicate the net MTF of the imaging system, as might be expected in land cover change analysis studies using historical imagery.
Ottino-Löffler, Bertrand; Strogatz, Steven H
2016-09-01
We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call "frequency spirals." These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.
Land surface dynamics monitoring using microwave passive satellite sensors
NASA Astrophysics Data System (ADS)
Guijarro, Lizbeth Noemi
Soil moisture, surface temperature and vegetation are variables that play an important role in our environment. There is growing demand for accurate estimation of these geophysical parameters for the research of global climate models (GCMs), weather, hydrological and flooding models, and for the application to agricultural assessment, land cover change, and a wide variety of other uses that meet the needs for the study of our environment. The different studies covered in this dissertation evaluate the capabilities and limitations of microwave passive sensors to monitor land surface dynamics. The first study evaluates the 19 GHz channel of the SSM/I instrument with a radiative transfer model and in situ datasets from the Illinois stations and the Oklahoma Mesonet to retrieve land surface temperature and surface soil moisture. The surface temperatures were retrieved with an average error of 5 K and the soil moisture with an average error of 6%. The results show that the 19 GHz channel can be used to qualitatively predict the spatial and temporal variability of surface soil moisture and surface temperature at regional scales. In the second study, in situ observations were compared with sensor observations to evaluate aspects of low and high spatial resolution at multiple frequencies with data collected from the Southern Great Plains Experiment (SGP99). The results showed that the sensitivity to soil moisture at each frequency is a function of wavelength and amount of vegetation. The results confirmed that L-band is more optimal for soil moisture, but each sensor can provide soil moisture information if the vegetation water content is low. The spatial variability of the emissivities reveals that resolution suffers considerably at higher frequencies. The third study evaluates C- and X-bands of the AMSR-E instrument. In situ datasets from the Soil Moisture Experiments (SMEX03) in South Central Georgia were utilized to validate the AMSR-E soil moisture product and to derive surface soil moisture with a radiative transfer model. The soil moisture was retrieved with an average error of 2.7% at X-band and 6.7% at C-band. The AMSR-E demonstrated its ability to successfully infer soil moisture during the SMEX03 experiment.
Jessen, Sarah; Grossmann, Tobias
2017-01-01
Enhanced attention to fear expressions in adults is primarily driven by information from low as opposed to high spatial frequencies contained in faces. However, little is known about the role of spatial frequency information in emotion processing during infancy. In the present study, we examined the role of low compared to high spatial frequencies in the processing of happy and fearful facial expressions by using filtered face stimuli and measuring event-related brain potentials (ERPs) in 7-month-old infants ( N = 26). Our results revealed that infants' brains discriminated between emotional facial expressions containing high but not between expressions containing low spatial frequencies. Specifically, happy faces containing high spatial frequencies elicited a smaller Nc amplitude than fearful faces containing high spatial frequencies and happy and fearful faces containing low spatial frequencies. Our results demonstrate that already in infancy spatial frequency content influences the processing of facial emotions. Furthermore, we observed that fearful facial expressions elicited a comparable Nc response for high and low spatial frequencies, suggesting a robust detection of fearful faces irrespective of spatial frequency content, whereas the detection of happy facial expressions was contingent upon frequency content. In summary, these data provide new insights into the neural processing of facial emotions in early development by highlighting the differential role played by spatial frequencies in the detection of fear and happiness.
Human sperm steer with second harmonics of the flagellar beat.
Saggiorato, Guglielmo; Alvarez, Luis; Jikeli, Jan F; Kaupp, U Benjamin; Gompper, Gerhard; Elgeti, Jens
2017-11-10
Sperm are propelled by bending waves traveling along their flagellum. For steering in gradients of sensory cues, sperm adjust the flagellar waveform. Symmetric and asymmetric waveforms result in straight and curved swimming paths, respectively. Two mechanisms causing spatially asymmetric waveforms have been proposed: an average flagellar curvature and buckling. We image flagella of human sperm tethered with the head to a surface. The waveform is characterized by a fundamental beat frequency and its second harmonic. The superposition of harmonics breaks the beat symmetry temporally rather than spatially. As a result, sperm rotate around the tethering point. The rotation velocity is determined by the second-harmonic amplitude and phase. Stimulation with the female sex hormone progesterone enhances the second-harmonic contribution and, thereby, modulates sperm rotation. Higher beat frequency components exist in other flagellated cells; therefore, this steering mechanism might be widespread and could inspire the design of synthetic microswimmers.
Lossless Compression of JPEG Coded Photo Collections.
Wu, Hao; Sun, Xiaoyan; Yang, Jingyu; Zeng, Wenjun; Wu, Feng
2016-04-06
The explosion of digital photos has posed a significant challenge to photo storage and transmission for both personal devices and cloud platforms. In this paper, we propose a novel lossless compression method to further reduce the size of a set of JPEG coded correlated images without any loss of information. The proposed method jointly removes inter/intra image redundancy in the feature, spatial, and frequency domains. For each collection, we first organize the images into a pseudo video by minimizing the global prediction cost in the feature domain. We then present a hybrid disparity compensation method to better exploit both the global and local correlations among the images in the spatial domain. Furthermore, the redundancy between each compensated signal and the corresponding target image is adaptively reduced in the frequency domain. Experimental results demonstrate the effectiveness of the proposed lossless compression method. Compared to the JPEG coded image collections, our method achieves average bit savings of more than 31%.
Estimation of the vortex length scale and intensity from two-dimensional samples
NASA Technical Reports Server (NTRS)
Reuss, D. L.; Cheng, W. P.
1992-01-01
A method is proposed for estimating flow features that influence flame wrinkling in reciprocating internal combustion engines, where traditional statistical measures of turbulence are suspect. Candidate methods were tested in a computed channel flow where traditional turbulence measures are valid and performance can be rationally evaluated. Two concepts are tested. First, spatial filtering is applied to the two-dimensional velocity distribution and found to reveal structures corresponding to the vorticity field. Decreasing the spatial-frequency cutoff of the filter locally changes the character and size of the flow structures that are revealed by the filter. Second, vortex length scale and intensity is estimated by computing the ensemble-average velocity distribution conditionally sampled on the vorticity peaks. The resulting conditionally sampled 'average vortex' has a peak velocity less than half the rms velocity and a size approximately equal to the two-point-correlation integral-length scale.
Instability waves and low-frequency noise radiation in the subsonic chevron jet
NASA Astrophysics Data System (ADS)
Ran, Lingke; Ye, Chuangchao; Wan, Zhenhua; Yang, Haihua; Sun, Dejun
2017-11-01
Spatial instability waves associated with low-frequency noise radiation at shallow polar angles in the chevron jet are investigated and are compared to the round counterpart. The Reynolds-averaged Navier-Stokes equations are solved to obtain the mean flow fields, which serve as the baseflow for linear stability analysis. The chevron jet has more complicated instability waves than the round jet, where three types of instability modes are identified in the vicinity of the nozzle, corresponding to radial shear, azimuthal shear, and their integrated effect of the baseflow, respectively. The most unstable frequency of all chevron modes and round modes in both jets decrease as the axial location moves downstream. Besides, the azimuthal shear effect related modes are more unstable than radial shear effect related modes at low frequencies. Compared to a round jet, a chevron jet reduces the growth rate of the most unstable modes at downstream locations. Moreover, linearized Euler equations are employed to obtain the beam pattern of pressure generated by spatially evolving instability waves at a dominant low frequency St=0.3 , and the acoustic efficiencies of these linear wavepackets are evaluated for both jets. It is found that the acoustic efficiency of linear wavepacket is able to be reduced greatly in the chevron jet, compared to the round jet.
Instability waves and low-frequency noise radiation in the subsonic chevron jet
NASA Astrophysics Data System (ADS)
Ran, Lingke; Ye, Chuangchao; Wan, Zhenhua; Yang, Haihua; Sun, Dejun
2018-06-01
Spatial instability waves associated with low-frequency noise radiation at shallow polar angles in the chevron jet are investigated and are compared to the round counterpart. The Reynolds-averaged Navier-Stokes equations are solved to obtain the mean flow fields, which serve as the baseflow for linear stability analysis. The chevron jet has more complicated instability waves than the round jet, where three types of instability modes are identified in the vicinity of the nozzle, corresponding to radial shear, azimuthal shear, and their integrated effect of the baseflow, respectively. The most unstable frequency of all chevron modes and round modes in both jets decrease as the axial location moves downstream. Besides, the azimuthal shear effect related modes are more unstable than radial shear effect related modes at low frequencies. Compared to a round jet, a chevron jet reduces the growth rate of the most unstable modes at downstream locations. Moreover, linearized Euler equations are employed to obtain the beam pattern of pressure generated by spatially evolving instability waves at a dominant low frequency St=0.3, and the acoustic efficiencies of these linear wavepackets are evaluated for both jets. It is found that the acoustic efficiency of linear wavepacket is able to be reduced greatly in the chevron jet, compared to the round jet.
Amplitude modulation reduces loudness adaptation to high-frequency tones.
Wynne, Dwight P; George, Sahara E; Zeng, Fan-Gang
2015-07-01
Long-term loudness perception of a sound has been presumed to depend on the spatial distribution of activated auditory nerve fibers as well as their temporal firing pattern. The relative contributions of those two factors were investigated by measuring loudness adaptation to sinusoidally amplitude-modulated 12-kHz tones. The tones had a total duration of 180 s and were either unmodulated or 100%-modulated at one of three frequencies (4, 20, or 100 Hz), and additionally varied in modulation depth from 0% to 100% at the 4-Hz frequency only. Every 30 s, normal-hearing subjects estimated the loudness of one of the stimuli played at 15 dB above threshold in random order. Without any amplitude modulation, the loudness of the unmodulated tone after 180 s was only 20% of the loudness at the onset of the stimulus. Amplitude modulation systematically reduced the amount of loudness adaptation, with the 100%-modulated stimuli, regardless of modulation frequency, maintaining on average 55%-80% of the loudness at onset after 180 s. Because the present low-frequency amplitude modulation produced minimal changes in long-term spectral cues affecting the spatial distribution of excitation produced by a 12-kHz pure tone, the present result indicates that neural synchronization is critical to maintaining loudness perception over time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostova, T; Carlsen, T
2003-11-21
We present a spatially-explicit individual-based computational model of rodent dynamics, customized for the prairie vole species, M. Ochrogaster. The model is based on trophic relationships and represents important features such as territorial competition, mating behavior, density-dependent predation and dispersal out of the modeled spatial region. Vegetation growth and vole fecundity are dependent on climatic components. The results of simulations show that the model correctly predicts the overall temporal dynamics of the population density. Time-series analysis shows a very good match between the periods corresponding to the peak population density frequencies predicted by the model and the ones reported in themore » literature. The model is used to study the relation between persistence, landscape area and predation. We introduce the notions of average time to extinction (ATE) and persistence frequency to quantify persistence. While the ATE decreases with decrease of area, it is a bell-shaped function of the predation level: increasing for 'small' and decreasing for 'large' predation levels.« less
NASA Astrophysics Data System (ADS)
Deng, Jie; Yao, Jun; Dewald, Julius P. A.
2005-12-01
In this paper, we attempt to determine a subject's intention of generating torque at the shoulder or elbow, two neighboring joints, using scalp electroencephalogram signals from 163 electrodes for a brain-computer interface (BCI) application. To achieve this goal, we have applied a time-frequency synthesized spatial patterns (TFSP) BCI algorithm with a presorting procedure. Using this method, we were able to achieve an average recognition rate of 89% in four healthy subjects, which is comparable to the highest rates reported in the literature but now for tasks with much closer spatial representations on the motor cortex. This result demonstrates, for the first time, that the TFSP BCI method can be applied to separate intentions between generating static shoulder versus elbow torque. Furthermore, in this study, the potential application of this BCI algorithm for brain-injured patients was tested in one chronic hemiparetic stroke subject. A recognition rate of 76% was obtained, suggesting that this BCI method can provide a potential control signal for neural prostheses or other movement coordination improving devices for patients following brain injury.
cBathy: A robust algorithm for estimating nearshore bathymetry
Plant, Nathaniel G.; Holman, Rob; Holland, K. Todd
2013-01-01
A three-part algorithm is described and tested to provide robust bathymetry maps based solely on long time series observations of surface wave motions. The first phase consists of frequency-dependent characterization of the wave field in which dominant frequencies are estimated by Fourier transform while corresponding wave numbers are derived from spatial gradients in cross-spectral phase over analysis tiles that can be small, allowing high-spatial resolution. Coherent spatial structures at each frequency are extracted by frequency-dependent empirical orthogonal function (EOF). In phase two, depths are found that best fit weighted sets of frequency-wave number pairs. These are subsequently smoothed in time in phase 3 using a Kalman filter that fills gaps in coverage and objectively averages new estimates of variable quality with prior estimates. Objective confidence intervals are returned. Tests at Duck, NC, using 16 surveys collected over 2 years showed a bias and root-mean-square (RMS) error of 0.19 and 0.51 m, respectively but were largest near the offshore limits of analysis (roughly 500 m from the camera) and near the steep shoreline where analysis tiles mix information from waves, swash and static dry sand. Performance was excellent for small waves but degraded somewhat with increasing wave height. Sand bars and their small-scale alongshore variability were well resolved. A single ground truth survey from a dissipative, low-sloping beach (Agate Beach, OR) showed similar errors over a region that extended several kilometers from the camera and reached depths of 14 m. Vector wave number estimates can also be incorporated into data assimilation models of nearshore dynamics.
Kelly, Simon P; Lalor, Edmund C; Reilly, Richard B; Foxe, John J
2005-06-01
The steady-state visual evoked potential (SSVEP) has been employed successfully in brain-computer interface (BCI) research, but its use in a design entirely independent of eye movement has until recently not been reported. This paper presents strong evidence suggesting that the SSVEP can be used as an electrophysiological correlate of visual spatial attention that may be harnessed on its own or in conjunction with other correlates to achieve control in an independent BCI. In this study, 64-channel electroencephalography data were recorded from subjects who covertly attended to one of two bilateral flicker stimuli with superimposed letter sequences. Offline classification of left/right spatial attention was attempted by extracting SSVEPs at optimal channels selected for each subject on the basis of the scalp distribution of SSVEP magnitudes. This yielded an average accuracy of approximately 71% across ten subjects (highest 86%) comparable across two separate cases in which flicker frequencies were set within and outside the alpha range respectively. Further, combining SSVEP features with attention-dependent parieto-occipital alpha band modulations resulted in an average accuracy of 79% (highest 87%).
An intra-K-complex oscillation with independent and labile frequency and topography in NREM sleep
Kokkinos, Vasileios; Koupparis, Andreas M.; Kostopoulos, George K.
2013-01-01
NREM sleep is characterized by K-complexes (KCs), over the negative phase of which we identified brief activity in the theta range. We recorded high resolution EEG of whole-night sleep from seven healthy volunteers and visually identified 2nd and 3rd stage NREM spontaneous KCs. We identified three major categories: (1) KCs without intra-KC-activity (iKCa), (2) KCs with non-oscillatory iKCa, and (3) KCs with oscillatory iKCa. The latter group of KCs with intra-KC-oscillation (iKCo), was clustered according to the duration of the iKCo. iKCa was observed in most KCs (1150/1522, 75%). iKCos with 2, 3, and 4 waves were observed in 52% (786/1522) of KCs in respective rates of 49% (386/786), 44%, and 7%. Successive waves of iKCos showed on average a shift of their maximal amplitude in the anterio-posterior axis, while the average amplitude of the slow KC showed no spatial shift in time. The iKCo spatial shift was accompanied by transient increases in instantaneous frequency from the theta band toward the alpha band, followed by decreases to upper theta. The study shows that the KC is most often concurrently accompanied by an independent brief iKCo exhibiting topographical relocation of amplitude maxima with every consecutive peak and transient increases in frequency. The iKCo features are potentially reflecting arousing processes taking place during the KC. PMID:23637656
Barry, Robert L.; Klassen, L. Martyn; Williams, Joy M.; Menon, Ravi S.
2008-01-01
A troublesome source of physiological noise in functional magnetic resonance imaging (fMRI) is due to the spatio-temporal modulation of the magnetic field in the brain caused by normal subject respiration. fMRI data acquired using echo-planar imaging is very sensitive to these respiratory-induced frequency offsets, which cause significant geometric distortions in images. Because these effects increase with main magnetic field, they can nullify the gains in statistical power expected by the use of higher magnetic fields. As a study of existing navigator correction techniques for echo-planar fMRI has shown that further improvements can be made in the suppression of respiratory-induced physiological noise, a new hybrid two-dimensional (2D) navigator is proposed. Using a priori knowledge of the slow spatial variations of these induced frequency offsets, 2D field maps are constructed for each shot using spatial frequencies between ±0.5 cm−1 in k-space. For multi-shot fMRI experiments, we estimate that the improvement of hybrid 2D navigator correction over the best performance of one-dimensional navigator echo correction translates into a 15% increase in the volume of activation, 6% and 10% increases in the maximum and average t-statistics, respectively, for regions with high t-statistics, and 71% and 56% increases in the maximum and average t-statistics, respectively, in regions with low t-statistics due to contamination by residual physiological noise. PMID:18024159
Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima
2014-01-01
We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint entropy for these stimulus conditions when contrast was raised. PMID:24466158
Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima
2014-01-01
We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint entropy for these stimulus conditions when contrast was raised.
NASA Astrophysics Data System (ADS)
Cai, Jingya; Pang, Zhiguo; Fu, Jun'e.
2018-04-01
To quantitatively analyze the spatial features of a cosmic-ray sensor (CRS) (i.e., the measurement support volume of the CRS and the weight of the in situ point-scale soil water content (SWC) in terms of the regionally averaged SWC derived from the CRS) in measuring the SWC, cooperative observations based on CRS, oven drying and frequency domain reflectometry (FDR) methods are performed at the point and regional scales in a desert steppe area of the Inner Mongolia Autonomous Region. This region is flat with sparse vegetation cover consisting of only grass, thereby minimizing the effects of terrain and vegetation. Considering the two possibilities of the measurement support volume of the CRS, the results of four weighting methods are compared with the SWC monitored by FDR within an appropriate measurement support volume. The weighted average calculated using the neutron intensity-based weighting method (Ni weighting method) best fits the regionally averaged SWC measured by the CRS. Therefore, we conclude that the gyroscopic support volume and the weights determined by the Ni weighting method are the closest to the actual spatial features of the CRS when measuring the SWC. Based on these findings, a scale transformation model of the SWC from the point scale to the scale of the CRS measurement support volume is established. In addition, the spatial features simulated using the Ni weighting method are visualized by developing a software system.
NASA Astrophysics Data System (ADS)
Farrokhi, Behraz; Erfanian, Abbas
2018-06-01
Objective. The primary concern of this study is to develop a probabilistic regression method that would improve the decoding of the hand movement trajectories from epidural ECoG as well as from subdural ECoG signals. Approach. The model is characterized by the conditional expectation of the hand position given the ECoG signals. The conditional expectation of the hand position is then modeled by a linear combination of the conditional probability density functions defined for each segment of the movement. Moreover, a spatial linear filter is proposed for reducing the dimension of the feature space. The spatial linear filter is applied to each frequency band of the ECoG signals and extract the features with highest decoding performance. Main results. For evaluating the proposed method, a dataset including 28 ECoG recordings from four adult Japanese macaques is used. The results show that the proposed decoding method outperforms the results with respect to the state of the art methods using this dataset. The relative kinematic information of each frequency band is also investigated using mutual information and decoding performance. The decoding performance shows that the best performance was obtained for high gamma bands from 50 to 200 Hz as well as high frequency ECoG band from 200 to 400 Hz for subdural recordings. However, the decoding performance was decreased for these frequency bands using epidural recordings. The mutual information shows that, on average, the high gamma band from 50 to 200 Hz and high frequency ECoG band from 200 to 400 Hz contain significantly more information than the average of the rest of the frequency bands ≤ft( p<0.001 \\right) for both subdural and epidural recordings. The results of high resolution time-frequency analysis show that ERD/ERS patterns in all frequency bands could reveal the dynamics of the ECoG responses during the movement. The onset and offset of the movement can be clearly identified by the ERD/ERS patterns. Significance. Reliable decoding the kinematic information from the brain signals paves the way for robust control of external devices.
NASA Astrophysics Data System (ADS)
Pietrzyk, Mariusz W.; Donovan, Tim; Brennan, Patrick C.; Dix, Alan; Manning, David J.
2011-03-01
Aim: To optimize automated classification of radiological errors during lung nodule detection from chest radiographs (CxR) using a support vector machine (SVM) run on the spatial frequency features extracted from the local background of selected regions. Background: The majority of the unreported pulmonary nodules are visually detected but not recognized; shown by the prolonged dwell time values at false-negative regions. Similarly, overestimated nodule locations are capturing substantial amounts of foveal attention. Spatial frequency properties of selected local backgrounds are correlated with human observer responses either in terms of accuracy in indicating abnormality position or in the precision of visual sampling the medical images. Methods: Seven radiologists participated in the eye tracking experiments conducted under conditions of pulmonary nodule detection from a set of 20 postero-anterior CxR. The most dwelled locations have been identified and subjected to spatial frequency (SF) analysis. The image-based features of selected ROI were extracted with un-decimated Wavelet Packet Transform. An analysis of variance was run to select SF features and a SVM schema was implemented to classify False-Negative and False-Positive from all ROI. Results: A relative high overall accuracy was obtained for each individually developed Wavelet-SVM algorithm, with over 90% average correct ratio for errors recognition from all prolonged dwell locations. Conclusion: The preliminary results show that combined eye-tracking and image-based features can be used for automated detection of radiological error with SVM. The work is still in progress and not all analytical procedures have been completed, which might have an effect on the specificity of the algorithm.
[Dosimetric aspects in studying the biological action of nonionizing electromagnetic radiation].
Karpov, V N; Galkin, A A; Davydov, B I
1984-01-01
In order to clarify mechanisms of biological reactions, it is very important to study the absorption and spatial distribution of the absorbed electromagnetic energy. The procedures and methods of calculating the electromagnetic energy absorption of biological specimens exposed to nonionizing electromagnetic irradiation in a wide frequency range (0-300 GHz) are described. Also presented are formulas and plots to be used in calculating the specific absorption of the dose rate by biological specimens, with the inclusion of resonance absorption, polarization of the incident electromagnetic wave, presence of reflecting surfaces and grounding. The extrapolation of the average energy absorption from one animal species to another and to man is discussed, assuming that spatial and energy distributions are equivalent. The notion of the irradiation quality coefficient is introduced. The magnitudes of the coefficients are given as related to the irradiation frequency and polarization type. A mathematical relation is offered to determine the safety of a complex spectrum of electromagnetic irradiation. The relation takes into consideration different dimensionality of the parameters of the electromagnetic field in the low- and high-frequency ranges.
A hail climatology in Mongolia
NASA Astrophysics Data System (ADS)
Lkhamjav, Jambajamts; Jin, Han-Gyul; Lee, Hyunho; Baik, Jong-Jin
2017-11-01
The temporal and spatial characteristics of hail frequency in Mongolia are examined using the hail observation data from 61 meteorological observatories for 1984-2013. The annual number of hail days averaged over all observatories and the entire period is 0.74. It exhibits a decreasing trend, particularly since 1993 with a rate of decrease of 0.214 per decade. Hail occurrence is concentrated in summer, with 72% of the total hail days occurring in June, July, and August. Moreover, hail occurrence is concentrated in the afternoon and early evening, with 89% of the total hail events occurring between 1200 and 2100 local standard time (LST). Spatially, observatories where relatively frequent hail events are observed are concentrated in the north central region where almost all of the land is mountainous or covered by grassland, whereas relatively less frequent hail events are observed in the southern desert region. The relationship between hail frequency and thermodynamic factors including the convective available potential energy (CAPE), the temperature lapse rate between 700 and 500 hPa, the water vapor mixing ratio averaged over the lowest 100 hPa layer, and the freezing-level height is examined using the ERA-Interim reanalysis data. It is found that in summer, CAPE and the low-level water vapor mixing ratio are larger on hail days than on all days, but there is no clear relationship between hail frequency and the 700-500 hPa temperature lapse rate. It is also found that annually, CAPE and the low-level water vapor mixing ratio decrease, while the freezing-level height increases, which seems to be responsible for the annually decreasing trend of hail frequency in Mongolia.
Effects of Diffusion in Magnetically Inhomogeneous Media on Rotating Frame Spin-Lattice Relaxation
Spear, John T.; Gore, John C.
2014-01-01
In an aqueous medium containing magnetic inhomogeneities, diffusion amongst the intrinsic susceptibility gradients contributes to the relaxation rate R1ρ of water protons to a degree that depends on the magnitude of the local field variations ΔBz, the geometry of the perturbers inducing these fields, and the rate of diffusion of water, D. This contribution can be reduced by using stronger locking fields, leading to a dispersion in R1ρ that can be analyzed to derive quantitative characteristics of the material. A theoretical expression was recently derived to describe these effects for the case of sinusoidal local field variations of a well-defined spatial frequency q. To evaluate the degree to which this dispersion may be extended to more realistic field patterns, finite difference Bloch-McConnell simulations were performed with a variety of three-dimensional structures to reveal how simple geometries affect the dispersion of spin-locking measurements. Dispersions were fit to the recently derived expression to obtain an estimate of the correlation time of the field variations experienced by the spins, and from this the mean squared gradient and an effective spatial frequency were obtained to describe the fields. This effective spatial frequency was shown to vary directly with the second moment of the spatial frequency power spectrum of the ΔBz field, which is a measure of the average spatial dimension of the field variations. These results suggest the theory may be more generally applied to more complex media to derive useful descriptors of the nature of field inhomogeneities. The simulation results also confirm that such diffusion effects disperse over a range of locking fields of lower amplitude than typical chemical exchange effects, and should be detectable in a variety of magnetically inhomogeneous media including regions of dense microvasculature within biological tissues. PMID:25462950
Peak-flow frequency relations and evaluation of the peak-flow gaging network in Nebraska
Soenksen, Philip J.; Miller, Lisa D.; Sharpe, Jennifer B.; Watton, Jason R.
1999-01-01
Estimates of peak-flow magnitude and frequency are required for the efficient design of structures that convey flood flows or occupy floodways, such as bridges, culverts, and roads. The U.S. Geological Survey, in cooperation with the Nebraska Department of Roads, conducted a study to update peak-flow frequency analyses for selected streamflow-gaging stations, develop a new set of peak-flow frequency relations for ungaged streams, and evaluate the peak-flow gaging-station network for Nebraska. Data from stations located in or within about 50 miles of Nebraska were analyzed using guidelines of the Interagency Advisory Committee on Water Data in Bulletin 17B. New generalized skew relations were developed for use in frequency analyses of unregulated streams. Thirty-three drainage-basin characteristics related to morphology, soils, and precipitation were quantified using a geographic information system, related computer programs, and digital spatial data.For unregulated streams, eight sets of regional regression equations relating drainage-basin to peak-flow characteristics were developed for seven regions of the state using a generalized least squares procedure. Two sets of regional peak-flow frequency equations were developed for basins with average soil permeability greater than 4 inches per hour, and six sets of equations were developed for specific geographic areas, usually based on drainage-basin boundaries. Standard errors of estimate for the 100-year frequency equations (1percent probability) ranged from 12.1 to 63.8 percent. For regulated reaches of nine streams, graphs of peak flow for standard frequencies and distance upstream of the mouth were estimated.The regional networks of streamflow-gaging stations on unregulated streams were analyzed to evaluate how additional data might affect the average sampling errors of the newly developed peak-flow equations for the 100-year frequency occurrence. Results indicated that data from new stations, rather than more data from existing stations, probably would produce the greatest reduction in average sampling errors of the equations.
Localized Hotspots Drive Continental Geography of Abnormal Amphibians on U.S. Wildlife Refuges
Reeves, Mari K.; Medley, Kimberly A.; Pinkney, Alfred E.; Holyoak, Marcel; Johnson, Pieter T. J.; Lannoo, Michael J.
2013-01-01
Amphibians with missing, misshapen, and extra limbs have garnered public and scientific attention for two decades, yet the extent of the phenomenon remains poorly understood. Despite progress in identifying the causes of abnormalities in some regions, a lack of knowledge about their broader spatial distribution and temporal dynamics has hindered efforts to understand their implications for amphibian population declines and environmental quality. To address this data gap, we conducted a nationwide, 10-year assessment of 62,947 amphibians on U.S. National Wildlife Refuges. Analysis of a core dataset of 48,081 individuals revealed that consistent with expected background frequencies, an average of 2% were abnormal, but abnormalities exhibited marked spatial variation with a maximum prevalence of 40%. Variance partitioning analysis demonstrated that factors associated with space (rather than species or year sampled) captured 97% of the variation in abnormalities, and the amount of partitioned variance decreased with increasing spatial scale (from site to refuge to region). Consistent with this, abnormalities occurred in local to regional hotspots, clustering at scales of tens to hundreds of kilometers. We detected such hotspot clusters of high-abnormality sites in the Mississippi River Valley, California, and Alaska. Abnormality frequency was more variable within than outside of hotspot clusters. This is consistent with dynamic phenomena such as disturbance or natural enemies (pathogens or predators), whereas similarity of abnormality frequencies at scales of tens to hundreds of kilometers suggests involvement of factors that are spatially consistent at a regional scale. Our characterization of the spatial and temporal variation inherent in continent-wide amphibian abnormalities demonstrates the disproportionate contribution of local factors in predicting hotspots, and the episodic nature of their occurrence. PMID:24260103
A Spatial and Temporal Frequency Based Figure-Ground Processor
NASA Astrophysics Data System (ADS)
Weisstein, Namoi; Wong, Eva
1990-03-01
Recent findings in visual psychophysics have shown that figure-ground perception can be specified by the spatial and temporal response characteristics of the visual system. Higher spatial frequency regions of the visual field are perceived as figure and lower spatial frequency regions are perceived as background/ (Klymenko and Weisstein, 1986, Wong and Weisstein, 1989). Higher temporal frequency regions are seen as background and lower temporal frequency regions are seen as figure (Wong and Weisstein, 1987, Klymenko, Weisstein, Topolski, and Hsieh, 1988). Thus, high spatial and low temporal frequencies appear to be associated with figure and low spatial and high temporal frequencies appear to be associated with background.
NASA Astrophysics Data System (ADS)
Liu, H.; Lin, H.
2013-12-01
Understanding temporal and spatial patterns of preferential flow (PF) occurrence is important in revealing hillslope and catchment hydrologic and biogeochemical processes. Quantitative assessment of the frequency and control of PF occurrence in the field, however, has been limited, especially at the landscape scale of hillslope and catchment. By using 5.5-years' (2007-2012) real-time soil moisture at 10 sites response to 323 precipitation events, we tested the temporal consistency of PF occurrence at the hillslope scale in the forested Shale Hills Catchment; and by using 25 additional sites with at least 1-year data (2011-2012), we evaluated the spatial patterns of PF occurrence across the catchment. To explore the potential effects of PF occurrence on catchment hydrology, wavelet analysis was performed on the recorded time series of hydrological signals (i.e., precipitation, soil moisture, catchment discharge). Considerable temporal consistence was observed in both the frequency and the main controls of PF occurrence at the hillslope scale, which was attributed largely to the statistical stability of precipitation pattern over the monitoring period and the relatively stable subsurface preferential pathways. Preferential flow tended to occur more often in response to intense rainfall events, and favored the conditions at dry hilltop or wet valley floor sites. When upscaling to the entire catchment, topographic control on the PF occurrence was amplified remarkably, leading to the identification of a subsurface PF network in the catchment. Higher frequency of PF occurrence was observed at the valley floor (average 48%), hilltop (average 46%), and swales/hillslopes near the stream (average 40%), while the hillslopes in the eastern part of the catchment were least likely to experience PF (0-20%). No clear relationship, however, was observed between terrain attributes and PF occurrence, because the initiation and persistency of PF in this catchment was controlled jointly by complex interactions among landform units, soil types, initial soil moisture, precipitation features, and season. Through the wavelet method (coherence spectrum and phase differences), dual-pore filtering effects of soil system were proven, rendering it possible to further infer characteristic properties of the underlying hydrological processes in the subsurface. We found that preferential flow dominates the catchment discharge response at short-time periods (< 3 days), while the matrix flow may dominate the discharge response at the time scales of around 10-12 days. The temporal and spatial patterns of PF occurrence revealed in this study can help advance the modeling and prediction of complex PF dynamics in this and other similar landscapes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottino-Löffler, Bertrand; Strogatz, Steven H., E-mail: strogatz@cornell.edu
2016-09-15
We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call “frequency spirals.” These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seenmore » in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.« less
Chen, Chunyi; Yang, Huamin; Zhou, Zhou; Zhang, Weizhi; Kavehrad, Mohsen; Tong, Shoufeng; Wang, Tianshu
2013-12-02
The temporal covariance function of irradiance-flux fluctua-tions for Gaussian Schell-model (GSM) beams propagating in atmospheric turbulence is theoretically formulated by making use of the method of effective beam parameters. Based on this formulation, new expressions for the root-mean-square (RMS) bandwidth of the irradiance-flux temporal spectrum due to GSM beams passing through atmospheric turbulence are derived. With the help of these expressions, the temporal fade statistics of the irradiance flux in free-space optical (FSO) communication systems, using spatially partially coherent sources, impaired by atmospheric turbulence are further calculated. Results show that with a given receiver aperture size, the use of a spatially partially coherent source can reduce both the fractional fade time and average fade duration of the received light signal; however, when atmospheric turbulence grows strong, the reduction in the fractional fade time becomes insignificant for both large and small receiver apertures and in the average fade duration turns inconsiderable for small receiver apertures. It is also illustrated that if the receiver aperture size is fixed, changing the transverse correlation length of the source from a larger value to a smaller one can reduce the average fade frequency of the received light signal only when a threshold parameter in decibels greater than the critical threshold level is specified.
Distribution of RF energy emitted by mobile phones in anatomical structures of the brain.
Cardis, E; Deltour, I; Mann, S; Moissonnier, M; Taki, M; Varsier, N; Wake, K; Wiart, J
2008-06-07
The rapid worldwide increase in mobile phone use in the last decade has generated considerable interest in possible carcinogenic effects of radio frequency (RF). Because exposure to RF from phones is localized, if a risk exists it is likely to be greatest for tumours in regions with greatest energy absorption. The objective of the current paper was to characterize the spatial distribution of RF energy in the brain, using results of measurements made in two laboratories on 110 phones used in Europe or Japan. Most (97-99% depending on frequency) appears to be absorbed in the brain hemisphere on the side where the phone is used, mainly (50-60%) in the temporal lobe. The average relative SAR is highest in the temporal lobe (6-15%, depending on frequency, of the spatial peak SAR in the most exposed region of the brain) and the cerebellum (2-10%) and decreases very rapidly with increasing depth, particularly at higher frequencies. The SAR distribution appears to be fairly similar across phone models, between older and newer phones and between phones with different antenna types and positions. Analyses of risk by location of tumour are therefore important for the interpretation of results of studies of brain tumours in relation to mobile phone use.
PAPR-Constrained Pareto-Optimal Waveform Design for OFDM-STAP Radar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Satyabrata
We propose a peak-to-average power ratio (PAPR) constrained Pareto-optimal waveform design approach for an orthogonal frequency division multiplexing (OFDM) radar signal to detect a target using the space-time adaptive processing (STAP) technique. The use of an OFDM signal does not only increase the frequency diversity of our system, but also enables us to adaptively design the OFDM coefficients in order to further improve the system performance. First, we develop a parametric OFDM-STAP measurement model by considering the effects of signaldependent clutter and colored noise. Then, we observe that the resulting STAP-performance can be improved by maximizing the output signal-to-interference-plus-noise ratiomore » (SINR) with respect to the signal parameters. However, in practical scenarios, the computation of output SINR depends on the estimated values of the spatial and temporal frequencies and target scattering responses. Therefore, we formulate a PAPR-constrained multi-objective optimization (MOO) problem to design the OFDM spectral parameters by simultaneously optimizing four objective functions: maximizing the output SINR, minimizing two separate Cramer-Rao bounds (CRBs) on the normalized spatial and temporal frequencies, and minimizing the trace of CRB matrix on the target scattering coefficients estimations. We present several numerical examples to demonstrate the achieved performance improvement due to the adaptive waveform design.« less
Serial Founder Effects During Range Expansion: A Spatial Analog of Genetic Drift
Slatkin, Montgomery; Excoffier, Laurent
2012-01-01
Range expansions cause a series of founder events. We show that, in a one-dimensional habitat, these founder events are the spatial analog of genetic drift in a randomly mating population. The spatial series of allele frequencies created by successive founder events is equivalent to the time series of allele frequencies in a population of effective size ke, the effective number of founders. We derive an expression for ke in a discrete-population model that allows for local population growth and migration among established populations. If there is selection, the net effect is determined approximately by the product of the selection coefficients and the number of generations between successive founding events. We use the model of a single population to compute analytically several quantities for an allele present in the source population: (i) the probability that it survives the series of colonization events, (ii) the probability that it reaches a specified threshold frequency in the last population, and (iii) the mean and variance of the frequencies in each population. We show that the analytic theory provides a good approximation to simulation results. A consequence of our approximation is that the average heterozygosity of neutral alleles decreases by a factor of 1 – 1/(2ke) in each new population. Therefore, the population genetic consequences of surfing can be predicted approximately by the effective number of founders and the effective selection coefficients, even in the presence of migration among populations. We also show that our analytic results are applicable to a model of range expansion in a continuously distributed population. PMID:22367031
Serial founder effects during range expansion: a spatial analog of genetic drift.
Slatkin, Montgomery; Excoffier, Laurent
2012-05-01
Range expansions cause a series of founder events. We show that, in a one-dimensional habitat, these founder events are the spatial analog of genetic drift in a randomly mating population. The spatial series of allele frequencies created by successive founder events is equivalent to the time series of allele frequencies in a population of effective size ke, the effective number of founders. We derive an expression for ke in a discrete-population model that allows for local population growth and migration among established populations. If there is selection, the net effect is determined approximately by the product of the selection coefficients and the number of generations between successive founding events. We use the model of a single population to compute analytically several quantities for an allele present in the source population: (i) the probability that it survives the series of colonization events, (ii) the probability that it reaches a specified threshold frequency in the last population, and (iii) the mean and variance of the frequencies in each population. We show that the analytic theory provides a good approximation to simulation results. A consequence of our approximation is that the average heterozygosity of neutral alleles decreases by a factor of 1-1/(2ke) in each new population. Therefore, the population genetic consequences of surfing can be predicted approximately by the effective number of founders and the effective selection coefficients, even in the presence of migration among populations. We also show that our analytic results are applicable to a model of range expansion in a continuously distributed population.
Modelling the dependence of contrast sensitivity on grating area and spatial frequency.
Rovamo, J; Luntinen, O; Näsänen, R
1993-12-01
We modelled the human foveal visual system in a detection task as a simple image processor comprising (i) low-pass filtering due to the optical transfer function of the eye, (ii) high-pass filtering of neural origin, (iii) addition of internal neural noise, and (iv) detection by a local matched filter. Its detection efficiency for gratings was constant up to a critical area but then decreased with increasing area. To test the model we measured Michelson contrast sensitivity as a function of grating area at spatial frequencies of 0.125-32 c/deg for simple vertical and circular cosine gratings. In circular gratings luminance was sinusoidally modulated as a function of the radius of the grating field. In agreement with the model, contrast sensitivity at all spatial frequencies increased in proportion to the square-root of grating area at small areas. When grating area exceeded critical area, the increase saturated and contrast sensitivity became independent of area at large grating areas. Spatial integration thus obeyed Piper's law at small grating areas. The critical area of spatial integration, marking the cessation of Piper's law, was constant in solid degrees at low spatial frequencies but inversely proportional to spatial frequency squared at medium and high spatial frequencies. At low spatial frequencies the maximum contrast sensitivity obtainable by spatial integration increased in proportion to spatial frequency but at high spatial frequencies it decreased in proportion to the cube of the increasing spatial frequency. The increase was due to high-pass filtering of neural origin (lateral inhibition) and the decrease was mainly due to the optical transfer function of the eye. Our model explained 95% of the total variance of the contrast sensitivity data.
Estimating Long Term Surface Soil Moisture in the GCIP Area From Satellite Microwave Observations
NASA Technical Reports Server (NTRS)
Owe, Manfred; deJeu, Vrije; VandeGriend, Adriaan A.
2000-01-01
Soil moisture is an important component of the water and energy balances of the Earth's surface. Furthermore, it has been identified as a parameter of significant potential for improving the accuracy of large-scale land surface-atmosphere interaction models. However, accurate estimates of surface soil moisture are often difficult to make, especially at large spatial scales. Soil moisture is a highly variable land surface parameter, and while point measurements are usually accurate, they are representative only of the immediate site which was sampled. Simple averaging of point values to obtain spatial means often leads to substantial errors. Since remotely sensed observations are already a spatially averaged or areally integrated value, they are ideally suited for measuring land surface parameters, and as such, are a logical input to regional or larger scale land process models. A nine-year database of surface soil moisture is being developed for the Central United States from satellite microwave observations. This region forms much of the GCIP study area, and contains most of the Mississippi, Rio Grande, and Red River drainages. Daytime and nighttime microwave brightness temperatures were observed at a frequency of 6.6 GHz, by the Scanning Multichannel Microwave Radiometer (SMMR), onboard the Nimbus 7 satellite. The life of the SMMR instrument spanned from Nov. 1978 to Aug. 1987. At 6.6 GHz, the instrument provided a spatial resolution of approximately 150 km, and an orbital frequency over any pixel-sized area of about 2 daytime and 2 nighttime passes per week. Ground measurements of surface soil moisture from various locations throughout the study area are used to calibrate the microwave observations. Because ground measurements are usually only single point values, and since the time of satellite coverage does not always coincide with the ground measurements, the soil moisture data were used to calibrate a regional water balance for the top 1, 5, and 10 cm surface layers in order to interpolate daily surface moisture values. Such a climate-based approach is often more appropriate for estimating large-area spatially averaged soil moisture because meteorological data are generally more spatially representative than isolated point measurements of soil moisture. Vegetation radiative transfer characteristics, such as the canopy transmissivity, were estimated from vegetation indices such as the Normalized Difference Vegetation Index (NDVI) and the 37 GHz Microwave Polarization Difference Index (MPDI). Passive microwave remote sensing presents the greatest potential for providing regular spatially representative estimates of surface soil moisture at global scales. Real time estimates should improve weather and climate modelling efforts, while the development of historical data sets will provide necessary information for simulation and validation of long-term climate and global change studies.
Spatially-Heterodyned Holography
Thomas, Clarence E [Knoxville, TN; Hanson, Gregory R [Clinton, TN
2006-02-21
A method of recording a spatially low-frequency heterodyne hologram, including spatially heterodyne fringes for Fourier analysis, includes: splitting a laser beam into a reference beam and an object beam; interacting the object beam with an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digital recording the spatially low-frequency heterodyne hologram; Fourier transforming axes of the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam; cutting off signals around an origin; and performing an inverse Fourier transform.
Skupsky, S.; Craxton, R.S.; Soures, J.
1990-10-02
In order to control the intensity of a laser beam so that its intensity varies uniformly and provides uniform illumination of a target, such as a laser fusion target, a broad bandwidth laser pulse is spectrally dispersed spatially so that the frequency components thereof are spread apart. A disperser (grating) provides an output beam which varies spatially in wavelength in at least one direction transverse to the direction of propagation of the beam. Temporal spread (time delay) across the beam is corrected by using a phase delay device (a time delay compensation echelon). The dispersed beam may be amplified with laser amplifiers and frequency converted (doubled, tripled or quadrupled in frequency) with nonlinear optical elements (birefringent crystals). The spectral variation across the beam is compensated by varying the angle of incidence on one of the crystals with respect to the crystal optical axis utilizing a lens which diverges the beam. Another lens after the frequency converter may be used to recollimate the beam. The frequency converted beam is recombined so that portions of different frequency interfere and, unlike interference between waves of the same wavelength, there results an intensity pattern with rapid temporal oscillations which average out rapidly in time thereby producing uniform illumination on target. A distributed phase plate (also known as a random phase mask), through which the spectrally dispersed beam is passed and then focused on a target, is used to provide the interference pattern which becomes nearly modulation free and uniform in intensity in the direction of the spectral variation. 16 figs.
Skupsky, Stanley; Craxton, R. Stephen; Soures, John
1990-01-01
In order to control the intensity of a laser beam so that its intensity varies uniformly and provides uniform illumination of a target, such as a laser fusion target, a broad bandwidth laser pulse is spectrally dispersed spatially so that the frequency components thereof are spread apart. A disperser (grating) provides an output beam which varies spatially in wavelength in at least one direction transverse to the direction of propagation of the beam. Temporal spread (time delay) across the beam is corrected by using a phase delay device (a time delay compensation echelon). The dispersed beam may be amplified with laser amplifiers and frequency converted (doubled, tripled or quadrupled in frequency) with nonlinear optical elements (birefringent crystals). The spectral variation across the beam is compensated by varying the angle of incidence on one of the crystals with respect to the crystal optical axis utilizing a lens which diverges the beam. Another lens after the frequency converter may be used to recollimate the beam. The frequency converted beam is recombined so that portions of different frequency interfere and, unlike interference between waves of the same wavelength, there results an intensity pattern with rapid temoral oscillations which average out rapidly in time thereby producing uniform illumination on target. A distributed phase plate (also known as a random phase mask), through which the spectrally dispersed beam is passed and then focused on a target, is used to provide the interference pattern which becomes nearly modulation free and uniform in intensity in the direction of the spectral variation.
Undersampled digital holographic interferometry
NASA Astrophysics Data System (ADS)
Halaq, H.; Demoli, N.; Sović, I.; Šariri, K.; Torzynski, M.; Vukičević, D.
2008-04-01
In digital holography, primary holographic fringes are recorded using a matricial CCD sensor. Because of the low spatial resolution of currently available CCD arrays, the angle between the reference and object beams must be limited to a few degrees. Namely, due to the digitization involved, the Shannon's criterion imposes that the Nyquist sampling frequency be at least twice the highest signal frequency. This means that, in the case of the recording of an interference fringe pattern by a CCD sensor, the inter-fringe distance must be larger than twice the pixel period. This in turn limits the angle between the object and the reference beams. If this angle, in a practical holographic interferometry measuring setup, cannot be limited to the required value, aliasing will occur in the reconstructed image. In this work, we demonstrate that the low spatial frequency metrology data could nevertheless be efficiently extracted by careful choice of twofold, and even threefold, undersampling of the object field. By combining the time-averaged recording with subtraction digital holography method, we present results for a loudspeaker membrane interferometric study obtained under strong aliasing conditions. High-contrast fringes, as a consequence of the vibration modes of the membrane, are obtained.
Large Civil Tiltrotor (LCTR2) Interior Noise Predictions due to Turbulent Boundary Layer Excitation
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.
2013-01-01
The Large Civil Tiltrotor (LCTR2) is a conceptual vehicle that has a design goal to transport 90 passengers over a distance of 1800 km at a speed of 556 km/hr. In this study noise predictions were made in the notional LCTR2 cabin due to Cockburn/Robertson and Efimtsov turbulent boundary layer (TBL) excitation models. A narrowband hybrid Finite Element (FE) analysis was performed for the low frequencies (6-141 Hz) and a Statistical Energy Analysis (SEA) was conducted for the high frequency one-third octave bands (125- 8000 Hz). It is shown that the interior sound pressure level distribution in the low frequencies is governed by interactions between individual structural and acoustic modes. The spatially averaged predicted interior sound pressure levels for the low frequency hybrid FE and the high frequency SEA analyses, due to the Efimtsov turbulent boundary layer excitation, were within 1 dB in the common 125 Hz one-third octave band. The averaged interior noise levels for the LCTR2 cabin were predicted lower than the levels in a comparable Bombardier Q400 aircraft cabin during cruise flight due to the higher cruise altitude and lower Mach number of the LCTR2. LCTR2 cabin noise due to TBL excitation during cruise flight was found not unacceptable for crew or passengers when predictions were compared to an acoustic survey on a Q400 aircraft.
Observations of sea ice ridging in the Weddell Sea
NASA Astrophysics Data System (ADS)
Granberg, Hardy B.; Leppaäranta, Matti
1999-11-01
Sea ice surface topography data were obtained by helicopter-borne laser profiling during the First Finnish Antarctic Expedition (FINNARP-89). The measurements were made near the ice margin at about 73°S, 27°W in the eastern Weddell Sea on December 31, 1989, and January 1, 1990. Five transects, ranging in length from 127 to 163 km and covering a total length of 724 km, are analyzed. With a lower cutoff of 0.91 m the overall ridge frequency was 8.4 ridges/km and the average ridge height was 1.32 m. The spatial variations in ridging were large; for 36 individual 20-km segments the frequencies were 2-16 ridges/km and the mean heights were 1.16-1.56 m. The frequencies and mean heights were weakly correlated. The distributions of the ridge heights followed the exponential distribution; the spacings did not pass tests for either the exponential or the lognormal distribution, but the latter was much closer. In the 20-km segments the areally averaged thickness of ridged ice was 0.51±0.28 m, ranging from 0.10 to 1.15 m. The observed ridge size and frequency are greater than those known for the Ross Sea. Compared with the central Arctic, the Weddell Sea ridging frequencies are similar but the ridge heights are smaller, possibly as a result of differences in snow accumulation.
Extension of vibrational power flow techniques to two-dimensional structures
NASA Technical Reports Server (NTRS)
Cuschieri, Joseph M.
1988-01-01
In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or finite element analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid frequencies between the optimum frequency regimes for SEA and FEA. Power flow analysis has in general been used on 1-D beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to 2-D plate-like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA results at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.
Extension of vibrational power flow techniques to two-dimensional structures
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1987-01-01
In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or Finite Element Analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid- frequencies between the optimum frequency regimes for FEA and SEA. Power flow analysis has in general been used on one-dimensional beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to two-dimensional plate like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.
Thors, Björn; Thielens, Arno; Fridén, Jonas; Colombi, Davide; Törnevik, Christer; Vermeeren, Günter; Martens, Luc; Joseph, Wout
2014-05-01
In this paper, different methods for practical numerical radio frequency exposure compliance assessments of radio base station products were investigated. Both multi-band base station antennas and antennas designed for multiple input multiple output (MIMO) transmission schemes were considered. For the multi-band case, various standardized assessment methods were evaluated in terms of resulting compliance distance with respect to the reference levels and basic restrictions of the International Commission on Non-Ionizing Radiation Protection. Both single frequency and multiple frequency (cumulative) compliance distances were determined using numerical simulations for a mobile communication base station antenna transmitting in four frequency bands between 800 and 2600 MHz. The assessments were conducted in terms of root-mean-squared electromagnetic fields, whole-body averaged specific absorption rate (SAR) and peak 10 g averaged SAR. In general, assessments based on peak field strengths were found to be less computationally intensive, but lead to larger compliance distances than spatial averaging of electromagnetic fields used in combination with localized SAR assessments. For adult exposure, the results indicated that even shorter compliance distances were obtained by using assessments based on localized and whole-body SAR. Numerical simulations, using base station products employing MIMO transmission schemes, were performed as well and were in agreement with reference measurements. The applicability of various field combination methods for correlated exposure was investigated, and best estimate methods were proposed. Our results showed that field combining methods generally considered as conservative could be used to efficiently assess compliance boundary dimensions of single- and dual-polarized multicolumn base station antennas with only minor increases in compliance distances. © 2014 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Gao, Zaifeng; Bentin, Shlomo
2011-01-01
Face perception studies investigated how spatial frequencies (SF) are extracted from retinal display while forming a perceptual representation, or their selective use during task-imposed categorization. Here we focused on the order of encoding low-spatial frequencies (LSF) and high-spatial frequencies (HSF) from perceptual representations into…
Single-shot distributed Brillouin optical time domain analyzer.
Fang, Jian; Xu, Pengbai; Dong, Yongkang; Shieh, William
2017-06-26
We demonstrate a novel single-shot distributed Brillouin optical time domain analyzer (SS-BOTDA). In our method, dual-polarization probe with orthogonal frequency-division multiplexing (OFDM) modulation is used to acquire the distributed Brillouin gain spectra, and coherent detection is used to enhance the signal-to-noise ratio (SNR) drastically. Distributed temperature sensing is demonstrated over a 1.08 km standard single-mode fiber (SSMF) with 20.48 m spatial resolution and 0.59 °C temperature accuracy. Neither frequency scanning, nor polarization scrambling, nor averaging is required in our scheme. All the data are obtained through only one-shot measurement, indicating that the sensing speed is only limited by the length of fiber.
Biophysical characterization of low-frequency ultrasound interaction with dental pulp stem cells
2013-01-01
Background Low-intensity ultrasound is considered an effective non-invasive therapy to stimulate hard tissue repair, in particular to accelerate delayed non-union bone fracture healing. More recently, ultrasound has been proposed as a therapeutic tool to repair and regenerate dental tissues. Our recent work suggested that low-frequency kilohertz-range ultrasound is able to interact with dental pulp cells which could have potential to stimulate dentine reparative processes and hence promote the viability and longevity of teeth. Methods In this study, the biophysical characteristics of low-frequency ultrasound transmission through teeth towards the dental pulp were explored. We conducted cell culture studies using an odontoblast-like/dental pulp cell line, MDPC-23. Half of the samples underwent ultrasound exposure while the other half underwent ‘sham treatment’ where the transducer was submerged into the medium but no ultrasound was generated. Ultrasound was applied directly to the cell cultures using a therapeutic ultrasound device at a frequency of 45 kHz with intensity settings of 10, 25 and 75 mW/cm2 for 5 min. Following ultrasound treatment, the odontoblast-like cells were detached from the culture using a 0.25% Trypsin/EDTA solution, and viable cell numbers were counted. Two-dimensional tooth models based on μ-CT 2D images of the teeth were analyzed using COMSOL as the finite element analysis platform. This was used to confirm experimental results and to demonstrate the potential theory that with the correct combination of frequency and intensity, a tooth can be repaired using small doses of ultrasound. Frequencies in the 30 kHz–1 MHz range were analyzed. For each frequency, pressure/intensity plots provided information on how the intensity changes at each point throughout the propagation path. Spatial peak temporal average (SPTA) intensity was calculated and related to existing optimal spatial average temporal average (SATA) intensity deemed effective for cell proliferation during tooth repair. Results The results demonstrate that odontoblast MDPC-23 cell numbers were significantly increased following three consecutive ultrasound treatments over a 7-day culture period as compared with sham controls underscoring the anabolic effects of ultrasound on these cells. Data show a distinct increase in cell number compared to the sham data after ultrasound treatment for intensities of 10 and 25 mW/cm2 (p < 0.05 and p < 0.01, respectively). Using finite element analysis, we demonstrated that ultrasound does indeed propagate through the mineralized layers of the teeth and into the pulp chamber where it forms a ‘therapeutic’ force field to interact with the living dental pulp cells. This allowed us to observe the pressure/intensity of the wave as it propagates throughout the tooth. A selection of time-dependent snapshots of the pressure/intensity reveal that the lower frequency waves propagate to the pulp and remain within the chamber for a while, which is ideal for cell excitation. Input frequencies and pressures of 30 kHz (70 Pa) and 45 kHz (31 kPa), respectively, with an average SPTA of up to 120 mW/cm2 in the pulp seem to be optimal and agree with the SATA intensities reported experimentally. Conclusions Our data suggest that ultrasound can be harnessed to propagate to the dental pulp region where it can interact with the living cells to promote dentine repair. Further research is required to analyze the precise physical and biological interactions of low-frequency ultrasound with the dental pulp to develop a novel non-invasive tool for dental tissue regeneration. PMID:25516801
NASA Technical Reports Server (NTRS)
Over, Thomas, M.; Gupta, Vijay K.
1994-01-01
Under the theory of independent and identically distributed random cascades, the probability distribution of the cascade generator determines the spatial and the ensemble properties of spatial rainfall. Three sets of radar-derived rainfall data in space and time are analyzed to estimate the probability distribution of the generator. A detailed comparison between instantaneous scans of spatial rainfall and simulated cascades using the scaling properties of the marginal moments is carried out. This comparison highlights important similarities and differences between the data and the random cascade theory. Differences are quantified and measured for the three datasets. Evidence is presented to show that the scaling properties of the rainfall can be captured to the first order by a random cascade with a single parameter. The dependence of this parameter on forcing by the large-scale meteorological conditions, as measured by the large-scale spatial average rain rate, is investigated for these three datasets. The data show that this dependence can be captured by a one-to-one function. Since the large-scale average rain rate can be diagnosed from the large-scale dynamics, this relationship demonstrates an important linkage between the large-scale atmospheric dynamics and the statistical cascade theory of mesoscale rainfall. Potential application of this research to parameterization of runoff from the land surface and regional flood frequency analysis is briefly discussed, and open problems for further research are presented.
Shim, Miseon; Kim, Do-Won; Yoon, Sunkyung; Park, Gewnhi; Im, Chang-Hwan; Lee, Seung-Hwan
2016-06-01
Deficits in facial emotion processing is a major characteristic of patients with panic disorder. It is known that visual stimuli with different spatial frequencies take distinct neural pathways. This study investigated facial emotion processing involving stimuli presented at broad, high, and low spatial frequencies in patients with panic disorder. Eighteen patients with panic disorder and 19 healthy controls were recruited. Seven event-related potential (ERP) components: (P100, N170, early posterior negativity (EPN); vertex positive potential (VPP), N250, P300; and late positive potential (LPP)) were evaluated while the participants looked at fearful and neutral facial stimuli presented at three spatial frequencies. When a fearful face was presented, panic disorder patients showed a significantly increased P100 amplitude in response to low spatial frequency compared to high spatial frequency; whereas healthy controls demonstrated significant broad spatial frequency dependent processing in P100 amplitude. Vertex positive potential amplitude was significantly increased in high and broad spatial frequency, compared to low spatial frequency in panic disorder. Early posterior negativity amplitude was significantly different between HSF and BSF, and between LSF and BSF processing in both groups, regardless of facial expression. The possibly confounding effects of medication could not be controlled. During early visual processing, patients with panic disorder prefer global to detailed information. However, in later processing, panic disorder patients overuse detailed information for the perception of facial expressions. These findings suggest that unique spatial frequency-dependent facial processing could shed light on the neural pathology associated with panic disorder. Copyright © 2016 Elsevier B.V. All rights reserved.
The neural bases of spatial frequency processing during scene perception
Kauffmann, Louise; Ramanoël, Stephen; Peyrin, Carole
2014-01-01
Theories on visual perception agree that scenes are processed in terms of spatial frequencies. Low spatial frequencies (LSF) carry coarse information whereas high spatial frequencies (HSF) carry fine details of the scene. However, how and where spatial frequencies are processed within the brain remain unresolved questions. The present review addresses these issues and aims to identify the cerebral regions differentially involved in low and high spatial frequency processing, and to clarify their attributes during scene perception. Results from a number of behavioral and neuroimaging studies suggest that spatial frequency processing is lateralized in both hemispheres, with the right and left hemispheres predominantly involved in the categorization of LSF and HSF scenes, respectively. There is also evidence that spatial frequency processing is retinotopically mapped in the visual cortex. HSF scenes (as opposed to LSF) activate occipital areas in relation to foveal representations, while categorization of LSF scenes (as opposed to HSF) activates occipital areas in relation to more peripheral representations. Concomitantly, a number of studies have demonstrated that LSF information may reach high-order areas rapidly, allowing an initial coarse parsing of the visual scene, which could then be sent back through feedback into the occipito-temporal cortex to guide finer HSF-based analysis. Finally, the review addresses spatial frequency processing within scene-selective regions areas of the occipito-temporal cortex. PMID:24847226
High-Frequency Subband Compressed Sensing MRI Using Quadruplet Sampling
Sung, Kyunghyun; Hargreaves, Brian A
2013-01-01
Purpose To presents and validates a new method that formalizes a direct link between k-space and wavelet domains to apply separate undersampling and reconstruction for high- and low-spatial-frequency k-space data. Theory and Methods High- and low-spatial-frequency regions are defined in k-space based on the separation of wavelet subbands, and the conventional compressed sensing (CS) problem is transformed into one of localized k-space estimation. To better exploit wavelet-domain sparsity, CS can be used for high-spatial-frequency regions while parallel imaging can be used for low-spatial-frequency regions. Fourier undersampling is also customized to better accommodate each reconstruction method: random undersampling for CS and regular undersampling for parallel imaging. Results Examples using the proposed method demonstrate successful reconstruction of both low-spatial-frequency content and fine structures in high-resolution 3D breast imaging with a net acceleration of 11 to 12. Conclusion The proposed method improves the reconstruction accuracy of high-spatial-frequency signal content and avoids incoherent artifacts in low-spatial-frequency regions. This new formulation also reduces the reconstruction time due to the smaller problem size. PMID:23280540
Spatial frequency discrimination learning in normal and developmentally impaired human vision
Astle, Andrew T.; Webb, Ben S.; McGraw, Paul V.
2010-01-01
Perceptual learning effects demonstrate that the adult visual system retains neural plasticity. If perceptual learning holds any value as a treatment tool for amblyopia, trained improvements in performance must generalise. Here we investigate whether spatial frequency discrimination learning generalises within task to other spatial frequencies, and across task to contrast sensitivity. Before and after training, we measured contrast sensitivity and spatial frequency discrimination (at a range of reference frequencies 1, 2, 4, 8, 16 c/deg). During training, normal and amblyopic observers were divided into three groups. Each group trained on a spatial frequency discrimination task at one reference frequency (2, 4, or 8 c/deg). Normal and amblyopic observers who trained at lower frequencies showed a greater rate of within task learning (at their reference frequency) compared to those trained at higher frequencies. Compared to normals, amblyopic observers showed greater within task learning, at the trained reference frequency. Normal and amblyopic observers showed asymmetrical transfer of learning from high to low spatial frequencies. Both normal and amblyopic subjects showed transfer to contrast sensitivity. The direction of transfer for contrast sensitivity measurements was from the trained spatial frequency to higher frequencies, with the bandwidth and magnitude of transfer greater in the amblyopic observers compared to normals. The findings provide further support for the therapeutic efficacy of this approach and establish general principles that may help develop more effective protocols for the treatment of developmental visual deficits. PMID:20832416
NASA Astrophysics Data System (ADS)
Tissot, P.; Reisinger, A. S.; Besonen, M. R.
