Sample records for average structural parameters

  1. Relationships and redundancies of selected hemodynamic and structural parameters for characterizing virtual treatment of cerebral aneurysms with flow diverter devices.

    PubMed

    Karmonik, C; Anderson, J R; Beilner, J; Ge, J J; Partovi, S; Klucznik, R P; Diaz, O; Zhang, Y J; Britz, G W; Grossman, R G; Lv, N; Huang, Q

    2016-07-26

    To quantify the relationship and to demonstrate redundancies between hemodynamic and structural parameters before and after virtual treatment with a flow diverter device (FDD) in cerebral aneurysms. Steady computational fluid dynamics (CFD) simulations were performed for 10 cerebral aneurysms where FDD treatment with the SILK device was simulated by virtually reducing the porosity at the aneurysm ostium. Velocity and pressure values proximal and distal to and at the aneurysm ostium as well as inside the aneurysm were quantified. In addition, dome-to-neck ratios and size ratios were determined. Multiple correlation analysis (MCA) and hierarchical cluster analysis (HCA) were conducted to demonstrate dependencies between both structural and hemodynamic parameters. Velocities in the aneurysm were reduced by 0.14m/s on average and correlated significantly (p<0.05) with velocity values in the parent artery (average correlation coefficient: 0.70). Pressure changes in the aneurysm correlated significantly with pressure values in the parent artery and aneurysm (average correlation coefficient: 0.87). MCA found statistically significant correlations between velocity values and between pressure values, respectively. HCA sorted velocity parameters, pressure parameters and structural parameters into different hierarchical clusters. HCA of aneurysms based on the parameter values yielded similar results by either including all (n=22) or only non-redundant parameters (n=2, 3 and 4). Hemodynamic and structural parameters before and after virtual FDD treatment show strong inter-correlations. Redundancy of parameters was demonstrated with hierarchical cluster analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Bias-Corrected Estimation of Noncentrality Parameters of Covariance Structure Models

    ERIC Educational Resources Information Center

    Raykov, Tenko

    2005-01-01

    A bias-corrected estimator of noncentrality parameters of covariance structure models is discussed. The approach represents an application of the bootstrap methodology for purposes of bias correction, and utilizes the relation between average of resample conventional noncentrality parameter estimates and their sample counterpart. The…

  3. Structure-activity relationships of pyrethroid insecticides. Part 2. The use of molecular dynamics for conformation searching and average parameter calculation

    NASA Astrophysics Data System (ADS)

    Hudson, Brian D.; George, Ashley R.; Ford, Martyn G.; Livingstone, David J.

    1992-04-01

    Molecular dynamics simulations have been performed on a number of conformationally flexible pyrethroid insecticides. The results indicate that molecular dynamics is a suitable tool for conformational searching of small molecules given suitable simulation parameters. The structures derived from the simulations are compared with the static conformation used in a previous study. Various physicochemical parameters have been calculated for a set of conformations selected from the simulations using multivariate analysis. The averaged values of the parameters over the selected set (and the factors derived from them) are compared with the single conformation values used in the previous study.

  4. Three-dimensional biofilm structure quantification.

    PubMed

    Beyenal, Haluk; Donovan, Conrad; Lewandowski, Zbigniew; Harkin, Gary

    2004-12-01

    Quantitative parameters describing biofilm physical structure have been extracted from three-dimensional confocal laser scanning microscopy images and used to compare biofilm structures, monitor biofilm development, and quantify environmental factors affecting biofilm structure. Researchers have previously used biovolume, volume to surface ratio, roughness coefficient, and mean and maximum thicknesses to compare biofilm structures. The selection of these parameters is dependent on the availability of software to perform calculations. We believe it is necessary to develop more comprehensive parameters to describe heterogeneous biofilm morphology in three dimensions. This research presents parameters describing three-dimensional biofilm heterogeneity, size, and morphology of biomass calculated from confocal laser scanning microscopy images. This study extends previous work which extracted quantitative parameters regarding morphological features from two-dimensional biofilm images to three-dimensional biofilm images. We describe two types of parameters: (1) textural parameters showing microscale heterogeneity of biofilms and (2) volumetric parameters describing size and morphology of biomass. The three-dimensional features presented are average (ADD) and maximum diffusion distances (MDD), fractal dimension, average run lengths (in X, Y and Z directions), aspect ratio, textural entropy, energy and homogeneity. We discuss the meaning of each parameter and present the calculations in detail. The developed algorithms, including automatic thresholding, are implemented in software as MATLAB programs which will be available at site prior to publication of the paper.

  5. Preliminary structural design of a lunar transfer vehicle aerobrake. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Bush, Lance B.

    1992-01-01

    An aerobrake concept for a Lunar transfer vehicle was weight optimized through the use of the Taguchi design method, structural finite element analyses and structural sizing routines. Six design parameters were chosen to represent the aerobrake structural configuration. The design parameters included honeycomb core thickness, diameter to depth ratio, shape, material, number of concentric ring frames, and number of radial frames. Each parameter was assigned three levels. The minimum weight aerobrake configuration resulting from the study was approx. half the weight of the average of all twenty seven experimental configurations. The parameters having the most significant impact on the aerobrake structural weight were identified.

  6. Study of the correlation parameters of the surface structure of disordered semiconductors by the two-dimensional DFA and average mutual information methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpatov, A. V.; Vikhrov, S. P.; Rybina, N. V., E-mail: pgnv@mail.ru

    The processes of self-organization of the surface structure of hydrogenated amorphous silicon are studied by the methods of fluctuation analysis and average mutual information on the basis of atomic-force-microscopy images of the surface. It is found that all of the structures can be characterized by a correlation vector and represented as a superposition of harmonic components and noise. It is shown that, under variations in the technological parameters of the production of a-Si:H films, the correlation properties of their structure vary as well. As the substrate temperature is increased, the formation of structural irregularities becomes less efficient; in this case,more » the length of the correlation vector and the degree of structural ordering increase. It is shown that the procedure based on the method of fluctuation analysis in combination with the method of average mutual information provides a means for studying the self-organization processes in any structures on different length scales.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortoleva, Peter J.

    Illustrative embodiments of systems and methods for the deductive multiscale simulation of macromolecules are disclosed. In one illustrative embodiment, a deductive multiscale simulation method may include (i) constructing a set of order parameters that model one or more structural characteristics of a macromolecule, (ii) simulating an ensemble of atomistic configurations for the macromolecule using instantaneous values of the set of order parameters, (iii) simulating thermal-average forces and diffusivities for the ensemble of atomistic configurations, and (iv) evolving the set of order parameters via Langevin dynamics using the thermal-average forces and diffusivities.

  8. Two-order-parameter description of liquid Al under five different pressures

    NASA Astrophysics Data System (ADS)

    Li, Y. D.; Hao, Qing-Hai; Cao, Qi-Long; Liu, C. S.

    2008-11-01

    In the present work, using the glue potential, the constant pressure molecular-dynamics simulations of liquid Al under five various pressures and a systematic analysis of the local atomic structures have been performed in order to test the two-order-parameter model proposed by Tanaka [Phys. Rev. Lett. 80, 5750 (1998)] originally for explaining the unusual behaviors of liquid water. The temperature dependence of the bond order parameter Q6 in liquid Al under five different pressures can be well fitted by the functional expression (Q6)/(1-Q6)=Q60exp((ΔE-PΔV)/(kBT)) which produces the energy gain ΔE and the volume change upon the formation of a locally favored structure: ΔE=0.025eV and ΔV=-0.27(Å)3 . ΔE is nearly equal to the difference between the average bond energy of the other type I bonds and the average bond energy of 1551 bonds (characterizing the icosahedronlike local structure); ΔV could be explained as the average volume occupied by one atom in icosahedra minus that occupied by one atom in other structures. With the obtained ΔE and ΔV , it is satisfactorily explained that the density of liquid Al displays a much weaker nonlinear dependence on temperature under lower pressures. So it is demonstrated that the behavior of liquid Al can be well described by the two-order-parameter model.

  9. Application of Bayesian model averaging to measurements of the primordial power spectrum

    NASA Astrophysics Data System (ADS)

    Parkinson, David; Liddle, Andrew R.

    2010-11-01

    Cosmological parameter uncertainties are often stated assuming a particular model, neglecting the model uncertainty, even when Bayesian model selection is unable to identify a conclusive best model. Bayesian model averaging is a method for assessing parameter uncertainties in situations where there is also uncertainty in the underlying model. We apply model averaging to the estimation of the parameters associated with the primordial power spectra of curvature and tensor perturbations. We use CosmoNest and MultiNest to compute the model evidences and posteriors, using cosmic microwave data from WMAP, ACBAR, BOOMERanG, and CBI, plus large-scale structure data from the SDSS DR7. We find that the model-averaged 95% credible interval for the spectral index using all of the data is 0.940

  10. Theoretical investigations on structural, elastic and electronic properties of thallium halides

    NASA Astrophysics Data System (ADS)

    Singh, Rishi Pal; Singh, Rajendra Kumar; Rajagopalan, Mathrubutham

    2011-04-01

    Theoretical investigations on structural, elastic and electronic properties, viz. ground state lattice parameter, elastic moduli and density of states, of thallium halides (viz. TlCl and TlBr) have been made using the full potential linearized augmented plane wave method within the generalized gradient approximation (GGA). The ground state lattice parameter and bulk modulus and its pressure derivative have been obtained using optimization method. Young's modulus, shear modulus, Poisson ratio, sound velocities for longitudinal and shear waves, Debye average velocity, Debye temperature and Grüneisen parameter have also been calculated for these compounds. Calculated structural, elastic and other parameters are in good agreement with the available data.

  11. Online quantitative analysis of multispectral images of human body tissues

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.

    2013-08-01

    A method is developed for online monitoring of structural and morphological parameters of biological tissues (haemoglobin concentration, degree of blood oxygenation, average diameter of capillaries and the parameter characterising the average size of tissue scatterers), which involves multispectral tissue imaging, image normalisation to one of its spectral layers and determination of unknown parameters based on their stable regression relation with the spectral characteristics of the normalised image. Regression is obtained by simulating numerically the diffuse reflectance spectrum of the tissue by the Monte Carlo method at a wide variation of model parameters. The correctness of the model calculations is confirmed by the good agreement with the experimental data. The error of the method is estimated under conditions of general variability of structural and morphological parameters of the tissue. The method developed is compared with the traditional methods of interpretation of multispectral images of biological tissues, based on the solution of the inverse problem for each pixel of the image in the approximation of different analytical models.

  12. Recognition and characterization of hierarchical interstellar structure. II - Structure tree statistics

    NASA Technical Reports Server (NTRS)

    Houlahan, Padraig; Scalo, John

    1992-01-01

    A new method of image analysis is described, in which images partitioned into 'clouds' are represented by simplified skeleton images, called structure trees, that preserve the spatial relations of the component clouds while disregarding information concerning their sizes and shapes. The method can be used to discriminate between images of projected hierarchical (multiply nested) and random three-dimensional simulated collections of clouds constructed on the basis of observed interstellar properties, and even intermediate systems formed by combining random and hierarchical simulations. For a given structure type, the method can distinguish between different subclasses of models with different parameters and reliably estimate their hierarchical parameters: average number of children per parent, scale reduction factor per level of hierarchy, density contrast, and number of resolved levels. An application to a column density image of the Taurus complex constructed from IRAS data is given. Moderately strong evidence for a hierarchical structural component is found, and parameters of the hierarchy, as well as the average volume filling factor and mass efficiency of fragmentation per level of hierarchy, are estimated. The existence of nested structure contradicts models in which large molecular clouds are supposed to fragment, in a single stage, into roughly stellar-mass cores.

  13. Temperature and velocity conditions of air flow in vertical channel of hinged ventilated facade of a multistory building.

    NASA Astrophysics Data System (ADS)

    Statsenko, Elena; Ostrovaia, Anastasia; Pigurin, Andrey

    2018-03-01

    This article considers the influence of the building's tallness and the presence of mounting grooved lines on the parameters of heat transfer in the gap of a hinged ventilated facade. A numerical description of the processes occurring in a heat-gravitational flow is given. The average velocity and temperature of the heat-gravitational flow of a structure with open and sealed rusts are determined with unchanged geometric parameters of the gap. The dependence of the parameters influencing the thermomechanical characteristics of the enclosing structure is derived depending on the internal parameters of the system. Physical modeling of real multistory structures is performed by projecting actual parameters onto a reduced laboratory model (scaling).

  14. Comparison of the Cut-and-Paste and Full Moment Tensor Methods for Estimating Earthquake Source Parameters

    NASA Astrophysics Data System (ADS)

    Templeton, D.; Rodgers, A.; Helmberger, D.; Dreger, D.

    2008-12-01

    Earthquake source parameters (seismic moment, focal mechanism and depth) are now routinely reported by various institutions and network operators. These parameters are important for seismotectonic and earthquake ground motion studies as well as calibration of moment magnitude scales and model-based earthquake-explosion discrimination. Source parameters are often estimated from long-period three- component waveforms at regional distances using waveform modeling techniques with Green's functions computed for an average plane-layered models. One widely used method is waveform inversion for the full moment tensor (Dreger and Helmberger, 1993). This method (TDMT) solves for the moment tensor elements by performing a linearized inversion in the time-domain that minimizes the difference between the observed and synthetic waveforms. Errors in the seismic velocity structure inevitably arise due to either differences in the true average plane-layered structure or laterally varying structure. The TDMT method can account for errors in the velocity model by applying a single time shift at each station to the observed waveforms to best match the synthetics. Another method for estimating source parameters is the Cut-and-Paste (CAP) method. This method breaks the three-component regional waveforms into five windows: vertical and radial component Pnl; vertical and radial component Rayleigh wave; and transverse component Love waves. The CAP method performs a grid search over double-couple mechanisms and allows the synthetic waveforms for each phase (Pnl, Rayleigh and Love) to shift in time to account for errors in the Green's functions. Different filtering and weighting of the Pnl segment relative to surface wave segments enhances sensitivity to source parameters, however, some bias may be introduced. This study will compare the TDMT and CAP methods in two different regions in order to better understand the advantages and limitations of each method. Firstly, we will consider the northeastern China/Korean Peninsula region where average plane-layered structure is well known and relatively laterally homogenous. Secondly, we will consider the Middle East where crustal and upper mantle structure is laterally heterogeneous due to recent and ongoing tectonism. If time allows we will investigate the efficacy of each method for retrieving source parameters from synthetic data generated using a three-dimensional model of seismic structure of the Middle East, where phase delays are known to arise from path-dependent structure.

  15. Comparison between 1-minute and 15-minute averages of turbulence parameters

    NASA Technical Reports Server (NTRS)

    Noble, John M.

    1993-01-01

    Sonic anemometers are good instruments for measuring temperature and wind speed and are fast enough to calculate the temperature and wind structure parameters used to calculate the variance in the acoustic index of refraction. However, the turbulence parameters are typically 15-minute averaged point measurements. There are several problems associated with making point measurements and using them to represent a turbulence field. Some of the sonic anemometer data analyzed from the Joint Acoustic Propagation Experiment (JAPE) conducted during July 1991 at DIRT Site located at White Sands Missile Range, New Mexico, are examined.

  16. Structural and rectifying junction properties of self-assembled ZnO nanoparticles in polystyrene diblock copolymers on (1 0 0)Si substrates

    NASA Astrophysics Data System (ADS)

    Ali, H. A.; Iliadis, A. A.; Martinez-Miranda, L. J.; Lee, U.

    2006-06-01

    The structural and electronic transport properties of self-assembled ZnO nanoparticles in polystyrene-acrylic acid, [PS] m/[PAA] n, diblock copolymer on p-type (1 0 0)Si substrates are reported for the first time. Four different block repeat unit ratios ( m/ n) of 159/63, 139/17,106/17, and 106/4, were examined in order to correlate the physical parameters (size, density) of the nanoparticles with the copolymer block lengths m and n. We established that the self-assembled ZnO nanoparticle average size increased linearly with minority block length n, while the average density decreased exponentially with majority block length m. Average size varied from 20 nm to 250 nm and average density from 3.5 × 10 7 cm -2 to 1 × 10 10 cm -2, depending on copolymer parameters. X-ray diffraction studies showed the particles to have a wurtzite crystal structure with the (1 0 0) being the dominant orientation. Room temperature current-voltage characteristics measured for an Al/ZnO-nanocomposite/Si structure exhibited rectifying junction properties and indicated the formation of Al/ZnO-nanocomposite Schottky type junction with a barrier height of 0.7 V.

  17. Expansion and growth of structure observables in a macroscopic gravity averaged universe

    NASA Astrophysics Data System (ADS)

    Wijenayake, Tharake; Ishak, Mustapha

    2015-03-01

    We investigate the effect of averaging inhomogeneities on expansion and large-scale structure growth observables using the exact and covariant framework of macroscopic gravity (MG). It is well known that applying the Einstein's equations and spatial averaging do not commute and lead to the averaging problem and backreaction terms. For the MG formalism applied to the Friedman-Lemaitre-Robertson-Walker (FLRW) metric, the extra term can be encapsulated as an averaging density parameter denoted ΩA . An exact isotropic cosmological solution of MG for the flat FLRW metric is already known in the literature; we derive here an anisotropic exact solution. Using the isotropic solution, we compare the expansion history to current available data of distances to supernovae, baryon acoustic oscillations, cosmic microwave background last scattering surface data, and Hubble constant measurements, and find -0.05 ≤ΩA≤0.07 (at the 95% confidence level). For the flat metric case this reduces to -0.03 ≤ΩA≤0.05 . The positive part of the intervals can be rejected if a mathematical (and physical) prior is taken into account. We also find that the inclusion of this term in the fits can shift the values of the usual cosmological parameters by a few to several percents. Next, we derive an equation for the growth rate of large-scale structure in MG that includes a term due to the averaging and assess its effect on the evolution of the growth compared to that of the Lambda cold dark matter (Λ CDM ) concordance model. We find that an ΩA term of an amplitude range of [-0.04 ,-0.02 ] lead to a relative deviation of the growth from that of the Λ CDM of up to 2%-4% at late times. Thus, the shift in the growth could be of comparable amplitude to that caused by similar changes in cosmological parameters like the dark energy density parameter or its equation of state. The effect could also be comparable in amplitude to some systematic effects considered for future surveys. This indicates that the averaging term and its possible effect need to be tightly constrained in future precision cosmological studies.

  18. The average solar wind in the inner heliosphere: Structures and slow variations

    NASA Technical Reports Server (NTRS)

    Schwenn, R.

    1983-01-01

    Measurements from the HELIOS solar probes indicated that apart from solar activity related disturbances there exist two states of the solar wind which might result from basic differences in the acceleration process: the fast solar wind (v 600 kms(-)1) emanating from magnetically open regions in the solar corona and the "slow" solar wind (v 400 kms(-)1) correlated with the more active regions and its mainly closed magnetic structures. In a comprehensive study using all HELIOS data taken between 1974 and 1982 the average behavior of the basic plasma parameters were analyzed as functions of the solar wind speed. The long term variations of the solar wind parameters along the solar cycle were also determined and numerical estimates given. These modulations appear to be distinct though only minor. In agreement with earlier studies it was concluded that the major modulations are in the number and size of high speed streams and in the number of interplanetary shock waves caused by coronal transients. The latter ones usually cause huge deviations from the averages of all parameters.

  19. Determination of representative dimension parameter values of Korean knee joints for knee joint implant design.

    PubMed

    Kwak, Dai Soon; Tao, Quang Bang; Todo, Mitsugu; Jeon, Insu

    2012-05-01

    Knee joint implants developed by western companies have been imported to Korea and used for Korean patients. However, many clinical problems occur in knee joints of Korean patients after total knee joint replacement owing to the geometric mismatch between the western implants and Korean knee joint structures. To solve these problems, a method to determine the representative dimension parameter values of Korean knee joints is introduced to aid in the design of knee joint implants appropriate for Korean patients. Measurements of the dimension parameters of 88 male Korean knee joint subjects were carried out. The distribution of the subjects versus each measured parameter value was investigated. The measured dimension parameter values of each parameter were grouped by suitable intervals called the "size group," and average values of the size groups were calculated. The knee joint subjects were grouped as the "patient group" based on "size group numbers" of each parameter. From the iterative calculations to decrease the errors between the average dimension parameter values of each "patient group" and the dimension parameter values of the subjects, the average dimension parameter values that give less than the error criterion were determined to be the representative dimension parameter values for designing knee joint implants for Korean patients.

  20. Neotectonic activity and parameters of seismotectonic deformations of seismic belts in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Imaeva, Lyudmila; Gusev, Georgy; Imaev, Valerii; Mel'nikova, Valentina

    2017-10-01

    The Arctic-Asian and Okhotsk-Chukotka seismic belts bordering the Kolyma-Chukotka crustal plate are the subject of our study aimed at reconstructing the stress-strain state of the crust and defining the types of seismotectonic deformation (STD) in the region. Based on the degrees of activity of geodynamic processes, the regional principles for ranking neotectonic structures were constrained, and the corresponding classes of the discussed neotectonic structures were substantiated. We analyzed the structural tectonic positions of the modern structures, their deep structure parameters, and the systems of active faults in the Laptev, Kharaulakh, Koryak, and Chukotka segments and Chersky seismotectonic zone, as well as the tectonic stress fields revealed by tectonophysical analysis of the Late Cenozoic faults and folds. From the earthquake focal mechanisms, the average seismotectonic strain tensors were estimated. Using the geological, geostructural, geophysical and GPS data, and corresponding average tensors, the directions of the principal stress axes were determined. A regularity in the changes of tectonic settings in the Northeast Arctic was revealed.

  1. The effect of mechanical drawing on optical and structural properties of nylon 6 fibres

    NASA Astrophysics Data System (ADS)

    El-Bakary, M. A.

    2007-09-01

    The Pluta polarizing double-refracting interference microscope was attached to a mechanical drawing device to study the effect of cold drawing on the optical and structural properties of nylon 6 fibres. The microscope was used in its two positions for determining the refractive indices and birefringence of fibres. Different applied stresses and strain rates were obtained using the mechanical-drawing device. The effect of the applied stresses on the optical and physical parameters was investigated. The resulting optical parameters were utilized to investigate the polarizability per unit volume, the optical orientation factor, the orientation angle and the average work per chain. The refractive index and birefringence profiles were measured. Relationships between the average work per chain and optical parameters at different strains rates were determined. An empirical formula was deduced for these fibres. Micro-interferograms are given for illustration.

  2. Crystal water dynamics of guanosine dihydrate: analysis of atomic displacement parameters, time profile of hydrogen-bonding probability, and translocation of water by MD simulation.

    PubMed

    Yoneda, Shigetaka; Sugawara, Yoko; Urabe, Hisako

    2005-01-27

    The dynamics of crystal water molecules of guanosine dihydrate are investigated in detail by molecular dynamics (MD) simulation. A 2 ns simulation is performed using a periodic boundary box composed of 4 x 5 x 8 crystallographic unit cells and using the particle-mesh Ewald method for calculation of electrostatic energy. The simulated average atomic positions and atomic displacement parameters are remarkably coincident with the experimental values determined by X-ray analysis, confirming the high accuracy of this simulation. The dynamics of crystal water are analyzed in terms of atomic displacement parameters, orientation vectors, order parameters, self-correlation functions of the orientation vectors, time profiles of hydrogen-bonding probability, and translocations. The simulation clarifies that the average structure is composed of various stable and transient structures of the molecules. The simulated guanosine crystal forms a layered structure, with four water sites per asymmetric unit, classified as either interlayer water or intralayer water. From a detailed analysis of the translocations of water molecules in the simulation, columns of intralayer water molecules along the c axis appear to represent a pathway for hydration and dehydration by a kind of molecular valve mechanism.

  3. On the Nature of SEM Estimates of ARMA Parameters.

    ERIC Educational Resources Information Center

    Hamaker, Ellen L.; Dolan, Conor V.; Molenaar, Peter C. M.

    2002-01-01

    Reexamined the nature of structural equation modeling (SEM) estimates of autoregressive moving average (ARMA) models, replicated the simulation experiments of P. Molenaar, and examined the behavior of the log-likelihood ratio test. Simulation studies indicate that estimates of ARMA parameters observed with SEM software are identical to those…

  4. Individual Differences in a Positional Learning Task across the Adult Lifespan

    ERIC Educational Resources Information Center

    Rast, Philippe; Zimprich, Daniel

    2010-01-01

    This study aimed at modeling individual and average non-linear trajectories of positional learning using a structured latent growth curve approach. The model is based on an exponential function which encompasses three parameters: Initial performance, learning rate, and asymptotic performance. These learning parameters were compared in a positional…

  5. Parameter interdependence and uncertainty induced by lumping in a hydrologic model

    NASA Astrophysics Data System (ADS)

    Gallagher, Mark R.; Doherty, John

    2007-05-01

    Throughout the world, watershed modeling is undertaken using lumped parameter hydrologic models that represent real-world processes in a manner that is at once abstract, but nevertheless relies on algorithms that reflect real-world processes and parameters that reflect real-world hydraulic properties. In most cases, values are assigned to the parameters of such models through calibration against flows at watershed outlets. One criterion by which the utility of the model and the success of the calibration process are judged is that realistic values are assigned to parameters through this process. This study employs regularization theory to examine the relationship between lumped parameters and corresponding real-world hydraulic properties. It demonstrates that any kind of parameter lumping or averaging can induce a substantial amount of "structural noise," which devices such as Box-Cox transformation of flows and autoregressive moving average (ARMA) modeling of residuals are unlikely to render homoscedastic and uncorrelated. Furthermore, values estimated for lumped parameters are unlikely to represent average values of the hydraulic properties after which they are named and are often contaminated to a greater or lesser degree by the values of hydraulic properties which they do not purport to represent at all. As a result, the question of how rigidly they should be bounded during the parameter estimation process is still an open one.

  6. Estimating free-body modal parameters from tests of a constrained structure

    NASA Technical Reports Server (NTRS)

    Cooley, Victor M.

    1993-01-01

    Hardware advances in suspension technology for ground tests of large space structures provide near on-orbit boundary conditions for modal testing. Further advances in determining free-body modal properties of constrained large space structures have been made, on the analysis side, by using time domain parameter estimation and perturbing the stiffness of the constraints over multiple sub-tests. In this manner, passive suspension constraint forces, which are fully correlated and therefore not usable for spectral averaging techniques, are made effectively uncorrelated. The technique is demonstrated with simulated test data.

  7. [Structure Parameters and Quality Outcomes of Ambulant Home-care].

    PubMed

    Suhr, Ralf; Raeder, Kathrin; Kuntz, Simone; Strube-Lahmann, Sandra; Latendorf, Antje; Klingelhöfer-Noe, Jürgen; Lahmann, Nils

    2018-05-14

    So far, there are few data available on the changes of ambulant home-care in Germany over the last decades. Therefore, the aim of this research was to provide structure data on nursing personnel, funding, size, regional differences, and training needs of ambulant home-care services in Germany. In addition, a possible association between structure parameters and quality outcomes for pressure ulcer and malnutrition was investigated. In 2015, a multicenter cross-sectional study was conducted in home-care services in Germany. Structure data from 99 randomly selected home-care services as well as data on pressure ulcers and malnutrition of 903 care-dependent clients were analyzed. The median (<98 clients) was used as a cut-off to differentiate between small and large home-care services. From a cut-off of 20,000 inhabitants, a region was considered urban. The average prevalence for decubitus and malnutrition (BMI<20 Kg/m2) were determined for each home-care service, and possible associations with structure parameters were analyzed using a multiple linear regression model. The proportion of registered nurses in non-private (private) home-care services was 60.6% (52.3%). The proportion of employees with a 200- h basic qualification in nursing was higher in private (12.5 vs. 4.7%), small home-care services (14.0 vs. 5.8%) and in urban regions (11.5 vs 5.7%). In average, registered nurses working in small home-care services spent significantly more time per client than the ones working in large services (3.8 vs. 2.9 h/week). The highest need for further training was shown on the subjects of pain, medication and cognitive impairment. No statistically significant correlation could be found between the average decubitus prevalence and structure parameters. Only the association between malnutrition prevalence and the proportion of registered nurses was statistically significant. The present representative study provides structure data on nursing personnel, funding, size, regional differences, and training needs of ambulant home-care services in Germany that could be used as a baseline for further investigations. No statistically significant association could be found between structure and outcome quality parameters. There is a need for further training of nursing personnel on the subjects of medication, pain and cognitive impairment. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Characterizing core-periphery structure of complex network by h-core and fingerprint curve

    NASA Astrophysics Data System (ADS)

    Li, Simon S.; Ye, Adam Y.; Qi, Eric P.; Stanley, H. Eugene; Ye, Fred Y.

    2018-02-01

    It is proposed that the core-periphery structure of complex networks can be simulated by h-cores and fingerprint curves. While the features of core structure are characterized by h-core, the features of periphery structure are visualized by rose or spiral curve as the fingerprint curve linking to entire-network parameters. It is suggested that a complex network can be approached by h-core and rose curves as the first-order Fourier-approach, where the core-periphery structure is characterized by five parameters: network h-index, network radius, degree power, network density and average clustering coefficient. The simulation looks Fourier-like analysis.

  9. Aperture averaging in strong oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Gökçe, Muhsin Caner; Baykal, Yahya

    2018-04-01

    Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence.

  10. Data-Driven High-Throughput Prediction of the 3D Structure of Small Molecules: Review and Progress

    PubMed Central

    Andronico, Alessio; Randall, Arlo; Benz, Ryan W.; Baldi, Pierre

    2011-01-01

    Accurate prediction of the 3D structure of small molecules is essential in order to understand their physical, chemical, and biological properties including how they interact with other molecules. Here we survey the field of high-throughput methods for 3D structure prediction and set up new target specifications for the next generation of methods. We then introduce COSMOS, a novel data-driven prediction method that utilizes libraries of fragment and torsion angle parameters. We illustrate COSMOS using parameters extracted from the Cambridge Structural Database (CSD) by analyzing their distribution and then evaluating the system’s performance in terms of speed, coverage, and accuracy. Results show that COSMOS represents a significant improvement when compared to the state-of-the-art, particularly in terms of coverage of complex molecular structures, including metal-organics. COSMOS can predict structures for 96.4% of the molecules in the CSD [99.6% organic, 94.6% metal-organic] whereas the widely used commercial method CORINA predicts structures for 68.5% [98.5% organic, 51.6% metal-organic]. On the common subset of molecules predicted by both methods COSMOS makes predictions with an average speed per molecule of 0.15s [0.10s organic, 0.21s metal-organic], and an average RMSD of 1.57Å [1.26Å organic, 1.90Å metal-organic], and CORINA makes predictions with an average speed per molecule of 0.13s [0.18s organic, 0.08s metal-organic], and an average RMSD of 1.60Å [1.13Å organic, 2.11Å metal-organic]. COSMOS is available through the ChemDB chemoinformatics web portal at: http://cdb.ics.uci.edu/. PMID:21417267

  11. Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles.

    PubMed

    Kuśnieruk, Sylwia; Wojnarowicz, Jacek; Chodara, Agnieszka; Chudoba, Tadeusz; Gierlotka, Stanislaw; Lojkowski, Witold

    2016-01-01

    Hydroxyapatite (HAp) nanoparticles of tunable diameter were obtained by the precipitation method at room temperature and by microwave hydrothermal synthesis (MHS). The following parameters of the obtained nanostructured HAp were determined: pycnometric density, specific surface area, phase purity, lattice parameters, particle size, particle size distribution, water content, and structure. HAp nanoparticle morphology and structure were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction measurements confirmed crystalline HAp was synthesized, which was pure in terms of phase. It was shown that by changing the synthesis parameters, the diameter of HAp nanoparticles could be controlled. The average diameter of the HAp nanoparticles was determined by Scherrer's equation via the Nanopowder XRD Processor Demo web application, which interprets the results of specific surface area and TEM measurements using the dark-field technique. The obtained nanoparticles with average particle diameter ranging from 8-39 nm were characterized by having homogeneous morphology with a needle shape and a narrow particle size distribution. Strong similarities were found when comparing the properties of some types of nanostructured hydroxyapatite with natural occurring apatite found in animal bones and teeth.

  12. Airborne-Measured Spatially-Averaged Temperature and Moisture Turbulent Structure Parameters Over a Heterogeneous Surface

    NASA Astrophysics Data System (ADS)

    Platis, Andreas; Martinez, Daniel; Bange, Jens

    2014-05-01

    Turbulent structure parameters of temperature and humidity can be derived from scintillometer measurements along horizontal paths of several 100 m to several 10 km. These parameters can be very useful to estimate the vertical turbulent heat fluxes at the surface (applying MOST). However, there are many assumptions required by this method which can be checked using in situ data, e.g. 1) Were CT2 and CQ2 correctly derived from the initial CN2 scintillometer data (structure parameter of density fluctuations or refraction index, respectively)? 2) What is the influence of the surround hetereogeneous surface regarding its footprint and the weighted averaging effect of the scintillometer method 3) Does MOST provide the correct turbulent fluxes from scintillometer data. To check these issues, in situ data from low-level flight measurements are well suited, since research aircraft cover horizontal distances in very short time (Taylor's hypothesis of a frozen turbulence structure can be applyed very likely). From airborne-measured time series the spatial series are calculated and then their structure functions that finally provide the structure parameters. The influence of the heterogeneous surface can be controlled by the definition of certain moving-average window sizes. A very useful instrument for this task are UAVs since they can fly very low and maintain altitude very precisely. However, the data base of such unmanned operations is still quite thin. So in this contribution we want to present turbulence data obtained with the Helipod, a turbulence probe hanging below a manned helicopter. The structure parameters of temperature and moisture, CT2 and CQ2, in the lower convective boundary layer were derived from data measured using the Helipod in 2003. The measurements were carried out during the LITFASS03 campaign over a heterogeneous land surface around the boundary-layer field site of the Lindenberg Meteorological Observatory-Richard-Aßmann-Observatory (MOL) of the German Meteorological Service during May and June. The synoptic situation of the analyzed days are fair weather conditions with temperature at about 30, sometimes with previous rain events. The spatial series of CT2 and CQ2 showed considerable variability along the flight path that was caused by surface heterogeneity. Measurement flights were performed in the morning and during noon, allowing for a temporal evaluation of the structure parameters during the day. CT2 indicates a high variability between forest, agricultural landscape and lakes at a flight level of 100 m above ground. CQ2 showed lower variations between the different types of soils. The decrease of CT2 with height as predicted by free-convection scaling was confirmed for the analyzed flights.

  13. Weight optimization of an aerobrake structural concept for a lunar transfer vehicle

    NASA Technical Reports Server (NTRS)

    Bush, Lance B.; Unal, Resit; Rowell, Lawrence F.; Rehder, John J.

    1992-01-01

    An aerobrake structural concept for a lunar transfer vehicle was weight optimized through the use of the Taguchi design method, finite element analyses, and element sizing routines. Six design parameters were chosen to represent the aerobrake structural configuration. The design parameters included honeycomb core thickness, diameter-depth ratio, shape, material, number of concentric ring frames, and number of radial frames. Each parameter was assigned three levels. The aerobrake structural configuration with the minimum weight was 44 percent less than the average weight of all the remaining satisfactory experimental configurations. In addition, the results of this study have served to bolster the advocacy of the Taguchi method for aerospace vehicle design. Both reduced analysis time and an optimized design demonstrated the applicability of the Taguchi method to aerospace vehicle design.

  14. Coulomb structures of charged macroparticles in static magnetic traps at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Vasiliev, M. M.; Petrov, O. F.; Statsenko, K. B.

    2015-12-01

    Electrically charged (up to 107 e) macroscopic superconducting particles with sizes in the micrometer range confined in a static magnetic trap in liquid nitrogen and in nitrogen vapor at temperatures of 77-91 K are observed experimentally. The macroparticles with sizes up to 60 μm levitate in a nonuniform static magnetic field B ~ 2500 G. The formation of strongly correlated structures comprising as many as ~103 particles is reported. The average particle distance in these structures amounts to 475 μm. The coupling parameter and the Lindemann parameter of these structures are estimated to be ~107 and ~0.03, respectively, which is characteristic of strongly correlated crystalline or glasslike structures.

  15. Motional timescale predictions by molecular dynamics simulations: case study using proline and hydroxyproline sidechain dynamics.

    PubMed

    Aliev, Abil E; Kulke, Martin; Khaneja, Harmeet S; Chudasama, Vijay; Sheppard, Tom D; Lanigan, Rachel M

    2014-02-01

    We propose a new approach for force field optimizations which aims at reproducing dynamics characteristics using biomolecular MD simulations, in addition to improved prediction of motionally averaged structural properties available from experiment. As the source of experimental data for dynamics fittings, we use (13) C NMR spin-lattice relaxation times T1 of backbone and sidechain carbons, which allow to determine correlation times of both overall molecular and intramolecular motions. For structural fittings, we use motionally averaged experimental values of NMR J couplings. The proline residue and its derivative 4-hydroxyproline with relatively simple cyclic structure and sidechain dynamics were chosen for the assessment of the new approach in this work. Initially, grid search and simplexed MD simulations identified large number of parameter sets which fit equally well experimental J couplings. Using the Arrhenius-type relationship between the force constant and the correlation time, the available MD data for a series of parameter sets were analyzed to predict the value of the force constant that best reproduces experimental timescale of the sidechain dynamics. Verification of the new force-field (termed as AMBER99SB-ILDNP) against NMR J couplings and correlation times showed consistent and significant improvements compared to the original force field in reproducing both structural and dynamics properties. The results suggest that matching experimental timescales of motions together with motionally averaged characteristics is the valid approach for force field parameter optimization. Such a comprehensive approach is not restricted to cyclic residues and can be extended to other amino acid residues, as well as to the backbone. Copyright © 2013 Wiley Periodicals, Inc.

  16. Turbulent Flow and Sand Dune Dynamics: Identifying Controls on Aeolian Sediment Transport

    NASA Astrophysics Data System (ADS)

    Weaver, C. M.; Wiggs, G.

    2007-12-01

    Sediment transport models are founded on cubic power relationships between the transport rate and time averaged flow parameters. These models have achieved limited success and recent aeolian and fluvial research has focused on the modelling and measurement of sediment transport by temporally varying flow conditions. Studies have recognised turbulence as a driving force in sediment transport and have highlighted the importance of coherent flow structures in sediment transport systems. However, the exact mechanisms are still unclear. Furthermore, research in the fluvial environment has identified the significance of turbulent structures for bedform morphology and spacing. However, equivalent research in the aeolian domain is absent. This paper reports the findings of research carried out to characterise the importance of turbulent flow parameters in aeolian sediment transport and determine how turbulent energy and turbulent structures change in response to dune morphology. The relative importance of mean and turbulent wind parameters on aeolian sediment flux was examined in the Skeleton Coast, Namibia. Measurements of wind velocity (using sonic anemometers) and sand transport (using grain impact sensors) at a sampling frequency of 10 Hz were made across a flat surface and along transects on a 9 m high barchan dune. Mean wind parameters and mass sand flux were measured using cup anemometers and wedge-shaped sand traps respectively. Vertical profile data from the sonic anemometers were used to compute turbulence and turbulent stress (Reynolds stress; instantaneous horizontal and vertical fluctuations; coherent flow structures) and their relationship with respect to sand transport and evolving dune morphology. On the flat surface time-averaged parameters generally fail to characterise sand transport dynamics, particularly as the averaging interval is reduced. However, horizontal wind speed correlates well with sand transport even with short averaging times. Quadrant analysis revealed that turbulent events with a positive horizontal component, such as sweeps and outward interactions, were responsible for the majority of sand transport. On the dune surface results demonstrate the development and modification of turbulence and sediment flux in key regions: toe, crest and brink. Analysis suggests that these modifications are directly controlled by streamline curvature and flow acceleration. Conflicting models of dune development, morphology and stability arise when based upon either the dynamics of measured turbulent flow or mean flow.

  17. The crystal structure of tin sulphate, SnSO[subscript 4], and comparison with isostructural SrSO[subscript 4], PbSO[subscript 4], and BaSO[subscript 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antao, Sytle M.

    2012-10-23

    The crystal structure of tin (II) sulphate, SnSO{sub 4}, was obtained by Rietveld refinement using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. The structure was refined in space group Pbnm. The unit-cell parameters for SnSO{sub 4} are a = 7.12322(1), b = 8.81041(1), c = 5.32809(1) {angstrom}, and V = 334.383(1) {angstrom}{sup 3}. The average [12] distance is 2.9391(4) {angstrom}. However, the Sn{sup 2+} cation has a pyramidal [3]-coordination to O atoms and the average [3] = 2.271(1) {angstrom}. If Sn is considered as [12]-coordinated, SnSO{sub 4} has a structure similar to barite, BaSO{sub 4}, and its structuralmore » parameters are intermediate between those of BaSO{sub 4} and PbSO{sub 4}. The tetrahedral SO{sub 4} group has an average [4] = 1.472(1) {angstrom} in SnSO{sub 4}. Comparing SnSO{sub 4} with the isostructural SrSO{sub 4}, PbSO{sub 4}, and BaSO{sub 4}, several well-defined trends are observed. The radii, rM, of the M{sup 2+}(=Sr, Pb, Sn, and Ba) cations and average distances vary linearly with V because of the effective size of the M{sup 2+} cation. Based on the trend for the isostructural sulphates, the average [12] distance is slightly longer than expected because of the lone pair of electrons on the Sn{sup 2+} cation.« less

  18. Experimental Study on Mechanical Properties and Porosity of Organic Microcapsules Based Self-Healing Cementitious Composite.

    PubMed

    Wang, Xianfeng; Sun, Peipei; Han, Ningxu; Xing, Feng

    2017-01-01

    Encapsulation of healing agents embedded in a material matrix has become one of the major approaches for achieving self-healing function in cementitious materials in recent years. A novel type of microcapsules based self-healing cementitious composite was developed in Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University. In this study, both macro performance and the microstructure of the composite are investigated. The macro performance was evaluated by employing the compressive strength and the dynamic modulus, whereas the microstructure was represented by the pore structure parameters such as porosity, cumulative-pore volume, and average-pore diameter, which are significantly correlated to the pore-size distribution and the compressive strength. The results showed that both the compressive strength and the dynamic modulus, as well as the pore structure parameters such as porosity, cumulative-pore volume, and average-pore diameter of the specimen decrease to some extent with the amount of microcapsules. However, the self-healing rate and the recovery rate of the specimen performance and the pore-structure parameters increase with the amount of microcapsules. The results should confirm the self-healing function of microcapsules in the cementitious composite from macroscopic and microscopic viewpoints.

  19. Experimental Study on Mechanical Properties and Porosity of Organic Microcapsules Based Self-Healing Cementitious Composite

    PubMed Central

    Wang, Xianfeng; Sun, Peipei; Han, Ningxu; Xing, Feng

    2017-01-01

    Encapsulation of healing agents embedded in a material matrix has become one of the major approaches for achieving self-healing function in cementitious materials in recent years. A novel type of microcapsules based self-healing cementitious composite was developed in Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University. In this study, both macro performance and the microstructure of the composite are investigated. The macro performance was evaluated by employing the compressive strength and the dynamic modulus, whereas the microstructure was represented by the pore structure parameters such as porosity, cumulative-pore volume, and average-pore diameter, which are significantly correlated to the pore-size distribution and the compressive strength. The results showed that both the compressive strength and the dynamic modulus, as well as the pore structure parameters such as porosity, cumulative-pore volume, and average-pore diameter of the specimen decrease to some extent with the amount of microcapsules. However, the self-healing rate and the recovery rate of the specimen performance and the pore-structure parameters increase with the amount of microcapsules. The results should confirm the self-healing function of microcapsules in the cementitious composite from macroscopic and microscopic viewpoints. PMID:28772382

  20. Probability Analysis of the Wave-Slamming Pressure Values of the Horizontal Deck with Elastic Support

    NASA Astrophysics Data System (ADS)

    Zuo, Weiguang; Liu, Ming; Fan, Tianhui; Wang, Pengtao

    2018-06-01

    This paper presents the probability distribution of the slamming pressure from an experimental study of regular wave slamming on an elastically supported horizontal deck. The time series of the slamming pressure during the wave impact were first obtained through statistical analyses on experimental data. The exceeding probability distribution of the maximum slamming pressure peak and distribution parameters were analyzed, and the results show that the exceeding probability distribution of the maximum slamming pressure peak accords with the three-parameter Weibull distribution. Furthermore, the range and relationships of the distribution parameters were studied. The sum of the location parameter D and the scale parameter L was approximately equal to 1.0, and the exceeding probability was more than 36.79% when the random peak was equal to the sample average during the wave impact. The variation of the distribution parameters and slamming pressure under different model conditions were comprehensively presented, and the parameter values of the Weibull distribution of wave-slamming pressure peaks were different due to different test models. The parameter values were found to decrease due to the increased stiffness of the elastic support. The damage criterion of the structure model caused by the wave impact was initially discussed, and the structure model was destroyed when the average slamming time was greater than a certain value during the duration of the wave impact. The conclusions of the experimental study were then described.

  1. Average intensity and spreading of an astigmatic sinh-Gaussian beam with small beam width propagating in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Zhu, Kaicheng; Tang, Huiqin; Xia, Hui

    2017-10-01

    Propagation properties of astigmatic sinh-Gaussian beams (ShGBs) with small beam width in turbulent atmosphere are investigated. Based on the extended Huygens-Fresnel integral, analytical formulae for the average intensity and the effective beam size of an astigmatic ShGB are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of an astigmatic ShGB propagating in turbulent atmosphere are numerically demonstrated. The influences of the beam parameters and the structure constant of atmospheric turbulence on the propagation properties of astigmatic ShGBs are also discussed in detail. In particular, for sufficiently small beam width and sinh-part parameter as well as suitable astigmatism, we show that the average intensity pattern converts into a perfect dark-hollow profile from initial two-petal pattern when ShGBs with astigmatic aberration propagate through atmospheric turbulence.

  2. Motional timescale predictions by molecular dynamics simulations: Case study using proline and hydroxyproline sidechain dynamics

    PubMed Central

    Aliev, Abil E; Kulke, Martin; Khaneja, Harmeet S; Chudasama, Vijay; Sheppard, Tom D; Lanigan, Rachel M

    2014-01-01

    We propose a new approach for force field optimizations which aims at reproducing dynamics characteristics using biomolecular MD simulations, in addition to improved prediction of motionally averaged structural properties available from experiment. As the source of experimental data for dynamics fittings, we use 13C NMR spin-lattice relaxation times T1 of backbone and sidechain carbons, which allow to determine correlation times of both overall molecular and intramolecular motions. For structural fittings, we use motionally averaged experimental values of NMR J couplings. The proline residue and its derivative 4-hydroxyproline with relatively simple cyclic structure and sidechain dynamics were chosen for the assessment of the new approach in this work. Initially, grid search and simplexed MD simulations identified large number of parameter sets which fit equally well experimental J couplings. Using the Arrhenius-type relationship between the force constant and the correlation time, the available MD data for a series of parameter sets were analyzed to predict the value of the force constant that best reproduces experimental timescale of the sidechain dynamics. Verification of the new force-field (termed as AMBER99SB-ILDNP) against NMR J couplings and correlation times showed consistent and significant improvements compared to the original force field in reproducing both structural and dynamics properties. The results suggest that matching experimental timescales of motions together with motionally averaged characteristics is the valid approach for force field parameter optimization. Such a comprehensive approach is not restricted to cyclic residues and can be extended to other amino acid residues, as well as to the backbone. Proteins 2014; 82:195–215. © 2013 Wiley Periodicals, Inc. PMID:23818175

  3. Analysis of energy-based algorithms for RNA secondary structure prediction

    PubMed Central

    2012-01-01

    Background RNA molecules play critical roles in the cells of organisms, including roles in gene regulation, catalysis, and synthesis of proteins. Since RNA function depends in large part on its folded structures, much effort has been invested in developing accurate methods for prediction of RNA secondary structure from the base sequence. Minimum free energy (MFE) predictions are widely used, based on nearest neighbor thermodynamic parameters of Mathews, Turner et al. or those of Andronescu et al. Some recently proposed alternatives that leverage partition function calculations find the structure with maximum expected accuracy (MEA) or pseudo-expected accuracy (pseudo-MEA) methods. Advances in prediction methods are typically benchmarked using sensitivity, positive predictive value and their harmonic mean, namely F-measure, on datasets of known reference structures. Since such benchmarks document progress in improving accuracy of computational prediction methods, it is important to understand how measures of accuracy vary as a function of the reference datasets and whether advances in algorithms or thermodynamic parameters yield statistically significant improvements. Our work advances such understanding for the MFE and (pseudo-)MEA-based methods, with respect to the latest datasets and energy parameters. Results We present three main findings. First, using the bootstrap percentile method, we show that the average F-measure accuracy of the MFE and (pseudo-)MEA-based algorithms, as measured on our largest datasets with over 2000 RNAs from diverse families, is a reliable estimate (within a 2% range with high confidence) of the accuracy of a population of RNA molecules represented by this set. However, average accuracy on smaller classes of RNAs such as a class of 89 Group I introns used previously in benchmarking algorithm accuracy is not reliable enough to draw meaningful conclusions about the relative merits of the MFE and MEA-based algorithms. Second, on our large datasets, the algorithm with best overall accuracy is a pseudo MEA-based algorithm of Hamada et al. that uses a generalized centroid estimator of base pairs. However, between MFE and other MEA-based methods, there is no clear winner in the sense that the relative accuracy of the MFE versus MEA-based algorithms changes depending on the underlying energy parameters. Third, of the four parameter sets we considered, the best accuracy for the MFE-, MEA-based, and pseudo-MEA-based methods is 0.686, 0.680, and 0.711, respectively (on a scale from 0 to 1 with 1 meaning perfect structure predictions) and is obtained with a thermodynamic parameter set obtained by Andronescu et al. called BL* (named after the Boltzmann likelihood method by which the parameters were derived). Conclusions Large datasets should be used to obtain reliable measures of the accuracy of RNA structure prediction algorithms, and average accuracies on specific classes (such as Group I introns and Transfer RNAs) should be interpreted with caution, considering the relatively small size of currently available datasets for such classes. The accuracy of the MEA-based methods is significantly higher when using the BL* parameter set of Andronescu et al. than when using the parameters of Mathews and Turner, and there is no significant difference between the accuracy of MEA-based methods and MFE when using the BL* parameters. The pseudo-MEA-based method of Hamada et al. with the BL* parameter set significantly outperforms all other MFE and MEA-based algorithms on our large data sets. PMID:22296803

  4. Analysis of energy-based algorithms for RNA secondary structure prediction.

    PubMed

    Hajiaghayi, Monir; Condon, Anne; Hoos, Holger H

    2012-02-01

    RNA molecules play critical roles in the cells of organisms, including roles in gene regulation, catalysis, and synthesis of proteins. Since RNA function depends in large part on its folded structures, much effort has been invested in developing accurate methods for prediction of RNA secondary structure from the base sequence. Minimum free energy (MFE) predictions are widely used, based on nearest neighbor thermodynamic parameters of Mathews, Turner et al. or those of Andronescu et al. Some recently proposed alternatives that leverage partition function calculations find the structure with maximum expected accuracy (MEA) or pseudo-expected accuracy (pseudo-MEA) methods. Advances in prediction methods are typically benchmarked using sensitivity, positive predictive value and their harmonic mean, namely F-measure, on datasets of known reference structures. Since such benchmarks document progress in improving accuracy of computational prediction methods, it is important to understand how measures of accuracy vary as a function of the reference datasets and whether advances in algorithms or thermodynamic parameters yield statistically significant improvements. Our work advances such understanding for the MFE and (pseudo-)MEA-based methods, with respect to the latest datasets and energy parameters. We present three main findings. First, using the bootstrap percentile method, we show that the average F-measure accuracy of the MFE and (pseudo-)MEA-based algorithms, as measured on our largest datasets with over 2000 RNAs from diverse families, is a reliable estimate (within a 2% range with high confidence) of the accuracy of a population of RNA molecules represented by this set. However, average accuracy on smaller classes of RNAs such as a class of 89 Group I introns used previously in benchmarking algorithm accuracy is not reliable enough to draw meaningful conclusions about the relative merits of the MFE and MEA-based algorithms. Second, on our large datasets, the algorithm with best overall accuracy is a pseudo MEA-based algorithm of Hamada et al. that uses a generalized centroid estimator of base pairs. However, between MFE and other MEA-based methods, there is no clear winner in the sense that the relative accuracy of the MFE versus MEA-based algorithms changes depending on the underlying energy parameters. Third, of the four parameter sets we considered, the best accuracy for the MFE-, MEA-based, and pseudo-MEA-based methods is 0.686, 0.680, and 0.711, respectively (on a scale from 0 to 1 with 1 meaning perfect structure predictions) and is obtained with a thermodynamic parameter set obtained by Andronescu et al. called BL* (named after the Boltzmann likelihood method by which the parameters were derived). Large datasets should be used to obtain reliable measures of the accuracy of RNA structure prediction algorithms, and average accuracies on specific classes (such as Group I introns and Transfer RNAs) should be interpreted with caution, considering the relatively small size of currently available datasets for such classes. The accuracy of the MEA-based methods is significantly higher when using the BL* parameter set of Andronescu et al. than when using the parameters of Mathews and Turner, and there is no significant difference between the accuracy of MEA-based methods and MFE when using the BL* parameters. The pseudo-MEA-based method of Hamada et al. with the BL* parameter set significantly outperforms all other MFE and MEA-based algorithms on our large data sets.

  5. Comparison of Ionospheric Parameters during Similar Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Blagoveshchensky, D. V.

    2018-03-01

    The degree of closeness of ionospheric parameters during one magnetic storm and of the same parameters during another, similar, storm is estimated. Overall, four storms—two pairs of storms close in structure and appearance according to recording of the magnetic field X-component—were analyzed. The examination was based on data from Sodankyla observatory (Finland). The f-graphs of the ionospheric vertical sounding, magnetometer data, and riometer data on absorption were used. The main results are as follows. The values of the critical frequencies foF2, foF1, and foE for different but similar magnetic storms differ insignificantly. In the daytime, the difference is on average 6% (from 0 to 11.1%) for all ionospheric layers. In the nighttime conditions, the difference for foF2 is 4%. The nighttime values of foEs differ on average by 20%. These estimates potentially make it possible to forecast ionospheric parameters for a particular storm.

  6. A stability analysis of AVE-4 severe weather soundings

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1982-01-01

    The stability and vertical structure of an average severe storm sounding, consisting of both thermodynamic and wind vertical profiles, were investigated to determine if they could be distinguished from an average lag sounding taken 3 to 6 hours prior to severe weather occurrence. The term average is defined here to indicate the arithmetic mean of a parameter, as a function of altitude, determined from a large number of available observations taken either close to severe weather occurrence, or else more than 3 hours before it occurs. The investigative computations were also done to help determine if a severe storm forecast or index could possibly be used or developed. These mean vertical profiles of thermodynamic and wind parameters as a function of severity of the weather, determined from manually digitized radar (MDR) categories are presented. Profile differences and stability index differences are presented along with the development of the Johnson Lag Index (JLI) which is determined entirely upon environmental vertical parameter differences between conditions 3 hours prior to severe weather, and severe weather itself.

  7. Thomson scattering in the average-atom approximation.

    PubMed

    Johnson, W R; Nilsen, J; Cheng, K T

    2012-09-01

    The average-atom model is applied to study Thomson scattering of x-rays from warm dense matter with emphasis on scattering by bound electrons. Parameters needed to evaluate the dynamic structure function (chemical potential, average ionic charge, free electron density, bound and continuum wave functions, and occupation numbers) are obtained from the average-atom model. The resulting analysis provides a relatively simple diagnostic for use in connection with x-ray scattering measurements. Applications are given to dense hydrogen, beryllium, aluminum, and titanium plasmas. In the case of titanium, bound states are predicted to modify the spectrum significantly.

  8. Determination of the turbulence integral model parameters for a case of a coolant angular flow in regular rod-bundle

    NASA Astrophysics Data System (ADS)

    Bayaskhalanov, M. V.; Vlasov, M. N.; Korsun, A. S.; Merinov, I. G.; Philippov, M. Ph

    2017-11-01

    Research results of “k-ε” turbulence integral model (TIM) parameters dependence on the angle of a coolant flow in regular smooth cylindrical rod-bundle are presented. TIM is intended for the definition of efficient impulse and heat transport coefficients in the averaged equations of a heat and mass transfer in the regular rod structures in an anisotropic porous media approximation. The TIM equations are received by volume-averaging of the “k-ε” turbulence model equations on periodic cell of rod-bundle. The water flow across rod-bundle under angles from 15 to 75 degrees was simulated by means of an ANSYS CFX code. Dependence of the TIM parameters on flow angle was as a result received.

  9. Effects of Process Parameters on Solidification Structure of A390 Aluminum Alloy Hollow Billet

    NASA Astrophysics Data System (ADS)

    Zuo, Kesheng; Zhang, Haitao; Qin, Ke; Cui, Jianzhong; Chen, Qingzhang

    2017-08-01

    The effects of process parameters on the solidification structure of A390 aluminum alloy hollow billets prepared by direct-chill casting were investigated. The decrease of casting temperature deteriorated the homogeneity and increased the size of primary Si particles in the hollow billet. Although the average size of primary Si particles was not obviously affected by the increase of casting speed, the thickness of Si-depleted layer at the inner wall increased with the higher casting speed. The tensile strength of A390 alloy is a function of the percentage of coarse Si particles (larger than 35 μm) and the average size of primary Si particles. Higher and more stable tensile strength can be received in the hollow billet with the casting temperature of 1050 K (777 °C), because the fine and uniformly distributed primary Si particles were obtained in the hollow billet.

  10. Comparison of two non-convex mixed-integer nonlinear programming algorithms applied to autoregressive moving average model structure and parameter estimation

    NASA Astrophysics Data System (ADS)

    Uilhoorn, F. E.

    2016-10-01

    In this article, the stochastic modelling approach proposed by Box and Jenkins is treated as a mixed-integer nonlinear programming (MINLP) problem solved with a mesh adaptive direct search and a real-coded genetic class of algorithms. The aim is to estimate the real-valued parameters and non-negative integer, correlated structure of stationary autoregressive moving average (ARMA) processes. The maximum likelihood function of the stationary ARMA process is embedded in Akaike's information criterion and the Bayesian information criterion, whereas the estimation procedure is based on Kalman filter recursions. The constraints imposed on the objective function enforce stability and invertibility. The best ARMA model is regarded as the global minimum of the non-convex MINLP problem. The robustness and computational performance of the MINLP solvers are compared with brute-force enumeration. Numerical experiments are done for existing time series and one new data set.

  11. Stacking fault density and bond orientational order of fcc ruthenium nanoparticles

    NASA Astrophysics Data System (ADS)

    Seo, Okkyun; Sakata, Osami; Kim, Jae Myung; Hiroi, Satoshi; Song, Chulho; Kumara, Loku Singgappulige Rosantha; Ohara, Koji; Dekura, Shun; Kusada, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi

    2017-12-01

    We investigated crystal structure deviations of catalytic nanoparticles (NPs) using synchrotron powder X-ray diffraction. The samples were fcc ruthenium (Ru) NPs with diameters of 2.4, 3.5, 3.9, and 5.4 nm. We analyzed average crystal structures by applying the line profile method to a stacking fault model and local crystal structures using bond orientational order (BOO) parameters. The reflection peaks shifted depending on rules that apply to each stacking fault. We evaluated the quantitative stacking faults densities for fcc Ru NPs, and the stacking fault per number of layers was 2-4, which is quite large. Our analysis shows that the fcc Ru 2.4 nm-diameter NPs have a considerably high stacking fault density. The B factor tends to increase with the increasing stacking fault density. A structural parameter that we define from the BOO parameters exhibits a significant difference from the ideal value of the fcc structure. This indicates that the fcc Ru NPs are highly disordered.

  12. Scheduling on the basis of the research of dependences among the construction process parameters

    NASA Astrophysics Data System (ADS)

    Romanovich, Marina; Ermakov, Alexander; Mukhamedzhanova, Olga

    2017-10-01

    The dependences among the construction process parameters are investigated in the article: average integrated value of qualification of the shift, number of workers per shift and average daily amount of completed work on the basis of correlation coefficient are considered. Basic data for the research of dependences among the above-stated parameters have been collected during the construction of two standard objects A and B (monolithic houses), in four months of construction (October, November, December, January). Kobb-Douglas production function has proved the values of coefficients of correlation close to 1. Function is simple to be used and is ideal for the description of the considered dependences. The development function, describing communication among the considered parameters of the construction process, is developed. The function of the development gives the chance to select optimum quantitative and qualitative (qualification) structure of the brigade link for the work during the next period of time, according to a preset value of amount of works. Function of the optimized amounts of works, which reflects interrelation of key parameters of construction process, is developed. Values of function of the optimized amounts of works should be used as the average standard for scheduling of the storming periods of construction.

  13. Optical study on the dependence of breast tissue composition and structure on subject anamnesis

    NASA Astrophysics Data System (ADS)

    Taroni, Paola; Quarto, Giovanna; Pifferi, Antonio; Abbate, Francesca; Balestreri, Nicola; Menna, Simona; Cassano, Enrico; Cubeddu, Rinaldo

    2015-07-01

    Time domain multi-wavelength (635 to 1060 nm) optical mammography was performed on 200 subjects to estimate their average breast tissue composition in terms of oxy- and deoxy-hemoglobin, water, lipid and collagen, and structural information, as provided by scattering parameters (amplitude and power). Significant (and often marked) dependence of tissue composition and structure on age, menopausal status, body mass index, and use of oral contraceptives was demonstrated.

  14. On averaging aspect ratios and distortion parameters over ice crystal population ensembles for estimating effective scattering asymmetry parameters

    PubMed Central

    van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Fridlind, Ann M.; Cairns, Brian

    2017-01-01

    The use of ensemble-average values of aspect ratio and distortion parameter of hexagonal ice prisms for the estimation of ensemble-average scattering asymmetry parameters is evaluated. Using crystal aspect ratios greater than unity generally leads to ensemble-average values of aspect ratio that are inconsistent with the ensemble-average asymmetry parameters. When a definition of aspect ratio is used that limits the aspect ratio to below unity (α≤1) for both hexagonal plates and columns, the effective asymmetry parameters calculated using ensemble-average aspect ratios are generally consistent with ensemble-average asymmetry parameters, especially if aspect ratios are geometrically averaged. Ensemble-average distortion parameters generally also yield effective asymmetry parameters that are largely consistent with ensemble-average asymmetry parameters. In the case of mixtures of plates and columns, it is recommended to geometrically average the α≤1 aspect ratios and to subsequently calculate the effective asymmetry parameter using a column or plate geometry when the contribution by columns to a given mixture’s total projected area is greater or lower than 50%, respectively. In addition, we show that ensemble-average aspect ratios, distortion parameters and asymmetry parameters can generally be retrieved accurately from simulated multi-directional polarization measurements based on mixtures of varying columns and plates. However, such retrievals tend to be somewhat biased toward yielding column-like aspect ratios. Furthermore, generally large retrieval errors can occur for mixtures with approximately equal contributions of columns and plates and for ensembles with strong contributions of thin plates. PMID:28983127

  15. Earthquake focal parameters and lithospheric structure of the anatolian plateau from complete regional waveform modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, A

    2000-12-28

    This is an informal report on preliminary efforts to investigate earthquake focal mechanisms and earth structure in the Anatolian (Turkish) Plateau. Seismic velocity structure of the crust and upper mantle and earthquake focal parameters for event in the Anatolian Plateau are estimated from complete regional waveforms. Focal mechanisms, depths and seismic moments of moderately large crustal events are inferred from long-period (40-100 seconds) waveforms and compared with focal parameters derived from global teleseismic data. Using shorter periods (10-100 seconds) we estimate the shear and compressional velocity structure of the crust and uppermost mantle. Results are broadly consistent with previous studiesmore » and imply relatively little crustal thickening beneath the central Anatolian Plateau. Crustal thickness is about 35 km in western Anatolia and greater than 40 km in eastern Anatolia, however the long regional paths require considerable averaging and limit resolution. Crustal velocities are lower than typical continental averages, and even lower than typical active orogens. The mantle P-wave velocity was fixed to 7.9 km/s, in accord with tomographic models. A high sub-Moho Poisson's Ratio of 0.29 was required to fit the Sn-Pn differential times. This is suggestive of high sub-Moho temperatures, high shear wave attenuation and possibly partial melt. The combination of relatively thin crust in a region of high topography and high mantle temperatures suggests that the mantle plays a substantial role in maintaining the elevation.« less

  16. Algorithm-Dependent Generalization Bounds for Multi-Task Learning.

    PubMed

    Liu, Tongliang; Tao, Dacheng; Song, Mingli; Maybank, Stephen J

    2017-02-01

    Often, tasks are collected for multi-task learning (MTL) because they share similar feature structures. Based on this observation, in this paper, we present novel algorithm-dependent generalization bounds for MTL by exploiting the notion of algorithmic stability. We focus on the performance of one particular task and the average performance over multiple tasks by analyzing the generalization ability of a common parameter that is shared in MTL. When focusing on one particular task, with the help of a mild assumption on the feature structures, we interpret the function of the other tasks as a regularizer that produces a specific inductive bias. The algorithm for learning the common parameter, as well as the predictor, is thereby uniformly stable with respect to the domain of the particular task and has a generalization bound with a fast convergence rate of order O(1/n), where n is the sample size of the particular task. When focusing on the average performance over multiple tasks, we prove that a similar inductive bias exists under certain conditions on the feature structures. Thus, the corresponding algorithm for learning the common parameter is also uniformly stable with respect to the domains of the multiple tasks, and its generalization bound is of the order O(1/T), where T is the number of tasks. These theoretical analyses naturally show that the similarity of feature structures in MTL will lead to specific regularizations for predicting, which enables the learning algorithms to generalize fast and correctly from a few examples.

  17. How does the cosmic large-scale structure bias the Hubble diagram?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleury, Pierre; Clarkson, Chris; Maartens, Roy, E-mail: pierre.fleury@uct.ac.za, E-mail: chris.clarkson@qmul.ac.uk, E-mail: roy.maartens@gmail.com

    2017-03-01

    The Hubble diagram is one of the cornerstones of observational cosmology. It is usually analysed assuming that, on average, the underlying relation between magnitude and redshift matches the prediction of a Friedmann-Lemaître-Robertson-Walker model. However, the inhomogeneity of the Universe generically biases these observables, mainly due to peculiar velocities and gravitational lensing, in a way that depends on the notion of average used in theoretical calculations. In this article, we carefully derive the notion of average which corresponds to the observation of the Hubble diagram. We then calculate its bias at second-order in cosmological perturbations, and estimate the consequences on themore » inference of cosmological parameters, for various current and future surveys. We find that this bias deeply affects direct estimations of the evolution of the dark-energy equation of state. However, errors in the standard inference of cosmological parameters remain smaller than observational uncertainties, even though they reach percent level on some parameters; they reduce to sub-percent level if an optimal distance indicator is used.« less

  18. Atmospheric mold spore counts in relation to meteorological parameters

    NASA Astrophysics Data System (ADS)

    Katial, R. K.; Zhang, Yiming; Jones, Richard H.; Dyer, Philip D.

    Fungal spore counts of Cladosporium, Alternaria, and Epicoccum were studied during 8 years in Denver, Colorado. Fungal spore counts were obtained daily during the pollinating season by a Rotorod sampler. Weather data were obtained from the National Climatic Data Center. Daily averages of temperature, relative humidity, daily precipitation, barometric pressure, and wind speed were studied. A time series analysis was performed on the data to mathematically model the spore counts in relation to weather parameters. Using SAS PROC ARIMA software, a regression analysis was performed, regressing the spore counts on the weather variables assuming an autoregressive moving average (ARMA) error structure. Cladosporium was found to be positively correlated (P<0.02) with average daily temperature, relative humidity, and negatively correlated with precipitation. Alternaria and Epicoccum did not show increased predictability with weather variables. A mathematical model was derived for Cladosporium spore counts using the annual seasonal cycle and significant weather variables. The model for Alternaria and Epicoccum incorporated the annual seasonal cycle. Fungal spore counts can be modeled by time series analysis and related to meteorological parameters controlling for seasonallity; this modeling can provide estimates of exposure to fungal aeroallergens.

  19. Factorization and reduction methods for optimal control of distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Burns, J. A.; Powers, R. K.

    1985-01-01

    A Chandrasekhar-type factorization method is applied to the linear-quadratic optimal control problem for distributed parameter systems. An aeroelastic control problem is used as a model example to demonstrate that if computationally efficient algorithms, such as those of Chandrasekhar-type, are combined with the special structure often available to a particular problem, then an abstract approximation theory developed for distributed parameter control theory becomes a viable method of solution. A numerical scheme based on averaging approximations is applied to hereditary control problems. Numerical examples are given.

  20. Crystal-structure analysis of four mineral samples of anhydrite, CaSO[subscript 4], using synchrotron high-resolution powder X-ray diffraction data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antao, Sytle M.

    2014-05-28

    The crystal structures of four samples of anhydrite, CaSO{sub 4}, were obtained by Rietveld refinements using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data and space group Amma. As an example, for one sample of anhydrite from Hants County, Nova Scotia, the unit-cell parameters are a = 7.00032(2), b = 6.99234(1), c = 6.24097(1) {angstrom}, and V = 305.487(1) {angstrom}{sup 3} with a > b. The eight-coordinated Ca atom has an average distance of 2.4667(4) {angstrom}. The tetrahedral SO{sub 4} group has two independent S-O distances of 1.484(1) to O1 and 1.478(1) {angstrom} to O2 and an average distancemore » of 1.4810(5) {angstrom}. The three independent O-S-O angles [108.99(8) x 1, 110.38(3) x 4, 106.34(9){sup o} x 1; average [6] = 109.47(2){sup o}] and S-O distances indicate that the geometry of the SO{sub 4} group is quite distorted in anhydrite. The four anhydrite samples have structural trends where the a, b, and c unit-cell parameters increase linearly with increasing unit-cell volume, V, and their average and distances are nearly constant. The grand mean = 2.4660(2) {angstrom}, and grand mean = 1.4848(3) {angstrom}, the latter is longer than 1.480(1) {angstrom} in celestite, SrSO{sub 4}, as expected.« less

  1. Acceleration and Velocity Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truax, Roger

    2016-01-01

    A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an Autoregressive Moving Average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. shape sensing, fiber optic strain sensor, system equivalent reduction and expansion process.

  2. On the complexity of Engh and Huber refinement restraints: the angle τ as example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touw, Wouter G.; Vriend, Gert, E-mail: vriend@cmbi.ru.nl

    2010-12-01

    The angle τ (backbone N—C{sup α}—C) is the most contested Engh and Huber refinement target parameter. It is shown that this parameter is ‘correct’ as a PDB-wide average, but can be improved by taking into account residue types, secondary structures and many other aspects of our knowledge of the biophysical relations between residue type and protein structure. The Engh and Huber parameters for bond lengths and bond angles have been used uncontested in macromolecular structure refinement from 1991 until very recently, despite critical discussion of their ubiquitous validity by many authors. An extensive analysis of the backbone angle τ (N—C{supmore » α}—C) illustrates that the Engh and Huber parameters can indeed be improved and a recent study [Tronrud et al. (2010 ▶), Acta Cryst. D66, 834–842] confirms these ideas. However, the present study of τ shows that improving the Engh and Huber parameters will be considerably more complex than simply making the parameters a function of the backbone ϕ, ψ angles. Many other aspects, such as the cooperativity of hydrogen bonds, the bending of secondary-structure elements and a series of biophysical aspects of the 20 amino-acid types, will also need to be taken into account. Different sets of Engh and Huber parameters will be needed for conceptually different refinement programs.« less

  3. Adaptation of model proteins from cold to hot environments involves continuous and small adjustments of average parameters related to amino acid composition.

    PubMed

    De Vendittis, Emmanuele; Castellano, Immacolata; Cotugno, Roberta; Ruocco, Maria Rosaria; Raimo, Gennaro; Masullo, Mariorosario

    2008-01-07

    The growth temperature adaptation of six model proteins has been studied in 42 microorganisms belonging to eubacterial and archaeal kingdoms, covering optimum growth temperatures from 7 to 103 degrees C. The selected proteins include three elongation factors involved in translation, the enzymes glyceraldehyde-3-phosphate dehydrogenase and superoxide dismutase, the cell division protein FtsZ. The common strategy of protein adaptation from cold to hot environments implies the occurrence of small changes in the amino acid composition, without altering the overall structure of the macromolecule. These continuous adjustments were investigated through parameters related to the amino acid composition of each protein. The average value per residue of mass, volume and accessible surface area allowed an evaluation of the usage of bulky residues, whereas the average hydrophobicity reflected that of hydrophobic residues. The specific proportion of bulky and hydrophobic residues in each protein almost linearly increased with the temperature of the host microorganism. This finding agrees with the structural and functional properties exhibited by proteins in differently adapted sources, thus explaining the great compactness or the high flexibility exhibited by (hyper)thermophilic or psychrophilic proteins, respectively. Indeed, heat-adapted proteins incline toward the usage of heavier-size and more hydrophobic residues with respect to mesophiles, whereas the cold-adapted macromolecules show the opposite behavior with a certain preference for smaller-size and less hydrophobic residues. An investigation on the different increase of bulky residues along with the growth temperature observed in the six model proteins suggests the relevance of the possible different role and/or structure organization played by protein domains. The significance of the linear correlations between growth temperature and parameters related to the amino acid composition improved when the analysis was collectively carried out on all model proteins.

  4. Hangar Fire Suppression Utilizing Novec 1230

    DTIC Science & Technology

    2018-01-01

    The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing...fuel fires in aircraft hangars. A 30×30×8-ft concrete-and-steel test structure was constructed for this test series . Four discharge assemblies...structure. System discharge parameters---discharge time , discharge rate, and quantity of agent discharged---were adjusted to produce the desired Novec 1230

  5. Geometric parameter analysis to predetermine optimal radiosurgery technique for the treatment of arteriovenous malformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mestrovic, Ante; Clark, Brenda G.; Department of Medical Physics, British Columbia Cancer Agency, Vancouver, British Columbia

    2005-11-01

    Purpose: To develop a method of predicting the values of dose distribution parameters of different radiosurgery techniques for treatment of arteriovenous malformation (AVM) based on internal geometric parameters. Methods and Materials: For each of 18 previously treated AVM patients, four treatment plans were created: circular collimator arcs, dynamic conformal arcs, fixed conformal fields, and intensity-modulated radiosurgery. An algorithm was developed to characterize the target and critical structure shape complexity and the position of the critical structures with respect to the target. Multiple regression was employed to establish the correlation between the internal geometric parameters and the dose distribution for differentmore » treatment techniques. The results from the model were applied to predict the dosimetric outcomes of different radiosurgery techniques and select the optimal radiosurgery technique for a number of AVM patients. Results: Several internal geometric parameters showing statistically significant correlation (p < 0.05) with the treatment planning results for each technique were identified. The target volume and the average minimum distance between the target and the critical structures were the most effective predictors for normal tissue dose distribution. The structure overlap volume with the target and the mean distance between the target and the critical structure were the most effective predictors for critical structure dose distribution. The predicted values of dose distribution parameters of different radiosurgery techniques were in close agreement with the original data. Conclusions: A statistical model has been described that successfully predicts the values of dose distribution parameters of different radiosurgery techniques and may be used to predetermine the optimal technique on a patient-to-patient basis.« less

  6. Examining a Thermodynamic Order Parameter of Protein Folding.

    PubMed

    Chong, Song-Ho; Ham, Sihyun

    2018-05-08

    Dimensionality reduction with a suitable choice of order parameters or reaction coordinates is commonly used for analyzing high-dimensional time-series data generated by atomistic biomolecular simulations. So far, geometric order parameters, such as the root mean square deviation, fraction of native amino acid contacts, and collective coordinates that best characterize rare or large conformational transitions, have been prevailing in protein folding studies. Here, we show that the solvent-averaged effective energy, which is a thermodynamic quantity but unambiguously defined for individual protein conformations, serves as a good order parameter of protein folding. This is illustrated through the application to the folding-unfolding simulation trajectory of villin headpiece subdomain. We rationalize the suitability of the effective energy as an order parameter by the funneledness of the underlying protein free energy landscape. We also demonstrate that an improved conformational space discretization is achieved by incorporating the effective energy. The most distinctive feature of this thermodynamic order parameter is that it works in pointing to near-native folded structures even when the knowledge of the native structure is lacking, and the use of the effective energy will also find applications in combination with methods of protein structure prediction.

  7. Structural Analysis of Cubane-Type Iron Clusters

    PubMed Central

    Tan, Lay Ling; Holm, R. H.; Lee, Sonny C.

