Remky, A; Arend, O; Beausencourt, E; Elsner, A E; Bertram, B
1996-01-01
Retinal vessel diameter is an important parameter in blood flow analysis. Despite modern digital image technology, most clinical studies investigate diameters subjectively using projected fundus slides or negatives. In the present study we used a technique to examine vessel diameters by digital image analysis of color fundus slides. We investigated in a retrospective manner diameter changes in twenty diabetic patients before and after panretinal laser coagulation. Color fundus slides were digitized by a new high resolution scanning device. The resulting images consisted in three channels (red, green, blue). Since vessel contrast was the highest in the green channel, we assessed grey value profiles perpendicular to the vessels in the green channel. Diameters were measured at the half-height of the profile. After panretinal laser coagulation, average venous diameter was decreased, whereas arterial diameter remained unchanged. There was no significant relation between the diameter change and the number of laser burns or the presence of neovascularization. Splitting digitized images into color planes enables objective measurements of retinal diameters in conventional color slides.
NASA Astrophysics Data System (ADS)
Hardy, Luke A.; Hutchens, Thomas C.; Larson, Eric R.; Gonzalez, David A.; Chang, Chun-Hung; Nau, William H.; Fried, Nathaniel M.
2017-05-01
Energy-based, radiofrequency (RF) and ultrasonic (US) devices currently provide rapid sealing of blood vessels during laparoscopic procedures. We are exploring infrared lasers as an alternate energy modality for vessel sealing, capable of generating less collateral thermal damage. Previous studies demonstrated feasibility of sealing vessels in an in vivo porcine model using a 1470-nm laser. However, the initial prototype was designed for testing in open surgery and featured tissue clasping and light delivery mechanisms incompatible with laparoscopic surgery. In this study, a laparoscopic prototype similar to devices currently in surgical use was developed, and performance tests were conducted on porcine renal blood vessels, ex vivo. The 5-mm outer-diameter laparoscopic prototype featured a traditional Maryland jaw configuration that enables tissue manipulation and blunt dissection. Laser energy was delivered through a 550-μm-core-diameter optical fiber with side-delivery from the lower jaw and beam dimensions of 18-mm length×1.2-mm width. The 1470-nm diode laser delivered 68 W with 3-s activation time, consistent with vessel seal times associated with RF and US-based devices. A total of 69 fresh porcine renal vessels with mean diameter of 3.3±1.7 mm were tested, ex vivo. Vessels smaller than 5-mm diameter were consistently sealed (48/51) with burst pressures greater than malignant hypertension blood pressure (180 mmHg), averaging 1038±474 mmHg. Vessels larger than 5 mm were not consistently sealed (6/18), yielding burst pressures of only 174±221 mmHg. Seal width, thermal damage zone, and thermal spread averaged 1.7±0.8, 3.4±0.7, and 1.0±0.4 mm, respectively. Results demonstrated that the 5-mm optical laparoscopic prototype consistently sealed vessels less than 5-mm diameter with low thermal spread. Further in vivo studies are planned to test the performance across a variety of vessels and tissues.
A comparison of two methods for measuring vessel length in woody plants.
Pan, Ruihua; Geng, Jing; Cai, Jing; Tyree, Melvin T
2015-12-01
Vessel lengths are important to plant hydraulic studies, but are not often reported because of the time required to obtain measurements. This paper compares the fast dynamic method (air injection method) with the slower but traditional static method (rubber injection method). Our hypothesis was that the dynamic method should yield a larger mean vessel length than the static method. Vessel length was measured by both methods in current year stems of Acer, Populus, Vitis and Quercus representing short- to long-vessel species. The hypothesis was verified. The reason for the consistently larger values of vessel length is because the dynamic method measures air flow rates in cut open vessels. The Hagen-Poiseuille law predicts that the air flow rate should depend on the product of number of cut open vessels times the fourth power of vessel diameter. An argument is advanced that the dynamic method is more appropriate because it measures the length of the vessels that contribute most to hydraulic flow. If all vessels had the same vessel length distribution regardless of diameter, then both methods should yield the same average length. This supports the hypothesis that large-diameter vessels might be longer than short-diameter vessels in most species. © 2015 John Wiley & Sons Ltd.
Murray's Law in elastin haploinsufficient (Eln+/-) and wild-type (WT) mice.
Sather, Bradley A; Hageman, Daniel; Wagenseil, Jessica E
2012-12-01
Using either the principle of minimum energy or constant shear stress, a relation can be derived that predicts the diameters of branching vessels at a bifurcation. This relation, known as Murray's Law, has been shown to predict vessel diameters in a variety of cardiovascular systems from adult humans to developing chicks. The goal of this study is to investigate Murray's Law in vessels from mice that are haploinsufficient for the elastin protein (Eln+/-). Elastin is one of the major proteins in the blood vessel wall and is organized in concentric rings, known as lamellae, with smooth muscle cells (SMCs) around the vessel lumen. Eln+/- mice have an increased number of lamellae, as well as smaller, thinner vessels. It is possible that due to decreased amounts of elastin available for vessel wall remodeling during development and in adulthood, Eln+/- vessels would not follow Murray's Law. We examined vessel bifurcations in six different physiologic regions, including the brain, heart, epidermis, ceocum (or cecum), testes, and intestines, in Eln+/- mice and wild-type (WT) littermates. All vessels were between 40 and 300 μm in diameter. We found that the diameters of both Eln+/- and WT vessels have an average of 13% error from the diameters predicted by Murray's Law, with no significant differences between genotypes or physiologic regions. The data suggest that vessels are optimized to follow Murray's Law, despite limitations on the proteins available for growth and remodeling of the vessel wall.
Altered bulbar conjunctival microcirculation in response to contact lens wear
Chen, Wan; Xu, Zhe; Jiang, Hong; Zhou, Jin; Wang, Liang; Wang, Jianhua
2015-01-01
Purpose This study was conducted to determine blood flow velocities and corresponding vessel diameters to characterize the response of the bulbar conjunctival microvasculature to contact lens wear. Methods A Functional Slit-lamp Biomicroscope (FSLB), an adapted traditional slit-lamp, was used to image the temporal bulbar conjunctiva of 22 healthy subjects before and after 6 hours of contact lens wear. All of the measurable venules on the conjunctiva were processed to yield vessel diameters and blood flow velocities. Results The averaged blood flow velocity increased from 0.51 ± 0.20 mm/s to 0.65 ± 0.22 mm/s (P < 0.001) after 6 hours of lens wear. The blood flow velocity distribution showed a velocity increase that correlated with the vessel diameter increase from the baseline (r = 0.826, P < 0.05). This pattern maintained a similar trend after 6 hours of lens wear (r = 0.925, P < 0.05), and increased velocities were found across all of the vessel diameter ranges (P < 0.001). Conclusions Blood flow velocity increases across all of the vessel diameter ranges in response to contact lens wear. FSLB is capable of characterizing the bulbar microvascular response to contact lens wear. PMID:27078615
Latimer, Cassandra A; Nelson, Meghan; Moore, Camille M; Martin, Kimberly E
2014-01-01
Bipolar devices are routinely used to seal blood vessels instead of sutures and clips. Recent work examining the impact of vascular proteins on bipolar seal performance found that collagen and elastin (CE) content within porcine arteries was a significant predictor of a vessel's burst pressure (VBPr). This study examined seal performance across a range of human blood vessels to investigate whether a similar relationship existed. In addition, we compared VBPr and CE content between porcine and human blood vessels. Our primary hypothesis is that higher collagen-to-elastin ratio will predict higher VBPr in human vasculature. In six cadavers, 185 blood vessels from nine anatomic locations were sealed using a bipolar electrosurgical system. A linear mixed model framework was used to evaluate the impact of vessel diameter and CE content on VBPr. The effect of CE ratio on VBPr is modified by vessel size, with CE ratio having larger influence on VBPr in smaller diameter vessels. Seal burst pressure of vessels 2-5 mm in diameter was significantly associated with their CE content. Comparison of average VBPr between species revealed porcine carotid and iliac arteries (440-670 mmHg) to be the best vessel types for predicting the seal strength of most human blood vessels (420-570 mmHg) examined. CE content significantly modified the seal strength of small to medium sized blood vessels but had limited impact on vessels >5 mm. Copyright © 2014 Elsevier Inc. All rights reserved.
Vessel packaging effect in laser speckle contrast imaging and laser Doppler imaging.
Fredriksson, Ingemar; Larsson, Marcus
2017-10-01
Laser speckle-based techniques are frequently used to assess microcirculatory blood flow. Perfusion estimates are calculated either by analyzing the speckle fluctuations over time as in laser Doppler flowmetry (LDF), or by analyzing the speckle contrast as in laser speckle contrast imaging (LSCI). The perfusion estimates depend on the amount of blood and its speed distribution. However, the perfusion estimates are commonly given in arbitrary units as they are nonlinear and depend on the magnitude and the spatial distribution of the optical properties in the tissue under investigation. We describe how the spatial confinement of blood to vessels, called the vessel packaging effect, can be modeled in LDF and LSCI, which affect the Doppler power spectra and speckle contrast, and the underlying bio-optical mechanisms for these effects. As an example, the perfusion estimate is reduced by 25% for LDF and often more than 50% for LSCI when blood is located in vessels with an average diameter of 40 μm, instead of being homogeneously distributed within the tissue. This significant effect can be compensated for only with knowledge of the average diameter of the vessels in the tissue. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Can forest dieback and tree death be predicted by prior changes in wood anatomy?
NASA Astrophysics Data System (ADS)
Colangelo, Michele; Julio Camarero, Jesus; De Micco, Veronica; Borghetti, Marco; Gentilesca, Tiziana; Sanchez-Salguero, Raul; Ripullone, Francesco
2017-04-01
Climate warming is expected to amplify drought stress resulting in more intense and widespread dieback episodes and increasing mortality rates. Studies on quantitative wood anatomy and dendrochronology have demonstrated their potential to supply useful information on the causes of tree decline, although this approach is basically observational and retrospective. Moreover, the long-term reconstruction of wood anatomical features, strictly linked to the evolution of xylem anatomy plasticity through time, allow investigating hydraulic adjustments of trees. In this study, we analyzed wood-anatomical variables in two Italian oak forests where recent episodes of dieback and mortality have been reported. We analyzed in coexisting now-dead and living trees the following wood-anatomical variables: annual tree-ring area, earlywood (EW) and latewood (LW) areas, absolute and relative (%) areas occupied by vessels in the EW and LW, EW and LW vessel areas, EW and LW vessel density and vessel diameter classification. We also calculated the hydraulic diameter (Dh) for all vessels measured within each ring by weighting individual conduit diameters to correspond to the average Hagen-Poiseuille lumen theoretical hydraulic conductivity for a vessel size. Wood-anatomical analyses showed that declining and dead trees were more sensitive to drought stress compared to non declining trees, indicating different susceptibility to water shortage between trees. Dead trees did not form earlywood vessels with smaller lumen diameter than surviving trees but tended to form wider latewood vessels with a higher percentage of vessel area. We discuss the results and implications focusing on those proved more sensitive to the phenomena of decline and mortality.
Cekić, Sonja; Cvetković, Tatjana; Jovanović, Ivan; Jovanović, Predrag; Pesić, Milica; Stanković Babić, Gordana; Milenković, Svetislav; Risimić, Dijana
2014-08-20
The aim of the study was to investigate the correlation between the levels of C-reactive protein (CRP) and chitinase 3-like protein 1 (YKL-40) in blood samples with morpohometric parameters of retinal blood vessels in patients with diabetic retinopathy. Blood laboratory examination of 90 patients included the measurement of glycemia, HbA1C, total cholesterol, LDL-C, HDL-C, triglycerides and CRP. Levels of YKL-40 were detected and measured in serum by ELISA (Micro VueYKL-40 EIA Kit, Quidel Corporation, San Diego, USA). YKL-40 correlated positively with diameter and negatively with number of retinal blood vessels. The average number of the blood vessels per retinal zone was significantly higher in the group of patients with mild non-proliferative diabetic retinopathy than in the group with severe form in the optic disc and all five retinal zones. The average outer diameter of the evaluated retinal zones and optic disc vessels was significantly higher in the group with severe compared to the group with mild diabetic retinopathy. Morphological analysis of the retinal vessels on digital fundus photography and correlation with YKL-40 may be valuable for the follow-up of diabetic retinopathy.
Schuldt, Bernhard; Leuschner, Christoph; Brock, Nicolai; Horna, Viviana
2013-02-01
It is generally assumed that the largest vessels are occurring in the roots and that vessel diameters and the related hydraulic conductance in the xylem are decreasing acropetally from roots to leaves. With this study in five tree species of a perhumid tropical rainforest in Sulawesi (Indonesia), we searched for patterns in hydraulic architecture and axial conductivity along the flow path from small-diameter roots through strong roots and the trunk to distal sun-canopy twigs. Wood density differed by not more than 10% across the different flow path positions in a species, and branch and stem wood density were closely related in three of the five species. Other than wood density, the wood anatomical and xylem hydraulic traits varied in dependence on the position along the flow path, but were unrelated to wood density within a tree. In contrast to reports from conifers and certain dicotyledonous species, we found a hump-shaped variation in vessel diameter and sapwood area--specific conductivity along the flow path in all five species with a maximum in the trunk and strong roots and minima in both small roots and twigs; the vessel size depended on the diameter of the organ. This pattern might be an adaptation to the perhumid climate with a low risk of hydraulic failure. Despite a similar mean vessel diameter in small roots and twigs, the two distal organs, hydraulically weighted mean vessel diameters were on average 30% larger in small roots, resulting in ∼ 85% higher empirical and theoretical specific conductivities. Relative vessel lumen area in percent of sapwood area decreased linearly by 70% from roots to twigs, reflecting the increase in sclerenchymatic tissue and tracheids in acropetal direction in the xylem. Vessel size was more closely related to the organ diameter than to the distance along the root-to-shoot flow path. We conclude that (i) the five co-occurring tree species show convergent patterns in their hydraulic architecture despite different growth strategies, and (ii) the paradigm assuming continuous acropetal vessel tapering and decrease in specific conductance from fine roots towards distal twigs needs reconsideration.
Azevedo, Maria Helena Ferreira; Paula, Tarcízio Antônio Rego; Balarini, Maytê Koch; Matta, Sérgio Luiz Pinto; Peixoto, Juliano Vogas; Guião Leite, Flaviana Lima; Rossi, João Luis; da Costa, Eduardo Paulino
2008-12-01
The endocrine portion of mammal testicle is represented by Leydig cells which, together with connective cells, leukocytes, blood and lymphatic vessels, form the intertubular space. The arrangement and proportion of these components vary in the different species of mammals and form mechanisms that keep the testosterone level--the main product of the Leydig cell--two to three times higher in the interstitial fluid than in the testicular blood vessels and 40-250 times higher in these than in the peripheral blood. Marked differences are observed among animal species regarding the abundance of Leydig cells, loose connective tissue, development degree and location of the lymphatic vessels and their topographical relationship with seminiferous tubules. In the jaguar about 13% of the testicular parenchyma is occupied by Leydig cells, 8.3% by connective tissue and 0.3% by lymphatic vessels. Although included in standard II, as described in the literature, concerning the arrangement of the intertubular space, the jaguar has grouped lymphatic vessels in the intertubular space instead of isolated ones. In the jaguar the average volume of the Leydig cell was 2386 microm3 and its average nuclear diameter was 7.7 microm. A great quantity of 2.3 microm diameter lipidic drops was observed in the Leydig cell cytoplasm of the jaguar. The Leydig cells in the jaguar occupy an average 0.0036% of the body weight and the average number per gram of testicle was within the range for most mammals: between 20 and 40 million.
Torus-margo pits help conifers compete with angiosperms.
Pittermann, Jarmila; Sperry, John S; Hacke, Uwe G; Wheeler, James K; Sikkema, Elzard H
2005-12-23
The unicellular conifer tracheid should have greater flow resistance per length (resistivity) than the multicellular angiosperm vessel, because its high-resistance end-walls are closer together. However, tracheids and vessels had comparable resistivities for the same diameter, despite tracheids being over 10 times shorter. End-wall pits of tracheids averaged 59 times lower flow resistance on an area basis than vessel pits, owing to the unique torus-margo structure of the conifer pit membrane. The evolution of this membrane was as hydraulically important as that of vessels. Without their specialized pits, conifers would have 38 times the flow resistance, making conifer-dominated ecosystems improbable in an angiosperm world.
Vessel calibre and flow splitting relationships at the internal carotid artery terminal bifurcation.
Chnafa, C; Bouillot, P; Brina, O; Delattre, B M A; Vargas, M I; Lovblad, K O; Pereira, V M; Steinman, D A
2017-11-01
Vessel lumen calibres and flow rates are thought to be related by mathematical power laws, reflecting the optimization of cardiac versus metabolic work. While these laws have been confirmed indirectly via measurement of branch calibres, there is little data confirming power law relationships of flow distribution to branch calibres at individual bifurcations. Flow rates and diameters of parent and daughter vessels of the internal carotid artery terminal bifurcation were determined, via robust and automated methods, from 4D phase-contrast magnetic resonance imaging and 3D rotational angiography of 31 patients. Junction exponents were 2.06 ± 0.44 for relating parent to daughter branch diameters (geometrical exponent), and 2.45 ± 0.75 for relating daughter branch diameters to their flow division (flow split exponent). These exponents were not significantly different, but showed large inter- and intra-individual variations, and with confidence intervals excluding the theoretical optimum of 3. Power law fits of flow split versus diameter ratio and pooled flow rates versus diameters showed exponents of 2.17 and 1.96, respectively. A significant negative correlation was found between age and the geometrical exponent (r = -0.55, p = 0.003) but not the flow split exponent. We also found a dependence of our results on how lumen diameter is measured, possibly explaining some of the variability in the literature. Our study confirms that, on average, division of flow to the middle and anterior cerebral arteries is related to these vessels' relative calibres via a power law, but it is closer to a square law than a cube law as commonly assumed.
Quantification of pulmonary vessel diameter in low-dose CT images
NASA Astrophysics Data System (ADS)
Rudyanto, Rina D.; Ortiz de Solórzano, Carlos; Muñoz-Barrutia, Arrate
2015-03-01
Accurate quantification of vessel diameter in low-dose Computer Tomography (CT) images is important to study pulmonary diseases, in particular for the diagnosis of vascular diseases and the characterization of morphological vascular remodeling in Chronic Obstructive Pulmonary Disease (COPD). In this study, we objectively compare several vessel diameter estimation methods using a physical phantom. Five solid tubes of differing diameters (from 0.898 to 3.980 mm) were embedded in foam, simulating vessels in the lungs. To measure the diameters, we first extracted the vessels using either of two approaches: vessel enhancement using multi-scale Hessian matrix computation, or explicitly segmenting them using intensity threshold. We implemented six methods to quantify the diameter: three estimating diameter as a function of scale used to calculate the Hessian matrix; two calculating equivalent diameter from the crosssection area obtained by thresholding the intensity and vesselness response, respectively; and finally, estimating the diameter of the object using the Full Width Half Maximum (FWHM). We find that the accuracy of frequently used methods estimating vessel diameter from the multi-scale vesselness filter depends on the range and the number of scales used. Moreover, these methods still yield a significant error margin on the challenging estimation of the smallest diameter (on the order or below the size of the CT point spread function). Obviously, the performance of the thresholding-based methods depends on the value of the threshold. Finally, we observe that a simple adaptive thresholding approach can achieve a robust and accurate estimation of the smallest vessels diameter.
Subatmospheric pressure in the rabbit pleural lymphatic network
Negrini, Daniela; Del Fabbro, Massimo
1999-01-01
Hydraulic pressure in intercostal and diaphragmatic lymphatic vessels was measured through the micropuncture technique in 23 anaesthetised paralysed rabbits. Pleural lymphatic vessels with diameters ranging from 55 to 950 μm were observed under stereomicroscope view about 3–4 h after intrapleural injection of 20 % fluorescent dextrans. Lymphatic pressure oscillated from a minimum (Pmin) to a maximum (Pmax) value, reflecting oscillations in phase with cardiac activity (cardiogenic oscillations) and lymphatic myogenic activity. With intact pleural space, Pmin in submesothelial diaphragmatic lymphatic vessels of the lateral apposition zone was −9.1 ± 4.2 mmHg, more subatmospheric than the simultaneously recorded pleural liquid pressure amounting to −3.9 ± 1.2 mmHg. In extrapleural intercostal lymphatic vessels Pmin averaged −1.3 ± 2.7 mmHg. Cardiogenic pressure oscillations (Pmax−Pmin), were observed in all recordings; their mean amplitude was about 5 mmHg and was not dependent upon frequency of cardiac contraction, nor lymphatic vessel diameter, nor the Pmin value. Intrinsic contractions of lymphatic vessel walls caused spontaneous pressure waves of about 7 mmHg in amplitude at a rate of 8 cycles min−1. These results demonstrated the ability of pleural lymphatic vessels to generate pressure oscillations driving fluid from the subatmospheric pleural space into the lymphatic network. PMID:10545142
Ince, Nazan Gezer; Onuk, Burcu; Kabak, Yonca Betil; Alan, Aydin; Kabak, Murat
2017-07-01
The present study was conducted to determine macroanatomic characteristic as well as light and electron microscopic examination (SEM) of pecten oculi and totally 20 bulbus oculi belonging to 10 seagulls (Larus canus) were used. Pecten oculi formations consisted of 18 to 21 pleats and their shape looked like a snail. Apical length of the pleats forming pecten oculi were averagely measured as 5.77 ± 0.56 mm, retina-dependent base length was 9.01 ± 1.35 mm and height was measured as 6.4 ± 0.62 mm. In pecten oculi formations which extend up to 1/3 of the bulbus oculi, two different vascular formations were determined according to thickness of the vessel diameter. Among these, vessels with larger diameters which are less than the others in count were classified as afferent and efferent vessels, smaller vessels which are greater in size were classified as capillaries. Furthermore, the granules which were observed intensely in apical side of the pleats of pecten oculi were observed to distribute randomly along the plica. © 2017 Wiley Periodicals, Inc.
Wang, Liang; Yuan, Jin; Jiang, Hong; Yan, Wentao; Cintrón-Colón, Hector R; Perez, Victor L; DeBuc, Delia C; Feuer, William J; Wang, Jianhua
2016-03-01
This study determined (1) how many vessels (i.e., the vessel sampling) are needed to reliably characterize the bulbar conjunctival microvasculature and (2) if characteristic information can be obtained from the distribution histogram of the blood flow velocity and vessel diameter. Functional slitlamp biomicroscope was used to image hundreds of venules per subject. The bulbar conjunctiva in five healthy human subjects was imaged on six different locations in the temporal bulbar conjunctiva. The histograms of the diameter and velocity were plotted to examine whether the distribution was normal. Standard errors were calculated from the standard deviation and vessel sample size. The ratio of the standard error of the mean over the population mean was used to determine the sample size cutoff. The velocity was plotted as a function of the vessel diameter to display the distribution of the diameter and velocity. The results showed that the sampling size was approximately 15 vessels, which generated a standard error equivalent to 15% of the population mean from the total vessel population. The distributions of the diameter and velocity were not only unimodal, but also somewhat positively skewed and not normal. The blood flow velocity was related to the vessel diameter (r=0.23, P<0.05). This was the first study to determine the sampling size of the vessels and the distribution histogram of the blood flow velocity and vessel diameter, which may lead to a better understanding of the human microvascular system of the bulbar conjunctiva.
A Neural Network/Acoustic Emission Analysis of Impact Damaged Graphite/Epoxy Pressure Vessels
NASA Technical Reports Server (NTRS)
Walker, James L.; Hill, Erik v. K.; Workman, Gary L.; Russell, Samuel S.
1995-01-01
Acoustic emission (AE) signal analysis has been used to measure the effects of impact damage on burst pressure in 5.75 inch diameter, inert propellant filled, filament wound pressure vessels. The AE data were collected from fifteen graphite/epoxy pressure vessels featuring five damage states and three resin systems. A burst pressure prediction model was developed by correlating the AE amplitude (frequency) distribution, generated during the first pressure ramp to 800 psig (approximately 25% of the average expected burst pressure for an undamaged vessel) to known burst pressures using a four layered back propagation neural network. The neural network, trained on three vessels from each resin system, was able to predict burst pressures with a worst case error of 5.7% for the entire fifteen bottle set.
A computational algorithm addressing how vessel length might depend on vessel diameter
Jing Cai; Shuoxin Zhang; Melvin T. Tyree
2010-01-01
The objective of this method paper was to examine a computational algorithm that may reveal how vessel length might depend on vessel diameter within any given stem or species. The computational method requires the assumption that vessels remain approximately constant in diameter over their entire length. When this method is applied to three species or hybrids in the...
NASA Astrophysics Data System (ADS)
Wang, Lei; Schnurr, Alena-Kathrin; Zidowitz, Stephan; Georgii, Joachim; Zhao, Yue; Razavi, Mohammad; Schwier, Michael; Hahn, Horst K.; Hansen, Christian
2016-03-01
Segmentation of hepatic arteries in multi-phase computed tomography (CT) images is indispensable in liver surgery planning. During image acquisition, the hepatic artery is enhanced by the injection of contrast agent. The enhanced signals are often not stably acquired due to non-optimal contrast timing. Other vascular structure, such as hepatic vein or portal vein, can be enhanced as well in the arterial phase, which can adversely affect the segmentation results. Furthermore, the arteries might suffer from partial volume effects due to their small diameter. To overcome these difficulties, we propose a framework for robust hepatic artery segmentation requiring a minimal amount of user interaction. First, an efficient multi-scale Hessian-based vesselness filter is applied on the artery phase CT image, aiming to enhance vessel structures with specified diameter range. Second, the vesselness response is processed using a Bayesian classifier to identify the most probable vessel structures. Considering the vesselness filter normally performs not ideally on the vessel bifurcations or the segments corrupted by noise, two vessel-reconnection techniques are proposed. The first technique uses a directional morphological operator to dilate vessel segments along their centerline directions, attempting to fill the gap between broken vascular segments. The second technique analyzes the connectivity of vessel segments and reconnects disconnected segments and branches. Finally, a 3D vessel tree is reconstructed. The algorithm has been evaluated using 18 CT images of the liver. To quantitatively measure the similarities between segmented and reference vessel trees, the skeleton coverage and mean symmetric distance are calculated to quantify the agreement between reference and segmented vessel skeletons, resulting in an average of 0:55+/-0:27 and 12:7+/-7:9 mm (mean standard deviation), respectively.
Terai, Naim; Gedenk, Alexandra; Spoerl, Eberhard; Pillunat, Lutz E; Stodtmeister, Richard
2014-08-01
To investigate the effect of flavonoid-rich dark chocolate and non-flavonoid-rich white chocolate on retinal vessel diameter in glaucoma patients and age-matched controls. Thirty glaucoma patients and 30 age-matched subjects were assigned to dark or white chocolate by randomization with forced equal distribution. The number in each of the four groups was 15. Measured parameters included systemic blood pressure (BP), blood glucose levels, static retinal vessel analysis, as measured by central retinal artery equivalent (CRAE) (which relates to the diameter of the central retinal artery), central retinal vein equivalent (CRVE) (which relates to the diameter of central retinal vein) and the arterio-venous ratio (AVR), which represents the CRAE/CRVE ratio, dynamic retinal vessel analysis as measured by the change in vessel diameter in response to flicker light stimulation. Three recording cycles from each were averaged. Blood pressure parameters (systolic BP, diastolic BP and pulse), IOP and blood glucose levels did not differ significantly between both groups before and after consumption of white or dark chocolate. Static vessel analysis did not show any significant changes in CRAE, CRVE or AVR before and after dark or white chocolate in both groups (p > 0.05). Mean dilatation of the venules in the control group was 3.2 ± 0.9 % before dark chocolate and 4.2 ± 1.4 % after dark chocolate intake, which was statistically significantly different (p = 0.01). Mean dilatation of the arterioles in the control group was 2.8 ± 1.8 % before dark chocolate and 3.5 ± 1.8 % after dark chocolate intake with a trend to statistical significance (p = 0.14), but not reaching the significance level. Mean diameter changes in the glaucoma group did not show any significant differences after dark chocolate consumption. The present study showed a significant improvement of venous vasodilatation 2 hr after dark chocolate intake in the control group, but not in the glaucoma group. This effect might be indicative of an increased bioavailability of nitric oxide (NO) after dark chocolate consumption. The lack of finding a significant venous response after dark chocolate in the glaucoma group might be related to the already impaired endothelial function in these patients. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Cilip, Christopher M; Kerr, Duane; Latimer, Cassandra A; Rosenbury, Sarah B; Giglio, Nicholas C; Hutchens, Thomas C; Nau, William H; Fried, Nathaniel M
2017-04-01
Infrared (IR) lasers are being explored as an alternative to radiofrequency (RF) and ultrasonic (US) devices for rapid hemostasis with minimal collateral zones of thermal damage and tissue necrosis. Previously, a 1,470 nm IR laser sealed and cut ex vivo porcine renal arteries of 1-8 mm diameter in 2 seconds, yielding burst pressures greater than 1,200 mmHg and thermal coagulation zones less than 3 mm. This preliminary study describes in vivo testing of a handheld laser probe in a porcine model. A handheld prototype with vessel/tissue clasping mechanism was tested on 73 blood vessels less than 6 mm diameter using 1,470 nm laser power of 35 W for 1-5 seconds. Device power settings, irradiation time, tissue type, vessel diameter, and histology sample number were recorded for each procedure. The probe was evaluated for hemostasis after sealing isolated and bundled arteriole/venous (A/V) vasculature of porcine abdomen and hind leg. Sealed vessel samples were collected for histological analysis of lateral thermal damage. Hemostasis was achieved in 57 of 73 seals (78%). The probe consistently sealed vasculature in small bowel mesentery, mesometrium, and gastrosplenic and epiploic regions. Seal performance was less consistent on hind leg vasculature including saphenous arteries/bundles and femoral and iliac arteries. Collagen denaturation averaged 1.6 ± 0.9 mm in eight samples excised for histologic examination. A handheld laser probe sealed porcine vessels, in vivo. Further probe development and laser parameter optimization is necessary before infrared lasers may be evaluated as an alternative to RF and US vessel sealing devices. Lasers Surg. Med. 49:366-371, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Arichika, Shigeta; Uji, Akihito; Ooto, Sotaro; Muraoka, Yuki; Yoshimura, Nagahisa
2016-05-01
We compared adaptive optics scanning laser ophthalmoscopy (AOSLO) and optical coherence tomography (OCT) vessel caliber measurements. AOSLO videos were acquired from 28 volunteers with healthy eyes. Artery measurements were made 0.5-1 disc diameters away from the optic disc margin. Individual segmented retinal arterial caliber was measured in synchronization with cardiac pulsation and averaged to obtain final horizontal retinal arterial caliber (ACH) and horizontal retinal arterial lumen (ALH). All OCT images were obtained with the Spectralis OCT, a spectral-domain OCT system. Vertical retinal arterial caliber (ACV) and vertical retinal arterial lumen (ALV) were measured on the same artery measured with AOSLO. Measurements made with the two imaging systems were compared. Average ACH, measured with AOSLO, was 123.4 ± 11.2 and average ALH was 101.8 ± 10.2 µm. Average ACV, measured with OCT, was 125.5 ± 11.4 and average ALV was 99.1 ± 10.6 µm. Both arterial caliber (r = 0.767, p < 0.0001) and arterial lumen (r = 0.81, p < 0.0001) measurements were significantly correlated between imaging modalities. Additionally, ACH and ACV were not significantly different (p = 0.16). However, ALH measurements were significantly higher than ALV measurements (p = 0.03). Vessel measurements made with AOSLO and OCT were well correlated. Moreover, plasma is visible and distinguishable from the retinal vessel wall in AOSLO images but not in OCT images. Therefore, AOSLO may measure vessel width more precisely than OCT.
Estimation of the lower flammability limit of organic compounds as a function of temperature.
Rowley, J R; Rowley, R L; Wilding, W V
2011-02-15
A new method of estimating the lower flammability limit (LFL) of general organic compounds is presented. The LFL is predicted at 298 K for gases and the lower temperature limit for solids and liquids from structural contributions and the ideal gas heat of formation of the fuel. The average absolute deviation from more than 500 experimental data points is 10.7%. In a previous study, the widely used modified Burgess-Wheeler law was shown to underestimate the effect of temperature on the lower flammability limit when determined in a large-diameter vessel. An improved version of the modified Burgess-Wheeler law is presented that represents the temperature dependence of LFL data determined in large-diameter vessels more accurately. When the LFL is estimated at increased temperatures using a combination of this model and the proposed structural-contribution method, an average absolute deviation of 3.3% is returned when compared with 65 data points for 17 organic compounds determined in an ASHRAE-style apparatus. Copyright © 2010 Elsevier B.V. All rights reserved.
Liu, Gangjun; Jia, Wangcun; Nelson, J Stuart; Chen, Zhongping
2013-12-01
Port-wine stain (PWS) is a congenital, progressive vascular malformation of the dermis. The use of optical coherence tomography (OCT) for the characterization of blood vessels in PWS skin has been demonstrated by several groups. In the past few years, advances in OCT technology have greatly increased imaging speed. Sophisticated numerical algorithms have improved the sensitivity of Doppler OCT dramatically. These improvements have enabled the noninvasive, high-resolution, three-dimensional functional imaging of PWS skin. Here, we demonstrate high-resolution, three-dimensional, microvasculature imaging of PWS and normal skin using Doppler OCT technique. The OCT system uses a swept source laser which has a central wavelength of 1,310 nm, an A-line rate of 50 kHz and a total average power of 16 mW. The system uses a handheld imaging probe and has an axial resolution of 9.3 µm in air and a lateral resolution of approximately 15 µm. Images were acquired from PWS subjects at the Beckman Laser Institute and Medical Clinic. Microvasculature of the PWS skin and normal skin were obtained from the PWS subject. High-resolution, three-dimensional microvasculature of PWS and normal skin were obtained. Many enlarged PWS vessels are detected in the dermis down to 1.0 mm below the PWS skin surface. In one subject, the blood vessel diameters range from 40 to 90 µm at the epidermal-dermal junction and increase up to 300-500 µm at deeper regions 700-1,000 µm below skin surface. The blood vessels close to the epidermal-dermal junction are more uniform, in terms of diameter. The more tortuous and dilated PWS blood vessels are located at deeper regions 600-1,000 µm below the skin surface. In another subject example, the PWS skin blood vessels are dilated at very superficial layers at a depth less than 500 µm below the skin surface. The PWS skin vessel diameters range from 60 to 650 µm, with most vessels having a diameter of around 200 µm. OCT can be used to quantitatively image in vivo skin micro-vasculature. Analysis of the PWS and normal skin blood vessels were performed and the results can provide quantitative information to optimize laser treatment on an individual patient basis. © 2013 Wiley Periodicals, Inc.
Application of morphological bit planes in retinal blood vessel extraction.
Fraz, M M; Basit, A; Barman, S A
2013-04-01
The appearance of the retinal blood vessels is an important diagnostic indicator of various clinical disorders of the eye and the body. Retinal blood vessels have been shown to provide evidence in terms of change in diameter, branching angles, or tortuosity, as a result of ophthalmic disease. This paper reports the development for an automated method for segmentation of blood vessels in retinal images. A unique combination of methods for retinal blood vessel skeleton detection and multidirectional morphological bit plane slicing is presented to extract the blood vessels from the color retinal images. The skeleton of main vessels is extracted by the application of directional differential operators and then evaluation of combination of derivative signs and average derivative values. Mathematical morphology has been materialized as a proficient technique for quantifying the retinal vasculature in ocular fundus images. A multidirectional top-hat operator with rotating structuring elements is used to emphasize the vessels in a particular direction, and information is extracted using bit plane slicing. An iterative region growing method is applied to integrate the main skeleton and the images resulting from bit plane slicing of vessel direction-dependent morphological filters. The approach is tested on two publicly available databases DRIVE and STARE. Average accuracy achieved by the proposed method is 0.9423 for both the databases with significant values of sensitivity and specificity also; the algorithm outperforms the second human observer in terms of precision of segmented vessel tree.