2017-12-01
While our understanding of global sea level rise and its budget has made great progress over the past decade, the spatial and temporal variability of relative sea level rise along the coasts still needs to be better understood and quantified. We developed a technique to reduce the confidence intervals associated with relative sea level rise (RSLR) estimates for 15 tide gauges located along the Texas coast for the period 1993-2016. Seasonally detrended monthly mean water levels are highly correlated after removal of station-specific RSLR trends, which allows for the quantification of a common, low frequency oceanic signal. RSLR confidence intervals are reduced from over 1.9 mm/yr, on average 2.3mm, to less than 1.1 mm/yr, on average 0.7 mm/yr after removing this common signal. The resulting RSLR rates range from 3.0 to 8.4 mm/yr. The range is wider than the longer-term rates of 5.3, 3.8 and 1.9 mm/yr measured from north to south by the three National Water Level Observation Network (NWLON) stations covering the study area (over different and longer time spans). The results emphasize the importance of the spatial variability of the vertical land motion component of RSLR. The temporal variability of the coherent oceanic signal is not significantly correlated to the ENSO signal for the study period and is only weakly correlated to the AMO and PDO climate indices. The coherence of the signal is further investigated by comparison with other locations along the Gulf of Mexico and along the Northeast Atlantic coast. The results are discussed while considering strong local processes along the Northwest Gulf of Mexico, such as wind forcing and intermittent eddies and the spatially broader influence of the Gulf Stream. The local significance of the RSLR spatial and temporal differences are discussed in terms of the differences in inundation frequency for nuisance type flooding including comparing the time span to reach a probability of at least one nuisance flood event per year.
NASA Astrophysics Data System (ADS)
Sullivan, R. C.; Pryor, S. C.
2014-06-01
Spatiotemporal variability of fine particle concentrations in Indianapolis, Indiana is quantified using a combination of high temporal resolution measurements at four fixed sites and mobile measurements with instruments attached to bicycles during transects of the city. Average urban PM2.5 concentrations are an average of ˜3.9-5.1 μg m-3 above the regional background. The influence of atmospheric conditions on ambient PM2.5 concentrations is evident with the greatest temporal variability occurring at periods of one day and 5-10 days corresponding to diurnal and synoptic meteorological processes, and lower mean wind speeds are associated with episodes of high PM2.5 concentrations. An anthropogenic signal is also evident. Higher PM2.5 concentrations coincide with morning rush hour, the frequencies of PM2.5 variability co-occur with those for carbon monoxide, and higher extreme concentrations were observed mid-week compared to weekends. On shorter time scales (
The Effect of Ocean Currents on Sea Surface Temperature Anomalies
NASA Technical Reports Server (NTRS)
Stammer, Detlef; Leeuwenburgh, Olwijn
2000-01-01
We investigate regional and global-scale correlations between observed anomalies in sea surface temperature and height. A strong agreement between the two fields is found over a broad range of latitudes for different ocean basins. Both time-longitude plots and wavenumber-frequency spectra suggest an advective forcing of SST anomalies by a first-mode baroclinic wave field on spatial scales down to 400 km and time scales as short as 1 month. Even though the magnitude of the mean background temperature gradient is determining for the effectiveness of the forcing, there is no obvious seasonality that can be detected in the amplitudes of SST anomalies. Instead, individual wave signatures in the SST can in some cases be followed over periods of two years. The phase relationship between SST and SSH anomalies is dependent upon frequency and wavenumber and displays a clear decrease of the phase lag toward higher latitudes where the two fields come into phase at low frequencies. Estimates of the damping coefficient are larger than generally obtained for a purely atmospheric feedback. From a global frequency spectrum a damping time scale of 2-3 month was found. Regionally results are very variable and range from 1 month near strong currents to 10 month at low latitudes and in the sub-polar North Atlantic. Strong agreement is found between the first global EOF modes of 10 day averaged and spatially smoothed SST and SSH grids. The accompanying time series display low frequency oscillations in both fields.
Capture of activation during ventricular arrhythmia using distributed stimulation.
Meunier, Jason M; Ramalingam, Sanjiv; Lin, Shien-Fong; Patwardhan, Abhijit R
2007-04-01
Results of previous studies suggest that pacing strength stimuli can capture activation during ventricular arrhythmia locally near pacing sites. The existence of spatio-temporal distribution of excitable gap during arrhythmia suggests that multiple and timed stimuli delivered over a region may permit capture over larger areas. Our objective in this study was to evaluate the efficacy of using spatially distributed pacing (DP) to capture activation during ventricular arrhythmia. Data were obtained from rabbit hearts which were placed against a lattice of parallel wires through which biphasic pacing stimuli were delivered. Electrical activity was recorded optically. Pacing stimuli were delivered in sequence through the parallel wires starting with the wire closest to the apex and ending with one closest to the base. Inter-stimulus delay was based on conduction velocity. Time-frequency analysis of optical signals was used to determine variability in activation. A decrease in standard deviation of dominant frequencies of activation from a grid of locations that spanned the captured area and a concurrence with paced frequency were used as an index of capture. Results from five animals showed that the average standard deviation decreased from 0.81 Hz during arrhythmia to 0.66 Hz during DP at pacing cycle length of 125 ms (p = 0.03) reflecting decreased spatio-temporal variability in activation during DP. Results of time-frequency analysis during these pacing trials showed agreement between activation and paced frequencies. These results show that spatially distributed and timed stimulation can be used to modify and capture activation during ventricular arrhythmia.
Chamber-core structures for fairing acoustic mitigation
NASA Astrophysics Data System (ADS)
Ardelean, Emil; Williams, Andrew; Korshin, Nicholas; Henderson, Kyle; Lane, Steven; Richard, Robert
2005-05-01
Extreme noise and vibration levels at lift-off and during ascent can damage sensitive payload components. Recently, the Air Force Research Laboratory, Space Vehicles Directorate has investigated a composite structure fabrication approach, called chamber-core, for building payload fairings. Chamber-core offers a strong, lightweight structure with inherent noise attenuation characteristics. It uses one-inch square axial tubes that are sandwiched between inner and outer face-sheets to form a cylindrical fairing structure. These hollow tubes can be used as acoustic dampers to attenuate the amplitude response of low frequency acoustic resonances within the fairing"s volume. A cylindrical, graphite-epoxy chamber-core structure was built to study noise transmission characteristics and to quantify the achievable performance improvement. The cylinder was tested in a semi-reverberant acoustics laboratory using bandlimited random noise at sound pressure levels up to 110 dB. The performance was measured using external and internal microphones. The noise reduction was computed as the ratio of the spatially averaged external response to the spatially averaged interior response. The noise reduction provided by the chamber-core cylinder was measured over three bandwidths, 20 Hz to 500 Hz, 20 Hz to 2000 Hz, and 20 Hz to 5000 Hz. For the bare cylinder with no acoustic resonators, the structure provided approximately 13 dB of attenuation over the 20 Hz to 500 Hz bandwidth. With the axial tubes acting as acoustic resonators at various frequencies over the bandwidth, the noise reduction provided by the cylinder increased to 18.2 dB, an overall increase of 4.8 dB over the bandwidth. Narrow-band reductions greater than 10 dB were observed at specific low frequency acoustic resonances. This was accomplished with virtually no added mass to the composite cylinder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loughran, B; Singh, V; Jain, A
Purpose: Although generalized linear system analytic metrics such as GMTF and GDQE can evaluate performance of the whole imaging system including detector, scatter and focal-spot, a simplified task-specific measured metric may help to better compare detector systems. Methods: Low quantum-noise images of a neuro-vascular stent with a modified ANSI head phantom were obtained from the average of many exposures taken with the high-resolution Micro-Angiographic Fluoroscope (MAF) and with a Flat Panel Detector (FPD). The square of the Fourier Transform of each averaged image, equivalent to the measured product of the system GMTF and the object function in spatial-frequency space, wasmore » then divided by the normalized noise power spectra (NNPS) for each respective system to obtain a task-specific generalized signal-to-noise ratio. A generalized measured relative object detectability (GM-ROD) was obtained by taking the ratio of the integral of the resulting expressions for each detector system to give an overall metric that enables a realistic systems comparison for the given detection task. Results: The GM-ROD provides comparison of relative performance of detector systems from actual measurements of the object function as imaged by those detector systems. This metric includes noise correlations and spatial frequencies relevant to the specific object. Additionally, the integration bounds for the GM-ROD can be selected to emphasis the higher frequency band of each detector if high-resolution image details are to be evaluated. Examples of this new metric are discussed with a comparison of the MAF to the FPD for neuro-vascular interventional imaging. Conclusion: The GM-ROD is a new direct-measured task-specific metric that can provide clinically relevant comparison of the relative performance of imaging systems. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.« less
[Possibilities of magnetotherapy in stabilization of visual function in patients with glaucoma].
Bisvas Shutanto Kumar; Listopadova, N A
1996-01-01
Courses of magnetotherapy (MT) using ATOS device with 33 mT magnetic field induction were administered to 31 patients (43 eyes) with primary open-angle glaucoma with compensated intraocular pressure. The operation mode was intermittent, with 1.0 to 1.5 Hz field rotation frequency by 6 radii. The procedure is administered to a patient in a sitting posture with magnetic inductor held before the eye. The duration of a session is 10 min, a course consists of 10 sessions. Untreated eyes (n = 15) of the same patients were examined for control. The patients were examined before and 4 to 5 months after MT course. Vision acuity improved by 0.16 diopters, on an average, in 29 eyes (96.7%) out of 30 with vision acuity below 1.0 before treatment. Visocontrastometry was carried out using Visokontrastometer-DT device with spatial frequency range from 0.4 to 19 cycle/degree (12 frequencies) and 125 x 125 monitor. The orientation of lattices was horizontal and vertical. The contrasts ranged from 0.03 to 0.9 (12 levels). MT brought about an improvement of spatial contrast sensitivity by at least 7 values of 12 levels in 22 (84.6%) out of 26 eyes and was unchanged in 4 eyes. Visual field was examined using Humphry automated analyzer. A 120-point threshold test was used. After a course of MT, visual field deficit decreased by at least 10% in 31 (72%) out of 43 eyes, increased in 3, and was unchanged in 9 eyes; on an average, visual field deficit decreased by 22.4% vs. the initial value. After 4 to 5 months the changes in the vision acuity and visual field deficit were negligible. In controls these parameters did not appreciably change over the entire follow-up period.
Does Retinal Neurodegeneration Seen in Diabetic Patients Begin in the Insulin Resistance Stage?
Arıkan, Sedat; Erşan, İsmail; Eroğlu, Mustafa; Yılmaz, Mehmet; Tufan, Hasan Ali; Gencer, Baran; Kara, Selçuk; Aşık, Mehmet
2016-12-01
To investigate whether retinal neurodegeneration and impairment in contrast sensitivity (CS), which have been demonstrated to begin in diabetic patients before the presence of signs of diabetic retinal vasculopathy, also occur in the stage of insulin resistance. The average, minimum and sectoral (inferior, superior, inferonasal, superonasal, inferotemporal and superotemporal) thicknesses of the ganglion cell-inner plexiform layer (GCIPL) measured using optical coherence tomography were compared between an insulin-resistant group and control group in order to evaluate the presence of retinal neurodegeneration. The CS of the two groups was also compared according to the logarithmic values measured at spatial frequencies of 1.5, 3, 6, 12 and 18 cycles per degree in photopic light using functional acuity contrast test (FACT). Twenty-five eyes of 25 patients with insulin resistance (insulin resistant group) and 25 eyes of 25 healthy subjects (control group) were included in this study. There were no statistically significant differences between the two groups in any of the spatial frequencies in the FACT. The mean average GCIPL thickness and mean GCIPL thickness in the inferotemporal sector were significantly less in the insulin-resistant group when compared with the control group (mean average GCIPL thicknesses in the insulin-resistant and control groups were 83.6±4.7 µm and 86.7±3.7 µm respectively, p=0.01; mean inferotemporal GCIPL thicknesses in the insulin-resistant and control groups were 83±6.0 µm and 86.7±4.6 µm respectively, p=0.02). Although it may not lead to functional visual impairment such as CS loss, the retinal neurodegeneration seen in diabetic patients may begin in the insulin resistance stage.
Distribution of RF energy emitted by mobile phones in anatomical structures of the brain
NASA Astrophysics Data System (ADS)
Cardis, E.; Deltour, I.; Mann, S.; Moissonnier, M.; Taki, M.; Varsier, N.; Wake, K.; Wiart, J.
2008-06-01
The rapid worldwide increase in mobile phone use in the last decade has generated considerable interest in possible carcinogenic effects of radio frequency (RF). Because exposure to RF from phones is localized, if a risk exists it is likely to be greatest for tumours in regions with greatest energy absorption. The objective of the current paper was to characterize the spatial distribution of RF energy in the brain, using results of measurements made in two laboratories on 110 phones used in Europe or Japan. Most (97-99% depending on frequency) appears to be absorbed in the brain hemisphere on the side where the phone is used, mainly (50-60%) in the temporal lobe. The average relative SARSAR is the specific energy absorption rate i.e. energy absorption rate per unit mass (measured in W kg-1). is highest in the temporal lobe (6-15%, depending on frequency, of the spatial peak SAR in the most exposed region of the brain) and the cerebellum (2-10%) and decreases very rapidly with increasing depth, particularly at higher frequencies. The SAR distribution appears to be fairly similar across phone models, between older and newer phones and between phones with different antenna types and positions. Analyses of risk by location of tumour are therefore important for the interpretation of results of studies of brain tumours in relation to mobile phone use.
Changes of the time-varying percentiles of daily extreme temperature in China
NASA Astrophysics Data System (ADS)
Li, Bin; Chen, Fang; Xu, Feng; Wang, Xinrui
2017-11-01
Identifying the air temperature frequency distributions and evaluating the trends in time-varying percentiles are very important for climate change studies. In order to get a better understanding of the recent temporal and spatial pattern of the temperature changes in China, we have calculated the trends in temporal-varying percentiles of the daily extreme air temperature firstly. Then we divide all the stations to get the spatial patterns for the percentile trends using the average linkage cluster analysis method. To make a comparison, the shifts of trends percentile frequency distribution from 1961-1985 to 1986-2010 are also examined. Important results in three aspects have been achieved: (1) In terms of the trends in temporal-varying percentiles of the daily extreme air temperature, the most intense warming for daily maximum air temperature (Tmax) was detected in the upper percentiles with a significant increasing tendency magnitude (>2.5 °C/50year), and the greatest warming for daily minimum air temperature (Tmin) occurred with very strong trends exceeding 4 °C/50year. (2) The relative coherent spatial patterns for the percentile trends were found, and stations for the whole country had been divided into three clusters. The three primary clusters were distributed regularly to some extent from north to south, indicating the possible large influence of the latitude. (3) The most significant shifts of trends percentile frequency distribution from 1961-1985 to 1986-2010 was found in Tmax. More than half part of the frequency distribution show negative trends less than -0.5 °C/50year in 1961-1985, while showing trends less than 2.5 °C/50year in 1986-2010.
NASA Technical Reports Server (NTRS)
Takahashi, Kazue; Anderson, Brian J.
1992-01-01
Magnetic field measurements made with the AMPTE CCE spacecraft are used to investigate the distribution of ULF energy in the inner magnetosphere. The data base is employed to examine the spatial distribution of ULF energy. The spatial distribution of wave power and spectral structures are used to identify several pulsation types, including multiharmonic toroidal oscillations; equatorial compressional Pc 3 oscillations; second harmonic poloidal oscillations; and nightside compressional oscillations. The frequencies of the toroidal oscillations are applied to determine the statistical radial profile of the plasma mass density and Alfven velocity. A clear signature of the plasma pause in the profiles of these average parameters is found.
Optimal design of tweezer control for chimera states
NASA Astrophysics Data System (ADS)
Omelchenko, Iryna; Omel'chenko, Oleh E.; Zakharova, Anna; Schöll, Eckehard
2018-01-01
Chimera states are complex spatio-temporal patterns which consist of coexisting domains of spatially coherent and incoherent dynamics in systems of coupled oscillators. In small networks, chimera states usually exhibit short lifetimes and erratic drifting of the spatial position of the incoherent domain. A tweezer feedback control scheme can stabilize and fix the position of chimera states. We analyze the action of the tweezer control in small nonlocally coupled networks of Van der Pol and FitzHugh-Nagumo oscillators, and determine the ranges of optimal control parameters. We demonstrate that the tweezer control scheme allows for stabilization of chimera states with different shapes, and can be used as an instrument for controlling the coherent domains size, as well as the maximum average frequency difference of the oscillators.
Raizman, E A; Rasmussen, H Barner; King, L E; Ihwagi, F W; Douglas-Hamilton, I
2013-08-01
The study was conducted to assess the technical feasibility of studying the spatial and temporal interaction of traditionally herded livestock and wildlife using global positioning system (GPS) tracking technology in Northern Kenya. Two types of collars were used on nine cows: radio frequency and global system for mobile communications (GSM) collars and GPS-satellite (SAT) collars. Full results of cattle tracking were available for eight cows (3 GSM and 5 SAT) tracked between July 2008 and September 2010. A cumulative total of 1556 tracking days was recorded over the 17 month period. On average cows walked 10,203 m/day (average total monthly distance walked was 234 km). Significant seasonal differences were found; on average cows walked 9.607 m and 10,392 m per day in the rainy and the dry seasons, respectively. This difference was also significant for total monthly and daily distance walked between the dry and the rainy season. On average cows walked daily 9607 m and 10,392 m on the rainy and the dry season respectively. During the dry months a 48 h cycle was observed with cows walking 15-25 km to water every 2nd day but only 5-8 km/day between watering days. There was a 24% overlap of cattle range with both elephants and zebras. This study demonstrated the feasibility of tracking cattle using radio collars. It shows the complexity of spatial use by cattle and wildlife. Such information can be used to understand the dynamics of disease transmission between livestock and wildlife. Copyright © 2013 Elsevier B.V. All rights reserved.
Assessment of radio frequency exposures in schools, homes, and public places in Belgium.
Verloock, Leen; Joseph, Wout; Goeminne, Francis; Martens, Luc; Verlaek, Mart; Constandt, Kim
2014-12-01
Characterization of exposure from emerging radio frequency (RF) technologies in areas where children are present is important. Exposure to RF electromagnetic fields (EMF) was assessed in three "sensitive" microenvironments; namely, schools, homes, and public places located in urban environments and compared to exposure in offices. In situ assessment was conducted by performing spatial broadband and accurate narrowband measurements, providing 6-min averaged electric-field strengths. A distinction between internal (transmitters that are located indoors) and external (outdoor sources from broadcasting and telecommunication) sources was made. Ninety-four percent of the broadband measurements were below 1 V m(-1). The average and maximal total electric-field values in schools, homes, and public places were 0.2 and 3.2 V m(-1) (WiFi), 0.1 and 1.1 V m(-1) (telecommunication), and 0.6 and 2.4 V m(-1) (telecommunication), respectively, while for offices, average and maximal exposure were 0.9 and 3.3 V m(-1) (telecommunication), satisfying the ICNIRP reference levels. In the schools considered, the highest maximal and average field values were due to internal signals (WiFi). In the homes, public places, and offices considered, the highest maximal and average field values originated from telecommunication signals. Lowest exposures were obtained in homes. Internal sources contributed on average more indoors (31.2%) than outdoors (2.3%), while the average contributions of external sources (broadcast and telecommunication sources) were higher outdoors (97.7%) than at indoor positions (68.8%). FM, GSM, and UMTS dominate the total downlink exposure in the outdoor measurements. In indoor measurements, FM, GSM, and WiFi dominate the total exposure. The average contribution of the emerging technology LTE was only 0.6%.
Tran, Truyet T.; Craven, Ashley P.; Leung, Tsz-Wing; Chat, Sandy W.; Levi, Dennis M.
2016-01-01
Neurons in the early visual cortex are finely tuned to different low-level visual features, forming a multi-channel system analysing the visual image formed on the retina in a parallel manner. However, little is known about the potential ‘cross-talk’ among these channels. Here, we systematically investigated whether stereoacuity, over a large range of target spatial frequencies, can be enhanced by perceptual learning. Using narrow-band visual stimuli, we found that practice with coarse (low spatial frequency) targets substantially improves performance, and that the improvement spreads from coarse to fine (high spatial frequency) three-dimensional perception, generalizing broadly across untrained spatial frequencies and orientations. Notably, we observed an asymmetric transfer of learning across the spatial frequency spectrum. The bandwidth of transfer was broader when training was at a high spatial frequency than at a low spatial frequency. Stereoacuity training is most beneficial when trained with fine targets. This broad transfer of stereoacuity learning contrasts with the highly specific learning reported for other basic visual functions. We also revealed strategies to boost learning outcomes ‘beyond-the-plateau’. Our investigations contribute to understanding the functional properties of the network subserving stereovision. The ability to generalize may provide a key principle for restoring impaired binocular vision in clinical situations. PMID:26909178
Cortical feedback signals generalise across different spatial frequencies of feedforward inputs.
Revina, Yulia; Petro, Lucy S; Muckli, Lars
2017-09-22
Visual processing in cortex relies on feedback projections contextualising feedforward information flow. Primary visual cortex (V1) has small receptive fields and processes feedforward information at a fine-grained spatial scale, whereas higher visual areas have larger, spatially invariant receptive fields. Therefore, feedback could provide coarse information about the global scene structure or alternatively recover fine-grained structure by targeting small receptive fields in V1. We tested if feedback signals generalise across different spatial frequencies of feedforward inputs, or if they are tuned to the spatial scale of the visual scene. Using a partial occlusion paradigm, functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA) we investigated whether feedback to V1 contains coarse or fine-grained information by manipulating the spatial frequency of the scene surround outside an occluded image portion. We show that feedback transmits both coarse and fine-grained information as it carries information about both low (LSF) and high spatial frequencies (HSF). Further, feedback signals containing LSF information are similar to feedback signals containing HSF information, even without a large overlap in spatial frequency bands of the HSF and LSF scenes. Lastly, we found that feedback carries similar information about the spatial frequency band across different scenes. We conclude that cortical feedback signals contain information which generalises across different spatial frequencies of feedforward inputs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Nuclear 3D organization and radiosensitivity
NASA Astrophysics Data System (ADS)
Eidelman, Y. A.; Slanina, S. V.; Aleshchenko, A. V.; Sen'ko, O. V.; Kononkova, A. D.; Andreev, S. G.
2017-01-01
Current mechanisms of radiation-induced chromosomal aberration (CA) formation suggest misrepair of chromosomal lesions being in spatial proximity. In this case CAs have to depend on pattern of chromosomal contacts and on chromosome spatial organization in a cell nucleus. We were interested in whether variation of nucleus 3D organization results in difference of radiation induced CA formation frequency. Experimental data available do not provide information sufficient for definite conclusions. To have more deep insight in this issue we developed the biophysical modeling technique taking into account different levels of chromosome/nuclear organization and radiation damage of DNA and chromosomes. Computer experiments on gamma irradiation were carried out for two types of cells with different 3D organization of nuclei, preferentially peripheral and internal. CA frequencies were found to depend on spatial positioning of chromosomes within a nucleus which determines a pattern of interchromosomal contacts. For individual chromosomes this effect can be more pronounced than for genome averaged. Since significant part of aberrations, for example dicentrics, results in cell death, the proposed technique is capable of evaluating radiosensitivity of cells, both normal and cancer, with the incorporation of 3D genome information. This predictive technology allows to reduce uncertainties of prognosis of biological effects of radiation compared to phenomenological methods and may have variety of biomedical applications, in particular, in cancer radiation therapy.
Kobayashi, Yutaka; Ohtsuki, Hisashi
2014-03-01
Learning abilities are categorized into social (learning from others) and individual learning (learning on one's own). Despite the typically higher cost of individual learning, there are mechanisms that allow stable coexistence of both learning modes in a single population. In this paper, we investigate by means of mathematical modeling how the effect of spatial structure on evolutionary outcomes of pure social and individual learning strategies depends on the mechanisms for coexistence. We model a spatially structured population based on the infinite-island framework and consider three scenarios that differ in coexistence mechanisms. Using the inclusive-fitness method, we derive the equilibrium frequency of social learners and the genetic load of social learning (defined as average fecundity reduction caused by the presence of social learning) in terms of some summary statistics, such as relatedness, for each of the three scenarios and compare the results. This comparative analysis not only reconciles previous models that made contradictory predictions as to the effect of spatial structure on the equilibrium frequency of social learners but also derives a simple mathematical rule that determines the sign of the genetic load (i.e. whether or not social learning contributes to the mean fecundity of the population). Copyright © 2013 Elsevier Inc. All rights reserved.
Campos, Roseane; Santos, Márcio; Tunon, Gabriel; Cunha, Luana; Magalhães, Lucas; Moraes, Juliana; Ramalho, Danielle; Lima, Sanmy; Pacheco, José Antônio; Lipscomb, Michael; Ribeiro de Jesus, Amélia; Pacheco de Almeida, Roque
2017-05-11
Visceral leishmaniasis (VL) is a systemic disease endemic in tropical countries and transmitted through sand flies. In particular, Canis familiaris (or domesticated dogs) are believed to be a major urban reservoir for the parasite causing the disease Leishmania. The average number of human VL cases was 58 per year in the state of Sergipe. The city of Aracaju, capital of Sergipe in Northeastern Brazil, had 159 cases of VL in humans. Correlatively, the percentage of serologically positive dogs for leishmaniasis increased from 4.73% in 2008 to 12.69% in 2014. Thus, these studies aimed to delineate the spatial distribution and epidemiological aspects of human and canine VL as mutually supportive for increased incidence. The number of human cases of VL and the frequency of canine positive serology for VL both increased between 2008 and 2014. Spatial distribution analyses mapped areas of the city with the highest concentration of human and canine VL cases. The neighbourhoods that showed the highest disease frequency were located on the outskirts of the city and in urbanised areas or subjected to development. Exponential increase in VL-positive dogs further suggests that the disease is expanding in urban areas, where it can serve as a reservoir for transmission of dogs to humans via the sand fly vector.
Hopkins, Carl
2011-05-01
In architectural acoustics, noise control and environmental noise, there are often steady-state signals for which it is necessary to measure the spatial average, sound pressure level inside rooms. This requires using fixed microphone positions, mechanical scanning devices, or manual scanning. In comparison with mechanical scanning devices, the human body allows manual scanning to trace out complex geometrical paths in three-dimensional space. To determine the efficacy of manual scanning paths in terms of an equivalent number of uncorrelated samples, an analytical approach is solved numerically. The benchmark used to assess these paths is a minimum of five uncorrelated fixed microphone positions at frequencies above 200 Hz. For paths involving an operator walking across the room, potential problems exist with walking noise and non-uniform scanning speeds. Hence, paths are considered based on a fixed standing position or rotation of the body about a fixed point. In empty rooms, it is shown that a circle, helix, or cylindrical-type path satisfy the benchmark requirement with the latter two paths being highly efficient at generating large number of uncorrelated samples. In furnished rooms where there is limited space for the operator to move, an efficient path comprises three semicircles with 45°-60° separations.
Asten, M.W.; Stephenson, William J.; Hartzell, Stephen
2015-01-01
The SPAC method of processing microtremor noise observations for estimation of Vs profiles has a limitation that the array has circular or triangular symmetry in order to allow spatial (azimuthal) averaging of inter-station coherencies over a constant station separation. Common processing methods allow for station separations to vary by typically ±10% in the azimuthal averaging before degradation of the SPAC spectrum is excessive. A limitation on use of high-wavenumbers in inversions of SPAC spectra to Vs profiles has been the requirement for exact array symmetry to avoid loss of information in the azimuthal averaging step. In this paper we develop a new wavenumber-normalised SPAC method (KRSPAC) where instead of performing averaging of sets of coherency versus frequency spectra and then fitting to a model SPAC spectrum, we interpolate each spectrum to coherency versus k.r, where k and r are wavenumber and station separation respectively, and r may be different for each pair of stations. For fundamental mode Rayleigh-wave energy the model SPAC spectrum to be fitted reduces to Jo(kr). The normalization process changes with each iteration since k is a function of frequency and phase velocity and hence is updated each iteration. The method proves robust and is demonstrated on data acquired in the Santa Clara Valley, CA, (Site STGA) where an asymmetric array having station separations varying by a factor of 2 is compared with a conventional triangular array; a 300-mdeep borehole with a downhole Vs log provides nearby ground truth. The method is also demonstrated on data from the Pleasanton array, CA, where station spacings are irregular and vary from 400 to 1200 m. The KRSPAC method allows inversion of data using kr (unitless) values routinely up to 30, and occasionally up to 60. Thus despite the large and irregular station spacings, this array permits resolution of Vs as fine as 15 m for the near-surface sediments, and down to a maximum depth of 2.5 km.
Towards a High Temporal Frequency Grass Canopy Thermal IR Model for Background Signatures
NASA Technical Reports Server (NTRS)
Ballard, Jerrell R., Jr.; Smith, James A.; Koenig, George G.
2004-01-01
In this paper, we present our first results towards understanding high temporal frequency thermal infrared response from a dense plant canopy and compare the application of our model, driven both by slowly varying, time-averaged meteorological conditions and by high frequency measurements of local and within canopy profiles of relative humidity and wind speed, to high frequency thermal infrared observations. Previously, we have employed three-dimensional ray tracing to compute the intercepted and scattered radiation fluxes and for final scene rendering. For the turbulent fluxes, we employed simple resistance models for latent and sensible heat with one-dimensional profiles of relative humidity and wind speed. Our modeling approach has proven successful in capturing the directional and diurnal variation in background thermal infrared signatures. We hypothesize that at these scales, where the model is typically driven by time-averaged, local meteorological conditions, the primary source of thermal variance arises from the spatial distribution of sunlit and shaded foliage elements within the canopy and the associated radiative interactions. In recent experiments, we have begun to focus on the high temporal frequency response of plant canopies in the thermal infrared at 1 second to 5 minute intervals. At these scales, we hypothesize turbulent mixing plays a more dominant role. Our results indicate that in the high frequency domain, the vertical profile of temperature change is tightly coupled to the within canopy wind speed In the results reported here, the canopy cools from the top down with increased wind velocities and heats from the bottom up at low wind velocities. .
NASA Technical Reports Server (NTRS)
Bunting, Charles F.; Yu, Shih-Pin
2006-01-01
This paper emphasizes the application of numerical methods to explore the ideas related to shielding effectiveness from a statistical view. An empty rectangular box is examined using a hybrid modal/moment method. The basic computational method is presented followed by the results for single- and multiple observation points within the over-moded empty structure. The statistics of the field are obtained by using frequency stirring, borrowed from the ideas connected with reverberation chamber techniques, and extends the ideas of shielding effectiveness well into the multiple resonance regions. The study presented in this paper will address the average shielding effectiveness over a broad spatial sample within the enclosure as the frequency is varied.
Patai, Eva Zita; Buckley, Alice; Nobre, Anna Christina
2013-01-01
A popular model of visual perception states that coarse information (carried by low spatial frequencies) along the dorsal stream is rapidly transmitted to prefrontal and medial temporal areas, activating contextual information from memory, which can in turn constrain detailed input carried by high spatial frequencies arriving at a slower rate along the ventral visual stream, thus facilitating the processing of ambiguous visual stimuli. We were interested in testing whether this model contributes to memory-guided orienting of attention. In particular, we asked whether global, low-spatial frequency (LSF) inputs play a dominant role in triggering contextual memories in order to facilitate the processing of the upcoming target stimulus. We explored this question over four experiments. The first experiment replicated the LSF advantage reported in perceptual discrimination tasks by showing that participants were faster and more accurate at matching a low spatial frequency version of a scene, compared to a high spatial frequency version, to its original counterpart in a forced-choice task. The subsequent three experiments tested the relative contributions of low versus high spatial frequencies during memory-guided covert spatial attention orienting tasks. Replicating the effects of memory-guided attention, pre-exposure to scenes associated with specific spatial memories for target locations (memory cues) led to higher perceptual discrimination and faster response times to identify targets embedded in the scenes. However, either high or low spatial frequency cues were equally effective; LSF signals did not selectively or preferentially contribute to the memory-driven attention benefits to performance. Our results challenge a generalized model that LSFs activate contextual memories, which in turn bias attention and facilitate perception.
Patai, Eva Zita; Buckley, Alice; Nobre, Anna Christina
2013-01-01
A popular model of visual perception states that coarse information (carried by low spatial frequencies) along the dorsal stream is rapidly transmitted to prefrontal and medial temporal areas, activating contextual information from memory, which can in turn constrain detailed input carried by high spatial frequencies arriving at a slower rate along the ventral visual stream, thus facilitating the processing of ambiguous visual stimuli. We were interested in testing whether this model contributes to memory-guided orienting of attention. In particular, we asked whether global, low-spatial frequency (LSF) inputs play a dominant role in triggering contextual memories in order to facilitate the processing of the upcoming target stimulus. We explored this question over four experiments. The first experiment replicated the LSF advantage reported in perceptual discrimination tasks by showing that participants were faster and more accurate at matching a low spatial frequency version of a scene, compared to a high spatial frequency version, to its original counterpart in a forced-choice task. The subsequent three experiments tested the relative contributions of low versus high spatial frequencies during memory-guided covert spatial attention orienting tasks. Replicating the effects of memory-guided attention, pre-exposure to scenes associated with specific spatial memories for target locations (memory cues) led to higher perceptual discrimination and faster response times to identify targets embedded in the scenes. However, either high or low spatial frequency cues were equally effective; LSF signals did not selectively or preferentially contribute to the memory-driven attention benefits to performance. Our results challenge a generalized model that LSFs activate contextual memories, which in turn bias attention and facilitate perception. PMID:23776509
Eccles, B A; Klevecz, R R
1986-06-01
Mitotic frequency in a synchronous culture of mammalian cells was determined fully automatically and in real time using low-intensity phase-contrast microscopy and a newvicon video camera connected to an EyeCom III image processor. Image samples, at a frequency of one per minute for 50 hours, were analyzed by first extracting the high-frequency picture components, then thresholding and probing for annular objects indicative of putative mitotic cells. Both the extraction of high-frequency components and the recognition of rings of varying radii and discontinuities employed novel algorithms. Spatial and temporal relationships between annuli were examined to discern the occurrences of mitoses, and such events were recorded in a computer data file. At present, the automatic analysis is suited for random cell proliferation rate measurements or cell cycle studies. The automatic identification of mitotic cells as described here provides a measure of the average proliferative activity of the cell population as a whole and eliminates more than eight hours of manual review per time-lapse video recording.
NASA Technical Reports Server (NTRS)
Gibson, Harold M.; Vonder Haar, Thomas H.
1990-01-01
Based on relatively high spatial and temporal resolution satelite data collected at 0700 CST and at each hour from 1000 CST to 1700 CST during the summer of 1986, cloud and convection variations over the area from Mississippi east to Georgia and from the Gulf of Mexico north to Tennessee are discussed. The data analyses show an average maximum cloud frequency over the land areas at 1400 local time and a maximum of deep convection one hour later. Both cloudiness and deep convection are found to be at a maximum during the nocturnal hours over the Gulf of Mexico. Cloud frequency shows a strong relationship to small terrain features. Small fresh water bodies have cloud minima relative to the surroundings in the afternoon hours. Higher, steep terrain shows cloud maxima and the adjacent lower terrain exhibits afternoon cloud minima due to a divergence of mountain breeze caused by the valley.
Proposed Cavity for Reduced Slip-Stacking Loss
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, J.; Zwaska, R.
This paper employs a novel dynamical mechanism to improve the performance of slip-stacking. Slip-stacking in an accumulation technique used at Fermilab since 2004 which nearly double the proton intensity. During slip-stacking, the Recycler or the Main Injector stores two particles beams that spatially overlap but have different momenta. The two particle beams are longitudinally focused by two 53 MHz 100 kV RF cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV RF cavity, with a frequency at the double the average of the upper and lower main RF frequencies. In simulation, we findmore » the proposed RF cavity significantly enhances the stable bucket area and reduces slip-stacking losses under reasonable injection scenarios. We quantify and map the stability of the parameter space for any accelerator implementing slip-stacking with the addition of a harmonic RF cavity.« less
NASA Astrophysics Data System (ADS)
Takano, Yukinori; Hirata, Akimasa; Fujiwara, Osamu
Human exposed to electric and/or magnetic fields at low frequencies may cause direct effect such as nerve stimulation and excitation. Therefore, basic restriction is regulated in terms of induced current density in the ICNIRP guidelines and in-situ electric field in the IEEE standard. External electric or magnetic field which does not produce induced quantities exceeding the basic restriction is used as a reference level. The relationship between the basic restriction and reference level for low-frequency electric and magnetic fields has been investigated using European anatomic models, while limited for Japanese model, especially for electric field exposures. In addition, that relationship has not well been discussed. In the present study, we calculated the induced quantities in anatomic Japanese male and female models exposed to electric and magnetic fields at reference level. A quasi static finite-difference time-domain (FDTD) method was applied to analyze this problem. As a result, spatially averaged induced current density was found to be more sensitive to averaging algorithms than that of in-situ electric field. For electric and magnetic field exposure at the ICNIRP reference level, the maximum values of the induced current density for different averaging algorithm were smaller than the basic restriction for most cases. For exposures at the reference level in the IEEE standard, the maximum electric fields in the brain were larger than the basic restriction in the brain while smaller for the spinal cord and heart.
Efficacy of spatial averaging of infrasonic pressure in varying wind speeds.
DeWolf, Scott; Walker, Kristoffer T; Zumberge, Mark A; Denis, Stephane
2013-06-01
Wind noise reduction (WNR) is important in the measurement of infrasound. Spatial averaging theory led to the development of rosette pipe arrays. The efficacy of rosettes decreases with increasing wind speed and only provides a maximum of ~20 dB WNR due to a maximum size limitation. An Optical Fiber Infrasound Sensor (OFIS) reduces wind noise by instantaneously averaging infrasound along the sensor's length. In this study two experiments quantify the WNR achieved by rosettes and OFISs of various sizes and configurations. Specifically, it is shown that the WNR for a circular OFIS 18 m in diameter is the same as a collocated 32-inlet pipe array of the same diameter. However, linear OFISs ranging in length from 30 to 270 m provide a WNR of up to ~30 dB in winds up to 5 m/s. The measured WNR is a logarithmic function of the OFIS length and depends on the orientation of the OFIS with respect to wind direction. OFISs oriented parallel to the wind direction achieve ~4 dB greater WNR than those oriented perpendicular to the wind. Analytical models for the rosette and OFIS are developed that predict the general observed relationships between wind noise reduction, frequency, and wind speed.
Model of human visual-motion sensing
NASA Technical Reports Server (NTRS)
Watson, A. B.; Ahumada, A. J., Jr.
1985-01-01
A model of how humans sense the velocity of moving images is proposed. The model exploits constraints provided by human psychophysics, notably that motion-sensing elements appear tuned for two-dimensional spatial frequency, and by the frequency spectrum of a moving image, namely, that its support lies in the plane in which the temporal frequency equals the dot product of the spatial frequency and the image velocity. The first stage of the model is a set of spatial-frequency-tuned, direction-selective linear sensors. The temporal frequency of the response of each sensor is shown to encode the component of the image velocity in the sensor direction. At the second stage, these components are resolved in order to measure the velocity of image motion at each of a number of spatial locations and spatial frequencies. The model has been applied to several illustrative examples, including apparent motion, coherent gratings, and natural image sequences. The model agrees qualitatively with human perception.
Study of target and non-target interplay in spatial attention task.
Sweeti; Joshi, Deepak; Panigrahi, B K; Anand, Sneh; Santhosh, Jayasree
2018-02-01
Selective visual attention is the ability to selectively pay attention to the targets while inhibiting the distractors. This paper aims to study the targets and non-targets interplay in spatial attention task while subject attends to the target object present in one visual hemifield and ignores the distractor present in another visual hemifield. This paper performs the averaged evoked response potential (ERP) analysis and time-frequency analysis. ERP analysis agrees to the left hemisphere superiority over late potentials for the targets present in right visual hemifield. Time-frequency analysis performed suggests two parameters i.e. event-related spectral perturbation (ERSP) and inter-trial coherence (ITC). These parameters show the same properties for the target present in either of the visual hemifields but show the difference while comparing the activity corresponding to the targets and non-targets. In this way, this study helps to visualise the difference between targets present in the left and right visual hemifields and, also the targets and non-targets present in the left and right visual hemifields. These results could be utilised to monitor subjects' performance in brain-computer interface (BCI) and neurorehabilitation.
NASA Astrophysics Data System (ADS)
Gardezi, A.; Umer, T.; Butt, F.; Young, R. C. D.; Chatwin, C. R.
2016-04-01
A spatial domain optimal trade-off Maximum Average Correlation Height (SPOT-MACH) filter has been previously developed and shown to have advantages over frequency domain implementations in that it can be made locally adaptive to spatial variations in the input image background clutter and normalised for local intensity changes. The main concern for using the SPOT-MACH is its computationally intensive nature. However in the past enhancements techniques were proposed for the SPOT-MACH to make its execution time comparable to its frequency domain counterpart. In this paper a novel approach is discussed which uses VANET parameters coupled with the SPOT-MACH in order to minimise the extensive processing of the large video dataset acquired from the Pakistan motorways surveillance system. The use of VANET parameters gives us an estimation criterion of the flow of traffic on the Pakistan motorway network and acts as a precursor to the training algorithm. The use of VANET in this scenario would contribute heavily towards the computational complexity minimization of the proposed monitoring system.
Cope, Alex J; Sabo, Chelsea; Gurney, Kevin; Vasilaki, Eleni; Marshall, James A R
2016-05-01
We present a novel neurally based model for estimating angular velocity (AV) in the bee brain, capable of quantitatively reproducing experimental observations of visual odometry and corridor-centering in free-flying honeybees, including previously unaccounted for manipulations of behaviour. The model is fitted using electrophysiological data, and tested using behavioural data. Based on our model we suggest that the AV response can be considered as an evolutionary extension to the optomotor response. The detector is tested behaviourally in silico with the corridor-centering paradigm, where bees navigate down a corridor with gratings (square wave or sinusoidal) on the walls. When combined with an existing flight control algorithm the detector reproduces the invariance of the average flight path to the spatial frequency and contrast of the gratings, including deviations from perfect centering behaviour as found in the real bee's behaviour. In addition, the summed response of the detector to a unit distance movement along the corridor is constant for a large range of grating spatial frequencies, demonstrating that the detector can be used as a visual odometer.
Sabo, Chelsea; Gurney, Kevin; Vasilaki, Eleni; Marshall, James A. R.
2016-01-01
We present a novel neurally based model for estimating angular velocity (AV) in the bee brain, capable of quantitatively reproducing experimental observations of visual odometry and corridor-centering in free-flying honeybees, including previously unaccounted for manipulations of behaviour. The model is fitted using electrophysiological data, and tested using behavioural data. Based on our model we suggest that the AV response can be considered as an evolutionary extension to the optomotor response. The detector is tested behaviourally in silico with the corridor-centering paradigm, where bees navigate down a corridor with gratings (square wave or sinusoidal) on the walls. When combined with an existing flight control algorithm the detector reproduces the invariance of the average flight path to the spatial frequency and contrast of the gratings, including deviations from perfect centering behaviour as found in the real bee’s behaviour. In addition, the summed response of the detector to a unit distance movement along the corridor is constant for a large range of grating spatial frequencies, demonstrating that the detector can be used as a visual odometer. PMID:27148968
Liu, Yunbo; Wear, Keith A.; Harris, Gerald R.
2017-01-01
Reliable acoustic characterization is fundamental for patient safety and clinical efficacy during high intensity therapeutic ultrasound (HITU) treatment. Technical challenges, such as measurement uncertainty and signal analysis still exist for HITU exposimetry using ultrasound hydrophones. In this work, four hydrophones were compared for pressure measurement: a robust needle hydrophone, a small PVDF capsule hydrophone and two different fiber-optic hydrophones. The focal waveform and beam distribution of a single element HITU transducer (1.05 MHz and 3.3 MHz) were evaluated. Complex deconvolution between the hydrophone voltage signal and frequency-dependent complex sensitivity was performed to obtain pressure waveform. Compressional pressure, rarefactional pressure, and focal beam distribution were compared up to 10.6/−6.0 MPa (p+ and p−) (1.05 MHz) and 20.65/−7.20 MPa (3.3 MHz). In particular, the effects of spatial averaging, local nonlinear distortion, complex deconvolution and hydrophone damage thresholds were investigated. This study showed an uncertainty of no better than 10–15% on hydrophone-based HITU pressure characterization. PMID:28735734
Liu, Yunbo; Wear, Keith A; Harris, Gerald R
2017-10-01
Reliable acoustic characterization is fundamental for patient safety and clinical efficacy during high-intensity therapeutic ultrasound (HITU) treatment. Technical challenges, such as measurement variation and signal analysis, still exist for HITU exposimetry using ultrasound hydrophones. In this work, four hydrophones were compared for pressure measurement: a robust needle hydrophone, a small polyvinylidene fluoride capsule hydrophone and two fiberoptic hydrophones. The focal waveform and beam distribution of a single-element HITU transducer (1.05 MHz and 3.3 MHz) were evaluated. Complex deconvolution between the hydrophone voltage signal and frequency-dependent complex sensitivity was performed to obtain pressure waveforms. Compressional pressure (p + ), rarefactional pressure (p - ) and focal beam distribution were compared up to 10.6/-6.0 MPa (p + /p - ) (1.05 MHz) and 20.65/-7.20 MPa (3.3 MHz). The effects of spatial averaging, local non-linear distortion, complex deconvolution and hydrophone damage thresholds were investigated. This study showed a variation of no better than 10%-15% among hydrophones during HITU pressure characterization. Published by Elsevier Inc.
Dietz, Mathias; Hohmann, Volker; Jürgens, Tim
2015-01-01
For normal-hearing listeners, speech intelligibility improves if speech and noise are spatially separated. While this spatial release from masking has already been quantified in normal-hearing listeners in many studies, it is less clear how spatial release from masking changes in cochlear implant listeners with and without access to low-frequency acoustic hearing. Spatial release from masking depends on differences in access to speech cues due to hearing status and hearing device. To investigate the influence of these factors on speech intelligibility, the present study measured speech reception thresholds in spatially separated speech and noise for 10 different listener types. A vocoder was used to simulate cochlear implant processing and low-frequency filtering was used to simulate residual low-frequency hearing. These forms of processing were combined to simulate cochlear implant listening, listening based on low-frequency residual hearing, and combinations thereof. Simulated cochlear implant users with additional low-frequency acoustic hearing showed better speech intelligibility in noise than simulated cochlear implant users without acoustic hearing and had access to more spatial speech cues (e.g., higher binaural squelch). Cochlear implant listener types showed higher spatial release from masking with bilateral access to low-frequency acoustic hearing than without. A binaural speech intelligibility model with normal binaural processing showed overall good agreement with measured speech reception thresholds, spatial release from masking, and spatial speech cues. This indicates that differences in speech cues available to listener types are sufficient to explain the changes of spatial release from masking across these simulated listener types. PMID:26721918
A Note on Spatial Averaging and Shear Stresses Within Urban Canopies
NASA Astrophysics Data System (ADS)
Xie, Zheng-Tong; Fuka, Vladimir
2018-04-01
One-dimensional urban models embedded in mesoscale numerical models may place several grid points within the urban canopy. This requires an accurate parametrization for shear stresses (i.e. vertical momentum fluxes) including the dispersive stress and momentum sinks at these points. We used a case study with a packing density of 33% and checked rigorously the vertical variation of spatially-averaged total shear stress, which can be used in a one-dimensional column urban model. We found that the intrinsic spatial average, in which the volume or area of the solid parts are not included in the average process, yield greater time-spatial average of total stress within the canopy and a more evident abrupt change at the top of the buildings than the comprehensive spatial average, in which the volume or area of the solid parts are included in the average.
Measurement of high-degree solar oscillation frequencies
NASA Technical Reports Server (NTRS)
Bachmann, K. T.; Duvall, T. L., Jr.; Harvey, J. W.; Hill, F.
1995-01-01
We present m-averaged solar p- and f-mode oscillation frequencies over the frequency range nu greater than 1.8 and less than 5.0 mHz and the spherical harmonic degree range l greater than or equal to 100 and less than or equal to 1200 from full-disk, 1000 x 1024 pixel, Ca II intensity images collected 1993 June 22-25 with a temporal cadence of 60 s. We itemize the sources and magnitudes of statistical and systematic uncertainties and of small frequency corrections, and we show that our frequencies represent an improvement in accuracy and coverage over previous measurements. Our frequencies agree at the 2 micro Hz level with Mount Wilson frequencies determined for l less than or equal to 600 from full-disk images, and we find systematic offsets of 10-20 micro Hz with respect to frequencies measured from Big Bear and La Palma observations. We give evidence that these latter offsets are indicative of spatial scaling uncertainties associated with the analysis of partial-disk images. In comparison with theory, our p-mode frequencies agree within 10 micro Hz of frequencies predicted by the Los Alamos model but are as much as 100 micro Hz smaller than frequencies predicted by the Denmark and Yale models at degrees near 1000. We also find systematic differences between our n = 0 frequencies and the frequencies closely agreed upon by all three models.
Bradley, Arthur; Xu, Renfeng; Thibos, Larry; Marin, Gildas; Hernandez, Martha
2014-01-01
Purpose To test competing hypotheses (Stiles Crawford pupil apodising or superior imaging of high spatial frequencies by the central pupil) for the pupil size independence of subjective refractions in the presence of primary spherical aberration. Methods Subjective refractions were obtained with a variety of test stimuli (high contrast letters, urban cityscape, high and low spatial frequency gratings) while modulating pupil diameter, levels of primary spherical aberration and pupil apodisation. Subjective refractions were also obtained with low-pass and high-pass stimuli and using “darker” and “sharper” subjective criteria. Results Subjective refractions for stimuli containing high spatial frequencies focus a near paraxial region of the pupil and are affected only slightly by level of Seidel spherical aberration, degree of pupil apodisation and pupil diameter, and generally focused a radius of about 1 to 1.5 mm from the pupil centre. Low spatial frequency refractions focus a marginal region of the pupil, and are significantly affected by level of spherical aberration, amount of pupil apodisation, and pupil size. Clinical refractions that employ the “darker” or “sharper” subjective criteria bias the patient to use lower or higher spatial frequencies respectively. Conclusions In the presence of significant levels of spherical aberration, the pupil size independence of subjective refractions occurs with or without Stiles Crawford apodisation for refractions that optimise high spatial frequency content in the image. If low spatial frequencies are optimised by a subjective refraction, spherical refractive error varies with spherical aberration, pupil size, and level of apodisation. As light levels drop from photopic to scotopic, therefore, we expect a shift from pupil size independent to pupil size dependent subjective refractions. Emphasising a “sharper” criterion during subjective refractions will improve image quality for high spatial frequencies and generate pupil size independent refractions. PMID:24397356
Li, Chen; Cheng, Guanghua; Sedao, Xxx; Zhang, Wei; Zhang, Hao; Faure, Nicolas; Jamon, Damien; Colombier, Jean-Philippe; Stoian, Razvan
2016-05-30
The origin of high-spatial-frequency laser-induced periodic surface structures (HSFL) driven by incident ultrafast laser fields, with their ability to achieve structure resolutions below λ/2, is often obscured by the overlap with regular ripples patterns at quasi-wavelength periodicities. We experimentally demonstrate here employing defined surface topographies that these structures are intrinsically related to surface roughness in the nano-scale domain. Using Zr-based bulk metallic glass (Zr-BMG) and its crystalline alloy (Zr-CA) counterpart formed by thermal annealing from its glassy precursor, we prepared surfaces showing either smooth appearances on thermoplastic BMG or high-density nano-protuberances from randomly distributed embedded nano-crystallites with average sizes below 200 nm on the recrystallized alloy. Upon ultrashort pulse irradiation employing linearly polarized 50 fs, 800 nm laser pulses, the surfaces show a range of nanoscale organized features. The change of topology was then followed under multiple pulse irradiation at fluences around and below the single pulse threshold. While the former material (Zr-BMG) shows a specific high quality arrangement of standard ripples around the laser wavelength, the latter (Zr-CA) demonstrates strong predisposition to form high spatial frequency rippled structures (HSFL). We discuss electromagnetic scenarios assisting their formation based on near-field interaction between particles and field-enhancement leading to structure linear growth. Finite-difference-time-domain simulations outline individual and collective effects of nanoparticles on electromagnetic energy modulation and the feedback processes in the formation of HSFL structures with correlation to regular ripples (LSFL).
Occlusion therapy improves phase-alignment of the cortical response in amblyopia.
Kelly, John P; Tarczy-Hornoch, Kristina; Herlihy, Erin; Weiss, Avery H
2015-09-01
The visual evoked potential (VEP) generated by the amblyopic visual system demonstrates reduced amplitude, prolonged latency, and increased variation in response timing (phase-misalignment). This study examined VEPs before and after occlusion therapy (OT) and whether phase-misalignment can account for the amblyopic VEP deficits. VEPs were recorded to 0.5-4cycles/degree gratings in 10 amblyopic children (2-6years age) before and after OT. Phase-misalignment was measured by Fourier analysis across a limited bandwidth. Signal-to-noise ratios (SNRs) were estimated from amplitude and phase synchrony in the Fourier domain. Responses were compared to VEPs corrected for phase-misalignment (individual epochs shifted in time to correct for the misalignment). Before OT, amblyopic eyes (AE) had significantly more phase-misalignment, latency prolongation, and lower SNR relative to the fellow eye. Phase-misalignment contributed significantly to low SNR but less so to latency delay in the AE. After OT, phase-alignment improved, SNR improved and latency shortened in the AE. Raw averaged waveforms from the AE improved after OT, primarily at higher spatial frequencies. Correcting for phase-misalignment in the AE sharpened VEP peak responses primarily at low spatial frequencies, but could not account for VEP waveform improvements in the AE after OT at higher spatial frequencies. In summary, VEP abnormalities from the AE are associated with phase-misalignment and reduced SNR possibly related to desynchronization of neuronal activity. The effect of OT on VEP responses is greater than that accounted for by phase-misalignment and SNR alone. Copyright © 2014 Elsevier Ltd. All rights reserved.
Umchid, S.; Gopinath, R.; Srinivasan, K.; Lewin, P. A.; Daryoush, A. S.; Bansal, L.; El-Sherif, M.
2009-01-01
The primary objective of this work was to develop and optimize the calibration techniques for ultrasonic hydrophone probes used in acoustic field measurements up to 100 MHz. A dependable, 100 MHz calibration method was necessary to examine the behavior of a sub-millimeter spatial resolution fiber optic (FO) sensor and assess the need for such a sensor as an alternative tool for high frequency characterization of ultrasound fields. Also, it was of interest to investigate the feasibility of using FO probes in high intensity fields such as those employed in HIFU (High Intensity Focused Ultrasound) applications. In addition to the development and validation of a novel, 100 MHz calibration technique the innovative elements of this research include implementation and testing of a prototype FO sensor with an active diameter of about 10 μm that exhibits uniform sensitivity over the considered frequency range and does not require any spatial averaging corrections up to about 75 MHz. The results of the calibration measurements are presented and it is shown that the optimized calibration technique allows the sensitivity of the hydrophone probes to be determined as a virtually continuous function of frequency and is also well suited to verify the uniformity of the FO sensor frequency response. As anticipated, the overall uncertainty of the calibration was dependent on frequency and determined to be about ±12% (±1 dB) up to 40 MHz, ±20% (±1.5 dB) from 40 to 60 MHz and ±25% (±2 dB) from 60 to 100 MHz. The outcome of this research indicates that once fully developed and calibrated, the combined acousto-optic system will constitute a universal reference tool in the wide, 100 MHz bandwidth. PMID:19110289
Spatial correlations of interdecadal variation in global surface temperatures
NASA Technical Reports Server (NTRS)
Mann, Michael E.; Park, Jeffrey
1993-01-01
We have analyzed spatial correlation patterns of interdecadal global surface temperature variability from an empirical perspective. Using multitaper coherence estimates from 140-yr records, we find that correlations between hemispheres are significant at about 95 percent confidence for nonrandomness for most of the frequency band in the 0.06-0.24 cyc/yr range. Coherence estimates of pairs of 100-yr grid-point temperature data series near 5-yr period reveal teleconnection patterns consistent with known patterns of ENSO variability. Significant correlated variability is observed near 15 year period, with the dominant teleconnection pattern largely confined to the Northern Hemisphere. Peak-to-peak Delta-T is at about 0.5 deg, with simultaneous warming and cooling of discrete patches on the earth's surface. A global average of this pattern would largely cancel.
Pattern masking: the importance of remote spatial frequencies and their phase alignment.
Huang, Pi-Chun; Maehara, Goro; May, Keith A; Hess, Robert F
2012-02-16
To assess the effects of spatial frequency and phase alignment of mask components in pattern masking, target threshold vs. mask contrast (TvC) functions for a sine-wave grating (S) target were measured for five types of mask: a sine-wave grating (S), a square-wave grating (Q), a missing fundamental square-wave grating (M), harmonic complexes consisting of phase-scrambled harmonics of a square wave (Qp), and harmonic complexes consisting of phase-scrambled harmonics of a missing fundamental square wave (Mp). Target and masks had the same fundamental frequency (0.46 cpd) and the target was added in phase with the fundamental frequency component of the mask. Under monocular viewing conditions, the strength of masking depends on phase relationships among mask spatial frequencies far removed from that of the target, at least 3 times the target frequency, only when there are common target and mask spatial frequencies. Under dichoptic viewing conditions, S and Q masks produced similar masking to each other and the phase-scrambled masks (Qp and Mp) produced less masking. The results suggest that pattern masking is spatial frequency broadband in nature and sensitive to the phase alignments of spatial components.
Fernandez, Elena; Fuentes, Rosa; Belendez, Augusto; Pascual, Inmaculada
2016-01-01
Holographic transmission gratings with a spatial frequency of 2658 lines/mm and reflection gratings with a spatial frequency of 4553 lines/mm were stored in a polyvinyl alcohol (PVA)/acrylamide (AA) based photopolymer. This material can reach diffraction efficiencies close to 100% for spatial frequencies about 1000 lines/mm. However, for higher spatial frequencies, the diffraction efficiency decreases considerably as the spatial frequency increases. To enhance the material response at high spatial frequencies, a chain transfer agent, the 4,4’-azobis (4-cyanopentanoic acid), ACPA, is added to the composition of the material. Different concentrations of ACPA are incorporated into the main composition of the photopolymer to find the concentration value that provides the highest diffraction efficiency. Moreover, the refractive index modulation and the optical thickness of the transmission and reflection gratings were obtained, evaluated and compared to procure more information about the influence of the ACPA on them. PMID:28773322
Holmes, Amanda; Winston, Joel S; Eimer, Martin
2005-10-01
To investigate the impact of spatial frequency on emotional facial expression analysis, ERPs were recorded in response to low spatial frequency (LSF), high spatial frequency (HSF), and unfiltered broad spatial frequency (BSF) faces with fearful or neutral expressions, houses, and chairs. In line with previous findings, BSF fearful facial expressions elicited a greater frontal positivity than BSF neutral facial expressions, starting at about 150 ms after stimulus onset. In contrast, this emotional expression effect was absent for HSF and LSF faces. Given that some brain regions involved in emotion processing, such as amygdala and connected structures, are selectively tuned to LSF visual inputs, these data suggest that ERP effects of emotional facial expression do not directly reflect activity in these regions. It is argued that higher order neocortical brain systems are involved in the generation of emotion-specific waveform modulations. The face-sensitive N170 component was neither affected by emotional facial expression nor by spatial frequency information.
Separate channels for the analysis of the shape and the movement of moving visual stimulus.
Tolhurst, D J
1973-06-01
1. The effects of temporal modulation on the properties of spatial frequency channels have been investigated using adaptation.2. Adapting to drifting sinusoidal gratings caused threshold elevation that was both spatial frequency and direction specific. Little systematic difference was found between the band widths of the elevation curves for drifting and stationary gratings.3. It was confirmed that adaptation fails to reveal channels at low spatial frequencies when stationary gratings are used. However, channels were revealed at frequencies at least as low as 0.66 c/deg when the test gratings were made to move. These channels are adapted only a little by stationary gratings, confirming their dependence on movement.4. The existence of movement-sensitive channels at low spatial frequencies explains the well known observation that temporal modulation greatly increases the sensitivity of the visual system to low spatial frequencies.5. Temporal modulation was effective at revealing these channels only when the flicker or movement of the test patterns was apparent to the observer; only at low spatial frequencies did patterns, modulated at low rates, actually appear to be temporarily modulated at threshold. At higher spatial frequencies, they were indistinguishable from stationary patterns until the contrast was some way above the detection threshold.6. It is suggested, therefore, that the movement-sensitive channels are responsible for signalling the occurrence of movement; the channels at higher spatial frequencies give no information about temporal changes. These two systems of channels are compared to the Y- and X-cells respectively of the cat.
NASA Astrophysics Data System (ADS)
Di Vittorio, Alan V.; Negrón-Juárez, Robinson I.; Higuchi, Niro; Chambers, Jeffrey Q.
2014-03-01
Debate continues over the adequacy of existing field plots to sufficiently capture Amazon forest dynamics to estimate regional forest carbon balance. Tree mortality dynamics are particularly uncertain due to the difficulty of observing large, infrequent disturbances. A recent paper (Chambers et al 2013 Proc. Natl Acad. Sci. 110 3949-54) reported that Central Amazon plots missed 9-17% of tree mortality, and here we address ‘why’ by elucidating two distinct mortality components: (1) variation in annual landscape-scale average mortality and (2) the frequency distribution of the size of clustered mortality events. Using a stochastic-empirical tree growth model we show that a power law distribution of event size (based on merged plot and satellite data) is required to generate spatial clustering of mortality that is consistent with forest gap observations. We conclude that existing plots do not sufficiently capture losses because their placement, size, and longevity assume spatially random mortality, while mortality is actually distributed among differently sized events (clusters of dead trees) that determine the spatial structure of forest canopies.
Cabrera, Alvaro Fuentes; Hoffmann, Pablo Faundez
2010-01-01
This study is focused on the single-trial classification of auditory event-related potentials elicited by sound stimuli from different spatial directions. Five naϊve subjects were asked to localize a sound stimulus reproduced over one of 8 loudspeakers placed in a circular array, equally spaced by 45°. The subject was seating in the center of the circular array. Due to the complexity of an eight classes classification, our approach consisted on feeding our classifier with two classes, or spatial directions, at the time. The seven chosen pairs were 0°, which was the loudspeaker directly in front of the subject, with all the other seven directions. The discrete wavelet transform was used to extract features in the time-frequency domain and a support vector machine performed the classification procedure. The average accuracy over all subjects and all pair of spatial directions was 76.5%, σ = 3.6. The results of this study provide evidence that the direction of a sound is encoded in single-trial auditory event-related potentials.