    2013-01-01

    The generalized cluster type [M4(μ3-Q)4Ln]x contains the cubane-type [M4Q4]z core unit that can approach, but typically deviates from, perfect Td symmetry. The geometric properties of this structure have been analyzed with reference to Td symmetry by a new protocol. Using coordinates of M and Q atoms, expressions have been derived for interatomic separations, bond angles, and volumes of tetrahedral core units (M4, Q4) and the total [M4Q4] core (as a tetracapped M4 tetrahedron). Values for structural parameters have been calculated from observed average values for a given cluster type. Comparison of calculated and observed values measures the extent of deviation of a given parameter from that required in an exact tetrahedral structure. The procedure has been applied to the structures of over 130 clusters containing [Fe4Q4] (Q = S2−, Se2−, Te2−, [NPR3]−, [NR]2−) units, of which synthetic and biological sulfide-bridged clusters constitute the largest subset. General structural features and trends in structural parameters are identified and summarized. An extensive database of structural properties (distances, angles, volumes) has been compiled in Supporting Information. PMID:24072952

  8. Structural Analysis of Cubane-Type Iron Clusters.

    PubMed

    Tan, Lay Ling; Holm, R H; Lee, Sonny C

    2013-07-13

    The generalized cluster type [M 4 (μ 3 -Q) 4 L n ] x contains the cubane-type [M 4 Q 4 ] z core unit that can approach, but typically deviates from, perfect T d symmetry. The geometric properties of this structure have been analyzed with reference to T d symmetry by a new protocol. Using coordinates of M and Q atoms, expressions have been derived for interatomic separations, bond angles, and volumes of tetrahedral core units (M 4 , Q 4 ) and the total [M 4 Q 4 ] core (as a tetracapped M 4 tetrahedron). Values for structural parameters have been calculated from observed average values for a given cluster type. Comparison of calculated and observed values measures the extent of deviation of a given parameter from that required in an exact tetrahedral structure. The procedure has been applied to the structures of over 130 clusters containing [Fe 4 Q 4 ] (Q = S 2- , Se 2- , Te 2- , [NPR 3 ] - , [NR] 2- ) units, of which synthetic and biological sulfide-bridged clusters constitute the largest subset. General structural features and trends in structural parameters are identified and summarized. An extensive database of structural properties (distances, angles, volumes) has been compiled in Supporting Information.

  9. Investigation of Acoustic Structure Quantification in the Diagnosis of Thyroiditis.

    PubMed

    Park, Jisang; Hong, Hyun Sook; Kim, Chul-Hee; Lee, Eun Hye; Jeong, Sun Hye; Lee, A Leum; Lee, Heon

    2016-03-01

    The objective of this study was to evaluate the ability of acoustic structure quantification (ASQ) to diagnose thyroiditis. The echogenicity of 439 thyroid lobes, as determined using ASQ, was quantified and analyzed retrospectively. Thyroiditis was categorized into five subgroups. The results were presented in a modified chi-square histogram as the mode, average, ratio, blue mode, and blue average. We determined the cutoff values of ASQ from ROC analysis to detect and differentiate thyroiditis from a normal thyroid gland. We obtained data on the sensitivity and specificity of the cutoff values to distinguish between euthyroid patients with thyroiditis and patients with a normal thyroid gland. The mean ASQ values for patients with thyroiditis were statistically significantly greater than those for patients with a normal thyroid gland (p < 0.001). The AUCs were as follows: 0.93 for the ratio, 0.91 for the average, 0.90 for the blue average, 0.87 for the mode, and 0.87 for the blue mode. For the diagnosis of thyroiditis, the cutoff values were greater than 0.27 for the ratio, greater than 116.7 for the mean, and greater than 130.7 for the blue average. The sensitivities and specificities were as follows: 84.0% and 96.6% for the ratio, 85.3% and 83.0%, for the average, and 79.1% and 93.2% for the blue average, respectively. The ASQ parameters were successful in distinguishing patients with thyroiditis from patients with a normal thyroid gland, with likelihood ratios of 24.7 for the ratio, 5.0 for the average, and 11.6 for the blue average. With the use of the aforementioned cutoff values, the sensitivities and specificities for distinguishing between patients with thyroiditis and euthyroid patients without thyroiditis were 77.05% and 94.92% for the ratio, 85.25% and 82.20% for the average, and 77.05% and 92.37% for the blue average, respectively. ASQ can provide objective and quantitative analysis of thyroid echogenicity. ASQ parameters were successful in distinguishing between patients with thyroiditis and individuals without thyroiditis, with likelihood ratios of 24.7 for the ratio, 5.0 for the average, and 11.6 for the blue average.

  10. Capacity of MIMO free space optical communications using multiple partially coherent beams propagation through non-Kolmogorov strong turbulence.

    PubMed

    Deng, Peng; Kavehrad, Mohsen; Liu, Zhiwen; Zhou, Zhou; Yuan, Xiuhua

    2013-07-01

    We study the average capacity performance for multiple-input multiple-output (MIMO) free-space optical (FSO) communication systems using multiple partially coherent beams propagating through non-Kolmogorov strong turbulence, assuming equal gain combining diversity configuration and the sum of multiple gamma-gamma random variables for multiple independent partially coherent beams. The closed-form expressions of scintillation and average capacity are derived and then used to analyze the dependence on the number of independent diversity branches, power law α, refractive-index structure parameter, propagation distance and spatial coherence length of source beams. Obtained results show that, the average capacity increases more significantly with the increase in the rank of MIMO channel matrix compared with the diversity order. The effect of the diversity order on the average capacity is independent of the power law, turbulence strength parameter and spatial coherence length, whereas these effects on average capacity are gradually mitigated as the diversity order increases. The average capacity increases and saturates with the decreasing spatial coherence length, at rates depending on the diversity order, power law and turbulence strength. There exist optimal values of the spatial coherence length and diversity configuration for maximizing the average capacity of MIMO FSO links over a variety of atmospheric turbulence conditions.

  11. Growth Oscillatory Zoning in Erythrite, Ideally Co3(AsO4)2·8H2O: Structural Variations in Vivianite-Group Minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antao, Sytle M.; Dhaliwal, Inayat

    The crystal structure of an oscillatory zoned erythrite sample from Aghbar mine, Bou Azzer, Morocco, was refined using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data, Rietveld refinement, space group C2/m, and Z = 2. The crystal contains two sets of oscillatory zones that appear to have developed during epitaxial growth. The unit-cell parameters obtained are a = 10.24799(3) Å, b = 13.42490(7) Å, c = 4.755885(8) Å, β = 105.1116(3)°, and V = 631.680(4) Å3. The empirical formula for erythrite, obtained with electron-probe micro-analysis (EPMA), is [Co2.78Zn0.11Ni0.07Fe0.04]Σ3.00(AsO4)2·8H2O. Erythrite belongs to the vivianite-type structure that contains M1O2(H2O)4 octahedra and M22O6(H2O)4 octahedralmore » dimers that are linked by TO4 (T5+ = As or P) tetrahedra to form complex layers parallel to the (010) plane. These layers are connected by hydrogen bonds. The average [6] = 2.122(1) Å and average [6] = 2.088(1) Å. With space group C2/m, there are two solid solutions: M3(AsO4)2·8H2O and M3(PO4)2·8H2O where M2+ = Mg, Fe, Co, Ni, or Zn. In these As- and P-series, using data from this study and from the literature, we find that their structural parameters evolve linearly with V and in a nearly parallel manner despite of the large difference in size between P5+ (0.170 Å) and As5+ (0.355 Å) cations. Average [4], [6], and [6] distances increase linearly with V. The average distance is affected by M atoms, whereas the average distance is unaffected because it contains shorter and stronger P–O bonds. Although As- and P-series occur naturally, there is no structural reason why similar V-series vivianite-group minerals do not occur naturally or cannot be synthesized.« less

  12. Effects of mass variation on structures of differentially rotating polytropic stars

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Saini, Seema; Singh, Kamal Krishan

    2018-07-01

    A method is proposed for determining equilibrium structures and various physical parameters of differentially rotating polytropic models of stars, taking into account the effect of mass variation inside the star and on its equipotential surfaces. The law of differential rotation has been assumed to be the form of ω2(s) =b1 +b2s2 +b3s4 . The proposed method utilizes the averaging approach of Kippenhahn and Thomas and concepts of Roche-equipotential to incorporate the effects of differential rotation on the equilibrium structures of polytropic stellar models. Mathematical expressions of determining the equipotential surfaces, volume, surface area and other physical parameters are also obtained under the effects of mass variation inside the stars. Some significant conclusions are also drawn.

  13. Comparing Families of Dynamic Causal Models

    PubMed Central

    Penny, Will D.; Stephan, Klaas E.; Daunizeau, Jean; Rosa, Maria J.; Friston, Karl J.; Schofield, Thomas M.; Leff, Alex P.

    2010-01-01

    Mathematical models of scientific data can be formally compared using Bayesian model evidence. Previous applications in the biological sciences have mainly focussed on model selection in which one first selects the model with the highest evidence and then makes inferences based on the parameters of that model. This “best model” approach is very useful but can become brittle if there are a large number of models to compare, and if different subjects use different models. To overcome this shortcoming we propose the combination of two further approaches: (i) family level inference and (ii) Bayesian model averaging within families. Family level inference removes uncertainty about aspects of model structure other than the characteristic of interest. For example: What are the inputs to the system? Is processing serial or parallel? Is it linear or nonlinear? Is it mediated by a single, crucial connection? We apply Bayesian model averaging within families to provide inferences about parameters that are independent of further assumptions about model structure. We illustrate the methods using Dynamic Causal Models of brain imaging data. PMID:20300649

  14. Ring rolling process simulation for microstructure optimization

    NASA Astrophysics Data System (ADS)

    Franchi, Rodolfo; Del Prete, Antonio; Donatiello, Iolanda; Calabrese, Maurizio

    2017-10-01

    Metal undergoes complicated microstructural evolution during Hot Ring Rolling (HRR), which determines the quality, mechanical properties and life of the ring formed. One of the principal microstructure properties which mostly influences the structural performances of forged components, is the value of the average grain size. In the present paper a ring rolling process has been studied and optimized in order to obtain anular components to be used in aerospace applications. In particular, the influence of process input parameters (feed rate of the mandrel and angular velocity of driver roll) on microstructural and on geometrical features of the final ring has been evaluated. For this purpose, a three-dimensional finite element model for HRR has been developed in SFTC DEFORM V11, taking into account also microstructural development of the material used (the nickel superalloy Waspalloy). The Finite Element (FE) model has been used to formulate a proper optimization problem. The optimization procedure has been developed in order to find the combination of process parameters which allows to minimize the average grain size. The Response Surface Methodology (RSM) has been used to find the relationship between input and output parameters, by using the exact values of output parameters in the control points of a design space explored through FEM simulation. Once this relationship is known, the values of the output parameters can be calculated for each combination of the input parameters. Then, an optimization procedure based on Genetic Algorithms has been applied. At the end, the minimum value of average grain size with respect to the input parameters has been found.

  15. Evolutionary mixed games in structured populations: Cooperation and the benefits of heterogeneity

    NASA Astrophysics Data System (ADS)

    Amaral, Marco A.; Wardil, Lucas; Perc, Matjaž; da Silva, Jafferson K. L.

    2016-04-01

    Evolutionary games on networks traditionally involve the same game at each interaction. Here we depart from this assumption by considering mixed games, where the game played at each interaction is drawn uniformly at random from a set of two different games. While in well-mixed populations the random mixture of the two games is always equivalent to the average single game, in structured populations this is not always the case. We show that the outcome is, in fact, strongly dependent on the distance of separation of the two games in the parameter space. Effectively, this distance introduces payoff heterogeneity, and the average game is returned only if the heterogeneity is small. For higher levels of heterogeneity the distance to the average game grows, which often involves the promotion of cooperation. The presented results support preceding research that highlights the favorable role of heterogeneity regardless of its origin, and they also emphasize the importance of the population structure in amplifying facilitators of cooperation.

  16. Evolutionary mixed games in structured populations: Cooperation and the benefits of heterogeneity.

    PubMed

    Amaral, Marco A; Wardil, Lucas; Perc, Matjaž; da Silva, Jafferson K L

    2016-04-01

    Evolutionary games on networks traditionally involve the same game at each interaction. Here we depart from this assumption by considering mixed games, where the game played at each interaction is drawn uniformly at random from a set of two different games. While in well-mixed populations the random mixture of the two games is always equivalent to the average single game, in structured populations this is not always the case. We show that the outcome is, in fact, strongly dependent on the distance of separation of the two games in the parameter space. Effectively, this distance introduces payoff heterogeneity, and the average game is returned only if the heterogeneity is small. For higher levels of heterogeneity the distance to the average game grows, which often involves the promotion of cooperation. The presented results support preceding research that highlights the favorable role of heterogeneity regardless of its origin, and they also emphasize the importance of the population structure in amplifying facilitators of cooperation.

  17. Influences of Co doping on the structural and optical properties of ZnO nanostructured

    NASA Astrophysics Data System (ADS)

    Majeed Khan, M. A.; Wasi Khan, M.; Alhoshan, Mansour; Alsalhi, M. S.; Aldwayyan, A. S.

    2010-07-01

    Pure and Co-doped ZnO nanostructured samples have been synthesized by a chemical route. We have studied the structural and optical properties of the samples by using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), field-emission transmission electron microscope (FETEM), energy-dispersive X-ray (EDX) analysis and UV-VIS spectroscopy. The XRD patterns show that all the samples are hexagonal wurtzite structures. Changes in crystallite size due to mechanical activation were also determined from X-ray measurements. These results were correlated with changes in particle size followed by SEM and TEM. The average crystallite sizes obtained from XRD were between 20 to 25 nm. The TEM images showed the average particle size of undoped ZnO nanostructure was about 20 nm whereas the smallest average grain size at 3% Co was about 15 nm. Optical parameters such as absorption coefficient ( α), energy band gap ( E g ), the refractive index ( n), and dielectric constants ( σ) have been determined using different methods.

  18. Structural and dynamical properties of the V(3+) ion in dilute aqueous solution: An ab initio QM/MM molecular dynamics simulation.

    PubMed

    Kritayakornupong, Chinapong

    2009-12-01

    A hybrid ab initio QM/MM molecular dynamics simulation at the Hartree-Fock level has been performed to investigate structural and dynamical parameters of the V(3+) ion in dilute aqueous solution. A distorted octahedral structure with the average V(3+)-O distance of 1.99 A is evaluated from the QM/MM simulation, which is in good agreement with the X-ray data. Several structural parameters such as angular distribution functions, theta- and tilt-angle distributions have been determined to obtain the full description of the hydration structure of the hydrated V(3+). The Jahn-Teller distortions of the V(3+) ion are pronounced in the QM/MM simulation. The mean residence time of 14.5 ps is estimated for the ligand exchange processes in the second hydration shell. (c) 2009 Wiley Periodicals, Inc.

  19. Structural characterization of graphene layers in various Indian coals by X-Ray Diffraction technique

    NASA Astrophysics Data System (ADS)

    Manoj, B.; Kunjomana, A. G.

    2015-02-01

    The results of the structural investigation of three Indian coals showed that, the structural parameters like fa & Lc increased where as interlayer spacing d002 decreased with increase in carbon content, aromaticity and coal rank. These structural parameters change just opposite with increase in volatile matter content. Considering the 'turbostratic' structure for coals, the minimum separation between aromatic lamellae was found to vary between 3.34 to 3.61 A° for these coals. As the aromaticity increased, the interlayer spacing decreased an indication of more graphitization of the sample. Volatile matter and carbon content had a strong influence on the aromaticity, interlayer spacing and stacking height on the sample. The average number of carbon atoms per aromatic lamellae and number of layers in the lamellae was found to be 16-21 and 7-8 for all the samples.

  20. Studies into the averaging problem: Macroscopic gravity and precision cosmology

    NASA Astrophysics Data System (ADS)

    Wijenayake, Tharake S.

    2016-08-01

    With the tremendous improvement in the precision of available astrophysical data in the recent past, it becomes increasingly important to examine some of the underlying assumptions behind the standard model of cosmology and take into consideration nonlinear and relativistic corrections which may affect it at percent precision level. Due to its mathematical rigor and fully covariant and exact nature, Zalaletdinov's macroscopic gravity (MG) is arguably one of the most promising frameworks to explore nonlinearities due to inhomogeneities in the real Universe. We study the application of MG to precision cosmology, focusing on developing a self-consistent cosmology model built on the averaging framework that adequately describes the large-scale Universe and can be used to study real data sets. We first implement an algorithmic procedure using computer algebra systems to explore new exact solutions to the MG field equations. After validating the process with an existing isotropic solution, we derive a new homogeneous, anisotropic and exact solution. Next, we use the simplest (and currently only) solvable homogeneous and isotropic model of MG and obtain an observable function for cosmological expansion using some reasonable assumptions on light propagation. We find that the principal modification to the angular diameter distance is through the change in the expansion history. We then linearize the MG field equations and derive a framework that contains large-scale structure, but the small scale inhomogeneities have been smoothed out and encapsulated into an additional cosmological parameter representing the averaging effect. We derive an expression for the evolution of the density contrast and peculiar velocities and integrate them to study the growth rate of large-scale structure. We find that increasing the magnitude of the averaging term leads to enhanced growth at late times. Thus, for the same matter content, the growth rate of large scale structure in the MG model is stronger than that of the standard model. Finally, we constrain the MG model using Cosmic Microwave Background temperature anisotropy data, the distance to supernovae data, the galaxy power spectrum, the weak lensing tomography shear-shear cross-correlations and the baryonic acoustic oscillations. We find that for this model the averaging density parameter is very small and does not cause any significant shift in the other cosmological parameters. However, it can lead to increased errors on some cosmological parameters such as the Hubble constant and the amplitude of the linear matter spectrum at the scale of 8h. {-1}Mpc. Further studiesare needed to explore other solutions and models of MG as well as their effects on precision cosmology.

  1. Estimating average tree crown size using spatial information from Ikonos and QuickBird images: Across-sensor and across-site comparisons

    Treesearch

    Conghe Song; Matthew B. Dickinson; Lihong Su; Su Zhang; Daniel Yaussey

    2010-01-01

    The forest canopy is the medium for energy, mass, and momentum exchanges between the forest ecosystem and the atmosphere. Tree crown size is a critical aspect of canopy structure that significantly influences these biophysical processes in the canopy. Tree crown size is also strongly related to other canopy structural parameters, such as tree height, diameter at breast...

  2. Spatiotemporal dynamics in excitable homogeneous random networks composed of periodically self-sustained oscillation.

    PubMed

    Qian, Yu; Liu, Fei; Yang, Keli; Zhang, Ge; Yao, Chenggui; Ma, Jun

    2017-09-19

    The collective behaviors of networks are often dependent on the network connections and bifurcation parameters, also the local kinetics plays an important role in contributing the consensus of coupled oscillators. In this paper, we systematically investigate the influence of network structures and system parameters on the spatiotemporal dynamics in excitable homogeneous random networks (EHRNs) composed of periodically self-sustained oscillation (PSO). By using the dominant phase-advanced driving (DPAD) method, the one-dimensional (1D) Winfree loop is exposed as the oscillation source supporting the PSO, and the accurate wave propagation pathways from the oscillation source to the whole network are uncovered. Then, an order parameter is introduced to quantitatively study the influence of network structures and system parameters on the spatiotemporal dynamics of PSO in EHRNs. Distinct results induced by the network structures and the system parameters are observed. Importantly, the corresponding mechanisms are revealed. PSO influenced by the network structures are induced not only by the change of average path length (APL) of network, but also by the invasion of 1D Winfree loop from the outside linking nodes. Moreover, PSO influenced by the system parameters are determined by the excitation threshold and the minimum 1D Winfree loop. Finally, we confirmed that the excitation threshold and the minimum 1D Winfree loop determined PSO will degenerate as the system size is expanded.

  3. Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere.

    PubMed

    Cai, Yangjian; Lin, Qiang; Eyyuboğlu, Halil T; Baykal, Yahya

    2008-05-26

    Analytical formulas are derived for the average irradiance and the degree of polarization of a radially or azimuthally polarized doughnut beam (PDB) propagating in a turbulent atmosphere by adopting a beam coherence-polarization matrix. It is found that the radial or azimuthal polarization structure of a radially or azimuthally PDB will be destroyed (i.e., a radially or azimuthally PDB is depolarized and becomes a partially polarized beam) and the doughnut beam spot becomes a circularly Gaussian beam spot during propagation in a turbulent atmosphere. The propagation properties are closely related to the parameters of the beam and the structure constant of the atmospheric turbulence.

  4. SU-F-T-227: A Comprehensive Patient Specific, Structure Specific, Pre-Treatment 3D QA Protocol for IMRT, SBRT and VMAT - Clinical Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gueorguiev, G; Cotter, C; Young, M

    2016-06-15

    Purpose: To present a 3D QA method and clinical results for 550 patients. Methods: Five hundred and fifty patient treatment deliveries (400 IMRT, 75 SBRT and 75 VMAT) from various treatment sites, planned on Raystation treatment planning system (TPS), were measured on three beam-matched Elekta linear accelerators using IBA’s COMPASS system. The difference between TPS computed and delivered dose was evaluated in 3D by applying three statistical parameters to each structure of interest: absolute average dose difference (AADD, 6% allowed difference), absolute dose difference greater than 6% (ADD6, 4% structure volume allowed to fail) and 3D gamma test (3%/3mm DTA,more » 4% structure volume allowed to fail). If the allowed value was not met for a given structure, manual review was performed. The review consisted of overlaying dose difference or gamma results with the patient CT, scrolling through the slices. For QA to pass, areas of high dose difference or gamma must be small and not on consecutive slices. For AADD to manually pass QA, the average dose difference in cGy must be less than 50cGy. The QA protocol also includes DVH analysis based on QUANTEC and TG-101 recommended dose constraints. Results: Figures 1–3 show the results for the three parameters per treatment modality. Manual review was performed on 67 deliveries (27 IMRT, 22 SBRT and 18 VMAT), for which all passed QA. Results show that statistical parameter AADD may be overly sensitive for structures receiving low dose, especially for the SBRT deliveries (Fig.1). The TPS computed and measured DVH values were in excellent agreement and with minimum difference. Conclusion: Applying DVH analysis and different statistical parameters to any structure of interest, as part of the 3D QA protocol, provides a comprehensive treatment plan evaluation. Author G. Gueorguiev discloses receiving travel and research funding from IBA for unrelated to this project work. Author B. Crawford discloses receiving travel funding from IBA for unrelated to this project work.« less

  5. MAIN software for density averaging, model building, structure refinement and validation

    PubMed Central

    Turk, Dušan

    2013-01-01

    MAIN is software that has been designed to interactively perform the complex tasks of macromolecular crystal structure determination and validation. Using MAIN, it is possible to perform density modification, manual and semi-automated or automated model building and rebuilding, real- and reciprocal-space structure optimization and refinement, map calculations and various types of molecular structure validation. The prompt availability of various analytical tools and the immediate visualization of molecular and map objects allow a user to efficiently progress towards the completed refined structure. The extraordinary depth perception of molecular objects in three dimensions that is provided by MAIN is achieved by the clarity and contrast of colours and the smooth rotation of the displayed objects. MAIN allows simultaneous work on several molecular models and various crystal forms. The strength of MAIN lies in its manipulation of averaged density maps and molecular models when noncrystallographic symmetry (NCS) is present. Using MAIN, it is possible to optimize NCS parameters and envelopes and to refine the structure in single or multiple crystal forms. PMID:23897458

  6. Insights into the sequence parameters for halophilic adaptation.

    PubMed

    Nath, Abhigyan

    2016-03-01

    The sequence parameters for halophilic adaptation are still not fully understood. To understand the molecular basis of protein hypersaline adaptation, a detailed analysis is carried out, and investigated the likely association of protein sequence attributes to halophilic adaptation. A two-stage strategy is implemented, where in the first stage a supervised machine learning classifier is build, giving an overall accuracy of 86 % on stratified tenfold cross validation and 90 % on blind testing set, which are better than the previously reported results. The second stage consists of statistical analysis of sequence features and possible extraction of halophilic molecular signatures. The results of this study showed that, halophilic proteins are characterized by lower average charge, lower K content, and lower S content. A statistically significant preference/avoidance list of sequence parameters is also reported giving insights into the molecular basis of halophilic adaptation. D, Q, E, H, P, T, V are significantly preferred while N, C, I, K, M, F, S are significantly avoided. Among amino acid physicochemical groups, small, polar, charged, acidic and hydrophilic groups are preferred over other groups. The halophilic proteins also showed a preference for higher average flexibility, higher average polarity and avoidance for higher average positive charge, average bulkiness and average hydrophobicity. Some interesting trends observed in dipeptide counts are also reported. Further a systematic statistical comparison is undertaken for gaining insights into the sequence feature distribution in different residue structural states. The current analysis may facilitate the understanding of the mechanism of halophilic adaptation clearer, which can be further used for rational design of halophilic proteins.

  7. The seesaw space, a vector space to identify and characterize large-scale structures at 1 AU

    NASA Astrophysics Data System (ADS)

    Lara, A.; Niembro, T.

    2017-12-01

    We introduce the seesaw space, an orthonormal space formed by the local and the global fluctuations of any of the four basic solar parameters: velocity, density, magnetic field and temperature at any heliospheric distance. The fluctuations compare the standard deviation of a moving average of three hours against the running average of the parameter in a month (consider as the local fluctuations) and in a year (global fluctuations) We created this new vectorial spaces to identify the arrival of transients to any spacecraft without the need of an observer. We applied our method to the one-minute resolution data of WIND spacecraft from 1996 to 2016. To study the behavior of the seesaw norms in terms of the solar cycle, we computed annual histograms and fixed piecewise functions formed by two log-normal distributions and observed that one of the distributions is due to large-scale structures while the other to the ambient solar wind. The norm values in which the piecewise functions change vary in terms of the solar cycle. We compared the seesaw norms of each of the basic parameters due to the arrival of coronal mass ejections, co-rotating interaction regions and sector boundaries reported in literature. High seesaw norms are due to large-scale structures. We found three critical values of the norms that can be used to determined the arrival of coronal mass ejections. We present as well general comparisons of the norms during the two maxima and the minimum solar cycle periods and the differences of the norms due to large-scale structures depending on each period.

  8. Bayesian calibration of the Community Land Model using surrogates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi

    2014-02-01

    We present results from the Bayesian calibration of hydrological parameters of the Community Land Model (CLM), which is often used in climate simulations and Earth system models. A statistical inverse problem is formulated for three hydrological parameters, conditional on observations of latent heat surface fluxes over 48 months. Our calibration method uses polynomial and Gaussian process surrogates of the CLM, and solves the parameter estimation problem using a Markov chain Monte Carlo sampler. Posterior probability densities for the parameters are developed for two sites with different soil and vegetation covers. Our method also allows us to examine the structural errormore » in CLM under two error models. We find that surrogate models can be created for CLM in most cases. The posterior distributions are more predictive than the default parameter values in CLM. Climatologically averaging the observations does not modify the parameters' distributions significantly. The structural error model reveals a correlation time-scale which can be used to identify the physical process that could be contributing to it. While the calibrated CLM has a higher predictive skill, the calibration is under-dispersive.« less

  9. Adaptive firefly algorithm: parameter analysis and its application.

    PubMed

    Cheung, Ngaam J; Ding, Xue-Ming; Shen, Hong-Bin

    2014-01-01

    As a nature-inspired search algorithm, firefly algorithm (FA) has several control parameters, which may have great effects on its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly algorithm - adaptive firefly algorithm (AdaFa). There are three strategies in AdaFa including (1) a distance-based light absorption coefficient; (2) a gray coefficient enhancing fireflies to share difference information from attractive ones efficiently; and (3) five different dynamic strategies for the randomization parameter. Promising selections of parameters in the strategies are analyzed to guarantee the efficient performance of AdaFa. AdaFa is validated over widely used benchmark functions, and the numerical experiments and statistical tests yield useful conclusions on the strategies and the parameter selections affecting the performance of AdaFa. When applied to the real-world problem - protein tertiary structure prediction, the results demonstrated improved variants can rebuild the tertiary structure with the average root mean square deviation less than 0.4Å and 1.5Å from the native constrains with noise free and 10% Gaussian white noise.

  10. Adaptive Firefly Algorithm: Parameter Analysis and its Application

    PubMed Central

    Shen, Hong-Bin

    2014-01-01

    As a nature-inspired search algorithm, firefly algorithm (FA) has several control parameters, which may have great effects on its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly algorithm — adaptive firefly algorithm (AdaFa). There are three strategies in AdaFa including (1) a distance-based light absorption coefficient; (2) a gray coefficient enhancing fireflies to share difference information from attractive ones efficiently; and (3) five different dynamic strategies for the randomization parameter. Promising selections of parameters in the strategies are analyzed to guarantee the efficient performance of AdaFa. AdaFa is validated over widely used benchmark functions, and the numerical experiments and statistical tests yield useful conclusions on the strategies and the parameter selections affecting the performance of AdaFa. When applied to the real-world problem — protein tertiary structure prediction, the results demonstrated improved variants can rebuild the tertiary structure with the average root mean square deviation less than 0.4Å and 1.5Å from the native constrains with noise free and 10% Gaussian white noise. PMID:25397812

  11. Contrasts between source parameters of M [>=] 5. 5 earthquakes in northern Baja California and southern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doser, D.I.

    1993-04-01

    Source parameters determined from the body waveform modeling of large (M [>=] 5.5) historic earthquakes occurring between 1915 and 1956 along the San Jacinto and Imperial fault zones of southern California and the Cerro Prieto, Tres Hermanas and San Miguel fault zones of Baja California have been combined with information from post-1960's events to study regional variations in source parameters. The results suggest that large earthquakes along the relatively young San Miguel and Tres Hermanas fault zones have complex rupture histories, small source dimensions (< 25 km), high stress drops (60 bar average), and a high incidence of foreshock activity.more » This may be a reflection of the rough, highly segmented nature of the young faults. In contrast, Imperial-Cerro Prieto events of similar magnitude have low stress drops (16 bar average) and longer rupture lengths (42 km average), reflecting rupture along older, smoother fault planes. Events along the San Jacinto fault zone appear to lie in between these two groups. These results suggest a relationship between the structural and seismological properties of strike-slip faults that should be considered during seismic risk studies.« less

  12. Microstructural, optical and electrical transport properties of Cd-doped SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmad, Naseem; Khan, Shakeel; Mohsin Nizam Ansari, Mohd

    2018-03-01

    We have successfully investigated the structural, optical and dielectric properties of Cd assimilated SnO2 nanoparticles synthesized via very convenient precipitation route. The structural properties were studied by x-ray diffraction method (XRD) and Fourier Transform Infrared (FTIR) Spectroscopy. As-synthesized samples in the form of powder were examined for its morphology and average particle size by Transmission electron microscopy (TEM). The optical properties were studied by diffuse reflectance spectroscopy. Dielectric properties such that complex dielectric constant and ac conductivity were investigated by LCR meter. Average crystallite size calculated by XRD and average particle size obtained from TEM were found to be consistent and below 50 nm for all samples. The optical band gap of as-synthesized powder samples from absorption study was found in the range of 3.76 to 3.97 eV. The grain boundary parameters such that Rgb, Cgb and τ were evaluated using impedance spectroscopy.

  13. Plasmonic complex fluids of nematiclike and helicoidal self-assemblies of gold nanorods with a negative order parameter.

    PubMed

    Liu, Qingkun; Senyuk, Bohdan; Tang, Jianwei; Lee, Taewoo; Qian, Jun; He, Sailing; Smalyukh, Ivan I

    2012-08-24

    We describe a soft matter system of self-organized oblate micelles and plasmonic gold nanorods that exhibit a negative orientational order parameter. Because of anisotropic surface anchoring interactions, colloidal gold nanorods tend to align perpendicular to the director describing the average orientation of normals to the discoidal micelles. Helicoidal structures of highly concentrated nanorods with a negative order parameter are realized by adding a chiral additive and are further controlled by means of confinement and mechanical stress. Polarization-sensitive absorption, scattering, and two-photon luminescence are used to characterize orientations and spatial distributions of nanorods. Self-alignment and effective-medium optical properties of these hybrid inorganic-organic complex fluids match predictions of a simple model based on anisotropic surface anchoring interactions of nanorods with the structured host medium.

  14. Self-organization of local magnetoplasma structures in the upper layers of the solar convection zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chumak, O. V., E-mail: chuo@yandex.ru

    Self-organization and evolution of magnetoplasma structures in the upper layers of the solar convection zone are discussed as a process of diffuse aggregation of magnetic flux tubes. Equations describing the tube motion under the action of magnetic interaction forces, hydrodynamic forces, and random forces are written explicitly. The process of aggregation of magnetic flux tubes into magnetic flux clusters of different shapes and dimensions is simulated numerically. The obtained structures are compared with the observed morphological types of sunspot groups. The quantitative comparison with the observational data was performed by comparing the fractal dimensions of the photospheric magnetic structures observedmore » in solar active regions with those of structures obtained in the numerical experiment. The model has the following free parameters: the numbers of magnetic flux tubes with opposite polarities on the considered area element (Nn and Ns), the average radius of the cross section of the magnetic flux tube (a), its effective length (l), the twist factor of the tube field (k), and the absolute value of the average velocity of chaotic tube displacements (d). Variations in these parameters in physically reasonable limits leads to the formation of structures (tube clusters of different morphological types) having different fractal dimensions. Using the NOAA 10488 active region, which appeared and developed into a complicated configuration near the central meridian, as an example, it is shown that good quantitative agreement between the fractal dimensions is achieved at the following parameters of the model: Nn = Ns = 250 ± 50; a = 150 ± 50 km; l ∼ 5000 km, and d = 80 ± 10 m/s. These results do not contradict the observational data and theoretical estimates obtained in the framework of the Parker “spaghetti” model and provide new information on the physical processes resulting in the origin and evolution of local magnetic plasma structures in the near-photospheric layers of the solar convection zone.« less

  15. Study of the physical properties of Ge-S-Ga glassy alloy

    NASA Astrophysics Data System (ADS)

    Rana, Anjli; Sharma, Raman

    2018-05-01

    In the present work, we have studied the effect of Ga doping on the physical properties of Ge20S80-xGax glassy alloy. The basic physical parameters which have important role in determining the structure and strength of the material viz. average coordination number, lone-pair electrons, mean bond energy, glass transition temperature, electro negativity, probabilities for bond distribution and cohesive energy have been computed theoretically for Ge-S-Ga glassy alloy. Here, the glass transition temperature and mean bond energy have been investigated using the Tichy-Ticha approach. The cohesive energy has been calculated by using chemical bond approach (CBA) method. It has been found that while average coordination number increases, all the other parameters decrease with the increase in Ga content in Ge-S-Ga system.

  16. Exploring the free-energy landscape of a short peptide using an average force

    NASA Astrophysics Data System (ADS)

    Chipot, Christophe; Hénin, Jérôme

    2005-12-01

    The reversible folding of deca-alanine is chosen as a test case for characterizing a method that uses an adaptive biasing force (ABF) to escape from the minima and overcome the barriers of the free-energy landscape. This approach relies on the continuous estimation of a biasing force that yields a Hamiltonian in which no average force is exerted along the ordering parameter ξ. Optimizing the parameters that control how the ABF is applied, the method is shown to be extremely effective when a nonequivocal ordering parameter can be defined to explore the folding pathway of the peptide. Starting from a β-turn motif and restraining ξ to a region of the conformational space that extends from the α-helical state to an ensemble of extended structures, the ABF scheme is successful in folding the peptide chain into a compact α helix. Sampling of this conformation is, however, marginal when the range of ξ values embraces arrangements of greater compactness, hence demonstrating the inherent limitations of free-energy methods when ambiguous ordering parameters are utilized.

  17. Generation of random microstructures and prediction of sound velocity and absorption for open foams with spherical pores.

    PubMed

    Zieliński, Tomasz G

    2015-04-01

    This paper proposes and discusses an approach for the design and quality inspection of the morphology dedicated for sound absorbing foams, using a relatively simple technique for a random generation of periodic microstructures representative for open-cell foams with spherical pores. The design is controlled by a few parameters, namely, the total open porosity and the average pore size, as well as the standard deviation of pore size. These design parameters are set up exactly and independently, however, the setting of the standard deviation of pore sizes requires some number of pores in the representative volume element (RVE); this number is a procedure parameter. Another pore structure parameter which may be indirectly affected is the average size of windows linking the pores, however, it is in fact weakly controlled by the maximal pore-penetration factor, and moreover, it depends on the porosity and pore size. The proposed methodology for testing microstructure-designs of sound absorbing porous media applies the multi-scale modeling where some important transport parameters-responsible for sound propagation in a porous medium-are calculated from microstructure using the generated RVE, in order to estimate the sound velocity and absorption of such a designed material.

  18. A Frequency-Domain Multipath Parameter Estimation and Mitigation Method for BOC-Modulated GNSS Signals

    PubMed Central

    Sun, Chao; Feng, Wenquan; Du, Songlin

    2018-01-01

    As multipath is one of the dominating error sources for high accuracy Global Navigation Satellite System (GNSS) applications, multipath mitigation approaches are employed to minimize this hazardous error in receivers. Binary offset carrier modulation (BOC), as a modernized signal structure, is adopted to achieve significant enhancement. However, because of its multi-peak autocorrelation function, conventional multipath mitigation techniques for binary phase shift keying (BPSK) signal would not be optimal. Currently, non-parametric and parametric approaches have been studied specifically aiming at multipath mitigation for BOC signals. Non-parametric techniques, such as Code Correlation Reference Waveforms (CCRW), usually have good feasibility with simple structures, but suffer from low universal applicability for different BOC signals. Parametric approaches can thoroughly eliminate multipath error by estimating multipath parameters. The problems with this category are at the high computation complexity and vulnerability to the noise. To tackle the problem, we present a practical parametric multipath estimation method in the frequency domain for BOC signals. The received signal is transferred to the frequency domain to separate out the multipath channel transfer function for multipath parameter estimation. During this process, we take the operations of segmentation and averaging to reduce both noise effect and computational load. The performance of the proposed method is evaluated and compared with the previous work in three scenarios. Results indicate that the proposed averaging-Fast Fourier Transform (averaging-FFT) method achieves good robustness in severe multipath environments with lower computational load for both low-order and high-order BOC signals. PMID:29495589

  19. Intra-Sensor Variability Study of two BLS 900 Scintillometers

    NASA Astrophysics Data System (ADS)

    Thiem, Christina; Mauder, Matthias; Chwala, Christian; Bernhardt, Matthias; Kunstmann, Harald; Schulz, Karsten

    2017-04-01

    The latent heat flux is an important validation parameter for satellite measurements and a wide variety of hydrological and meteorological numerical models. Scintillometers can provide references for such validations due to their ability to spatially integrate turbulent fluxes. Large-aperture near-infrared scintillometers are capable of determining spatial averages of the structure parameter of temperature and the sensible heat flux over path lengths up to 5 km. One way to derive both sensible and latent heat flux is to use a combined optical and microwave scintillometer system. With only an optical scintillometer and additional measurements of ground heat flux and net radiation, the latent heat flux can be calculated from the residual of the energy balance. Studies have shown, however, that in certain cases measurements from the same types of scintillometers differ due to minute differences in construction. In order to prove the robustness of the measurements of two near-infrared scintillometers for future studies, we compared their observations and validated them by comparison to the sensible heat flux derived from an eddy covariance system. In this study two boundary layer scintillometers (BLS; BLS900, Scintec, Rottenburg, Germany) were installed in a central European valley as part of the TERENO preAlpine observatory during the years 2013 and 2015. An independent measurement of the sensible and latent heat flux was obtained from a permanent eddy covariance system installed in the vicinity of the scintillometer path. The structure parameter of the refractive index and average sensible heat fluxes of both BLS units were compared with each other. In general, the BLS structure parameters correlated very well and the high correlation between the BLS-derived sensible heat fluxes and the eddy covariance-derived sensible heat fluxes encouraged further application of these scintillometers in separate experiments.

  20. Averages of $b$-hadron, $c$-hadron, and $$\\tau$$-lepton properties as of summer 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amhis, Y.; et al.

    2014-12-23

    This article reports world averages of measurements ofmore » $b$-hadron, $c$-hadron, and $$\\tau$$-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through summer 2014. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, $CP$ violation parameters, parameters of semileptonic decays and CKM matrix elements.« less

  1. Final Scientific/Technical Report: Breakthrough Design and Implementation of Many-Body Theories for Electron Correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    So Hirata

    2012-01-03

    This report discusses the following highlights of the project: (1) grid-based Hartree-Fock equation solver; (2) explicitly correlated coupled-cluster and perturbation methods; (3) anharmonic vibrational frequencies and vibrationally averaged NMR and structural parameters of FHF; (4) anharmonic vibrational frequencies and vibrationally averaged structures of hydrocarbon combustion species; (5) anharmonic vibrational analysis of the guanine-cytosine base pair; (6) the nature of the Born-Oppenheimer approximation; (7) Polymers and solids Brillouin-zone downsampling - the modulo MP2 method; (8) explicitly correlated MP2 for extended systems; (9) fast correlated method for molecular crystals - solid formic acid; and (10) fast correlated method for molecular crystals -more » solid hydrogen fluoride.« less

  2. Structure of air shower disc near the core

    NASA Technical Reports Server (NTRS)

    Inoue, N.; Kawamoto, M.; Misaki, Y.; Maeda, T.; Takeuchi, T.; Toyoda, Y.

    1985-01-01

    The longitudinal structure of the air shower disk is studied by measuring the arrival time distributions of air shower particles for showers with electron size in the range 3.2 x 10 to the 5.5. power to 3.2 x 10 to the 7.5 power in the Akeno air-shower array (930 gcm squared atmospheric depth). The average FWHM as a parameter of thickness of air shower disk increases with core distances at less than 50m. AT the present stage, dependence on electron size, zenith angle and air shower age is not apparent. The average thickness of the air shower disk within a core distance of 50m could be determined by an electromagnetic cascade starting from the lower altitude.

  3. Transient analysis of an adaptive system for optimization of design parameters

    NASA Technical Reports Server (NTRS)

    Bayard, D. S.

    1992-01-01

    Averaging methods are applied to analyzing and optimizing the transient response associated with the direct adaptive control of an oscillatory second-order minimum-phase system. The analytical design methods developed for a second-order plant can be applied with some approximation to a MIMO flexible structure having a single dominant mode.

  4. Microdosimetry of the full slowing down of protons using Monte Carlo track structure simulations.

    PubMed

    Liamsuwan, T; Uehara, S; Nikjoo, H

    2015-09-01

    The article investigates two approaches in microdosimetric calculations based on Monte Carlo track structure (MCTS) simulations of a 160-MeV proton beam. In the first approach, microdosimetric parameters of the proton beam were obtained using the weighted sum of proton energy distributions and microdosimetric parameters of proton track segments (TSMs). In the second approach, phase spaces of energy depositions obtained using MCTS simulations in the full slowing down (FSD) mode were used for the microdosimetric calculations. Targets of interest were water cylinders of 2.3-100 nm in diameters and heights. Frequency-averaged lineal energies ([Formula: see text]) obtained using both approaches agreed within the statistical uncertainties. Discrepancies beyond this level were observed for dose-averaged lineal energies ([Formula: see text]) towards the Bragg peak region due to the small number of proton energies used in the TSM approach and different energy deposition patterns in the TSM and FSD of protons. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. A pharmacometric case study regarding the sensitivity of structural model parameter estimation to error in patient reported dosing times.

    PubMed

    Knights, Jonathan; Rohatagi, Shashank

    2015-12-01

    Although there is a body of literature focused on minimizing the effect of dosing inaccuracies on pharmacokinetic (PK) parameter estimation, most of the work centers on missing doses. No attempt has been made to specifically characterize the effect of error in reported dosing times. Additionally, existing work has largely dealt with cases in which the compound of interest is dosed at an interval no less than its terminal half-life. This work provides a case study investigating how error in patient reported dosing times might affect the accuracy of structural model parameter estimation under sparse sampling conditions when the dosing interval is less than the terminal half-life of the compound, and the underlying kinetics are monoexponential. Additional effects due to noncompliance with dosing events are not explored and it is assumed that the structural model and reasonable initial estimates of the model parameters are known. Under the conditions of our simulations, with structural model CV % ranging from ~20 to 60 %, parameter estimation inaccuracy derived from error in reported dosing times was largely controlled around 10 % on average. Given that no observed dosing was included in the design and sparse sampling was utilized, we believe these error results represent a practical ceiling given the variability and parameter estimates for the one-compartment model. The findings suggest additional investigations may be of interest and are noteworthy given the inability of current PK software platforms to accommodate error in dosing times.

  6. Two-Component Structure of the Radio Source 0014+813 from VLBI Observations within the CONT14 Program

    NASA Astrophysics Data System (ADS)

    Titov, O. A.; Lopez, Yu. R.

    2018-03-01

    We consider a method of reconstructing the structure delay of extended radio sources without constructing their radio images. The residuals derived after the adjustment of geodetic VLBI observations are used for this purpose. We show that the simplest model of a radio source consisting of two point components can be represented by four parameters (the angular separation of the components, the mutual orientation relative to the poleward direction, the flux-density ratio, and the spectral index difference) that are determined for each baseline of a multi-baseline VLBI network. The efficiency of this approach is demonstrated by estimating the coordinates of the radio source 0014+813 observed during the two-week CONT14 program organized by the International VLBI Service (IVS) in May 2014. Large systematic deviations have been detected in the residuals of the observations for the radio source 0014+813. The averaged characteristics of the radio structure of 0014+813 at a frequency of 8.4 GHz can be calculated from these deviations. Our modeling using four parameters has confirmed that the source consists of two components at an angular separation of 0.5 mas in the north-south direction. Using the structure delay when adjusting the CONT14 observations leads to a correction of the average declination estimate for the radio source 0014+813 by 0.070 mas.

  7. Nonlinear consolidation in randomly heterogeneous highly compressible aquitards

    NASA Astrophysics Data System (ADS)

    Zapata-Norberto, Berenice; Morales-Casique, Eric; Herrera, Graciela S.

    2018-05-01

    Severe land subsidence due to groundwater extraction may occur in multiaquifer systems where highly compressible aquitards are present. The highly compressible nature of the aquitards leads to nonlinear consolidation where the groundwater flow parameters are stress-dependent. The case is further complicated by the heterogeneity of the hydrogeologic and geotechnical properties of the aquitards. The effect of realistic vertical heterogeneity of hydrogeologic and geotechnical parameters on the consolidation of highly compressible aquitards is investigated by means of one-dimensional Monte Carlo numerical simulations where the lower boundary represents the effect of an instant drop in hydraulic head due to groundwater pumping. Two thousand realizations are generated for each of the following parameters: hydraulic conductivity ( K), compression index ( C c), void ratio ( e) and m (an empirical parameter relating hydraulic conductivity and void ratio). The correlation structure, the mean and the variance for each parameter were obtained from a literature review about field studies in the lacustrine sediments of Mexico City. The results indicate that among the parameters considered, random K has the largest effect on the ensemble average behavior of the system when compared to a nonlinear consolidation model with deterministic initial parameters. The deterministic solution underestimates the ensemble average of total settlement when initial K is random. In addition, random K leads to the largest variance (and therefore largest uncertainty) of total settlement, groundwater flux and time to reach steady-state conditions.

  8. Model averaging in the presence of structural uncertainty about treatment effects: influence on treatment decision and expected value of information.

    PubMed

    Price, Malcolm J; Welton, Nicky J; Briggs, Andrew H; Ades, A E

    2011-01-01

    Standard approaches to estimation of Markov models with data from randomized controlled trials tend either to make a judgment about which transition(s) treatments act on, or they assume that treatment has a separate effect on every transition. An alternative is to fit a series of models that assume that treatment acts on specific transitions. Investigators can then choose among alternative models using goodness-of-fit statistics. However, structural uncertainty about any chosen parameterization will remain and this may have implications for the resulting decision and the need for further research. We describe a Bayesian approach to model estimation, and model selection. Structural uncertainty about which parameterization to use is accounted for using model averaging and we developed a formula for calculating the expected value of perfect information (EVPI) in averaged models. Marginal posterior distributions are generated for each of the cost-effectiveness parameters using Markov Chain Monte Carlo simulation in WinBUGS, or Monte-Carlo simulation in Excel (Microsoft Corp., Redmond, WA). We illustrate the approach with an example of treatments for asthma using aggregate-level data from a connected network of four treatments compared in three pair-wise randomized controlled trials. The standard errors of incremental net benefit using structured models is reduced by up to eight- or ninefold compared to the unstructured models, and the expected loss attaching to decision uncertainty by factors of several hundreds. Model averaging had considerable influence on the EVPI. Alternative structural assumptions can alter the treatment decision and have an overwhelming effect on model uncertainty and expected value of information. Structural uncertainty can be accounted for by model averaging, and the EVPI can be calculated for averaged models. Copyright © 2011 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  9. Lifetime Reliability Evaluation of Structural Ceramic Parts with the CARES/LIFE Computer Program

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.

    1993-01-01

    The computer program CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program. CARES/LIFE accounts for the phenomenon of subcritical crack growth (SCG) by utilizing the power law, Paris law, or Walker equation. The two-parameter Weibull cumulative distribution function is used to characterize the variation in component strength. The effects of multiaxial stresses are modeled using either the principle of independent action (PIA), Weibull's normal stress averaging method (NSA), or Batdorf's theory. Inert strength and fatigue parameters are estimated from rupture strength data of naturally flawed specimens loaded in static, dynamic, or cyclic fatigue. Two example problems demonstrating cyclic fatigue parameter estimation and component reliability analysis with proof testing are included.

  10. Structural and functional changes during epileptogenesis in the mouse model of medial temporal lobe epilepsy.

    PubMed

    Dietrich, Yvan; Eliat, Pierre-Antoine; Dieuset, Gabriel; Saint-Jalmes, Herve; Pineau, Charles; Wendling, Fabrice; Martin, Benoit

    2016-08-01

    An important issue in epilepsy research is to understand the structural and functional modifications leading to chronic epilepsy, characterized by spontaneous recurrent seizures, after initial brain insult. To address this issue, we recorded and analyzed electroencephalography (EEG) and quantitative magnetic resonance imaging (MRI) data during epileptogenesis in the in vivo mouse model of Medial Temporal Lobe Epilepsy (MTLE, kainate). Besides, this model of epilepsy is a particular form of drug-resistant epilepsy. The results indicate that high-field (4.7T) MRI parameters (T2-weighted; T2-quantitative) allow to detect the gradual neuro-anatomical changes that occur during epileptogenesis while electrophysiological parameters (number and duration of Hippocampal Paroxysmal Discharges) allow to assess the dysfunctional changes through the quantification of epileptiform activity. We found a strong correlation between EEG-based markers (invasive recording) and MRI-based parameters (non-invasive) periodically computed over the `latent period' that spans over two weeks, on average. These results indicated that both structural and functional changes occur in the considered epilepsy model and are considered as biomarkers of the installation of epilepsy. Additionally, such structural and functional changes can also be observed in human temporal lobe epilepsy. Interestingly, MRI imaging parameters could be used to track early (day-7) structural changes (gliosis, cell loss) in the lesioned brain and to quantify the evolution of epileptogenesis after traumatic brain injury.

  11. Mutually unbiased bases in six dimensions: The four most distant bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raynal, Philippe; Lue Xin; Englert, Berthold-Georg

    2011-06-15

    We consider the average distance between four bases in six dimensions. The distance between two orthonormal bases vanishes when the bases are the same, and the distance reaches its maximal value of unity when the bases are unbiased. We perform a numerical search for the maximum average distance and find it to be strictly smaller than unity. This is strong evidence that no four mutually unbiased bases exist in six dimensions. We also provide a two-parameter family of three bases which, together with the canonical basis, reach the numerically found maximum of the average distance, and we conduct a detailedmore » study of the structure of the extremal set of bases.« less

  12. Femoral anteversion and tibial torsion only explain 25% of variance in regression analysis of foot progression angle in children with diplegic cerebral palsy

    PubMed Central

    2013-01-01

    Background The relationship between torsional bony deformities and rotational gait parameters has not been sufficiently investigated. This study was to investigate the degree of contribution of torsional bony deformities to rotational gait parameters in patients with diplegic cerebral palsy (CP). Methods Thirty three legs from 33 consecutive ambulatory patients (average age 9.5 years, SD 6.9 years; 20 males and 13 females) with diplegic CP who underwent preoperative three dimensional gait analysis, foot radiographs, and computed tomography (CT) were included. Adjusted foot progression angle (FPA) was retrieved from gait analysis by correcting pelvic rotation from conventional FPA, which represented the rotational gait deviation of the lower extremity from the tip of the femoral head to the foot. Correlations between rotational gait parameters (FPA, adjusted FPA, average pelvic rotation, average hip rotation, and average knee rotation) and radiologic measurements (acetabular version, femoral anteversion, knee torsion, tibial torsion, and anteroposteriortalo-first metatarsal angle) were analyzed. Multiple regression analysis was performed to identify significant contributing radiographic measurements to adjusted FPA. Results Adjusted FPA was significantly correlated with FPA (r=0.837, p<0.001), contralateral FPA (r=0.492, p=0.004), pelvic rotation during gait (r=−0.489, p=0.004), knee rotation during gait (r=0.376, p=0.031), and femoral anteversion (r=0.350, p=0.046). In multiple regression analysis, femoral anteversion (p=0.026) and tibial torsion (p=0.034) were found to be the significant contributing structural deformities to the adjusted FPA (R2=0.247). Conclusions Femoral anteversion and tibial torsion were found to be the significant structural deformities that could affect adjusted FPA in patients with diplegic CP. Femoral anteversion and tibial torsion could explain only 24.7% of adjusted FPA. PMID:23767833

  13. Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016

    DOE PAGES

    Amhis, Y.; Banerjee, Sw.; Ben-Haim, E.; ...

    2017-12-21

    Here, this article reports world averages of measurements of b-hadron, c-hadron, and τ-lepton properties obtained by the Heavy Flavor Averaging Group using results available through summer 2016. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters,more » $$C\\!P$$  violation parameters, parameters of semileptonic decays, and Cabbibo–Kobayashi–Maskawa matrix elements.« less

  14. Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amhis, Y.; Banerjee, Sw.; Ben-Haim, E.

    Here, this article reports world averages of measurements of b-hadron, c-hadron, and τ-lepton properties obtained by the Heavy Flavor Averaging Group using results available through summer 2016. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters,more » $$C\\!P$$  violation parameters, parameters of semileptonic decays, and Cabbibo–Kobayashi–Maskawa matrix elements.« less

  15. The fatigue life study of polyphenylene sulfide composites filled with continuous glass fibers

    NASA Astrophysics Data System (ADS)

    Ye, Junjie; Hong, Yun; Wang, Yongkun; Zhai, Zhi; Shi, Baoquan; Chen, Xuefeng

    2018-04-01

    In this study, an effective microscopic model is proposed to investigate the fatigue life of composites containing continuous glass fibers, which is surrounded by polyphenylene sulfide (PPS) matrix materials. The representative volume element is discretized by parametric elements. Moreover, the microscopic model is established by employing the relation between average surface displacements and average surface tractions. Based on the experimental data, the required fatigue failure parameters of the PPS are determined. Two different fiber arrangements are considered for comparisons. Numerical analyses indicated that the square edge packing provides a more accuracy. In addition, microscopic structural parameters (fiber volume fraction, fiber off-axis angle) effect on the fatigue life of Glass/PPS composites is further discussed. It is revealed that fiber strength degradation effects on the fatigue life of continuous fiber-reinforced composites can be ignored.

  16. Robust prediction of consensus secondary structures using averaged base pairing probability matrices.

    PubMed

    Kiryu, Hisanori; Kin, Taishin; Asai, Kiyoshi

    2007-02-15

    Recent transcriptomic studies have revealed the existence of a considerable number of non-protein-coding RNA transcripts in higher eukaryotic cells. To investigate the functional roles of these transcripts, it is of great interest to find conserved secondary structures from multiple alignments on a genomic scale. Since multiple alignments are often created using alignment programs that neglect the special conservation patterns of RNA secondary structures for computational efficiency, alignment failures can cause potential risks of overlooking conserved stem structures. We investigated the dependence of the accuracy of secondary structure prediction on the quality of alignments. We compared three algorithms that maximize the expected accuracy of secondary structures as well as other frequently used algorithms. We found that one of our algorithms, called McCaskill-MEA, was more robust against alignment failures than others. The McCaskill-MEA method first computes the base pairing probability matrices for all the sequences in the alignment and then obtains the base pairing probability matrix of the alignment by averaging over these matrices. The consensus secondary structure is predicted from this matrix such that the expected accuracy of the prediction is maximized. We show that the McCaskill-MEA method performs better than other methods, particularly when the alignment quality is low and when the alignment consists of many sequences. Our model has a parameter that controls the sensitivity and specificity of predictions. We discussed the uses of that parameter for multi-step screening procedures to search for conserved secondary structures and for assigning confidence values to the predicted base pairs. The C++ source code that implements the McCaskill-MEA algorithm and the test dataset used in this paper are available at http://www.ncrna.org/papers/McCaskillMEA/. Supplementary data are available at Bioinformatics online.

  17. ARMA Cholesky Factor Models for the Covariance Matrix of Linear Models.

    PubMed

    Lee, Keunbaik; Baek, Changryong; Daniels, Michael J

    2017-11-01

    In longitudinal studies, serial dependence of repeated outcomes must be taken into account to make correct inferences on covariate effects. As such, care must be taken in modeling the covariance matrix. However, estimation of the covariance matrix is challenging because there are many parameters in the matrix and the estimated covariance matrix should be positive definite. To overcomes these limitations, two Cholesky decomposition approaches have been proposed: modified Cholesky decomposition for autoregressive (AR) structure and moving average Cholesky decomposition for moving average (MA) structure, respectively. However, the correlations of repeated outcomes are often not captured parsimoniously using either approach separately. In this paper, we propose a class of flexible, nonstationary, heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the covariance matrix that we denote as ARMACD. We analyze a recent lung cancer study to illustrate the power of our proposed methods.

  18. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations.

    PubMed

    van de Streek, Jacco; Neumann, Marcus A

    2010-10-01

    This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 A either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.

  19. Item response theory analysis of the Utrecht Work Engagement Scale for Students (UWES-S) using a sample of Japanese university and college students majoring medical science, nursing, and natural science.

    PubMed

    Tsubakita, Takashi; Shimazaki, Kazuyo; Ito, Hiroshi; Kawazoe, Nobuo

    2017-10-30

    The Utrecht Work Engagement Scale for Students has been used internationally to assess students' academic engagement, but it has not been analyzed via item response theory. The purpose of this study was to conduct an item response theory analysis of the Japanese version of the Utrecht Work Engagement Scale for Students translated by authors. Using a two-parameter model and Samejima's graded response model, difficulty and discrimination parameters were estimated after confirming the factor structure of the scale. The 14 items on the scale were analyzed with a sample of 3214 university and college students majoring medical science, nursing, or natural science in Japan. The preliminary parameter estimation was conducted with the two parameter model, and indicated that three items should be removed because there were outlier parameters. Final parameter estimation was conducted using the survived 11 items, and indicated that all difficulty and discrimination parameters were acceptable. The test information curve suggested that the scale better assesses higher engagement than average engagement. The estimated parameters provide a basis for future comparative studies. The results also suggested that a 7-point Likert scale is too broad; thus, the scaling should be modified to fewer graded scaling structure.

  20. Effect of breed and sperm concentration on the changes in structural, functional and motility parameters of ram-lamb spermatozoa during storage at 4 degrees C.

    PubMed

    Kasimanickam, Ramanathan; Kasimanickam, Vanmathy; Pelzer, Kevin D; Dascanio, John J

    2007-09-01

    The objectives of this study were (1) to determine the changes in structural, functional and motility parameters of ram-lamb semen stored at two different concentrations at 4 degrees C for 8 days in egg-yolk based extender and (2) to determine the effect of breed of ram-lambs on the changes in structural, functional and motility parameters of ram-lamb semen from different breeds stored at two different concentrations at 4 degrees C for 8 days in egg-yolk based extender. Two different concentrations suitable for laparoscopic and cervical insemination were employed in this experiment. A total of 14 ram-lambs (Polled Dorset-5, Suffolk-5, Katahdin-4) with satisfactory breeding potential were selected. Semen samples were collected by electro-ejaculation. Semen samples were extended to 50 and 200 million sperm per ml with a commercial egg yolk based extender (Triladyl, Minitube of America, Verona, WI, USA) at room temperature and were stored at 4 degrees C. The sperm DNA fragmentation index (DFI), percentages of high mitochondrial membrane potential (hMMP) and plasma membrane integrity (PMI) were assessed using flow cytometry as part of structural and functional parameters on Days 0, 1, 4, 6, and 8. A computer assisted sperm analyser (HTM-IVOS, Version 10.8, Hamilton Thorne Research, Beverly, MA, USA) was used to assess the sperm motility parameters on Days 0, 1, 4, 6, and 8. PROC MIXED procedure was used to determine the effect of days of storage, concentration and breed. The concentration and days of storage significantly affected the sperm structural, functional and motility parameters (P<0.0001). Significant concentration x days of storage interaction was found for all structural and functional parameters. There was a significant concentration x days of storage interaction for average path velocity, curvilinear velocity, straightness and linearity. Overall changes in the sperm structural, functional and sperm motility parameters over the storage period were less dramatic in the 200 x 10(6) ml(-1) concentration when compared to 50 x 10(6) ml(-1) concentration. The hMMP and total progressive motility were influenced by breed. In conclusion, the quality of structural, functional and motility parameters declined as days of storage were increased and the magnitude of changes in the parameters was less dramatic at the higher concentration.

  1. Influence of Averaging Preprocessing on Image Analysis with a Markov Random Field Model

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hirotaka; Nakanishi-Ohno, Yoshinori; Okada, Masato

    2018-02-01

    This paper describes our investigations into the influence of averaging preprocessing on the performance of image analysis. Averaging preprocessing involves a trade-off: image averaging is often undertaken to reduce noise while the number of image data available for image analysis is decreased. We formulated a process of generating image data by using a Markov random field (MRF) model to achieve image analysis tasks such as image restoration and hyper-parameter estimation by a Bayesian approach. According to the notions of Bayesian inference, posterior distributions were analyzed to evaluate the influence of averaging. There are three main results. First, we found that the performance of image restoration with a predetermined value for hyper-parameters is invariant regardless of whether averaging is conducted. We then found that the performance of hyper-parameter estimation deteriorates due to averaging. Our analysis of the negative logarithm of the posterior probability, which is called the free energy based on an analogy with statistical mechanics, indicated that the confidence of hyper-parameter estimation remains higher without averaging. Finally, we found that when the hyper-parameters are estimated from the data, the performance of image restoration worsens as averaging is undertaken. We conclude that averaging adversely influences the performance of image analysis through hyper-parameter estimation.

  2. Global Sensitivity Analysis for Identifying Important Parameters of Nitrogen Nitrification and Denitrification under Model and Scenario Uncertainties

    NASA Astrophysics Data System (ADS)

    Ye, M.; Chen, Z.; Shi, L.; Zhu, Y.; Yang, J.

    2017-12-01

    Nitrogen reactive transport modeling is subject to uncertainty in model parameters, structures, and scenarios. While global sensitivity analysis is a vital tool for identifying the parameters important to nitrogen reactive transport, conventional global sensitivity analysis only considers parametric uncertainty. This may result in inaccurate selection of important parameters, because parameter importance may vary under different models and modeling scenarios. By using a recently developed variance-based global sensitivity analysis method, this paper identifies important parameters with simultaneous consideration of parametric uncertainty, model uncertainty, and scenario uncertainty. In a numerical example of nitrogen reactive transport modeling, a combination of three scenarios of soil temperature and two scenarios of soil moisture leads to a total of six scenarios. Four alternative models are used to evaluate reduction functions used for calculating actual rates of nitrification and denitrification. The model uncertainty is tangled with scenario uncertainty, as the reduction functions depend on soil temperature and moisture content. The results of sensitivity analysis show that parameter importance varies substantially between different models and modeling scenarios, which may lead to inaccurate selection of important parameters if model and scenario uncertainties are not considered. This problem is avoided by using the new method of sensitivity analysis in the context of model averaging and scenario averaging. The new method of sensitivity analysis can be applied to other problems of contaminant transport modeling when model uncertainty and/or scenario uncertainty are present.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thein, Pyi Soe, E-mail: pyisoethein@yahoo.com; Pramumijoyo, Subagyo; Wilopo, Wahyu

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green’s function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  4. Lattice thermal expansion and solubility limits of neodymium-doped ceria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jinhua, E-mail: jhzhang1212@126.com; State Key laboratory of Geological Process and Mineral Resources, China University of Geosciences, Wuhan 430074; Ke, Changming

    2016-11-15

    Nd{sub x}Ce{sub 1−x}O{sub 2−0.5x} (x=0–1.0) powders were prepared by reverse coprecipitation-calcination method and characterized by XRD. The crystal structure of product powders transformed from single fluorite structure to the complex of fluorite and C-type cubic structure, and finally to trigonal structure with the increase of x-value. An empirical equation simulating the lattice parameter of neodymium doped ceria was established based on the experimental data. The lattice parameters of the fluorite structure solid solutions increased with extensive adoption of Nd{sup 3+}, and the heating temperature going up. The average thermal expansion coefficients of neodymium doped ceria with fluorite structure are highermore » than 13.5×10{sup −6} °C{sup −1} from room temperature to 1200 °C. - Graphical abstract: The crystal structure of Nd{sub x}Ce{sub 1−x}O{sub 2−0.5x} (x=0–1.0) powders transformed from single fluorite structure to the complex of fluorite and C-type cubic structure, and finally to trigonal structure with the increase of x-value.« less

  5. Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals

    USGS Publications Warehouse

    Westerhoff, P.; Aiken, G.; Amy, G.; Debroux, J.

    1999-01-01

    Oxidation reaction rate parameters for molecular ozone (O3) and hydroxyl (HO) radicals with a variety of hydrophobic organic acids (HOAs) isolated from different geographic locations were determined from batch ozonation studies. Rate parameter values, obtained under equivalent dissolved organic carbon concentrations in both the presence and absence of non-NOM HO radical scavengers, varied as a function of NOM structure. First-order rate constants for O3 consumption (k(O3)) averaged 8.8 x 10-3 s-1, ranging from 3.9 x 10-3 s-1 for a groundwater HOA to > 16 x 10-3 s-1 for river HOAs with large terrestrial carbon inputs. The average second-order rate constant (k(HO,DOC) between HO radicals and NOM was 3.6 x 108 l (mol C)-1 s-1; a mass of 12 g C per mole C was used in all calculations. Specific ultraviolet absorbance (SUVA) at 254 or 280 nm of the HOAs correlated well (r > 0.9) with O3 consumption rate parameters, implying that organic ??-electrons strongly and selectively influence oxidative reactivity. HO radical reactions with NOM were less selective, although correlation between k(HO,DOC) and SUVA existed. Other physical-chemical properties of NOM, such as aromatic and aliphatic carbon content from 13C-NMR spectroscopy, proved less sensitive for predicting oxidation reactivity than SUVA. The implication of this study is that the structural nature of NOM varies temporally and spatially in a water source, and both the nature and amount of NOM will influence oxidation rates.

  6. Computational modeling of electrically conductive networks formed by graphene nanoplatelet-carbon nanotube hybrid particles

    NASA Astrophysics Data System (ADS)

    Mora, A.; Han, F.; Lubineau, G.

    2018-04-01

    One strategy to ensure that nanofiller networks in a polymer composite percolate at low volume fractions is to promote segregation. In a segregated structure, the concentration of nanofillers is kept low in some regions of the sample. In turn, the concentration in the remaining regions is much higher than the average concentration of the sample. This selective placement of the nanofillers ensures percolation at low average concentration. One original strategy to promote segregation is by tuning the shape of the nanofillers. We use a computational approach to study the conductive networks formed by hybrid particles obtained by growing carbon nanotubes (CNTs) on graphene nanoplatelets (GNPs). The objective of this study is (1) to show that the higher electrical conductivity of these composites is due to the hybrid particles forming a segregated structure and (2) to understand which parameters defining the hybrid particles determine the efficiency of the segregation. We construct a microstructure to observe the conducting paths and determine whether a segregated structure has indeed been formed inside the composite. A measure of efficiency is presented based on the fraction of nanofillers that contribute to the conductive network. Then, the efficiency of the hybrid-particle networks is compared to those of three other networks of carbon-based nanofillers in which no hybrid particles are used: only CNTs, only GNPs, and a mix of CNTs and GNPs. Finally, some parameters of the hybrid particle are studied: the CNT density on the GNPs, and the CNT and GNP geometries. We also present recommendations for the further improvement of a composite’s conductivity based on these parameters.

  7. Averages of B-Hadron, C-Hadron, and tau-lepton properties as of early 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amhis, Y.; et al.

    2012-07-01

    This article reports world averages of measurements of b-hadron, c-hadron, and tau-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through the end of 2011. In some cases results available in the early part of 2012 are included. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, CP violation parameters, parameters of semileptonic decays and CKM matrix elements.

  8. Retrieving transient conformational molecular structure information from inner-shell photoionization of laser-aligned molecules

    PubMed Central

    Wang, Xu; Le, Anh-Thu; Yu, Chao; Lucchese, R. R.; Lin, C. D.

    2016-01-01

    We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. A simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method. PMID:27025410

  9. Retrieving transient conformational molecular structure information from inner-shell photoionization of laser-aligned molecules

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Le, Anh-Thu; Yu, Chao; Lucchese, R. R.; Lin, C. D.

    2016-03-01

    We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. A simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method.

  10. Thermal nanostructure: An order parameter multiscale ensemble approach

    NASA Astrophysics Data System (ADS)

    Cheluvaraja, S.; Ortoleva, P.

    2010-02-01

    Deductive all-atom multiscale techniques imply that many nanosystems can be understood in terms of the slow dynamics of order parameters that coevolve with the quasiequilibrium probability density for rapidly fluctuating atomic configurations. The result of this multiscale analysis is a set of stochastic equations for the order parameters whose dynamics is driven by thermal-average forces. We present an efficient algorithm for sampling atomistic configurations in viruses and other supramillion atom nanosystems. This algorithm allows for sampling of a wide range of configurations without creating an excess of high-energy, improbable ones. It is implemented and used to calculate thermal-average forces. These forces are then used to search the free-energy landscape of a nanosystem for deep minima. The methodology is applied to thermal structures of Cowpea chlorotic mottle virus capsid. The method has wide applicability to other nanosystems whose properties are described by the CHARMM or other interatomic force field. Our implementation, denoted SIMNANOWORLD™, achieves calibration-free nanosystem modeling. Essential atomic-scale detail is preserved via a quasiequilibrium probability density while overall character is provided via predicted values of order parameters. Applications from virology to the computer-aided design of nanocapsules for delivery of therapeutic agents and of vaccines for nonenveloped viruses are envisioned.

  11. Technological parameters influence on the non-autoclaved foam concrete characteristics

    NASA Astrophysics Data System (ADS)

    Bartenjeva, Ekaterina; Mashkin, Nikolay

    2017-01-01

    Foam concretes are used as effective heat-insulating materials. The porous structure of foam concrete provides good insulating and strength properties that make them possible to be used as heat-insulating structural materials. Optimal structure of non-autoclaved foam concrete depends on both technological factors and properties of technical foam. In this connection, the possibility to manufacture heat-insulation structural foam concrete on a high-speed cavity plant with the usage of protein and synthetic foamers was estimated. This experiment was carried out using mathematical planning method, and in this case mathematical models were developed that demonstrated the dependence of operating performance of foam concrete on foaming and rotation speed of laboratory plant. The following material properties were selected for the investigation: average density, compressive strength, bending strength and thermal conductivity. The influence of laboratory equipment technological parameters on technical foam strength and foam stability coefficient in the cement paste was investigated, physical and mechanical properties of non-autoclaved foam concrete were defined based on investigated foam. As a result of investigation, foam concrete samples were developed with performance parameters ensuring their use in production. The mathematical data gathered demonstrated the dependence of foam concrete performance on the technological regime.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antao, S.M.

    The crystal structure of a biogenic aragonite from the nacre of an ammonite shell was obtained using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data and Rietveld structure refinement. The well-preserved ammonite sample is from Alberta, Canada, and is from the Cretaceous period. The aragonite structure was refined in space group Pmcn, Z = 4, and the cell parameters obtained are a = 4.96265(2), b = 7.97016(4), c = 5.74474(3) {angstrom}, and V = 227.222(2) {angstrom}{sup 3}. The chemical analyses indicate a formula of [Ca{sub 0.995}Sr{sub 0.004}Ba{sub 0.001}]{Sigma} = 1.0(CO{sub 3}). The average and distances are 2.5281(3) and 1.2871(6)more » {angstrom}, respectively, and the average angle is 119.94(8){sup o}. The CO{sub 3} groups are non-planar. Based on crystal-structure data for biogenic and non-biogenic aragonite samples, aragonite from ammonite nacre has minimal structural distortions and is very similar to non-biogenic aragonite, in particular, a sample from Spain.« less

  13. Sources of Geomagnetic Activity during Nearly Three Solar Cycles (1972-2000)

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.; Cliver, E. W.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We examine the contributions of the principal solar wind components (corotating highspeed streams, slow solar wind, and transient structures, i.e., interplanetary coronal mass ejections (CMEs), shocks, and postshock flows) to averages of the aa geomagnetic index and the interplanetary magnetic field (IMF) strength in 1972-2000 during nearly three solar cycles. A prime motivation is to understand the influence of solar cycle variations in solar wind structure on long-term (e.g., approximately annual) averages of these parameters. We show that high-speed streams account for approximately two-thirds of long-term aa averages at solar minimum, while at solar maximum, structures associated with transients make the largest contribution (approx. 50%), though contributions from streams and slow solar wind continue to be present. Similarly, high-speed streams are the principal contributor (approx. 55%) to solar minimum averages of the IMF, while transient-related structures are the leading contributor (approx. 40%) at solar maximum. These differences between solar maximum and minimum reflect the changing structure of the near-ecliptic solar wind during the solar cycle. For minimum periods, the Earth is embedded in high-speed streams approx. 55% of the time versus approx. 35% for slow solar wind and approx. 10% for CME-associated structures, while at solar maximum, typical percentages are as follows: high-speed streams approx. 35%, slow solar wind approx. 30%, and CME-associated approx. 35%. These compositions show little cycle-to-cycle variation, at least for the interval considered in this paper. Despite the change in the occurrences of different types of solar wind over the solar cycle (and less significant changes from cycle to cycle), overall, variations in the averages of the aa index and IMF closely follow those in corotating streams. Considering solar cycle averages, we show that high-speed streams account for approx. 44%, approx. 48%, and approx. 40% of the solar wind composition, aa, and the IMF strength, respectively, with corresponding figures of approx. 22%, approx. 32%, and approx. 25% for CME-related structures, and approx. 33%, approx. 19%, and approx. 33% for slow solar wind.

  14. Multilevel geometry optimization

    NASA Astrophysics Data System (ADS)

    Rodgers, Jocelyn M.; Fast, Patton L.; Truhlar, Donald G.

    2000-02-01

    Geometry optimization has been carried out for three test molecules using six multilevel electronic structure methods, in particular Gaussian-2, Gaussian-3, multicoefficient G2, multicoefficient G3, and two multicoefficient correlation methods based on correlation-consistent basis sets. In the Gaussian-2 and Gaussian-3 methods, various levels are added and subtracted with unit coefficients, whereas the multicoefficient Gaussian-x methods involve noninteger parameters as coefficients. The multilevel optimizations drop the average error in the geometry (averaged over the 18 cases) by a factor of about two when compared to the single most expensive component of a given multilevel calculation, and in all 18 cases the accuracy of the atomization energy for the three test molecules improves; with an average improvement of 16.7 kcal/mol.

  15. Analysis and application of classification methods of complex carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Li, Xiongyan; Qin, Ruibao; Ping, Haitao; Wei, Dan; Liu, Xiaomei

    2018-06-01

    There are abundant carbonate reservoirs from the Cenozoic to Mesozoic era in the Middle East. Due to variation in sedimentary environment and diagenetic process of carbonate reservoirs, several porosity types coexist in carbonate reservoirs. As a result, because of the complex lithologies and pore types as well as the impact of microfractures, the pore structure is very complicated. Therefore, it is difficult to accurately calculate the reservoir parameters. In order to accurately evaluate carbonate reservoirs, based on the pore structure evaluation of carbonate reservoirs, the classification methods of carbonate reservoirs are analyzed based on capillary pressure curves and flow units. Based on the capillary pressure curves, although the carbonate reservoirs can be classified, the relationship between porosity and permeability after classification is not ideal. On the basis of the flow units, the high-precision functional relationship between porosity and permeability after classification can be established. Therefore, the carbonate reservoirs can be quantitatively evaluated based on the classification of flow units. In the dolomite reservoirs, the average absolute error of calculated permeability decreases from 15.13 to 7.44 mD. Similarly, the average absolute error of calculated permeability of limestone reservoirs is reduced from 20.33 to 7.37 mD. Only by accurately characterizing pore structures and classifying reservoir types, reservoir parameters could be calculated accurately. Therefore, characterizing pore structures and classifying reservoir types are very important to accurate evaluation of complex carbonate reservoirs in the Middle East.

  16. Evaluation of the agreement of tidal breathing parameters measured simultaneously using pneumotachography and structured light plethysmography.