Feder, Idit; Duadi, Hamootal; Dreifuss, Tamar; Fixler, Dror
2016-10-01
Optical methods for detecting physiological state based on light-tissue interaction are noninvasive, inexpensive, simplistic, and thus very useful. The blood vessels in human tissue are the main cause of light absorbing and scattering. Therefore, the effect of blood vessels on light-tissue interactions is essential for optically detecting physiological tissue state, such as oxygen saturation, blood perfusion and blood pressure. We have previously suggested a new theoretical and experimental method for measuring the full scattering profile, which is the angular distribution of light intensity, of cylindrical tissues. In this work we will present experimental measurements of the full scattering profile of heterogenic cylindrical phantoms that include blood vessels. We show, for the first time that the vessel diameter influences the full scattering profile, and found higher reflection intensity for larger vessel diameters accordance to the shielding effect. For an increase of 60% in the vessel diameter the light intensity in the full scattering profile above 90° is between 9% to 40% higher, depending on the angle. By these results we claim that during respiration, when the blood-vessel diameter changes, it is essential to consider the blood-vessel diameter distribution in order to determine the optical path in tissues. A CT scan of the measured silicon-based phantoms. The phantoms contain the same blood volume in different blood-vessel diameters. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, Xuchu; Niu, Yanmin
2011-02-01
Automatic measurement of vessels from fundus images is a crucial step for assessing vessel anomalies in ophthalmological community, where the change in retinal vessel diameters is believed to be indicative of the risk level of diabetic retinopathy. In this paper, a new retinal vessel diameter measurement method by combining vessel orientation estimation and filter response is proposed. Its interesting characteristics include: (1) different from the methods that only fit the vessel profiles, the proposed method extracts more stable and accurate vessel diameter by casting this problem as a maximal response problem of a variation of Gabor filter; (2) the proposed method can directly and efficiently estimate the vessel's orientation, which is usually captured by time-consuming multi-orientation fitting techniques in many existing methods. Experimental results shows that the proposed method both retains the computational simplicity and achieves stable and accurate estimation results.
Microvascular distribution in the ocular conjunctiva and digestive tract in an experimental setting.
Pranskūnas, Andrius; Pilvinis, Vidas; Dambrauskas, Žilvinas; Rasimavičiūtė, Renata; Milieškaitė, Eglė; Bubulis, Algimantas; Veikutis, Vincentas; Vaitkaitis, Dinas; Boerma, E Christiaan
2012-01-01
Recently improved microcirculatory imaging techniques, such as orthogonal polarization spectral (OPS) and its technical successor sidestream dark field (SDF) imaging, in handheld devices have allowed a direct observation of the microcirculation at the bedside. Usually a cut-off of 20 µm in diameter is used to differentiate small vessels (mainly capillaries) from large vessels (mainly venules) during this technique. We hypothesized that it was possible to measure the small vessels with a considerably smaller inner diameter. Images of the sublingual, conjunctival, jejunal, and rectal mucosa microcirculation were obtained with SDF videomicroscopy (Microscan®, Microvision Medical, Amsterdam, the Netherlands). Using the validated software, the length and diameter of microvessels were manually traced with a computer-generated line. All vessels were divided into the groups according to the inner diameter. A total of 156 SDF images of the sublingual, ocular conjunctival, jejunal, and rectal mucosa were taken in 13 pigs. The length of microscopic vessels progressively increased with a decrease in the vessel diameter less than 8 mm in all the lodges, such as sublingual (80.6% of total vessel length), ocular conjunctival (76.5% of total vessel length), jejunal (99.8% of total vessel length), and rectal (97.8% of total vessel length), due to capillary network formation. There was no significant difference in the distribution of vessels from 0 to 10 µm in diameter comparing sublingual and eye conjunctival as well as jejunal and rectal mucosa. In pigs, small-diameter microscopic vessels (<10 µm) dominated in all the studied lodges (sublingual, ocular conjunctival, jejunal, and rectal mucosa), and this is evidence to establish a new cut-off for capillaries in microcirculatory analysis of SDF imaging in experimental and clinical studies.
Parameter sensitivity analysis of a lumped-parameter model of a chain of lymphangions in series.
Jamalian, Samira; Bertram, Christopher D; Richardson, William J; Moore, James E
2013-12-01
Any disruption of the lymphatic system due to trauma or injury can lead to edema. There is no effective cure for lymphedema, partly because predictive knowledge of lymphatic system reactions to interventions is lacking. A well-developed model of the system could greatly improve our understanding of its function. Lymphangions, defined as the vessel segment between two valves, are the individual pumping units. Based on our previous lumped-parameter model of a chain of lymphangions, this study aimed to identify the parameters that affect the system output the most using a sensitivity analysis. The system was highly sensitive to minimum valve resistance, such that variations in this parameter caused an order-of-magnitude change in time-average flow rate for certain values of imposed pressure difference. Average flow rate doubled when contraction frequency was increased within its physiological range. Optimum lymphangion length was found to be some 13-14.5 diameters. A peak of time-average flow rate occurred when transmural pressure was such that the pressure-diameter loop for active contractions was centered near maximum passive vessel compliance. Increasing the number of lymphangions in the chain improved the pumping in the presence of larger adverse pressure differences. For a given pressure difference, the optimal number of lymphangions increased with the total vessel length. These results indicate that further experiments to estimate valve resistance more accurately are necessary. The existence of an optimal value of transmural pressure may provide additional guidelines for increasing pumping in areas affected by edema.
[Introduction and advantage analysis of the stepwise method for the construction of vascular trees].
Zhang, Yan; Xie, Haiwei; Zhu, Kai
2010-08-01
A new method for constructing the model of vascular trees was proposed in this paper. By use of this method, the arterial trees in good agreement with the actual structure could be grown. In this process, all vessels in the vascular tree were divided into two groups: the conveying vessels, and the delivering branches. And different branches could be built by different ways. Firstly, the distributing rules of conveying vessels were ascertained by use of measurement data, and then the conveying vessels were constructed in accordance to the statistical rule and optimization criterion. Lastly, delivering branches were modeled by constrained constructive optimization (CCO) on the conveying vessel-trees which had already been generated. In order to compare the CCO method and stepwise method proposed here, two 3D arterial trees of human tongue were grown with their vascular tree having a special structure. Based on the corrosion casts of real arterial tree of human tongue, the data about the two trees constructed by different methods were compared and analyzed, including the averaged segment diameters at respective levels, the distribution and the diameters of the branches of first level at respective directions. The results show that the vascular tree built by stepwise method is more similar to the true arterial of human tongue when compared against the tree built by CCO method.
Semiautomated skeletonization of the pulmonary arterial tree in micro-CT images
NASA Astrophysics Data System (ADS)
Hanger, Christopher C.; Haworth, Steven T.; Molthen, Robert C.; Dawson, Christopher A.
2001-05-01
We present a simple and robust approach that utilizes planar images at different angular rotations combined with unfiltered back-projection to locate the central axes of the pulmonary arterial tree. Three-dimensional points are selected interactively by the user. The computer calculates a sub- volume unfiltered back-projection orthogonal to the vector connecting the two points and centered on the first point. Because more x-rays are absorbed at the thickest portion of the vessel, in the unfiltered back-projection, the darkest pixel is assumed to be the center of the vessel. The computer replaces this point with the newly computer-calculated point. A second back-projection is calculated around the original point orthogonal to a vector connecting the newly-calculated first point and user-determined second point. The darkest pixel within the reconstruction is determined. The computer then replaces the second point with the XYZ coordinates of the darkest pixel within this second reconstruction. Following a vector based on a moving average of previously determined 3- dimensional points along the vessel's axis, the computer continues this skeletonization process until stopped by the user. The computer estimates the vessel diameter along the set of previously determined points using a method similar to the full width-half max algorithm. On all subsequent vessels, the process works the same way except that at each point, distances between the current point and all previously determined points along different vessels are determined. If the difference is less than the previously estimated diameter, the vessels are assumed to branch. This user/computer interaction continues until the vascular tree has been skeletonized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yuting, E-mail: yutingl188@gmail.com; Paganetti, Harald; Schuemann, Jan
2015-10-15
Purpose: The purpose of this work is to investigate the radiosensitizing effect of gold nanoparticle (GNP) induced vasculature damage for proton, megavoltage (MV) photon, and kilovoltage (kV) photon irradiation. Methods: Monte Carlo simulations were carried out using tool for particle simulation (TOPAS) to obtain the spatial dose distribution in close proximity up to 20 μm from the GNPs. The spatial dose distribution from GNPs was used as an input to calculate the dose deposited to the blood vessels. GNP induced vasculature damage was evaluated for three particle sources (a clinical spread out Bragg peak proton beam, a 6 MV photonmore » beam, and two kV photon beams). For each particle source, various depths in tissue, GNP sizes (2, 10, and 20 nm diameter), and vessel diameters (8, 14, and 20 μm) were investigated. Two GNP distributions in lumen were considered, either homogeneously distributed in the vessel or attached to the inner wall of the vessel. Doses of 30 Gy and 2 Gy were considered, representing typical in vivo enhancement studies and conventional clinical fractionation, respectively. Results: These simulations showed that for 20 Au-mg/g GNP blood concentration homogeneously distributed in the vessel, the additional dose at the inner vascular wall encircling the lumen was 43% of the prescribed dose at the depth of treatment for the 250 kVp photon source, 1% for the 6 MV photon source, and 0.1% for the proton beam. For kV photons, GNPs caused 15% more dose in the vascular wall for 150 kVp source than for 250 kVp. For 6 MV photons, GNPs caused 0.2% more dose in the vascular wall at 20 cm depth in water as compared to at depth of maximum dose (Dmax). For proton therapy, GNPs caused the same dose in the vascular wall for all depths across the spread out Bragg peak with 12.7 cm range and 7 cm modulation. For the same weight of GNPs in the vessel, 2 nm diameter GNPs caused three times more damage to the vessel than 20 nm diameter GNPs. When the GNPs were attached to the inner vascular wall, the damage to the inner vascular wall can be up to 207% of the prescribed dose for the 250 kVp photon source, 4% for the 6 MV photon source, and 2% for the proton beam. Even though the average dose increase from the proton beam and MV photon beam was not large, there were high dose spikes that elevate the local dose of the parts of the blood vessel to be higher than 15 Gy even for 2 Gy prescribed dose, especially when the GNPs can be actively targeted to the endothelial cells. Conclusions: GNPs can potentially be used to enhance radiation therapy by causing vasculature damage through high dose spikes caused by the addition of GNPs especially for hypofractionated treatment. If GNPs are designed to actively accumulate at the tumor vasculature walls, vasculature damage can be increased significantly. The largest enhancement is seen using kilovoltage photons due to the photoelectric effect. Although no significant average dose enhancement was observed for the whole vasculature structure for both MV photons and protons, they can cause high local dose escalation (>15 Gy) to areas of the blood vessel that can potentially contribute to the disruption of the functionality of the blood vessels in the tumor.« less
Lin, Yuting; Paganetti, Harald; McMahon, Stephen J; Schuemann, Jan
2015-10-01
The purpose of this work is to investigate the radiosensitizing effect of gold nanoparticle (GNP) induced vasculature damage for proton, megavoltage (MV) photon, and kilovoltage (kV) photon irradiation. Monte Carlo simulations were carried out using tool for particle simulation (TOPAS) to obtain the spatial dose distribution in close proximity up to 20 μm from the GNPs. The spatial dose distribution from GNPs was used as an input to calculate the dose deposited to the blood vessels. GNP induced vasculature damage was evaluated for three particle sources (a clinical spread out Bragg peak proton beam, a 6 MV photon beam, and two kV photon beams). For each particle source, various depths in tissue, GNP sizes (2, 10, and 20 nm diameter), and vessel diameters (8, 14, and 20 μm) were investigated. Two GNP distributions in lumen were considered, either homogeneously distributed in the vessel or attached to the inner wall of the vessel. Doses of 30 Gy and 2 Gy were considered, representing typical in vivo enhancement studies and conventional clinical fractionation, respectively. These simulations showed that for 20 Au-mg/g GNP blood concentration homogeneously distributed in the vessel, the additional dose at the inner vascular wall encircling the lumen was 43% of the prescribed dose at the depth of treatment for the 250 kVp photon source, 1% for the 6 MV photon source, and 0.1% for the proton beam. For kV photons, GNPs caused 15% more dose in the vascular wall for 150 kVp source than for 250 kVp. For 6 MV photons, GNPs caused 0.2% more dose in the vascular wall at 20 cm depth in water as compared to at depth of maximum dose (Dmax). For proton therapy, GNPs caused the same dose in the vascular wall for all depths across the spread out Bragg peak with 12.7 cm range and 7 cm modulation. For the same weight of GNPs in the vessel, 2 nm diameter GNPs caused three times more damage to the vessel than 20 nm diameter GNPs. When the GNPs were attached to the inner vascular wall, the damage to the inner vascular wall can be up to 207% of the prescribed dose for the 250 kVp photon source, 4% for the 6 MV photon source, and 2% for the proton beam. Even though the average dose increase from the proton beam and MV photon beam was not large, there were high dose spikes that elevate the local dose of the parts of the blood vessel to be higher than 15 Gy even for 2 Gy prescribed dose, especially when the GNPs can be actively targeted to the endothelial cells. GNPs can potentially be used to enhance radiation therapy by causing vasculature damage through high dose spikes caused by the addition of GNPs especially for hypofractionated treatment. If GNPs are designed to actively accumulate at the tumor vasculature walls, vasculature damage can be increased significantly. The largest enhancement is seen using kilovoltage photons due to the photoelectric effect. Although no significant average dose enhancement was observed for the whole vasculature structure for both MV photons and protons, they can cause high local dose escalation (>15 Gy) to areas of the blood vessel that can potentially contribute to the disruption of the functionality of the blood vessels in the tumor.
Lin, Yuting; Paganetti, Harald; McMahon, Stephen J.; Schuemann, Jan
2015-01-01
Purpose: The purpose of this work is to investigate the radiosensitizing effect of gold nanoparticle (GNP) induced vasculature damage for proton, megavoltage (MV) photon, and kilovoltage (kV) photon irradiation. Methods: Monte Carlo simulations were carried out using tool for particle simulation (TOPAS) to obtain the spatial dose distribution in close proximity up to 20 μm from the GNPs. The spatial dose distribution from GNPs was used as an input to calculate the dose deposited to the blood vessels. GNP induced vasculature damage was evaluated for three particle sources (a clinical spread out Bragg peak proton beam, a 6 MV photon beam, and two kV photon beams). For each particle source, various depths in tissue, GNP sizes (2, 10, and 20 nm diameter), and vessel diameters (8, 14, and 20 μm) were investigated. Two GNP distributions in lumen were considered, either homogeneously distributed in the vessel or attached to the inner wall of the vessel. Doses of 30 Gy and 2 Gy were considered, representing typical in vivo enhancement studies and conventional clinical fractionation, respectively. Results: These simulations showed that for 20 Au-mg/g GNP blood concentration homogeneously distributed in the vessel, the additional dose at the inner vascular wall encircling the lumen was 43% of the prescribed dose at the depth of treatment for the 250 kVp photon source, 1% for the 6 MV photon source, and 0.1% for the proton beam. For kV photons, GNPs caused 15% more dose in the vascular wall for 150 kVp source than for 250 kVp. For 6 MV photons, GNPs caused 0.2% more dose in the vascular wall at 20 cm depth in water as compared to at depth of maximum dose (Dmax). For proton therapy, GNPs caused the same dose in the vascular wall for all depths across the spread out Bragg peak with 12.7 cm range and 7 cm modulation. For the same weight of GNPs in the vessel, 2 nm diameter GNPs caused three times more damage to the vessel than 20 nm diameter GNPs. When the GNPs were attached to the inner vascular wall, the damage to the inner vascular wall can be up to 207% of the prescribed dose for the 250 kVp photon source, 4% for the 6 MV photon source, and 2% for the proton beam. Even though the average dose increase from the proton beam and MV photon beam was not large, there were high dose spikes that elevate the local dose of the parts of the blood vessel to be higher than 15 Gy even for 2 Gy prescribed dose, especially when the GNPs can be actively targeted to the endothelial cells. Conclusions: GNPs can potentially be used to enhance radiation therapy by causing vasculature damage through high dose spikes caused by the addition of GNPs especially for hypofractionated treatment. If GNPs are designed to actively accumulate at the tumor vasculature walls, vasculature damage can be increased significantly. The largest enhancement is seen using kilovoltage photons due to the photoelectric effect. Although no significant average dose enhancement was observed for the whole vasculature structure for both MV photons and protons, they can cause high local dose escalation (>15 Gy) to areas of the blood vessel that can potentially contribute to the disruption of the functionality of the blood vessels in the tumor. PMID:26429263
FloWave.US: validated, open-source, and flexible software for ultrasound blood flow analysis.
Coolbaugh, Crystal L; Bush, Emily C; Caskey, Charles F; Damon, Bruce M; Towse, Theodore F
2016-10-01
Automated software improves the accuracy and reliability of blood velocity, vessel diameter, blood flow, and shear rate ultrasound measurements, but existing software offers limited flexibility to customize and validate analyses. We developed FloWave.US-open-source software to automate ultrasound blood flow analysis-and demonstrated the validity of its blood velocity (aggregate relative error, 4.32%) and vessel diameter (0.31%) measures with a skeletal muscle ultrasound flow phantom. Compared with a commercial, manual analysis software program, FloWave.US produced equivalent in vivo cardiac cycle time-averaged mean (TAMean) velocities at rest and following a 10-s muscle contraction (mean bias <1 pixel for both conditions). Automated analysis of ultrasound blood flow data was 9.8 times faster than the manual method. Finally, a case study of a lower extremity muscle contraction experiment highlighted the ability of FloWave.US to measure small fluctuations in TAMean velocity, vessel diameter, and mean blood flow at specific time points in the cardiac cycle. In summary, the collective features of our newly designed software-accuracy, reliability, reduced processing time, cost-effectiveness, and flexibility-offer advantages over existing proprietary options. Further, public distribution of FloWave.US allows researchers to easily access and customize code to adapt ultrasound blood flow analysis to a variety of vascular physiology applications. Copyright © 2016 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Diesch, J.-M.; Drewnick, F.; Klimach, T.; Borrmann, S.
2013-04-01
Measurements of the ambient aerosol, various trace gases and meteorological quantities using a mobile laboratory (MoLa) were performed on the banks of the Lower Elbe in an emission control area (ECA) which is passed by numerous private and commercial marine vessels reaching and leaving the port of Hamburg, Germany. From 25-29 April 2011 a total of 178 vessels were probed at a distance of about 0.8-1.2 km with high temporal resolution. 139 ship emission plumes were of sufficient quality to be analyzed further and to determine emission factors (EFs). Concentrations of aerosol number and mass as well as polycyclic aromatic hydrocarbons (PAH) and black carbon were measured in PM1 and size distribution instruments covered the diameter range from 6 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase species analyzers monitored various trace gases (O3, SO2, NO, NO2, CO2) in the air and a weather station provided wind, precipitation, solar radiation data and other quantities. Together with ship information for each vessel obtained from Automatic Identification System (AIS) broadcasts a detailed characterization of the individual ship types and of features affecting gas and particulate emissions is provided. Particle number EFs (average 2.6e+16 # kg-1) and PM1 mass EFs (average 2.4 g kg-1) tend to increase with the fuel sulfur content. Observed PM1 composition of the vessel emissions was dominated by organic matter (72%), sulfate (22%) and black carbon (6%) while PAHs only account for 0.2% of the submicron aerosol mass. Measurements of gaseous components showed an increase of SO2 (average EF: 7.7 g kg-1) and NOx (average EF: 53 g kg-1) while O3 decreased when a ship plume reached the sampling site. The particle number size distributions of the vessels are generally characterized by a bimodal size distribution, with the nucleation mode in the 10-20 nm diameter range and a combustion aerosol mode centered at about 35 nm while particles > 1 μm were not found. "High particle number emitters" are characterized by a dominant nucleation mode. By contrast, increased particle concentrations around 150 nm primarily occurred for "high black carbon emitters". Classifying the vessels according to their gross tonnage shows a decrease of the number, black carbon and PAH EFs while EFs of SO2, NO, NO2, NOx, AMS species (particulate organics, sulfate) and PM1 mass concentration increase with increasing gross tonnages.
NASA Astrophysics Data System (ADS)
Diesch, J.-M.; Drewnick, F.; Klimach, T.; Borrmann, S.
2012-08-01
Measurements of the ambient aerosol, various trace gases and meteorological parameters using a mobile laboratory (MoLa) were performed on the banks of the Lower Elbe in an emission control area (ECA) which is passed by numerous private and commercial marine vessels reaching and leaving the port of Hamburg, Germany. From 25-30 April 2011 a total of 178 vessels were probed at a distance of about 0.8-2 km with high temporal resolution. 139 ship emission plumes were of sufficient quality to be analyzed further and to determine emission factors (EFs). Concentrations of aerosol number and mass as well as polycyclic aromatic hydrocarbons (PAH) and black carbon were measured in PM1 and size distribution instruments covered the size diameter range from 6 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase species analyzers monitored various trace gases (O3, SO2, NO, NO2, CO2) in the air and a weather station provided wind, precipitation, solar radiation and other parameters. Together with ship information for each vessel obtained from Automatic Identification System (AIS) broadcasts a detailed characterization of the individual ship types and of features affecting gas and particulate emissions is provided. Particle number EFs (average 2.6×1016 # kg -1) and PM1 mass EFs (average 2.4 g kg -1) positively correlate with the fuel sulfur content and depend on the engine type and performance. Observed PM1 composition of the vessel emissions was dominated by organic matter (72%), sulfate (22%) and black carbon (6%) while PAHs only account for 0.2% of the submicron aerosol mass. Measurements of gaseous components showed an increase of SO2 (average EF: 7.7 g kg-1) and NOx (average EF: 53 g kg-1) while O3 decreased when a ship plume reached the sampling site. The particle number size distributions of the vessels are generally characterized by a bimodal size distribution, with the nucleation mode in the 10-20 nm diameter range and a combustion aerosol mode centered at about 35 nm while particles >1 μm were not found. "High particle number emitters" are characterized by a dominant nucleation mode. By contrast, a third weaker mode at 150 nm primarily occurred for "high black carbon emitters". Classifying the vessels according to their gross tonnage shows a decrease of the number, black carbon and PAH EFs while EFs of SO2, NO, NO2, NOx, AMS species (particulate organics, sulfate) and PM1 mass concentration increase with increasing gross tonnages.
Duadi, Hamootal; Fixler, Dror; Popovtzer, Rachela
2013-11-01
Most methods for measuring light-tissue interactions focus on the volume reflectance while very few measure the transmission. We investigate both diffusion reflection and diffuse transmission at all exit angles to receive the full scattering profile. We also investigate the influence of blood vessel diameter on the scattering profile of a circular tissue. The photon propagation path at a wavelength of 850 nm is calculated from the absorption and scattering constants via Monte Carlo simulation. Several simulations are performed where a different vessel diameter and location were chosen but the blood volume was kept constant. The fraction of photons exiting the tissue at several central angles is presented for each vessel diameter. The main result is that there is a central angle that below which the photon transmission decreased for lower vessel diameters while above this angle the opposite occurred. We find this central angle to be 135 deg for a two-dimensional 10-mm diameter circular tissue cross-section containing blood vessels. These findings can be useful for monitoring blood perfusion and oxygen delivery in the ear lobe and pinched tissues. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
Laparoscopic prototype for optical sealing of renal blood vessels
NASA Astrophysics Data System (ADS)
Hardy, Luke A.; Hutchens, Thomas C.; Larson, Eric R.; Gonzalez, David A.; Chang, Chun-Hung; Nau, William H.; Fried, Nathaniel M.
2017-02-01
Energy-based, radiofrequency and ultrasonic devices provide rapid sealing of blood vessels during laparoscopic procedures. We are exploring infrared lasers as an alternative for vessel sealing with less collateral thermal damage. Previous studies demonstrated vessel sealing in an in vivo porcine model using a 1470-nm laser. However, the initial prototype was designed for open surgery and featured tissue clasping and light delivery mechanisms incompatible with laparoscopic surgery. In this study, a laparoscopic prototype similar to devices in surgical use was developed, and tests were conducted on porcine renal blood vessels. The 5-mm-OD prototype featured a traditional Maryland jaw configuration. Laser energy was delivered through a 550-μm-core fiber and side-delivery from the lower jaw, with beam dimensions of 18-mm-length x 1.2-mm-width. The 1470-nm diode laser delivered 68 W with 3 s activation time. A total of 69 porcine renal vessels with mean diameter of 3.3 +/- 1.7 mm were tested, ex vivo. Vessels smaller than 5 mm were consistently sealed (48/51) with burst pressures greater than malignant hypertension blood pressure (180 mmHg), averaging 1038 +/- 474 mmHg. Vessels larger than 5 mm were not consistently sealed (6/18), yielding burst pressures of only 174 +/- 221 mmHg. Seal width, thermal damage zone, and thermal spread averaged 1.7 +/- 0.8, 3.4 +/- 0.7, and 1.0 +/- 0.4 mm. A novel optical laparoscopic prototype with 5-mm- OD shaft integrated within a standard Maryland jaw design consistently sealed vessels less than 5 mm with minimal thermal spread. Further in vivo studies are planned to test performance across a variety of vessels and tissues.
Automatic retinal blood vessel parameter calculation in spectral domain optical coherence tomography
NASA Astrophysics Data System (ADS)
Wehbe, Hassan; Ruggeri, Marco; Jiao, Shuliang; Gregori, Giovanni; Puliafito, Carmen A.
2007-02-01
Measurement of retinal blood vessel parameters like the blood blow in the vessels may have significant impact on the study and diagnosis of glaucoma, a leading blinding disease worldwide. Optical coherence tomography (OCT) is a noninvasive imaging technique that can provide not only microscopic structural imaging of the retina but also functional information like the blood flow velocity in the retina. The aim of this study is to automatically extract the parameters of retinal blood vessels like the 3D orientation, the vessel diameters, as well as the corresponding absolute blood flow velocity in the vessel. The parameters were extracted from circular OCT scans around the optic disc. By removing the surface reflection through simple segmentation of the circular OCT scans a blood vessel shadowgram can be generated. The lateral coordinates and the diameter of each blood vessel are extracted from the shadowgram through a series of signal processing. Upon determination of the lateral position and the vessel diameter, the coordinate in the depth direction of each blood vessel is calculated in combination with the Doppler information for the vessel. The extraction of the vessel coordinates and diameter makes it possible to calculate the orientation of the vessel in reference to the direction of the incident sample light, which in turn can be used to calculate the absolute blood flow velocity and the flow rate.
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia; Radhakrishnan, Krishnan; DiCorleto, Paul E.; Leontiev, Dmitry; Anand-Apte, Bela; Albarran, Brian; Farr, Andrew G.
2005-01-01
Vascular endothelial growth factor-165 (VEGF(sub 165)) stimulated angiogenesis in the quail chorioallantoic membrane (CAM) by vessel expansion from the capillary network. However, lymphangiogenesis was stimulated by the filopodial guidance of tip cells located on blind-ended lymphatic sprouts. As quantified by fractal/generational branching analysis using the computer code VESGEN, vascular density increased maximally at low VEGF concentrations, and vascular diameter increased most at high VEGF concentrations. Increased vascular density and diameter were statistically independent events (r(sub s), -0.06). By fluorescence immunohistochemistry of VEGF receptors VEGFR-1 and VEGFR-2, alpha smooth muscle actin ((alpha) SMA) and a vascular/lymphatic marker, VEGF(sub 165) increased the density and diameter of sprouting lymphatic vessels guided by tip cells (accompanied by the dissociation of lymphatics from blood vessels). Isolated migratory cells expressing (alpha)SMA were recruited to blood vessels, whereas isolated cells expressing VEGFR-2 were recruited primarily to lymphatics. In conclusion, VEGF(sub 165) increased lymphatic vessel density by lymphatic sprouting, but increased blood vessel density by vascular expansion from the capillary network.
Measuring Diameters Of Large Vessels
NASA Technical Reports Server (NTRS)
Currie, James R.; Kissel, Ralph R.; Oliver, Charles E.; Smith, Earnest C.; Redmon, John W., Sr.; Wallace, Charles C.; Swanson, Charles P.
1990-01-01
Computerized apparatus produces accurate results quickly. Apparatus measures diameter of tank or other large cylindrical vessel, without prior knowledge of exact location of cylindrical axis. Produces plot of inner circumference, estimate of true center of vessel, data on radius, diameter of best-fit circle, and negative and positive deviations of radius from circle at closely spaced points on circumference. Eliminates need for time-consuming and error-prone manual measurements.
Robust approach to ocular fundus image analysis
NASA Astrophysics Data System (ADS)
Tascini, Guido; Passerini, Giorgio; Puliti, Paolo; Zingaretti, Primo
1993-07-01
The analysis of morphological and structural modifications of retinal blood vessels plays an important role both to establish the presence of some systemic diseases as hypertension and diabetes and to study their course. The paper describes a robust set of techniques developed to quantitatively evaluate morphometric aspects of the ocular fundus vascular and micro vascular network. They are defined: (1) the concept of 'Local Direction of a vessel' (LD); (2) a special form of edge detection, named Signed Edge Detection (SED), which uses LD to choose the convolution kernel in the edge detection process and is able to distinguish between the left or the right vessel edge; (3) an iterative tracking (IT) method. The developed techniques use intensively both LD and SED in: (a) the automatic detection of number, position and size of blood vessels departing from the optical papilla; (b) the tracking of body and edges of the vessels; (c) the recognition of vessel branches and crossings; (d) the extraction of a set of features as blood vessel length and average diameter, arteries and arterioles tortuosity, crossing position and angle between two vessels. The algorithms, implemented in C language, have an execution time depending on the complexity of the currently processed vascular network.
Wavelength dependence of the apparent diameter of retinal blood vessels
NASA Astrophysics Data System (ADS)
Park, Robert; Twietmeyer, Karen; Chipman, Russell; Beaudry, Neil; Salyer, David
2005-04-01
Imaging of retinal blood vessels may assist in the diagnosis and monitoring of diseases such as glaucoma, diabetic retinopathy, and hypertension. However, close examination reveals that the contrast and apparent diameter of vessels are dependent on the wavelength of the illuminating light. In this study multispectral images of large arteries and veins within enucleated swine eyes are obtained with a modified fundus camera by use of intravitreal illumination. The diameters of selected vessels are measured as a function of wavelength by cross-sectional analysis. A fixed scale with spectrally independent dimension is placed above the retina to isolate the chromatic effects of the imaging system and eye. Significant apparent differences between arterial and venous diameters are found, with larger diameters observed at shorter wavelengths. These differences are due primarily to spectral absorption in the cylindrical blood column.
Blood Vessel Adaptation with Fluctuations in Capillary Flow Distribution
Hu, Dan; Cai, David; Rangan, Aaditya V.
2012-01-01
Throughout the life of animals and human beings, blood vessel systems are continuously adapting their structures – the diameter of vessel lumina, the thickness of vessel walls, and the number of micro-vessels – to meet the changing metabolic demand of the tissue. The competition between an ever decreasing tendency of luminal diameters and an increasing stimulus from the wall shear stress plays a key role in the adaptation of luminal diameters. However, it has been shown in previous studies that the adaptation dynamics based only on these two effects is unstable. In this work, we propose a minimal adaptation model of vessel luminal diameters, in which we take into account the effects of metabolic flow regulation in addition to wall shear stresses and the decreasing tendency of luminal diameters. In particular, we study the role, in the adaptation process, of fluctuations in capillary flow distribution which is an important means of metabolic flow regulation. The fluctuation in the flow of a capillary group is idealized as a switch between two states, i.e., an open-state and a close-state. Using this model, we show that the adaptation of blood vessel system driven by wall shear stress can be efficiently stabilized when the open time ratio responds sensitively to capillary flows. As micro-vessel rarefaction is observed in our simulations with a uniformly decreased open time ratio of capillary flows, our results point to a possible origin of micro-vessel rarefaction, which is believed to induce hypertension. PMID:23029014
Sacha, Gregory A; Schmitt, William J; Nail, Steven L
2006-01-01
The critical processing parameters affecting average particle size, particle size distribution, yield, and level of residual carrier solvent using the supercritical anti-solvent method (SAS) were identified. Carbon dioxide was used as the supercritical fluid. Methylprednisolone acetate was used as the model solute in tetrahydrofuran. Parameters examined included pressure of the supercritical fluid, agitation rate, feed solution flow rate, impeller diameter, and nozzle design. Pressure was identified as the most important process parameter affecting average particle size, either through the effect of pressure on dispersion of the feed solution into the precipitation vessel or through the effect of pressure on solubility of drug in the CO2/organic solvent mixture. Agitation rate, impeller diameter, feed solution flow rate, and nozzle design had significant effects on particle size, which suggests that dispersion of the feed solution is important. Crimped HPLC tubing was the most effective method of introducing feed solution into the precipitation vessel, largely because it resulted in the least amount of clogging during the precipitation. Yields of 82% or greater were consistently produced and were not affected by the processing variables. Similarly, the level of residual solvent was independent of the processing variables and was present at 0.0002% wt/wt THF or less.
Automatic classification of retinal vessels into arteries and veins
NASA Astrophysics Data System (ADS)
Niemeijer, Meindert; van Ginneken, Bram; Abràmoff, Michael D.
2009-02-01
Separating the retinal vascular tree into arteries and veins is important for quantifying vessel changes that preferentially affect either the veins or the arteries. For example the ratio of arterial to venous diameter, the retinal a/v ratio, is well established to be predictive of stroke and other cardiovascular events in adults, as well as the staging of retinopathy of prematurity in premature infants. This work presents a supervised, automatic method that can determine whether a vessel is an artery or a vein based on intensity and derivative information. After thinning of the vessel segmentation, vessel crossing and bifurcation points are removed leaving a set of vessel segments containing centerline pixels. A set of features is extracted from each centerline pixel and using these each is assigned a soft label indicating the likelihood that it is part of a vein. As all centerline pixels in a connected segment should be the same type we average the soft labels and assign this average label to each centerline pixel in the segment. We train and test the algorithm using the data (40 color fundus photographs) from the DRIVE database1 with an enhanced reference standard. In the enhanced reference standard a fellowship trained retinal specialist (MDA) labeled all vessels for which it was possible to visually determine whether it was a vein or an artery. After applying the proposed method to the 20 images of the DRIVE test set we obtained an area under the receiver operator characteristic (ROC) curve of 0.88 for correctly assigning centerline pixels to either the vein or artery classes.
An approach to localize the retinal blood vessels using bit planes and centerline detection.