Zeitoun, Jack H.; Kim, Hyungtae
2017-01-01
Binocular mechanisms for visual processing are thought to enhance spatial acuity by combining matched input from the two eyes. Studies in the primary visual cortex of carnivores and primates have confirmed that eye-specific neuronal response properties are largely matched. In recent years, the mouse has emerged as a prominent model for binocular visual processing, yet little is known about the spatial frequency tuning of binocular responses in mouse visual cortex. Using calcium imaging in awake mice of both sexes, we show that the spatial frequency preference of cortical responses to the contralateral eye is ∼35% higher than responses to the ipsilateral eye. Furthermore, we find that neurons in binocular visual cortex that respond only to the contralateral eye are tuned to higher spatial frequencies. Binocular neurons that are well matched in spatial frequency preference are also matched in orientation preference. In contrast, we observe that binocularly mismatched cells are more mismatched in orientation tuning. Furthermore, we find that contralateral responses are more direction-selective than ipsilateral responses and are strongly biased to the cardinal directions. The contralateral bias of high spatial frequency tuning was found in both awake and anesthetized recordings. The distinct properties of contralateral cortical responses may reflect the functional segregation of direction-selective, high spatial frequency-preferring neurons in earlier stages of the central visual pathway. Moreover, these results suggest that the development of binocularity and visual acuity may engage distinct circuits in the mouse visual system. SIGNIFICANCE STATEMENT Seeing through two eyes is thought to improve visual acuity by enhancing sensitivity to fine edges. Using calcium imaging of cellular responses in awake mice, we find surprising asymmetries in the spatial processing of eye-specific visual input in binocular primary visual cortex. The contralateral visual pathway is tuned to higher spatial frequencies than the ipsilateral pathway. At the highest spatial frequencies, the contralateral pathway strongly prefers to respond to visual stimuli along the cardinal (horizontal and vertical) axes. These results suggest that monocular, and not binocular, mechanisms set the limit of spatial acuity in mice. Furthermore, they suggest that the development of visual acuity and binocularity in mice involves different circuits. PMID:28924011
Miao, Minmin; Zeng, Hong; Wang, Aimin; Zhao, Changsen; Liu, Feixiang
2017-02-15
Common spatial pattern (CSP) is most widely used in motor imagery based brain-computer interface (BCI) systems. In conventional CSP algorithm, pairs of the eigenvectors corresponding to both extreme eigenvalues are selected to construct the optimal spatial filter. In addition, an appropriate selection of subject-specific time segments and frequency bands plays an important role in its successful application. This study proposes to optimize spatial-frequency-temporal patterns for discriminative feature extraction. Spatial optimization is implemented by channel selection and finding discriminative spatial filters adaptively on each time-frequency segment. A novel Discernibility of Feature Sets (DFS) criteria is designed for spatial filter optimization. Besides, discriminative features located in multiple time-frequency segments are selected automatically by the proposed sparse time-frequency segment common spatial pattern (STFSCSP) method which exploits sparse regression for significant features selection. Finally, a weight determined by the sparse coefficient is assigned for each selected CSP feature and we propose a Weighted Naïve Bayesian Classifier (WNBC) for classification. Experimental results on two public EEG datasets demonstrate that optimizing spatial-frequency-temporal patterns in a data-driven manner for discriminative feature extraction greatly improves the classification performance. The proposed method gives significantly better classification accuracies in comparison with several competing methods in the literature. The proposed approach is a promising candidate for future BCI systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Jemel, Boutheina; Mimeault, Daniel; Saint-Amour, Dave; Hosein, Anthony; Mottron, Laurent
2010-06-01
Despite the vast amount of behavioral data showing a pronounced tendency in individuals with autism spectrum disorder (ASD) to process fine visual details, much less is known about the neurophysiological characteristics of spatial vision in ASD. Here, we address this issue by assessing the contrast sensitivity response properties of the early visual-evoked potentials (VEPs) to sine-wave gratings of low, medium and high spatial frequencies in adults with ASD and in an age- and IQ-matched control group. Our results show that while VEP contrast responses to low and high spatial frequency gratings did not differ between ASD and controls, early VEPs to mid spatial frequency gratings exhibited similar response characteristics as those to high spatial frequency gratings in ASD. Our findings show evidence for an altered functional segregation of early visual channels, especially those responsible for processing mid- and high-frequency spatial scales.
NASA Astrophysics Data System (ADS)
Su, Qi; Li, Aming; Wang, Long
2017-02-01
Spatial reciprocity is generally regarded as a positive rule facilitating the evolution of cooperation. However, a few recent studies show that, in the snowdrift game, spatial structure still could be detrimental to cooperation. Here we propose a model of multiple interactive dynamics, where each individual can cooperate and defect simultaneously against different neighbors. We realize individuals' multiple interactions simply by endowing them with strategies relevant to probabilities, and every one decides to cooperate or defect with a probability. With multiple interactive dynamics, the cooperation level in square lattices is higher than that in the well-mixed case for a wide range of cost-to-benefit ratio r, implying that spatial structure favors cooperative behavior in the snowdrift game. Moreover, in square lattices, the most favorable strategy follows a simple relation of r, which confers theoretically the average evolutionary frequency of cooperative behavior. We further extend our study to various homogeneous and heterogeneous networks, which demonstrates the robustness of our results. Here multiple interactive dynamics stabilizes the positive role of spatial structure on the evolution of cooperation and individuals' distinct reactions to different neighbors can be a new line in understanding the emergence of cooperation.
Lee, Jaeyoung; Yasmin, Shamsunnahar; Eluru, Naveen; Abdel-Aty, Mohamed; Cai, Qing
2018-02-01
In traffic safety literature, crash frequency variables are analyzed using univariate count models or multivariate count models. In this study, we propose an alternative approach to modeling multiple crash frequency dependent variables. Instead of modeling the frequency of crashes we propose to analyze the proportion of crashes by vehicle type. A flexible mixed multinomial logit fractional split model is employed for analyzing the proportions of crashes by vehicle type at the macro-level. In this model, the proportion allocated to an alternative is probabilistically determined based on the alternative propensity as well as the propensity of all other alternatives. Thus, exogenous variables directly affect all alternatives. The approach is well suited to accommodate for large number of alternatives without a sizable increase in computational burden. The model was estimated using crash data at Traffic Analysis Zone (TAZ) level from Florida. The modeling results clearly illustrate the applicability of the proposed framework for crash proportion analysis. Further, the Excess Predicted Proportion (EPP)-a screening performance measure analogous to Highway Safety Manual (HSM), Excess Predicted Average Crash Frequency is proposed for hot zone identification. Using EPP, a statewide screening exercise by the various vehicle types considered in our analysis was undertaken. The screening results revealed that the spatial pattern of hot zones is substantially different across the various vehicle types considered. Copyright © 2017 Elsevier Ltd. All rights reserved.
Controlling Energy Radiations of Electromagnetic Waves via Frequency Coding Metamaterials.
Wu, Haotian; Liu, Shuo; Wan, Xiang; Zhang, Lei; Wang, Dan; Li, Lianlin; Cui, Tie Jun
2017-09-01
Metamaterials are artificial structures composed of subwavelength unit cells to control electromagnetic (EM) waves. The spatial coding representation of metamaterial has the ability to describe the material in a digital way. The spatial coding metamaterials are typically constructed by unit cells that have similar shapes with fixed functionality. Here, the concept of frequency coding metamaterial is proposed, which achieves different controls of EM energy radiations with a fixed spatial coding pattern when the frequency changes. In this case, not only different phase responses of the unit cells are considered, but also different phase sensitivities are also required. Due to different frequency sensitivities of unit cells, two units with the same phase response at the initial frequency may have different phase responses at higher frequency. To describe the frequency coding property of unit cell, digitalized frequency sensitivity is proposed, in which the units are encoded with digits "0" and "1" to represent the low and high phase sensitivities, respectively. By this merit, two degrees of freedom, spatial coding and frequency coding, are obtained to control the EM energy radiations by a new class of frequency-spatial coding metamaterials. The above concepts and physical phenomena are confirmed by numerical simulations and experiments.
Spatial-frequency spectrum of patterns changes the visibility of spatial-phase differences
NASA Technical Reports Server (NTRS)
Lawton, T. B.
1985-01-01
It is shown that spatial-frequency components over a 4-octave range affected the visibility of spatial-phase differences. Contrast thresholds were measured for discrimination between two (+45- and -45-deg) spatial phases of a sinusoidal test grating added to a background grating. The background could contain one or several sinusoidal components, all in 0-deg phase. Phase differences between the test and the background were visible at lower contrasts when test and background frequencies were harmonically related than when they were not, when test and background frequencies were within 1 octave than when they were farther apart, when the fundamental frequency of the background was low than when it was high, and for some discriminations more than for others, after practice. The visibility of phase differences was not affected by additional components in the background if the fundamental and difference frequencies of the background remained unchanged. Observers' reports of their strategies gave information about the types of attentive processing that were used to discriminate phase differences. Attentive processing facilitated phase discrimination for multifrequency gratings spanning a much wider range of spatial frequencies than would be possible by using only local preattentive processing. These results were consistent with the visibility of phase differences being processed by some combination of even- and odd-symmetric simple cells tuned to a wide range of different spatial frequencies.
2009-03-30
seeded with 15 W of single-frequency laser light at 1064 nm and cladding -pumped of 700 W in the forward direction and 300 W in the opposite direction...57-W single-mode phosphate fiber laser Our early studies of phosphate fiber lasers taught us that adding an air-hole to the inner cladding and... cladding -pumped with a fiber-coupled laser diode at 977 nm through a dichroic beam splitter placed on the OC side. The fiber ends were cooled using the
Broadband interferometric characterization of divergence and spatial chirp.
Meier, Amanda K; Iliev, Marin; Squier, Jeff A; Durfee, Charles G
2015-09-01
We demonstrate a spectral interferometric method to characterize lateral and angular spatial chirp to optimize intensity localization in spatio-temporally focused ultrafast beams. Interference between two spatially sheared beams in an interferometer will lead to straight fringes if the wavefronts are curved. To produce reference fringes, we delay one arm relative to another in order to measure fringe rotation in the spatially resolved spectral interferogram. With Fourier analysis, we can obtain frequency-resolved divergence. In another arrangement, we spatially flip one beam relative to the other, which allows the frequency-dependent beamlet direction (angular spatial chirp) to be measured. Blocking one beam shows the spatial variation of the beamlet position with frequency (i.e., the lateral spatial chirp).
A Theory of the Visual System Biology Underlying Development of Spatial Frequency Lateralization
ERIC Educational Resources Information Center
Howard, Mary F.; Reggia, James A.
2007-01-01
The spatial frequency hypothesis contends that performance differences between the hemispheres on various visuospatial tasks are attributable to lateralized processing of the spatial frequency content of visual stimuli. Hellige has proposed that such lateralization could arise during infant development from the earlier maturation of the right…
Muthukumaraswamy, Suresh D; Singh, Krish D
2008-05-01
In this study, the spatial and temporal frequency tuning characteristics of the MEG gamma (40-60 Hz) rhythm and the BOLD response in primary visual cortex were measured and compared. In an identical MEG/fMRI paradigm, 10 participants viewed reversing square wave gratings at 2 spatial frequencies [0.5 and 3 cycles per degree (cpd)] reversing at 5 temporal frequencies (0, 1 6, 10, 15 Hz). Three-dimensional images of MEG source power were generated with synthetic aperture magnetometry (SAM) and showed a high degree of spatial correspondence with BOLD responses in primary visual cortex with a mean spatial separation of 6.5 mm, but the two modalities showed different tuning characteristics. The gamma rhythm showed a clear increase in induced power for the high spatial frequency stimulus while BOLD showed no difference in activity for the two spatial frequencies used. Both imaging modalities showed a general increase of activity with temporal frequency, however, BOLD plateaued around 6-10 Hz while the MEG generally increased with a dip exhibited at 6 Hz. These results demonstrate that the two modalities may show activation in similar spatial locations but that the functional pattern of these activations may differ in a complex manner, suggesting that they may be tuned to different aspects of neuronal activity.
Finneran, James J; Schlundt, Carolyn E
2007-07-01
Studies of underwater hearing are often hampered by the behavior of sound waves in small experimental tanks. At lower frequencies, tank dimensions are often not sufficient for free field conditions, resulting in large spatial variations of sound pressure. These effects may be mitigated somewhat by increasing the frequency bandwidth of the sound stimulus, so effects of multipath interference average out over many frequencies. In this study, acoustic fields and bottlenose dolphin (Tursiops truncatus) hearing thresholds were compared for pure tone and frequency modulated signals. Experiments were conducted in a vinyl-walled, seawater-filled pool approximately 3.7 x 6 x 1.5 m. Acoustic signals were pure tone and linear and sinusoidal frequency modulated tones with bandwidths/modulation depths of 1%, 2%, 5%, 10%, and 20%. Thirteen center frequencies were tested between 1 and 100 kHz. Acoustic fields were measured (without the dolphin present) at three water depths over a 60 x 65 cm grid with a 5-cm spacing. Hearing thresholds were measured using a behavioral response paradigm and up/down staircase technique. The use of FM signals significantly improved the sound field without substantially affecting the measured hearing thresholds.
Multivariate spatial models of excess crash frequency at area level: case of Costa Rica.
Aguero-Valverde, Jonathan
2013-10-01
Recently, areal models of crash frequency have being used in the analysis of various area-wide factors affecting road crashes. On the other hand, disease mapping methods are commonly used in epidemiology to assess the relative risk of the population at different spatial units. A natural next step is to combine these two approaches to estimate the excess crash frequency at area level as a measure of absolute crash risk. Furthermore, multivariate spatial models of crash severity are explored in order to account for both frequency and severity of crashes and control for the spatial correlation frequently found in crash data. This paper aims to extent the concept of safety performance functions to be used in areal models of crash frequency. A multivariate spatial model is used for that purpose and compared to its univariate counterpart. Full Bayes hierarchical approach is used to estimate the models of crash frequency at canton level for Costa Rica. An intrinsic multivariate conditional autoregressive model is used for modeling spatial random effects. The results show that the multivariate spatial model performs better than its univariate counterpart in terms of the penalized goodness-of-fit measure Deviance Information Criteria. Additionally, the effects of the spatial smoothing due to the multivariate spatial random effects are evident in the estimation of excess equivalent property damage only crashes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sugita, Yuko; Araki, Fumiyuki; Chaya, Taro; Kawano, Kenji; Furukawa, Takahisa; Miura, Kenichiro
2015-01-01
The ribbon synapse is a specialized synaptic structure in the retinal outer plexiform layer where visual signals are transmitted from photoreceptors to the bipolar and horizontal cells. This structure is considered important in high-efficiency signal transmission; however, its role in visual signal processing is unclear. In order to understand its role in visual processing, the present study utilized Pikachurin-null mutant mice that show improper formation of the photoreceptor ribbon synapse. We examined the initial and late phases of the optokinetic responses (OKRs). The initial phase was examined by measuring the open-loop eye velocity of the OKRs to sinusoidal grating patterns of various spatial frequencies moving at various temporal frequencies for 0.5 s. The mutant mice showed significant initial OKRs with a spatiotemporal frequency tuning (spatial frequency, 0.09 ± 0.01 cycles/°; temporal frequency, 1.87 ± 0.12 Hz) that was slightly different from the wild-type mice (spatial frequency, 0.11 ± 0.01 cycles/°; temporal frequency, 1.66 ± 0.12 Hz). The late phase of the OKRs was examined by measuring the slow phase eye velocity of the optokinetic nystagmus induced by the sinusoidal gratings of various spatiotemporal frequencies moving for 30 s. We found that the optimal spatial and temporal frequencies of the mutant mice (spatial frequency, 0.11 ± 0.02 cycles/°; temporal frequency, 0.81 ± 0.24 Hz) were both lower than those in the wild-type mice (spatial frequency, 0.15 ± 0.02 cycles/°; temporal frequency, 1.93 ± 0.62 Hz). These results suggest that the ribbon synapse modulates the spatiotemporal frequency tuning of visual processing along the ON pathway by which the late phase of OKRs is mediated.
Sugita, Yuko; Araki, Fumiyuki; Chaya, Taro; Kawano, Kenji; Furukawa, Takahisa; Miura, Kenichiro
2015-01-01
The ribbon synapse is a specialized synaptic structure in the retinal outer plexiform layer where visual signals are transmitted from photoreceptors to the bipolar and horizontal cells. This structure is considered important in high-efficiency signal transmission; however, its role in visual signal processing is unclear. In order to understand its role in visual processing, the present study utilized Pikachurin-null mutant mice that show improper formation of the photoreceptor ribbon synapse. We examined the initial and late phases of the optokinetic responses (OKRs). The initial phase was examined by measuring the open-loop eye velocity of the OKRs to sinusoidal grating patterns of various spatial frequencies moving at various temporal frequencies for 0.5 s. The mutant mice showed significant initial OKRs with a spatiotemporal frequency tuning (spatial frequency, 0.09 ± 0.01 cycles/°; temporal frequency, 1.87 ± 0.12 Hz) that was slightly different from the wild-type mice (spatial frequency, 0.11 ± 0.01 cycles/°; temporal frequency, 1.66 ± 0.12 Hz). The late phase of the OKRs was examined by measuring the slow phase eye velocity of the optokinetic nystagmus induced by the sinusoidal gratings of various spatiotemporal frequencies moving for 30 s. We found that the optimal spatial and temporal frequencies of the mutant mice (spatial frequency, 0.11 ± 0.02 cycles/°; temporal frequency, 0.81 ± 0.24 Hz) were both lower than those in the wild-type mice (spatial frequency, 0.15 ± 0.02 cycles/°; temporal frequency, 1.93 ± 0.62 Hz). These results suggest that the ribbon synapse modulates the spatiotemporal frequency tuning of visual processing along the ON pathway by which the late phase of OKRs is mediated. PMID:25955222
NASA Astrophysics Data System (ADS)
Kim, Hyunjun; Parsons, Stephen; Hopwood, Jeffrey
2018-01-01
A proto-metamaterial structure creates periodic microplasma in three-dimensions within a sub-wavelength volume. A typical implementation consists of a 3 × 3 × 3 rectangular array of 2.4 GHz split ring resonators with each resonator’s split forming a 150 μm discharge gap. All 27 plasmas can be simultaneously ignited in argon up to 260 Torr and sustained by 50 W of radiation power at 650 Torr. Periodic microplasma formation alters the original properties of the material as demonstrated by the electromagnetic transmission spectra between 2.1 and 2.6 GHz with and without plasma. The average electron density of microplasmas at 650 Torr is estimated to be 2-5 × 1019 m-3 by comparing simulated and measured microwave transmission spectra. In addition, both simulation and experimental results demonstrate that the spatial variation of plasma is configurable according to coupled mode theory. Therefore, this structure allows spatially adjustable plasma creation through frequency-selective electromagnetic coupling.
Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.
Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye
2016-07-01
Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides.
NASA Astrophysics Data System (ADS)
Salinas, J. L.; Nester, T.; Komma, J.; Bloeschl, G.
2017-12-01
Generation of realistic synthetic spatial rainfall is of pivotal importance for assessing regional hydroclimatic hazard as the input for long term rainfall-runoff simulations. The correct reproduction of observed rainfall characteristics, such as regional intensity-duration-frequency curves, and spatial and temporal correlations is necessary to adequately model the magnitude and frequency of the flood peaks, by reproducing antecedent soil moisture conditions before extreme rainfall events, and joint probability of flood waves at confluences. In this work, a modification of the model presented by Bardossy and Platte (1992), where precipitation is first modeled on a station basis as a multivariate autoregressive model (mAr) in a Normal space. The spatial and temporal correlation structures are imposed in the Normal space, allowing for a different temporal autocorrelation parameter for each station, and simultaneously ensuring the positive-definiteness of the correlation matrix of the mAr errors. The Normal rainfall is then transformed to a Gamma-distributed space, with parameters varying monthly according to a sinusoidal function, in order to adapt to the observed rainfall seasonality. One of the main differences with the original model is the simulation time-step, reduced from 24h to 6h. Due to a larger availability of daily rainfall data, as opposite to sub-daily (e.g. hourly), the parameters of the Gamma distributions are calibrated to reproduce simultaneously a series of daily rainfall characteristics (mean daily rainfall, standard deviations of daily rainfall, and 24h intensity-duration-frequency [IDF] curves), as well as other aggregated rainfall measures (mean annual rainfall, and monthly rainfall). The calibration of the spatial and temporal correlation parameters is performed in a way that the catchment-averaged IDF curves aggregated at different temporal scales fit the measured ones. The rainfall model is used to generate 10.000 years of synthetic precipitation, fed into a rainfall-runoff model to derive the flood frequency in the Tirolean Alps in Austria. Given the number of generated events, the simulation framework is able to generate a large variety of rainfall patterns, as well as reproduce the variograms of relevant extreme rainfall events in the region of interest.
Shioiri, Satoshi; Matsumiya, Kazumichi
2009-05-29
We investigated spatiotemporal characteristics of motion mechanisms using a new type of motion aftereffect (MAE) we found. Our stimulus comprised two superimposed sinusoidal gratings with different spatial frequencies. After exposure to the moving stimulus, observers perceived the MAE in the static test in the direction opposite to that of the high spatial frequency grating even when low spatial frequency motion was perceived during adaptation. In contrast, in the flicker test, the MAE was perceived in the direction opposite to that of the low spatial frequency grating. These MAEs indicate that two different motion systems contribute to motion perception and can be isolated by using different test stimuli. Using a psychophysical technique based on the MAE, we investigated the differences between the two motion mechanisms. The results showed that the static MAE is the aftereffect of the motion system with a high spatial and low temporal frequency tuning (slow motion detector) and the flicker MAE is the aftereffect of the motion system with a low spatial and high temporal frequency tuning (fast motion detector). We also revealed that the two motion detectors differ in orientation tuning, temporal frequency tuning, and sensitivity to relative motion.
The Role of Low-Spatial Frequencies in Lexical Decision and Masked Priming
ERIC Educational Resources Information Center
Boden, C.; Giaschi, D.
2009-01-01
Spatial frequency filtering was used to test the hypotheses that low-spatial frequency information in printed text can: (1) lead to a rapid lexical decision or (2) facilitate word recognition. Adult proficient readers made lexical decisions in unprimed and masked repetition priming experiments with unfiltered, low-pass, high-pass and notch…
The Development of Spatial Frequency Biases in Face Recognition
ERIC Educational Resources Information Center
Leonard, Hayley C.; Karmiloff-Smith, Annette; Johnson, Mark H.
2010-01-01
Previous research has suggested that a mid-band of spatial frequencies is critical to face recognition in adults, but few studies have explored the development of this bias in children. We present a paradigm adapted from the adult literature to test spatial frequency biases throughout development. Faces were presented on a screen with particular…
NASA Astrophysics Data System (ADS)
Savran, W. H.; Louie, J. N.; Pullammanappallil, S.; Pancha, A.
2011-12-01
When deterministically modeling the propagation of seismic waves, shallow shear-wave velocity plays a crucial role in predicting shaking effects such as peak ground velocity (PGV). The Clark County Parcel Map provides us with a data set of geotechnical velocities in Las Vegas Valley, at an unprecedented level of detail. Las Vegas Valley is a basin with similar geologic properties to some areas of Southern California. We analyze elementary spatial statistical properties of the Parcel Map, along with calculating its spatial variability. We then investigate these spatial statistics from the PGV results computed from two geotechnical models that incorporate the Parcel Map as parameters. Plotting a histogram of the Parcel Map 30-meter depth-averaged shear velocity (Vs30) values shows the data to approximately fit a bimodal normal distribution with μ1 = 400 m/s, σ1 = 76 m/s, μ2 = 790 m/s, σ2 = 149 m/s, and p = 0.49., where μ is the mean, σ is standard deviation, and p is the probability mixing factor for the bimodal distribution. Based on plots of spatial power spectra, the Parcel Map appears to be fractal over the second and third decades, in kilometers. The spatial spectra possess the same fractal dimension in the N-S and the E-W directions, indicating isotropic scale invariance. We configured finite-difference wave propagation models at 0.5 Hz with LLNL's E3D code, utilizing the Parcel Map as input parameters to compute a PGV data set from a scenario earthquake (Black Hills M6.5). The resulting PGV is fractal over the same spatial frequencies as the Vs30 data sets associated with their respective models. The fractal dimension is systematically lower in all of the PGV maps as opposed to the Vs30 maps, showing that the PGV maps are richer in higher spatial frequencies. This is potentially caused by a lens focusing effects on seismic waves due to spatial heterogeneity in site conditions.
Zahabi, Sacha; Arguin, Martin
2014-04-01
The present study investigated the joint impact of target-flanker similarity and of spatial frequency content on the crowding effect in letter identification. We presented spatial frequency filtered letters to neurologically intact non-dyslexic readers while manipulating target-flanker distance, target eccentricity and target-flanker confusability (letter similarity metric based on published letter confusion matrices). The results show that high target-flanker confusability magnifies crowding. They also reveal an intricate pattern of interactions of the spatial frequency content of the stimuli with target eccentricity, flanker distance and similarity. The findings are congruent with the notion that crowding results from the inappropriate pooling of target and flanker features and that this integration is more likely to match a response template at a subsequent decision stage with similar than dissimilar flankers. In addition, the evidence suggests that crowding from similar flankers is biased towards relatively high spatial frequencies and that crowding shifts towards lower spatial frequencies as target eccentricity is increased. Copyright © 2014 Elsevier B.V. All rights reserved.
Spatial averaging for small molecule diffusion in condensed phase environments
NASA Astrophysics Data System (ADS)
Plattner, Nuria; Doll, J. D.; Meuwly, Markus
2010-07-01
Spatial averaging is a new approach for sampling rare-event problems. The approach modifies the importance function which improves the sampling efficiency while keeping a defined relation to the original statistical distribution. In this work, spatial averaging is applied to multidimensional systems for typical problems arising in physical chemistry. They include (I) a CO molecule diffusing on an amorphous ice surface, (II) a hydrogen molecule probing favorable positions in amorphous ice, and (III) CO migration in myoglobin. The systems encompass a wide range of energy barriers and for all of them spatial averaging is found to outperform conventional Metropolis Monte Carlo. It is also found that optimal simulation parameters are surprisingly similar for the different systems studied, in particular, the radius of the point cloud over which the potential energy function is averaged. For H2 diffusing in amorphous ice it is found that facile migration is possible which is in agreement with previous suggestions from experiment. The free energy barriers involved are typically lower than 1 kcal/mol. Spatial averaging simulations for CO in myoglobin are able to locate all currently characterized metastable states. Overall, it is found that spatial averaging considerably improves the sampling of configurational space.
Effects of spatial frequency and location of fearful faces on human amygdala activity.
Morawetz, Carmen; Baudewig, Juergen; Treue, Stefan; Dechent, Peter
2011-01-31
Facial emotion perception plays a fundamental role in interpersonal social interactions. Images of faces contain visual information at various spatial frequencies. The amygdala has previously been reported to be preferentially responsive to low-spatial frequency (LSF) rather than to high-spatial frequency (HSF) filtered images of faces presented at the center of the visual field. Furthermore, it has been proposed that the amygdala might be especially sensitive to affective stimuli in the periphery. In the present study we investigated the impact of spatial frequency and stimulus eccentricity on face processing in the human amygdala and fusiform gyrus using functional magnetic resonance imaging (fMRI). The spatial frequencies of pictures of fearful faces were filtered to produce images that retained only LSF or HSF information. Facial images were presented either in the left or right visual field at two different eccentricities. In contrast to previous findings, we found that the amygdala responds to LSF and HSF stimuli in a similar manner regardless of the location of the affective stimuli in the visual field. Furthermore, the fusiform gyrus did not show differential responses to spatial frequency filtered images of faces. Our findings argue against the view that LSF information plays a crucial role in the processing of facial expressions in the amygdala and of a higher sensitivity to affective stimuli in the periphery. Copyright © 2010 Elsevier B.V. All rights reserved.
Grading of cervical intraepithelial neoplasia using spatial frequency for optical histology
NASA Astrophysics Data System (ADS)
Pu, Yang; Jagtap, Jaidip; Pradhan, Asima; Alfano, Robert R.
2014-03-01
It is important to detect cervical dysplasia, Cervical Intraepithelial Neoplasia (CIN). CIN is the potentially premalignant and abnormal squamous cells on surface of cervix. In this study, the spatial frequency spectra of pre-cancer cervical tissues are used to detect differences among different grades of human cervical tissues. Seven sets of thick tissue sections of human cervix of normal, CIN 1, CIN 2, and CIN 3 tissues are studied. The confocal microscope images of the stromal region of normal and CIN human tissues were analyzed using Fast Fourier Transform (FFT) to generate the spatial spectra. It is observed that higher frequency components exist in CIN tissues than those in normal tissue, as well as those in higher grade CIN tissue than those in lower grade CIN tissue. The width of the spatial frequency of different types of tissues is used to create a criterion for CIN grading by training a support vector machine (SVM) classifier. The results show that the randomness of tissue structures from normal to different stages of precancer in cervical tissue can be recognized by fingerprints of the spatial frequency. The efficacy of spatial frequency analysis for CIN grading is evaluated as excellent since high AUC (area under the ROC curve), sensitivity and specificity are obtained by the statistics study. This works lays the foundation of using spatial frequency spectra for a histology evaluation.
NASA Astrophysics Data System (ADS)
Winebrenner, D. P.; Kintner, P. M. S.; MacGregor, J. A.
2017-12-01
Over deep Antarctic subglacial lakes, spatially varying ice thickness and the pressure-dependent melting point of ice result in areas of melting and accretion at the ice-water interface, i.e., the lake lid. These ice mass fluxes drive lake circulation and, because basal Antarctic ice contains air-clathrate, affect the input of oxygen to the lake, with implications for subglacial life. Inferences of melting and accretion from radar-layer tracking and geodesy are limited in spatial coverage and resolution. Here we develop a new method to estimate rates of accretion, melting, and the resulting oxygen input at a lake lid, using airborne radar data over Lake Vostok together with ice-temperature and chemistry data from the Vostok ice core. Because the lake lid is a coherent reflector of known reflectivity (at our radar frequency), we can infer depth-averaged radiowave attenuation in the ice, with spatial resolution 1 km along flight lines. Spatial variation in attenuation depends mostly on variation in ice temperature near the lid, which in turn varies strongly with ice mass flux at the lid. We model ice temperature versus depth with ice mass flux as a parameter, thus linking that flux to (observed) depth-averaged attenuation. The resulting map of melt- and accretion-rates independently reproduces features known from earlier studies, but now covers the entire lid. We find that accretion is dominant when integrated over the lid, with an ice imbalance of 0.05 to 0.07 km3 a-1, which is robust against uncertainties.
Bolotetskiĭ, N M; Kodolova, O P
2002-01-01
Distribution of frequencies alleles of polymorphous loci of peroxidase (Pox), leucineaminopeptidase (Lap), phosphoglucomutase (Pgm) and octanoldehydrogenase (Odh) were studied by electrophoresis in polyacrylamide gel in 22 local samples of Esenia foetida in Russia (European part), Ukraine, Kazakhstan and Kirghizia. The samples form two spatial groups--"northern" and "southern", distinguished by set of alleles in every studied locus. The "northern" groups is formed by local populations of European Russia from Murmansk region on the north to Smolensk region on the south, and also by cultivated population of selection line "red California hybrid". The "southern" group is formed by local populations on the territory of Russia from middle Volga to the North Caucasus, Ukraine, Kazakhstan, Kirghizia, cultivated populations from Kirghizia and Portugal. High degree of genetic difference between samples and independence of alleles frequencies distribution from geographical location and habitat allows to consider almost all studied groups as separate populations. Statistical processing of Nei genetic distances (Nei, 1972) revealed reliable differences between averages of within- and intergroup distances. Besides, discrete differences between intervals of significance of genetic distances were revealed. The results indicate that on the studied territory E. foetida has hierarchical two level structure. The first level is formed by local populations differed by frequency of the same alleles. The second level is formed by local populations, united into spatial groups, that are qualitatively distinguished by the set of alleles in the same loci.
Correction for spatial averaging in laser speckle contrast analysis
Thompson, Oliver; Andrews, Michael; Hirst, Evan
2011-01-01
Practical laser speckle contrast analysis systems face a problem of spatial averaging of speckles, due to the pixel size in the cameras used. Existing practice is to use a system factor in speckle contrast analysis to account for spatial averaging. The linearity of the system factor correction has not previously been confirmed. The problem of spatial averaging is illustrated using computer simulation of time-integrated dynamic speckle, and the linearity of the correction confirmed using both computer simulation and experimental results. The valid linear correction allows various useful compromises in the system design. PMID:21483623
Automatic evaluation of interferograms
NASA Technical Reports Server (NTRS)
Becker, F.
1982-01-01
A system for the evaluation of interference patterns was developed. For digitizing and processing of the interferograms from classical and holographic interferometers a picture analysis system based upon a computer with a television digitizer was installed. Depending on the quality of the interferograms, four different picture enhancement operations may be used: Signal averaging; spatial smoothing, subtraction of the overlayed intensity function and the removal of distortion-patterns using a spatial filtering technique in the frequency spectrum of the interferograms. The extraction of fringe loci from the digitized interferograms is performed by a foating-threshold method. The fringes are numbered using a special scheme after the removal of any fringe disconnections which appeared if there was insufficient contrast in the holograms. The reconstruction of the object function from the fringe field uses least squares approximation with spline fit. Applications are given.
Lapse time and frequency-dependent coda wave attenuation for Delhi and its surrounding regions
NASA Astrophysics Data System (ADS)
Das, Rabin; Mukhopadhyay, Sagarika; Singh, Ravi Kant; Baidya, Pushap R.
2018-07-01
Attenuation of seismic wave energy of Delhi and its surrounding regions has been estimated using coda of local earthquakes. Estimated quality factor (Qc) values are strongly dependent on frequency and lapse time. Frequency dependence of Qc has been estimated from the relationship Qc(f) = Q0fn for different lapse time window lengths. Q0 and n values vary from 73 to 453 and 0.97 to 0.63 for lapse time window lengths of 15 s to 90 s respectively. Average estimated frequency dependent relation is, Qc(f) = 135 ± 8f0.96±0.02 for the entire region for a window length of 30 s, where the average Qc value varies from 200 at 1.5 Hz to 1962 at 16 Hz. These values show that the region is seismically active and highly heterogeneous. The entire study region is divided into two sub-regions according to the geology of the area to investigate if there is a spatial variation in attenuation characteristics in this region. It is observed that at smaller lapse time both regions have similar Qc values. However, at larger lapse times the rate of increase of Qc with frequency is larger for Region 2 compared to Region 1. This is understandable, as it is closer to the tectonically more active Himalayan ranges and seismically more active compared to Region 1. The difference in variation of Qc with frequencies for the two regions is such that at larger lapse time and higher frequencies Region 2 shows higher Qc compared to Region 1. For lower frequencies the opposite situation is true. This indicates that there is a systematic variation in attenuation characteristics from the south (Region 1) to the north (Region 2) in the deeper part of the study area. This variation can be explained in terms of an increase in heat flow and a decrease in the age of the rocks from south to north.
Figure/ground segregation from temporal delay is best at high spatial frequencies.
Kojima, H
1998-12-01
Two experiments investigated the role of spatial frequency in performance of a figure/ground segregation task based on temporal cues. Figure orientation was much easier to judge when figure and ground portions of the target were defined exclusively by random texture composed entirely of high spatial frequencies. When target components were defined by low spatial frequencies only, the task was nearly impossible except with long temporal delay between figure and ground. These results are inconsistent with the hypothesis that M-cell activity is primarily responsible for figure/ground segregation from temporal delay. Instead, these results point to a distinction between temporal integration and temporal differentiation. Additionally, the present results can be related to recent work on the binding of spatial features over time.
NASA Astrophysics Data System (ADS)
Reusch, D. B.
2016-12-01
Any analysis that wants to use a GCM-based scenario of future climate benefits from knowing how much uncertainty the GCM's inherent variability adds to the development of climate change predictions. This is extra relevant in the polar regions due to the potential of global impacts (e.g., sea level rise) from local (ice sheet) climate changes such as more frequent/intense surface melting. High-resolution, regional-scale models using GCMs for boundary/initial conditions in future scenarios inherit a measure of GCM-derived externally-driven uncertainty. We investigate these uncertainties for the Greenland ice sheet using the 30-member CESM1.0-CAM5-BGC Large Ensemble (CESMLE) for recent (1981-2000) and future (2081-2100, RCP 8.5) decades. Recent simulations are skill-tested against the ERA-Interim reanalysis and AWS observations with results informing future scenarios. We focus on key variables influencing surface melting through decadal climatologies, nonlinear analysis of variability with self-organizing maps (SOMs), regional-scale modeling (Polar WRF), and simple melt models. Relative to the ensemble average, spatially averaged climatological July temperature anomalies over a Greenland ice-sheet/ocean domain are mostly between +/- 0.2 °C. The spatial average hides larger local anomalies of up to +/- 2 °C. The ensemble average itself is 2 °C cooler than ERA-Interim. SOMs extend our diagnostics by providing a concise, objective summary of model variability as a set of generalized patterns. For CESMLE, the SOM patterns summarize the variability of multiple realizations of climate. Changes in pattern frequency by ensemble member show the influence of initial conditions. For example, basic statistical analysis of pattern frequency yields interquartile ranges of 2-4% for individual patterns across the ensemble. In climate terms, this tells us about climate state variability through the range of the ensemble, a potentially significant source of melt-prediction uncertainty. SOMs can also capture the different trajectories of climate due to intramodel variability over time. Polar WRF provides higher resolution regional modeling with improved, polar-centric model physics. Simple melt models allow us to characterize impacts of the upstream uncertainties on estimates of surface melting.
Tong, Frank; Harrison, Stephenie A; Dewey, John A; Kamitani, Yukiyasu
2012-11-15
Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that varied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity patterns in early visual areas led to better discrimination of orientations presented at high than low contrast, with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however, V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the finer scale of representation in the primary visual cortex. In both experiments, the reliability of these orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel responses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding accuracy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation models of cortical selectivity; such models could prove useful in future applications of fMRI pattern classification. Copyright © 2012 Elsevier Inc. All rights reserved.
Tong, Frank; Harrison, Stephenie A.; Dewey, John A.; Kamitani, Yukiyasu
2012-01-01
Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that varied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity patterns in early visual areas led to better discrimination of orientations presented at high than low contrast, with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however, V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the finer scale of representation in the primary visual cortex. In both experiments, the reliability of these orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel responses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding accuracy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation models of cortical selectivity; such models could prove useful in future applications of fMRI pattern classification. PMID:22917989
NASA Astrophysics Data System (ADS)
Salas, P.; Oonk, J. B. R.; van Weeren, R. J.; Wolfire, M. G.; Emig, K. L.; Toribio, M. C.; Röttgering, H. J. A.; Tielens, A. G. G. M.
2018-04-01
Quantitative understanding of the interstellar medium requires knowledge of its physical conditions. Low-frequency carbon radio recombination lines (CRRLs) trace cold interstellar gas and can be used to determine its physical conditions (e.g. electron temperature and density). In this work, we present spatially resolved observations of the low-frequency (≤390 MHz) CRRLs centred around C268α, C357α, C494α, and C539α towards Cassiopeia A on scales of ≤1.2 pc. We compare the spatial distribution of CRRLs with other interstellar medium tracers. This comparison reveals a spatial offset between the peak of the CRRLs and other tracers, which is very characteristic for photodissociation regions and that we take as evidence for CRRLs being preferentially detected from the surfaces of molecular clouds. Using the CRRLs, we constrain the gas electron temperature and density. These constraints on the gas conditions suggest variations of less than a factor of 2 in pressure over ˜1 pc scales, and an average hydrogen density of 200-470 cm-3. From the electron temperature and density maps, we also constrain the ionized carbon emission measure, column density, and path length. Based on these, the hydrogen column density is larger than 1022 cm-2, with a peak of ˜4 × 1022 cm-2 towards the south of Cassiopeia A. Towards the southern peak, the line-of-sight length is ˜40 pc over a ˜2 pc wide structure, which implies that the gas is a thin surface layer on a large (molecular) cloud that is only partially intersected by Cassiopeia A. These observations highlight the utility of CRRLs as tracers of low-density extended H I and CO-dark gas halo's around molecular clouds.
Spatial and temporal variations of thunderstorm activities over Sri Lanka
NASA Astrophysics Data System (ADS)
Sonnadara, Upul
2016-05-01
Spatial and temporal variation of frequencies of thunderstorms over Sri Lanka using thunder day data is presented. A thunder day is simply a calendar day in which thunder is heard at least once at a given location. Two sets of data were collected and analyzed: annual totals for 10 climatological stations for a period of 50 years and monthly totals for 20 climatological stations for a period of 20 years. The average annual thunder days over Sri Lanka was found to be 76. Among the climatological stations considered, a high number of annual thunder days was recorded in Ratnapura (150 days/year), followed by Colombo (108 days/year) and Bandarawela (106 days/year). It appears that there are no widespread long-term increasing or decreasing trends in thunderstorm frequencies. However, Colombo, the capital of Sri Lanka which has over two million people shows an increasing trend of 0.8 thunder days per year. Although there is a high variability between stations reporting the number of thunder days, the overall pattern within a year is clear. Thunderstorm frequencies are high during two periods: March-May and September-November, which coincide with the first inter-monsoon and second inter-monsoon periods. Compared to the dry zone, the wet zone, especially the southwestern region, has high thunderstorm activity. There is a clear spatial difference in thunderstorm activities during the southwest and northeast monsoon seasons. During both these seasons, enhanced thunderstorm activities are reported on the leeward side of the mountain range. A slight reduction in the thunderstorm activities was found in the high elevation areas of the hill country compared to the surrounding areas. A lightning ground flash density map derived using annual thunder days is also presented.
Organic solvent exposure and contrast sensitivity: comparing men and women
Oliveira, A.R.; Campos, A.A.; de Andrade, M.J.O.; de Medeiros, P.C.B.; dos Santos, N.A.
2018-01-01
The goal of this study was to compare the visual contrast sensitivity (CS) of men and women exposed and not exposed to organic solvents. Forty-six volunteers of both genders aged between 18 and 41 years (mean±SD=27.72±6.28) participated. Gas station attendants were exposed to gas containing 46.30 ppm of solvents at a temperature of 304±274.39 K, humidity of 62.25±7.59% and ventilation of 0.69±0.46 m/s (a passive gas chromatography-based sampling method was used considering the microclimate variables). Visual CS was measured via the psychophysical method of two-alternative forced choice using vertical sinusoidal gratings with spatial frequencies of 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, and 16.0 cpd (cycles per degree) and an average luminance of 34.4 cd/m2. The results showed that visual CS was significantly lower (P<0.05) in the following groups: i) exposed men compared to unexposed men at frequencies of 0.2, 0.5, 1.0, and 2.0 cpd; ii) exposed women compared to unexposed women at a frequency of 5.0 cpd; and iii) exposed women compared to exposed men at a frequency of 0.5 cpd, even at exposures below the tolerance limit (300 ppm). These results suggest that the visual CS of exposed men was impaired over a wider range of spatial frequencies than that of exposed women. This difference may have been due to the higher body fat content of women compared to that of men, suggesting that body fat in women can serve as a protective factor against neurotoxic effects. PMID:29340521
A spherical model for orientation and spatial-frequency tuning in a cortical hypercolumn.
Bressloff, Paul C; Cowan, Jack D
2003-01-01
A theory is presented of the way in which the hypercolumns in primary visual cortex (V1) are organized to detect important features of visual images, namely local orientation and spatial-frequency. Given the existence in V1 of dual maps for these features, both organized around orientation pinwheels, we constructed a model of a hypercolumn in which orientation and spatial-frequency preferences are represented by the two angular coordinates of a sphere. The two poles of this sphere are taken to correspond, respectively, to high and low spatial-frequency preferences. In Part I of the paper, we use mean-field methods to derive exact solutions for localized activity states on the sphere. We show how cortical amplification through recurrent interactions generates a sharply tuned, contrast-invariant population response to both local orientation and local spatial frequency, even in the case of a weakly biased input from the lateral geniculate nucleus (LGN). A major prediction of our model is that this response is non-separable with respect to the local orientation and spatial frequency of a stimulus. That is, orientation tuning is weaker around the pinwheels, and there is a shift in spatial-frequency tuning towards that of the closest pinwheel at non-optimal orientations. In Part II of the paper, we demonstrate that a simple feed-forward model of spatial-frequency preference, unlike that for orientation preference, does not generate a faithful representation when amplified by recurrent interactions in V1. We then introduce the idea that cortico-geniculate feedback modulates LGN activity to generate a faithful representation, thus providing a new functional interpretation of the role of this feedback pathway. Using linear filter theory, we show that if the feedback from a cortical cell is taken to be approximately equal to the reciprocal of the corresponding feed-forward receptive field (in the two-dimensional Fourier domain), then the mismatch between the feed-forward and cortical frequency representations is eliminated. We therefore predict that cortico-geniculate feedback connections innervate the LGN in a pattern determined by the orientation and spatial-frequency biases of feed-forward receptive fields. Finally, we show how recurrent cortical interactions can generate cross-orientation suppression. PMID:14561324
NASA Astrophysics Data System (ADS)
Chi, W. C.; To, A.; Chen, W. J.; Konishi, K.
2017-12-01
Two types of anomalous seismic events of long duration with signals depleted in high frequencies relative to most earthquakes are recorded in a network of broadband ocean bottom seismometers (BBOBS) deployed at shallow Nankai subduction zone (DONET1). The first type is very low frequency earthquake (VLFE) whose signals are observed both in the lower and higher frequency ranges of the 0.1 Hz microseism band, which are 0.02-0.06 Hz and 2-8 Hz. The second type is low frequency tremor (LFT), whose signals are only observed at 2-8 Hz. The waveform similarity at 2-8 Hz and concurrences of the two types of event warrant further investigations on whether they represent the same phenomenon or not. Previously, To et al., (2015) examined the relation between VLFEs and LFTs by comparing their maximum amplitude at two different frequency ranges, 2-8 Hz and 0.02-0.05 Hz. The comparison showed that the maximum amplitudes measured at the two frequency ranges correlate positively for VLFEs, that is, large magnitude VLFEs showed large amplitude in both frequency ranges. The comparison also showed that the amplitude measured at 2-8 Hz were larger for VLFEs than those of LFTs. Based on such amplitude observations, they concluded that VLFEs and LFTs are likely smaller and larger events of the same phenomenon. Here, we examined the relation between the two types of event based on their spatial distribution. Their distributions should be similar if they represent the same phenomenon. The data are broadband seismographs of 20 stations of DONET1. We detected 144 VLFEs and 775 LFTs during the intense LFT/VLFE activity period of one week in October 2015. Events are located using an envelope cross correlation method. We used the root-mean-square (RMS) amplitudes constructed from the two horizontal components, bandpass filtered at 2-8 Hz and then smoothed by taking a moving average with a window length of 5 s. The obtained distributions of VLFEs and LFTs show similar patterns. They both formed two spatially separated groups, one in the northeast side and the other in the southwest side of DONET1. There is no spatial segregation between the two event types, supporting the speculation that VLFEs and LFEs are different manifestations of the same phenomenon. Acknowledgement: Data of DONET1 were downloaded through https://hinetwww11.bosai.go.jp.
Spatial-frequency composite watermarking for digital image copyright protection
NASA Astrophysics Data System (ADS)
Su, Po-Chyi; Kuo, C.-C. Jay
2000-05-01
Digital watermarks can be classified into two categories according to the embedding and retrieval domain, i.e. spatial- and frequency-domain watermarks. Because the two watermarks have different characteristics and limitations, combination of them can have various interesting properties when applied to different applications. In this research, we examine two spatial-frequency composite watermarking schemes. In both cases, a frequency-domain watermarking technique is applied as a baseline structure in the system. The embedded frequency- domain watermark is robust against filtering and compression. A spatial-domain watermarking scheme is then built to compensate some deficiency of the frequency-domain scheme. The first composite scheme is to embed a robust watermark in images to convey copyright or author information. The frequency-domain watermark contains owner's identification number while the spatial-domain watermark is embedded for image registration to resist cropping attack. The second composite scheme is to embed fragile watermark for image authentication. The spatial-domain watermark helps in locating the tampered part of the image while the frequency-domain watermark indicates the source of the image and prevents double watermarking attack. Experimental results show that the two watermarks do not interfere with each other and different functionalities can be achieved. Watermarks in both domains are detected without resorting to the original image. Furthermore, the resulting watermarked image can still preserve high fidelity without serious visual degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Yuri; Watanabe, Yoshimasa; Yamamoto, Satoshi
To study a molecular-cloud-scale chemical composition, we conducted a mapping spectral line survey toward the Galactic molecular cloud W3(OH), which is one of the most active star-forming regions in the Perseus arm. We conducted our survey through the use of the Nobeyama Radio Observatory 45 m telescope, and observed the area of 16′ × 16′, which corresponds to 9.0 pc × 9.0 pc. The observed frequency ranges are 87–91, 96–103, and 108–112 GHz. We prepared the spectrum averaged over the observed area, in which eight molecular species (CCH, HCN, HCO{sup +}, HNC, CS, SO, C{sup 18}O, and {sup 13}CO) aremore » identified. On the other hand, the spectrum of the W3(OH) hot core observed at a 0.17 pc resolution shows the lines of various molecules such as OCS, H{sub 2}CS CH{sub 3}CCH, and CH{sub 3}CN in addition to the above species. In the spatially averaged spectrum, emission of the species concentrated just around the star-forming core, such as CH{sub 3}OH and HC{sub 3}N, is fainter than in the hot core spectrum, whereas emission of the species widely extended over the cloud such as CCH is relatively brighter. We classified the observed area into five subregions according to the integrated intensity of {sup 13}CO, and evaluated the contribution to the averaged spectrum from each subregion. The CCH, HCN, HCO{sup +}, and CS lines can be seen even in the spectrum of the subregion with the lowest {sup 13}CO integrated intensity range (<10 K km s{sup −1}). Thus, the contributions of the spatially extended emission is confirmed to be dominant in the spatially averaged spectrum.« less
Dust deposition and ambient PM10 concentration in northwest China: spatial and temporal variability
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Xiao; Sharratt, Brenton; Chen, Xi; Wang, Zi-Fa; Liu, Lian-You; Guo, Yu-Hong; Li, Jie; Chen, Huan-Sheng; Yang, Wen-Yi
2017-02-01
Eolian dust transport and deposition are important geophysical processes which influence global bio-geochemical cycles. Currently, reliable deposition data are scarce in central and east Asia. Located at the boundary of central and east Asia, Xinjiang Province of northwestern China has long played a strategic role in cultural and economic trade between Asia and Europe. In this paper, we investigated the spatial distribution and temporal variation in dust deposition and ambient PM10 (particulate matter in aerodynamic diameter ≤ 10 µm) concentration from 2000 to 2013 in Xinjiang Province. This variation was assessed using environmental monitoring records from 14 stations in the province. Over the 14 years, annual average dust deposition across stations in the province ranged from 255.7 to 421.4 t km-2. Annual dust deposition was greater in southern Xinjiang (663.6 t km-2) than northern (147.8 t km-2) and eastern Xinjiang (194.9 t km-2). Annual average PM10 concentration across stations in the province varied from 100 to 196 µg m-3 and was 70, 115 and 239 µg m-3 in northern, eastern and southern Xinjiang, respectively. The highest annual dust deposition (1394.1 t km-2) and ambient PM10 concentration (352 µg m-3) were observed in Hotan, which is located in southern Xinjiang and at the southern boundary of the Taklamakan Desert. Dust deposition was more intense during the spring and summer than other seasons. PM10 was the main air pollutant that significantly influenced regional air quality. Annual average dust deposition increased logarithmically with ambient PM10 concentration (R2 ≥ 0.81). While the annual average dust storm frequency remained unchanged from 2000 to 2013, there was a positive relationship between dust storm days and dust deposition and PM10 concentration across stations. This study suggests that sand storms are a major factor affecting the temporal variability and spatial distribution of dust deposition in northwest China.
NASA Astrophysics Data System (ADS)
Lembong, Josephine; Sabass, Benedikt; Stone, Howard A.
2017-08-01
The maintenance of tissue integrity is essential for the life of multicellular organisms. Healing of a skin wound is a paradigm for how various cell types localize and repair tissue perturbations in an orchestrated fashion. To investigate biophysical mechanisms associated with wound localization, we focus on a model system consisting of a fibroblast monolayer on an elastic substrate. We find that the creation of an edge in the monolayer causes cytosolic calcium oscillations throughout the monolayer. The oscillation frequency increases with cell density, which shows that wound-induced calcium oscillations occur collectively. Inhibition of myosin II reduces the number of oscillating cells, demonstrating a coupling between actomyosin activity and calcium response. The spatial distribution of oscillating cells depends on the stiffness of the substrate. For soft substrates with a Young’s modulus E ~ 360 Pa, oscillations occur on average within 0.2 mm distance from the wound edge. Increasing substrate stiffness leads to an average localization of oscillations away from the edge (up to ~0.6 mm). In addition, we use traction force microscopy to determine stresses between cells and substrate. We find that an increase of substrate rigidity leads to a higher traction magnitude. For E < ~2 kPa, the traction magnitude is strongly concentrated at the monolayer edge, while for E > ~8 kPa, traction magnitude is on average almost uniform beneath the monolayer. Thus, the spatial occurrence of calcium oscillations correlates with the cell-substrate traction. Overall, the experiments with fibroblasts demonstrate a collective, chemomechanical localization mechanism at the edge of a wound with a potential physiological role.
Li, Wei; Yang, Yuye; Ye, Qing; Yang, Bo; Wang, Zhengrong
2007-03-15
Repetitive transcranial magnetic stimulation (rTMS) is a novel, non-invasive neurological and psychiatric tool. The low-frequency (1 Hz or less) rTMS is likely to play a particular role in its mechanism of action with different effects in comparison with high-frequency (>1 Hz) rTMS. There is limited information regarding the effect of low-frequency rTMS on spatial memory. In our study, each male Wistar rat was daily given 300 stimuli (1.0 T, 200 micros) at a rate of 0.5 Hz or sham stimulation. We investigated the effects of chronic and acute rTMS on reference/working memory process in Morris water maze test with the hypothesis that the effect would differ by chronic or acute condition. Chronic low-frequency rTMS impaired the retrieval of spatial short- and long-term spatial reference memory but not acquisition process and working memory, whereas acute low-frequency rTMS predominantly induced no deficits in acquisition or short-term spatial reference memory as well as working memory except for long-term reference memory. In summary, chronic 0.5 Hz rTMS disrupts spatial short- and long-term reference memory function, but acute rTMS differently affects reference memory. Chronic low-frequency rTMS may be used to modulate reference memory. Treatment protocols using low-frequency rTMS in neurological and psychiatric disorders need to take into account the potential effect of chronic low-frequency rTMS on memory and other cognitive functions.
Graves, Robert; Pitarka, Arben
2016-01-01
We describe a methodology for generating kinematic earthquake ruptures for use in 3D ground‐motion simulations over the 0–5 Hz frequency band. Our approach begins by specifying a spatially random slip distribution that has a roughly wavenumber‐squared fall‐off. Given a hypocenter, the rupture speed is specified to average about 75%–80% of the local shear wavespeed and the prescribed slip‐rate function has a Kostrov‐like shape with a fault‐averaged rise time that scales self‐similarly with the seismic moment. Both the rupture time and rise time include significant local perturbations across the fault surface specified by spatially random fields that are partially correlated with the underlying slip distribution. We represent velocity‐strengthening fault zones in the shallow (<5 km) and deep (>15 km) crust by decreasing rupture speed and increasing rise time in these regions. Additional refinements to this approach include the incorporation of geometric perturbations to the fault surface, 3D stochastic correlated perturbations to the P‐ and S‐wave velocity structure, and a damage zone surrounding the shallow fault surface characterized by a 30% reduction in seismic velocity. We demonstrate the approach using a suite of simulations for a hypothetical Mw 6.45 strike‐slip earthquake embedded in a generalized hard‐rock velocity structure. The simulation results are compared with the median predictions from the 2014 Next Generation Attenuation‐West2 Project ground‐motion prediction equations and show very good agreement over the frequency band 0.1–5 Hz for distances out to 25 km from the fault. Additionally, the newly added features act to reduce the coherency of the radiated higher frequency (f>1 Hz) ground motions, and homogenize radiation‐pattern effects in this same bandwidth, which move the simulations closer to the statistical characteristics of observed motions as illustrated by comparison with recordings from the 1979 Imperial Valley earthquake.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graves, Robert; Pitarka, Arben
Here, we describe a methodology for generating kinematic earthquake ruptures for use in 3D ground–motion simulations over the 0–5 Hz frequency band. Our approach begins by specifying a spatially random slip distribution that has a roughly wavenumber–squared fall–off. Given a hypocenter, the rupture speed is specified to average about 75%–80% of the local shear wavespeed and the prescribed slip–rate function has a Kostrov–like shape with a fault–averaged rise time that scales self–similarly with the seismic moment. Both the rupture time and rise time include significant local perturbations across the fault surface specified by spatially random fields that are partially correlatedmore » with the underlying slip distribution. We represent velocity–strengthening fault zones in the shallow (<5 km) and deep (>15 km) crust by decreasing rupture speed and increasing rise time in these regions. Additional refinements to this approach include the incorporation of geometric perturbations to the fault surface, 3D stochastic correlated perturbations to the P– and S–wave velocity structure, and a damage zone surrounding the shallow fault surface characterized by a 30% reduction in seismic velocity. We demonstrate the approach using a suite of simulations for a hypothetical Mw 6.45 strike–slip earthquake embedded in a generalized hard–rock velocity structure. The simulation results are compared with the median predictions from the 2014 Next Generation Attenuation–West2 Project ground–motion prediction equations and show very good agreement over the frequency band 0.1–5 Hz for distances out to 25 km from the fault. Additionally, the newly added features act to reduce the coherency of the radiated higher frequency (f>1 Hz) ground motions, and homogenize radiation–pattern effects in this same bandwidth, which move the simulations closer to the statistical characteristics of observed motions as illustrated by comparison with recordings from the 1979 Imperial Valley earthquake.« less
Graves, Robert; Pitarka, Arben
2016-08-23
Here, we describe a methodology for generating kinematic earthquake ruptures for use in 3D ground–motion simulations over the 0–5 Hz frequency band. Our approach begins by specifying a spatially random slip distribution that has a roughly wavenumber–squared fall–off. Given a hypocenter, the rupture speed is specified to average about 75%–80% of the local shear wavespeed and the prescribed slip–rate function has a Kostrov–like shape with a fault–averaged rise time that scales self–similarly with the seismic moment. Both the rupture time and rise time include significant local perturbations across the fault surface specified by spatially random fields that are partially correlatedmore » with the underlying slip distribution. We represent velocity–strengthening fault zones in the shallow (<5 km) and deep (>15 km) crust by decreasing rupture speed and increasing rise time in these regions. Additional refinements to this approach include the incorporation of geometric perturbations to the fault surface, 3D stochastic correlated perturbations to the P– and S–wave velocity structure, and a damage zone surrounding the shallow fault surface characterized by a 30% reduction in seismic velocity. We demonstrate the approach using a suite of simulations for a hypothetical Mw 6.45 strike–slip earthquake embedded in a generalized hard–rock velocity structure. The simulation results are compared with the median predictions from the 2014 Next Generation Attenuation–West2 Project ground–motion prediction equations and show very good agreement over the frequency band 0.1–5 Hz for distances out to 25 km from the fault. Additionally, the newly added features act to reduce the coherency of the radiated higher frequency (f>1 Hz) ground motions, and homogenize radiation–pattern effects in this same bandwidth, which move the simulations closer to the statistical characteristics of observed motions as illustrated by comparison with recordings from the 1979 Imperial Valley earthquake.« less
Controlling Energy Radiations of Electromagnetic Waves via Frequency Coding Metamaterials
Wu, Haotian; Liu, Shuo; Wan, Xiang; Zhang, Lei; Wang, Dan; Li, Lianlin
2017-01-01
Metamaterials are artificial structures composed of subwavelength unit cells to control electromagnetic (EM) waves. The spatial coding representation of metamaterial has the ability to describe the material in a digital way. The spatial coding metamaterials are typically constructed by unit cells that have similar shapes with fixed functionality. Here, the concept of frequency coding metamaterial is proposed, which achieves different controls of EM energy radiations with a fixed spatial coding pattern when the frequency changes. In this case, not only different phase responses of the unit cells are considered, but also different phase sensitivities are also required. Due to different frequency sensitivities of unit cells, two units with the same phase response at the initial frequency may have different phase responses at higher frequency. To describe the frequency coding property of unit cell, digitalized frequency sensitivity is proposed, in which the units are encoded with digits “0” and “1” to represent the low and high phase sensitivities, respectively. By this merit, two degrees of freedom, spatial coding and frequency coding, are obtained to control the EM energy radiations by a new class of frequency‐spatial coding metamaterials. The above concepts and physical phenomena are confirmed by numerical simulations and experiments. PMID:28932671
An independent brain-computer interface using covert non-spatial visual selective attention
NASA Astrophysics Data System (ADS)
Zhang, Dan; Maye, Alexander; Gao, Xiaorong; Hong, Bo; Engel, Andreas K.; Gao, Shangkai
2010-02-01
In this paper, a novel independent brain-computer interface (BCI) system based on covert non-spatial visual selective attention of two superimposed illusory surfaces is described. Perception of two superimposed surfaces was induced by two sets of dots with different colors rotating in opposite directions. The surfaces flickered at different frequencies and elicited distinguishable steady-state visual evoked potentials (SSVEPs) over parietal and occipital areas of the brain. By selectively attending to one of the two surfaces, the SSVEP amplitude at the corresponding frequency was enhanced. An online BCI system utilizing the attentional modulation of SSVEP was implemented and a 3-day online training program with healthy subjects was carried out. The study was conducted with Chinese subjects at Tsinghua University, and German subjects at University Medical Center Hamburg-Eppendorf (UKE) using identical stimulation software and equivalent technical setup. A general improvement of control accuracy with training was observed in 8 out of 18 subjects. An averaged online classification accuracy of 72.6 ± 16.1% was achieved on the last training day. The system renders SSVEP-based BCI paradigms possible for paralyzed patients with substantial head or ocular motor impairments by employing covert attention shifts instead of changing gaze direction.
The elimination of zero-order diffraction of 10.6 μm infrared digital holography
NASA Astrophysics Data System (ADS)
Liu, Ning; Yang, Chao
2017-05-01
A new method of eliminating the zero-order diffraction in infrared digital holography has been raised in this paper. Usually in the reconstruction of digital holography, the spatial frequency of the infrared thermal imager, such as microbolometer, cannot be compared to the common visible CCD or CMOS devices. The infrared imager suffers the problems of large pixel size and low spatial resolution, which cause the zero-order diffraction a severe influence of the reconstruction process of digital holograms. The zero-order diffraction has very large energy and occupies the central region in the spectrum domain. In this paper, we design a new filtering strategy to overcome this problem. This filtering strategy contains two kinds of filtering process which are the Gaussian low-frequency filter and the high-pass phase averaging filter. With the correct set of the calculating parameters, these filtering strategies can work effectively on the holograms and fully eliminate the zero-order diffraction, as well as the two crossover bars shown in the spectrum domain. Detailed explanation and discussion about the new method have been proposed in this paper, and the experiment results are also demonstrated to prove the performance of this method.
An independent brain-computer interface using covert non-spatial visual selective attention.