    PubMed

    Motamedi-Fakhr, Shayan; Iles, Richard; Barney, Anna; de Boer, Willem; Conlon, Jenny; Khalid, Amna; Wilson, Rachel C

    2017-02-01

    Structured light plethysmography (SLP) is a noncontact, noninvasive, respiratory measurement technique, which uses a structured pattern of light and two cameras to track displacement of the thoraco-abdominal wall during tidal breathing. The primary objective of this study was to examine agreement between tidal breathing parameters measured simultaneously for 45 sec using pneumotachography and SLP in a group of 20 participants with a range of respiratory patterns ("primary cohort"). To examine repeatability of the agreement, an additional 21 healthy subjects ("repeatability cohort") were measured twice during resting breathing and once during increased respiratory rate (RR). Breath-by-breath and averaged RR, inspiratory time (tI), expiratory time (tE), total breath time (tTot), tI/tE, tI/tTot, and IE50 (inspiratory to expiratory flow measured at 50% of tidal volume) were calculated. Bland-Altman plots were used to assess the agreement. In the primary cohort, breath-by-breath agreement for RR was ±1.44 breaths per minute (brpm). tI, tE, and tTot agreed to ±0.22, ±0.29, and ±0.32 sec, respectively, and tI/tE, tI/tTot, and IE50/IE50 SLP to ±0.16, ±0.05, and ±0.55, respectively. When averaged, agreement for RR was ±0.19 brpm. tI, tE, and tTot were within ±0.16, ±0.16, and ±0.07 sec, respectively, and tI/tE, tI/tTot, and IE50 were within ±0.09, ±0.03, and ±0.25, respectively. A comparison of resting breathing demonstrated that breath-by-breath and averaged agreements for all seven parameters were repeatable ( P  > 0.05). With increased RR, agreement improved for tI, tE, and tTot ( P  ≤ 0.01), did not differ for tI/tE, tI/tTot, and IE50 ( P  > 0.05) and reduced for breath-by-breath ( P  < 0.05) but not averaged RR ( P  > 0.05). © 2017 PneumaCare Limited. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  17. Understanding the synergistic effect and the main factors influencing the enzymatic hydrolyzability of corn stover at low enzyme loading by hydrothermal and/or ultrafine grinding pretreatment.

    PubMed

    Zhang, Haiyan; Li, Junbao; Huang, Guangqun; Yang, Zengling; Han, Lujia

    2018-05-26

    A thorough assessment of the microstructural changes and synergistic effects of hydrothermal and/or ultrafine grinding pretreatment on the subsequent enzymatic hydrolysis of corn stover was performed in this study. The mechanism of pretreatment was elucidated by characterizing the particle size, specific surface area (SSA), pore volume (PV), average pore size, cellulose crystallinity (CrI) and surface morphology of the pretreated samples. In addition, the underlying relationships between the structural parameters and final glucose yields were elucidated, and the relative significance of the factors influencing enzymatic hydrolyzability were assessed by principal component analysis (PCA). Hydrothermal pretreatment at a lower temperature (170 °C) combined with ultrafine grinding achieved a high glucose yield (80.36%) at a low enzyme loading (5 filter paper unit (FPU)/g substrate) which is favorable. The relative significance of structural parameters in enzymatic hydrolyzability was SSA > PV > average pore size > CrI/cellulose > particle size. PV and SSA exhibited logarithmic correlations with the final enzymatic hydrolysis yield. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. On the of neural modeling of some dynamic parameters of earthquakes and fire safety in high-rise construction

    NASA Astrophysics Data System (ADS)

    Haritonova, Larisa

    2018-03-01

    The recent change in the correlation of the number of man-made and natural catastrophes is presented in the paper. Some recommendations are proposed to increase the firefighting efficiency in the high-rise buildings. The article analyzes the methodology of modeling seismic effects. The prospectivity of applying the neural modeling and artificial neural networks to analyze a such dynamic parameters of the earthquake foci as the value of dislocation (or the average rupture slip) is shown. The following two input signals were used: the power class and the number of earthquakes. The regression analysis has been carried out for the predicted results and the target outputs. The equations of the regression for the outputs and target are presented in the work as well as the correlation coefficients in training, validation, testing, and the total (All) for the network structure 2-5-5-1for the average rupture slip. The application of the results obtained in the article for the seismic design for the newly constructed buildings and structures and the given recommendations will provide the additional protection from fire and earthquake risks, reduction of their negative economic and environmental consequences.

  19. Simulation of Low-Intensity Ultrasound Propagating in a Beagle Dog Dentoalveolar Structure to Investigate the Relations between Ultrasonic Parameters and Cementum Regeneration.

    PubMed

    Vafaeian, Behzad; Al-Daghreer, Saleh; El-Rich, Marwan; Adeeb, Samer; El-Bialy, Tarek

    2015-08-01

    The therapeutic effect of low-intensity pulsed ultrasound on orthodontically induced inflammatory root resorption is believed to be brought about through mechanical signals induced by the low-intensity pulsed ultrasound. However, the stimulatory mechanism triggering dental cell response has not been clearly identified yet. The aim of this study was to evaluate possible relations between the amounts of new cementum regeneration and ultrasonic parameters such as pressure amplitude and time-averaged energy density. We used the finite-element method to simulate the previously published experiment on ultrasonic wave propagation in the dentoalveolar structure of beagle dogs. Qualitative relations between the thickness of the regenerated cementum in the experiment and the ultrasonic parameters were observed. Our results indicated that the areas of the root surface with greater ultrasonic pressure were associated with larger amounts of cementum regeneration. However, the establishment of reliable quantitative correlations between ultrasound parameters and cementum regeneration requires more experimental data and simulations. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. Measurement and modelling of the y-direction apparent mass of sitting human body-cushioned seat system

    NASA Astrophysics Data System (ADS)

    Stein, George Juraj; Múčka, Peter; Hinz, Barbara; Blüthner, Ralph

    2009-04-01

    Laboratory tests were conducted using 13 male subjects seated on a cushioned commercial vehicle driver's seat. The hands gripped a mock-up steering wheel and the subjects were in contact with the lumbar region of the backrest. The accelerations and forces in the y-direction were measured during random lateral whole-body vibration with a frequency range between 0.25 and 30 Hz, vibration magnitudes 0.30, 0.98, and 1.92 m s -2 (unweighted root mean square (rms)). Based on these laboratory measurements, a linear multi-degree-of-freedom (mdof) model of the seated human body and cushioned seat in the lateral direction ( y-axis) was developed. Model parameters were identified from averaged measured apparent mass values (modulus and phase) for the three excitation magnitudes mentioned. A preferred model structure was selected from four 3-dof models analysed. The mean subject parameters were identified. In addition, identification of each subject's apparent mass model parameters was performed. The results are compared with previous studies. The developed model structure and the identified parameters can be used for further biodynamical research in seating dynamics.

  1. Effective solidity in vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Parker, Colin M.; Leftwich, Megan C.

    2016-11-01

    The flow surrounding vertical axis wind turbines (VAWTs) is investigated using particle imaging velocimetry (PIV). This is done in a low-speed wind tunnel with a scale model that closely matches geometric and dynamic properties tip-speed ratio and Reynolds number of a full size turbine. Previous results have shown a strong dependance on the tip-speed ratio on the wake structure of the spinning turbine. However, it is not clear whether this is a speed or solidity effect. To determine this, we have measured the wakes of three turbines with different chord-to-diameter ratios, and a solid cylinder. The flow is visualized at the horizontal mid-plane as well as the vertical mid-plane behind the turbine. The results are both ensemble averaged and phase averaged by syncing the PIV system with the rotation of the turbine. By keeping the Reynolds number constant with both chord and diameter, we can determine how each effects the wake structure. As these parameters are varied there are distinct changes in the mean flow of the wake. Additionally, by looking at the vorticity in the phase averaged profiles we can see structural changes to the overall wake pattern.

  2. Modal identification of structures by a novel approach based on FDD-wavelet method

    NASA Astrophysics Data System (ADS)

    Tarinejad, Reza; Damadipour, Majid

    2014-02-01

    An important application of system identification in structural dynamics is the determination of natural frequencies, mode shapes and damping ratios during operation which can then be used for calibrating numerical models. In this paper, the combination of two advanced methods of Operational Modal Analysis (OMA) called Frequency Domain Decomposition (FDD) and Continuous Wavelet Transform (CWT) based on novel cyclic averaging of correlation functions (CACF) technique are used for identification of dynamic properties. By using this technique, the autocorrelation of averaged correlation functions is used instead of original signals. Integration of FDD and CWT methods is used to overcome their deficiency and take advantage of the unique capabilities of these methods. The FDD method is able to accurately estimate the natural frequencies and mode shapes of structures in the frequency domain. On the other hand, the CWT method is in the time-frequency domain for decomposition of a signal at different frequencies and determines the damping coefficients. In this paper, a new formulation applied to the wavelet transform of the averaged correlation function of an ambient response is proposed. This application causes to accurate estimation of damping ratios from weak (noise) or strong (earthquake) vibrations and long or short duration record. For this purpose, the modified Morlet wavelet having two free parameters is used. The optimum values of these two parameters are obtained by employing a technique which minimizes the entropy of the wavelet coefficients matrix. The capabilities of the novel FDD-Wavelet method in the system identification of various dynamic systems with regular or irregular distribution of mass and stiffness are illustrated. This combined approach is superior to classic methods and yields results that agree well with the exact solutions of the numerical models.

  3. Optimizing physical energy functions for protein folding.

    PubMed

    Fujitsuka, Yoshimi; Takada, Shoji; Luthey-Schulten, Zaida A; Wolynes, Peter G

    2004-01-01

    We optimize a physical energy function for proteins with the use of the available structural database and perform three benchmark tests of the performance: (1) recognition of native structures in the background of predefined decoy sets of Levitt, (2) de novo structure prediction using fragment assembly sampling, and (3) molecular dynamics simulations. The energy parameter optimization is based on the energy landscape theory and uses a Monte Carlo search to find a set of parameters that seeks the largest ratio deltaE(s)/DeltaE for all proteins in a training set simultaneously. Here, deltaE(s) is the stability gap between the native and the average in the denatured states and DeltaE is the energy fluctuation among these states. Some of the energy parameters optimized are found to show significant correlation with experimentally observed quantities: (1) In the recognition test, the optimized function assigns the lowest energy to either the native or a near-native structure among many decoy structures for all the proteins studied. (2) Structure prediction with the fragment assembly sampling gives structure models with root mean square deviation less than 6 A in one of the top five cluster centers for five of six proteins studied. (3) Structure prediction using molecular dynamics simulation gives poorer performance, implying the importance of having a more precise description of local structures. The physical energy function solely inferred from a structural database neither utilizes sequence information from the family of the target nor the outcome of the secondary structure prediction but can produce the correct native fold for many small proteins. Copyright 2003 Wiley-Liss, Inc.

  4. Pyrochlore structure and spectroscopic studies of titanate ceramics. A comparative investigation on SmDyTi2O7 and YDyTi2O7 solid solutions

    NASA Astrophysics Data System (ADS)

    Garbout, A.; Férid, M.

    2018-06-01

    Considering the features in changing the structure and properties of rare earth titanates pyrochlores, the substituted Dy2Ti2O7 may be very attractive for various applications. Effect of Sm and Y substitution on the structural properties of Dy2Ti2O7 ceramic was established. These ceramics were prepared by solid-state reaction and characterized by X-ray diffraction and Raman spectroscopy. Both analysis show that YDyTi2O7 with the pyrochlore structure is obtained after heating at 1400 °C, but SmDyTi2O7 has already formed after sintering at 1200 °C. SEM images revealed that the average grain size was increased with the increase of heating temperature, and an un-homogeneous grain growth was detected. The average size was about 37 nm and 135 nm for the SmDyTi2O7 and YDyTi2O7 particles, respectively. Structural Rietveld refinements indicate that all prepared ceramics crystallize in cubic structure with space group of Fd3m. The refined cell parameters demonstrate an almost linear correlation with the ionic radius of Ln3+. The vibrational spectra revealed that the positions of bands are sensitive to the Ln3+-ionic radius, and the Tisbnd O bond strength decreased linearly with the increase of cubic lattice parameter. Raman spectra indicate that the wavenumber of Osbnd Tisbnd O bending mode is considerably shifted to lower region with increasing in mass of the Ln atom. This paper provides solid foundations for additional research of these solid solutions, which are very attractive for different fields as promising catalytic compounds for combustion applications or as frustrated magnetic pyrochlore ceramics.

  5. Ensemble-Based Parameter Estimation in a Coupled GCM Using the Adaptive Spatial Average Method

    DOE PAGES

    Liu, Y.; Liu, Z.; Zhang, S.; ...

    2014-05-29

    Ensemble-based parameter estimation for a climate model is emerging as an important topic in climate research. And for a complex system such as a coupled ocean–atmosphere general circulation model, the sensitivity and response of a model variable to a model parameter could vary spatially and temporally. An adaptive spatial average (ASA) algorithm is proposed to increase the efficiency of parameter estimation. Refined from a previous spatial average method, the ASA uses the ensemble spread as the criterion for selecting “good” values from the spatially varying posterior estimated parameter values; these good values are then averaged to give the final globalmore » uniform posterior parameter. In comparison with existing methods, the ASA parameter estimation has a superior performance: faster convergence and enhanced signal-to-noise ratio.« less

  6. Hydration effects on the electrostatic potential around tuftsin.

    PubMed

    Valdeavella, C V; Blatt, H D; Yang, L; Pettitt, B M

    1999-08-01

    The electrostatic potential and component dielectric constants from molecular dynamics (MD) trajectories of tuftsin, a tetrapeptide with the amino acid sequence Thr-Lys-Pro-Arg in water and in saline solution are presented. The results obtained from the analysis of the MD trajectories for the total electrostatic potential at points on a grid using the Ewald technique are compared with the solution to the Poisson-Boltzmann (PB) equation. The latter was solved using several sets of dielectric constant parameters. The effects of structural averaging on the PB results were also considered. Solute conformational mobility in simulations gives rise to an electrostatic potential map around the solute dominated by the solute monopole (or lowest order multipole). The detailed spatial variation of the electrostatic potential on the molecular surface brought about by the compounded effects of the distribution of water and ions close to the peptide, solvent mobility, and solute conformational mobility are not qualitatively reproducible from a reparametrization of the input solute and solvent dielectric constants to the PB equation for a single structure or for structurally averaged PB calculations. Nevertheless, by fitting the PB to the MD electrostatic potential surfaces with the dielectric constants as fitting parameters, we found that the values that give the best fit are the values calculated from the MD trajectories. Implications of using such field calculations on the design of tuftsin peptide analogues are discussed.

  7. Retrieving transient conformational molecular structure information from inner-shell photoionization of laser-aligned molecules

    DOE PAGES

    Wang, Xu; Le, Anh -Thu; Yu, Chao; ...

    2016-03-30

    We discuss a scheme to retrieve transient conformational molecular structure information using photoelectron angular distributions (PADs) that have averaged over partial alignments of isolated molecules. The photoelectron is pulled out from a localized inner-shell molecular orbital by an X-ray photon. We show that a transient change in the atomic positions from their equilibrium will lead to a sensitive change in the alignment-averaged PADs, which can be measured and used to retrieve the former. Exploiting the experimental convenience of changing the photon polarization direction, we show that it is advantageous to use PADs obtained from multiple photon polarization directions. Lastly, amore » simple single-scattering model is proposed and benchmarked to describe the photoionization process and to do the retrieval using a multiple-parameter fitting method.« less

  8. Vibrationally resolved photoelectron angular distributions for H/sub 2/ in the range 17 eVless than or equal toh. nu. less than or equal to39 eV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parr, A.C.; Hardis, J.E.; Southworth, S.H.

    1988-01-15

    Vibrationally resolved photoelectron angular distributions have been measured for photoionization of H/sub 2/ over the range 17 eVless than or equal toh..nu..less than or equal to39 eV using independent instrumentation at two synchro- tron radiation facilities. The present data greatly extend and add vibrational resolution to earlier variable-wavelength measurements. The average magnitude of the asymmetry parameter continues to lie lower than the best independent-electron calculations. Broad structure is observed for the first time, possibly indicating the effects of channel interaction with dissociative, doubly excited states of H/sub 2/. Neither the average magnitude nor the gross wavelength-dependent structure vary strongly withmore » the final vibrational channel.« less

  9. Soil Erosion as a stochastic process

    NASA Astrophysics Data System (ADS)

    Casper, Markus C.

    2015-04-01

    The main tools to provide estimations concerning risk and amount of erosion are different types of soil erosion models: on the one hand, there are empirically based model concepts on the other hand there are more physically based or process based models. However, both types of models have substantial weak points. All empirical model concepts are only capable of providing rough estimates over larger temporal and spatial scales, they do not account for many driving factors that are in the scope of scenario related analysis. In addition, the physically based models contain important empirical parts and hence, the demand for universality and transferability is not given. As a common feature, we find, that all models rely on parameters and input variables, which are to certain, extend spatially and temporally averaged. A central question is whether the apparent heterogeneity of soil properties or the random nature of driving forces needs to be better considered in our modelling concepts. Traditionally, researchers have attempted to remove spatial and temporal variability through homogenization. However, homogenization has been achieved through physical manipulation of the system, or by statistical averaging procedures. The price for obtaining this homogenized (average) model concepts of soils and soil related processes has often been a failure to recognize the profound importance of heterogeneity in many of the properties and processes that we study. Especially soil infiltrability and the resistance (also called "critical shear stress" or "critical stream power") are the most important empirical factors of physically based erosion models. The erosion resistance is theoretically a substrate specific parameter, but in reality, the threshold where soil erosion begins is determined experimentally. The soil infiltrability is often calculated with empirical relationships (e.g. based on grain size distribution). Consequently, to better fit reality, this value needs to be corrected experimentally. To overcome this disadvantage of our actual models, soil erosion models are needed that are able to use stochastic directly variables and parameter distributions. There are only some minor approaches in this direction. The most advanced is the model "STOSEM" proposed by Sidorchuk in 2005. In this model, only a small part of the soil erosion processes is described, the aggregate detachment and the aggregate transport by flowing water. The concept is highly simplified, for example, many parameters are temporally invariant. Nevertheless, the main problem is that our existing measurements and experiments are not geared to provide stochastic parameters (e.g. as probability density functions); in the best case they deliver a statistical validation of the mean values. Again, we get effective parameters, spatially and temporally averaged. There is an urgent need for laboratory and field experiments on overland flow structure, raindrop effects and erosion rate, which deliver information on spatial and temporal structure of soil and surface properties and processes.

  10. Identification of moving vehicle forces on bridge structures via moving average Tikhonov regularization

    NASA Astrophysics Data System (ADS)

    Pan, Chu-Dong; Yu, Ling; Liu, Huan-Lin

    2017-08-01

    Traffic-induced moving force identification (MFI) is a typical inverse problem in the field of bridge structural health monitoring. Lots of regularization-based methods have been proposed for MFI. However, the MFI accuracy obtained from the existing methods is low when the moving forces enter into and exit a bridge deck due to low sensitivity of structural responses to the forces at these zones. To overcome this shortcoming, a novel moving average Tikhonov regularization method is proposed for MFI by combining with the moving average concepts. Firstly, the bridge-vehicle interaction moving force is assumed as a discrete finite signal with stable average value (DFS-SAV). Secondly, the reasonable signal feature of DFS-SAV is quantified and introduced for improving the penalty function (∣∣x∣∣2 2) defined in the classical Tikhonov regularization. Then, a feasible two-step strategy is proposed for selecting regularization parameter and balance coefficient defined in the improved penalty function. Finally, both numerical simulations on a simply-supported beam and laboratory experiments on a hollow tube beam are performed for assessing the accuracy and the feasibility of the proposed method. The illustrated results show that the moving forces can be accurately identified with a strong robustness. Some related issues, such as selection of moving window length, effect of different penalty functions, and effect of different car speeds, are discussed as well.

  11. Atmospheric thermal structure and cloud features in the southern hemisphere of Venus as retrieved from VIRTIS/VEX radiation measurements

    NASA Astrophysics Data System (ADS)

    Haus, R.; Kappel, D.; Arnold, G.

    2014-04-01

    Thermal structure and cloud features in the atmosphere of Venus are investigated using spectroscopic nightside measurements recorded by the Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS) aboard ESA’s Venus Express mission in the moderate resolution infrared mapping channel (M-IR, 1-5 μm). New methodical approaches and retrieval results for the northern hemisphere have been recently described by Haus et al. (Haus, R., Kappel, D., Arnold, G. [2013]. Planet. Space Sci. 89, 77-101. http://dx.doi.org/10.1016/j.pss.2013.09.020). Now, southern hemisphere maps of mesospheric temperature and cloud parameter fields are presented that cover variations with altitude, latitude, local time, and mission time. Measurements from the entire usable data archive are utilized comprising radiation spectra recorded during eight Venus solar days between April 2006 and October 2008. Zonal averages of retrieved temperature altitude profiles in both hemispheres are very similar and give evidence of global N-S axial symmetry of atmospheric temperature structure. Cold collar and warmer polar vortex regions exhibit the strongest temperature variability with standard deviations up to 8.5 K at 75°S and 63 km altitude compared with about 1.0 K at low and mid latitudes above 75 km. The mesospheric temperature field strongly depends on local time. At altitudes above about 75 km, the atmosphere is warmer in the second half of night, while the dawn side at lower altitudes is usually colder than the dusk side by about 8 K. Local minimum temperature of 220 K occurs at 03:00 h local time at 65 km and 60°S. Temperature standard deviation at polar latitudes is particularly large near midnight. Temperature variability with solar longitude is forced by solar thermal tides with a dominating diurnal component. The influence of observed cloud parameter changes on retrieved mesospheric zonal average temperature structure is moderate and does not exceed 2-3 K at altitudes between 60 and 75 km. The mesospheric thermal structure was essentially stable with Julian date between 2006 and 2008. Global N-S axial symmetry is also observed in cloud structures. Cloud top altitude at 1 μm slowly decreases from 71 km at the equator to 70 km at 45-50° and rapidly drops poleward of 50°. It reaches 61 km over both poles. Average particle size in the vertical cloud column increases from mid latitudes toward the poles and also toward the equator resulting in minimum and maximum zonal average cloud opacities of about 32 and 42 and a planetary average of 36.5 at 1 μm. Zonal averages of cloud features are similar at different solar days, but variations with local time are very complex and inseparably associated with the superrotation of the clouds.

  12. Evolution of stochastic demography with life history tradeoffs in density-dependent age-structured populations.

    PubMed

    Lande, Russell; Engen, Steinar; Sæther, Bernt-Erik

    2017-10-31

    We analyze the stochastic demography and evolution of a density-dependent age- (or stage-) structured population in a fluctuating environment. A positive linear combination of age classes (e.g., weighted by body mass) is assumed to act as the single variable of population size, [Formula: see text], exerting density dependence on age-specific vital rates through an increasing function of population size. The environment fluctuates in a stationary distribution with no autocorrelation. We show by analysis and simulation of age structure, under assumptions often met by vertebrate populations, that the stochastic dynamics of population size can be accurately approximated by a univariate model governed by three key demographic parameters: the intrinsic rate of increase and carrying capacity in the average environment, [Formula: see text] and [Formula: see text], and the environmental variance in population growth rate, [Formula: see text] Allowing these parameters to be genetically variable and to evolve, but assuming that a fourth parameter, [Formula: see text], measuring the nonlinearity of density dependence, remains constant, the expected evolution maximizes [Formula: see text] This shows that the magnitude of environmental stochasticity governs the classical trade-off between selection for higher [Formula: see text] versus higher [Formula: see text] However, selection also acts to decrease [Formula: see text], so the simple life-history trade-off between [Formula: see text]- and [Formula: see text]-selection may be obscured by additional trade-offs between them and [Formula: see text] Under the classical logistic model of population growth with linear density dependence ([Formula: see text]), life-history evolution in a fluctuating environment tends to maximize the average population size. Published under the PNAS license.

  13. Dynamic Testing of a Pre-stretched Flexible Tube for Identifying the Factors Affecting Modal Parameter Estimation

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, Madhusudanan; Rajan, Akash; Basanthvihar Raghunathan, Binulal; Kochupillai, Jayaraj

    2017-08-01

    Experimental modal analysis is the primary tool for obtaining the fundamental dynamic characteristics like natural frequency, mode shape and modal damping ratio that determine the behaviour of any structure under dynamic loading conditions. This paper discusses about a carefully designed experimental method for calculating the dynamic characteristics of a pre-stretched horizontal flexible tube made of polyurethane material. The factors that affect the modal parameter estimation like the application time of shaker excitation, pause time between successive excitation cycles, averaging and windowing of measured signal, as well as the precautions to be taken during the experiment are explained in detail. The modal parameter estimation is done using MEscopeVESTM software. A finite element based pre-stressed modal analysis of the flexible tube is also done using ANSYS ver.14.0 software. The experimental and analytical results agreed well. The proposed experimental methodology may be extended for carrying out the modal analysis of many flexible structures like inflatables, tires and membranes.

  14. Controlling of dielectrical properties of hydroxyapatite by ethylenediamine tetraacetic acid (EDTA) for bone healing applications

    NASA Astrophysics Data System (ADS)

    Kaygili, Omer; Ates, Tankut; Keser, Serhat; Al-Ghamdi, Ahmed A.; Yakuphanoglu, Fahrettin

    2014-08-01

    The hydroxyapatite (HAp) samples in the presence of various amounts of ethylenediamine tetraacetic acid (EDTA) were prepared by sol-gel method. The effects of EDTA on the crystallinity, phase structure, chemical, micro-structural and dielectric properties of HAp samples were investigated. With the addition of EDTA, the average crystallite size of the HAp samples is gradually decreased from 30 to 22 nm and the crystallinity is in the range of 65-71%. The values of the lattice parameters (a and c) and volume of the unit cell are decreased by stages with the addition of EDTA. The dielectric parameters such as relative permittivity, dielectric loss and relaxation time are affected by the adding of EDTA. The alternating current conductivity of the as-synthesized hydroxyapatites increases with the increasing frequency and obeys the universal power law behavior. The HAp samples exhibit a non-Debye relaxation mechanism. The obtained results that the dielectrical parameters of the HAp sample can be controlled by EDTA.

  15. Broadband unidirectional invisibility for airborne sound

    NASA Astrophysics Data System (ADS)

    Kan, Weiwei; Guo, Mengping; Shen, Zhonghua

    2018-05-01

    We present a metafluid-based broadband cloak capable of guiding acoustic waves around obstacles along given directions while maintaining the wavefront undisturbed. The required parameter distribution of the proposed cloak is derived by coordinate transformation and practically implemented by employing the acoustic metafluid formed with periodically arranged slabs in acoustic chambers. The method for independently modulating the effective mass density and bulk modulus of the metafluid is developed by tuning the geometry parameters and the temperature of the acoustic chamber in a specific process. By virtue of this free-modulated method, the range of realizable effective parameters is substantially broadened, and the acoustic impedance of the anisotropic structures can be well matched to the background. The performance of the designed structure is quantitatively evaluated in the frequency range of 3-4 kHz by the averaged invisibility factor. The results show that the proposed cloak is effective in manipulating the acoustic field along the given direction and suppressing the wave scattering from the hidden object.

  16. Unsteady Aerodynamic Force Sensing from Strain Data

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2017-01-01

    A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm.

  17. Design Rules for Tailoring Antireflection Properties of Hierarchical Optical Structures

    DOE PAGES

    Leon, Juan J. Diaz; Hiszpanski, Anna M.; Bond, Tiziana C.; ...

    2017-05-18

    Hierarchical structures consisting of small sub-wavelength features stacked atop larger structures have been demonstrated as an effective means of reducing the reflectance of surfaces. However, optical devices require different antireflective properties depending on the application, and general unifying guidelines on hierarchical structures' design to attain a desired antireflection spectral response are still lacking. The type of reflectivity (diffuse, specular, or total/hemispherical) and its angular- and spectral-dependence are all dictated by the structural parameters. Through computational and experimental studies, guidelines have been devised to modify these various aspects of reflectivity across the solar spectrum by proper selection of the features ofmore » hierarchical structures. In this wavelength regime, micrometer-scale substructures dictate the long-wavelength spectral response and effectively reduce specular reflectance, whereas nanometer-scale substructures dictate primarily the visible wavelength spectral response and reduce diffuse reflectance. Coupling structures having these two length scales into hierarchical arrays impressively reduces surfaces' hemispherical reflectance across a broad spectrum of wavelengths and angles. Furthermore, such hierarchical structures in silicon are demonstrated having an average total reflectance across the solar spectrum of 1.1% (average weighted reflectance of 1% in the 280–2500 nm range of the AM 1.5 G spectrum) and specular reflectance <1% even at angles of incidence as high as 67°.« less

  18. SU-E-J-134: Optimizing Technical Parameters for Using Atlas Based Automatic Segmentation for Evaluation of Contour Accuracy Experience with Cardiac Structures From NRG Oncology/RTOG 0617

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, J; Gong, Y; Bar-Ad, V

    Purpose: Accurate contour delineation is crucial for radiotherapy. Atlas based automatic segmentation tools can be used to increase the efficiency of contour accuracy evaluation. This study aims to optimize technical parameters utilized in the tool by exploring the impact of library size and atlas number on the accuracy of cardiac contour evaluation. Methods: Patient CT DICOMs from RTOG 0617 were used for this study. Five experienced physicians delineated the cardiac structures including pericardium, atria and ventricles following an atlas guideline. The consistency of cardiac structured delineation using the atlas guideline was verified by a study with four observers and seventeenmore » patients. The CT and cardiac structure DICOM files were then used for the ABAS technique.To study the impact of library size (LS) and atlas number (AN) on automatic contour accuracy, automatic contours were generated with varied technique parameters for five randomly selected patients. Three LS (20, 60, and 100) were studied using commercially available software. The AN was four, recommended by the manufacturer. Using the manual contour as the gold standard, Dice Similarity Coefficient (DSC) was calculated between the manual and automatic contours. Five-patient averaged DSCs were calculated for comparison for each cardiac structure.In order to study the impact of AN, the LS was set 100, and AN was tested from one to five. The five-patient averaged DSCs were also calculated for each cardiac structure. Results: DSC values are highest when LS is 100 and AN is four. The DSC is 0.90±0.02 for pericardium, 0.75±0.06 for atria, and 0.86±0.02 for ventricles. Conclusion: By comparing DSC values, the combination AN=4 and LS=100 gives the best performance. This project was supported by NCI grants U24CA12014, U24CA180803, U10CA180868, U10CA180822, PA CURE grant and Bristol-Myers Squibb and Eli Lilly.« less

  19. [Spatial structural characteristics of natural Populus davidiana - Betula platyphylla secondary forest].

    PubMed

    Shao, Fang-Li; Yu, Xin-Xiao; Song, Si-Ming; Zhao, Yang

    2011-11-01

    This paper analyzed the spatial structural characteristics of natural Populus davidiana - Betula platyphylla secondary forest in a 4 hm2 plot of Mulan Paddock, based on the diameter distribution and the spatial structure parameters mingling degree, neighborhood comparison, and angle index. In the forest, the diameter distribution of the stands presented as an inverse 'J' curve, the average mingling degree was 0.4, with the individuals at weak and zero mingling degree reached 51.6%, and the average mingling degree of P. davidiana and B. platyphylla was 0.25 and 0.39, respectively. The neighborhood comparison based on the diameter at breast height (DBH) and tree height was almost the same, suggesting that the P. davidiana and B. platyphylla were in the transition state from subdominant to middle. The horizontal distribution pattern had a close relation to the minimum measured DBH, being clustered when the DBH was > or = 1 cm and < 6 cm, and random when the DBH was > or = 6 cm.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, L. H.; Wang, X. D.; Yu, Q.

    Temperature-dependent atomistic structure evolution of liquid gallium (Ga) has been investigated by using in situ high energy X-ray diffraction experiment and ab initio molecular dynamics simulation. Both experimental and theoretical results reveal the existence of a liquid structural change around 1000 K in liquid Ga. Below and above this temperature the liquid exhibits differences in activation energy for selfdiffusion, temperature-dependent heat capacity, coordination numbers, density, viscosity, electric resistivity and thermoelectric power, which are reflected from structural changes of the bond-orientational order parameter Q6, fraction of covalent dimers, averaged string length and local atomic packing. This finding will trigger more studiesmore » on the liquid-to-liquid crossover in metallic melts.« less

  1. CFL3D User's Manual (Version 5.0)

    NASA Technical Reports Server (NTRS)

    Krist, Sherrie L.; Biedron, Robert T.; Rumsey, Christopher L.

    1998-01-01

    This document is the User's Manual for the CFL3D computer code, a thin-layer Reynolds-averaged Navier-Stokes flow solver for structured multiple-zone grids. Descriptions of the code's input parameters, non-dimensionalizations, file formats, boundary conditions, and equations are included. Sample 2-D and 3-D test cases are also described, and many helpful hints for using the code are provided.

  2. Pseudo-conformer models for linear molecules: Joint treatment of spectroscopic, electron diffraction and ab initio data for the C3O2 molecule

    NASA Astrophysics Data System (ADS)

    Tarasov, Yury I.; Kochikov, Igor V.

    2018-06-01

    Dynamic analysis of the molecules with large-amplitude motions (LAM) based on the pseudo-conformer approach has been successfully applied to various molecules. Floppy linear molecules present a special class of molecular structures that possess a pair of conjugate LAM coordinates but allow one-dimensional treatment. In this paper, previously developed treatment for the semirigid molecules is applied to the carbon suboxide molecule. This molecule characterized by the extremely large CCC bending has been thoroughly investigated by spectroscopic and ab initio methods. However, the earlier electron diffraction investigations were performed within a static approach, obtaining thermally averaged parameters. In this paper we apply a procedure aimed at obtaining the short list of self-consistent reference geometry parameters of a molecule, while all thermally averaged parameters are calculated based on reference geometry, relaxation dependencies and quadratic and cubic force constants. We show that such a model satisfactorily describes available electron diffraction evidence with various QC bending potential energy functions when r.m.s. CCC angle is in the interval 151 ± 2°. This leads to a self-consistent molecular model satisfying spectroscopic and GED data. The parameters for linear reference geometry have been defined as re(CO) = 1.161(2) Å and re(CC) = 1.273(2) Å.

  3. Instrument to average 100 data sets

    NASA Technical Reports Server (NTRS)

    Tuma, G. B.; Birchenough, A. G.; Rice, W. J.

    1977-01-01

    An instrumentation system is currently under development which will measure many of the important parameters associated with the operation of an internal combustion engine. Some of these parameters include mass-fraction burn rate, ignition energy, and the indicated mean effective pressure. One of the characteristics of an internal combustion engine is the cycle-to-cycle variation of these parameters. A curve-averaging instrument has been produced which will generate the average curve, over 100 cycles, of any engine parameter. the average curve is described by 2048 discrete points which are displayed on an oscilloscope screen to facilitate recording and is available in real time. Input can be any parameter which is expressed as a + or - 10-volt signal. Operation of the curve-averaging instrument is defined between 100 and 6000 rpm. Provisions have also been made for averaging as many as four parameters simultaneously, with a subsequent decrease in resolution. This provides the means to correlate and perhaps interrelate the phenomena occurring in an internal combustion engine. This instrument has been used successfully on a 1975 Chevrolet V8 engine, and on a Continental 6-cylinder aircraft engine. While this instrument was designed for use on an internal combustion engine, with some modification it can be used to average any cyclically varying waveform.

  4. Role of SiO2 coating in multiferroic CoCr2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kamran, M.; Ullah, Asmat; Mehmood, Y.; Nadeem, K.; Krenn, H.

    2017-02-01

    Effect of silica (SiO2) coating concentration on structural and magnetic properties of multiferroic cobalt chromite (CoCr2O4) nanoparticles have been studied. The nanoparticles with average crystallite size in the range 19 to 28 nm were synthesised by sol-gel method. X-ray diffraction (XRD) analysis has verified the composition of single-phase cubic normal spinel structure of CoCr2O4 nanoparticles. The average crystallite size and cell parameter decreased with increasing SiO2 concentration. TEM image revealed that the shape of nanoparticles was non-spherical. Zero field cooled/field cooled (ZFC/FC) curves revealed that nanoparticles underwent a transition from paramagnetic (PM) state to collinear short-range ferrimagnetic (FiM) state, and this PM-FiM transition temperature decreased from 101 to 95 K with increasing SiO2 concentration or decreasing crystallite size. A conical spin state at Ts = 27 K was also observed for all the samples which decreased with decreasing average crystallite size. Low temperature lock-in transition was also observed in these nanoparticles at 12 K for uncoated nanoparticles which slightly shifted towards low temperature with decreasing average crystallite size. Saturation magnetization (Ms) showed decreasing trend with increasing SiO2 concentration, which was due to decrease in average crystallite size of nanoparticles and enhanced surface disorder in smaller nanoparticles. The temperature dependent AC-susceptibility also showed the decrease in the transition temperature (Tc), broadening of the Tc peak and decrease in magnetization with increasing SiO2 concentration or decreasing average crystallite size. In summary, the concentration of SiO2 has significantly affected the structural and magnetic properties of CoCr2O4 nanoparticles.

  5. Simulation study of poled low-water ionomers with different architectures

    NASA Astrophysics Data System (ADS)

    Allahyarov, Elshad; Taylor, Philip L.; Löwen, Hartmut

    2011-11-01

    The role of the ionomer architecture in the formation of ordered structures in poled membranes is investigated by molecular dynamics computer simulations. It is shown that the length of the sidechain Ls controls both the areal density of cylindrical aggregates Nc and the diameter of these cylinders in the poled membrane. The backbone segment length Lb tunes the average diameter Ds of cylindrical clusters and the average number of sulfonates Ns in each cluster. A simple empirical formula is noted for the dependence of the number density of induced rod-like aggregates on the sidechain length Ls within the parameter range considered in this study.

  6. Interplay of stereoelectronic and enviromental effects in tuning the structural and magnetic properties of a prototypical spin probe: further insights from a first principle dynamical approach.

    PubMed

    Pavone, Michele; Cimino, Paola; De Angelis, Filippo; Barone, Vincenzo

    2006-04-05

    The nitrogen isotropic hyperfine coupling constant (hcc) and the g tensor of a prototypical spin probe (di-tert-butyl nitroxide, DTBN) in aqueous solution have been investigated by means of an integrated computational approach including Car-Parrinello molecular dynamics and quantum mechanical calculations involving a discrete-continuum embedding. The quantitative agreement between computed and experimental parameters fully validates our integrated approach. Decoupling of the structural, dynamical, and environmental contributions acting onto the spectral observables allows an unbiased judgment of the role played by different effects in determining the overall experimental observables and highlights the importance of finite-temperature vibrational averaging. Together with their intrinsic interest, our results pave the route toward more reliable interpretations of EPR parameters of complex systems of biological and technological relevance.

  7. Measurements of the Temperature Structure-Function Parameters with a Small Unmanned Aerial System Compared with a Sodar

    NASA Astrophysics Data System (ADS)

    Bonin, Timothy A.; Goines, David C.; Scott, Aaron K.; Wainwright, Charlotte E.; Gibbs, Jeremy A.; Chilson, Phillip B.

    2015-06-01

    The structure function is often used to quantify the intensity of spatial inhomogeneities within turbulent flows. Here, the Small Multifunction Research and Teaching Sonde (SMARTSonde), an unmanned aerial system, is used to measure horizontal variations in temperature and to calculate the structure function of temperature at various heights for a range of separation distances. A method for correcting for the advection of turbulence in the calculation of the structure function is discussed. This advection correction improves the data quality, particularly when wind speeds are high. The temperature structure-function parameter can be calculated from the structure function of temperature. Two case studies from which the SMARTSonde was able to take measurements used to derive at several heights during multiple consecutive flights are discussed and compared with sodar measurements, from which is directly related to return power. Profiles of from both the sodar and SMARTSonde from an afternoon case exhibited generally good agreement. However, the profiles agreed poorly for a morning case. The discrepancies are partially attributed to different averaging times for the two instruments in a rapidly evolving environment, and the measurement errors associated with the SMARTSonde sampling within the stable boundary layer.

  8. Simulation and Experimental Studies on Grain Selection and Structure Design of the Spiral Selector for Casting Single Crystal Ni-Based Superalloy.

    PubMed

    Zhang, Hang; Xu, Qingyan

    2017-10-27

    Grain selection is an important process in single crystal turbine blades manufacturing. Selector structure is a control factor of grain selection, as well as directional solidification (DS). In this study, the grain selection and structure design of the spiral selector were investigated through experimentation and simulation. A heat transfer model and a 3D microstructure growth model were established based on the Cellular automaton-Finite difference (CA-FD) method for the grain selector. Consequently, the temperature field, the microstructure and the grain orientation distribution were simulated and further verified. The average error of the temperature result was less than 1.5%. The grain selection mechanisms were further analyzed and validated through simulations. The structural design specifications of the selector were suggested based on the two grain selection effects. The structural parameters of the spiral selector, namely, the spiral tunnel diameter ( d w ), the spiral pitch ( h b ) and the spiral diameter ( h s ), were studied and the design criteria of these parameters were proposed. The experimental and simulation results demonstrated that the improved selector could accurately and efficiently produce a single crystal structure.

  9. Simulation and Experimental Studies on Grain Selection and Structure Design of the Spiral Selector for Casting Single Crystal Ni-Based Superalloy

    PubMed Central

    Zhang, Hang; Xu, Qingyan

    2017-01-01

    Grain selection is an important process in single crystal turbine blades manufacturing. Selector structure is a control factor of grain selection, as well as directional solidification (DS). In this study, the grain selection and structure design of the spiral selector were investigated through experimentation and simulation. A heat transfer model and a 3D microstructure growth model were established based on the Cellular automaton-Finite difference (CA-FD) method for the grain selector. Consequently, the temperature field, the microstructure and the grain orientation distribution were simulated and further verified. The average error of the temperature result was less than 1.5%. The grain selection mechanisms were further analyzed and validated through simulations. The structural design specifications of the selector were suggested based on the two grain selection effects. The structural parameters of the spiral selector, namely, the spiral tunnel diameter (dw), the spiral pitch (hb) and the spiral diameter (hs), were studied and the design criteria of these parameters were proposed. The experimental and simulation results demonstrated that the improved selector could accurately and efficiently produce a single crystal structure. PMID:29077067

  10. Bifocal computational near eye light field displays and Structure parameters determination scheme for bifocal computational display.

    PubMed

    Liu, Mali; Lu, Chihao; Li, Haifeng; Liu, Xu

    2018-02-19

    We propose a bifocal computational near eye light field display (bifocal computational display) and structure parameters determination scheme (SPDS) for bifocal computational display that achieves greater depth of field (DOF), high resolution, accommodation and compact form factor. Using a liquid varifocal lens, two single-focal computational light fields are superimposed to reconstruct a virtual object's light field by time multiplex and avoid the limitation on high refresh rate. By minimizing the deviation between reconstructed light field and original light field, we propose a determination framework to determine the structure parameters of bifocal computational light field display. When applied to different objective to SPDS, it can achieve high average resolution or uniform resolution display over scene depth range. To analyze the advantages and limitation of our proposed method, we have conducted simulations and constructed a simple prototype which comprises a liquid varifocal lens, dual-layer LCDs and a uniform backlight. The results of simulation and experiments with our method show that the proposed system can achieve expected performance well. Owing to the excellent performance of our system, we motivate bifocal computational display and SPDS to contribute to a daily-use and commercial virtual reality display.

  11. Surface effect investigation on multipactor in microwave components using the EM-PIC method

    NASA Astrophysics Data System (ADS)

    Li, Yun; Ye, Ming; He, Yong-Ning; Cui, Wan-Zhao; Wang, Dan

    2017-11-01

    Multipactor poses a great risk to microwave components in space and its accurate controllable suppression is still lacking. To evaluate the secondary electron emission (SEE) of arbitrary surface states on multipactor, metal samples fabricated with ideal smoothness, random roughness, and micro-structures on the surface are investigated through SEE experiments and multipactor simulations. An accurate quantitative relationship between the SEE parameters and the multipactor discharge threshold in practical components has been established through Electromagnetic Particle-In-Cell (EM-PIC) simulation. Simulation results of microwave components, including the impedance transformer and the coaxial filter, exhibit an intuitive correlation between the critical SEE parameters, varied due to different surface states, and multipactor thresholds. It is demonstrated that it is the surface micro-structures with certain depth and morphology that determine the average yield of secondaries, other than the random surface relieves. Both the random surface relieves and micro-structures have a scattering effect on SEE, and the yield is prone to be identical upon different elevation angles of incident electrons. It possesses a great potential in the optimization and improvement of suppression technology without the exhaustion of the technological parameter.

  12. Optical photon transport in powdered-phosphor scintillators. Part II. Calculation of single-scattering transport parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poludniowski, Gavin G.; Evans, Philip M.

    2013-04-15

    Purpose: Monte Carlo methods based on the Boltzmann transport equation (BTE) have previously been used to model light transport in powdered-phosphor scintillator screens. Physically motivated guesses or, alternatively, the complexities of Mie theory have been used by some authors to provide the necessary inputs of transport parameters. The purpose of Part II of this work is to: (i) validate predictions of modulation transform function (MTF) using the BTE and calculated values of transport parameters, against experimental data published for two Gd{sub 2}O{sub 2}S:Tb screens; (ii) investigate the impact of size-distribution and emission spectrum on Mie predictions of transport parameters; (iii)more » suggest simpler and novel geometrical optics-based models for these parameters and compare to the predictions of Mie theory. A computer code package called phsphr is made available that allows the MTF predictions for the screens modeled to be reproduced and novel screens to be simulated. Methods: The transport parameters of interest are the scattering efficiency (Q{sub sct}), absorption efficiency (Q{sub abs}), and the scatter anisotropy (g). Calculations of these parameters are made using the analytic method of Mie theory, for spherical grains of radii 0.1-5.0 {mu}m. The sensitivity of the transport parameters to emission wavelength is investigated using an emission spectrum representative of that of Gd{sub 2}O{sub 2}S:Tb. The impact of a grain-size distribution in the screen on the parameters is investigated using a Gaussian size-distribution ({sigma}= 1%, 5%, or 10% of mean radius). Two simple and novel alternative models to Mie theory are suggested: a geometrical optics and diffraction model (GODM) and an extension of this (GODM+). Comparisons to measured MTF are made for two commercial screens: Lanex Fast Back and Lanex Fast Front (Eastman Kodak Company, Inc.). Results: The Mie theory predictions of transport parameters were shown to be highly sensitive to both grain size and emission wavelength. For a phosphor screen structure with a distribution in grain sizes and a spectrum of emission, only the average trend of Mie theory is likely to be important. This average behavior is well predicted by the more sophisticated of the geometrical optics models (GODM+) and in approximate agreement for the simplest (GODM). The root-mean-square differences obtained between predicted MTF and experimental measurements, using all three models (GODM, GODM+, Mie), were within 0.03 for both Lanex screens in all cases. This is excellent agreement in view of the uncertainties in screen composition and optical properties. Conclusions: If Mie theory is used for calculating transport parameters for light scattering and absorption in powdered-phosphor screens, care should be taken to average out the fine-structure in the parameter predictions. However, for visible emission wavelengths ({lambda} < 1.0 {mu}m) and grain radii (a > 0.5 {mu}m), geometrical optics models for transport parameters are an alternative to Mie theory. These geometrical optics models are simpler and lead to no substantial loss in accuracy.« less

  13. Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and Correlations

    PubMed Central

    van Albada, Sacha Jennifer; Helias, Moritz; Diesmann, Markus

    2015-01-01

    Network models are routinely downscaled compared to nature in terms of numbers of nodes or edges because of a lack of computational resources, often without explicit mention of the limitations this entails. While reliable methods have long existed to adjust parameters such that the first-order statistics of network dynamics are conserved, here we show that limitations already arise if also second-order statistics are to be maintained. The temporal structure of pairwise averaged correlations in the activity of recurrent networks is determined by the effective population-level connectivity. We first show that in general the converse is also true and explicitly mention degenerate cases when this one-to-one relationship does not hold. The one-to-one correspondence between effective connectivity and the temporal structure of pairwise averaged correlations implies that network scalings should preserve the effective connectivity if pairwise averaged correlations are to be held constant. Changes in effective connectivity can even push a network from a linearly stable to an unstable, oscillatory regime and vice versa. On this basis, we derive conditions for the preservation of both mean population-averaged activities and pairwise averaged correlations under a change in numbers of neurons or synapses in the asynchronous regime typical of cortical networks. We find that mean activities and correlation structure can be maintained by an appropriate scaling of the synaptic weights, but only over a range of numbers of synapses that is limited by the variance of external inputs to the network. Our results therefore show that the reducibility of asynchronous networks is fundamentally limited. PMID:26325661

  14. Chiral tunneling in gated inversion symmetric Weyl semimetal.

    PubMed

    Bai, Chunxu; Yang, Yanling; Chang, Kai

    2016-02-18

    Based on the chirality-resolved transfer-matrix method, we evaluate the chiral transport tunneling through Weyl semimetal multi-barrier structures created by periodic gates. It is shown that, in sharp contrast to the cases of three dimensional normal semimetals, the tunneling coefficient as a function of incident angle shows a strong anisotropic behavior. Importantly, the tunneling coefficients display an interesting periodic oscillation as a function of the crystallographic angle of the structures. With the increasement of the barriers, the tunneling current shows a Fabry-Perot type interferences. For superlattice structures, the fancy miniband effect has been revealed. Our results show that the angular dependence of the first bandgap can be reduced into a Lorentz formula. The disorder suppresses the oscillation of the tunneling conductance, but would not affect its average amplitude. This is in sharp contrast to that in multi-barrier conventional semiconductor structures. Moreover, numerical results for the dependence of the angularly averaged conductance on the incident energy and the structure parameters are presented and contrasted with those in two dimensional relativistic materials. Our work suggests that the gated Weyl semimetal opens a possible new route to access to new type nanoelectronic device.

  15. Chiral tunneling in gated inversion symmetric Weyl semimetal

    PubMed Central

    Bai, Chunxu; Yang, Yanling; Chang, Kai

    2016-01-01

    Based on the chirality-resolved transfer-matrix method, we evaluate the chiral transport tunneling through Weyl semimetal multi-barrier structures created by periodic gates. It is shown that, in sharp contrast to the cases of three dimensional normal semimetals, the tunneling coefficient as a function of incident angle shows a strong anisotropic behavior. Importantly, the tunneling coefficients display an interesting periodic oscillation as a function of the crystallographic angle of the structures. With the increasement of the barriers, the tunneling current shows a Fabry-Perot type interferences. For superlattice structures, the fancy miniband effect has been revealed. Our results show that the angular dependence of the first bandgap can be reduced into a Lorentz formula. The disorder suppresses the oscillation of the tunneling conductance, but would not affect its average amplitude. This is in sharp contrast to that in multi-barrier conventional semiconductor structures. Moreover, numerical results for the dependence of the angularly averaged conductance on the incident energy and the structure parameters are presented and contrasted with those in two dimensional relativistic materials. Our work suggests that the gated Weyl semimetal opens a possible new route to access to new type nanoelectronic device. PMID:26888491

  16. Force Field Development and Molecular Dynamics of [NiFe] Hydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Dayle MA; Xiong, Yijia; Straatsma, TP

    2012-05-09

    Classical molecular force-field parameters describing the structure and motion of metal clusters in [NiFe] hydrogenase enzymes can be used to compare the dynamics and thermodynamics of [NiFe] under different oxidation, protonation, and ligation circumstances. Using density functional theory (DFT) calculations of small model clusters representative of the active site and the proximal, medial, and distal Fe/S metal centers and their attached protein side chains, we have calculated classical force-field parameters for [NiFe] in reduced and oxidized states, including internal coordinates, force constants, and atom-centered charges. Derived force constants revealed that cysteinate ligands bound to the metal ions are more flexiblemore » in the Ni-B active site, which has a bridging hydroxide ligand, than in the Ni-C active site, which has a bridging hydride. Ten nanosecond all-atom, explicit-solvent MD simulations of [NiFe] hydrogenase in oxidized and reduced catalytic states established the stability of the derived force-field parameters in terms of C{alpha} and metal cluster fluctuations. Average active site structures from the protein MD simulations are consistent with [NiFe] structures from the Protein Data Bank, suggesting that the derived force-field parameters are transferrable to other hydrogenases beyond the structure used for testing. A comparison of experimental H{sub 2}-production rates demonstrated a relationship between cysteinate side chain rotation and activity, justifying the use of a fully dynamic model of [NiFe] metal cluster motion.« less

  17. The role of modifier cation field strength, oxygen speciation and network cation interaction in pressure-induced structural changes of silicate melts and glasses: 27Al, and 11B MAS NMR studies

    NASA Astrophysics Data System (ADS)

    Bista, S.; Stebbins, J. F.

    2017-12-01

    In aluminosilicate melts and glasses, both non-bridging oxygen content (NBO) and modifier cation field strength (Mg>Ca>Na>K) are known to facilitate network cation (e.g. Al, B) coordination increase with pressure. However, the role of these two compositional parameters in pressure-induced structural changes is derived from data for a limited set of compositions, where effects of the interaction between these parameters is less understood. For example, the effects of NBO are largely based on studies of Na and K aluminosilicate glasses, but effects of geologically important, higher field strength modifier cations such as Mg2+ and Fe2+ could well be significantly different. In this study, we look at a wide compositional range of Na, Ca and Mg aluminosilicate glasses (quenched from high pressure melts near to the glass transition temperature) to understand the roles of NBO and modifier cation field strength that can extend our view of processes important for silicate melts common in nature. Our results show that the role of NBO in pressure-induced structural changes varies systematically with increasing field strength of the modifier cation. In Na aluminosilicate glasses recovered from 1.5 to 3 GPa, large increases in average aluminum coordination are observed in glasses with high NBO content, while no detectable increases are seen for low nominal NBO (jadeite). In contrast, Mg aluminosilicate glasses with both high and low NBO show similar, large increases in average aluminum coordination with increasing pressure. The behaviors of Ca aluminosilicates fall between those of Na and Mg-rich glasses. We have also looked at interactions between different network forming cations in pressure-induced structural changes in low NBO Ca-aluminoborosilicate glasses with varying B/Si. Both aluminum and boron increase dramatically in coordination in these compositions 1.5 to 3 GPa. Increases in both average aluminum coordination and densification are larger in compositions containing higher boron concentrations, suggesting an interaction between boron and aluminum network cations in pressure-induced structural changes.

  18. Atomic structure data based on average-atom model for opacity calculations in astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Trzhaskovskaya, M. B.; Nikulin, V. K.

    2018-03-01

    Influence of the plasmas parameters on the electron structure of ions in astrophysical plasmas is studied on the basis of the average-atom model in the local thermodynamic equilibrium approximation. The relativistic Dirac-Slater method is used for the electron density estimation. The emphasis is on the investigation of an impact of the plasmas temperature and density on the ionization stages required for calculations of the plasmas opacities. The level population distributions and level energy spectra are calculated and analyzed for all ions with 6 ≤ Z ≤ 32 occurring in astrophysical plasmas. The plasma temperature range 2 - 200 eV and the density range 2 - 100 mg/cm3 are considered. The validity of the method used is supported by good agreement between our values of ionization stages for a number of ions, from oxygen up to uranium, and results obtained earlier by various methods among which are more complicated procedures.

  19. Band structure of comb-like photonic crystals containing meta-materials

    NASA Astrophysics Data System (ADS)

    Weng, Yi; Wang, Zhi-Guo; Chen, Hong

    2007-09-01

    We study the transmission properties and band structure of comb-like photonic crystals (PC) with backbones constructed of meta-materials (negative-index materials) within the frame of the interface response theory. The result shows the existence of a special band gap at low frequency. This gap differs from the Bragg gaps in that it is insensitive to the geometrical scaling and disorder. In comparison with the zero-average-index gap in one-dimensional PC made of alternating positive- and negative-index materials, the gap is obviously deeper and broader, given the same system parameters. In addition, the behavior of its gap-edges is also different. One gap-edge is decided by the average permittivity whereas the other is only subject to the changing of the permeability of the backbone. Due to this asymmetry of the two gap-edges, the broadening of the gap could be realized with much freedom and facility.

  20. Surface analysis of Fe-Co-Mo electrolytic coatings

    NASA Astrophysics Data System (ADS)

    Yar-Mukhamedova, G. Sh; Sakhnenko, N. D.; Ved', M. V.; Yermolenko, I. Yu; Zyubanova, S. I.

    2017-06-01

    Coatings Fe-Co-Mo with a composition of 47 at.% iron, 28 at.% Cobalt and 25 at.% Molybdenum were deposited from citrate electrolyte using pulse electrolysis mode. Scanning electron and atomic force microscopy have established the surface morphology and topography. It was identified the parts with a globular structure which have an average size of 0.2-0.5μm and singly located sharp grains. Within the same scan area sites with developed surface were detected the topography of which is identical to the crystal structure of cobalt with the crystallites size of 0.2-1.75μm. The parameters Ra and Rq for parts with different morphology as well as average characteristics of coatings demonstrated the low roughness of the surface. It is found that the coercive force of Fe-Co-Mo films is 7-10 Oe, which allow us to classify the Fe-Co-Mo coatings as soft magnetic materials.

  1. Development of ten microsatellite loci in the invasive giant African land snail, Achatina (=Lissachatina) fulica Bowdich, 1822

    USGS Publications Warehouse

    Morrison, Cheryl L.; Springmann, Marcus J.; Iwanowicz, Deborah D.; Wade, Christopher M.

    2015-01-01

    A suite of tetra-nucleotide microsatellite loci were developed for the invasive giant African land snail, Achatina (=Lissachatina) fulica Bowdich, 1822, from Ion Torrent next-generation sequencing data. Ten of the 96 primer sets tested amplified consistently in 30 snails from Miami, Florida, plus 12 individuals representative of their native East Africa, Indian and Pacific Ocean regions. The loci displayed moderate levels of allelic diversity (average 5.6 alleles/locus) and heterozygosity (average 42 %). Levels of genetic diversity were sufficient to produce unique multi-locus genotypes and detect phylogeographic structuring among regional samples. The invasive A. fulica can cause extensive damage to important food crops and natural resources, including native flora and fauna. The loci characterized here will be useful for determining the origins and tracking the spread of invasions, detecting fine-scale spatial structuring and estimating demographic parameters.

  2. Structure of magnetopause layers formed by a radial interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Safrankova, Jana; Simunek, Jiri; Nemecek, Zdenek; Prech, Lubomir; Grygorov, Kostiantyn; Shue, Jih-Hong; Samsonov, Andrey; Pi, Gilbert

    2016-07-01

    The magnetopause location is generally believed to be determined by the solar wind dynamic pressure and by the sign and value of the interplanetary magnetic field (IMF) vertical (Bz) component. A contribution of other parameters is usually assumed to be minor or negligible near the equatorial plane. However, recent papers have shown a magnetopause expansion during intervals of a nearly radial IMF (large IMF Bx component). Under such conditions, the total pressure exerted on the subsolar magnetopause is significantly lower than the solar wind dynamic pressure as demonstrate both MHD simulations and statistical investigations. During a long-duration radial IMF, all parameters - the IMF magnitude, solar wind speed, density, and especially the temperature are depressed in comparison with their yearly averages. Moreover, in this case, the structures of the LLBL change; the LLBL shows different profiles at both hemispheres for negative and positive IMF Bx polarities. This asymmetry changes over time and influences the LLBL structures due to magnetic reconnection. We present an overview of important physical quantities controlling the magnetopause compression and new results that deal with the structure of the magnetopause and adjacent layers.

  3. Effects of random initial conditions on the dynamical scaling behaviors of a fixed-energy Manna sandpile model in one dimension

    NASA Astrophysics Data System (ADS)

    Kwon, Sungchul; Kim, Jin Min

    2015-01-01

    For a fixed-energy (FE) Manna sandpile model in one dimension, we investigate the effects of random initial conditions on the dynamical scaling behavior of an order parameter. In the FE Manna model, the density ρ of total particles is conserved, and an absorbing phase transition occurs at ρc as ρ varies. In this work, we show that, for a given ρ , random initial distributions of particles lead to the domain structure in which domains with particle densities higher and lower than ρc alternate with each other. In the domain structure, the dominant length scale is the average domain length, which increases via the coalescence of adjacent domains. At ρc, the domain structure slows down the decay of an order parameter and also causes anomalous finite-size effects, i.e., power-law decay followed by an exponential one before the quasisteady state. As a result, the interplay of particle conservation and random initial conditions causes the domain structure, which is the origin of the anomalous dynamical scaling behaviors for random initial conditions.

  4. Optical properties of p–i–n structures based on amorphous hydrogenated silicon with silicon nanocrystals formed via nanosecond laser annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krivyakin, G. K.; Volodin, V. A., E-mail: volodin@isp.nsc.ru; Kochubei, S. A.

    Silicon nanocrystals are formed in the i layers of p–i–n structures based on a-Si:H using pulsed laser annealing. An excimer XeCl laser with a wavelength of 308 nm and a pulse duration of 15 ns is used. The laser fluence is varied from 100 (below the melting threshold) to 250 mJ/cm{sup 2} (above the threshold). The nanocrystal sizes are estimated by analyzing Raman spectra using the phonon confinement model. The average is from 2.5 to 3.5 nm, depending on the laser-annealing parameters. Current–voltage measurements show that the fabricated p–i–n structures possess diode characteristics. An electroluminescence signal in the infrared (IR)more » range is detected for the p–i–n structures with Si nanocrystals; the peak position (0.9–1 eV) varies with the laser-annealing parameters. Radiative transitions are presumably related to the nanocrystal–amorphous-matrix interface states. The proposed approach can be used to produce light-emitting diodes on non-refractory substrates.« less

  5. [Crop geometry identification based on inversion of semiempirical BRDF models].

    PubMed

    Huang, Wen-jiang; Wang, Jin-di; Mu, Xi-han; Wang, Ji-hua; Liu, Liang-yun; Liu, Qiang; Niu, Zheng

    2007-10-01

    Investigations have been made on identification of erective and horizontal varieties by bidirectional canopy reflected spectrum and semi-empirical bidirectional reflectance distribution function (BRDF) models. The qualitative effect of leaf area index (LAI) and average leaf angle (ALA) on crop canopy reflected spectrum was studied. The structure parameter sensitive index (SPEI) based on the weight for the volumetric kernel (fvol), the weight for the geometric kernel (fgeo), and the weight for constant corresponding to isotropic reflectance (fiso), was defined in the present study for crop geometry identification. However, the weights associated with the kernels of semi-empirical BRDF model do not have a direct relationship with measurable biophysical parameters. Therefore, efforts have focused on trying to find the relation between these semi-empirical BRDF kernel weights and various vegetation structures. SPEI was proved to be more sensitive to identify crop geometry structures than structural scattering index (SSI) and normalized difference f-index (NDFI), SPEI could be used to distinguish erective and horizontal geometry varieties. So, it is feasible to identify horizontal and erective varieties of wheat by bidirectional canopy reflected spectrum.

  6. Structure of the Large Magellanic Cloud from near infrared magnitudes of red clump stars

    NASA Astrophysics Data System (ADS)

    Subramanian, S.; Subramaniam, A.

    2013-04-01

    Context. The structural parameters of the disk of the Large Magellanic Cloud (LMC) are estimated. Aims: We used the JH photometric data of red clump (RC) stars from the Magellanic Cloud Point Source Catalog (MCPSC) obtained from the InfraRed Survey Facility (IRSF) to estimate the structural parameters of the LMC disk, such as the inclination, i, and the position angle of the line of nodes (PAlon), φ. Methods: The observed LMC region is divided into several sub-regions, and stars in each region are cross-identified with the optically identified RC stars to obtain the near infrared magnitudes. The peak values of H magnitude and (J - H) colour of the observed RC distribution are obtained by fitting a profile to the distributions and by taking the average value of magnitude and colour of the RC stars in the bin with largest number. Then the dereddened peak H0 magnitude of the RC stars in each sub-region is obtained from the peak values of H magnitude and (J - H) colour of the observed RC distribution. The right ascension (RA), declination (Dec), and relative distance from the centre of each sub-region are converted into x,y, and z Cartesian coordinates. A weighted least square plane fitting method is applied to this x,y,z data to estimate the structural parameters of the LMC disk. Results: An intrinsic (J - H)0 colour of 0.40 ± 0.03 mag in the Simultaneous three-colour InfraRed Imager for Unbiased Survey (SIRIUS) IRSF filter system is estimated for the RC stars in the LMC and a reddening map based on (J - H) colour of the RC stars is presented. When the peaks of the RC distribution were identified by averaging, an inclination of 25°.7 ± 1°.6 and a PAlon = 141°.5 ± 4°.5 were obtained. We estimate a distance modulus, μ = 18.47 ± 0.1 mag to the LMC. Extra-planar features which are both in front and behind the fitted plane are identified. They match with the optically identified extra-planar features. The bar of the LMC is found to be part of the disk within 500 pc. Conclusions: The estimates of the structural parameters are found to be independent of the photometric bands used for the analysis. The radial variation of the structural parameters are also studied. We find that the inner disk, within ~3°.0, is less inclined and has a larger value of PAlon when compared to the outer disk. Our estimates are compared with the literature values, and the possible reasons for the small discrepancies found are discussed.

  7. Efficient Interruption of Infection Chains by Targeted Removal of Central Holdings in an Animal Trade Network

    PubMed Central

    Büttner, Kathrin; Krieter, Joachim; Traulsen, Arne; Traulsen, Imke

    2013-01-01

    Centrality parameters in animal trade networks typically have right-skewed distributions, implying that these networks are highly resistant against the random removal of holdings, but vulnerable to the targeted removal of the most central holdings. In the present study, we analysed the structural changes of an animal trade network topology based on the targeted removal of holdings using specific centrality parameters in comparison to the random removal of holdings. Three different time periods were analysed: the three-year network, the yearly and the monthly networks. The aim of this study was to identify appropriate measures for the targeted removal, which lead to a rapid fragmentation of the network. Furthermore, the optimal combination of the removal of three holdings regardless of their centrality was identified. The results showed that centrality parameters based on ingoing trade contacts, e.g. in-degree, ingoing infection chain and ingoing closeness, were not suitable for a rapid fragmentation in all three time periods. More efficient was the removal based on parameters considering the outgoing trade contacts. In all networks, a maximum percentage of 7.0% (on average 5.2%) of the holdings had to be removed to reduce the size of the largest component by more than 75%. The smallest difference from the optimal combination for all three time periods was obtained by the removal based on out-degree with on average 1.4% removed holdings, followed by outgoing infection chain and outgoing closeness. The targeted removal using the betweenness centrality differed the most from the optimal combination in comparison to the other parameters which consider the outgoing trade contacts. Due to the pyramidal structure and the directed nature of the pork supply chain the most efficient interruption of the infection chain for all three time periods was obtained by using the targeted removal based on out-degree. PMID:24069293

  8. Evaluation of spectral domain optical coherence tomography parameters in ocular hypertension, preperimetric, and early glaucoma.

    PubMed

    Aydogan, Tuğba; Akçay, BetÜl İlkay Sezgin; Kardeş, Esra; Ergin, Ahmet

    2017-11-01

    The objective of this study is to evaluate the diagnostic ability of retinal nerve fiber layer (RNFL), macular, optic nerve head (ONH) parameters in healthy subjects, ocular hypertension (OHT), preperimetric glaucoma (PPG), and early glaucoma (EG) patients, to reveal factors affecting the diagnostic ability of spectral domain-optical coherence tomography (SD-OCT) parameters and risk factors for glaucoma. Three hundred and twenty-six eyes (89 healthy, 77 OHT, 94 PPG, and 66 EG eyes) were analyzed. RNFL, macular, and ONH parameters were measured with SD-OCT. The area under the receiver operating characteristic curve (AUC) and sensitivity at 95% specificity was calculated. Logistic regression analysis was used to determine the glaucoma risk factors. Receiver operating characteristic regression analysis was used to evaluate the influence of covariates on the diagnostic ability of parameters. In PPG patients, parameters that had the largest AUC value were average RNFL thickness (0.83) and rim volume (0.83). In EG patients, parameter that had the largest AUC value was average RNFL thickness (0.98). The logistic regression analysis showed average RNFL thickness was a risk factor for both PPG and EG. Diagnostic ability of average RNFL and average ganglion cell complex thickness increased as disease severity increased. Signal strength index did not affect diagnostic abilities. Diagnostic ability of average RNFL and rim area increased as disc area increased. When evaluating patients with glaucoma, patients at risk for glaucoma, and healthy controls RNFL parameters deserve more attention in clinical practice. Further studies are needed to fully understand the influence of covariates on the diagnostic ability of OCT parameters.

  9. Turbulent circulation above the surface heat source in a stably stratified environment

    NASA Astrophysics Data System (ADS)

    Kurbatskii, A. F.; Kurbatskaya, L. I.

    2016-09-01

    The results of the numerical modeling of turbulent structure of the penetrating convection above the urban heat island with a small aspect ratio in a stably stratified medium at rest are presented. The gradient diffusion representations for turbulent momentum and heat fluxes are used, which depend on three parameters — the turbulence kinetic energy, the velocity of its spectral expenditure, and the dispersion of temperature fluctuations. These parameters are found from the closed differential equations of balance in the RANS approach of turbulence description. The distributions of averaged velocity and temperature fields as well as turbulent characteristics agree well with measurement data.

  10. Feathering instability of spiral arms. II. Parameter study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Wing-Kit, E-mail: wklee@asiaa.sinica.edu.tw; Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 115, Taiwan

    2014-09-10

    We report the results of a parameter study of the feathering stability in the galactic spiral arms. A two-dimensional, razor-thin magnetized self-gravitating gas disk with an imposed two-armed stellar spiral structure is considered. Using the formulation developed previously by Lee and Shu, a linear stability analysis of the spiral shock is performed in a localized Cartesian geometry. Results of the parameter study of the base state with a spiral shock are also presented. The single-mode feathering instability that leads to growing perturbations may explain the feathering phenomenon found in nearby spiral galaxies. The self-gravity of the gas, characterized by itsmore » average surface density, is an important parameter that (1) shifts the spiral shock farther downstream and (2) increases the growth rate and decreases the characteristic spacing of the feathering structure due to the instability. On the other hand, while the magnetic field suppresses the velocity fluctuation associated with the feathers, it does not strongly affect their growth rate. Using a set of typical parameters of the grand-design spiral galaxy M51 at 2 kpc from the center, the spacing of the feathers with the maximum growth rate is found to be 530 pc, which agrees with the previous observational studies.« less

  11. A Microwave Radiometric Method to Obtain the Average Path Profile of Atmospheric Temperature and Humidity Structure Parameters and Its Application to Optical Propagation System Assessment

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.; Vyhnalek, Brian E.

    2015-01-01

    The values of the key atmospheric propagation parameters Ct2, Cq2, and Ctq are highly dependent upon the vertical height within the atmosphere thus making it necessary to specify profiles of these values along the atmospheric propagation path. The remote sensing method suggested and described in this work makes use of a rapidly integrating microwave profiling radiometer to capture profiles of temperature and humidity through the atmosphere. The integration times of currently available profiling radiometers are such that they are approaching the temporal intervals over which one can possibly make meaningful assessments of these key atmospheric parameters. Since these parameters are fundamental to all propagation conditions, they can be used to obtain Cn2 profiles for any frequency, including those for an optical propagation path. In this case the important performance parameters of the prevailing isoplanatic angle and Greenwood frequency can be obtained. The integration times are such that Kolmogorov turbulence theory and the Taylor frozen-flow hypothesis must be transcended. Appropriate modifications to these classical approaches are derived from first principles and an expression for the structure functions are obtained. The theory is then applied to an experimental scenario and shows very good results.

  12. FP-LAPW based investigation of structural, electronic and mechanical properties of CePb{sub 3} intermetallic compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in; Jain, Ekta, E-mail: jainekta05@gmail.com; Abraham, Jisha Annie, E-mail: disisjisha@yahoo.com

    A theoretical study of structural, electronic, elastic and mechanical properties of CePb{sub 3} intermetallic compound has been investigated systematically using first principles density functional theory. The calculations are carried out within the three different forms of generalized gradient approximation (GGA) and LSDA for the exchange correlation potential. The ground state properties such as lattice parameter (a{sub 0}), bulk modulus (B) and its pressure derivative (B′) are calculated and obtained lattice parameter of this compound shows well agreement with the experimental results. We have calculated three independent second order elastic constants (C{sub 11}, C{sub 12} and C{sub 44}), which has notmore » been calculated and measured yet. From energy dispersion curves, it is found that the studied compound is metallic in nature. Ductility of this compound is analyzed using Pugh’s criteria and Cauchy's pressure (C{sub 11}-C{sub 12}). The mechanical properties such as Young's modulus, shear modulus, anisotropic ratio, Poison's ratio have been calculated for the first time using the Voigt–Reuss–Hill (VRH) averaging scheme. The average sound velocities (v{sub m}), density (ρ) and Debye temperature (θ{sub D}) of this compound are also estimated from the elastic constants.« less

  13. Phytoplankton abundance and structural parameters of the critically endangered protected area Vaya Lake (Bulgaria).

    PubMed

    Dimitrova, Ralits; Nenova, Elena; Uzunov, Blagoy; Shishiniova, Maria; Stoyneva, Maya

    2014-09-03

    Vaya (Ramsar site, protected area and Natura 2000 site) is the biggest natural lake in Bulgaria and the shallowest Black Sea coastal lake, which during the last decades has undergone significant changes and was included as critically endangered in the Red List of Bulgarian Wetlands. Our studies were conducted during the summer and autumn months of three years - 2004-2006. The paper presents results on the phytoplankton abundance (numbers, biomass and carbon content) in combination with the indices of species diversity, evenness and dominance. Phytoplankton abundance was extremely high (average values of 1135 × 10 6 cells/L for the quantity and of 46 mg/L for the biomass) and increased in the end of the studied period (years 2005-2006), when decrease of species diversity and increase of the dominance index values were detected. The carbon content of the phytoplankton was at an average value of 9.7 mg/L and also increased from 2004 to 2006. Cyanoprokaryota dominated in the formation of the total carbon content of the phytoplankton, in its numbers (88%-97.8%), and in the biomass (62%-87.9%). All data on phytoplankton abundance and structural parameters in Vaya confirm the hypertrophic status of the lake and reflect the general negative trend in its development.

  14. Statistical Optimization of Reactive Plasma Cladding to Synthesize a WC-Reinforced Fe-Based Alloy Coating

    NASA Astrophysics Data System (ADS)

    Wang, Miqi; Zhou, Zehua; Wu, Lintao; Ding, Ying; Xu, Feilong; Wang, Zehua

    2018-04-01

    A new compound Fe-W-C powder for reactive plasma cladding was fabricated by precursor carbonization process using sucrose as a precursor. The application of quadratic general rotary unitized design was highlighted to develop a mathematical model to predict and accomplish the desired surface hardness of plasma-cladded coating. The microstructure and microhardness of the coating with optimal parameters were also investigated. According to the developed empirical model, the optimal process parameters were determined as follows: 1.4 for C/W atomic ratio, 20 wt.% for W content, 130 A for scanning current and 100 mm/min (1.67 mm/s) for scanning rate. The confidence level of the model was 99% according to the results of the F-test and lack-of-fit test. Microstructural study showed that the dendritic structure was comprised of a mechanical mixture of α-Fe and carbides, while the interdendritic structure was a eutectic of α-Fe and carbides in the composite coating with optimal parameters. WC phase generation can be confirmed from the XRD pattern. Due to good preparation parameters, the average microhardness of cladded coating can reach 1120 HV0.1, which was four times the substrate microhardness.

  15. SU-E-I-91: Quantitative Assessment of Early Hepatocellular Carcinoma and Cavernous Hemangioma of Live Using In-Line Phase-Contrast X-Ray Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, J

    Purpose: To investigate the potential utility of in-line phase-contrast imaging (ILPCI) technique with synchrotron radiation in detecting early hepatocellular carcinoma and cavernous hemangioma of live using in vitro model system. Methods: Without contrast agents, three typical early hepatocellular carcinoma specimens and three typical cavernous hemangioma of live specimens were imaged using ILPCI. To quantitatively discriminate early hepatocellular carcinoma tissues and cavernous hemangioma tissues, the projection images texture feature based on gray level co-occurrence matrix (GLCM) were extracted. The texture parameters of energy, inertia, entropy, correlation, sum average, sum entropy, difference average, difference entropy and inverse difference moment, were obtained respectively.more » Results: In the ILPCI planar images of early hepatocellular carcinoma specimens, vessel trees were clearly visualized on the micrometer scale. Obvious distortion deformation was presented, and the vessel mostly appeared as a ‘dry stick’. Liver textures appeared not regularly. In the ILPCI planar images of cavernous hemangioma of live specimens, typical vessels had not been found compared with the early hepatocellular carcinoma planar images. The planar images of cavernous hemangioma of live specimens clearly displayed the dilated hepatic sinusoids with the diameter of less than 100 microns, but all of them were overlapped with each other. The texture parameters of energy, inertia, entropy, correlation, sum average, sum entropy, and difference average, showed a statistically significant between the two types specimens image (P<0.01), except the texture parameters of difference entropy and inverse difference moment(P>0.01). Conclusion: The results indicate that there are obvious changes in morphological levels including vessel structures and liver textures. The study proves that this imaging technique has a potential value in evaluating early hepatocellular carcinoma and cavernous hemangioma of live.« less

  16. Relative importance of first and second derivatives of nuclear magnetic resonance chemical shifts and spin-spin coupling constants for vibrational averaging.