Fraz, M M; Barman, S A; Remagnino, P; Hoppe, A; Basit, A; Uyyanonvara, B; Rudnicka, A R; Owen, C G
2012-11-01
The change in morphology, diameter, branching pattern or tortuosity of retinal blood vessels is an important indicator of various clinical disorders of the eye and the body. This paper reports an automated method for segmentation of blood vessels in retinal images. A unique combination of techniques for vessel centerlines detection and morphological bit plane slicing is presented to extract the blood vessel tree from the retinal images. The centerlines are extracted by using the first order derivative of a Gaussian filter in four orientations and then evaluation of derivative signs and average derivative values is performed. Mathematical morphology has emerged as a proficient technique for quantifying the blood vessels in the retina. The shape and orientation map of blood vessels is obtained by applying a multidirectional morphological top-hat operator with a linear structuring element followed by bit plane slicing of the vessel enhanced grayscale image. The centerlines are combined with these maps to obtain the segmented vessel tree. The methodology is tested on three publicly available databases DRIVE, STARE and MESSIDOR. The results demonstrate that the performance of the proposed algorithm is comparable with state of the art techniques in terms of accuracy, sensitivity and specificity. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
The effects of hindlimb unweighting on the capacitance of rat small mesenteric veins
NASA Technical Reports Server (NTRS)
Dunbar, S. L.; Berkowitz, D. E.; Brooks-Asplund, E. M.; Shoukas, A. A.
2000-01-01
Microgravity is associated with an impaired cardiac output response to orthostatic stress. Mesenteric veins are critical in modulating cardiac filling through venoconstriction. The purpose of this study was to determine the effects of simulated microgravity on the capacitance of rat mesenteric small veins. We constructed pressure-diameter relationships from vessels of 21-day hindlimb-unweighted (HLU) rats and control rats by changing the internal pressure and measuring the external diameter. Pressure-diameter relationships were obtained both before and after stimulation with norepinephrine (NE). The pressure-diameter curves of HLU vessels were shifted to larger diameters than control vessels. NE (10(-4) M) constricted veins from control animals such that the pressure-diameter relationship was significantly shifted downward (i.e., to smaller diameters at equal pressure). NE had no effect on vessels from HLU animals. These results indicate that, after HLU, unstressed vascular volume may be increased and can no longer decrease in response to sympathetic stimulation. This may partially underlie the mechanism leading to the exaggerated fall in cardiac output and stroke volume seen in astronauts during an orthostatic stress after exposure to microgravity.
Retinal vessel enhancement based on the Gaussian function and image fusion
NASA Astrophysics Data System (ADS)
Moraru, Luminita; Obreja, Cristian Dragoş
2017-01-01
The Gaussian function is essential in the construction of the Frangi and COSFIRE (combination of shifted filter responses) filters. The connection of the broken vessels and an accurate extraction of the vascular structure is the main goal of this study. Thus, the outcome of the Frangi and COSFIRE edge detection algorithms are fused using the Dempster-Shafer algorithm with the aim to improve detection and to enhance the retinal vascular structure. For objective results, the average diameters of the retinal vessels provided by Frangi, COSFIRE and Dempster-Shafer fusion algorithms are measured. These experimental values are compared to the ground truth values provided by manually segmented retinal images. We prove the superiority of the fusion algorithm in terms of image quality by using the figure of merit objective metric that correlates the effects of all post-processing techniques.
Hoshikawa, Ryo; Kawaguchi, Hiroshi; Takuwa, Hiroyuki; Ikoma, Yoko; Tomita, Yutaka; Unekawa, Miyuki; Suzuki, Norihiro; Kanno, Iwao; Masamoto, Kazuto
2016-08-01
This study aimed to develop a new method for mapping blood flow velocity based on the spatial evolution of fluorescent dye transit times captured with CLSFM in the cerebral microcirculation of anesthetized rodents. The animals were anesthetized with isoflurane, and a small amount of fluorescent dye was intravenously injected to label blood plasma. The CLSFM was conducted through a closed cranial window to capture propagation of the dye in the cortical vessels. The transit time of the dye over a certain distance in a single vessel was determined with automated image analyses, and average flow velocity was mapped in each vessel. The average flow velocity measured in the rat pial artery and vein was 4.4 ± 1.2 and 2.4 ± 0.5 mm/sec, respectively. A similar range of flow velocity to those of the rats was observed in the mice; 4.9 ± 1.4 and 2.0 ± 0.9 mm/sec, respectively, although the vessel diameter in the mice was about half of that in the rats. Flow velocity in the cerebral microcirculation can be mapped based on fluorescent dye transit time measurements with conventional CLSFM in experimental animals. © 2016 John Wiley & Sons Ltd.
Jun, Hong Young; Lee, Young Hwan; Juhng, Seon Kwan; Lee, Myeung Su; Oh, Jaemin; Yoon, Kwon-Ha
2014-06-01
The purpose of this study was to elucidate the micro CT findings of tumoral vessels supplied by portal circulation during establishment of hepatic metastasis of colorectal cancer in a mouse model. Hepatic metastases were induced in 15 BALB/c mice through the injection of murine colonic adenocarcinoma tumor cells into the mesenteric vein. Micro-CT imaging of the tumoral vessels was obtained to clarify the microvascular architecture. We evaluated the sinusoidal structure, diameter of the tumoral vessels (DTV) and blood vessel density (BVD) according to tumor sizes ranging from 201 to 3,000 µm in diameter. A total of 116 tumors were observed on day 15 after cell injection. The mean diameter of a normal hepatic sinusoid was 11.7 ± 2.0 µm on micro CT. The DTV supplied by the portal vein of tumors measuring 1,001-1,500 µm in diameter was greater than that of tumors 200-1,000 µm in diameter. The mean BVD from the portal vein gradually decrease according to size of tumor from 201 to 3,000 µm in diameter (r(2) = -0.584, P < 0.01). The characteristics of tumoral vessels supplied by portal circulation during establishment of hepatic colorectal metastases were well visualized with micro-CT imaging. © 2014 Wiley Periodicals, Inc.
Determination of vessel cross-sectional area by thresholding in Radon space
Gao, Yu-Rong; Drew, Patrick J
2014-01-01
The cross-sectional area of a blood vessel determines its resistance, and thus is a regulator of local blood flow. However, the cross-sections of penetrating vessels in the cortex can be non-circular, and dilation and constriction can change the shape of the vessels. We show that observed vessel shape changes can introduce large errors in flux calculations when using a single diameter measurement. Because of these shape changes, typical diameter measurement approaches, such as the full-width at half-maximum (FWHM) that depend on a single diameter axis will generate erroneous results, especially when calculating flux. Here, we present an automated method—thresholding in Radon space (TiRS)—for determining the cross-sectional area of a convex object, such as a penetrating vessel observed with two-photon laser scanning microscopy (2PLSM). The thresholded image is transformed back to image space and contiguous pixels are segmented. The TiRS method is analogous to taking the FWHM across multiple axes and is more robust to noise and shape changes than FWHM and thresholding methods. We demonstrate the superior precision of the TiRS method with in vivo 2PLSM measurements of vessel diameter. PMID:24736890
Acoustic response of compliable microvessels containing ultrasound contrast agents
NASA Astrophysics Data System (ADS)
Qin, Shengping; Ferrara, Katherine W.
2006-10-01
The existing models of the dynamics of ultrasound contrast agents (UCAs) have largely been focused on an UCA surrounded by an infinite liquid. Preliminary investigations of a microbubble's oscillation in a rigid tube have been performed using linear perturbation, under the assumption that the tube diameter is significantly larger than the UCA diameter. In the potential application of drug and gene delivery, it may be desirable to fragment the agent shell within small blood vessels and in some cases to rupture the vessel wall, releasing drugs and genes at the site. The effect of a compliant small blood vessel on the UCA's oscillation and the microvessel's acoustic response are unknown. The aim of this work is to propose a lumped-parameter model to study the interaction of a microbubble oscillation and compliable microvessels. Numerical results demonstrate that in the presence of UCAs, the transmural pressure through the blood vessel substantially increases and thus the vascular permeability is predicted to be enhanced. For a microbubble within an 8 to 40 µm vessel with a peak negative pressure of 0.1 MPa and a centre frequency of 1 MHz, small changes in the microbubble oscillation frequency and maximum diameter are observed. When the ultrasound pressure increases, strong nonlinear oscillation occurs, with an increased circumferential stress on the vessel. For a compliable vessel with a diameter equal to or greater than 8 µm, 0.2 MPa PNP at 1 MHz is predicted to be sufficient for microbubble fragmentation regardless of the vessel diameter; however, for a rigid vessel 0.5 MPa PNP at 1 MHz may not be sufficient to fragment the bubbles. For a centre frequency of 1 MHz, a peak negative pressure of 0.5 MPa is predicted to be sufficient to exceed the stress threshold for vascular rupture in a small (diameter less than 15 µm) compliant vessel. As the vessel or surrounding tissue becomes more rigid, the UCA oscillation and vessel dilation decrease; however the circumferential stress is predicted to increase. Decreasing the vessel size or the centre frequency increases the circumferential stress. For the two frequencies considered in this work, the circumferential stress does not scale as the inverse of the square root of the acoustic frequency va as in the mechanical index, but rather has a stronger frequency dependence, 1/va.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, J
Purpose: To investigate the potential utility of in-line phase-contrast imaging (ILPCI) technique with synchrotron radiation in detecting early hepatocellular carcinoma and cavernous hemangioma of live using in vitro model system. Methods: Without contrast agents, three typical early hepatocellular carcinoma specimens and three typical cavernous hemangioma of live specimens were imaged using ILPCI. To quantitatively discriminate early hepatocellular carcinoma tissues and cavernous hemangioma tissues, the projection images texture feature based on gray level co-occurrence matrix (GLCM) were extracted. The texture parameters of energy, inertia, entropy, correlation, sum average, sum entropy, difference average, difference entropy and inverse difference moment, were obtained respectively.more » Results: In the ILPCI planar images of early hepatocellular carcinoma specimens, vessel trees were clearly visualized on the micrometer scale. Obvious distortion deformation was presented, and the vessel mostly appeared as a ‘dry stick’. Liver textures appeared not regularly. In the ILPCI planar images of cavernous hemangioma of live specimens, typical vessels had not been found compared with the early hepatocellular carcinoma planar images. The planar images of cavernous hemangioma of live specimens clearly displayed the dilated hepatic sinusoids with the diameter of less than 100 microns, but all of them were overlapped with each other. The texture parameters of energy, inertia, entropy, correlation, sum average, sum entropy, and difference average, showed a statistically significant between the two types specimens image (P<0.01), except the texture parameters of difference entropy and inverse difference moment(P>0.01). Conclusion: The results indicate that there are obvious changes in morphological levels including vessel structures and liver textures. The study proves that this imaging technique has a potential value in evaluating early hepatocellular carcinoma and cavernous hemangioma of live.« less
Sealing vessels up to 7 mm in diameter solely with ultrasonic technology.
Timm, Richard W; Asher, Ryan M; Tellio, Karalyn R; Welling, Alissa L; Clymer, Jeffrey W; Amaral, Joseph F
2014-01-01
Ultrasonic energy is a mainstay in the armamentarium of surgeons, providing multifunctionality, precision, and control when dissecting and sealing vessels up to 5 mm in diameter. Historically, the inability to seal vessels in the 5-7 mm range has been perceived as an inherent limitation of ultrasonic technology. The purpose of this study was to evaluate sealing of vessels up to 7 mm in diameter with an ultrasonic device that modulates energy delivery during the sealing period. In ex vivo benchtop and in vivo acute and survival preclinical models, a new ultrasonic device, Harmonic ACE(®)+7 Shears (Harmonic 7), was compared with advanced bipolar devices in sealing vessels 1-7 mm in diameter with respect of burst pressure, seal reliability, and seal durability. Lateral thermal damage and transection time were also evaluated. Ex vivo tests of Harmonic 7 demonstrated significantly greater median burst pressures than an advanced bipolar device both for vessels <5 mm in diameter (1,078 mmHg and 836 mmHg, respectively, P=0.046) and for those in the range of 5-7 mm (1,419 mmHg and 591 mmHg, P<0.001). In vivo tests in porcine and caprine models demonstrated similar rates of hemostasis between Harmonic 7 and advanced bipolar devices, with high success rates at initial transection and seal durability of 100% after a 30-day survival period. Sealing 5-7 mm vessels is not a limitation of the type of energy used but of how energy is delivered to tissue. These studies document the ability of ultrasonic energy alone to reliably seal large vessels 5-7 mm in diameter, with significantly greater burst pressure observed in in vitro studies than those observed with an advanced bipolar technology when energy delivery is modulated during the sealing cycle. Furthermore, the seals created in 5-7 mm vessels are shown to be reliable and durable in in vivo preclinical studies.
Endes, Katharina; Herrmann, Christian; Colledge, Flora; Brand, Serge; Donath, Lars; Faude, Oliver; Pühse, Uwe; Hanssen, Henner; Zahner, Lukas
2016-01-01
Background. Strong evidence exists showing that psychosocial stress plays an important part in the development of cardiovascular diseases. Because physical inactivity is associated with less favourable retinal vessel diameter and blood pressure profiles, this study explores whether physical fitness is able to buffer the negative effects of psychosocial stress on retinal vessel diameters and blood pressure in young children. Methods. 325 primary schoolchildren (51% girls, Mage = 7.28 years) took part in this cross-sectional research project. Retinal arteriolar diameters, retinal venular diameters, arteriolar to venular ratio, and systolic and diastolic blood pressure were assessed in all children. Interactions terms between physical fitness (performance in the 20 m shuttle run test) and four indicators of psychosocial stress (parental reports of critical life events, family, peer and school stress) were tested in a series of hierarchical regression analyses. Results. Critical life events and family, peer, and school-related stress were only weakly associated with retinal vessel diameters and blood pressure. No support was found for a stress-buffering effect of physical fitness. Conclusion. More research is needed with different age groups to find out if and from what age physical fitness can protect against arteriolar vessel narrowing and the occurrence of other cardiovascular disease risk factors. PMID:27795958
Infrared laser thermal fusion of blood vessels: preliminary ex vivo tissue studies.
Cilip, Christopher M; Rosenbury, Sarah B; Giglio, Nicholas; Hutchens, Thomas C; Schweinsberger, Gino R; Kerr, Duane; Latimer, Cassandra; Nau, William H; Fried, Nathaniel M
2013-05-01
Suture ligation of blood vessels during surgery can be time-consuming and skill-intensive. Energy-based, electrosurgical, and ultrasonic devices have recently replaced the use of sutures and mechanical clips (which leave foreign objects in the body) for many surgical procedures, providing rapid hemostasis during surgery. However, these devices have the potential to create an undesirably large collateral zone of thermal damage and tissue necrosis. We explore an alternative energy-based technology, infrared lasers, for rapid and precise thermal coagulation and fusion of the blood vessel walls. Seven near-infrared lasers (808, 980, 1075, 1470, 1550, 1850 to 1880, and 1908 nm) were tested during preliminary tissue studies. Studies were performed using fresh porcine renal vessels, ex vivo, with native diameters of 1 to 6 mm, and vessel walls flattened to a total thickness of 0.4 mm. A linear beam profile was applied normal to the vessel for narrow, full-width thermal coagulation. The laser irradiation time was 5 s. Vessel burst pressure measurements were used to determine seal strength. The 1470 nm laser wavelength demonstrated the capability of sealing a wide range of blood vessels from 1 to 6 mm diameter with burst strengths of 578 ± 154, 530 ± 171, and 426 ± 174 mmHg for small, medium, and large vessel diameters, respectively. Lateral thermal coagulation zones (including the seal) measured 1.0 ± 0.4 mm on vessels sealed at this wavelength. Other laser wavelengths (1550, 1850 to 1880, and 1908 nm) were also capable of sealing vessels, but were limited by lower vessel seal pressures, excessive charring, and/or limited power output preventing treatment of large vessels (>4 mm outer diameter).
Retinal vessel oxygen saturation in a healthy young Chinese population.
Yang, Wei; Fu, Yue; Dong, Yanmin; Lin, Leilei; Huang, Xia; Li, Yujie; Lin, Xiaofeng; Gao, Qianying
2016-06-01
To measure retinal vessel oxygen saturation in a healthy young Chinese population and to determine the effects of multiple factors (gender, age, dioptre, vessel diameter and ocular perfusion pressure - OPP) on retinal oxygen saturation. A total of 126 healthy Chinese individuals aged from 19 to 30 were included in this study. A retinal oximeter (Oxymap T1) was used to measure retinal vessel oxygen saturation by retinal imaging at two different wavelengths. The mean retinal vessel oxygen saturation (Sat_O2 ) of arterioles, venules and arteriovenous (AV) difference overall and in four separate quadrants were measured. Intra-ocular pressure, blood pressure, finger pulse oximetry value, vessel diameter and dioptre were also measured. The correlations between OPP and dioptre, OPP and vessel diameter, and dioptre and vessel diameter were analysed. And the effects of multiple factors on the retinal oxygen saturation were analysed. The mean oxygen saturation was 93.2 ± 6.3% in the retinal arterioles, 60.4 ± 5.3% in venules and 32.9 ± 6.4% in AV difference. The temporal quadrants had lower measurements of arteriolar and venular oxygen saturation and AV difference compared with nasal quadrants (p < 0.001). The oxygen saturation of the arterioles, venules and AV difference were unaffected by any unique factor. Arteriolar and venular retinal oxygen saturation correlated negatively with the product of dioptre and OPP. Arteriolar retinal oxygen saturation correlated positively with the product of dioptre and vessel diameter. This study provided a normal reference of Sat_O2 in healthy young Chinese individuals. It was a reflection of the normal state of retinal oxygen metabolism affected by several factors. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Blood vessel classification into arteries and veins in retinal images
NASA Astrophysics Data System (ADS)
Kondermann, Claudia; Kondermann, Daniel; Yan, Michelle
2007-03-01
The prevalence of diabetes is expected to increase dramatically in coming years; already today it accounts for a major proportion of the health care budget in many countries. Diabetic Retinopathy (DR), a micro vascular complication very often seen in diabetes patients, is the most common cause of visual loss in working age population of developed countries today. Since the possibility of slowing or even stopping the progress of this disease depends on the early detection of DR, an automatic analysis of fundus images would be of great help to the ophthalmologist due to the small size of the symptoms and the large number of patients. An important symptom for DR are abnormally wide veins leading to an unusually low ratio of the average diameter of arteries to veins (AVR). There are also other diseases like high blood pressure or diseases of the pancreas with one symptom being an abnormal AVR value. To determine it, a classification of vessels as arteries or veins is indispensable. As to our knowledge despite the importance there have only been two approaches to vessel classification yet. Therefore we propose an improved method. We compare two feature extraction methods and two classification methods based on support vector machines and neural networks. Given a hand-segmentation of vessels our approach achieves 95.32% correctly classified vessel pixels. This value decreases by 10% on average, if the result of a segmentation algorithm is used as basis for the classification.
Flux or speed? Examining speckle contrast imaging of vascular flows
Kazmi, S. M. Shams; Faraji, Ehssan; Davis, Mitchell A.; Huang, Yu-Yen; Zhang, Xiaojing J.; Dunn, Andrew K.
2015-01-01
Speckle contrast imaging enables rapid mapping of relative blood flow distributions using camera detection of back-scattered laser light. However, speckle derived flow measures deviate from direct measurements of erythrocyte speeds by 47 ± 15% (n = 13 mice) in vessels of various calibers. Alternatively, deviations with estimates of volumetric flux are on average 91 ± 43%. We highlight and attempt to alleviate this discrepancy by accounting for the effects of multiple dynamic scattering with speckle imaging of microfluidic channels of varying sizes and then with red blood cell (RBC) tracking correlated speckle imaging of vascular flows in the cerebral cortex. By revisiting the governing dynamic light scattering models, we test the ability to predict the degree of multiple dynamic scattering across vessels in order to correct for the observed discrepancies between relative RBC speeds and multi-exposure speckle imaging estimates of inverse correlation times. The analysis reveals that traditional speckle contrast imagery of vascular flows is neither a measure of volumetric flux nor particle speed, but rather the product of speed and vessel diameter. The corrected speckle estimates of the relative RBC speeds have an average 10 ± 3% deviation in vivo with those obtained from RBC tracking. PMID:26203384
Flux or speed? Examining speckle contrast imaging of vascular flows.
Kazmi, S M Shams; Faraji, Ehssan; Davis, Mitchell A; Huang, Yu-Yen; Zhang, Xiaojing J; Dunn, Andrew K
2015-07-01
Speckle contrast imaging enables rapid mapping of relative blood flow distributions using camera detection of back-scattered laser light. However, speckle derived flow measures deviate from direct measurements of erythrocyte speeds by 47 ± 15% (n = 13 mice) in vessels of various calibers. Alternatively, deviations with estimates of volumetric flux are on average 91 ± 43%. We highlight and attempt to alleviate this discrepancy by accounting for the effects of multiple dynamic scattering with speckle imaging of microfluidic channels of varying sizes and then with red blood cell (RBC) tracking correlated speckle imaging of vascular flows in the cerebral cortex. By revisiting the governing dynamic light scattering models, we test the ability to predict the degree of multiple dynamic scattering across vessels in order to correct for the observed discrepancies between relative RBC speeds and multi-exposure speckle imaging estimates of inverse correlation times. The analysis reveals that traditional speckle contrast imagery of vascular flows is neither a measure of volumetric flux nor particle speed, but rather the product of speed and vessel diameter. The corrected speckle estimates of the relative RBC speeds have an average 10 ± 3% deviation in vivo with those obtained from RBC tracking.
Automatic retinal blood flow calculation using spectral domain optical coherence tomography
NASA Astrophysics Data System (ADS)
Wehbe, Hassan; Ruggeri, Marco; Jiao, Shuliang; Gregori, Giovanni; Puliafito, Carmen A.
2008-02-01
Optical Doppler tomography (ODT) is a branch of optical coherence tomography (OCT) that can measure the speed of a blood flow by measuring the Doppler shift impinged on the probing sample light by the moving blood cells. However, the measured speed of blood flow is a function of the Doppler angle, which needs to be determined in order to calculate the absolute velocity of the blood flow inside a vessel. We developed a technique that can extract the Doppler angle from the 3D data measured with spectral-domain OCT, which needs to extract the lateral and depth coordinates of a vessel in each measured ODT and OCT image. The lateral coordinates and the diameter of a blood vessel were first extracted in each OCT structural image by using the technique of blood vessel shadowgram, a technique first developed by us for enhancing the retinal blood vessel contrast in the en face view of the 3D OCT. The depth coordinate of a vessel was then determined by using a circular averaging filter moving in the depth direction along the axis passing through the vessel center in the ODT image. The Doppler angle was then calculated from the extracted coordinates of the blood vessel. The technique was applied in blood flow measurements in retinal blood vessels, which has potential impact on the study and diagnosis of blinding diseases like glaucoma and diabetic retinopathy.
Placement of trans-sternal wires according to an ellipsoid pressure vessel model of sternal forces.
Casha, Aaron R; Manché, Alex; Gauci, Marilyn; Camilleri-Podesta, Marie-Therese; Schembri-Wismayer, Pierre; Sant, Zdenka; Gatt, Ruben; Grima, Joseph N
2012-03-01
Dehiscence of median sternotomy wounds remains a clinical problem. Wall forces in thin-walled pressure vessels can be calculated by membrane stress theory. An ellipsoid pressure vessel model of sternal forces is presented together with its application for optimal wire placement in the sternum. Sternal forces were calculated by computational simulation using an ellipsoid chest wall model. Sternal forces were correlated with different sternal thicknesses and radio-density as measured by computerized tomography (CT) scans of the sternum. A comparison of alternative placement of trans-sternal wires located either at the levels of the costal cartilages or the intercostal spaces was made. The ellipsoid pressure vessel model shows that higher levels of stress are operative at increasing chest diameter (P < 0.001). CT scans show that the thickness of the sternal body is on average 3 mm and 30% thicker (P < 0.001) and 53% more radio-dense (P < 0.001) at the costal cartilage levels when compared with adjacent intercostal spaces. This results in a decrease of average sternal stress from 438 kPa at the intercostal space level to 338 kPa at the costal cartilage level (P = 0.003). Biomechanical modelling suggests that placement of trans-sternal wires at the thicker bone and more radio-dense level of the costal cartilages will result in reduced stress.
Tessler, Oren; Gilardino, Mirko S; Bartow, Matthew J; St Hilaire, Hugo; Womac, Daniel; Dionisopoulos, Tassos; Lessard, Lucie
2017-03-01
Many head and neck reconstructions occur in patients with extensive history of surgery or radiation treatment. This leads to complicated free flap reconstructions, especially in choosing recipient vessels in a "frozen neck." The transverse cervical artery is an optimal second-line recipient artery in head and neck reconstruction. Seventy-two neck sides in 36 cadavers were dissected, looking for the transverse cervical artery and transverse cervical vein. Anatomical location of these vessels, their diameter, and length were documented. A retrospective analysis on 19 patients who had head and neck reconstruction using the transverse cervical artery as a recipient artery was undertaken as well with regard to outcome of procedures, reason for surgery, previous operations, and use of vein grafts during surgery. The transverse cervical artery was present in 72 of 72 of cadaveric specimens, and was infraclavicular in two of 72 specimens. Transverse cervical artery length ranged from 4.0 to 7.0 cm, and the mean diameter was 2.65 mm. The transverse cervical vein was present in 61 of 72 cadaveric specimens, the length ranged from 4.0 to 7.0 cm, and the mean diameter was 2.90 mm. The transverse cervical artery averaged 33 mm from midline, and branched off the thyrocervical trunk at an average 17 mm superior to the clavicle. Transverse cervical artery stenosis was markedly less in comparison with external carotid artery stenosis. In a 20-year clinical follow-up study, the transverse cervical artery was the recipient artery in 19 patients. A vein graft was used in one patient, and no flap loss occurred in any of the 19 patients. The transverse cervical artery is a reliable and robust option as a recipient artery in free flap head and neck reconstruction.
Does bipolar electrocoagulation time affect vessel weld strength?
Harrison, J D; Morris, D L
1991-01-01
The value of the bipolar electrocoagulator in the haemostasis of bleeding ulcers is controversial. We have therefore investigated the effect of different coagulation times on vessel weld strength achieved by the bipolar device. Welds were then made in vessels of known diameter using a standard 10F endoscopic haemostatic probe at coagulation times of two and 20 seconds. The intravascular temperature achieved at each time was measured. Vessel weld strength achieved by bipolar electrocoagulation was much greater at 20 seconds (approximately twice that at two seconds) and was highly significantly greater at all vessel diameters. There was a gradual reduction in weld strength with increasing vessel diameter, an effect that was seen for both two and 20 seconds of electrocoagulation. Intravascular temperature was significantly higher at 20 seconds than at two seconds. We conclude that vessel weld strength is related to coagulation time and that any future studies comparing the bipolar electrocoagulator with other haemostatic devices should use longer periods of bipolar electrocoagulation and record the coagulation time in order to optimise the clinical value of the device. PMID:1864540
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sommer, C. M., E-mail: christof.sommer@med.uni-heidelberg.de; Grenacher, L.; Stampfl, U.
The purpose of this study was to evaluate the impact of stent design on in-stent stenosis in rabbit iliac arteries. Four different types of stent were implanted in rabbit iliac arteries, being different in stent design (crown or wave) and strut thickness (50 or 100 {mu}m). Ten stents of each type were implanted. Each animal received one crown and one wave stent with the same strut thickness. Follow-up was either 12 weeks (n = 10 rabbits) or 24 weeks (n = 10 rabbits). Primary study end points were angiographic and microscopic in-stent stenosis. Secondary study end points were vessel injury,more » vascular inflammation, and stent endothelialization. Average stent diameter, relative stent overdilation, average and minimal luminal diameter, and relative average and maximum luminal loss were not significantly different. However, a trend to higher relative stent overdilation was recognized in crown stents compared to wave stents. A trend toward higher average and minimal luminal diameter and lower relative average and maximum luminal loss was recognized in crown stents compared to wave stents with a strut thickness of 100 {mu}m. Neointimal height, relative luminal area stenosis, injury score, inflammation score, and endothelialization score were not significantly different. However, a trend toward higher neointimal height was recognized in crown stents compared to wave stents with a strut thickness of 50 {mu}m and a follow-up of 24 weeks. In conclusion, in this study, crown stents seem to trigger neointima. However, the optimized radial force might equalize the theoretically higher tendency for restenosis in crown stents. In this context, also more favorable positive remodeling in crown stents could be important.« less
Kendrick, Daniel E; Allemang, Matthew T; Gosling, Andre F; Nagavalli, Anil; Kim, Ann H; Nishino, Setsu; Parikh, Sahil A; Bezerra, Hiram G; Kashyap, Vikram S
2016-10-01
To examine the hypothesis that alternative flush media could be used for lower extremity optical coherence tomography (OCT) imaging in long lesions that would normally require excessive use of contrast. The OPTical Imaging Measurement of Intravascular Solution Efficacy (OPTIMISE) trial was a single-center, prospective study (ClinicalTrials.gov identifier NCT01743872) that enrolled 23 patients (mean age 68±11 years; 14 men) undergoing endovascular intervention involving the superficial femoral artery. Four flush media (heparinized saline, dextran, carbon dioxide, and contrast) were used in succession in random order for each image pullback. Quality was defined as ≥270° visualization of vessel wall layers from each axial image. Mean proportions (± standard deviation) of image quality for each flush medium were assessed using 1-way analysis of variance and are reported with the 95% confidence intervals (CI). Four OCT catheters failed, leaving 19 patients who completed the OCT imaging protocol; from this cohort, 51 highest quality runs were selected for analysis. Average vessel diameter was 3.99±1.01 mm. OCT imaging allowed 10- to 15-μm resolution of the lumen border, with diminishing quality as vessel diameter increased. Plaque characterization revealed fibrotic lesions. Mean proportions of image quality were dextran 87.2%±12% (95% CI 0.81 to 0.94), heparinized saline 74.3%±24.8% (95% CI 0.66 to 0.93), contrast 70.1%±30.5% (95% CI 0.52 to 0.88), and carbon dioxide 10.0%±10.4% (95% CI 0.00 to 0.26). Dextran, saline, and contrast provided better quality than carbon dioxide (p<0.001). OCT is feasible in peripheral vessels <5 mm in diameter. Dextran or saline flush media can allow lesion characterization, avoiding iodinated contrast. Carbon dioxide is inadequate for peripheral OCT imaging. Axial imaging may aid in enhancing durability of peripheral endovascular interventions. © The Author(s) 2016.
Ebisumoto, Koji; Okami, Kenji; Sakai, Akihiro; Ogura, Go; Sugimoto, Ryousuke; Saito, Kosuke; Komita, Kaoru; Nakamura, Naoya; Iida, Masahiro
2015-07-01
The depth of hypopharyngeal superficial cancer may predict vessel infiltration and potential risk of cervical lymph node metastasis. To elucidate the histopathological predictors of vessel infiltration and the risk of regional lymph node metastasis in hypopharyngeal superficial cancer. This study included 31 lesions from 30 patients who had undergone transoral en bloc resection in the hospital. Patients with intraepithelial neoplasia or muscular invasion were excluded. Patient characteristics, nodal status, state of vessel infiltration, state of perineural invasion, histopathological parameters, and post-operative cervical lymph node recurrence were retrospectively examined. The histopathological parameters measured were tumor diameter and the following three parameters: tumor thickness, depth from the mucosal surface, and depth from the basement membrane. Correlations between histopathological parameters and state of vessel infiltration were statistically analyzed. Of the 31 lesions examined, four had vessel infiltration. Three of the four lesions with vessel infiltration had regional lymph node metastasis as well as subsequent lymph node metastasis. Lesions with vessel infiltration were significantly deeper than those without. In contrast, there was no significant difference in lesion diameters. In addition, there was no correlation between the depth and the diameter of the lesion.
Adaptation of mesenteric lymphatic vessels to prolonged changes in transmural pressure.
Dongaonkar, R M; Nguyen, T L; Quick, C M; Hardy, J; Laine, G A; Wilson, E; Stewart, R H
2013-07-15
In vitro studies have revealed that acute increases in transmural pressure increase lymphatic vessel contractile function. However, adaptive responses to prolonged changes in transmural pressure in vivo have not been reported. Therefore, we developed a novel bovine mesenteric lymphatic partial constriction model to test the hypothesis that lymphatic vessels exposed to higher transmural pressures adapt functionally to become stronger pumps than vessels exposed to lower transmural pressures. Postnodal mesenteric lymphatic vessels were partially constricted for 3 days. On postoperative day 3, constricted vessels were isolated, and divided into upstream (UP) and downstream (DN) segment groups, and instrumented in an isolated bath. Although there were no differences between the passive diameters of the two groups, both diastolic diameter and systolic diameter were significantly larger in the UP group than in the DN group. The pump index of the UP group was also higher than that in the DN group. In conclusion, this is the first work to report how lymphatic vessels adapt to prolonged changes in transmural pressure in vivo. Our results suggest that vessel segments upstream of the constriction adapt to become both better fluid conduits and lymphatic pumps than downstream segments.
Novel non-contact retina camera for the rat and its application to dynamic retinal vessel analysis
Link, Dietmar; Strohmaier, Clemens; Seifert, Bernd U.; Riemer, Thomas; Reitsamer, Herbert A.; Haueisen, Jens; Vilser, Walthard
2011-01-01
We present a novel non-invasive and non-contact system for reflex-free retinal imaging and dynamic retinal vessel analysis in the rat. Theoretical analysis was performed prior to development of the new optical design, taking into account the optical properties of the rat eye and its specific illumination and imaging requirements. A novel optical model of the rat eye was developed for use with standard optical design software, facilitating both sequential and non-sequential modes. A retinal camera for the rat was constructed using standard optical and mechanical components. The addition of a customized illumination unit and existing standard software enabled dynamic vessel analysis. Seven-minute in-vivo vessel diameter recordings performed on 9 Brown-Norway rats showed stable readings. On average, the coefficient of variation was (1.1 ± 0.19) % for the arteries and (0.6 ± 0.08) % for the veins. The slope of the linear regression analysis was (0.56 ± 0.26) % for the arteries and (0.15 ± 0.27) % for the veins. In conclusion, the device can be used in basic studies of retinal vessel behavior. PMID:22076270
Landua, John D.; Bu, Wen; Wei, Wei; Li, Fuhai; Wong, Stephen T.C.; Dickinson, Mary E.; Rosen, Jeffrey M.; Lewis, Michael T.
2014-01-01
Cancer stem cells (CSCs, or tumor-initiating cells) may be responsible for tumor formation in many types of cancer, including breast cancer. Using high-resolution imaging techniques, we analyzed the relationship between a Wnt-responsive, CSC-enriched population and the tumor vasculature using p53-null mouse mammary tumors transduced with a lentiviral Wnt signaling reporter. Consistent with their localization in the normal mammary gland, Wnt-responsive cells in tumors were enriched in the basal/myoepithelial population and generally located in close proximity to blood vessels. The Wnt-responsive CSCs did not colocalize with the hypoxia-inducible factor 1α-positive cells in these p53-null basal-like tumors. Average vessel diameter and vessel tortuosity were increased in p53-null mouse tumors, as well as in a human tumor xenograft as compared with the normal mammary gland. The combined strategy of monitoring the fluorescently labeled CSCs and vasculature using high-resolution imaging techniques provides a unique opportunity to study the CSC and its surrounding vasculature. PMID:24797826
Chen, Pei; Cai, Xiaoxiao; Xu, Lijun; Zhang, Jing; Yang, Ying; Gao, Qianying; Ge, Jian; Yu, Keming; Zhuang, Jing
2017-09-01
To determine whether posterior chamber phakic implantable collamer lens (ICL) surgery in high myopia patients impedes oxygen saturation of retinal vessels. Mean oxygen saturation and diameter in retinal blood vessels were measured before and after ICL implantation surgery to correct high myopia refractive errors (i.e. -6.00 to -20.25 dioptres [D]), using an Oxymap T1 retinal oximeter. In 17 eyes of 17 patients, the Oxymap T1 retinal oximeter detected a small but significant decrease in oxygen saturation of retinal venules, 1-week postoperatively (compared to preoperative measurements). Moreover, at 1 week after ICL implantation, the diameter of patient retinal vessels had consistently contracted, compared to preoperative measurements. By 1 month after ICL surgery, however, both the oxygen saturation and retinal vessel diameter had returned to preoperative levels. Otherwise, no statistically significant difference in oxygen saturation and diameter of retinal arterioles was found when comparing their measurements before and 1 week after implantation. Stable levels of oxygen saturation in retinal vessels, as detected by the Oxymap T1 oximeter, show ICL implantation would not leave lasting impact or adverse effects to retina oxygen saturation in high myopia patients. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Relation of pulmonary vessel size to transfer factor in subjects with airflow obstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musk, A.W.