Zhang, Dan; Maye, Alexander; Gao, Xiaorong; Hong, Bo; Engel, Andreas K; Gao, Shangkai
2010-02-01
In this paper, a novel independent brain-computer interface (BCI) system based on covert non-spatial visual selective attention of two superimposed illusory surfaces is described. Perception of two superimposed surfaces was induced by two sets of dots with different colors rotating in opposite directions. The surfaces flickered at different frequencies and elicited distinguishable steady-state visual evoked potentials (SSVEPs) over parietal and occipital areas of the brain. By selectively attending to one of the two surfaces, the SSVEP amplitude at the corresponding frequency was enhanced. An online BCI system utilizing the attentional modulation of SSVEP was implemented and a 3-day online training program with healthy subjects was carried out. The study was conducted with Chinese subjects at Tsinghua University, and German subjects at University Medical Center Hamburg-Eppendorf (UKE) using identical stimulation software and equivalent technical setup. A general improvement of control accuracy with training was observed in 8 out of 18 subjects. An averaged online classification accuracy of 72.6 +/- 16.1% was achieved on the last training day. The system renders SSVEP-based BCI paradigms possible for paralyzed patients with substantial head or ocular motor impairments by employing covert attention shifts instead of changing gaze direction.
Exposure of the general public due to wireless LAN applications in public places.
Schmid, G; Preiner, P; Lager, D; Uberbacher, R; Georg, R
2007-01-01
The typical exposure caused by wireless LAN applications in public areas has been investigated in a variety of scenarios. Small-sized (internet café) and large-scale (airport) indoor scenarios as well as outdoor scenarios in the environment of access points (AP) supplying for residential areas and public places were considered. The exposure assessment was carried out by numerical GTD/UTD computations based on optical wave propagation, as well as by verifying frequency selective measurements in the considered scenarios under real life conditions. In the small-sized indoor scenario the maximum temporal peak values of power density, spatially averaged over body dimensions, were found to be lower than 20 mW/m(2), corresponding to 0.2% of the reference level according to the European Council Recommendation 1999/519/EC. Local peak values of power density might be 1-2 orders of magnitude higher, spatial and time-averaged values for usual data traffic conditions might be 2-3 orders of magnitude lower, depending on the actual data traffic. In the considered outdoor scenarios, exposure was several orders of magnitude lower than in indoor scenarios due to the usually larger distances to the AP antennas.
ERIC Educational Resources Information Center
Collin, Charles A.; Liu, Chang Hong; Troje, Nikolaus F.; McMullen, Patricia A.; Chaudhuri, Avi
2004-01-01
Previous studies have suggested that face identification is more sensitive to variations in spatial frequency content than object recognition, but none have compared how sensitive the 2 processes are to variations in spatial frequency overlap (SFO). The authors tested face and object matching accuracy under varying SFO conditions. Their results…
Internal noise sources limiting contrast sensitivity.
Silvestre, Daphné; Arleo, Angelo; Allard, Rémy
2018-02-07
Contrast sensitivity varies substantially as a function of spatial frequency and luminance intensity. The variation as a function of luminance intensity is well known and characterized by three laws that can be attributed to the impact of three internal noise sources: early spontaneous neural activity limiting contrast sensitivity at low luminance intensities (i.e. early noise responsible for the linear law), probabilistic photon absorption at intermediate luminance intensities (i.e. photon noise responsible for de Vries-Rose law) and late spontaneous neural activity at high luminance intensities (i.e. late noise responsible for Weber's law). The aim of this study was to characterize how the impact of these three internal noise sources vary with spatial frequency and determine which one is limiting contrast sensitivity as a function of luminance intensity and spatial frequency. To estimate the impact of the different internal noise sources, the current study used an external noise paradigm to factorize contrast sensitivity into equivalent input noise and calculation efficiency over a wide range of luminance intensities and spatial frequencies. The impact of early and late noise was found to drop linearly with spatial frequency, whereas the impact of photon noise rose with spatial frequency due to ocular factors.
NASA Astrophysics Data System (ADS)
Gulin, O. E.; Yaroshchuk, I. O.
2017-03-01
The paper is devoted to the analytic study and numerical simulation of mid-frequency acoustic signal propagation in a two-dimensional inhomogeneous random shallow-water medium. The study was carried out by the cross section method (local modes). We present original theoretical estimates for the behavior of the average acoustic field intensity and show that at different distances, the features of propagation loss behavior are determined by the intensity of fluctuations and their horizontal scale and depend on the initial regular parameters, such as the emission frequency and size of sound losses in the bottom. We establish analytically that for the considered waveguide and sound frequency parameters, mode coupling effect has a local character and weakly influences the statistics. We establish that the specific form of the spatial spectrum of sound velocity inhomogeneities for the statistical patterns of the field intensity is insignificant during observations in the range of shallow-water distances of practical interest.
Backscatter and attenuation properties of mammalian brain tissues
NASA Astrophysics Data System (ADS)
Wijekularatne, Pushpani Vihara
Traumatic Brain Injury (TBI) is a common category of brain injuries, which contributes to a substantial number of deaths and permanent disability all over the world. Ultrasound technology plays a major role in tissue characterization due to its low cost and portability that could be used to bridge a wide gap in the TBI diagnostic process. This research addresses the ultrasonic properties of mammalian brain tissues focusing on backscatter and attenuation. Orientation dependence and spatial averaging of data were analyzed using the same method resulting from insertion of tissue sample between a transducer and a reference reflector. Apparent backscatter transfer function (ABTF) at 1 to 10 MHz, attenuation coefficient and backscatter coefficient (BSC) at 1 to 5 MHz frequency ranges were measured on ovine brain tissue samples. The resulting ABTF was a monotonically decreasing function of frequency and the attenuation coefficient and BSC generally were increasing functions of frequency, results consistent with other soft tissues such as liver, blood and heart.
A case study of alternative site response explanatory variables in Parkfield, California
Thompson, E.M.; Baise, L.G.; Kayen, R.E.; Morgan, E.C.; Kaklamanos, J.
2011-01-01
The combination of densely-spaced strong-motion stations in Parkfield, California, and spectral analysis of surface waves (SASW) profiles provides an ideal dataset for assessing the accuracy of different site response explanatory variables. We judge accuracy in terms of spatial coverage and correlation with observations. The performance of the alternative models is period-dependent, but generally we observe that: (1) where a profile is available, the square-root-of-impedance method outperforms VS30 (average S-wave velocity to 30 m depth), and (2) where a profile is unavailable, the topographic-slope method outperforms surficial geology. The fundamental site frequency is a valuable site response explanatory variable, though less valuable than VS30. However, given the expense and difficulty of obtaining reliable estimates of VS30 and the relative ease with which the fundamental site frequency can be computed, the fundamental site frequency may prove to be a valuable site response explanatory variable for many applications. ?? 2011 ASCE.
Apparatus for direct-to-digital spatially-heterodyned holography
Thomas, Clarence E.; Hanson, Gregory R.
2006-12-12
An apparatus operable to record a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis includes: a laser; a beamsplitter optically coupled to the laser; an object optically coupled to the beamsplitter; a focusing lens optically coupled to both the beamsplitter and the object; a digital recorder optically coupled to the focusing lens; and a computer that performs a Fourier transform, applies a digital filter, and performs an inverse Fourier transform. A reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis which is recorded by the digital recorder, and the computer transforms the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes and shifts axes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam and cuts off signals around an original origin before performing the inverse Fourier transform.
Sabesan, Ramkumar; Barbot, Antoine; Yoon, Geunyoung
2017-03-01
Highly aberrated keratoconic (KC) eyes do not elicit the expected visual advantage from customized optical corrections. This is attributed to the neural insensitivity arising from chronic visual experience with poor retinal image quality, dominated by low spatial frequencies. The goal of this study was to investigate if targeted perceptual learning with adaptive optics (AO) can stimulate neural plasticity in these highly aberrated eyes. The worse eye of 2 KC subjects was trained in a contrast threshold test under AO correction. Prior to training, tumbling 'E' visual acuity and contrast sensitivity at 4, 8, 12, 16, 20, 24 and 28 c/deg were measured in both the trained and untrained eyes of each subject with their routine prescription and with AO correction for a 6mm pupil. The high spatial frequency requiring 50% contrast for detection with AO correction was picked as the training frequency. Subjects were required to train on a contrast detection test with AO correction for 1h for 5 consecutive days. During each training session, threshold contrast measurement at the training frequency with AO was conducted. Pre-training measures were repeated after the 5 training sessions in both eyes (i.e., post-training). After training, contrast sensitivity under AO correction improved on average across spatial frequency by a factor of 1.91 (range: 1.77-2.04) and 1.75 (1.22-2.34) for the two subjects. This improvement in contrast sensitivity transferred to visual acuity with the two subjects improving by 1.5 and 1.3 lines respectively with AO following training. One of the two subjects denoted an interocular transfer of training and an improvement in performance with their routine prescription post-training. This training-induced visual benefit demonstrates the potential of AO as a tool for neural rehabilitation in patients with abnormal corneas. Moreover, it reveals a sufficient degree of neural plasticity in normally developed adults who have a long history of abnormal visual experience due to optical imperfections. Copyright © 2016 Elsevier Ltd. All rights reserved.
Age-related macular degeneration changes the processing of visual scenes in the brain.
Ramanoël, Stephen; Chokron, Sylvie; Hera, Ruxandra; Kauffmann, Louise; Chiquet, Christophe; Krainik, Alexandre; Peyrin, Carole
2018-01-01
In age-related macular degeneration (AMD), the processing of fine details in a visual scene, based on a high spatial frequency processing, is impaired, while the processing of global shapes, based on a low spatial frequency processing, is relatively well preserved. The present fMRI study aimed to investigate the residual abilities and functional brain changes of spatial frequency processing in visual scenes in AMD patients. AMD patients and normally sighted elderly participants performed a categorization task using large black and white photographs of scenes (indoors vs. outdoors) filtered in low and high spatial frequencies, and nonfiltered. The study also explored the effect of luminance contrast on the processing of high spatial frequencies. The contrast across scenes was either unmodified or equalized using a root-mean-square contrast normalization in order to increase contrast in high-pass filtered scenes. Performance was lower for high-pass filtered scenes than for low-pass and nonfiltered scenes, for both AMD patients and controls. The deficit for processing high spatial frequencies was more pronounced in AMD patients than in controls and was associated with lower activity for patients than controls not only in the occipital areas dedicated to central and peripheral visual fields but also in a distant cerebral region specialized for scene perception, the parahippocampal place area. Increasing the contrast improved the processing of high spatial frequency content and spurred activation of the occipital cortex for AMD patients. These findings may lead to new perspectives for rehabilitation procedures for AMD patients.
Image routing via atomic spin coherence
Wang, Lei; Sun, Jia-Xiang; Luo, Meng-Xi; Sun, Yuan-Hang; Wang, Xiao-Xiao; Chen, Yi; Kang, Zhi-Hui; Wang, Hai-Hua; Wu, Jin-Hui; Gao, Jin-Yue
2015-01-01
Coherent storage of optical image in a coherently-driven medium is a promising method with possible applications in many fields. In this work, we experimentally report a controllable spatial-frequency routing of image via atomic spin coherence in a solid-state medium driven by electromagnetically induced transparency (EIT). Under the EIT-based light-storage regime, a transverse spatial image carried by the probe field is stored into atomic spin coherence. By manipulating the frequency and spatial propagation direction of the read control field, the stored image is transferred into a new spatial-frequency channel. When two read control fields are used to retrieve the stored information, the image information is converted into a superposition of two spatial-frequency modes. Through this technique, the image is manipulated coherently and all-optically in a controlled fashion. PMID:26658846
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Yuxing; Fan, Jiwen; Xiao, Heng
Realistic modeling of cumulus convection at fine model resolutions (a few to a few tens of km) is problematic since it requires the cumulus scheme to adapt to higher resolution than they were originally designed for (~100 km). To solve this problem, we implement the spatial averaging method proposed in Xiao et al. (2015) and also propose a temporal averaging method for the large-scale convective available potential energy (CAPE) tendency in the Zhang-McFarlane (ZM) cumulus parameterization. The resolution adaptability of the original ZM scheme, the scheme with spatial averaging, and the scheme with both spatial and temporal averaging at 4-32more » km resolution is assessed using the Weather Research and Forecasting (WRF) model, by comparing with Cloud Resolving Model (CRM) results. We find that the original ZM scheme has very poor resolution adaptability, with sub-grid convective transport and precipitation increasing significantly as the resolution increases. The spatial averaging method improves the resolution adaptability of the ZM scheme and better conserves the total transport of moist static energy and total precipitation. With the temporal averaging method, the resolution adaptability of the scheme is further improved, with sub-grid convective precipitation becoming smaller than resolved precipitation for resolution higher than 8 km, which is consistent with the results from the CRM simulation. Both the spatial distribution and time series of precipitation are improved with the spatial and temporal averaging methods. The results may be helpful for developing resolution adaptability for other cumulus parameterizations that are based on quasi-equilibrium assumption.« less
Sound power and vibration levels for two different piano soundboards
NASA Astrophysics Data System (ADS)
Squicciarini, Giacomo; Valiente, Pablo Miranda; Thompson, David J.
2016-09-01
This paper compares the sound power and vibration levels for two different soundboards for upright pianos. One of them is made of laminated spruce and the other of solid spruce (tone-wood). These differ also in the number of ribs and manufacturing procedure. The methodology used is defined in two major steps: (i) acoustic power due to a unit force is obtained reciprocally by measuring the acceleration response of the piano soundboards when excited by acoustic waves in reverberant field; (ii) impact tests are adopted to measure driving point and spatially-averaged mean-square transfer mobility. The results show that, in the midhigh frequency range, the soundboard made of solid spruce has a greater vibrational and acoustic response than the laminated soundboard. The effect of string tension is also addressed, showing that is only relevant at low frequencies.
NASA Astrophysics Data System (ADS)
Kumar, Narender; Singh, Ram Kishor; Sharma, Swati; Uma, R.; Sharma, R. P.
2018-01-01
This paper presents numerical simulations of laser beam (x-mode) coupling with a magnetosonic wave (MSW) in a collisionless plasma. The coupling arises through ponderomotive non-linearity. The pump beam has been perturbed by a periodic perturbation that leads to the nonlinear evolution of the laser beam. It is observed that the frequency spectra of the MSW have peaks at terahertz frequencies. The simulation results show quite complex localized structures that grow with time. The ensemble averaged power spectrum has also been studied which indicates that the spectral index follows an approximate scaling of the order of ˜ k-2.1 at large scales and scaling of the order of ˜ k-3.6 at smaller scales. The results indicate considerable randomness in the spatial structure of the magnetic field profile which gives sufficient indication of turbulence.
Image enhancement by non-linear extrapolation in frequency space
NASA Technical Reports Server (NTRS)
Anderson, Charles H. (Inventor); Greenspan, Hayit K. (Inventor)
1998-01-01
An input image is enhanced to include spatial frequency components having frequencies higher than those in an input image. To this end, an edge map is generated from the input image using a high band pass filtering technique. An enhancing map is subsequently generated from the edge map, with the enhanced map having spatial frequencies exceeding an initial maximum spatial frequency of the input image. The enhanced map is generated by applying a non-linear operator to the edge map in a manner which preserves the phase transitions of the edges of the input image. The enhanced map is added to the input image to achieve a resulting image having spatial frequencies greater than those in the input image. Simplicity of computations and ease of implementation allow for image sharpening after enlargement and for real-time applications such as videophones, advanced definition television, zooming, and restoration of old motion pictures.
NASA Astrophysics Data System (ADS)
Gu, Hongan; Dai, Ye; Wang, Haodong; Yan, Xiaona; Ma, Guohong
2017-12-01
In this paper, a femtosecond laser line-scanning irradiation was used to induce the periodic surface microstructure on HgCdTe crystal. Low spatial frequency laser induced periodic surface structures of 650-770 nm and high spatial frequency laser induced periodic surface structures of 152-246 nm were respectively found with different scanning speeds. The evolution process from low spatial frequency laser induced periodic surface structures to high spatial frequency laser induced periodic surface structures is characterized by scanning electron microscope. Their spatial periods deduced by using a two-dimensional Fourier transformation partly agree with the predictions of the Sipe-Drude theory. Confocal micro-Raman spectral show that the atomic arrangement of induced low spatial frequency laser-induced structures are basically consistent with the crystal in the central area of laser-scanning line, however a new peak at 164 cm-1 for the CdTe-like mode becomes evident due to the Hg vaporization when strong laser ablation happens. The obtained surface periodic ripples may have applications in fabricating advanced infrared detector.
Uncomfortable images in art and nature.
Fernandez, Dominic; Wilkins, Arnold J
2008-01-01
The ratings of discomfort from a wide variety of images can be predicted from the energy at different spatial scales in the image, as measured by the Fourier amplitude spectrum of the luminance. Whereas comfortable images show the regression of Fourier amplitude against spatial frequency common in natural scenes, uncomfortable images show a regression with disproportionately greater amplitude at spatial frequencies within two octaves of 3 cycles deg(-1). In six studies, the amplitude in this spatial frequency range relative to that elsewhere in the spectrum explains variance in judgments of discomfort from art, from images constructed from filtered noise, and from art in which the phase or amplitude spectra have been altered. Striped patterns with spatial frequency within the above range are known to be uncomfortable and capable of provoking headaches and seizures in susceptible persons. The present findings show for the first time that, even in more complex images, the energy in this spatial-frequency range is associated with aversion. We propose a simple measurement that can predict aversion to those works of art that have reached the national media because of negative public reaction.
Uncomfortable images in art and nature
Fernandez, Dominic; Wilkins, Arnold J.
2008-01-01
We find that the ratings of discomfort from a wide variety of images can be predicted from the energy at different spatial scales in the image, as measured by the Fourier amplitude spectrum of the luminance. Whereas comfortable images show the regression of Fourier amplitude against spatial frequency common in natural scenes, uncomfortable images show a regression with disproportionately greater amplitude at spatial frequencies within two octaves of 3 cycles per degree. In six studies, the amplitude at this spatial frequency relative to that 3 octaves below explains variance in judgments of discomfort from art, from images constructed from filtered noise and from art in which the phase or amplitude spectra have been altered. Striped patterns with spatial frequency within the above range are known to be uncomfortable and capable of provoking headaches and seizures in susceptible persons. The present findings show for the first time that even in more complex images the energy in this spatial frequency range is associated with aversion. We propose a simple measurement that can predict aversion to those works of art that have reached the national media because of negative public reaction. PMID:18773732
Wetting Heterogeneities in Porous Media Control Flow Dissipation
NASA Astrophysics Data System (ADS)
Murison, Julie; Semin, Benoît.; Baret, Jean-Christophe; Herminghaus, Stephan; Schröter, Matthias; Brinkmann, Martin
2014-09-01
Pressure-controlled displacement of an oil-water interface is studied in dense packings of functionalized glass beads with well-defined spatial wettability correlations. An enhanced dissipation is observed if the typical extension ξ of the same-type wetting domains is smaller than the average bead diameter d. Three-dimensional imaging using x-ray microtomography shows that the frequencies n(s) of residual droplet volumes s for different ξ collapse onto the same curve. This indicates that the additional dissipation for small ξ is due to contact line pinning rather than an increase of capillary break-up and coalescence events.
Energy distributions in rods and beams
NASA Technical Reports Server (NTRS)
Wohlever, J. C.; Bernhard, R. J.
1989-01-01
A hypothesis proposed by Nefske and Sung (1987) that the mechanical energy flow in acoustic/structural systems can be modeled using a thermal energy flow analogy was tested for both longitudinal vibration in rods and transverse flexural vibrations in beams. It was found that the rod behaves according to the energy flow analogy. However, the beam solutions behaved significantly differently than predicted by the thermal analogy, unless spatially averaged energy and power flow were considered. Otherwise, the beam analysis is restricted to frequencies where the near-field terms in the displacement solution are negligible over most of the beam.
NASA Astrophysics Data System (ADS)
Martens, William
2005-04-01
Several attributes of auditory spatial imagery associated with stereophonic sound reproduction are strongly modulated by variation in interaural cross correlation (IACC) within low frequency bands. Nonetheless, a standard practice in bass management for two-channel and multichannel loudspeaker reproduction is to mix low-frequency musical content to a single channel for reproduction via a single driver (e.g., a subwoofer). This paper reviews the results of psychoacoustic studies which support the conclusion that reproduction via multiple drivers of decorrelated low-frequency signals significantly affects such important spatial attributes as auditory source width (ASW), auditory source distance (ASD), and listener envelopment (LEV). A variety of methods have been employed in these tests, including forced choice discrimination and identification, and direct ratings of both global dissimilarity and distinct attributes. Contrary to assumptions that underlie industrial standards established in 1994 by ITU-R. Recommendation BS.775-1, these findings imply that substantial stereophonic spatial information exists within audio signals at frequencies below the 80 to 120 Hz range of prescribed subwoofer cutoff frequencies, and that loudspeaker reproduction of decorrelated signals at frequencies as low as 50 Hz can have an impact upon auditory spatial imagery. [Work supported by VRQ.
Subgrid-scale parameterization and low-frequency variability: a response theory approach
NASA Astrophysics Data System (ADS)
Demaeyer, Jonathan; Vannitsem, Stéphane
2016-04-01
Weather and climate models are limited in the possible range of resolved spatial and temporal scales. However, due to the huge space- and time-scale ranges involved in the Earth System dynamics, the effects of many sub-grid processes should be parameterized. These parameterizations have an impact on the forecasts or projections. It could also affect the low-frequency variability present in the system (such as the one associated to ENSO or NAO). An important question is therefore to know what is the impact of stochastic parameterizations on the Low-Frequency Variability generated by the system and its model representation. In this context, we consider a stochastic subgrid-scale parameterization based on the Ruelle's response theory and proposed in Wouters and Lucarini (2012). We test this approach in the context of a low-order coupled ocean-atmosphere model, detailed in Vannitsem et al. (2015), for which a part of the atmospheric modes is considered as unresolved. A natural separation of the phase-space into a slow invariant set and its fast complement allows for an analytical derivation of the different terms involved in the parameterization, namely the average, the fluctuation and the long memory terms. Its application to the low-order system reveals that a considerable correction of the low-frequency variability along the invariant subset can be obtained. This new approach of scale separation opens new avenues of subgrid-scale parameterizations in multiscale systems used for climate forecasts. References: Vannitsem S, Demaeyer J, De Cruz L, Ghil M. 2015. Low-frequency variability and heat transport in a low-order nonlinear coupled ocean-atmosphere model. Physica D: Nonlinear Phenomena 309: 71-85. Wouters J, Lucarini V. 2012. Disentangling multi-level systems: averaging, correlations and memory. Journal of Statistical Mechanics: Theory and Experiment 2012(03): P03 003.
Wide-field high spatial frequency domain imaging of tissue microstructure
NASA Astrophysics Data System (ADS)
Lin, Weihao; Zeng, Bixin; Cao, Zili; Zhu, Danfeng; Xu, M.
2018-02-01
Wide-field tissue imaging is usually not capable of resolving tissue microstructure. We present High Spatial Frequency Domain Imaging (HSFDI) - a noncontact imaging modality that spatially maps the tissue microscopic scattering structures over a large field of view. Based on an analytical reflectance model of sub-diffusive light from forward-peaked highly scattering media, HSFDI quantifies the spatially-resolved parameters of the light scattering phase function from the reflectance of structured light modulated at high spatial frequencies. We have demonstrated with ex vivo cancerous tissue to validate the robustness of HSFDI in significant contrast and differentiation of the microstructutral parameters between different types and disease states of tissue.
Parsons, Jessica E; Cain, Charles A; Fowlkes, J Brian
2007-03-01
Spatial variability in acoustic backscatter is investigated as a potential feedback metric for assessment of lesion morphology during cavitation-mediated mechanical tissue disruption ("histotripsy"). A 750-kHz annular array was aligned confocally with a 4.5 MHz passive backscatter receiver during ex vivo insonation of porcine myocardium. Various exposure conditions were used to elicit a range of damage morphologies and backscatter characteristics [pulse duration = 14 micros, pulse repetition frequency (PRF) = 0.07-3.1 kHz, average I(SPPA) = 22-44 kW/cm2]. Variability in backscatter spatial localization was quantified by tracking the lag required to achieve peak correlation between sequential RF A-lines received. Mean spatial variability was observed to be significantly higher when damage morphology consisted of mechanically disrupted tissue homogenate versus mechanically intact coagulation necrosis (2.35 +/- 1.59 mm versus 0.067 +/- 0.054 mm, p < 0.025). Statistics from these variability distributions were used as the basis for selecting a threshold variability level to identify the onset of homogenate formation via an abrupt, sustained increase in spatially dynamic backscatter activity. Specific indices indicative of the state of the homogenization process were quantified as a function of acoustic input conditions. The prevalence of backscatter spatial variability was observed to scale with the amount of homogenate produced for various PRFs and acoustic intensities.
Hydrologic Drought in the Colorado River Basin
NASA Astrophysics Data System (ADS)
Timilsena, J.; Piechota, T.; Hidalgo, H.; Tootle, G.
2004-12-01
This paper focuses on drought scenarios of the Upper Colorado River Basin (UCRB) for the last five hundred years and evaluates the magnitude, severity and frequency of the current five-year drought. Hydrologic drought characteristics have been developed using the historical streamflow data and tree ring chronologies in the UCRB. Historical data include the Colorado River at Cisco and Lees Ferry, Green River, Palmer Hydrologic Drought Index (PHDI), and the Z index. Three ring chronologies were used from 17 spatially representative sites in the UCRB from NOAA's International Tree Ring Data. A PCA based regression model procedures was used to reconstruct drought indices and streamflow in the UCRB. Hydrologic drought is characterized by its duration (duration in year in which cumulative deficit is continuously below thresholds), deficit magnitude (the cumulative deficit below the thresholds for consecutive years), severity (magnitude divided by the duration) and frequency. Results indicate that the current drought ranks anywhere from the 5th to 20th worst drought during the period 1493-2004, depending on the drought indicator and magnitude. From a short term perspective (using annual data), the current drought is more severe than if longer term average (i.e., 5 or 10 year averages) are used to define the drought.
Spatially averaged flow over a wavy boundary revisited
McLean, S.R.; Wolfe, S.R.; Nelson, J.M.
1999-01-01
Vertical profiles of streamwise velocity measured over bed forms are commonly used to deduce boundary shear stress for the purpose of estimating sediment transport. These profiles may be derived locally or from some sort of spatial average. Arguments for using the latter procedure are based on the assumption that spatial averaging of the momentum equation effectively removes local accelerations from the problem. Using analogies based on steady, uniform flows, it has been argued that the spatially averaged velocity profiles are approximately logarithmic and can be used to infer values of boundary shear stress. This technique of using logarithmic profiles is investigated using detailed laboratory measurements of flow structure and boundary shear stress over fixed two-dimensional bed forms. Spatial averages over the length of the bed form of mean velocity measurements at constant distances from the mean bed elevation yield vertical profiles that are highly logarithmic even though the effect of the bottom topography is observed throughout the water column. However, logarithmic fits of these averaged profiles do not yield accurate estimates of the measured total boundary shear stress. Copyright 1999 by the American Geophysical Union.
Correction of mid-spatial-frequency errors by smoothing in spin motion for CCOS
NASA Astrophysics Data System (ADS)
Zhang, Yizhong; Wei, Chaoyang; Shao, Jianda; Xu, Xueke; Liu, Shijie; Hu, Chen; Zhang, Haichao; Gu, Haojin
2015-08-01
Smoothing is a convenient and efficient way to correct mid-spatial-frequency errors. Quantifying the smoothing effect allows improvements in efficiency for finishing precision optics. A series experiments in spin motion are performed to study the smoothing effects about correcting mid-spatial-frequency errors. Some of them use a same pitch tool at different spinning speed, and others at a same spinning speed with different tools. Introduced and improved Shu's model to describe and compare the smoothing efficiency with different spinning speed and different tools. From the experimental results, the mid-spatial-frequency errors on the initial surface were nearly smoothed out after the process in spin motion and the number of smoothing times can be estimated by the model before the process. Meanwhile this method was also applied to smooth the aspherical component, which has an obvious mid-spatial-frequency error after Magnetorheological Finishing processing. As a result, a high precision aspheric optical component was obtained with PV=0.1λ and RMS=0.01λ.
A task-irrelevant stimulus attribute affects perception and short-term memory
Huang, Jie; Kahana, Michael J.; Sekuler, Robert
2010-01-01
Selective attention protects cognition against intrusions of task-irrelevant stimulus attributes. This protective function was tested in coordinated psychophysical and memory experiments. Stimuli were superimposed, horizontally and vertically oriented gratings of varying spatial frequency; only one orientation was task relevant. Experiment 1 demonstrated that a task-irrelevant spatial frequency interfered with visual discrimination of the task-relevant spatial frequency. Experiment 2 adopted a two-item Sternberg task, using stimuli that had been scaled to neutralize interference at the level of vision. Despite being visually neutralized, the task-irrelevant attribute strongly influenced recognition accuracy and associated reaction times (RTs). This effect was sharply tuned, with the task-irrelevant spatial frequency having an impact only when the task-relevant spatial frequencies of the probe and study items were highly similar to one another. Model-based analyses of judgment accuracy and RT distributional properties converged on the point that the irrelevant orientation operates at an early stage in memory processing, not at a later one that supports decision making. PMID:19933454
A frequency averaging framework for the solution of complex dynamic systems
Lecomte, Christophe
2014-01-01
A frequency averaging framework is proposed for the solution of complex linear dynamic systems. It is remarkable that, while the mid-frequency region is usually very challenging, a smooth transition from low- through mid- and high-frequency ranges is possible and all ranges can now be considered in a single framework. An interpretation of the frequency averaging in the time domain is presented and it is explained that the average may be evaluated very efficiently in terms of system solutions. PMID:24910518
Kim, Steve M; Ganguli, Surya; Frank, Loren M
2012-08-22
Hippocampal place cells convey spatial information through a combination of spatially selective firing and theta phase precession. The way in which this information influences regions like the subiculum that receive input from the hippocampus remains unclear. The subiculum receives direct inputs from area CA1 of the hippocampus and sends divergent output projections to many other parts of the brain, so we examined the firing patterns of rat subicular neurons. We found a substantial transformation in the subicular code for space from sparse to dense firing rate representations along a proximal-distal anatomical gradient: neurons in the proximal subiculum are more similar to canonical, sparsely firing hippocampal place cells, whereas neurons in the distal subiculum have higher firing rates and more distributed spatial firing patterns. Using information theory, we found that the more distributed spatial representation in the subiculum carries, on average, more information about spatial location and context than the sparse spatial representation in CA1. Remarkably, despite the disparate firing rate properties of subicular neurons, we found that neurons at all proximal-distal locations exhibit robust theta phase precession, with similar spiking oscillation frequencies as neurons in area CA1. Our findings suggest that the subiculum is specialized to compress sparse hippocampal spatial codes into highly informative distributed codes suitable for efficient communication to other brain regions. Moreover, despite this substantial compression, the subiculum maintains finer scale temporal properties that may allow it to participate in oscillatory phase coding and spike timing-dependent plasticity in coordination with other regions of the hippocampal circuit.
Comparing the minimum spatial-frequency content for recognizing Chinese and alphabet characters
Wang, Hui; Legge, Gordon E.
2018-01-01
Visual blur is a common problem that causes difficulty in pattern recognition for normally sighted people under degraded viewing conditions (e.g., near the acuity limit, when defocused, or in fog) and also for people with impaired vision. For reliable identification, the spatial frequency content of an object needs to extend up to or exceed a minimum value in units of cycles per object, referred to as the critical spatial frequency. In this study, we investigated the critical spatial frequency for alphabet and Chinese characters, and examined the effect of pattern complexity. The stimuli were divided into seven categories based on their perimetric complexity, including the lowercase and uppercase alphabet letters, and five groups of Chinese characters. We found that the critical spatial frequency significantly increased with complexity, from 1.01 cycles per character for the simplest group to 2.00 cycles per character for the most complex group of Chinese characters. A second goal of the study was to test a space-bandwidth invariance hypothesis that would represent a tradeoff between the critical spatial frequency and the number of adjacent patterns that can be recognized at one time. We tested this hypothesis by comparing the critical spatial frequencies in cycles per character from the current study and visual-span sizes in number of characters (measured by Wang, He, & Legge, 2014) for sets of characters with different complexities. For the character size (1.2°) we used in the study, we found an invariant product of approximately 10 cycles, which may represent a capacity limitation on visual pattern recognition. PMID:29297056
Nameda, N
1988-01-01
Illumination allows solid object perception to be obtained and depicted by a shading pattern produced by lighting. The shading cue, as one of solid perception cues (Gibson 1979), was investigated in regard to a white corrugated wave shape, using computer graphic device: Tospix-2. The reason the corrugated wave was chosen, is that an alternately bright and dark pattern, produced by shading, can be conveniently analyzed into contained spatial frequencies. This paper reports spatial frequency properties contained in the shading pattern. The shading patterns, input into the computer graphic device, are analyzed by Fourier Transformation by the same device. After the filtration by various spatial frequency low and high pass filters, Inverse Fourier Transformation is carried out for the residual components. The result of the analysis indicates that the third through higher harmonics components are important in regard to presenting a solid reality feeling in solid perception. Sakata (1983) also reported that an edged pattern, superimposed onto a lower sinusoidal pattern, was important in solid perception. The third through higher harmonics components express the changing position of luminance on the pattern, and a slanted plane relating to the light direction. Detection of a solid shape, constructed with flat planes, is assumed to be on the bottom of the perfect curved solid perception mechanism. Apparent evidence for this assumption, in difficult visual conditions, is that a flat paneled solid is seen before the curved solid. This mechanism is explained by two spatial frequency neural network systems, assumed as having correspondence with higher spatial frequency detection and lower spatial frequency detection.
Exploring the parahippocampal cortex response to high and low spatial frequency spaces.
Zeidman, Peter; Mullally, Sinéad L; Schwarzkopf, Dietrich Samuel; Maguire, Eleanor A
2012-05-30
The posterior parahippocampal cortex (PHC) supports a range of cognitive functions, in particular scene processing. However, it has recently been suggested that PHC engagement during functional MRI simply reflects the representation of three-dimensional local space. If so, PHC should respond to space in the absence of scenes, geometric layout, objects or contextual associations. It has also been reported that PHC activation may be influenced by low-level visual properties of stimuli such as spatial frequency. Here, we tested whether PHC was responsive to the mere sense of space in highly simplified stimuli, and whether this was affected by their spatial frequency distribution. Participants were scanned using functional MRI while viewing depictions of simple three-dimensional space, and matched control stimuli that did not depict a space. Half the stimuli were low-pass filtered to ascertain the impact of spatial frequency. We observed a significant interaction between space and spatial frequency in bilateral PHC. Specifically, stimuli depicting space (more than nonspatial stimuli) engaged the right PHC when they featured high spatial frequencies. In contrast, the interaction in the left PHC did not show a preferential response to space. We conclude that a simple depiction of three-dimensional space that is devoid of objects, scene layouts or contextual associations is sufficient to robustly engage the right PHC, at least when high spatial frequencies are present. We suggest that coding for the presence of space may be a core function of PHC, and could explain its engagement in a range of tasks, including scene processing, where space is always present.
Age effects on visual-perceptual processing and confrontation naming.
Gutherie, Audrey H; Seely, Peter W; Beacham, Lauren A; Schuchard, Ronald A; De l'Aune, William A; Moore, Anna Bacon
2010-03-01
The impact of age-related changes in visual-perceptual processing on naming ability has not been reported. The present study investigated the effects of 6 levels of spatial frequency and 6 levels of contrast on accuracy and latency to name objects in 14 young and 13 older neurologically normal adults with intact lexical-semantic functioning. Spatial frequency and contrast manipulations were made independently. Consistent with the hypotheses, variations in these two visual parameters impact naming ability in young and older subjects differently. The results from the spatial frequency-manipulations revealed that, in general, young vs. older subjects are faster and more accurate to name. However, this age-related difference is dependent on the spatial frequency on the image; differences were only seen for images presented at low (e.g., 0.25-1 c/deg) or high (e.g., 8-16 c/deg) spatial frequencies. Contrary to predictions, the results from the contrast manipulations revealed that overall older vs. young adults are more accurate to name. Again, however, differences were only seen for images presented at the lower levels of contrast (i.e., 1.25%). Both age groups had shorter latencies on the second exposure of the contrast-manipulated images, but this possible advantage of exposure was not seen for spatial frequency. Category analyses conducted on the data from this study indicate that older vs. young adults exhibit a stronger nonliving-object advantage for naming spatial frequency-manipulated images. Moreover, the findings suggest that bottom-up visual-perceptual variables integrate with top-down category information in different ways. Potential implications on the aging and naming (and recognition) literature are discussed.
Zhu, Ping; Jafari, Rana; Jones, Travis; Trebino, Rick
2017-10-02
We introduce a simple delay-scanned complete spatiotemporal intensity-and-phase measurement technique based on wavelength-multiplexed holography to characterize long, complex pulses in space and time. We demonstrate it using pulses emerging from multi-mode fiber. This technique extends the temporal range and spectral resolution of the single-frame STRIPED FISH technique without using an otherwise-required expensive ultranarrow-bandpass filter. With this technique, we measured the complete intensity and phase of up to ten fiber modes from a multi-mode fiber (normalized frequency V ≈10) over a ~3ps time range. Spatiotemporal complexities such as intermodal delay, modal dispersion, and material dispersion were also intuitively displayed by the retrieved results. Agreement between the reconstructed color movies and the monitored time-averaged spatial profiles confirms the validity to this delay-scanned STRIPED FISH method.
Modulation transfer function cascade model for a sampled IR imaging system.
de Luca, L; Cardone, G
1991-05-01
The performance of the infrared scanning radiometer (IRSR) is strongly stressed in convective heat transfer applications where high spatial frequencies in the signal that describes the thermal image are present. The need to characterize more deeply the system spatial resolution has led to the formulation of a cascade model for the evaluation of the actual modulation transfer function of a sampled IR imaging system. The model can yield both the aliasing band and the averaged modulation response for a general sampling subsystem. For a line scan imaging system, which is the case of a typical IRSR, a rule of thumb that states whether the combined sampling-imaging system is either imaging-dependent or sampling-dependent is proposed. The model is tested by comparing it with other noncascade models as well as by ad hoc measurements performed on a commercial digitized IRSR.
Precoded spatial multiplexing MIMO system with spatial component interleaver.
Gao, Xiang; Wu, Zhanji
In this paper, the performance of precoded bit-interleaved coded modulation (BICM) spatial multiplexing multiple-input multiple-output (MIMO) system with spatial component interleaver is investigated. For the ideal precoded spatial multiplexing MIMO system with spatial component interleaver based on singular value decomposition (SVD) of the MIMO channel, the average pairwise error probability (PEP) of coded bits is derived. Based on the PEP analysis, the optimum spatial Q-component interleaver design criterion is provided to achieve the minimum error probability. For the limited feedback precoded proposed scheme with linear zero forcing (ZF) receiver, in order to minimize a bound on the average probability of a symbol vector error, a novel effective signal-to-noise ratio (SNR)-based precoding matrix selection criterion and a simplified criterion are proposed. Based on the average mutual information (AMI)-maximization criterion, the optimal constellation rotation angles are investigated. Simulation results indicate that the optimized spatial multiplexing MIMO system with spatial component interleaver can achieve significant performance advantages compared to the conventional spatial multiplexing MIMO system.
Understanding high magnitude flood risk: evidence from the past
NASA Astrophysics Data System (ADS)
MacDonald, N.
2009-04-01
The average length of gauged river flow records in the UK is ~25 years, which presents a problem in determining flood risk for high-magnitude flood events. Severe floods have been recorded in many UK catchments during the past 10 years, increasing the uncertainty in conventional flood risk estimates based on river flow records. Current uncertainty in flood risk has implications for society (insurance costs), individuals (personal vulnerability) and water resource managers (flood/drought risk). An alternative approach is required which can improve current understanding of the flood frequency/magnitude relationship. Historical documentary accounts are now recognised as a valuable resource when considering the flood frequency/magnitude relationship, but little consideration has been given to the temporal and spatial distribution of these records. Building on previous research based on British rivers (urban centre): Ouse (York), Trent (Nottingham), Tay (Perth), Severn (Shrewsbury), Dee (Chester), Great Ouse (Cambridge), Sussex Ouse (Lewes), Thames (Oxford), Tweed (Kelso) and Tyne (Hexham), this work considers the spatial and temporal distribution of historical flooding. The selected sites provide a network covering many of the largest river catchments in Britain, based on urban centres with long detailed documentary flood histories. The chronologies offer an opportunity to assess long-term patterns of flooding, indirectly determining periods of climatic variability and potentially increased geomorphic activity. This research represents the first coherent large scale analysis undertaken of historical multi-catchment flood chronologies, providing an unparalleled network of sites, permitting analysis of the spatial and temporal distribution of historical flood patterns on a national scale.
A Rapid Subcortical Amygdala Route for Faces Irrespective of Spatial Frequency and Emotion.
McFadyen, Jessica; Mermillod, Martial; Mattingley, Jason B; Halász, Veronika; Garrido, Marta I
2017-04-05
There is significant controversy over the existence and function of a direct subcortical visual pathway to the amygdala. It is thought that this pathway rapidly transmits low spatial frequency information to the amygdala independently of the cortex, and yet the directionality of this function has never been determined. We used magnetoencephalography to measure neural activity while human participants discriminated the gender of neutral and fearful faces filtered for low or high spatial frequencies. We applied dynamic causal modeling to demonstrate that the most likely underlying neural network consisted of a pulvinar-amygdala connection that was uninfluenced by spatial frequency or emotion, and a cortical-amygdala connection that conveyed high spatial frequencies. Crucially, data-driven neural simulations revealed a clear temporal advantage of the subcortical connection over the cortical connection in influencing amygdala activity. Thus, our findings support the existence of a rapid subcortical pathway that is nonselective in terms of the spatial frequency or emotional content of faces. We propose that that the "coarseness" of the subcortical route may be better reframed as "generalized." SIGNIFICANCE STATEMENT The human amygdala coordinates how we respond to biologically relevant stimuli, such as threat or reward. It has been postulated that the amygdala first receives visual input via a rapid subcortical route that conveys "coarse" information, namely, low spatial frequencies. For the first time, the present paper provides direction-specific evidence from computational modeling that the subcortical route plays a generalized role in visual processing by rapidly transmitting raw, unfiltered information directly to the amygdala. This calls into question a widely held assumption across human and animal research that fear responses are produced faster by low spatial frequencies. Our proposed mechanism suggests organisms quickly generate fear responses to a wide range of visual properties, heavily implicating future research on anxiety-prevention strategies. Copyright © 2017 the authors 0270-6474/17/373864-11$15.00/0.
Distinct spatial frequency sensitivities for processing faces and emotional expressions.
Vuilleumier, Patrik; Armony, Jorge L; Driver, Jon; Dolan, Raymond J
2003-06-01
High and low spatial frequency information in visual images is processed by distinct neural channels. Using event-related functional magnetic resonance imaging (fMRI) in humans, we show dissociable roles of such visual channels for processing faces and emotional fearful expressions. Neural responses in fusiform cortex, and effects of repeating the same face identity upon fusiform activity, were greater with intact or high-spatial-frequency face stimuli than with low-frequency faces, regardless of emotional expression. In contrast, amygdala responses to fearful expressions were greater for intact or low-frequency faces than for high-frequency faces. An activation of pulvinar and superior colliculus by fearful expressions occurred specifically with low-frequency faces, suggesting that these subcortical pathways may provide coarse fear-related inputs to the amygdala.
Northoff, Georg
2017-09-01
Consciousness research has much focused on faster frequencies like alpha or gamma while neglecting the slower ones in the infraslow (0.001-0.1Hz) and slow (0.1-1Hz) frequency range. These slower frequency ranges have a "bad reputation" though; their increase in power can observed during the loss of consciousness as in sleep, anesthesia, and vegetative state. However, at the same time, slower frequencies have been conceived instrumental for consciousness. The present paper aims to resolve this paradox which I describe as "paradox of slow frequencies". I first show various data that suggest a central role of slower frequencies in integrating faster ones, i.e., "temporo-spatial integration and nestedness". Such "temporo-spatial integration and nestedness" is disrupted during the loss of consciousness as in anesthesia and sleep leading to "temporo-spatial fragmentation and isolation" between slow and fast frequencies. Slow frequencies are supposedly mediated by neural activity in upper cortical layers in higher-order associative regions as distinguished from lower cortical layers that are related to faster frequencies. Taken together, slower and faster frequencies take on different roles for the level/state of consciousness. Faster frequencies by themselves are sufficient and thus a neural correlate of consciousness (NCC) while slower frequencies are a necessary non-sufficient condition of possible consciousness, e.g., a neural predisposition of the level/state of consciousness (NPC). This resolves the "paradox of slow frequencies" in that it assigns different roles to slower and faster frequencies in consciousness, i.e., NCC and NPC. Taken as NCC and NPC, fast and slow frequencies including their relation as in "temporo-spatial integration and nestedness" can be considered a first "building bloc" of a future "temporo-spatial theory of consciousness" (TTC) (Northoff, 2013; Northoff, 2014b; Northoff & Huang, 2017). Copyright © 2017 Elsevier Inc. All rights reserved.
Ensemble-Based Parameter Estimation in a Coupled GCM Using the Adaptive Spatial Average Method
Liu, Y.; Liu, Z.; Zhang, S.; ...
2014-05-29
Ensemble-based parameter estimation for a climate model is emerging as an important topic in climate research. And for a complex system such as a coupled ocean–atmosphere general circulation model, the sensitivity and response of a model variable to a model parameter could vary spatially and temporally. An adaptive spatial average (ASA) algorithm is proposed to increase the efficiency of parameter estimation. Refined from a previous spatial average method, the ASA uses the ensemble spread as the criterion for selecting “good” values from the spatially varying posterior estimated parameter values; these good values are then averaged to give the final globalmore » uniform posterior parameter. In comparison with existing methods, the ASA parameter estimation has a superior performance: faster convergence and enhanced signal-to-noise ratio.« less
Changes in tendon spatial frequency parameters with loading.
Pearson, Stephen J; Engel, Aaron J; Bashford, Gregory R
2017-05-24
To examine and compare the loading related changes in micro-morphology of the patellar tendon. Fifteen healthy young males (age 19±3yrs, body mass 83±5kg) were utilised in a within subjects matched pairs design. B mode ultrasound images were taken in the sagittal plane of the patellar tendon at rest with the knee at 90° flexion. Repeat images were taken whilst the subjects were carrying out maximal voluntary isometric contractions. Spatial frequency parameters related to the tendon morphology were determined within regions of interest (ROI) from the B mode images at rest and during isometric contractions. A number of spatial parameters were observed to be significantly different between resting and contracted images (Peak spatial frequency radius (PSFR), axis ratio, spatial Q-factor, PSFR amplitude ratio, and the sum). These spatial frequency parameters were indicative of acute alterations in the tendon micro-morphology with loading. Acute loading modifies the micro-morphology of the tendon, as observed via spatial frequency analysis. Further research is warranted to explore its utility with regard to different loading induced micro-morphological alterations, as these could give valuable insight not only to aid strengthening of this tissue but also optimization of recovery from injury and treatment of conditions such as tendinopathies. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Trinci, G.; Harvey, G.; Henshaw, A.; Bertoldi, W.
2016-12-01
Turbulence plays a crucial role in the life cycle of river plants and animals. Turbulent flow facilitates access to food, maintenance of adequate oxygen levels, removal of wastes, locomotion and predator evasion, but can also act as a stressor, leading to dislodgement from habitats, increased energy costs, physiological damage and even mortality. Despite this, hydraulic habitat assessments for river appraisal and restoration design have largely focused on temporally and spatially averaged flow properties rather than more complex descriptors of turbulence (turbulence intensity, and the periodicity, orientation and scale of coherent flow structures) that are known to directly influence aquatic organisms. Contrasting relationships between turbulence and mean flow velocity have been reported and there is a pressing need to improve understanding of the hydraulic environment provided by mesoscale river features, such as geomorphic units (e.g. riffles, pools, steps), upon which river management and restoration often focuses. We undertook high frequency velocity surveys within three river reaches (low, medium and high gradient) using a 3-dimensional Acoustic Doppler Velocimeter, combined with detailed surveys of bed topography and visual assessments of the spatial organisation of geomorphic units. Using a combination of multivariate statistical analysis (Principal Components Analysis, Cluster Analysis and GLMs) and geostatistics (semi-variance), the paper explores the spatial organisation of key turbulence parameters across the reaches and linkages with mean flow velocity and characteristic roughness elements. The ability of `higher order' turbulence properties to distinguish between visually identified geomorphic units is also assessed. The findings provide insights into scales of variability in turbulence properties that have direct ecological relevance, helping to inform river assessment and restoration efforts.
Ecological scale and seasonal heterogeneity in the spatial behaviors of giant pandas.
Zhang, Zejun; Sheppard, James K; Swaisgood, Ronald R; Wang, Guan; Nie, Yonggang; Wei, Wei; Zhao, Naxun; Wei, Fuwen
2014-01-01
We report on the first study to track the spatial behaviors of wild giant pandas (Ailuropoda melanoleuca) using high-resolution global positioning system (GPS) telemetry. Between 2008 and 2009, 4 pandas (2 male and 2 female) were tracked in Foping Reserve, China for an average of 305 days (± 54.8 SE). Panda home ranges were larger than those of previous very high frequency tracking studies, with a bimodal distribution of space-use and distinct winter and summer centers of activity. Home range sizes were larger in winter than in summer, although there was considerable individual variability. All tracked pandas exhibited individualistic, unoriented and multiphasic movement paths, with a high level of tortuosity within seasonal core habitats and directed, linear, large-scale movements between habitats. Pandas moved from low elevation winter habitats to high elevation (>2000 m) summer habitats in May, when temperatures averaged 17.5 °C (± 0.3 SE), and these large-scale movements took <1 month to complete. The peak in panda mean elevation occurred in Jul, after which they began slow, large-scale movements back to winter habitats that were completed in Nov. An adult female panda made 2 longdistance movements during the mating season. Pandas remain close to rivers and streams during winter, possibly reflecting the elevated water requirements to digest their high-fiber food. Panda movement path tortuosity and first-passage-time as a function of spatial scale indicated a mean peak in habitat search effort and patch use of approximately 700 m. Despite a high degree of spatial overlap between panda home ranges, particularly in winter, we detected neither avoidance nor attraction behavior between conspecifics. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirigian, Stephen; Schweizer, Kenneth S.
Here, we employ the Elastically Collective Nonlinear Langevin Equation (ECNLE) theory of activated relaxation to study several questions in free standing thin films of glass-forming molecular and polymer liquids. The influence of non-universal chemical aspects on dynamical confinement effects is found to be relatively weak, but with the caveat that for the systems examined, the bulk ECNLE polymer theory does not predict widely varying fragilities. Allowing the film model to have a realistic vapor interfacial width significantly enhances the reduction of the film-averaged glass transition temperature, T g, in a manner that depends on whether a dynamic or pseudo-thermodynamic averagingmore » of the spatial mobility gradient is adopted. The nature of film thickness effects on the spatial profiles of the alpha relaxation time and elastic modulus is studied under non-isothermal conditions and contrasted with the corresponding isothermal behavior. Modest differences are found if a film-thickness dependent T g is defined in a dynamical manner. But, adopting a pseudo-thermodynamic measure of T g leads to a qualitatively new form of the alpha relaxation time gradient where highly mobile layers near the film surface coexist with strongly vitrified regions in the film interior. Consequently, the film-averaged shear modulus can increase with decreasing film thickness, despite the T g reduction and presence of a mobile surface layer. Such a behavior stands in qualitative contrast to the predicted mechanical softening under isothermal conditions. Spatial gradients of the elastic modulus are studied as a function of temperature, film thickness, probing frequency, and experimental protocol, and a rich behavior is found.« less
Mirigian, Stephen; Schweizer, Kenneth S.
2017-02-02
Here, we employ the Elastically Collective Nonlinear Langevin Equation (ECNLE) theory of activated relaxation to study several questions in free standing thin films of glass-forming molecular and polymer liquids. The influence of non-universal chemical aspects on dynamical confinement effects is found to be relatively weak, but with the caveat that for the systems examined, the bulk ECNLE polymer theory does not predict widely varying fragilities. Allowing the film model to have a realistic vapor interfacial width significantly enhances the reduction of the film-averaged glass transition temperature, T g, in a manner that depends on whether a dynamic or pseudo-thermodynamic averagingmore » of the spatial mobility gradient is adopted. The nature of film thickness effects on the spatial profiles of the alpha relaxation time and elastic modulus is studied under non-isothermal conditions and contrasted with the corresponding isothermal behavior. Modest differences are found if a film-thickness dependent T g is defined in a dynamical manner. But, adopting a pseudo-thermodynamic measure of T g leads to a qualitatively new form of the alpha relaxation time gradient where highly mobile layers near the film surface coexist with strongly vitrified regions in the film interior. Consequently, the film-averaged shear modulus can increase with decreasing film thickness, despite the T g reduction and presence of a mobile surface layer. Such a behavior stands in qualitative contrast to the predicted mechanical softening under isothermal conditions. Spatial gradients of the elastic modulus are studied as a function of temperature, film thickness, probing frequency, and experimental protocol, and a rich behavior is found.« less
Young, Laura K; Smithson, Hannah E
2014-01-01
There is evidence that letter identification is mediated by only a narrow band of spatial frequencies and that the center frequency of the neural channel thought to underlie this selectivity is related to the size of the letters. When letters are spatially filtered (at a fixed size) the channel tuning characteristics change according to the properties of the spatial filter (Majaj et al., 2002). Optical aberrations in the eye act to spatially filter the image formed on the retina-their effect is generally to attenuate high frequencies more than low frequencies but often in a non-monotonic way. We might expect the change in the spatial frequency spectrum caused by the aberration to predict the shift in channel tuning observed for aberrated letters. We show that this is not the case. We used critical-band masking to estimate channel-tuning in the presence of three types of aberration-defocus, coma and secondary astigmatism. We found that the maximum masking was shifted to lower frequencies in the presence of an aberration and that this result was not simply predicted by the spatial-frequency-dependent degradation in image quality, assessed via metrics that have previously been shown to correlate well with performance loss in the presence of an aberration. We show that if image quality effects are taken into account (using visual Strehl metrics), the neural channel required to model the data is shifted to lower frequencies compared to the control (no-aberration) condition. Additionally, we show that when spurious resolution (caused by π phase shifts in the optical transfer function) in the image is masked, the channel tuning properties for aberrated letters are affected, suggesting that there may be interference between visual channels. Even in the presence of simulated aberrations, whose properties change from trial-to-trial, observers exhibit flexibility in selecting the spatial frequencies that support letter identification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirigian, Stephen, E-mail: kschweiz@illinois.edu, E-mail: smirigian@gmail.com; Schweizer, Kenneth S., E-mail: kschweiz@illinois.edu, E-mail: smirigian@gmail.com
2015-12-28
We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made formore » how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry.« less
Mirigian, Stephen; Schweizer, Kenneth S
2015-12-28
We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made for how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry.
Encoding of Spatio-Temporal Input Characteristics by a CA1 Pyramidal Neuron Model
Pissadaki, Eleftheria Kyriaki; Sidiropoulou, Kyriaki; Reczko, Martin; Poirazi, Panayiota
2010-01-01
The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the distal and proximal dendritic layers influence the information content of model responses. We find that the temporal delay between activation of the two layers acts as a switch between excitability modes: short delays induce bursting while long delays decrease firing. For long delays, the average firing frequency of the model response discriminates spatially clustered from diffused inputs to the distal dendritic tree. For short delays, the onset latency and inter-spike-interval succession of model responses can accurately classify input signals as temporally close or distant and spatially clustered or diffused across different stimulation protocols. These findings suggest that a CA1 pyramidal neuron may be capable of encoding and transmitting presynaptic spatiotemporal information about the activity of the entorhinal cortex-hippocampal network to higher brain regions via the selective use of either a temporal or a rate code. PMID:21187899
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Subimal; Das, Debasish; Kao, Shih-Chieh
Recent studies disagree on how rainfall extremes over India have changed in space and time over the past half century, as well as on whether the changes observed are due to global warming or regional urbanization. Although a uniform and consistent decrease in moderate rainfall has been reported, a lack of agreement about trends in heavy rainfall may be due in part to differences in the characterization and spatial averaging of extremes. Here we use extreme value theory to examine trends in Indian rainfall over the past half century in the context of long-term, low-frequency variability.We show that when generalizedmore » extreme value theory is applied to annual maximum rainfall over India, no statistically significant spatially uniform trends are observed, in agreement with previous studies using different approaches. Furthermore, our space time regression analysis of the return levels points to increasing spatial variability of rainfall extremes over India. Our findings highlight the need for systematic examination of global versus regional drivers of trends in Indian rainfall extremes, and may help to inform flood hazard preparedness and water resource management in the region.« less
McBain, Ryan; Norton, Daniel; Chen, Yue
2010-09-01
While schizophrenia patients are impaired at facial emotion perception, the role of basic visual processing in this deficit remains relatively unclear. We examined emotion perception when spatial frequency content of facial images was manipulated via high-pass and low-pass filtering. Unlike controls (n=29), patients (n=30) perceived images with low spatial frequencies as more fearful than those without this information, across emotional salience levels. Patients also perceived images with high spatial frequencies as happier. In controls, this effect was found only at low emotional salience. These results indicate that basic visual processing has an amplified modulatory effect on emotion perception in schizophrenia. (c) 2010 Elsevier B.V. All rights reserved.
SSD with generalized phase modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothenberg, J.
1996-01-09
Smoothing by spectral dispersion (SSD) with standard frequency modulation (FM), although simple to implement, has the disadvantage that low spatial frequencies present in the spectrum of the target illumination are not smoothed as effectively as with a more general smoothing method (eg, induced spatial incoherence method). The reduced smoothing performance of standard FM-SSD can result in spectral power of the speckle noise at these low spatial frequencies as much as one order of magnitude larger than that achieved with a more general method. In fact, at small integration times FM-SSD has no smoothing effect at all for a broad bandmore » of low spatial frequencies. This effect may have important implications for both direct and indirect drive ICF.« less
Up-down Asymmetries in Speed Perception
NASA Technical Reports Server (NTRS)
Thompson, Peter; Stone, Leland S.
1997-01-01
We compared speed matches for pairs of stimuli that moved in opposite directions (upward and downward). Stimuli were elliptical patches (2 deg horizontally by 1 deg vertically) of horizontal sinusoidal gratings of spatial. frequency 2 cycles/deg. Two sequential 380 msec reveal presentations were compared. One of each pair of gratings (the standard) moved at 4 Hz (2 deg/sec), the other (the test) moved at a rate determined by a simple up-down staircase. The point of subjectively equal speed was calculated from the average of the last eight reversals. The task was to fixate a central point and to determine which one of the pair appeared to move faster. Eight of 10 observers perceived the upward drifting grating as moving faster than a grating moving downward but otherwise identical. on average (N = 10), when the standard moved downward, it was matched by a test moving upward at 94.7+/-1.7(SE)% of the standard speed, and when the standard moved upward it was matched by a test moving downward at 105.1+/-2.3(SE)% of the standard speed. Extending this paradigm over a range of spatial (1.5 to 13.5 c/d) and temporal (1.5 to 13.5 Hz) frequencies, preliminary results (N = 4) suggest that, under the conditions of our experiment, upward matter is seen as faster than downward for speeds greater than approx.1 deg/sec, but the effect appears to reverse at speeds below approx.1 deg/sec with downward motion perceived as faster. Given that an up-down asymmetry has been observed for the optokinetic response, both perceptual and oculomotor contributions to this phenomenon deserve exploration.
Landscape-level variation in disease susceptibility related to shallow-water hypoxia.
Breitburg, Denise L; Hondorp, Darryl; Audemard, Corinne; Carnegie, Ryan B; Burrell, Rebecca B; Trice, Mark; Clark, Virginia
2015-01-01
Diel-cycling hypoxia is widespread in shallow portions of estuaries and lagoons, especially in systems with high nutrient loads resulting from human activities. Far less is known about the effects of this form of hypoxia than deeper-water seasonal or persistent low dissolved oxygen. We examined field patterns of diel-cycling hypoxia and used field and laboratory experiments to test its effects on acquisition and progression of Perkinsus marinus infections in the eastern oyster, Crassostrea virginica, as well as on oyster growth and filtration. P. marinus infections cause the disease known as Dermo, have been responsible for declines in oyster populations, and have limited success of oyster restoration efforts. The severity of diel-cycling hypoxia varied among shallow monitored sites in Chesapeake Bay, and average daily minimum dissolved oxygen was positively correlated with average daily minimum pH. In both field and laboratory experiments, diel-cycling hypoxia increased acquisition and progression of infections, with stronger results found for younger (1-year-old) than older (2-3-year-old) oysters, and more pronounced effects on both infections and growth found in the field than in the laboratory. Filtration by oysters was reduced during brief periods of exposure to severe hypoxia. This should have reduced exposure to waterborne P. marinus, and contributed to the negative relationship found between hypoxia frequency and oyster growth. Negative effects of hypoxia on the host immune response is, therefore, the likely mechanism leading to elevated infections in oysters exposed to hypoxia relative to control treatments. Because there is considerable spatial variation in the frequency and severity of hypoxia, diel-cycling hypoxia may contribute to landscape-level spatial variation in disease dynamics within and among estuarine systems.
Daly, Keith R; Tracy, Saoirse R; Crout, Neil M J; Mairhofer, Stefan; Pridmore, Tony P; Mooney, Sacha J; Roose, Tiina
2018-01-01
Spatially averaged models of root-soil interactions are often used to calculate plant water uptake. Using a combination of X-ray computed tomography (CT) and image-based modelling, we tested the accuracy of this spatial averaging by directly calculating plant water uptake for young wheat plants in two soil types. The root system was imaged using X-ray CT at 2, 4, 6, 8 and 12 d after transplanting. The roots were segmented using semi-automated root tracking for speed and reproducibility. The segmented geometries were converted to a mesh suitable for the numerical solution of Richards' equation. Richards' equation was parameterized using existing pore scale studies of soil hydraulic properties in the rhizosphere of wheat plants. Image-based modelling allows the spatial distribution of water around the root to be visualized and the fluxes into the root to be calculated. By comparing the results obtained through image-based modelling to spatially averaged models, the impact of root architecture and geometry in water uptake was quantified. We observed that the spatially averaged models performed well in comparison to the image-based models with <2% difference in uptake. However, the spatial averaging loses important information regarding the spatial distribution of water near the root system. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wu, Guangyuan; Niu, Shijun; Li, Xiaozhou; Hu, Guichun
2018-04-01
Due to the increasing globalization of printing industry, remoting proofing will become the inevitable development trend. Cross-media color reproduction will occur in different color gamuts using remote proofing technologies, which usually leads to the problem of incompatible color gamut. In this paper, to achieve equivalent color reproduction between a monitor and a printer, a frequency-based spatial gamut mapping algorithm is proposed for decreasing the loss of visual color information. The design of algorithm is based on the contrast sensitivity functions (CSF), which exploited CSF spatial filter to preserve luminance of the high spatial frequencies and chrominance of the low frequencies. First we show a general framework for how to apply CSF spatial filter in retention of relevant visual information. Then we compare the proposed framework with HPMINDE, CUSP, Bala's algorithm. The psychophysical experimental results indicated the good performance of the proposed algorithm.