    PubMed

    Dracínský, Martin; Kaminský, Jakub; Bour, Petr

    2009-03-07

    Relative importance of anharmonic corrections to molecular vibrational energies, nuclear magnetic resonance (NMR) chemical shifts, and J-coupling constants was assessed for a model set of methane derivatives, differently charged alanine forms, and sugar models. Molecular quartic force fields and NMR parameter derivatives were obtained quantum mechanically by a numerical differentiation. In most cases the harmonic vibrational function combined with the property second derivatives provided the largest correction of the equilibrium values, while anharmonic corrections (third and fourth energy derivatives) were found less important. The most computationally expensive off-diagonal quartic energy derivatives involving four different coordinates provided a negligible contribution. The vibrational corrections of NMR shifts were small and yielded a convincing improvement only for very accurate wave function calculations. For the indirect spin-spin coupling constants the averaging significantly improved already the equilibrium values obtained at the density functional theory level. Both first and complete second shielding derivatives were found important for the shift corrections, while for the J-coupling constants the vibrational parts were dominated by the diagonal second derivatives. The vibrational corrections were also applied to some isotopic effects, where the corrected values reasonably well reproduced the experiment, but only if a full second-order expansion of the NMR parameters was included. Contributions of individual vibrational modes for the averaging are discussed. Similar behavior was found for the methane derivatives, and for the larger and polar molecules. The vibrational averaging thus facilitates interpretation of previous experimental results and suggests that it can make future molecular structural studies more reliable. Because of the lengthy numerical differentiation required to compute the NMR parameter derivatives their analytical implementation in future quantum chemistry packages is desirable.

  17. Incorporation of fragmentation into a volume average solidification model

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Wu, M.; Kharicha, A.; Ludwig, A.

    2018-01-01

    In this study, a volume average solidification model was extended to consider fragmentation as a source of equiaxed crystals during mixed columnar-equiaxed solidification. The formulation suggested for fragmentation is based on two hypotheses: the solute-driven remelting is the dominant mechanism; and the transport of solute-enriched melt through an interdendritic flow in the columnar growth direction is favorable for solute-driven remelting and is the necessary condition for fragment transportation. Furthermore, a test case with Sn-10 wt%Pb melt solidifying vertically downward in a 2D domain (50 × 60 mm2) was calculated to demonstrate the model’s features. Solidification started from the top boundary, and a columnar structure developed initially with its tip growing downward. Furthermore, thermo-solutal convection led to fragmentation in the mushy zone near the columnar tip front. The fragments transported out of the columnar region continued to grow and sink, and finally settled down and piled up in the bottom domain. The growing columnar structure from the top and pile-up of equiaxed crystals from the bottom finally led to a mixed columnar-equiaxed structure, in turn leading to a columnar-to-equiaxed transition (CET). A special macrosegregation pattern was also predicted, in which negative segregation occurred in both columnar and equiaxed regions and a relatively strong positive segregation occurred in the middle domain near the CET line. A parameter study was performed to verify the model capability, and the uncertainty of the model assumption and parameter was discussed.

  18. Scatterometer capabilities in remotely sensing geophysical parameters over the ocean: The status and the possibilities

    NASA Technical Reports Server (NTRS)

    Brown, R. A.

    1984-01-01

    Extensive comparison between surface measurements and satellite Scatt signal and predicted winds show successful wind and weather analysis comparable with conventional weather service analyses. However, in regions often of the most interest, e.g., fronts and local storms, inadequacies in the latter fields leaves an inability to establish the satellite sensor capabilities. Thus, comparisons must be made between wind detecting measurements and other satellite measurements of clouds, moisture, waves or any other parameter which responds to sharp gradients in the wind. At least for the windfields and the derived surface pressure field analysis, occasional surface measurements are required to anchor and monitor the satellite analyses. Their averaging times must be made compatible with the satellite sensor measurement. Careful attention must be paid to the complex fields which contain many scales of turbulence and coherent structures affecting the averaging process. The satellite microwave system is capable of replacing the conventional point observation/numerical analysis for the ocean weather.

  19. Ecological optimality in water-limited natural soil-vegetation systems. I - Theory and hypothesis

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.

    1982-01-01

    The solution space of an approximate statistical-dynamic model of the average annual water balance is explored with respect to the hydrologic parameters of both soil and vegetation. Within the accuracy of this model it is shown that water-limited natural vegetation systems are in stable equilibrium with their climatic and pedologic environments when the canopy density and species act to minimize average water demand stress. Theory shows a climatic limit to this equilibrium above which it is hypothesized that ecological pressure is toward maximization of biomass productivity. It is further hypothesized that natural soil-vegetation systems will develop gradually and synergistically, through vegetation-induced changes in soil structure, toward a set of hydraulic soil properties for which the minimum stress canopy density of a given species is maximum in a given climate. Using these hypotheses, only the soil effective porosity need be known to determine the optimum soil and vegetation parameters in a given climate.

  20. Time-dependent reliability analysis of ceramic engine components

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    1993-01-01

    The computer program CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program. CARES/LIFE accounts for the phenomenon of subcritical crack growth (SCG) by utilizing either the power or Paris law relations. The two-parameter Weibull cumulative distribution function is used to characterize the variation in component strength. The effects of multiaxial stresses are modeled using either the principle of independent action (PIA), the Weibull normal stress averaging method (NSA), or the Batdorf theory. Inert strength and fatigue parameters are estimated from rupture strength data of naturally flawed specimens loaded in static, dynamic, or cyclic fatigue. Two example problems demonstrating proof testing and fatigue parameter estimation are given.

  1. Kumaraswamy autoregressive moving average models for double bounded environmental data

    NASA Astrophysics Data System (ADS)

    Bayer, Fábio Mariano; Bayer, Débora Missio; Pumi, Guilherme

    2017-12-01

    In this paper we introduce the Kumaraswamy autoregressive moving average models (KARMA), which is a dynamic class of models for time series taking values in the double bounded interval (a,b) following the Kumaraswamy distribution. The Kumaraswamy family of distribution is widely applied in many areas, especially hydrology and related fields. Classical examples are time series representing rates and proportions observed over time. In the proposed KARMA model, the median is modeled by a dynamic structure containing autoregressive and moving average terms, time-varying regressors, unknown parameters and a link function. We introduce the new class of models and discuss conditional maximum likelihood estimation, hypothesis testing inference, diagnostic analysis and forecasting. In particular, we provide closed-form expressions for the conditional score vector and conditional Fisher information matrix. An application to environmental real data is presented and discussed.

  2. Partially-Averaged Navier Stokes Model for Turbulence: Implementation and Validation

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.; Abdol-Hamid, Khaled S.

    2005-01-01

    Partially-averaged Navier Stokes (PANS) is a suite of turbulence closure models of various modeled-to-resolved scale ratios ranging from Reynolds-averaged Navier Stokes (RANS) to Navier-Stokes (direct numerical simulations). The objective of PANS, like hybrid models, is to resolve large scale structures at reasonable computational expense. The modeled-to-resolved scale ratio or the level of physical resolution in PANS is quantified by two parameters: the unresolved-to-total ratios of kinetic energy (f(sub k)) and dissipation (f(sub epsilon)). The unresolved-scale stress is modeled with the Boussinesq approximation and modeled transport equations are solved for the unresolved kinetic energy and dissipation. In this paper, we first present a brief discussion of the PANS philosophy followed by a description of the implementation procedure and finally perform preliminary evaluation in benchmark problems.

  3. Positron Annihilation Measurements of High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Jung, Kang

    1995-01-01

    The temperature dependence of positron annihilation parameters has been measured for basic YBCO, Dy-doped, and Pr-doped superconducting compounds. The physical properties, such as crystal structure, electrical resistance, and critical temperature, have been studied for all samples. In the basic YBCO and Dy-doped samples, the defect -related lifetime component tau_{2 } was approximately constant from room temperature to above the critical temperature and then showed a step -like decrease in the temperature range 90K { ~} 40K. No significant temperature dependence was found in the short- and long-lifetime components, tau_{1} and tau_{3}. The x-ray diffraction data showed that the crystal structure of these two samples was almost the same. These results indicated that the electronic structure changed below the critical temperature. No transition was observed in the Pr-doped YBCO sample. The advanced computer program "PFPOSFIT" for positron lifetime analysis was modified to run on the UNIX system of the University of Utah. The destruction of superconductivity with Pr doping may be due to mechanisms such as hole filling or hole localization of the charge carriers and may be related to the valence state of the Pr ion. One-parameter analyses like the positron mean lifetime parameter and the Doppler line shape parameter S also have been studied. It was found that a transition in Doppler line shape parameter S was associated with the superconducting transition temperature in basic YBCO, Dy -doped, and 0.5 Pr-doped samples, whereas no transition was observed in the nonsuperconducting Pr-doped sample. The Doppler results indicate that the average electron momentum at the annihilation sites increases as temperature is lowered across the superconducting transition range and that electronic structure change plays an important role in high temperature superconductivity.

  4. The effects of the structure characteristics on Magnetic Barkhausen noise in commercial steels

    NASA Astrophysics Data System (ADS)

    Deng, Yu; Li, Zhe; Chen, Juan; Qi, Xin

    2018-04-01

    This study has been done by separately measuring Magnetic Barkhausen noise (MBN) under different structure characteristics, namely the carbon content, hardness, roughness, and elastic modulus in commercial steels. The result of the experiments shows a strong dependence of MBN parameters (peak height, Root mean square (RMS), and average value) on structure characteristics. These effects, according to this study, can be explained by two kinds of source mechanisms of the MBN, domain wall nucleation and wall propagation. The discovery obtained in this paper can provide basic knowledge to understand the existing surface condition problem of Magnetic Barkhausen noise as a non-destructive evaluation technique and bring MBN into wider application.

  5. Yes, one can obtain better quality structures from routine X-ray data collection.

    PubMed

    Sanjuan-Szklarz, W Fabiola; Hoser, Anna A; Gutmann, Matthias; Madsen, Anders Østergaard; Woźniak, Krzysztof

    2016-01-01

    Single-crystal X-ray diffraction structural results for benzidine dihydrochloride, hydrated and protonated N,N,N,N-peri(dimethylamino)naphthalene chloride, triptycene, dichlorodimethyltriptycene and decamethylferrocene have been analysed. A critical discussion of the dependence of structural and thermal parameters on resolution for these compounds is presented. Results of refinements against X-ray data, cut off to different resolutions from the high-resolution data files, are compared to structural models derived from neutron diffraction experiments. The Independent Atom Model (IAM) and the Transferable Aspherical Atom Model (TAAM) are tested. The average differences between the X-ray and neutron structural parameters (with the exception of valence angles defined by H atoms) decrease with the increasing 2θmax angle. The scale of differences between X-ray and neutron geometrical parameters can be significantly reduced when data are collected to the higher, than commonly used, 2θmax diffraction angles (for Mo Kα 2θmax > 65°). The final structural and thermal parameters obtained for the studied compounds using TAAM refinement are in better agreement with the neutron values than the IAM results for all resolutions and all compounds. By using TAAM, it is still possible to obtain accurate results even from low-resolution X-ray data. This is particularly important as TAAM is easy to apply and can routinely be used to improve the quality of structural investigations [Dominiak (2015 ▸). LSDB from UBDB. University of Buffalo, USA]. We can recommend that, in order to obtain more adequate (more accurate and precise) structural and displacement parameters during the IAM model refinement, data should be collected up to the larger diffraction angles, at least, for Mo Kα radiation to 2θmax = 65° (sin θmax/λ < 0.75 Å(-1)). The TAAM approach is a very good option to obtain more adequate results even using data collected to the lower 2θmax angles. Also the results of translation-libration-screw (TLS) analysis and vibrational entropy values are more reliable for 2θmax > 65°.

  6. LASER METHODS IN BIOLOGY: Optical anisotropy of fibrous biological tissues: analysis of the influence of structural properties

    NASA Astrophysics Data System (ADS)

    Zimnyakov, D. A.; Sinichkin, Yu P.; Ushakova, O. V.

    2007-08-01

    The results of theoretical analysis of the optical anisotropy of multiply scattering fibrillar biological tissues based on the model of an effective anisotropic medium are compared with the experimental in vivo birefringence data for the rat derma obtained earlier in spectral polarisation measurements of rat skin samples in the visible region. The disordered system of parallel dielectric cylinders embedded into an isotropic dielectric medium was considered as a model medium. Simulations were performed taking into account the influence of a partial mutual disordering of the bundles of collagen and elastin fibres in derma on birefringence in samples. The theoretical optical anisotropy averaged over the spectral interval 550-650 nm for the model medium with parameters corresponding to the structural parameters of derma is in good agreement with the results of spectral polarisation measurements of skin samples in the corresponding wavelength range.

  7. Acoustic emission characterization of steel fibre reinforced concrete during bending

    NASA Astrophysics Data System (ADS)

    Aggelis, D. G.; Soulioti, D. V.; Sapouridis, N.; Barkoula, N. M.; Paipetis, A. S.; Matikas, T. E.

    2010-04-01

    The acoustic emission (AE) behaviour of steel fibre reinforced concrete is studied in this paper. The experiments were conducted in four-point bending with concurrent monitoring of AE signals. The sensors used, were of broadband response in order to capture a wide range of fracturing phenomena. The results indicate that AE parameters undergo significant changes much earlier than the final fracture of the specimens, even if the AE hit rate seems approximately constant. Specifically, the Ib-value which takes into account the amplitude distribution of the recent AE hits decreases when the load reaches about 60-70 % of its maximum value. Additionally, the average frequency of the signals decreases abruptly when a fracture incident occurs, indicating that matrix cracking events produce higher frequencies than fibre pull-out events. It is concluded that proper study of AE parameters enables the characterization of structural health of large structures in cases where remote monitoring is applied.

  8. A size-structured model of bacterial growth and reproduction.

    PubMed

    Ellermeyer, S F; Pilyugin, S S

    2012-01-01

    We consider a size-structured bacterial population model in which the rate of cell growth is both size- and time-dependent and the average per capita reproduction rate is specified as a model parameter. It is shown that the model admits classical solutions. The population-level and distribution-level behaviours of these solutions are then determined in terms of the model parameters. The distribution-level behaviour is found to be different from that found in similar models of bacterial population dynamics. Rather than convergence to a stable size distribution, we find that size distributions repeat in cycles. This phenomenon is observed in similar models only under special assumptions on the functional form of the size-dependent growth rate factor. Our main results are illustrated with examples, and we also provide an introductory study of the bacterial growth in a chemostat within the framework of our model.

  9. Estimating Model Prediction Error: Should You Treat Predictions as Fixed or Random?

    NASA Technical Reports Server (NTRS)

    Wallach, Daniel; Thorburn, Peter; Asseng, Senthold; Challinor, Andrew J.; Ewert, Frank; Jones, James W.; Rotter, Reimund; Ruane, Alexander

    2016-01-01

    Crop models are important tools for impact assessment of climate change, as well as for exploring management options under current climate. It is essential to evaluate the uncertainty associated with predictions of these models. We compare two criteria of prediction error; MSEP fixed, which evaluates mean squared error of prediction for a model with fixed structure, parameters and inputs, and MSEP uncertain( X), which evaluates mean squared error averaged over the distributions of model structure, inputs and parameters. Comparison of model outputs with data can be used to estimate the former. The latter has a squared bias term, which can be estimated using hindcasts, and a model variance term, which can be estimated from a simulation experiment. The separate contributions to MSEP uncertain (X) can be estimated using a random effects ANOVA. It is argued that MSEP uncertain (X) is the more informative uncertainty criterion, because it is specific to each prediction situation.

  10. Parameter regionalisation methods for a semi-distributed rainfall-runoff model: application to a Northern Apennine region

    NASA Astrophysics Data System (ADS)

    Neri, Mattia; Toth, Elena

    2017-04-01

    The study presents the implementation of different regionalisation approaches for the transfer of model parameters from similar and/or neighbouring gauged basin to an ungauged catchment, and in particular it uses a semi-distributed continuously-simulating conceptual rainfall-runoff model for simulating daily streamflows. The case study refers to a set of Apennine catchments (in the Emilia-Romagna region, Italy), that, given the spatial proximity, are assumed to belong to the same hydrologically homogeneous region and are used, alternatively, as donors and regionalised basins. The model is a semi-distributed version of the HBV model (TUWien model) in which the catchment is divided in zones of different altitude that contribute separately to the total outlet flow. The model includes a snow module, whose application in the Apennine area has been, so far, very limited, even if snow accumulation and melting phenomena do have an important role in the study basins. Two methods, both widely applied in the recent literature, are applied for regionalising the model: i) "parameters averaging", where each parameter is obtained as a weighted mean of the parameters obtained, through calibration, on the donor catchments ii) "output averaging", where the model is run over the ungauged basin using the entire set of parameters of each donor basin and the simulated outputs are then averaged. In the first approach, the parameters are regionalised independently from each other, in the second one, instead, the correlation among the parameters is maintained. Since the model is a semi-distributed one, where each elevation zone contributes separately, the study proposes to test also a modified version of the second approach ("output averaging"), where each zone is considered as an autonomous entity, whose parameters are transposed to the ungauged sub-basin corresponding to the same elevation zone. The study explores also the choice of the weights to be used for averaging the parameters (in the "parameters averaging" approach) or for averaging the simulated streamflow (in the "output averaging" approach): in particular, weights are estimated as a function of the similarity/distance of the ungauged basin/zone to the donors, on the basis of a set of geo-morphological catchment descriptors. The predictive accuracy of the different regionalisation methods is finally assessed by jack-knife cross-validation against the observed daily runoff for all the study catchments.

  11. Evaluation of spectral domain optical coherence tomography parameters in ocular hypertension, preperimetric, and early glaucoma

    PubMed Central

    Aydoğan, Tuğba; Akçay, Betül İlkay Sezgin; Kardeş, Esra; Ergin, Ahmet

    2017-01-01

    Purpose: The objective of this study is to evaluate the diagnostic ability of retinal nerve fiber layer (RNFL), macular, optic nerve head (ONH) parameters in healthy subjects, ocular hypertension (OHT), preperimetric glaucoma (PPG), and early glaucoma (EG) patients, to reveal factors affecting the diagnostic ability of spectral domain-optical coherence tomography (SD-OCT) parameters and risk factors for glaucoma. Methods: Three hundred and twenty-six eyes (89 healthy, 77 OHT, 94 PPG, and 66 EG eyes) were analyzed. RNFL, macular, and ONH parameters were measured with SD-OCT. The area under the receiver operating characteristic curve (AUC) and sensitivity at 95% specificity was calculated. Logistic regression analysis was used to determine the glaucoma risk factors. Receiver operating characteristic regression analysis was used to evaluate the influence of covariates on the diagnostic ability of parameters. Results: In PPG patients, parameters that had the largest AUC value were average RNFL thickness (0.83) and rim volume (0.83). In EG patients, parameter that had the largest AUC value was average RNFL thickness (0.98). The logistic regression analysis showed average RNFL thickness was a risk factor for both PPG and EG. Diagnostic ability of average RNFL and average ganglion cell complex thickness increased as disease severity increased. Signal strength index did not affect diagnostic abilities. Diagnostic ability of average RNFL and rim area increased as disc area increased. Conclusion: When evaluating patients with glaucoma, patients at risk for glaucoma, and healthy controls RNFL parameters deserve more attention in clinical practice. Further studies are needed to fully understand the influence of covariates on the diagnostic ability of OCT parameters. PMID:29133640

  12. Decorrelation Times of Photospheric Fields and Flows

    NASA Technical Reports Server (NTRS)

    Welsch, B. T.; Kusano, K.; Yamamoto, T. T.; Muglach, K.

    2012-01-01

    We use autocorrelation to investigate evolution in flow fields inferred by applying Fourier Local Correlation Tracking (FLCT) to a sequence of high-resolution (0.3 "), high-cadence (approx = 2 min) line-of-sight magnetograms of NOAA active region (AR) 10930 recorded by the Narrowband Filter Imager (NFI) of the Solar Optical Telescope (SOT) aboard the Hinode satellite over 12 - 13 December 2006. To baseline the timescales of flow evolution, we also autocorrelated the magnetograms, at several spatial binnings, to characterize the lifetimes of active region magnetic structures versus spatial scale. Autocorrelation of flow maps can be used to optimize tracking parameters, to understand tracking algorithms f susceptibility to noise, and to estimate flow lifetimes. Tracking parameters varied include: time interval Delta t between magnetogram pairs tracked, spatial binning applied to the magnetograms, and windowing parameter sigma used in FLCT. Flow structures vary over a range of spatial and temporal scales (including unresolved scales), so tracked flows represent a local average of the flow over a particular range of space and time. We define flow lifetime to be the flow decorrelation time, tau . For Delta t > tau, tracking results represent the average velocity over one or more flow lifetimes. We analyze lifetimes of flow components, divergences, and curls as functions of magnetic field strength and spatial scale. We find a significant trend of increasing lifetimes of flow components, divergences, and curls with field strength, consistent with Lorentz forces partially governing flows in the active photosphere, as well as strong trends of increasing flow lifetime and decreasing magnitudes with increases in both spatial scale and Delta t.

  13. General molecular mechanics method for transition metal carboxylates and its application to the multiple coordination modes in mono- and dinuclear Mn(II) complexes.

    PubMed

    Deeth, Robert J

    2008-08-04

    A general molecular mechanics method is presented for modeling the symmetric bidentate, asymmetric bidentate, and bridging modes of metal-carboxylates with a single parameter set by using a double-minimum M-O-C angle-bending potential. The method is implemented within the Molecular Operating Environment (MOE) with parameters based on the Merck molecular force field although, with suitable modifications, other MM packages and force fields could easily be used. Parameters for high-spin d (5) manganese(II) bound to carboxylate and water plus amine, pyridyl, imidazolyl, and pyrazolyl donors are developed based on 26 mononuclear and 29 dinuclear crystallographically characterized complexes. The average rmsd for Mn-L distances is 0.08 A, which is comparable to the experimental uncertainty required to cover multiple binding modes, and the average rmsd in heavy atom positions is around 0.5 A. In all cases, whatever binding mode is reported is also computed to be a stable local minimum. In addition, the structure-based parametrization implicitly captures the energetics and gives the same relative energies of symmetric and asymmetric coordination modes as density functional theory calculations in model and "real" complexes. Molecular dynamics simulations show that carboxylate rotation is favored over "flipping" while a stochastic search algorithm is described for randomly searching conformational space. The model reproduces Mn-Mn distances in dinuclear systems especially accurately, and this feature is employed to illustrate how MM calculations on models for the dimanganese active site of methionine aminopeptidase can help determine some of the details which may be missing from the experimental structure.

  14. Controlling of dielectrical properties of hydroxyapatite by ethylenediamine tetraacetic acid (EDTA) for bone healing applications.

    PubMed

    Kaygili, Omer; Ates, Tankut; Keser, Serhat; Al-Ghamdi, Ahmed A; Yakuphanoglu, Fahrettin

    2014-08-14

    The hydroxyapatite (HAp) samples in the presence of various amounts of ethylenediamine tetraacetic acid (EDTA) were prepared by sol-gel method. The effects of EDTA on the crystallinity, phase structure, chemical, micro-structural and dielectric properties of HAp samples were investigated. With the addition of EDTA, the average crystallite size of the HAp samples is gradually decreased from 30 to 22 nm and the crystallinity is in the range of 65-71%. The values of the lattice parameters (a and c) and volume of the unit cell are decreased by stages with the addition of EDTA. The dielectric parameters such as relative permittivity, dielectric loss and relaxation time are affected by the adding of EDTA. The alternating current conductivity of the as-synthesized hydroxyapatites increases with the increasing frequency and obeys the universal power law behavior. The HAp samples exhibit a non-Debye relaxation mechanism. The obtained results that the dielectrical parameters of the HAp sample can be controlled by EDTA. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Interception loss, throughfall and stemflow in a maritime pine stand. II. An application of Gash's analytical model of interception

    NASA Astrophysics Data System (ADS)

    Loustau, D.; Berbigier, P.; Granier, A.

    1992-10-01

    Interception, throughfall and stemflow were determined in an 18-year-old maritime pine stand for a period of 30 months. This involved 71 rainfall events, each corresponding either to a single storm or to several storms. Gash's analytical model of interception was used to estimate the sensitivity of interception to canopy structure and climatic parameters. The seasonal cumulative interception loss corresponded to 12.6-21.0% of the amount of rainfall, whereas throughfall and stemflow accounted for 77-83% and 1-6%, respectively. On a seasonal basis, simulated data fitted the measured data satisfactorily ( r2 = 0.75). The rainfall partitioning between interception, throughfall and stemflow was shown to be sensitive to (1) the rainfall regime, i.e. the relative importance of light storms to total rainfall, (2) the climatic parameters, rainfall rate and average evaporation rate during storms, and (3) the canopy structure parameters of the model. The low interception rate of the canopy was attributed primarily to the low leaf area index of the stand.

  16. Diffusive and subdiffusive dynamics of indoor microclimate: a time series modeling.

    PubMed

    Maciejewska, Monika; Szczurek, Andrzej; Sikora, Grzegorz; Wyłomańska, Agnieszka

    2012-09-01

    The indoor microclimate is an issue in modern society, where people spend about 90% of their time indoors. Temperature and relative humidity are commonly used for its evaluation. In this context, the two parameters are usually considered as behaving in the same manner, just inversely correlated. This opinion comes from observation of the deterministic components of temperature and humidity time series. We focus on the dynamics and the dependency structure of the time series of these parameters, without deterministic components. Here we apply the mean square displacement, the autoregressive integrated moving average (ARIMA), and the methodology for studying anomalous diffusion. The analyzed data originated from five monitoring locations inside a modern office building, covering a period of nearly one week. It was found that the temperature data exhibited a transition between diffusive and subdiffusive behavior, when the building occupancy pattern changed from the weekday to the weekend pattern. At the same time the relative humidity consistently showed diffusive character. Also the structures of the dependencies of the temperature and humidity data sets were different, as shown by the different structures of the ARIMA models which were found appropriate. In the space domain, the dynamics and dependency structure of the particular parameter were preserved. This work proposes an approach to describe the very complex conditions of indoor air and it contributes to the improvement of the representative character of microclimate monitoring.

  17. Laser Cladding of γ-TiAl Intermetallic Alloy on Titanium Alloy Substrates

    NASA Astrophysics Data System (ADS)

    Maliutina, Iuliia Nikolaevna; Si-Mohand, Hocine; Piolet, Romain; Missemer, Florent; Popelyukh, Albert Igorevich; Belousova, Natalya Sergeevna; Bertrand, Philippe

    2016-01-01

    The enhancement of titanium and titanium alloy's tribological properties is of major interest in many applications such as the aerospace and automotive industry. Therefore, the current research paper investigates the laser cladding of Ti48Al2Cr2Nb powder onto Ti6242 titanium alloy substrates. The work was carried out in two steps. First, the optimal deposition parameters were defined using the so-called "combined parameters," i.e., the specific energy E specific and powder density G. Thus, the results show that those combined parameters have a significant influence on the geometry, microstructure, and microhardness of titanium aluminide-formed tracks. Then, the formation of dense, homogeneous, and defect-free coatings based on optimal parameters has been investigated. Optical and scanning electron microscopy techniques as well as energy-dispersive spectroscopy and X-ray diffraction analyses have shown that a duplex structure consisting of γ-TiAl and α 2-Ti3Al phases was obtained in the coatings during laser cladding. Moreover, it was shown that produced coatings exhibit higher values of microhardness (477 ± 9 Hv0.3) and wear resistance (average friction coefficient is 0.31 and volume of worn material is 5 mm3 after 400 m) compared to those obtained with bare titanium alloy substrates (353 Hv0.3, average friction coefficient is 0.57 and a volume of worn material after 400 m is 35 mm3).

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipra, Fnu; Idrobo Tapia, Juan Carlos; Sefat, Athena Safa

    This study provides an account of the bulk preparation of TlBa 2Ca 2Cu 3O 9-δ (Tl-1223) superconductor at ambient pressure, and the Tc features under thermal-annealing conditions. The ‘as-prepared’ Tl-1223 (Tc =106 K) presents a significantly higher T c = 125 K after annealing the polycrystalline material in either flowing Ar+4% H 2, or N 2 gases. In order to understand the fundamental reasons for a particular Tc, we refined the average bulk structures using powder X-ray diffraction data. Although Ar+4%H2 annealed Tl- 1223 shows an increased ‘c’ lattice parameter, it shrinks by 0.03% (approximately unchanged) upon N2 anneal. Duemore » to such indeterminate conclusions on the average structural changes, local structures were investigated at using aberration-corrected scanning-transmission electron microscopy technique. Similar compositional changes in the atomic arrangements of both annealed-samples of Tl-1223 were detected in which the plane containing Ca atomic layer gives a non-uniform contrast, due to substitution of some heavier Tl. In this report, extensive bulk properties are summarized through temperature-dependent resistivity, and shielding and Meissner fractions of magnetic susceptibility results; the bulk and local structures are investigated to correlate to properties.« less

  19. Secondary flow structures in large rivers

    NASA Astrophysics Data System (ADS)

    Chauvet, H.; Devauchelle, O.; Metivier, F.; Limare, A.; Lajeunesse, E.

    2012-04-01

    Measuring the velocity field in large rivers remains a challenge, even with recent measurement techniques such as Acoustic Doppler Current Profiler (ADCP). Indeed, due to the diverging angle between its ultrasonic beams, an ADCP cannot detect small-scale flow structures. However, when the measurements are limited to a single location for a sufficient period of time, averaging can reveal large, stationary flow structures. Here we present velocity measurements in a straight reach of the Seine river in Paris, France, where the cross-section is close to rectangular. The transverse modulation of the streamwise velocity indicates secondary flow cells, which seem to occupy the entire width of the river. This observation is reminiscent of the longitudinal vortices observed in laboratory experiments (e.g. Blanckaert et al., Advances in Water Resources, 2010, 33, 1062-1074). Although the physical origin of these secondary structures remains unclear, their measured velocity is sufficient to significantly impact the distribution of streamwise momentum. We propose a model for the transverse profile of the depth-averaged velocity based on a crude representation of the longitudinal vortices, with a single free parameter. Preliminary results are in good agreement with field measurements. This model also provides an estimate for the bank shear stress, which controls bank erosion.

  20. Deviation Value for Conventional X-ray in Hospitals in South Sulawesi Province from 2014 to 2016

    NASA Astrophysics Data System (ADS)

    Bachtiar, Ilham; Abdullah, Bualkar; Tahir, Dahlan

    2018-03-01

    This paper describes the conventional X-ray machine parameters tested in the region of South Sulawesi from 2014 to 2016. The objective of this research is to know deviation of every parameter of conventional X-ray machine. The testing parameters were analyzed by using quantitative methods with participatory observational approach. Data collection was performed by testing the output of conventional X-ray plane using non-invasive x-ray multimeter. The test parameters include tube voltage (kV) accuracy, radiation output linearity, reproducibility and radiation beam value (HVL) quality. The results of the analysis show four conventional X-ray test parameters have varying deviation spans, where the tube voltage (kV) accuracy has an average value of 4.12%, the average radiation output linearity is 4.47% of the average reproducibility of 0.62% and the averaged of the radiation beam (HVL) is 3.00 mm.

  1. Double spacing multi-wavelength Brillouin Raman fiber laser of eight-shaped structure utilizing Raman amplifier

    NASA Astrophysics Data System (ADS)

    Madin, M. Sya'aer; Ahmad Hambali, N. A. M.; Shahimin, M. M.; Wahid, M. H. A.; Roshidah, N.; Azaidin, M. A. M.

    2017-02-01

    In this paper, double frequency spacing of multi-wavelength Brillouin Raman fiber laser utilizing eight-shaped structure in conjunction with Raman amplifier is simulated and demonstrated using Optisys software. Double frequency multiwavelength Brillouin Raman fiber laser is one of the solution for single frequency spacing channel de-multiplexing from narrow single spacing in the communication systems. The eight-shaped structure has the ability to produce lower noise and double frequency spacing. The 7 km of single mode fiber acting as a nonlinear medium for the generation of Stimulated Brillouin Scattering and Stimulated Raman Scattering. As a results, the optimum results are recorded at 1450 nm of RP power at 22 dBm and 1550 nm of BP power at 20 dBm. These parameters provide a high output peak power, gain and average OSNR. The highest peak power of Stokes 1 is recorded at 90% of coupling ratio which is 29.88 dBm. It is found that the maximum gain and average OSNR of about 1.23 dB and 63.74 dB.

  2. A non-ideal portal frame energy harvester controlled using a pendulum

    NASA Astrophysics Data System (ADS)

    Iliuk, I.; Balthazar, J. M.; Tusset, A. M.; Piqueira, J. R. C.; Rodrigues de Pontes, B.; Felix, J. L. P.; Bueno, Á. M.

    2013-09-01

    A model of energy harvester based on a simple portal frame structure is presented. The system is considered to be non-ideal system (NIS) due to interaction with the energy source, a DC motor with limited power supply and the system structure. The nonlinearities present in the piezoelectric material are considered in the piezoelectric coupling mathematical model. The system is a bi-stable Duffing oscillator presenting a chaotic behavior. Analyzing the average power variation, and bifurcation diagrams, the value of the control variable that optimizes power or average value that stabilizes the chaotic system in the periodic orbit is determined. The control sensitivity is determined to parametric errors in the damping and stiffness parameters of the portal frame. The proposed passive control technique uses a simple pendulum to tuned to the vibration of the structure to improve the energy harvesting. The results show that with the implementation of the control strategy it is possible to eliminate the need for active or semi active control, usually more complex. The control also provides a way to regulate the energy captured to a desired operating frequency.

  3. Analyzing crack development pattern of masonry structure in seismic oscillation by digital photography

    NASA Astrophysics Data System (ADS)

    Zhang, Guojian; Yu, Chengxin; Ding, Xinhua

    2018-01-01

    In this study, digital photography is used to monitor the instantaneous deformation of a masonry wall in seismic oscillation. In order to obtain higher measurement accuracy, the image matching-time baseline parallax method (IM-TBPM) is used to correct errors caused by the change of intrinsic and extrinsic parameters of digital cameras. Results show that the average errors of control point C5 are 0.79mm, 0.44mm and 0.96mm in X, Z and comprehensive direction, respectively. The average errors of control point C6 are 0.49mm, 0.44mm and 0.71mm in X, Z and comprehensive direction, respectively. These suggest that IM-TBPM can meet the accuracy requirements of instantaneous deformation monitoring. In seismic oscillation the middle to lower of the masonry wall develops cracks firstly. Then the shear failure occurs on the middle of masonry wall. This study provides technical basis for analyzing the crack development pattern of masonry structure in seismic oscillation and have significant implications for improved construction of masonry structures in earthquake prone areas.

  4. Effect of diffusion annealing regimes on the structure of Nb3Sn layers in ITER-type bronze-processed wires

    NASA Astrophysics Data System (ADS)

    Valova-Zaharevskaya, E. G.; Popova, E. N.; Deryagina, I. L.; Abdyukhanov, I. M.; Tsapleva, A. S.

    2018-03-01

    The goal of the present study is to characterize the growth kinetics and structural parameters of the Nb3Sn layers formed under various regimes of the diffusion annealing of bronze-processed Nb/Cu-Sn composites. The structure of the superconducting layers is characterized by their thickness, average size of equiaxed grains and by the ratio of fractions of columnar and equiaxed grains. It was found that at higher diffusion annealing temperatures (above 650°C) thicker superconducting layers are obtained, but the average sizes of equiaxed Nb3Sn grains even under short exposures (10 h) are much larger than after the long low-temperature annealing. At the low-temperature (575 °C) annealing the relative fraction of columnar grains increases with increasing annealing time. Based on the data obtained, optimal regimes of the diffusion annealing can be chosen, which would on the one hand ensure complete transformation of Nb into Nb3Sn of close to the stoichiometric composition, and on the other hand prevent the formation of coarse and columnar grains.

  5. A STUDY OF SOME SOFTWARE PARAMETERS IN TIME-SHARING SYSTEMS.

    DTIC Science & Technology

    A review is made of some existing time-sharing computer systems and an exploration of various software characteristics is conducted. This...of the various parameters upon the average response cycle time, the average number in the queue awaiting service , the average length of time a user is

  6. Structural trends for celestite (SrSO[subscript 4]), anglesite (PbSO[subscript 4]), and barite (BaSO[subscript 4]): Confirmation of expected variations within the SO[subscript 4] groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antao, Sytle M.

    2012-05-10

    The crystal structures of the isostructural orthorhombic sulfates celestite (SrSO{sub 4}), anglesite (PbSO{sub 4}), and barite (BaSO{sub 4}) were refined by Rietveld methods using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Their structural model was refined in space group Pbnm. The unit-cell parameters are a = 6.87032(3), b = 8.36030(5), c = 5.34732(1) {angstrom}, and V = 307.139(3) {angstrom}{sup 3} for SrSO{sub 4}; a = 6.95802(1), b = 8.48024(3), c = 5.39754(1) {angstrom}, and V = 318.486(1) {angstrom}{sup 3} for PbSO{sub 4}; and a = 7.15505(1), b = 8.88101(3), c = 5.45447(1) {angstrom}, and V = 346.599(1) {angstrom}{sup 3} formore » BaSO{sub 4}. The average [12] distances are 2.827(1), 2.865(1), and 2.953(1) {angstrom} for SrSO{sub 4}, PbSO{sub 4}, and BaSO{sub 4}, respectively, and their corresponding average [4] distances are 1.480(1), 1.477(3), and 1.471(1) {angstrom}. The geometrical features of the SO{sub 4} and MO{sub 12} polyhedra become more symmetrical from SrSO{sub 4} to BaSO{sub 4}. Across the series, the a, b, and c parameters vary non-linearly with increasing V. The radii of the M{sup 2+} cations, rM, [12], and [4] distances vary linearly with V. These structural trends arise from the effective size of the M{sup 2+} cation (rM: Sr < Pb < Ba) that is coordinated to 12 O atoms.« less

  7. Bayesian parameter estimation of a k-ε model for accurate jet-in-crossflow simulations

    DOE PAGES

    Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan; ...

    2016-05-31

    Reynolds-averaged Navier–Stokes models are not very accurate for high-Reynolds-number compressible jet-in-crossflow interactions. The inaccuracy arises from the use of inappropriate model parameters and model-form errors in the Reynolds-averaged Navier–Stokes model. In this study, the hypothesis is pursued that Reynolds-averaged Navier–Stokes predictions can be significantly improved by using parameters inferred from experimental measurements of a supersonic jet interacting with a transonic crossflow.

  8. Improved hydrological-model design by integrating nutrient and water flow

    NASA Astrophysics Data System (ADS)

    Arheimer, B.; Lindstrom, G.

    2013-12-01

    The potential of integrating hydrologic and nutrient concentration data to better understand patterns of catchment response and to better design hydrological modeling was explored using a national multi-basin model system for Sweden, called ';S-HYPE'. The model system covers more than 450 000 km2 and produce daily values of nutrient concentration and water discharge in 37 000 catchments from 1961 and onwards. It is based on the processed-based and semi-distributed HYdrological Predictions for the Environment (HYPE) code. The model is used operationally for assessments of water status or climate change impacts and for forecasts by the national warning service of floods, droughts and fire. The first model was launched in 2008, but S-HYPE is continuously improved and released in new versions every second year. Observations are available in 400 sites for daily water discharge and some 900 sites for monthly grab samples of nutrient concentrations. The latest version (2012) has an average NSE for water discharge of 0.7 and an average relative error of 5%, including both regulated and unregulated rivers with catchments from ten to several thousands of km2 and various landuse. The daily relative errors of nutrient concentrations are on average 20% for total Nitrogen and 35% for total Phosphorus. This presentation will give practical examples of how the nutrient data has been used to trace errors or inadequate parameter values in the hydrological model. Since 2008 several parts of the model structure has been reconsidered both in the source code, parameter values and input data of catchment characteristics. In this process water quality has been guiding much of the overall model design of catchment hydrological functions and routing along the river network. The model structure has thus been developed iteratively when evaluating results and checking time-series. Examples of water quality driven improvements will be given for estimation of vertical flow paths, such as separation of the hydrograph in surface flow, snow melt and baseflow, as well as horizontal flow paths in the landscape, such as mixing from various land use, impact from lakes and river channel volume. Overall, the S-HYPE model performance of water discharge increased from NSE 0.55 to 0.69 as an average for 400 gauges between the version 2010 and 2012. Most of this improvement, however, can be referred to improved regulations routines, rating curves for major lakes and parameters correcting ET and precipitation. Nevertheless, integrated water and nutrient modeling put constraints on the hydrological parameter values, which reduce equifinality for the hydrological part without reducing the model performance. The examples illustrates that the credibility of the hydrological model structure is thus improved by integrating water and nutrient flow. This lead to improved understanding of flow paths and water-nutrient process interactions in Sweden, which in turn will be very useful in further model analysis on impact of climate change or measures to reduce nutrient load from rivers to the Baltic Sea.

  9. Finite Element Modeling of the NASA Langley Aluminum Testbed Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Pritchard, Joselyn I.; Buehrle, Ralph D.; Pappa, Richard S.

    2002-01-01

    The NASA Langley Aluminum Testbed Cylinder (ATC) was designed to serve as a universal structure for evaluating structural acoustic codes, modeling techniques and optimization methods used in the prediction of aircraft interior noise. Finite element models were developed for the components of the ATC based on the geometric, structural and material properties of the physical test structure. Numerically predicted modal frequencies for the longitudinal stringer, ring frame and dome component models, and six assembled ATC configurations were compared with experimental modal survey data. The finite element models were updated and refined, using physical parameters, to increase correlation with the measured modal data. Excellent agreement, within an average 1.5% to 2.9%, was obtained between the predicted and measured modal frequencies of the stringer, frame and dome components. The predictions for the modal frequencies of the assembled component Configurations I through V were within an average 2.9% and 9.1%. Finite element modal analyses were performed for comparison with 3 psi and 6 psi internal pressurization conditions in Configuration VI. The modal frequencies were predicted by applying differential stiffness to the elements with pressure loading and creating reduced matrices for beam elements with offsets inside external superelements. The average disagreement between the measured and predicted differences for the 0 psi and 6 psi internal pressure conditions was less than 0.5%. Comparably good agreement was obtained for the differences between the 0 psi and 3 psi measured and predicted internal pressure conditions.

  10. Effect of parameters in moving average method for event detection enhancement using phase sensitive OTDR

    NASA Astrophysics Data System (ADS)

    Kwon, Yong-Seok; Naeem, Khurram; Jeon, Min Yong; Kwon, Il-bum

    2017-04-01

    We analyze the relations of parameters in moving average method to enhance the event detectability of phase sensitive optical time domain reflectometer (OTDR). If the external events have unique frequency of vibration, then the control parameters of moving average method should be optimized in order to detect these events efficiently. A phase sensitive OTDR was implemented by a pulsed light source, which is composed of a laser diode, a semiconductor optical amplifier, an erbium-doped fiber amplifier, a fiber Bragg grating filter, and a light receiving part, which has a photo-detector and high speed data acquisition system. The moving average method is operated with the control parameters: total number of raw traces, M, number of averaged traces, N, and step size of moving, n. The raw traces are obtained by the phase sensitive OTDR with sound signals generated by a speaker. Using these trace data, the relation of the control parameters is analyzed. In the result, if the event signal has one frequency, then the optimal values of N, n are existed to detect the event efficiently.

  11. Tailor-made force fields for crystal-structure prediction.

    PubMed

    Neumann, Marcus A

    2008-08-14

    A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom.

  12. Design on the wide band absorber with low density based on the particle distribution

    NASA Astrophysics Data System (ADS)

    Zheng, Dianliang; Liu, Ting; Liu, Longbin; Xu, Yonggang

    2018-04-01

    In order to widen the absorbing band, an equivalent gradient structure absorber was designed based on the particle distribution. Firstly, the electromagnetic parameter of the absorbent with uniform dispersion was tested using the vector network analyzer in 8-18 GHz. Three different equivalent materials of the spherical, square and hexagon empty shape were designed. The scattering parameters and the monostatic reflection loss (RL) of the periodic structural materials were simulated in the commercial software. Then the effective permittivity and the permeability was derived by the Nicolson-Ross-Weir algorithm and fitted by Maxwell-Garnett mixing rule. The results showed that the simulated reflectance and transmission parameters of equivalent composites with the different shapes were very close. The derived effective permittivity and permeability of the composite with different absorbent content was also close, and the average deviation was about 0.52 + j0.15 and 0.15 + j0.01 respectively. Finally, the wide band absorbing material was designed using the genetic algorithm. The optimized RL result showed that the absorbing composites with thickness 3 mm had an excellent absorbing property (RL <-10 dB) in 8-18 GHz, the equivalent absorber density could be decreased 30.7% compared with the uniform structure.

  13. Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments.

    PubMed

    Tao, Fulu; Rötter, Reimund P; Palosuo, Taru; Gregorio Hernández Díaz-Ambrona, Carlos; Mínguez, M Inés; Semenov, Mikhail A; Kersebaum, Kurt Christian; Nendel, Claas; Specka, Xenia; Hoffmann, Holger; Ewert, Frank; Dambreville, Anaelle; Martre, Pierre; Rodríguez, Lucía; Ruiz-Ramos, Margarita; Gaiser, Thomas; Höhn, Jukka G; Salo, Tapio; Ferrise, Roberto; Bindi, Marco; Cammarano, Davide; Schulman, Alan H

    2018-03-01

    Climate change impact assessments are plagued with uncertainties from many sources, such as climate projections or the inadequacies in structure and parameters of the impact model. Previous studies tried to account for the uncertainty from one or two of these. Here, we developed a triple-ensemble probabilistic assessment using seven crop models, multiple sets of model parameters and eight contrasting climate projections together to comprehensively account for uncertainties from these three important sources. We demonstrated the approach in assessing climate change impact on barley growth and yield at Jokioinen, Finland in the Boreal climatic zone and Lleida, Spain in the Mediterranean climatic zone, for the 2050s. We further quantified and compared the contribution of crop model structure, crop model parameters and climate projections to the total variance of ensemble output using Analysis of Variance (ANOVA). Based on the triple-ensemble probabilistic assessment, the median of simulated yield change was -4% and +16%, and the probability of decreasing yield was 63% and 31% in the 2050s, at Jokioinen and Lleida, respectively, relative to 1981-2010. The contribution of crop model structure to the total variance of ensemble output was larger than that from downscaled climate projections and model parameters. The relative contribution of crop model parameters and downscaled climate projections to the total variance of ensemble output varied greatly among the seven crop models and between the two sites. The contribution of downscaled climate projections was on average larger than that of crop model parameters. This information on the uncertainty from different sources can be quite useful for model users to decide where to put the most effort when preparing or choosing models or parameters for impact analyses. We concluded that the triple-ensemble probabilistic approach that accounts for the uncertainties from multiple important sources provide more comprehensive information for quantifying uncertainties in climate change impact assessments as compared to the conventional approaches that are deterministic or only account for the uncertainties from one or two of the uncertainty sources. © 2017 John Wiley & Sons Ltd.

  14. Structural and superconducting features of Tl-1223 prepared at ambient pressure

    DOE PAGES

    Shipra, Fnu; Idrobo Tapia, Juan Carlos; Sefat, Athena Safa

    2015-09-25

    This study provides an account of the bulk preparation of TlBa 2Ca 2Cu 3O 9-δ (Tl-1223) superconductor at ambient pressure, and the Tc features under thermal-annealing conditions. The ‘as-prepared’ Tl-1223 (Tc =106 K) presents a significantly higher T c = 125 K after annealing the polycrystalline material in either flowing Ar+4% H 2, or N 2 gases. In order to understand the fundamental reasons for a particular Tc, we refined the average bulk structures using powder X-ray diffraction data. Although Ar+4%H2 annealed Tl- 1223 shows an increased ‘c’ lattice parameter, it shrinks by 0.03% (approximately unchanged) upon N2 anneal. Duemore » to such indeterminate conclusions on the average structural changes, local structures were investigated at using aberration-corrected scanning-transmission electron microscopy technique. Similar compositional changes in the atomic arrangements of both annealed-samples of Tl-1223 were detected in which the plane containing Ca atomic layer gives a non-uniform contrast, due to substitution of some heavier Tl. In this report, extensive bulk properties are summarized through temperature-dependent resistivity, and shielding and Meissner fractions of magnetic susceptibility results; the bulk and local structures are investigated to correlate to properties.« less

  15. Structural investigations in helium implanted cubic zirconia using grazing incidence XRD and EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuri, G.; Degueldre, C.; Bertsch, J.; Döbeli, M.

    2010-06-01

    The crystal structure and local atom arrangements surrounding Zr atoms were determined for a helium implanted cubic stabilized zirconia (CSZ) using X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, respectively, measured at glancing angles. The implanted specimen was prepared at a helium fluence of 2 × 10 16 cm -2 using He + beams at two energies (2.54 and 2.74 MeV) passing through a 8.0 μm Al absorber foil. XRD results identified the formation of a new rhombohedral phase in the helium embedded layer, attributed to internal stress as a result of expansion of the CSZ-lattice. Zr K-edge EXAFS data suggested loss of crystallinity in the implanted lattice and disorder of the Zr atoms environment. EXAFS Fourier transforms analysis showed that the average first-shell radius of the Zr sbnd O pair in the implanted sample was slightly larger than that of the CSZ standard. Common general disorder features were explained by rhombohedral type short-range ordered clusters. The average structural parameters estimated from the EXAFS data of unimplanted and implanted CSZ are compared and discussed. Potential of EXAFS as a local probe of atomic-scale structural modifications induced by helium implantation in CSZ is demonstrated.

  16. Fabrication of Microfibrous and Nano-/Microfibrous Scaffolds: Melt and Hybrid Electrospinning and Surface Modification of Poly(L-lactic acid) with Plasticizer

    PubMed Central

    Yoon, Young Il; Park, Ko Eun; Lee, Seung Jin; Park, Won Ho

    2013-01-01

    Biodegradable poly(L-lactic acid) (PLA) fibrous scaffolds were prepared by electrospinning from a PLA melt containing poly(ethylene glycol) (PEG) as a plasticizer to obtain thinner fibers. The effects of PEG on the melt electrospinning of PLA were examined in terms of the melt viscosity and fiber diameter. Among the parameters, the content of PEG had a more significant effect on the average fiber diameter and its distribution than those of the spinning temperature. Furthermore, nano-/microfibrous silk fibroin (SF)/PLA and PLA/PLA composite scaffolds were fabricated by hybrid electrospinning, which involved a combination of solution electrospinning and melt electrospinning. The SF/PLA (20/80) scaffolds consisted of a randomly oriented structure of PLA microfibers (average fiber diameter = 8.9 µm) and SF nanofibers (average fiber diameter = 820 nm). The PLA nano-/microfiber (20/80) scaffolds were found to have similar pore parameters to the PLA microfiber scaffolds. The PLA scaffolds were treated with plasma in the presence of either oxygen or ammonia gas to modify the surface of the fibers. This approach of controlling the surface properties and diameter of fibers could be useful in the design and tailoring of novel scaffolds for tissue engineering. PMID:24381937

  17. Influence of UV irradiation on hydroxypropyl methylcellulose polymer films

    NASA Astrophysics Data System (ADS)

    Rao, B. Lakshmeesha; Shivananda, C. S.; Shetty, G. Rajesha; Harish, K. V.; Madhukumar, R.; Sangappa, Y.

    2018-05-01

    Hydroxypropyl Methylcellulose (HPMC) biopolymer films were prepared by solution casting technique and effects of UV irradiation on the structural and optical properties of the polymer films were analysed using X-ray Diffraction and UV-Visible studies. From XRD data, the microcrystalline parameters (crystallite size (LXRD) and crystallinity (Xc)) were calculated and found to be decreasing with UV irradiation due to photo-degradation process. From the UV-Vis absorption data, the optical bandgap (Eg), average numbers of carbon atoms per conjugation length (N) of the polymer chain and the refractive index (n) at 550 nm (average wavelength of visible light) of virgin and UV irradiated HPMC films were calculated. With increase in UV exposure time, the optical bandgap energy (Eg) increases, and hence average number of carbon atoms per conjugation length (N) decreases, supports the photo-degradation of HPMC polymer films. The refractive index of the HPMC films decreases after UV irradiation, due to photo-degradation induced chain rearrangements.

  18. Alignment error envelopes for single particle analysis.

    PubMed

    Jensen, G J

    2001-01-01

    To determine the structure of a biological particle to high resolution by electron microscopy, image averaging is required to combine information from different views and to increase the signal-to-noise ratio. Starting from the number of noiseless views necessary to resolve features of a given size, four general factors are considered that increase the number of images actually needed: (1) the physics of electron scattering introduces shot noise, (2) thermal motion and particle inhomogeneity cause the scattered electrons to describe a mixture of structures, (3) the microscope system fails to usefully record all the information carried by the scattered electrons, and (4) image misalignment leads to information loss through incoherent averaging. The compound effect of factors 2-4 is approximated by the product of envelope functions. The problem of incoherent image averaging is developed in detail through derivation of five envelope functions that account for small errors in 11 "alignment" parameters describing particle location, orientation, defocus, magnification, and beam tilt. The analysis provides target error tolerances for single particle analysis to near-atomic (3.5 A) resolution, and this prospect is shown to depend critically on image quality, defocus determination, and microscope alignment. Copyright 2001 Academic Press.

  19. Crystal structure, thermal expansivity, and elasticity of OH-chondrodite: Trends among dense hydrous magnesium silicates

    DOE PAGES

    Ye, Yu; Jacobsen, Steven D.; Mao, Zhu; ...

    2015-04-01

    Here, we report the structure and thermoelastic properties of OH-chondrodite. The sample was synthesized at 12 GPa and 1523 K, coexisting with hydroxyl-clinohumite and hydrous olivine. The Fe content Fe/(Fe+Mg) is 1.1 mol%, and the monoclinic unit-cell parameters are: a = 4.7459(2) Å, b = 10.3480(7) Å, c = 7.9002(6) Å, α = 108.702(7)°, and V = 367.50(4) Å3. At ambient conditions the crystal structure was refined in space group P 21/b from 1915 unique reflection intensities measured by single-crystal x-ray diffraction. The volume thermal expansion coefficient was measured between 150 and 800 K, resulting in α V = 2.8(5)×10more » -9(K -2) × T + 40.9(7) × 10 -6(K -1) – 0.81(3)(K)/T 2, with an average value of 38.0(9)×10 -6 K -1. Brillouin spectroscopy was used to measure a set of acoustic velocities from which all thirteen components (C ij) of the elastic tensor were determined. The Voigt-Reuss-Hill average of the moduli yield for the adiabatic bulk modulus, K S0 = 117.9(12) GPa, and for shear modulus, G 0 = 70.1(5) GPa. The Reuss bound on the isothermal bulk modulus (K T0) is 114.2(14) GPa. From the measured thermodynamic properties, the Grüneisen parameter (γ) is calculated to be 1.66(4). Fitting previous static compression data using our independently measured bulk modulus (isothermal Reuss bound) as a fixed parameter, we refined the first pressure derivative of the bulk modulus, K T’ = 5.5(1). Systematic trends between H 2O content and physical properties are evaluated among dense hydrous magnesium silicate (DHMS) phases along the forsterite-brucite join.« less

  20. Anisotropic S-wave velocity structure from joint inversion of surface wave group velocity dispersion: A case study from India

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Dey, S.; Siddartha, G.; Bhattacharya, S.

    2016-12-01

    We estimate 1-dimensional path average fundamental mode group velocity dispersion curves from regional Rayleigh and Love waves sampling the Indian subcontinent. The path average measurements are combined through a tomographic inversion to obtain 2-dimensional group velocity variation maps between periods of 10 and 80 s. The region of study is parametrised as triangular grids with 1° sides for the tomographic inversion. Rayleigh and Love wave dispersion curves from each node point is subsequently extracted and jointly inverted to obtain a radially anisotropic shear wave velocity model through global optimisation using Genetic Algorithm. The parametrization of the model space is done using three crustal layers and four mantle layers over a half-space with varying VpH , VsV and VsH. The anisotropic parameter (η) is calculated from empirical relations and the density of the layers are taken from PREM. Misfit for the model is calculated as a sum of error-weighted average dispersion curves. The 1-dimensional anisotropic shear wave velocity at each node point is combined using linear interpolation to obtain 3-dimensional structure beneath the region. Synthetic tests are performed to estimate the resolution of the tomographic maps which will be presented with our results. We envision to extend this to a larger dataset in near future to obtain high resolution anisotrpic shear wave velocity structure beneath India, Himalaya and Tibet.

  1. Growth and structure of the World Wide Web: Towards realistic modeling

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka

    2002-08-01

    We simulate evolution of the World Wide Web from the dynamic rules incorporating growth, bias attachment, and rewiring. We show that the emergent double-hierarchical structure with distinct distributions of out- and in-links is comparable with the observed empirical data when the control parameter (average graph flexibility β) is kept in the range β=3-4. We then explore the Web graph by simulating (a) Web crawling to determine size and depth of connected components, and (b) a random walker that discovers the structure of connected subgraphs with dominant attractor and promoter nodes. A random walker that adapts its move strategy to mimic local node linking preferences is shown to have a short access time to "important" nodes on the Web graph.

  2. First principles prediction of amorphous phases using evolutionary algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nahas, Suhas, E-mail: shsnhs@iitk.ac.in; Gaur, Anshu, E-mail: agaur@iitk.ac.in; Bhowmick, Somnath, E-mail: bsomnath@iitk.ac.in

    2016-07-07

    We discuss the efficacy of evolutionary method for the purpose of structural analysis of amorphous solids. At present, ab initio molecular dynamics (MD) based melt-quench technique is used and this deterministic approach has proven to be successful to study amorphous materials. We show that a stochastic approach motivated by Darwinian evolution can also be used to simulate amorphous structures. Applying this method, in conjunction with density functional theory based electronic, ionic and cell relaxation, we re-investigate two well known amorphous semiconductors, namely silicon and indium gallium zinc oxide. We find that characteristic structural parameters like average bond length and bondmore » angle are within ∼2% of those reported by ab initio MD calculations and experimental studies.« less

  3. Predicting activation energy of thermolysis of polynitro arenes through molecular structure.

    PubMed

    Keshavarz, Mohammad Hossein; Pouretedal, Hamid Reza; Shokrolahi, Arash; Zali, Abbas; Semnani, Abolfazl

    2008-12-15

    The paper presents a new method for activation energy or the Arrhenius parameter E(a) of the thermolysis in the condensed state for different polynitro arenes as an important class of energetic molecules. The methodology assumes that E(a) of a polynitro arene with general formula C(a)H(b)N(c)O(d) can be expressed as a function of optimized elemental composition as well as the contribution of specific molecular structural parameters. The new method can predict E(a) of the thermolysis under conditions of Soviet Manometric Method (SMM), which can be related to the other convenient methods. The new correlation has the root mean square (rms) and the average deviations of 13.79 and 11.94kJ/mol, respectively, for 20 polynitro arenes with different molecular structures. The proposed new method can also be used to predict E(a) of three polynitro arenes, i.e. 2,2',2'',4,4',4'',6,6',6''-nonanitro-1,1':3',1''-terphenyl (NONA), 3,3'-diamino-2,2',4,4',6,6'-hexanitro-1,1'-biphenyl-3,3'-diamine (DIPAM) and N,N-bis(2,4-dinitrophenyl)-2,4,6-trinitroaniline (NTFA), which have complex molecular structures.

  4. Structural, magnetic and electronic structural properties of Mn doped CeO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumari, Kavita; Vij, Ankush; Hashim, Mohd.; Chae, K. H.; Kumar, Shalendra

    2018-05-01

    Nanoparticles of Ce1-xMnxO2, (x=0.0, 0.01, and 0.05) have been synthesized by using co-precipitation method, and then characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), near edge x-ray absorption fine structure (NEXAFS) spectroscopy and dc magnetization measurements. XRD results clearly showed that the all the samples have single phase nature and exclude the presence of any secondary phase. The average particle size calculated using XRD TEM measurements found to decrease with increase in Mn doping in the range of 4.0 - 9.0 nm. The structural parameters such as strain, interplaner distance and lattice parameter is observed to decrease with increase in doping. The morphology of Ce1-xMnxO2 nanoparticles measured using TEM micrographs indicate that nanoparticle have spherical shape morphology. Magnetic hysteresis curve for Ce1-xMnxO2, (x = 0.0, 0.01, and 0.05) confirms the ferromagnetic ordering room temperature. The value of saturation magnetization is observed to decrease with increase in temperature from 10 K to 300 K. The NEXAFS spectra measured at Ce M4,5 edge reveals that Ce-ions are in +4 valance state.

  5. Bone marrow mesenchymal stem cell response to nano-structured oxidized and turned titanium surfaces.

    PubMed

    Annunziata, Marco; Oliva, Adriana; Buosciolo, Antonietta; Giordano, Michele; Guida, Agostino; Guida, Luigi

    2012-06-01

    The aim of this study was to analyse the topographic features of a novel nano-structured oxidized titanium implant surface and to evaluate its effect on the response of human bone marrow mesenchymal stem cells (BM-MSC) compared with a traditional turned surface. The 10 × 10 × 1 mm turned (control) and oxidized (test) titanium samples (P.H.I. s.r.l.) were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM) and characterized by height, spatial and hybrid roughness parameters at different dimensional ranges of analysis. Primary cultures of BM-MSC were seeded on titanium samples and cell morphology, adhesion, proliferation and osteogenic differentiation, in terms of alkaline phosphatase activity, osteocalcin synthesis and extracellular matrix mineralization, were evaluated. At SEM and AFM analyses turned samples were grooved, whereas oxidized surfaces showed a more complex micro- and nano-scaled texture, with higher values of roughness parameters. Cell adhesion and osteogenic parameters were greater on oxidized (P<0.05 at least) vs. turned surfaces, whereas the cell proliferation rate was similar on both samples. Although both control and test samples were in the range of average roughness proper of smooth surfaces, they exhibited significantly different topographic properties in terms of height, spatial and, mostly, of hybrid parameters. This different micro- and nano-structure resulted in an enhanced adhesion and differentiation of cells plated onto the oxidized surfaces. © 2011 John Wiley & Sons A/S.

  6. Multi-scale predictive modeling of nano-material and realistic electron devices

    NASA Astrophysics Data System (ADS)

    Palaria, Amritanshu

    Among the challenges faced in further miniaturization of electronic devices, heavy influence of the detailed atomic configuration of the material(s) involved, which often differs significantly from that of the bulk material(s), is prominent. Device design has therefore become highly interrelated with material engineering at the atomic level. This thesis aims at outlining, with examples, a multi-scale simulation procedure that allows one to integrate material and device aspects of nano-electronic design to predict behavior of novel devices with novel material. This is followed in four parts: (1) An approach that combines a higher time scale reactive force field analysis with density functional theory to predict structure of new material is demonstrated for the first time for nanowires. Novel stable structures for very small diameter silicon nanowires are predicted. (2) Density functional theory is used to show that the new nanowire structures derived in 1 above have properties different from diamond core wires even though the surface bonds in some may be similar to the surface of bulk silicon. (3) Electronic structure of relatively large-scale germanium sections of realistically strained Si/strained Ge/ strained Si nanowire heterostructures is computed using empirical tight binding and it is shown that the average non-homogeneous strain in these structures drives their interesting non-conventional electronic characteristics such as hole effective masses which decrease as the wire cross-section is reduced. (4) It is shown that tight binding, though empirical in nature, is not necessarily limited to the material and atomic structure for which the parameters have been empirically derived, but that simple changes may adapt the derived parameters to new bond environments. Si (100) surface electronic structure is obtained from bulk Si parameters.

  7. Benchmarking density functional theory predictions of framework structures and properties in a chemically diverse test set of metal-organic frameworks

    DOE PAGES

    Nazarian, Dalar; Ganesh, P.; Sholl, David S.

    2015-09-30

    We compiled a test set of chemically and topologically diverse Metal–Organic Frameworks (MOFs) with high accuracy experimentally derived crystallographic structure data. The test set was used to benchmark the performance of Density Functional Theory (DFT) functionals (M06L, PBE, PW91, PBE-D2, PBE-D3, and vdW-DF2) for predicting lattice parameters, unit cell volume, bonded parameters and pore descriptors. On average PBE-D2, PBE-D3, and vdW-DF2 predict more accurate structures, but all functionals predicted pore diameters within 0.5 Å of the experimental diameter for every MOF in the test set. The test set was also used to assess the variance in performance of DFT functionalsmore » for elastic properties and atomic partial charges. The DFT predicted elastic properties such as minimum shear modulus and Young's modulus can differ by an average of 3 and 9 GPa for rigid MOFs such as those in the test set. Moreover, we calculated the partial charges by vdW-DF2 deviate the most from other functionals while there is no significant difference between the partial charges calculated by M06L, PBE, PW91, PBE-D2 and PBE-D3 for the MOFs in the test set. We find that while there are differences in the magnitude of the properties predicted by the various functionals, these discrepancies are small compared to the accuracy necessary for most practical applications.« less

  8. Eu3+-doped (Y0.5La0.5)2O3: new nanophosphor with the bixbyite cubic structure

    NASA Astrophysics Data System (ADS)

    Đorđević, Vesna; Nikolić, Marko G.; Bartova, Barbora; Krsmanović, Radenka M.; Antić, Željka; Dramićanin, Miroslav D.

    2013-01-01

    New red sesquioxide phosphor, Eu3+-doped (Y0.5La0.5)2O3, was synthesized in the form of nanocrystalline powder with excellent structural ordering in cubic bixbyite-type, and with nanoparticle sizes ranging between 10 and 20 nm. Photoluminescence measurements show strong, Eu3+ characteristic, red emission ( x = 0.66 and y = 0.34 CIE color coordinates) with an average 5D0 emission lifetime of about 1.3 ms. Maximum splitting of the 7F1 manifold of the Eu3+ ion emission behaves in a way directly proportional to the crystal field strength parameter, and experimental results show perfect agreement with theoretical values for pure cubic sesquioxides. This could be used as an indicator of complete dissolution of Y2O3 and La2O3, showing that (Y0.5La0.5)2O3:Eu3+ behaves as a new bixbyite structure oxide, M2O3, where M acts as an ion having average ionic radius of constituting Y3+ and La3+. Emission properties of this new phosphor were documented with detailed assignments of Eu3+ energy levels at 10 K and at room temperature. Second order crystal field parameters were found to be B 20 = -66 cm-1 and B 22 = -665 cm-1 at 10 K and B 20 = -78 cm-1 and B 22 = -602 cm-1 at room temperature, while for the crystal field strength the value of 1495 cm-1 was calculated at 10 K and 1355 cm-1 at room temperature.

  9. Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Michael C.; Gao, Pan; Hawk, Jeffrey A.

    This study provides a short review on computational modeling on the formation, thermodynamics, and elasticity of single-phase high-entropy alloys (HEAs). Hundreds of predicted single-phase HEAs were re-examined using various empirical thermo-physical parameters. Potential BCC HEAs (CrMoNbTaTiVW, CrMoNbReTaTiVW, and CrFeMoNbReRuTaVW) were suggested based on CALPHAD modeling. The calculated vibrational entropies of mixing are positive for FCC CoCrFeNi, negative for BCC MoNbTaW, and near-zero for HCP CoOsReRu. The total entropies of mixing were observed to trend in descending order: CoCrFeNi > CoOsReRu > MoNbTaW. Calculated lattice parameters agree extremely well with averaged values estimated from the rule of mixtures (ROM) if themore » same crystal structure is used for the elements and the alloy. The deviation in the calculated elastic properties from ROM for select alloys is small but is susceptible to the choice used for the structures of pure components.« less

  10. Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity

    DOE PAGES

    Gao, Michael C.; Gao, Pan; Hawk, Jeffrey A.; ...

    2017-10-12

    This study provides a short review on computational modeling on the formation, thermodynamics, and elasticity of single-phase high-entropy alloys (HEAs). Hundreds of predicted single-phase HEAs were re-examined using various empirical thermo-physical parameters. Potential BCC HEAs (CrMoNbTaTiVW, CrMoNbReTaTiVW, and CrFeMoNbReRuTaVW) were suggested based on CALPHAD modeling. The calculated vibrational entropies of mixing are positive for FCC CoCrFeNi, negative for BCC MoNbTaW, and near-zero for HCP CoOsReRu. The total entropies of mixing were observed to trend in descending order: CoCrFeNi > CoOsReRu > MoNbTaW. Calculated lattice parameters agree extremely well with averaged values estimated from the rule of mixtures (ROM) if themore » same crystal structure is used for the elements and the alloy. The deviation in the calculated elastic properties from ROM for select alloys is small but is susceptible to the choice used for the structures of pure components.« less

  11. Vibration analysis of resistance spot welding joint for dissimilar plate structure (mild steel 1010 and stainless steel 304)

    NASA Astrophysics Data System (ADS)

    Sani, M. S. M.; Nazri, N. A.; Alawi, D. A. J.

    2017-09-01

    Resistance spot welding (RSW) is a proficient joining method commonly used for sheet metal joining and become one of the oldest spot welding processes use in industry especially in the automotive. RSW involves the application of heat and pressure without neglecting time taken when joining two or more metal sheets at a localized area which is claimed as the most efficient welding process in metal fabrication. The purpose of this project is to perform model updating of RSW plate structure between mild steel 1010 and stainless steel 304. In order to do the updating, normal mode finite element analysis (FEA) and experimental modal analysis (EMA) have been carried out. Result shows that the discrepancies of natural frequency between FEA and EMA are below than 10 %. Sensitivity model updating is evaluated in order to make sure which parameters are influences in this structural dynamic modification. Young’s modulus and density both materials are indicate significant parameters to do model updating. As a conclusion, after perform model updating, total average error of dissimilar RSW plate is improved significantly.

  12. Analysis of genetic diversity in Bolivian llama populations using microsatellites.

    PubMed

    Barreta, J; Gutiérrez-Gil, B; Iñiguez, V; Romero, F; Saavedra, V; Chiri, R; Rodríguez, T; Arranz, J J

    2013-08-01

    South American camelids (SACs) have a major role in the maintenance and potential future of rural Andean human populations. More than 60% of the 3.7 million llamas living worldwide are found in Bolivia. Due to the lack of studies focusing on genetic diversity in Bolivian llamas, this analysis investigates both the genetic diversity and structure of 12 regional groups of llamas that span the greater part of the range of distribution for this species in Bolivia. The analysis of 42 microsatellite markers in the considered regional groups showed that, in general, there were high levels of polymorphism (a total of 506 detected alleles; average PIC across per marker: 0.66), which are comparable with those reported for other populations of domestic SACs. The estimated diversity parameters indicated that there was high intrapopulational genetic variation (average number of alleles and average expected heterozygosity per marker: 12.04 and 0.68, respectively) and weak genetic differentiation among populations (FST range: 0.003-0.052). In agreement with these estimates, Bolivian llamas showed a weak genetic structure and an intense gene flow between all the studied regional groups, which is due to the exchange of reproductive males between the different flocks. Interestingly, the groups for which the largest pairwise FST estimates were observed, Sud Lípez and Nor Lípez, showed a certain level of genetic differentiation that is probably due to the pattern of geographic isolation and limited communication infrastructures of these southern localities. Overall, the population parameters reported here may serve as a reference when establishing conservation policies that address Bolivian llama populations. © 2012 Blackwell Verlag GmbH.

  13. Quantitative analysis of the interplay between InAs quantum dots and wetting layer during the GaAs capping process

    NASA Astrophysics Data System (ADS)

    González, D.; Braza, V.; Utrilla, A. D.; Gonzalo, A.; Reyes, D. F.; Ben, T.; Guzman, A.; Hierro, A.; Ulloa, J. M.

    2017-10-01

    A procedure to quantitatively analyse the relationship between the wetting layer (WL) and the quantum dots (QDs) as a whole in a statistical way is proposed. As we will show in the manuscript, it allows determining, not only the proportion of deposited InAs held in the WL, but also the average In content inside the QDs. First, the amount of InAs deposited is measured for calibration in three different WL structures without QDs by two methodologies: strain mappings in high-resolution transmission electron microscopy images and compositional mappings with ChemiSTEM x-ray energy spectrometry. The area under the average profiles obtained by both methodologies emerges as the best parameter to quantify the amount of InAs in the WL, in agreement with high-resolution x-ray diffraction results. Second, the effect of three different GaAs capping layer (CL) growth rates on the decomposition of the QDs is evaluated. The CL growth rate has a strong influence on the QD volume as well as the WL characteristics. Slower CL growth rates produce an In enrichment of the WL if compared to faster ones, together with a diminution of the QD height. In addition, assuming that the QD density does not change with the different CL growth rates, an estimation of the average In content inside the QDs is given. The high Ga/In intermixing during the decomposition of buried QDs does not only trigger a reduction of the QD height, but above all, a higher impoverishment of the In content inside the QDs, therefore modifying the two most important parameters that determine the optical properties of these structures.

  14. Domain size polydispersity effects on the structural and dynamical properties in lipid monolayers with phase coexistence.

    PubMed

    Rufeil-Fiori, Elena; Banchio, Adolfo J

    2018-03-07

    In lipid monolayers with phase coexistence, domains of the liquid-condensed phase always present size polydispersity. However, very few theoretical works consider size distribution effects on the monolayer properties. Because of the difference in surface densities, domains have excess dipolar density with respect to the surrounding liquid expanded phase, originating a dipolar inter-domain interaction. This interaction depends on the domain area, and hence the presence of a domain size distribution is associated with interaction polydispersity. Inter-domain interactions are fundamental to understanding the structure and dynamics of the monolayer. For this reason, it is expected that polydispersity significantly alters monolayer properties. By means of Brownian dynamics simulations, we study the radial distribution function (RDF), the average mean square displacement and the average time-dependent self-diffusion coefficient, D(t), of lipid monolayers with normally distributed size domains. For this purpose, we vary the relevant system parameters, polydispersity and interaction strength, within a range of experimental interest. We also analyze the consequences of using a monodisperse model to determine the interaction strength from an experimental RDF. We find that polydispersity strongly affects the value of the interaction strength, which is greatly underestimated if polydispersity is not considered. However, within a certain range of parameters, the RDF obtained from a polydisperse model can be well approximated by that of a monodisperse model, by suitably fitting the interaction strength, even for 40% polydispersities. For small interaction strengths or small polydispersities, the polydisperse systems obtained from fitting the experimental RDF have an average mean square displacement and D(t) in good agreement with that of the monodisperse system.

  15. Synchrotron microtomographic quantification of geometrical soil pore characteristics affected by compaction

    NASA Astrophysics Data System (ADS)

    Udawatta, Ranjith P.; Gantzer, Clark J.; Anderson, Stephen H.; Assouline, Shmuel

    2016-05-01

    Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes. Sieved (diameter < 2 mm and < 0.5 mm) and repacked (1.51 and 1.72 Mg m-3) Hamra soil cores of 5 by 5 mm (average porosities were 0.44 and 0.35) were imaged at 9.6 μm resolution at the Argonne Advanced Photon Source (synchrotron facility) using X-ray CMT. Images of 58.9 mm3 volume were analyzed using 3-Dimensional Medial Axis (3-DMA) software. Geometrical characteristics of the spatial distributions of pore structures (pore radii, volume, connectivity, path length, and tortuosity) were numerically investigated. Results show that the coordination number (CN) distribution and path length (PL) measured from the medial axis were reasonably fit by exponential relationships P(CN) = 10-CN/Co and P(PL) = 10-PL/PLo, respectively, where Co and PLo are the corresponding characteristic constants. Compaction reduced porosity, average pore size, number of pores, and characteristic constants. The average pore radii (63.7 and 61 µm; p < 0.04), largest pore volume (1.58 and 0.58 mm3; p = 0.06), number of pores (55 and 50; p = 0.09), and characteristic coordination number (3.74 and 3.94; p = 0.02) were significantly different between the low-density than the high-density treatment. Aggregate size also influenced measured geometrical pore parameters. This analytical technique provides a tool for assessing changes in soil pores that affect hydraulic properties and thereby provides information to assist in assessment of soil management systems.

  16. Validation of scintillometer measurements over a heterogeneous landscape: The LITFASS-2009 Experiment

    NASA Astrophysics Data System (ADS)

    Beyrich, F.; Bange, J.; Hartogensis, O.; Raasch, S.