In a group of 61 consecutive patients undergoing assessment of airflow obstruction, a significant linear relation was demonstrated between measurements of the diameter of the midzonal pulmonary vessels on the plain chest radiographs and transfer factor (diffusing capacity for carbon monoxide) (r = 0.46, p < 0.001). Since reduction in transfer factor has been shown to relate to structural emphysema, reduction in midzone vessel caliber implies the same. However, in the individual patient neither the transfer factor nor structural emphysema can be reliably predicted from midzone vessel diameters alone.
Uhlirova, Hana; Tian, Peifang; Kılıç, Kıvılcım; Thunemann, Martin; Sridhar, Vishnu B; Chmelik, Radim; Bartsch, Hauke; Dale, Anders M; Devor, Anna; Saisan, Payam A
2018-05-04
The importance of sharing experimental data in neuroscience grows with the amount and complexity of data acquired and various techniques used to obtain and process these data. However, the majority of experimental data, especially from individual studies of regular-sized laboratories never reach wider research community. A graphical user interface (GUI) engine called Neurovascular Network Explorer 2.0 (NNE 2.0) has been created as a tool for simple and low-cost sharing and exploring of vascular imaging data. NNE 2.0 interacts with a database containing optogenetically-evoked dilation/constriction time-courses of individual vessels measured in mice somatosensory cortex in vivo by 2-photon microscopy. NNE 2.0 enables selection and display of the time-courses based on different criteria (subject, branching order, cortical depth, vessel diameter, arteriolar tree) as well as simple mathematical manipulation (e.g. averaging, peak-normalization) and data export. It supports visualization of the vascular network in 3D and enables localization of the individual functional vessel diameter measurements within vascular trees. NNE 2.0, its source code, and the corresponding database are freely downloadable from UCSD Neurovascular Imaging Laboratory website 1 . The source code can be utilized by the users to explore the associated database or as a template for databasing and sharing their own experimental results provided the appropriate format.
Gradient changes in porcine renal arterial vascular anatomy and blood flow after cryoablation.
Lagerveld, Brunolf W; van Horssen, Pepijn; Laguna, M Pilar; van den Wijngaard, Jeroen P H M; Siebes, Maria; Wijkstra, Hessel; de la Rosette, Jean J M C H; Spaan, Jos A E
2011-08-01
We quantified temporal changes in vascular structure and blood flow after cryosurgery of the porcine kidney in vivo. We studied 5 groups of 4 kidneys each with a survival time of 20 minutes, 4 hours, 2 days, and 1 and 2 weeks after cryoablation, respectively. Before harvesting the kidneys, fluorescently labeled microspheres were administrated in the descending aorta. After harvest the kidney and its vasculature were casted with fluorescently dyed elastomer, frozen and processed in an imaging cryomicrotome to reveal the 3-dimensional arterial branching structure and microsphere distribution. In regions of interest vessels were segmented by image analysis software and histograms were constructed to reveal the total summed vessel length as a function of diameter. A characteristic diameter of the ablated area was measured. The 20-minute survival group histograms showed a significant shift of the peak to larger diameters (p<0.002), indicating that smaller vessels were destroyed. Microsphere density was decreased to 2% in the ablated region but not in the nonablated border zone, depending on the remaining crater crossing larger vessels. After 2 weeks neither vessels nor microspheres were left in the ablated area, which had shrunk by about 40% in diameter. Study limitations are the lack of histological confirmation and the use of normal rather than cancerous tissue. Larger vessels remain patent just after ablation and transport blood to the border of the ablation crater but perfusion within the crater is halted instantly. Characteristic crater diameter increases initially but decreases thereafter. Destruction of vessels and tissue is complete 2 weeks after cryoablation. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
McKay, Terri L.; Gredeon, Dan J.; Vickerman, Mary B.; Hylton, alan G.; Ribita, Daniela; Olar, Harry H.; Kaiser, Peter K.; Parsons-Wingerter, Patricia
2007-01-01
The steroid triamcinolone acetonide (TA) is a potent anti-angiogenesis drug used to treat retinal vascular diseases that include diabetic retinopathy, vascular occlusions and choroidal neovascularization. To quantify the effects of TA on branching morphology within the angiogenic microvascular tree of the chorioallantoic membrane (CAM) of quail embryos. Increasing concentrations of TA (0-16 ng/ml) were applied topically on embryonic day 7 (E7) to the chorioallantoic membrane (CAM) of quail embryos cultured in Petri dishes, and incubated for an additional 24 or 48 hours until fixation. Binary (black/white) microscopic images of arterial end points were quantified by VESGEN software (for Generational Analysis of Vessel Branching) to obtain major vascular parameters that include vessel diameter (Dv), fractal dimension (Df), tortuosity (Tv) and densities of vessel area, length, number and branch point (Av, Lv, Nv and Brv). For assessment of specific changes in vascular morphology induced by TA, the VESGEN software automatically segmented the vascular tree into branching generations (G1...G10) according to changes in vessel diameter and branching. Vessel density decreased significantly up to 34% as the function of increasing concentration of TA according to Av, Lv, Brv, Nv and Df. TA selectively inhibited the growth of new, small vessels, because Lv decreased from 13.14plus or minus 0.61 cm/cm2 for controls to 8.012 plus or minus 0.82 cm/cm2 at 16 ng TA/ml in smaller branching generations (G7-G10), and for Nv from 473.83 plus or minus 29.85 cm(-)2 to 302.32 plus or minus 33.09 cm-()2. In contrast, vessel diameter (Dv) decreased throughout the vascular tree (G1-G10).
Obesity, Blood Pressure, and Retinal Vessels: A Meta-analysis.
Köchli, Sabrina; Endes, Katharina; Infanger, Denis; Zahner, Lukas; Hanssen, Henner
2018-06-01
Retinal vessel imaging is a noninvasive diagnostic tool used to evaluate cardiovascular risk. Childhood obesity and elevated blood pressure (BP) are associated with retinal microvascular alterations. To systematically review and meta-analyze associations between obesity, BP, and physical activity with retinal vessel diameters in children. We conducted a literature search through the databases of PubMed, Embase, Ovid, Web of Science, and the Cochrane Register of Controlled Trials. School- and population-based cross-sectional data. General information, study design, participants, exposure, and outcomes. A total of 1751 studies were found, and 30 full-text articles were analyzed for eligibility. Twenty-two articles (18 865 children and adolescents) were used for further assessment and reflection. Eleven articles were finally included in the meta-analysis. We found that a higher BMI is associated with narrower retinal arteriolar (pooled estimate effect size -0.37 [95% confidence interval (CI): -0.50 to -0.24]) and wider venular diameters (0.35 [95% CI: 0.07 to 0.63]). Systolic and diastolic BP are associated with retinal arteriolar narrowing (systolic BP: -0.63 [95% CI: -0.92 to -0.34]; diastolic BP: -0.60 [95% CI -0.95 to -0.25]). Increased physical activity and fitness are associated with favorable retinal vessel diameters. Long-term studies are needed to substantiate the prognostic relevance of retinal vessel diameters for cardiovascular risk in children. Our results indicate that childhood obesity, BP, and physical inactivity are associated with retinal microvascular abnormalities. Retinal vessel diameters seem to be sensitive microvascular biomarkers for cardiovascular risk stratification in children. Copyright © 2018 by the American Academy of Pediatrics.
Novel Computerized Method for Measurement of Retinal Vessel Diameters
Guedri, Hichem; Ben Abdallah, Mariem; Echouchene, Fraj; Belmabrouk, Hafedh
2017-01-01
Several clinical studies reveal the relationship between alterations in the topologies of the human retinal blood vessel, the outcrop and the disease evolution, such as diabetic retinopathy, hypertensive retinopathy, and macular degeneration. Indeed, the detection of these vascular changes always has gaps. In addition, the manual steps are slow, which may be subjected to a bias of the perceiver. However, we can overcome these troubles using computer algorithms that are quicker and more accurate. This paper presents and investigates a novel method for measuring the blood vessel diameter in the retinal image. The proposed method is based on a thresholding segmentation and thinning step, followed by the characteristic point determination step by the Douglas-Peucker algorithm. Thereafter, it uses the active contours to detect vessel contour. Finally, Heron’s Formula is applied to assure the calculation of vessel diameter. The obtained results for six sample images showed that the proposed method generated less errors compared to other techniques, which confirms the high performance of the proposed method. PMID:28536355
Fukuyama, Atsushi; Isoda, Haruo; Morita, Kento; Mori, Marika; Watanabe, Tomoya; Ishiguro, Kenta; Komori, Yoshiaki; Kosugi, Takafumi
2017-01-01
Introduction: We aim to elucidate the effect of spatial resolution of three-dimensional cine phase contrast magnetic resonance (3D cine PC MR) imaging on the accuracy of the blood flow analysis, and examine the optimal setting for spatial resolution using flow phantoms. Materials and Methods: The flow phantom has five types of acrylic pipes that represent human blood vessels (inner diameters: 15, 12, 9, 6, and 3 mm). The pipes were fixed with 1% agarose containing 0.025 mol/L gadolinium contrast agent. A blood-mimicking fluid with human blood property values was circulated through the pipes at a steady flow. Magnetic resonance (MR) images (three-directional phase images with speed information and magnitude images for information of shape) were acquired using the 3-Tesla MR system and receiving coil. Temporal changes in spatially-averaged velocity and maximum velocity were calculated using hemodynamic analysis software. We calculated the error rates of the flow velocities based on the volume flow rates measured with a flowmeter and examined measurement accuracy. Results: When the acrylic pipe was the size of the thoracicoabdominal or cervical artery and the ratio of pixel size for the pipe was set at 30% or lower, spatially-averaged velocity measurements were highly accurate. When the pixel size ratio was set at 10% or lower, maximum velocity could be measured with high accuracy. It was difficult to accurately measure maximum velocity of the 3-mm pipe, which was the size of an intracranial major artery, but the error for spatially-averaged velocity was 20% or less. Conclusions: Flow velocity measurement accuracy of 3D cine PC MR imaging for pipes with inner sizes equivalent to vessels in the cervical and thoracicoabdominal arteries is good. The flow velocity accuracy for the pipe with a 3-mm-diameter that is equivalent to major intracranial arteries is poor for maximum velocity, but it is relatively good for spatially-averaged velocity. PMID:28132996
High-performance fiber/epoxy composite pressure vessels
NASA Technical Reports Server (NTRS)
Chiao, T. T.; Hamstad, M. A.; Jessop, E. S.; Toland, R. H.
1978-01-01
Activities described include: (1) determining the applicability of an ultrahigh-strength graphite fiber to composite pressure vessels; (2) defining the fatigue performance of thin-titanium-lined, high-strength graphite/epoxy pressure vessel; (3) selecting epoxy resin systems suitable for filament winding; (4) studying the fatigue life potential of Kevlar 49/epoxy pressure vessels; and (5) developing polymer liners for composite pressure vessels. Kevlar 49/epoxy and graphite fiber/epoxy pressure vessels, 10.2 cm in diameter, some with aluminum liners and some with alternation layers of rubber and polymer were fabricated. To determine liner performance, vessels were subjected to gas permeation tests, fatigue cycling, and burst tests, measuring composite performance, fatigue life, and leak rates. Both the metal and the rubber/polymer liner performed well. Proportionately larger pressure vessels (20.3 and 38 cm in diameter) were made and subjected to the same tests. In these larger vessels, line leakage problems with both liners developed the causes of the leaks were identified and some solutions to such liner problems are recommended.
Zhang, Fahui; Xie, Qiyang; Zheng, Heping
2005-07-01
To investigate the distribution of the perforating branches artery of distally-based flap of sural nerve nutrient vessels and its clinical application. The origins and distribution of perforating branches artery of distally-based flap were observed on specimens of 30 adult cadaveric low limbs by perfusing red gelatin to dissect the artery. Among the 36 cases, there were 21 males, 15 females. Their ages ranged from 6 to 66, 35. 2 in average. The defect area was 3.5 cm x 2.5 cm to 17.0 cm x 11.0 cm. The flap taken ranged from 4 cm x 3 cm to 18 cm x 12 cm. The perforating branches artery of distally-based flap had 2 to 5 branches and originated from the heel lateral artery, the terminal perforating branches of peroneal artery (diameters were 0.6+/-0.2 mm and 0.8+/-0.2 mm, 1.0 +/- 1.3 cm and 2.8 +/- 1.0 cm to the level of cusp lateral malleolus cusp). The intermuscular septum perforating branches of peroneal artery had 0 to 3 branches. Their rate of presence was 96.7%, 66.7% and 20.0% respectively (the diameters were 0.9 +/- 0.3, 1.0 +/- 0.2 and 0.8 +/- 0.4 mm, and their distances to the level of cusp of lateral malleolus were 5.3 +/- 2.1, 6.8 +/- 2.8 and 7.0 +/- 4.0 cm). Those perforating branches included fascia branches, cutaneous branches, nerve and vein nutrient branches. Those nutrient vessels formed longitudinal vessel chain of sural nerve shaft, vessel chain of vein side and vessel network of deep superficial fascia. The distally-based superficial sural artery island flap was used in 18 cases, all flaps survived. Distally-based sural nerve, small saphenous vein, and nutrient vessels of fascia skin have the same origin. Rotation point of flap is 3.0 cm to the cusp of lateral malleolus, when the distally-based flap is pedicled with the terminal branch of peroneal artery. Rotation point of flap is close to the cusp of lateral malleolus, when the distally-based flap is pedicled with the heel lateral artery.
Sridhar, Vishnu B; Tian, Peifang; Dale, Anders M; Devor, Anna; Saisan, Payam A
2014-01-01
We present a database client software-Neurovascular Network Explorer 1.0 (NNE 1.0)-that uses MATLAB(®) based Graphical User Interface (GUI) for interaction with a database of 2-photon single-vessel diameter measurements from our previous publication (Tian et al., 2010). These data are of particular interest for modeling the hemodynamic response. NNE 1.0 is downloaded by the user and then runs either as a MATLAB script or as a standalone program on a Windows platform. The GUI allows browsing the database according to parameters specified by the user, simple manipulation and visualization of the retrieved records (such as averaging and peak-normalization), and export of the results. Further, we provide NNE 1.0 source code. With this source code, the user can database their own experimental results, given the appropriate data structure and naming conventions, and thus share their data in a user-friendly format with other investigators. NNE 1.0 provides an example of seamless and low-cost solution for sharing of experimental data by a regular size neuroscience laboratory and may serve as a general template, facilitating dissemination of biological results and accelerating data-driven modeling approaches.
Spencer, Timothy R; Mahoney, Keegan J
2017-11-01
In vascular access practices, the internal vessel size is considered important, and a catheter to vessel ratio (CVR) is recommended to assist clinicians in selecting the most appropriate-sized device for the vessel. In 2016, new practice recommendations stated that the CVR can increase from 33 to 45% of the vessels diameter. There has been evidence on larger diameter catheters and increased thrombosis risk in recent literature, while insufficient information established on what relationship to vessel size is appropriate for any intra-vascular device. Earlier references to clinical standards and guidelines did not clearly address vessel size in relation to the area consumed or external catheter diameter. The aim of this manuscript is to present catheter-related thrombosis evidence and develop a standardized process of ultrasound-guided vessel assessment, integrating CVR, Virchow's triad phenomenon and vessel health and preservation strategies, empowering an evidence-based approach to device placement. Through review, calculation and assessment on the areas of the 33 and 45% rule, a preliminary clinical tool was developed to assist clinicians make cognizant decisions when placing intravascular devices relating to target vessel size, focusing on potential reduction in catheter-related thrombosis. Increasing the understanding and utilization of CVRs will lead to a safer, more consistent approach to device placement, with potential thrombosis reduction strategies. The future of evidence-based data relies on the clinician to capture accurate vessel measurements and device-related outcomes. This will lead to a more dependable data pool, driving the relationship of catheter-related thrombosis and vascular assessment.
Optical-thermal light-tissue interactions during photoacoustic imaging
NASA Astrophysics Data System (ADS)
Gould, Taylor; Wang, Quanzeng; Pfefer, T. Joshua
2014-03-01
Photoacoustic imaging (PAI) has grown rapidly as a biomedical imaging technique in recent years, with key applications in cancer diagnosis and oximetry. In spite of these advances, the literature provides little insight into thermal tissue interactions involved in PAI. To elucidate these basic phenomena, we have developed, validated, and implemented a three-dimensional numerical model of tissue photothermal (PT) response to repetitive laser pulses. The model calculates energy deposition, fluence distributions, transient temperature and damage profiles in breast tissue with blood vessels and generalized perfusion. A parametric evaluation of these outputs vs. vessel diameter and depth, optical beam diameter, wavelength, and irradiance, was performed. For a constant radiant exposure level, increasing beam diameter led to a significant increase in subsurface heat generation rate. Increasing vessel diameter resulted in two competing effects - reduced mean energy deposition in the vessel due to light attenuation and greater thermal superpositioning due to reduced thermal relaxation. Maximum temperatures occurred either at the surface or in subsurface regions of the dermis, depending on vessel geometry and position. Results are discussed in terms of established exposure limits and levels used in prior studies. While additional experimental and numerical study is needed, numerical modeling represents a powerful tool for elucidating the effect of PA imaging devices on biological tissue.
Microvascular anatomy of the cerebellar parafloccular perforating space.
Sosa, Pablo; Dujovny, Manuel; Onyekachi, Ibe; Sockwell, Noressia; Cremaschi, Fabián; Savastano, Luis E
2016-02-01
The cerebellopontine angle is a common site for tumor growth and vascular pathologies requiring surgical manipulations that jeopardize cranial nerve integrity and cerebellar and brainstem perfusion. To date, a detailed study of vessels perforating the cisternal surface of the middle cerebellar peduncle-namely, the paraflocculus or parafloccular perforating space-has yet to be published. In this report, the perforating vessels of the anterior inferior cerebellar artery (AICA) in the parafloccular space, or on the cisternal surface of the middle cerebellar peduncle, are described to elucidate their relevance pertaining to microsurgery and the different pathologies that occur at the cerebellopontine angle. Fourteen cadaveric cerebellopontine cisterns (CPCs) were studied. Anatomical dissections and analysis of the perforating arteries of the AICA and posterior inferior cerebellar artery at the parafloccular space were recorded using direct visualization by surgical microscope, optical histology, and scanning electron microscope. A comprehensive review of the English-language and Spanish-language literature was also performed, and findings related to anatomy, histology, physiology, neurology, neuroradiology, microsurgery, and endovascular surgery pertaining to the cerebellar flocculus or parafloccular spaces are summarized. A total of 298 perforating arteries were found in the dissected specimens, with a minimum of 15 to a maximum of 26 vessels per parafloccular perforating space. The average outer diameter of the cisternal portion of the perforating arteries was 0.11 ± 0.042 mm (mean ± SD) and the average length was 2.84 ± 1.2 mm. Detailed schematics and the surgical anatomy of the perforating vessels at the CPC and their clinical relevance are reported. The parafloccular space is a key entry point for many perforating vessels toward the middle cerebellar peduncle and lateral brainstem, and it must be respected and protected during surgical approaches to the cerebellopontine angle.
Kulkarni, Vrushali M; Rathod, Virendra K
2014-03-01
The present work deals with the mapping of an ultrasonic bath for the maximum extraction of mangiferin from Mangifera indica leaves. I3(-) liberation experiments (chemical transformations) and extraction (physical transformations) were carried out at different locations in an ultrasonic bath and compared. The experimental findings indicated a similar trend in variation in an ultrasonic bath by both these methods. Various parameters such as position and depth of vessel in an ultrasonic bath, diameter and shape of a vessel, frequency and input power which affect the extraction yield have been studied in detail. Maximum yield of mangiferin obtained was approximately 31 mg/g at optimized parameters: distance of 2.54 cm above the bottom of the bath, 7 cm diameter of vessel, flat bottom vessel, 6.35 cm liquid height, 122 W input power and 25 kHz frequency. The present work indicates that the position and depth of vessel in an ultrasonic bath, diameter and shape of a vessel, frequency and input power have significant effect on the extraction yield. This work can be used as a base for all ultrasonic baths to obtain maximum efficiency for ultrasound assisted extraction. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fathonah, N. N.; Nurtono, T.; Kusdianto; Winardi, S.
2018-03-01
Single phase turbulent flow in a vessel agitated by side entering inclined blade turbine has simulated using CFD. The aim of this work is to identify the hydrodynamic characteristics of a model vessel, which geometrical configuration is adopted at industrial scale. The laboratory scale model vessel is a flat bottomed cylindrical tank agitated by side entering 4-blade inclined blade turbine with impeller rotational speed N=100-400 rpm. The effect of the impeller diameter on fluid flow pattern has been investigated. The fluid flow patterns in a vessel is essentially characterized by the phenomena of macro-instabilities, i.e. the flow patterns change with large scale in space and low frequency. The intensity of fluid flow in the tank increase with the increase of impeller rotational speed from 100, 200, 300, and 400 rpm. It was accompanied by shifting the position of the core of circulation flow away from impeller discharge stream and approached the front of the tank wall. The intensity of fluid flow in the vessel increase with the increase of the impeller diameter from d=3 cm to d=4 cm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umetani, K.; Fukushima, K.
2013-03-15
An X-ray intravital microscopy technique was developed to enable in vivo visualization of the coronary, cerebral, and pulmonary arteries in rats without exposure of organs and with spatial resolution in the micrometer range and temporal resolution in the millisecond range. We have refined the system continually in terms of the spatial resolution and exposure time. X-rays transmitted through an object are detected by an X-ray direct-conversion type detector, which incorporates an X-ray SATICON pickup tube. The spatial resolution has been improved to 6 {mu}m, yielding sharp images of small arteries. The exposure time has been shortened to around 2 msmore » using a new rotating-disk X-ray shutter, enabling imaging of beating rat hearts. Quantitative evaluations of the X-ray intravital microscopy technique were extracted from measurements of the smallest-detectable vessel size and detection of the vessel function. The smallest-diameter vessel viewed for measurements is determined primarily by the concentration of iodinated contrast material. The iodine concentration depends on the injection technique. We used ex vivo rat hearts under Langendorff perfusion for accurate evaluation. After the contrast agent is injected into the origin of the aorta in an isolated perfused rat heart, the contrast agent is delivered directly into the coronary arteries with minimum dilution. The vascular internal diameter response of coronary arterial circulation is analyzed to evaluate the vessel function. Small blood vessels of more than about 50 {mu}m diameters were visualized clearly at heart rates of around 300 beats/min. Vasodilation compared to the control was observed quantitatively using drug manipulation. Furthermore, the apparent increase in the number of small vessels with diameters of less than about 50 {mu}m was observed after the vasoactive agents increased the diameters of invisible small blood vessels to visible sizes. This technique is expected to offer the potential for direct investigation of mechanisms of vascular dysfunctions.« less
Adaptable setups for magnetic drug targeting in human muscular arteries: Design and implementation
NASA Astrophysics Data System (ADS)
Hajiaghajani, Amirhossein; Hashemi, Soheil; Abdolali, Ali
2017-09-01
Magnetic drug targeting has been used to steer magnetic therapeutic agents and has received much attention for capillaries and human brain arteries. In this paper, we focus on noninvasive targeting of nanoparticles in muscular arteries, in where the vessel diameter and blood flow are much challengingly higher than brain capillaries. We aim to design a low intensity magnetic field which avoids potential side effects on blood cells while steers particles with high targeting rate. The setup design procedure is considerably flexible to be used in a wide variety of large vessels. Using particle tracing, a new method is proposed to connect the geometry of the vessel under the action of targeting to the required magnetic force. Specifications of the coil which is placed outside the body are derived based on this required force. Mutual effects of coil dimensions on the produced magnetic force are elaborated and summarized in a design flowchart to be used for arbitrary muscular vessel sizes. The performance of the optimized coil is validated by in vitro experiments and it is shown that particles are steered with the average efficiency of 80.2% for various conditions.
Xiang, Ping; Li, Min; Zhang, Chao-ying; Chen, Deng-long; Zhou, Zhi-hua
2011-10-01
A tubular scaffold was fabricated by using electrospun polymer solution blends of pNSR32 (recombinant spider silk protein), PCL (polycaprolactone) and Gt (gelatin). The physicochemical properties and cytocompatibility of these scaffolds were investigated. Afterwards, the pNSR32/PCL/Gt tubular scaffold (inner diameter=3mm) showed high porosity of 86.2 ± 2.9%, pore size of 2423 ± 979nm and average fibre diameter of 166 ± 85nm. Water uptake and contact angle of the scaffolds reached 112.0 ± 4.4% and 45.7 ± 13.7°, respectively. SDRAECs (Sprague Dawley Rat Aortic Endothelial Cells) grew and proliferated well and phenotype could be maintained on the composite scaffolds after they had been cultured on the composite scaffolds for 7 days. Compared with pure PCL scaffolds a greater density of viable cells was seen on the composites, especially the pNSR32/PCL/Gt scaffolds. Copyright © 2011 Elsevier B.V. All rights reserved.
Suprascarpal fat pad thickness may predict venous drainage patterns in abdominal wall flaps.
Bast, John; Pitcher, Austin A; Small, Kevin; Otterburn, David M
2016-02-01
Abdominal wall flaps are routinely used in reconstructive procedures. In some patients inadequate venous drainage from the deep vein may cause fat necrosis or flap failure. Occasionally the superficial inferior epigastric vessels (SIEV) are of sufficient size to allow for microvascular revascularization. This study looked at the ratio of the sub- and suprascarpal fat layers, the number of deep system perforators, and SIEV diameter to determine any correlation of the fat topography and SIEV. 50 abdominal/pelvic CT angiograms (100 hemiabdomens) were examined in women aged 34-70 years for number of perforators, SIEV diameter, and fat pad thickness above and below Scarpa's fascia. Data was analyzed using multivariate model. The average suprascarpal and subscarpal layers were 18.6 ± 11.5 mm and 6.2 ± 7.2 mm thick, respectively. The average SIEV diameter was 2.06 ± 0.81 mm and the average number of perforators was 2.09 ± 1.03 per hemiabdomen. Hemiabdomens with suprascarpal thickness>23 mm had greater SIEV diameter [2.69 mm vs. 1.8 mm (P < 0.0001)] The fat layer thickness did not correlate with the number of perforators. Neither subscarpal fat thickness nor suprascarpal-to-subscarpal fat layer thickness correlated significantly with SIEV caliber or number of perforators in multivariate model. Suprascarpal fat pad thicker than 23 mm had larger SIEVs irrespective of the number of deep system perforators. This may indicate a cohort of patients at risk of venous congestion from poor venous drainage if only the deep system is revascularized. We recommend harvesting the SIEV in patients with suprascarpal fat pad >23 mm to aid in superficial drainage. © 2015 Wiley Periodicals, Inc.
A study of the sink effect by blood vessels in radiofrequency ablation.
Zorbas, George; Samaras, Theodoros
2015-02-01
The objective of the current work was to study the sink effect in radiofrequency ablation (RFA) caused by a blood vessel located close to an electrode in a two-compartment numerical model, consisting of a spherical tumor embedded in healthy liver tissue. Several blood vessels of different sizes were studied at different distances from the electrode. It was found that when a straight blood vessel, cylindrical in shape, is located parallel to the electrode, the minimum distance for a drop of only 10% in the isothermal treatment volume above 50°C, compared to the model without the blood vessel, varies from 4.49 mm (for a vessel of 2mm in diameter) to 20.02 mm (for a vessel 20mm in diameter). The results can be used as a guideline to clinical practitioners, in order to quickly assess the potential impact of existing blood vessels on the resulting treatment volume. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cuff for Blood-Vessel Pressure Measurements
NASA Technical Reports Server (NTRS)
Shimizu, M.
1982-01-01
Pressure within blood vessel is measured by new cufflike device without penetration of vessel. Device continuously monitors blood pressure for up to 6 months or longer without harming vessel. Is especially useful for vessels smaller than 4 or 5 millimeters in diameter. Invasive methods damage vessel wall, disturb blood flow, and cause clotting. They do not always give reliable pressure measurements over prolonged periods.
Choat, Brendan; Cobb, Alexander R; Jansen, Steven
2008-01-01
Bordered pits are cavities in the lignified cell walls of xylem conduits (vessels and tracheids) that are essential components in the water-transport system of higher plants. The pit membrane, which lies in the center of each pit, allows water to pass between xylem conduits but limits the spread of embolism and vascular pathogens in the xylem. Averaged across a wide range of species, pits account for > 50% of total xylem hydraulic resistance, indicating that they are an important factor in the overall hydraulic efficiency of plants. The structure of pits varies dramatically across species, with large differences evident in the porosity and thickness of pit membranes. Because greater porosity reduces hydraulic resistance but increases vulnerability to embolism, differences in pit structure are expected to correlate with trade-offs between efficiency and safety of water transport. However, trade-offs in hydraulic function are influenced both by pit-level differences in structure (e.g. average porosity of pit membranes) and by tissue-level changes in conduit allometry (average length, diameter) and the total surface area of pit membranes that connects vessels. In this review we address the impact of variation in pit structure on water transport in plants from the level of individual pits to the whole plant.
Uneven distribution of inorganic pollutants in marine air originating from ocean-going ships.
Bencs, László; Horemans, Benjamin; Buczyńska, Anna Jolanta; Van Grieken, René
2017-03-01
The distribution of mass, water-soluble inorganic salts and mineral elements of size-segregated aerosols (PM 1 , PM 2.5-1 and PM 10-2.5 ), precursor gaseous pollutants, black carbon, and nanoparticles (10-300 nm size range) at the Southern Bight of the North Sea has been studied. The concentrations of air pollutants peaked over shipping lanes, open-water anchorage areas and frequently navigated waters, due to the presence of mobile emission sources. A considerable decrease in air pollutant levels was seen when diverting from these marine areas towards remote or coastal banks. These findings showed the rapid dispersion of pollutants in the marine air. The nano-aerosol count, originating from ocean-going ships, peaked at lower average aerodynamic diameters (e.g., ≈28 nm) than those, observed from low-displacement vessels (45-50 nm, e.g., for fishing boats). The average diameter of nano-PM depended also on weather conditions, e.g., it was higher (≈50 nm) in air of higher humidity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evaluation of the Zeiss retinal vessel analyser
Polak, K.; Dorner, G.; Kiss, B.; Polska, E.; Findl, O.; Rainer, G.; Eichler, H.; Schmetterer, L.
2000-01-01
AIM—To investigate the reproducibility and sensitivity of the Zeiss retinal vessel analyser, a new method for the online determination of retinal vessel diameters in healthy subjects. METHODS—Two model drugs were administered, a peripheral vasoconstrictor (the α receptor agonist phenylephrine) and a peripheral vasodilator (the nitric oxide donor sodium nitroprusside) in stepwise increasing doses. Nine healthy young subjects were studied in a placebo controlled double masked three way crossover design. Subjects received intravenous infusions of either placebo or stepwise increasing doses of phenylephrine (0.5, 1, or 2 µg/kg/min) or sodium nitroprusside (0.5, 1, or 2 µg/kg/min). Retinal vessel diameters were measured with the new Zeiss retinal vessel analyser. Retinal leucocyte velocity, flow, and density were measured with the blue field entoptic technique. The reproducibility of measurements was assessed with coefficients of variation and intraclass correlation coefficients. RESULTS—Placebo and phenylephrine did not influence retinal haemodynamics, although the α receptor antagonist significantly increased blood pressure. Sodium nitroprusside induced a significant increase in retinal venous and arterial diameters (p<0.001 each), leucocyte density (p=0.001), and leucocyte flow (p=0.024) despite lowering blood pressure to a significant degree. For venous and arterial vessel size measurements short term coefficients of variation were 1.3% and 2.6% and intraclass correlation coefficients were 0.98 and 0.96, respectively. The sensitivity was between 3% and 5% for retinal veins and 5% and 7% for retinal arteries. CONCLUSIONS—These data indicate that the Zeiss retinal vessel analyser is an accurate system for the assessment of retinal diameters in healthy subjects. In addition, nitric oxide appears to have a strong influence on retinal vascular tone. PMID:11049956
NASA Astrophysics Data System (ADS)
Steinman, Joe; Koletar, Margaret; Stefanovic, Bojana; Sled, John G.
2016-03-01
This study evaluates 2-Photon fluorescence microscopy of in vivo and ex vivo cleared samples for visualizing cortical vasculature. Four mice brains were imaged with in vivo 2PFM. Mice were then perfused with a FITC gel and cleared in fructose. The same regions imaged in vivo were imaged ex vivo. Vessels were segmented automatically in both images using an in-house developed algorithm that accounts for the anisotropic and spatially varying PSF ex vivo. Through non-linear warping, the ex vivo image and tracing were aligned to the in vivo image. The corresponding vessels were identified through a local search algorithm. This enabled comparison of identical vessels in vivo/ex vivo. A similar process was conducted on the in vivo tracing to determine the percentage of vessels perfused. Of all the vessels identified over the four brains in vivo, 98% were present ex vivo. There was a trend towards reduced vessel diameter ex vivo by 12.7%, and the shrinkage varied between specimens (0% to 26%). Large diameter surface vessels, through a process termed 'shadowing', attenuated in vivo signal from deeper cortical vessels by 40% at 300 μm below the cortical surface, which does not occur ex vivo. In summary, though there is a mean diameter shrinkage ex vivo, ex vivo imaging has a reduced shadowing artifact. Additionally, since imaging depths are only limited by the working distance of the microscope objective, ex vivo imaging is more suitable for imaging large portions of the brain.
Seifi, Safora; Feizi, Farideh; Khafri, Thoraya; Aram, Mehrdad
2013-03-01
The present study aimed at assessment and histomorphometric analysis of intratumoral and peritumoral (cystic) blood vessels in odontogenic lesions and their pattern on their clinical behavior by immunohistochemistry and morphometry. In a descriptive and analytical cross-sectional study, 45 paraffin blocks of ameloblastoma, odontogenic keratocyst, and follicular cyst were selected and stained immunohistochemically for CD34. In each slide, images of 3 microscopic fields with the highest microvessel density in intratumoral and peritumoral (cystic) areas were captured at 40× magnification with attached camera system. Inner vascular diameter (IVD) and outer vascular diameter (OVD), cross-sectional area (CSA), and the wall thickness (WT) of the vessels were measured with Motic Plus 2 software. The vascular pattern in odontogenic lesions was analyzed. Outer vascular diameter, IVD, and CSA of the vessels in peritumoral (cystic) areas were greater in ameloblastoma than keratocyst (P = 0.001) and follicular cyst (P < 0.001). However, WT of the blood vessels did not show any significant statistical difference among the 3 odontogenic lesions (P = 0.05). The differences in OVD, IVD (P = 0.8), CSA (P = 0.6), and WT (P = 0.4) of the blood vessels in intratumoral (cystic) areas were not statistically significant. The blood vessel pattern was circumferential in ameloblastoma, and it was directional in keratocyst and follicular cyst. Morphometric specifications of blood vessels (IVD, OVD, CSA) and their pattern in peritumoral (cystic) areas may influence the aggressive clinical behavior of ameloblastoma in comparison with keratocyst and follicular cyst.