Assessing resolution in live cell structured illumination microscopy
NASA Astrophysics Data System (ADS)
Pospíšil, Jakub; Fliegel, Karel; Klíma, Miloš
2017-12-01
Structured Illumination Microscopy (SIM) is a powerful super-resolution technique, which is able to enhance the resolution of optical microscope beyond the Abbe diffraction limit. In the last decade, numerous SIM methods that achieve the resolution of 100 nm in the lateral dimension have been developed. The SIM setups with new high-speed cameras and illumination pattern generators allow rapid acquisition of the live specimen. Therefore, SIM is widely used for investigation of the live structures in molecular and live cell biology. Quantitative evaluation of resolution enhancement in a real sample is essential to describe the efficiency of super-resolution microscopy technique. However, measuring the resolution of a live cell sample is a challenging task. Based on our experimental findings, the widely used Fourier ring correlation (FRC) method does not seem to be well suited for measuring the resolution of SIM live cell video sequences. Therefore, the resolution assessing methods based on Fourier spectrum analysis are often used. We introduce a measure based on circular average power spectral density (PSDca) estimated from a single SIM image (one video frame). PSDca describes the distribution of the power of a signal with respect to its spatial frequency. Spatial resolution corresponds to the cut-off frequency in Fourier space. In order to estimate the cut-off frequency from a noisy signal, we use a spectral subtraction method for noise suppression. In the future, this resolution assessment approach might prove useful also for single-molecule localization microscopy (SMLM) live cell imaging.
An underestimated role of precipitation frequency in regulating summer soil moisture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Chaoyang; Chen, Jing M.; Pumpanen, Jukka
2012-04-26
Soil moisture induced droughts are expected to become more frequent under future global climate change. Precipitation has been previously assumed to be mainly responsible for variability in summer soil moisture. However, little is known about the impacts of precipitation frequency on summer soil moisture, either interannually or spatially. To better understand the temporal and spatial drivers of summer drought, 415 site yr measurements observed at 75 flux sites world wide were used to analyze the temporal and spatial relationships between summer soil water content (SWC) and the precipitation frequencies at various temporal scales, i.e., from half-hourly, 3, 6, 12 andmore » 24 h measurements. Summer precipitation was found to be an indicator of interannual SWC variability with r of 0.49 (p < 0.001) for the overall dataset. However, interannual variability in summer SWC was also significantly correlated with the five precipitation frequencies and the sub-daily precipitation frequencies seemed to explain the interannual SWC variability better than the total of precipitation. Spatially, all these precipitation frequencies were better indicators of summer SWC than precipitation totals, but these better performances were only observed in non-forest ecosystems. Our results demonstrate that precipitation frequency may play an important role in regulating both interannual and spatial variations of summer SWC, which has probably been overlooked or underestimated. However, the spatial interpretation should carefully consider other factors, such as the plant functional types and soil characteristics of diverse ecoregions.« less
Ibsen, Stuart D; Nachtigall, Paul E; Krause-Nehring, Jacqueline; Kloepper, Laura; Breese, Marlee; Li, Songhai; Vlachos, Stephanie
2012-08-01
A two-dimensional array of 16 hydrophones was created to map the spatial distribution of different frequencies within the echolocation beam of a Tursiops truncatus and a Pseudorca crassidens. It was previously shown that both the Tursiops and Pseudorca only paid attention to frequencies between 29 and 42 kHz while echolocating. Both individuals tightly focused the 30 kHz frequency and the spatial location of the focus was consistently pointed toward the target. At 50 kHz the beam was less focused and less precisely pointed at the target. At 100 kHz the focus was often completely lost and was not pointed at the target. This indicates that these individuals actively focused the beam toward the target only in the frequency range they paid attention to. Frequencies outside this range were left unfocused and undirected. This focusing was probably achieved through sensorimotor control of the melon morphology and nasal air sacs. This indicates that both morphologically different species can control the spatial distribution of different frequency ranges within the echolocation beam to create consistent ensonation of desired targets.
NASA Astrophysics Data System (ADS)
Dettwiller, L.; Lépine, T.
2017-12-01
A general and pure wave theory of image formation for all types of stellar interferometers, including hypertelescopes, is developed in the frame of Fresnel's paraxial approximations of diffraction. For a hypertelescope, we show that the severe lack of translation invariance leads to multiple and strong spatial frequency heterodyning, which codes the very high frequencies detected by the hypertelescope into medium spatial frequencies and introduces a moiré-type ambiguity for extended objects. This explains mathematically the disappointing appearance of poor resolution observed in some image simulations for hypertelescopes.
Spatial contrast sensitivity - Effects of age, test-retest, and psychophysical method
NASA Technical Reports Server (NTRS)
Higgins, Kent E.; Jaffe, Myles J.; Caruso, Rafael C.; Demonasterio, Francisco M.
1988-01-01
Two different psychophysical methods were used to test the spatial contrast sensitivity in normal subjects from five age groups. The method of adjustment showed a decline in sensitivity with increasing age at all spatial frequencies, while the forced-choice procedure showed an age-related decline predominantly at high spatial frequencies. It is suggested that a neural component is responsible for this decline.
Attention to Hierarchical Level Influences Attentional Selection of Spatial Scale
ERIC Educational Resources Information Center
Flevaris, Anastasia V.; Bentin, Shlomo; Robertson, Lynn C.
2011-01-01
Ample evidence suggests that global perception may involve low spatial frequency (LSF) processing and that local perception may involve high spatial frequency (HSF) processing (Shulman, Sullivan, Gish, & Sakoda, 1986; Shulman & Wilson, 1987; Robertson, 1996). It is debated whether SF selection is a low-level mechanism associating global…
Visual information processing of faces in body dysmorphic disorder.
Feusner, Jamie D; Townsend, Jennifer; Bystritsky, Alexander; Bookheimer, Susan
2007-12-01
Body dysmorphic disorder (BDD) is a severe psychiatric condition in which individuals are preoccupied with perceived appearance defects. Clinical observation suggests that patients with BDD focus on details of their appearance at the expense of configural elements. This study examines abnormalities in visual information processing in BDD that may underlie clinical symptoms. To determine whether patients with BDD have abnormal patterns of brain activation when visually processing others' faces with high, low, or normal spatial frequency information. Case-control study. University hospital. Twelve right-handed, medication-free subjects with BDD and 13 control subjects matched by age, sex, and educational achievement. Intervention Functional magnetic resonance imaging while performing matching tasks of face stimuli. Stimuli were neutral-expression photographs of others' faces that were unaltered, altered to include only high spatial frequency visual information, or altered to include only low spatial frequency visual information. Blood oxygen level-dependent functional magnetic resonance imaging signal changes in the BDD and control groups during tasks with each stimulus type. Subjects with BDD showed greater left hemisphere activity relative to controls, particularly in lateral prefrontal cortex and lateral temporal lobe regions for all face tasks (and dorsal anterior cingulate activity for the low spatial frequency task). Controls recruited left-sided prefrontal and dorsal anterior cingulate activity only for the high spatial frequency task. Subjects with BDD demonstrate fundamental differences from controls in visually processing others' faces. The predominance of left-sided activity for low spatial frequency and normal faces suggests detail encoding and analysis rather than holistic processing, a pattern evident in controls only for high spatial frequency faces. These abnormalities may be associated with apparent perceptual distortions in patients with BDD. The fact that these findings occurred while subjects viewed others' faces suggests differences in visual processing beyond distortions of their own appearance.
Nadeau, Kyle P; Rice, Tyler B; Durkin, Anthony J; Tromberg, Bruce J
2015-11-01
We present a method for spatial frequency domain data acquisition utilizing a multifrequency synthesis and extraction (MSE) method and binary square wave projection patterns. By illuminating a sample with square wave patterns, multiple spatial frequency components are simultaneously attenuated and can be extracted to determine optical property and depth information. Additionally, binary patterns are projected faster than sinusoids typically used in spatial frequency domain imaging (SFDI), allowing for short (millisecond or less) camera exposure times, and data acquisition speeds an order of magnitude or more greater than conventional SFDI. In cases where sensitivity to superficial layers or scattering is important, the fundamental component from higher frequency square wave patterns can be used. When probing deeper layers, the fundamental and harmonic components from lower frequency square wave patterns can be used. We compared optical property and depth penetration results extracted using square waves to those obtained using sinusoidal patterns on an in vivo human forearm and absorbing tube phantom, respectively. Absorption and reduced scattering coefficient values agree with conventional SFDI to within 1% using both high frequency (fundamental) and low frequency (fundamental and harmonic) spatial frequencies. Depth penetration reflectance values also agree to within 1% of conventional SFDI.
Nadeau, Kyle P.; Rice, Tyler B.; Durkin, Anthony J.; Tromberg, Bruce J.
2015-01-01
Abstract. We present a method for spatial frequency domain data acquisition utilizing a multifrequency synthesis and extraction (MSE) method and binary square wave projection patterns. By illuminating a sample with square wave patterns, multiple spatial frequency components are simultaneously attenuated and can be extracted to determine optical property and depth information. Additionally, binary patterns are projected faster than sinusoids typically used in spatial frequency domain imaging (SFDI), allowing for short (millisecond or less) camera exposure times, and data acquisition speeds an order of magnitude or more greater than conventional SFDI. In cases where sensitivity to superficial layers or scattering is important, the fundamental component from higher frequency square wave patterns can be used. When probing deeper layers, the fundamental and harmonic components from lower frequency square wave patterns can be used. We compared optical property and depth penetration results extracted using square waves to those obtained using sinusoidal patterns on an in vivo human forearm and absorbing tube phantom, respectively. Absorption and reduced scattering coefficient values agree with conventional SFDI to within 1% using both high frequency (fundamental) and low frequency (fundamental and harmonic) spatial frequencies. Depth penetration reflectance values also agree to within 1% of conventional SFDI. PMID:26524682
NASA Astrophysics Data System (ADS)
Zivieri, R.; Giordano, A.; Verba, R.; Azzerboni, B.; Carpentieri, M.; Slavin, A. N.; Finocchio, G.
2018-04-01
A two-dimensional analytical model for the description of the excitation of nonreciprocal spin waves by spin current in spin Hall oscillators in the presence of the interfacial Dzyaloshinskii-Moriya interaction (i -DMI) is developed. The theory allows one to calculate the threshold current for the excitation of spin waves, as well as the frequencies and spatial profiles of the excited spin-wave modes. It is found that the frequency of the excited spin waves exhibits a quadratic redshift with the i -DMI strength. At the same time, in the range of small and moderate values of the i -DMI constant, the averaged wave number of the excited spin waves is almost independent of the i -DMI, which results in a rather weak dependence on the i -DMI of the threshold current of the spin-wave excitation. The obtained analytical results are confirmed by the results of micromagnetic simulations.
NMR imaging of cell phone radiation absorption in brain tissue
Gultekin, David H.; Moeller, Lothar
2013-01-01
A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry. PMID:23248293
Allgeyer, Edward S; Sterling, Sarah M; Gunewardene, Mudalige S; Hess, Samuel T; Neivandt, David J; Mason, Michael D
2015-01-27
Understanding surface and interfacial lateral organization in material and biological systems is critical in nearly every field of science. The continued development of tools and techniques viable for elucidation of interfacial and surface information is therefore necessary to address new questions and further current investigations. Sum frequency spectroscopy (SFS) is a label-free, nonlinear optical technique with inherent surface specificity that can yield critical organizational information on interfacial species. Unfortunately, SFS provides no spatial information on a surface; small scale heterogeneities that may exist are averaged over the large areas typically probed. Over the past decade, this has begun to be addressed with the advent of SFS microscopy. Here we detail the construction and function of a total internal reflection (TIR) SFS spectral and confocal fluorescence imaging microscope directly amenable to surface investigations. This instrument combines, for the first time, sample scanning TIR-SFS imaging with confocal fluorescence microscopy.
NMR imaging of cell phone radiation absorption in brain tissue.
Gultekin, David H; Moeller, Lothar
2013-01-02
A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry.
The characteristics on spatiotemporal variations of summer heatwaves in China
NASA Astrophysics Data System (ADS)
Qixiang, C.; Wang, L.; Wu, S., II; Li, Y.
2016-12-01
Summer heatwaves in China have impacts on forestry, agriculture resource, infrastructure, and heat -related illness and mortality. Based on daily air temperature and relative humidity from the Chinese Meteorological Data Sharing Service System, the spatial distribution and trends of the intensity, duration, and frequency of heatwaves in China during 1960-2015 were analyzed. Considering climatic variability, we defined a heatwave as a spell of consecutive days with maximum temperatures exceeding the relative threshold (temperature percentile) .We also consider a indices combined hot days and tropical nights (CHT), and the humidity-corrected apparent temperature (AT) to analyze the health impacts of hot days in summer. This study shows that while the average frequency and duration of heatwaves has an increasing trend since 1990s, the North China Plain has a decreasing trend. This study also shows that the largest CHT values occur in southeast China, and the largest AT values occur in South China.
Dale, Gillian; Arnell, Karen M.
2014-01-01
Visual stimuli can be perceived at a broad, “global” level, or at a more focused, “local” level. While research has shown that many individuals demonstrate a preference for global information, there are large individual differences in the degree of global/local bias, such that some individuals show a large global bias, some show a large local bias, and others show no bias. The main purpose of the current study was to examine whether these dispositional differences in global/local bias could be altered through various manipulations of high/low spatial frequency. Through 5 experiments, we examined various measures of dispositional global/local bias and whether performance on these measures could be altered by manipulating previous exposure to high or low spatial frequency information (with high/low spatial frequency faces, gratings, and Navon letters). Ultimately, there was little evidence of change from pre-to-post manipulation on the dispositional measures, and dispositional global/local bias was highly reliable pre- to post-manipulation. The results provide evidence that individual differences in global/local bias or preference are relatively resistant to exposure to spatial frequency information, and suggest that the processing mechanisms underlying high/low spatial frequency use and global/local bias may be more independent than previously thought. PMID:24992321
Brownian motion of a circle swimmer in a harmonic trap
NASA Astrophysics Data System (ADS)
Jahanshahi, Soudeh; Löwen, Hartmut; ten Hagen, Borge
2017-02-01
We study the dynamics of a Brownian circle swimmer with a time-dependent self-propulsion velocity in an external temporally varying harmonic potential. For several situations, the noise-free swimming paths, the noise-averaged mean trajectories, and the mean-square displacements are calculated analytically or by computer simulation. Based on our results, we discuss optimal swimming strategies in order to explore a maximum spatial range around the trap center. In particular, we find a resonance situation for the maximum escape distance as a function of the various frequencies in the system. Moreover, the influence of the Brownian noise is analyzed by comparing noise-free trajectories at zero temperature with the corresponding noise-averaged trajectories at finite temperature. The latter reveal various complex self-similar spiral or rosette-like patterns. Our predictions can be tested in experiments on artificial and biological microswimmers under dynamical external confinement.
Resource Assessment of Tidal Current Energy in Hangzhou Bay Based on Long Term Measurement
NASA Astrophysics Data System (ADS)
Zhang, Feng; Dai, Chun-Ni; Xu, Xue-Feng; Wang, Chuan-Kun; Ye, Qin
2017-05-01
Compared with other marine renewable energy, tidal current energy benefits a lot in high energy density and good predictability. Based on the measured tidal current data in Hangzhou Bay from Nov 2012 to Oct 2012, this paper analysed temporal and spatial changes of tidal current energy in the site. It is the first time measured data of such long time been taken in tidal current energy analysis. Occurrence frequency and duration of the current of different speed are given out in the paper. According to the analysis results, monthly average power density changed a lot in different month, and installation orientation of tidal current turbine significantly affected energy acquisition. Finally, the annual average power density of tidal current energy with coefficient Cp in the site was calculated, and final output of a tidal current plant was also estimated.
Ponderomotive dynamics of waves in quasiperiodically modulated media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz, D. E.; Dodin, I. Y.
Similarly to how charged particles experience time-averaged ponderomotive forces in high-frequency fields, linear waves also experience time-averaged refraction in modulated media. We propose a covariant variational theory of this ponderomotive effect on waves for a general nondissipative linear medium. Using the Weyl calculus, our formulation accommodates waves with temporal and spatial period comparable to that of the modulation (provided that parametric resonances are avoided). This theory also shows that any wave is, in fact, a polarizable object that contributes to the linear dielectric tensor of the ambient medium. Furthermore, the dynamics of quantum particles is subsumed as a special case.more » As an illustration, ponderomotive Hamiltonians of quantum particles and photons are calculated within a number of models. We also explain a fundamental connection between these results and the well-known electrostatic dielectric tensor of quantum plasmas.« less
Ponderomotive dynamics of waves in quasiperiodically modulated media
Ruiz, D. E.; Dodin, I. Y.
2017-03-14
Similarly to how charged particles experience time-averaged ponderomotive forces in high-frequency fields, linear waves also experience time-averaged refraction in modulated media. We propose a covariant variational theory of this ponderomotive effect on waves for a general nondissipative linear medium. Using the Weyl calculus, our formulation accommodates waves with temporal and spatial period comparable to that of the modulation (provided that parametric resonances are avoided). This theory also shows that any wave is, in fact, a polarizable object that contributes to the linear dielectric tensor of the ambient medium. Furthermore, the dynamics of quantum particles is subsumed as a special case.more » As an illustration, ponderomotive Hamiltonians of quantum particles and photons are calculated within a number of models. We also explain a fundamental connection between these results and the well-known electrostatic dielectric tensor of quantum plasmas.« less
Effects of spatial variability and scale on areal -average evapotranspiration
NASA Technical Reports Server (NTRS)
Famiglietti, J. S.; Wood, Eric F.
1993-01-01
This paper explores the effect of spatial variability and scale on areally-averaged evapotranspiration. A spatially-distributed water and energy balance model is employed to determine the effect of explicit patterns of model parameters and atmospheric forcing on modeled areally-averaged evapotranspiration over a range of increasing spatial scales. The analysis is performed from the local scale to the catchment scale. The study area is King's Creek catchment, an 11.7 sq km watershed located on the native tallgrass prairie of Kansas. The dominant controls on the scaling behavior of catchment-average evapotranspiration are investigated by simulation, as is the existence of a threshold scale for evapotranspiration modeling, with implications for explicit versus statistical representation of important process controls. It appears that some of our findings are fairly general, and will therefore provide a framework for understanding the scaling behavior of areally-averaged evapotranspiration at the catchment and larger scales.
Schmidt, Arne K D; Römer, Heiner
2011-01-01
Insects often communicate by sound in mixed species choruses; like humans and many vertebrates in crowded social environments they thus have to solve cocktail-party-like problems in order to ensure successful communication with conspecifics. This is even more a problem in species-rich environments like tropical rainforests, where background noise levels of up to 60 dB SPL have been measured. Using neurophysiological methods we investigated the effect of natural background noise (masker) on signal detection thresholds in two tropical cricket species Paroecanthus podagrosus and Diatrypa sp., both in the laboratory and outdoors. We identified three 'bottom-up' mechanisms which contribute to an excellent neuronal representation of conspecific signals despite the masking background. First, the sharply tuned frequency selectivity of the receiver reduces the amount of masking energy around the species-specific calling song frequency. Laboratory experiments yielded an average signal-to-noise ratio (SNR) of -8 dB, when masker and signal were broadcast from the same side. Secondly, displacing the masker by 180° from the signal improved SNRs by further 6 to 9 dB, a phenomenon known as spatial release from masking. Surprisingly, experiments carried out directly in the nocturnal rainforest yielded SNRs of about -23 dB compared with those in the laboratory with the same masker, where SNRs reached only -14.5 and -16 dB in both species. Finally, a neuronal gain control mechanism enhances the contrast between the responses to signals and the masker, by inhibition of neuronal activity in interstimulus intervals. Thus, conventional speaker playbacks in the lab apparently do not properly reconstruct the masking noise situation in a spatially realistic manner, since under real world conditions multiple sound sources are spatially distributed in space. Our results also indicate that without knowledge of the receiver properties and the spatial release mechanisms the detrimental effect of noise may be strongly overestimated.
Schmidt, Arne K. D.; Römer, Heiner
2011-01-01
Background Insects often communicate by sound in mixed species choruses; like humans and many vertebrates in crowded social environments they thus have to solve cocktail-party-like problems in order to ensure successful communication with conspecifics. This is even more a problem in species-rich environments like tropical rainforests, where background noise levels of up to 60 dB SPL have been measured. Principal Findings Using neurophysiological methods we investigated the effect of natural background noise (masker) on signal detection thresholds in two tropical cricket species Paroecanthus podagrosus and Diatrypa sp., both in the laboratory and outdoors. We identified three ‘bottom-up’ mechanisms which contribute to an excellent neuronal representation of conspecific signals despite the masking background. First, the sharply tuned frequency selectivity of the receiver reduces the amount of masking energy around the species-specific calling song frequency. Laboratory experiments yielded an average signal-to-noise ratio (SNR) of −8 dB, when masker and signal were broadcast from the same side. Secondly, displacing the masker by 180° from the signal improved SNRs by further 6 to 9 dB, a phenomenon known as spatial release from masking. Surprisingly, experiments carried out directly in the nocturnal rainforest yielded SNRs of about −23 dB compared with those in the laboratory with the same masker, where SNRs reached only −14.5 and −16 dB in both species. Finally, a neuronal gain control mechanism enhances the contrast between the responses to signals and the masker, by inhibition of neuronal activity in interstimulus intervals. Conclusions Thus, conventional speaker playbacks in the lab apparently do not properly reconstruct the masking noise situation in a spatially realistic manner, since under real world conditions multiple sound sources are spatially distributed in space. Our results also indicate that without knowledge of the receiver properties and the spatial release mechanisms the detrimental effect of noise may be strongly overestimated. PMID:22163041
Fradcourt, B; Peyrin, C; Baciu, M; Campagne, A
2013-10-01
Previous studies performed on visual processing of emotional stimuli have revealed preference for a specific type of visual spatial frequencies (high spatial frequency, HSF; low spatial frequency, LSF) according to task demands. The majority of studies used a face and focused on the appraisal of the emotional state of others. The present behavioral study investigates the relative role of spatial frequencies on processing emotional natural scenes during two explicit cognitive appraisal tasks, one emotional, based on the self-emotional experience and one motivational, based on the tendency to action. Our results suggest that HSF information was the most relevant to rapidly identify the self-emotional experience (unpleasant, pleasant, and neutral) while LSF was required to rapidly identify the tendency to action (avoidance, approach, and no action). The tendency to action based on LSF analysis showed a priority for unpleasant stimuli whereas the identification of emotional experience based on HSF analysis showed a priority for pleasant stimuli. The present study confirms the interest of considering both emotional and motivational characteristics of visual stimuli. Copyright © 2013 Elsevier Inc. All rights reserved.
Masking potency and whiteness of noise at various noise check sizes.
Kukkonen, H; Rovamo, J; Näsänen, R
1995-02-01
The masking effect of spatial noise can be increased by increasing either the rms contrast or check size of noise. In this study, the authors investigated the largest noise check size that still mimics the effect of white noise in grating detection and how it depends on the bandwidth and spatial frequency of a grating. The authors measured contrast energy thresholds, E, for vertical cosine gratings at various spatial frequencies and bandwidths. Gratings were embedded in two-dimensional spatial noise. The side length of the square noise checks was varied in the experiments. The spectral density, N(0,0), of white spatial noise at zero frequency was calculated by multiplying the noise check area by the rms contrast of noise squared. The physical signal-to-noise ratio at threshold [E/N(0,0)]0.5 was initially constant but then started to decrease. The largest noise check that still produced a constant physical signal-to-noise ratio at threshold was directly proportional to the spatial frequency. When expressed as a fraction of grating cycle, the largest noise check size depended only on stimulus bandwidth. The smallest number of noise checks per grating cycle needed to mimic the effect of white noise decreased from 4.2 to 2.6 when the number of grating cycles increased from 1 to 64. Spatial noise can be regarded as white in grating detection if there are at least four square noise checks per grating cycle at all spatial frequencies.
High-dynamic-range scene compression in humans
NASA Astrophysics Data System (ADS)
McCann, John J.
2006-02-01
Single pixel dynamic-range compression alters a particular input value to a unique output value - a look-up table. It is used in chemical and most digital photographic systems having S-shaped transforms to render high-range scenes onto low-range media. Post-receptor neural processing is spatial, as shown by the physiological experiments of Dowling, Barlow, Kuffler, and Hubel & Wiesel. Human vision does not render a particular receptor-quanta catch as a unique response. Instead, because of spatial processing, the response to a particular quanta catch can be any color. Visual response is scene dependent. Stockham proposed an approach to model human range compression using low-spatial frequency filters. Campbell, Ginsberg, Wilson, Watson, Daly and many others have developed spatial-frequency channel models. This paper describes experiments measuring the properties of desirable spatial-frequency filters for a variety of scenes. Given the radiances of each pixel in the scene and the observed appearances of objects in the image, one can calculate the visual mask for that individual image. Here, visual mask is the spatial pattern of changes made by the visual system in processing the input image. It is the spatial signature of human vision. Low-dynamic range images with many white areas need no spatial filtering. High-dynamic-range images with many blacks, or deep shadows, require strong spatial filtering. Sun on the right and shade on the left requires directional filters. These experiments show that variable scene- scenedependent filters are necessary to mimic human vision. Although spatial-frequency filters can model human dependent appearances, the problem still remains that an analysis of the scene is still needed to calculate the scene-dependent strengths of each of the filters for each frequency.
Experimental study of the flow over a backward-facing rounded ramp
NASA Astrophysics Data System (ADS)
Duriez, Thomas; Aider, Jean-Luc; Wesfreid, Jose Eduardo
2010-11-01
The backward-facing rounded ramp (BFR) is a very simple geometry leading to boundary layer separation, close to the backward facing step (BFS) flow. The main difference with the BFS flow is that the separation location depends on the incoming flow while it is fixed to the step edge for the BFS flow. Despite the simplicity of the geometry, the flow is complex and the transition process still has to be investigated. In this study we investigate the BFR flow using time-resolved PIV. For Reynolds number ranging between 300 and 12 000 we first study the time averaged properties such as the positions of the separation and reattachment, the recirculation length and the shear layer thickness. The time resolution also gives access to the characteristic frequencies of the time-dependant flow. An appropriate Fourier filtering of the flow field, around each frequency peak in the global spectrum, allows an investigation of each mode in order to extract its wavelength, phase velocity, and spatial distribution. We then sort the spectral content and relate the main frequencies to the most amplified Kelvin-Helmholtz instability mode and its harmonics, the vortex pairing, the low frequency recirculation bubble oscillation and the interactions between all these phenomena.
Visual sensitivity to spatially sampled modulation in human observers
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.; Macleod, Donald I. A.
1991-01-01
Thresholds were measured for detecting spatial luminance modulation in regular lattices of visually discrete dots. Thresholds for modulation of a lattice are generally higher than the corresponding threshold for modulation of a continuous field, and the size of the threshold elevation, which depends on the spacing of the lattice elements, can be as large as a one log unit. The largest threshold elevations are seen when the sample spacing is 12 min arc or greater. Theories based on response compression cannot explain the further observation that the threshold elevations due to spatial sampling are also dependent on modulation frequency: the greatest elevations occur with higher modulation frequencies. The idea that this is due to masking of the modulation frequency by the spatial frequencies in the sampling lattice is considered.
Image enhancement filters significantly improve reading performance for low vision observers
NASA Technical Reports Server (NTRS)
Lawton, T. B.
1992-01-01
As people age, so do their photoreceptors; many photoreceptors in central vision stop functioning when a person reaches their late sixties or early seventies. Low vision observers with losses in central vision, those with age-related maculopathies, were studied. Low vision observers no longer see high spatial frequencies, being unable to resolve fine edge detail. We developed image enhancement filters to compensate for the low vision observer's losses in contrast sensitivity to intermediate and high spatial frequencies. The filters work by boosting the amplitude of the less visible intermediate spatial frequencies. The lower spatial frequencies. These image enhancement filters not only reduce the magnification needed for reading by up to 70 percent, but they also increase the observer's reading speed by 2-4 times. A summary of this research is presented.
An Investigation of Traveling-Wave Electrophoresis using a Trigonometric Potential
NASA Astrophysics Data System (ADS)
Vopal, James
Traveling-wave electrophoresis, a technique for microfluidic separations in lab-on-achip devices, is investigated using a trigonometric model that naturally incorporates the spatial periodicity of the device. Traveling-wave electrophoresis can be used to separate high-mobility ions from low-mobility ions in forensic and medical applications, with a separation threshold that can be tuned for specific applications by simply choosing the traveling wave frequency. Our simulations predict plateaus in the average ion velocity verses the mobility, plateaus that correspond to Farey fractions and yield Devil's staircases for non-zero discreteness values. The plateaus indicate that ions with different mobilities can travel with the same average velocity. To determine the conditions for chaos, Lyapunov exponents and contact maps are employed. Through the use of contact maps, the chaotic trajectories are determined to be either narrowband or broadband. Narrowband chaotic trajectories are exhibited in the plateaus of the average velocity, while broadband chaotic trajectories are exhibited where the average velocity varies nonmonotonically with the mobility. Narrowband chaos will be investigated in future work incorporating the role of diffusion. The results of this and future work can be used to develop new tools for electrophoretic separation.
Rohr, Michaela; Tröger, Johannes; Michely, Nils; Uhde, Alarith; Wentura, Dirk
2017-07-01
This article deals with two well-documented phenomena regarding emotional stimuli: emotional memory enhancement-that is, better long-term memory for emotional than for neutral stimuli-and the emotion-induced recognition bias-that is, a more liberal response criterion for emotional than for neutral stimuli. Studies on visual emotion perception and attention suggest that emotion-related processes can be modulated by means of spatial-frequency filtering of the presented emotional stimuli. Specifically, low spatial frequencies are assumed to play a primary role for the influence of emotion on attention and judgment. Given this theoretical background, we investigated whether spatial-frequency filtering also impacts (1) the memory advantage for emotional faces and (2) the emotion-induced recognition bias, in a series of old/new recognition experiments. Participants completed incidental-learning tasks with high- (HSF) and low- (LSF) spatial-frequency-filtered emotional and neutral faces. The results of the surprise recognition tests showed a clear memory advantage for emotional stimuli. Most importantly, the emotional memory enhancement was significantly larger for face images containing only low-frequency information (LSF faces) than for HSF faces across all experiments, suggesting that LSF information plays a critical role in this effect, whereas the emotion-induced recognition bias was found only for HSF stimuli. We discuss our findings in terms of both the traditional account of different processing pathways for HSF and LSF information and a stimulus features account. The double dissociation in the results favors the latter account-that is, an explanation in terms of differences in the characteristics of HSF and LSF stimuli.
Investigating the effect of previous treatments on wheat biomass over multiple spatial frequencies
NASA Astrophysics Data System (ADS)
Milne, A. E.; Castellanos, M. T.; Cartagena, M. C.; Tarquis, A. M.; Lark, R. M.
2010-09-01
In this study we use the maximum overlap discrete packet transform (MODWPT) to investigate residual effects on wheat biomass of fertigation treatments applied to a previous crop. The wheat crop covered nine subplots from a previous experiment on melon response to fertigation. Each subplot had previously received a different level of applied nitrogen. Many factors affect wheat biomass, causing it to vary at different spatial frequencies. We hypothesize that these will include residual effects from fertilizer application (at relatively low spatial frequencies) and the local influence of individual plants from the previous melon crop (at high frequency). To test this hypothesis we use the MODWPT to identify the dominant spatial frequencies of wheat biomass variation, and analyse the relationship to both the previous fertilizer application and the location of individual melon plants in the previous crop. The MODWPT is particularly appropriate for this because it allows us first to identify the key spatial frequencies in the wheat biomass objectively and to analyse them, and their relationship to hypothesized driving factors without any assumptions of uniformity (stationarity) of wheat-biomass variation. The results showed that the applied nitrogen dominated the wheat biomass response, and that there was a noticeable component of wheat-biomass variation at the spatial frequency that corresponds to the melon cropping. We expected wheat biomass to be negatively correlated with the position of melons in the previous crop, due to uptake of the applied nitrogen. The MODWPT, which allows us to detect changes in correlation between variables at different frequencies, showed that such a relationship was found across part of the experiment but not uniformly.
Kanagawa, Tetsuya
2015-05-01
This paper theoretically treats the weakly nonlinear propagation of diffracted sound beams in nonuniform bubbly liquids. The spatial distribution of the number density of the bubbles, initially in a quiescent state, is assumed to be a slowly varying function of the spatial coordinates; the amplitude of variation is assumed to be small compared to the mean number density. A previous derivation method of nonlinear wave equations for plane progressive waves in uniform bubbly liquids [Kanagawa, Yano, Watanabe, and Fujikawa (2010). J. Fluid Sci. Technol. 5(3), 351-369] is extended to handle quasi-plane beams in weakly nonuniform bubbly liquids. The diffraction effect is incorporated by adding a relation that scales the circular sound source diameter to the wavelength into the original set of scaling relations composed of nondimensional physical parameters. A set of basic equations for bubbly flows is composed of the averaged equations of mass and momentum, the Keller equation for bubble wall, and supplementary equations. As a result, two types of evolution equations, a nonlinear Schrödinger equation including dissipation, diffraction, and nonuniform effects for high-frequency short-wavelength case, and a Khokhlov-Zabolotskaya-Kuznetsov equation including dispersion and nonuniform effects for low-frequency long-wavelength case, are derived from the basic set.
Alternating activation is related to fatigue in lumbar muscles during sustained sitting.
Ringheim, Inge; Indahl, Aage; Roeleveld, Karin
2014-06-01
The aim of this study was to investigate the relation between variability in muscle activity and fatigue during a sustained low level contraction in the lumbar muscles. Twenty-five healthy participants (13 men 12 women) performed a 30min sitting task with 5 degrees inclination of the trunk. Surface electromyographic (EMG) signals were recorded bilaterally from the lumbar muscles with 2 high density surface EMG grids of 9×14 electrodes. Median frequency (MDF) decrease, amplitude (RMS) increase and the rating of perceived exertion (RPE) were used as fatigue indices. Alternating activation and spatial and temporal variability were computed and relations with the fatigue indices were explored. During sitting, the mono- and bipolar RMS slightly increased while the MDF remained unchanged indicating no systematic muscle fatigue, although the average RPE increased from 6 to 13 on a scale ranging between 6 and 20. Higher frequency of alternating activation between the left and right side was associated with increased RPE (p=0.03) and decreased MDF (p=0.05). A tendency in the same direction was seen between increased spatial and temporal variation within the grids and increased RPE and decreased MDF. Present findings provide evidence for a relationship between variability in muscle activity and fatigue. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sinai, A; Crone, N E; Wied, H M; Franaszczuk, P J; Miglioretti, D; Boatman-Reich, D
2009-01-01
We compared intracranial recordings of auditory event-related responses with electrocortical stimulation mapping (ESM) to determine their functional relationship. Intracranial recordings and ESM were performed, using speech and tones, in adult epilepsy patients with subdural electrodes implanted over lateral left cortex. Evoked N1 responses and induced spectral power changes were obtained by trial averaging and time-frequency analysis. ESM impaired perception and comprehension of speech, not tones, at electrode sites in the posterior temporal lobe. There was high spatial concordance between ESM sites critical for speech perception and the largest spectral power (100% concordance) and N1 (83%) responses to speech. N1 responses showed good sensitivity (0.75) and specificity (0.82), but poor positive predictive value (0.32). Conversely, increased high-frequency power (>60Hz) showed high specificity (0.98), but poorer sensitivity (0.67) and positive predictive value (0.67). Stimulus-related differences were observed in the spatial-temporal patterns of event-related responses. Intracranial auditory event-related responses to speech were associated with cortical sites critical for auditory perception and comprehension of speech. These results suggest that the distribution and magnitude of intracranial auditory event-related responses to speech reflect the functional significance of the underlying cortical regions and may be useful for pre-surgical functional mapping.
Intracranial mapping of auditory perception: Event-related responses and electrocortical stimulation
Sinai, A.; Crone, N.E.; Wied, H.M.; Franaszczuk, P.J.; Miglioretti, D.; Boatman-Reich, D.
2010-01-01
Objective We compared intracranial recordings of auditory event-related responses with electrocortical stimulation mapping (ESM) to determine their functional relationship. Methods Intracranial recordings and ESM were performed, using speech and tones, in adult epilepsy patients with subdural electrodes implanted over lateral left cortex. Evoked N1 responses and induced spectral power changes were obtained by trial averaging and time-frequency analysis. Results ESM impaired perception and comprehension of speech, not tones, at electrode sites in the posterior temporal lobe. There was high spatial concordance between ESM sites critical for speech perception and the largest spectral power (100% concordance) and N1 (83%) responses to speech. N1 responses showed good sensitivity (0.75) and specificity (0.82), but poor positive predictive value (0.32). Conversely, increased high-frequency power (>60 Hz) showed high specificity (0.98), but poorer sensitivity (0.67) and positive predictive value (0.67). Stimulus-related differences were observed in the spatial-temporal patterns of event-related responses. Conclusions Intracranial auditory event-related responses to speech were associated with cortical sites critical for auditory perception and comprehension of speech. Significance These results suggest that the distribution and magnitude of intracranial auditory event-related responses to speech reflect the functional significance of the underlying cortical regions and may be useful for pre-surgical functional mapping. PMID:19070540
Spatial Frequency Discrimination: Effects of Age, Reward, and Practice
Peters, Judith Carolien
2017-01-01
Social interaction starts with perception of the world around you. This study investigated two fundamental issues regarding the development of discrimination of higher spatial frequencies, which are important building blocks of perception. Firstly, it mapped the typical developmental trajectory of higher spatial frequency discrimination. Secondly, it developed and validated a novel design that could be applied to improve atypically developed vision. Specifically, this study examined the effect of age and reward on task performance, practice effects, and motivation (i.e., number of trials completed) in a higher spatial frequency (reference frequency: 6 cycles per degree) discrimination task. We measured discrimination thresholds in children aged between 7 to 12 years and adults (N = 135). Reward was manipulated by presenting either positive reinforcement or punishment. Results showed a decrease in discrimination thresholds with age, thus revealing that higher spatial frequency discrimination continues to develop after 12 years of age. This development continues longer than previously shown for discrimination of lower spatial frequencies. Moreover, thresholds decreased during the run, indicating that discrimination abilities improved. Reward did not affect performance or improvement. However, in an additional group of 5–6 year-olds (N = 28) punishments resulted in the completion of fewer trials compared to reinforcements. In both reward conditions children aged 5–6 years completed only a fourth or half of the run (64 to 128 out of 254 trials) and were not motivated to continue. The design thus needs further adaptation before it can be applied to this age group. Children aged 7–12 years and adults completed the run, suggesting that the design is successful and motivating for children aged 7–12 years. This study thus presents developmental differences in higher spatial frequency discrimination thresholds. Furthermore, it presents a design that can be used in future developmental studies that require multiple stimulus presentations such as visual perceptual learning. PMID:28135272
Spatial Frequency Discrimination: Effects of Age, Reward, and Practice.
van den Boomen, Carlijn; Peters, Judith Carolien
2017-01-01
Social interaction starts with perception of the world around you. This study investigated two fundamental issues regarding the development of discrimination of higher spatial frequencies, which are important building blocks of perception. Firstly, it mapped the typical developmental trajectory of higher spatial frequency discrimination. Secondly, it developed and validated a novel design that could be applied to improve atypically developed vision. Specifically, this study examined the effect of age and reward on task performance, practice effects, and motivation (i.e., number of trials completed) in a higher spatial frequency (reference frequency: 6 cycles per degree) discrimination task. We measured discrimination thresholds in children aged between 7 to 12 years and adults (N = 135). Reward was manipulated by presenting either positive reinforcement or punishment. Results showed a decrease in discrimination thresholds with age, thus revealing that higher spatial frequency discrimination continues to develop after 12 years of age. This development continues longer than previously shown for discrimination of lower spatial frequencies. Moreover, thresholds decreased during the run, indicating that discrimination abilities improved. Reward did not affect performance or improvement. However, in an additional group of 5-6 year-olds (N = 28) punishments resulted in the completion of fewer trials compared to reinforcements. In both reward conditions children aged 5-6 years completed only a fourth or half of the run (64 to 128 out of 254 trials) and were not motivated to continue. The design thus needs further adaptation before it can be applied to this age group. Children aged 7-12 years and adults completed the run, suggesting that the design is successful and motivating for children aged 7-12 years. This study thus presents developmental differences in higher spatial frequency discrimination thresholds. Furthermore, it presents a design that can be used in future developmental studies that require multiple stimulus presentations such as visual perceptual learning.
Kalin, Latif; Hantush, Mohamed M
2009-02-01
An index based method is developed that ranks the subwatersheds of a watershed based on their relative impacts on watershed response to anticipated land developments, and then applied to an urbanizing watershed in Eastern Pennsylvania. Simulations with a semi-distributed hydrologic model show that computed low- and high-flow frequencies at the main outlet increase significantly with the projected landscape changes in the watershed. The developed index is utilized to prioritize areas in the urbanizing watershed based on their contributions to alterations in the magnitude of selected flow characteristics at two spatial resolutions. The low-flow measure, 7Q10, rankings are shown to mimic the spatial trend of groundwater recharge rates, whereas average annual maximum daily flow, QAMAX, and average monthly median of daily flows, QMMED, rankings are influenced by both recharge and proximity to watershed outlet. Results indicate that, especially with the higher resolution, areas having quicker responses are not necessarily the more critical areas for high-flow scenarios. Subwatershed rankings are shown to vary slightly with the location of water quality/quantity criteria enforcement. It is also found that rankings of subwatersheds upstream from the site of interest, which could be the main outlet or any interior point in the watershed, may be influenced by the time scale of the hydrologic processes.
Spatial and temporal evapotranspiration trends after wildfire in semi-arid landscapes
NASA Astrophysics Data System (ADS)
Poon, Patrick K.; Kinoshita, Alicia M.
2018-04-01
In recent years climate change and other anthropogenic factors have contributed to increased wildfire frequency and size in western United States forests. This research focuses on the evaluation of spatial and temporal changes in evapotranspiration (ET) following the 2011 Las Conchas Fire in New Mexico (USA) using the Operational Simplified Surface Energy Balance Model (SSEBop ET). Evapotranspiration is coupled with soil burn severity and analyzed for 16 watersheds for water years 2001-2014. An average annual decrease of 120 mm of ET is observed within the regions affected by the Las Conchas Fire, and conifers were converted to grassland a year after the fire. On average, the post-fire annual ET in high, moderate, and low burn severity is lower than pre-fire ET by approximately 103-352 mm, 97-304 mm, and 91-268 mm, respectively. The ratio of post-fire evapotranspiration to precipitation (ET/P) is statistically different from pre-fire conditions (α = 0.05) in nine of the watersheds. The largest decrease in ET is approximately 13-57 mm per month and is most prominent during the summer (April to September). The observed decrease in ET contributes to our understanding of changes in water yield following wildfires, which is of interest for accurately modeling and predicting hydrologic processes in semi-arid landscapes.
Coherent transmission of an ultrasonic shock wave through a multiple scattering medium.
Viard, Nicolas; Giammarinaro, Bruno; Derode, Arnaud; Barrière, Christophe
2013-08-01
We report measurements of the transmitted coherent (ensemble-averaged) wave resulting from the interaction of an ultrasonic shock wave with a two-dimensional random medium. Despite multiple scattering, the coherent waveform clearly shows the steepening that is typical of nonlinear harmonic generation. This is taken advantage of to measure the elastic mean free path and group velocity over a broad frequency range (2-15 MHz) in only one experiment. Experimental results are found to be in good agreement with a linear theoretical model taking into account spatial correlations between scatterers. These results show that nonlinearity and multiple scattering are both present, yet uncoupled.
Estimates of primary productivity over the Thar Desert based upon Nimbus-7 37 GHz data - 1979-1985
NASA Technical Reports Server (NTRS)
Choudhury, B. J.
1987-01-01
An empirical relationship has been determined between the difference of vertically and horizontally polarized brightness temperatures noted at the 37 GHz frequency of the Nimbus-7 SMMR and primary productivity over hot arid and semiarid regions of Africa and Australia. This empirical relationship is applied to estimate the primary productivity over the Thar Desert between 1979 and 1985, giving an average value of 0.271 kg/sq m per yr. The spatial variability of the productivity values is found to be quite significant, with a standard deviation about the mean of 0.08 kg/sq m per yr.
Right Hemispatial Neglect: Frequency and Characterization Following Acute Left Hemisphere Stroke
ERIC Educational Resources Information Center
Kleinman, Jonathan T.; Newhart, Melissa; Davis, Cameron; Heidler-Gary, Jennifer; Gottesman, Rebecca F.; Hillis, Argye E.
2007-01-01
The frequency of various types of unilateral spatial neglect and associated areas of neural dysfunction after left hemisphere stroke are not well characterized. Unilateral spatial neglect (USN) in distinct spatial reference frames have been identified after acute right, but not left hemisphere stroke. We studied 47 consecutive right handed…
ERIC Educational Resources Information Center
Harel, Assaf; Bentin, Shlomo
2009-01-01
The type of visual information needed for categorizing faces and nonface objects was investigated by manipulating spatial frequency scales available in the image during a category verification task addressing basic and subordinate levels. Spatial filtering had opposite effects on faces and airplanes that were modulated by categorization level. The…
ERIC Educational Resources Information Center
Leonard, Hayley C.; Annaz, Dagmara; Karmiloff-Smith, Annette; Johnson, Mark H.
2011-01-01
The current study investigated whether contrasting face recognition abilities in autism and Williams syndrome could be explained by different spatial frequency biases over developmental time. Typically-developing children and groups with Williams syndrome and autism were asked to recognise faces in which low, middle and high spatial frequency…
Spatiotemporal correlation structure of the Earth's surface temperature
NASA Astrophysics Data System (ADS)
Fredriksen, Hege-Beate; Rypdal, Kristoffer; Rypdal, Martin
2015-04-01
We investigate the spatiotemporal temperature variability for several gridded instrumental and climate model data sets. The temporal variability is analysed by estimating the power spectral density and studying the differences between local and global temperatures, land and sea, and among local temperature records at different locations. The spatiotemporal correlation structure is analysed through cross-spectra that allow us to compute frequency-dependent spatial autocorrelation functions (ACFs). Our results are then compared to theoretical spectra and frequency-dependent spatial ACFs derived from a fractional stochastic-diffusive energy balance model (FEBM). From the FEBM we expect both local and global temperatures to have a long-range persistent temporal behaviour, and the spectral exponent (β) is expected to increase by a factor of two when going from local to global scales. Our comparison of the average local spectrum and the global spectrum shows good agreement with this model, although the FEBM has so far only been studied for a pure land planet and a pure ocean planet, respectively, with no seasonal forcing. Hence it cannot capture the substantial variability among the local spectra, in particular between the spectra for land and sea, and for equatorial and non-equatorial temperatures. Both models and observation data show that land temperatures in general have a low persistence, while sea surface temperatures show a higher, and also more variable degree of persistence. Near the equator the spectra deviate from the power-law shape expected from the FEBM. Instead we observe large variability at time scales of a few years due to ENSO, and a flat spectrum at longer time scales, making the spectrum more reminiscent of that of a red noise process. From the frequency-dependent spatial ACFs we observe that the spatial correlation length increases with increasing time scale, which is also consistent with the FEBM. One consequence of this is that longer-lasting structures must also be wider in space. The spatial correlation length is also observed to be longer for land than for sea. The climate model simulations studied are mainly CMIP5 control runs of length 500-1000 yr. On time scales up to several centuries we do not observe that the difference between the local and global spectral exponents vanish. This also follows from the FEBM and shows that the dynamics is spatiotemporal (not just temporal) even on these time scales.
Using mm-scale seafloor roughness to improve monitoring of macrobenthos by remote sensing
NASA Astrophysics Data System (ADS)
Feldens, Peter; Schönke, Mischa; Wilken, Dennis; Papenmeier, Svenja
2017-04-01
In this study, we determine seafloor roughness at mm-scales by laser line-scanning to improve the remote marine habitat monitoring of macrobenthic organisms. Towards this purpose, a new autonomous lander system has been developed. Remote sensing of the seafloor is required to obtain a comprehensive view of the marine environment. It allows for analyzing spatiotemporal dynamics, monitoring of natural seabed variations, and evaluating possible anthropogenic impacts, all being crucial in regard to marine spatial planning as well as the sustainable and economic use of the sea. One aspect of ongoing remote sensing research is the identification of marine life, including both fauna and flora. The monitoring of seafloor fauna - including benthic communities - is mainly done using optical imaging systems and sample retrieval. The identification of new remote sensing indicator variables characteristic for the physical nature of the respective habitat would allow an improved spatial monitoring. A poorly investigated indicator variable is mm-scale seafloor microtopography and -roughness, which can be measured by laser line scanning and in turn strongly affects acoustic scatter. Two field campaigns have been conducted offshore Sylt Island in 2015 and 2016 to measure the microtopography of seafloor covered by sand masons, blue mussels, and oysters and to collect multi-frequency acoustic data. The acoustic data and topography of the blue mussel and oyster fields are currently being analyzed. The mm-scale microtopography of sand mason covered seafloor were transformed into the frequency domain and the average of the magnitude at different spatial wavelengths was used as a measure of roughness. The presence of sand masons causes a measurable difference in roughness magnitude at spatial wavelengths between 0.02 m and 0.0036 m, with the magnitude depending on sand mason abundance. This effect was not detected by commonly used 1D roughness profiles but required consideration of the complete spectrum. The influenced spatial wavelengths correspond to acoustic frequencies of 75 kHz and 400 kHz that are common for acoustic monitoring purposes. The available results indicate that the development of habitat-specific indicator variables, e.g. related to the abundance of sand masons or mussels, is possible and that remote sensing may assist the monitoring of benthic habitats in the future.
Neurons in cat V1 show significant clustering by degree of tuning
Ziskind, Avi J.; Emondi, Al A.; Kurgansky, Andrei V.; Rebrik, Sergei P.
2015-01-01
Neighboring neurons in cat primary visual cortex (V1) have similar preferred orientation, direction, and spatial frequency. How diverse is their degree of tuning for these properties? To address this, we used single-tetrode recordings to simultaneously isolate multiple cells at single recording sites and record their responses to flashed and drifting gratings of multiple orientations, spatial frequencies, and, for drifting gratings, directions. Orientation tuning width, spatial frequency tuning width, and direction selectivity index (DSI) all showed significant clustering: pairs of neurons recorded at a single site were significantly more similar in each of these properties than pairs of neurons from different recording sites. The strength of the clustering was generally modest. The percent decrease in the median difference between pairs from the same site, relative to pairs from different sites, was as follows: for different measures of orientation tuning width, 29–35% (drifting gratings) or 15–25% (flashed gratings); for DSI, 24%; and for spatial frequency tuning width measured in octaves, 8% (drifting gratings). The clusterings of all of these measures were much weaker than for preferred orientation (68% decrease) but comparable to that seen for preferred spatial frequency in response to drifting gratings (26%). For the above properties, little difference in clustering was seen between simple and complex cells. In studies of spatial frequency tuning to flashed gratings, strong clustering was seen among simple-cell pairs for tuning width (70% decrease) and preferred frequency (71% decrease), whereas no clustering was seen for simple-complex or complex-complex cell pairs. PMID:25652921
Byrd, Kristin B.; Windham-Myers, Lisamarie; Leeuw, Thomas; Downing, Bryan D.; Morris, James T.; Ferner, Matthew C.
2016-01-01
Reducing uncertainty in data inputs at relevant spatial scales can improve tidal marsh forecasting models, and their usefulness in coastal climate change adaptation decisions. The Marsh Equilibrium Model (MEM), a one-dimensional mechanistic elevation model, incorporates feedbacks of organic and inorganic inputs to project elevations under sea-level rise scenarios. We tested the feasibility of deriving two key MEM inputs—average annual suspended sediment concentration (SSC) and aboveground peak biomass—from remote sensing data in order to apply MEM across a broader geographic region. We analyzed the precision and representativeness (spatial distribution) of these remote sensing inputs to improve understanding of our study region, a brackish tidal marsh in San Francisco Bay, and to test the applicable spatial extent for coastal modeling. We compared biomass and SSC models derived from Landsat 8, DigitalGlobe WorldView-2, and hyperspectral airborne imagery. Landsat 8-derived inputs were evaluated in a MEM sensitivity analysis. Biomass models were comparable although peak biomass from Landsat 8 best matched field-measured values. The Portable Remote Imaging Spectrometer SSC model was most accurate, although a Landsat 8 time series provided annual average SSC estimates. Landsat 8-measured peak biomass values were randomly distributed, and annual average SSC (30 mg/L) was well represented in the main channels (IQR: 29–32 mg/L), illustrating the suitability of these inputs across the model domain. Trend response surface analysis identified significant diversion between field and remote sensing-based model runs at 60 yr due to model sensitivity at the marsh edge (80–140 cm NAVD88), although at 100 yr, elevation forecasts differed less than 10 cm across 97% of the marsh surface (150–200 cm NAVD88). Results demonstrate the utility of Landsat 8 for landscape-scale tidal marsh elevation projections due to its comparable performance with the other sensors, temporal frequency, and cost. Integration of remote sensing data with MEM should advance regional projections of marsh vegetation change by better parameterizing MEM inputs spatially. Improving information for coastal modeling will support planning for ecosystem services, including habitat, carbon storage, and flood protection.
Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography.
Muller, Leah; Hamilton, Liberty S; Edwards, Erik; Bouchard, Kristofer E; Chang, Edward F
2016-10-01
Electrocorticography (ECoG) has become an important tool in human neuroscience and has tremendous potential for emerging applications in neural interface technology. Electrode array design parameters are outstanding issues for both research and clinical applications, and these parameters depend critically on the nature of the neural signals to be recorded. Here, we investigate the functional spatial resolution of neural signals recorded at the human cortical surface. We empirically derive spatial spread functions to quantify the shared neural activity for each frequency band of the electrocorticogram. Five subjects with high-density (4 mm center-to-center spacing) ECoG grid implants participated in speech perception and production tasks while neural activity was recorded from the speech cortex, including superior temporal gyrus, precentral gyrus, and postcentral gyrus. The cortical surface field potential was decomposed into traditional EEG frequency bands. Signal similarity between electrode pairs for each frequency band was quantified using a Pearson correlation coefficient. The correlation of neural activity between electrode pairs was inversely related to the distance between the electrodes; this relationship was used to quantify spatial falloff functions for cortical subdomains. As expected, lower frequencies remained correlated over larger distances than higher frequencies. However, both the envelope and phase of gamma and high gamma frequencies (30-150 Hz) are largely uncorrelated (<90%) at 4 mm, the smallest spacing of the high-density arrays. Thus, ECoG arrays smaller than 4 mm have significant promise for increasing signal resolution at high frequencies, whereas less additional gain is achieved for lower frequencies. Our findings quantitatively demonstrate the dependence of ECoG spatial resolution on the neural frequency of interest. We demonstrate that this relationship is consistent across patients and across cortical areas during activity.
Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography
NASA Astrophysics Data System (ADS)
Muller, Leah; Hamilton, Liberty S.; Edwards, Erik; Bouchard, Kristofer E.; Chang, Edward F.
2016-10-01
Objective. Electrocorticography (ECoG) has become an important tool in human neuroscience and has tremendous potential for emerging applications in neural interface technology. Electrode array design parameters are outstanding issues for both research and clinical applications, and these parameters depend critically on the nature of the neural signals to be recorded. Here, we investigate the functional spatial resolution of neural signals recorded at the human cortical surface. We empirically derive spatial spread functions to quantify the shared neural activity for each frequency band of the electrocorticogram. Approach. Five subjects with high-density (4 mm center-to-center spacing) ECoG grid implants participated in speech perception and production tasks while neural activity was recorded from the speech cortex, including superior temporal gyrus, precentral gyrus, and postcentral gyrus. The cortical surface field potential was decomposed into traditional EEG frequency bands. Signal similarity between electrode pairs for each frequency band was quantified using a Pearson correlation coefficient. Main results. The correlation of neural activity between electrode pairs was inversely related to the distance between the electrodes; this relationship was used to quantify spatial falloff functions for cortical subdomains. As expected, lower frequencies remained correlated over larger distances than higher frequencies. However, both the envelope and phase of gamma and high gamma frequencies (30-150 Hz) are largely uncorrelated (<90%) at 4 mm, the smallest spacing of the high-density arrays. Thus, ECoG arrays smaller than 4 mm have significant promise for increasing signal resolution at high frequencies, whereas less additional gain is achieved for lower frequencies. Significance. Our findings quantitatively demonstrate the dependence of ECoG spatial resolution on the neural frequency of interest. We demonstrate that this relationship is consistent across patients and across cortical areas during activity.
NASA Astrophysics Data System (ADS)
Krietemeyer, Andreas; ten Veldhuis, Marie-claire; van de Giesen, Nick
2017-04-01
Exploiting GNSS signal delays is one possibility to obtain Precipitable Water Vapor (PWV) estimates in the atmosphere. The technique is well known since the early 1990s and by now an established method in the meteorological community. The data is crucial for weather forecasting and its assimilation into numerical weather forecasting models is a topic of ongoing research. However, the spatial resolution of ground based GNSS receivers is usually low, in the order of tens of kilometres. Since severe weather events such as convective storms can be concentrated in spatial extent, existing GNSS networks are often not sufficient to retrieve small scale PWV fluctuations and need to be densified. For economic reasons, the use of low-cost single-frequency receivers is a promising solution. In this study, we will deploy a network of single-frequency receivers to densify an existing dual-frequency network in order to investigate the spatial and temporal PWV variations. We demonstrate a test network consisting of four single-frequency receivers in the Rotterdam area (Netherlands). In order to eliminate the delay caused by the ionosphere, the Satellite-specific Epoch-differenced Ionospheric Delay model (SEID) is applied, using a surrounding dual-frequency network distributed over a radius of approximately 25 km. With the synthesized L2 frequency, the tropospheric delays are estimated using the Precise Point Positioning (PPP) strategy and International GNSS Service (IGS) final orbits. The PWV time series are validated by a comparison of a collocated single-frequency and a dual-frequency receiver. The time series themselves form the basis for potential further studies like data assimilation into numerical weather models and GNSS tomography to study the impact of the increased spatial resolution on local heavy rain forecast.
Phase noise in pulsed Doppler lidar and limitations on achievable single-shot velocity accuracy
NASA Technical Reports Server (NTRS)
Mcnicholl, P.; Alejandro, S.
1992-01-01
The smaller sampling volumes afforded by Doppler lidars compared to radars allows for spatial resolutions at and below some sheer and turbulence wind structure scale sizes. This has brought new emphasis on achieving the optimum product of wind velocity and range resolutions. Several recent studies have considered the effects of amplitude noise, reduction algorithms, and possible hardware related signal artifacts on obtainable velocity accuracy. We discuss here the limitation on this accuracy resulting from the incoherent nature and finite temporal extent of backscatter from aerosols. For a lidar return from a hard (or slab) target, the phase of the intermediate frequency (IF) signal is random and the total return energy fluctuates from shot to shot due to speckle; however, the offset from the transmitted frequency is determinable with an accuracy subject only to instrumental effects and the signal to noise ratio (SNR), the noise being determined by the LO power in the shot noise limited regime. This is not the case for a return from a media extending over a range on the order of or greater than the spatial extent of the transmitted pulse, such as from atmospheric aerosols. In this case, the phase of the IF signal will exhibit a temporal random walk like behavior. It will be uncorrelated over times greater than the pulse duration as the transmitted pulse samples non-overlapping volumes of scattering centers. Frequency analysis of the IF signal in a window similar to the transmitted pulse envelope will therefore show shot-to-shot frequency deviations on the order of the inverse pulse duration reflecting the random phase rate variations. Like speckle, these deviations arise from the incoherent nature of the scattering process and diminish if the IF signal is averaged over times greater than a single range resolution cell (here the pulse duration). Apart from limiting the high SNR performance of a Doppler lidar, this shot-to-shot variance in velocity estimates has a practical impact on lidar design parameters. In high SNR operation, for example, a lidar's efficiency in obtaining mean wind measurements is determined by its repetition rate and not pulse energy or average power. In addition, this variance puts a practical limit on the shot-to-shot hard target performance required of a lidar.
Murbach, Manuel; Christopoulou, Maria; Crespo-Valero, Pedro; Achermann, Peter; Kuster, Niels
2012-09-01
A novel exposure system for double-blind human electromagnetic provocation studies has been developed that satisfies the precision, control of fields and potential artifacts, and provides the flexibility to investigate the response of hypotheses-driven electromagnetic field exposure schemes on brain function, ranging from extremely low frequency (ELF) to radio frequency (RF) fields. The system can provide the same exposure of the lateral cerebral cortex at two different RF frequencies (900 and 2140 MHz) but with different exposure levels at subcortical structures, and also allows uniform ELF magnetic field exposure of the brain. The RF modulation and ELF signal are obtained by a freely programmable arbitrary signal generator allowing a wide range of worst-case exposure scenarios to be simulated, including those caused by wireless devices. The maximum achievable RF exposure is larger than 60 W/kg peak spatial specific absorption rate averaged over 10 g of tissue. The maximum ELF magnetic field exposure of the brain is 800 A/m at 50 Hz with a deviation from uniformity of 8% (SD). Copyright © 2012 Wiley Periodicals, Inc.
Jarosz, Jessica; Mecê, Pedro; Conan, Jean-Marc; Petit, Cyril; Paques, Michel; Meimon, Serge
2017-04-01
We formed a database gathering the wavefront aberrations of 50 healthy eyes measured with an original custom-built Shack-Hartmann aberrometer at a temporal frequency of 236 Hz, with 22 lenslets across a 7-mm diameter pupil, for a duration of 20 s. With this database, we draw statistics on the spatial and temporal behavior of the dynamic aberrations of the eye. Dynamic aberrations were studied on a 5-mm diameter pupil and on a 3.4 s sequence between blinks. We noted that, on average, temporal wavefront variance exhibits a n -2 power-law with radial order n and temporal spectra follow a f -1.5 power-law with temporal frequency f . From these statistics, we then extract guidelines for designing an adaptive optics system. For instance, we show the residual wavefront error evolution as a function of the number of corrected modes and of the adaptive optics loop frame rate. In particular, we infer that adaptive optics performance rapidly increases with the loop frequency up to 50 Hz, with gain being more limited at higher rates.
Neutron-Star Radius from a Population of Binary Neutron Star Mergers.