    2009-09-01

    The turbulent exchange of heat and water vapour are essential land surface - atmosphere interaction processes in the local, regional and global energy and water cycles. Scintillometry can be considered as the only technique presently available for the quasi-operational experimental determination of area-averaged turbulent fluxes needed to validate the fluxes simulated by regional atmospheric models or derived from satellite images at a horizontal scale of a few kilometres. While scintillometry has found increasing application over the last years, some fundamental issues related to its use still need further investigation. In particular, no studies are known so far to reproduce the path-averaged structure parameters measured by scintillometers by independent measurements or modelling techniques. The LITFASS-2009 field experiment has been performed in the area around the Meteorological Observatory Lindenberg / Richard-Aßmann-Observatory in Germany during summer 2009. It was designed to investigate the spatial (horizontal and vertical) and temporal variability of structure parameters (underlying the scintillometer principle) over moderately heterogeneous terrain. The experiment essentially relied on a coupling of eddy-covariance measurements, scintillometry and airborne measurements with an unmanned autonomous aircraft able to strictly fly along the scintillometer path. Data interpretation will be supported by numerical modelling using a large-eddy simulation (LES) model. The paper will describe the design of the experiment. First preliminary results from the measurements will be presented.

  17. Thermodynamic characterization of tandem mismatches found in naturally occurring RNA

    PubMed Central

    Christiansen, Martha E.; Znosko, Brent M.

    2009-01-01

    Although all sequence symmetric tandem mismatches and some sequence asymmetric tandem mismatches have been thermodynamically characterized and a model has been proposed to predict the stability of previously unmeasured sequence asymmetric tandem mismatches [Christiansen,M.E. and Znosko,B.M. (2008) Biochemistry, 47, 4329–4336], experimental thermodynamic data for frequently occurring tandem mismatches is lacking. Since experimental data is preferred over a predictive model, the thermodynamic parameters for 25 frequently occurring tandem mismatches were determined. These new experimental values, on average, are 1.0 kcal/mol different from the values predicted for these mismatches using the previous model. The data for the sequence asymmetric tandem mismatches reported here were then combined with the data for 72 sequence asymmetric tandem mismatches that were published previously, and the parameters used to predict the thermodynamics of previously unmeasured sequence asymmetric tandem mismatches were updated. The average absolute difference between the measured values and the values predicted using these updated parameters is 0.5 kcal/mol. This updated model improves the prediction for tandem mismatches that were predicted rather poorly by the previous model. This new experimental data and updated predictive model allow for more accurate calculations of the free energy of RNA duplexes containing tandem mismatches, and, furthermore, should allow for improved prediction of secondary structure from sequence. PMID:19509311

  18. Concordance cosmology without dark energy

    NASA Astrophysics Data System (ADS)

    Rácz, Gábor; Dobos, László; Beck, Róbert; Szapudi, István; Csabai, István

    2017-07-01

    According to the separate universe conjecture, spherically symmetric sub-regions in an isotropic universe behave like mini-universes with their own cosmological parameters. This is an excellent approximation in both Newtonian and general relativistic theories. We estimate local expansion rates for a large number of such regions, and use a scale parameter calculated from the volume-averaged increments of local scale parameters at each time step in an otherwise standard cosmological N-body simulation. The particle mass, corresponding to a coarse graining scale, is an adjustable parameter. This mean field approximation neglects tidal forces and boundary effects, but it is the first step towards a non-perturbative statistical estimation of the effect of non-linear evolution of structure on the expansion rate. Using our algorithm, a simulation with an initial Ωm = 1 Einstein-de Sitter setting closely tracks the expansion and structure growth history of the Λ cold dark matter (ΛCDM) cosmology. Due to small but characteristic differences, our model can be distinguished from the ΛCDM model by future precision observations. Moreover, our model can resolve the emerging tension between local Hubble constant measurements and the Planck best-fitting cosmology. Further improvements to the simulation are necessary to investigate light propagation and confirm full consistency with cosmic microwave background observations.

  19. Specific features of the flow structure in a reactive type turbine stage

    NASA Astrophysics Data System (ADS)

    Chernikov, V. A.; Semakina, E. Yu.

    2017-04-01

    The results of experimental studies of the gas dynamics for a reactive type turbine stage are presented. The objective of the studies is the measurement of the 3D flow fields in reference cross sections, experimental determination of the stage characteristics, and analysis of the flow structure for detecting the sources of kinetic energy losses. The integral characteristics of the studied stage are obtained by averaging the results of traversing the 3D flow over the area of the reference cross sections before and behind the stage. The averaging is performed using the conservation equations for mass, total energy flux, angular momentum with respect to the axis z of the turbine, entropy flow, and the radial projection of the momentum flux equation. The flow parameter distributions along the channel height behind the stage are obtained in the same way. More thorough analysis of the flow structure is performed after interpolation of the experimentally measured point parameter values and 3D flow velocities behind the stage. The obtained continuous velocity distributions in the absolute and relative coordinate systems are presented in the form of vector fields. The coordinates of the centers and the vectors of secondary vortices are determined using the results of point measurements of velocity vectors in the cross section behind the turbine stage and their subsequent interpolation. The approach to analysis of experimental data on aerodynamics of the turbine stage applied in this study allows one to find the detailed space structure of the working medium flow, including secondary coherent vortices at the root and peripheral regions of the air-gas part of the stage. The measured 3D flow parameter fields and their interpolation, on the one hand, point to possible sources of increased power losses, and, on the other hand, may serve as the basis for detailed testing of CFD models of the flow using both integral and local characteristics. The comparison of the numerical and experimental results, as regards local characteristics, using statistical methods yields the quantitative estimate of their agreement.

  20. Analysis of the influence of handset phone position on RF exposure of brain tissue.

    PubMed

    Ghanmi, Amal; Varsier, Nadège; Hadjem, Abdelhamid; Conil, Emmanuelle; Picon, Odile; Wiart, Joe

    2014-12-01

    Exposure to mobile phone radio frequency (RF) electromagnetic fields depends on many different parameters. For epidemiological studies investigating the risk of brain cancer linked to RF exposure from mobile phones, it is of great interest to characterize brain tissue exposure and to know which parameters this exposure is sensitive to. One such parameter is the position of the phone during communication. In this article, we analyze the influence of the phone position on the brain exposure by comparing the specific absorption rate (SAR) induced in the head by two different mobile phone models operating in Global System for Mobile Communications (GSM) frequency bands. To achieve this objective, 80 different phone positions were chosen using an experiment based on the Latin hypercube sampling (LHS) to select a representative set of positions. The averaged SAR over 10 g (SAR10 g) in the head, the averaged SAR over 1 g (SAR1 g ) in the brain, and the averaged SAR in different anatomical brain structures were estimated at 900 and 1800 MHz for the 80 positions. The results illustrate that SAR distributions inside the brain area are sensitive to the position of the mobile phone relative to the head. The results also show that for 5-10% of the studied positions the SAR10 g in the head and the SAR1 g in the brain can be 20% higher than the SAR estimated for the standard cheek position and that the Specific Anthropomorphic Mannequin (SAM) model is conservative for 95% of all the studied positions. © 2014 Wiley Periodicals, Inc.

  1. Evaluation and optimization of the parameters used in multiple-atlas-based segmentation of prostate cancers in radiation therapy.

    PubMed

    Wong, Wicger K H; Leung, Lucullus H T; Kwong, Dora L W

    2016-01-01

    To evaluate and optimize the parameters used in multiple-atlas-based segmentation of prostate cancers in radiation therapy. A retrospective study was conducted, and the accuracy of the multiple-atlas-based segmentation was tested on 30 patients. The effect of library size (LS), number of atlases used for contour averaging and the contour averaging strategy were also studied. The autogenerated contours were compared with the manually drawn contours. Dice similarity coefficient (DSC) and Hausdorff distance were used to evaluate the segmentation agreement. Mixed results were found between simultaneous truth and performance level estimation (STAPLE) and majority vote (MV) strategies. Multiple-atlas approaches were relatively insensitive to LS. A LS of ten was adequate, and further increase in the LS only showed insignificant gain. Multiple atlas performed better than single atlas for most of the time. Using more atlases did not guarantee better performance, with five atlases performing better than ten atlases. With our recommended setting, the median DSC for the bladder, rectum, prostate, seminal vesicle and femurs was 0.90, 0.77, 0.84, 0.56 and 0.95, respectively. Our study shows that multiple-atlas-based strategies have better accuracy than single-atlas approach. STAPLE is preferred, and a LS of ten is adequate for prostate cases. Using five atlases for contour averaging is recommended. The contouring accuracy of seminal vesicle still needs improvement, and manual editing is still required for the other structures. This article provides a better understanding of the influence of the parameters used in multiple-atlas-based segmentation of prostate cancers.

  2. [Evaluation of the influence of humidity and temperature on the drug stability by initial average rate experiment].

    PubMed

    He, Ning; Sun, Hechun; Dai, Miaomiao

    2014-05-01

    To evaluate the influence of temperature and humidity on the drug stability by initial average rate experiment, and to obtained the kinetic parameters. The effect of concentration error, drug degradation extent, humidity and temperature numbers, humidity and temperature range, and average humidity and temperature on the accuracy and precision of kinetic parameters in the initial average rate experiment was explored. The stability of vitamin C, as a solid state model, was investigated by an initial average rate experiment. Under the same experimental conditions, the kinetic parameters obtained from this proposed method were comparable to those from classical isothermal experiment at constant humidity. The estimates were more accurate and precise by controlling the extent of drug degradation, changing humidity and temperature range, or by setting the average temperature closer to room temperature. Compared with isothermal experiments at constant humidity, our proposed method saves time, labor, and materials.

  3. Microwave structure for the propiolic acid-formic acid complex.

    PubMed

    Kukolich, Stephen G; Mitchell, Erik G; Carey, Spencer J; Sun, Ming; Sargus, Bryan A

    2013-10-03

    New microwave spectra were measured to obtain rotational constants and centrifugal distortion constants for the DCCCOOH···HOOCH and HCCCOOD···DOOCH isotopologues. Rotational transitions were measured in the frequency range of 4.9-15.4 GHz, providing accurate rotational constants, which, combined with previous rotational constants, allowed an improved structural fit for the propiolic acid-formic acid complex. The new structural fit yields reasonably accurate orientations for both the propiolic and formic acid monomers in the complex and more accurate structural parameters describing the hydrogen bonding. The structure is planar, with a positive inertial defect of Δ = 1.33 amu Å(2). The experimental structure exhibits a greater asymmetry for the two hydrogen bond lengths than was obtained from the ab initio mp2 calculations. The best-fit hydrogen bond lengths have an r(O1-H1···O4) of 1.64 Å and an r(O3-H2···O2) of 1.87 Å. The average of the two hydrogen bond lengths is r(av)(exp) = 1.76 Å, in good agreement with r(av)(theory) = 1.72 Å. The center of mass separation of the monomers is R(CM) = 3.864 Å. Other structural parameters from the least-squares fit using the experimental rotational constants are compared with theoretical values. The spectra were obtained using two different pulsed beam Fourier transform microwave spectrometers.

  4. Identification of walking human model using agent-based modelling

    NASA Astrophysics Data System (ADS)

    Shahabpoor, Erfan; Pavic, Aleksandar; Racic, Vitomir

    2018-03-01

    The interaction of walking people with large vibrating structures, such as footbridges and floors, in the vertical direction is an important yet challenging phenomenon to describe mathematically. Several different models have been proposed in the literature to simulate interaction of stationary people with vibrating structures. However, the research on moving (walking) human models, explicitly identified for vibration serviceability assessment of civil structures, is still sparse. In this study, the results of a comprehensive set of FRF-based modal tests were used, in which, over a hundred test subjects walked in different group sizes and walking patterns on a test structure. An agent-based model was used to simulate discrete traffic-structure interactions. The occupied structure modal parameters found in tests were used to identify the parameters of the walking individual's single-degree-of-freedom (SDOF) mass-spring-damper model using 'reverse engineering' methodology. The analysis of the results suggested that the normal distribution with the average of μ = 2.85Hz and standard deviation of σ = 0.34Hz can describe human SDOF model natural frequency. Similarly, the normal distribution with μ = 0.295 and σ = 0.047 can describe the human model damping ratio. Compared to the previous studies, the agent-based modelling methodology proposed in this paper offers significant flexibility in simulating multi-pedestrian walking traffics, external forces and simulating different mechanisms of human-structure and human-environment interaction at the same time.

  5. Damage Assessment of Heat Resistant Steels through Electron BackScatter Diffraction Strain Analysis under Creep and Creep-Fatigue Conditions

    NASA Astrophysics Data System (ADS)

    Fujiyama, Kazunari; Kimachi, Hirohisa; Tsuboi, Toshiki; Hagiwara, Hiroyuki; Ogino, Shotaro; Mizutani, Yoshiki

    EBSD(Electron BackScatter Diffraction) analyses were conducted for studying the quantitative microstructural metrics of creep and creep-fatigue damage for austenitic SUS304HTB boiler tube steel and ferritic Mod.9Cr piping steel. KAM(Kernel Average Misorientation) maps and GOS(Grain Orientation Spread) maps were obtained for these samples and the area averaged values KAMave and GOSave were obtained. While the increasing trends of these misorientation metrics were observed for SUS304HTB steel, the decreasing trends were observed for damaged Mod.9Cr steel with extensive recovery of subgrain structure. To establish more universal parameter representing the accumulation of damage to compensate these opposite trends, the EBSD strain parameters were introduced for converting the misorientation changes into the quantities representing accumulated permanent strains during creep and creep-fatigue damage process. As KAM values were dependent on the pixel size (inversely proportional to the observation magnification) and the permanent strain could be expressed as the shear strain which was the product of dislocation density, Burgers vector and dislocation movement distance, two KAM strain parameters MεKAMnet and MεδKAMave were introduced as the sum of product of the noise subtracted KAMnet and the absolute change from initial value δKAMave with dislocation movement distance divided by pixel size. MεδKAMave parameter showed better relationship both with creep strain in creep tests and accumulated creep strain range in creep-fatigue tests. This parameter can be used as the strain-based damage evaluation and detector of final failure.

  6. Temporal studies of black hole X-ray transients during outburst decay

    NASA Astrophysics Data System (ADS)

    Kalemci, Emrah

    Galactic black holes (GBH) are a class of astrophysical sources with X-ray emission that is powered by accretion from a companion star. An important goal of GBH research is to understand the accretion structure and the nature of the variability of these systems. The GBHs sometimes show significant changes in the X-ray emission properties, and these changes are called state transitions. The transitions are believed to be caused by variation of the mass accretion rate and changes in accretion geometry. Thus, their study provides valuable information on the nature of the accretion structure. In this thesis work, I present results from studying the spectral and temporal evolution of all GBH transients that have been observed with NASA's Rossi X-ray Timing Explorer during outburst decay. I explore the physical conditions before, during and after the state transition, characterize the quasi-periodic oscillations (QPO) and continuum of power spectral density (PSD) in different energy bands, and study the correlations between spectral and temporal fit parameters. I also analyze the evolution of the cross- spectral parameters during and after the transition. I show that the appearance of the broad band variability is coincident with an increase of power-law flux. The evolution of the characteristic frequencies and the spectral parameters after the transition are consistent with retreating of the inner accretion disk. The energy dependent PSD analysis shows that the level of variability increases with energy when there is significant soft flux from the optically thick accretion disk. The variability level also increases with energy if the absorption column density to the source is high. This may be a result of small angle scatterings of lower energy X-ray photons with the ISM dust around these sources. I find global correlations between the spectral index and three temporal fit parameters: the QPO frequency, the overall level of variability and the integrated time lag. The relation between the spectral index and the time lags are interpreted within the context of the average number of Compton scatterings and the temperature of the scattering medium. During the transitions, the average lag is higher and average coherence is lower. I discuss whether a hybrid accretion model, for which the hot electron corona is the base of an optically thin outflow or a jet, can explain the physical properties during the transition.

  7. Kinetic energy distribution of multiply charged ions in Coulomb explosion of Xe clusters.

    PubMed

    Heidenreich, Andreas; Jortner, Joshua

    2011-02-21

    We report on the calculations of kinetic energy distribution (KED) functions of multiply charged, high-energy ions in Coulomb explosion (CE) of an assembly of elemental Xe(n) clusters (average size (n) = 200-2171) driven by ultra-intense, near-infrared, Gaussian laser fields (peak intensities 10(15) - 4 × 10(16) W cm(-2), pulse lengths 65-230 fs). In this cluster size and pulse parameter domain, outer ionization is incomplete∕vertical, incomplete∕nonvertical, or complete∕nonvertical, with CE occurring in the presence of nanoplasma electrons. The KEDs were obtained from double averaging of single-trajectory molecular dynamics simulation ion kinetic energies. The KEDs were doubly averaged over a log-normal cluster size distribution and over the laser intensity distribution of a spatial Gaussian beam, which constitutes either a two-dimensional (2D) or a three-dimensional (3D) profile, with the 3D profile (when the cluster beam radius is larger than the Rayleigh length) usually being experimentally realized. The general features of the doubly averaged KEDs manifest the smearing out of the structure corresponding to the distribution of ion charges, a marked increase of the KEDs at very low energies due to the contribution from the persistent nanoplasma, a distortion of the KEDs and of the average energies toward lower energy values, and the appearance of long low-intensity high-energy tails caused by the admixture of contributions from large clusters by size averaging. The doubly averaged simulation results account reasonably well (within 30%) for the experimental data for the cluster-size dependence of the CE energetics and for its dependence on the laser pulse parameters, as well as for the anisotropy in the angular distribution of the energies of the Xe(q+) ions. Possible applications of this computational study include a control of the ion kinetic energies by the choice of the laser intensity profile (2D∕3D) in the laser-cluster interaction volume.

  8. Octoxy capped Si nanoparticles synthesized by homogeneous reduction of SiCl4 with crown ether alkalide.

    PubMed

    Sletnes, M; Maria, J; Grande, T; Lindgren, M; Einarsrud, M-A

    2014-02-07

    Blue-green luminescent octoxy capped Si nanoparticles were synthesized via homogeneous reduction of SiCl4 with the crown ether alkalide K(+)(15-crown-5)2K(-) in tetrahydrofuran. The Si nanoparticles were characterized with respect to size, crystal structure, morphology, surface termination, optical properties and stability. Si diamond structure nanoparticles with narrow size distributions, and average diameters ranging from 3 to 7 nm were obtained. A finite-size effect on the lattice dimensions was observed, in the form of an expansion of the [220] lattice planes of smaller Si nanoparticles. The concentration of SiCl4 was found to be the most important parameter governing the particle size and size distribution. The octoxy capped particles were stable under an ambient atmosphere for at least one month, but exposure to water made them prone to oxidation. An average radiative recombination lifetime of 8.8 ns was measured for the blue-green luminescence. The luminescence appears to originate from surface defects, rather than from quantum confinement.

  9. The Impact of Model and Rainfall Forcing Errors on Characterizing Soil Moisture Uncertainty in Land Surface Modeling

    NASA Technical Reports Server (NTRS)

    Maggioni, V.; Anagnostou, E. N.; Reichle, R. H.

    2013-01-01

    The contribution of rainfall forcing errors relative to model (structural and parameter) uncertainty in the prediction of soil moisture is investigated by integrating the NASA Catchment Land Surface Model (CLSM), forced with hydro-meteorological data, in the Oklahoma region. Rainfall-forcing uncertainty is introduced using a stochastic error model that generates ensemble rainfall fields from satellite rainfall products. The ensemble satellite rain fields are propagated through CLSM to produce soil moisture ensembles. Errors in CLSM are modeled with two different approaches: either by perturbing model parameters (representing model parameter uncertainty) or by adding randomly generated noise (representing model structure and parameter uncertainty) to the model prognostic variables. Our findings highlight that the method currently used in the NASA GEOS-5 Land Data Assimilation System to perturb CLSM variables poorly describes the uncertainty in the predicted soil moisture, even when combined with rainfall model perturbations. On the other hand, by adding model parameter perturbations to rainfall forcing perturbations, a better characterization of uncertainty in soil moisture simulations is observed. Specifically, an analysis of the rank histograms shows that the most consistent ensemble of soil moisture is obtained by combining rainfall and model parameter perturbations. When rainfall forcing and model prognostic perturbations are added, the rank histogram shows a U-shape at the domain average scale, which corresponds to a lack of variability in the forecast ensemble. The more accurate estimation of the soil moisture prediction uncertainty obtained by combining rainfall and parameter perturbations is encouraging for the application of this approach in ensemble data assimilation systems.

  10. Central sleep apnea detection from ECG-derived respiratory signals. Application of multivariate recurrence plot analysis.

    PubMed

    Maier, C; Dickhaus, H

    2010-01-01

    This study examines the suitability of recurrence plot analysis for the problem of central sleep apnea (CSA) detection and delineation from ECG-derived respiratory (EDR) signals. A parameter describing the average length of vertical line structures in recurrence plots is calculated at a time resolution of 1 s as 'instantaneous trapping time'. Threshold comparison of this parameter is used to detect ongoing CSA. In data from 26 patients (duration 208 h) we assessed sensitivity for detection of CSA and mixed apnea (MSA) events by comparing the results obtained from 8-channel Holter ECGs to the annotations (860 CSA, 480 MSA) of simultaneously registered polysomnograms. Multivariate combination of the EDR from different ECG leads improved the detection accuracy significantly. When all eight leads were considered, an average instantaneous vertical line length above 5 correctly identified 1126 of the 1340 events (sensitivity 84%) with a total number of 1881 positive detections. We conclude that recurrence plot analysis is a promising tool for detection and delineation of CSA epochs from EDR signals with high time resolution. Moreover, the approach is likewise applicable to directly measured respiratory signals.

  11. Pulsed Polarimetry and magnetic sensing on the Magnetized Shock Experiment (MSX)

    NASA Astrophysics Data System (ADS)

    Smith, R. J.; Hutchinson, T. M.; Weber, T. E.; Taylor, S. F.; Hsu, S. C.

    2014-10-01

    MSX is uniquely positioned to generate the conditions for collision-less magnetized supercritical shocks with Alvenic Mach numbers (MA) of the order 10 and higher. Significant operational strides have been made in forming plasmas over wide parameter ranges: (Te + Ti) of 10-200 eV, average neof 5-60×10+21 m-3, speeds up to 150 km/s and fields up to 1T with a highest plasma flow MA of 5 to date. The MSX plasma is unique in regards to large plasma size of 10 cm and average β higher than 0.8 making the FRC and the magnetized shock structure candidates for the application of Pulsed Polarimetry, a polarization sensitive Lidar technique. The shock dynamics are presently being investigated using internal probes, interferometry and imaging. Internal probe results and an assessment of the shock parameters will dictate the use of the UW pulsed polarimeter system in which internal ne, Teand B are to be measured. Recent results will be presented. Supported by DOE Office of Fusion Energy Sciences Funding DE-FOA-0000755.

  12. PubChem3D: Conformer generation

    PubMed Central

    2011-01-01

    Background PubChem, an open archive for the biological activities of small molecules, provides search and analysis tools to assist users in locating desired information. Many of these tools focus on the notion of chemical structure similarity at some level. PubChem3D enables similarity of chemical structure 3-D conformers to augment the existing similarity of 2-D chemical structure graphs. It is also desirable to relate theoretical 3-D descriptions of chemical structures to experimental biological activity. As such, it is important to be assured that the theoretical conformer models can reproduce experimentally determined bioactive conformations. In the present study, we investigate the effects of three primary conformer generation parameters (the fragment sampling rate, the energy window size, and force field variant) upon the accuracy of theoretical conformer models, and determined optimal settings for PubChem3D conformer model generation and conformer sampling. Results Using the software package OMEGA from OpenEye Scientific Software, Inc., theoretical 3-D conformer models were generated for 25,972 small-molecule ligands, whose 3-D structures were experimentally determined. Different values for primary conformer generation parameters were systematically tested to find optimal settings. Employing a greater fragment sampling rate than the default did not improve the accuracy of the theoretical conformer model ensembles. An ever increasing energy window did increase the overall average accuracy, with rapid convergence observed at 10 kcal/mol and 15 kcal/mol for model building and torsion search, respectively; however, subsequent study showed that an energy threshold of 25 kcal/mol for torsion search resulted in slightly improved results for larger and more flexible structures. Exclusion of coulomb terms from the 94s variant of the Merck molecular force field (MMFF94s) in the torsion search stage gave more accurate conformer models at lower energy windows. Overall average accuracy of reproduction of bioactive conformations was remarkably linear with respect to both non-hydrogen atom count ("size") and effective rotor count ("flexibility"). Using these as independent variables, a regression equation was developed to predict the RMSD accuracy of a theoretical ensemble to reproduce bioactive conformations. The equation was modified to give a minimum RMSD conformer sampling value to help ensure that 90% of the sampled theoretical models should contain at least one conformer within the RMSD sampling value to a "bioactive" conformation. Conclusion Optimal parameters for conformer generation using OMEGA were explored and determined. An equation was developed that provides an RMSD sampling value to use that is based on the relative accuracy to reproduce bioactive conformations. The optimal conformer generation parameters and RMSD sampling values determined are used by the PubChem3D project to generate theoretical conformer models. PMID:21272340

  13. Estimating wheat and maize daily evapotranspiration using artificial neural network

    NASA Astrophysics Data System (ADS)

    Abrishami, Nazanin; Sepaskhah, Ali Reza; Shahrokhnia, Mohammad Hossein

    2018-02-01

    In this research, artificial neural network (ANN) is used for estimating wheat and maize daily standard evapotranspiration. Ten ANN models with different structures were designed for each crop. Daily climatic data [maximum temperature (T max), minimum temperature (T min), average temperature (T ave), maximum relative humidity (RHmax), minimum relative humidity (RHmin), average relative humidity (RHave), wind speed (U 2), sunshine hours (n), net radiation (Rn)], leaf area index (LAI), and plant height (h) were used as inputs. For five structures of ten, the evapotranspiration (ETC) values calculated by ETC = ET0 × K C equation (ET0 from Penman-Monteith equation and K C from FAO-56, ANNC) were used as outputs, and for the other five structures, the ETC values measured by weighing lysimeter (ANNM) were used as outputs. In all structures, a feed forward multiple-layer network with one or two hidden layers and sigmoid transfer function and BR or LM training algorithm was used. Favorite network was selected based on various statistical criteria. The results showed the suitable capability and acceptable accuracy of ANNs, particularly those having two hidden layers in their structure in estimating the daily evapotranspiration. Best model for estimation of maize daily evapotranspiration is «M»ANN1 C (8-4-2-1), with T max, T min, RHmax, RHmin, U 2, n, LAI, and h as input data and LM training rule and its statistical parameters (NRMSE, d, and R2) are 0.178, 0.980, and 0.982, respectively. Best model for estimation of wheat daily evapotranspiration is «W»ANN5 C (5-2-3-1), with T max, T min, Rn, LAI, and h as input data and LM training rule, its statistical parameters (NRMSE, d, and R 2) are 0.108, 0.987, and 0.981 respectively. In addition, if the calculated ETC used as the output of the network for both wheat and maize, higher accurate estimation was obtained. Therefore, ANN is suitable method for estimating evapotranspiration of wheat and maize.

  14. Effect of Voltage and Flow Rate Electrospinning Parameters on Polyacrylonitrile Electrospun Fibers

    NASA Astrophysics Data System (ADS)

    Bakar, S. S. S.; Fong, K. C.; Eleyas, A.; Nazeri, M. F. M.

    2018-03-01

    Currently, electrospinning is a very famous technique and widely used for forming polymer nanofibers. In this paper, the Polyacrylonitrile (PAN) nanofibers were prepared in concentration of 10wt% with varied processing parameters that can affect the properties of PAN fiber in term of fiber diameter and electrical conductivity was presented. Voltage of 10, 15 and 20 kV with PAN flow rate of 1 electrospun PAN fibers were then undergo pyrolysis at 800°C for 30 minutes. The resultant PAN nanofibers were then analysed by SEM, XRD and four point probe test after pyrolysis process. SEM image show continuos uniform and smooth surface fibrous structure of electrospun PAN fibers with average diameter of 1.81 μm. The fiber morphology is controlled by manipulating the processing parameters of electrospinning process. The results showed that the resistance of electrospun PAN fibers decreases as the processing parameter changes by increasing the applied voltage and flow rate of electrospinning.

  15. Integrated Controls-Structures Design Methodology: Redesign of an Evolutionary Test Structure

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Gupta, Sandeep; Elliot, Kenny B.; Joshi, Suresh M.

    1997-01-01

    An optimization-based integrated controls-structures design methodology for a class of flexible space structures is described, and the phase-0 Controls-Structures-Integration evolutionary model, a laboratory testbed at NASA Langley, is redesigned using this integrated design methodology. The integrated controls-structures design is posed as a nonlinear programming problem to minimize the control effort required to maintain a specified line-of-sight pointing performance, under persistent white noise disturbance. Static and dynamic dissipative control strategies are employed for feedback control, and parameters of these controllers are considered as the control design variables. Sizes of strut elements in various sections of the CEM are used as the structural design variables. Design guides for the struts are developed and employed in the integrated design process, to ensure that the redesigned structure can be effectively fabricated. The superiority of the integrated design methodology over the conventional design approach is demonstrated analytically by observing a significant reduction in the average control power needed to maintain specified pointing performance with the integrated design approach.

  16. Observations of pockmark flow structure in Belfast Bay, Maine, Part 3: implications for sediment transport

    USGS Publications Warehouse

    Fandel, Christina L.; Lippmann, Thomas C.; Foster, Diane L.; Brothers, Laura L.

    2017-01-01

    Current observations and sediment characteristics acquired within and along the rim of two pockmarks in Belfast Bay, Maine, were used to characterize periods of sediment transport and to investigate conditions favorable to the settling of suspended sediment. Hourly averaged Shields parameters determined from horizontal current velocity profiles within the center of each pockmark never exceed the critical value (approximated with the theoretical model of Dade et al. 1992). However, Shields parameters estimated at the pockmark rims periodically exceed the critical value, consistent with conditions that support the onset of sediment transport and suspension. Below the rim in the near-center of each pockmark, depth-averaged vertical velocities were less than zero (downward) 60% and 55% of the time in the northern and southern pockmarks, and were often comparable to depth-averaged horizontal velocities. Along the rim, depth-averaged vertical velocities over the lower 8 m of the water column were primarily downward but much less than depth-averaged horizontal velocities indicating that suspended sediment may be moved to distant locations. Maximum grain sizes capable of remaining in suspension under terminal settling flow conditions (ranging 10–170 μm) were typically much greater than the observed median grain diameter (about 7 μm) at the bed. During upwelling flow within the pockmarks, and in the absence of flocculation, suspended sediment would not settle. The greater frequency of predicted periods of sediment transport along the rim of the southern pockmark is consistent with pockmark morphology in Belfast Bay, which transitions from more spherical to more elongated toward the south, suggesting near-bed sediment transport may contribute to post-formation pockmark evolution during typical conditions in Belfast Bay.

  17. The Effect of Fuel Quality on Carbon Dioxide and Nitrogen Oxide Emissions, While Burning Biomass and RDF

    NASA Astrophysics Data System (ADS)

    Kalnacs, J.; Bendere, R.; Murasovs, A.; Arina, D.; Antipovs, A.; Kalnacs, A.; Sprince, L.

    2018-02-01

    The article analyses the variations in carbon dioxide emission factor depending on parameters characterising biomass and RDF (refuse-derived fuel). The influence of moisture, ash content, heat of combustion, carbon and nitrogen content on the amount of emission factors has been reviewed, by determining their average values. The options for the improvement of the fuel to result in reduced emissions of carbon dioxide and nitrogen oxide have been analysed. Systematic measurements of biomass parameters have been performed, by determining their average values, seasonal limits of variations in these parameters and their mutual relations. Typical average values of RDF parameters and limits of variations have been determined.

  18. Oppugning the assumptions of spatial averaging of segment and joint orientations.

    PubMed

    Pierrynowski, Michael Raymond; Ball, Kevin Arthur

    2009-02-09

    Movement scientists frequently calculate "arithmetic averages" when examining body segment or joint orientations. Such calculations appear routinely, yet are fundamentally flawed. Three-dimensional orientation data are computed as matrices, yet three-ordered Euler/Cardan/Bryant angle parameters are frequently used for interpretation. These parameters are not geometrically independent; thus, the conventional process of averaging each parameter is incorrect. The process of arithmetic averaging also assumes that the distances between data are linear (Euclidean); however, for the orientation data these distances are geodesically curved (Riemannian). Therefore we question (oppugn) whether use of the conventional averaging approach is an appropriate statistic. Fortunately, exact methods of averaging orientation data have been developed which both circumvent the parameterization issue, and explicitly acknowledge the Euclidean or Riemannian distance measures. The details of these matrix-based averaging methods are presented and their theoretical advantages discussed. The Euclidian and Riemannian approaches offer appealing advantages over the conventional technique. With respect to practical biomechanical relevancy, examinations of simulated data suggest that for sets of orientation data possessing characteristics of low dispersion, an isotropic distribution, and less than 30 degrees second and third angle parameters, discrepancies with the conventional approach are less than 1.1 degrees . However, beyond these limits, arithmetic averaging can have substantive non-linear inaccuracies in all three parameterized angles. The biomechanics community is encouraged to recognize that limitations exist with the use of the conventional method of averaging orientations. Investigations requiring more robust spatial averaging over a broader range of orientations may benefit from the use of matrix-based Euclidean or Riemannian calculations.

  19. Ensemble MD simulations restrained via crystallographic data: Accurate structure leads to accurate dynamics

    PubMed Central

    Xue, Yi; Skrynnikov, Nikolai R

    2014-01-01

    Currently, the best existing molecular dynamics (MD) force fields cannot accurately reproduce the global free-energy minimum which realizes the experimental protein structure. As a result, long MD trajectories tend to drift away from the starting coordinates (e.g., crystallographic structures). To address this problem, we have devised a new simulation strategy aimed at protein crystals. An MD simulation of protein crystal is essentially an ensemble simulation involving multiple protein molecules in a crystal unit cell (or a block of unit cells). To ensure that average protein coordinates remain correct during the simulation, we introduced crystallography-based restraints into the MD protocol. Because these restraints are aimed at the ensemble-average structure, they have only minimal impact on conformational dynamics of the individual protein molecules. So long as the average structure remains reasonable, the proteins move in a native-like fashion as dictated by the original force field. To validate this approach, we have used the data from solid-state NMR spectroscopy, which is the orthogonal experimental technique uniquely sensitive to protein local dynamics. The new method has been tested on the well-established model protein, ubiquitin. The ensemble-restrained MD simulations produced lower crystallographic R factors than conventional simulations; they also led to more accurate predictions for crystallographic temperature factors, solid-state chemical shifts, and backbone order parameters. The predictions for 15N R1 relaxation rates are at least as accurate as those obtained from conventional simulations. Taken together, these results suggest that the presented trajectories may be among the most realistic protein MD simulations ever reported. In this context, the ensemble restraints based on high-resolution crystallographic data can be viewed as protein-specific empirical corrections to the standard force fields. PMID:24452989

  20. Electron-phonon interaction in the binary superconductor lutetium carbide LuC2 via first-principles calculations

    NASA Astrophysics Data System (ADS)

    Dilmi, S.; Saib, S.; Bouarissa, N.

    2018-06-01

    Structural, electronic, electron-phonon coupling and superconducting properties of the intermetallic compound LuC2 are investigated by means of ab initio pseudopotential plane wave method within the generalized gradient approximation. The calculated equilibrium lattice parameters yielded a very good accord with experiment. There is no imaginary phonon frequency in the whole Brillouin zone supporting thus the dynamical stability in the material of interest. The average electron-phonon coupling parameter is found to be 0.59 indicating thus a weak-coupling BCS superconductor. Using a reasonable value of μ* = 0.12 for the effective Coulomb repulsion parameter, the superconducting critical temperature Tc is found to be 3.324 which is in excellent agreement with the experimental value of 3.33 K. The effect of the spin-orbit coupling on the superconducting properties of the material of interest has been examined and found to be weak.

  1. Financial gains and risks in pay-for-performance bonus algorithms.

    PubMed

    Cromwell, Jerry; Drozd, Edward M; Smith, Kevin; Trisolini, Michael

    2007-01-01

    Considerable attention has been given to evidence-based process indicators associated with quality of care, while much less attention has been given to the structure and key parameters of the various pay-for-performance (P4P) bonus and penalty arrangements using such measures. In this article we develop a general model of quality payment arrangements and discuss the advantages and disadvantages of the key parameters. We then conduct simulation analyses of four general P4P payment algorithms by varying seven parameters, including indicator weights, indicator intercorrelation, degree of uncertainty regarding intervention effectiveness, and initial baseline rates. Bonuses averaged over several indicators appear insensitive to weighting, correlation, and the number of indicators. The bonuses are sensitive to disease manager perceptions of intervention effectiveness, facing challenging targets, and the use of actual-to-target quality levels versus rates of improvement over baseline.

  2. ARMA models for earthquake ground motions. Seismic safety margins research program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, M. K.; Kwiatkowski, J. W.; Nau, R. F.

    1981-02-01

    Four major California earthquake records were analyzed by use of a class of discrete linear time-domain processes commonly referred to as ARMA (Autoregressive/Moving-Average) models. It was possible to analyze these different earthquakes, identify the order of the appropriate ARMA model(s), estimate parameters, and test the residuals generated by these models. It was also possible to show the connections, similarities, and differences between the traditional continuous models (with parameter estimates based on spectral analyses) and the discrete models with parameters estimated by various maximum-likelihood techniques applied to digitized acceleration data in the time domain. The methodology proposed is suitable for simulatingmore » earthquake ground motions in the time domain, and appears to be easily adapted to serve as inputs for nonlinear discrete time models of structural motions. 60 references, 19 figures, 9 tables.« less

  3. Building alternate protein structures using the elastic network model.

    PubMed

    Yang, Qingyi; Sharp, Kim A

    2009-02-15

    We describe a method for efficiently generating ensembles of alternate, all-atom protein structures that (a) differ significantly from the starting structure, (b) have good stereochemistry (bonded geometry), and (c) have good steric properties (absence of atomic overlap). The method uses reconstruction from a series of backbone framework structures that are obtained from a modified elastic network model (ENM) by perturbation along low-frequency normal modes. To ensure good quality backbone frameworks, the single force parameter ENM is modified by introducing two more force parameters to characterize the interaction between the consecutive carbon alphas and those within the same secondary structure domain. The relative stiffness of the three parameters is parameterized to reproduce B-factors, while maintaining good bonded geometry. After parameterization, violations of experimental Calpha-Calpha distances and Calpha-Calpha-Calpha pseudo angles along the backbone are reduced to less than 1%. Simultaneously, the average B-factor correlation coefficient improves to R = 0.77. Two applications illustrate the potential of the approach. (1) 102,051 protein backbones spanning a conformational space of 15 A root mean square deviation were generated from 148 nonredundant proteins in the PDB database, and all-atom models with minimal bonded and nonbonded violations were produced from this ensemble of backbone structures using the SCWRL side chain building program. (2) Improved backbone templates for homology modeling. Fifteen query sequences were each modeled on two targets. For each of the 30 target frameworks, dozens of improved templates could be produced In all cases, improved full atom homology models resulted, of which 50% could be identified blind using the D-Fire statistical potential. (c) 2008 Wiley-Liss, Inc.

  4. Boxes of Model Building and Visualization.

    PubMed

    Turk, Dušan

    2017-01-01

    Macromolecular crystallography and electron microscopy (single-particle and in situ tomography) are merging into a single approach used by the two coalescing scientific communities. The merger is a consequence of technical developments that enabled determination of atomic structures of macromolecules by electron microscopy. Technological progress in experimental methods of macromolecular structure determination, computer hardware, and software changed and continues to change the nature of model building and visualization of molecular structures. However, the increase in automation and availability of structure validation are reducing interactive manual model building to fiddling with details. On the other hand, interactive modeling tools increasingly rely on search and complex energy calculation procedures, which make manually driven changes in geometry increasingly powerful and at the same time less demanding. Thus, the need for accurate manual positioning of a model is decreasing. The user's push only needs to be sufficient to bring the model within the increasing convergence radius of the computing tools. It seems that we can now better than ever determine an average single structure. The tools work better, requirements for engagement of human brain are lowered, and the frontier of intellectual and scientific challenges has moved on. The quest for resolution of new challenges requires out-of-the-box thinking. A few issues such as model bias and correctness of structure, ongoing developments in parameters defining geometric restraints, limitations of the ideal average single structure, and limitations of Bragg spot data are discussed here, together with the challenges that lie ahead.

  5. Indirect estimates of natal dispersal distance from genetic data in a stream-dwelling fish (Mogurnda adspersa).

    PubMed

    Shipham, Ashlee; Schmidt, Daniel J; Hughes, Jane M

    2013-01-01

    Recent work has highlighted the need to account for hierarchical patterns of genetic structure when estimating evolutionary and ecological parameters of interest. This caution is particularly relevant to studies of riverine organisms, where hierarchical structure appears to be commonplace. Here, we indirectly estimate dispersal distance in a hierarchically structured freshwater fish, Mogurnda adspersa. Microsatellite and mitochondrial DNA (mtDNA) data were obtained for 443 individuals across 27 sites separated by an average of 1.3 km within creeks of southeastern Queensland, Australia. Significant genetic structure was found among sites (mtDNA Φ(ST) = 0.508; microsatellite F(ST) = 0.225, F'(ST) = 0.340). Various clustering methods produced congruent patterns of hierarchical structure reflecting stream architecture. Partial mantel tests identified contiguous sets of sample sites where isolation by distance (IBD) explained F(ST) variation without significant contribution of hierarchical structure. Analysis of mean natal dispersal distance (σ) within sets of IBD-linked sample sites suggested most dispersal occurs over less than 1 km, and the average effective density (D(e)) was estimated at 11.5 individuals km(-1); indicating sedentary behavior and small effective population size are responsible for the remarkable patterns of genetic structure observed. Our results demonstrate that Rousset's regression-based method is applicable to estimating the scale of dispersal in riverine organisms and that identifying contiguous populations that satisfy the assumptions of this model is achievable with genetic clustering methods and partial correlations.

  6. HAZ and Structural Defects Control in Key-Hole Welding of Titanium Using a Reptitively-Pulsed Nd: Yag Laser

    NASA Astrophysics Data System (ADS)

    Hamudi, Walid K.

    1996-12-01

    HAZ, porosity and cracks were investigated when welding 0.9 mm thick titanium sheets using a 10 J pulsed Nd: Yag laser. The effects of welding speed, joints fit-up, shielding gas, and laser parameters are presented. For optimum welding quality, 0.25 m/min scanning speed, 10 ℓ/min gas flow rate and 72 Watt average power were used. Welds of narrow heat affected zone (HAZ) with small level of porosity were obtained.

  7. Sensitivity of subject-specific models to Hill muscle-tendon model parameters in simulations of gait.

    PubMed

    Carbone, V; van der Krogt, M M; Koopman, H F J M; Verdonschot, N

    2016-06-14

    Subject-specific musculoskeletal (MS) models of the lower extremity are essential for applications such as predicting the effects of orthopedic surgery. We performed an extensive sensitivity analysis to assess the effects of potential errors in Hill muscle-tendon (MT) model parameters for each of the 56 MT parts contained in a state-of-the-art MS model. We used two metrics, namely a Local Sensitivity Index (LSI) and an Overall Sensitivity Index (OSI), to distinguish the effect of the perturbation on the predicted force produced by the perturbed MT parts and by all the remaining MT parts, respectively, during a simulated gait cycle. Results indicated that sensitivity of the model depended on the specific role of each MT part during gait, and not merely on its size and length. Tendon slack length was the most sensitive parameter, followed by maximal isometric muscle force and optimal muscle fiber length, while nominal pennation angle showed very low sensitivity. The highest sensitivity values were found for the MT parts that act as prime movers of gait (Soleus: average OSI=5.27%, Rectus Femoris: average OSI=4.47%, Gastrocnemius: average OSI=3.77%, Vastus Lateralis: average OSI=1.36%, Biceps Femoris Caput Longum: average OSI=1.06%) and hip stabilizers (Gluteus Medius: average OSI=3.10%, Obturator Internus: average OSI=1.96%, Gluteus Minimus: average OSI=1.40%, Piriformis: average OSI=0.98%), followed by the Peroneal muscles (average OSI=2.20%) and Tibialis Anterior (average OSI=1.78%) some of which were not included in previous sensitivity studies. Finally, the proposed priority list provides quantitative information to indicate which MT parts and which MT parameters should be estimated most accurately to create detailed and reliable subject-specific MS models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. An exactly solvable model of hierarchical self-assembly

    NASA Astrophysics Data System (ADS)

    Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.

    2009-06-01

    Many living and nonliving structures in the natural world form by hierarchical organization, but physical theories that describe this type of organization are scarce. To address this problem, a model of equilibrium self-assembly is formulated in which dynamically associating species organize into hierarchical structures that preserve their shape at each stage of assembly. In particular, we consider symmetric m-gons that associate at their vertices into Sierpinski gasket structures involving the hierarchical association of triangles, squares, hexagons, etc., at their corner vertices, thereby leading to fractal structures after many generations of assembly. This rather idealized model of hierarchical assembly yields an infinite sequence of self-assembly transitions as the morphology progressively organizes to higher levels of the hierarchy, and these structures coexists at dynamic equilibrium, as found in real hierarchically self-assembling systems such as amyloid fiber forming proteins. Moreover, the transition sharpness progressively grows with increasing m, corresponding to larger and larger loops in the assembled structures. Calculations are provided for several basic thermodynamic properties (including the order parameters for assembly for each stage of the hierarchy, average mass of clusters, specific heat, transition sharpness, etc.) that are required for characterizing the interaction parameters governing this type of self-assembly and for elucidating other basic qualitative aspects of these systems. Our idealized model of hierarchical assembly gives many insights into this ubiquitous type of self-organization process.

  9. Spin current and spin transfer torque in ferromagnet/superconductor spin valves

    NASA Astrophysics Data System (ADS)

    Moen, Evan; Valls, Oriol T.

    2018-05-01

    Using fully self-consistent methods, we study spin transport in fabricable spin valve systems consisting of two magnetic layers, a superconducting layer, and a spacer normal layer between the ferromagnets. Our methods ensure that the proper relations between spin current gradients and spin transfer torques are satisfied. We present results as a function of geometrical parameters, interfacial barrier values, misalignment angle between the ferromagnets, and bias voltage. Our main results are for the spin current and spin accumulation as functions of position within the spin valve structure. We see precession of the spin current about the exchange fields within the ferromagnets, and penetration of the spin current into the superconductor for biases greater than the critical bias, defined in the text. The spin accumulation exhibits oscillating behavior in the normal metal, with a strong dependence on the physical parameters both as to the structure and formation of the peaks. We also study the bias dependence of the spatially averaged spin transfer torque and spin accumulation. We examine the critical-bias effect of these quantities, and their dependence on the physical parameters. Our results are predictive of the outcome of future experiments, as they take into account imperfect interfaces and a realistic geometry.

  10. Prediction of Breakthrough Curves for Conservative and Reactive Transport from the Structural Parameters of Highly Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Hansen, S. K.; Haslauer, C. P.; Cirpka, O. A.; Vesselinov, V. V.

    2016-12-01

    It is desirable to predict the shape of breakthrough curves downgradient of a solute source from subsurface structural parameters (as in the small-perturbation macrodispersion theory) both for realistically heterogeneous fields, and at early time, before any sort of Fickian model is applicable. Using a combination of a priori knowledge, large-scale Monte Carlo simulation, and regression techniques, we have developed closed-form predictive expressions for pre- and post-Fickian flux-weighted solute breakthrough curves as a function of distance from the source (in integral scales) and variance of the log hydraulic conductivity field. Using the ensemble of Monte Carlo realizations, we have simultaneously computed error envelopes for the estimated flux-weighted breakthrough, and for the divergence of point breakthrough curves from the flux-weighted average, as functions of the predictive parameters. We have also obtained implied late-time macrodispersion coefficients for highly heterogeneous environments from the breakthrough statistics. This analysis is relevant for the modelling of reactive as well as conservative transport, since for many kinetic sorption and decay reactions, Laplace-domain modification of the breakthrough curve for conservative solute produces the correct curve for the reactive system.

  11. A theoretical-electron-density databank using a model of real and virtual spherical atoms.

    PubMed

    Nassour, Ayoub; Domagala, Slawomir; Guillot, Benoit; Leduc, Theo; Lecomte, Claude; Jelsch, Christian

    2017-08-01

    A database describing the electron density of common chemical groups using combinations of real and virtual spherical atoms is proposed, as an alternative to the multipolar atom modelling of the molecular charge density. Theoretical structure factors were computed from periodic density functional theory calculations on 38 crystal structures of small molecules and the charge density was subsequently refined using a density model based on real spherical atoms and additional dummy charges on the covalent bonds and on electron lone-pair sites. The electron-density parameters of real and dummy atoms present in a similar chemical environment were averaged on all the molecules studied to build a database of transferable spherical atoms. Compared with the now-popular databases of transferable multipolar parameters, the spherical charge modelling needs fewer parameters to describe the molecular electron density and can be more easily incorporated in molecular modelling software for the computation of electrostatic properties. The construction method of the database is described. In order to analyse to what extent this modelling method can be used to derive meaningful molecular properties, it has been applied to the urea molecule and to biotin/streptavidin, a protein/ligand complex.

  12. Genetic variation, population structure and linkage disequilibrium in Switchgrass with ISSR, SCoT and EST-SSR markers.

    PubMed

    Zhang, Yu; Yan, Haidong; Jiang, Xiaomei; Wang, Xiaoli; Huang, Linkai; Xu, Bin; Zhang, Xinquan; Zhang, Lexin

    2016-01-01

    To evaluate genetic variation, population structure, and the extent of linkage disequilibrium (LD), 134 switchgrass ( Panicum virgatum L.) samples were analyzed with 51 markers, including 16 ISSRs, 20 SCoTs, and 15 EST-SSRs. In this study, a high level of genetic variation was observed in the switchgrass samples and they had an average Nei's gene diversity index (H) of 0.311. A total of 793 bands were obtained, of which 708 (89.28 %) were polymorphic. Using a parameter marker index (MI), the efficiency of the three types of markers (ISSR, SCoT, and EST-SSR) in the study were compared and we found that SCoT had a higher marker efficiency than the other two markers. The 134 switchgrass samples could be divided into two sub-populations based on STRUCTURE, UPGMA clustering, and principal coordinate analyses (PCA), and upland and lowland ecotypes could be separated by UPGMA clustering and PCA analyses. Linkage disequilibrium analysis revealed an average r 2 of 0.035 across all 51 markers, indicating a trend of higher LD in sub-population 2 than that in sub-population 1 ( P  < 0.01). The population structure revealed in this study will guide the design of future association studies using these switchgrass samples.

  13. The effect of the averaged structural and energetic features on the cohesive energy of nanocrystals

    NASA Astrophysics Data System (ADS)

    Ali Safaei

    2010-03-01

    The size dependency of the cohesive energy of nanocrystals is obtained in terms of their averaged structural and energetic properties, which are in direct proportion with their cohesive energies. The significance of the effect of the geometrical shape of nanoparticles on their thermal stability has been discussed. The model has been found to have good prediction for the case of Cu and Al nanoparticles, with sizes in the ranges of 1-22 nm and 2-22 nm, respectively. Defining a new parameter, named as the surface-to-volume energy-contribution ratio, the relative thermal stabilities of different nanoclusters and their different surface-crystalline faces are discussed and compared to the molecular dynamic (MD) simulation results of copper nanoclusters. Finally, based on the size dependency of the cohesive energy, a formula for the size-dependent diffusion coefficient has been presented which includes the structural and energetic effects. Using this formula, the faster-than-expected interdiffusion/alloying of Au(core)-Ag(shell) nanoparticles with the core-shell structure, the Au-core diameter of 20 nm and the Ag-shell thickness of 2.91 nm, has been discussed and the calculated diffusion coefficient has been found to be consistent with its corresponding experimental value.

  14. Lessons in molecular recognition. 2. Assessing and improving cross-docking accuracy.

    PubMed

    Sutherland, Jeffrey J; Nandigam, Ravi K; Erickson, Jon A; Vieth, Michal

    2007-01-01

    Docking methods are used to predict the manner in which a ligand binds to a protein receptor. Many studies have assessed the success rate of programs in self-docking tests, whereby a ligand is docked into the protein structure from which it was extracted. Cross-docking, or using a protein structure from a complex containing a different ligand, provides a more realistic assessment of a docking program's ability to reproduce X-ray results. In this work, cross-docking was performed with CDocker, Fred, and Rocs using multiple X-ray structures for eight proteins (two kinases, one nuclear hormone receptor, one serine protease, two metalloproteases, and two phosphodiesterases). While average cross-docking accuracy is not encouraging, it is shown that using the protein structure from the complex that contains the bound ligand most similar to the docked ligand increases docking accuracy for all methods ("similarity selection"). Identifying the most successful protein conformer ("best selection") and similarity selection substantially reduce the difference between self-docking and average cross-docking accuracy. We identify universal predictors of docking accuracy (i.e., showing consistent behavior across most protein-method combinations), and show that models for predicting docking accuracy built using these parameters can be used to select the most appropriate docking method.

  15. Applications of Multivariate Statistical Techniques for Computer Performance Evaluation.

    DTIC Science & Technology

    1983-12-01

    parameters has on another parameter. VII-f1 *T-. . . . . . . -,z X 71 .7 . V - AFIT/GCS/EE/83D-4 CHAPTER VIII CLUSTER ANALYSIS In data analysis the study...their highest, with bnchmk being 50% greater than the overall average of . 318 seconds and nuprocs being 147% greater than its overall average of 30.8...overall average of . 318 seconds and nuprocs being 147% greater than its overall average of 30.8. These increased values of bnchmk indicate that during

  16. Scalability of transport parameters with pore sizes in isodense disordered media

    NASA Astrophysics Data System (ADS)

    Reginald, S. William; Schmitt, V.; Vallée, R. A. L.

    2014-09-01

    We study light multiple scattering in complex disordered porous materials. High internal phase emulsion-based isodense polystyrene foams are designed. Two types of samples, exhibiting different pore size distributions, are investigated for different slab thicknesses varying from L = 1 \\text{mm} to 10 \\text{mm} . Optical measurements combining steady-state and time-resolved detection are used to characterize the photon transport parameters. Very interestingly, a clear scalability of the transport mean free path \\ellt with the average size of the pores S is observed, featuring a constant velocity of the transport energy in these isodense structures. This study strongly motivates further investigations into the limits of validity of this scalability as the scattering strength of the system increases.

  17. Crack classification in concrete beams using AE parameters

    NASA Astrophysics Data System (ADS)

    Bahari, N. A. A. S.; Shahidan, S.; Abdullah, S. R.; Ali, N.; Zuki, S. S. Mohd; Ibrahim, M. H. W.; Rahim, M. A.

    2017-11-01

    The acoustic emission (AE) technique is an effective tool for the evaluation of crack growth. The aim of this study is to evaluate crack classification in reinforced concrete beams using statistical analysis. AE has been applied for the early monitoring of reinforced concrete structures using AE parameters such as average frequency, rise time, amplitude counts and duration. This experimental study focuses on the utilisation of this method in evaluating reinforced concrete beams. Beam specimens measuring 150 mm × 250 mm × 1200 mm were tested using a three-point load flexural test using Universal Testing Machines (UTM) together with an AE monitoring system. The results indicated that RA value can be used to determine the relationship between tensile crack and shear movement in reinforced concrete beams.

  18. Chemical short-range order and lattice deformations in MgyTi1-yHx thin films probed by hydrogenography

    NASA Astrophysics Data System (ADS)

    Gremaud, R.; Baldi, A.; Gonzalez-Silveira, M.; Dam, B.; Griessen, R.

    2008-04-01

    A multisite lattice gas approach is used to model pressure-optical-transmission isotherms (PTIs) recorded by hydrogenography on MgyTi1-yHx sputtered thin films. The model reproduces the measured PTIs well and allows us to determine the chemical short-range order parameter s . The s values are in good agreement with those determined from extended x-ray absorption fine structure measurements. Additionally, the PTI multisite modeling yields a parameter L that accounts for the local lattice deformations with respect to the average MgyTi1-y lattice given by Vegard’s law. It is thus possible to extract two essential characteristics of a metastable alloy from hydrogenographic data.

  19. The impact of lateral variations in lithospheric thickness on glacial isostatic adjustment in West Antarctica

    NASA Astrophysics Data System (ADS)

    Nield, Grace A.; Whitehouse, Pippa L.; van der Wal, Wouter; Blank, Bas; O'Donnell, John Paul; Stuart, Graham W.

    2018-04-01

    Differences in predictions of Glacial Isostatic Adjustment (GIA) for Antarctica persist due to uncertainties in deglacial history and Earth rheology. The Earth models adopted in many GIA studies are defined by parameters that vary in the radial direction only and represent a global average Earth structure (referred to as 1D Earth models). Over-simplifying actual Earth structure leads to bias in model predictions in regions where Earth parameters differ significantly from the global average, such as West Antarctica. We investigate the impact of lateral variations in lithospheric thickness on GIA in Antarctica by carrying out two experiments that use different rheological approaches to define 3D Earth models that include spatial variations in lithospheric thickness. The first experiment defines an elastic lithosphere with spatial variations in thickness inferred from seismic studies. We compare the results from this 3D model with results derived from a 1D Earth model that has a uniform lithospheric thickness defined as the average of the 3D lithospheric thickness. Irrespective of deglacial history and sub-lithospheric mantle viscosity, we find higher gradients of present-day uplift rates (i.e. higher amplitude and shorter wavelength) in West Antarctica when using the 3D models, due to the thinner-than-1D-average lithosphere prevalent in this region. The second experiment uses seismically-inferred temperature as input to a power-law rheology thereby allowing the lithosphere to have a viscosity structure. Modelling the lithosphere with a power-law rheology results in behaviour that is equivalent to a thinner-lithosphere model, and it leads to higher amplitude and shorter wavelength deformation compared with the first experiment. We conclude that neglecting spatial variations in lithospheric thickness in GIA models will result in predictions of peak uplift and subsidence that are biased low in West Antarctica. This has important implications for ice-sheet modelling studies as the steeper gradients of uplift predicted from the more realistic 3D model may promote stability in marine-grounded regions of West Antarctica. Including lateral variations in lithospheric thickness, at least to the level of considering West and East Antarctica separately, is important for capturing short wavelength deformation and it has the potential to provide a better fit to GPS observations as well as an improved GIA correction for GRACE data.

  20. A Full Dynamic Compound Inverse Method for output-only element-level system identification and input estimation from earthquake response signals

    NASA Astrophysics Data System (ADS)

    Pioldi, Fabio; Rizzi, Egidio

    2016-08-01

    This paper proposes a new output-only element-level system identification and input estimation technique, towards the simultaneous identification of modal parameters, input excitation time history and structural features at the element-level by adopting earthquake-induced structural response signals. The method, named Full Dynamic Compound Inverse Method (FDCIM), releases strong assumptions of earlier element-level techniques, by working with a two-stage iterative algorithm. Jointly, a Statistical Average technique, a modification process and a parameter projection strategy are adopted at each stage to achieve stronger convergence for the identified estimates. The proposed method works in a deterministic way and is completely developed in State-Space form. Further, it does not require continuous- to discrete-time transformations and does not depend on initialization conditions. Synthetic earthquake-induced response signals from different shear-type buildings are generated to validate the implemented procedure, also with noise-corrupted cases. The achieved results provide a necessary condition to demonstrate the effectiveness of the proposed identification method.

  1. Prediction of boiling points of organic compounds by QSPR tools.

    PubMed

    Dai, Yi-min; Zhu, Zhi-ping; Cao, Zhong; Zhang, Yue-fei; Zeng, Ju-lan; Li, Xun

    2013-07-01

    The novel electro-negativity topological descriptors of YC, WC were derived from molecular structure by equilibrium electro-negativity of atom and relative bond length of molecule. The quantitative structure-property relationships (QSPR) between descriptors of YC, WC as well as path number parameter P3 and the normal boiling points of 80 alkanes, 65 unsaturated hydrocarbons and 70 alcohols were obtained separately. The high-quality prediction models were evidenced by coefficient of determination (R(2)), the standard error (S), average absolute errors (AAE) and predictive parameters (Qext(2),RCV(2),Rm(2)). According to the regression equations, the influences of the length of carbon backbone, the size, the degree of branching of a molecule and the role of functional groups on the normal boiling point were analyzed. Comparison results with reference models demonstrated that novel topological descriptors based on the equilibrium electro-negativity of atom and the relative bond length were useful molecular descriptors for predicting the normal boiling points of organic compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Asymptotic behavior of solutions of the renormalization group K-epsilon turbulence model

    NASA Technical Reports Server (NTRS)

    Yakhot, A.; Staroselsky, I.; Orszag, S. A.

    1994-01-01

    Presently, the only efficient way to calculate turbulent flows in complex geometries of engineering interest is to use Reynolds-average Navier-Stokes (RANS) equations. As compared to the original Navier-Stokes problem, these RANS equations posses much more complicated nonlinear structure and may exhibit far more complex nonlinear behavior. In certain cases, the asymptotic behavior of such models can be studied analytically which, aside from being an interesting fundamental problem, is important for better understanding of the internal structure of the models as well as to improve their performances. The renormalization group (RNG) K-epsilon turbulence model, derived directly from the incompresible Navier-Stokes equations, is analyzed. It has already been used to calculate a variety of turbulent and transitional flows in complex geometries. For large values of the RNG viscosity parameter, the model may exhibit singular behavior. In the form of the RNG K-epsilon model that avoids the use of explicit wall functions, a = 1, so the RNG viscosity parameter must be smaller than 23.62 to avoid singularities.

  3. Supercritical flow characteristics at abrupt expansion structure

    NASA Astrophysics Data System (ADS)

    Lim, Jia Jun; Puay, How Tion; Zakaria, Nor Azazi

    2017-10-01

    When dealing with the design of a hydraulic structure, lateral expansion is often necessary for flow emerging at high velocity served as a cross-sectional transition. If the abrupt expansion structure is made to diverge rapidly, it will cause the major part of the flow fail to follow the boundaries. If the transition is too gradual, it will result in a waste of structural material. A preliminary study on the flow structure near the expansion and its relationship with flow parameter is carried out in this study. A two-dimensional depth-averaged model is developed to simulate the supercritical flow at the abrupt expansion structure. Constrained Interpolation Profile (CIP) scheme (which is of third order accuracy) is adopted in the numerical model. Results show that the flow structure and flow characteristics at the abrupt expansion can be reproduced numerically. The validation of numerical result is done against analytical studies. The result from numerical simulation showed good agreement with the analytical solution.

  4. Molecular structure of quinoa starch.

    PubMed

    Li, Guantian; Zhu, Fan

    2017-02-20

    Quinoa starch has very small granules with unique properties. However, the molecular structure of quinoa starch remains largely unknown. In this study, composition and amylopectin molecular structure of 9 quinoa starch samples were characterised by chromatographic techniques. In particular, the amylopectin internal molecular structure, represented by φ, β-limit dextrins (LDs), was explored. Great variations in the composition and molecular structures were recorded among samples. Compared with other amylopectins, quinoa amylopectin showed a high ratio of short chain to long chains (mean:14.6) and a high percentage of fingerprint A-chains (A fp ) (mean:10.4%). The average chain length, external chain length, and internal chain length of quinoa amylopectin were 16.6, 10.6, and 5.00 glucosyl residues, respectively. Pearson correlation and principal component analysis revealed some inherent correlations among structural parameters and a similarity of different samples. Overall, quinoa amylopectins are structurally similar to that from starches with A-type polymorph such as oat and amaranth starches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Relation between native ensembles and experimental structures of proteins

    PubMed Central

    Best, Robert B.; Lindorff-Larsen, Kresten; DePristo, Mark A.; Vendruscolo, Michele

    2006-01-01

    Different experimental structures of the same protein or of proteins with high sequence similarity contain many small variations. Here we construct ensembles of “high-sequence similarity Protein Data Bank” (HSP) structures and consider the extent to which such ensembles represent the structural heterogeneity of the native state in solution. We find that different NMR measurements probing structure and dynamics of given proteins in solution, including order parameters, scalar couplings, and residual dipolar couplings, are remarkably well reproduced by their respective high-sequence similarity Protein Data Bank ensembles; moreover, we show that the effects of uncertainties in structure determination are insufficient to explain the results. These results highlight the importance of accounting for native-state protein dynamics in making comparisons with ensemble-averaged experimental data and suggest that even a modest number of structures of a protein determined under different conditions, or with small variations in sequence, capture a representative subset of the true native-state ensemble. PMID:16829580

  6. Structure-related statistical singularities along protein sequences: a correlation study.

    PubMed

    Colafranceschi, Mauro; Colosimo, Alfredo; Zbilut, Joseph P; Uversky, Vladimir N; Giuliani, Alessandro

    2005-01-01

    A data set composed of 1141 proteins representative of all eukaryotic protein sequences in the Swiss-Prot Protein Knowledge base was coded by seven physicochemical properties of amino acid residues. The resulting numerical profiles were submitted to correlation analysis after the application of a linear (simple mean) and a nonlinear (Recurrence Quantification Analysis, RQA) filter. The main RQA variables, Recurrence and Determinism, were subsequently analyzed by Principal Component Analysis. The RQA descriptors showed that (i) within protein sequences is embedded specific information neither present in the codes nor in the amino acid composition and (ii) the most sensitive code for detecting ordered recurrent (deterministic) patterns of residues in protein sequences is the Miyazawa-Jernigan hydrophobicity scale. The most deterministic proteins in terms of autocorrelation properties of primary structures were found (i) to be involved in protein-protein and protein-DNA interactions and (ii) to display a significantly higher proportion of structural disorder with respect to the average data set. A study of the scaling behavior of the average determinism with the setting parameters of RQA (embedding dimension and radius) allows for the identification of patterns of minimal length (six residues) as possible markers of zones specifically prone to inter- and intramolecular interactions.

  7. Effect of Fin Porosity on Wake Geometry for Flapping Fins at Intermediate Reynolds Number

    NASA Astrophysics Data System (ADS)

    Chen, J.; Xia, B.; Krueger, P. S.

    2017-11-01

    Low aspect ratio flapping fins generate interesting 3-dimensional flow structures as has been observed, for example, in studies of fish swimming. As the Reynolds number is reduced, the exact geometry of the fin is less important and even certain amounts of porosity might be allowed without significantly affecting propulsive performance. These effects are investigated experimentally using flapping rectangular fins of aspect ratio 2 at Reynolds numbers in the range 100 - 1000. The experiments were conducted using a water tunnel to supply the free stream flow and the fin flapping parameters were set to provide a Strouhal number (based on amplitude of the fin tip motion) in the range 0.15 - 0.35. Phase-averaged measurements were made of the 3-dimensional, volumetric flow field, allowing visualization of the typical shed vortex structure behind the fin and calculation of time averaged thrust and propulsive efficiency. Results comparing the flow structure in the fin wake and the resulting propulsive performance will be presented for several fins with different planform porosities where the porosities are set using arrays of holes in the fins. This material is based on the work supported by the National Science Foundation under Grant No. 1510707.

  8. First principles predictions of electronic and elastic properties of BaPb2As2 in the ThCr2Si2-type structure

    NASA Astrophysics Data System (ADS)

    Bourourou, Y.; Amari, S.; Yahiaoui, I. E.; Bouhafs, B.

    2018-01-01

    A first-principles approach is used to predicts the electronic and elastic properties of BaPb2As2 superconductor compound, using full-potential linearized augmented plane wave plus local orbitals (FP-L/APW+lo) scheme within the local density approximation LDA. The calculated equilibrium structural parameter a agree well with the experiment while the c/a ratio is far away from the experimental result. The band structure, density of states, together with the charge density and chemical bonding are discussed. The calculated elastic constants for our compound indicate that it is mechanically stable at ambient pressure. Polycrystalline elastic moduli (Young's, Bulk, shear Modulus and the Poisson's ratio) were calculated according to the Voigte-Reusse-Hill (VRH) average.

  9. Stress release structures for actuator beams with a stress gradient

    NASA Astrophysics Data System (ADS)

    Klaasse, G.; Puers, R.; Tilmans, H. A. C.

    2007-10-01

    Stress release structures are introduced in fixed-fixed beams or membranes for releasing average stress. The influence of a stress gradient on the initial deformation of a fixed-fixed beam with stress release structures is studied in this paper. The objective is to obtain actuator beams that are insensitive to both the average stress and the stress gradient. The target application for the actuator beam in this study is a surface micromachined variable capacitor with a fixed electrode at the center of the beam. An analytical one-dimensional model is derived which predicts the initial deflection of a fixed-fixed beam with one stress release structure at any location and with two stress release structures, placed symmetrically with respect to the center of the beam at any location. The initial center deflection of the beam with one stress release structure was found from the analytical modeling to be zero for a specific set of parameters, but a negative deflection is always present for this specific configuration, leading to beams that touch the substrate at undesired positions, which implies non-functional devices. The configuration with the two symmetrically placed stress release structures can have zero initial center deflection, according to the analytical model, when the stress release structures are placed at a distance of a quarter of the beam length from the anchor points. Finite-element simulations are performed for both configurations and validate the theory. Deviations from the assumed model result in small initial center deflections, but can be compensated for by a little shift of the stress release structures. Experiments are performed for less ideal configurations with two stress release structures where they are shaped as round meanders. These structures do not fully release the stress and the center deflection therefore depends on the average stress to some extent, as demonstrated by finite element simulations. However, the location can be chosen such that there is an initial center deflection that is close to zero. These experiments are, therefore, in qualitative agreement with the analytical model.

  10. Energy Efficient and Stable Weight Based Clustering for Mobile Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Bouk, Safdar H.; Sasase, Iwao

    Recently several weighted clustering algorithms have been proposed, however, to the best of our knowledge; there is none that propagates weights to other nodes without weight message for leader election, normalizes node parameters and considers neighboring node parameters to calculate node weights. In this paper, we propose an Energy Efficient and Stable Weight Based Clustering (EE-SWBC) algorithm that elects cluster heads without sending any additional weight message. It propagates node parameters to its neighbors through neighbor discovery message (HELLO Message) and stores these parameters in neighborhood list. Each node normalizes parameters and efficiently calculates its own weight and the weights of neighboring nodes from that neighborhood table using Grey Decision Method (GDM). GDM finds the ideal solution (best node parameters in neighborhood list) and calculates node weights in comparison to the ideal solution. The node(s) with maximum weight (parameters closer to the ideal solution) are elected as cluster heads. In result, EE-SWBC fairly selects potential nodes with parameters closer to ideal solution with less overhead. Different performance metrics of EE-SWBC and Distributed Weighted Clustering Algorithm (DWCA) are compared through simulations. The simulation results show that EE-SWBC maintains fewer average numbers of stable clusters with minimum overhead, less energy consumption and fewer changes in cluster structure within network compared to DWCA.

  11. Coupling CP-MD simulations and X-ray absorption spectroscopy: exploring the structure of oxaliplatin in aqueous solution.

    PubMed

    Beret, Elizabeth C; Provost, Karine; Müller, Diane; Marcos, Enrique Sánchez

    2009-09-10

    A combined experimental-theoretical approach applying X-ray absorption spectroscopy and ab initio molecular dynamics (CP-MD) simulations is used to get insight into the structural determination of oxaliplatin, a third-generation anticancer drug of the cisplatin family, in aqueous solution. Experimental Pt L(III)-edge EXAFS and XANES spectra of oxaliplatin in water are compared with theoretical XAS spectra. The latter are obtained as statistically averaged spectra computed for a set of selected snapshots extracted from the MD trajectory of ethyldiamineoxalatoplatinum(II) (EDO-Pt) in liquid water. This compound is a simplified structure of oxaliplatin, where the outer part of the cyclohexane ring contained in the cyclohexanediamine ligand of oxaliplatin has been removed. We show that EDO-Pt is an appropriate model to simulate the spectroscopical properties of oxaliplatin given that the cyclohexane ring does not generate particular features in neither the EXAFS nor the XANES spectra. The computation of average EXAFS spectra using structures from the MD simulation in which atoms are selected according to different cutoff radii around the Pt center allows the assignment of spectral features to particular structural motifs, both in k and R-spaces. The outer oxygen atoms of the oxalate ligand (R(Pt-O(II)) = 3.97 +/- 0.03 A) are responsible for a well-defined hump at around 6.5 A(-1) in the k(2)-weighted EXAFS spectrum. The conventional EXAFS analysis data procedure is reexamined by its application to the simulated average EXAFS spectra. The structural parameters resulting from the fit may then be compared with those obtained from the simulation, providing an estimation of the methodological error associated with the global fitting procedure. A thorough discussion on the synergy between the experimental and theoretical XAS approaches is presented, and evidence for the detection of a slight hydration structure around the Pt complex is shown, leading to the suggestion of a new challenge to experimental XAS measurements.

  12. Improving consensus structure by eliminating averaging artifacts

    PubMed Central

    KC, Dukka B

    2009-01-01

    Background Common structural biology methods (i.e., NMR and molecular dynamics) often produce ensembles of molecular structures. Consequently, averaging of 3D coordinates of molecular structures (proteins and RNA) is a frequent approach to obtain a consensus structure that is representative of the ensemble. However, when the structures are averaged, artifacts can result in unrealistic local geometries, including unphysical bond lengths and angles. Results Herein, we describe a method to derive representative structures while limiting the number of artifacts. Our approach is based on a Monte Carlo simulation technique that drives a starting structure (an extended or a 'close-by' structure) towards the 'averaged structure' using a harmonic pseudo energy function. To assess the performance of the algorithm, we applied our approach to Cα models of 1364 proteins generated by the TASSER structure prediction algorithm. The average RMSD of the refined model from the native structure for the set becomes worse by a mere 0.08 Å compared to the average RMSD of the averaged structures from the native structure (3.28 Å for refined structures and 3.36 A for the averaged structures). However, the percentage of atoms involved in clashes is greatly reduced (from 63% to 1%); in fact, the majority of the refined proteins had zero clashes. Moreover, a small number (38) of refined structures resulted in lower RMSD to the native protein versus the averaged structure. Finally, compared to PULCHRA [1], our approach produces representative structure of similar RMSD quality, but with much fewer clashes. Conclusion The benchmarking results demonstrate that our approach for removing averaging artifacts can be very beneficial for the structural biology community. Furthermore, the same approach can be applied to almost any problem where averaging of 3D coordinates is performed. Namely, structure averaging is also commonly performed in RNA secondary prediction [2], which could also benefit from our approach. PMID:19267905

  13. Exact Results for the Nonergodicity of d -Dimensional Generalized Lévy Walks

    NASA Astrophysics Data System (ADS)

    Albers, Tony; Radons, Günter

    2018-03-01

    We provide analytical results for the ensemble-averaged and time-averaged squared displacement, and the randomness of the latter, in the full two-dimensional parameter space of the d -dimensional generalized Lévy walk introduced by Shlesinger et al. [Phys. Rev. Lett. 58, 1100 (1987), 10.1103/PhysRevLett.58.1100]. In certain regions of the parameter plane, we obtain surprising results such as the divergence of the mean-squared displacements, the divergence of the ergodicity breaking parameter despite a finite mean-squared displacement, and subdiffusion which appears superdiffusive when one only considers time averages.

  14. Three Least-Squares Minimization Approaches to Interpret Gravity Data Due to Dipping Faults

    NASA Astrophysics Data System (ADS)

    Abdelrahman, E. M.; Essa, K. S.

    2015-02-01

    We have developed three different least-squares minimization approaches to determine, successively, the depth, dip angle, and amplitude coefficient related to the thickness and density contrast of a buried dipping fault from first moving average residual gravity anomalies. By defining the zero-anomaly distance and the anomaly value at the origin of the moving average residual profile, the problem of depth determination is transformed into a constrained nonlinear gravity inversion. After estimating the depth of the fault, the dip angle is estimated by solving a nonlinear inverse problem. Finally, after estimating the depth and dip angle, the amplitude coefficient is determined using a linear equation. This method can be applied to residuals as well as to measured gravity data because it uses the moving average residual gravity anomalies to estimate the model parameters of the faulted structure. The proposed method was tested on noise-corrupted synthetic and real gravity data. In the case of the synthetic data, good results are obtained when errors are given in the zero-anomaly distance and the anomaly value at the origin, and even when the origin is determined approximately. In the case of practical data (Bouguer anomaly over Gazal fault, south Aswan, Egypt), the fault parameters obtained are in good agreement with the actual ones and with those given in the published literature.

  15. Entangled state teleportation through a couple of quantum channels composed of XXZ dimers in an Ising- XXZ diamond chain

    NASA Astrophysics Data System (ADS)

    Rojas, M.; de Souza, S. M.; Rojas, Onofre

    2017-02-01

    The quantum teleportation plays an important role in quantum information process, in this sense, the quantum entanglement properties involving an infinite chain structure is quite remarkable because real materials could be well represented by an infinite chain. We study the teleportation of an entangled state through a couple of quantum channels, composed by Heisenberg dimers in an infinite Ising-Heisenberg diamond chain, the couple of chains are considered sufficiently far away from each other to be ignored the any interaction between them. To teleporting a couple of qubits through the quantum channel, we need to find the average density operator for Heisenberg spin dimers, which will be used as quantum channels. Assuming the input state as a pure state, we can apply the concept of fidelity as a useful measurement of teleportation performance of a quantum channel. Using the standard teleportation protocol, we have derived an analytical expression for the output concurrence, fidelity, and average fidelity. We study in detail the effects of coupling parameters, external magnetic field and temperature dependence of quantum teleportation. Finally, we explore the relations between entanglement of the quantum channel, the output entanglement and the average fidelity of the system. Through a kind of phase diagram as a function of Ising-Heisenberg diamond chain model parameters, we illustrate where the quantum teleportation will succeed and a region where the quantum teleportation could fail.