Terai, Naim; Haustein, Michael; Siegel, Anastasia; Stodtmeister, Richard; Pillunat, Lutz E; Sandner, Dirk
2014-07-01
To investigate the effect(s) of intravitreally injected ranibizumab on retinal vessel diameter in patients with diabetic macular edema. Participants of this prospective study were 14 men and 16 women (30 eyes) aged 60 ± 11 years (mean ± standard deviation), all with clinically significant diabetic macular edema. Treatment comprised 3 intravitreal injections of ranibizumab given at 4-week intervals. Examinations were conducted before the first (baseline), before the second (Month 1), before the third (Month 2) injections, and 3 months after baseline (Month 3). Measured parameters included systemic blood pressure, static retinal vessel analysis (central retinal artery equivalent and central retinal vein equivalent), and dynamic retinal vessel analysis, as measured by the change in vessel diameter in response to flicker stimulation during three measurement cycles. Flicker stimulation was accomplished using a 50-second baseline recording, followed by an online measurement during 20-second flicker stimulation and 80-second online measurements in both arteriolar and venular vessel segments. Static retinal vessel analysis showed a reduction of central retinal artery equivalent from 186.25 ± 51.40 μm (baseline) to 173.20 ± 22.2 μm (Month 1), to 174.30 ± 27.30 μm (Month 2), and to 170.56 ± 22.89 μm (Month 3), none of which was statistically significant (P = 0.23, 0.12, and 0.14, respectively). Central retinal vein equivalent was reduced from 216.21 ± 25.0 μm (baseline) to 214.48 ± 25.4 μm (Month 1), to 214.80 ± 24.30 μm (Month 2), and to 211.41 ± 24.30 μm (Month 3), revealing no statistically significant differences between examination time points (P = 0.54, 0.06, and 0.24, respectively). Dynamic vessel analysis yielded a mean retinal arterial diameter change of +1.47% ± 2.3 (baseline), +1.91% ± 2.5 (Month 1), +1.76% ± 2.2 (Month 2), and +1.66% ± 2.1 (Month 3), none of which showed statistically significant differences (P = 0.32, 0.49, and 0.70, respectively). Mean retinal venous diameter changes were +3.15% ± 1.7 (baseline), +3.7% ± 2.3 (Month 1), +4.0% ± 2.0 (Month 2), and +4.95% ± 1.9 (Month 3), none of which showed statistically significant differences (P = 0.12, 0.17, and 0.14, respectively). Central retinal thickness, as measured by spectral domain optical coherence tomography, decreased significantly from 435.2 ± 131.8 μm (baseline) to 372.3 ± 142.8 μm (Month 3), P = 0.01. Regression analysis of arteriolar and venular diameters indicated that there was no significant correlation between these 2 parameters (r = 0.053; P = 0.835 and r = 0.06; P = 0.817, respectively). Also, no significant correlation was observed between the difference in the central retinal thickness and change in arteriolar or venular dilatation (r = 0.291, P = 0.241 and r = 0.06, P = 0.435, respectively). Intravitreally applied ranibizumab did not significantly affect retinal vessel diameter in patients with diabetic macular edema. Decline in the central foveal thickness after ranibizumab therapy, as measured by spectral domain optical coherence tomography, was not linked to any change in retinal vessel diameter or dilatatory response, neither for arterioles nor venules.
Hemostatic properties of the free-electron laser
NASA Astrophysics Data System (ADS)
Cram, Gary P., Jr.; Copeland, Michael L.
1998-09-01
We have investigated the hemostatic properties of the free-electron laser (FEL) and compared these properties to the most commonly used commercial lasers in neurosurgery, CO 2 and Nd:YAG, using an acute canine model. Arterial and venous vessels, of varying diameters from 0.1 to 1.0 mm, were divided with all three lasers. Analysis of five wavelengths of the FEL (3.0, 4.5, 6.1, 6.45, and 7.7 microns) resulted in bleeding without evidence of significant coagulation, regardless of whether the vessel was an artery or vein. Hemorrhage from vessels less than 0.4 mm diameter was subsequently easily controlled with Gelfoam® (topical hemostatic agent) alone, whereas larger vessels required bipolar electrocautery. No significant charring, or contraction of the surrounding parenchyma was noted with any of the wavelengths chosen from FEL source. The CO 2 laser, in continuous mode, easily coagulated vessels with diameters of 4 mm and less, while larger vessels displayed significant bleeding requiring bipolar electrocautery for control. Tissue charring was noted with application of the CO 2 laser. In super pulse mode, the CO 2 laser exhibited similar properties, including significant charring of the surrounding parenchyma. The Nd:YAG coagulated all vessels tested up to 1.4 mm, which was the largest diameter cortical artery found, however this laser displayed significant and extensive contraction and retraction of the surrounding parenchyma. In conclusion, the FEL appears to be a poor hemostatic agent. Our results did not show any benefit of the FEL over current conventional means of achieving hemostasis. However, control of hemorrhage was easily achieved with currently used methods of hemostasis, namely Gelfoam® or bipolar electrocuatery. Although only cortical vessels in dogs were tested, we feel this data can be applied to all animals, including humans, and the peripheral, as well as central, vasculature, as our data on the CO 2 and Nd:YAG appear to closely support previous reports of hemostasis of these two lasers obtained in other models.
Dissolver vessel bottom assembly
Kilian, Douglas C.
1976-01-01
An improved bottom assembly is provided for a nuclear reactor fuel reprocessing dissolver vessel wherein fuel elements are dissolved as the initial step in recovering fissile material from spent fuel rods. A shock-absorbing crash plate with a convex upper surface is disposed at the bottom of the dissolver vessel so as to provide an annular space between the crash plate and the dissolver vessel wall. A sparging ring is disposed within the annular space to enable a fluid discharged from the sparging ring to agitate the solids which deposit on the bottom of the dissolver vessel and accumulate in the annular space. An inlet tangential to the annular space permits a fluid pumped into the annular space through the inlet to flush these solids from the dissolver vessel through tangential outlets oppositely facing the inlet. The sparging ring is protected against damage from the impact of fuel elements being charged to the dissolver vessel by making the crash plate of such a diameter that the width of the annular space between the crash plate and the vessel wall is less than the diameter of the fuel elements.
Real-time fluorescence microscopy monitoring of porphyrin biodistribution
NASA Astrophysics Data System (ADS)
Kimel, Sol; Gottfried, Varda; Kunzi-Rapp, Karin; Akguen, Nermin; Schneckenburger, Herbert
1996-01-01
In vivo uptake of the natural porphyrins, uroporphyrin III (UP), coproporphyrin III (CP) and protoporphyrin IX (PP), was monitored by fluorescence microscopy. Experiments were performed using the chick chorioallantoic membrane (CAM) model, which allowed video documentation of fluorescence both in real time and after integration over a chosen time interval (usually 2 s). Sensitizers at a concentration of 50 (mu) M (100 (mu) L) were injected into a medium-sized vein (diameter approximately 40 micrometer) using an ultra-fine 10 micrometer diameter needle. Fluorescence images were quantitated by subtracting the fluorescence intensity of surrounding CAM tissue (Fmatrix) from the intravascular fluorescence intensity (Fintravascular), after transformation of the video frames into digital form. The differential fluorescence intensity, Fintravascular - Fmatrix, is a measure of the biodistribution. Real time measurements clearly showed that CP and UP fluorescence is associated with moving erythrocytes and not with endothelial cells of the vessel wall. Fluorescence intensity was monitored, up to 60 minutes after injection, by averaging the fluorescence over time intervals of 2 s and recording the integrated images. The fluorescence intensity reached its maximum in about 20 - 30 min after injection, presumably after monomerization inside erythrocyte membranes. The results are interpreted in terms of physical-chemical characteristics (e.g. hydrophilicity) and correlated with the photodynamically induced hemostasis in CAM blood vessels.
NASA Astrophysics Data System (ADS)
Olamaei, Nina; Cheriet, Farida; Deschênes, Sylvain; Martel, Sylvain
2014-05-01
Being able to visualize blood vessels with an inner diameter of less than 150 μm is the present limit of modern medical imaging modalities and it becomes an important issue to advance state-of-the-art medical imaging, diagnostics, surgery, and targeted interventions. In cancer therapy, such capability would provide the information required for new delivery methods such as magnetic resonance navigation to navigate therapeutic agents along a planned trajectory deeper in the vasculature and hence closer to the region to be treated for enhancing the therapeutic index. To demonstrate the possibility of gathering images of microvascular networks dynamically and beyond the limitation of medical imaging modalities, the susceptibility artifact was used as the contrast mechanism in magnetic resonance imaging (MRI) to detect magnetic micro-aggregations of iron-oxide nanoparticles (150 ± 20 μm in diameter) as they were injected in a 2D synthetic microvascular network. Magnetic entities cause susceptibility artifacts in the images by disrupting the MRI's homogeneous magnetic field in a much larger scale than their actual size. The position of the artifact reflects the position of the aggregations in the vascular system. The calculated positions of discrete-time scans were extracted and assembled to build up the distribution of the vascular network. The results suggest that this method could be used to gather images of blood vessels beyond the spatial resolution of clinical medical imaging modalities with a measured average error confirmed on a 2D reconstruction of the micro-vessels of approximately half of a pixel's size.
Wall-to-lumen ratio of intracranial arteries measured by indocyanine green angiography
Nakagawa, Daichi; Shojima, Masaaki; Yoshino, Masanori; Kin, Taichi; Imai, Hideaki; Nomura, Seiji; Saito, Toki; Nakatomi, Hirofumi; Oyama, Hiroshi; Saito, Nobuhito
2016-01-01
Background: The wall-to-lumen ratio (WLR) is an important parameter in vascular medicine because it indicates the character of vascular wall as well as the degree of stenosis. Despite the advances in medical imaging technologies, it is still difficult to measure the thin-walled normal intracranial arteries, and the reports on the WLR of normal intracranial artery are limited. It might be possible to calculate the WLR using the indocyanine green (ICG) angiography, which is used to observe intracranial vessels during microsurgery. Purpose: To evaluate the WLR of normal intracranial arteries using ICG angiography. Materials and Methods: From the three cases in which ICG angiography was recorded with a ruler during microsurgery, 20 measurement points were chosen for the analysis. The ICG was injected intravenously with a dose of 0.2 mg/kg, and the vessels were inspected at high magnification using an operating microscope equipped with near-infrared illumination system. The vessel outer diameter and the luminal diameter were measured using the images before and after the ICG arrival based on the pixel ratio method using a ruler as reference, respectively. The WLR was calculated as 0.5 × (vessel outer diameter − vessel luminal diameter). Results: The WLR (mean ± standard deviation) of normal intracranial arteries was 0.086 ± 0.022. The WLR tended to be high in small arteries. Conclusion: The WLR of normal intracranial arteries calculated using ICG angiography was consistent with the WLR reported in the previous reports based on human autopsy. PMID:27695538
Mo, Shelley; Krawitz, Brian; Efstathiadis, Eleni; Geyman, Lawrence; Weitz, Rishard; Chui, Toco Y P; Carroll, Joseph; Dubra, Alfredo; Rosen, Richard B
2016-07-01
To compare the use of optical coherence tomography angiography (OCTA) and adaptive optics scanning light ophthalmoscope fluorescein angiography (AOSLO FA) for characterizing the foveal microvasculature in healthy and vasculopathic eyes. Four healthy controls and 11 vasculopathic patients (4 diabetic retinopathy, 4 retinal vein occlusion, and 3 sickle cell retinopathy) were imaged with OCTA and AOSLO FA. Foveal perfusion maps were semiautomatically skeletonized for quantitative analysis, which included foveal avascular zone (FAZ) metrics (area, perimeter, acircularity index) and vessel density in three concentric annular regions of interest. On each set of OCTA and AOSLO FA images, matching vessel segments were used for lumen diameter measurement. Qualitative image comparisons were performed by visual identification of microaneurysms, vessel loops, leakage, and vessel segments. Adaptive optics scanning light ophthalmoscope FA and OCTA showed no statistically significant differences in FAZ perimeter, acircularity index, and vessel densities. Foveal avascular zone area, however, showed a small but statistically significant difference of 1.8% (P = 0.004). Lumen diameter was significantly larger on OCTA (mean difference 5.7 μm, P < 0.001). Microaneurysms, fine structure of vessel loops, leakage, and some vessel segments were visible on AOSLO FA but not OCTA, while blood vessels obscured by leakage were visible only on OCTA. Optical coherence tomography angiography is comparable to AOSLO FA at imaging the foveal microvasculature except for differences in FAZ area, lumen diameter, and some qualitative features. These results, together with its ease of use, short acquisition time, and avoidance of potentially phototoxic blue light, support OCTA as a tool for monitoring ocular pathology and detecting early disease.
Ureteral stone location at emergency room presentation with colic.
Eisner, Brian H; Reese, Adam; Sheth, Sonali; Stoller, Marshall L
2009-07-01
It is thought that the 3 narrowest points of the ureter are the ureteropelvic junction, the point where the ureter crosses anterior to the iliac vessels and the ureterovesical junction. Textbooks describe these 3 sites as the most likely places for ureteral stones to lodge. We defined the stone position in the ureter when patients first present to the emergency department with colic. We retrospectively reviewed the records of 94 consecutive patients who presented to the emergency department with a chief complaint of colic and computerized tomography showing a single unilateral ureteral calculus. Axial, coronal and 3-dimensional reformatted computerized tomography scans were evaluated, and stone position and size (maximal axial and coronal diameters) were recorded, as were the position of the ureteropelvic junction, the iliac vessels (where the ureter crosses anterior to the iliac vessels) and the ureterovesical junction. Patients with a history of nephrolithiasis, shock wave lithotripsy, ureteroscopy or percutaneous nephrolithotripsy were excluded from study. Statistical analysis was performed using Student's t test and Pearson's correlation coefficient. At the time of emergency department presentation for colic ureteral stone position was the ureteropelvic junction in 10.6% cases, between the ureteropelvic junction and the iliac vessels in 23.4%, where the ureter crosses anterior to the iliac vessels in 1.1%, between the iliac vessels and the ureterovesical junction in 4.3% and at the ureterovesical junction in 60.6%. Proximal calculi had a greater axial diameter than distal calculi (mean 6.1 vs 4.0 mm) and a greater coronal diameter than distal calculi (6.8 vs 4.1 mm, each p <0.001). Axial and coronal diameters moderately correlated with stone position (r = -0.47 and -0.55, respectively, each p <0.001). Proximal ureteral stones were larger in axial and coronal diameter than distal ureteral stones. At emergency department presentation for colic most stones were at the ureterovesical junction and in the proximal ureter between the ureteropelvic junction and the iliac vessels. A few stones were at the ureteropelvic junction and only 1 lodged at the level where the ureter crosses anterior to the iliac vessels, despite the literature stating that these locations are 2 of the 3 most likely places for stones to become lodged.
Assmann, R; Henrich, H
1978-09-29
A system is described for continuously measuring vessel diameters. It bases on the evaluation of video signal differences of a video camera which are induced by light intensity differences (grey levels) caused by the vascular wall structures. The system is electronically linear, automatically measuring and in addition eyeball controlled by the human sensor: the inaccuracy does not exceed the 5% level.
Papadakis, Antonios E; Perisinakis, Kostas; Raissaki, Maria; Damilakis, John
2013-04-01
The aim of the present phantom study was to investigate the effect of x-ray tube parameters and iodine concentration on image quality and radiation dose in cerebral computed tomographic (CT) angiographic examinations of pediatric and adult individuals. Four physical anthropomorphic phantoms that represent the average individual as neonate, 1-year-old, 5-year-old, and 10-year-old children and the RANDO phantom that simulates the average adult individual were used. Cylindrical vessels were bored along the brain-equivalent plugs of each physical phantom. To simulate the brain vasculature, vessels of 0.6, 1, 2, and 3 mm in diameter were created. These vessels were filled with contrast medium (CM) solutions at different iodine concentrations, that is, 5.6, 4.2, 2.7, and 1.4 mg I/mL. The phantom heads were scanned at 120, 100, and 80 kV. The applied quality reference tube current-time product values ranged from a minimum of 45 to a maximum of 680. The CT acquisitions were performed on a 16-slice CT scanner using the automatic exposure control system. Image quality was evaluated on the basis of image noise and contrast-to-noise ratio (CNR) between the contrast-enhanced iodinated vessels and the unenhanced regions of interest. Dose reduction was calculated as the percentage difference of the CT dose index value at the quality reference tube current-time product and the CT dose index at the mean modulated tube current-time product. Image noise that was measured using the preset tube current-time product settings varied significantly among the different phantoms (P < 0.0001). Hounsfield unit number of iodinated vessels was linearly related to CM concentration (r² = 0.907) and vessel diameter (r² = 0.918). The Hounsfield unit number of iodinated vessels followed a decreasing trend from the neonate phantom to the adult phantom at all kilovoltage settings. For the same image noise level, a CNR improvement of up to 69% and a dose reduction of up to 61% may be achieved when CT acquisition is performed at 80 kV compared with 120 kV. For the same CNR, a reduction by 25% of the administered CM concentration may be achieved when CT acquisition is performed at 80 kV compared with 120 kV. In cerebral CT angiographic studies, appropriate adjustment of the preset tube current-time product settings is required to achieve the same image noise level among participants of different age. Cerebral CT angiography at 80 kV significantly improves CNR and significantly reduces radiation dose. Moreover, at 80 kV, a considerable reduction of the administered amount of the CM may be reached, thus reducing potential risks for contrast-induced nephropathy.
Hepworth, C C; Kadirkamanathan, S S; Gong, F; Swain, C P
1998-04-01
A randomised controlled comparison of haemostatic efficacy of mechanical, injection, and thermal methods of haemostasis was undertaken using canine mesenteric vessels to test the hypothesis that mechanical methods of haemostasis are more effective in controlling haemorrhage than injection or thermal methods. The diameter of arteries in human bleeding ulcers measures up to 3.45 mm; mesenteric vessels up to 5 mm were therefore studied. Mesenteric vessels were randomised to treatment with injection sclerotherapy (adrenaline and ethanolamine), bipolar diathermy, or mechanical methods (band, clips, sewing machine, endoloops). The vessels were severed and haemostasis recorded. Injection sclerotherapy and clips failed to stop bleeding from vessels of 1 mm (n = 20) and 2 mm (n = 20). Bipolar diathermy was effective on 8/10 vessels of 2 mm but failed on 3 mm vessels (n = 5). Unstretched elastic bands succeeded on 13/15 vessels of 2 mm but on only 3/10 vessels of 3 mm. The sewing machine achieved haemostasis on 8/10 vessels of 4 mm but failed on 5 mm vessels (n = 5); endoloops were effective on all 5 mm vessels (n = 5). Only mechanical methods were effective on vessels greater than 2 mm in diameter. Some mechanical methods (banding and clips) were less effective than expected and need modification. Thermal and (effective) mechanical methods were significantly (p < 0.01) more effective than injection sclerotherapy. The most effective mechanical methods were significantly more effective (p < 0.01) than thermal or injection on vessels greater than 2 mm.
Fluid-solid contact vessel having fluid distributors therein
Jones, Jr., John B.
1980-09-09
Rectangularly-shaped fluid distributors for large diameter, vertical vessels include reinforcers for high heat operation, vertical sides with gas distributing orifices and overhanging, sloped roofs. Devices are provided for cleaning the orifices from a buildup of solid deposits resulting from the reactions in the vessel.
Kumar, Y Kiran; Mehta, Shashi Bhushan; Ramachandra, Manjunath
2017-01-01
The purpose of this work is to provide some validation methods for evaluating the hemodynamic assessment of Cerebral Arteriovenous Malformation (CAVM). This article emphasizes the importance of validating noninvasive measurements for CAVM patients, which are designed using lumped models for complex vessel structure. The validation of the hemodynamics assessment is based on invasive clinical measurements and cross-validation techniques with the Philips proprietary validated software's Qflow and 2D Perfursion. The modeling results are validated for 30 CAVM patients for 150 vessel locations. Mean flow, diameter, and pressure were compared between modeling results and with clinical/cross validation measurements, using an independent two-tailed Student t test. Exponential regression analysis was used to assess the relationship between blood flow, vessel diameter, and pressure between them. Univariate analysis is used to assess the relationship between vessel diameter, vessel cross-sectional area, AVM volume, AVM pressure, and AVM flow results were performed with linear or exponential regression. Modeling results were compared with clinical measurements from vessel locations of cerebral regions. Also, the model is cross validated with Philips proprietary validated software's Qflow and 2D Perfursion. Our results shows that modeling results and clinical results are nearly matching with a small deviation. In this article, we have validated our modeling results with clinical measurements. The new approach for cross-validation is proposed by demonstrating the accuracy of our results with a validated product in a clinical environment.
Madrid, Eric N.; Armitage, Anna R.; López-Portillo, Jorge
2014-01-01
Over the last several decades, the distribution of the black mangrove Avicennia germinans in the Gulf of Mexico has expanded, in part because it can survive the occasional freeze events and high soil salinities characteristic of the area. Vessel architecture may influence mangrove chilling and salinity tolerance. We surveyed populations of A. germinans throughout the Gulf to determine if vessel architecture was linked to field environmental conditions. We measured vessel density, hydraulically weighted vessel diameter, potential conductance capacity, and maximum tensile fracture stress. At each sampling site we recorded mangrove canopy height and soil salinity, and determined average minimum winter temperature from archived weather records. At a subset of sites, we measured carbon fixation rates using a LI-COR 6400XT Portable Photosynthesis System. Populations of A. germinans from cooler areas (Texas and Louisiana) had narrower vessels, likely reducing the risk of freeze-induced embolisms but also decreasing water conductance capacity. Vessels were also narrower in regions with high soil salinity, including Texas, USA and tidal flats in Veracruz, Mexico. Vessel density did not consistently vary with temperature or soil salinity. In abiotically stressful areas, A. germinans had a safe hydraulic architecture with narrower vessels that may increase local survival. This safe architecture appears to come at a substantial physiological cost in terms of reduction in conductance capacity and carbon fixation potential, likely contributing to lower canopy heights. The current distribution of A. germinans in the Gulf is influenced by the complex interplay between temperature, salinity, and vessel architecture. Given the plasticity of A. germinans vessel characters, it is likely that this mangrove species will be able to adapt to a wide range of potential future environmental conditions, and continue its expansion in the Gulf of Mexico in response to near-term climate change. PMID:25309570
Madrid, Eric N; Armitage, Anna R; López-Portillo, Jorge
2014-01-01
Over the last several decades, the distribution of the black mangrove Avicennia germinans in the Gulf of Mexico has expanded, in part because it can survive the occasional freeze events and high soil salinities characteristic of the area. Vessel architecture may influence mangrove chilling and salinity tolerance. We surveyed populations of A. germinans throughout the Gulf to determine if vessel architecture was linked to field environmental conditions. We measured vessel density, hydraulically weighted vessel diameter, potential conductance capacity, and maximum tensile fracture stress. At each sampling site we recorded mangrove canopy height and soil salinity, and determined average minimum winter temperature from archived weather records. At a subset of sites, we measured carbon fixation rates using a LI-COR 6400XT Portable Photosynthesis System. Populations of A. germinans from cooler areas (Texas and Louisiana) had narrower vessels, likely reducing the risk of freeze-induced embolisms but also decreasing water conductance capacity. Vessels were also narrower in regions with high soil salinity, including Texas, USA and tidal flats in Veracruz, Mexico. Vessel density did not consistently vary with temperature or soil salinity. In abiotically stressful areas, A. germinans had a safe hydraulic architecture with narrower vessels that may increase local survival. This safe architecture appears to come at a substantial physiological cost in terms of reduction in conductance capacity and carbon fixation potential, likely contributing to lower canopy heights. The current distribution of A. germinans in the Gulf is influenced by the complex interplay between temperature, salinity, and vessel architecture. Given the plasticity of A. germinans vessel characters, it is likely that this mangrove species will be able to adapt to a wide range of potential future environmental conditions, and continue its expansion in the Gulf of Mexico in response to near-term climate change.
Filament-reinforced metal composite pressure vessel evaluation and performance demonstration
NASA Technical Reports Server (NTRS)
Landes, R. E.
1976-01-01
Two different Kevlar-49 filament-reinforced metal sphere designs were developed, and six vessels of each type were fabricated and subjected to fatigue cycling, sustained loading, and hydrostatic burst. The 61 cm (24 inch) diameter Kevlar-49/cryoformed 301 stainless steel pressure vessels demonstrated the required pressure cycle capability, burst factor of safety, and a maximum pressure times volume divided by weight (pV/W) performance of 210 J/g (834 000 in-lb/lbm) at burst; this represented a 25 to 30% weight saving over the lightest weight comparable, 6A1-4V Ti, homogeneous pressure vessel. Both the Kevlar/stainless steel design and the 97 cm (38 inch) diameter Kevlar-49/2219-T62 aluminum sphere design demonstrated nonfragmentation and controlled failure mode features when pressure cycled to failure at operating pressure. When failure occurred during pressure cycling, the mode was localized leakage and not catastrophic. Kevlar/stainless steel vessels utilized a unique conical boss design, and Kevlar/aluminum vessels incorporated a tie-rod to carry port loads; both styles of polar fittings performed as designed during operational testing of the vessels.
NASA Astrophysics Data System (ADS)
Kinnard, Lisa M.; Gavrielides, Marios A.; Myers, Kyle J.; Zeng, Rongping; Peregoy, Jennifer; Pritchard, William; Karanian, John W.; Petrick, Nicholas
2008-03-01
High-resolution CT, three-dimensional (3D) methods for nodule volumetry have been introduced, with the hope that such methods will be more accurate and consistent than currently used planar measures of size. However, the error associated with volume estimation methods still needs to be quantified. Volume estimation error is multi-faceted in the sense that it is impacted by characteristics of the patient, the software tool and the CT system. The overall goal of this research is to quantify the various sources of measurement error and, when possible, minimize their effects. In the current study, we estimated nodule volume from ten repeat scans of an anthropomorphic phantom containing two synthetic spherical lung nodules (diameters: 5 and 10 mm; density: -630 HU), using a 16-slice Philips CT with 20, 50, 100 and 200 mAs exposures and 0.8 and 3.0 mm slice thicknesses. True volume was estimated from an average of diameter measurements, made using digital calipers. We report variance and bias results for volume measurements as a function of slice thickness, nodule diameter, and X-ray exposure.
Lattice Boltzmann Simulation of Blood Flow in Blood Vessels with the Rolling Massage
NASA Astrophysics Data System (ADS)
Yi, Hou-Hui; Xu, Shi-Xiong; Qian, Yue-Hong; Fang, Hai-Ping
2005-12-01
The rolling massage manipulation is a classic Chinese massage, which is expected to improve the circulation by pushing, pulling and kneading of the muscle. A model for the rolling massage manipulation is proposed and the lattice Boltzmann method is applied to study the blood flow in the blood vessels. The simulation results show that the blood flux is considerably modified by the rolling massage and the explicit value depends on the rolling frequency, the rolling depth, and the diameter of the vessel. The smaller the diameter of the blood vessel, the larger the enhancement of the blood flux by the rolling massage. The model, together with the simulation results, is expected to be helpful to understand the mechanism and further development of rolling massage techniques.
Nitric oxide regulates retinal vascular tone in humans.
Dorner, Guido T; Garhofer, Gerhard; Kiss, Barbara; Polska, Elzbieta; Polak, Kaija; Riva, Charles E; Schmetterer, Leopold
2003-08-01
The purpose of the present study was to investigate the contribution of basal nitric oxide (NO) on retinal vascular tone in humans. In addition, we set out to elucidate the role of NO in flicker-induced retinal vasodilation in humans. Twelve healthy young subjects were studied in a three-way crossover design. Subjects received an intravenous infusion of either placebo or NG-monomethyl-L-arginine (L-NMMA; 3 or 6 mg/kg over 5 min), an inhibitor of NO synthase. Thereafter, diffuse luminance flicker was consecutively performed for 16, 32, and 64 s at a frequency of 8 Hz. The effect of L-NMMA on retinal arterial and venous diameter was assessed under resting conditions and during the hyperemic flicker response. Retinal vessel diameter was measured with a Zeiss retinal vessel analyzer. L-NMMA significantly reduced arterial diameter (3 mg/kg: -2%; 6 mg/kg: -4%, P < 0.001) and venous diameter (3 mg/kg: -5%; 6 mg/kg: -8%, P < 0.001). After placebo infusion, flicker induced a significant increase in retinal vessel diameter (P < 0.001). At a flicker duration of 64 s, arterial diameter increased by 4% and venous diameter increased by 3%. L-NMMA did not abolish these hyperemic responses but blunted venous vasodilation (P = 0.017) and arterial vasodilation (P = 0.02) in response to flicker stimulation. Our data indicate that NO contributes to basal retinal vascular tone in humans. In addition, NO appears to play a role in flicker-induced vasodilation of the human retinal vasculature.
NASA Astrophysics Data System (ADS)
Fetita, Catalin; Fortemps de Loneux, Thierry; Kouvahe, Amélé Florence; El Hajjam, Mostafa
2017-03-01
Hereditary hemorrhagic telangiectasia (HHT) is an autosomic dominant disorder, which is characterized by the development of multiple arterio-venous malformations in the skin, mucous membranes, and/or visceral organs. Pulmonary Arterio-Venous Malformation (PAVM) is an abnormal connection where feeding arteries shunt directly into draining veins with no intervening capillary bed. This condition may lead to paradoxical embolism and hemorrhagic complications. PAVMs patients should systematically be screened as the spontaneous complication rate is high, reaching almost 50%. Chest enhanced contrast CT scanner is the reference screening and follow-up examination. When performed by experienced operators as the prime treatment, percutaneous embolization of PAVMs is a safe, efficient and sustained therapy. The accuracy of PAVM detection and quantification of its progression over time is the key of embolotherapy success. In this paper, we propose an automatic method for PAVM detection and quantification relying on a modeling of vessel deformation, i.e. local caliber increase, based on mathematical morphology. The pulmonary field and vessels are first segmented using geodesic operators. The vessel caliber is estimated by means of a granulometric measure and the local caliber increase is detected by using a geodesic operator, the h-maxdomes. The detection sensitivity can be tuned up according to the choice of the h value which models the irregularity of the vessel caliber along its axis and the PAVM selection is performed according to a clinical criterion of >3 mm diameter of the feeding artery of the PAVM. The developed method was tested on a 20 patient dataset. A sensitivity study allowed choosing the irregularity parameter to maximize the true positive ratio reaching 85.4% in average. A specific false positive reduction procedure targeting the vessel trunks of the arterio-venous tree near mediastinum allows a precision increase from 13% to 67% with an average number of 1.15 false positives per scan.
Fichot, Régis; Laurans, Françoise; Monclus, Romain; Moreau, Alain; Pilate, Gilles; Brignolas, Franck
2009-12-01
Six Populus deltoides Bartr. ex Marsh. x P. nigra L. genotypes were selected to investigate whether stem xylem anatomy correlated with gas exchange rates, water-use efficiency (WUE) and growth performance. Clonal copies of the genotypes were grown in a two-plot common garden test under contrasting water regimes, with one plot maintained irrigated and the other one subjected to moderate summer water deficit. The six genotypes displayed a large range of xylem anatomy, mean vessel and fibre diameter varying from about 40 to 60 microm and from 7.5 to 10.5 microm, respectively. Decreased water availability resulted in a reduced cell size and an important rise in vessel density, but the extent of xylem plasticity was both genotype and trait dependent. Vessel diameter and theoretical xylem-specific hydraulic conductivity correlated positively with stomatal conductance, carbon isotope discrimination and growth performance-related traits and negatively with intrinsic WUE, especially under water deficit conditions. Vessel diameter and vessel density measured under water deficit conditions correlated with the relative losses in biomass production in response to water deprivation; this resulted from the fact that a more plastic xylem structure was generally accompanied by a larger loss in biomass production.
Yhee, J Y; Yu, C H; Kim, J H; Im, K S; Kim, N H; Brodersen, B W; Doster, A R; Sur, J-H
2012-01-01
The aim of the present study was to determine the distribution and characteristics of microvessels in various histological types of canine renal cell carcinoma (RCC). The study compared microvessel density (MVD) and distribution of blood vessels according to histological type and evaluated the presence of angiogenesis-related proteins. Nine archival samples of canine RCC were studied. MVD was calculated as the mean number of blood vessels per mm(2). The diameter of blood vessels was calculated by determining either the length of the long axis of blood vessels (diameter(max)) or the mean distance from the centre of each blood vessel to the tunica adventia (diameter(mean)). A significant difference in MVD was evident between RCCs and normal kidneys (46.6 ± 28.0 versus 8.4 ± 2.2 microvessels/mm(2)). Diameter(max) in canine RCCs (34.1 ± 14.7 μm) was also significantly different from normal canine kidney (23.2 ± 3.4 μm). Vascular endothelial growth factor (VEGF) was expressed by tumour cells and vascular endothelial cells and tumour necrosis factor (TNF)-α expression was observed in vascular endothelial cells in both neoplastic and normal kidney. Although VEGF is involved in angiogenesis and correlates with tumour stage of development, no correlation was found between VEGF expression and MVD. Tumour-associated macrophages expressing TNF-α and hypoxia inducible factor 1α were identified in peritumoural tissue and may play an important role in angiogenesis. Copyright © 2011 Elsevier Ltd. All rights reserved.
Comparing five simple vascular storage protocols.
van Doormaal, Tristan P C; Sluijs, Jurren H; Vink, Aryan; Tulleken, Cornelis A F; van der Zwan, Albert
2014-11-01
We aim to find a storage protocol for vessels that preserves their dimensional, histologic, and mechanical characteristics to facilitate reproducible anastomosis experiments and microsurgical training with constant quality. We compared stored rabbit aortas, harvested in a slaughterhouse, using five different protocols with fresh controls. Aortas were preserved for 125 d in (1) NaCl 0.9% at -18°C, (2) Roswell Park Memorial Institute 1640 90% with 10% dimethyl sulfoxide (RPMI/DMSO) at -18°C, (3) RPMI/DMSO at -70°C, (4) glycerol 85% at 4°C, and (5) glycerol in stepwise increased concentrations until 85% at 4°C. After preservation, we measured vessel diameter, wall thickness, and Young's Modulus indicating stiffness. Neurosurgeons compared stored vessels with fresh vessels, blinded for preservation subgroup. We performed histologic assessment blinded for preservation subgroup. Fresh rabbit aortas showed a mean diameter of 2.65 ± 0.14 mm, a mean wall thickness of 126 ± 22 μm, and a Young's Modulus of 11.4 ± 2.4 N/mm(2). NaCl 0.9%-preserved aortas showed a significantly increased vessel diameter and decreased stiffness. RPMI/DMSO-preserved aortas showed no significant differences from fresh aortas in dimensions and mechanical characteristics. Glycerol-preserved tissue showed a significant increase in wall thickness, a related significant decrease in diameter, and increase in stiffness. Neurosurgeons regarded RPMI/DMSO tissue as most comparable with fresh tissue. Histologic assessment revealed no differences between the different protocols and fresh control group. Storage of rabbit aortas in RPMI/DMSO most adequately preserves their dimensional and mechanical properties. Copyright © 2014 Elsevier Inc. All rights reserved.