Bose, Sukanta; Chakravarti, Kabir; Rezzolla, Luciano; Sathyaprakash, B S; Takami, Kentaro
2018-01-19
We show how gravitational-wave observations with advanced detectors of tens to several tens of neutron-star binaries can measure the neutron-star radius with an accuracy of several to a few percent, for mass and spatial distributions that are realistic, and with none of the sources located within 100 Mpc. We achieve such an accuracy by combining measurements of the total mass from the inspiral phase with those of the compactness from the postmerger oscillation frequencies. For estimating the measurement errors of these frequencies, we utilize analytical fits to postmerger numerical relativity waveforms in the time domain, obtained here for the first time, for four nuclear-physics equations of state and a couple of values for the mass. We further exploit quasiuniversal relations to derive errors in compactness from those frequencies. Measuring the average radius to well within 10% is possible for a sample of 100 binaries distributed uniformly in volume between 100 and 300 Mpc, so long as the equation of state is not too soft or the binaries are not too heavy. We also give error estimates for the Einstein Telescope.
Dynamical signatures of bound states in waveguide QED
NASA Astrophysics Data System (ADS)
Sánchez-Burillo, E.; Zueco, D.; Martín-Moreno, L.; García-Ripoll, J. J.
2017-08-01
We study the spontaneous decay of an impurity coupled to a linear array of bosonic cavities forming a single-band photonic waveguide. The average frequency of the emitted photon is different from the frequency for single-photon resonant scattering, which perfectly matches the bare frequency of the excited state of the impurity. We study how the energy of the excited state of the impurity influences the spatial profile of the emitted photon. The farther the energy is from the middle of the photonic band, the farther the wave packet is from the causal limit. In particular, if the energy lies in the middle of the band, the wave packet is localized around the causal limit. Besides, the occupation of the excited state of the impurity presents a rich dynamics: it shows an exponential decay up to intermediate times, this is followed by a power-law tail in the long-time regime, and it finally reaches an oscillatory stationary regime. Finally, we show that this phenomenology is robust under the presence of losses, both in the impurity and in the cavities.
Numerical Investigation of Synthetic-jet based Flow Control on Vertical-axis Wind Turbine Blades
NASA Astrophysics Data System (ADS)
Menon, Ashwin; Tran, Steven; Sahni, Onkar
2013-11-01
Vertical-axis wind turbines encounter large unsteady aerodynamic loads in a sustained fashion due to the continuously varying angle of attack that is experienced by turbine blades during each revolution. Moreover, the detachment of the leading edge vortex at high angles of attack leads to sudden change in aerodynamic loads that result in structural vibrations and fatigue, and possibly failure. This numerical study focuses on using synthetic-jet based fluidic actuation to reduce the unsteady loading on VAWT blades. In the simulations, the jets are placed at the dominant separation location that is observed in the baseline case. We consider different tip-speed ratios, O(2-5), and we also study the effect of blowing ratio (to be in O(0.5-1.5)) and reduced frequency, i.e., ratio of jet frequency to flow frequency (to be in O(5-15)). For all cases, unsteady Reynolds-averaged Navier-Stokes simulations are carried out by using the Spallart-Allamaras turbulence model, where stabilized finite element method is employed for spatial discretization along with an implicit time-integration scheme.
Jarosz, Jessica; Mecê, Pedro; Conan, Jean-Marc; Petit, Cyril; Paques, Michel; Meimon, Serge
2017-01-01
We formed a database gathering the wavefront aberrations of 50 healthy eyes measured with an original custom-built Shack-Hartmann aberrometer at a temporal frequency of 236 Hz, with 22 lenslets across a 7-mm diameter pupil, for a duration of 20 s. With this database, we draw statistics on the spatial and temporal behavior of the dynamic aberrations of the eye. Dynamic aberrations were studied on a 5-mm diameter pupil and on a 3.4 s sequence between blinks. We noted that, on average, temporal wavefront variance exhibits a n−2 power-law with radial order n and temporal spectra follow a f−1.5 power-law with temporal frequency f. From these statistics, we then extract guidelines for designing an adaptive optics system. For instance, we show the residual wavefront error evolution as a function of the number of corrected modes and of the adaptive optics loop frame rate. In particular, we infer that adaptive optics performance rapidly increases with the loop frequency up to 50 Hz, with gain being more limited at higher rates. PMID:28736657
Correlated errors in geodetic time series: Implications for time-dependent deformation
Langbein, J.; Johnson, H.
1997-01-01
Analysis of frequent trilateration observations from the two-color electronic distance measuring networks in California demonstrate that the noise power spectra are dominated by white noise at higher frequencies and power law behavior at lower frequencies. In contrast, Earth scientists typically have assumed that only white noise is present in a geodetic time series, since a combination of infrequent measurements and low precision usually preclude identifying the time-correlated signature in such data. After removing a linear trend from the two-color data, it becomes evident that there are primarily two recognizable types of time-correlated noise present in the residuals. The first type is a seasonal variation in displacement which is probably a result of measuring to shallow surface monuments installed in clayey soil which responds to seasonally occurring rainfall; this noise is significant only for a small fraction of the sites analyzed. The second type of correlated noise becomes evident only after spectral analysis of line length changes and shows a functional relation at long periods between power and frequency of and where f is frequency and ?? ??? 2. With ?? = 2, this type of correlated noise is termed random-walk noise, and its source is mainly thought to be small random motions of geodetic monuments with respect to the Earth's crust, though other sources are possible. Because the line length changes in the two-color networks are measured at irregular intervals, power spectral techniques cannot reliably estimate the level of I//" noise. Rather, we also use here a maximum likelihood estimation technique which assumes that there are only two sources of noise in the residual time series (white noise and randomwalk noise) and estimates the amount of each. From this analysis we find that the random-walk noise level averages about 1.3 mm/Vyr and that our estimates of the white noise component confirm theoretical limitations of the measurement technique. In addition, the seasonal noise can be as large as 3 mm in amplitude but typically is less than 0.5 mm. Because of the presence of random-walk noise in these time series, modeling and interpretation of the geodetic data must account for this source of error. By way of example we show that estimating the time-varying strain tensor (a form of spatial averaging) from geodetic data having both random-walk and white noise error components results in seemingly significant variations in the rate of strain accumulation; spatial averaging does reduce the size of both noise components but not their relative influence on the resulting strain accumulation model. Copyright 1997 by the American Geophysical Union.
Scene-based nonuniformity correction using local constant statistics.
Zhang, Chao; Zhao, Wenyi
2008-06-01
In scene-based nonuniformity correction, the statistical approach assumes all possible values of the true-scene pixel are seen at each pixel location. This global-constant-statistics assumption does not distinguish fixed pattern noise from spatial variations in the average image. This often causes the "ghosting" artifacts in the corrected images since the existing spatial variations are treated as noises. We introduce a new statistical method to reduce the ghosting artifacts. Our method proposes a local-constant statistics that assumes that the temporal signal distribution is not constant at each pixel but is locally true. This considers statistically a constant distribution in a local region around each pixel but uneven distribution in a larger scale. Under the assumption that the fixed pattern noise concentrates in a higher spatial-frequency domain than the distribution variation, we apply a wavelet method to the gain and offset image of the noise and separate out the pattern noise from the spatial variations in the temporal distribution of the scene. We compare the results to the global-constant-statistics method using a clean sequence with large artificial pattern noises. We also apply the method to a challenging CCD video sequence and a LWIR sequence to show how effective it is in reducing noise and the ghosting artifacts.
Cest Analysis: Automated Change Detection from Very-High Remote Sensing Images
NASA Astrophysics Data System (ADS)
Ehlers, M.; Klonus, S.; Jarmer, T.; Sofina, N.; Michel, U.; Reinartz, P.; Sirmacek, B.
2012-08-01
A fast detection, visualization and assessment of change in areas of crisis or catastrophes are important requirements for coordination and planning of help. Through the availability of new satellites and/or airborne sensors with very high spatial resolutions (e.g., WorldView, GeoEye) new remote sensing data are available for a better detection, delineation and visualization of change. For automated change detection, a large number of algorithms has been proposed and developed. From previous studies, however, it is evident that to-date no single algorithm has the potential for being a reliable change detector for all possible scenarios. This paper introduces the Combined Edge Segment Texture (CEST) analysis, a decision-tree based cooperative suite of algorithms for automated change detection that is especially designed for the generation of new satellites with very high spatial resolution. The method incorporates frequency based filtering, texture analysis, and image segmentation techniques. For the frequency analysis, different band pass filters can be applied to identify the relevant frequency information for change detection. After transforming the multitemporal images via a fast Fourier transform (FFT) and applying the most suitable band pass filter, different methods are available to extract changed structures: differencing and correlation in the frequency domain and correlation and edge detection in the spatial domain. Best results are obtained using edge extraction. For the texture analysis, different 'Haralick' parameters can be calculated (e.g., energy, correlation, contrast, inverse distance moment) with 'energy' so far providing the most accurate results. These algorithms are combined with a prior segmentation of the image data as well as with morphological operations for a final binary change result. A rule-based combination (CEST) of the change algorithms is applied to calculate the probability of change for a particular location. CEST was tested with high-resolution satellite images of the crisis areas of Darfur (Sudan). CEST results are compared with a number of standard algorithms for automated change detection such as image difference, image ratioe, principal component analysis, delta cue technique and post classification change detection. The new combined method shows superior results averaging between 45% and 15% improvement in accuracy.
Attention Modifies Spatial Resolution According to Task Demands.
Barbot, Antoine; Carrasco, Marisa
2017-03-01
How does visual attention affect spatial resolution? In texture-segmentation tasks, exogenous (involuntary) attention automatically increases resolution at the attended location, which improves performance where resolution is too low (at the periphery) but impairs performance where resolution is already too high (at central locations). Conversely, endogenous (voluntary) attention improves performance at all eccentricities, which suggests a more flexible mechanism. Here, using selective adaptation to spatial frequency, we investigated the mechanism by which endogenous attention benefits performance in resolution tasks. Participants detected a texture target that could appear at several eccentricities. Adapting to high or low spatial frequencies selectively affected performance in a manner consistent with changes in resolution. Moreover, adapting to high, but not low, frequencies mitigated the attentional benefit at central locations where resolution was too high; this shows that attention can improve performance by decreasing resolution. Altogether, our results indicate that endogenous attention benefits performance by modulating the contribution of high-frequency information in order to flexibly adjust spatial resolution according to task demands.
Attention Modifies Spatial Resolution According to Task Demands
Barbot, Antoine; Carrasco, Marisa
2017-01-01
How does visual attention affect spatial resolution? In texture-segmentation tasks, exogenous (involuntary) attention automatically increases resolution at the attended location, which improves performance where resolution is too low (at the periphery) but impairs performance where resolution is already too high (at central locations). Conversely, endogenous (voluntary) attention improves performance at all eccentricities, which suggests a more flexible mechanism. Here, using selective adaptation to spatial frequency, we investigated the mechanism by which endogenous attention benefits performance in resolution tasks. Participants detected a texture target that could appear at several eccentricities. Adapting to high or low spatial frequencies selectively affected performance in a manner consistent with changes in resolution. Moreover, adapting to high, but not low, frequencies mitigated the attentional benefit at central locations where resolution was too high; this shows that attention can improve performance by decreasing resolution. Altogether, our results indicate that endogenous attention benefits performance by modulating the contribution of high-frequency information in order to flexibly adjust spatial resolution according to task demands. PMID:28118103
Beyond attentional bias: a perceptual bias in a dot-probe task.
Bocanegra, Bruno R; Huijding, Jorg; Zeelenberg, René
2012-12-01
Previous dot-probe studies indicate that threat-related face cues induce a bias in spatial attention. Independently of spatial attention, a recent psychophysical study suggests that a bilateral fearful face cue improves low spatial-frequency perception (LSF) and impairs high spatial-frequency perception (HSF). Here, we combine these separate lines of research within a single dot-probe paradigm. We found that a bilateral fearful face cue, compared with a bilateral neutral face cue, speeded up responses to LSF targets and slowed down responses to HSF targets. This finding is important, as it shows that emotional cues in dot-probe tasks not only bias where information is preferentially processed (i.e., an attentional bias in spatial location), but also bias what type of information is preferentially processed (i.e., a perceptual bias in spatial frequency). PsycINFO Database Record (c) 2012 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Wang, Yanan; Zhu, Zhenhao; Su, Jinhui
2018-05-01
A focused plenoptic camera can effectively transform angular and spatial information to yield a refocused rendered image with high resolution. However, choosing a proper patch size poses a significant problem for the image-rendering algorithm. By using a spatial frequency response measurement, a method to obtain a suitable patch size is presented. By evaluating the spatial frequency response curves, the optimized patch size can be obtained quickly and easily. Moreover, the range of depth over which images can be rendered without artifacts can be estimated. Experiments show that the results of the image rendered based on frequency response measurement are in accordance with the theoretical calculation, which indicates that this is an effective way to determine the patch size. This study may provide support to light-field image rendering.
Braun, Doris I; Schütz, Alexander C; Gegenfurtner, Karl R
2017-07-01
Visual sensitivity is dynamically modulated by eye movements. During saccadic eye movements, sensitivity is reduced selectively for low-spatial frequency luminance stimuli and largely unaffected for high-spatial frequency luminance and chromatic stimuli (Nature 371 (1994), 511-513). During smooth pursuit eye movements, sensitivity for low-spatial frequency luminance stimuli is moderately reduced while sensitivity for chromatic and high-spatial frequency luminance stimuli is even increased (Nature Neuroscience, 11 (2008), 1211-1216). Since these effects are at least partly of different polarity, we investigated the combined effects of saccades and smooth pursuit on visual sensitivity. For the time course of chromatic sensitivity, we found that detection rates increased slightly around pursuit onset. During saccades to static and moving targets, detection rates dropped briefly before the saccade and reached a minimum at saccade onset. This reduction of chromatic sensitivity was present whenever a saccade was executed and it was not modified by subsequent pursuit. We also measured contrast sensitivity for flashed high- and low-spatial frequency luminance and chromatic stimuli during saccades and pursuit. During saccades, the reduction of contrast sensitivity was strongest for low-spatial frequency luminance stimuli (about 90%). However, a significant reduction was also present for chromatic stimuli (about 58%). Chromatic sensitivity was increased during smooth pursuit (about 12%). These results suggest that the modulation of visual sensitivity during saccades and smooth pursuit is more complex than previously assumed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Clinical skin imaging using color spatial frequency domain imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Yang, Bin; Lesicko, John; Moy, Austin J.; Reichenberg, Jason; Tunnell, James W.
2016-02-01
Skin diseases are typically associated with underlying biochemical and structural changes compared with normal tissues, which alter the optical properties of the skin lesions, such as tissue absorption and scattering. Although widely used in dermatology clinics, conventional dermatoscopes don't have the ability to selectively image tissue absorption and scattering, which may limit its diagnostic power. Here we report a novel clinical skin imaging technique called color spatial frequency domain imaging (cSFDI) which enhances contrast by rendering color spatial frequency domain (SFD) image at high spatial frequency. Moreover, by tuning spatial frequency, we can obtain both absorption weighted and scattering weighted images. We developed a handheld imaging system specifically for clinical skin imaging. The flexible configuration of the system allows for better access to skin lesions in hard-to-reach regions. A total of 48 lesions from 31 patients were imaged under 470nm, 530nm and 655nm illumination at a spatial frequency of 0.6mm^(-1). The SFD reflectance images at 470nm, 530nm and 655nm were assigned to blue (B), green (G) and red (R) channels to render a color SFD image. Our results indicated that color SFD images at f=0.6mm-1 revealed properties that were not seen in standard color images. Structural features were enhanced and absorption features were reduced, which helped to identify the sources of the contrast. This imaging technique provides additional insights into skin lesions and may better assist clinical diagnosis.
Modulation of microsaccades by spatial frequency during object categorization.
Craddock, Matt; Oppermann, Frank; Müller, Matthias M; Martinovic, Jasna
2017-01-01
The organization of visual processing into a coarse-to-fine information processing based on the spatial frequency properties of the input forms an important facet of the object recognition process. During visual object categorization tasks, microsaccades occur frequently. One potential functional role of these eye movements is to resolve high spatial frequency information. To assess this hypothesis, we examined the rate, amplitude and speed of microsaccades in an object categorization task in which participants viewed object and non-object images and classified them as showing either natural objects, man-made objects or non-objects. Images were presented unfiltered (broadband; BB) or filtered to contain only low (LSF) or high spatial frequency (HSF) information. This allowed us to examine whether microsaccades were modulated independently by the presence of a high-level feature - the presence of an object - and by low-level stimulus characteristics - spatial frequency. We found a bimodal distribution of saccades based on their amplitude, with a split between smaller and larger microsaccades at 0.4° of visual angle. The rate of larger saccades (⩾0.4°) was higher for objects than non-objects, and higher for objects with high spatial frequency content (HSF and BB objects) than for LSF objects. No effects were observed for smaller microsaccades (<0.4°). This is consistent with a role for larger microsaccades in resolving HSF information for object identification, and previous evidence that more microsaccades are directed towards informative image regions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Attempting to physically explain space-time correlation of extremes
NASA Astrophysics Data System (ADS)
Bernardara, Pietro; Gailhard, Joel
2010-05-01
Spatial and temporal clustering of hydro-meteorological extreme events is scientific evidence. Moreover, the statistical parameters characterizing their local frequencies of occurrence show clear spatial patterns. Thus, in order to robustly assess the hydro-meteorological hazard, statistical models need to be able to take into account spatial and temporal dependencies. Statistical models considering long term correlation for quantifying and qualifying temporal and spatial dependencies are available, such as multifractal approach. Furthermore, the development of regional frequency analysis techniques allows estimating the frequency of occurrence of extreme events taking into account spatial patterns on the extreme quantiles behaviour. However, in order to understand the origin of spatio-temporal clustering, an attempt to find physical explanation should be done. Here, some statistical evidences of spatio-temporal correlation and spatial patterns of extreme behaviour are given on a large database of more than 400 rainfall and discharge series in France. In particular, the spatial distribution of multifractal and Generalized Pareto distribution parameters shows evident correlation patterns in the behaviour of frequency of occurrence of extremes. It is then shown that the identification of atmospheric circulation pattern (weather types) can physically explain the temporal clustering of extreme rainfall events (seasonality) and the spatial pattern of the frequency of occurrence. Moreover, coupling this information with the hydrological modelization of a watershed (as in the Schadex approach) an explanation of spatio-temporal distribution of extreme discharge can also be provided. We finally show that a hydro-meteorological approach (as the Schadex approach) can explain and take into account space and time dependencies of hydro-meteorological extreme events.
Winsler, Kurt; Holcomb, Phillip J; Midgley, Katherine J; Grainger, Jonathan
2017-01-01
Previous studies have shown that different spatial frequency information processing streams interact during the recognition of visual stimuli. However, it is a matter of debate as to the contributions of high and low spatial frequency (HSF and LSF) information for visual word recognition. This study examined the role of different spatial frequencies in visual word recognition using event-related potential (ERP) masked priming. EEG was recorded from 32 scalp sites in 30 English-speaking adults in a go/no-go semantic categorization task. Stimuli were white characters on a neutral gray background. Targets were uppercase five letter words preceded by a forward-mask (#######) and a 50 ms lowercase prime. Primes were either the same word (repeated) or a different word (un-repeated) than the subsequent target and either contained only high, only low, or full spatial frequency information. Additionally within each condition, half of the prime-target pairs were high lexical frequency, and half were low. In the full spatial frequency condition, typical ERP masked priming effects were found with an attenuated N250 (sub-lexical) and N400 (lexical-semantic) for repeated compared to un-repeated primes. For HSF primes there was a weaker N250 effect which interacted with lexical frequency, a significant reversal of the effect around 300 ms, and an N400-like effect for only high lexical frequency word pairs. LSF primes did not produce any of the classic ERP repetition priming effects, however they did elicit a distinct early effect around 200 ms in the opposite direction of typical repetition effects. HSF information accounted for many of the masked repetition priming ERP effects and therefore suggests that HSFs are more crucial for word recognition. However, LSFs did produce their own pattern of priming effects indicating that larger scale information may still play a role in word recognition.
NASA Astrophysics Data System (ADS)
König, Sara; Worrich, Anja; Wick, Lukas Y.; Miltner, Anja; Kästner, Matthias; Thullner, Martin; Centler, Florian; Banitz, Thomas; Frank, Karin
2016-04-01
Biodegradation of organic compounds in soil is an important microbial ecosystem service. Soil ecosystems are constantly exposed to disturbances of different spatial configurations and frequencies, challenging their ability to recover the biodegradation function. Thus, the response to these disturbances is crucial for the soil systems' biodegradation performance. The influence of spatial aspects of the disturbance regimes on long-term biodegradation dynamics under periodic disturbances has not been examined, yet. We applied a numerical simulation model considering bacterial growth, degradation, and dispersal to analyze the spatiotemporal biodegradation dynamics under disturbances occuring with different frequencies and with different spatial configurations. We found biodegradation performance decreasing in response to periodic disturbances but on average approaching a new quasi steady state. This mean performance of the disturbed systems increases with both, the interval length between disturbance events and the fragmentation of the spatial disturbance patterns. A detailed spatiotemporal analysis of degradation activity reveals that under highly fragmented disturbance patterns, biodegradation still takes place in the entire disturbed area. For moderately fragmented disturbance patterns, parts of the disturbed area become completely inactive. However, areas with high degradation activity emerge at the interface between disturbed and undisturbed areas, allowing the systems to maintain a relatively high degradation performance. Further decreasing the disturbance patterns' fragmentation, fewer interfaces between disturbed and undisturbed area and, thus, fewer active habitats occur, which reduces biodegradation performances. In additional simulations, we found that bacterial dispersal networks, as for example provided by fungal hyphae, usually increase the areas of high degradation activity and, thus, the biodegradation performance in presence of periodic disturbances. However, for some specific regimes with highly fragmented disturbance patterns, dispersal networks can in turn decrease the biodegradation performance. Our results show that spatial aspects of the periodic disturbance regime influence the biodegradation dynamics, indicating the relevance of spatial processes for functional stability. The level of connectivity between disturbed and undisturbed areas is crucial for the local and global dynamics of the ecosystem service biodegradation. Networks enhancing bacterial dispersal may often, but not always, increase the functional stability.
Drought Characteristics Based on the Retrieved Paleoprecipitation in Indus and Ganges River Basins
NASA Astrophysics Data System (ADS)
Davtalabsabet, R.; Wang, D.; Zhu, T.; Ringler, C.
2014-12-01
Indus and Ganges River basins (IGRB), which cover the major parts of India, Nepal, Bangladesh and Pakistan, are considered as the most important socio-economic regions in South Asia. IGRB support the food security of hundreds of millions people in South Asia. The food production in IGRB strictly relies on the magnitude and spatiotemporal pattern of monsoon precipitation. Due to severe drought during the last decades and food production failure in IGRB, several studies have focused on understanding the main drivers for south Asia monsoon failures and drought characteristics based on the historical data. However, the period of available historical data is not enough to address the full characteristic of drought under a changing climate. In this study, an inverse Palmer Drought Severity Index (PDSI) model is developed to retrieve the paleoprecipitation back to 700 years in the region, taking the inputs of available soil water capacity, temperature, and previous reconstructed PDSI based on tree-ring analysis at 2.5 degree resolution. Based on the retrieved paleoprecipitation, drought frequency and intensity are quantified for two periods of 1300-1899 (the reconstruction period) and 1900-2010 (the instrumental period). Previous studies have shown that in IGRB, a severe drought occurs when the annual precipitation deficit, compared with the long-term average precipitation, is greater than 10%. Climatic drought frequency is calculated as the percentage of years with predefined severe droughts. Drought intensity is defined as the average precipitation deficit during all of the years identified as severe droughts. Results show that the drought frequency, as well as the spatial extent, has significantly increased from the reconstruction period to the instrumental period. The drought frequency in the Indus River basin is higher than that in the Ganges River basin. Several mega-droughts are identified during the reconstruction period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsui, H.; Koike, Makoto; Takegawa, Nobuyuki
The new particle formation (NPF)-explicit version of the WRF-chem model, which we developed recently, can calculate the growth and sink of nucleated clusters explicitly with 20 aerosol size bins from 1 nm to 10 μm. In this study, the model is used to understand spatial and temporal variations of the frequency of NPF events and the concentrations of aerosols (condensation nuclei, CN) and cloud condensation nuclei (CCN) within the boundary layer in East Asia in spring 2009. Model simulations show distinct north-south contrast in the frequency and mechanism of NPF in East Asia. NPF mostly occurred over limited periods andmore » regions between 30° and 45°N, such as northeast China, Korea, and Japan, including regions around active volcanoes (Miyakejima and Sakurajima). At these latitudes, NPF was considerably suppressed by high concentrations of preexisting particles under stagnant air conditions associated with high-pressure systems, while nucleation occurred more extensively on most days during the simulation period. Conversely, neither nucleation nor NPF occurred frequently south of 30°N because of lower SO2 emissions and H2SO4 concentrations. The period-averaged NPF frequency was 3 times higher at latitudes of 30° - 45°N than at latitudes of 20° - 30°N. The north-south contrast of NPF frequency is validated by surface measurements in outflow regions in East Asia. The period- and domain-averaged contribution of secondary particles is estimated to be 44% for CN (> 10 nm) and 26% for CCN at a supersaturation of 1.0% in our simulation, though the contribution is highly sensitive to the magnitudes and size distributions of primary aerosol emissions and the coefficients in the nucleation parameterizations.« less
NASA Astrophysics Data System (ADS)
Hamadeh, Emad; Gunther, Norman G.; Niemann, Darrell; Rahman, Mahmud
2006-06-01
Random fluctuations in fabrication process outcomes such as gate line edge roughness (LER) give rise to corresponding fluctuations in scaled down MOS device characteristics. A thermodynamic-variational model is presented to study the effects of LER on threshold voltage and capacitance of sub-50 nm MOS devices. Conceptually, we treat the geometric definition of the MOS devices on a die as consisting of a collection of gates. In turn, each of these gates has an area, A, and a perimeter, P, defined by nominally straight lines subject to random process outcomes producing roughness. We treat roughness as being deviations from straightness consisting of both transverse amplitude and longitudinal wavelength each having lognormal distribution. We obtain closed-form expressions for variance of threshold voltage ( Vth), and device capacitance ( C) at Onset of Strong Inversion (OSI) for a small device. Using our variational model, we characterized the device electrical properties such as σ and σC in terms of the statistical parameters of the roughness amplitude and spatial frequency, i.e., inverse roughness wavelength. We then verified our model with numerical analysis of Vth roll-off for small devices and σ due to dopant fluctuation. Our model was also benchmarked against TCAD of σ as a function of LER. We then extended our analysis to predict variations in σ and σC versus average LER spatial frequency and amplitude, and oxide-thickness. Given the intuitive expectation that LER of very short wavelengths must also have small amplitude, we have investigated the case in which the amplitude mean is inversely related to the frequency mean. We compare with the situation in which amplitude and frequency mean are unrelated. Given also that the gate perimeter may consist of different LER signature for each side, we have extended our analysis to the case when the LER statistical difference between gate sides is moderate, as well as when it is significantly large.
Evaluation of wildfire patterns at the wildland-urban fringe across the continental U.S.
NASA Astrophysics Data System (ADS)
Kinoshita, A. M.; Hogue, T. S.
2014-12-01
Wildfires threaten ecosystems and urban development across the United States, posing significant implications for land management and natural processes such as watershed hydrology. This study investigates the spatial association between large wildfires and urbanization. Several geospatial dataset are combined to map wildfires (Monitoring Trends in Burn Severity for 1984 to 2012) and housing density (SILVIS Lab Spatial Analysis for Conservation and Sustainability decadal housing density for 1940 to 2030) relative to natural wildlands across the contiguous U.S. Several buffers (i.e. 25 km) are developed around wildlands (Protected Areas Database of the United States) to quantify the change and relationship in spatial fire and housing density patterns. Since 1984, wildfire behavior is cyclical and follows general climatology, where warmer years have more and larger fires. Ignition locations also follow transportation corridors and development which provide easy accessibility to wildlands. In California, both fire frequency and total acres burned exhibit increasing trends (statistically significant at 95%). The 1980s average wildfire frequency and total acres burned was 3100 fires and approximately 1200 km2, respectively. These numbers have increased to 2200 fires and over 1500 km2 in the 2010 to 2012 period alone. Initial observations also show that decennial population and area burned for four major Californian counties (Los Angeles, San Bernardino, San Diego, and Shasta) show strong correlation between the last decade of burned area, urban-fringe proximity, and urbanization trends. Improving our understanding of human induced wildfire regimes provides key information on urban fringe communities most vulnerable to the wildfire risks and can help inform regional development planning.
Analysis of Dynamic Characteristics of the 21st Century Maritime Silk Road
NASA Astrophysics Data System (ADS)
Zhang, Xudong; Zhang, Jie; Fan, Chenqing; Meng, Junmin; Wang, Jing; Wan, Yong
2018-06-01
The 21st century Maritime Silk Road (MSR) proposed by China strongly promotes the maritime industry. In this paper, we use wind and ocean wave datasets from 1979 to 2014 to analyze the spatial and temporal distributions of the wind speed, significant wave height (SWH), mean wave direction (MWD), and mean wave period (MWP) in the MSR. The analysis results indicate that the Luzon Strait and Gulf of Aden have the most obvious seasonal variations and that the central Indian Ocean is relatively stable. We analyzed the distributions of the maximum wind speed and SWH in the MSR over this 36-year period. The results show that the distribution of the monthly average frequency for SWH exceeds 4 m (huge waves) and that of the corresponding wind speed exceeds 13.9 m s-1 (high wind speed). The occurrence frequencies of huge waves and high winds in regions east of the Gulf of Aden are as high as 56% and 80%, respectively. We also assessed the wave and wind energies in different seasons. Based on our analyses, we propose a risk factor (RF) for determining navigation safety levels, based on the wind speed and SWH. We determine the spatial and temporal RF distributions for different seasons and analyze the corresponding impact on four major sea routes. Finally, we determine the spatial distribution of tropical cyclones from 2000 to 2015 and analyze the corresponding impact on the four sea routes. The analysis of the dynamic characteristics of the MSR provides references for ship navigation as well as ocean engineering.
NASA Astrophysics Data System (ADS)
Whidden, E.; Roulet, N.
2003-04-01
Interpretation of a site average terrestrial flux may be complicated in the presence of inhomogeneities. Inhomogeneity may invalidate the basic assumptions of aerodynamic flux measurement. Chamber measurement may miss or misinterpret important temporal or spatial anomalies. Models may smooth over important nonlinearities depending on the scale of application. Although inhomogeneity is usually seen as a design problem, many sites have spatial variance that may have a large impact on net flux, and in many cases a large homogeneous surface is unrealistic. The sensitivity and validity of a site average flux are investigated in the presence of an inhomogeneous site. Directional differences are used to evaluate the validity of aerodynamic methods and the computation of a site average tower flux. Empirical and modelling methods are used to interpret the spatial controls on flux. An ecosystem model, Ecosys, is used to assess spatial length scales appropriate to the ecophysiologic controls. A diffusion model is used to compare tower, chamber, and model data, by spatially weighting contributions within the tower footprint. Diffusion model weighting is also used to improve tower flux estimates by producing footprint averaged ecological parameters (soil moisture, soil temperature, etc.). Although uncertainty remains in the validity of measurement methods and the accuracy of diffusion models, a detailed spatial interpretation is required at an inhomogeneous site. Flux estimation between methods improves with spatial interpretation, showing the importance to an estimation of a site average flux. Small-scale temporal and spatial anomalies may be relatively unimportant to overall flux, but accounting for medium-scale differences in ecophysiological controls is necessary. A combination of measurements and modelling can be used to define the appropriate time and length scales of significant non-linearity due to inhomogeneity.
Effects of errors and gaps in spatial data sets on assessment of conservation progress.
Visconti, P; Di Marco, M; Álvarez-Romero, J G; Januchowski-Hartley, S R; Pressey, R L; Weeks, R; Rondinini, C
2013-10-01
Data on the location and extent of protected areas, ecosystems, and species' distributions are essential for determining gaps in biodiversity protection and identifying future conservation priorities. However, these data sets always come with errors in the maps and associated metadata. Errors are often overlooked in conservation studies, despite their potential negative effects on the reported extent of protection of species and ecosystems. We used 3 case studies to illustrate the implications of 3 sources of errors in reporting progress toward conservation objectives: protected areas with unknown boundaries that are replaced by buffered centroids, propagation of multiple errors in spatial data, and incomplete protected-area data sets. As of 2010, the frequency of protected areas with unknown boundaries in the World Database on Protected Areas (WDPA) caused the estimated extent of protection of 37.1% of the terrestrial Neotropical mammals to be overestimated by an average 402.8% and of 62.6% of species to be underestimated by an average 10.9%. Estimated level of protection of the world's coral reefs was 25% higher when using recent finer-resolution data on coral reefs as opposed to globally available coarse-resolution data. Accounting for additional data sets not yet incorporated into WDPA contributed up to 6.7% of additional protection to marine ecosystems in the Philippines. We suggest ways for data providers to reduce the errors in spatial and ancillary data and ways for data users to mitigate the effects of these errors on biodiversity assessments. © 2013 Society for Conservation Biology.
Roberts, Daniel J; Woollams, Anna M; Kim, Esther; Beeson, Pelagie M; Rapcsak, Steven Z; Lambon Ralph, Matthew A
2013-11-01
Recent visual neuroscience investigations suggest that ventral occipito-temporal cortex is retinotopically organized, with high acuity foveal input projecting primarily to the posterior fusiform gyrus (pFG), making this region crucial for coding high spatial frequency information. Because high spatial frequencies are critical for fine-grained visual discrimination, we hypothesized that damage to the left pFG should have an adverse effect not only on efficient reading, as observed in pure alexia, but also on the processing of complex non-orthographic visual stimuli. Consistent with this hypothesis, we obtained evidence that a large case series (n = 20) of patients with lesions centered on left pFG: 1) Exhibited reduced sensitivity to high spatial frequencies; 2) demonstrated prolonged response latencies both in reading (pure alexia) and object naming; and 3) were especially sensitive to visual complexity and similarity when discriminating between novel visual patterns. These results suggest that the patients' dual reading and non-orthographic recognition impairments have a common underlying mechanism and reflect the loss of high spatial frequency visual information normally coded in the left pFG.
Fractal hierarchies of magma transport in Hawaii and critical self-organization of tremor
NASA Astrophysics Data System (ADS)
Shaw, Herbert R.; Chouet, Bernard
1991-06-01
A hierarchical model of magma transport in Hawaii is developed from the seismic records of deep (30-60 km) and intermediate-depth (5-15 km) harmonic tremor between January 1, 1962, and December 31, 1983. We find two kinds of spatial distributions of magma fractions at depths below 5 km, defined by the fractal dimension D3, where the subscript is the embedding dimension. The first is a focused distribution with D3 = 0.28, and the second is a dispersed distribution with D3 = 1.52. The former dimension reflects conduitlike structures where the magma flow converges toward a summit magma chamber and the fractal dimension tends to zero. The latter dimension reflects multifractal clustering of dendritic fractures where hypocentral domains represent subsets of fractures within spherical domains with an average radius of about 1 km. These geometries constitute a percolation network of clustered intermittent fracture and magma transport. The magma volume of the average fracture is about 2 × 104 m3. A tremor model of magma transport is developed from mass balances of percolation that are proportional to tremor durations. It gives reasonable magma fractions and residence times for a vertical drift velocity of 4 km yr-1 and yields patterns of intermittency that are in accord with singularity analyses of the 22-year time series record. According to the model, sustained tremor is generated by the relaxation oscillations of the percolation network with a dominant frequency of about 1 Hz to obtain internally consistent values of fracture geometry, fracture opening force, and magma supply rate. Calculated tremor frequencies are higher in fracture networks of small volume in harmony with the observed relation between seismic amplitude and dominant frequency of tremor. Tectonic relaxation times of rock stresses versus magma pressures are in fair agreement with the average length of tremor episodes and average period of tremor intermittencies. These observations suggest that a high degree of self-organization is characteristic of the nonlinear dynamics of fracture percolation and coupled tremor processes. Logarithms of frequencies (in hertz) of high-amplitude tremor (1-s period), mean tremor duration (28-min period), and mean onset interval (14-day period) are 0, -3.2, and -6.1, implying broadband maxima in the frequency spectrum of transport at intervals of 103. The next longer period of this sequence, which corresponds to eruptions and shallow intrusions, is about 32 years (10 -9 Hz), comparable to the average eruption intermission of Mauna Loa during the last 150 years (about 20 years). This and other evidence suggest that spatiotemporal universality extends from small to large scales in Hawaiian and other magmatic systems. The apparent universal scaling of frequencies may be more than 15 decades in time (1 s to about 60 m.y.) and 10 decades in length (0.1 mm to 103 km).
Frequency Dependent Macro-dispersion Induced by Oscillatory Inputs and Spatial Heterogeneity
NASA Astrophysics Data System (ADS)
Rajabi, F.; Battiato, I.
2017-12-01
Elucidating flow and transport processes at the pore scale is the cornerstone of most hydrologic studies in the subsurface. This becomes even more imperative when the system is subject to a cyclic forcing. Such temporal variations with evolving heterogeneity of time scales spanning from days to years can influence transport phenomena at the pore level, e.g. yearly freeze/thaw in the thin active layer of soil above permafrost zone whose thickness increases throughout the thaw season. Moreover, understanding the interactions of different physical phenomena at the pore scale is key to predict the behavior at the continuum scale. Yet, the connection between periodic inputs at the pore scale and macrotransport is to a great extent unknown. In the spirit of homogenization technique, we derived a macrotime continuum-scale equation as well as expressions for the effective transport coefficients. The macrodispersion arises from contributions of molecular diffusion, spatial heterogeneity and time-dependent fluctuations. Moreover, we have quantified the solute spreading by effective dispersion in terms of dimensionless numbers (Pe, Da, and Strouhal), i.e. expressing the interplay of molecular diffusion, advection, reaction and signal frequency. Yet, as every macroscopic model, spatiotemporally averaged models can breakdown when certain criteria are violated. This makes the continuum scale equation a poor approximation for the processes at the pore scale. To this end, we also provide the conditions under which the space-time averaged equations accurately describe pore-scale processes. In addition, this study gives a robust evidence that transverse mixing can in fact benefit from fluctuating boundary forcing due to the interaction of temporal fluctuations and molecular diffusion. Furthermore, it provides a robust quantitative foundation for designing the desired systems since the interplay of geometry and external forcing has been directly connected to each other in terms of dimensionless (St) number. We compare our theoretical framework with data from an experiment performed on several micro-channels with different geometry and different frequencies of injection at the inlet. The proposed formulation is found to provide remarkably good predictions and correctly explain the experimental mixing dynamics.
Wójcik, J.; Kujawska, T.; Nowicki, A.; Lewin, P.A.
2008-01-01
The primary goal of this work was to verify experimentally the applicability of the recently introduced Time-Averaged Wave Envelope (TAWE) method [1] as a tool for fast prediction of four dimensional (4D) pulsed nonlinear pressure fields from arbitrarily shaped acoustic sources in attenuating media. The experiments were performed in water at the fundamental frequency of 2.8 MHz for spherically focused (focal length F = 80 mm) square (20 × 20 mm) and rectangular (10 × 25 mm) sources similar to those used in the design of 1D linear arrays operating with ultrasonic imaging systems. The experimental results obtained with 10-cycle tone bursts at three different excitation levels corresponding to linear, moderately nonlinear and highly nonlinear propagation conditions (0.045, 0.225 and 0.45 MPa on-source pressure amplitude, respectively) were compared with those yielded using the TAWE approach [1]. The comparison of the experimental results and numerical simulations has shown that the TAWE approach is well suited to predict (to within ± 1 dB) both the spatial-temporal and spatial-spectral pressure variations in the pulsed nonlinear acoustic beams. The obtained results indicated that implementation of the TAWE approach enabled shortening of computation time in comparison with the time needed for prediction of the full 4D pulsed nonlinear acoustic fields using a conventional (Fourier-series) approach [2]. The reduction in computation time depends on several parameters, including the source geometry, dimensions, fundamental resonance frequency, excitation level as well as the strength of the medium nonlinearity. For the non-axisymmetric focused transducers mentioned above and excited by a tone burst corresponding to moderately nonlinear and highly nonlinear conditions the execution time of computations was 3 and 12 hours, respectively, when using a 1.5 GHz clock frequency, 32-bit processor PC laptop with 2 GB RAM memory, only. Such prediction of the full 4D pulsed field is not possible when using conventional, Fourier-series scheme as it would require increasing the RAM memory by at least 2 orders of magnitude. PMID:18474387
Araújo, Carolina S.; Souza, Givago S.; Gomes, Bruno D.; Silveira, Luiz Carlos L.
2013-01-01
The contributions of contrast detection mechanisms to the visual cortical evoked potential (VECP) have been investigated studying the contrast-response and spatial frequency-response functions. Previously, the use of m-sequences for stimulus control has been almost restricted to multifocal electrophysiology stimulation and, in some aspects, it substantially differs from conventional VECPs. Single stimulation with spatial contrast temporally controlled by m-sequences has not been extensively tested or compared to multifocal techniques. Our purpose was to evaluate the influence of spatial frequency and contrast of sinusoidal gratings on the VECP elicited by pseudo-random stimulation. Nine normal subjects were stimulated by achromatic sinusoidal gratings driven by pseudo random binary m-sequence at seven spatial frequencies (0.4–10 cpd) and three stimulus sizes (4°, 8°, and 16° of visual angle). At 8° subtence, six contrast levels were used (3.12–99%). The first order kernel (K1) did not provide a consistent measurable signal across spatial frequencies and contrasts that were tested–signal was very small or absent–while the second order kernel first (K2.1) and second (K2.2) slices exhibited reliable responses for the stimulus range. The main differences between results obtained with the K2.1 and K2.2 were in the contrast gain as measured in the amplitude versus contrast and amplitude versus spatial frequency functions. The results indicated that K2.1 was dominated by M-pathway, but for some stimulus condition some P-pathway contribution could be found, while the second slice reflected the P-pathway contribution. The present work extended previous findings of the visual pathways contribution to VECP elicited by pseudorandom stimulation for a wider range of spatial frequencies. PMID:23940546
Image Processing, Coding, and Compression with Multiple-Point Impulse Response Functions.
NASA Astrophysics Data System (ADS)
Stossel, Bryan Joseph
1995-01-01
Aspects of image processing, coding, and compression with multiple-point impulse response functions are investigated. Topics considered include characterization of the corresponding random-walk transfer function, image recovery for images degraded by the multiple-point impulse response, and the application of the blur function to image coding and compression. It is found that although the zeros of the real and imaginary parts of the random-walk transfer function occur in continuous, closed contours, the zeros of the transfer function occur at isolated spatial frequencies. Theoretical calculations of the average number of zeros per area are in excellent agreement with experimental results obtained from computer counts of the zeros. The average number of zeros per area is proportional to the standard deviations of the real part of the transfer function as well as the first partial derivatives. Statistical parameters of the transfer function are calculated including the mean, variance, and correlation functions for the real and imaginary parts of the transfer function and their corresponding first partial derivatives. These calculations verify the assumptions required in the derivation of the expression for the average number of zeros. Interesting results are found for the correlations of the real and imaginary parts of the transfer function and their first partial derivatives. The isolated nature of the zeros in the transfer function and its characteristics at high spatial frequencies result in largely reduced reconstruction artifacts and excellent reconstructions are obtained for distributions of impulses consisting of 25 to 150 impulses. The multiple-point impulse response obscures original scenes beyond recognition. This property is important for secure transmission of data on many communication systems. The multiple-point impulse response enables the decoding and restoration of the original scene with very little distortion. Images prefiltered by the random-walk transfer function yield greater compression ratios than are obtained for the original scene. The multiple-point impulse response decreases the bit rate approximately 40-70% and affords near distortion-free reconstructions. Due to the lossy nature of transform-based compression algorithms, noise reduction measures must be incorporated to yield acceptable reconstructions after decompression.
Zhang, Z i-Jun; Huckle, James; Francomano, Clair A; Spencer, Richard G S
2002-01-01
The proximal and distal parts of sterna of chick embryos represent cartilage undergoing endochondral ossification and hyaline cartilage, respectively. Cartilage explants from both regions were exposed for 20 min to pulsed low-intensity ultrasound (PLIUS) with an intensity of 30 mW. cm(-2) (spatial average-temporal average) at a frequency of 1.5 MHz, with a pulse burst frequency of 1 kHz and burst duration of 200 micros. Histological and immunohistochemical analysis was performed on days 1, 3, 5 and 7 after treatment. An anabolic effect of PLIUS on matrix production was shown by an increase of up to 10% to 20% in quantitative immunohistochemical staining for type II collagen and aggrecan in the two parts of the sternum. PLIUS also increased type X collagen staining by up to 10% in certain regions of the proximal part of the sternum. Staining for type X collagen was negative in the distal part of the sternum in both PLIUS and control groups. These results suggest that PLIUS may stimulate bone formation by increasing hypertrophy of chondrocytes directed to terminal differentiation. However, PLIUS did not induce hypertrophy in hyaline cartilage; moreover, increased matrix synthesis indicates a potential role in cartilage repair.
Cunningham, Charles H; Dominguez Viqueira, William; Hurd, Ralph E; Chen, Albert P
2014-02-01
Blip-reversed echo-planar imaging (EPI) is investigated as a method for measuring and correcting the spatial shifts that occur due to bulk frequency offsets in (13)C metabolic imaging in vivo. By reversing the k-space trajectory for every other time point, the direction of the spatial shift for a given frequency is reversed. Here, mutual information is used to find the 'best' alignment between images and thereby measure the frequency offset. Time-resolved 3D images of pyruvate/lactate/urea were acquired with 5 s temporal resolution over a 1 min duration in rats (N = 6). For each rat, a second injection was performed with the demodulation frequency purposely mis-set by +35 Hz, to test the correction for erroneous shifts in the images. Overall, the shift induced by the 35 Hz frequency offset was 5.9 ± 0.6 mm (mean ± standard deviation). This agrees well with the expected 5.7 mm shift based on the 2.02 ms delay between k-space lines (giving 30.9 Hz per pixel). The 0.6 mm standard deviation in the correction corresponds to a frequency-detection accuracy of 4 Hz. A method was presented for ensuring the spatial registration between (13)C metabolic images and conventional anatomical images when long echo-planar readouts are used. The frequency correction method was shown to have an accuracy of 4 Hz. Summing the spatially corrected frames gave a signal-to-noise ratio (SNR) improvement factor of 2 or greater, compared with the highest single frame. Copyright © 2013 John Wiley & Sons, Ltd.
Masoudi, Ali; Newson, Trevor P
2017-01-15
A distributed optical fiber dynamic strain sensor with high spatial and frequency resolution is demonstrated. The sensor, which uses the ϕ-OTDR interrogation technique, exhibited a higher sensitivity thanks to an improved optical arrangement and a new signal processing procedure. The proposed sensing system is capable of fully quantifying multiple dynamic perturbations along a 5 km long sensing fiber with a frequency and spatial resolution of 5 Hz and 50 cm, respectively. The strain resolution of the sensor was measured to be 40 nε.
Decoherence and Collisional Frequency Shifts of Trapped Bosons and Fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibble, Kurt; LNE-SYRTE, Observatoire de Paris, 75014 Paris
2009-09-11
We perform exact calculations of collisional frequency shifts for several fermions or bosons using a singlet and triplet basis for pairs of particles. The 'factor of 2 controversy' for bosons becomes clear - the factor is always 2. Decoherence is described by singlet states and they are unaffected by spatially uniform clock fields. Spatial variations are critical, especially for fermions which were previously thought to be immune to collision shifts. The spatial variations lead to decoherence and a novel frequency shift that is not proportional to the partial density of internal states.
Image Quality Assessment Using the Joint Spatial/Spatial-Frequency Representation
NASA Astrophysics Data System (ADS)
Beghdadi, Azeddine; Iordache, Răzvan
2006-12-01
This paper demonstrates the usefulness of spatial/spatial-frequency representations in image quality assessment by introducing a new image dissimilarity measure based on 2D Wigner-Ville distribution (WVD). The properties of 2D WVD are shortly reviewed, and the important issue of choosing the analytic image is emphasized. The WVD-based measure is shown to be correlated with subjective human evaluation, which is the premise towards an image quality assessor developed on this principle.
Zhou, Zhiyi; Bernard, Melanie R; Bonds, A B
2008-04-02
Spatiotemporal relationships among contour segments can influence synchronization of neural responses in the primary visual cortex. We performed a systematic study to dissociate the impact of spatial and temporal factors in the signaling of contour integration via synchrony. In addition, we characterized the temporal evolution of this process to clarify potential underlying mechanisms. With a 10 x 10 microelectrode array, we recorded the simultaneous activity of multiple cells in the cat primary visual cortex while stimulating with drifting sine-wave gratings. We preserved temporal integrity and systematically degraded spatial integrity of the sine-wave gratings by adding spatial noise. Neural synchronization was analyzed in the time and frequency domains by conducting cross-correlation and coherence analyses. The general association between neural spike trains depends strongly on spatial integrity, with coherence in the gamma band (35-70 Hz) showing greater sensitivity to the change of spatial structure than other frequency bands. Analysis of the temporal dynamics of synchronization in both time and frequency domains suggests that spike timing synchronization is triggered nearly instantaneously by coherent structure in the stimuli, whereas frequency-specific oscillatory components develop more slowly, presumably through network interactions. Our results suggest that, whereas temporal integrity is required for the generation of synchrony, spatial integrity is critical in triggering subsequent gamma band synchronization.
Campagne, Aurélie; Fradcourt, Benoit; Pichat, Cédric; Baciu, Monica; Kauffmann, Louise; Peyrin, Carole
2016-01-01
Visual processing of emotional stimuli critically depends on the type of cognitive appraisal involved. The present fMRI pilot study aimed to investigate the cerebral correlates involved in the visual processing of emotional scenes in two tasks, one emotional, based on the appraisal of personal emotional experience, and the other motivational, based on the appraisal of the tendency to action. Given that the use of spatial frequency information is relatively flexible during the visual processing of emotional stimuli depending on the task's demands, we also explored the effect of the type of spatial frequency in visual stimuli in each task by using emotional scenes filtered in low spatial frequency (LSF) and high spatial frequencies (HSF). Activation was observed in the visual areas of the fusiform gyrus for all emotional scenes in both tasks, and in the amygdala for unpleasant scenes only. The motivational task induced additional activation in frontal motor-related areas (e.g. premotor cortex, SMA) and parietal regions (e.g. superior and inferior parietal lobules). Parietal regions were recruited particularly during the motivational appraisal of approach in response to pleasant scenes. These frontal and parietal activations, respectively, suggest that motor and navigation processes play a specific role in the identification of the tendency to action in the motivational task. Furthermore, activity observed in the motivational task, in response to both pleasant and unpleasant scenes, was significantly greater for HSF than for LSF scenes, suggesting that the tendency to action is driven mainly by the detailed information contained in scenes. Results for the emotional task suggest that spatial frequencies play only a small role in the evaluation of unpleasant and pleasant emotions. Our preliminary study revealed a partial distinction between visual processing of emotional scenes during identification of the tendency to action, and during identification of personal emotional experiences. It also illustrates flexible use of the spatial frequencies contained in scenes depending on their emotional valence and on task demands.
Xu, Renfeng; Bradley, Arthur; Thibos, Larry N.
2013-01-01
Purpose We tested the hypothesis that pupil apodization is the basis for central pupil bias of spherical refractions in eyes with spherical aberration. Methods We employed Fourier computational optics in which we vary spherical aberration levels, pupil size, and pupil apodization (Stiles Crawford Effect) within the pupil function, from which point spread functions and optical transfer functions were computed. Through-focus analysis determined the refractive correction that optimized retinal image quality. Results For a large pupil (7 mm), as spherical aberration levels increase, refractions that optimize the visual Strehl ratio mirror refractions that maximize high spatial frequency modulation in the image and both focus a near paraxial region of the pupil. These refractions are not affected by Stiles Crawford Effect apodization. Refractions that optimize low spatial frequency modulation come close to minimizing wavefront RMS, and vary with level of spherical aberration and Stiles Crawford Effect. In the presence of significant levels of spherical aberration (e.g. C40 = 0.4 µm, 7mm pupil), low spatial frequency refractions can induce −0.7D myopic shift compared to high SF refraction, and refractions that maximize image contrast of a 3 cycle per degree square-wave grating can cause −0.75D myopic drift relative to refractions that maximize image sharpness. Discussion Because of small depth of focus associated with high spatial frequency stimuli, the large change in dioptric power across the pupil caused by spherical aberration limits the effective aperture contributing to the image of high spatial frequencies. Thus, when imaging high spatial frequencies, spherical aberration effectively induces an annular aperture defining that portion of the pupil contributing to a well-focused image. As spherical focus is manipulated during the refraction procedure, the dimensions of the annular aperture change. Image quality is maximized when the inner radius of the induced annulus falls to zero, thus defining a circular near paraxial region of the pupil that determines refraction outcome. PMID:23683093
Emotion improves and impairs early vision.
Bocanegra, Bruno R; Zeelenberg, René
2009-06-01
Recent studies indicate that emotion enhances early vision, but the generality of this finding remains unknown. Do the benefits of emotion extend to all basic aspects of vision, or are they limited in scope? Our results show that the brief presentation of a fearful face, compared with a neutral face, enhances sensitivity for the orientation of subsequently presented low-spatial-frequency stimuli, but diminishes orientation sensitivity for high-spatial-frequency stimuli. This is the first demonstration that emotion not only improves but also impairs low-level vision. The selective low-spatial-frequency benefits are consistent with the idea that emotion enhances magnocellular processing. Additionally, we suggest that the high-spatial-frequency deficits are due to inhibitory interactions between magnocellular and parvocellular pathways. Our results suggest an emotion-induced trade-off in visual processing, rather than a general improvement. This trade-off may benefit perceptual dimensions that are relevant for survival at the expense of those that are less relevant.
Fukuda, Yoshiaki; Tomita, Yasuo
2016-01-01
We report on an experimental investigation of spatial frequency responses of anisotropic transmission refractive index gratings formed in holographic polymer dispersed liquid crystals (HPDLCs). We studied two different types of HPDLC materials employing two different monomer systems: one with acrylate monomer capable of radical mediated chain-growth polymerizations and the other with thiol-ene monomer capable of step-growth polymerizations. It was found that the photopolymerization kinetics of the two HPDLC materials could be well explained by the autocatalytic model. We also measured grating-spacing dependences of anisotropic refractive index gratings at a recording wavelength of 532 nm. It was found that the HPDLC material with the thiol-ene monomer gave higher spatial frequency responses than that with the acrylate monomer. Statistical thermodynamic simulation suggested that such a spatial frequency dependence was attributed primarily to a difference in the size of formed liquid crystal droplets due to different photopolymerization mechanisms. PMID:28773314
Fukuda, Yoshiaki; Tomita, Yasuo
2016-03-10
We report on an experimental investigation of spatial frequency responses of anisotropic transmission refractive index gratings formed in holographic polymer dispersed liquid crystals (HPDLCs). We studied two different types of HPDLC materials employing two different monomer systems: one with acrylate monomer capable of radical mediated chain-growth polymerizations and the other with thiol-ene monomer capable of step-growth polymerizations. It was found that the photopolymerization kinetics of the two HPDLC materials could be well explained by the autocatalytic model. We also measured grating-spacing dependences of anisotropic refractive index gratings at a recording wavelength of 532 nm. It was found that the HPDLC material with the thiol-ene monomer gave higher spatial frequency responses than that with the acrylate monomer. Statistical thermodynamic simulation suggested that such a spatial frequency dependence was attributed primarily to a difference in the size of formed liquid crystal droplets due to different photopolymerization mechanisms.
Spatial filtering with photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maigyte, Lina; Staliunas, Kestutis; Institució Catalana de Recerca i Estudis Avançats
2015-03-15
Photonic crystals are well known for their celebrated photonic band-gaps—the forbidden frequency ranges, for which the light waves cannot propagate through the structure. The frequency (or chromatic) band-gaps of photonic crystals can be utilized for frequency filtering. In analogy to the chromatic band-gaps and the frequency filtering, the angular band-gaps and the angular (spatial) filtering are also possible in photonic crystals. In this article, we review the recent advances of the spatial filtering using the photonic crystals in different propagation regimes and for different geometries. We review the most evident configuration of filtering in Bragg regime (with the back-reflection—i.e., inmore » the configuration with band-gaps) as well as in Laue regime (with forward deflection—i.e., in the configuration without band-gaps). We explore the spatial filtering in crystals with different symmetries, including axisymmetric crystals; we discuss the role of chirping, i.e., the dependence of the longitudinal period along the structure. We also review the experimental techniques to fabricate the photonic crystals and numerical techniques to explore the spatial filtering. Finally, we discuss several implementations of such filters for intracavity spatial filtering.« less
Qiu, Lei; Liu, Bin; Yuan, Shenfang; Su, Zhongqing
2016-01-01
The spatial-wavenumber filtering technique is an effective approach to distinguish the propagating direction and wave mode of Lamb wave in spatial-wavenumber domain. Therefore, it has been gradually studied for damage evaluation in recent years. But for on-line impact monitoring in practical application, the main problem is how to realize the spatial-wavenumber filtering of impact signal when the wavenumber of high spatial resolution cannot be measured or the accurate wavenumber curve cannot be modeled. In this paper, a new model-independent spatial-wavenumber filter based impact imaging method is proposed. In this method, a 2D cross-shaped array constructed by two linear piezoelectric (PZT) sensor arrays is used to acquire impact signal on-line. The continuous complex Shannon wavelet transform is adopted to extract the frequency narrowband signals from the frequency wideband impact response signals of the PZT sensors. A model-independent spatial-wavenumber filter is designed based on the spatial-wavenumber filtering technique. Based on the designed filter, a wavenumber searching and best match mechanism is proposed to implement the spatial-wavenumber filtering of the frequency narrowband signals without modeling, which can be used to obtain a wavenumber-time image of the impact relative to a linear PZT sensor array. By using the two wavenumber-time images of the 2D cross-shaped array, the impact direction can be estimated without blind angle. The impact distance relative to the 2D cross-shaped array can be calculated by using the difference of time-of-flight between the frequency narrowband signals of two different central frequencies and the corresponding group velocities. The validations performed on a carbon fiber composite laminate plate and an aircraft composite oil tank show a good impact localization accuracy of the model-independent spatial-wavenumber filter based impact imaging method. Copyright © 2015 Elsevier B.V. All rights reserved.
MacGregor, J.A.; Winebrenner, D.P.; Conway, H.; Matsuoka, K.; Mayewski, P.A.; Clow, G.D.
2007-01-01
The radar reflectivity of an ice-sheet bed is a primary measurement for discriminating between thawed and frozen beds. Uncertainty in englacial radar attenuation and its spatial variation introduces corresponding uncertainty in estimates of basal reflectivity. Radar attenuation is proportional to ice conductivity, which depends on the concentrations of acid and sea-salt chloride and the temperature of the ice. We synthesize published conductivity measurements to specify an ice-conductivity model and find that some of the dielectric properties of ice at radar frequencies are not yet well constrained. Using depth profiles of ice-core chemistry and borehole temperature and an average of the experimental values for the dielectric properties, we calculate an attenuation rate profile for Siple Dome, West Antarctica. The depth-averaged modeled attenuation rate at Siple Dome (20.0 ?? 5.7 dB km-1) is somewhat lower than the value derived from radar profiles (25.3 ?? 1.1 dB km-1). Pending more experimental data on the dielectric properties of ice, we can match the modeled and radar-derived attenuation rates by an adjustment to the value for the pure ice conductivity that is within the range of reported values. Alternatively, using the pure ice dielectric properties derived from the most extensive single data set, the modeled depth-averaged attenuation rate is 24.0 ?? 2.2 dB km-1. This work shows how to calculate englacial radar attenuation using ice chemistry and temperature data and establishes a basis for mapping spatial variations in radar attenuation across an ice sheet. Copyright 2007 by the American Geophysical Union.
Silverstein, S M; All, S D; Kasi, R; Berten, S; Essex, B; Lathrop, K L; Little, D M
2010-07-01
People with schizophrenia demonstrate perceptual organization impairments, and these are thought to contribute to their face processing difficulties. We examined the neural substrates of emotionally neutral face processing in schizophrenia by investigating neural activity under three stimulus conditions: faces characterized by the full spectrum of spatial frequencies, faces with low spatial frequency information removed [high spatial frequency (HSF) condition], and faces with high spatial frequency information removed [low spatial frequency (LSF) condition]. Face perception in the HSF condition is more reliant on local feature processing whereas perception in the LSF condition requires greater reliance on global form processing. Past studies of perceptual organization in schizophrenia indicate that patients perform relatively more poorly with degraded stimuli but also that, when global information is absent, patients may perform better than controls because of their relatively increased ability to initially process individual features. Therefore, we hypothesized that people with schizophrenia (n=14) would demonstrate greater face processing difficulties than controls (n=13) in the LSF condition, whereas they would demonstrate a smaller difference or superior performance in the HSF condition. In a gender-discrimination task, behavioral data indicated high levels of accuracy for both groups, with a trend toward an interaction involving higher patient performance in the HSF condition and poorer patient performance in the LSF condition. Patients demonstrated greater activity in the fusiform gyrus compared to controls in both degraded conditions. These data suggest that impairments in basic integration abilities may be compensated for by relatively increased activity in this region.
An, Ran; Massa, Katherine
2014-01-01
AC Faradaic reactions have been reported as a mechanism inducing non-ideal phenomena such as flow reversal and cell deformation in electrokinetic microfluidic systems. Prior published work described experiments in parallel electrode arrays below the electrode charging frequency (fc), the frequency for electrical double layer charging at the electrode. However, 2D spatially non-uniform AC electric fields are required for applications such as in plane AC electroosmosis, AC electrothermal pumps, and dielectrophoresis. Many microscale experimental applications utilize AC frequencies around or above fc. In this work, a pH sensitive fluorescein sodium salt dye was used to detect [H+] as an indicator of Faradaic reactions in aqueous solutions within non-uniform AC electric fields. Comparison experiments with (a) parallel (2D uniform fields) electrodes and (b) organic media were employed to deduce the electrode charging mechanism at 5 kHz (1.5fc). Time dependency analysis illustrated that Faradaic reactions exist above the theoretically predicted electrode charging frequency. Spatial analysis showed [H+] varied spatially due to electric field non-uniformities and local pH changed at length scales greater than 50 μm away from the electrode surface. Thus, non-uniform AC fields yielded spatially varied pH gradients as a direct consequence of ion path length differences while uniform fields did not yield pH gradients; the latter is consistent with prior published data. Frequency dependence was examined from 5 kHz to 12 kHz at 5.5 Vpp potential, and voltage dependency was explored from 3.5 to 7.5 Vpp at 5 kHz. Results suggest that Faradaic reactions can still proceed within electrochemical systems in the absence of well-established electrical double layers. This work also illustrates that in microfluidic systems, spatial medium variations must be considered as a function of experiment time, initial medium conditions, electric signal potential, frequency, and spatial position. PMID:25553200
Effects of spatial frequency content on classification of face gender and expression.