  16. Error analysis of filtering operations in pixel-duplicated images of diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Mehrubeoglu, Mehrube; McLauchlan, Lifford

    2010-08-01

    In this paper, diabetic retinopathy is chosen for a sample target image to demonstrate the effectiveness of image enlargement through pixel duplication in identifying regions of interest. Pixel duplication is presented as a simpler alternative to data interpolation techniques for detecting small structures in the images. A comparative analysis is performed on different image processing schemes applied to both original and pixel-duplicated images. Structures of interest are detected and and classification parameters optimized for minimum false positive detection in the original and enlarged retinal pictures. The error analysis demonstrates the advantages as well as shortcomings of pixel duplication in image enhancement when spatial averaging operations (smoothing filters) are also applied.

  17. Al2O3-ZrO2 Finely Structured Multilayer Architectures from Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Tingaud, Olivier; Montavon, Ghislain; Denoirjean, Alain; Coudert, Jean-François; Rat, Vincent; Fauchais, Pierre

    2010-01-01

    Suspension plasma spraying (SPS) is an alternative to conventional atmospheric plasma spraying (APS) aiming at manufacturing thinner layers (i.e., 10-100 μm) due to the specific size of the feedstock particles, from a few tens of nanometers to a few micrometers. The staking of lamellae and particles, which present a diameter ranging from 0.1 to 2.0 μm and an average thickness from 20 to 300 nm, permits to manufacture finely structured layers. Moreover, it appears as a versatile process able to manufacture different coating architectures according to the operating parameters (suspension properties, injection configuration, plasma properties, spray distance, torch scan velocity, scanning step, etc.). However, the different parameters controlling the properties of the coating, and their interdependences, are not yet fully identified. Thus, the aim of this paper is, on the one hand, to better understand the influence of operating parameters on the coating manufacturing mechanisms (in particular, the plasma gas mixture effect) and, on the other hand, to produce Al2O3-ZrO2 finely structured layers with large varieties of architectures. For this purpose, a simple theoretical model was used to describe the plasma torch operating conditions at the nozzle exit, based on experimental data (mass enthalpy, arc current intensity, thermophysical properties of plasma forming gases, etc.) and the influences of the spray parameters were determined by mean of the study of sizes and shapes of spray beads. The results enabled then to reach a better understanding of involved phenomena and their interactions on the final coating architectures permitting to manufacture several types of microstructures.

  18. How Many Conformations Need To Be Sampled To Obtain Converged QM/MM Energies? The Curse of Exponential Averaging.

    PubMed

    Ryde, Ulf

    2017-11-14

    Combined quantum mechanical and molecular mechanical (QM/MM) calculations is a popular approach to study enzymatic reactions. They are often based on a set of minimized structures obtained on snapshots from a molecular dynamics simulation to include some dynamics of the enzyme. It has been much discussed how the individual energies should be combined to obtain a final estimate of the energy, but the current consensus seems to be to use an exponential average. Then, the question is how many snapshots are needed to reach a reliable estimate of the energy. In this paper, I show that the question can be easily be answered if it is assumed that the energies follow a Gaussian distribution. Then, the outcome can be simulated based on a single parameter, σ, the standard deviation of the QM/MM energies from the various snapshots, and the number of required snapshots can be estimated once the desired accuracy and confidence of the result has been specified. Results for various parameters are presented, and it is shown that many more snapshots are required than is normally assumed. The number can be reduced by employing a cumulant approximation to second order. It is shown that most convergence criteria work poorly, owing to the very bad conditioning of the exponential average when σ is large (more than ∼7 kJ/mol), because the energies that contribute most to the exponential average have a very low probability. On the other hand, σ serves as an excellent convergence criterion.

  19. Underexpanded Screeching Jets From Circular, Rectangular, and Elliptic Nozzles

    NASA Technical Reports Server (NTRS)

    Panda, J.; Raman, G.; Zaman, K. B. M. Q.

    2004-01-01

    The screech frequency and amplitude, the shock spacing, the hydrodynamic-acoustic standing wave spacing, and the convective velocity of large organized structures are measured in the nominal Mach number range of 1.1 less than or = Mj less that or = l0.9 for supersonic, underexpanded jets exhausting from a circular, a rectangular and an elliptic nozzle. This provides a carefully measured data set useful in comparing the importance of various physical parameters in the screech generation process. The hydrodynamic-acoustic standing wave is formed between the potential pressure field of large turbulent structures and the acoustic pressure field of the screech sound. It has been demonstrated earlier that in the currently available screech frequency prediction models replacement of the shock spacing by the standing wave spacing provides an exact expression. In view of this newly found evidence, a comparison is made between the average standing wavelength and the average shock spacing. It is found that there exists a small, yet important, difference, which is dependent on the azimuthal screech mode. For example, in the flapping modes of circular, rectangular, and elliptic jets, the standing wavelength is slightly longer than the shock spacing, while for the helical screech mode in a circular jet the opposite is true. This difference accounts for the departure of the existing models from predicting the exact screech frequency. Another important parameter, necessary in screech prediction, is the convective velocity of the large organized structures. It is demonstrated that the presence of the hydrodynamic-acoustic standing wave, even inside the jet shear layer, becomes a significant source of error in the convective velocity data obtained using the conventional methods. However, a new relationship, using the standing wavelength and screech frequency is shown to provide more accurate results.

  20. Preliminary design study of a regenerative life support system information management and display system

    NASA Technical Reports Server (NTRS)

    Parker, C. D.; Tommerdahl, J. B.

    1972-01-01

    The instrumentation requirements for a regenerative life support systems were studied to provide the earliest possible indication of a malfunction that will permit degradation of the environment. Four categories of parameters were investigated: environmental parameters that directly and immediately influence the health and safety of the cabin crew; subsystems' inputs to the cabin that directly maintain the cabin environmental parameters; indications for maintenance or repair; and parameters useful as diagnostic indicators. A data averager concept is introduced which provides a moving average of parameter values that is not influenced by spurious changes, and is convenient for detecting parameter rates of change. A system is included to provide alarms at preselected parameter levels.

  1. On the structural properties of small-world networks with range-limited shortcut links

    NASA Astrophysics Data System (ADS)

    Jia, Tao; Kulkarni, Rahul V.

    2013-12-01

    We explore a new variant of Small-World Networks (SWNs), in which an additional parameter (r) sets the length scale over which shortcuts are uniformly distributed. When r=0 we have an ordered network, whereas r=1 corresponds to the original Watts-Strogatz SWN model. These limited range SWNs have a similar degree distribution and scaling properties as the original SWN model. We observe the small-world phenomenon for r≪1, indicating that global shortcuts are not necessary for the small-world effect. For limited range SWNs, the average path length changes nonmonotonically with system size, whereas for the original SWN model it increases monotonically. We propose an expression for the average path length for limited range SWNs based on numerical simulations and analytical approximations.

  2. Cooperation of a Dissatisfied Adaptive Prisoner's Dilemma in Spatial Structures

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Li, Yao-Sheng; Du, Peng; Xu, Chen

    2013-10-01

    We study the cooperative behavior of a dissatisfied adaptive prisoner's dilemma via a pair updating rule. We compare two kinds of relationship among the competing agents, one is the well-mixed population and the other is the two-dimensional square lattice. It is found that the cooperation emerges in both the cases and the frequency of cooperation is enhanced in the square lattice. Though it is impossible for the cooperators to have a higher average payoff than that of the defectors in the well-mixed case, the cooperators in the spatial square lattice could have higher average payoffs in certain regions of the game parameters. We theoretically analyze the well-mixed case exactly and the square lattice by pair approximation. The theoretic results are in agreement with the simulation data.

  3. Dynamical and Radiative Properties of X-Ray Pulsar Accretion Columns: Phase-averaged Spectra

    NASA Astrophysics Data System (ADS)

    West, Brent F.; Wolfram, Kenneth D.; Becker, Peter A.

    2017-02-01

    The availability of the unprecedented spectral resolution provided by modern X-ray observatories is opening up new areas for study involving the coupled formation of the continuum emission and the cyclotron absorption features in accretion-powered X-ray pulsar spectra. Previous research focusing on the dynamics and the associated formation of the observed spectra has largely been confined to the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface, while the dynamical effect of gas pressure is ignored. In a companion paper, we have presented a detailed analysis of the hydrodynamic and thermodynamic structure of the accretion column obtained using a new self-consistent model that includes the effects of both gas and radiation pressures. In this paper, we explore the formation of the associated X-ray spectra using a rigorous photon transport equation that is consistent with the hydrodynamic and thermodynamic structure of the column. We use the new model to obtain phase-averaged spectra and partially occulted spectra for Her X-1, Cen X-3, and LMC X-4. We also use the new model to constrain the emission geometry, and compare the resulting parameters with those obtained using previously published models. Our model sheds new light on the structure of the column, the relationship between the ionized gas and the photons, the competition between diffusive and advective transport, and the magnitude of the energy-averaged cyclotron scattering cross-section.

  4. Dynamical and Radiative Properties of X-Ray Pulsar Accretion Columns: Phase-averaged Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Brent F.; Wolfram, Kenneth D.; Becker, Peter A., E-mail: bwest@usna.edu, E-mail: kswolfram@gmail.com, E-mail: pbecker@gmu.edu

    The availability of the unprecedented spectral resolution provided by modern X-ray observatories is opening up new areas for study involving the coupled formation of the continuum emission and the cyclotron absorption features in accretion-powered X-ray pulsar spectra. Previous research focusing on the dynamics and the associated formation of the observed spectra has largely been confined to the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface, while the dynamical effect of gas pressure is ignored. In a companion paper, we have presented a detailed analysis of the hydrodynamic and thermodynamicmore » structure of the accretion column obtained using a new self-consistent model that includes the effects of both gas and radiation pressures. In this paper, we explore the formation of the associated X-ray spectra using a rigorous photon transport equation that is consistent with the hydrodynamic and thermodynamic structure of the column. We use the new model to obtain phase-averaged spectra and partially occulted spectra for Her X-1, Cen X-3, and LMC X-4. We also use the new model to constrain the emission geometry, and compare the resulting parameters with those obtained using previously published models. Our model sheds new light on the structure of the column, the relationship between the ionized gas and the photons, the competition between diffusive and advective transport, and the magnitude of the energy-averaged cyclotron scattering cross-section.« less

  5. DRG benchmarking: analysis of service structures and -differences in dermatology departments.

    PubMed

    Fürstenberg, Torsten; Gierling, Patrick; Irps, Sebastian; Gollnick, Harald; Kaufmann, Roland; Stadler, Rudolf; Rompel, Rainer; Hensen, Peter

    2014-07-01

    In the context of DRG-based hospital funding, the analysis of services provided in dermatologic inpatient care is highly relevant. We analyzed and compared clinical service structures and varieties in dermatologic hospitals through a benchmarking technique. For this multicenter cross-sectional study, routine data from 46 German dermatologic clinics and departments were collected, processed, and analyzed. In total, 95 257 data sets from 2011 were available. The data were grouped according to the G-DRG-system 2013 version. The average length of stay for all cases was 6.3 days (DRG "inliers": 5.7 days), and average patient age was 52 years. In total, 55 % of all cases were grouped to medical, 45 % to surgical DRGs. 71 % of all hospitals provide services within or close to this average value (± 10 %). No association was found between the number of hospital beds and the variety of clinical services provided in our sample. We found huge varieties in several parameters assessing the coding quality. The results reflect the heterogeneous reality in German inpatient dermatology. The varieties in dermatologic service range still depend on patient-related factors as well as infrastructural conditions and the resources available at each site. © 2014 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  6. Fast deuterium fractionation in magnetized and turbulent filaments

    NASA Astrophysics Data System (ADS)

    Körtgen, B.; Bovino, S.; Schleicher, D. R. G.; Stutz, A.; Banerjee, R.; Giannetti, A.; Leurini, S.

    2018-07-01

    Deuterium fractionation is considered as an important process to infer the chemical ages of prestellar cores in filaments. We present here the first magnetohydrodynamical simulations including a chemical network to study deuterium fractionation in magnetized and turbulent filaments, with a line-mass of Mlin = 42 M⊙ pc-1 within a radius of R= 0.1 pc, and their sub-structures. The filaments typically show widespread deuterium fractionation with average values ≳0.01. For individual cores of similar age, we observe the deuteration fraction to increase with time, but also to be independent of their average properties such as density, virial, or mass-to-magnetic flux ratio. We further find a correlation of the deuteration fraction with core mass, average H2 density, and virial parameter only at late evolutionary stages of the filament and attribute this to the lifetime of the individual cores. Specifically, chemically old cores reveal higher deuteration fractions. Within the radial profiles of selected cores, we notice differences in the structure of the deuteration fraction or surface density, which we can attribute to their different turbulent properties. High deuteration fractions of the order of 0.01-0.1 may be reached within approximately 200 kyr, corresponding to two free-fall times, as defined for cylindrical systems, of the filaments.

  7. Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean.

    PubMed

    Jumrani, Kanchan; Bhatia, Virender Singh; Pandey, Govind Prakash

    2017-03-01

    High-temperature stress is a major environmental stress and there are limited studies elucidating its impact on soybean (Glycine max L. Merril.). The objectives of present study were to quantify the effect of high temperature on changes in leaf thickness, number of stomata on adaxial and abaxial leaf surfaces, gas exchange, chlorophyll fluorescence parameters and seed yield in soybean. Twelve soybean genotypes were grown at day/night temperatures of 30/22, 34/24, 38/26 and 42/28 °C with an average temperature of 26, 29, 32 and 35 °C, respectively, under greenhouse conditions. One set was also grown under ambient temperature conditions where crop season average maximum, minimum and mean temperatures were 28.0, 22.4 and 25.2 °C, respectively. Significant negative effect of temperature was observed on specific leaf weight (SLW) and leaf thickness. Rate of photosynthesis, stomatal conductance and water use efficiency declined as the growing temperatures increased; whereas, intercellular CO 2 and transpiration rate were increased. With the increase in temperature chlorophyll fluorescence parameters such as Fv/Fm, qP and PhiPSII declined while there was increase in qN. Number of stomata on both abaxial and adaxial surface of leaf increased significantly with increase in temperatures. The rate of photosynthesis, PhiPSII, qP and SPAD values were positively associated with leaf thickness and SLW. This indicated that reduction in photosynthesis and associated parameters appears to be due to structural changes observed at higher temperatures. The average seed yield was maximum (13.2 g/pl) in plants grown under ambient temperature condition and declined by 8, 14, 51 and 65% as the temperature was increased to 30/22, 34/24, 38/26 and 42/28 °C, respectively.

  8. An impact analysis of forecasting methods and forecasting parameters on bullwhip effect

    NASA Astrophysics Data System (ADS)

    Silitonga, R. Y. H.; Jelly, N.

    2018-04-01

    Bullwhip effect is an increase of variance of demand fluctuation from downstream to upstream of supply chain. Forecasting methods and forecasting parameters were recognized as some factors that affect bullwhip phenomena. To study these factors, we can develop simulations. There are several ways to simulate bullwhip effect in previous studies, such as mathematical equation modelling, information control modelling, computer program, and many more. In this study a spreadsheet program named Bullwhip Explorer was used to simulate bullwhip effect. Several scenarios were developed to show the change in bullwhip effect ratio because of the difference in forecasting methods and forecasting parameters. Forecasting methods used were mean demand, moving average, exponential smoothing, demand signalling, and minimum expected mean squared error. Forecasting parameters were moving average period, smoothing parameter, signalling factor, and safety stock factor. It showed that decreasing moving average period, increasing smoothing parameter, increasing signalling factor can create bigger bullwhip effect ratio. Meanwhile, safety stock factor had no impact to bullwhip effect.

  9. Electron Source based on Superconducting RF

    NASA Astrophysics Data System (ADS)

    Xin, Tianmu

    High-bunch-charge photoemission electron-sources operating in a Continuous Wave (CW) mode can provide high peak current as well as the high average current which are required for many advanced applications of accelerators facilities, for example, electron coolers for hadron beams, electron-ion colliders, and Free-Electron Lasers (FELs). Superconducting Radio Frequency (SRF) has many advantages over other electron-injector technologies, especially when it is working in CW mode as it offers higher repetition rate. An 112 MHz SRF electron photo-injector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for electron cooling experiments. The gun utilizes a Quarter-Wave Resonator (QWR) geometry for a compact structure and improved electron beam dynamics. The detailed RF design of the cavity, fundamental coupler and cathode stalk are presented in this work. A GPU accelerated code was written to improve the speed of simulation of multipacting, an important hurdle the SRF structure has to overcome in various locations. The injector utilizes high Quantum Efficiency (QE) multi-alkali photocathodes (K2CsSb) for generating electrons. The cathode fabrication system and procedure are also included in the thesis. Beam dynamic simulation of the injector was done with the code ASTRA. To find the optimized parameters of the cavities and beam optics, the author wrote a genetic algorithm Python script to search for the best solution in this high-dimensional parameter space. The gun was successfully commissioned and produced world record bunch charge and average current in an SRF photo-injector.

  10. Mapping Alpine Vegetation Location Properties by Dense Matching

    NASA Astrophysics Data System (ADS)

    Niederheiser, Robert; Rutzinger, Martin; Lamprecht, Andrea; Steinbauer, Klaus; Winkler, Manuela; Pauli, Harald

    2016-06-01

    Highly accurate 3D micro topographic mapping in mountain research demands for light equipment and low cost solutions. Recent developments in structure from motion and dense matching techniques provide promising tools for such applications. In the following, the feasibility of terrestrial photogrammetry for mapping topographic location properties of sparsely vegetated areas in selected European mountain regions is investigated. Changes in species composition at alpine vegetation locations are indicators of climate change consequences, such as the pronounced rise of average temperatures in mountains compared to the global average. Better understanding of climate change effects on plants demand for investigations on a micro-topographic scale. We use professional and consumer grade digital single-lens reflex cameras mapping 288 plots each 3 x 3 m on 18 summits in the Alps and Mediterranean Mountains within the GLORIA (GLobal Observation Research Initiative in Alpine environments) network. Image matching tests result in accuracies that are in the order of millimetres in the XY-plane and below 0.5 mm in Z-direction at the second image pyramid level. Reconstructing vegetation proves to be a challenge due to its fine and small structured architecture and its permanent movement by wind during image acquisition, which is omnipresent on mountain summits. The produced 3D point clouds are gridded to 6 mm resolution from which topographic parameters such as slope, aspect and roughness are derived. At a later project stage these parameters will be statistically linked to botanical reference data in order to conclude on relations between specific location properties and species compositions.

  11. Ultra-Thin Dual-Band Polarization-Insensitive and Wide-Angle Perfect Metamaterial Absorber Based on a Single Circular Sector Resonator Structure

    NASA Astrophysics Data System (ADS)

    Luo, Hao; Cheng, Yong Zhi

    2018-01-01

    We present a simple design for an ultra-thin dual-band polarization-insensitive and wide-angle perfect metamaterial absorber (PMMA) based on a single circular sector resonator structure (CSRS). Both simulation and experimental results reveal that two resonance peaks with average absorption above 99% can be achieved. The dual-band PMMA is ultra-thin with total thickness of 0.5 mm, which is

  12. ZnO nanoparticles obtained by ball milling technique: Structural, micro-structure, optical and photo-catalytic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balamurugan, S., E-mail: scandium.chemistry@gmail.com; Joy, Josny; Godwin, M. Anto

    The ZnO nanoparticles were obtained by ball milling of commercial grade ZnO powder at 250 rpm for 20 h and studied their structural, micro-structure, optical and photo-catalytic properties. Due to ball milling significant decrease in lattice parameters and average crystalline size is noticed for the as-milled ZnO nano powder. The HRSEM images of the as-milled powder consist of agglomerated fine spherical nanoparticles in the range of ~10-20 nm. The room temperature PL spectrum of as-milled ZnO nano powder excited under 320 nm reveals two emission bands at ~406 nm (violet emission) and ~639 nm (green emission). Interestingly about 98 % of photo degradation of methylene (MB)more » by the ZnO catalyst is achieved at 100 minutes of solar light irradiation.« less

  13. Calculated photonic structures for infrared emittance control

    NASA Astrophysics Data System (ADS)

    Rung, Andreas; Ribbing, Carl G.

    2002-06-01

    Using an available program package based on the transfer-matrix method, we calculated the photonic band structure for two different structures: a quasi-three-dimensional crystal of square air rods in a high-index matrix and an opal structure of high-index spheres in a matrix of low index, epsilon = 1.5. The high index used is representative of gallium arsenide in the thermal infrared range. The geometric parameters of the rod dimension, sphere radius, and lattice constants were chosen to give total reflectance for normal incidence, i.e., minimum thermal emittance, in either one of the two infrared atmospheric windows. For these four photonic crystals, the bulk reflectance spectra and the wavelength-averaged thermal emittance as a function of crystal thickness were calculated. The results reveal that potentially useful thermal signature suppression is obtained for crystals as thin as 20-50 mum, i.e., comparable with that of a paint layer.

  14. Effects of external magnetic field and magnetic anisotropy on chiral spin structures of square nanodisks investigated with a quantum simulation approach

    NASA Astrophysics Data System (ADS)

    Liu, Zhaosen; Ian, Hou

    2016-04-01

    We employed a quantum simulation approach to investigate the magnetic properties of monolayer square nanodisks with Dzyaloshinsky-Moriya (DM) interaction. The computational program converged very quickly, and generated chiral spin structures on the disk planes with good symmetry. When the DM interaction is sufficiently strong, multi-domain structures appears, their sizes or average distance between each pair of domains can be approximately described by a modified grid theory. We further found that the external magnetic field and uniaxial magnetic anisotropy both normal to the disk plane lead to reductions of the total free energy and total energy of the nanosystems, thus are able to stabilize and/or induce the vortical structures, however, the chirality of the vortex is still determined by the sign of the DM interaction parameter. Moreover, the geometric shape of the nanodisk affects the spin configuration on the disk plane as well.

  15. Diagnostics and structure

    NASA Technical Reports Server (NTRS)

    Vial, J. C.

    1986-01-01

    The structure of prominences and the diagnostic techniques used to evaluate their physical parameters are discussed. These include electron temperature, various densities (n sub p, n sub e, n sub l), ionization degree, velocities, and magnetic field vector. UV and radio measurements have already evidenced the existence of different temperature regions, corresponding to different geometrical locations, e.g., the so called Prominence-Corona (P-C) interface. Velocity measurements are important for considering formation and mass balance of prominences but there are conflicting velocity measurements which have led to the basic question: what structure is actually observed at a given wavelength; what averaging is performed within the projected slit area during the exposure time? In optically thick lines, the question of the formation region of the radiation along the line of sight is also not a trivial one. The same is true for low resolution measurements of the magnetic field. Coupling diagnostics with structure is now a general preoccupation.

  16. Thunder-induced ground motions: 2. Site characterization

    NASA Astrophysics Data System (ADS)

    Lin, Ting-L.; Langston, Charles A.

    2009-04-01

    Thunder-induced ground motion, near-surface refraction, and Rayleigh wave dispersion measurements were used to constrain near-surface velocity structure at an unconsolidated sediment site. We employed near-surface seismic refraction measurements to first define ranges for site structure parameters. Air-coupled and hammer-generated Rayleigh wave dispersion curves were used to further constrain the site structure by a grid search technique. The acoustic-to-seismic coupling is modeled as an incident plane P wave in a fluid half-space impinging into a solid layered half-space. We found that the infrasound-induced ground motions constrained substrate velocities and the average thickness and velocities of the near-surface layer. The addition of higher-frequency near-surface Rayleigh waves produced tighter constraints on the near-surface velocities. This suggests that natural or controlled airborne pressure sources can be used to investigate the near-surface site structures for earthquake shaking hazard studies.

  17. Forecasting impact injuries of unrestrained occupants in railway vehicle passenger compartments.

    PubMed

    Xie, Suchao; Zhou, Hui

    2014-01-01

    In order to predict the injury parameters of the occupants corresponding to different experimental parameters and to determine impact injury indices conveniently and efficiently, a model forecasting occupant impact injury was established in this work. The work was based on finite experimental observation values obtained by numerical simulation. First, the various factors influencing the impact injuries caused by the interaction between unrestrained occupants and the compartment's internal structures were collated and the most vulnerable regions of the occupant's body were analyzed. Then, the forecast model was set up based on a genetic algorithm-back propagation (GA-BP) hybrid algorithm, which unified the individual characteristics of the back propagation-artificial neural network (BP-ANN) model and the genetic algorithm (GA). The model was well suited to studies of occupant impact injuries and allowed multiple-parameter forecasts of the occupant impact injuries to be realized assuming values for various influencing factors. Finally, the forecast results for three types of secondary collision were analyzed using forecasting accuracy evaluation methods. All of the results showed the ideal accuracy of the forecast model. When an occupant faced a table, the relative errors between the predicted and experimental values of the respective injury parameters were kept within ± 6.0 percent and the average relative error (ARE) values did not exceed 3.0 percent. When an occupant faced a seat, the relative errors between the predicted and experimental values of the respective injury parameters were kept within ± 5.2 percent and the ARE values did not exceed 3.1 percent. When the occupant faced another occupant, the relative errors between the predicted and experimental values of the respective injury parameters were kept within ± 6.3 percent and the ARE values did not exceed 3.8 percent. The injury forecast model established in this article reduced repeat experiment times and improved the design efficiency of the internal compartment's structure parameters, and it provided a new way for assessing the safety performance of the interior structural parameters in existing, and newly designed, railway vehicle compartments.

  18. Parameter Search Algorithms for Microwave Radar-Based Breast Imaging: Focal Quality Metrics as Fitness Functions.

    PubMed

    O'Loughlin, Declan; Oliveira, Bárbara L; Elahi, Muhammad Adnan; Glavin, Martin; Jones, Edward; Popović, Milica; O'Halloran, Martin

    2017-12-06

    Inaccurate estimation of average dielectric properties can have a tangible impact on microwave radar-based breast images. Despite this, recent patient imaging studies have used a fixed estimate although this is known to vary from patient to patient. Parameter search algorithms are a promising technique for estimating the average dielectric properties from the reconstructed microwave images themselves without additional hardware. In this work, qualities of accurately reconstructed images are identified from point spread functions. As the qualities of accurately reconstructed microwave images are similar to the qualities of focused microscopic and photographic images, this work proposes the use of focal quality metrics for average dielectric property estimation. The robustness of the parameter search is evaluated using experimental dielectrically heterogeneous phantoms on the three-dimensional volumetric image. Based on a very broad initial estimate of the average dielectric properties, this paper shows how these metrics can be used as suitable fitness functions in parameter search algorithms to reconstruct clear and focused microwave radar images.

  19. CARES/LIFE Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.

    2003-01-01

    This manual describes the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction (CARES/LIFE) computer program. The program calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/or proof test loading. CARES/LIFE is an extension of the CARES (Ceramic Analysis and Reliability Evaluation of Structures) computer program. The program uses results from MSC/NASTRAN, ABAQUS, and ANSYS finite element analysis programs to evaluate component reliability due to inherent surface and/or volume type flaws. CARES/LIFE accounts for the phenomenon of subcritical crack growth (SCG) by utilizing the power law, Paris law, or Walker law. The two-parameter Weibull cumulative distribution function is used to characterize the variation in component strength. The effects of multiaxial stresses are modeled by using either the principle of independent action (PIA), the Weibull normal stress averaging method (NSA), or the Batdorf theory. Inert strength and fatigue parameters are estimated from rupture strength data of naturally flawed specimens loaded in static, dynamic, or cyclic fatigue. The probabilistic time-dependent theories used in CARES/LIFE, along with the input and output for CARES/LIFE, are described. Example problems to demonstrate various features of the program are also included.

  20. A 3D Image Filter for Parameter-Free Segmentation of Macromolecular Structures from Electron Tomograms

    PubMed Central

    Ali, Rubbiya A.; Landsberg, Michael J.; Knauth, Emily; Morgan, Garry P.; Marsh, Brad J.; Hankamer, Ben

    2012-01-01

    3D image reconstruction of large cellular volumes by electron tomography (ET) at high (≤5 nm) resolution can now routinely resolve organellar and compartmental membrane structures, protein coats, cytoskeletal filaments, and macromolecules. However, current image analysis methods for identifying in situ macromolecular structures within the crowded 3D ultrastructural landscape of a cell remain labor-intensive, time-consuming, and prone to user-bias and/or error. This paper demonstrates the development and application of a parameter-free, 3D implementation of the bilateral edge-detection (BLE) algorithm for the rapid and accurate segmentation of cellular tomograms. The performance of the 3D BLE filter has been tested on a range of synthetic and real biological data sets and validated against current leading filters—the pseudo 3D recursive and Canny filters. The performance of the 3D BLE filter was found to be comparable to or better than that of both the 3D recursive and Canny filters while offering the significant advantage that it requires no parameter input or optimisation. Edge widths as little as 2 pixels are reproducibly detected with signal intensity and grey scale values as low as 0.72% above the mean of the background noise. The 3D BLE thus provides an efficient method for the automated segmentation of complex cellular structures across multiple scales for further downstream processing, such as cellular annotation and sub-tomogram averaging, and provides a valuable tool for the accurate and high-throughput identification and annotation of 3D structural complexity at the subcellular level, as well as for mapping the spatial and temporal rearrangement of macromolecular assemblies in situ within cellular tomograms. PMID:22479430

  1. Effects of photosynthetic photon flux density, frequency, duty ratio, and their interactions on net photosynthetic rate of cos lettuce leaves under pulsed light: explanation based on photosynthetic-intermediate pool dynamics.

    PubMed

    Jishi, Tomohiro; Matsuda, Ryo; Fujiwara, Kazuhiro

    2018-06-01

    Square-wave pulsed light is characterized by three parameters, namely average photosynthetic photon flux density (PPFD), pulsed-light frequency, and duty ratio (the ratio of light-period duration to that of the light-dark cycle). In addition, the light-period PPFD is determined by the averaged PPFD and duty ratio. We investigated the effects of these parameters and their interactions on net photosynthetic rate (P n ) of cos lettuce leaves for every combination of parameters. Averaged PPFD values were 0-500 µmol m -2  s -1 . Frequency values were 0.1-1000 Hz. White LED arrays were used as the light source. Every parameter affected P n and interactions between parameters were observed for all combinations. The P n under pulsed light was lower than that measured under continuous light of the same averaged PPFD, and this difference was enhanced with decreasing frequency and increasing light-period PPFD. A mechanistic model was constructed to estimate the amount of stored photosynthetic intermediates over time under pulsed light. The results indicated that all effects of parameters and their interactions on P n were explainable by consideration of the dynamics of accumulation and consumption of photosynthetic intermediates.

  2. Using a Genetic Algorithm to Model Broadband Regional Waveforms for Crustal Structure in the Western United States

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Joydeep; Sheehan, Anne F.; Tiampo, Kristy; Rundle, John

    1999-01-01

    In this study, we analyze regional seismograms to obtain the crustal structure in the eastern Great Basin and western Colorado plateau. Adopting a for- ward-modeling approach, we develop a genetic algorithm (GA) based parameter search technique to constrain the one-dimensional crustal structure in these regions. The data are broadband three-component seismograms recorded at the 1994-95 IRIS PASSCAL Colorado Plateau to Great Basin experiment (CPGB) stations and supplemented by data from U.S. National Seismic Network (USNSN) stations in Utah and Nevada. We use the southwestern Wyoming mine collapse event (M(sub b) = 5.2) that occurred on 3 February 1995 as the seismic source. We model the regional seismograms using a four-layer crustal model with constant layer parameters. Timing of teleseismic receiver functions at CPGB stations are added as an additional constraint in the modeling. GA allows us to efficiently search the model space. A carefully chosen fitness function and a windowing scheme are added to the algorithm to prevent search stagnation. The technique is tested with synthetic data, both with and without random Gaussian noise added to it. Several separate model searches are carried out to estimate the variability of the model parameters. The average Colorado plateau crustal structure is characterized by a 40-km-thick crust with velocity increases at depths of about 10 and 25 km and a fast lower crust while the Great Basin has approximately 35- km-thick crust and a 2.9-km-thick sedimentary layer.

  3. Analysis of the covariance function and aperture averaged fluctuations of irradiance to calculate Cn2

    NASA Astrophysics Data System (ADS)

    Cauble, Galen D.; Wayne, David T.

    2017-09-01

    The growth of optical communication has created a need to correctly characterize the atmospheric channel. Atmospheric turbulence along a given channel can drastically affect optical communication signal quality. One means of characterizing atmospheric turbulence is through measurement of the refractive index structure parameter, Cn2. When calculating Cn2 from the scintillation index, σΙ2,the point aperture scintillation index is required. Direct measurement of the point aperture scintillation index is difficult at long ranges due to the light collecting abilities of small apertures. When aperture size is increased past the atmospheric correlation width, aperture averaging decreases the scintillation index below that of the point aperture scintillation index. While the aperture averaging factor can be calculated from theory, it does not often agree with experimental results. Direct measurement of the aperture averaging factor via the pupil plane irradiance covariance function allows conversion from the aperture averaged scintillation index to the point aperture scintillation index. Using a finite aperture, camera, and detector, the aperture averaged scintillation index and aperture averaging factor are measured in parallel and the point aperture scintillation index is calculated. A new instrument built by SSC Pacific was used to collect scintillation data at the Townes Institute Science and Technology Experimentation Facility (TISTEF). This new instrument's data was then compared to BLS900 data. The results show that direct measurement of the aperture averaging factor is achievable using a camera and matches well with groundtruth instrumentation.

  4. Interplanetary medium data book, appendix

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1977-01-01

    Computer generated listings of hourly average interplanetary plasma and magnetic field parameters are given. Parameters include proton temperature, proton density, bulk speed, an identifier of the source of the plasma data for the hour, average magnetic field magnitude and cartesian components of the magnetic field. Also included are longitude and latitude angles of the vector made up of the average field components, a vector standard deviation, and an identifier of the source of magnetic field data.

  5. Telediagnostic 3D school screening of back curvatures and posture using structured light method - pilot study.

    PubMed

    Glinkowski, Wojciech; Michoński, Jakub; Glinkowska, Bożena; Zukowska, Agnieszka; Sitnik, Robert; Górecki, Andrzej

    2012-01-01

    Several studies consider the school scoliosis screening as controversial. Many authors postulate to improve its clinical effectiveness. Authors assumed that three dimensional telediagnostic surface topography measurements allowing measuring several postural deformity indexes and angles of curvatures in sagittal plane may enhance current practice. The study was designed to determine usefulness of school screening back evaluation performed utilizing the three dimensional telediagnostic measurement system. The measurement module is based on structured light method using "3D Orthoscreen" system. The technique for 3D image acquisition of back shape is based on temporal phase shifting and Gray codes. Measurement data was securely archived for remote access by investigator over the secure Internet connection. Acquired "images" were transferred to Telediagnostic Center for clinical evaluation. Spine parameters and deformation indexes like Posterior Trunk Symmetry Index (POTSI), Deformity in the Axial Plane Index (DAPI), kyphosis and lordosis angle were measured. The preliminary study was performed in 2 selected schools (basic and middle schools). The study was approved by Bioethical Committee. Clouds of points representing back topography of assessed subjects were acquired at schools in March and May 2011 and stored for remote evaluation and analysis. 758 children averagely aged 11.1 years (from 5 to 16), 387 females and 371 males, were examined. Their average body mass was 45.13 kg [16-105; STD 16.4] and average height was 151.43 cm, [110-192; STD 18.3]. The average values of back assessment parameters were as follows: POTSI 15.97% [0-73.4; STD 10.3]; DAPI 0.88% [0-5.9; STD 0.76]; kyphosis angle 10.19° [0-32; STD 5.82]; and lordosis angle 32,82° [0-56; STD 9.86]. Technical and clinical issues of the practical implementation allowed to elaborate preliminary protocol for cohort studies addressed to subject (i.e. parents acceptance of examination of undressed back) and technical issues (i.e. upload data and retrieval, network transfer velocity). Postural telediagnostics was found sufficiently feasible for further implementation of remote, cohort 3D back shape evaluations including school screening. Permanently saved 3D data allow monitoring back surface of the individual subjects.

  6. Effect of Mitral Annular Calcium on Left Ventricular Diastolic Parameters.

    PubMed

    Codolosa, Jose N; Koshkelashvili, Nikoloz; Alnabelsi, Talal; Goykhman, Igor; Romero-Corral, Abel; Pressman, Gregg S

    2016-03-01

    Assessment of left ventricular (LV) diastolic function by Doppler flow imaging and tissue Doppler is an integral part of the echocardiographic examination. Mitral annular calcium (MAC) is frequently encountered on echocardiography. The aim of this study was to assess the impact of MAC, quantitatively measured by computed tomography scan, on echocardiographic LV diastolic parameters. We included 155 patients aged ≥65 years. Computed tomography reconstructions of the mitral annulus were created, and calcium identified and quantified by Agatston technique. Calcium locations were assigned using an overlaid template depicting the annular segments in relation to surrounding anatomic structures. Echocardiographic assessment of diastolic function was performed in standard fashion. Mean age was 77 years; 49% were men; and 43% were black. Patients with MAC had lower septal e' (p = 0.003), lateral e' (p = 0.04), and average e' (p = 0.01) compared with those without MAC. They also had a higher E-wave velocity (p = 0.01) and E/e' ratio (p <0.001). When evaluated by severity of MAC, and after adjustment for multiple clinical factors, there was a graded (inverse) relation between MAC severity and septal e' (p = 0.01), lateral e' (p = 0.01), and average e' (p = 0.01). In conclusion, LV diastolic parameters, as measured by Doppler echocardiography, are altered in the presence of MAC. This could be due to direct effects of MAC on annular function or might reflect truly reduced diastolic function. Interpretation of diastolic parameters in patients with MAC should be performed with caution. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia

    PubMed Central

    Shah, Rhythm R.; Davis, Todd P.; Glover, Amanda L.; Nikles, David E.; Brazel, Christopher S.

    2015-01-01

    Heating of nanoparticles (NPs) using an AC magnetic field depends on several factors, and optimization of these parameters can improve the efficiency of heat generation for effective cancer therapy while administering a low NP treatment dose. This study investigated magnetic field strength and frequency, NP size, NP concentration, and solution viscosity as important parameters that impact the heating efficiency of iron oxide NPs with magnetite (Fe3O4) and maghemite (γ-Fe2O3) crystal structures. Heating efficiencies were determined for each experimental setting, with specific absorption rates (SARs) ranging from 3.7 to 325.9 W/g Fe. Magnetic heating was conducted on iron oxide NPs synthesized in our laboratories (with average core sizes of 8, 11, 13, and 18 nm), as well as commercially-available iron oxides (with average core sizes of 8, 9, and 16 nm). The experimental magnetic coil system made it possible to isolate the effect of magnetic field parameters and independently study the effect on heat generation. The highest SAR values were found for the 18 nm synthesized particles and the maghemite nanopowder. Magnetic field strengths were applied in the range of 15.1 to 47.7 kA/m, with field frequencies ranging from 123 to 430 kHz. The best heating was observed for the highest field strengths and frequencies tested, with results following trends predicted by the Rosensweig equation. An increase in solution viscosity led to lower heating rates in nanoparticle solutions, which can have significant implications for the application of magnetic fluid hyperthermia in vivo. PMID:25960599

  8. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Shah, Rhythm R.; Davis, Todd P.; Glover, Amanda L.; Nikles, David E.; Brazel, Christopher S.

    2015-08-01

    Heating of nanoparticles (NPs) using an AC magnetic field depends on several factors, and optimization of these parameters can improve the efficiency of heat generation for effective cancer therapy while administering a low NP treatment dose. This study investigated magnetic field strength and frequency, NP size, NP concentration, and solution viscosity as important parameters that impact the heating efficiency of iron oxide NPs with magnetite (Fe3O4) and maghemite (γ-Fe2O3) crystal structures. Heating efficiencies were determined for each experimental setting, with specific absorption rates (SARs) ranging from 3.7 to 325.9 W/g Fe. Magnetic heating was conducted on iron oxide NPs synthesized in our laboratories (with average core sizes of 8, 11, 13, and 18 nm), as well as commercially-available iron oxides (with average core sizes of 8, 9, and 16 nm). The experimental magnetic coil system made it possible to isolate the effect of magnetic field parameters and independently study the effect on heat generation. The highest SAR values were found for the 18 nm synthesized particles and the maghemite nanopowder. Magnetic field strengths were applied in the range of 15.1-47.7 kA/m, with field frequencies ranging from 123 to 430 kHz. The best heating was observed for the highest field strengths and frequencies tested, with results following trends predicted by the Rosensweig equation. An increase in solution viscosity led to lower heating rates in nanoparticle solutions, which can have significant implications for the application of magnetic fluid hyperthermia in vivo.

  9. Monte Carlo study of one-dimensional confined fluids with Gay-Berne intermolecular potential

    NASA Astrophysics Data System (ADS)

    Moradi, M.; Hashemi, S.

    2011-11-01

    The thermodynamic quantities of a one dimensional system of particles with Gay-Berne model potential confined between walls have been obtained by means of Monte Carlo computer simulations. For a number of temperatures, the systems were considered and their density profiles, order parameter, pressure, configurational temperature and average potential energy per particle are reported. The results show that by decreasing the temperature, the soft particles become more ordered and they align to the walls and also they don't show any tendency to be near the walls at very low temperatures. We have also changed the structure of the walls by embedding soft ellipses in them, this change increases the total density near the wall whereas, increasing or decreasing the order parameter depend on the angle of embedded ellipses.

  10. Dependence of average inter-particle distance upon the temperature of neutrals in dusty plasma crystals

    NASA Astrophysics Data System (ADS)

    Nikolaev, V. S.; Timofeev, A. V.

    2018-01-01

    It is often suggested that inter-particle distance in stable dusty plasma structures decreases with cooling as a square root of neutral gas temperature. Deviations from this dependence (up to the increase at cryogenic temperatures) found in the experimental results for the pressures range 0.1-8.0 mbar and for the currents range 0.1-1.0 mA are given. Inter-particle distance dependences on the charge of particles, parameter of the trap and the screening length in surrounding plasma are obtained for different conditions from molecular dynamics simulations. They are well approximated by power functions in the mentioned range of parameters. It is found that under certain assumptions thermophoretical force is responsible for inter-particle distance increase at cryogenic temperatures.

  11. Pattern similarity study of functional sites in protein sequences: lysozymes and cystatins

    PubMed Central

    Nakai, Shuryo; Li-Chan, Eunice CY; Dou, Jinglie

    2005-01-01

    Background Although it is generally agreed that topography is more conserved than sequences, proteins sharing the same fold can have different functions, while there are protein families with low sequence similarity. An alternative method for profile analysis of characteristic conserved positions of the motifs within the 3D structures may be needed for functional annotation of protein sequences. Using the approach of quantitative structure-activity relationships (QSAR), we have proposed a new algorithm for postulating functional mechanisms on the basis of pattern similarity and average of property values of side-chains in segments within sequences. This approach was used to search for functional sites of proteins belonging to the lysozyme and cystatin families. Results Hydrophobicity and β-turn propensity of reference segments with 3–7 residues were used for the homology similarity search (HSS) for active sites. Hydrogen bonding was used as the side-chain property for searching the binding sites of lysozymes. The profiles of similarity constants and average values of these parameters as functions of their positions in the sequences could identify both active and substrate binding sites of the lysozyme of Streptomyces coelicolor, which has been reported as a new fold enzyme (Cellosyl). The same approach was successfully applied to cystatins, especially for postulating the mechanisms of amyloidosis of human cystatin C as well as human lysozyme. Conclusion Pattern similarity and average index values of structure-related properties of side chains in short segments of three residues or longer were, for the first time, successfully applied for predicting functional sites in sequences. This new approach may be applicable to studying functional sites in un-annotated proteins, for which complete 3D structures are not yet available. PMID:15904486

  12. Cyclotron resonance in ferromagnetic InMnAs and InMnSb

    NASA Astrophysics Data System (ADS)

    Khodaparast, G. A.; Matsuda, Y. H.; Saha, D.; Sanders, G. D.; Stanton, C. J.; Saito, H.; Takeyama, S.; Merritt, T. R.; Feeser, C.; Wessels, B. W.; Liu, X.; Furdyna, J.

    2013-12-01

    We present experimental and theoretical studies of the magneto-optical properties of p-type In1-xMnxAs and In1-xMnxSb ferromagnetic semiconductor films in ultrahigh magnetic fields oriented along [001]. Samples were fabricated by molecular beam epitaxy (MBE) and metal-organic vapor phase epitaxy (MOVPE). To model the results, we used an 8-band Pidgeon-Brown model generalized to include the wave vector dependence of the elec-tronic states along kz as well as the s-d and p-d exchange interactions with the localized Mn d electrons. The Curie temperature is taken as an input parameter and the average Mn spin is treated in mean-field theory. We compared Landau level and band structure calculations with observed cyclotron resonance (CR) measurements. While differences between the CR measurements are seen for MBE and MOVPE samples, our calculations indicate that they arise from differences in the carrier densities. In addition, the difference in the carrier densities suggests significantly larger average spin for the MOVPE structures; this fact could be responsible for higher Curie temperatures in this material system.

  13. Designed microstructure based on color filter and metallic nanoslit for multiband spectral compatible control

    NASA Astrophysics Data System (ADS)

    Zhan, Zhigang; Han, Yuge

    2018-01-01

    Controlling the spectral characteristics by regulating the geometry of microstructure has become an effective method to meet the requirements of various applications. To mediate the spectral characteristics, metallic subwavelength slits with different structures and color filters consisting of diverse materials were discussed, and then a designed microstructure composed of color filter and metallic slits, which were surrounded by grooves, was put forward for a compatible effect of controlling the spectral characteristics. Afterward, the spectral characteristics of the proposed structure were simulated by finite-difference time-domain method in the wavelength range of 300 to 10,000 nm. Additionally, the effects of geometric parameters on the spectral characteristics were studied. The results show that the presented microstructure can reflect a monochromatic color at the wavelength of 600 nm and its reflectance is ˜40%. The average absorptance near the wavelength of 1060 nm is more than 95%, and the average reflectance in the infrared band exceeds 80%. In conclusion, the compatible spectrum control in three bands (i.e., visible, near-infrared, and mid-infrared) was realized.

  14. An Empirical Study of Design Parameters for Assessing Differential Impacts for Students in Group Randomized Trials.

    PubMed

    Jaciw, Andrew P; Lin, Li; Ma, Boya

    2016-10-18

    Prior research has investigated design parameters for assessing average program impacts on achievement outcomes with cluster randomized trials (CRTs). Less is known about parameters important for assessing differential impacts. This article develops a statistical framework for designing CRTs to assess differences in impact among student subgroups and presents initial estimates of critical parameters. Effect sizes and minimum detectable effect sizes for average and differential impacts are calculated before and after conditioning on effects of covariates using results from several CRTs. Relative sensitivities to detect average and differential impacts are also examined. Student outcomes from six CRTs are analyzed. Achievement in math, science, reading, and writing. The ratio of between-cluster variation in the slope of the moderator divided by total variance-the "moderator gap variance ratio"-is important for designing studies to detect differences in impact between student subgroups. This quantity is the analogue of the intraclass correlation coefficient. Typical values were .02 for gender and .04 for socioeconomic status. For studies considered, in many cases estimates of differential impact were larger than of average impact, and after conditioning on effects of covariates, similar power was achieved for detecting average and differential impacts of the same size. Measuring differential impacts is important for addressing questions of equity, generalizability, and guiding interpretation of subgroup impact findings. Adequate power for doing this is in some cases reachable with CRTs designed to measure average impacts. Continuing collection of parameters for assessing differential impacts is the next step. © The Author(s) 2016.

  15. Survey of shock-wave structures of smooth-particle granular flows.

    PubMed

    Padgett, D A; Mazzoleni, A P; Faw, S D

    2015-12-01

    We show the effects of simulated supersonic granular flow made up of smooth particles passing over two prototypical bodies: a wedge and a disk. We describe a way of computationally identifying shock wave locations in granular flows and tabulate the shock wave locations for flow over wedges and disks. We quantify the shock structure in terms of oblique shock angle for wedge impediments and shock standoff distance for disk impediments. We vary granular flow parameters including upstream volume fraction, average upstream velocity, granular temperature, and the collision coefficient of restitution. Both wedges and disks have been used in the aerospace community as prototypical impediments to flowing air in order to investigate the fundamentally different shock structures emanating from sharp and blunt bodies, and we present these results in order to increase the understanding of the fundamental behavior of supersonic granular flow.

  16. Intergenerational Long-Term Effects of Preschool - Structural Estimates from a Discrete Dynamic Programming Model*

    PubMed Central

    Heckman, James J.; Raut, Lakshmi K.

    2015-01-01

    This paper formulates a structural dynamic programming model of preschool investment choices of altruistic parents and then empirically estimates the structural parameters of the model using the NLSY79 data. The paper finds that preschool investment significantly boosts cognitive and non-cognitive skills, which enhance earnings and school outcomes. It also finds that a standard Mincer earnings function, by omitting measures of non-cognitive skills on the right-hand side, overestimates the rate of return to schooling. From the estimated equilibrium Markov process, the paper studies the nature of within generation earnings distribution, intergenerational earnings mobility, and schooling mobility. The paper finds that a tax-financed free preschool program for the children of poor socioeconomic status generates positive net gains to the society in terms of average earnings, higher intergenerational earnings mobility, and schooling mobility. PMID:26709326

  17. Interrelationship of Cn2 & Eddy Dissipation rate based on Scintillometer and Doppler Lidar observations in complex terrain during the Perdigao Campaign 2017

    NASA Astrophysics Data System (ADS)

    Creegan, E. D.; Krishnamurthy, R.; Hocut, C. M.; Pattantyus, A.; Leo, L. S.; Wang, Y.; Fernando, H. J.; Bariteau, L.

    2017-12-01

    The Perdigao campaign is a joint EU/US science project designed to provide information on flow field(s) over complex terrain and through wind turbines at unprecedented high spatial and temporal resolution. The goal is to improve wind energy physics and overcome the current deficiencies of wind resource models. Topographically the Perdigao location is an expansion of the "double hill in crossflow", consisting of two parallel ridges along the NW-SE direction. The site was heavily instrumented with an array of towers (with multiple transects along the valley and across two ridges) and a large suite of ground based and aerial remote sensing platforms. On the outflow side of the NW ridge a scintillometer was emplaced with the line-of-sight (LOS) running adjacent to the towers comprising the NE transect from the ridgetop down to the base. Scanning lidars were placed at both ends of this LOS. Other instruments included a tethered lifting system (TLS), sodar, microwave radiometer, an energy budget flux tower and radiosonde releases. Scintillomoter data provides a quantitative measure of the intensity of optical turbulence, through the refractive index structure parameter, Cn2, where averaged Cn2 is often determined as a function of local differences in temperature, moisture, and wind velocity at discrete points. The refractive index structure parameter is also a function of the inner (dissipation) and outer (energy producing) turbulent scales. The scintillometer directly gives path averaged Cn2 and Eddy Dissipation rate along the LOS. Coplanar scans along the same path were synchronized using two scanning coherent Doppler lidars. Algorithms have been developed to estimate both eddy dissipation rate and Cn2 from Doppler lidar data effectively creating a new lidar data product. Additionally, from TLS measurements, Cn2 and dissipation rate are calculated using the high frequency spectra of the hot-wire sensor. In this work, measurements of Cn2 and Eddy Dissipation rate between multiple Doppler lidars, scintillometer and TLS are compared and the relationship between refractive index structure parameter and turbulence is explored. The effect of optical turbulence under various atmospheric conditions in complex terrain will be investigated.

  18. 40 CFR 133.101 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... arithmetic mean of pollutant parameter values for samples collected in a period of 7 consecutive days. (b) 30-day average. The arithmetic mean of pollutant parameter values of samples collected in a period of 30... percentile value for the 30-day average effluent quality achieved by a treatment works in a period of at...

  19. Estimating effective soil properties of heterogeneous areas for modeling infiltration and redistribution

    USDA-ARS?s Scientific Manuscript database

    Field scale water infiltration and soil-water and solute transport models require spatially-averaged “effective” soil hydraulic parameters to represent the average flux and storage. The values of these effective parameters vary for different conditions, processes, and component soils in a field. For...

  20. Effective depth of spectral line formation in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Lestrade, J. P.; Chamberlain, J. W.

    1980-01-01

    The effective level of line formation for spectroscopic absorption lines has long been regarded as a useful parameter for determining average atmospheric values of the quantities involved in line formation. The identity of this parameter was recently disputed. The dependence of this parameter on the average depth where photons are absorbed in a semi-infinite atmosphere is established. It is shown that the mean depths derived by others are similar in nature and behavior.

  1. The Affordable Care Act and health insurance exchanges: effects on the pediatric dental benefit.

    PubMed

    Orynich, C Ashley; Casamassimo, Paul S; Seale, N Sue; Reggiardo, Paul; Litch, C Scott

    2015-01-01

    To examine the relationship between state health insurance Exchange selection and pediatric dental benefit design, regulation and cost. Medical and dental plans were analyzed across three types of state health insurance Exchanges: State-based (SB), State-partnered (SP), and Federally-facilitated (FF). Cost-analysis was completed for 10,427 insurance plans, and health policy expert interviews were conducted. One-way ANOVA compared the cost-sharing structure of stand-alone dental plans (SADP). T-test statistics compared differences in average total monthly pediatric premium costs. No causal relationships were identified between Exchange selection and the pediatric dental benefit's design, regulation or cost. Pediatric medical and dental coverage offered through the embedded plan design exhibited comparable average total monthly premium costs to aggregate cost estimates for the separately purchased SADP and traditional medical plan (P=0.11). Plan designs and regulatory policies demonstrated greater correlation between the SP and FF Exchanges, as compared to the SB Exchange. Parameters defining the pediatric dental benefit are complex and vary across states. Each state Exchange was subject to barriers in improving the quality of the pediatric dental benefit due to a lack of defined, standardized policy parameters and further legislative maturation is required.

  2. 4U 1909+07: A Hidden Pearl

    NASA Technical Reports Server (NTRS)

    Kreykenbohm, Ingo; Fuerst, Felix; Barragan, Laura; Wilms, Joern; Rothschild, Richard E.; Suchy, Slawomir; Pottschmidt, Katja

    2010-01-01

    We present a detailed spectral and timing analysis of the High Mass X-ray Binary (HMXB) 4U 1909+07 with INTEGRAL and RXTE. 4U 1909+07 is a persistent accreting X-ray pulsar with a period of approximately 605 s. The period changes erratically consistent with a random walk expected for a wind accreting system. INTEGRAL detects the source with an average of 2.4 cps (corresponding to 15 mCrab), but sometimes exhibits flaring activity up to 50 cps (i.e. 300 mCrab). The strongly energy dependent pulse profile shows a double peaked structure at low energies and only a single narrow peak at energies above 20 keV. The phase averaged spectrum is well described by a powerlaw modified at higher energies by an exponential cutoff and photoelectric absorption at low energies. In addition at 6.4 keV a strong iron fluorescence line and at lower energies a black body component are present. We performed phase resolved spectroscopy to study the pulse phase dependence of the spectral parameters: while most spectral parameters are constant within uncertainties, the blackbody normalization and the cutoff folding energy vary strongly with phase.

  3. QSAR analysis for nano-sized layered manganese-calcium oxide in water oxidation: An application of chemometric methods in artificial photosynthesis.

    PubMed

    Shahbazy, Mohammad; Kompany-Zareh, Mohsen; Najafpour, Mohammad Mahdi

    2015-11-01

    Water oxidation is among the most important reactions in artificial photosynthesis, and nano-sized layered manganese-calcium oxides are efficient catalysts toward this reaction. Herein, a quantitative structure-activity relationship (QSAR) model was constructed to predict the catalytic activities of twenty manganese-calcium oxides toward water oxidation using multiple linear regression (MLR) and genetic algorithm (GA) for multivariate calibration and feature selection, respectively. Although there are eight controlled parameters during synthesizing of the desired catalysts including ripening time, temperature, manganese content, calcium content, potassium content, the ratio of calcium:manganese, the average manganese oxidation state and the surface of catalyst, by using GA only three of them (potassium content, the ratio of calcium:manganese and the average manganese oxidation state) were selected as the most effective parameters on catalytic activities of these compounds. The model's accuracy criteria such as R(2)test and Q(2)test in order to predict catalytic rate for external test set experiments; were equal to 0.941 and 0.906, respectively. Therefore, model reveals acceptable capability to anticipate the catalytic activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Estimation of Global Subsurface Thermal Structure from Satellite Remote Sensing Observations Based on Machine Learning

    NASA Astrophysics Data System (ADS)

    Su, H.; Yan, X. H.

    2017-12-01

    Subsurface thermal structure of the global ocean is a key factor that reflects the impact of the global climate variability and change. Accurately determining and describing the global subsurface and deeper ocean thermal structure from satellite measurements is becoming even more important for understanding the ocean interior anomaly and dynamic processes during recent global warming and hiatus. It is essential but challenging to determine the extent to which such surface remote sensing observations can be used to develop information about the global ocean interior. This study proposed a Support Vector Regression (SVR) method to estimate Subsurface Temperature Anomaly (STA) in the global ocean. The SVR model can well estimate the global STA upper 1000 m through a suite of satellite remote sensing observations of sea surface parameters (including Sea Surface Height Anomaly (SSHA), Sea Surface Temperature Anomaly (SSTA), Sea Surface Salinity Anomaly (SSSA) and Sea Surface Wind Anomaly (SSWA)) with in situ Argo data for training and testing at different depth levels. Here, we employed the MSE and R2 to assess SVR performance on the STA estimation. The results from the SVR model were validated for the accuracy and reliability using the worldwide Argo STA data. The average MSE and R2 of the 15 levels are 0.0090 / 0.0086 / 0.0087 and 0.443 / 0.457 / 0.485 for 2-attributes (SSHA, SSTA) / 3-attributes (SSHA, SSTA, SSSA) / 4-attributes (SSHA, SSTA, SSSA, SSWA) SVR, respectively. The estimation accuracy was improved by including SSSA and SSWA for SVR input (MSE decreased by 0.4% / 0.3% and R2 increased by 1.4% / 4.2% on average). While, the estimation accuracy gradually decreased with the increase of the depth from 500 m. The results showed that SSSA and SSWA, in addition to SSTA and SSHA, are useful parameters that can help estimate the subsurface thermal structure, as well as improve the STA estimation accuracy. In future, we can figure out more potential and useful sea surface parameters from satellite remote sensing as input attributes so as to further improve the STA sensing accuracy from machine learning. This study can provide a helpful technique for studying thermal variability in the ocean interior which has played an important role in recent global warming and hiatus from satellite observations over global scale.

  5. Extending solid state laser performance

    NASA Astrophysics Data System (ADS)

    Miesak, Ed

    2017-02-01

    Coherent Diode-Pumped Solid-State Orlando (CDO), formerly known as Lee Laser, headquartered in Orlando Florida produces CW and pulsed solid state lasers. Primary wavelengths include 1064 nm, 532 nm, and 355 nm. Other wavelengths produced include 1320 nm, 15xx nm, and 16xx nm. Pulse widths are in the range of singles to hundreds of nanoseconds. Average powers are in the range of a few watts to 1000 watts. Pulse repetition rates are typically in the range of 100 Hz to 100 KHz. Laser performance parameters are often modified according to customer requests. Laser parameters that can be adjusted include average power, pulse repetition rate, pulse length, beam quality, and wavelength. Laser parameters are typically cross-coupled such that adjusting one may change some or all of the others. Customers often request one or more parameters be changed without changing any of the remaining parameters. CDO has learned how to accomplish this successfully with rapid turn-around times and minimal cost impact. The experience gained by accommodating customer requests has produced a textbook of cause and effect combinations of laser components to accomplish almost any parameter change request. Understanding the relationships between component combinations provides valuable insight into lasing effects allowing designers to extend laser performance beyond what is currently available. This has led to several break through products, i.e. >150W average power 355 nm, >60W average power 6 ps 1064 nm, pulse lengths longer than 400 ns at 532 nm with average power >100W, >400W 532 nm with pulse lengths in the 100 ns range.

  6. Improved excitation rate coefficients for the n = 2 and n = 3 levels of Ca XIX and Fe XXV including fine structure

    NASA Technical Reports Server (NTRS)

    Pradhan, A. K.

    1985-01-01

    Reently calculated collision strengths, including relativistic and resonance effects, are employed to compute Maxwellian averaged collision strengths for 78 transitions involving states of principal quantum numbers 2-1 and 3-1 in Ca XIX and Fe XXV. These rate parameters are tabulated at temperatures of interest in astrophysical and labortory plasmas with radiation in the hard X-ray wavelength range. For some transitions, significant differences are found with the earlier calculations of Pradhan, Norcross, and Hummer (1981).

  7. Pursuit of the Kramers-Henneberger atom

    NASA Astrophysics Data System (ADS)

    Wei, Qi; Wang, Pingxiao; Kais, Sabre; Herschbach, Dudley

    2017-09-01

    Superstrong femtosecond pulsed lasers can profoundly alter electronic structure of atoms and molecules. The oscillating laser field drives one or more electrons almost free. When averaged over, the rapid oscillations combine with the static Coulomb potential to create an effective binding potential. The consequent array of bound states comprises the ;Kramers-Henneberger Atom;. Theorists have brought forth many properties of KH atoms, yet convincing experimental evidence is meager. We examine a remarkable experiment accelerating atoms (Eichmann et al., 2009). It offers tantalizing evidence for the KH atom, with prospects for firm confirmation by adjustment of laser parameters.

  8. Effects of radiation damage on the silicon lattice

    NASA Technical Reports Server (NTRS)

    Dumas, Katherine A.; Lowry, Lynn; Russo, O. Louis

    1987-01-01

    Silicon was irradiated with both proton and electron particle beams in order to investigate changes in the structural and optical properties of the lattice as a result of the radiation damage. Lattice expansions occurred when large strain fields (+0.34 percent) developed after 1- and 3-MeV proton bombardment. The strain was a factor of three less after 1-MeV electron irradiation. Average increases of approximately 22 meV in the 3.46-eV interband energy gap and 14 meV in the Lorentz broadening parameter were measured after the electron irradiation.

  9. Workshop on New Directions in Solid State Power Switches Held at Farmingdale, New York on 28-30 August 1985.

    DTIC Science & Technology

    1985-12-24

    of transitors . Using the data for these parameters, Johnson’s "figure of • merit" shows 8-SiC to be more than three orders of magnitude better than Si...34’ .- ompound may be statistically distributed in the lat- ./0 1N -lce taking an averaged structure. X-ray diffraction.-The results of the x-ray diffrac- 0...excitons, which are not electriclaly conducting because they have no net charge. Since the statistical factors favoring exciton formation go as the

  10. Structural, Kinetic And Magnetic Properties Of Mechanically Alloyed Fe-Zr Powders

    NASA Astrophysics Data System (ADS)

    Mishra, Debabrata; Perumal, A.; Srinivasan, A.

    2008-04-01

    We report the study of amorphous/non-equilibrium solid solution Fe100-xZrx (x = 20 to 35) alloys by mechanical alloying process. It is observed that with increasing Zr substitution, (a) the activation energy increases, (b) the saturation magnetization and coercivity show oscillating behavior. Low temperature magnetic measurements show the presence of spin-glass like phase transition even at H = 10 kOe. The oscillating behavior of magnetic parameters is explained on the basis of variations in the average internal stress calculated using magnetic data.

  11. On entanglement of light and Stokes parameters

    NASA Astrophysics Data System (ADS)

    Żukowski, Marek; Laskowski, Wiesław; Wieśniak, Marcin

    2016-08-01

    We present a new approach to Stokes parameters, which enables one to see better non-classical properties of bright quantum light, and of undefined overall photon numbers. The crucial difference is as follows. The standard quantum optical Stokes parameters are averages of differences of intensities of light registered at the two exits of polarization analyzers, and one gets their normalized version by dividing them by the average total intensity. The new ones are averages of the registered normalized Stokes parameters, for the duration of the experiment. That is, we redefine each Stokes observable as the difference of photon number operators at the two exits of a polarizing beam splitter multiplied by the inverse of their sum. The vacuum eigenvalue of the operator is defined a zero. We show that with such an approach one can obtain more sensitive entanglement indicators based on polarization measurements.

  12. Mechanical and Thermophysical Properties of Cubic Rock-Salt AlN Under High Pressure

    NASA Astrophysics Data System (ADS)

    Lebga, Noudjoud; Daoud, Salah; Sun, Xiao-Wei; Bioud, Nadhira; Latreche, Abdelhakim

    2018-03-01

    Density functional theory, density functional perturbation theory, and the Debye model have been used to investigate the structural, elastic, sound velocity, and thermodynamic properties of AlN with cubic rock-salt structure under high pressure, yielding the equilibrium structural parameters, equation of state, and elastic constants of this interesting material. The isotropic shear modulus, Pugh ratio, and Poisson's ratio were also investigated carefully. In addition, the longitudinal, transverse, and average elastic wave velocities, phonon contribution to the thermal conductivity, and interesting thermodynamic properties were predicted and analyzed in detail. The results demonstrate that the behavior of the elastic wave velocities under increasing hydrostatic pressure explains the hardening of the corresponding phonons. Based on the elastic stability criteria under pressure, it is found that AlN with cubic rock-salt structure is mechanically stable, even at pressures up to 100 GPa. Analysis of the Pugh ratio and Poisson's ratio revealed that AlN with cubic rock-salt structure behaves in brittle manner.

  13. Acceleration and Velocity Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truax, Roger

    2015-01-01

    A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an autoregressive moving average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. Simple harmonic motion is assumed for the acceleration computations, and the central difference equation with a linear autoregressive model is used for the computations of velocity. A cantilevered rectangular wing model is used to validate the simple approach. Quality of the computed deflection, acceleration, and velocity values are independent of the number of fibers. The central difference equation with a linear autoregressive model proposed in this study follows the target response with reasonable accuracy. Therefore, the handicap of the backward difference equation, phase shift, is successfully overcome.

  14. Spontaneous scale-free structure in adaptive networks with synchronously dynamical linking

    NASA Astrophysics Data System (ADS)

    Yuan, Wu-Jie; Zhou, Jian-Fang; Li, Qun; Chen, De-Bao; Wang, Zhen

    2013-08-01

    Inspired by the anti-Hebbian learning rule in neural systems, we study how the feedback from dynamical synchronization shapes network structure by adding new links. Through extensive numerical simulations, we find that an adaptive network spontaneously forms scale-free structure, as confirmed in many real systems. Moreover, the adaptive process produces two nontrivial power-law behaviors of deviation strength from mean activity of the network and negative degree correlation, which exists widely in technological and biological networks. Importantly, these scalings are robust to variation of the adaptive network parameters, which may have meaningful implications in the scale-free formation and manipulation of dynamical networks. Our study thus suggests an alternative adaptive mechanism for the formation of scale-free structure with negative degree correlation, which means that nodes of high degree tend to connect, on average, with others of low degree and vice versa. The relevance of the results to structure formation and dynamical property in neural networks is briefly discussed as well.

  15. Manipulation of cells' position across a microfluidic channel using a series of continuously varying herringbone structures

    NASA Astrophysics Data System (ADS)

    Jung, Yugyung; Hyun, Ji-chul; Choi, Jongchan; Atajanov, Arslan; Yang, Sung

    2017-12-01

    Controlling cells' movement is an important technique in biological analysis that is performed within a microfluidic system. Many external forces are utilized for manipulation of cells, including their position in the channel. These forces can effectively control cells in a desired manner. Most of techniques used to manipulate cells require sophisticated set-ups and equipment to generate desired effect. The exception to this is the use of hydrodynamic force. In this study, a series of continuously varying herringbone structures is proposed for positioning cells in a microfluidic channel using hydrodynamic force. This structure was experimentally developed by changing parameters, such as the length of the herringbone's apex, the length of the herringbone's base and the ratio of the height of the flat channel to the height of the herringbone structure. Results of this study, have demonstrated that the length of the herringbone's apex and the ratio of the heights of the flat channel and the herringbone structure were crucial parameters influencing positioning of cells at 100 μl/h flow rate. The final design was fixed at 170 and 80 μm for the length of herringbone's apex and the length of herringbone's base, respectively. The average position of cells in this device was 34 μm away from the side wall in a 200 μm wide channel. Finally, to substantiate a practical application of the herringbone structure for positioning, cells were randomly introduced into a microfluidic device, containing an array of trapping structures together with a series of herringbone structures along the channel. The cells were moved toward the trapping structure by the herringbone structure and the trapping efficiency was increased. Therefore, it is anticipated that this device will be utilized to continuously control cells' position without application of external forces.

  16. [A prediction model for the activity of insecticidal crystal proteins from Bacillus thuringiensis based on support vector machine].

    PubMed

    Lin, Yi; Cai, Fu-Ying; Zhang, Guang-Ya

    2007-01-01

    A quantitative structure-property relationship (QSPR) model in terms of amino acid composition and the activity of Bacillus thuringiensis insecticidal crystal proteins was established. Support vector machine (SVM) is a novel general machine-learning tool based on the structural risk minimization principle that exhibits good generalization when fault samples are few; it is especially suitable for classification, forecasting, and estimation in cases where small amounts of samples are involved such as fault diagnosis; however, some parameters of SVM are selected based on the experience of the operator, which has led to decreased efficiency of SVM in practical application. The uniform design (UD) method was applied to optimize the running parameters of SVM. It was found that the average accuracy rate approached 73% when the penalty factor was 0.01, the epsilon 0.2, the gamma 0.05, and the range 0.5. The results indicated that UD might be used an effective method to optimize the parameters of SVM and SVM and could be used as an alternative powerful modeling tool for QSPR studies of the activity of Bacillus thuringiensis (Bt) insecticidal crystal proteins. Therefore, a novel method for predicting the insecticidal activity of Bt insecticidal crystal proteins was proposed by the authors of this study.

  17. A geometrically controlled rigidity transition in a model for confluent 3D tissues

    NASA Astrophysics Data System (ADS)

    Merkel, Matthias; Manning, M. Lisa

    2018-02-01

    The origin of rigidity in disordered materials is an outstanding open problem in statistical physics. Previously, a class of 2D cellular models has been shown to undergo a rigidity transition controlled by a mechanical parameter that specifies cell shapes. Here, we generalize this model to 3D and find a rigidity transition that is similarly controlled by the preferred surface area S 0: the model is solid-like below a dimensionless surface area of {s}0\\equiv {S}0/{\\bar{V}}2/3≈ 5.413 with \\bar{V} being the average cell volume, and fluid-like above this value. We demonstrate that, unlike jamming in soft spheres, residual stresses are necessary to create rigidity. These stresses occur precisely when cells are unable to obtain their desired geometry, and we conjecture that there is a well-defined minimal surface area possible for disordered cellular structures. We show that the behavior of this minimal surface induces a linear scaling of the shear modulus with the control parameter at the transition point, which is different from the scaling observed in particulate matter. The existence of such a minimal surface may be relevant for biological tissues and foams, and helps explain why cell shapes are a good structural order parameter for rigidity transitions in biological tissues.

  18. Effect of deposition temperature on the structural and optical properties of CdSe QDs thin films deposited by CBD method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laatar, F., E-mail: fakher8laatar@gmail.com; Harizi, A.; Smida, A.

    2016-06-15

    Highlights: • Synthesis of CdSe QDs with L-Cysteine capping agent for applications in nanodevices. • The films of CdSe QDs present uniform and good dispersive particles at the surface. • Effect of bath temperature on the structural and optical properties of CdSe QDs thin films. • Investigation of the optical constants and dispersion parameters of CdSe QDs thin films. - Abstract: Cadmium selenide quantum dots (CdSe QDs) thin films were deposited onto glass substrates by a chemical bath deposition (CBD) method at different temperatures from an aqueous solution containing L-Cysteine (L-Cys) as capping agent. The evolution of the surface morphologymore » and elemental composition of the CdSe films were studied by AFM, SEM, and EDX analyses. Structural and optical properties of CdSe thin films were investigated by XRD, UV–vis and PL spectroscopy. The dispersion behavior of the refractive index is described using the single oscillator Wemple-DiDomenico (W-D) model, and the physical dispersion parameters are calculated as a function of deposition temperature. The dispersive optical parameters such as average oscillator energy (E{sub o}), dispersion energy (E{sub d}), and static refractive index (n{sub o}) were found to vary with the deposition temperature. Besides, the electrical free carrier susceptibility (χ{sub e}) and the carrier concentration of the effective mass ratio (N/m*) were evaluated according to the Spitzer-Fan model.« less

  19. Estimation of line dimensions in 3D direct laser writing lithography

    NASA Astrophysics Data System (ADS)

    Guney, M. G.; Fedder, G. K.

    2016-10-01

    Two photon polymerization (TPP) based 3D direct laser writing (3D-DLW) finds application in a wide range of research areas ranging from photonic and mechanical metamaterials to micro-devices. Most common structures are either single lines or formed by a set of interconnected lines as in the case of crystals. In order to increase the fidelity of these structures and reach the ultimate resolution, the laser power and scan speed used in the writing process should be chosen carefully. However, the optimization of these writing parameters is an iterative and time consuming process in the absence of a model for the estimation of line dimensions. To this end, we report a semi-empirical analytic model through simulations and fitting, and demonstrate that it can be used for estimating the line dimensions mostly within one standard deviation of the average values over a wide range of laser power and scan speed combinations. The model delimits the trend in onset of micro-explosions in the photoresist due to over-exposure and of low degree of conversion due to under-exposure. The model guides setting of high-fidelity and robust writing parameters of a photonic crystal structure without iteration and in close agreement with the estimated line dimensions. The proposed methodology is generalizable by adapting the model coefficients to any 3D-DLW setup and corresponding photoresist as a means to estimate the line dimensions for tuning the writing parameters.

  20. Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere.

    PubMed

    Zhou, Guoquan

    2011-11-21

    A radial phased-locked (PL) Lorentz beam array provides an appropriate theoretical model to describe a coherent diode laser array, which is an efficient radiation source for high-power beaming use. The propagation of a radial PL Lorentz beam array in turbulent atmosphere is investigated. Based on the extended Huygens-Fresnel integral and some mathematical techniques, analytical formulae for the average intensity and the effective beam size of a radial PL Lorentz beam array are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a radial PL Lorentz beam array in turbulent atmosphere are numerically calculated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a radial PL Lorentz beam array in turbulent atmosphere are discussed in detail. © 2011 Optical Society of America

  1. Reconfiguration and Search of Social Networks

    PubMed Central

    Zhang, Lianming; Peng, Aoyuan

    2013-01-01

    Social networks tend to exhibit some topological characteristics different from regular networks and random networks, such as shorter average path length and higher clustering coefficient, and the node degree of the majority of social networks obeys exponential distribution. Based on the topological characteristics of the real social networks, a new network model which suits to portray the structure of social networks was proposed, and the characteristic parameters of the model were calculated. To find out the relationship between two people in the social network, and using the local information of the social network and the parallel mechanism, a hybrid search strategy based on k-walker random and a high degree was proposed. Simulation results show that the strategy can significantly reduce the average number of search steps, so as to effectively improve the search speed and efficiency. PMID:24574861

  2. Probing slow dynamics of consolidated granular multicomposite materials by diffuse acoustic wave spectroscopy.

    PubMed

    Tremblay, Nicolas; Larose, Eric; Rossetto, Vincent

    2010-03-01

    The stiffness of a consolidated granular medium experiences a drop immediately after a moderate mechanical solicitation. Then the stiffness rises back toward its initial value, following a logarithmic time evolution called slow dynamics. In the literature, slow dynamics has been probed by macroscopic quantities averaged over the sample volume, for instance, by the resonant frequency of vibrational eigenmodes. This article presents a different approach based on diffuse acoustic wave spectroscopy, a technique that is directly sensitive to the details of the sample structure. The parameters of the dynamics are found to depend on the damage of the medium. Results confirm that slow dynamics is, at least in part, due to tiny structural rearrangements at the microscopic scale, such as inter-grain contacts.

  3. Resin blending for toughness in balloon films

    NASA Technical Reports Server (NTRS)

    Farr, M. P.; Harrison, I. R.

    1993-01-01

    The influence of chain architecture on toughness is examined by testing blends of HDPE with different types of low density PEs. The LDPE and LLDPE used have reported similar molecular weights, and densities. Two structural factors differentiate these polymers, long chain branching is peculiar to LDPE, and the short chain branching distribution of the two polymers are different. LDPE has branches which are evenly distributed among all chains. In contrast, the short chain branches in LLDPE are distributed heterogeneously. LLDPE and ULDPE have similar branch distributions but, ULDPE has a higher average number of branches per 1000 carbons and consequently a lower density. The effect which these structural differences have on mechanical properties can be used to investigate which parameters control toughness in PE materials.