Holmes, D R; Lansky, A; Kuntz, R; Bell, M R; Buchbinder, M; Fortuna, R; O'Shaughnessy, C D; Popma, J
2000-11-15
A new martensitic nitinol stent with improved flexibility and radiopacity was tested to evaluate whether these differences improve initial or long-term outcome. Patients who underwent percutaneous revascularization of a discrete native coronary lesion were randomly assigned to the new stent (PARAGON, n = 349) or to the first-generation Palmaz-Schatz (PS) stent (n = 339). The primary end point was target vessel failure at 6 months (a composite of cardiac or noncardiac death, any infarction in the distribution of the treated vessel, or clinically indicated target vessel revascularization). Secondary end points were, among others, device and procedural success and angiographic restenosis. Mean age was 62 years; diabetes was present in 21% of patients, prior bypass surgery in 6%, and recent infarction in 22% (p = NS for comparison between the 2 randomized arms). The PARAGON stent group had smaller reference vessels (2.97 vs 3.05 mm, p = 0.05), more prior restenosis (8.0% vs 4.5%, p = 0.07), and a longer average stent length (21.3 vs 19.4 mm, p < 0.05). Device success was significantly higher in the PARAGON arm (99.1% vs 94.3%, p < 0.05). Death and infarction at 6-month follow-up were infrequent in both groups. There was no significant difference in death (2.0% vs 1.2%, p = 0.546), but a higher rate of infarction for the PARAGON cohort (9.2% vs 4.7%, p = 0.025). Although target vessel failure (20.3% vs 12.4%, p = 0.005) and target lesion revascularization (12.0% vs 5.9%, p = 0.005) were higher in the PARAGON group, there was no significant difference in 6-month follow-up in in-stent minimal lumen diameter or in the rate of binary angiographic restenosis. Both PARAGON and PS stents are safe and associated with infrequent adverse events. The PARAGON stent can be delivered more frequently than the first-generation PS stent. Although there was no significant difference in in-stent minimal lumen diameter or the frequency of angiographic restenosis, clinical restenosis was more frequent in the PARAGON group.
Topographical anatomy of the suprascapular nerve and vessels at the suprascapular notch.
Yang, Hee-Jun; Gil, Young-Chun; Jin, Jeong-Doo; Ahn, Song Vogue; Lee, Hye-Yeon
2012-04-01
Suprascapular nerve entrapment caused by the superior transverse scapular ligament (STSL) causes pain, and limitation of motion in the shoulder. To relieve these symptoms, suprascapular nerve decompression is performed through the resection of STSL. To describe and classify the topographic anatomy of the suprascapular notch, 103 cadaveric shoulders were dissected. The mean length and width of STSLs were 11.2 and 3.4 mm, respectively. The bony bridges replacing STSL in four shoulders were 8.2 mm long and 3.5 mm wide on average. The suprascapular nerve always ran through the notch under the STSL. All shoulders had a single suprascapular artery, while multiple suprascapular veins appeared in 21.3%. The arrangement of the suprascapular vessels was classified into three types: in Type I (59.4%), all suprascapular vessels ran over the STSL; in Type II (29.7%), the vessels ran over and under the STSL simultaneously; in Type III (10.9%), all vessels ran under the STSL. In 48.9% of cadavers, these types were bilaterally matched. The omohyoid muscle originated distantly from the STSL in 38.0%, was adjacent to it in 44.0%, and was partially over the STSL in 18.0%. The number of suprascapular vessels running under the STSL was positively correlated with the size of the STSL and the middle diameter of the suprascapular notch. Age was inversely correlated with the length of STSL. The STSL was wider in males than in females. This study provides details of the structural variations in the region of the suprascapular notch. Copyright © 2011 Wiley Periodicals, Inc.
2013-04-08
Details of 1D compression test Material: Florida coastal sand Mean diameter: 0.37(mm) Vessel: Stainless steel Vessel inner diameter 6.0(mm... turned out that the projectile deceleration behavior observed in the experiment is a consequence of the complicated compression behavior of sand...applicability of the proposed EOS into high-speed projectile impact experiment. It turned out that the projectile deceleration behavior observed in the
Extraction of line properties based on direction fields.
Kutka, R; Stier, S
1996-01-01
The authors present a new set of algorithms for segmenting lines, mainly blood vessels in X-ray images, and extracting properties such as their intensities, diameters, and center lines. The authors developed a tracking algorithm that checks rules taking the properties of vessels into account. The tools even detect veins, arteries, or catheters of two pixels in diameter and with poor contrast. Compared with other algorithms, such as the Canny line detector or anisotropic diffusion, the authors extract a smoother and connected vessel tree without artifacts in the image background. As the tools depend on common intermediate results, they are very fast when used together. The authors' results will support the 3-D reconstruction of the vessel tree from stereoscopic projections. Moreover, the authors make use of their line intensity measure for enhancing and improving the visibility of vessels in 3-D X-ray images. The processed images are intended to support radiologists in diagnosis, radiation therapy planning, and surgical planning. Radiologists verified the improved quality of the processed images and the enhanced visibility of relevant details, particularly fine blood vessels.
Computer-Aided Evaluation of Blood Vessel Geometry From Acoustic Images.
Lindström, Stefan B; Uhlin, Fredrik; Bjarnegård, Niclas; Gylling, Micael; Nilsson, Kamilla; Svensson, Christina; Yngman-Uhlin, Pia; Länne, Toste
2018-04-01
A method for computer-aided assessment of blood vessel geometries based on shape-fitting algorithms from metric vision was evaluated. Acoustic images of cross sections of the radial artery and cephalic vein were acquired, and medical practitioners used a computer application to measure the wall thickness and nominal diameter of these blood vessels with a caliper method and the shape-fitting method. The methods performed equally well for wall thickness measurements. The shape-fitting method was preferable for measuring the diameter, since it reduced systematic errors by up to 63% in the case of the cephalic vein because of its eccentricity. © 2017 by the American Institute of Ultrasound in Medicine.
Variability of Origin of Splanchnic and Renal Vessels From the Thoracoabdominal Aorta.
Mazzaccaro, D; Malacrida, G; Nano, G
2015-01-01
To analyze the variability of origin of the celiac trunk (CT), the superior mesenteric artery (SMA), the right renal artery (RRA), and the left renal artery (LRA) in terms of mutual distances, angle from the sagittal aortic axis (clock position), and ostial diameters on computed tomography angiographies (CTAs) in three groups of patients. One hundred and fifty CTAs of 50 patients with a non-dilated thoracoabdominal aorta (group A), 50 with thoracoabdominal aneurysm (B), and 50 with infrarenal aneurysm (C) were reviewed. The measurements performed on CTAs, as well as the patients' age, sex, and body surface area, were analyzed. p values <.05 were considered statistically significant. The clock position of the CT and the SMA, the diameters of all vessels, and the distance of the CTeSMA followed a Gaussian distribution. In contrast, the clock position of the renal vessels did not follow a normal distribution, and nor did the distances of the SMA-RRA, SMA-LRA, RRA-LRA or the distances between the renal arteries and the aortic bifurcation. The same values did not differ significantly among the three groups, with the exception of the distances between the renal arteries and the aortic bifurcation, significantly greater in group C. The clock position of the LRA and the distances of the SMA-LRA, SMA-RRA, RRA-LRA and between both renal arteries and the aortic bifurcation showed a significant correlation with the increase of aortic diameter. The anatomic variability of the origin of both the CT and the SMA in terms of clock position and mutual distances followed a Gaussian distribution, regardless of group. The same applies to the ostial diameters of renal and visceral vessels. In contrast, the origin of the renal vessels had a statistically significant heterogeneity that seemed to be correlated with the increase of aortic diameter in the mesenteric and renal aortic region.
Cai, Jing; Tyree, Melvin T
2010-07-01
The objective of this study was to quantify the relationship between vulnerability to cavitation and vessel diameter within a species. We measured vulnerability curves (VCs: percentage loss hydraulic conductivity versus tension) in aspen stems and measured vessel-size distributions. Measurements were done on seed-grown, 4-month-old aspen (Populus tremuloides Michx) grown in a greenhouse. VCs of stem segments were measured using a centrifuge technique and by a staining technique that allowed a VC to be constructed based on vessel diameter size-classes (D). Vessel-based VCs were also fitted to Weibull cumulative distribution functions (CDF), which provided best-fit values of Weibull CDF constants (c and b) and P(50) = the tension causing 50% loss of hydraulic conductivity. We show that P(50) = 6.166D(-0.3134) (R(2) = 0.995) and that b and 1/c are both linear functions of D with R(2) > 0.95. The results are discussed in terms of models of VCs based on vessel D size-classes and in terms of concepts such as the 'pit area hypothesis' and vessel pathway redundancy.
Hepworth, C; Kadirkamanathan, S; Gong, F; Swain, C
1998-01-01
Background and aims—A randomised controlled comparison of haemostatic efficacy of mechanical, injection, and thermal methods of haemostasis was undertaken using canine mesenteric vessels to test the hypothesis that mechanical methods of haemostasis are more effective in controlling haemorrhage than injection or thermal methods. The diameter of arteries in human bleeding ulcers measures up to 3.45 mm; mesenteric vessels up to 5 mm were therefore studied. Methods—Mesenteric vessels were randomised to treatment with injection sclerotherapy (adrenaline and ethanolamine), bipolar diathermy, or mechanical methods (band, clips, sewing machine, endoloops). The vessels were severed and haemostasis recorded. Results—Injection sclerotherapy and clips failed to stop bleeding from vessels of 1 mm (n=20) and 2 mm (n=20). Bipolar diathermy was effective on 8/10 vessels of 2 mm but failed on 3 mm vessels (n=5). Unstretched elastic bands succeeded on 13/15 vessels of 2 mm but on only 3/10 vessels of 3 mm. The sewing machine achieved haemostasis on 8/10 vessels of 4 mm but failed on 5 mm vessels (n=5); endoloops were effective on all 5 mm vessels (n=5). Conclusions—Only mechanical methods were effective on vessels greater than 2 mm in diameter. Some mechanical methods (banding and clips) were less effective than expected and need modification. Thermal and (effective) mechanical methods were significantly (p<0.01) more effective than injection sclerotherapy. The most effective mechanical methods were significantly more effective (p<0.01) than thermal or injection on vessels greater than 2mm. Keywords: endoscopic haemostasis; mesenteric vessels PMID:9616305
Feild, Taylor S; Brodribb, Tim
2001-05-01
The effect of freezing on stem xylem hydraulic conductivity and leaf chlorophyll a fluorescence was measured in 12 tree and shrub species from a treeline heath in Tasmania, Australia. Reduction in stem hydraulic conductivity after a single freeze-thaw cycle was minimal in conifers and the vessel-less angiosperm species Tasmannia lanceolata (Winteraceae), whereas mean loss of conductivity in vessel-forming angiosperms fell in the range 17-83%. A positive linear relationship was observed between percentage loss of hydraulic conductivity by freeze-thaw and the average conduit diameter across all 12 species. This supports the hypothesis that large-diameter vascular conduits have a greater likelihood of freeze-thaw cavitation because larger bubbles are produced, which are more likely to expand under tension. Leaf frost tolerances, as measured by a 50% loss of maximum PSII quantum yield, varied from -6 to -13°C, indicating that these species were more frost-sensitive than plants from northern hemisphere temperate forest and treeline communities. There was no evidence of a relationship between frost tolerance of leaves and the resilience of stem water transport to freezing, suggesting that low temperature survival and the resistance of stem water transport to freezing are independently evolving traits. The results of this study bear on the ecological importance of stem freezing in the southern hemisphere treeline zones.
Dorafshar, Amir H; Januszyk, Michael; Song, David H
2010-08-01
Techniques for autologous breast reconstruction have evolved to minimize donor-site morbidity and reduce flap-specific complications. When available, the superficial inferior epigastric artery (SIEA) flap represents the optimal method to achieve the former. However, many microsurgeons have been reluctant to adopt this procedure due to technical challenges inherent to the surgery, as well as concerns with the intrinsic capacity of the superficial vessel system to adequately support this flap. This article sets forth a simple approach to the SIEA flap harvest and demonstrates that favorable results may be achieved even for small caliber vessels. A total of 46 patients underwent 53 SIEA breast reconstructions over a 6-year period using a modified approach for pedicle dissection and arterial inclusion criteria solely on the basis of presence of a palpable pulse. Average pedicle length harvested for all SIEA flaps was 6.07 cm; and mean arterial (0.96 mm) and venous (2.27 mm) diameters represent the lowest published values. Three flaps (5.7%) demonstrated fat necrosis or partial flap necrosis, with one (1.9%) complete flap loss. These results compare favorably with those of previous SIEA series employing diameter-based selection criteria, suggesting that the presence of a palpable arterial pulse may be sufficient to permit successful utilization of this flap. (c) Thieme Medical Publishers.
Bertlich, Mattis; Ihler, Friedrich; Weiss, Bernhard G; Freytag, Saskia; Strupp, Michael; Canis, Martin
2017-12-01
The aim of this work was to evaluate the effect of tumor necrosis factor (TNF) and its neutralization with etanercept on the capability of cochlear pericytes to alter capillary diameter in the stria vascularis. Twelve Dunkin-Hartley guinea pigs were randomly assigned to one of three groups. Each group was treated either with placebo and then placebo, TNF and then placebo, or TNF and then etanercept. Cochlear pericytes were visualized using diaminofluorescein-2-diacetate and intravasal blood flow by fluorescein-dextrane. Vessel diameter at sites of pericyte somas and downstream controls were quantified by specialized software. Values were obtained before treatment, after first treatment with tumor necrosis factor or placebo and after second treatment with etanercept or placebo. Overall, 199 pericytes in 12 animals were visualized. After initial treatment with TNF, a significant decrease in vessel diameter at sites of pericyte somas (3.6 ±4.3%, n = 141) compared with placebo and downstream controls was observed. After initial treatment with TNF, the application of etanercept caused a significant increase (3.3 ±5.5%, n = 59) in vessel diameter at the sites of pericyte somata compared with placebo and downstream controls. We have been able to show that cochlear pericytes are capable of reducing capillary diameter after exposition to TNF. Moreover, the reduction in capillary diameter observed after the application of TNF is revertible after neutralization of tumor necrosis factor by the application of etanercept. It seems that contraction of cochlear pericytes contributes to the regulation of cochlear blood flow.
Graphite filament wound pressure vessels
NASA Technical Reports Server (NTRS)
Feldman, A.; Damico, J. J.
1972-01-01
Filament wound NOL rings, 4-inch and 8-inch diameter closed-end vessels involving three epoxy resin systems and three graphite fibers were tested to develop property data and fabrication technology for filament wound graphite/epoxy pressure vessels. Vessels were subjected to single-cycle burst tests at room temperature. Manufacturing parameters were established for tooling, winding, and curing that resulted in the development of a pressure/vessel performance factor (pressure x volume/weight) or more than 900,000 in. for an oblate spheroid specimen.
Struk, S; Schaff, J-B; Qassemyar, Q
2018-04-01
The medial sural artery perforator (MSAP) flap is defined as a thin cutaneo-adipose perforator flap harvested on the medial aspect of the leg. The aims of this study were to describe the anatomical basis as well as the surgical technique and discuss the indications in head and neck reconstructive surgery. We harvested 10 MSAP flap on 5 fresh cadavers. For each case, the number and the location of the perforators were recorded. For each flap, the length of pedicle, the diameter of source vessels and the thickness of the flap were studied. Finally, we performed a clinical application of a MSAP flap. A total of 23 perforators with a diameter superior than 1mm were dissected on 10 legs. The medial sural artery provided between 1 and 4 musculocutaneous perforators. Perforators were located in average at 10.3cm±2cm from the popliteal fossa and at 3.6cm±1cm from the median line of the calf. The mean pedicle length was 12.1cm±2.5cm. At its origin, the source artery diameter was 1.8mm±0.25mm and source veins diameters were 2.45mm±0.9mm in average. There was no complication in our clinical application. This study confirms the reliability of previous anatomical descriptions of the medial sural artery perforator flap. This flap was reported as thin and particularly adapted for oral cavity reconstruction and for facial or limb resurfacing. Sequelae might be reduced as compared to those of the radial forearm flap with comparable results. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Noll, Dariusz; Kruk, Mariusz; Pręgowski, Jerzy; Kaczmarska, Edyta; Kryczka, Karolina; Pracoń, Radosław; Skwarek, Mirosław; Dzielińska, Zofia; Petryka, Joanna; Spiewak, Mateusz; Lubiszewska, Barbara; Norwa-Otto, Bożena; Opolski, Maksymilian; Witkowski, Adam; Demkow, Marcin; Rużyłło, Witold; Kępka, Cezary
2013-01-01
Computed tomography coronary angiography (CTCA) is a diagnostic method used for exclusion of coronary artery disease. However, lower accuracy of CTCA in assessment of calcified lesions is a significant factor impeding applicability of CTCA for assessment of coronary atherosclerosis. To provide insight into lumen and calcium characteristics assessed with CTCA, we compared these parameters to the reference of intravascular ultrasound (IVUS). Two hundred and fifty-two calcified lesions within 97 arteries of 60 patients (19 women, age 63 ±10 years) underwent assessment with both 2 × 64 slice CT (Somatom Definition, Siemens) and IVUS (s5, Volcano Corp.). Coronary lumen and calcium dimensions within calcified lesions were assessed with CTCA and compared to the reference measurements made with IVUS. On average CTCA underestimated mean lumen diameter (2.8 ±0.7 mm vs. 2.9 ±0.8 mm for IVUS), lumen area (6.4 ±3.4 mm(2) vs. 7.0 ±3.7 mm(2) for IVUS, p < 0.001) and total calcium arc (52 ±35° vs. 83 ±54°). However, analysis of tertiles of the examined parameters revealed that the mean lumen diameter, lumen area and calcium arc did not significantly differ between CTCA and IVUS within the smallest lumens (1(st) tertile of mean lumen diameter at 2.1 mm, and 1(st) tertile of lumen area at 3.7 mm(2)) and lowest calcium arc (mean of 40°). Although, on average, CTCA underestimates lumen diameter and area as well as calcium arc within calcified lesions, the differences are not significant within the smallest vessels and calcium arcs. The low diagnostic accuracy of CTCA within calcified lesions may be attributed to high variance and not to systematic error of measurements.
Van Doormaal, Mark; Zhou, Yu-Qing; Zhang, Xiaoli; Steinman, David A; Henkelman, R Mark
2014-10-01
Mouse models are an important way for exploring relationships between blood hemodynamics and eventual plaque formation. We have developed a mouse model of aortic regurgitation (AR) that produces large changes in plaque burden with charges in hemodynamics [Zhou et al., 2010, "Aortic Regurgitation Dramatically Alters the Distribution of Atherosclerotic Lesions and Enhances Atherogenesis in Mice," Arterioscler. Thromb. Vasc. Biol., 30(6), pp. 1181-1188]. In this paper, we explore the amount of detail needed for realistic computational fluid dynamics (CFD) calculations in this experimental model. The CFD calculations use inputs based on experimental measurements from ultrasound (US), micro computed tomography (CT), and both anatomical magnetic resonance imaging (MRI) and phase contrast MRI (PC-MRI). The adequacy of five different levels of model complexity (a) subject-specific CT data from a single mouse; (b) subject-specific CT centerlines with radii from US; (c) same as (b) but with MRI derived centerlines; (d) average CT centerlines and averaged vessel radius and branching vessels; and (e) same as (d) but with averaged MRI centerlines) is evaluated by demonstrating their impact on relative residence time (RRT) outputs. The paper concludes by demonstrating the necessity of subject-specific geometry and recommends for inputs the use of CT or anatomical MRI for establishing the aortic centerlines, M-mode US for scaling the aortic diameters, and a combination of PC-MRI and Doppler US for estimating the spatial and temporal characteristics of the input wave forms.
Uji, Akihito; Balasubramanian, Siva; Lei, Jianqin; Baghdasaryan, Elmira; Al-Sheikh, Mayss; Sadda, SriniVas R
2017-11-01
Imaging of the choriocapillaris in vivo is challenging with existing technology. Optical coherence tomography angiography (OCTA), if optimized, could make the imaging less challenging. To investigate multiple en face image averaging on OCTA images of the choriocapillaris. Observational, cross-sectional case series at a referral institutional practice in Los Angeles, California. From the original cohort of 21 healthy individuals, 17 normal eyes of 17 participants were included in the study. The study dates were August to September 2016. All participants underwent OCTA imaging of the macula covering a 3 × 3-mm area using OCTA software (Cirrus 5000 with AngioPlex; Carl Zeiss Meditec). One eye per participant was repeatedly imaged to obtain 9 OCTA cube scan sets. Registration was first performed using superficial capillary plexus images, and this transformation was then applied to the choriocapillaris images. The 9 registered choriocapillaris images were then averaged. Quantitative parameters were measured on binarized OCTA images and compared with the unaveraged OCTA images. Vessel caliber measurement. Seventeen eyes of 17 participants (mean [SD] age, 35.1 [6.0] years; 9 [53%] female; and 9 [53%] of white race/ethnicity) with sufficient image quality were included in this analysis. The single unaveraged images demonstrated a granular appearance, and the vascular pattern was difficult to discern. After averaging, en face choriocapillaris images showed a meshwork appearance. The mean (SD) diameter of the vessels was 22.8 (5.8) µm (range, 9.6-40.2 µm). Compared with the single unaveraged images, the averaged images showed more flow voids (1423 flow voids [95% CI, 967-1909] vs 1254 flow voids [95% CI, 825-1683], P < .001), smaller average size of the flow voids (911 [95% CI, 301-1521] µm2 vs 1364 [95% CI, 645-2083] µm2, P < .001), and greater vessel density (70.7% [95% CI, 61.9%-79.5%] vs 61.9% [95% CI, 56.0%-67.8%], P < .001). The distribution of the number vs sizes of the flow voids was skewed in both unaveraged and averaged images. A linear log-log plot of the distribution showed a more homogeneous distribution in the averaged images compared with the unaveraged images. Multiple en face averaging can improve visualization of the choriocapillaris on OCTA images, transforming the images from a granular appearance to a level where the intervascular spaces can be resolved in healthy volunteers.
Self supporting heat transfer element
Story, Grosvenor Cook; Baldonado, Ray Orico
2002-01-01
The present invention provides an improved internal heat exchange element arranged so as to traverse the inside diameter of a container vessel such that it makes good mechanical contact with the interior wall of that vessel. The mechanical element is fabricated from a material having a coefficient of thermal conductivity above about 0.8 W cm.sup.-1.degree. K.sup.-1 and is designed to function as a simple spring member when that member has been cooled to reduce its diameter to just below that of a cylindrical container or vessel into which it is placed and then allowed to warm to room temperature. A particularly important application of this invention is directed to a providing a simple compartmented storage container for accommodating a hydrogen absorbing alloy.
NASA Astrophysics Data System (ADS)
Parshina, S. S.; Tokaeva, L. K.; Dolgova, E. M.; Afanas'yeva, T. N.; Strelnikova, O. A.
The origin of hemorheologic and endothelial defects in patients with unstable angina (comparing with healthy persons) is determined by a solar activity period: the blood viscosity increases in a period of high solar activity in the vessels of small, medium and macro diameters, a local decompensate dysfunction of small vessels endothelium had been fixed (microcirculation area). In the period of a low solar activity there is an increase of a blood viscosity in vessels of all diameters, generalized subcompensated endothelial dysfunction is developed (on the background of the III phase blood clotting activating). In the period of a high solar activity a higher blood viscosity had been fixed, comparing with the period of a low solar activity.
Nyangoga, Hervé; Mercier, Philippe; Libouban, Hélène; Baslé, Michel Félix; Chappard, Daniel
2011-01-01
Background Angiogenesis contributes to proliferation and metastatic dissemination of cancer cells. Anatomy of blood vessels in tumors has been characterized with 2D techniques (histology or angiography). They are not fully representative of the trajectories of vessels throughout the tissues and are not adapted to analyze changes occurring inside the bone marrow cavities. Methodology/Principal Findings We have characterized the vasculature of bone metastases in 3D at different times of evolution of the disease. Metastases were induced in the femur of Wistar rats by a local injection of Walker 256/B cells. Microfil®, (a silicone-based polymer) was injected at euthanasia in the aorta 12, 19 and 26 days after injection of tumor cells. Undecalcified bones (containing the radio opaque vascular casts) were analyzed by microCT, and a first 3D model was reconstructed. Bones were then decalcified and reanalyzed by microCT; a second model (comprising only the vessels) was obtained and overimposed on the former, thus providing a clear visualization of vessel trajectories in the invaded metaphysic allowing quantitative evaluation of the vascular volume and vessel diameter. Histological analysis of the marrow was possible on the decalcified specimens. Walker 256/B cells induced a marked osteolysis with cortical perforations. The metaphysis of invaded bones became progressively hypervascular. New vessels replaced the major central medullar artery coming from the diaphyseal shaft. They sprouted from the periosteum and extended into the metastatic area. The newly formed vessels were irregular in diameter, tortuous with a disorganized architecture. A quantitative analysis of vascular volume indicated that neoangiogenesis increased with the development of the tumor with the appearance of vessels with a larger diameter. Conclusion This new method evidenced the tumor angiogenesis in 3D at different development times of the metastasis growth. Bone and the vascular bed can be identified by a double reconstruction and allowed a quantitative evaluation of angiogenesis upon time. PMID:21464932
Owolabi, Mayowa O; Agunloye, Atinuke M; Ogunniyi, Adesola
2014-01-01
Chronic changes in flow rate through arteries produce adjustment of arterial diameters. We compared the relationship between flow velocity and diameter in the carotid and in the vertebral arteries of stroke patients. Using triplex ultrasonography, the internal diameter and flow velocities of the common carotid, internal carotid, and vertebral arteries of 176 consecutive stroke patients were measured. Correlations were examined with Pearson's statistics at an alpha level of 0.05. Mean age of the patients was 59.3 ± 12 years, and 66% had cerebral infarcts. Diameter and blood flow velocities showed significant negative correlations (-0.115 ≥ r ≥ -0.382) in the carotid arteries on both sides, but positive correlations (0.211 ≤ r ≤ 0.320) in the vertebral arteries, even after controlling for age, gender, and blood pressure. Our study demonstrated different diameter/flow relationships in the carotid and the vertebral arteries of stroke patients, which may suggest pathologic changes in the adaptive processes governing vessel diameter and growth, especially in the carotid arteries. Copyright © 2013 Wiley Periodicals, Inc.
Suami, Hiroo; Taylor, G Ian; O'Neill, Jennifer; Pan, Wei-Ren
2007-07-01
The authors previously reported a new technique with which to delineate the lymphatic vessels, using hydrogen peroxide to identify them and a lead oxide suspension to demonstrate them on radiographs. This technique provided excellent studies of the lymph vessels in human cadavers, but there was still room for improvement. Lymph collecting vessels run superficially in some regions, where they may be damaged while the surgeon is attempting to find them. Vessels smaller than 0.3 mm in diameter could not be cannulated with a 30-gauge needle, which was the smallest the authors had available, and the lead oxide suspension often blocked this cannula. The authors also encountered problems holding the cannula steady. The authors solved these problems by using a mixture of hydrogen peroxide and ink to better identify the lymphatics, an extruded glass tube instead of a metal needle to cannulate them, an agate pestle and mortar to grind the lead oxide into finer particles, powdered milk to suspend the lead oxide, and a micromanipulator to facilitate accurate and steady cannulation of the vessels. This study developed these modifications to focus on tributaries of the collecting lymphatic channels that are smaller than 0.3 mm in diameter.
[Applied anatomy of small saphenous vein and its distally-based sural nerve nutrient].
Zhang, Fahui; Lin, Songqing; Zheng, Heping
2005-07-01
To investigate the origin of small saphenous vein of distally-based of sural nerve nutrient vessels flap and its clinical application. The origins of nutrient vessels of small saphenous vein and communicating branches of superficial-deep vein were observed on specimens of 30 adult cadaveric low limbs by perfusing red gelatin to dissect the artery. The nutrient vessels of small saphenous vein originated from the heel lateral artery, the terminal perforator branches of peroneal artery and intermuscular septum perforating branches of peroneal artery. There were 2 to 5 branches of such distally-based perforating branches whose diameters ranged from 0.6 to 1.0 mm. Those perforating branches included fascia branches, cutaneous branches nerve and vein nutrient branches. Those nutrient vessels formed a longitudinal vessel chain of clinical nerve shaft, vessel chain of vein side and vessel network of deep superficial fascia. The small saphenous vein had 1 to 2 communicating branches of superficial-deep vein whose diameter was 1.7+/-0.5 mm, 3.4+/-0.9 cm to the level of cusp of lateral malleolus, and converged into the fibular vein. Distally-based sural nerve, small saphenous vein, and nutrient vessels of fascia skin have the same region. The communicating branches of superficial-deep vein is 3 to 4 cm to the level of cusp lateral malleolus. These communicating branches could improve the venous drainage of the flap.
NASA Technical Reports Server (NTRS)
Skow, Miles G.
2014-01-01
This three year project (FY12-14) will design and demonstrate the ability of new Magnetic Stress Gages for the measurement of stresses on the inner diameter of a Composite Overwrapped Pressure Vessel overwrap.
Openings between Defective Endothelial Cells Explain Tumor Vessel Leakiness
Hashizume, Hiroya; Baluk, Peter; Morikawa, Shunichi; McLean, John W.; Thurston, Gavin; Roberge, Sylvie; Jain, Rakesh K.; McDonald, Donald M.
2000-01-01
Leakiness of blood vessels in tumors may contribute to disease progression and is key to certain forms of cancer therapy, but the structural basis of the leakiness is unclear. We sought to determine whether endothelial gaps or transcellular holes, similar to those found in leaky vessels in inflammation, could explain the leakiness of tumor vessels. Blood vessels in MCa-IV mouse mammary carcinomas, which are known to be unusually leaky (functional pore size 1.2–2 μm), were compared to vessels in three less leaky tumors and normal mammary glands. Vessels were identified by their binding of intravascularly injected fluorescent cationic liposomes and Lycopersicon esculentum lectin and by CD31 (PECAM) immunoreactivity. The luminal surface of vessels in all four tumors had a defective endothelial monolayer as revealed by scanning electron microscopy. In MCa-IV tumors, 14% of the vessel surface was lined by poorly connected, overlapping cells. The most superficial lining cells, like endothelial cells, had CD31 immunoreactivity and fenestrae with diaphragms, but they had a branched phenotype with cytoplasmic projections as long as 50 μm. Some branched cells were separated by intercellular openings (mean diameter 1.7 μm; range, 0.3–4.7 μm). Transcellular holes (mean diameter 0.6 μm) were also present but were only 8% as numerous as intercellular openings. Some CD31-positive cells protruded into the vessel lumen; others sprouted into perivascular tumor tissue. Tumors in RIP-Tag2 mice had, in addition, tumor cell-lined lakes of extravasated erythrocytes. We conclude that some tumor vessels have a defective cellular lining composed of disorganized, loosely connected, branched, overlapping or sprouting endothelial cells. Openings between these cells contribute to tumor vessel leakiness and may permit access of macromolecular therapeutic agents to tumor cells. PMID:10751361
Highly localized laser-induced vascular responses
NASA Astrophysics Data System (ADS)
Stiukhina, Elena S.; Kurochkin, Maxim A.; Fedosov, Ivan V.; Postnov, Dmitry E.
2018-04-01
The assessment of functioning microcirculatory network implies usage of adequate tools for testing the network responses on local changes of vessels state. While there are well-developed and widely used methods, such as focal application of vasoactive substances, or electric stimulation, there is a need for a non-destructive (and ideally - non-contact) and local method of impact a single vessel in order to trigger the network responce. In this paper, we investigate the possibility of applying the effect of a reversible change in the diameter of a blood vessel caused by laser radiation as a functional test of a microcirculatory system. For this purpose, we combine this effect with the method of micro-PIV (particle image velocimetry), which provides information on both the dynamics of blood flow in neighboring segments and the changes in their diameters.
Osol, George; Barron, Carolyn; Mandalà, Maurizio
2012-01-01
During pregnancy the mammalian uterine circulation undergoes significant expansive remodelling necessary for normal pregnancy outcome. The underlying mechanisms are poorly defined. The goal of this study was to test the hypothesis that myometrial stretch actively stimulates uterine vascular remodelling by developing a new surgical approach to induce unilateral uterine distension in non-pregnant rats. Three weeks after surgery, which consisted of an infusion of medical-grade silicone into the uterine lumen, main and mesometrial uterine artery and vein length, diameter and distensibility were recorded. Radial artery diameter, distensibility and vascular smooth muscle mitotic rate (Ki67 staining) were also measured. Unilateral uterine distension resulted in significant increases in the length of main uterine artery and vein and mesometrial segments but had no effect on vessel diameter or distensibility. In contrast, there were significant increases in the diameter of the radial arteries associated with the distended uterus. These changes were accompanied by reduced arterial distensibility and increased vascular muscle hyperplasia. In summary, this is the first report to show that myometrial stretch is a sufficient stimulus to induce significant remodelling of uterine vessels in non-pregnant rats. Moreover, the results indicate differential regulation of these growth processes as a function of vessel size and type.
Dzierżanowski, J; Szarmach, A; Słoniewski, P; Czapiewski, P; Piskunowicz, M; Bandurski, T; Szmuda, T
2014-08-01
The aim of this study was to investigate the morphometry of the posterior communicating artery (PCoA), on the basis of angio-computed tomography (CT), and to give proof of the mathematical definition of the term "hypopal sia of the PCoA". One hundred 3-dimensional (3D) angio-CT images, performed in adult patients with bilateral reconstruction of the PCoA (200 results) were used tocalculate the morphometry of the vessel. The average length of the vessel on the right side was 14.48 ± 3.47 mm, andon the left side 14.98 ± 4.77 mm (in women 14.75 mm, in men 14.70 mm). The mean of the diameter at the "proximal" point (the junction with P1) on the right side was 1.49 ± 0.51 mm, and on the left 1.46 ± 0.47 mm (in women 1.44 mm and in men 1.51 mm). The mean of the diameter in the "distal" part (the connection with ICA) on the right side was 1.4 ± 0.49 mm, and on the left 1.37 ± 0.41 mm (in women 1.38 mm, and in men 1.39 mm). No statistical correlation between the length and the diameter of the PCoA in relation to the sex and side was shown. On the basis of our measurements, we defined the hypoplasia of the artery as the estimated value less than the average diameter minus the standard deviation. The percentage distribution was as follows: the left artery 15.5%, the right artery 24%, women 11.5%, and the men 9%. Similarly to the above parameters, we have not found any statistical differences. The presence of the foetal origin was noted in 25% of the radiological examinations. The infundibular widening was visualised in 11.5% of cases of 3D reconstructions. The agenesis of PCoA was found in 9% (never bilaterally), and in 1 case the unilateral duplication of the artery was observed. No statistical differences between those parameters in relation to sex and the examined side were revealed. Morphological calculation of the PCoA on the basis of angio-CT from adult patients did not show any statistical differences depending on sex or the investigated side. The presented method of the calculations proved to be useful for the mathematical definition of the term "hypoplasia of the PCoA".
Diaphragmatic lymphatic vessel behavior during local skeletal muscle contraction.
Moriondo, Andrea; Solari, Eleonora; Marcozzi, Cristiana; Negrini, Daniela
2015-02-01
The mechanism through which the stresses developed in the diaphragmatic tissue during skeletal muscle contraction sustain local lymphatic function was studied in 10 deeply anesthetized, tracheotomized adult Wistar rats whose diaphragm was exposed after thoracotomy. To evaluate the direct effect of skeletal muscle contraction on the hydraulic intraluminal lymphatic pressures (Plymph) and lymphatic vessel geometry, the maximal contraction of diaphragmatic fibers adjacent to a lymphatic vessel was elicited by injection of 9.2 nl of 1 M KCl solution among diaphragmatic fibers while Plymph was recorded through micropuncture and vessel geometry via stereomicroscopy video recording. In lymphatics oriented perpendicularly to the longitudinal axis of muscle fibers and located at <300 μm from KCl injection, vessel diameter at maximal skeletal muscle contraction (Dmc) decreased to 61.3 ± 1.4% of the precontraction value [resting diameter (Drest)]; however, if injection was at >900 μm from the vessel, Dmc enlarged to 131.1 ± 2.3% of Drest. In vessels parallel to muscle fibers, Dmc increased to 122.8 ± 2.9% of Drest. During contraction, Plymph decreased as much as 22.5 ± 2.6 cmH2O in all submesothelial superficial vessels, whereas it increased by 10.7 ± 5.1 cmH2O in deeper vessels running perpendicular to contracting muscle fibers. Hence, the three-dimensional arrangement of the diaphragmatic lymphatic network seems to be finalized to efficiently exploit the stresses exerted by muscle fibers during the contracting inspiratory phase to promote lymph formation in superficial submesothelial lymphatics and its further propulsion in deeper intramuscular vessels. Copyright © 2015 the American Physiological Society.