Aguado, Luis; Serrano-Pedraza, Ignacio; Rodríguez, Sonia; Román, Francisco J
2010-11-01
The role of different spatial frequency bands on face gender and expression categorization was studied in three experiments. Accuracy and reaction time were measured for unfiltered, low-pass (cut-off frequency of 1 cycle/deg) and high-pass (cutoff frequency of 3 cycles/deg) filtered faces. Filtered and unfiltered faces were equated in root-mean-squared contrast. For low-pass filtered faces reaction times were higher than unfiltered and high-pass filtered faces in both categorization tasks. In the expression task, these results were obtained with expressive faces presented in isolation (Experiment 1) and also with neutral-expressive dynamic sequences where each expressive face was preceded by a briefly presented neutral version of the same face (Experiment 2). For high-pass filtered faces different effects were observed on gender and expression categorization. While both speed and accuracy of gender categorization were reduced comparing to unfiltered faces, the efficiency of expression classification remained similar. Finally, we found no differences between expressive and non expressive faces in the effects of spatial frequency filtering on gender categorization (Experiment 3). These results show a common role of information from the high spatial frequency band in the categorization of face gender and expression.
Laboratory demonstration of a Brillouin lidar to remotely measure temperature profiles of the ocean
NASA Astrophysics Data System (ADS)
Rudolf, Andreas; Walther, Thomas
2014-05-01
We report on the successful laboratory demonstration of a real-time lidar system to remotely measure temperature profiles in water. In the near future, it is intended to be operated from a mobile platform, e.g., a helicopter or vessel, in order to precisely determine the temperature of the surface mixed layer of the ocean with high spatial resolution. The working principle relies on the active generation and detection of spontaneous Brillouin scattering. The light source consists of a frequency-doubled fiber-amplified external cavity diode laser and provides high-energy, Fourier transform-limited laser pulses in the green spectral range. The detector is based on an atomic edge filter and allows the challenging extraction of the temperature information from the Brillouin scattered light. In the lab environment, depending on the amount of averaging, water temperatures were resolved with a mean accuracy of up to 0.07°C and a spatial resolution of 1 m, proving the feasibility and the large potential of the overall system.
Selkowitz, David J.; Forster, Richard; Caldwell, Megan K.
2014-01-01
Remote sensing of snow-covered area (SCA) can be binary (indicating the presence/absence of snow cover at each pixel) or fractional (indicating the fraction of each pixel covered by snow). Fractional SCA mapping provides more information than binary SCA, but is more difficult to implement and may not be feasible with all types of remote sensing data. The utility of fractional SCA mapping relative to binary SCA mapping varies with the intended application as well as by spatial resolution, temporal resolution and period of interest, and climate. We quantified the frequency of occurrence of partially snow-covered (mixed) pixels at spatial resolutions between 1 m and 500 m over five dates at two study areas in the western U.S., using 0.5 m binary SCA maps derived from high spatial resolution imagery aggregated to fractional SCA at coarser spatial resolutions. In addition, we used in situ monitoring to estimate the frequency of partially snow-covered conditions for the period September 2013–August 2014 at 10 60-m grid cell footprints at two study areas with continental snow climates. Results from the image analysis indicate that at 40 m, slightly above the nominal spatial resolution of Landsat, mixed pixels accounted for 25%–93% of total pixels, while at 500 m, the nominal spatial resolution of MODIS bands used for snow cover mapping, mixed pixels accounted for 67%–100% of total pixels. Mixed pixels occurred more commonly at the continental snow climate site than at the maritime snow climate site. The in situ data indicate that some snow cover was present between 186 and 303 days, and partial snow cover conditions occurred on 10%–98% of days with snow cover. Four sites remained partially snow-free throughout most of the winter and spring, while six sites were entirely snow covered throughout most or all of the winter and spring. Within 60 m grid cells, the late spring/summer transition from snow-covered to snow-free conditions lasted 17–56 days and averaged 37 days. Our results suggest that mixed snow-covered snow-free pixels are common at the spatial resolutions imaged by both the Landsat and MODIS sensors. This highlights the additional information available from fractional SCA products and suggests fractional SCA can provide a major advantage for hydrological and climatological monitoring and modeling, particularly when accurate representation of the spatial distribution of snow cover is critical.
Barbot, Antoine; Landy, Michael S.; Carrasco, Marisa
2012-01-01
The visual system can use a rich variety of contours to segment visual scenes into distinct perceptually coherent regions. However, successfully segmenting an image is a computationally expensive process. Previously we have shown that exogenous attention—the more automatic, stimulus-driven component of spatial attention—helps extract contours by enhancing contrast sensitivity for second-order, texture-defined patterns at the attended location, while reducing sensitivity at unattended locations, relative to a neutral condition. Interestingly, the effects of exogenous attention depended on the second-order spatial frequency of the stimulus. At parafoveal locations, attention enhanced second-order contrast sensitivity to relatively high, but not to low second-order spatial frequencies. In the present study we investigated whether endogenous attention—the more voluntary, conceptually-driven component of spatial attention—affects second-order contrast sensitivity, and if so, whether its effects are similar to those of exogenous attention. To that end, we compared the effects of exogenous and endogenous attention on the sensitivity to second-order, orientation-defined, texture patterns of either high or low second-order spatial frequencies. The results show that, like exogenous attention, endogenous attention enhances second-order contrast sensitivity at the attended location and reduces it at unattended locations. However, whereas the effects of exogenous attention are a function of the second-order spatial frequency content, endogenous attention affected second-order contrast sensitivity independent of the second-order spatial frequency content. This finding supports the notion that both exogenous and endogenous attention can affect second-order contrast sensitivity, but that endogenous attention is more flexible, benefitting performance under different conditions. PMID:22895879
Deng, Peng; Kavehrad, Mohsen; Liu, Zhiwen; Zhou, Zhou; Yuan, Xiuhua
2013-07-01
We study the average capacity performance for multiple-input multiple-output (MIMO) free-space optical (FSO) communication systems using multiple partially coherent beams propagating through non-Kolmogorov strong turbulence, assuming equal gain combining diversity configuration and the sum of multiple gamma-gamma random variables for multiple independent partially coherent beams. The closed-form expressions of scintillation and average capacity are derived and then used to analyze the dependence on the number of independent diversity branches, power law α, refractive-index structure parameter, propagation distance and spatial coherence length of source beams. Obtained results show that, the average capacity increases more significantly with the increase in the rank of MIMO channel matrix compared with the diversity order. The effect of the diversity order on the average capacity is independent of the power law, turbulence strength parameter and spatial coherence length, whereas these effects on average capacity are gradually mitigated as the diversity order increases. The average capacity increases and saturates with the decreasing spatial coherence length, at rates depending on the diversity order, power law and turbulence strength. There exist optimal values of the spatial coherence length and diversity configuration for maximizing the average capacity of MIMO FSO links over a variety of atmospheric turbulence conditions.
Ladar imaging detection of salient map based on PWVD and Rényi entropy
NASA Astrophysics Data System (ADS)
Xu, Yuannan; Zhao, Yuan; Deng, Rong; Dong, Yanbing
2013-10-01
Spatial-frequency information of a given image can be extracted by associating the grey-level spatial data with one of the well-known spatial/spatial-frequency distributions. The Wigner-Ville distribution (WVD) has a good characteristic that the images can be represented in spatial/spatial-frequency domains. For intensity and range images of ladar, through the pseudo Wigner-Ville distribution (PWVD) using one or two dimension window, the statistical property of Rényi entropy is studied. We also analyzed the change of Rényi entropy's statistical property in the ladar intensity and range images when the man-made objects appear. From this foundation, a novel method for generating saliency map based on PWVD and Rényi entropy is proposed. After that, target detection is completed when the saliency map is segmented using a simple and convenient threshold method. For the ladar intensity and range images, experimental results show the proposed method can effectively detect the military vehicles from complex earth background with low false alarm.
Temporal and spatial tuning of dorsal lateral geniculate nucleus neurons in unanesthetized rats
Sriram, Balaji; Meier, Philip M.
2016-01-01
Visual response properties of neurons in the dorsolateral geniculate nucleus (dLGN) have been well described in several species, but not in rats. Analysis of responses from the unanesthetized rat dLGN will be needed to develop quantitative models that account for visual behavior of rats. We recorded visual responses from 130 single units in the dLGN of 7 unanesthetized rats. We report the response amplitudes, temporal frequency, and spatial frequency sensitivities in this population of cells. In response to 2-Hz visual stimulation, dLGN cells fired 15.9 ± 11.4 spikes/s (mean ± SD) modulated by 10.7 ± 8.4 spikes/s about the mean. The optimal temporal frequency for full-field stimulation ranged from 5.8 to 19.6 Hz across cells. The temporal high-frequency cutoff ranged from 11.7 to 33.6 Hz. Some cells responded best to low temporal frequency stimulation (low pass), and others were strictly bandpass; most cells fell between these extremes. At 2- to 4-Hz temporal modulation, the spatial frequency of drifting grating that drove cells best ranged from 0.008 to 0.18 cycles per degree (cpd) across cells. The high-frequency cutoff ranged from 0.01 to 1.07 cpd across cells. The majority of cells were driven best by the lowest spatial frequency tested, but many were partially or strictly bandpass. We conclude that single units in the rat dLGN can respond vigorously to temporal modulation up to at least 30 Hz and spatial detail up to 1 cpd. Tuning properties were heterogeneous, but each fell along a continuum; we found no obvious clustering into discrete cell types along these dimensions. PMID:26936980
Differential lexical and semantic spreading activation in Alzheimer's disease.
Foster, Paul S; Drago, Valeria; Yung, Raegan C; Pearson, Jaclyn; Stringer, Kristi; Giovannetti, Tania; Libon, David; Heilman, Kenneth M
2013-08-01
Alzheimer's disease (AD) is known to be associated with disruption in semantic networks. Previous studies examining changes in spreading activation in AD have used a lexical decision task paradigm. We have used a paradigm based on average word frequencies obtained from the words generated on the Controlled Oral Word Association Test (COWAT) and the Animal Naming (AN) test. The COWAT and AN tests were administered to a group of 25 patients with AD and 20 control participants. We predicted that the patients with AD would have higher average word frequencies on the COWAT and AN tests than the control participants. The results indicated that the AD group generated words with a higher average word frequency on the AN test but a lower average word frequency on the COWAT. The reasons for the discrepancy in average word frequencies on the AN test and COWAT are discussed.
The Role of Global and Local Visual Information during Gaze-Cued Orienting of Attention.
Munsters, Nicolette M; van den Boomen, Carlijn; Hooge, Ignace T C; Kemner, Chantal
2016-01-01
Gaze direction is an important social communication tool. Global and local visual information are known to play specific roles in processing socially relevant information from a face. The current study investigated whether global visual information has a primary role during gaze-cued orienting of attention and, as such, may influence quality of interaction. Adults performed a gaze-cueing task in which a centrally presented face cued (valid or invalid) the location of a peripheral target through a gaze shift. We measured brain activity (electroencephalography) towards the cue and target and behavioral responses (manual and saccadic reaction times) towards the target. The faces contained global (i.e. lower spatial frequencies), local (i.e. higher spatial frequencies), or a selection of both global and local (i.e. mid-band spatial frequencies) visual information. We found a gaze cue-validity effect (i.e. valid versus invalid), but no interaction effects with spatial frequency content. Furthermore, behavioral responses towards the target were in all cue conditions slower when lower spatial frequencies were not present in the gaze cue. These results suggest that whereas gaze-cued orienting of attention can be driven by both global and local visual information, global visual information determines the speed of behavioral responses towards other entities appearing in the surrounding of gaze cue stimuli.
Walle, Kjersti Mæhlum; Kyler, Hillary Lynn; Nordvik, Jan Egil; Becker, Frank; Laeng, Bruno
2017-10-01
Binocular rivalry is when perception fluctuates while the stimuli, consisting of different images presented to each eye, remain unchanged. The fluctuation rate and predominance ratio of these images are regarded as information source for understanding properties of consciousness and perception. We administered a binocular rivalry task to 26 right-hemisphere stroke patients and 26 healthy control participants, using stimuli such as simple Gabor anaglyphs. Each single Gabor image was of unequal spatial frequency compared to its counterpart, allowing assessment of the effect of relative spatial frequency on rivalry predominance. Results revealed that patients had significantly decreased alternation rate compared to healthy controls, with severity of patients' attention impairment predicting alternation rates. The patient group had higher predominance ratio for high compared to low relative spatial frequency stimuli consistent with the hypothesis that damage to the right hemisphere may disrupt processing of relatively low spatial frequencies. Degree of attention impairment also predicted the effect of relative spatial frequencies. Lastly, both groups showed increased predominance rates in the right eye compared to the left eye. This right eye dominance was more pronounced in patients than controls, suggesting that right hemisphere stroke may additionally affect eye predominance ratios. Copyright © 2017 Elsevier Inc. All rights reserved.
Human speed perception is contrast dependent
NASA Technical Reports Server (NTRS)
Stone, Leland S.; Thompson, Peter
1992-01-01
When two parallel gratings moving at the same speed are presented simultaneously, the lower-contrast grating appears slower. This misperception is evident across a wide range of contrasts (2.5-50 percent) and does not appear to saturate. On average, a 70 percent contrast grating must be slowed by 35 percent to match a 10 percent contrast grating moving at 2 deg/sec (N = 6). Furthermore, the effect is largely independent of the absolute contrast level and is a quasilinear function of log contrast ratio. A preliminary parametric study shows that, although spatial frequency has little effect, relative orientation is important. Finally, the misperception of relative speed appears lessened when the stimuli to be matched are presented sequentially.
FUN3D Analyses in Support of the Second Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Chwalowski, Pawel; Heeg, Jennifer
2016-01-01
This paper presents the computational aeroelastic results generated in support of the second Aeroelastic Prediction Workshop for the Benchmark Supercritical Wing (BSCW) configurations and compares them to the experimental data. The computational results are obtained using FUN3D, an unstructured grid Reynolds- Averaged Navier-Stokes solver developed at NASA Langley Research Center. The analysis results include aerodynamic coefficients and surface pressures obtained for steady-state, static aeroelastic equilibrium, and unsteady flow due to a pitching wing or flutter prediction. Frequency response functions of the pressure coefficients with respect to the angular displacement are computed and compared with the experimental data. The effects of spatial and temporal convergence on the computational results are examined.
High Speed Computational Ghost Imaging via Spatial Sweeping
NASA Astrophysics Data System (ADS)
Wang, Yuwang; Liu, Yang; Suo, Jinli; Situ, Guohai; Qiao, Chang; Dai, Qionghai
2017-03-01
Computational ghost imaging (CGI) achieves single-pixel imaging by using a Spatial Light Modulator (SLM) to generate structured illuminations for spatially resolved information encoding. The imaging speed of CGI is limited by the modulation frequency of available SLMs, and sets back its practical applications. This paper proposes to bypass this limitation by trading off SLM’s redundant spatial resolution for multiplication of the modulation frequency. Specifically, a pair of galvanic mirrors sweeping across the high resolution SLM multiply the modulation frequency within the spatial resolution gap between SLM and the final reconstruction. A proof-of-principle setup with two middle end galvanic mirrors achieves ghost imaging as fast as 42 Hz at 80 × 80-pixel resolution, 5 times faster than state-of-the-arts, and holds potential for one magnitude further multiplication by hardware upgrading. Our approach brings a significant improvement in the imaging speed of ghost imaging and pushes ghost imaging towards practical applications.
Gigahertz frequency comb from a diode-pumped solid-state laser.
Klenner, Alexander; Schilt, Stéphane; Südmeyer, Thomas; Keller, Ursula
2014-12-15
We present the first stabilization of the frequency comb offset from a diode-pumped gigahertz solid-state laser oscillator. No additional external amplification and/or compression of the output pulses is required. The laser is reliably modelocked using a SESAM and is based on a diode-pumped Yb:CALGO gain crystal. It generates 1.7-W average output power and pulse durations as short as 64 fs at a pulse repetition rate of 1 GHz. We generate an octave-spanning supercontinuum in a highly nonlinear fiber and use the standard f-to-2f carrier-envelope offset (CEO) frequency fCEO detection method. As a pump source, we use a reliable and cost-efficient commercial diode laser. Its multi-spatial-mode beam profile leads to a relatively broad frequency comb offset beat signal, which nevertheless can be phase-locked by feedback to its current. Using improved electronics, we reached a feedback-loop-bandwidth of up to 300 kHz. A combination of digital and analog electronics is used to achieve a tight phase-lock of fCEO to an external microwave reference with a low in-loop residual integrated phase-noise of 744 mrad in an integration bandwidth of [1 Hz, 5 MHz]. An analysis of the laser noise and response functions is presented which gives detailed insights into the CEO stabilization of this frequency comb.
Wave-current generated turbulence over hemisphere bottom roughness
NASA Astrophysics Data System (ADS)
Barman, Krishnendu; Roy, Sayahnya; Debnath, Koustuv
2018-03-01
The present paper explores the effect of wave-current interaction on the turbulence characteristics and the distribution of eddy structure over artificially crammed rough bed prepared with hemispheres. The effect of the surface wave on temporal and spatial-averaged mean velocity, intensity, Reynolds shear stress over, within cavity and above the hemispherical bed are discussed. Detailed three-dimensional time series velocity components were measured in a tilting flume using 3-D Micro-Acoustic Doppler Velocimeter (ADV) at a Reynolds number, 62 × 103. This study reports the fractional contributions of burst-sweep cycles dominating the total shear stress near hemispherical rough surface both for current only flow as well as for wave-induced cases. Wavelet analysis of the fluctuating velocity signal shows that the superimposed wave of frequency 1 Hz is capable of modulating the energy containing a range of velocity fluctuations at the mid-depth of the cavity region (formed due to the crammed arrangement of the hemispheres). As a result, the large-scale eddies (with large values of wavelet coefficients) are concentrated at a pseudo-frequency which is equal to the wave oscillating frequency. On the other hand, it is observed that the higher wave frequency (2 Hz) is incapable of modulating the eddy structures at that particular region.
Wind fence enclosures for infrasonic wind noise reduction.
Abbott, JohnPaul; Raspet, Richard; Webster, Jeremy
2015-03-01
A large porous wind fence enclosure has been built and tested to optimize wind noise reduction at infrasonic frequencies between 0.01 and 10 Hz to develop a technology that is simple and cost effective and improves upon the limitations of spatial filter arrays for detecting nuclear explosions, wind turbine infrasound, and other sources of infrasound. Wind noise is reduced by minimizing the sum of the wind noise generated by the turbulence and velocity gradients inside the fence and by the area-averaging the decorrelated pressure fluctuations generated at the surface of the fence. The effects of varying the enclosure porosity, top condition, bottom gap, height, and diameter and adding a secondary windscreen were investigated. The wind fence enclosure achieved best reductions when the surface porosity was between 40% and 55% and was supplemented by a secondary windscreen. The most effective wind fence enclosure tested in this study achieved wind noise reductions of 20-27 dB over the 2-4 Hz frequency band, a minimum of 5 dB noise reduction for frequencies from 0.1 to 20 Hz, constant 3-6 dB noise reduction for frequencies with turbulence wavelengths larger than the fence, and sufficient wind noise reduction at high wind speeds (3-6 m/s) to detect microbaroms.
A nonlinear propagation model-based phase calibration technique for membrane hydrophones.
Cooling, Martin P; Humphrey, Victor F
2008-01-01
A technique for the phase calibration of membrane hydrophones in the frequency range up to 80 MHz is described. This is achieved by comparing measurements and numerical simulation of a nonlinearly distorted test field. The field prediction is obtained using a finite-difference model that solves the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation in the frequency domain. The measurements are made in the far field of a 3.5 MHz focusing circular transducer in which it is demonstrated that, for the high drive level used, spatial averaging effects due to the hydrophone's finite-receive area are negligible. The method provides a phase calibration of the hydrophone under test without the need for a device serving as a phase response reference, but it requires prior knowledge of the amplitude sensitivity at the fundamental frequency. The technique is demonstrated using a 50-microm thick bilaminar membrane hydrophone, for which the results obtained show functional agreement with predictions of a hydrophone response model. Further validation of the results is obtained by application of the response to the measurement of the high amplitude waveforms generated by a modern biomedical ultrasonic imaging system. It is demonstrated that full deconvolution of the calculated complex frequency response of a nonideal hydrophone results in physically realistic measurements of the transmitted waveforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gongzhang, R.; Xiao, B.; Lardner, T.
2014-02-18
This paper presents a robust frequency diversity based algorithm for clutter reduction in ultrasonic A-scan waveforms. The performance of conventional spectral-temporal techniques like Split Spectrum Processing (SSP) is highly dependent on the parameter selection, especially when the signal to noise ratio (SNR) is low. Although spatial beamforming offers noise reduction with less sensitivity to parameter variation, phased array techniques are not always available. The proposed algorithm first selects an ascending series of frequency bands. A signal is reconstructed for each selected band in which a defect is present when all frequency components are in uniform sign. Combining all reconstructed signalsmore » through averaging gives a probability profile of potential defect position. To facilitate data collection and validate the proposed algorithm, Full Matrix Capture is applied on the austenitic steel and high nickel alloy (HNA) samples with 5MHz transducer arrays. When processing A-scan signals with unrefined parameters, the proposed algorithm enhances SNR by 20dB for both samples and consequently, defects are more visible in B-scan images created from the large amount of A-scan traces. Importantly, the proposed algorithm is considered robust, while SSP is shown to fail on the austenitic steel data and achieves less SNR enhancement on the HNA data.« less
Gabrielson, Thomas B
2011-09-01
A worldwide network of more than 40 infrasound monitoring stations has been established as part of the effort to ensure compliance with the Comprehensive Nuclear Test Ban Treaty. Each station has four to eight individual infrasound elements in a kilometer-scale array for detection and bearing determination of acoustic events. The frequency range of interest covers a three-decade range-roughly from 0.01 to 10 Hz. A typical infrasound array element consists of a receiving transducer connected to a multiple-inlet pipe network to average spatially over the short-wavelength turbulence-associated "wind noise." Although the frequency response of the transducer itself may be known, the wind-noise reduction system modifies that response. In order to understand the system's impact on detection and identification of acoustical events, the overall frequency response must be determined. This paper describes a technique for measuring the absolute magnitude and phase of the frequency response of an infrasound element including the wind-noise-reduction piping by comparison calibration using ambient noise and a reference-microphone system. Measured coherence between the reference and the infrasound element and the consistency between the magnitude and the phase provide quality checks on the process. © 2011 Acoustical Society of America
NASA Astrophysics Data System (ADS)
Kandratavicius, N.; Muniz, P.; Venturini, N.; Giménez, L.
2015-09-01
This study aimed to determine if estuarine meiofaunal communities of Uruguay (South America) vary between permanently open estuaries and open/closed coastal lagoons, or if they respond to the sediment composition. In Uruguay, estuaries and coastal lagoons vary in the degree of connectivity to the sea and in the sediment composition; sediments in estuaries are characterized by fine-medium sands but sediments vary from lagoon to lagoon (either fine-medium or coarse sand). Taxa richness (total = 16) showed less temporal variability in lagoons than in estuaries, due to patterns of presence/absence of the less abundant taxa. However, no major response to habitat was found in the most abundant groups: polychaetes (6% of total fauna) were on average 5% more abundant in lagoons than in estuaries. Some level of zonation, within estuaries and lagoons, was found in the most abundant groups, nematodes (63% of total fauna) and copepods (15%) in response to medium and fine sands. In addition, sediment type modulated seasonal patterns in the frequency of presence/absence in ostracods, polychaetes and oligochaetes. For instance, in polychaetes and ostracods the increase in the frequency of absences, occurring from summer to winter, was stronger in lagoons and estuaries dominated by fine sands. The lagoon habitat appears to ameliorate the effects of unfavourable (winter) conditions in less abundant meiofaunal taxa. In summary, sediment fractions explain spatial patterns in the average abundance of organisms (e.g. nematodes) as well as the seasonal changes in frequency of presence/absence (e.g. polychaetes).
Frequency conversion of structured light.
Steinlechner, Fabian; Hermosa, Nathaniel; Pruneri, Valerio; Torres, Juan P
2016-02-15
Coherent frequency conversion of structured light, i.e. the ability to manipulate the carrier frequency of a wave front without distorting its spatial phase and intensity profile, provides the opportunity for numerous novel applications in photonic technology and fundamental science. In particular, frequency conversion of spatial modes carrying orbital angular momentum can be exploited in sub-wavelength resolution nano-optics and coherent imaging at a wavelength different from that used to illuminate an object. Moreover, coherent frequency conversion will be crucial for interfacing information stored in the high-dimensional spatial structure of single and entangled photons with various constituents of quantum networks. In this work, we demonstrate frequency conversion of structured light from the near infrared (803 nm) to the visible (527 nm). The conversion scheme is based on sum-frequency generation in a periodically poled lithium niobate crystal pumped with a 1540-nm Gaussian beam. We observe frequency-converted fields that exhibit a high degree of similarity with the input field and verify the coherence of the frequency-conversion process via mode projection measurements with a phase mask and a single-mode fiber. Our results demonstrate the suitability of exploiting the technique for applications in quantum information processing and coherent imaging.
Ahmad, Junaid; Jayet, Baptiste; Hill, Philip J.; Mather, Melissa L.; Dehghani, Hamid; Morgan, Stephen P.
2018-01-01
In vivo imaging of self-illuminating bio-and chemiluminescent reporters is used to observe the physiology of small animals. However, strong light scattering by biological tissues results in poor spatial resolution of the optical imaging, which also degrades the quantitative accuracy. To overcome this challenging problem, focused ultrasound is used to modulate the light from the reporter at the ultrasound frequency. This produces an ultrasound switchable light ‘beacon’ that reduces the influence of light scattering in order to improve spatial resolution. The experimental results demonstrate that apart from light modulation at the ultrasound frequency (AC signal at 3.5 MHz), ultrasound also increases the DC intensity of the reporters. This is shown to be due to a temperature rise caused by insonification that was minimized to be within acceptable mammalian tissue safety thresholds by adjusting the duty cycle of the ultrasound. Line scans of bio-and chemiluminescent objects embedded within a scattering medium were obtained using ultrasound modulated (AC) and ultrasound enhanced (DC) signals. Lateral resolution is improved by a factor of 12 and 7 respectively, as compared to conventional CCD imaging. Two chemiluminescent sources separated by ~10 mm at ~20 mm deep inside a 50 mm thick chicken breast have been successfully resolved with an average signal-to-noise ratio of approximately 8-10 dB. PMID:29675309
Spatial-temporal variation of low-frequency earthquake bursts near Parkfield, California
Wu, Chunquan; Guyer, Robert; Shelly, David R.; Trugman, D.; Frank, William; Gomberg, Joan S.; Johnson, P.
2015-01-01
Tectonic tremor (TT) and low-frequency earthquakes (LFEs) have been found in the deeper crust of various tectonic environments globally in the last decade. The spatial-temporal behaviour of LFEs provides insight into deep fault zone processes. In this study, we examine recurrence times from a 12-yr catalogue of 88 LFE families with ∼730 000 LFEs in the vicinity of the Parkfield section of the San Andreas Fault (SAF) in central California. We apply an automatic burst detection algorithm to the LFE recurrence times to identify the clustering behaviour of LFEs (LFE bursts) in each family. We find that the burst behaviours in the northern and southern LFE groups differ. Generally, the northern group has longer burst duration but fewer LFEs per burst, while the southern group has shorter burst duration but more LFEs per burst. The southern group LFE bursts are generally more correlated than the northern group, suggesting more coherent deep fault slip and relatively simpler deep fault structure beneath the locked section of SAF. We also found that the 2004 Parkfield earthquake clearly increased the number of LFEs per burst and average burst duration for both the northern and the southern groups, with a relatively larger effect on the northern group. This could be due to the weakness of northern part of the fault, or the northwesterly rupture direction of the Parkfield earthquake.
Prospects for in vivo blood velocimetry using acoustic resolution photoacoustic Doppler
NASA Astrophysics Data System (ADS)
Brunker, J.; Beard, P.
2016-03-01
Acoustic resolution photoacoustic Doppler flowmetry (AR-PAF) is a technique that has the potential to overcome the spatial resolution and depth penetration limitations of current blood flow measuring methods. Previous work has shown the potential of the technique using blood-mimicking phantoms, but it has proved difficult to make accurate measurements in blood, and thus in vivo application has not yet been possible. One explanation for this difficulty is that whole blood is insufficiently heterogeneous. Through experimental measurements in red blood cell suspensions of different concentrations, as well as in whole blood, we provide new insight and evidence that refutes this assertion. We show that the velocity measurement accuracy is influenced by bandlimiting not only due to the detector frequency response, but also due to spatial averaging of absorbers within the detector field-of-view. In addition, there is a detrimental effect of limited light penetration, but this can be mitigated by selecting less attenuated wavelengths of light, and also by employing range-gating signal processing. By careful choice of these parameters as well as the detector centre frequency, bandwidth and field-of-view, it is possible to make AR-PAF measurements in whole blood using transducers with bandwidths in the tens of MHz range. These findings have profound implications for the prospects of making deep tissue measurements of blood flow relevant to the study of microcirculatory abnormalities associated with cancer, diabetes, atherosclerosis and other conditions.
Temporal resolution of orientation-defined texture segregation: a VEP study.
Lachapelle, Julie; McKerral, Michelle; Jauffret, Colin; Bach, Michael
2008-09-01
Orientation is one of the visual dimensions that subserve figure-ground discrimination. A spatial gradient in orientation leads to "texture segregation", which is thought to be concurrent parallel processing across the visual field, without scanning. In the visual-evoked potential (VEP) a component can be isolated which is related to texture segregation ("tsVEP"). Our objective was to evaluate the temporal frequency dependence of the tsVEP to compare processing speed of low-level features (e.g., orientation, using the VEP, here denoted llVEP) with texture segregation because of a recent literature controversy in that regard. Visual-evoked potentials (VEPs) were recorded in seven normal adults. Oriented line segments of 0.1 degrees x 0.8 degrees at 100% contrast were presented in four different arrangements: either oriented in parallel for two homogeneous stimuli (from which were obtained the low-level VEP (llVEP)) or with a 90 degrees orientation gradient for two textured ones (from which were obtained the texture VEP). The orientation texture condition was presented at eight different temporal frequencies ranging from 7.5 to 45 Hz. Fourier analysis was used to isolate low-level components at the pattern-change frequency and texture-segregation components at half that frequency. For all subjects, there was lower high-cutoff frequency for tsVEP than for llVEPs, on average 12 Hz vs. 17 Hz (P = 0.017). The results suggest that the processing of feature gradients to extract texture segregation requires additional processing time, resulting in a lower fusion frequency.
RF Safety Analysis of a Novel Ultra-wideband Fetal Monitoring System.
Bushberg, Jerrold T; Tupin, J Paul
2017-05-01
The LifeWave Ultra-Wideband RF sensor (LWUWBS) is a monitoring solution for a variety of physiologic assessment applications, including maternal fetal monitoring in both the antepartum and intrapartum periods. The system uses extremely low power radio frequency (RF) ultra-wide band (UWB) signals to provide continuous fetal heart rate and contractions monitoring during labor and delivery. Even with the incorporation of three very conservative assumptions, (1) concentration of the RF energy in 1 cm, (2) minimal (2.5 cm) maternal tissue attenuation of fetal exposure, and (3) absence of normal thermoregulatory compensation, the maternal whole body spatial-averaged specific absorption rate (WBSAR) would be 34,000 times below the FCC public exposure limit of 0.08 W kg and, at 8 wk or more gestation, the peak spatial-averaged specific absorption rate (PSSAR) in the fetus would be more than 160 times below the localized exposure limit of 1.6 mW g. Even when using very conservative assumptions, an analysis of the LWUWBS's impact on tissue heating is a factor of 7 lower than what is allowed for fetal ultrasound and at least a factor of 650 compared to fetal MRI. The actual transmitted power levels of the LWUWBS are well below all Federal safety standards, and the potential for tissue heating is substantially lower than associated with current ultrasonic fetal monitors and MRI.
NASA Astrophysics Data System (ADS)
Ambekar Ramachandra Rao, Raghu; Mehta, Monal R.; Toussaint, Kimani C., Jr.
2010-02-01
We demonstrate the use of Fourier transform-second-harmonic generation (FT-SHG) imaging of collagen fibers as a means of performing quantitative analysis of obtained images of selected spatial regions in porcine trachea, ear, and cornea. Two quantitative markers, preferred orientation and maximum spatial frequency are proposed for differentiating structural information between various spatial regions of interest in the specimens. The ear shows consistent maximum spatial frequency and orientation as also observed in its real-space image. However, there are observable changes in the orientation and minimum feature size of fibers in the trachea indicating a more random organization. Finally, the analysis is applied to a 3D image stack of the cornea. It is shown that the standard deviation of the orientation is sensitive to the randomness in fiber orientation. Regions with variations in the maximum spatial frequency, but with relatively constant orientation, suggest that maximum spatial frequency is useful as an independent quantitative marker. We emphasize that FT-SHG is a simple, yet powerful, tool for extracting information from images that is not obvious in real space. This technique can be used as a quantitative biomarker to assess the structure of collagen fibers that may change due to damage from disease or physical injury.
Task and spatial frequency modulations of object processing: an EEG study.
Craddock, Matt; Martinovic, Jasna; Müller, Matthias M
2013-01-01
Visual object processing may follow a coarse-to-fine sequence imposed by fast processing of low spatial frequencies (LSF) and slow processing of high spatial frequencies (HSF). Objects can be categorized at varying levels of specificity: the superordinate (e.g. animal), the basic (e.g. dog), or the subordinate (e.g. Border Collie). We tested whether superordinate and more specific categorization depend on different spatial frequency ranges, and whether any such dependencies might be revealed by or influence signals recorded using EEG. We used event-related potentials (ERPs) and time-frequency (TF) analysis to examine the time course of object processing while participants performed either a grammatical gender-classification task (which generally forces basic-level categorization) or a living/non-living judgement (superordinate categorization) on everyday, real-life objects. Objects were filtered to contain only HSF or LSF. We found a greater positivity and greater negativity for HSF than for LSF pictures in the P1 and N1 respectively, but no effects of task on either component. A later, fronto-central negativity (N350) was more negative in the gender-classification task than the superordinate categorization task, which may indicate that this component relates to semantic or syntactic processing. We found no significant effects of task or spatial frequency on evoked or total gamma band responses. Our results demonstrate early differences in processing of HSF and LSF content that were not modulated by categorization task, with later responses reflecting such higher-level cognitive factors.
Chen, Xin; Sun, Chao; Huang, Luoxiu; Shou, Tiande
2003-01-01
To compare the orientation column maps elicited by different spatial frequency gratings in cortical area 17 of cats before and during brief elevation of intraocular pressure (IOP). IOP was elevated by injecting saline into the anterior chamber of a cat's eye through a syringe needle. The IOP was elevated enough to cause a retinal perfusion pressure (arterial pressure minus IOP) of approximately 30 mm Hg during a brief elevation of IOP. The visual stimulus gratings were varied in spatial frequency, whereas other parameters were kept constant. The orientation column maps of the cortical area 17 were monocularly elicited by drifting gratings of different spatial frequencies and revealed by a brain intrinsic signal optical imaging system. These maps were compared before and during short-term elevation of IOP. The response amplitude of the orientation maps in area 17 decreased during a brief elevation of IOP. This decrease was dependent on the retinal perfusion pressure but not on the absolute IOP. The location of the most visible maps was spatial-frequency dependent. The blurring or loss of the pattern of the orientation maps was most severe when high-spatial-frequency gratings were used and appeared most significantly on the posterior part of the exposed cortex while IOP was elevated. However, the basic patterns of the maps remained unchanged. Changes in cortical signal were not due to changes in the optics of the eye with elevation of IOP. A stable normal IOP is essential for maintaining normal visual cortical functions. During a brief and high elevation of IOP, the cortical processing of high-spatial-frequency visual information was diminished because of a selectively functional decline of the retinogeniculocortical X pathway by a mechanism of retinal circulation origin.
Spatiotemporal patterns of drought at various time scales in Shandong Province of Eastern China
NASA Astrophysics Data System (ADS)
Zuo, Depeng; Cai, Siyang; Xu, Zongxue; Li, Fulin; Sun, Wenchao; Yang, Xiaojing; Kan, Guangyuan; Liu, Pin
2018-01-01
The temporal variations and spatial patterns of drought in Shandong Province of Eastern China were investigated by calculating the standardized precipitation evapotranspiration index (SPEI) at 1-, 3-, 6-, 12-, and 24-month time scales. Monthly precipitation and air temperature time series during the period 1960-2012 were collected at 23 meteorological stations uniformly distributed over the region. The non-parametric Mann-Kendall test was used to explore the temporal trends of precipitation, air temperature, and the SPEI drought index. S-mode principal component analysis (PCA) was applied to identify the spatial patterns of drought. The results showed that an insignificant decreasing trend in annual total precipitation was detected at most stations, a significant increase of annual average air temperature occurred at all the 23 stations, and a significant decreasing trend in the SPEI was mainly detected at the coastal stations for all the time scales. The frequency of occurrence of extreme and severe drought at different time scales generally increased with decades; higher frequency and larger affected area of extreme and severe droughts occurred as the time scale increased, especially for the northwest of Shandong Province and Jiaodong peninsular. The spatial pattern of drought for SPEI-1 contains three regions: eastern Jiaodong Peninsular and northwestern and southern Shandong. As the time scale increased to 3, 6, and 12 months, the order of the three regions was transformed into another as northwestern Shandong, eastern Jiaodong Peninsular, and southern Shandong. For SPEI-24, the location identified by REOF1 was slightly shifted from northwestern Shandong to western Shandong, and REOF2 and REOF3 identified another two weak patterns in the south edge and north edge of Jiaodong Peninsular, respectively. The potential causes of drought and the impact of drought on agriculture in the study area have also been discussed. The temporal variations and spatial patterns of drought obtained in this study provide valuable information for water resources planning and drought disaster prevention and mitigation in Eastern China.
Methods for magnetic resonance analysis using magic angle technique
Hu, Jian Zhi [Richland, WA; Wind, Robert A [Kennewick, WA; Minard, Kevin R [Kennewick, WA; Majors, Paul D [Kennewick, WA
2011-11-22
Methods of performing a magnetic resonance analysis of a biological object are disclosed that include placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. In particular embodiments the method includes pulsing the radio frequency to provide at least two of a spatially selective read pulse, a spatially selective phase pulse, and a spatially selective storage pulse. Further disclosed methods provide pulse sequences that provide extended imaging capabilities, such as chemical shift imaging or multiple-voxel data acquisition.
Liu, Ying; Tan, Xin; Liu, Zhengkun; Xu, Xiangdong; Hong, Yilin; Fu, Shaojun
2008-09-15
Grating beam splitters have been fabricated for soft X-ray Mach- Zehnder interferometer using holographic interference lithography. The grating beam splitter consists of two gratings, one works at X-ray laser wavelength of 13.9 nm with the spatial frequency of 1000 lines/mm as the operation grating, the other works at visible wavelength of 632.8 nm for pre-aligning the X-ray interferometer with the spatial frequency of 22 lines/mm as the pre-alignment grating. The two gratings lie vertically on the same substrate. The main feature of the beam splitter is the use of low-spatial- frequency beat grating of a holographic double frequency grating as the pre-alignment grating of the X-ray interferometer. The grating line parallelism between the two gratings can be judged by observing the diffraction patterns of the pre-alignment grating directly.
Rohr, Michaela; Wentura, Dirk
2014-10-01
High and low spatial frequency information has been shown to contribute differently to the processing of emotional information. In three priming studies using spatial frequency filtered emotional face primes, emotional face targets, and an emotion categorization task, we investigated this issue further. Differences in the pattern of results between short and masked, and short and long unmasked presentation conditions emerged. Given long and unmasked prime presentation, high and low frequency primes triggered emotion-specific priming effects. Given brief and masked prime presentation in Experiment 2, we found a dissociation: High frequency primes caused a valence priming effect, whereas low frequency primes yielded a differentiation between low and high arousing information within the negative domain. Brief and unmasked prime presentation in Experiment 3 revealed that subliminal processing of primes was responsible for the pattern observed in Experiment 2. The implications of these findings for theories of early emotional information processing are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.
Similarity-based distortion of visual short-term memory is due to perceptual averaging.
Dubé, Chad; Zhou, Feng; Kahana, Michael J; Sekuler, Robert
2014-03-01
A task-irrelevant stimulus can distort recall from visual short-term memory (VSTM). Specifically, reproduction of a task-relevant memory item is biased in the direction of the irrelevant memory item (Huang & Sekuler, 2010a). The present study addresses the hypothesis that such effects reflect the influence of neural averaging under conditions of uncertainty about the contents of VSTM (Alvarez, 2011; Ball & Sekuler, 1980). We manipulated subjects' attention to relevant and irrelevant study items whose similarity relationships were held constant, while varying how similar the study items were to a subsequent recognition probe. On each trial, subjects were shown one or two Gabor patches, followed by the probe; their task was to indicate whether the probe matched one of the study items. A brief cue told subjects which Gabor, first or second, would serve as that trial's target item. Critically, this cue appeared either before, between, or after the study items. A distributional analysis of the resulting mnemometric functions showed an inflation in probability density in the region spanning the spatial frequency of the average of the two memory items. This effect, due to an elevation in false alarms to probes matching the perceptual average, was diminished when cues were presented before both study items. These results suggest that (a) perceptual averages are computed obligatorily and (b) perceptual averages are relied upon to a greater extent when item representations are weakened. Implications of these results for theories of VSTM are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Imaging of turbulent structures and tomographic reconstruction of TORPEX plasma emissivity
NASA Astrophysics Data System (ADS)
Iraji, D.; Furno, I.; Fasoli, A.; Theiler, C.
2010-12-01
In the TORPEX [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)], a simple magnetized plasma device, low frequency electrostatic fluctuations associated with interchange waves, are routinely measured by means of extensive sets of Langmuir probes. To complement the electrostatic probe measurements of plasma turbulence and study of plasma structures smaller than the spatial resolution of probes array, a nonperturbative direct imaging system has been developed on TORPEX, including a fast framing Photron-APX-RS camera and an image intensifier unit. From the line-integrated camera images, we compute the poloidal emissivity profile of the plasma by applying a tomographic reconstruction technique using a pixel method and solving an overdetermined set of equations by singular value decomposition. This allows comparing statistical, spectral, and spatial properties of visible light radiation with electrostatic fluctuations. The shape and position of the time-averaged reconstructed plasma emissivity are observed to be similar to those of the ion saturation current profile. In the core plasma, excluding the electron cyclotron and upper hybrid resonant layers, the mean value of the plasma emissivity is observed to vary with (Te)α(ne)β, in which α =0.25-0.7 and β =0.8-1.4, in agreement with collisional radiative model. The tomographic reconstruction is applied to the fast camera movie acquired with 50 kframes/s rate and 2 μs of exposure time to obtain the temporal evolutions of the emissivity fluctuations. Conditional average sampling is also applied to visualize and measure sizes of structures associated with the interchange mode. The ω-time and the two-dimensional k-space Fourier analysis of the reconstructed emissivity fluctuations show the same interchange mode that is detected in the ω and k spectra of the ion saturation current fluctuations measured by probes. Small scale turbulent plasma structures can be detected and tracked in the reconstructed emissivity movies with the spatial resolution down to 2 cm, well beyond the spatial resolution of the probe array.
2009-02-01
range of modal analysis and the high frequency region of statistical energy analysis , is referred to as the mid-frequency range. The corresponding...frequency range of modal analysis and the high frequency region of statistical energy analysis , is referred to as the mid-frequency range. The...predictions. The averaging process is consistent with the averaging done in statistical energy analysis for stochastic systems. The FEM will always
NASA Technical Reports Server (NTRS)
Parrott, T. L.; Schein, D. B.; Gridley, D.
1985-01-01
The acoustic response of a semireverberant enclosure with two interacting, velocity-prescribed source distributions was analyzed using standard modal analysis techniques with a view toward a better understanding of active noise control. Different source and enclosure dimensions, source separations, and single-wall admittances were studied over representative frequency bandwidths of 10 Hz with source relative phase as a parameter. Results indicate that power radiated into the enclosure agree qualitatively with the spatial average of the mean square pressure, even though the reverberant field is nondiffuse. Decreases in acoustic power can therefore be used to estimate global noise reduction in a nondiffuse semireverberant environment. As might be expected, parametric studies indicate that maximum power reductions of up to 25 dB can be achieved when secondary and primary sources are compact and closely spaced. Although less success is achieved with increasing frequency and source separation or size, significant suppression of up to 8 dB still occurs over the 1 to 2 Hz bandwidth.
Slant path L- and S-Band tree shadowing measurements
NASA Technical Reports Server (NTRS)
Vogel, Wolfhard J.; Torrence, Geoffrey W.
1994-01-01
This contribution presents selected results from simultaneous L- and S-Band slant-path fade measurements through a pecan, a cottonwood, and a pine tree employing a tower-mounted transmitter and dual-frequency receiver. A single, circularly-polarized antenna was used at each end of the link. The objective was to provide information for personal communications satellite design on the correlation of tree shadowing between frequencies near 1620 and 2500 MHz. Fades were measured along 10 m lateral distance with 5 cm spacing. Instantaneous fade differences between L- and S-Band exhibited normal distribution with means usually near 0 dB and standard deviations from 5.2 to 7.5 dB. The cottonwood tree was an exception, with 5.4 dB higher average fading at S- than at L-Band. The spatial autocorrelation reduced to near zero with lags of about 10 lambda. The fade slope in dB/MHz is normally distributed with zero mean and standard deviation increasing with fade level.
Slant path L- and S-Band tree shadowing measurements
NASA Astrophysics Data System (ADS)
Vogel, Wolfhard J.; Torrence, Geoffrey W.
1994-08-01
This contribution presents selected results from simultaneous L- and S-Band slant-path fade measurements through a pecan, a cottonwood, and a pine tree employing a tower-mounted transmitter and dual-frequency receiver. A single, circularly-polarized antenna was used at each end of the link. The objective was to provide information for personal communications satellite design on the correlation of tree shadowing between frequencies near 1620 and 2500 MHz. Fades were measured along 10 m lateral distance with 5 cm spacing. Instantaneous fade differences between L- and S-Band exhibited normal distribution with means usually near 0 dB and standard deviations from 5.2 to 7.5 dB. The cottonwood tree was an exception, with 5.4 dB higher average fading at S- than at L-Band. The spatial autocorrelation reduced to near zero with lags of about 10 lambda. The fade slope in dB/MHz is normally distributed with zero mean and standard deviation increasing with fade level.
NASA Technical Reports Server (NTRS)
Smith, Wayne Farrior
1973-01-01
The effect of finite source size on the power statistics in a reverberant room for pure tone excitation was investigated. Theoretical results indicate that the standard deviation of low frequency, pure tone finite sources is always less than that predicted by point source theory and considerably less when the source dimension approaches one-half an acoustic wavelength or greater. A supporting experimental study was conducted utilizing an eight inch loudspeaker and a 30 inch loudspeaker at eleven source positions. The resulting standard deviation of sound power output of the smaller speaker is in excellent agreement with both the derived finite source theory and existing point source theory, if the theoretical data is adjusted to account for experimental incomplete spatial averaging. However, the standard deviation of sound power output of the larger speaker is measurably lower than point source theory indicates, but is in good agreement with the finite source theory.
A study of acoustic halos in active region NOAA 11330 using multi-height SDO observations
NASA Astrophysics Data System (ADS)
Tripathy, S. C.; Jain, K.; Kholikov, S.; Hill, F.; Rajaguru, S. P.; Cally, P. S.
2018-01-01
We analyze data from the Helioseismic Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA) instruments on board the Solar Dynamics Observatory (SDO) to characterize the spatio-temporal acoustic power distribution in active regions as a function of the height in the solar atmosphere. For this, we use Doppler velocity and continuum intensity observed using the magnetically sensitive line at 6173 Å as well as intensity at 1600 Å and 1700 Å. We focus on the power enhancements seen around AR 11330 as a function of wave frequency, magnetic field strength, field inclination and observation height. We find that acoustic halos occur above the acoustic cutoff frequency and extends up to 10 mHz in HMI Doppler and AIA 1700 Å observations. Halos are also found to be strong functions of magnetic field and their inclination angle. We further calculate and examine the spatially averaged relative phases and cross-coherence spectra and find different wave characteristics at different heights.
Wave energy transfer in elastic half-spaces with soft interlayers.
Glushkov, Evgeny; Glushkova, Natalia; Fomenko, Sergey
2015-04-01
The paper deals with guided waves generated by a surface load in a coated elastic half-space. The analysis is based on the explicit integral and asymptotic expressions derived in terms of Green's matrix and given loads for both laminate and functionally graded substrates. To perform the energy analysis, explicit expressions for the time-averaged amount of energy transferred in the time-harmonic wave field by every excited guided or body wave through horizontal planes and lateral cylindrical surfaces have been also derived. The study is focused on the peculiarities of wave energy transmission in substrates with soft interlayers that serve as internal channels for the excited guided waves. The notable features of the source energy partitioning in such media are the domination of a single emerging mode in each consecutive frequency subrange and the appearance of reverse energy fluxes at certain frequencies. These effects as well as modal and spatial distribution of the wave energy coming from the source into the substructure are numerically analyzed and discussed.
Impact craters and Venus resurfacing history
NASA Technical Reports Server (NTRS)
Phillips, Roger J.; Raubertas, Richard F.; Arvidson, Raymond E.; Sarkar, Ila C.; Herrick, Robert R.; Izenberg, Noam; Grimm, Robert E.
1992-01-01
The history of resurfacing by tectonism and volcanism on Venus is reconstructed by means of an analysis of Venusian impact crater size-frequency distributions, locations, and preservation states. An atmospheric transit model for meteoroids demonstrates that for craters larger than about 30 km, the size-frequency distribution is close to the atmosphere-free case. An age of cessation of rapid resurfacing of about 500 Ma is obtained. It is inferred that a range of surface ages are recorded by the impact crater population; e.g., the Aphrodite zone is relatively young. An end-member model is developed to quantify resurfacing scenarios. It is argued that Venus has been resurfacing at an average rate of about 1 sq km/yr. Numerical simulations of resurfacing showed that there are two solution branches that satisfy the completely spatially random location restraint for Venusian craters: a is less than 0.0003 (4 deg diameter circle) and a is greater than 0.1 (74 deg diameter circle).
Promoter classifier: software package for promoter database analysis.
Gershenzon, Naum I; Ioshikhes, Ilya P
2005-01-01
Promoter Classifier is a package of seven stand-alone Windows-based C++ programs allowing the following basic manipulations with a set of promoter sequences: (i) calculation of positional distributions of nucleotides averaged over all promoters of the dataset; (ii) calculation of the averaged occurrence frequencies of the transcription factor binding sites and their combinations; (iii) division of the dataset into subsets of sequences containing or lacking certain promoter elements or combinations; (iv) extraction of the promoter subsets containing or lacking CpG islands around the transcription start site; and (v) calculation of spatial distributions of the promoter DNA stacking energy and bending stiffness. All programs have a user-friendly interface and provide the results in a convenient graphical form. The Promoter Classifier package is an effective tool for various basic manipulations with eukaryotic promoter sequences that usually are necessary for analysis of large promoter datasets. The program Promoter Divider is described in more detail as a representative component of the package.
Spatial filtering velocimeter for vehicle navigation with extended measurement range
NASA Astrophysics Data System (ADS)
He, Xin; Zhou, Jian; Nie, Xiaoming; Long, Xingwu
2015-05-01
The idea of using spatial filtering velocimeter is proposed to provide accurate velocity information for vehicle autonomous navigation system. The presented spatial filtering velocimeter is based on a CMOS linear image sensor. The limited frame rate restricts high speed measurement of the vehicle. To extend measurement range of the velocimeter, a method of frequency shifting is put forward. Theoretical analysis shows that the frequency of output signal can be reduced and the measurement range can be doubled by this method when the shifting direction is set the same with that of image velocity. The approach of fast Fourier transform (FFT) is employed to obtain the power spectra of the spatially filtered signals. Because of limited frequency resolution of FFT, a frequency spectrum correction algorithm, called energy centrobaric correction, is used to improve the frequency resolution. The correction accuracy energy centrobaric correction is analyzed. Experiments are carried out to measure the moving surface of a conveyor belt. The experimental results show that the maximum measurable velocity is about 800deg/s without frequency shifting, 1600deg/s with frequency shifting, when the frame rate of the image is about 8117 Hz. Therefore, the measurement range is doubled by the method of frequency shifting. Furthermore, experiments were carried out to measure the vehicle velocity simultaneously using both the designed SFV and a laser Doppler velocimeter (LDV). The measurement results of the presented SFV are coincident with that of the LDV, but with bigger fluctuation. Therefore, it has the potential of application to vehicular autonomous navigation.
Cooper, Bonnie; Sun, Hao; Lee, Barry B
2012-02-01
Gratings that contain luminance and chromatic components of different spatial frequencies were used to study the segregation of signals in luminance and chromatic pathways. Psychophysical detection and discrimination thresholds to these compound gratings, with luminance and chromatic components of the one either half or double the spatial frequency of the other, were measured in human observers. Spatial frequency tuning curves for detection of compound gratings followed the envelope of those for luminance and chromatic gratings. Different grating types were discriminable at detection threshold. Fourier analysis of physiological responses of macaque retinal ganglion cells to compound waveforms showed chromatic information to be restricted to the parvocellular pathway and luminance information to the magnocellular pathway. Taken together, the human psychophysical and macaque physiological data support the strict segregation of luminance and chromatic information in independent channels, with the magnocellular and parvocellular pathways, respectively, serving as likely the physiological substrates. © 2012 Optical Society of America
Achieving pattern uniformity in plasmonic lithography by spatial frequency selection
NASA Astrophysics Data System (ADS)
Liang, Gaofeng; Chen, Xi; Zhao, Qing; Guo, L. Jay
2018-01-01
The effects of the surface roughness of thin films and defects on photomasks are investigated in two representative plasmonic lithography systems: thin silver film-based superlens and multilayer-based hyperbolic metamaterial (HMM). Superlens can replicate arbitrary patterns because of its broad evanescent wave passband, which also makes it inherently vulnerable to the roughness of the thin film and imperfections of the mask. On the other hand, the HMM system has spatial frequency filtering characteristics and its pattern formation is based on interference, producing uniform and stable periodic patterns. In this work, we show that the HMM system is more immune to such imperfections due to its function of spatial frequency selection. The analyses are further verified by an interference lithography system incorporating the photoresist layer as an optical waveguide to improve the aspect ratio of the pattern. It is concluded that a system capable of spatial frequency selection is a powerful method to produce deep-subwavelength periodic patterns with high degree of uniformity and fidelity.
A new polishing process for large-aperture and high-precision aspheric surface
NASA Astrophysics Data System (ADS)
Nie, Xuqing; Li, Shengyi; Dai, Yifan; Song, Ci
2013-07-01
The high-precision aspheric surface is hard to be achieved due to the mid-spatial frequency error in the finishing step. The influence of mid-spatial frequency error is studied through the simulations and experiments. In this paper, a new polishing process based on magnetorheological finishing (MRF), smooth polishing (SP) and ion beam figuring (IBF) is proposed. A 400mm aperture parabolic surface is polished with this new process. The smooth polishing (SP) is applied after rough machining to control the MSF error. In the middle finishing step, most of low-spatial frequency error is removed by MRF rapidly, then the mid-spatial frequency error is restricted by SP, finally ion beam figuring is used to finish the surface. The surface accuracy is improved from the initial 37.691nm (rms, 95% aperture) to the final 4.195nm. The results show that the new polishing process is effective to manufacture large-aperture and high-precision aspheric surface.
Detection of radial motion depends on spatial displacement.
de la Malla, Cristina; López-Moliner, Joan
2010-06-01
Nakayama and Tyler (1981) disentangled the use of pure motion (speed) information from spatial displacement information for the detection of lateral motion. They showed that when positional cues were removed the contribution of motion or spatial information was dependent on the temporal frequency: for temporal frequencies lower than 1Hz the mechanism used to detect motion relied on speed information while for higher temporal frequencies a mechanism based on displacement information was used. Here we test whether the same dependency is also revealed in radial motion. In order to do so, we adapted the paradigm previously used by Nakayama and Tyler to obtain detection thresholds for lateral and radial motion by using a 2-IFC procedure. Subjects had to report which of the intervals contained the signal stimulus (33% coherent motion). We replicated the temporal frequency dependency for lateral motion but results indicate, however, that the detection of radial is always consistent with detecting a spatial displacement amplitude. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
The role of low-spatial frequencies in lexical decision and masked priming.
Boden, C; Giaschi, D
2009-04-01
Spatial frequency filtering was used to test the hypotheses that low-spatial frequency information in printed text can: (1) lead to a rapid lexical decision or (2) facilitate word recognition. Adult proficient readers made lexical decisions in unprimed and masked repetition priming experiments with unfiltered, low-pass, high-pass and notch filtered letter strings. In the unprimed experiments, a filtered target was presented for 105 or 400 ms followed by a pattern mask. Sensitivity (d') was lowest for the low-pass filtered targets at both durations with a bias towards a 'non-word' response. Sensitivity was higher in the high-pass and notch filter conditions. In the priming experiments, a forward mask was followed by a filtered prime then an unfiltered target. Primed words, but not non-words, were identified faster than unprimed words in both the low-pass and high-pass filtered conditions. These results do not support a unique role for low-spatial frequency information in either facilitating or making rapid lexical decisions.
Flicker sensitivity as a function of target area with and without temporal noise.
Rovamo, J; Donner, K; Näsänen, R; Raninen, A
2000-01-01
Flicker sensitivities (1-30 Hz) in foveal, photopic vision were measured as functions of stimulus area with and without strong external white temporal noise. Stimuli were circular, sinusoidally flickering sharp-edged spots of variable diameters (0.25-4 degrees ) but constant duration (2 s), surrounded by a uniform equiluminant field. The data was described with a model comprising (i) low-pass filtering in the retina (R), with a modulation transfer function (MTF) of a form derived from responses of cones; (ii) normalisation of the temporal luminance distribution by the average luminance; (iii) high-pass filtering by postreceptoral neural pathways (P), with an MTF proportional to temporal frequency; (iv) addition of internal white neural noise (N(i)); (v) integration over a spatial window; and (vi) detection by a suboptimal temporal matched filter of efficiency eta. In strong external noise, flicker sensitivity was independent of spot area. Without external noise, sensitivity increased with the square root of stimulus area (Piper's law) up to a critical area (A(c)), where it reaches a maximum level (S(max)). Both A(c) and eta were monotonic functions of temporal frequency (f), such that log A(c) increased and log eta decreased linearly with log f. Remarkably, the increase in spatial integration area and the decrease in efficiency were just balanced, so A(c)(f)eta(f) was invariant against f. Thus the bandpass characteristics of S(max)(f) directly reflected the composite effect of the distal filters R(f) and P(f). The temporal equivalent (N(it)) of internal neural noise (N(i)) decreased in inverse proportion to spot area up to A(c) and then stayed constant indicating that spatially homogeneous signals and noise are integrated over the same area.
Spatial-frequency requirements for reading revisited
Kwon, MiYoung; Legge, Gordon E.
2012-01-01
Blur is one of many visual factors that can limit reading in both normal and low vision. Legge et al. [Legge, G. E., Pelli, D. G., Rubin, G. S., & Schleske, M. M. (1985). Psychophysics of reading. I. Normal vision. Vision Research, 25, 239–252.] measured reading speed for text that was low-pass filtered with a range of cutoff spatial frequencies. Above 2 cycles per letter (CPL) reading speed was constant at its maximum level, but decreased rapidly for lower cutoff frequencies. It remains unknown why the critical cutoff for reading speed is near 2 CPL. The goal of the current study was to ask whether the spatial-frequency requirement for rapid reading is related to the effects of cutoff frequency on letter recognition and the size of the visual span. Visual span profiles were measured by asking subjects to recognize letters in trigrams (random strings of three letters) flashed for 150 ms at varying letter positions left and right of the fixation point. Reading speed was measured with Rapid Serial Visual Presentation (RSVP). The size of the visual span and reading speed were measured for low-pass filtered stimuli with cutoff frequencies from 0.8 to 8 CPL. Low-pass letter recognition data, obtained under similar testing conditions, were available from our previous study (Kwon & Legge, 2011). We found that the spatial-frequency requirement for reading is very similar to the spatial-frequency requirements for the size of the visual span and single letter recognition. The critical cutoff frequencies for reading speed, the size of the visual span and a contrast-invariant measure of letter recognition were all near 1.4 CPL, which is lower than the previous estimate of 2 CPL for reading speed. Although correlational in nature, these results are consistent with the hypothesis that the size of the visual span is closely linked to reading speed. PMID:22521659
Campagne, Aurélie; Fradcourt, Benoit; Pichat, Cédric; Baciu, Monica; Kauffmann, Louise; Peyrin, Carole
2016-01-01
Visual processing of emotional stimuli critically depends on the type of cognitive appraisal involved. The present fMRI pilot study aimed to investigate the cerebral correlates involved in the visual processing of emotional scenes in two tasks, one emotional, based on the appraisal of personal emotional experience, and the other motivational, based on the appraisal of the tendency to action. Given that the use of spatial frequency information is relatively flexible during the visual processing of emotional stimuli depending on the task’s demands, we also explored the effect of the type of spatial frequency in visual stimuli in each task by using emotional scenes filtered in low spatial frequency (LSF) and high spatial frequencies (HSF). Activation was observed in the visual areas of the fusiform gyrus for all emotional scenes in both tasks, and in the amygdala for unpleasant scenes only. The motivational task induced additional activation in frontal motor-related areas (e.g. premotor cortex, SMA) and parietal regions (e.g. superior and inferior parietal lobules). Parietal regions were recruited particularly during the motivational appraisal of approach in response to pleasant scenes. These frontal and parietal activations, respectively, suggest that motor and navigation processes play a specific role in the identification of the tendency to action in the motivational task. Furthermore, activity observed in the motivational task, in response to both pleasant and unpleasant scenes, was significantly greater for HSF than for LSF scenes, suggesting that the tendency to action is driven mainly by the detailed information contained in scenes. Results for the emotional task suggest that spatial frequencies play only a small role in the evaluation of unpleasant and pleasant emotions. Our preliminary study revealed a partial distinction between visual processing of emotional scenes during identification of the tendency to action, and during identification of personal emotional experiences. It also illustrates flexible use of the spatial frequencies contained in scenes depending on their emotional valence and on task demands. PMID:26757433
Magnetic Resonance Characterization of Axonal Response to Spinal Cord Injury
2012-10-01
frequency direction, phase FOV = 0.5, slice thickness = 10 mm. Spatial saturation bands were placed anterior and posterior to the slice of interest to...thickness = 10 mm, with spatial saturation bands placed anterior and posterior to the slice and diffusion sensitization in the right-to-left...the center frequency, and can be extracted by applying MT saturation pulses with alternating (positive/negative) off-resonance frequencies. The goal
Favazza, Christopher P.; Duan, Xinhui; Zhang, Yi; Yu, Lifeng; Leng, Shuai; Kofler, James M.; Bruesewitz, Michael R.; McCollough, Cynthia H.