  4. Effect of microstructure on the elasto-viscoplastic deformation of dual phase titanium structures

    NASA Astrophysics Data System (ADS)

    Ozturk, Tugce; Rollett, Anthony D.

    2018-02-01

    The present study is devoted to the creation of a process-structure-property database for dual phase titanium alloys, through a synthetic microstructure generation method and a mesh-free fast Fourier transform based micromechanical model that operates on a discretized image of the microstructure. A sensitivity analysis is performed as a precursor to determine the statistically representative volume element size for creating 3D synthetic microstructures based on additively manufactured Ti-6Al-4V characteristics, which are further modified to expand the database for features of interest, e.g., lath thickness. Sets of titanium hardening parameters are extracted from literature, and The relative effect of the chosen microstructural features is quantified through comparisons of average and local field distributions.

  5. Design of a five-band terahertz perfect metamaterial absorber using two resonators

    NASA Astrophysics Data System (ADS)

    Meng, Tianhua; Hu, Dan; Zhu, Qiaofen

    2018-05-01

    We present a polarization-insensitive five-band terahertz perfect metamaterial absorber composed of two metallic circular rings and a metallic ground film separated by a dielectric layer. The calculated results show that the absorber has five distinctive absorption bands whose peaks are greater than 99% on average. The physical origin of the absorber originates from the combination of dipolar, hexapolar, and surface plasmon resonance of the patterned metallic structure, which is different from the work mechanism of previously reported absorbers. In addition, the influence of the structural parameters on the absorption spectra is analyzed to further confirm the origin of the five-band absorption peaks. The proposed absorber has potential applications in terahertz imaging, refractive index sensing, and material detecting.

  6. QSAR, DFT and quantum chemical studies on the inhibition potentials of some carbozones for the corrosion of mild steel in HCl.

    PubMed

    Eddy, Nnabuk O; Ita, Benedict I

    2011-02-01

    Experimental aspects of the inhibition of the corrosion of mild steel in HCl solutions by some carbozones were studied using gravimetric, thermometric and gasometric methods, while a theoretical study was carried out using density functional theory, a quantitative structure-activity relation, and quantum chemical principles. The results obtained indicated that the studied carbozones are good adsorption inhibitors for the corrosion of mild steel in HCl. The inhibition efficiencies of the studied carbozones were found to increase with increasing concentration of the respective inhibitor. A strong correlation was found between the average inhibition efficiency and some quantum chemical parameters, and also between the experimental and theoretical inhibition efficiencies (obtained from the quantitative structure-activity relation).

  7. Operating room metrics score card-creating a prototype for individualized feedback.

    PubMed

    Gabriel, Rodney A; Gimlich, Robert; Ehrenfeld, Jesse M; Urman, Richard D

    2014-11-01

    The balance between reducing costs and inefficiencies with that of patient safety is a challenging problem faced in the operating room suite. An ongoing challenge is the creation of effective strategies that reduce these inefficiencies and provide real-time personalized metrics and electronic feedback to anesthesia practitioners. We created a sample report card structure, utilizing existing informatics systems. This system allows to gather and analyze operating room metrics for each anesthesia provider and offer personalized feedback. To accomplish this task, we identified key metrics that represented time and quality parameters. We collected these data for individual anesthesiologists and compared performance to the overall group average. Data were presented as an electronic score card and made available to individual clinicians on a real-time basis in an effort to provide effective feedback. These metrics included number of cancelled cases, average turnover time, average time to operating room ready and patient in room, number of delayed first case starts, average induction time, average extubation time, average time to recovery room arrival to discharge, performance feedback from other providers, compliance to various protocols, and total anesthetic costs. The concept we propose can easily be generalized to a variety of operating room settings, types of facilities and OR health care professionals. Such a scorecard can be created using content that is important for operating room efficiency, research, and practice improvement for anesthesia providers.

  8. A Vertical Census of Precipitation Characteristics using Ground-based Dual-polarimetric Radar Data

    NASA Astrophysics Data System (ADS)

    Wolff, D. B.; Petersen, W. A.; Marks, D. A.; Pippitt, J. L.; Tokay, A.; Gatlin, P. N.

    2017-12-01

    Characterization of the vertical structure/variability of precipitation and resultant microphysics is critical in providing physical validation of space-based precipitation retrievals. In support of NASAs Global Precipitation Measurement (GPM) mission Ground Validation (GV) program, NASA has invested in a state-of-art dual-polarimetric radar known as NPOL. NPOL is routinely deployed on the Delmarva Peninsula in support of NASAs GPM Precipitation Research Facility (PRF). NPOL has also served as the backbone of several GPM field campaigns in Oklahoma, Iowa, South Carolina and most recently in the Olympic Mountains in Washington state. When precipitation is present, NPOL obtains very high-resolution vertical profiles of radar observations (e.g. reflectivity (ZH) and differential reflectivity (ZDR)), from which important particle size distribution parameters are retrieved such as the mass-weight mean diameter (Dm) and the intercept parameter (Nw). These data are then averaged horizontally to match the nadir resolution of the dual-frequency radar (DPR; 5 km) on board the GPM satellite. The GPM DPR, Combined, and radiometer algorithms (such as GPROF) rely on functional relationships built from assumed parametric relationships and/or retrieved parameter profiles and spatial distributions of particle size (PSD), water content, and hydrometeor phase within a given sample volume. Thus, the NPOL-retrieved profiles provide an excellent tool for characterization of the vertical profile structure and variability during GPM overpasses. In this study, we will use many such overpass comparisons to quantify an estimate of the true sub-IFOV variability as a function of hydrometeor and rain type (convective or stratiform). This presentation will discuss the development of a relational database to help provide a census of the vertical structure of precipitation via analysis and correlation of reflectivity, differential reflectivity, mean-weight drop diameter and the normalized intercept parameter of the gamma drop size distribution.

  9. Hierarchical porous photoanode based on acid boric catalyzed sol for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Maleki, Khatereh; Abdizadeh, Hossein; Golobostanfard, Mohammad Reza; Adelfar, Razieh

    2017-02-01

    The hierarchical porous photoanode of the dye sensitized solar cell (DSSC) is synthesized through non-aqueous sol-gel method based on H3BO3 as an acid catalyst and the efficiencies of the fabricated DSSC based on these photoanodes are compared. The sol parameters of 0.17 M, water mole ratio of 4.5, acid mole ratio of 0.45, and solvent type of ethanol are introduced as optimum parameters for photoanode formation without any detectable cracks. The optimized hierarchical photoanode mainly contains anatase phase with slight shift toward higher angles, confirming the doping of boron into titania structure. Moreover, the porous structure involves two ranges of average pore sizes of 20 and 635 nm. The diffuse reflectance spectroscopy (DRS) shows the proper scattering and blueshift in band gap. The paste parameters of solid:liquid, TiO2:ethyl cellulose, and terpineol:ethanol equal to 11:89, 3.5:7.5, and 25:64, respectively, are assigned as optimized parameters for this novel paste. The photovoltaic properties of short circuit current density, open circuit voltage, fill factor, and efficiency of 5.89 mA/cm2, 703 mV, 0.7, and 2.91% are obtained for the optimized sample, respectively. The relatively higher short circuit current of the main sample compared to other samples is mainly due to higher dye adsorption in this sample corresponding to its higher surface area and presumably higher charge transfer confirmed by low RS and Rct in electrochemical impedance spectroscopy data. Boric acid as a catalyst in titania sol not only forms hierarchical porous structure, but also dopes the titania lattice, which results in appreciated performance in this device.

  10. Investigating scintillometer source areas

    NASA Astrophysics Data System (ADS)

    Perelet, A. O.; Ward, H. C.; Pardyjak, E.

    2017-12-01

    Scintillometry is an indirect ground-based method for measuring line-averaged surface heat and moisture fluxes on length scales of 0.5 - 10 km. These length scales are relevant to urban and other complex areas where setting up traditional instrumentation like eddy covariance is logistically difficult. In order to take full advantage of scintillometry, a better understanding of the flux source area is needed. The source area for a scintillometer is typically calculated as a convolution of point sources along the path. A weighting function is then applied along the path to compensate for a total signal contribution that is biased towards the center of the beam path, and decreasing near the beam ends. While this method of calculating the source area provides an estimate of the contribution of the total flux along the beam, there are still questions regarding the physical meaning of the weighted source area. These questions are addressed using data from an idealized experiment near the Salt Lake City International Airport in northern Utah, U.S.A. The site is a flat agricultural area consisting of two different land uses. This simple heterogeneity in the land use facilitates hypothesis testing related to source areas. Measurements were made with a two wavelength scintillometer system spanning 740 m along with three standard open-path infrared gas analyzer-based eddy-covariance stations along the beam path. This configuration allows for direct observations of fluxes along the beam and comparisons to the scintillometer average. The scintillometer system employed measures the refractive index structure parameter of air for two wavelengths of electromagnetic radiation, 880 μm and 1.86 cm to simultaneously estimate path-averaged heat and moisture fluxes, respectively. Meteorological structure parameters (CT2, Cq2, and CTq) as well as surface fluxes are compared for various amounts of source area overlap between eddy covariance and scintillometry. Additionally, surface properties from LANDSAT 7 & 8 are used to help understand source area composition for different times throughout the experiment.

  11. Synchrotron Microtomographic Quantification of Geometrical Soil Pore Characteristics Affected by Compaction

    NASA Astrophysics Data System (ADS)

    Udawatta, Ranjith; Gantzer, Clark; Anderson, Stephen; Assouline, Shmuel

    2015-04-01

    Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes. Sieved (diam. < 2mm and < 0.5mm) and repacked (1.51 and 1.72 Mg m-3) Hamra soil cores of 5- by 5-mm (average porosities were 0.44 and 0.35) were imaged at 9.6-micrometer resolution at the Argonne Advanced Photon Source (synchrotron facility) using X-ray computed microtomography. Images of 58.9 mm3 volume were analyzed using 3-Dimensional Medial Axis (3DMA) software. Geometrical characteristics of the spatial distributions of pore structures (pore radii, volume, connectivity, path length, and tortuosity) were numerically investigated. Results show that the coordination number (CN) distribution and path length (PL) measured from the medial axis were reasonably fit by exponential relationships P(CN)=10-CN/Co and P(PL)=10-PL/PLo, respectively, where Co and PLo are the corresponding characteristic constants. Compaction reduced porosity, average pore size, number of pores, and characteristic constants. The average pore radii (64 and 61 μm; p<0.04), largest pore volume (1.6 and 0.6 mm3; p=0.06), number of pores (55 and 50; p=0.09), characteristic coordination number (6.3 and 6.0; p=0.09), and characteristic path length number (116 and 105; p=0.001) were significantly greater in the low density than the high density treatment. Aggregate size also influenced measured geometrical pore parameters. This analytical technique provides a tool for assessing changes in soil pores that affect hydraulic properties and thereby provides information to assist in assessment of soil management systems.

  12. Synchrotron microtomographic quantification of geometrical soil pore characteristics affected by compaction

    NASA Astrophysics Data System (ADS)

    Udawatta, R. P.; Gantzer, C. J.; Anderson, S. H.; Assouline, S.

    2015-07-01

    Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes. Sieved (diam. < 2 mm and < 0.5 mm) and repacked (1.51 and 1.72 Mg m-3) Hamra soil cores of 5- by 5 mm (average porosities were 0.44 and 0.35) were imaged at 9.6-micrometer resolution at the Argonne Advanced Photon Source (synchrotron facility) using X-ray computed microtomography. Images of 58.9 mm3 volume were analyzed using 3-Dimensional Medial Axis (3DMA) software. Geometrical characteristics of the spatial distributions of pore structures (pore radii, volume, connectivity, path length, and tortuosity) were numerically investigated. Results show that the coordination number (CN) distribution and path length (PL) measured from the medial axis were reasonably fit by exponential relationships P(CN) = 10-CN/Co and P(PL) = 10-PL/PLo, respectively, where Co and PLo are the corresponding characteristic constants. Compaction reduced porosity, average pore size, number of pores, and characteristic constants. The average pore radii (63.7 and 61 μm; p < 0.04), largest pore volume (1.58 and 0.58 mm3; p = 0.06), number of pores (55 and 50; p = 0.09), characteristic coordination number (6.32 and 5.94; p = 0.09), and characteristic path length number (116 and 105; p = 0.001) were significantly greater in the low density than the high density treatment. Aggregate size also influenced measured geometrical pore parameters. This analytical technique provides a tool for assessing changes in soil pores that affect hydraulic properties and thereby provides information to assist in assessment of soil management systems.

  13. PHYSICAL PROPERTIES OF LARGE AND SMALL GRANULES IN SOLAR QUIET REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Daren; Xie Zongxia; Hu Qinghua

    The normal mode observations of seven quiet regions obtained by the Hinode spacecraft are analyzed to study the physical properties of granules. An artificial intelligence technique is introduced to automatically find the spatial distribution of granules in feature spaces. In this work, we investigate the dependence of granular continuum intensity, mean Doppler velocity, and magnetic fields on granular diameter. We recognized 71,538 granules by an automatic segmentation technique and then extracted five properties: diameter, continuum intensity, Doppler velocity, and longitudinal and transverse magnetic flux density to describe the granules. To automatically explore the intrinsic structures of the granules in themore » five-dimensional parameter space, the X-means clustering algorithm and one-rule classifier are introduced to define the rules for classifying the granules. It is found that diameter is a dominating parameter in classifying the granules and two families of granules are derived: small granules with diameters smaller than 1.''44, and large granules with diameters larger than 1.''44. Based on statistical analysis of the detected granules, the following results are derived: (1) the averages of diameter, continuum intensity, and Doppler velocity in the upward direction of large granules are larger than those of small granules; (2) the averages of absolute longitudinal, transverse, and unsigned flux density of large granules are smaller than those of small granules; (3) for small granules, the average of continuum intensity increases with their diameters, while the averages of Doppler velocity, transverse, absolute longitudinal, and unsigned magnetic flux density decrease with their diameters. However, the mean properties of large granules are stable; (4) the intensity distributions of all granules and small granules do not satisfy Gaussian distribution, while that of large granules almost agrees with normal distribution with a peak at 1.04 I{sub 0}.« less

  14. Solute redistribution in dendritic solidification with diffusion in the solid

    NASA Technical Reports Server (NTRS)

    Ganesan, S.; Poirier, D. R.

    1989-01-01

    An investigation of solute redistribution during dendritic solidification with diffusion in the solid has been performed using numerical techniques. The extent of diffusion is characterized by the instantaneous and average diffusion parameters. These parameters are functions of the diffusion Fourier number, the partition ratio and the fraction solid. Numerical results are presented as an approximate model, which is used to predict the average diffusion parameter and calculate the composition of the interdendritic liquid during solidification.

  15. The gas-phase metallicities of star-forming galaxies in aperture-matched SDSS samples follow potential rather than mass or average surface density

    NASA Astrophysics Data System (ADS)

    D'Eugenio, Francesco; Colless, Matthew; Groves, Brent; Bian, Fuyan; Barone, Tania M.

    2018-05-01

    We present a comparative study of the relation between the aperture-based gas-phase metallicity and three structural parameters of star-forming galaxies: mass (M ≡ M*), average potential (Φ ≡ M*/Re) and average surface mass density (Σ ≡ M_*/R_e^2; where Re is the effective radius). We use a volume-limited sample drawn from the publicly available SDSS DR7, and base our analysis on aperture-matched sampling by selecting sets of galaxies where the SDSS fibre probes a fixed fraction of Re. We find that between 0.5 and 1.5 Re, the gas-phase metallicity correlates more tightly with Φ than with either {M} or Σ, in that for all aperture-matched samples, the potential-metallicity relation has (i) less scatter, (ii) higher Spearman rank correlation coefficient and (iii) less residual trend with Re than either the mass-metallicity relation and the average surface density-metallicity relation. Our result is broadly consistent with the current models of gas enrichment and metal loss. However, a more natural explanation for our findings is a local relation between the gas-phase metallicity and escape velocity.

  16. Scaling of average weighted shortest path and average receiving time on weighted expanded Koch networks

    NASA Astrophysics Data System (ADS)

    Wu, Zikai; Hou, Baoyu; Zhang, Hongjuan; Jin, Feng

    2014-04-01

    Deterministic network models have been attractive media for discussing dynamical processes' dependence on network structural features. On the other hand, the heterogeneity of weights affect dynamical processes taking place on networks. In this paper, we present a family of weighted expanded Koch networks based on Koch networks. They originate from a r-polygon, and each node of current generation produces m r-polygons including the node and whose weighted edges are scaled by factor w in subsequent evolutionary step. We derive closed-form expressions for average weighted shortest path length (AWSP). In large network, AWSP stays bounded with network order growing (0 < w < 1). Then, we focus on a special random walks and trapping issue on the networks. In more detail, we calculate exactly the average receiving time (ART). ART exhibits a sub-linear dependence on network order (0 < w < 1), which implies that nontrivial weighted expanded Koch networks are more efficient than un-weighted expanded Koch networks in receiving information. Besides, efficiency of receiving information at hub nodes is also dependent on parameters m and r. These findings may pave the way for controlling information transportation on general weighted networks.

  17. Acoustic emission monitoring of concrete columns and beams strengthened with fiber reinforced polymer sheets

    NASA Astrophysics Data System (ADS)

    Ma, Gao; Li, Hui; Zhou, Wensong; Xian, Guijun

    2012-04-01

    Acoustic emission (AE) technique is an effective method in the nondestructive testing (NDT) field of civil engineering. During the last two decades, Fiber reinforced polymer (FRP) has been widely used in repairing and strengthening concrete structures. The damage state of FRP strengthened concrete structures has become an important issue during the service period of the structure and it is a meaningful work to use AE technique as a nondestructive method to assess its damage state. The present study reports AE monitoring results of axial compression tests carried on basalt fiber reinforced polymer (BFRP) confined concrete columns and three-point-bending tests carried on BFRP reinforced concrete beams. AE parameters analysis was firstly utilized to give preliminary results of the concrete fracture process of these specimens. It was found that cumulative AE events can reflect the fracture development trend of both BFRP confined concrete columns and BFRP strengthened concrete beams and AE events had an abrupt increase at the point of BFRP breakage. Then the fracture process of BFRP confined concrete columns and BFRP strengthened concrete beams was studied through RA value-average frequency analysis. The RA value-average frequency tendencies of BFRP confined concrete were found different from that of BFRP strengthened concrete beams. The variation tendency of concrete crack patterns during the loading process was revealed.

  18. Luminescence of Mn4+ ions in CaTiO3 and MgTiO3 perovskites: Relationship of experimental spectroscopic data and crystal field calculations

    NASA Astrophysics Data System (ADS)

    Đorđević, Vesna; Brik, Mikhail G.; Srivastava, Alok M.; Medić, Mina; Vulić, Predrag; Glais, Estelle; Viana, Bruno; Dramićanin, Miroslav D.

    2017-12-01

    Herein, the synthesis, structural and crystal field analysis and optical spectroscopy of Mn4+ doped metal titanates ATiO3 (A = Ca, Mg) are presented. Materials of desired phase were prepared by molten salt assisted sol-gel method in the powder form. Crystallographic data of samples were obtained by refinement of X-ray diffraction measurements. From experimental excitation and emission spectra and structural data, crystal field parameters and energy levels of Mn4+ in CaTiO3 and MgTiO3 were calculated by the exchange charge model of crystal-field theory. It is found that crystalline field strength is lower (Dq = 1831 cm-1) in the rhombohedral Ilmenite MgTiO3 structure due to the relatively longer average Mn4+sbnd O2- bond distance (2.059 Å), and higher (Dq = 2017 cm-1) in orthorhombic CaTiO3 which possess shorter average Mn4+sbnd O2- bond distance (1.956 Å). Spectral positions of the Mn4+2Eg → 4A2g transition maxima is 709 nm in MgTiO3 and 717 nm in CaTiO3 respectively in good agreement with calculated values.

  19. Uncertainty in Wildfire Behavior

    NASA Astrophysics Data System (ADS)

    Finney, M.; Cohen, J. D.

    2013-12-01

    The challenge of predicting or modeling fire behavior is well recognized by scientists and managers who attempt predictions of fire spread rate or growth. At the scale of the spreading fire, the uncertainty in winds, moisture, fuel structure, and fire location make accurate predictions difficult, and the non-linear response of fire spread to these conditions means that average behavior is poorly represented by average environmental parameters. Even more difficult are estimations of threshold behaviors (e.g. spread/no-spread, crown fire initiation, ember generation and spotting) because the fire responds as a step-function to small changes in one or more environmental variables, translating to dynamical feedbacks and unpredictability. Recent research shows that ignition of fuel particles, itself a threshold phenomenon, depends on flame contact which is absolutely not steady or uniform. Recent studies of flame structure in both spreading and stationary fires reveals that much of the non-steadiness of the flames as they contact fuel particles results from buoyant instabilities that produce quasi-periodic flame structures. With fuel particle ignition produced by time-varying heating and short-range flame contact, future improvements in fire behavior modeling will likely require statistical approaches to deal with the uncertainty at all scales, including the level of heat transfer, the fuel arrangement, and weather.

  20. Estimation and Identification of the Complier Average Causal Effect Parameter in Education RCTs

    ERIC Educational Resources Information Center

    Schochet, Peter Z.; Chiang, Hanley S.

    2011-01-01

    In randomized control trials (RCTs) in the education field, the complier average causal effect (CACE) parameter is often of policy interest, because it pertains to intervention effects for students who receive a meaningful dose of treatment services. This article uses a causal inference and instrumental variables framework to examine the…

  1. [Comparison of HbA1c, fructosamine and the main metabolic parameters in a non-insulin-dependent diabetic population].

    PubMed

    Magnati, G; Arsenio, L; Baroni, M C; Bodria, P; Bossi, S; Delsignore, R; Ippolito, L; Mineo, F; Strata, A

    1990-01-01

    Our objective was the checking of clinical data obtainable from the assay of some parameters in NID diabetic individuals. To this end, we studied 133 patients--57 males and 76 females, average age 74.36 +/- 1.01 years, 72.6% of which were above 65 years of age. The control population was subdivided as follows: 50 subjects, 26 F and 24 M; average age 71.25 +/- 1.32 years, with normal glucidic tolerance as assessed by OGTT. Current glycemia, average glycemia, fructosamine, glycosylated hemoglobin, triglycerides, LDL-cholesterol and apolipoprotein B were obviously much higher than normal in the individuals admitted to the study. A statistically significant correlation was found between average glycemia, glycosylated hemoglobin, LDL-cholesterol and blood triglycerides (p less than 0.05). No correlation was found between current glycemia, fructosamine and glycosylated hemoglobin. Similarly, serum fructosamine was unrelated to the parameters studied. In our study, fructosamine, glycosylated hemoglobin and current glycemia offered unrelatable data. Hence, in our opinion it is necessary to assay these three parameters contemporaneously for a reliable assessment of metabolic compensation.

  2. Imperfection sensitivity of pressured buckling of biopolymer spherical shells

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Ru, C. Q.

    2016-06-01

    Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.

  3. Thermodynamic, electronic and magnetic properties of intermetallic compounds through statistical models

    NASA Astrophysics Data System (ADS)

    Cadeville, M. C.; Pierron-Bohnes, V.; Bouzidi, L.; Sanchez, J. M.

    1993-01-01

    Local and average electronic and magnetic properties of transition metal alloys are strongly correlated to the distribution of atoms on the lattice sites. The ability of some systems to form long range ordered structures at low temperature allows to discuss their properties in term of well identified occupation operators as those related to long range order (LRO) parameters. We show that using theoretical determinations of these LRO parameters through statistical models like the cluster variation method (CVM) developed to simulate the experimental phase diagrams, we are able to reproduce a lot of physical properties. In this paper we focus on two points: (i) a comparison between CVM results and an experimental determination of the LRO parameter by NMR at 59Co in a CoPt3 compound, and (ii) the modelling of the resistivity of ferromagnetic and paramagnetic intermetallic compounds belonging to Co-Pt, Ni-Pt and Fe-Al systems. All experiments were performed on samples in identified thermodynamic states, implying that kinetic effects are thoroughly taken into account.

  4. The effect of low-level laser irradiation on dog spermatozoa motility is dependent on laser output power.

    PubMed

    Corral-Baqués, M I; Rivera, M M; Rigau, T; Rodríguez-Gil, J E; Rigau, J

    2009-09-01

    Biological tissues respond to low-level laser irradiation and so do dog spermatozoa. Among the main parameters to be considered when a biological tissue is irradiated is the output power. We have studied the effects on sperm motility of 655 nm continuous wave diode laser irradiation at different output powers with 3.34 J (5.97 J/cm(2)). The second fraction of fresh dog sperm was divided into five groups: control, and four to be irradiated with an average output power of 6.8 mW, 15.4 mW, 33.1 mW and 49.7 mW, respectively. At 0 min and 45 min after irradiation, pictures were taken and a computer aided sperm analysis (CASA) performed to analyse different motility parameters. The results showed that different output powers affected dog semen motility parameters differently. The highest output power showed the most intense effects. Significant changes in the structure of the motile sperm subpopulation were linked to the different output powers used.

  5. Predictive process simulation of cryogenic implants for leading edge transistor design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gossmann, Hans-Joachim; Zographos, Nikolas; Park, Hugh

    2012-11-06

    Two cryogenic implant TCAD-modules have been developed: (i) A continuum-based compact model targeted towards a TCAD production environment calibrated against an extensive data-set for all common dopants. Ion-specific calibration parameters related to damage generation and dynamic annealing were used and resulted in excellent fits to the calibration data-set. (ii) A Kinetic Monte Carlo (kMC) model including the full time dependence of ion-exposure that a particular spot on the wafer experiences, as well as the resulting temperature vs. time profile of this spot. It was calibrated by adjusting damage generation and dynamic annealing parameters. The kMC simulations clearly demonstrate the importancemore » of the time-structure of the beam for the amorphization process: Assuming an average dose-rate does not capture all of the physics and may lead to incorrect conclusions. The model enables optimization of the amorphization process through tool parameters such as scan speed or beam height.« less

  6. The Utility of Decomposition and Associated Microbial Parameters to Assess Changes in Stream Ecosystems due to Eutrophication

    NASA Astrophysics Data System (ADS)

    Gulis, V.; Ferreira, V. J.; Graca, M. A.

    2005-05-01

    Traditional approaches to assess stream ecosystem health rely on structural parameters, e.g. a variety of biotic indices. The goal of the Europe-wide RivFunction project is to develop methodology that uses functional parameters (e.g. plant litter decomposition) to this end. Here we report on decomposition experiments carried out in Portugal in five pairs of streams that differed in dissolved inorganic nutrients. On average, decomposition rates of alder and oak leaves were 2.8 and 1.4 times higher in high nutrient streams in coarse and fine mesh bags, respectively, than in corresponding reference streams. Breakdown rate correlated better with stream water SRP concentration rather than TIN. Fungal biomass and sporulation rates of aquatic hyphomycetes associated with decomposing leaves were stimulated by higher nutrient levels. Both fungal parameters measured at very early stages of decomposition (e.g. days 7-13) correlated well with overall decomposition rates. Eutrophication had no significant effect on shredder abundances in leaf bags but species richness was higher in disturbed streams. Decomposition is a key functional parameter in streams integrating many other variables and can be useful in assessing stream ecosystem health. We also argue that because decomposition is often controlled by fungal activity, microbial parameters can also be useful in bioassessment.

  7. Crystal structure and magnetism of the FexNi8-xSi3 materials, 0 ≤ x ≤ 8

    NASA Astrophysics Data System (ADS)

    Gallus, Simone; Haddouch, Mohammed Ait; Chikovani, Mamuka; Perßon, Jörg; Voigt, Jörg; Friese, Karen; Senyshyn, Anatoliy; Grzechnik, Andrzej

    2018-02-01

    The crystal structure and magnetic properties of the materials FexNi8-xSi3 with 0 ≤ x ≤ 8 have been investigated to estimate any possible magnetocaloric effect and compare it to that in known magnetocalorics. Two structural ranges could be identified in this system by X-ray and neutron diffraction. The structure of the samples with 0 ≤ x ≤ 4 is related to the trigonal structure of Ni31Si12. Doubled c lattice parameters compared to the one in Ni31Si12 are observed in the samples with x = 2 and x = 3. The average structure of Fe2Ni6Si3 has been determined by X-ray single-crystal diffraction. The compounds with the compositions 5 ≤ x ≤ 8 crystallize in cubic Fe3Si-type structure. Magnetic measurements have shown that the compound Fe3Ni5Si3 displays a phase transition close to room temperature. However, its magnetocaloric effect is much smaller than the one in the promising magnetocaloric materials.

  8. Investigation of the crystallization features, atomic structure, and microstructure of chromium-doped monticellite

    NASA Astrophysics Data System (ADS)

    Subbotin, K. A.; Iskhakova, L. D.; Zharikov, E. V.; Lavrishchev, S. V.

    2008-12-01

    A series of Cr4+:CaMgSiO4 single crystals is grown using floating zone melting, and their microstructure, composition, and crystal structure are investigated. It is shown that regions with inclusions of second phases, such as forsterite, akermanite, MgO, and Ca4Mg2Si3O12, can form over the length of the sample. The composition of the single-phase regions of the single crystals varies from the stoichiometric monticellite CaMgSiO4 to the solid solution Ca(1 - x)Mg(1 + x)SiO4( x = 0.22). The Cr:(Ca0.88Mg0.12)MgSiO4 crystal is studied using X-ray diffraction. It is revealed that, in this case, the olivine-like orthorhombic crystal lattice is distorted to the monoclinic lattice with the parameters a = 6.3574(5) Å, b = 4.8164(4) Å, c = 11.0387(8) Å, β = 90.30(1)o, Z = 4, V = 337.98 Å3, and space group P21/ c. In the monoclinic lattice, the M(1) position of the initial olivine structure is split into two nonequivalent positions with the center of symmetry, which are occupied only by Mg2+ cations with the average length of the Mg-O bond R av = 2.128 Å. The overstoichiometric Mg2+ cations partially replace Ca2+ cations (in the M(2) position of the orthorhombic prastructure) with the average bond length of 2.347 Å in the [(Ca,Mg)-O6] octahedron. The average distance in SiO4 distorted tetrahedra is 1.541 Å.

  9. Crustal velocity structure of central Gansu Province from regional seismic waveform inversion using firework algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Yanyang; Wang, Yanbin; Zhang, Yuansheng

    2017-04-01

    The firework algorithm (FWA) is a novel swarm intelligence-based method recently proposed for the optimization of multi-parameter, nonlinear functions. Numerical waveform inversion experiments using a synthetic model show that the FWA performs well in both solution quality and efficiency. We apply the FWA in this study to crustal velocity structure inversion using regional seismic waveform data of central Gansu on the northeastern margin of the Qinghai-Tibet plateau. Seismograms recorded from the moment magnitude ( M W) 5.4 Minxian earthquake enable obtaining an average crustal velocity model for this region. We initially carried out a series of FWA robustness tests in regional waveform inversion at the same earthquake and station positions across the study region, inverting two velocity structure models, with and without a low-velocity crustal layer; the accuracy of our average inversion results and their standard deviations reveal the advantages of the FWA for the inversion of regional seismic waveforms. We applied the FWA across our study area using three component waveform data recorded by nine broadband permanent seismic stations with epicentral distances ranging between 146 and 437 km. These inversion results show that the average thickness of the crust in this region is 46.75 km, while thicknesses of the sedimentary layer, and the upper, middle, and lower crust are 3.15, 15.69, 13.08, and 14.83 km, respectively. Results also show that the P-wave velocities of these layers and the upper mantle are 4.47, 6.07, 6.12, 6.87, and 8.18 km/s, respectively.

  10. Preferences of group-housed female mice regarding structure of softwood bedding.

    PubMed

    Kirchner, J; Hackbarth, H; Stelzer, H D; Tsai, P-P

    2012-04-01

    Bedding influences various parameters in the housing of laboratory mice, such as health, physiology and behaviour (often considered as being integral parts of welfare). Notwithstanding existent studies about bedding preferences of individually tested mice, data about group-housed mice are still lacking. The aim of this study was to find out the structure preference for softwood bedding of group-housed mice. One hundred and eight 8-week-old female mice (C57BL6/JOlaHsd and BALB/cOlaHsd) were housed in groups of three and were given one-week free access to two different bedding structures at a time. In three test combinations, softwood shaving bedding was tested versus softwood chip bedding products of three different particle sizes (fine/medium/coarse-grained). The preference test was performed in a DoubleCage system composed of two Makrolon type IIL cages, connected by a perspex tunnel. This validated system was able to detect the crossings of each individual animal with correct crossing time and direction. On the basis of these data, dwelling times on the particular bedding structures were statistically analysed as a parameter for bedding preferences. In all three test combinations, a highly significant shaving preference was detected. On average, mice spent 70% of their dwelling time on the shavings. This preference was more explicit during the light period and in C57BL/6J mice. The relative ranking of the bedding structures was: shavings > coarse-grained chips > medium chips = fine chips. By means of these results, a shaving structure as bedding can be recommended for laboratory mice, whereas fine chip structures should be avoided.

  11. PERIODIC AUTOREGRESSIVE-MOVING AVERAGE (PARMA) MODELING WITH APPLICATIONS TO WATER RESOURCES.

    USGS Publications Warehouse

    Vecchia, A.V.

    1985-01-01

    Results involving correlation properties and parameter estimation for autogressive-moving average models with periodic parameters are presented. A multivariate representation of the PARMA model is used to derive parameter space restrictions and difference equations for the periodic autocorrelations. Close approximation to the likelihood function for Gaussian PARMA processes results in efficient maximum-likelihood estimation procedures. Terms in the Fourier expansion of the parameters are sequentially included, and a selection criterion is given for determining the optimal number of harmonics to be included. Application of the techniques is demonstrated through analysis of a monthly streamflow time series.

  12. Fabrication of SLM NiTi Shape Memory Alloy via Repetitive Laser Scanning

    NASA Astrophysics Data System (ADS)

    Khoo, Zhong Xun; Liu, Yong; Low, Zhi Hong; An, Jia; Chua, Chee Kai; Leong, Kah Fai

    2018-03-01

    Additive manufacturing has the potential to overcome the poor machinability of NiTi shape-memory alloy in fabricating smart structures of complex geometry. In recent years, a number of research activities on selective laser melting (SLM) of NiTi have been carried out to explore the optimal parameters for producing SLM NiTi with the desired phase transformation characteristics and shape-memory properties. Different effects of energy density and processing parameters on the properties of SLM NiTi were reported. In this research, a new approach—repetitive laser scanning—is introduced to meet these objectives as well. The results suggested that the laser absorptivity and heat conductivity of materials before and after the first scan significantly influence the final properties of SLM NiTi. With carefully controlled repetitive scanning process, the fabricated samples have demonstrated shape-memory effect of as high as 5.11% (with an average value of 4.61%) and exhibited comparable transformation characteristics as the NiTi powder used. These results suggest the potential for fabricating complex NiTi structures with similar properties to that of the conventionally produced NiTi parts.

  13. Structure zone diagram and particle incorporation of nickel brush plated composite coatings

    PubMed Central

    Isern, L.; Impey, S.; Almond, H.; Clouser, S. J.; Endrino, J. L.

    2017-01-01

    This work studies the deposition of aluminium-incorporated nickel coatings by brush electroplating, focusing on the electroplating setup and processing parameters. The setup was optimised in order to increase the volume of particle incorporation. The optimised design focused on increasing the plating solution flow to avoid sedimentation, and as a result the particle transport experienced a three-fold increase when compared with the traditional setup. The influence of bath load, current density and the brush material used was investigated. Both current density and brush material have a significant impact on the morphology and composition of the coatings. Higher current densities and non-abrasive brushes produce rough, particle-rich samples. Different combinations of these two parameters influence the surface characteristics differently, as illustrated in a Structure Zone Diagram. Finally, surfaces featuring crevices and peaks incorporate between 3.5 and 20 times more particles than smoother coatings. The presence of such features has been quantified using average surface roughness Ra and Abbott-Firestone curves. The combination of optimised setup and rough surface increased the particle content of the composite to 28 at.%. PMID:28300159

  14. Quantitative structural modeling on the wavelength interval (Δλ) in synchronous fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Samari, Fayezeh; Yousefinejad, Saeed

    2017-11-01

    Emission fluorescence spectroscopy has an extremely restricted scope of application to analyze of complex mixtures since its selectivity is reduced by the extensive spectral overlap. Synchronous fluorescence spectroscopy (SFS) is a technique enables us to analyze complex mixtures with overlapped emission and/or excitation spectra. The difference of excitation and emission wavelength of compounds (interval wavelength or Δλ) is an important characteristic in SFS. Thus a multi-parameter model was constructed to predict Δλ in 63 fluorescent compounds and the regression coefficient in training set, cross validation and test set were 0.88, 0.85 and 0.91 respectively. Furthermore, the applicability and validity of model were evaluated using different statistical methods such as y-scrambling and applicability domain. It was concluded that increasing average valence connectivity, number of Al2-NH functional group and Geary autocorrelation (lag 4) with electronegative weights can lead to increasing Δλ in the fluorescent compounds. The current study obtained an insight into the structural properties of compounds effective on their Δλ as an important parameter in SFS.

  15. Soliton concepts and protein structure

    NASA Astrophysics Data System (ADS)

    Krokhotin, Andrei; Niemi, Antti J.; Peng, Xubiao

    2012-03-01

    Structural classification shows that the number of different protein folds is surprisingly small. It also appears that proteins are built in a modular fashion from a relatively small number of components. Here we propose that the modular building blocks are made of the dark soliton solution of a generalized discrete nonlinear Schrödinger equation. We find that practically all protein loops can be obtained simply by scaling the size and by joining together a number of copies of the soliton, one after another. The soliton has only two loop-specific parameters, and we compute their statistical distribution in the Protein Data Bank (PDB). We explicitly construct a collection of 200 sets of parameters, each determining a soliton profile that describes a different short loop. The ensuing profiles cover practically all those proteins in PDB that have a resolution which is better than 2.0 Å, with a precision such that the average root-mean-square distance between the loop and its soliton is less than the experimental B-factor fluctuation distance. We also present two examples that describe how the loop library can be employed both to model and to analyze folded proteins.

  16. Fabrication of SLM NiTi Shape Memory Alloy via Repetitive Laser Scanning

    NASA Astrophysics Data System (ADS)

    Khoo, Zhong Xun; Liu, Yong; Low, Zhi Hong; An, Jia; Chua, Chee Kai; Leong, Kah Fai

    2018-01-01

    Additive manufacturing has the potential to overcome the poor machinability of NiTi shape-memory alloy in fabricating smart structures of complex geometry. In recent years, a number of research activities on selective laser melting (SLM) of NiTi have been carried out to explore the optimal parameters for producing SLM NiTi with the desired phase transformation characteristics and shape-memory properties. Different effects of energy density and processing parameters on the properties of SLM NiTi were reported. In this research, a new approach—repetitive laser scanning—is introduced to meet these objectives as well. The results suggested that the laser absorptivity and heat conductivity of materials before and after the first scan significantly influence the final properties of SLM NiTi. With carefully controlled repetitive scanning process, the fabricated samples have demonstrated shape-memory effect of as high as 5.11% (with an average value of 4.61%) and exhibited comparable transformation characteristics as the NiTi powder used. These results suggest the potential for fabricating complex NiTi structures with similar properties to that of the conventionally produced NiTi parts.

  17. Examination of total cross section resonance structure of niobium and silicon in neutron transmission experiments

    NASA Astrophysics Data System (ADS)

    Andrianova, Olga; Lomakov, Gleb; Manturov, Gennady

    2017-09-01

    The neutron transmission experiments are one of the main sources of information about the neutron cross section resonance structure and effect in the self-shielding. Such kind of data for niobium and silicon nuclides in energy range 7 keV to 3 MeV can be obtained from low-resolution transmission measurements performed earlier in Russia (with samples of 0.027 to 0.871 atom/barn for niobium and 0.076 to 1.803 atom/barn for silicon). A significant calculation-to-experiment discrepancy in energy range 100 to 600 keV and 300 to 800 keV for niobium and silicon, respectively, obtained using the evaluated nuclear data library ROSFOND, were found. The EVPAR code was used for estimation the average resonance parameters in energy range 7 to 600 keV for niobium. For silicon a stochastic optimization method was used to modify the resolved resonance parameters in energy range 300 to 800 keV. The improved ROSFOND evaluated nuclear data files were tested in calculation of ICSBEP integral benchmark experiments.

  18. Structure zone diagram and particle incorporation of nickel brush plated composite coatings

    NASA Astrophysics Data System (ADS)

    Isern, L.; Impey, S.; Almond, H.; Clouser, S. J.; Endrino, J. L.

    2017-03-01

    This work studies the deposition of aluminium-incorporated nickel coatings by brush electroplating, focusing on the electroplating setup and processing parameters. The setup was optimised in order to increase the volume of particle incorporation. The optimised design focused on increasing the plating solution flow to avoid sedimentation, and as a result the particle transport experienced a three-fold increase when compared with the traditional setup. The influence of bath load, current density and the brush material used was investigated. Both current density and brush material have a significant impact on the morphology and composition of the coatings. Higher current densities and non-abrasive brushes produce rough, particle-rich samples. Different combinations of these two parameters influence the surface characteristics differently, as illustrated in a Structure Zone Diagram. Finally, surfaces featuring crevices and peaks incorporate between 3.5 and 20 times more particles than smoother coatings. The presence of such features has been quantified using average surface roughness Ra and Abbott-Firestone curves. The combination of optimised setup and rough surface increased the particle content of the composite to 28 at.%.

  19. Coal liquefaction process streams characterization and evaluation: Analysis of Black Thunder coal and liquefaction products from HRI Bench Unit Run CC-15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugmire, R.J.; Solum, M.S.

    This study was designed to apply {sup 13}C-nuclear magnetic resonance (NMR) spectrometry to the analysis of direct coal liquefaction process-stream materials. {sup 13}C-NMR was shown to have a high potential for application to direct coal liquefaction-derived samples in Phase II of this program. In this Phase III project, {sup 13}C-NMR was applied to a set of samples derived from the HRI Inc. bench-scale liquefaction Run CC-15. The samples include the feed coal, net products and intermediate streams from three operating periods of the run. High-resolution {sup 13}C-NMR data were obtained for the liquid samples and solid-state CP/MAS {sup 13}C-NMR datamore » were obtained for the coal and filter-cake samples. The {sup 1}C-NMR technique is used to derive a set of twelve carbon structural parameters for each sample (CONSOL Table A). Average molecular structural descriptors can then be derived from these parameters (CONSOL Table B).« less

  20. X-ray diffraction, Raman, and photoacoustic studies of ZnTe nanocrystals

    NASA Astrophysics Data System (ADS)

    Ersching, K.; Campos, C. E. M.; de Lima, J. C.; Grandi, T. A.; Souza, S. M.; da Silva, D. L.; Pizani, P. S.

    2009-06-01

    Nanocrystalline ZnTe was prepared by mechanical alloying. X-ray diffraction (XRD), energy dispersive spectroscopy, Raman spectroscopy, and photoacoustic absorption spectroscopy techniques were used to study the structural, chemical, optical, and thermal properties of the as-milled powder. An annealing of the mechanical alloyed sample at 590 °C for 6 h was done to investigate the optical properties in a defect-free sample (close to bulk form). The main crystalline phase formed was the zinc-blende ZnTe, but residual trigonal tellurium and hexagonal ZnO phases were also observed for both as-milled and annealed samples. The structural parameters, phase fractions, average crystallite sizes, and microstrains of all crystalline phases were obtained from Rietveld analyses of the X-ray patterns. Raman results corroborate the XRD results, showing the longitudinal optical phonons of ZnTe (even at third order) and those modes of trigonal Te. Nonradiative surface recombination and thermal bending heat transfer mechanisms were proposed from photoacoustic analysis. An increase in effective thermal diffusivity coefficient was observed after annealing and the carrier diffusion coefficient, the surface recombination velocity, and the recombination time parameters remained the same.

  1. Structure zone diagram and particle incorporation of nickel brush plated composite coatings.

    PubMed

    Isern, L; Impey, S; Almond, H; Clouser, S J; Endrino, J L

    2017-03-16

    This work studies the deposition of aluminium-incorporated nickel coatings by brush electroplating, focusing on the electroplating setup and processing parameters. The setup was optimised in order to increase the volume of particle incorporation. The optimised design focused on increasing the plating solution flow to avoid sedimentation, and as a result the particle transport experienced a three-fold increase when compared with the traditional setup. The influence of bath load, current density and the brush material used was investigated. Both current density and brush material have a significant impact on the morphology and composition of the coatings. Higher current densities and non-abrasive brushes produce rough, particle-rich samples. Different combinations of these two parameters influence the surface characteristics differently, as illustrated in a Structure Zone Diagram. Finally, surfaces featuring crevices and peaks incorporate between 3.5 and 20 times more particles than smoother coatings. The presence of such features has been quantified using average surface roughness Ra and Abbott-Firestone curves. The combination of optimised setup and rough surface increased the particle content of the composite to 28 at.%.

  2. Predicting cyclohexane/water distribution coefficients for the SAMPL5 challenge using MOSCED and the SMD solvation model.

    PubMed

    Diaz-Rodriguez, Sebastian; Bozada, Samantha M; Phifer, Jeremy R; Paluch, Andrew S

    2016-11-01

    We present blind predictions using the solubility parameter based method MOSCED submitted for the SAMPL5 challenge on calculating cyclohexane/water distribution coefficients at 298 K. Reference data to parameterize MOSCED was generated with knowledge only of chemical structure by performing solvation free energy calculations using electronic structure calculations in the SMD continuum solvent. To maintain simplicity and use only a single method, we approximate the distribution coefficient with the partition coefficient of the neutral species. Over the final SAMPL5 set of 53 compounds, we achieved an average unsigned error of [Formula: see text] log units (ranking 15 out of 62 entries), the correlation coefficient (R) was [Formula: see text] (ranking 35), and [Formula: see text] of the predictions had the correct sign (ranking 30). While used here to predict cyclohexane/water distribution coefficients at 298 K, MOSCED is broadly applicable, allowing one to predict temperature dependent infinite dilution activity coefficients in any solvent for which parameters exist, and provides a means by which an excess Gibbs free energy model may be parameterized to predict composition dependent phase-equilibrium.

  3. Effect of cataract surgery on retinal nerve fiber layer thickness parameters using scanning laser polarimetry (GDxVCC).

    PubMed

    Dada, Tanuj; Behera, Geeta; Agarwal, Anand; Kumar, Sanjeev; Sihota, Ramanjit; Panda, Anita

    2010-01-01

    To study the effect of cataract extraction on the retinal nerve fiber layer (RNFL) thickness, and assessment by scanning laser polarimetry (SLP), with variable corneal compensation (GDx VCC), at the glaucoma service of a tertiary care center in North India. Thirty-two eyes of 32 subjects were enrolled in the study. The subjects underwent RNFL analysis by SLP (GDx VCC) before undergoing phacoemulsification cataract extraction with intraocular lens (IOL) implantation (Acrysof SA 60 AT) four weeks following cataract surgery. The RNFL thickness parameters evaluated both before and after surgery included temporal, superior, nasal, inferior, temporal (TSNIT) average, superior average, inferior average, and nerve fiber index (NFI). The mean age of subjects was 57.6 +/- 11.7 years (18 males, 14 females). Mean TSNIT average thickness (microm) pre- and post-cataract surgery was 49.2 +/- 14.1 and 56.5 +/- 7.6 ( P = 0.001). There was a statistically significant increase in RNFL thickness parameters (TSNIT average, superior average, and inferior average) and decrease in NFI post-cataract surgery as compared to the baseline values. Mean NFI pre- and post-cataract surgery was 41.3 +/- 15.3 and 21.6 +/- 11.8 ( P = 0.001). Measurement of RNFL thickness parameters by scanning laser polarimetry is significantly altered following cataract surgery. Post the cataract surgery, a new baseline needs to be established for assessing the longitudinal follow-up of a glaucoma patient. The presence of cataract may lead to an underestimation of the RNFL thickness, and this should be taken into account when analyzing progression in a glaucoma patient.

  4. Predictive Models of Primary Tropical Forest Structure from Geomorphometric Variables Based on SRTM in the Tapajós Region, Brazilian Amazon

    PubMed Central

    Bispo, Polyanna da Conceição; dos Santos, João Roberto; Valeriano, Márcio de Morisson; Graça, Paulo Maurício Lima de Alencastro; Balzter, Heiko; França, Helena; Bispo, Pitágoras da Conceição

    2016-01-01

    Surveying primary tropical forest over large regions is challenging. Indirect methods of relating terrain information or other external spatial datasets to forest biophysical parameters can provide forest structural maps at large scales but the inherent uncertainties need to be evaluated fully. The goal of the present study was to evaluate relief characteristics, measured through geomorphometric variables, as predictors of forest structural characteristics such as average tree basal area (BA) and height (H) and average percentage canopy openness (CO). Our hypothesis is that geomorphometric variables are good predictors of the structure of primary tropical forest, even in areas, with low altitude variation. The study was performed at the Tapajós National Forest, located in the Western State of Pará, Brazil. Forty-three plots were sampled. Predictive models for BA, H and CO were parameterized based on geomorphometric variables using multiple linear regression. Validation of the models with nine independent sample plots revealed a Root Mean Square Error (RMSE) of 3.73 m2/ha (20%) for BA, 1.70 m (12%) for H, and 1.78% (21%) for CO. The coefficient of determination between observed and predicted values were r2 = 0.32 for CO, r2 = 0.26 for H and r2 = 0.52 for BA. The models obtained were able to adequately estimate BA and CO. In summary, it can be concluded that relief variables are good predictors of vegetation structure and enable the creation of forest structure maps in primary tropical rainforest with an acceptable uncertainty. PMID:27089013

  5. Predictive Models of Primary Tropical Forest Structure from Geomorphometric Variables Based on SRTM in the Tapajós Region, Brazilian Amazon.

    PubMed

    Bispo, Polyanna da Conceição; Dos Santos, João Roberto; Valeriano, Márcio de Morisson; Graça, Paulo Maurício Lima de Alencastro; Balzter, Heiko; França, Helena; Bispo, Pitágoras da Conceição

    2016-01-01

    Surveying primary tropical forest over large regions is challenging. Indirect methods of relating terrain information or other external spatial datasets to forest biophysical parameters can provide forest structural maps at large scales but the inherent uncertainties need to be evaluated fully. The goal of the present study was to evaluate relief characteristics, measured through geomorphometric variables, as predictors of forest structural characteristics such as average tree basal area (BA) and height (H) and average percentage canopy openness (CO). Our hypothesis is that geomorphometric variables are good predictors of the structure of primary tropical forest, even in areas, with low altitude variation. The study was performed at the Tapajós National Forest, located in the Western State of Pará, Brazil. Forty-three plots were sampled. Predictive models for BA, H and CO were parameterized based on geomorphometric variables using multiple linear regression. Validation of the models with nine independent sample plots revealed a Root Mean Square Error (RMSE) of 3.73 m2/ha (20%) for BA, 1.70 m (12%) for H, and 1.78% (21%) for CO. The coefficient of determination between observed and predicted values were r2 = 0.32 for CO, r2 = 0.26 for H and r2 = 0.52 for BA. The models obtained were able to adequately estimate BA and CO. In summary, it can be concluded that relief variables are good predictors of vegetation structure and enable the creation of forest structure maps in primary tropical rainforest with an acceptable uncertainty.

  6. An inverse modeling approach for semilunar heart valve leaflet mechanics: exploitation of tissue structure.

    PubMed

    Aggarwal, Ankush; Sacks, Michael S

    2016-08-01

    Determining the biomechanical behavior of heart valve leaflet tissues in a noninvasive manner remains an important clinical goal. While advances in 3D imaging modalities have made in vivo valve geometric data available, optimal methods to exploit such information in order to obtain functional information remain to be established. Herein we present and evaluate a novel leaflet shape-based framework to estimate the biomechanical behavior of heart valves from surface deformations by exploiting tissue structure. We determined accuracy levels using an "ideal" in vitro dataset, in which the leaflet geometry, strains, mechanical behavior, and fibrous structure were known to a high level of precision. By utilizing a simplified structural model for the leaflet mechanical behavior, we were able to limit the number of parameters to be determined per leaflet to only two. This approach allowed us to dramatically reduce the computational time and easily visualize the cost function to guide the minimization process. We determined that the image resolution and the number of available imaging frames were important components in the accuracy of our framework. Furthermore, our results suggest that it is possible to detect differences in fiber structure using our framework, thus allowing an opportunity to diagnose asymptomatic valve diseases and begin treatment at their early stages. Lastly, we observed good agreement of the final resulting stress-strain response when an averaged fiber architecture was used. This suggests that population-averaged fiber structural data may be sufficient for the application of the present framework to in vivo studies, although clearly much work remains to extend the present approach to in vivo problems.

  7. NMR studies of the backbone flexibility and structure of human growth hormone: a comparison of high and low pH conformations.

    PubMed

    Kasimova, Marina R; Kristensen, Søren M; Howe, Peter W A; Christensen, Thorkild; Matthiesen, Finn; Petersen, Jørgen; Sørensen, Hans H; Led, Jens J

    2002-05-03

    (15)N NMR relaxation parameters and amide (1)H/(2)H-exchange rates have been used to characterize the structural flexibility of human growth hormone (rhGH) at neutral and acidic pH. Our results show that the rigidity of the molecule is strongly affected by the solution conditions. At pH 7.0 the backbone dynamics parameters of rhGH are uniform along the polypeptide chain and their values are similar to those of other folded proteins. In contrast, at pH 2.7 the overall backbone flexibility increases substantially compared to neutral pH and the average order parameter approaches the lower limit expected for a folded protein. However, a significant variation of the backbone dynamics through the molecule indicates that under acidic conditions the mobility of the residues becomes more dependent on their location within the secondary structure units. In particular, the order parameters of certain loop regions decrease dramatically and become comparable to those found in unfolded proteins. Furthermore, the HN-exchange rates at low pH reveal that the residues most protected from exchange are clustered at one end of the helical bundle, forming a stable nucleus. We suggest that this nucleus maintains the overall fold of the protein under destabilizing conditions. We therefore conclude that the acid state of rhGH consists of a structurally conserved, but dynamically more flexible helical core surrounded by an aura of highly mobile, unstructured loops. However, in spite of its prominent flexibility the acid state of rhGH cannot be considered a "molten globule" state because of its high stability. It appears from our work that under certain conditions, a protein can tolerate a considerable increase in flexibility of its backbone, along with an increased penetration of water into its core, while still maintaining a stable folded conformation.

  8. Effects of the soil pore network architecture on the soil's physical functionalities

    NASA Astrophysics Data System (ADS)

    Smet, Sarah; Beckers, Eléonore; Léonard, Angélique; Degré, Aurore

    2017-04-01

    The soil fluid movement's prediction is of major interest within an agricultural or environmental scope because many processes depend ultimately on the soil fluids dynamic. It is common knowledge that the soil microscopic pore network structure governs the inner-soil convective fluids flow. There isn't, however, a general methodthat consider the pore network structure as a variable in the prediction of thecore scale soil's physical functionalities. There are various possible representations of the microscopic pore network: sample scale averaged structural parameters, extrapolation of theoretic pore network, or use of all the information available by modeling within the observed pore network. Different representations implydifferent analyzing methodologies. To our knowledge, few studies have compared the micro-and macroscopic soil's characteristics for the same soil core sample. The objective of our study is to explore the relationship between macroscopic physical properties and microscopic pore network structure. The saturated hydraulic conductivity, the air permeability, the retention curve, and others classical physical parameters were measured for ten soil samples from an agricultural field. The pore network characteristics were quantified through the analyses of X-ray micro-computed tomographic images(micro-CT system Skyscan-1172) with a voxel size of 22 µm3. Some of the first results confirmed what others studies had reported. Then, the comparison between macroscopic properties and microscopic parameters suggested that the air movements depended mostly on the pore connectivity and tortuosity than on the total porosity volume. We have also found that the fractal dimension calculated from the X-ray images and the fractal dimension calculated from the retention curve were significantly different. Our communication will detailthose results and discuss the methodology: would the results be similar with a different voxel size? What are the calculated and measured parameters uncertainties? Sarah Smet, as a research fellow, acknowledges the support of the National Fund for Scientific Research (Brussels, Belgium).

  9. [Changes of heart electrophysiological parameters after destruction of epicardial subplexuses that innervate sinoatrial node].

    PubMed

    Kulboka, Arūnas; Veikutis, Vincentas; Pauza, Dainius Haroldas; Lekas, Raimundas

    2003-01-01

    The aims of present study were to verify the topography of the intracardiac nerve subplexuses (INS) by using electrophysiological methods, its relations with sinoatrial (SA) node function and to investigate possibility of selective surgical SA node denervation. Fifteen mongrel dogs of either sex weighing 8 to 15 kg were used for electrophysiological studies. Both cervical vagosympathetic trunks were isolated and crushed by tight ligatures. Nervus subplexuses destructions were performed by cryocoagulation in three zones located around the right superior vena cava: ventral, lateral and dorsal. The sinus rhythm, SA node function recovery time, AV node conductivity, AV node and atrial effective refractory period were measured. Five experiments in each of three zones were performed. Experimental data show that destruction of the epicardial nerves has different effect on electrophysiological parameters. After destruction of the anterior zone of the right atrium the sinus rhythm decreased on an average by 11.6%; SA node function recovery time prolonged by 7.2%; AV node conductivity decreased by 13.1%; AV node effective refractory period prolonged by 12.9% and atrial effective refractory period, by 10.9 %. Measurements of electrophysiological parameters after intravenous injection of atropine sulphate show that sinus rhythm decreased on an average by 23.4%; SA node function recovery time increased by 9.1%; the conductivity of AV node decreased by 10.2%; AV node effective refractory period prolonged by 15.4% and atrial effective refractory period, by 13.2%. After destruction of the intracardiac nerves of the lateral zone, the sinus rhythm decreased by 15.7%; SA node function recovery time increased by 16.3%; AV node conductivity decreased by 8.3%; AV node effective refractory period and atrial effective refractory period prolonged by 11.9% and 10.0%, respectively. After the atropine sulphate intravenous injection, the sinus rhythm decreased on an average by 7.1%, SA node function recovery time prolonged by 7.1%, AV conductivity decreased by 9.1%, AV node effective refractory period increased by 12.4%, and atrial effective refractory period prolonged by 12.5%. After destruction of the nerves in the dorsal zone the changes of electrophysiological parameters were opposite to those obtained after destruction of the nerve tracts in the anterior or lateral zones: the sinus rhythm increased on an average by 4.3%; SA node function recovery time shortened by 8.8%; AV conductivity increased by 9.7%; AV node and atrial effective refractory period decreased by 12.3% and 12.1%, respectively. After intravenous atropine sulphate infusion, sinus rhythm decreased on an average by 8.3%; SA node function recovery time prolonged by 9.6%; AV node conductivity decreased by 5%; AV node and atrial effective refractory period prolonged by 4.2% and 5.2%, respectively. The average changes of electrophysiological parameters before and after INS destruction shows that cryocoagulation of ventral and lateral zones eliminates the effects of sympathetic tone to SA and AV nodal activity. Cryocoagulation of dorsal zone eliminates the effects of nervus vagus to both nodal structures. These findings shows the possibility alter or correct SA node function by making selective surgical SA node denervation.

  10. Adaptive model of the aging emmetropic eye and its changes with accommodation.

    PubMed

    Navarro, Rafael

    2014-11-20

    A general schematic model of the optical system of the emmetropic human eye is proposed, capable of adapting to changes with age and accommodation through adjustment of the optical surfaces and the internal gradient index structure of the lens. The specific models of the cornea and lens consist of minor generalizations of previous work by assuming them to be the sum of a biconic plus three higher order Zernike modes. The internal gradient index distribution adapts to the external shape so that the analytical expression is invariant with the changes with age and accommodation. The model also includes tips, tilts, and decentrations of the surfaces according to experimental findings. The specific parameters of these models are either constants or functions of age and/or accommodation. The model is polychromatic, and its optical performance was evaluated along the keratometric axis. Chromatic aberrations (longitudinal and transverse), astigmatism, coma, trefoil, and spherical aberration show good agreement with experimental averages. The change of these aberrations as a function of age or accommodation is also consistent with experimental findings (except for trefoil in eyes older than 50 years). This means that the average structure seems to predict the average performance. Nevertheless, the present model is too schematic to account for other higher order aberrations, such as tetrafoil, also present in real eyes. © 2014 ARVO.

  11. Encoding probabilistic brain atlases using Bayesian inference.

    PubMed

    Van Leemput, Koen

    2009-06-01

    This paper addresses the problem of creating probabilistic brain atlases from manually labeled training data. Probabilistic atlases are typically constructed by counting the relative frequency of occurrence of labels in corresponding locations across the training images. However, such an "averaging" approach generalizes poorly to unseen cases when the number of training images is limited, and provides no principled way of aligning the training datasets using deformable registration. In this paper, we generalize the generative image model implicitly underlying standard "average" atlases, using mesh-based representations endowed with an explicit deformation model. Bayesian inference is used to infer the optimal model parameters from the training data, leading to a simultaneous group-wise registration and atlas estimation scheme that encompasses standard averaging as a special case. We also use Bayesian inference to compare alternative atlas models in light of the training data, and show how this leads to a data compression problem that is intuitive to interpret and computationally feasible. Using this technique, we automatically determine the optimal amount of spatial blurring, the best deformation field flexibility, and the most compact mesh representation. We demonstrate, using 2-D training datasets, that the resulting models are better at capturing the structure in the training data than conventional probabilistic atlases. We also present experiments of the proposed atlas construction technique in 3-D, and show the resulting atlases' potential in fully-automated, pulse sequence-adaptive segmentation of 36 neuroanatomical structures in brain MRI scans.

  12. Thomson scattering from a three-component plasma.

    PubMed

    Johnson, W R; Nilsen, J

    2014-02-01

    A model for a three-component plasma consisting of two distinct ionic species and electrons is developed and applied to study x-ray Thomson scattering. Ions of a specific type are assumed to be identical and are treated in the average-atom approximation. Given the plasma temperature and density, the model predicts mass densities, effective ionic charges, and cell volumes for each ionic type, together with the plasma chemical potential and free-electron density. Additionally, the average-atom treatment of individual ions provides a quantum-mechanical description of bound and continuum electrons. The model is used to obtain parameters needed to determine the dynamic structure factors for x-ray Thomson scattering from a three-component plasma. The contribution from inelastic scattering by free electrons is evaluated in the random-phase approximation. The contribution from inelastic scattering by bound electrons is evaluated using the bound-state and scattering wave functions obtained from the average-atom calculations. Finally, the partial static structure factors for elastic scattering by ions are evaluated using a two-component version of the Ornstein-Zernike equations with hypernetted chain closure, in which electron-ion interactions are accounted for using screened ion-ion interaction potentials. The model is used to predict the x-ray Thomson scattering spectrum from a CH plasma and the resulting spectrum is compared with experimental results obtained by Feltcher et al. [Phys. Plasmas 20, 056316 (2013)].

  13. A Data Analytics Approach to Discovering Unique Microstructural Configurations Susceptible to Fatigue

    NASA Astrophysics Data System (ADS)

    Jha, S. K.; Brockman, R. A.; Hoffman, R. M.; Sinha, V.; Pilchak, A. L.; Porter, W. J.; Buchanan, D. J.; Larsen, J. M.; John, R.

    2018-05-01

    Principal component analysis and fuzzy c-means clustering algorithms were applied to slip-induced strain and geometric metric data in an attempt to discover unique microstructural configurations and their frequencies of occurrence in statistically representative instantiations of a titanium alloy microstructure. Grain-averaged fatigue indicator parameters were calculated for the same instantiation. The fatigue indicator parameters strongly correlated with the spatial location of the microstructural configurations in the principal components space. The fuzzy c-means clustering method identified clusters of data that varied in terms of their average fatigue indicator parameters. Furthermore, the number of points in each cluster was inversely correlated to the average fatigue indicator parameter. This analysis demonstrates that data-driven methods have significant potential for providing unbiased determination of unique microstructural configurations and their frequencies of occurrence in a given volume from the point of view of strain localization and fatigue crack initiation.

  14. Translating landfill methane generation parameters among first-order decay models.

    PubMed

    Krause, Max J; Chickering, Giles W; Townsend, Timothy G

    2016-11-01

    Landfill gas (LFG) generation is predicted by a first-order decay (FOD) equation that incorporates two parameters: a methane generation potential (L 0 ) and a methane generation rate (k). Because non-hazardous waste landfills may accept many types of waste streams, multiphase models have been developed in an attempt to more accurately predict methane generation from heterogeneous waste streams. The ability of a single-phase FOD model to predict methane generation using weighted-average methane generation parameters and tonnages translated from multiphase models was assessed in two exercises. In the first exercise, waste composition from four Danish landfills represented by low-biodegradable waste streams was modeled in the Afvalzorg Multiphase Model and methane generation was compared to the single-phase Intergovernmental Panel on Climate Change (IPCC) Waste Model and LandGEM. In the second exercise, waste composition represented by IPCC waste components was modeled in the multiphase IPCC and compared to single-phase LandGEM and Australia's Solid Waste Calculator (SWC). In both cases, weight-averaging of methane generation parameters from waste composition data in single-phase models was effective in predicting cumulative methane generation from -7% to +6% of the multiphase models. The results underscore the understanding that multiphase models will not necessarily improve LFG generation prediction because the uncertainty of the method rests largely within the input parameters. A unique method of calculating the methane generation rate constant by mass of anaerobically degradable carbon was presented (k c ) and compared to existing methods, providing a better fit in 3 of 8 scenarios. Generally, single phase models with weighted-average inputs can accurately predict methane generation from multiple waste streams with varied characteristics; weighted averages should therefore be used instead of regional default values when comparing models. Translating multiphase first-order decay model input parameters by weighted average shows that single-phase models can predict cumulative methane generation within the level of uncertainty of many of the input parameters as defined by the Intergovernmental Panel on Climate Change (IPCC), which indicates that decreasing the uncertainty of the input parameters will make the model more accurate rather than adding multiple phases or input parameters.

  15. Seismic anisotropy of the crust and upper mantle in central Tibetan Plateau revealed by shear-wave splitting

    NASA Astrophysics Data System (ADS)

    Wu, C.; Tian, X.; Xu, T.; Liang, X.; Chen, Y.; Teng, J.

    2017-12-01

    Seismic anisotropy that results from deformation of the materials in the Earth is essentially important for understanding the deformation styles at different depths. In the central Tibetan Plateau the shear wave splitting measurements of local S-wave, Pms and SKS phases were calculated applying the broadband seismic data of SANDWICH array, and the anisotropy features of the crust and upper mantle were displayed. SKS splitting results show that the study area is strongly anisotropic as a whole. The average splitting parameters are 65.2°/1.28 s, and there are 17 stations existing individual splitting results larger than 2.0 s. The southeastern part is weakly anisotropic with average splitting parameters 61.0°/0.64 s. Applying spatial coherence technique the optimal depth of the source of anisotropy is 130 160 km, located in the asthenosphere. The subducting Indian plate advancing in NE direction and rigid blocks such as Qaidam basin obstructing in the north cause NEE direction asthenospheric flow which produces the anisotropy. The weak anisotropy of southeastern part is corresponding to the low velocity anomalies in the upper mantle, which may be attributed to local upwelling of asthenosphere from the slab tearing region. The crust media also make contribution to the strong anisotropy. S-wave splitting results which reflect upper crust anisotropy show that the average parameters of three stations in western part are 60.4°/1.53 ms/km, and those of two stations in eastern part are 10.9°/4.64 ms/km. The principle compressive stress controlled by structures varies from NE in the west to nearly NS in the east. Under the assumption that the thickness of upper crust is 20 km, the delay time of upper crust is smaller than 0.1 s. Whole crust anisotropy is obtained by calculating receiver functions and fitting the variation of arrival times of Pms phases with the backazimuths. The fast directions are NE-EW direction with average value 76.4°, nearly consistent with SKS fast directions, and the average delay time is about 0.5 s. The source of crust anisotropy mainly comes from middle-lower crust, which is possibly related to middle-lower crust flow.

  16. Ceramics Analysis and Reliability Evaluation of Structures (CARES). Users and programmers manual

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Manderscheid, Jane M.; Gyekenyesi, John P.

    1990-01-01

    This manual describes how to use the Ceramics Analysis and Reliability Evaluation of Structures (CARES) computer program. The primary function of the code is to calculate the fast fracture reliability or failure probability of macroscopically isotropic ceramic components. These components may be subjected to complex thermomechanical loadings, such as those found in heat engine applications. The program uses results from MSC/NASTRAN or ANSYS finite element analysis programs to evaluate component reliability due to inherent surface and/or volume type flaws. CARES utilizes the Batdorf model and the two-parameter Weibull cumulative distribution function to describe the effect of multiaxial stress states on material strength. The principle of independent action (PIA) and the Weibull normal stress averaging models are also included. Weibull material strength parameters, the Batdorf crack density coefficient, and other related statistical quantities are estimated from four-point bend bar or unifrom uniaxial tensile specimen fracture strength data. Parameter estimation can be performed for single or multiple failure modes by using the least-square analysis or the maximum likelihood method. Kolmogorov-Smirnov and Anderson-Darling goodness-of-fit tests, ninety percent confidence intervals on the Weibull parameters, and Kanofsky-Srinivasan ninety percent confidence band values are also provided. The probabilistic fast-fracture theories used in CARES, along with the input and output for CARES, are described. Example problems to demonstrate various feature of the program are also included. This manual describes the MSC/NASTRAN version of the CARES program.

  17. A Stochastic Kinematic Model of Class Averaging in Single-Particle Electron Microscopy

    PubMed Central

    Park, Wooram; Midgett, Charles R.; Madden, Dean R.; Chirikjian, Gregory S.

    2011-01-01

    Single-particle electron microscopy is an experimental technique that is used to determine the 3D structure of biological macromolecules and the complexes that they form. In general, image processing techniques and reconstruction algorithms are applied to micrographs, which are two-dimensional (2D) images taken by electron microscopes. Each of these planar images can be thought of as a projection of the macromolecular structure of interest from an a priori unknown direction. A class is defined as a collection of projection images with a high degree of similarity, presumably resulting from taking projections along similar directions. In practice, micrographs are very noisy and those in each class are aligned and averaged in order to reduce the background noise. Errors in the alignment process are inevitable due to noise in the electron micrographs. This error results in blurry averaged images. In this paper, we investigate how blurring parameters are related to the properties of the background noise in the case when the alignment is achieved by matching the mass centers and the principal axes of the experimental images. We observe that the background noise in micrographs can be treated as Gaussian. Using the mean and variance of the background Gaussian noise, we derive equations for the mean and variance of translational and rotational misalignments in the class averaging process. This defines a Gaussian probability density on the Euclidean motion group of the plane. Our formulation is validated by convolving the derived blurring function representing the stochasticity of the image alignments with the underlying noiseless projection and comparing with the original blurry image. PMID:21660125

  18. Some relations between streamflow characteristics and the environment in the Delaware River region

    USGS Publications Warehouse

    Hely, A.G.; Olmsted, F.H.

    1963-01-01

    Streamflow characteristics are determined by a large number of factors of the meteorological and terrestrial environments. Because of lack of quantitative data to describe some of the factors and complex interrelations among them, complete analysis of the relations between streamflow and the various environmental factors is impossible. However, certain simplifying assumptions and generalizations made possible a partial analysis for the Delaware River region. For relations involving average runoff or low-flow parameters, average annual precipitation was assumed to be the principal meteorological factor, and geology (a complex of many factors) was assumed to be the principal terrestrial influence, except for that of basin size which was largely eliminated by expression of discharge in terms of unit area. As a first approximation, physiographic units were used as a basis for classifying the geology. Relations between flow parameters and precipitation are fairly well defined for some physiographic units, but not for those in which the geology varies markedly or the areal variation in average precipitation is very small. These relations provide a basis for adjusting the flow parameters to reduce or eliminate the effects of areal variations in precipitation and increase their significance in studies of the effects of terrestrial characteristics. An investigation of the residual effect of basin size (the effect remaining when discharge is expressed in terms of unit area) on relations between flow parameters and average precipitation indicates that such effect is negligible, except for very large differences in area. Parameters that are derived from base-flow recession curves and are related to a common discharge per unit area have inherent advantages as indicators of effects of terrestrial characteristics of basins, because the.y are independent of areal variations in average annual precipitation. Winter base-flow parameters are also practically independent of the effects of evapotranspiration from ground water. However, in many parts of the region these advantages are reduced or nullified by the difficulties of defining base-flow recession curves, particularly winter curves, with sufficient accuracy. In the absence of suitable base-flow recession data and a suitable basis for adjusting parameters, the ratio of the discharge equaled or exceeded 90 percent of the time to the average discharge (Qtt/Qa), or a similar duration parameter, probably is the best indicator of the influence of terrestrial characteristics, although the ratio may vary somewhat with average precipitation. In a part of the region where geologic differences are large and areal variations in average precipitation are small, values of Qm/Qa for each major geologic unit were determined from streamflow records. From these values and the percentage of area represented by each unit, a ratio for each gaging station was computed. Comparison of these computed results with the observed results indicates that nearly all of the variation in the ratio is associated with variation in geology. The investigation indicates that the original assumptions are correct; average precipitation is the principal meteorological influence and geology is the principal terrestrial influence. Together these two factors account for a very large proportion of the variation in average runoff and low-flow characteristics

  19. A Firefly-Inspired Method for Protein Structure Prediction in Lattice Models

    PubMed Central

    Maher, Brian; Albrecht, Andreas A.; Loomes, Martin; Yang, Xin-She; Steinhöfel, Kathleen

    2014-01-01

    We introduce a Firefly-inspired algorithmic approach for protein structure prediction over two different lattice models in three-dimensional space. In particular, we consider three-dimensional cubic and three-dimensional face-centred-cubic (FCC) lattices. The underlying energy models are the Hydrophobic-Polar (H-P) model, the Miyazawa–Jernigan (M-J) model and a related matrix model. The implementation of our approach is tested on ten H-P benchmark problems of a length of 48 and ten M-J benchmark problems of a length ranging from 48 until 61. The key complexity parameter we investigate is the total number of objective function evaluations required to achieve the optimum energy values for the H-P model or competitive results in comparison to published values for the M-J model. For H-P instances and cubic lattices, where data for comparison are available, we obtain an average speed-up over eight instances of 2.1, leaving out two extreme values (otherwise, 8.8). For six M-J instances, data for comparison are available for cubic lattices and runs with a population size of 100, where, a priori, the minimum free energy is a termination criterion. The average speed-up over four instances is 1.2 (leaving out two extreme values, otherwise 1.1), which is achieved for a population size of only eight instances. The present study is a test case with initial results for ad hoc parameter settings, with the aim of justifying future research on larger instances within lattice model settings, eventually leading to the ultimate goal of implementations for off-lattice models. PMID:24970205

  20. A firefly-inspired method for protein structure prediction in lattice models.

    PubMed

    Maher, Brian; Albrecht, Andreas A; Loomes, Martin; Yang, Xin-She; Steinhöfel, Kathleen

    2014-01-07

    We introduce a Firefly-inspired algorithmic approach for protein structure prediction over two different lattice models in three-dimensional space. In particular, we consider three-dimensional cubic and three-dimensional face-centred-cubic (FCC) lattices. The underlying energy models are the Hydrophobic-Polar (H-P) model, the Miyazawa-Jernigan (M-J) model and a related matrix model. The implementation of our approach is tested on ten H-P benchmark problems of a length of 48 and ten M-J benchmark problems of a length ranging from 48 until 61. The key complexity parameter we investigate is the total number of objective function evaluations required to achieve the optimum energy values for the H-P model or competitive results in comparison to published values for the M-J model. For H-P instances and cubic lattices, where data for comparison are available, we obtain an average speed-up over eight instances of 2.1, leaving out two extreme values (otherwise, 8.8). For six M-J instances, data for comparison are available for cubic lattices and runs with a population size of 100, where, a priori, the minimum free energy is a termination criterion. The average speed-up over four instances is 1.2 (leaving out two extreme values, otherwise 1.1), which is achieved for a population size of only eight instances. The present study is a test case with initial results for ad hoc parameter settings, with the aim of justifying future research on larger instances within lattice model settings, eventually leading to the ultimate goal of implementations for off-lattice models.