Jing Cai; Melvin T. Tyree
2010-01-01
The objective of this study was to quantify the relationship between vulnerability to cavitation and vessel diameter within a species. We measured vulnerability curves (VCs: percentage loss hydraulic conductivity versus tension) in aspen stems and measured vessel-size distributions. Measurements were done on seed-grown, 4-month-old aspen (Populus tremuloides...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, T; Ding, H; Lipinski, J
2015-06-15
Purpose: To develop a physics-based model for accurate quantification of the cross-sectional area (CSA) of coronary arteries in CT angiography by measuring the integrated density to account for the partial volume effect. Methods: In this technique the integrated density of the object as compared with its local background is measured to account for the partial volume effect. Normal vessels were simulated as circles with diameters in the range of 0.1–3mm. Diseased vessels were simulated as 2, 3, and 4mm diameter vessels with 10–90% area stenosis, created by inserting circular plaques. A simplified two material model was used with the lumenmore » as 8mg/ml Iodine and background as lipid. The contrast-to-noise ratio between lumen and background was approximately 26. Linear fits to the known CSA were calculated. The precision and accuracy of the measurement were quantified using the root-mean-square fit deviations (RMSD) and errors to the known CSA (RMSE). Results compared to manual segmentation of the vessel lumen. To assess the impact of random variations, coefficients of variation (CV) from 10 simulations for each vessel were computed to determine reliability. Measurements with CVs less than 10% were considered reliable. Results: For normal vessels, the precision and accuracy of the integrated density technique were 0.12mm{sup 2} and 0.28mm{sup 2}, respectively. The corresponding results for manual segmentation were 0.27mm{sup 2} and 0.43mm{sup 2}. For diseased vessels, the precision and accuracy of the integrated density technique were 0.14mm{sup 2} and 0.19mm{sup 2}. Corresponding results for manual segmentation were 0.42mm{sup 2} and 0.71mm{sup 2}. Reliable CSAs were obtained for normal vessels with diameters larger than 1 mm and for diseased vessels with area as low as 1.26mm2. Conclusion: The CSA based on integrated density showed improved precision and accuracy as compared with manual segmentation in simulation. These results indicate the potential of using integrated density to quantify CSA of coronary arteries in CT angiography.« less
NASA Astrophysics Data System (ADS)
Werkmeister, René M.; Vietauer, Martin; Knopf, Corinna; Fürnsinn, Clemens; Leitgeb, Rainer A.; Reitsamer, Herbert; Gröschl, Martin; Garhöfer, Gerhard; Vilser, Walthard; Schmetterer, Leopold
2014-10-01
A wide variety of ocular diseases are associated with abnormalities in ocular circulation. As such, there is considerable interest in techniques for quantifying retinal blood flow, among which Doppler optical coherence tomography (OCT) may be the most promising. We present an approach to measure retinal blood flow in the rat using a new optical system that combines the measurement of blood flow velocities via Doppler Fourier-domain optical coherence tomography and the measurement of vessel diameters using a fundus camera-based technique. Relying on fundus images for extraction of retinal vessel diameters instead of OCT images improves the reliability of the technique. The system was operated with an 841-nm superluminescent diode and a charge-coupled device camera that could be operated at a line rate of 20 kHz. We show that the system is capable of quantifying the response of 100% oxygen breathing on the retinal blood flow. In six rats, we observed a decrease in retinal vessel diameters of 13.2% and a decrease in retinal blood velocity of 42.6%, leading to a decrease in retinal blood flow of 56.7%. Furthermore, in four rats, the response of retinal blood flow during stimulation with diffuse flicker light was assessed. Retinal vessel diameter and blood velocity increased by 3.4% and 28.1%, respectively, leading to a relative increase in blood flow of 36.2%;. The presented technique shows much promise to quantify early changes in retinal blood flow during provocation with various stimuli in rodent models of ocular diseases in rats.
Ramm, Lisa; Jentsch, Susanne; Peters, Sven; Sauer, Lydia; Augsten, Regine; Hammer, Martin
2016-05-01
To investigate the interrelationship between the oxygen supply of the retina and its regulation with the severity of primary open-angle glaucoma (POAG). Central retinal artery (CRAE) and vein (CRVE) diameters and oxygen saturation of peripapillary retinal vessels in 41 patients suffering from POAG (64.1 ± 12.9 years) and 40 healthy volunteers (63.6 ± 14.1 years) were measured using the retinal vessel analyzer. All measures were taken before and during flicker light stimulation. The mean retinal nerve fiber layer thickness (RNFLT) was determined by OCT and the visual field mean defect (MD) was identified using perimetry. In glaucoma patients, CRAE (r = -0.48 p = 0.002) and CRVE (r = -0.394 p = 0.014) at baseline were inversely related to MD, while arterial and venous oxygen saturation showed no significant dependence on the severity of the damage. However, the flicker light-induced change in arterio-venous difference in oxygen saturation was correlated with the MD (r = 0.358 p = 0.027). The diameters of arteries and veins at baseline decreased with reduction of the mean RNFLT (arteries: r = 0.718 p < 0.001; veins: r = 0.685 p < 0.001). Vessel diameters showed a strong correlation with RNFLT and MD. This, as well as the reduction of stimulation-induced change in arterio-venous oxygen saturation difference with visual field loss, may be explained by a reduction of the retinal metabolic demand with progressive loss of neuronal tissue in glaucoma. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Blunt trauma to large vessels: a mathematical study
Ismailov, Rovshan M; Shevchuk, Nikolai A; Schwerha, Joseph; Keller, Lawrence; Khusanov, Higmat
2004-01-01
Background Blunt trauma causes short-term compression of some or all parts of the chest, abdomen or pelvis and changes hemodynamics of the blood. Short-term compression caused by trauma also results in a short-term decrease in the diameter of blood vessels. It has been shown that with a sudden change in the diameter of a tube or in the direction of the flow, the slower-moving fluid near the wall stops or reverses direction, which is known as boundary layer separation (BLS). We hypothesized that a sudden change in the diameter of elastic vessel that results from compression may lead not only to BLS but also to other hemodynamic changes that can damage endothelium. Methods We applied Navier-Stokes, multiphase and boundary layer equations to examine such stress. The method of approximation to solve the BL equations was used. Experiments were conducted in an aerodynamic tube, where incident flow velocity and weight of carriage with particles before and after blowing were measured. Results We found that sudden compression resulting from trauma leads to (1) BLS on the curved surface of the vessel wall; (2) transfer of laminar boundary layer into turbulent boundary layer. Damage to the endothelium can occur if compression is at least 25% and velocity is greater than 2.4 m/s or if compression is at least 10% and velocity is greater than 2.9 m/s. Conclusion Our research may point up new ways of reducing the damage from blunt trauma to large vessels. It has the potential for improvement of safety features of motor vehicles. This work will better our understanding of the precise mechanics and critical variables involved in diagnosis and prevention of blunt trauma to large vessels. PMID:15153246
Vasilenko, Yu V; Kim, A I; Kotov, S A
2002-11-01
The mechanism of extravasal occlusion of blood vessels with titanic clips "Atrauclip" and "Ligaclip extra" was studied in order to reveal indications and contraindications to their use. Occlusion with the clips of both types was ineffective in vessels with a diameter of >7.0 mm. Arteritis or the presence of an intravascular occlusion facility in the vessel were also the contraindications for clip occlusion. In overcases the procedure of occlusion with titanic clips was efficient and atraumatic.
Establishing the diffuse correlation spectroscopy signal relationship with blood flow.
Boas, David A; Sakadžić, Sava; Selb, Juliette; Farzam, Parisa; Franceschini, Maria Angela; Carp, Stefan A
2016-07-01
Diffuse correlation spectroscopy (DCS) measurements of blood flow rely on the sensitivity of the temporal autocorrelation function of diffusively scattered light to red blood cell (RBC) mean square displacement (MSD). For RBCs flowing with convective velocity [Formula: see text], the autocorrelation is expected to decay exponentially with [Formula: see text], where [Formula: see text] is the delay time. RBCs also experience shear-induced diffusion with a diffusion coefficient [Formula: see text] and an MSD of [Formula: see text]. Surprisingly, experimental data primarily reflect diffusive behavior. To provide quantitative estimates of the relative contributions of convective and diffusive movements, we performed Monte Carlo simulations of light scattering through tissue of varying vessel densities. We assumed laminar vessel flow profiles and accounted for shear-induced diffusion effects. In agreement with experimental data, we found that diffusive motion dominates the correlation decay for typical DCS measurement parameters. Furthermore, our model offers a quantitative relationship between the RBC diffusion coefficient and absolute tissue blood flow. We thus offer, for the first time, theoretical support for the empirically accepted ability of the DCS blood flow index ([Formula: see text]) to quantify tissue perfusion. We find [Formula: see text] to be linearly proportional to blood flow, but with a proportionality modulated by the hemoglobin concentration and the average blood vessel diameter.
Acoustic emission testing of composite vessels under sustained loading
NASA Technical Reports Server (NTRS)
Lark, R. F.; Moorhead, P. E.
1978-01-01
Acoustic emission (AE) tests have been conducted on small-diameter Kevlar 49/epoxy pressure vessels subjected to long-term sustained load-to-failure tests. Single-cycle burst tests were used as a basis for determining the test pressure in the sustained-loading tests. AE data from two vessel locations were compared. The data suggest that AE from vessel wall-mounted transducers is quite different for identical vessels subjected to the same pressure loading. AE from boss-mounted transducers yielded relatively consistent values. These values were not a function of time for vessel failure. The development of an AE test procedure for predicting the residual service life or integrity of composite vessels is discussed.
Angiographic Anatomy of External Iliac Arteries in the Sheep.
Joscht, M; Martin, M; Henin, M; Nisolle, J F; Kirschvink, N; Dugdale, A; Godart, B; Coulon, H; Simon, V; Hontoir, F; Graffin, R; De Raeve, Y; Vandeweerd, J M
2016-12-01
External iliac artery atherosclerotic disease and aneurism occur in man. For treatment, imaging is required to facilitate minimally invasive introduction and advancement of stents within the intended vessels. Sheep are commonly used to test and improve stents. However, little information is published regarding the angiographic anatomy of the iliac arteries in the ovine species. The objective of this study was to describe the angiographic anatomy of the iliac arteries in the sheep. Computed tomography (CT) angiography and gross anatomical dissection were performed in, respectively, 10 and 43 adult ewes. Diameters and lengths of the arteries were measured. In comparison with man, salient anatomical differences were identified in the sheep: (1) the absence of common iliac arteries, (2) the common trunk at the origin of internal iliac arteries and (3) the location of the bifurcation of the external iliac arteries into femoral arteries in the pelvis (not in the limb). External iliac arteries in this series of sheep were 86 mm long in average and had a mean diameter of 7.5 mm. Lengths of arteries are only slightly different between man and sheep, while diameters are rather similar. Therefore, the sheep model appears to be sufficiently similar to man to test stent properties. This study provides useful reference images and measures of lengths and diameters of relevant arteries that could be applied to research with ovine models. © 2015 Blackwell Verlag GmbH.
33 CFR 110.173 - Port of Charleston, SC.
Code of Federal Regulations, 2010 CFR
2010-07-01
... located 1800 yards, 118° true from St. Michaels Church Spire and has a diameter of 500 yards. Vessels...°30′ true, 1375 yards from St. Michaels Church Spire and has a diameter of 1400 feet. The use of this...
Size ratio correlates with intracranial aneurysm rupture status: a prospective study.
Rahman, Maryam; Smietana, Janel; Hauck, Erik; Hoh, Brian; Hopkins, Nick; Siddiqui, Adnan; Levy, Elad I; Meng, Hui; Mocco, J
2010-05-01
The prediction of intracranial aneurysm (IA) rupture risk has generated significant controversy. The findings of the International Study of Unruptured Intracranial Aneurysms (ISUIA) that small anterior circulation aneurysms (<7 mm) have a 0% risk of subarachnoid hemorrhage in 5 years is difficult to reconcile with other studies that reported a significant portion of ruptured IAs are small. These discrepancies have led to the search for better aneurysm parameters to predict rupture. We previously reported that size ratio (SR), IA size divided by parent vessel diameter, correlated strongly with IA rupture status (ruptured versus unruptured). These data were all collected retrospectively off 3-dimensional angiographic images. Therefore, we performed a blinded prospective collection and evaluation of SR data from 2-dimensional angiographic images for a consecutive series of patients with ruptured and unruptured IAs. We prospectively enrolled 40 consecutive patients presenting to a single institution with either ruptured IA or for first-time evaluation of an incidental IA. Blinded technologists acquired all measurements from 2-dimensional angiographic images. Aneurysm rupture status, location, IA maximum size, and parent vessel diameter were documented. The SR was calculated by dividing the aneurysm size (mm) by the average parent vessel size (mm). A 2-tailed Mann-Whitney test was performed to assess statistical significance between ruptured and unruptured groups. Fisher exact test was used to compare medical comorbidities between the ruptured and unruptured groups. Significant differences between the 2 groups were subsequently tested with logistic regression. SE and probability values are reported. Forty consecutive patients with 24 unruptured and 16 ruptured aneurysms met the inclusion criteria. No significant differences were found in age, gender, smoking status, or medical comorbidities between ruptured and unruptured groups. The average maximum size of the unruptured IAs (6.18 + or - 0.60 mm) was significantly smaller compared with the ruptured IAs (7.91 + or - 0.47 mm; P=0.03), and the unruptured group had significantly smaller SRs (2.57 + or - 0.24 mm) compared with the ruptured group (4.08 + or - 0.54 mm; P<0.01). Logistic regression was used to evaluate the independent predictive value of those variables that achieved significance in univariate analysis (IA maximum size and SR). Using stepwise selection, only SR remained in the final predictive model (OR, 2.12; 95% CI, 1.09 to 4.13). SR, the ratio between aneurysm size and parent artery diameter, can be easily calculated from 2-dimensional angiograms and correlates with IA rupture status on presentation in a blinded analysis. SR should be further studied in a large prospective observational cohort to predict true IA risk of rupture.
Retinal Arterioles in Hypo-, Normo-, and Hypertensive Subjects Measured Using Adaptive Optics.
Hillard, Jacob G; Gast, Thomas J; Chui, Toco Y P; Sapir, Dan; Burns, Stephen A
2016-08-01
Small artery and arteriolar walls thicken due to elevated blood pressure. Vascular wall thickness show a correlation with hypertensive subject history and risk for stroke and cardiovascular events. The inner and outer diameter of retinal arterioles from less than 10 to over 150 μm were measured using a multiply scattered light adaptive optics scanning laser ophthalmoscope (AOSLO). These measurements were made on three populations, one with habitual blood pressures less than 100/70 mm Hg, one with normal blood pressures without medication, and one with managed essential hypertension. The wall to lumen ratio was largest for the smallest arterioles for all three populations. Data from the hypotensive group had a linear relationship between outer and inner diameters ( r 2 = 0.99) suggesting a similar wall structure in individuals prior to elevated blood pressures. Hypertensive subjects fell below the 95% confidence limits for the hypotensive relationship and had larger wall to lumen ratios and the normotensive group results fell between the other two groups. High-resolution retinal imaging of subjects with essential hypertension showed a significant decrease in vessel inner diameter for a given outer diameter, and increases in wall to lumen ratio and wall cross-sectional areas over the entire range of vessel diameters and suggests that correcting for vessel size may improve the ability to identify significant vascular changes. High-resolution imaging allows precise measurement of vasculature and by comparing results across risk populations may allow improved identification of individuals undergoing hypertensive arterial wall remodeling.
Coronary artery dimensions in normal Indians.
Raut, Barendra Kumar; Patil, Vijaysinh Namdeo; Cherian, George
Diameter of coronary artery is an important predictor of outcome after percutaneous coronary interventions and coronary artery bypass graft surgery. There is very limited data available about coronary artery dimensions in an Indian population. To study the normal dimensions of the coronary artery segments in Indians without coronary artery disease by using quantitative coronary angiography and also to compare the dimensions in Indians with Western. 229 patients who have undergone coronary angiography with entirely normal coronary angiogram were included in our study. This study showed the diameter of vessels in males and females when taken together the left main was larger in size followed by proximal LAD, proximal RCA & proximal LCX respectively (4.08±0.44mm, 3.27±0.23mm, 3.20±0.37mm, 2.97±0.37mm).When the vessel diameter was indexed to body surface area there was no statistical difference between male and female (p value>0.05). The computed value of proximal coronary artery diameter unadjusted for individual body surface area, when compared to Caucasians showed that Caucasians have larger coronary artery dimensions than Indians. But when the proximal vessel diameter was indexed to body surface area there was no statistical significant difference between Indians and Caucasians (p value>0.05). We found that coronary artery size when indexed to body surface area is not statistically different in Indian males and females and compared to Caucasians. However with a smaller body habitus Indians have smaller coronary arteries. Copyright © 2017. Published by Elsevier B.V.
Hydraulic conductivity and embolism in the mangrove tree Laguncularia racemosa.
Ewers, Frank W; Lopez-Portillo, Jórge; Angeles, Guillermo; Fisher, Jack B
2004-09-01
We measured xylem pressure potentials, soil osmotic potentials, hydraulic conductivity and percent loss of conductivity (PLC) due to embolism, and made microscopic observations of perfused dye in the white mangrove tree, Laguncularia racemosa (L.) Gaertn. f., (1) to determine its vulnerability to air embolism compared with published results for the highly salt-tolerant red mangrove tree, Rhizophora mangle L., and (2) to identify possible relationships between air embolism, permanent blockage of vessels and stem diameter. Laguncularia racemosa was more vulnerable to embolism than reported for R. mangle, with 50 PLC at -3.4 MPa. Narrow stems (5-mm diameter) had higher PLC than larger stems (8.4- or 14-mm diameter) of the same plants. Basic fuchsin dye indicated that up to 89% of the vessels, especially in the narrow stems, had permanent blockage that could not be reversed by high pressure perfusion. Air embolism could lead to permanent vessel blockage and eventual stem mortality. Such vulnerability to embolism may restrict the growth of L. racemosa and limit its distribution to less salty areas of mangrove communities.
Touma, Joseph; Kobeiter, Hicham; Majewski, Marek; Tacher, Vania; Desgranges, Pascal
2018-03-01
The present report describes the management of massive proximal type 1 endoleak with an enlarged symptomatic aneurysmal sac. Urgent treatment was performed using in situ laser fenestration of an aortic proximal extension facing renovisceral ostia. Image fusion was obtained intraoperatively. For each target vessel (superior mesenteric and two renal arteries), an Aptus HeliFX steerable sheath (Medtronic) inserted through femoral access was curved to face the vessel's ostium marker. A laser catheter (Spectranetics) was used to traverse the stent-graft and insert a 0.014" guidewire in the vessel. The fenestration was enlarged using a 2.5-mm-diameter cutting balloon, followed by a 4-mm-diameter balloon angioplasty and a V12 I Cast/Advanta covered stent implantation. Final angiogram demonstrated aneurysm exclusion and patent target vessels. The postoperative course and 7 months follow-up were uneventful. Level of evidence Level 4.
Rayatpisheh, Shahrzad; Heath, Daniel E; Shakouri, Amir; Rujitanaroj, Pim-On; Chew, Sing Yian; Chan-Park, Mary B
2014-03-01
Herein we combine cell sheet technology and electrospun scaffolding to rapidly generate circumferentially aligned tubular constructs of human aortic smooth muscles cells with contractile gene expression for use as tissue engineered blood vessel media. Smooth muscle cells cultured on micropatterned and N-isopropylacrylamide-grafted (pNIPAm) polydimethylsiloxane (PDMS), a small portion of which was covered by aligned electrospun scaffolding, resulted in a single sheet of unidirectionally aligned cells. Upon cooling to room temperature, the scaffold, its adherent cells, and the remaining cell sheet detached and were collected on a mandrel to generating tubular constructs with circumferentially aligned smooth muscle cells which possess contractile gene expression and a single layer of electrospun scaffold as an analogue to a small diameter blood vessel's internal elastic lamina (IEL). This method improves cell sheet handling, results in rapid circumferential alignment of smooth muscle cells which immediately express contractile genes, and introduction of an analogue to small diameter blood vessel IEL. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pyne, John H; Windrum, Graham; Sapkota, Devendra; Wong, Jian Cheng
2014-07-01
Keratoacanthoma (KA) and invasive squamous cell carcinoma (SCC) are keratinocytic tumors displaying vascular features, imaged using dermatoscopy. Compare the dermatoscopy vascular features of KA to SCC. This prospective study examined consecutive cases of 100 KA and 410 invasive SCC in a single private practice in Sydney, Australia. Vascular features were recorded in vivo direct from patients using a non-polarized Delta 20 Heine dermatoscope. These vascular features were: linear, branching, serpentine, hairpin, glomerular and dot vessels, the presence or absence of large diameter tumor vessels, vessel presence in central verses peripheral tumor areas and tumor pink areas in different proportions. Following full excision, all cases were submitted for histopathologic diagnosis. Branching vessels were the only vessel morphology that varied, with a significant incidence in KA (25.0%), compared to SCC (10.7%), P < 0.01. Large vessels were identified in 20.0% of KA, compared to 12.4% in SCC, P = 0.05. No vessels were observed in the central tumor areas in 43.4 % of KA compared to 58.0% of SCC, P = 0.01. Other data comparing the central versus peripheral tumor areas for vessels present did not reveal any distinctive associations. There were no significant differences between KA and SCC when reviewing the selected proportions of pink within the tumor. The vascular features may be confounded by tumor depth in KA. Polarized dermatoscopy may not produce the same findings. This study found branching vessels to have a higher incidence in KA compared to invasive SCC. Although not statistically significant, large diameter vessels were also more frequent in KA. Proportions of pink within the tumor or central verses peripheral tumor vessel distribution were not useful diagnostic features separating KA from SCC using dermatoscopy.
Nutrient-induced modifications of wood anatomical traits of Alchornea lojaensis (Euphorbiaceae)
NASA Astrophysics Data System (ADS)
Spannl, Susanne; Homeier, Jürgen; Bräuning, Achim
2016-05-01
Regarding woody plant responses on higher atmospheric inputs of the macronutrients nitrogen (N) and phosphorous (P) on tropical forests in the future, an adaptive modification of wood anatomical traits on the cellular level of woody plants is expected. As part of an interdisciplinary nutrient manipulation experiment (NUMEX) carried out in Southern Ecuador, we present here the first descriptive and quantitative wood anatomical analysis of the tropical evergreen tree species Alchornea lojaensis (Euphorbiaceae). We sampled branch wood of nine individual trees belonging to treatments with N fertilization, N+P fertilization, and a control group, respectively. Quantitative evaluations of eleven different vessel parameters were conducted. The results showed that this endemic tree species will be able to adapt well to the future effects of climate change and higher nutrient deposition. This was firstly implied by an increase in vessel diameter and consequently a higher theo. area-specific hydraulic conductivity with higher nutrient availability. Secondly, the percentage of small vessels (0-20µm diameter) strongly increased with fertilization. Thirdly, the vessel arrangement (solitary vessels vs. multiple vessel groupings) changed towards a lower percentage of solitary vessel fraction (VS), and concurrently towards a higher total vessel grouping index (VG) and a higher mean group size of non-solitary vessels (VM) after N and N+P addition. We conclude that higher nutrient availability of N and N+P triggered higher foliage amount and water demand, leading to higher cavitation risk in larger vessels. This is counteracted by a stronger grouping of vessels with smaller risk of cavitation to ensure water supply during drier periods that are expected to occur in higher frequency in the near future.
Naidu, Sailen G; Kriegshauser, J Scott; Paden, Robert G; He, Miao; Wu, Qing; Hara, Amy K
2014-12-01
An ultra-low-dose radiation protocol reconstructed with model-based iterative reconstruction was compared with our standard-dose protocol. This prospective study evaluated 20 men undergoing surveillance-enhanced computed tomography after endovascular aneurysm repair. All patients underwent standard-dose and ultra-low-dose venous phase imaging; images were compared after reconstruction with filtered back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction. Objective measures of aortic contrast attenuation and image noise were averaged. Images were subjectively assessed (1 = worst, 5 = best) for diagnostic confidence, image noise, and vessel sharpness. Aneurysm sac diameter and endoleak detection were compared. Quantitative image noise was 26% less with ultra-low-dose model-based iterative reconstruction than with standard-dose adaptive statistical iterative reconstruction and 58% less than with ultra-low-dose adaptive statistical iterative reconstruction. Average subjective noise scores were not different between ultra-low-dose model-based iterative reconstruction and standard-dose adaptive statistical iterative reconstruction (3.8 vs. 4.0, P = .25). Subjective scores for diagnostic confidence were better with standard-dose adaptive statistical iterative reconstruction than with ultra-low-dose model-based iterative reconstruction (4.4 vs. 4.0, P = .002). Vessel sharpness was decreased with ultra-low-dose model-based iterative reconstruction compared with standard-dose adaptive statistical iterative reconstruction (3.3 vs. 4.1, P < .0001). Ultra-low-dose model-based iterative reconstruction and standard-dose adaptive statistical iterative reconstruction aneurysm sac diameters were not significantly different (4.9 vs. 4.9 cm); concordance for the presence of endoleak was 100% (P < .001). Compared with a standard-dose technique, an ultra-low-dose model-based iterative reconstruction protocol provides comparable image quality and diagnostic assessment at a 73% lower radiation dose.
NASA Astrophysics Data System (ADS)
Deng, Zijian; Li, Changhui
2016-06-01
Imaging small blood vessels and measuring their functional information in finger joint are still challenges for clinical imaging modalities. In this study, we developed a multi-transducer functional photoacoustic tomography (PAT) system and successfully imaged human finger-joint vessels from ˜1 mm to <0.2 mm in diameter. In addition, the oxygen saturation (SO2) values of these vessels were also measured. Our results demonstrate that PAT can provide both anatomical and functional information of individual finger-joint vessels with different sizes, which might help the study of finger-joint diseases, such as rheumatoid arthritis.
Retinal vessel diameters and reactivity in diabetes mellitus and/or cardiovascular disease.
Heitmar, R; Lip, G Y H; Ryder, R E; Blann, A D
2017-04-26
Retinal vessel calibre and vascular dilation/constriction in response to flicker light provocation may provide a measure distinguishing patients suffering from diabetes mellitus and/or cardiovascular disease. One hundred and sixteen age and sex matched patients with diabetes mellitus (DM), cardiovascular disease (CVD) and both DM and CVD (DM + CVD) underwent systemic and intraocular pressure measurements. Retinal vessel calibres were assessed using a validated computer-based program to compute central retinal artery and vein equivalents (CRVE) from monochromatic retinal images. Vessel dilation and constriction responses to flicker light provocation were assessed by continuous retinal vessel diameter recordings. Plasma endothelial markers von Willebrand factor (vWf) and soluble E selectin (sEsel) were measured by ELISA. Retinal vessel calibres were comparable across groups but CRVE correlated significantly with disease duration in DM patients (r = 0.57, p < 0.001). Patients suffering DM only exhibited reduced arterial vasomotion at rest and reduced arterial constriction following flicker light induced vessel dilation compared to patients with CVD and those suffering both CVD + DM (p = 0.030). Patients suffering from CVD + DM exhibited significant differences between each flicker cycle in regards to arterial maximum constriction (p = 0.006) and time needed to reach arterial maximum dilation (p = 0.004), whereas the other two groups did not show such inconsistencies between individual flicker cycles. vWf was raised in CVD + DM compared to the other two groups (p ≤ 0.02), whilst sEsel was raised in CVD + DM compared to DM alone (p = 0.044). Dynamic retinal vascular calibres as obtained by continuous diameter measurements using flicker light provocation can reveal subtle differences between groups suffering from CVD with and without DM. This difference in reaction pattern and lack of arterial constriction in DM may provide a suitable marker to monitor progression.
Chen, Xiaoyan; Saravelos, Sotirios H; Liu, Yingyu; Huang, Jin; Wang, Chi Chiu; Li, Tin Chiu
2017-06-01
Power Doppler in combination with three-dimensional (3D-PD) ultrasonography has been used as a noninvasive tool to evaluate the vascularity. However, it is unclear whether 3D-PD can accurately reflect endometrial vascularization and replace the invasive endometrial biopsy. This study aims to investigate the correlation between 3D-PD and micro vessel morphometric measurement of endometrial vascularity. Twenty-five women with unexplained recurrent miscarriage were recruited for 3D-PD and endometrial biopsy on precisely day LH + 7. Immunohistochemistry using vWF was employed to identify micro vessels in endometrial biopsy specimens followed by the use of morphometric technique to measure the mean vessel diameter and volume fractions. The vascularization index (VI), flow index (FI) and vascularization flow index (VFI) assessed by 3D-PD were calculated for both the endometrial and sub-endometrial regions. There were no significant correlations between any of the ultrasonographic measurements (endometrial thickness, endometrial volume, endometrial VI/FI/VFI, sub-endometrial volume, sub-endometrial VI/FI/VFI) and morphometric features (number of micro vessel, mean diameter of micro vessel and volume fraction measurement of vessel). This study indicates that endometrial vascularity assessed by 3D-PD could not be used to reflect changes in micro vessels of the endometrium at the time of embryo implantation in women with unexplained recurrent miscarriage.
Imaging of pediatric great vessel stents: Computed tomography or magnetic resonance imaging?
van Hamersvelt, R. W.; Budde, R. P. J.; de Jong, P. A.; Schilham, A. M. R.; Bos, C.; Breur, J. M. P. J.; Leiner, T.
2017-01-01
Background Complications might occur after great vessel stent implantation in children. Therefore follow-up using imaging is warranted. Purpose To determine the optimal imaging modality for the assessment of stents used to treat great vessel obstructions in children. Material and methods Five different large vessel stents were evaluated in an in-vitro setting. All stents were expanded to the maximal vendor recommended diameter (20mm; n = 4 or 10mm; n = 1), placed in an anthropomorphic chest phantom and imaged with a 256-slice CT-scanner. MRI images were acquired at 1.5T using a multi-slice T2-weighted turbo spin echo, an RF-spoiled three-dimensional T1-weighted Fast Field Echo and a balanced turbo field echo 3D sequence. Two blinded observers assessed stent lumen visibility (measured diameter/true diameter *100%) in the center and at the outlets of the stent. Reproducibility of diameter measurements was evaluated using the intraclass correlation coefficient for reliability and 95% limits of agreement for agreement analysis. Results Median stent lumen visibility was 88 (IQR 86–90)% with CT for all stents at both the center and outlets. With MRI, the T2-weighted turbo spin echo sequence was preferred which resulted in 82 (78–84%) stent lumen visibility. Interobserver reliability and agreement was good for both CT (ICC 0.997, mean difference -0.51 [-1.07–0.05] mm) and MRI measurements (ICC 0.951, mean difference -0.05 [-2.52 –-2.41] mm). Conclusion Good in-stent lumen visibility was achievable in this in-vitro study with both CT and MRI in different great vessel stents. Overall reliability was good with clinical acceptable limits of agreement for both CT and MRI. However, common conditions such as in-stent stenosis and associated aneurysms were not tested in this in-vitro study, limiting the value of the in-vitro study. PMID:28141852
Imaging of pediatric great vessel stents: Computed tomography or magnetic resonance imaging?
den Harder, A M; Suchá, D; van Hamersvelt, R W; Budde, R P J; de Jong, P A; Schilham, A M R; Bos, C; Breur, J M P J; Leiner, T
2017-01-01
Complications might occur after great vessel stent implantation in children. Therefore follow-up using imaging is warranted. To determine the optimal imaging modality for the assessment of stents used to treat great vessel obstructions in children. Five different large vessel stents were evaluated in an in-vitro setting. All stents were expanded to the maximal vendor recommended diameter (20mm; n = 4 or 10mm; n = 1), placed in an anthropomorphic chest phantom and imaged with a 256-slice CT-scanner. MRI images were acquired at 1.5T using a multi-slice T2-weighted turbo spin echo, an RF-spoiled three-dimensional T1-weighted Fast Field Echo and a balanced turbo field echo 3D sequence. Two blinded observers assessed stent lumen visibility (measured diameter/true diameter *100%) in the center and at the outlets of the stent. Reproducibility of diameter measurements was evaluated using the intraclass correlation coefficient for reliability and 95% limits of agreement for agreement analysis. Median stent lumen visibility was 88 (IQR 86-90)% with CT for all stents at both the center and outlets. With MRI, the T2-weighted turbo spin echo sequence was preferred which resulted in 82 (78-84%) stent lumen visibility. Interobserver reliability and agreement was good for both CT (ICC 0.997, mean difference -0.51 [-1.07-0.05] mm) and MRI measurements (ICC 0.951, mean difference -0.05 [-2.52 --2.41] mm). Good in-stent lumen visibility was achievable in this in-vitro study with both CT and MRI in different great vessel stents. Overall reliability was good with clinical acceptable limits of agreement for both CT and MRI. However, common conditions such as in-stent stenosis and associated aneurysms were not tested in this in-vitro study, limiting the value of the in-vitro study.
Ai, Shao-shui; Li, Yang-yang; Chen, Jia-cun; Chen, Wei-yue
2015-11-01
Root xylem anatomical structure and hydraulic traits of three typical shrubs, i.e., Salix psammophila, Caragana korshinskii and Hippophae rhamnoides, within two soil layers (0-20 cm and 30-50 cm) were compared. The results showed that S. psammophila had a higher leaf water potential than C. korshinskii and H. rhamnoides, the average maximum and minimum lumen diameter (d(max) and d(min), respectively), the average lumen area of vessels (Alum) and the ratio of lumen area of all vessels to xylem area (Aves/Axyl) in S. psammophila roots were also significantly higher than those in C. korshinskii and H. rhamnoides, and the root vessel density (VD) in S. psammophila was the same as that in H. rhamnoides but significantly higher than that in C. korshinskii. Root hydraulic conductivity in S. psammophila was 5 times of C. korshinskii and 2.8 times of H. hamnoides. The vulnerability index in S. psammophila roots was similar to that in C. korshinskii but higher than that in H. hamnoides. S. psammophila belonged to a water-spending species, whereas both C. korshinskii and H. rhamnoides were water-saving species, and C. korshinskii was more drought-resistant than H. rhamnoides. There was no difference of d(max), d(min) and Alum between roots in two soil layers, but roots within in the 30-50 cm soil layer had larger VD and Aves/Axyl. The root specific hydraulic conductivity within the 30-50 cm soil layer was significantly higher than within the surface soil layer, whereas the vulnerability index within the 30-50 cm soil layer was smaller, indicating roots in deep soil layers had higher hydraulic transport efficiency and lower hydraulic vulnerability.