2015-01-01
Through this investigation we developed a methodology to evaluate and standardize CT image quality from routine abdomen protocols across different manufacturers and models. The influence of manufacturer-specific automated exposure control systems on image quality was directly assessed to standardize performance across a range of patient sizes. We evaluated 16 CT scanners across our health system, including Siemens, GE, and Toshiba models. Using each practice’s routine abdomen protocol, we measured spatial resolution, image noise, and scanner radiation output (CTDIvol). Axial and in-plane spatial resolutions were assessed through slice sensitivity profile (SSP) and modulation transfer function (MTF) measurements, respectively. Image noise and CTDIvol values were obtained for three different phantom sizes. SSP measurements demonstrated a bimodal distribution in slice widths: an average of 6.2 ± 0.2 mm using GE’s “Plus” mode reconstruction setting and 5.0 ± 0.1 mm for all other scanners. MTF curves were similar for all scanners. Average spatial frequencies at 50%, 10%, and 2% MTF values were 3.24 ± 0.37, 6.20 ± 0.34, and 7.84 ± 0.70 lp/cm, respectively. For all phantom sizes, image noise and CTDIvol varied considerably: 6.5–13.3 HU (noise) and 4.8–13.3 mGy (CTDIvol) for the smallest phantom; 9.1–18.4 HU and 9.3–28.8 mGy for the medium phantom; and 7.8–23.4 HU and 16.0–48.1 mGy for the largest phantom. Using these measurements and benchmark SSP, MTF, and image noise targets, CT image quality can be standardized across a range of patient sizes. PMID:26459751
21 CFR 801.420 - Hearing aid devices; professional and patient labeling.
Code of Federal Regulations, 2012 CFR
2012-04-01
.... (ii) History of active drainage from the ear within the previous 90 days. (iii) History of sudden or...). (ii) Frequency response curve. (iii) Average saturation output (HF-Average SSPL 90). (iv) Average full-on gain (HF-Average full-on gain). (v) Reference test gain. (vi) Frequency range. (vii) Total...
21 CFR 801.420 - Hearing aid devices; professional and patient labeling.
Code of Federal Regulations, 2013 CFR
2013-04-01
.... (ii) History of active drainage from the ear within the previous 90 days. (iii) History of sudden or...). (ii) Frequency response curve. (iii) Average saturation output (HF-Average SSPL 90). (iv) Average full-on gain (HF-Average full-on gain). (v) Reference test gain. (vi) Frequency range. (vii) Total...
Spatial variability of turbulent fluxes in the roughness sublayer of an even-aged pine forest
Katul, G.; Hsieh, C.-I.; Bowling, D.; Clark, K.; Shurpali, N.; Turnipseed, A.; Albertson, J.; Tu, K.; Hollinger, D.; Evans, B. M.; Offerle, B.; Anderson, D.; Ellsworth, D.; Vogel, C.; Oren, R.
1999-01-01
The spatial variability of turbulent flow statistics in the roughness sublayer (RSL) of a uniform even-aged 14 m (= h) tall loblolly pine forest was investigated experimentally. Using seven existing walkup towers at this stand, high frequency velocity, temperature, water vapour and carbon dioxide concentrations were measured at 15.5 m above the ground surface from October 6 to 10 in 1997. These seven towers were separated by at least 100 m from each other. The objective of this study was to examine whether single tower turbulence statistics measurements represent the flow properties of RSL turbulence above a uniform even-aged managed loblolly pine forest as a best-case scenario for natural forested ecosystems. From the intensive space-time series measurements, it was demonstrated that standard deviations of longitudinal and vertical velocities (??(u), ??(w)) and temperature (??(T)) are more planar homogeneous than their vertical flux of momentum (u(*)2) and sensible heat (H) counterparts. Also, the measured H is more horizontally homogeneous when compared to fluxes of other scalar entities such as CO2 and water vapour. While the spatial variability in fluxes was significant (> 15%), this unique data set confirmed that single tower measurements represent the 'canonical' structure of single-point RSL turbulence statistics, especially flux-variance relationships. Implications to extending the 'moving-equilibrium' hypothesis for RSL flows are discussed. The spatial variability in all RSL flow variables was not constant in time and varied strongly with spatially averaged friction velocity u(*), especially when u(*) was small. It is shown that flow properties derived from two-point temporal statistics such as correlation functions are more sensitive to local variability in leaf area density when compared to single point flow statistics. Specifically, that the local relationship between the reciprocal of the vertical velocity integral time scale (I(w)) and the arrival frequency of organized structures (u??/h) predicted from a mixing-layer theory exhibited dependence on the local leaf area index. The broader implications of these findings to the measurement and modelling of RSL flows are also discussed.
Petošić, Antonio; Horvat, Marko; Režek Jambrak, Anet
2017-11-01
The paper reports and compares the results of the electromechanical, acoustical and thermodynamical characterization of a low-frequency sonotrode-type ultrasonic device inside a small sonoreactor, immersed in three different loading media, namely, water, juice and milk, excited at different excitation levels, both below and above the cavitation threshold. The electroacoustic efficiency factor determined at system resonance through electromechanical characterization in degassed water as the reference medium is 88.7% for the device in question. This efficiency can be reduced up to three times due to the existence of a complex sound field in the reactor in linear driving conditions below the cavitation threshold. The behaviour of the system is more stable at higher excitation levels than in linear operating conditions. During acoustical characterization, acoustic pressure is spatially averaged, both below and above the cavitation threshold. The standing wave patterns inside the sonoreactor have a stronger influence on the variation of the spatially distributed RMS pressure in linear operating conditions. For these conditions, the variation of ±1.7dB was obtained, compared to ±1.4dB obtained in highly nonlinear regime. The acoustic power in the sonoreactor was estimated from the magnitude of the averaged RMS pressure, and from the reverberation time of the sonoreactor as the representation of the losses. The electroacoustic efficiency factors obtained through acoustical and electromechanical characterization are in a very good agreement at low excitation levels. The irradiated acoustic power estimated in nonlinear conditions differs from the dissipated acoustic power determined with the calorimetric method by several orders of magnitude. The number of negative pressure peaks that represent transient cavitation decreases over time during longer treatments of a medium with high-power ultrasound. The number of negative peaks decreases faster when the medium and the vessel are allowed to heat up. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Lim, Young-Kwon; Stefanova, Lydia B.; Chan, Steven C.; Schubert, Siegfried D.; OBrien, James J.
2010-01-01
This study assesses the regional-scale summer precipitation produced by the dynamical downscaling of analyzed large-scale fields. The main goal of this study is to investigate how much the regional model adds smaller scale precipitation information that the large-scale fields do not resolve. The modeling region for this study covers the southeastern United States (Florida, Georgia, Alabama, South Carolina, and North Carolina) where the summer climate is subtropical in nature, with a heavy influence of regional-scale convection. The coarse resolution (2.5deg latitude/longitude) large-scale atmospheric variables from the National Center for Environmental Prediction (NCEP)/DOE reanalysis (R2) are downscaled using the NCEP Environmental Climate Prediction Center regional spectral model (RSM) to produce precipitation at 20 km resolution for 16 summer seasons (19902005). The RSM produces realistic details in the regional summer precipitation at 20 km resolution. Compared to R2, the RSM-produced monthly precipitation shows better agreement with observations. There is a reduced wet bias and a more realistic spatial pattern of the precipitation climatology compared with the interpolated R2 values. The root mean square errors of the monthly R2 precipitation are reduced over 93 (1,697) of all the grid points in the five states (1,821). The temporal correlation also improves over 92 (1,675) of all grid points such that the domain-averaged correlation increases from 0.38 (R2) to 0.55 (RSM). The RSM accurately reproduces the first two observed eigenmodes, compared with the R2 product for which the second mode is not properly reproduced. The spatial patterns for wet versus dry summer years are also successfully simulated in RSM. For shorter time scales, the RSM resolves heavy rainfall events and their frequency better than R2. Correlation and categorical classification (above/near/below average) for the monthly frequency of heavy precipitation days is also significantly improved by the RSM.
Compressional Alfvén eigenmodes in rotating spherical tokamak plasmas
Smith, H. M.; Fredrickson, E. D.
2017-02-07
Spherical tokamaks often have a considerable toroidal plasma rotation of several tens of kHz. Compressional Alfvén eigenmodes in such devices therefore experience a frequency shift, which if the plasma were rotating as a rigid body, would be a simple Doppler shift. However, since the rotation frequency depends on minor radius, the eigenmodes are affected in a more complicated way. The eigenmode solver CAE3B (Smith et al 2009 Plasma Phys. Control. Fusion 51 075001) has been extended to account for toroidal plasma rotation. The results show that the eigenfrequency shift due to rotation can be approximated by a rigid body rotationmore » with a frequency computed from a spatial average of the real rotation profile weighted with the eigenmode amplitude. To investigate the effect of extending the computational domain to the vessel wall, a simplified eigenmode equation, yet retaining plasma rotation, is solved by a modified version of the CAE code used in Fredrickson et al (2013 Phys. Plasmas 20 042112). Lastly, both solving the full eigenmode equation, as in the CAE3B code, and placing the boundary at the vessel wall, as in the CAE code, significantly influences the calculated eigenfrequencies.« less
Inference of turbulence parameters from a ROMS simulation using the k-ε closure scheme
NASA Astrophysics Data System (ADS)
Thyng, Kristen M.; Riley, James J.; Thomson, Jim
2013-12-01
Comparisons between high resolution turbulence data from Admiralty Inlet, WA (USA), and a 65-meter horizontal grid resolution simulation using the hydrostatic ocean modelling code, Regional Ocean Modeling System (ROMS), show that the model's k-ε turbulence closure scheme performs reasonably well. Turbulent dissipation rates and Reynolds stresses agree within a factor of two, on average. Turbulent kinetic energy (TKE) also agrees within a factor of two, but only for motions within the observed inertial sub-range of frequencies (i.e., classic approximately isotropic turbulence). TKE spectra from the observations indicate that there is significant energy at lower frequencies than the inertial sub-range; these scales are not captured by the model closure scheme nor the model grid resolution. To account for scales not present in the model, the inertial sub-range is extrapolated to lower frequencies and then integrated to obtain an inferred, diagnostic total TKE, with improved agreement with the observed total TKE. The realistic behavior of the dissipation rate and Reynolds stress, combined with the adjusted total TKE, imply that ROMS simulations can be used to understand and predict spatial and temporal variations in turbulence. The results are suggested for application to siting tidal current turbines.
The effects of blood vessels on electrocorticography
NASA Astrophysics Data System (ADS)
Bleichner, M. G.; Vansteensel, M. J.; Huiskamp, G. M.; Hermes, D.; Aarnoutse, E. J.; Ferrier, C. H.; Ramsey, N. F.
2011-08-01
Electrocorticography, primarily used in a clinical context, is becoming increasingly important for fundamental neuroscientific research, as well as for brain-computer interfaces. Recordings from these implanted electrodes have a number of advantages over non-invasive recordings in terms of band width, spatial resolution, smaller vulnerability to artifacts and overall signal quality. However, an unresolved issue is that signals vary greatly across electrodes. Here, we examine the effect of blood vessels lying between an electrode and the cortex on signals recorded from subdural grid electrodes. Blood vessels of different sizes cover extensive parts of the cortex causing variations in the electrode-cortex connection across grids. The power spectral density of electrodes located on the cortex and electrodes located on blood vessels obtained from eight epilepsy patients is compared. We find that blood vessels affect the power spectral density of the recorded signal in a frequency-band-specific way, in that frequencies between 30 and 70 Hz are attenuated the most. Here, the signal is attenuated on average by 30-40% compared to electrodes directly on the cortex. For lower frequencies this attenuation effect is less pronounced. We conclude that blood vessels influence the signal properties in a non-uniform manner.
The spatial unmasking of speech: evidence for within-channel processing of interaural time delay.
Edmonds, Barrie A; Culling, John F
2005-05-01
Across-frequency processing by common interaural time delay (ITD) in spatial unmasking was investigated by measuring speech reception thresholds (SRTs) for high- and low-frequency bands of target speech presented against concurrent speech or a noise masker. Experiment 1 indicated that presenting one of these target bands with an ITD of +500 micros and the other with zero ITD (like the masker) provided some release from masking, but full binaural advantage was only measured when both target bands were given an ITD of + 500 micros. Experiment 2 showed that full binaural advantage could also be achieved when the high- and low-frequency bands were presented with ITDs of equal but opposite magnitude (+/- 500 micros). In experiment 3, the masker was also split into high- and low-frequency bands with ITDs of equal but opposite magnitude (+/-500 micros). The ITD of the low-frequency target band matched that of the high-frequency masking band and vice versa. SRTs indicated that, as long as the target and masker differed in ITD within each frequency band, full binaural advantage could be achieved. These results suggest that the mechanism underlying spatial unmasking exploits differences in ITD independently within each frequency channel.
Exogenous attention enhances 2nd-order contrast sensitivity
Barbot, Antoine; Landy, Michael S.; Carrasco, Marisa
2011-01-01
Natural scenes contain a rich variety of contours that the visual system extracts to segregrate the retinal image into perceptually coherent regions. Covert spatial attention helps extract contours by enhancing contrast sensitivity for 1st-order, luminance-defined patterns at attended locations, while reducing sensitivity at unattended locations, relative to neutral attention allocation. However, humans are also sensitive to 2nd-order patterns such as spatial variations of texture, which are predominant in natural scenes and cannot be detected by linear mechanisms. We assess whether and how exogenous attention—the involuntary and transient capture of spatial attention—affects the contrast sensitivity of channels sensitive to 2nd-order, texture-defined patterns. Using 2nd-order, texture-defined stimuli, we demonstrate that exogenous attention increases 2nd-order contrast sensitivity at the attended location, while decreasing it at unattended locations, relative to a neutral condition. By manipulating both 1st- and 2nd-order spatial frequency, we find that the effects of attention depend both on 2nd-order spatial frequency of the stimulus and the observer’s 2nd-order spatial resolution at the target location. At parafoveal locations, attention enhances 2nd-order contrast sensitivity to high, but not to low 2nd-order spatial frequencies; at peripheral locations attention also enhances sensitivity to low 2nd-order spatial frequencies. Control experiments rule out the possibility that these effects might be due to an increase in contrast sensitivity at the 1st-order stage of visual processing. Thus, exogenous attention affects 2nd-order contrast sensitivity at both attended and unattended locations. PMID:21356228
Waltemeyer, Scott D.
2006-01-01
Estimates of the magnitude and frequency of peak discharges are necessary for the reliable flood-hazard mapping in the Navajo Nation in Arizona, Utah, Colorado, and New Mexico. The Bureau of Indian Affairs, U.S. Army Corps of Engineers, and Navajo Nation requested that the U.S. Geological Survey update estimates of peak discharge magnitude for gaging stations in the region and update regional equations for estimation of peak discharge and frequency at ungaged sites. Equations were developed for estimating the magnitude of peak discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years at ungaged sites using data collected through 1999 at 146 gaging stations, an additional 13 years of peak-discharge data since a 1997 investigation, which used gaging-station data through 1986. The equations for estimation of peak discharges at ungaged sites were developed for flood regions 8, 11, high elevation, and 6 and are delineated on the basis of the hydrologic codes from the 1997 investigation. Peak discharges for selected recurrence intervals were determined at gaging stations by fitting observed data to a log-Pearson Type III distribution with adjustments for a low-discharge threshold and a zero skew coefficient. A low-discharge threshold was applied to frequency analysis of 82 of the 146 gaging stations. This application provides an improved fit of the log-Pearson Type III frequency distribution. Use of the low-discharge threshold generally eliminated the peak discharge having a recurrence interval of less than 1.4 years in the probability-density function. Within each region, logarithms of the peak discharges for selected recurrence intervals were related to logarithms of basin and climatic characteristics using stepwise ordinary least-squares regression techniques for exploratory data analysis. Generalized least-squares regression techniques, an improved regression procedure that accounts for time and spatial sampling errors, then was applied to the same data used in the ordinary least-squares regression analyses. The average standard error of prediction for a peak discharge have a recurrence interval of 100-years for region 8 was 53 percent (average) for the 100-year flood. The average standard of prediction, which includes average sampling error and average standard error of regression, ranged from 45 to 83 percent for the 100-year flood. Estimated standard error of prediction for a hybrid method for region 11 was large in the 1997 investigation. No distinction of floods produced from a high-elevation region was presented in the 1997 investigation. Overall, the equations based on generalized least-squares regression techniques are considered to be more reliable than those in the 1997 report because of the increased length of record and improved GIS method. Techniques for transferring flood-frequency relations to ungaged sites on the same stream can be estimated at an ungaged site by a direct application of the regional regression equation or at an ungaged site on a stream that has a gaging station upstream or downstream by using the drainage-area ratio and the drainage-area exponent from the regional regression equation of the respective region.
Park, Gewnhi; Moon, Eunok; Kim, Do-Won; Lee, Seung-Hwan
2012-12-01
A previous study has shown that greater cardiac vagal tone, reflecting effective self-regulatory capacity, was correlated with superior visual discrimination of fearful faces at high spatial frequency Park et al. (Biological Psychology 90:171-178, 2012b). The present study investigated whether individual differences in cardiac vagal tone (indexed by heart rate variability) were associated with different event-related brain potentials (ERPs) in response to fearful and neutral faces. Thirty-six healthy participants discriminated the emotion of fearful and neutral faces at broad, high, and low spatial frequencies, while ERPs were recorded. Participants with low resting heart rate variability-characterized by poor functioning of regulatory systems-exhibited significantly greater N200 activity in response to fearful faces at low spatial frequency and greater LPP responses to neutral faces at high spatial frequency. Source analyses-estimated by standardized low-resolution brain electromagnetic tomography (sLORETA)-tended to show that participants with low resting heart rate variability exhibited increased source activity in visual areas, such as the cuneus and the middle occipital gyrus, as compared with participants with high resting heart rate variability. The hyperactive neural activity associated with low cardiac vagal tone may account for hypervigilant response patterns and emotional dysregulation, which heightens the risk of developing physical and emotional problems.
NASA Astrophysics Data System (ADS)
Pietrzyk, Mariusz W.; Manning, David J.; Dix, Alan; Donovan, Tim
2009-02-01
Aim: The goal of the study is to determine the spatial frequency characteristics at locations in the image of overt and covert observers' decisions and find out if there are any similarities in different observers' groups: the same radiological experience group or the same accuracy scored level. Background: The radiological task is described as a visual searching decision making procedure involving visual perception and cognitive processing. Humans perceive the world through a number of spatial frequency channels, each sensitive to visual information carried by different spatial frequency ranges and orientations. Recent studies have shown that particular physical properties of local and global image-based elements are correlated with the performance and the level of experience of human observers in breast cancer and lung nodule detections. Neurological findings in visual perception were an inspiration for wavelet applications in vision research because the methodology tries to mimic the brain processing algorithms. Methods: The wavelet approach to the set of postero-anterior chest radiographs analysis has been used to characterize perceptual preferences observers with different levels of experience in the radiological task. Psychophysical methodology has been applied to track eye movements over the image, where particular ROIs related to the observers' fixation clusters has been analysed in the spaces frame by Daubechies functions. Results: Significance differences have been found between the spatial frequency characteristics at the location of different decisions.
NASA Astrophysics Data System (ADS)
Zhou, Yan; Liu, Cheng-hui; Pu, Yang; Cheng, Gangge; Zhou, Lixin; Chen, Jun; Zhu, Ke; Alfano, Robert R.
2016-03-01
Raman spectroscopy has become widely used for diagnostic purpose of breast, lung and brain cancers. This report introduced a new approach based on spatial frequency spectra analysis of the underlying tissue structure at different stages of brain tumor. Combined spatial frequency spectroscopy (SFS), Resonance Raman (RR) spectroscopic method is used to discriminate human brain metastasis of lung cancer from normal tissues for the first time. A total number of thirty-one label-free micrographic images of normal and metastatic brain cancer tissues obtained from a confocal micro- Raman spectroscopic system synchronously with examined RR spectra of the corresponding samples were collected from the identical site of tissue. The difference of the randomness of tissue structures between the micrograph images of metastatic brain tumor tissues and normal tissues can be recognized by analyzing spatial frequency. By fitting the distribution of the spatial frequency spectra of human brain tissues as a Gaussian function, the standard deviation, σ, can be obtained, which was used to generate a criterion to differentiate human brain cancerous tissues from the normal ones using Support Vector Machine (SVM) classifier. This SFS-SVM analysis on micrograph images presents good results with sensitivity (85%), specificity (75%) in comparison with gold standard reports of pathology and immunology. The dual-modal advantages of SFS combined with RR spectroscopy method may open a new way in the neuropathology applications.
Complex mode indication function and its applications to spatial domain parameter estimation
NASA Astrophysics Data System (ADS)
Shih, C. Y.; Tsuei, Y. G.; Allemang, R. J.; Brown, D. L.
1988-10-01
This paper introduces the concept of the Complex Mode Indication Function (CMIF) and its application in spatial domain parameter estimation. The concept of CMIF is developed by performing singular value decomposition (SVD) of the Frequency Response Function (FRF) matrix at each spectral line. The CMIF is defined as the eigenvalues, which are the square of the singular values, solved from the normal matrix formed from the FRF matrix, [ H( jω)] H[ H( jω)], at each spectral line. The CMIF appears to be a simple and efficient method for identifying the modes of the complex system. The CMIF identifies modes by showing the physical magnitude of each mode and the damped natural frequency for each root. Since multiple reference data is applied in CMIF, repeated roots can be detected. The CMIF also gives global modal parameters, such as damped natural frequencies, mode shapes and modal participation vectors. Since CMIF works in the spatial domain, uneven frequency spacing data such as data from spatial sine testing can be used. A second-stage procedure for accurate damped natural frequency and damping estimation as well as mode shape scaling is also discussed in this paper.
NASA Astrophysics Data System (ADS)
Wang, Y. L.; Yeh, T. C. J.; Wen, J. C.
2017-12-01
This study is to investigate the ability of river stage tomography to estimate the spatial distribution of hydraulic transmissivity (T), storage coefficient (S), and diffusivity (D) in groundwater basins using information of groundwater level variations induced by periodic variations of stream stage, and infiltrated flux from the stream boundary. In order to accomplish this objective, the sensitivity and correlation of groundwater heads with respect to the hydraulic properties is first conducted to investigate the spatial characteristics of groundwater level in response to the stream variations at different frequencies. Results of the analysis show that the spatial distributions of the sensitivity of heads at an observation well in response to periodic river stage variations are highly correlated despite different frequencies. On the other hand, the spatial patterns of the sensitivity of the observed head to river flux boundaries at different frequencies are different. Specifically, the observed head is highly correlated with T at the region between the stream and observation well when the high-frequency periodic flux is considered. On the other hand, it is highly correlated with T at the region between monitoring well and the boundary opposite to the stream when the low-frequency periodic flux is prescribed to the stream. We also find that the spatial distributions of the sensitivity of observed head to S variation are highly correlated with all frequencies in spite of heads or fluxes stream boundary. Subsequently, the differences of the spatial correlations of the observed heads to the hydraulic properties under the head and flux boundary conditions are further investigated by an inverse model (i.e., successive stochastic linear estimator). This investigation uses noise-free groundwater and stream data of a synthetic aquifer, where aquifer heterogeneity is known exactly. The ability of river stage tomography is then tested with these synthetic data sets to estimate T, S, and D distribution. The results reveal that boundary flux variations with different frequencies contain different information about the aquifer characteristics while the head boundary does not.
NASA Astrophysics Data System (ADS)
Bindhu, V. M.; Narasimhan, B.
2015-03-01
Normalized Difference Vegetation Index (NDVI), a key parameter in understanding the vegetation dynamics, has high spatial and temporal variability. However, continuous monitoring of NDVI is not feasible at fine spatial resolution (<60 m) owing to the long revisit time needed by the satellites to acquire the fine spatial resolution data. Further, the study attains significance in the case of humid tropical regions of the earth, where the prevailing atmospheric conditions restrict availability of fine resolution cloud free images at a high temporal frequency. As an alternative to the lack of high resolution images, the current study demonstrates a novel disaggregation method (DisNDVI) which integrates the spatial information from a single fine resolution image and temporal information in terms of crop phenology from time series of coarse resolution images to generate estimates of NDVI at fine spatial and temporal resolution. The phenological variation of the pixels captured at the coarser scale provides the basis for relating the temporal variability of the pixel with the NDVI available at fine resolution. The proposed methodology was tested over a 30 km × 25 km spatially heterogeneous study area located in the south of Tamil Nadu, India. The robustness of the algorithm was assessed by an independent comparison of the disaggregated NDVI and observed NDVI obtained from concurrent Landsat ETM+ imagery. The results showed good spatial agreement across the study area dominated with agriculture and forest pixels, with a root mean square error of 0.05. The validation done at the coarser scale showed that disaggregated NDVI spatially averaged to 240 m compared well with concurrent MODIS NDVI at 240 m (R2 > 0.8). The validation results demonstrate the effectiveness of DisNDVI in improving the spatial and temporal resolution of NDVI images for utility in fine scale hydrological applications such as crop growth monitoring and estimation of evapotranspiration.
Downscaling Solar Power Output to 4-Seconds for Use in Integration Studies (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hummon, M.; Weekley, A.; Searight, K.
2013-10-01
High penetration renewable integration studies require solar power data with high spatial and temporal accuracy to quantify the impact of high frequency solar power ramps on the operation of the system. Our previous work concentrated on downscaling solar power from one hour to one minute by simulation. This method used clearness classifications to categorize temporal and spatial variability, and iterative methods to simulate intra-hour clearness variability. We determined that solar power ramp correlations between sites decrease with distance and the duration of the ramp, starting at around 0.6 for 30-minute ramps between sites that are less than 20 km apart.more » The sub-hour irradiance algorithm we developed has a noise floor that causes the correlations to approach ~0.005. Below one minute, the majority of the correlations of solar power ramps between sites less than 20 km apart are zero, and thus a new method to simulate intra-minute variability is needed. These intra-minute solar power ramps can be simulated using several methods, three of which we evaluate: a cubic spline fit to the one-minute solar power data; projection of the power spectral density toward the higher frequency domain; and average high frequency power spectral density from measured data. Each of these methods either under- or over-estimates the variability of intra-minute solar power ramps. We show that an optimized weighted linear sum of methods, dependent on the classification of temporal variability of the segment of one-minute solar power data, yields time series and ramp distributions similar to measured high-resolution solar irradiance data.« less
Downscaling Solar Power Output to 4-Seconds for Use in Integration Studies: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hummon, M.; Weekley, A.; Searight, K.
2013-10-01
High penetration renewable integration studies require solar power data with high spatial and temporal accuracy to quantify the impact of high frequency solar power ramps on the operation of the system. Our previous work concentrated on downscaling solar power from one hour to one minute by simulation. This method used clearness classifications to categorize temporal and spatial variability, and iterative methods to simulate intra-hour clearness variability. We determined that solar power ramp correlations between sites decrease with distance and the duration of the ramp, starting at around 0.6 for 30-minute ramps between sites that are less than 20 km apart.more » The sub-hour irradiance algorithm we developed has a noise floor that causes the correlations to approach ~0.005. Below one minute, the majority of the correlations of solar power ramps between sites less than 20 km apart are zero, and thus a new method to simulate intra-minute variability is needed. These intra-minute solar power ramps can be simulated using several methods, three of which we evaluate: a cubic spline fit to the one-minute solar power data; projection of the power spectral density toward the higher frequency domain; and average high frequency power spectral density from measured data. Each of these methods either under- or over-estimates the variability of intra-minute solar power ramps. We show that an optimized weighted linear sum of methods, dependent on the classification of temporal variability of the segment of one-minute solar power data, yields time series and ramp distributions similar to measured high-resolution solar irradiance data.« less
NASA Astrophysics Data System (ADS)
Walther, T.; Rupp, D.; Friman, S.; Trees, C.; Fournier, G.
2016-02-01
Recently we have demonstrated the feasibility of remotely measuring temperature profiles in water under a laboratory environment employing our real-time Brillouin Scattering LIDAR (BSL) system. The working principle is based on the frequency and time resolved detection of the backscattered spontaneous Brillouin signal of a short light pulse fired into the ocean. The light source consists of a frequency-doubled fiber-amplified External Cavity Diode Laser (ECDL) providing high-energy, Fourier transform-limited laser pulses in the green spectral range. The Brillouin shift is detected with high accuracy (low uncertainty) by employing an edge filter based on an Excited State Faraday Anomalous Dispersion Optical Filter (ESFADOF). Time-resolution allows for the depth resolution and the frequency resolved shift is proportional to the speed of sound. Thus, the temperature profile can be extracted from the measurements. In our laboratory setup we were able to resolve water temperatures with a mean accuracy of up to 0.07 oC and a spatial resolution of 1 m depending on the amount of averaging. In order to prepare the system for a first field test under realistic conditions on the coast of the Mediterranean at CMRE in La Spezia, almost all of the components have been upgraded. This first test is planned for November 2015. We will present the above mentioned measurements, details about the upgrades and report on our experiences during this maritime field test.Ultimately, the plan is to operate the system from a mobile platform, e.g., a helicopter or vessel, in order to precisely determine the temperature of the surface mixed layer of the ocean with high spatial resolution.
Phase division multiplexed EIT for enhanced temporal resolution.
Dowrick, T; Holder, D
2018-03-29
The most commonly used EIT paradigm (time division multiplexing) limits the temporal resolution of impedance images due to the need to switch between injection electrodes. Advances have previously been made using frequency division multiplexing (FDM) to increase temporal resolution, but in cases where a fixed range of frequencies is available, such as imaging fast neural activity, an upper limit is placed on the total number of simultaneous injections. The use of phase division multiplexing (PDM) where multiple out of phase signals can be injected at each frequency is investigated to increase temporal resolution. TDM, FDM and PDM were compared in head tank experiments, to compare transfer impedance measurements and spatial resolution between the three techniques. A resistor phantom paradigm was established to investigate the imaging of one-off impedance changes, of magnitude 1% and with durations as low as 500 µs (similar to those seen in nerve bundles), using both PDM and TDM approaches. In head tank experiments, a strong correlation (r > 0.85 and p < 0.001) was present between the three sets of measured transfer impedances, and no statistically significant difference was found in reconstructed image quality. PDM was able to image impedance changes down to 500 µs in the phantom experiments, while the minimum duration imaged using TDM was 5 ms. PDM offers a possible solution to the imaging of fast moving impedance changes (such as in nerves), where the use of triggering or coherent averaging is not possible. The temporal resolution presents an order of magnitude improvement of the TDM approach, and the approach addresses the limited spatial resolution of FDM by increasing the number of simultaneous EIT injections.
Classification of spatially unresolved objects
NASA Technical Reports Server (NTRS)
Nalepka, R. F.; Horwitz, H. M.; Hyde, P. D.; Morgenstern, J. P.
1972-01-01
A proportion estimation technique for classification of multispectral scanner images is reported that uses data point averaging to extract and compute estimated proportions for a single average data point to classify spatial unresolved areas. Example extraction calculations of spectral signatures for bare soil, weeds, alfalfa, and barley prove quite accurate.
Liu, Mei-bing; Chen, Xing-wei; Chen, Ying
2015-07-01
Identification of the critical source areas of non-point source pollution is an important means to control the non-point source pollution within the watershed. In order to further reveal the impact of multiple time scales on the spatial differentiation characteristics of non-point source nitrogen loss, a SWAT model of Shanmei Reservoir watershed was developed. Based on the simulation of total nitrogen (TN) loss intensity of all 38 subbasins, spatial distribution characteristics of nitrogen loss and critical source areas were analyzed at three time scales of yearly average, monthly average and rainstorms flood process, respectively. Furthermore, multiple linear correlation analysis was conducted to analyze the contribution of natural environment and anthropogenic disturbance on nitrogen loss. The results showed that there were significant spatial differences of TN loss in Shanmei Reservoir watershed at different time scales, and the spatial differentiation degree of nitrogen loss was in the order of monthly average > yearly average > rainstorms flood process. TN loss load mainly came from upland Taoxi subbasin, which was identified as the critical source area. At different time scales, land use types (such as farmland and forest) were always the dominant factor affecting the spatial distribution of nitrogen loss, while the effect of precipitation and runoff on the nitrogen loss was only taken in no fertilization month and several processes of storm flood at no fertilization date. This was mainly due to the significant spatial variation of land use and fertilization, as well as the low spatial variability of precipitation and runoff.
Power strain imaging based on vibro-elastography techniques
NASA Astrophysics Data System (ADS)
Wen, Xu; Salcudean, S. E.
2007-03-01
This paper describes a new ultrasound elastography technique, power strain imaging, based on vibro-elastography (VE) techniques. With this method, tissue is compressed by a vibrating actuator driven by low-pass or band-pass filtered white noise, typically in the 0-20 Hz range. Tissue displacements at different spatial locations are estimated by correlation-based approaches on the raw ultrasound radio frequency signals and recorded in time sequences. The power spectra of these time sequences are computed by Fourier spectral analysis techniques. As the average of the power spectrum is proportional to the squared amplitude of the tissue motion, the square root of the average power over the range of excitation frequencies is used as a measure of the tissue displacement. Then tissue strain is determined by the least squares estimation of the gradient of the displacement field. The computation of the power spectra of the time sequences can be implemented efficiently by using Welch's periodogram method with moving windows or with accumulative windows with a forgetting factor. Compared to the transfer function estimation originally used in VE, the computation of cross spectral densities is not needed, which saves both the memory and computational times. Phantom experiments demonstrate that the proposed method produces stable and operator-independent strain images with high signal-to-noise ratio in real time. This approach has been also tested on a few patient data of the prostate region, and the results are encouraging.
USDA-ARS?s Scientific Manuscript database
Spatial frequency domain imaging technique has recently been developed for determination of the optical properties of food and biological materials. However, accurate estimation of the optical property parameters by the technique is challenging due to measurement errors associated with signal acquis...
Effect of Temporal Constraints on Hemispheric Asymmetries during Spatial Frequency Processing
ERIC Educational Resources Information Center
Peyrin, Carole; Mermillod, Martial; Chokron, Sylvie; Marendaz, Christian
2006-01-01
Studies on functional hemispheric asymmetries have suggested that the right vs. left hemisphere should be predominantly involved in low vs. high spatial frequency (SF) analysis, respectively. By manipulating exposure duration of filtered natural scene images, we examined whether the temporal characteristics of SF analysis (i.e., the temporal…
The spatial resolution of a rotating gamma camera tomographic facility.
Webb, S; Flower, M A; Ott, R J; Leach, M O; Inamdar, R
1983-12-01
An important feature determining the spatial resolution in transverse sections reconstructed by convolution and back-projection is the frequency filter corresponding to the convolution kernel. Equations have been derived giving the theoretical spatial resolution, for a perfect detector and noise-free data, using four filter functions. Experiments have shown that physical constraints will always limit the resolution that can be achieved with a given system. The experiments indicate that the region of the frequency spectrum between KN/2 and KN where KN is the Nyquist frequency does not contribute significantly to resolution. In order to investigate the physical effect of these filter functions, the spatial resolution of reconstructed images obtained with a GE 400T rotating gamma camera has been measured. The results obtained serve as an aid to choosing appropriate reconstruction filters for use with a rotating gamma camera system.
Warden, S J; Bennell, K L; Matthews, B; Brown, D J; McMeeken, J M; Wark, J D
2001-11-01
Ultrasound (US), a high-frequency acoustic energy traveling in the form of a mechanical wave, represents a potential site-specific intervention for osteoporosis. Bone is a dynamic tissue that remodels in response to applied mechanical stimuli. As a form of mechanical stimulation, US is anticipated to produce a similar remodeling response. This theory is supported by growing in vitro and in vivo evidence demonstrating an osteogenic effect of pulsed-wave US at low spatial-averaged temporal-averaged intensities. The aim of this study was to investigate whether low-intensity pulsed US could prevent calcaneal osteoporosis in individuals following spinal cord injury (SCI). Fifteen patients with a 1-6 month history of SCI were recruited. Active US was introduced to one heel for 20 min/day, 5 days/week, over 6 weeks. The contralateral heel was simultaneously treated with inactive US. Patients were blind to which heel was being actively treated. Active US pulsed with a 10 microsec burst of 1.0 MHz sine waves repeating at 3.3 kHz. The spatial-averaged temporal-averaged intensity was set at 30 mW/cm(2). Bone status was assessed at baseline and following the intervention period by dual-energy X-ray absorptiometry and quantitative US. SCI resulted in significant bone loss. Bone mineral content decreased by 7.5 +/- 3.0% in inactive US-treated calcanei (p < 0.001). Broadband US attenuation and speed of sound decreased by 8.5 +/- 6.9% (p < 0.001) and 1.5 +/- 1.3% (p < 0.001), respectively. There were no differences between active and inactive US-treated calcanei for any skeletal measure (p > 0.05). These findings confirm the negative skeletal impact of SCI, and demonstrate that US at the dose and mode administered was not a beneficial intervention for SCI-induced osteoporosis. This latter finding may primarily relate to the inability of US to effectively penetrate the outer cortex of bone due to its acoustic properties.
NASA Astrophysics Data System (ADS)
Watanabe, Yuuki; Kawase, Kodo; Ikari, Tomofumi; Ito, Hiromasa; Ishikawa, Youichi; Minamide, Hiroaki
2003-10-01
We separated the component spatial patterns of frequency-dependent absorption in chemicals and frequency-independent components such as plastic, paper, and measurement noise in terahertz (THz) spectroscopic images, using known spectral curves. Our measurement system, which uses a widely tunable coherent THz-wave parametric oscillator source, can image at a specific frequency in the range 1-2 THz. The component patterns of chemicals can easily be extracted by use of the frequency-independent components. This method could be successfully used for nondestructive inspection for the detection of illegal drugs and devices of bioterrorism concealed, e.g., inside mail and packages.
NASA Astrophysics Data System (ADS)
Fu, Z.; Qin, Q.; Wu, C.; Chang, Y.; Luo, B.
2017-09-01
Due to the differences of imaging principles, image matching between visible and thermal infrared images still exist new challenges and difficulties. Inspired by the complementary spatial and frequency information of geometric structural features, a robust descriptor is proposed for visible and thermal infrared images matching. We first divide two different spatial regions to the region around point of interest, using the histogram of oriented magnitudes, which corresponds to the 2-D structural shape information to describe the larger region and the edge oriented histogram to describe the spatial distribution for the smaller region. Then the two vectors are normalized and combined to a higher feature vector. Finally, our proposed descriptor is obtained by applying principal component analysis (PCA) to reduce the dimension of the combined high feature vector to make our descriptor more robust. Experimental results showed that our proposed method was provided with significant improvements in correct matching numbers and obvious advantages by complementing information within spatial and frequency structural information.
Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter
2015-02-01
Fine-scale temporal organization of cortical activity in the gamma range (∼25-80Hz) may play a significant role in information processing, for example by neural grouping ('binding') and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes or slower oscillation phase codes, may resolve conflicting experimental observations on gamma phase coding. Our modeling results offer clear testable experimental predictions. We conclude that input-dependency of gamma frequencies could be essential rather than detrimental for meaningful gamma-mediated temporal organization of cortical activity.
Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter
2015-01-01
Fine-scale temporal organization of cortical activity in the gamma range (∼25–80Hz) may play a significant role in information processing, for example by neural grouping (‘binding’) and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes or slower oscillation phase codes, may resolve conflicting experimental observations on gamma phase coding. Our modeling results offer clear testable experimental predictions. We conclude that input-dependency of gamma frequencies could be essential rather than detrimental for meaningful gamma-mediated temporal organization of cortical activity. PMID:25679780
Illumination Modulation for Improved Propagation-Based Phase Imaging
NASA Astrophysics Data System (ADS)
Chakraborty, Tonmoy
Propagation-based phase imaging enables the quantitative reconstruction of a light beam's phase from measurements of its intensity. Because the intensity depends on the time-averaged square of the field the relationship between intensity and phase is, in general, nonlinear. The transport of intensity equation (TIE), is a linear equation relating phase and propagated intensity that arises from restricting the propagation distance to be small. However, the TIE limits the spatial frequencies that can be reliably reconstructed to those below some cutoff, which limits the accuracy of reconstruction of fine features in phase. On the other hand, the low frequency components suffer from poor signal to noise ratio (SNR) unless the propagation distance is sufficiently large, which leads to low frequency artifacts that obscure the reconstruction. In this research, I will consider the use of incoherent primary sources of illumination, in a Kohler illumination setup, to enhance the low-frequency performance of the TIE. The necessary steps required to design and build a table-top imaging setup which is capable of capturing intensity at any defocused position while modulating the source will be explained. In addition, it will be shown how by employing such illumination, the steps required for computationally recovering the phase, i.e. Fourier transforms and frequency-domain filtering, may be performed in the optical system. While these methods can address the low-frequency performance of the TIE, they do not extend its high-frequency cutoff. To avoid this cutoff, for objects with slowly varying phase, the contrast transfer function (CTF) model, an alternative to the TIE, can be used to recover phase. By allowing the combination of longer propagation distances and incoherent sources, it will be shown how CTF can improve performance at both high and low frequencies.
Measurement of visual contrast sensitivity
NASA Astrophysics Data System (ADS)
Vongierke, H. E.; Marko, A. R.
1985-04-01
This invention involves measurement of the visual contrast sensitivity (modulation transfer) function of a human subject by means of linear or circular spatial frequency pattern on a cathode ray tube whose contrast is automatically decreasing or increasing depending on the subject pressing or releasing a hand-switch button. The threshold of detection of the pattern modulation is found by the subject by adjusting the contrast to values which vary about the subject's threshold thereby determining the threshold and also providing by the magnitude of the contrast fluctuations between reversals some estimate of the variability of the subject's absolute threshold. The invention also involves the slow automatic sweeping of the spatial frequency of the pattern over the spatial frequencies after preset time intervals or after threshold has been defined at each frequency by a selected number of subject-determined threshold crossings; i.e., contrast reversals.
Spatial patterns in the effects of fire on savanna vegetation three-dimensional structure.
Levick, Shaun R; Asner, Gregory P; Smit, Izak P J
2012-12-01
Spatial variability in the effects of fire on savanna vegetation structure is seldom considered in ecology, despite the inherent heterogeneity of savanna landscapes. Much has been learned about the effects of fire on vegetation structure from long-term field experiments, but these are often of limited spatial extent and do not encompass different hillslope catena elements. We mapped vegetation three-dimensional (3-D) structure over 21 000 ha in nine savanna landscapes (six on granite, three on basalt), each with contrasting long-term fire histories (higher and lower fire frequency), as defined from a combination of satellite imagery and 67 years of management records. Higher fire frequency areas contained less woody canopy cover than their lower fire frequency counterparts in all landscapes, and woody cover reduction increased linearly with increasing difference in fire frequency (r2 = 0.58, P = 0.004). Vegetation height displayed a more heterogeneous response to difference in fire frequency, with taller canopies present in the higher fire frequency areas of the wetter sites. Vegetation 3-D structural differences between areas of higher and lower fire frequency differed between geological substrates and varied spatially across hillslopes. Fire had the greatest relative impact on vegetation structure on nutrient-rich basalt substrates, and it imparted different structural responses upon vegetation in upland, midslope, and lowland topographic positions. These results highlight the complexity of fire vegetation relationships in savanna systems, and they suggest that underlying landscape heterogeneity needs more explicit incorporation into fire management policies.
Spatial Variations of Poloidal and Toroidal Mode Field Line Resonances Observed by MMS
NASA Astrophysics Data System (ADS)
Le, G.; Chi, P. J.; Strangeway, R. J.; Russell, C. T.; Slavin, J. A.; Anderson, B. J.; Kepko, L.; Nakamura, R.; Plaschke, F.; Torbert, R. B.
2017-12-01
Field line resonances (FLRs) are magnetosphere's responses to solar wind forcing and internal instabilities generated by solar wind-magnetospheric interactions. They are standing waves along the Earth's magnetic field lines oscillating in either poloidal or toroidal modes. The two types of waves have their unique frequency characteristics. The eigenfrequency of FLRs is determined by the length of the field line and the plasma density, and thus gradually changes with L. For toroidal mode oscillations with magnetic field perturbations in the azimuthal direction, ideal MHD predicts that each field line oscillates independently with its own eigenfrequency. For poloidal mode waves with field lines oscillating radially, their frequency cannot change with L easily as L shells need to oscillate in sync to avoid efficient damping due to phase mixing. Observations, mainly during quiet times, indeed show that poloidal mode waves often exhibit nearly constant frequency across L shells. Our recent observations, on the other hand, reveal a clear L-dependent frequency trend for a long lasting storm-time poloidal wave event, indicating the wave can maintain its power with changing frequencies for an extended period [Le et al., 2017]. The spatial variation of the frequency shows discrete spatial structures. The frequency remains constant within each discrete structure that spans about 1 REalong L, and changes discretely. We present a follow-up study to investigate spatial variations of wave frequencies using the Wigner-Ville distribution. We examine both poloidal and toroidal waves under different geomagnetic conditions using multipoint observations from MMS, and compare their frequency and occurrence characteristics for insights into their generation mechanisms. Reference: Le, G., et al. (2017), Global observations of magnetospheric high-m poloidal waves during the 22 June 2015 magnetic storm, Geophys. Res. Lett., 44, 3456-3464, doi:10.1002/2017GL073048.
Climatic factors associated with amyotrophic lateral sclerosis: a spatial analysis from Taiwan.
Tsai, Ching-Piao; Tzu-Chi Lee, Charles
2013-11-01
Few studies have assessed the spatial association of amyotrophic lateral sclerosis (ALS) incidence in the world. The aim of this study was to identify the association of climatic factors and ALS incidence in Taiwan. A total of 1,434 subjects with the primary diagnosis of ALS between years 1997 and 2008 were identified in the national health insurance research database. The diagnosis was also verified by the national health insurance programme, which had issued and providing them with "serious disabling disease (SDD) certificates". Local indicators of spatial association were employed to investigate spatial clustering of age-standardised incidence ratios in the townships of the study area. Spatial regression was utilised to reveal any association of annual average climatic factors and ALS incidence for the 12-year study period. The climatic factors included the annual average time of sunlight exposure, average temperature, maximum temperature, minimum temperature, atmospheric pressure, rainfall, relative humidity and wind speed with spatial autocorrelation controlled. Significant correlations were only found for exposure to sunlight and rainfall and it was similar in both genders. The annual average of the former was found to be negatively correlated with ALS, while the latter was positively correlated with ALS incidence. While accepting that ALS is most probably multifactorial, it was concluded that sunlight deprivation and/or rainfall are associated to some degree with ALS incidence in Taiwan.
Rose-Petruck, Christoph; Wands, Jack R.; Rand, Danielle; Derdak, Zoltan; Ortiz, Vivian
2016-04-19
Methods, compositions, systems, devices and kits are provided herein for preparing and using a nanoparticle composition and spatial frequency heterodyne imaging for visualizing cells or tissues. In various embodiments, the nanoparticle composition includes at least one of: a nanoparticle, a polymer layer, and a binding agent, such that the polymer layer coats the nanoparticle and is for example a polyethylene glycol, a polyelectrolyte, an anionic polymer, or a cationic polymer, and such that the binding agent that specifically binds the cells or the tissue. Methods, compositions, systems, devices and kits are provided for identifying potential therapeutic agents in a model using the nanoparticle composition and spatial frequency heterodyne imaging.
Discriminability measures for predicting readability of text on textured backgrounds
NASA Technical Reports Server (NTRS)
Scharff, L. F.; Hill, A. L.; Ahumada, A. J. Jr; Watson, A. B. (Principal Investigator)
2000-01-01
Several discriminability measures were examined for their ability to predict reading search times for three levels of text contrast and a range of backgrounds (plain, a periodic texture, and four spatial-frequency-filtered textures created from the periodic texture). Search times indicate that these background variations only affect readability when the text contrast is low, and that spatial frequency content of the background affects readability. These results were not well predicted by the single variables of text contrast (Spearman rank correlation = -0.64) and background RMS contrast (0.08), but a global masking index and a spatial-frequency-selective masking index led to better predictions (-0.84 and -0.81, respectively). c2000 Optical Society of America.
Spatial sorting promotes the spread of maladaptive hybridization
Lowe, Winsor H.; Muhlfeld, Clint C.; Allendorf, Fred W.
2015-01-01
Invasive hybridization is causing loss of biodiversity worldwide. The spread of such introgression can occur even when hybrids have reduced Darwinian fitness, which decreases the frequency of hybrids due to low survival or reproduction through time. This paradox can be partially explained by spatial sorting, where genotypes associated with dispersal increase in frequency at the edge of expansion, fueling further expansion and allowing invasive hybrids to increase in frequency through space rather than time. Furthermore, because all progeny of a hybrid will be hybrids (i.e., will possess genes from both parental taxa), nonnative admixture in invaded populations can increase even when most hybrid progeny do not survive. Broader understanding of spatial sorting is needed to protect native biodiversity.
NASA Astrophysics Data System (ADS)
Hikage, Haruki; Nosaka, Nami; Matsuo, Shigeki
2017-11-01
By irradiation with 0.5 ns laser pulses at a wavelength λ = 1.064 µm, laser-induced periodic surface structures (LIPSS) were fabricated on a steel substrate. In addition to low-spatial-frequency LIPSS (LSFL), a high-spatial-frequency LIPSS (HSFL) of period Λ ∼ 0.4λ with two-dimensional expansion was formed, although it is generally recognized that HSFL are formed only by ultrafast laser pulses. The wavevector of the observed HSFL was perpendicular to the electric field of the irradiated laser pulse (each ridge/groove of the HSFL was parallel to the electric field). We discuss the relationship between the formation of HSFL and the pulse duration.
Enhanced dual-frequency pattern scheme based on spatial-temporal fringes method
NASA Astrophysics Data System (ADS)
Wang, Minmin; Zhou, Canlin; Si, Shuchun; Lei, Zhenkun; Li, Xiaolei; Li, Hui; Li, YanJie
2018-07-01
One of the major challenges of employing a dual-frequency phase-shifting algorithm for phase retrieval is its sensitivity to noise. Yun et al proposed a dual-frequency method based on the Fourier transform profilometry, yet the low-frequency lobes are close to each other for accurate band-pass filtering. In the light of this problem, a novel dual-frequency pattern based on the spatial-temporal fringes (STF) method is developed in this paper. Three fringe patterns with two different frequencies are required. The low-frequency phase is obtained from two low-frequency fringe patterns by the STF method, so the signal lobes can be extracted accurately as they are far away from each other. The high-frequency phase is retrieved from another fringe pattern without the impact of the DC component. Simulations and experiments are conducted to demonstrate the excellent precision of the proposed method.
Generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier
Zhao, Zhi; Sheehy, Brian; Minty, Michiko
2017-03-29
Here, we report on the generation of 180 W average green power from a frequency-doubled picosecond rod fiber amplifier. In an Yb-doped fiber master-oscillator-power-amplifier system, 2.3-ps 704 MHz pulses are first amplified in small-core fibers and then in large-mode-area rod fibers to produce 270 W average infrared power with a high polarization extinction ratio and diffraction-limited beam quality. By carrying out frequency doubling in a lithium triborate (LBO) crystal, 180 W average green power is generated. To the best of our knowledge, this is the highest average green power achieved in fiber-based laser systems.
Performance of the Multi-Radar Multi-Sensor System over the Lower Colorado River, Texas
NASA Astrophysics Data System (ADS)
Bayabil, H. K.; Sharif, H. O.; Fares, A.; Awal, R.; Risch, E.
2017-12-01
Recently observed increases in intensities and frequencies of climate extremes (e.g., floods, dam failure, and overtopping of river banks) necessitate the development of effective disaster prevention and mitigation strategies. Hydrologic models can be useful tools in predicting such events at different spatial and temporal scales. However, accuracy and prediction capability of such models are often constrained by the availability of high-quality representative hydro-meteorological data (e.g., precipitation) that are required to calibrate and validate such models. Improved technologies and products such as the Multi-Radar Multi-Sensor (MRMS) system that allows gathering and transmission of vast meteorological data have been developed to provide such data needs. While the MRMS data are available with high spatial and temporal resolutions (1 km and 15 min, respectively), its accuracy in estimating precipitation is yet to be fully investigated. Therefore, the main objective of this study is to evaluate the performance of the MRMS system in effectively capturing precipitation over the Lower Colorado River, Texas using observations from a dense rain gauge network. In addition, effects of spatial and temporal aggregation scales on the performance of the MRMS system were evaluated. Point scale comparisons were made at 215 gauging locations using rain gauges and MRMS data from May 2015. Moreover, the effects of temporal and spatial data aggregation scales (30, 45, 60, 75, 90, 105, and 120 min) and (4 to 50 km), respectively on the performance of the MRMS system were tested. Overall, the MRMS system (at 15 min temporal resolution) captured precipitation reasonably well, with an average R2 value of 0.65 and RMSE of 0.5 mm. In addition, spatial and temporal data aggregations resulted in increases in R2 values. However, reduction in RMSE was achieved only with an increase in spatial aggregations.
Tropical rain mapping radar on the Space Station
NASA Technical Reports Server (NTRS)
Im, Eastwood; Li, Fuk
1989-01-01
The conceptual design for a tropical rain mapping radar for flight on the manned Space Station is discussed. In this design the radar utilizes a narrow, dual-frequency (9.7 GHz and 24.1 GHz) beam, electronically scanned antenna to achieve high spatial (4 km) and vertical (250 m) resolutions and a relatively large (800 km) cross-track swath. An adaptive scan strategy will be used for better utilization of radar energy and dwell time. Such a system can detect precipitation at rates of up to 100 mm/hr with accuracies of roughly 15 percent. With the proposed space-time sampling strategy, the monthly averaged rainfall rate can be estimated to within 8 percent, which is essential for many climatological studies.
Face verification system for Android mobile devices using histogram based features
NASA Astrophysics Data System (ADS)
Sato, Sho; Kobayashi, Kazuhiro; Chen, Qiu
2016-07-01
This paper proposes a face verification system that runs on Android mobile devices. In this system, facial image is captured by a built-in camera on the Android device firstly, and then face detection is implemented using Haar-like features and AdaBoost learning algorithm. The proposed system verify the detected face using histogram based features, which are generated by binary Vector Quantization (VQ) histogram using DCT coefficients in low frequency domains, as well as Improved Local Binary Pattern (Improved LBP) histogram in spatial domain. Verification results with different type of histogram based features are first obtained separately and then combined by weighted averaging. We evaluate our proposed algorithm by using publicly available ORL database and facial images captured by an Android tablet.
Single-Pulse Multi-Point Multi-Component Interferometric Rayleigh Scattering Velocimeter
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel; Danehy, Paul M.; Lee, Joseph W.; Gaffney, Richard L., Jr.; Cutler, Andrew D.
2006-01-01
A simultaneous multi-point, multi-component velocimeter using interferometric detection of the Doppler shift of Rayleigh, Mie, and Rayleigh-Brillouin scattered light in supersonic flow is described. The system uses up to three sets of collection optics and one beam combiner for the reference laser light to form a single collimated beam. The planar Fabry-Perot interferometer used in the imaging mode for frequency detection preserves the spatial distribution of the signal reasonably well. Single-pulse multi-points measurements of up to two orthogonal and one non-orthogonal components of velocity in a Mach 2 free jet were performed to demonstrate the technique. The average velocity measurements show a close agreement with the CFD calculations using the VULCAN code.
Blind identification of image manipulation type using mixed statistical moments
NASA Astrophysics Data System (ADS)
Jeong, Bo Gyu; Moon, Yong Ho; Eom, Il Kyu
2015-01-01
We present a blind identification of image manipulation types such as blurring, scaling, sharpening, and histogram equalization. Motivated by the fact that image manipulations can change the frequency characteristics of an image, we introduce three types of feature vectors composed of statistical moments. The proposed statistical moments are generated from separated wavelet histograms, the characteristic functions of the wavelet variance, and the characteristic functions of the spatial image. Our method can solve the n-class classification problem. Through experimental simulations, we demonstrate that our proposed method can achieve high performance in manipulation type detection. The average rate of the correctly identified manipulation types is as high as 99.22%, using 10,800 test images and six manipulation types including the authentic image.
Development of numerical phantoms by MRI for RF electromagnetic dosimetry: a female model.
Mazzurana, M; Sandrini, L; Vaccari, A; Malacarne, C; Cristoforetti, L; Pontalti, R
2004-01-01
Numerical human models for electromagnetic dosimetry are commonly obtained by segmentation of CT or MRI images and complex permittivity values are ascribed to each issue according to literature values. The aim of this study is to provide an alternative semi-automatic method by which non-segmented images, obtained by a MRI tomographer, can be automatically related to the complex permittivity values through two frequency dependent transfer functions. In this way permittivity and conductivity vary with continuity--even in the same tissue--reflecting the intrinsic realistic spatial dispersion of such parameters. A female human model impinged by a plane wave is tested using finite-difference time-domain algorithm and the results of the total body and layer-averaged specific absorption rate are reported.
Shi, Qing; Stell, William K.
2013-01-01
Background Through adaptation, animals can function visually under an extremely broad range of light intensities. Light adaptation starts in the retina, through shifts in photoreceptor sensitivity and kinetics plus modulation of visual processing in retinal circuits. Although considerable research has been conducted on retinal adaptation in nocturnal species with rod-dominated retinas, such as the mouse, little is known about how cone-dominated avian retinas adapt to changes in mean light intensity. Methodology/Principal Findings We used the optokinetic response to characterize contrast sensitivity (CS) in the chick retina as a function of spatial frequency and temporal frequency at different mean light intensities. We found that: 1) daytime, cone-driven CS was tuned to spatial frequency; 2) nighttime, presumably rod-driven CS was tuned to temporal frequency and spatial frequency; 3) daytime, presumably cone-driven CS at threshold intensity was invariant with temporal and spatial frequency; and 4) daytime photopic CS was invariant with clock time. Conclusion/Significance Light- and dark-adaptational changes in CS were investigated comprehensively for the first time in the cone-dominated retina of an avian, diurnal species. The chick retina, like the mouse retina, adapts by using a “day/night” or “cone/rod” switch in tuning preference during changes in lighting conditions. The chick optokinetic response is an attractive model for noninvasive, behavioral studies of adaptation in retinal circuitry in health and disease. PMID:24098693
NASA Astrophysics Data System (ADS)
Qiu, Shenjie; Guo, Ying; Han, Qianhan; Bao, Yun; Zhang, Jing; Shi, J. J.
2018-01-01
A pulsed discharge is introduced between two sequential pulse-modulated radio frequency glow discharges in atmospheric helium. The dependence of radio frequency discharge ignition on pulsed discharge intensity is investigated experimentally with the pulse voltage amplitudes of 650, 850, and 1250 V. The discharge characteristics and dynamics are studied in terms of voltage and current waveforms, and spatial-temporal evolution of optical emission. With the elevated pulsed discharge intensity of two orders of magnitude, the ignition of radio frequency discharge is enhanced by reducing the ignition time and achieving the stable operation with a double-hump spatial profile. The ignition time of radio frequency discharge is estimated to be 2.0 μs, 1.5 μs, and 1.0 μs with the pulse voltage amplitudes of 650, 850, and 1250 V, respectively, which is also demonstrated by the spatial-temporal evolution of optical emission at 706 and 777 nm.
Neural pulse frequency modulation of an exponentially correlated Gaussian process
NASA Technical Reports Server (NTRS)
Hutchinson, C. E.; Chon, Y.-T.
1976-01-01
The effect of NPFM (Neural Pulse Frequency Modulation) on a stationary Gaussian input, namely an exponentially correlated Gaussian input, is investigated with special emphasis on the determination of the average number of pulses in unit time, known also as the average frequency of pulse occurrence. For some classes of stationary input processes where the formulation of the appropriate multidimensional Markov diffusion model of the input-plus-NPFM system is possible, the average impulse frequency may be obtained by a generalization of the approach adopted. The results are approximate and numerical, but are in close agreement with Monte Carlo computer simulation results.
NASA Astrophysics Data System (ADS)
Eldardiry, H. A.; Habib, E. H.
2014-12-01
Radar-based technologies have made spatially and temporally distributed quantitative precipitation estimates (QPE) available in an operational environmental compared to the raingauges. The floods identified through flash flood monitoring and prediction systems are subject to at least three sources of uncertainties: (a) those related to rainfall estimation errors, (b) those due to streamflow prediction errors due to model structural issues, and (c) those due to errors in defining a flood event. The current study focuses on the first source of uncertainty and its effect on deriving important climatological characteristics of extreme rainfall statistics. Examples of such characteristics are rainfall amounts with certain Average Recurrence Intervals (ARI) or Annual Exceedance Probability (AEP), which are highly valuable for hydrologic and civil engineering design purposes. Gauge-based precipitation frequencies estimates (PFE) have been maturely developed and widely used over the last several decades. More recently, there has been a growing interest by the research community to explore the use of radar-based rainfall products for developing PFE and understand the associated uncertainties. This study will use radar-based multi-sensor precipitation estimates (MPE) for 11 years to derive PFE's corresponding to various return periods over a spatial domain that covers the state of Louisiana in southern USA. The PFE estimation approach used in this study is based on fitting generalized extreme value distribution to hydrologic extreme rainfall data based on annual maximum series (AMS). Some of the estimation problems that may arise from fitting GEV distributions at each radar pixel is the large variance and seriously biased quantile estimators. Hence, a regional frequency analysis approach (RFA) is applied. The RFA involves the use of data from different pixels surrounding each pixel within a defined homogenous region. In this study, region of influence approach along with the index flood technique are used in the RFA. A bootstrap technique procedure is carried out to account for the uncertainty in the distribution parameters to construct 90% confidence intervals (i.e., 5% and 95% confidence limits) on AMS-based precipitation frequency curves.
Zhang, Yueqing; Li, Qifeng; Lu, Yonglong; Jones, Kevin; Sweetman, Andrew J
2016-04-01
Hexabromocyclododecane (HBCDD) is a brominated flame retardant with a wide range of industrial applications, although little is known about its patterns of spatial distribution in soils in relation to industrial emissions. This study has undertaken a large-scale investigation around an industrialized coastal area of China, exploring the concentrations, spatial distribution and diastereoisomer profiles of HBCDD in 188 surface soils from 21 coastal cities in North China. The detection frequency was 100% and concentrations of total HBCDD in the surface soils ranged from 0.123 to 363 ng g(-1) and averaged 7.20 ng g(-1), showing its ubiquitous existence at low levels. The spatial distribution of HBCDD exhibited a correlation with the location of known manufacturing facilities in Weifang, suggesting the production of HBCDD as major emission source. Diastereoisomer profiles varied in different cities. Diastereoisomer compositions in soils were compared with emissions from HBCDD industrial activities, and correlations were found between them, which has the potential for source identification. Although the contemporary concentrations of HBCDD in soils from the study were relatively low, HBCDD-containing products (expanded/extruded polystyrene insulation boards) would be a potential source after its service life, and attention needs to be paid to prioritizing large-scale waste management efforts. Copyright © 2016 Elsevier Ltd. All rights reserved.