  1. Improved Model for Predicting the Free Energy Contribution of Dinucleotide Bulges to RNA Duplex Stability.

    PubMed

    Tomcho, Jeremy C; Tillman, Magdalena R; Znosko, Brent M

    2015-09-01

    Predicting the secondary structure of RNA is an intermediate in predicting RNA three-dimensional structure. Commonly, determining RNA secondary structure from sequence uses free energy minimization and nearest neighbor parameters. Current algorithms utilize a sequence-independent model to predict free energy contributions of dinucleotide bulges. To determine if a sequence-dependent model would be more accurate, short RNA duplexes containing dinucleotide bulges with different sequences and nearest neighbor combinations were optically melted to derive thermodynamic parameters. These data suggested energy contributions of dinucleotide bulges were sequence-dependent, and a sequence-dependent model was derived. This model assigns free energy penalties based on the identity of nucleotides in the bulge (3.06 kcal/mol for two purines, 2.93 kcal/mol for two pyrimidines, 2.71 kcal/mol for 5'-purine-pyrimidine-3', and 2.41 kcal/mol for 5'-pyrimidine-purine-3'). The predictive model also includes a 0.45 kcal/mol penalty for an A-U pair adjacent to the bulge and a -0.28 kcal/mol bonus for a G-U pair adjacent to the bulge. The new sequence-dependent model results in predicted values within, on average, 0.17 kcal/mol of experimental values, a significant improvement over the sequence-independent model. This model and new experimental values can be incorporated into algorithms that predict RNA stability and secondary structure from sequence.

  2. Shear Wave Splitting Underneath Northwest Canada and Eastern Alaska from Transportable Array and Mackenzie Mountains Data

    NASA Astrophysics Data System (ADS)

    Schutt, D.; Witt, D. R.; Aster, R. C.; Freymueller, J.; Cubley, J. F.

    2017-12-01

    Shear wave splitting results from the Northern Cordillera and surroundings will be presented. This complex tectonic setting contains a subduction zone responding to the Yakutat Indenter, an oceanic plateau fragment, a slab window under the Yukon Territory, and the actively uplifting Mackenzie Mountains. A particular goal of this project is to understand whether asthenospheric tractions play a significant role in Mackenzie Mountain uplift. Using a new method for calculating station-averaged splitting parameters, we have analyzed stations that span a large part of the region and therefore can see the variation in splitting parameters from the dynamic NA-PA subduction zone to the stable Slave Craton. Like other shear wave splitting studies in the Northern Cordillera, we find abrupt changes in fast axis direction along the continental margin, while the continental interior displays more coherent splitting parameters. This study is also the first to look at data from a recent deployment through center of the Mackenzie Mountains. Northeast of the Tintina Fault, we find average fast axes directions that are very close to the absolute NA plate motion but our large deviations from event to event suggest that there is some crustal anisotropy and/or dipping structure present. This observation appears to support the idea of a lower crustal décollement that has been put forth by Mazzoti and Hyndman [2002]. These results serve as a broad regional overview of mantle anisotropy and may also shed light on frozen lithospheric deformation.

  3. Effect of 655 nm laser different powers on dog sperm motility parameters

    NASA Astrophysics Data System (ADS)

    Corral-Baqués, M. I.; Rigau, T.; Rivera, M. M.; Rodríguez-Gil, J. E.; Rigau, J.

    2006-04-01

    Introduction: One of the most appreciated features of the sperm is its motility, which depends on a big energy consumption despite differences among species. Laser acts direct or indirectly on mitochondria increasing ATP production. Material and method: By means of a Computer Aided Sperm Analysis (CASA) we have studied the effects of a 655 nm continuous wave diode laser irradiation at different power outputs with a dose of 3.3418 J on sperm motility. After an eosine-nigrosine stain to establish its quality, the second fraction of fresh beagle dog sperm was divided into 5 groups, 1 control and four to be irradiated respectively with an average output power of 6.84 mW, 15.43 mW, 33.05 mW and 49.66 mW. At times 0 and 45 minutes from irradiation pictures were taken and analysed with the Sperm class Analyzer SCA2002 programme. The motility parameters of 4987 spermatozoa studied were: curvilinear velocity (VCL), progressive velocity (VSL), straightness (STR), wobble (WOB), average path velocity (VAP), linearity (LIN), mean amplitude of lateral head displacement (ALHmed), beat cross frequency (BCF) and the total motility (MT). At time 15 minutes after irradiation a hypoosmotic swelling test (HOST) was done. Results: Several motility parameters that affect the overall motile sperm subpopulation structure have been changed by different output powers of a 655 nm diode laser irradiation, and prevents the decrease of the sperm motility properties along time.

  4. Diurnal variation of oxygen and carbonate system parameters in Tampa Bay and Florida Bay

    USGS Publications Warehouse

    Yates, K.K.; Dufore, C.; Smiley, N.; Jackson, C.; Halley, R.B.

    2007-01-01

    Oxygen and carbonate system parameters were measured, in situ, over diurnal cycles in Tampa Bay and Florida Bay, Florida. All system parameters showed distinct diurnal trends in Tampa Bay with an average range of diurnal variation of 39.1 μmol kg− 1 for total alkalinity, 165.1 μmol kg− 1 for total CO2, 0.22 for pH, 0.093 mmol L− 1 for dissolved oxygen, and 218.1 μatm for pCO2. Average range of diurnal variation for system parameters in Tampa Bay was 73% to 93% of the seasonal range of variability for dissolved oxygen and pH. All system parameters measured in Florida Bay showed distinct variation over diurnal time-scales. However, clear diurnal trends were less evident. The average range of diurnal variability in Florida Bay was 62.8 μmol kg− 1 for total alkalinity, 130.4 μmol kg− 1 for total CO2, 0.13 for pH, 0.053 mmol L− 1 for dissolved oxygen, and 139.8 μatm for pCO2. The average range of diurnal variation was 14% to 102% of the seasonal ranges for these parameters. Diurnal variability in system parameters was most influenced by primary productivity and respiration of benthic communities in Tampa Bay, and by precipitation and dissolution of calcium carbonate in Florida Bay. Our data indicate that use of seasonal data sets without careful consideration of diurnal variability may impart significant error in calculations of annual carbon and oxygen budgets. These observations reinforce the need for higher temporal resolution measurements of oxygen and carbon system parameters in coastal ecosystems.

  5. Salient features of dependence in daily US stock market indices

    NASA Astrophysics Data System (ADS)

    Gil-Alana, Luis A.; Cunado, Juncal; de Gracia, Fernando Perez

    2013-08-01

    This paper deals with the analysis of long range dependence in the US stock market. We focus first on the log-values of the Dow Jones Industrial Average, Standard and Poors 500 and Nasdaq indices, daily from February, 1971 to February, 2007. The volatility processes are examined based on the squared and the absolute values of the returns series, and the stability of the parameters across time is also investigated in both the level and the volatility processes. A method that permits us to estimate fractional differencing parameters in the context of structural breaks is conducted in this paper. Finally, the “day of the week” effect is examined by looking at the order of integration for each day of the week, providing also a new modeling approach to describe the dependence in this context.

  6. Single-ping ADCP measurements in the Strait of Gibraltar

    NASA Astrophysics Data System (ADS)

    Sammartino, Simone; García Lafuente, Jesús; Naranjo, Cristina; Sánchez Garrido, José Carlos; Sánchez Leal, Ricardo

    2016-04-01

    In most Acoustic Doppler Current Profiler (ADCP) user manuals, it is widely recommended to apply ensemble averaging of the single-pings measurements, in order to obtain reliable observations of the current speed. The random error related to the single-ping measurement is typically too high to be used directly, while the averaging operation reduces the ensemble error of a factor of approximately √N, with N the number of averaged pings. A 75 kHz ADCP moored in the western exit of the Strait of Gibraltar, included in the long-term monitoring of the Mediterranean outflow, has recently served as test setup for a different approach to current measurements. The ensemble averaging has been disabled, while maintaining the internal coordinate conversion made by the instrument, and a series of single-ping measurements has been collected every 36 seconds during a period of approximately 5 months. The huge amount of data has been fluently handled by the instrument, and no abnormal battery consumption has been recorded. On the other hand a long and unique series of very high frequency current measurements has been collected. Results of this novel approach have been exploited in a dual way: from a statistical point of view, the availability of single-ping measurements allows a real estimate of the (a posteriori) ensemble average error of both current and ancillary variables. While the theoretical random error for horizontal velocity is estimated a priori as ˜2 cm s-1 for a 50 pings ensemble, the value obtained by the a posteriori averaging is ˜15 cm s-1, with an asymptotical behavior starting from an averaging size of 10 pings per ensemble. This result suggests the presence of external sources of random error (e.g.: turbulence), of higher magnitude than the internal sources (ADCP intrinsic precision), which cannot be reduced by the ensemble averaging. On the other hand, although the instrumental configuration is clearly not suitable for a precise estimation of turbulent parameters, some hints of the turbulent structure of the flow can be obtained by the empirical computation of zonal Reynolds stress (along the predominant direction of the current) and rate of production and dissipation of turbulent kinetic energy. All the parameters show a clear correlation with tidal fluctuations of the current, with maximum values coinciding with flood tides, during the maxima of the outflow Mediterranean current.

  7. Climate modeling for Yamal territory using supercomputer atmospheric circulation model ECHAM5-wiso

    NASA Astrophysics Data System (ADS)

    Denisova, N. Y.; Gribanov, K. G.; Werner, M.; Zakharov, V. I.

    2015-11-01

    Dependences of monthly means of regional averages of model atmospheric parameters on initial and boundary condition remoteness in the past are the subject of the study. We used atmospheric general circulation model ECHAM5-wiso for simulation of monthly means of regional averages of climate parameters for Yamal region and different periods of premodeling. Time interval was varied from several months to 12 years. We present dependences of model monthly means of regional averages of surface temperature, 2 m air temperature and humidity for December of 2000 on duration of premodeling. Comparison of these results with reanalysis data showed that best coincidence with true parameters could be reached if duration of pre-modelling is approximately 10 years.

  8. Relaxation dynamics of multilayer triangular Husimi cacti

    NASA Astrophysics Data System (ADS)

    Galiceanu, Mircea; Jurjiu, Aurel

    2016-09-01

    We focus on the relaxation dynamics of multilayer polymer structures having, as underlying topology, the Husimi cactus. The relaxation dynamics of the multilayer structures is investigated in the framework of generalized Gaussian structures model using both Rouse and Zimm approaches. In the Rouse type-approach, we determine analytically the complete eigenvalues spectrum and based on it we calculate the mechanical relaxation moduli (storage and loss modulus) and the average monomer displacement. First, we monitor these physical quantities for structures with a fixed generation number and we increase the number of layers, such that the linear topology will smoothly come into play. Second, we keep constant the size of the structures, varying simultaneously two parameters: the generation number of the main layer, G, and the number of layers, c. This fact allows us to study in detail the crossover from a pure Husimi cactus behavior to a predominately linear chain behavior. The most interesting situation is found when the two limiting topologies cancel each other. For this case, we encounter in the intermediate frequency/time domain regions of constant slope for different values of the parameter set (G, c) and we show that the number of layers follows an exponential-law of G. In the Zimm-type approach, which includes the hydrodynamic interactions, the quantities that describe the mechanical relaxation dynamics do not show scaling behavior as in the Rouse model, except the limiting case, namely, a very high number of layers and low generation number.

  9. Combined non-parametric and parametric approach for identification of time-variant systems

    NASA Astrophysics Data System (ADS)

    Dziedziech, Kajetan; Czop, Piotr; Staszewski, Wieslaw J.; Uhl, Tadeusz

    2018-03-01

    Identification of systems, structures and machines with variable physical parameters is a challenging task especially when time-varying vibration modes are involved. The paper proposes a new combined, two-step - i.e. non-parametric and parametric - modelling approach in order to determine time-varying vibration modes based on input-output measurements. Single-degree-of-freedom (SDOF) vibration modes from multi-degree-of-freedom (MDOF) non-parametric system representation are extracted in the first step with the use of time-frequency wavelet-based filters. The second step involves time-varying parametric representation of extracted modes with the use of recursive linear autoregressive-moving-average with exogenous inputs (ARMAX) models. The combined approach is demonstrated using system identification analysis based on the experimental mass-varying MDOF frame-like structure subjected to random excitation. The results show that the proposed combined method correctly captures the dynamics of the analysed structure, using minimum a priori information on the model.

  10. Structure of a magnetic flux annihilation layer formed by the collision of supersonic, magnetized plasma flows

    DOE PAGES

    Suttle, L. G.; Hare, J. D.; Lebedev, S. V.; ...

    2016-05-31

    We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counter-streaming, supersonic and magnetized aluminum plasma flows. The anti parallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure—two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (T i~¯ZT e, with average ionization ¯Z=7). Lastly, analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilationmore » of the in-flowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities.« less

  11. Structure and dynamics of phosphate ion in aqueous solution: an ab initio QMCF MD study.

    PubMed

    Pribil, Andreas B; Hofer, Thomas S; Randolf, Bernhard R; Rode, Bernd M

    2008-11-15

    A simulation of phosphate in aqueous solution was carried out employing the new QMCF MD approach which offers the possibility to investigate composite systems with the accuracy of a QMMM method but without the time consuming creation of solute-solvent potential functions. The data of the simulations give a clear picture of the hydration shells of the phosphate anion. The first shell consists of 13 water molecules and each oxygen of the phosphate forms in average three hydrogens bonds to different solvent molecules. Several structural parameters such as radial distribution functions and coordination number distributions allow to fully characterize the embedding of the highly charged phosphate ion in the solvent water. The dynamics of the hydration structure of phosphate are described by mean residence times of the solvent molecules in the first hydration shell and the water exchange rate. 2008 Wiley Periodicals, Inc.

  12. Structure of a magnetic flux annihilation layer formed by the collision of supersonic, magnetized plasma flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suttle, L. G.; Hare, J. D.; Lebedev, S. V.

    We present experiments characterizing the detailed structure of a current layer, generated by the collision of two counter-streaming, supersonic and magnetized aluminum plasma flows. The anti parallel magnetic fields advected by the flows are found to be mutually annihilated inside the layer, giving rise to a bifurcated current structure—two narrow current sheets running along the outside surfaces of the layer. Measurements with Thomson scattering show a fast outflow of plasma along the layer and a high ion temperature (T i~¯ZT e, with average ionization ¯Z=7). Lastly, analysis of the spatially resolved plasma parameters indicates that the advection and subsequent annihilationmore » of the in-flowing magnetic flux determines the structure of the layer, while the ion heating could be due to the development of kinetic, current-driven instabilities.« less

  13. The effects of intraspecific competition and stabilizing selection on a polygenic trait.

    PubMed Central

    Bürger, Reinhard; Gimelfarb, Alexander

    2004-01-01

    The equilibrium properties of an additive multilocus model of a quantitative trait under frequency- and density-dependent selection are investigated. Two opposing evolutionary forces are assumed to act: (i) stabilizing selection on the trait, which favors genotypes with an intermediate phenotype, and (ii) intraspecific competition mediated by that trait, which favors genotypes whose effect on the trait deviates most from that of the prevailing genotypes. Accordingly, fitnesses of genotypes have a frequency-independent component describing stabilizing selection and a frequency- and density-dependent component modeling competition. We study how the equilibrium structure, in particular, number, degree of polymorphism, and genetic variance of stable equilibria, is affected by the strength of frequency dependence, and what role the number of loci, the amount of recombination, and the demographic parameters play. To this end, we employ a statistical and numerical approach, complemented by analytical results, and explore how the equilibrium properties averaged over a large number of genetic systems with a given number of loci and average amount of recombination depend on the ecological and demographic parameters. We identify two parameter regions with a transitory region in between, in which the equilibrium properties of genetic systems are distinctively different. These regions depend on the strength of frequency dependence relative to pure stabilizing selection and on the demographic parameters, but not on the number of loci or the amount of recombination. We further study the shape of the fitness function observed at equilibrium and the extent to which the dynamics in this model are adaptive, and we present examples of equilibrium distributions of genotypic values under strong frequency dependence. Consequences for the maintenance of genetic variation, the detection of disruptive selection, and models of sympatric speciation are discussed. PMID:15280253

  14. Estimating catchment-scale groundwater dynamics from recession analysis - enhanced constraining of hydrological models

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Mengistu, Zelalem

    2016-12-01

    In this study, we propose a new formulation of subsurface water storage dynamics for use in rainfall-runoff models. Under the assumption of a strong relationship between storage and runoff, the temporal distribution of catchment-scale storage is considered to have the same shape as the distribution of observed recessions (measured as the difference between the log of runoff values). The mean subsurface storage is estimated as the storage at steady state, where moisture input equals the mean annual runoff. An important contribution of the new formulation is that its parameters are derived directly from observed recession data and the mean annual runoff. The parameters are hence estimated prior to model calibration against runoff. The new storage routine is implemented in the parameter parsimonious distance distribution dynamics (DDD) model and has been tested for 73 catchments in Norway of varying size, mean elevation and landscape type. Runoff simulations for the 73 catchments from two model structures (DDD with calibrated subsurface storage and DDD with the new estimated subsurface storage) were compared. Little loss in precision of runoff simulations was found using the new estimated storage routine. For the 73 catchments, an average of the Nash-Sutcliffe efficiency criterion of 0.73 was obtained using the new estimated storage routine compared with 0.75 using calibrated storage routine. The average Kling-Gupta efficiency criterion was 0.80 and 0.81 for the new and old storage routine, respectively. Runoff recessions are more realistically modelled using the new approach since the root mean square error between the mean of observed and simulated recession characteristics was reduced by almost 50 % using the new storage routine. The parameters of the proposed storage routine are found to be significantly correlated to catchment characteristics, which is potentially useful for predictions in ungauged basins.

  15. SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model.

    PubMed

    Vaguine, A A; Richelle, J; Wodak, S J

    1999-01-01

    In this paper we present SFCHECK, a stand-alone software package that features a unified set of procedures for evaluating the structure-factor data obtained from X-ray diffraction experiments and for assessing the agreement of the atomic coordinates with these data. The evaluation is performed completely automatically, and produces a concise PostScript pictorial output similar to that of PROCHECK [Laskowski, MacArthur, Moss & Thornton (1993). J. Appl. Cryst. 26, 283-291], greatly facilitating visual inspection of the results. The required inputs are the structure-factor amplitudes and the atomic coordinates. Having those, the program summarizes relevant information on the deposited structure factors and evaluates their quality using criteria such as data completeness, structure-factor uncertainty and the optical resolution computed from the Patterson origin peak. The dependence of various parameters on the nominal resolution (d spacing) is also given. To evaluate the global agreement of the atomic model with the experimental data, the program recomputes the R factor, the correlation coefficient between observed and calculated structure-factor amplitudes and Rfree (when appropriate). In addition, it gives several estimates of the average error in the atomic coordinates. The local agreement between the model and the electron-density map is evaluated on a per-residue basis, considering separately the macromolecule backbone and side-chain atoms, as well as solvent atoms and heterogroups. Among the criteria are the normalized average atomic displacement, the local density correlation coefficient and the polymer chain connectivity. The possibility of computing these criteria using the omit-map procedure is also provided. The described software should be a valuable tool in monitoring the refinement procedure and in assessing structures deposited in databases.

  16. Evolution of a plastic quantitative trait in an age-structured population in a fluctuating environment.

    PubMed

    Engen, Steinar; Lande, Russell; Saether, Bernt-Erik

    2011-10-01

    We analyze weak fluctuating selection on a quantitative character in an age-structured population not subject to density regulation. We assume that early in the first year of life before selection, during a critical state of development, environments exert a plastic effect on the phenotype, which remains constant throughout the life of an individual. Age-specific selection on the character affects survival and fecundity, which have intermediate optima subject to temporal environmental fluctuations with directional selection in some age classes as special cases. Weighting individuals by their reproductive value, as suggested by Fisher, we show that the expected response per year in the weighted mean character has the same form as for models with no age structure. Environmental stochasticity generates stochastic fluctuations in the weighted mean character following a first-order autoregressive model with a temporally autocorrelated noise term and stationary variance depending on the amount of phenotypic plasticity. The parameters of the process are simple weighted averages of parameters used to describe age-specific survival and fecundity. The "age-specific selective weights" are related to the stable distribution of reproductive values among age classes. This allows partitioning of the change in the weighted mean character into age-specific components. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  17. In-situ time-of-flight neutron diffraction study of the structure evolution of electrode materials in a commercial battery with LiNi0.8Co0.15Al0.05O2 cathode

    NASA Astrophysics Data System (ADS)

    Bobrikov, I. A.; Samoylova, N. Yu.; Sumnikov, S. V.; Ivanshina, O. Yu.; Vasin, R. N.; Beskrovnyi, A. I.; Balagurov, A. M.

    2017-12-01

    A commercial lithium-ion battery with LiNi0.8Co0.15Al0.05O2 (NCA) cathode has been studied in situ using high-intensity and high-resolution neutron diffraction. Structure and phase composition of the battery electrodes have been probed during charge-discharge in different cycling modes. The dependence of the anode composition on the charge rate has been determined quantitatively. Different kinetics of Li (de)intercalation in the graphite anode during charge/discharge process have been observed. Phase separation of the cathode material has not been detected in whole voltage range. Non-linear dependencies of the unit cell parameters, atomic and layer spacing on the lithium content in the cathode have been observed. Measured dependencies of interatomic spacing and interlayer spacing, and unit cell parameters of the cathode structure on the lithium content could be qualitatively explained by several factors, such as variations of oxidation state of cation in oxygen octahedra, Coulomb repulsion of oxygen layers, changes of average effective charge of oxygen layers and van der Waals interactions between MeO2-layers at high level of the NCA delithiation.

  18. Deriving movement properties and the effect of the environment from the Brownian bridge movement model in monkeys and birds.

    PubMed

    Buchin, Kevin; Sijben, Stef; van Loon, E Emiel; Sapir, Nir; Mercier, Stéphanie; Marie Arseneau, T Jean; Willems, Erik P

    2015-01-01

    The Brownian bridge movement model (BBMM) provides a biologically sound approximation of the movement path of an animal based on discrete location data, and is a powerful method to quantify utilization distributions. Computing the utilization distribution based on the BBMM while calculating movement parameters directly from the location data, may result in inconsistent and misleading results. We show how the BBMM can be extended to also calculate derived movement parameters. Furthermore we demonstrate how to integrate environmental context into a BBMM-based analysis. We develop a computational framework to analyze animal movement based on the BBMM. In particular, we demonstrate how a derived movement parameter (relative speed) and its spatial distribution can be calculated in the BBMM. We show how to integrate our framework with the conceptual framework of the movement ecology paradigm in two related but acutely different ways, focusing on the influence that the environment has on animal movement. First, we demonstrate an a posteriori approach, in which the spatial distribution of average relative movement speed as obtained from a "contextually naïve" model is related to the local vegetation structure within the monthly ranging area of a group of wild vervet monkeys. Without a model like the BBMM it would not be possible to estimate such a spatial distribution of a parameter in a sound way. Second, we introduce an a priori approach in which atmospheric information is used to calculate a crucial parameter of the BBMM to investigate flight properties of migrating bee-eaters. This analysis shows significant differences in the characteristics of flight modes, which would have not been detected without using the BBMM. Our algorithm is the first of its kind to allow BBMM-based computation of movement parameters beyond the utilization distribution, and we present two case studies that demonstrate two fundamentally different ways in which our algorithm can be applied to estimate the spatial distribution of average relative movement speed, while interpreting it in a biologically meaningful manner, across a wide range of environmental scenarios and ecological contexts. Therefore movement parameters derived from the BBMM can provide a powerful method for movement ecology research.

  19. Discriminating ability of Cirrus and RTVue optical coherence tomography in different stages of glaucoma

    PubMed Central

    Mittal, Deepti; Dubey, Suneeta; Gandhi, Monica; Pegu, Julie; Bhoot, Madhu; Gupta, Yadunandan Prasad

    2018-01-01

    Purpose: The aim of this study is to determine which parameter of Cirrus and RTVue optical coherence tomography (OCT) has the highest ability to discriminate between early, moderate, and advanced glaucoma. Simultaneously, to compare the performance of the two OCT devices in terms of their ability to differentiate the three stages of glaucoma. Further, to analyze the macular parameters of both devices and compare them with the conventional retinal nerve fiber layer (RNFL) parameters. Methods: One hundred and twenty eyes (30 healthy and 90 glaucomatous [30 mild, 30 moderate, and 30 advanced glaucoma]) of 65 participants (15 healthy, 50 glaucomatous [15 mild, 15 moderate, and 20 advanced glaucoma]) underwent Cirrus and RTVue OCT scanning on a single visit. Results: Average RNFL thickness and superior RNFL thickness of both the devices and inferior (ganglion cell complex [GCC] of RTVue device best differentiated normals from all stage glaucomatous eyes (P > 0.05). Cirrus average RNFL thickness and superior RNFL thickness performed better than other parameters (P < 0.05) in differentiating early glaucoma from moderate and advanced. In differentiating advanced from early and moderate glaucoma, RTVue average, superior, and inferior RNFL thickness and inferior GCC parameters had the highest discriminating ability (P < 0.05). Conclusion: Overall, average RNFL thickness had the highest ability to distinguish different stages of the disease. No significant difference was found between RTVue and Cirrus OCT device in different severity levels. No significant difference was observed between RNFL and macular parameters in different stages of glaucoma. PMID:29676314

  20. Discriminating ability of Cirrus and RTVue optical coherence tomography in different stages of glaucoma.

    PubMed

    Mittal, Deepti; Dubey, Suneeta; Gandhi, Monica; Pegu, Julie; Bhoot, Madhu; Gupta, Yadunandan Prasad

    2018-05-01

    The aim of this study is to determine which parameter of Cirrus and RTVue optical coherence tomography (OCT) has the highest ability to discriminate between early, moderate, and advanced glaucoma. Simultaneously, to compare the performance of the two OCT devices in terms of their ability to differentiate the three stages of glaucoma. Further, to analyze the macular parameters of both devices and compare them with the conventional retinal nerve fiber layer (RNFL) parameters. One hundred and twenty eyes (30 healthy and 90 glaucomatous [30 mild, 30 moderate, and 30 advanced glaucoma]) of 65 participants (15 healthy, 50 glaucomatous [15 mild, 15 moderate, and 20 advanced glaucoma]) underwent Cirrus and RTVue OCT scanning on a single visit. Average RNFL thickness and superior RNFL thickness of both the devices and inferior (ganglion cell complex [GCC] of RTVue device best differentiated normals from all stage glaucomatous eyes (P > 0.05). Cirrus average RNFL thickness and superior RNFL thickness performed better than other parameters (P < 0.05) in differentiating early glaucoma from moderate and advanced. In differentiating advanced from early and moderate glaucoma, RTVue average, superior, and inferior RNFL thickness and inferior GCC parameters had the highest discriminating ability (P < 0.05). Overall, average RNFL thickness had the highest ability to distinguish different stages of the disease. No significant difference was found between RTVue and Cirrus OCT device in different severity levels. No significant difference was observed between RNFL and macular parameters in different stages of glaucoma.

  1. Global atmospheric circulation statistics: Four year averages

    NASA Technical Reports Server (NTRS)

    Wu, M. F.; Geller, M. A.; Nash, E. R.; Gelman, M. E.

    1987-01-01

    Four year averages of the monthly mean global structure of the general circulation of the atmosphere are presented in the form of latitude-altitude, time-altitude, and time-latitude cross sections. The numerical values are given in tables. Basic parameters utilized include daily global maps of temperature and geopotential height for 18 pressure levels between 1000 and 0.4 mb for the period December 1, 1978 through November 30, 1982 supplied by NOAA/NMC. Geopotential heights and geostrophic winds are constructed using hydrostatic and geostrophic formulae. Meridional and vertical velocities are calculated using thermodynamic and continuity equations. Fields presented in this report are zonally averaged temperature, zonal, meridional, and vertical winds, and amplitude of the planetary waves in geopotential height with zonal wave numbers 1-3. The northward fluxes of sensible heat and eastward momentum by the standing and transient eddies along with their wavenumber decomposition and Eliassen-Palm flux propagation vectors and divergences by the standing and transient eddies along with their wavenumber decomposition are also given. Large interhemispheric differences and year-to-year variations are found to originate in the changes in the planetary wave activity.

  2. Thermal motion in proteins: Large effects on the time-averaged interaction energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goethe, Martin, E-mail: martingoethe@ub.edu; Rubi, J. Miguel; Fita, Ignacio

    As a consequence of thermal motion, inter-atomic distances in proteins fluctuate strongly around their average values, and hence, also interaction energies (i.e. the pair-potentials evaluated at the fluctuating distances) are not constant in time but exhibit pronounced fluctuations. These fluctuations cause that time-averaged interaction energies do generally not coincide with the energy values obtained by evaluating the pair-potentials at the average distances. More precisely, time-averaged interaction energies behave typically smoother in terms of the average distance than the corresponding pair-potentials. This averaging effect is referred to as the thermal smoothing effect. Here, we estimate the strength of the thermal smoothingmore » effect on the Lennard-Jones pair-potential for globular proteins at ambient conditions using x-ray diffraction and simulation data of a representative set of proteins. For specific atom species, we find a significant smoothing effect where the time-averaged interaction energy of a single atom pair can differ by various tens of cal/mol from the Lennard-Jones potential at the average distance. Importantly, we observe a dependency of the effect on the local environment of the involved atoms. The effect is typically weaker for bulky backbone atoms in beta sheets than for side-chain atoms belonging to other secondary structure on the surface of the protein. The results of this work have important practical implications for protein software relying on free energy expressions. We show that the accuracy of free energy expressions can largely be increased by introducing environment specific Lennard-Jones parameters accounting for the fact that the typical thermal motion of protein atoms depends strongly on their local environment.« less

  3. Thermal motion in proteins: Large effects on the time-averaged interaction energies

    NASA Astrophysics Data System (ADS)

    Goethe, Martin; Fita, Ignacio; Rubi, J. Miguel

    2016-03-01

    As a consequence of thermal motion, inter-atomic distances in proteins fluctuate strongly around their average values, and hence, also interaction energies (i.e. the pair-potentials evaluated at the fluctuating distances) are not constant in time but exhibit pronounced fluctuations. These fluctuations cause that time-averaged interaction energies do generally not coincide with the energy values obtained by evaluating the pair-potentials at the average distances. More precisely, time-averaged interaction energies behave typically smoother in terms of the average distance than the corresponding pair-potentials. This averaging effect is referred to as the thermal smoothing effect. Here, we estimate the strength of the thermal smoothing effect on the Lennard-Jones pair-potential for globular proteins at ambient conditions using x-ray diffraction and simulation data of a representative set of proteins. For specific atom species, we find a significant smoothing effect where the time-averaged interaction energy of a single atom pair can differ by various tens of cal/mol from the Lennard-Jones potential at the average distance. Importantly, we observe a dependency of the effect on the local environment of the involved atoms. The effect is typically weaker for bulky backbone atoms in beta sheets than for side-chain atoms belonging to other secondary structure on the surface of the protein. The results of this work have important practical implications for protein software relying on free energy expressions. We show that the accuracy of free energy expressions can largely be increased by introducing environment specific Lennard-Jones parameters accounting for the fact that the typical thermal motion of protein atoms depends strongly on their local environment.

  4. When Is the Local Average Treatment Close to the Average? Evidence from Fertility and Labor Supply

    ERIC Educational Resources Information Center

    Ebenstein, Avraham

    2009-01-01

    The local average treatment effect (LATE) may differ from the average treatment effect (ATE) when those influenced by the instrument are not representative of the overall population. Heterogeneity in treatment effects may imply that parameter estimates from 2SLS are uninformative regarding the average treatment effect, motivating a search for…

  5. PROGEN: An automated modelling algorithm for the generation of complete protein structures from the α-carbon atomic coordinates

    NASA Astrophysics Data System (ADS)

    Mandal, Chhabinath; Linthicum, D. Scott

    1993-04-01

    A modelling algorithm (PROGEN) for the generation of complete protein atomic coordinates from only the α-carbon coordinates is described. PROGEN utilizes an optimal geometry parameter (OGP) database for the positioning of atoms for each amino acid of the polypeptide model. The OGP database was established by examining the statistical correlations between 23 different intra-peptide and inter-peptide geometric parameters relative to the α-carbon distances for each amino acid in a library of 19 known proteins from the Brookhaven Protein Database (BPDB). The OGP files for specific amino acids and peptides were used to generate the atomic positions, with respect to α-carbons, for main-chain and side-chain atoms in the modelled structure. Refinement of the initial model was accomplished using energy minimization (EM) and molecular dynamics techniques. PROGEN was tested using 60 known proteins in the BPDB, representing a wide spectrum of primary and secondary structures. Comparison between PROGEN models and BPDB crystal reference structures gave r.m.s.d. values for peptide main-chain atoms between 0.29 and 0.76 Å, with a grand average of 0.53 Å for all 60 models. The r.m.s.d. for all non-hydrogen atoms ranged between 1.44 and 1.93 Å for the 60 polypeptide models. PROGEN was also able to make the correct assignment of cis- or trans-proline configurations in the protein structures examined. PROGEN offers a fully automatic building and refinement procedure and requires no special or specific structural considerations for the protein to be modelled.

  6. Non-robust numerical simulations of analogue extension experiments

    NASA Astrophysics Data System (ADS)

    Naliboff, John; Buiter, Susanne

    2016-04-01

    Numerical and analogue models of lithospheric deformation provide significant insight into the tectonic processes that lead to specific structural and geophysical observations. As these two types of models contain distinct assumptions and tradeoffs, investigations drawing conclusions from both can reveal robust links between first-order processes and observations. Recent studies have focused on detailed comparisons between numerical and analogue experiments in both compressional and extensional tectonics, sometimes involving multiple lithospheric deformation codes and analogue setups. While such comparisons often show good agreement on first-order deformation styles, results frequently diverge on second-order structures, such as shear zone dip angles or spacing, and in certain cases even on first-order structures. Here, we present finite-element experiments that are designed to directly reproduce analogue "sandbox" extension experiments at the cm-scale. We use material properties and boundary conditions that are directly taken from analogue experiments and use a Drucker-Prager failure model to simulate shear zone formation in sand. We find that our numerical experiments are highly sensitive to numerous numerical parameters. For example, changes to the numerical resolution, velocity convergence parameters and elemental viscosity averaging commonly produce significant changes in first- and second-order structures accommodating deformation. The sensitivity of the numerical simulations to small parameter changes likely reflects a number of factors, including, but not limited to, high angles of internal friction assigned to sand, complex, unknown interactions between the brittle sand (used as an upper crust equivalent) and viscous silicone (lower crust), highly non-linear strain weakening processes and poor constraints on the cohesion of sand. Our numerical-analogue comparison is hampered by (a) an incomplete knowledge of the fine details of sand failure and sand properties, and (b) likely limitations to the use of a continuum Drucker-Prager model for representing shear zone formation in sand. In some cases our numerical experiments provide reasonable fits to first-order structures observed in the analogue experiments, but the numerical sensitivity to small parameter variations leads us to conclude that the numerical experiments are not robust.

  7. Effect of cataract surgery on retinal nerve fiber layer thickness parameters using scanning laser polarimetry (GDxVCC)

    PubMed Central

    Dada, Tanuj; Behera, Geeta; Agarwal, Anand; Kumar, Sanjeev; Sihota, Ramanjit; Panda, Anita

    2010-01-01

    Purpose: To study the effect of cataract extraction on the retinal nerve fiber layer (RNFL) thickness, and assessment by scanning laser polarimetry (SLP), with variable corneal compensation (GDx VCC), at the glaucoma service of a tertiary care center in North India. Materials and Methods: Thirty-two eyes of 32 subjects were enrolled in the study. The subjects underwent RNFL analysis by SLP (GDx VCC) before undergoing phacoemulsification cataract extraction with intraocular lens (IOL) implantation (Acrysof SA 60 AT) four weeks following cataract surgery. The RNFL thickness parameters evaluated both before and after surgery included temporal, superior, nasal, inferior, temporal (TSNIT) average, superior average, inferior average, and nerve fiber index (NFI). Results: The mean age of subjects was 57.6 ± 11.7 years (18 males, 14 females). Mean TSNIT average thickness (μm) pre- and post-cataract surgery was 49.2 ± 14.1 and 56.5 ± 7.6 (P = 0.001). There was a statistically significant increase in RNFL thickness parameters (TSNIT average, superior average, and inferior average) and decrease in NFI post-cataract surgery as compared to the baseline values. Mean NFI pre- and post-cataract surgery was 41.3 ± 15.3 and 21.6 ± 11.8 (P = 0.001). Conclusions: Measurement of RNFL thickness parameters by scanning laser polarimetry is significantly altered following cataract surgery. Post the cataract surgery, a new baseline needs to be established for assessing the longitudinal follow-up of a glaucoma patient. The presence of cataract may lead to an underestimation of the RNFL thickness, and this should be taken into account when analyzing progression in a glaucoma patient. PMID:20689193

  8. Theoretical crystal chemistry of M{sub x}(TO{sub 4}){sub y} sulfates and selenates: Topological analysis and classification of suprapolyhedral invariants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilyushin, G. D.; Blatov, V. A.

    2006-05-15

    A geometric topological analysis of orthotetrahedral phases M{sub x}(TO{sub 4}){sub y} (T = S or Se) is performed for 46 sulfates and 17 selenates with the TOPOS 3.2 software package. The values of coordination sequences {l_brace}N{sub k}{r_brace} of T atoms are used as classification parameters of topologically different MTO nets. The crystal structures are analyzed within 12 coordination spheres of T sites and assigned to 26 topological types. It is established that only 7 types are common for the structures of sulfates and selenates, 16 types include only sulfates, and 3 types include only selenates. The average values of themore » bond lengths are determined: = 1.48(2) A and = 1.63(2) A. The hierarchical ordering of the crystal structure is performed using the concept of a polyhedral microensemble of the structure.« less

  9. Mechanical energy flow models of rods and beams

    NASA Technical Reports Server (NTRS)

    Wohlever, J. C.; Bernhard, R. J.

    1992-01-01

    It has been proposed that the flow of mechanical energy through a structural/acoustic system may be modeled in a manner similar to that of flow of thermal energy/in a heat conduction problem. If this hypothesis is true, it would result in relatively efficient numerical models of structure-borne energy in large built-up structures. Fewer parameters are required to approximate the energy solution than are required to model the characteristic wave behavior of structural vibration by using traditional displacement formulations. The energy flow hypothesis is tested in this investigation for both longitudinal vibration in rods and transverse flexural vibrations of beams. The rod is shown to behave approximately according to the thermal energy flow analogy. However, the beam solutions behave significantly differently than predicted by the thermal analogy unless locally-space-averaged energy and power are considered. Several techniques for coupling dissimilar rods and beams are also discussed. Illustrations of the solution accuracy of the methods are included.

  10. Identification of phases, symmetries and defects through local crystallography

    DOE PAGES

    Belianinov, Alex; He, Qian; Kravchenko, Mikhail; ...

    2015-07-20

    Here we report that advances in electron and probe microscopies allow 10 pm or higher precision in measurements of atomic positions. This level of fidelity is sufficient to correlate the length (and hence energy) of bonds, as well as bond angles to functional properties of materials. Traditionally, this relied on mapping locally measured parameters to macroscopic variables, for example, average unit cell. This description effectively ignores the information contained in the microscopic degrees of freedom available in a high-resolution image. Here we introduce an approach for local analysis of material structure based on statistical analysis of individual atomic neighbourhoods. Clusteringmore » and multivariate algorithms such as principal component analysis explore the connectivity of lattice and bond structure, as well as identify minute structural distortions, thus allowing for chemical description and identification of phases. This analysis lays the framework for building image genomes and structure–property libraries, based on conjoining structural and spectral realms through local atomic behaviour.« less

  11. Propagation of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system in turbulent atmosphere.

    PubMed

    Zhou, Guoquan; Cai, Yangjian; Chu, Xiuxiang

    2012-04-23

    The propagation of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system in turbulent atmosphere has been investigated. The analytical expressions for the average intensity and the degree of the polarization of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system are derived in turbulent atmosphere, respectively. The average intensity distribution and the degree of the polarization of a partially coherent hollow vortex Gaussian beam in turbulent atmosphere are numerically demonstrated. The influences of the beam parameters, the topological charge, the transverse coherent lengths, and the structure constant of the atmospheric turbulence on the propagation of a partially coherent hollow vortex Gaussian beam in turbulent atmosphere are also examined in detail. This research is beneficial to the practical applications in free-space optical communications and the remote sensing of the dark hollow beams. © 2012 Optical Society of America

  12. Diffusion by one wave and by many waves

    NASA Astrophysics Data System (ADS)

    Albert, J. M.

    2010-03-01

    Radiation belt electrons and chorus waves are an outstanding instance of the important role cyclotron resonant wave-particle interactions play in the magnetosphere. Chorus waves are particularly complex, often occurring with large amplitude, narrowband but drifting frequency and fine structure. Nevertheless, modeling their effect on radiation belt electrons with bounce-averaged broadband quasi-linear theory seems to yield reasonable results. It is known that coherent interactions with monochromatic waves can cause particle diffusion, as well as radically different phase bunching and phase trapping behavior. Here the two formulations of diffusion, while conceptually different, are shown to give identical diffusion coefficients, in the narrowband limit of quasi-linear theory. It is further shown that suitably averaging the monochromatic diffusion coefficients over frequency and wave normal angle parameters reproduces the full broadband quasi-linear results. This may account for the rather surprising success of quasi-linear theory in modeling radiation belt electrons undergoing diffusion by chorus waves.

  13. Production model in the conditions of unstable demand taking into account the influence of trading infrastructure: Ergodicity and its application

    NASA Astrophysics Data System (ADS)

    Obrosova, N. K.; Shananin, A. A.

    2015-04-01

    A production model with allowance for a working capital deficit and a restricted maximum possible sales volume is proposed and analyzed. The study is motivated by an attempt to analyze the problems of functioning of low competitive macroeconomic structures. The model is formalized in the form of a Bellman equation, for which a closed-form solution is found. The stochastic process of product stock variations is proved to be ergodic and its final probability distribution is found. Expressions for the average production load and the average product stock are found by analyzing the stochastic process. A system of model equations relating the model variables to official statistical parameters is derived. The model is identified using data from the Fiat and KAMAZ companies. The influence of the credit interest rate on the firm market value assessment and the production load level are analyzed using comparative statics methods.

  14. Changes in the physical and mechanical properties of Al-Mg alloy processed by severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Krasnoveikin, V. A.; Kozulin, A. A.; Skripnyak, V. A.; Moskvichev, E. N.; Borodulin, D. A.

    2017-12-01

    This paper presents the results of studies into the effect of severe plastic deformation on the microstructure, physical and mechanical properties of coarse-grained Al-Mg alloy 1560 in the as-received state with an average grain size of 50 µm. Severe plastic deformation is performed by four-pass equal channel angular pressing (ECAP), which results in the formation of an ultrafine-grained structure with an average grain size of 3 µm in the alloy. Analysis of experimental data revealed that the physical and mechanical properties change significantly after severe plastic deformation. The microhardness of the ECAPed alloy increases by 50%, tensile yield strength by 80%, and ultimate strength by 44% in comparison with these parameters in the as-received state. The constants of approximating functions have been determined for the experimental stress-strain curves of the alloy specimens in the as-received and ECAPed states.

  15. Correlation of ground motion and intensity for the 17 January 1994 Northridge, California, earthquake

    USGS Publications Warehouse

    Boatwright, J.; Thywissen, K.; Seekins, L.C.

    2001-01-01

    We analyze the correlations between intensity and a set of groundmotion parameters obtained from 66 free-field stations in Los Angeles County that recorded the 1994 Northridge earthquake. We use the tagging intensities from Thywissen and Boatwright (1998) because these intensities are determined independently on census tracts, rather than interpolated from zip codes, as are the modified Mercalli isoseismals from Dewey et al. (1995). The ground-motion parameters we consider are the peak ground acceleration (PGA), the peak ground velocity (PGV), the 5% damped pseudovelocity response spectral (PSV) ordinates at 14 periods from 0.1 to 7.5 sec, and the rms average of these spectral ordinates from 0.3 to 3 sec. Visual comparisons of the distribution of tagging intensity with contours of PGA, PGV, and the average PSV suggest that PGV and the average PSV are better correlated with the intensity than PGA. The correlation coefficients between the intensity and the ground-motion parameters bear this out: r = 0.75 for PGA, 0.85 for PGV, and 0.85 for the average PSV. Correlations between the intensity and the PSV ordinates, as a function of period, are strongest at 1.5 sec (r = 0.83) and weakest at 0.2 sec (r = 0.66). Regressing the intensity on the logarithms of these ground-motion parameters yields relations I ?? mlog?? with 3.0 ??? m ??? 5.2 for the parameters analyzed, where m = 4.4 ?? 0.7 for PGA, 3.4 ?? 0.4 for PGV, and 3.6 ?? 0.5 for the average PSV.

  16. Averaging Models: Parameters Estimation with the R-Average Procedure

    ERIC Educational Resources Information Center

    Vidotto, G.; Massidda, D.; Noventa, S.

    2010-01-01

    The Functional Measurement approach, proposed within the theoretical framework of Information Integration Theory (Anderson, 1981, 1982), can be a useful multi-attribute analysis tool. Compared to the majority of statistical models, the averaging model can account for interaction effects without adding complexity. The R-Average method (Vidotto &…

  17. Laser processing of thin-film multilayer structures: comparison between a 3D thermal model and experimental results.

    PubMed

    Naghshine, Babak B; Kiani, Amirkianoosh

    2017-01-01

    In this research, a numerical model is introduced for simulation of laser processing of thin film multilayer structures, to predict the temperature and ablated area for a set of laser parameters including average power and repetition rate. Different thin-films on Si substrate were processed by nanosecond Nd:YAG laser pulses and the experimental and numerical results were compared to each other. The results show that applying a thin film on the surface can completely change the temperature field and vary the shape of the heat affected zone. The findings of this paper can have many potential applications including patterning the cell growth for biomedical applications and controlling the grain size in fabrication of polycrystalline silicon (poly-Si) thin-film transistors (TFTs).

  18. Thermoluminescent properties of ZnS:Mn nanocrystalline powders.

    PubMed

    Ortiz-Hernández, Arturo Agustín; Méndez García, Víctor Hugo; Pérez Arrieta, María Leticia; Ortega Sígala, José Juan; Araiza Ibarra, José de Jesús; Vega-Carrillo, Héctor Rene; Falcony Guajardo, Ciro

    2015-05-01

    Thermoluminescent ZnS nanocrystals doped with Mn(2+) ions were synthesized by chemical co-precipitation method. From X-ray diffraction studies it was observed that the synthesized nanoparticles have cubic zinc blende structure with average sizes of about 40-50nm. Morphology was analyzed by TEM. Photoluminescence studies showed two transitions, one of them close to 396nm and other close to 598nm, which is enhanced with increasing dopant concentration, this behavior was also observed in the cathodoluminescence spectrum. The thermoluminescence gamma dose-response has linear behavior over dose range 5-100mGy, the glow curve structure shows two glow peaks at 436K and at 518K that were taken into account to calculate the kinetic parameters using the Computerized Glow Curve Deconvolution procedure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Free energy landscape from path-sampling: application to the structural transition in LJ38

    NASA Astrophysics Data System (ADS)

    Adjanor, G.; Athènes, M.; Calvo, F.

    2006-09-01

    We introduce a path-sampling scheme that allows equilibrium state-ensemble averages to be computed by means of a biased distribution of non-equilibrium paths. This non-equilibrium method is applied to the case of the 38-atom Lennard-Jones atomic cluster, which has a double-funnel energy landscape. We calculate the free energy profile along the Q4 bond orientational order parameter. At high or moderate temperature the results obtained using the non-equilibrium approach are consistent with those obtained using conventional equilibrium methods, including parallel tempering and Wang-Landau Monte Carlo simulations. At lower temperatures, the non-equilibrium approach becomes more efficient in exploring the relevant inherent structures. In particular, the free energy agrees with the predictions of the harmonic superposition approximation.

  20. Structural stability, elastic and thermodynamic properties of Au-Cu alloys from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Kong, Ge-Xing; Ma, Xiao-Juan; Liu, Qi-Jun; Li, Yong; Liu, Zheng-Tang

    2018-03-01

    Using first-principles calculations method based on density functional theory (DFT) with the Perdew-Burke-Ernzerhof (PBE) implementation of the generalized gradient approximation (GGA), we investigate the structural, elastic and thermodynamic properties of gold-copper intermetallic compounds (Au-Cu ICs). The calculated lattice parameters are in excellent agreement with experimental data. The elastic constants show that all the investigated Au-Cu alloys are mechanically stable. Elastic properties, including the shear modulus, Young's modulus, Poisson's ratio and Pugh's indicator, of the intermetallic compounds are evaluated and discussed, with special attention to the remarkable anisotropy displayed by Au-Cu ICs. Thermodynamic and transport properties including the Debye temperature, thermal conductivity and melting point are predicted from the averaged sound velocity and elastic moduli, using semi-empirical formulas.

  1. Effects of a finite outer scale on the measurement of atmospheric-turbulence statistics with a Hartmann wave-front sensor.

    PubMed

    Feng, Shen; Wenhan, Jiang

    2002-06-10

    Phase-structure and aperture-averaged slope-correlated functions with a finite outer scale are derived based on the Taylor hypothesis and a generalized spectrum, such as the von Kármán modal. The effects of the finite outer scale on measuring and determining the character of atmospheric-turbulence statistics are shown especially for an approximately 4-m class telescope and subaperture. The phase structure function and atmospheric coherent length based on the Kolmogorov model are approximations of the formalism we have derived. The analysis shows that it cannot be determined whether the deviation from the power-law parameter of Kolmogorov turbulence is caused by real variations of the spectrum or by the effect of the finite outer scale.

  2. Novel Red-Orange Phosphors Na2BaMg(PO4)2:Pr3+: Synthesis, Crystal Structure and Photoluminescence Performance

    NASA Astrophysics Data System (ADS)

    Pan, Lu; Yang, Xiaozhan; Xiong, Chaoyue; Deng, Dashen; Qin, Chunlin; Feng, Wenlin

    2018-01-01

    A series of new red-orange emission phosphors Na2BaMg(PO4)2:Pr3+ were synthesised by a high-temperature solid-state reaction. The crystal structure and photoluminescence properties of these samples were characterised by X-ray diffraction and spectroscopic measurements. This compound holds P3̅m1 space group of the trigonal system with the lattice parameters of hexagonal cell a=0.5304(3) nm and c=0.6989(3) nm. The phosphor emits the strongest peak at 606 nm when excited by 449 nm. The average Commission Internationale de l'Eclairage chromaticity coordinates calculated for the phosphors are (0.52, 0.46). The results demonstrate the potential application of these phosphors in solid-state lighting and other fields.

  3. Soil physical and X-ray computed tomographic measurements to investigate small-scale structural differences under strip tillage compared to mulch till and no-till

    NASA Astrophysics Data System (ADS)

    Pöhlitz, Julia; Rücknagel, Jan; Schlüter, Steffen; Vogel, Hans-Jörg

    2017-04-01

    In recent years there has been an increasing application of conservation tillage techniques where the soil is no longer turned, but only loosened or left completely untilled. Dead plant material remains on the soil surface, which provides environmental and economic benefits such as the conservation of water, preventing soil erosion and saving time during seedbed preparation. There is a variety of conservation tillage systems, e.g. mulch till, no-till and strip tillage, which is a special feature. In strip tillage, the seed bed is divided into a seed zone (strip-till within the seed row: STWS) and a soil management zone (strip-till between the seed row: STBS). However, each tillage application affects physical soil properties and processes. Here, the combined application of classical soil mechanical and computed tomographic methods is used on a Chernozem (texture 0-30 cm: silt loam) to show small-scale structural differences under strip tillage (STWS, STBS) compared to no-till (NT) and mulch till (MT). In addition to the classical soil physical parameters dry bulk density and saturated conductivity (years: 2012, 2014, 2015) at soil depths 2-8 and 12-18 cm, stress-strain tests were carried out to map mechanical behavior. The stress-strain tests were performed for a load range from 5-550 kPa at 12-18 cm depth (year 2015). Mechanical precompression stress was determined on the stress-dry bulk density curves. Further, CT image cross sections and computed tomographic examinations (average pore size, porosity, connectivity, and anisotropy) were used from the same soil samples. For STBS and NT, a significant increase in dry bulk density was observed over the course of time compared to STWS and MT, which was more pronounced at 2-8 cm than at 12-18 cm depth. Despite higher dry bulk density, STBS displayed higher saturated conductivity in contrast to STWS, which can be attributed to higher earthworm abundance. In strip tillage, structural differences were identified. Mechanical precompression stress was significantly higher for STBS (141 kPa) than STWS (38 kPa). In addition, the CT image cross sections and the computed tomographic parameters confirmed the mechanically more stable soil structure observed under STBS with a higher initial average pore size but lower porosity and connectivity values compared to STWS. The reason for this is the lack of tillage. On the other hand, tillage at STWS created a loosened, porous and connective substrate. For all variants, the increasing load application led to progressive homogenization processes of the soil structure. At the same time, as stress application increased in all variants, the increase in dry bulk density led to a decrease in average pore size, porosity, and connectivity, while anisotropy increased. It was possible to confirm that strip tillage combines the advantages of no-till and a deeper conservation primary tillage, since on the one hand MT and STWS and on the other hand STBS and NT showed very similar soil structures. The computed tomographic parameters therefore provide valuable information about the impact of tillage on microscopic pore space attributes that improve our understanding about soil functional behavior at much larger scales.

  4. Wideband MRE and static mechanical indentation of human liver specimen: sensitivity of viscoelastic constants to the alteration of tissue structure in hepatic fibrosis.

    PubMed

    Reiter, Rolf; Freise, Christian; Jöhrens, Korinna; Kamphues, Carsten; Seehofer, Daniel; Stockmann, Martin; Somasundaram, Rajan; Asbach, Patrick; Braun, Jürgen; Samani, Abbas; Sack, Ingolf

    2014-05-07

    Despite the success of elastography in grading hepatic fibrosis by stiffness related noninvasive markers the relationship between viscoelastic constants in the liver and tissue structure remains unclear. We therefore studied the mechanical properties of 16 human liver specimens with different degrees of fibrosis, inflammation and steatosis by wideband magnetic resonance elastography (MRE) and static indentation experiments providing the specimens׳ static Young׳s modulus (E), dynamic storage modulus (G') and dynamic loss modulus (G″). A frequency-independent shear modulus μ and a powerlaw exponent α were obtained by fitting G' and G″ using the two-parameter sprinpot model. The mechanical parameters were compared to the specimens׳ histology derived parameters such as degree of Fibrosis (F), inflammation score and fat score, amount of hydroxyproline (HYP) used for quantification of collagen, blood markers and presurgery in vivo function tests. The frequency averaged parameters G', G″ and μ were significantly correlated with F (G': R=0.762, G″: R=0.830; μ: R=0.744; all P<0.01) and HYP (G': R=0.712; G″: R=0.720; μ: R=0.731; all P<0.01). The powerlaw exponent α displayed an inverse correlation with F (R=-0.590, P=0.034) and a trend of inverse correlation with HYP (R=-0.470, P=0.089). The static Young׳s modulus E was less correlated with F (R=0.587, P=0.022) and not sensitive to HYP. Although inflammation was highly correlated with F (R=0.773, P<0.001), no interaction was discernable between inflammation and mechanical parameters measured in this study. Other histological and blood markers as well as liver function test were correlated with neither F nor the measured mechanical parameters. In conclusion, viscoelastic constants measured by wideband MRE are highly sensitive to histologically proven fibrosis. Our results suggest that, in addition to the amount of connective tissue, subtle structural changes of the viscoelastic matrix determine the sensitivity of mechanical tissue properties to hepatic fibrosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Nonparametric Transfer Function Models

    PubMed Central

    Liu, Jun M.; Chen, Rong; Yao, Qiwei

    2009-01-01

    In this paper a class of nonparametric transfer function models is proposed to model nonlinear relationships between ‘input’ and ‘output’ time series. The transfer function is smooth with unknown functional forms, and the noise is assumed to be a stationary autoregressive-moving average (ARMA) process. The nonparametric transfer function is estimated jointly with the ARMA parameters. By modeling the correlation in the noise, the transfer function can be estimated more efficiently. The parsimonious ARMA structure improves the estimation efficiency in finite samples. The asymptotic properties of the estimators are investigated. The finite-sample properties are illustrated through simulations and one empirical example. PMID:20628584

  6. High-resolution transmission electron microscopy studies of graphite materials prepared by high-temperature treatment of unburned carbon concentrates from combustion fly ashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miguel Cabielles; Jean-Nol Rouzaud; Ana B. Garcia

    2009-01-15

    High-resolution transmission electron microscopy (HRTEM) has been used in this work to study the microstructural (structure and microtexture) changes occurring during the high-temperature treatment of the unburned carbon concentrates from coal combustion fly ashes. Emphasis was placed on two aspects: (i) the development of graphitic carbon structures and (ii) the disordered carbon forms remaining in the graphitized samples. In addition, by coupling HRTEM with energy-dispersive spectroscopy, the transformations with the temperature of the inorganic matter (mainly iron- and silicon-based phases) of the unburned carbon concentrates were evidenced. The HRTEM results were compared to the averaged structural order of the materialsmore » as evaluated by X-ray diffraction (XRD) and Raman spectroscopy. As indicated by XRD and Raman parameters, more-ordered materials were obtained from the unburned carbon concentrates with higher mineral/inorganic matter, thus inferring the catalytic effect of some of their components. However, the average character of the information provided by these instrumental techniques seems to be inconclusive in discriminating between carbon structures with different degrees of order (stricto sensu graphite, graphitic, turbostratic, etc.) in a given graphitized unburned carbon. Unlike XRD and Raman, HRTEM is a useful tool for imaging directly the profile of the polyaromatic layers (graphene planes), thus allowing the sample heterogeneity to be looked at, specifically the presence of disordered carbon phases. 49 refs., 9 figs., 3 tabs.« less

  7. The average receiver operating characteristic curve in multireader multicase imaging studies

    PubMed Central

    Samuelson, F W

    2014-01-01

    Objective: In multireader, multicase (MRMC) receiver operating characteristic (ROC) studies for evaluating medical imaging systems, the area under the ROC curve (AUC) is often used as a summary metric. Owing to the limitations of AUC, plotting the average ROC curve to accompany the rigorous statistical inference on AUC is recommended. The objective of this article is to investigate methods for generating the average ROC curve from ROC curves of individual readers. Methods: We present both a non-parametric method and a parametric method for averaging ROC curves that produce a ROC curve, the area under which is equal to the average AUC of individual readers (a property we call area preserving). We use hypothetical examples, simulated data and a real-world imaging data set to illustrate these methods and their properties. Results: We show that our proposed methods are area preserving. We also show that the method of averaging the ROC parameters, either the conventional bi-normal parameters (a, b) or the proper bi-normal parameters (c, da), is generally not area preserving and may produce a ROC curve that is intuitively not an average of multiple curves. Conclusion: Our proposed methods are useful for making plots of average ROC curves in MRMC studies as a companion to the rigorous statistical inference on the AUC end point. The software implementing these methods is freely available from the authors. Advances in knowledge: Methods for generating the average ROC curve in MRMC ROC studies are formally investigated. The area-preserving criterion we defined is useful to evaluate such methods. PMID:24884728

  8. Propagation Characteristics of CMEs Associated with Magnetic Clouds and Ejecta

    NASA Astrophysics Data System (ADS)

    Kim, R.-S.; Gopalswamy, N.; Cho, K.-S.; Moon, Y.-J.; Yashiro, S.

    2013-05-01

    We have investigated the characteristics of magnetic cloud (MC) and ejecta (EJ) associated coronal mass ejections (CMEs) based on the assumption that all CMEs have a flux rope structure. For this, we used 54 CMEs and their interplanetary counterparts (interplanetary CMEs: ICMEs) that constitute the list of events used by the NASA/LWS Coordinated Data Analysis Workshop (CDAW) on CME flux ropes. We considered the location, angular width, and speed as well as the direction parameter, D. The direction parameter quantifies the degree of asymmetry of the CME shape in coronagraph images, and shows how closely the CME propagation is directed to Earth. For the 54 CDAW events, we found the following properties of the CMEs: i) the average value of D for the 23 MCs (0.62) is larger than that for the 31 EJs (0.49), which indicates that the MC-associated CMEs propagate more directly toward the Earth than the EJ-associated CMEs; ii) comparison between the direction parameter and the source location shows that the majority of the MC-associated CMEs are ejected along the radial direction, while many of the EJ-associated CMEs are ejected non-radially; iii) the mean speed of MC-associated CMEs (946 km s-1) is faster than that of EJ-associated CMEs (771 km s-1). For seven very fast CMEs (≥ 1500 km s-1), all CMEs with large D (≥ 0.4) are associated with MCs and the CMEs with small D are associated with EJs. From the statistical analysis of CME parameters, we found the superiority of the direction parameter. Based on these results, we suggest that the CME trajectory essentially determines the observed ICME structure.

  9. Diffuse reflectance of TiO 2 pigmented paints: Spectral dependence of the average pathlength parameter and the forward scattering ratio

    NASA Astrophysics Data System (ADS)

    Vargas, William E.; Amador, Alvaro; Niklasson, Gunnar A.

    2006-05-01

    Diffuse reflectance spectra of paint coatings with different pigment concentrations, normally illuminated with unpolarized radiation, have been measured. A four-flux radiative transfer approach is used to model the diffuse reflectance of TiO2 (rutile) pigmented coatings through the solar spectral range. The spectral dependence of the average pathlength parameter and of the forward scattering ratio for diffuse radiation, are explicitly incorporated into this four-flux model from two novel approximations. The size distribution of the pigments has been taken into account to obtain the averages of the four-flux parameters: scattering and absorption cross sections, forward scattering ratios for collimated and isotropic diffuse radiation, and coefficients involved in the expansion of the single particle phase function in terms of Legendre polynomials.

  10. Anisotropic tomography of the European lithospheric structure from surface wave studies

    NASA Astrophysics Data System (ADS)

    Nita, Blanka; Maurya, Satish; Montagner, Jean-Paul

    2016-06-01

    We present continental-scale seismic isotropic and anisotropic imaging of shear wave upper-mantle structure of tectonically diversified terranes creating the European continent. Taking into account the 36-200 s period range of surface waves enables us to model the deep subcontinental structure at different vertical scale-lengths down to 300 km. After very strict quality selection criteria, we have obtained phase wave speeds at different periods for fundamental Rayleigh and Love modes from about 9000 three-component seismograms. Dispersion measurements are performed by using Fourier-domain waveform inversion technique named "roller-coaster-type" algorithm. We used the reference model with a varying average crustal structure for each source-station path. That procedure led to significant improvement of the quality and number of phase wave speed dispersion measurements compared to the common approach of using a reference model with one average crustal structure. Surface wave dispersion data are inverted at depth for retrieving isotropy and anisotropy parameters. The fast axis directions related to azimuthal anisotropy at different depths constitute a rich database for geodynamical interpretations. Shear wave anomalies of the horizontal dimension larger than 200 km are imaged in our models. They correlate with tectonic provinces of varying age-provenance. Different anisotropy patterns are observed along the most distinctive feature on our maps-the bordering zone between the Palaeozoic and Precambrian Europe. We discuss the depth changes of the lithosphere-asthenosphere boundary along the profiles crossing the chosen tectonic units of different origin and age: Fennoscandia, East European Craton, Anatolia, Mediterranean subduction zones. Within the flat and stable cratonic lithosphere, we find traces of the midlithospheric discontinuity.

  11. Determination of Residual Stress Distributions in Polycrystalline Alumina using Fluorescence Microscopy

    PubMed Central

    Michaels, Chris A.; Cook, Robert F.

    2016-01-01

    Maps of residual stress distributions arising from anisotropic thermal expansion effects in a polycrystalline alumina are generated using fluorescence microscopy. The shifts of both the R1 and R2 ruby fluorescence lines of Cr in alumina are used to create maps with sub-µm resolution of either the local mean and shear stresses or local crystallographic a- and c-stresses in the material, with approximately ± 1 MPa stress resolution. The use of single crystal control materials and explicit correction for temperature and composition effects on line shifts enabled determination of the absolute values and distributions of values of stresses. Temperature correction is shown to be critical in absolute stress determination. Experimental determinations of average stress parameters in the mapped structure are consistent with assumed equilibrium conditions and with integrated large-area measurements. Average crystallographic stresses of order hundreds of MPa are determined with characteristic distribution widths of tens of MPa. The stress distributions reflect contributions from individual clusters of stress in the structure; the cluster size is somewhat larger than the grain size. An example application of the use of stress maps is shown in the calculation of stress-intensity factors for fracture in the residual stress field. PMID:27563163

  12. Antireflective hydrophobic si subwavelength structures using thermally dewetted Ni/SiO2 nanomask patterns.

    PubMed

    Joo, Dong Hyuk; Leem, Jung Woo; Yu, Jae Su

    2011-11-01

    We report the disordered silicon (Si) subwavelength structures (SWSs), which are fabricated with the use of inductively coupled plasma (ICP) etching in SiCl4 gas using nickel/silicon dioxide (Ni/SiO2) nanopattens as the etch mask, on Si substrates by varying the etching parameters for broadband antireflective and self-cleaning surfaces. For the fabricated Si SWSs, the antireflection characteristics are experimentally investigated and a theoretical analysis is made based on the rigorous coupled-wave analysis method. The desirable dot-like Ni nanoparticles on SiO2/Si substrates are formed by the thermal dewetting process of Ni films at 900 degrees C. The truncated cone shaped Si SWS with a high average height of 790 +/- 23 nm, which is fabricated by ICP etching with 5 sccm SiCl4 at 50 W RF power with additional 200 W ICP power under 10 mTorr process pressure, exhibits a low average reflectance of approximately 5% over a wide wavelength range of 450-1050 nm. The water contact angle of 110 degrees is obtained, indicating a hydrophobic surface. The calculated reflectance results are also reasonably consistent with the experimental data.

  13. Structural study of the ammonium octafluoroneptunate, [NH 4] 4NpF 8

    DOE PAGES

    Poineau, Frederic; Silva, Chinthaka M.; Yeamans, Charles B.; ...

    2016-04-21

    The [NH 4] 4NpF 8 salt was prepared from the solid-state reaction of NpO 2 with NH 4HF 2 and characterized by powder X-ray diffraction and X-ray absorption fine structure spectroscopy. The diffraction results confirm the compound to be isostructural to [NH 4] 4UF 8 with the following lattice parameter (a = 13.054(4) Å, b = 6.681(2) Å, c = 13.676(5) Å, ß = 121.14 Å). For the first time, a Neptunium fluoride complex has been characterized by XAFS spectroscopy. The energy position of the white line and inflection of the XANES spectra of [NH 4] 4NpF 8 are consistentmore » with the presence of Np(IV). Adjustment of the EXAFS spectra indicates that the coordination number (7.4±1.5) and the average Np-F distance (2.26(1) Å) are consistent with the presence of the NpF8 dodecahedron. The average Np-F distance is ~0.02 Å shorter than the U-F distance in [NH 4] 4UF 8 and is a result of the actinide contraction.« less

  14. Optical properties of humic substances and CDOM: relation to structure.

    PubMed

    Boyle, Erin S; Guerriero, Nicolas; Thiallet, Anthony; Del Vecchio, Rossana; Blough, Neil V

    2009-04-01

    The spectral dependencies of absorption and fluorescence emission (emission maxima (lamdamax), quantum yields (phi), and mean lifetimes (taum)) were acquired for a commercial lignin, Suwannee River humic (SRHA) and fulvic (SRFA) acids, and a series solid phase extracts (C18) from the Middle Atlantic Bight (MAB extracts). These parameters were compared with the relative average size and total lignin phenol content (TLP). TLP was strongly correlated with absorption at 280 and 355 nm for the MAB extracts, SRHA, and SRFA. The spectral dependence of lamdamax, phi), and taum was very similar for all samples, suggesting a common photophysical and thus structural basis. A strong decrease of phi and taum with increasing average size indicates that intramolecular interactions must be important. When combined with previous work, the results lead us to conclude that the optical properties commonly associated with terrestrial humic substances and chromophoric dissolved organic matter arise primarily from an ensemble of partially oxidized lignins derived from vascular plant sources. Theyfurther provide additional support for an electronic interaction model in which intramolecular energy transfer, excited-state electron transfer, as well as charge transfer likely play important roles in producing the observed optical and photochemical properties of these materials.

  15. Principal shapes and squeezed limits in the effective field theory of large scale structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertolini, Daniele; Solon, Mikhail P., E-mail: dbertolini@lbl.gov, E-mail: mpsolon@lbl.gov

    2016-11-01

    We apply an orthogonalization procedure on the effective field theory of large scale structure (EFT of LSS) shapes, relevant for the angle-averaged bispectrum and non-Gaussian covariance of the matter power spectrum at one loop. Assuming natural-sized EFT parameters, this identifies a linear combination of EFT shapes—referred to as the principal shape—that gives the dominant contribution for the whole kinematic plane, with subdominant combinations suppressed by a few orders of magnitude. For the covariance, our orthogonal transformation is in excellent agreement with a principal component analysis applied to available data. Additionally we find that, for both observables, the coefficients of themore » principal shapes are well approximated by the EFT coefficients appearing in the squeezed limit, and are thus measurable from power spectrum response functions. Employing data from N-body simulations for the growth-only response, we measure the single EFT coefficient describing the angle-averaged bispectrum with Ο (10%) precision. These methods of shape orthogonalization and measurement of coefficients from response functions are valuable tools for developing the EFT of LSS framework, and can be applied to more general observables.« less

  16. Effect of fringe-artifact correction on sub-tomogram averaging from Zernike phase-plate cryo-TEM

    PubMed Central

    Kishchenko, Gregory P.; Danev, Radostin; Fisher, Rebecca; He, Jie; Hsieh, Chyongere; Marko, Michael; Sui, Haixin

    2015-01-01

    Zernike phase-plate (ZPP) imaging greatly increases contrast in cryo-electron microscopy, however fringe artifacts appear in the images. A computational de-fringing method has been proposed, but it has not been widely employed, perhaps because the importance of de-fringing has not been clearly demonstrated. For testing purposes, we employed Zernike phase-plate imaging in a cryo-electron tomographic study of radial-spoke complexes attached to microtubule doublets. We found that the contrast enhancement by ZPP imaging made nonlinear denoising insensitive to the filtering parameters, such that simple low-frequency band-pass filtering made the same improvement in map quality. We employed sub-tomogram averaging, which compensates for the effect of the “missing wedge” and considerably improves map quality. We found that fringes (caused by the abrupt cut-on of the central hole in the phase plate) can lead to incorrect representation of a structure that is well-known from the literature. The expected structure was restored by amplitude scaling, as proposed in the literature. Our results show that de-fringing is an important part of image-processing for cryo-electron tomography of macromolecular complexes with ZPP imaging. PMID:26210582

  17. High-pressure infrared sepctra of alpha-quartz, coesite, stishovite and silica glass

    NASA Technical Reports Server (NTRS)

    Williams, Q.; Hemley, R. J.; Kruger, M. B.; Jeanloz, R.

    1993-01-01

    High-pressure infrared absorption spectra of alpha-quatz, coesite, stishovite, and SiO2 glass are consistent with the primary compression mechanism of the initially tetrahedrally bonded phases being the bending of the Si-O-Si angle at pressures less than 10-20 GPa. At higher pressures, up to 40 GPa, we observe a decline in the intensity of the infrared SiO4 asymmetric-stretching vibrations of all three phases, with an increase in the relative amplitude between 700 and 900/cm. This change in intensities is attributed to an increase in the average coordination number of silicon through extreme distortion of tetrahedra. At pressures above approximately 20 GPa, the low-pressure crystalline polymorphs gradually become amorphous, and the infrared spectra provide evidence for an increase in silicon coordination in these high-density amorphous phases. The pressure-amorphized samples prepared from quartz and coesite differ structurally both from each other and from silica glass that has been compressed, and the high pressure spectra indicate that these materials are considerably more disordered than stishovite under comparable pressure conditions. Average mode Grueneisen parameters calculated for quartz, stishovite and fused silica from both infrared and Raman spectra are compatible with the corresponding thermodynamic value of the Grueneisen parameter, however, that of coesite is significantly discrepant.

  18. Calculations of High-Temperature Jet Flow Using Hybrid Reynolds-Average Navier-Stokes Formulations

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Elmiligui, Alaa; Giriamaji, Sharath S.

    2008-01-01

    Two multiscale-type turbulence models are implemented in the PAB3D solver. The models are based on modifying the Reynolds-averaged Navier Stokes equations. The first scheme is a hybrid Reynolds-averaged- Navier Stokes/large-eddy-simulation model using the two-equation k(epsilon) model with a Reynolds-averaged-Navier Stokes/large-eddy-simulation transition function dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the partially averaged Navier Stokes model in which the unresolved kinetic energy parameter f(sub k) is allowed to vary as a function of grid spacing and the turbulence length scale. This parameter is estimated based on a novel two-stage procedure to efficiently estimate the level of scale resolution possible for a given flow on a given grid for partially averaged Navier Stokes. It has been found that the prescribed scale resolution can play a major role in obtaining accurate flow solutions. The parameter f(sub k) varies between zero and one and is equal to one in the viscous sublayer and when the Reynolds-averaged Navier Stokes turbulent viscosity becomes smaller than the large-eddy-simulation viscosity. The formulation, usage methodology, and validation examples are presented to demonstrate the enhancement of PAB3D's time-accurate turbulence modeling capabilities. The accurate simulations of flow and turbulent quantities will provide a valuable tool for accurate jet noise predictions. Solutions from these models are compared with Reynolds-averaged Navier Stokes results and experimental data for high-temperature jet flows. The current results show promise for the capability of hybrid Reynolds-averaged Navier Stokes and large eddy simulation and partially averaged Navier Stokes in simulating such flow phenomena.

  19. On the Discrepancy in Simultaneous Observations of the Structure Parameter of Temperature Using Scintillometers and Unmanned Aircraft

    NASA Astrophysics Data System (ADS)

    Braam, Miranda; Beyrich, Frank; Bange, Jens; Platis, Andreas; Martin, Sabrina; Maronga, Björn; Moene, Arnold F.

    2016-02-01

    We elaborate on the preliminary results presented in Beyrich et al. (in Boundary-Layer Meteorol 144:83-112, 2012), who compared the structure parameter of temperature ({CT^2}_{}) obtained with the unmanned meteorological mini aerial vehicle (M2 AV) versus {CT^2}_{} obtained with two large-aperture scintillometers (LASs) for a limited dataset from one single experiment (LITFASS-2009). They found that {CT^2}_{} obtained from the M2 AV data is significantly larger than that obtained from the LAS data. We investigate if similar differences can be found for the flights on the other six days during LITFASS-2009 and LITFASS-2010, and whether these differences can be reduced or explained through a more elaborate processing of both the LAS data and the M2 AV data. This processing includes different corrections and measures to reduce the differences between the spatial and temporal averaging of the datasets. We conclude that the differences reported in Beyrich et al. can be found for other days as well. For the LAS-derived values the additional processing steps that have the largest effect are the saturation correction and the humidity correction. For the M2 AV -derived values the most important step is the application of the scintillometer path-weighting function. Using the true air speed of the M2 AV to convert from a temporal to a spatial structure function rather than the ground speed (as in Beyrich et al.) does not change the mean discrepancy, but it does affect {CT^2}_{} values for individual flights. To investigate whether {CT^2}_{} derived from the M2 AV data depends on the fact that the underlying temperature dataset combines spatial and temporal sampling, we used large-eddy simulation data to analyze {CT^2}_{} from virtual flights with different mean ground speeds. This analysis shows that {CT^2}_{} does only slightly depends on the true air speed when averaged over many flights.

  20. Global Sensitivity Analysis and Parameter Calibration for an Ecosystem Carbon Model

    NASA Astrophysics Data System (ADS)

    Safta, C.; Ricciuto, D. M.; Sargsyan, K.; Najm, H. N.; Debusschere, B.; Thornton, P. E.

    2013-12-01

    We present uncertainty quantification results for a process-based ecosystem carbon model. The model employs 18 parameters and is driven by meteorological data corresponding to years 1992-2006 at the Harvard Forest site. Daily Net Ecosystem Exchange (NEE) observations were available to calibrate the model parameters and test the performance of the model. Posterior distributions show good predictive capabilities for the calibrated model. A global sensitivity analysis was first performed to determine the important model parameters based on their contribution to the variance of NEE. We then proceed to calibrate the model parameters in a Bayesian framework. The daily discrepancies between measured and predicted NEE values were modeled as independent and identically distributed Gaussians with prescribed daily variance according to the recorded instrument error. All model parameters were assumed to have uninformative priors with bounds set according to expert opinion. The global sensitivity results show that the rate of leaf fall (LEAFALL) is responsible for approximately 25% of the total variance in the average NEE for 1992-2005. A set of 4 other parameters, Nitrogen use efficiency (NUE), base rate for maintenance respiration (BR_MR), growth respiration fraction (RG_FRAC), and allocation to plant stem pool (ASTEM) contribute between 5% and 12% to the variance in average NEE, while the rest of the parameters have smaller contributions. The posterior distributions, sampled with a Markov Chain Monte Carlo algorithm, exhibit significant correlations between model parameters. However LEAFALL, the most important parameter for the average NEE, is not informed by the observational data, while less important parameters show significant updates between their prior and posterior densities. The Fisher information matrix values, indicating which parameters are most informed by the experimental observations, are examined to augment the comparison between the calibration and global sensitivity analysis results.

Top