Moriondo, Andrea; Solari, Eleonora; Marcozzi, Cristiana; Negrini, Daniela
2016-01-01
Peripheral rat diaphragmatic lymphatic vessels, endowed with intrinsic spontaneous contractility, were in vivo filled with fluorescent dextrans and microspheres and subsequently studied ex vivo in excised diaphragmatic samples. Changes in diameter and lymph velocity were detected, in a vessel segment, during spontaneous lymphatic smooth muscle contraction and upon activation, through electrical whole-field stimulation, of diaphragmatic skeletal muscle fibers. During intrinsic contraction lymph flowed both forward and backward, with a net forward propulsion of 14.1 ± 2.9 μm at an average net forward speed of 18.0 ± 3.6 μm/s. Each skeletal muscle contraction sustained a net forward-lymph displacement of 441.9 ± 159.2 μm at an average velocity of 339.9 ± 122.7 μm/s, values significantly higher than those documented during spontaneous contraction. The flow velocity profile was parabolic during both spontaneous and skeletal muscle contraction, and the shear stress calculated at the vessel wall at the highest instantaneous velocity never exceeded 0.25 dyne/cm(2). Therefore, we propose that the synchronous contraction of diaphragmatic skeletal muscle fibers recruited at every inspiratory act dramatically enhances diaphragmatic lymph propulsion, whereas the spontaneous lymphatic contractility might, at least in the diaphragm, be essential in organizing the pattern of flow redistribution within the diaphragmatic lymphatic circuit. Moreover, the very low shear stress values observed in diaphragmatic lymphatics suggest that, in contrast with other contractile lymphatic networks, a likely interplay between intrinsic and extrinsic mechanisms be based on a mechanical and/or electrical connection rather than on nitric oxide release. Copyright © 2016 the American Physiological Society.
Maki, Syou
2016-01-01
Heat transfer of magnetothermal convection with the presence or absence of the magnetic force acting on the susceptibility gradient (fsc) was examined by three-dimensional numerical computations. Thermal convection of water enclosed in a shallow cylindrical vessel (diameter over vessel height = 6.0) with the Rayleigh-Benard model was adopted as the model, under the conditions of Prandtl number 6.0 and Ra number 7000, respectively. The momentum equations of convection were nondimensionalized, which involved the term of fsc and the term of magnetic force acting on the magnetic field gradient (fb). All the computations resulted in axisymmetric steady rolls. The values of the averaged Nu, the averaged velocity components U, V, and W, and the isothermal distributions and flow patterns were almost completely the same, regardless of the presence or absence of the term of fsc. As a result, we found that the effect of fsc was extremely small, although much previous research emphasized the effect with paramagnetic solutions under an unsteady state. The magnitude of fsc depends not only on magnetic conditions (magnitudes of magnetic susceptibility and magnetic flux density), but also on the thermal properties of the solution (thermal conductivity, thermal diffusivity, and viscosity). Therefore the effect of fb becomes dominant on the magnetothermal convection. Active control over the density gradient with temperature will be required to advance heat transfer with the effect of fsc.
Gao, Yu-Rong
2016-01-01
The dura mater is a vascularized membrane surrounding the brain and is heavily innervated by sensory nerves. Our knowledge of the dural vasculature has been limited to pathological conditions, such as headaches, but little is known about the dural blood flow regulation during behavior. To better understand the dynamics of dural vessels during behavior, we used two-photon laser scanning microscopy (2PLSM) to measure the diameter changes of single dural and pial vessels in the awake mouse during voluntary locomotion. Surprisingly, we found that voluntary locomotion drove the constriction of dural vessels, and the dynamics of these constrictions could be captured with a linear convolution model. Dural vessel constrictions did not mirror the large increases in intracranial pressure (ICP) during locomotion, indicating that dural vessel constriction was not caused passively by compression. To study how behaviorally driven dynamics of dural vessels might be altered in pathological states, we injected the vasodilator calcitonin gene-related peptide (CGRP), which induces headache in humans. CGRP dilated dural, but not pial, vessels and significantly reduced spontaneous locomotion but did not block locomotion-induced constrictions in dural vessels. Sumatriptan, a drug commonly used to treat headaches, blocked the vascular and behavioral the effects of CGRP. These findings suggest that, in the awake animal, the diameters of dural vessels are regulated dynamically during behavior and during drug-induced pathological states. SIGNIFICANT STATEMENT The vasculature of the dura has been implicated in the pathophysiology of headaches, but how individual dural vessels respond during behavior, both under normal conditions and after treatment with the headache-inducing peptide calcitonin gene-related peptide (CGRP), is poorly understood. To address these issues, we imaged individual dural vessels in awake mice and found that dural vessels constricted during voluntary locomotion, and this constriction did not follow locomotion-induced intracranial pressure increases. CGRP injection caused baseline dural vessel dilation and reduced locomotion but did not block locomotion-induced constrictions of dural vessels or affect pial vessels. These novel findings reveal dynamic regulation of dural vessels that are distinct from those in cerebral blood vessels during both normal behavior and after dilation by CGRP. PMID:26911696
Sur, Yoo Joon; Morsy, Mohamed; Mohan, Anita T; Zhu, Lin; Lachman, Nirusha; Saint-Cyr, Michel
2016-03-01
Although the perforating branches of the deep femoral artery have been introduced as recipient vessels for vascularized fibular grafts in the treatment of osteonecrosis of the femoral head, comprehensive knowledge of the related anatomy is deficient. The aims of this study were to provide detailed anatomical data for the perforating branches of the deep femoral artery and validate their usefulness as recipient vessels for vascularized fibular grafts. Anatomical dissection was performed on 11 fresh human cadaveric lower extremities. The number, locations, and diameters of the perforating branches were documented. The topographic relationships with the vastus ridge and the tendinous insertion of the gluteus maximus were clarified. The diameters of the perforating branches were compared with those of the ascending branch of the lateral circumflex femoral and the peroneal arteries. The mean number of perforating branches was 3.5. The mean distances from the vastus ridge to the first, second, and third perforating branches were 8.1, 13.7, and 20.4 cm, respectively. The first perforating branch was always located medial to the tendinous insertion of the gluteus maximus, whereas the second perforating branch was always located distal to the gluteus maximus. The mean diameters of the first, second, third, and fourth perforating branches were 3.1, 2.3, 1.6, and 1.2 mm, respectively. The mean diameters of the ascending branch of the lateral circumflex femoral and the peroneal arteries were 2.0 and 3.6 mm, respectively. The first perforating branch of the deep femoral artery is an appropriate alternative recipient vessel for vascularized fibular grafts in the treatment of osteonecrosis of the femoral head. It has a very consistent anatomy with a suitable location and diameter for anastomosis of the peroneal artery. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
A Novel Ex Vivo Training Model for Acquiring Supermicrosurgical Skills Using a Chicken Leg.
Cifuentes, Ignacio J; Rodriguez, José R; Yañez, Ricardo A; Salisbury, María C; Cuadra, Álvaro J; Varas, Julian E; Dagnino, Bruno L
2016-11-01
Background Supermicrosurgery is a technique used for dissection and anastomosis of submillimeter diameter vessels. This technique requires precise hand movements and superb eye-hand coordination, making continuous training necessary. Biological in vivo and ex vivo models have been described for this purpose, the latter being more accessible and cost-effective. The aim of this study is to present a new ex vivo training model using a chicken leg. Methods In 28 chicken legs, an anatomical study was performed. An intramuscular perforator vessel was identified and dissected. Arterial diameters of 0.7, 0.5, and 0.3 mm were identified and consistency of the perforator was assessed. In additional 10 chicken legs, 25 submillimeter arteries were anastomosed using this perforator vessel. Five arteries of 0.3 and 10 of 0.5 mm were anastomosed with nylon 11-0 and 12-0 sutures. Intravascular stent (IVaS) technique and open guide (OG) technique were used in 0.5-mm arteries. A total of 10 arteries of 0.7 mm were anastomosed using 10-0 sutures in a conventional fashion. Dissection and anastomosis time were recorded and patency was tested. Results We were able to identify 0.7 to 0.3 mm diameter arteries in all the specimens and confirm the consistency of the perforator. The median time for dissection was 13.4 minutes. The median time for anastomosis was 32.3 minutes for 0.3-mm arteries, 24.3 minutes for 0.5-mm arteries using IVaS, 29.5 minutes for the OG technique, and 20.9 minutes for the 0.7 mm diameter arteries. All the anastomoses were permeable. Conclusion Due to its consistent and adequate diameter vessels, this model is adequate for training supermicrosurgical skills. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Mouse blood vessel imaging by in-line x-ray phase-contrast imaging
NASA Astrophysics Data System (ADS)
Zhang, Xi; Liu, Xiao-Song; Yang, Xin-Rong; Chen, Shao-Liang; Zhu, Pei-Ping; Yuan, Qing-Xi
2008-10-01
It is virtually impossible to observe blood vessels by conventional x-ray imaging techniques without using contrast agents. In addition, such x-ray systems are typically incapable of detecting vessels with diameters less than 200 µm. Here we show that vessels as small as 30 µm could be detected using in-line phase-contrast x-ray imaging without the use of contrast agents. Image quality was greatly improved by replacing resident blood with physiological saline. Furthermore, an entire branch of the portal vein from the main axial portal vein to the eighth generation of branching could be captured in a single phase-contrast image. Prior to our work, detection of 30 µm diameter blood vessels could only be achieved using x-ray interferometry, which requires sophisticated x-ray optics. Our results thus demonstrate that in-line phase-contrast x-ray imaging, using physiological saline as a contrast agent, provides an alternative to the interferometric method that can be much more easily implemented and also offers the advantage of a larger field of view. A possible application of this methodology is in animal tumor models, where it can be used to observe tumor angiogenesis and the treatment effects of antineoplastic agents.
Ghata, Narugopal; Aldredge, Ralph C.; Bec, Julien; Marcu, Laura
2015-01-01
SUMMARY Optical techniques including fluorescence lifetime spectroscopy have demonstrated potential as a tool for study and diagnosis of arterial vessel pathologies. However, their application in the intravascular diagnostic procedures has been hampered by the presence of blood hemoglobin that affects the light delivery to and the collection from the vessel wall. We report a computational fluid dynamics model that allows for the optimization of blood flushing parameters in a manner that minimizes the amount of saline needed to clear the optical field of view and reduces any adverse effects caused by the external saline jet. A 3D turbulence (k−ω) model was employed for Eulerian–Eulerian two-phase flow to simulate the flow inside and around a side-viewing fiber-optic catheter. Current analysis demonstrates the effects of various parameters including infusion and blood flow rates, vessel diameters, and pulsatile nature of blood flow on the flow structure around the catheter tip. The results from this study can be utilized in determining the optimal flushing rate for given vessel diameter, blood flow rate, and maximum wall shear stress that the vessel wall can sustain and subsequently in optimizing the design parameters of optical-based intravascular catheters. PMID:24953876
Walker 256 Tumor Growth Suppression by Crotoxin Involves Formyl Peptide Receptors and Lipoxin A4
Brigatte, Patrícia; Faiad, Odair Jorge; Ferreira Nocelli, Roberta Cornélio; Landgraf, Richardt G.; Palma, Mario Sergio; Cury, Yara; Curi, Rui; Sampaio, Sandra Coccuzzo
2016-01-01
We investigated the effects of Crotoxin (CTX), the main toxin of South American rattlesnake (Crotalus durissus terrificus) venom, on Walker 256 tumor growth, the pain symptoms associated (hyperalgesia and allodynia), and participation of endogenous lipoxin A4. Treatment with CTX (s.c.), daily, for 5 days reduced tumor growth at the 5th day after injection of Walker 256 carcinoma cells into the plantar surface of adult rat hind paw. This observation was associated with inhibition of new blood vessel formation and decrease in blood vessel diameter. The treatment with CTX raised plasma concentrations of lipoxin A4 and its natural analogue 15-epi-LXA4, an effect mediated by formyl peptide receptors (FPRs). In fact, the treatment with Boc-2, an inhibitor of FPRs, abolished the increase in plasma levels of these mediators triggered by CTX. The blockage of these receptors also abolished the inhibitory action of CTX on tumor growth and blood vessel formation and the decrease in blood vessel diameter. Together, the results herein presented demonstrate that CTX increases plasma concentrations of lipoxin A4 and 15-epi-LXA4, which might inhibit both tumor growth and formation of new vessels via FPRs. PMID:27190493
Effects of pomegranate extract on blood flow and running time to exhaustion.
Trexler, Eric T; Smith-Ryan, Abbie E; Melvin, Malia N; Roelofs, Erica J; Wingfield, Hailee L
2014-09-01
Recent research has shown that dietary nitrate has favorable effects on blood flow and exercise performance. The purpose of this randomized, double-blind, placebo-controlled crossover study was to investigate the acute effects of pomegranate extract on blood flow, vessel diameter, and exercise performance in active individuals. Nineteen men and women (mean ± SD: age, 22.2 ± 2.2 years; height, 174.8 ± 10.7 cm; body mass, 71.9 ± 13.5 kg) were randomly assigned to a placebo (PL) or pomegranate extract (PE) group. Participants performed a maximal oxygen consumption treadmill test to determine peak velocity (PV). Participants returned after 24-48 h and ingested either PL or PE. Brachial artery blood flow was assessed using ultrasound at baseline and 30 min post-ingestion (30minPI). Three treadmill runs to exhaustion were performed at 90%, 100%, and 110% PV. Blood flow was assessed immediately after each exercise bout and 30 min postexercise (30minPEx). After a 7-10 day washout, participants repeated the same procedures, ingesting the opposite supplement. Separate repeated measures ANOVAs were performed for blood flow, vessel diameter, and time to exhaustion (TTE). Blood flow was significantly augmented (p = 0.033) 30minPI with PE in comparison with PL. Vessel diameter was significantly larger (p = 0.036) 30minPEx with PE. Ingestion of PE was found to significantly augment TTE at 90% (p = 0.009) and 100% PV (p = 0.027). Acute ingestion of PE 30 min before exercise may enhance vessel diameter and blood flow and delay fatigue during exercise. Results of the current study indicate that PE is ergogenic for intermittent running, eliciting beneficial effects on blood flow.
Intrinsic increase in lymphangion muscle contractility in response to elevated afterload
Scallan, Joshua P.; Wolpers, John H.; Muthuchamy, Mariappan; Gashev, Anatoliy A.; Zawieja, David C.
2012-01-01
Collecting lymphatic vessels share functional and biochemical characteristics with cardiac muscle; thus, we hypothesized that the lymphatic vessel pump would exhibit behavior analogous to homeometric regulation of the cardiac pump in its adaptation to elevated afterload, i.e., an increase in contractility. Single lymphangions containing two valves were isolated from the rat mesenteric microcirculation, cannulated, and pressurized for in vitro study. Pressures at either end of the lymphangion [input pressure (Pin), preload; output pressure (Pout), afterload] were set by a servo controller. Intralymphangion pressure (PL) was measured using a servo-null micropipette while internal diameter and valve positions were monitored using video methods. The responses to step- and ramp-wise increases in Pout (at low, constant Pin) were determined. PL and diameter data recorded during single contraction cycles were used to generate pressure-volume (P-V) relationships for the subsequent analysis of lymphangion pump behavior. Ramp-wise Pout elevation led to progressive vessel constriction, a rise in end-systolic diameter, and an increase in contraction frequency. Step-wise Pout elevation produced initial vessel distention followed by time-dependent declines in end-systolic and end-diastolic diameters. Significantly, a 30% leftward shift in the end-systolic P-V relationship accompanied an 84% increase in dP/dt after a step increase in Pout, consistent with an increase in contractility. Calculations of stroke work from the P-V loop area revealed that robust pumps produced net positive work to expel fluid throughout the entire afterload range, whereas weaker pumps exhibited progressively more negative work as gradual afterload elevation led to pump failure. We conclude that lymphatic muscle adapts to output pressure elevation with an intrinsic increase in contractility and that this compensatory mechanism facilitates the maintenance of lymph pump output in the face of edemagenic and/or gravitational loads. PMID:22886407
Bai, Chen; Ji, Meiling; Bouakaz, Ayache; Zong, Yujin; Wan, Mingxi
2018-05-01
For investigating human transcranial ultrasound imaging (TUI) through the temporal bone, an intact human skull is needed. Since it is complex and expensive to obtain one, it requires that experiments are performed without excision or abrasion of the skull. Besides, to mimic blood circulation for the vessel target, cellulose tubes generally fit the vessel simulation with straight linear features. These issues, which limit experimental studies, can be overcome by designing a 3-D-printed skull model with acoustic and dimensional properties that match a real skull and a vessel model with curve and bifurcation. First, the optimal printing material which matched a real skull in terms of the acoustic attenuation coefficient and sound propagation velocity was identified at 2-MHz frequency, i.e., 7.06 dB/mm and 2168.71 m/s for the skull while 6.98 dB/mm and 2114.72 m/s for the printed material, respectively. After modeling, the average thickness of the temporal bone in the printed skull was about 1.8 mm, while it was to 1.7 mm in the real skull. Then, a vascular phantom was designed with 3-D-printed vessels of low acoustic attenuation (0.6 dB/mm). It was covered with a porcine brain tissue contained within a transparent polyacrylamide gel. After characterizing the acoustic consistency, based on the designed skull model and vascular phantom, vessels with inner diameters of 1 and 0.7 mm were distinguished by resolution enhanced imaging with low frequency. Measurements and imaging results proved that the model and phantom are authentic and viable alternatives, and will be of interest for TUI, high intensity focused ultrasound, or other therapy studies.
Mechanics of smooth muscle in isolated single microvessels.
Gore, R W; Davis, M J
1984-01-01
In vivo studies on frog mesenteric arterioles (4) indicate that segmental differences in the response of microvessels to physical and chemical stimuli can be explained simply in terms of the length-tension characteristics of vascular smooth muscle at different points along the vascular tree. Studies on single, isolated arterioles in vitro were initiated to examine more closely the validity of this explanation for regional response differences. This paper reports some of the results. First-, second-, and third-order arterioles (18-60 micron i.d.) were dissected from hamster cheek pouches. The vessels were cannulated with a modified Burg microperfusion system, and their mechanical properties studied using the methods described by Duling and Gore. Vessels were activated in four stages with K+ and norepinephrine. During activation, transmural pressures were adjusted to minimize vascular smooth-muscle shortening. Active pressure-diameter curves were recorded while adjusting transmural pressure through the range 5 to 400 cm H20 in 5-25 cm steps. Vessel dimensions were measured with a videomicrometer. Passive curves were obtained after equilibration overnight in Ca2+-free medium. The vessels were then fixed and prepared for histologic sectioning, and measurements of vessel-wall composition were made. The Laplace relationship was used to construct length-tension diagrams, and the histologic data were used to normalize the dimensional data to smooth-muscle lengths. Maximum active tension of second-order arterioles (1,170 dynes/cm) was two times previous values reported by Gore et al. This was due presumably to refinements in techniques and dissection procedures. Maximum active stress averaged 3.9 X 10(+6) dynes/cm2 for second-order arterioles. This number is identical to data obtained from hog carotid strips by Dillon et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanimoto, Daigo, E-mail: daigoro@med.kawasaki-m.ac.jp; Ito, Katsuyoshi; Yamamoto, Akira
2010-10-15
This study was designed to evaluate the intravascular transformation behavior of superabsorbent polymer microsphere (SAP-MS) in vivo macroscopically by using monochromatic X-ray imaging and to quantitatively compare the expansion rate of SAP-MS among different kinds of mixtures. Fifteen rabbits were used for our study and transcatheter arterial embolization (TAE) was performed for their auricular arteries using monochromatic X-ray imaging. We used three kinds of SAP-MS (particle diameter 100-150 {mu}m) mixture as embolic spherical particles: SAP-MS(H) absorbed with sodium meglumine ioxaglate (Hexabrix 320), SAP-MS(V) absorbed with isosmolar contrast medium (Visipaque 270), and SAP-MS(S) absorbed with 0.9% sodium saline. The initial volumemore » of SAP-MS particles just after TAE and its final volume 10 minutes after TAE in the vessel were measured to calculate the expansion rate (ER) (n = 30). Intravascular behavior of SAP-MS particles was clearly observed in real time at monochromatic X-ray imaging. Averaged initial volumes of SAP-MS (H) (1.24 x 10{sup 7} {mu}m{sup 3}) were significantly smaller (p < 0.001) than those of SAP-MS (V) (5.99 x 10{sup 7} {mu}m{sup 3}) and SAP-MS (S) (5.85 x 10{sup 7} {mu}m{sup 3}). Averaged final volumes of SAP-MS (H) were significantly larger than averaged initial volumes (4.41 x 10{sup 7} {mu}m{sup 3} vs. 1.24 x 10{sup 7} {mu}m{sup 3}; p < 0.0001, ER = 3.55). There were no significant difference between averaged final volumes and averaged initial volumes of SAP-MS (V) and SAP-MS (S). SAP-MS (H), which first travels distally, reaches to small arteries, and then expands to adapt to the vessel lumen, is an effective particle as an embolic agent, causing effective embolization.« less
Code of Federal Regulations, 2013 CFR
2013-10-01
... reflector. When non-reflector or non-circular aperture antennas are employed, an equivalent diameter can be.... Earth Station on Vessel (“ESV”). An ESV is an earth station onboard a craft designed for traveling on... Internet or World Wide Web on-line filing forms. Equivalent diameter. When circular aperture reflector...
Velu, Juliëtte F; Groot Jebbink, Erik; de Vries, Jean-Paul P M; Slump, Cornelis H; Geelkerken, Robert H
2017-02-01
An important determinant of successful endovascular aortic aneurysm repair is proper sizing of the dimensions of the aortic-iliac vessels. The goal of the present study was to determine the concurrent validity, a method for comparison of test scores, for EVAR sizing and planning of the recently introduced Simbionix PROcedure Rehearsal Studio (PRORS). Seven vascular specialists analyzed anonymized computed tomography angiography scans of 70 patients with an infrarenal aneurysm of the abdominal aorta, using three different sizing software packages Simbionix PRORS (Simbionix USA Corp., Cleveland, OH, USA), 3mensio (Pie Medical Imaging BV, Maastricht, The Netherlands), and TeraRecon (Aquarius, Foster City, CA, USA). The following measurements were included in the protocol: diameter 1 mm below the most distal main renal artery, diameter 15 mm below the lowest renal artery, maximum aneurysm diameter, and length from the most distal renal artery to the left iliac artery bifurcation. Averaged over the locations, the intraclass correlation coefficient is 0.83 for Simbionix versus 3mensio, 0.81 for Simbionix versus TeraRecon, and 0.86 for 3mensio versus TeraRecon. It can be concluded that the Simbionix sizing software is as precise as two other validated and commercially available software packages.
Pulsed dye laser treatment of rosacea using a novel 15 mm diameter treatment beam.
Bernstein, Eric F; Schomacker, Kevin; Paranjape, Amit; Jones, Christopher J
2018-04-10
The pulsed-dye laser has been used to treat facial redness and rosacea for decades. Recent advances in dye laser technology enable 50% higher output energies supporting 50% larger treatment areas, and beam-diameters up to 15 mm with clinically-relevant fluences. In this study, we investigate this novel pulsed-dye laser using a 15 mm diameter beam for treatment of rosacea. Twenty subjects with erythemato-telangiectatic rosacea were enrolled in the study. A total of 4 monthly treatments were administered, first treating linear vessels with a 3 × 10 mm elliptical beam, then diffuse redness with a 15-mm diameter circular beam. Blinded assessment of digital, cross-polarized photographs taken 2 months following the last treatment was performed using an 11-point clearance scale. Nineteen subjects completed the study. Blinded reviewers correctly identified baseline photos in 55 out of the total of 57 images (96.5%). The blinded reviewers scored 17 of the 19 subjects with an improvement greater than 40%, and 11 of the 19 subjects greater than 50%. The average improvement was 53.9%. Side effects were limited to mild edema, mild to moderate erythema, and mild to moderate bruising. This study demonstrates that a newly designed pulsed-dye laser having a novel 15-mm diameter treatment beam improves the appearance of rosacea with a favorable safety profile. Lasers Surg. Med. 9999:1-5, 2018. © 2018 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc. © 2018 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Muramatsu, Chisako; Hatanaka, Yuji; Iwase, Tatsuhiko; Hara, Takeshi; Fujita, Hiroshi
2010-03-01
Abnormalities of retinal vasculatures can indicate health conditions in the body, such as the high blood pressure and diabetes. Providing automatically determined width ratio of arteries and veins (A/V ratio) on retinal fundus images may help physicians in the diagnosis of hypertensive retinopathy, which may cause blindness. The purpose of this study was to detect major retinal vessels and classify them into arteries and veins for the determination of A/V ratio. Images used in this study were obtained from DRIVE database, which consists of 20 cases each for training and testing vessel detection algorithms. Starting with the reference standard of vasculature segmentation provided in the database, major arteries and veins each in the upper and lower temporal regions were manually selected for establishing the gold standard. We applied the black top-hat transformation and double-ring filter to detect retinal blood vessels. From the extracted vessels, large vessels extending from the optic disc to temporal regions were selected as target vessels for calculation of A/V ratio. Image features were extracted from the vessel segments from quarter-disc to one disc diameter from the edge of optic discs. The target segments in the training cases were classified into arteries and veins by using the linear discriminant analysis, and the selected parameters were applied to those in the test cases. Out of 40 pairs, 30 pairs (75%) of arteries and veins in the 20 test cases were correctly classified. The result can be used for the automated calculation of A/V ratio.
Magnaudeix, Amandine; Usseglio, Julie; Lasgorceix, Marie; Lalloue, Fabrice; Damia, Chantal; Brie, Joël; Pascaud-Mathieu, Patricia; Champion, Eric
2016-07-01
The development of scaffolds for bone filling of large defects requires an understanding of angiogenesis and vascular guidance, which are crucial processes for bone formation and healing. There are few investigations on the ability of a scaffold to support blood vessel guidance and it this is of great importance because it relates to the quality and dispersion of the blood vessel network. This work reports an analysis of vascularisation of porous silicon-substituted hydroxyapatite (SiHA) bioceramics and the effects of pore shape on vascular guidance using an expedient ex ovo model, the chick embryo chorioallantoic membrane (CAM) assay. Image analysis of vascularised implants assessed the vascular density, fractal dimension and diameter of blood vessels at two different scales (the whole ceramic and pores alone) and was performed on model SiHA ceramics harbouring pores of various cross-sectional geometries (circles, square, rhombus, triangles and stars). SiHA is a biocompatible material which allows the conduction of blood vessels on its surface. The presence of pores did not influence angiogenesis related-parameters (arborisation, fractal dimension) but pore geometry affected the blood vessel guidance and angio-conductive potential (diameter and number of the blood vessels converging toward the pores). The measured angles of pore cross-section modulated the number and diameter of blood vessels converging to pores, with triangular pores appearing of particular interest. This result will be used for shaping ceramic scaffolds with specific porous architecture to promote vascular colonisation and osteointegration. An expedient and efficient method, using chick embryo chorioallantoic membrane (CAM) assays, has been set up to characterise quantitatively the angiogenesis and the vascular conduction in scaffolds. This approach complements the usual cell culture assays and could replace to a certain extent in vivo experiments. It was applied to silicon-substituted hydroxyapatite porous bioceramics with various pore shapes. The material was found to be biocompatible, allowing the conduction of blood vessels on its surface. The presence of pores does not influence the angiogenesis but the pore shape affects the blood vessel guidance and angio-conductive potential. Pores with triangular cross-section appear particularly attractive for the further design of scaffolds in order to promote their vascular colonisation and osteointegration and improve their performances. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Do xylem fibers affect vessel cavitation resistance?
Jacobsen, Anna L; Ewers, Frank W; Pratt, R Brandon; Paddock, William A; Davis, Stephen D
2005-09-01
Possible mechanical and hydraulic costs to increased cavitation resistance were examined among six co-occurring species of chaparral shrubs in southern California. We measured cavitation resistance (xylem pressure at 50% loss of hydraulic conductivity), seasonal low pressure potential (P(min)), xylem conductive efficiency (specific conductivity), mechanical strength of stems (modulus of elasticity and modulus of rupture), and xylem density. At the cellular level, we measured vessel and fiber wall thickness and lumen diameter, transverse fiber wall and total lumen area, and estimated vessel implosion resistance using (t/b)(h)(2), where t is the thickness of adjoining vessel walls and b is the vessel lumen diameter. Increased cavitation resistance was correlated with increased mechanical strength (r(2) = 0.74 and 0.76 for modulus of elasticity and modulus of rupture, respectively), xylem density (r(2) = 0.88), and P(min) (r(2) = 0.96). In contrast, cavitation resistance and P(min) were not correlated with decreased specific conductivity, suggesting no tradeoff between these traits. At the cellular level, increased cavitation resistance was correlated with increased (t/b)(h)(2) (r(2) = 0.95), increased transverse fiber wall area (r(2) = 0.89), and decreased fiber lumen area (r(2) = 0.76). To our knowledge, the correlation between cavitation resistance and fiber wall area has not been shown previously and suggests a mechanical role for fibers in cavitation resistance. Fiber efficacy in prevention of vessel implosion, defined as inward bending or collapse of vessels, is discussed.
Reversed portal flow: Clinical influence on the long-term outcomes in cirrhosis.
Kondo, Takayuki; Maruyama, Hitoshi; Sekimoto, Tadashi; Shimada, Taro; Takahashi, Masanori; Yokosuka, Osamu
2015-08-07
To elucidate the natural history and the longitudinal outcomes in cirrhotic patients with non-forward portal flow (NFPF). The present retrospective study consisted of 222 cirrhotic patients (120 males and 102 females; age, 61.7 ± 11.1 years). The portal hemodynamics were evaluated at baseline and during the observation period using both pulsed and color Doppler ultrasonography. The diameter (mm), flow direction, mean flow velocity (cm/s), and mean flow volume (mL/min) were assessed at the portal trunk, the splenic vein, the superior mesenteric vein, and the collateral vessels. The average values from 2 to 4 measurements were used for the data analysis. The portal flow direction was defined as follows: forward portal flow (FPF) for continuous hepatopetal flow; bidirectional flow for to-and-fro flow; and reversed flow for continuous hepatofugal flow. The bidirectional flow and the reversed flow were classified as NFPF in this study. The clinical findings and prognosis were compared between the patients with FPF and those with NFPF. The median follow-up period was 40.9 mo (range, 0.3-156.5 mo). Twenty-four patients (10.8%) demonstrated NFPF, accompanied by lower albumin level, worse Child-Pugh scores, and model for end-stage liver disease scores. The portal hemodynamic features in the patients with NFPF were smaller diameter of the portal trunk; presence of short gastric vein, splenorenal shunt, or inferior mesenteric vein; and advanced collateral vessels (diameter > 8.7 mm, flow velocity > 10.2 cm/s, and flow volume > 310 mL/min). The cumulative incidence rates of NFPF were 6.5% at 1 year, 14.5% at 3 years, and 23.1% at 5 years. The collateral vessels characterized by flow velocity > 9.5 cm/s and those located at the splenic hilum were significant predictive factors for developing NFPF. The cumulative survival rate was significantly lower in the patients with NFPF (72.2% at 1 year, 38.5% at 3 years, 38.5% at 5 years) than in those with forward portal flow (84.0% at 1 year, 67.8% at 3 years, 54.3% at 5 years, P = 0.0123) using the Child-Pugh B and C classifications. NFPF has a significant negative effect on the prognosis of patients with worse liver function reserve, suggesting the need for careful management.
Reversed portal flow: Clinical influence on the long-term outcomes in cirrhosis
Kondo, Takayuki; Maruyama, Hitoshi; Sekimoto, Tadashi; Shimada, Taro; Takahashi, Masanori; Yokosuka, Osamu
2015-01-01
AIM: To elucidate the natural history and the longitudinal outcomes in cirrhotic patients with non-forward portal flow (NFPF). METHODS: The present retrospective study consisted of 222 cirrhotic patients (120 males and 102 females; age, 61.7 ± 11.1 years). The portal hemodynamics were evaluated at baseline and during the observation period using both pulsed and color Doppler ultrasonography. The diameter (mm), flow direction, mean flow velocity (cm/s), and mean flow volume (mL/min) were assessed at the portal trunk, the splenic vein, the superior mesenteric vein, and the collateral vessels. The average values from 2 to 4 measurements were used for the data analysis. The portal flow direction was defined as follows: forward portal flow (FPF) for continuous hepatopetal flow; bidirectional flow for to-and-fro flow; and reversed flow for continuous hepatofugal flow. The bidirectional flow and the reversed flow were classified as NFPF in this study. The clinical findings and prognosis were compared between the patients with FPF and those with NFPF. The median follow-up period was 40.9 mo (range, 0.3-156.5 mo). RESULTS: Twenty-four patients (10.8%) demonstrated NFPF, accompanied by lower albumin level, worse Child-Pugh scores, and model for end-stage liver disease scores. The portal hemodynamic features in the patients with NFPF were smaller diameter of the portal trunk; presence of short gastric vein, splenorenal shunt, or inferior mesenteric vein; and advanced collateral vessels (diameter > 8.7 mm, flow velocity > 10.2 cm/s, and flow volume > 310 mL/min). The cumulative incidence rates of NFPF were 6.5% at 1 year, 14.5% at 3 years, and 23.1% at 5 years. The collateral vessels characterized by flow velocity > 9.5 cm/s and those located at the splenic hilum were significant predictive factors for developing NFPF. The cumulative survival rate was significantly lower in the patients with NFPF (72.2% at 1 year, 38.5% at 3 years, 38.5% at 5 years) than in those with forward portal flow (84.0% at 1 year, 67.8% at 3 years, 54.3% at 5 years, P = 0.0123) using the Child-Pugh B and C classifications. CONCLUSION: NFPF has a significant negative effect on the prognosis of patients with worse liver function reserve, suggesting the need for careful management. PMID:26269679
Calculation of the diameter of the central retinal artery from noninvasive measurements in humans.
Dorner, Guido T; Polska, Elzbieta; Garhöfer, Gerhard; Zawinka, Claudia; Frank, Barbara; Schmetterer, Leopold
2002-12-01
The aim of the present study was to calculate the diameter of the central retinal artery from results as obtained with non-invasive techniques in healthy young subjects. Twenty-four healthy male subjects participated in this study. Total retinal blood flow was calculated from combined bi-directional laser Doppler velocimetry and measurement of retinal venous diameters using the Zeiss retinal vessel analyzer. Using these techniques red blood cell velocity and vessel diameters of all visible veins entering the optic nerve head were measured and total retinal blood flow was calculated. Blood flow velocity in the central retinal artery was measured with color Doppler imaging. Form these outcome parameters the diameter of the central retinal artery was calculated for each subject individually. In the present study cohort the mean retinal blood flow was 38.1 +/- 9.1 microl/min and the mean flow velocity in the central retinal artery was 6.3 +/- 1.2 cm/s. From these data we calculated a mean diameter of the central retinal artery of 163 +/- 17 microm. Our results are in good agreement with data obtained from in vitro studies. The data of the present study also indicate that one needs to be careful to interpret velocity data from the central retinal artery in terms of retinal blood flow.
Carbon fiber internal pressure vessels
NASA Technical Reports Server (NTRS)
Simon, R. A.
1973-01-01
Internal pressure vessels were designed; the filament was wound of carbon fibers and epoxy resin and tested to burst. The fibers used were Thornel 400, Thornel 75, and Hercules HTS. Additional vessels with type A fiber were made. Polymeric linears were used, and all burst testing was done at room temperature. The objective was to produce vessels with the highest attainable PbV/W efficiencies. The type A vessels showed the highest average efficiency: 2.56 x 10 to the 6th power cm. Next highest efficiency was with Thornel 400 vessels: 2.21 x 10 to the 6th power cm. These values compare favorably with efficiency values from good quality S-glass vessels, but strains averaged 0.97% or less, which is less than 1/3 the strain of S-glass vessels.
Experimental investigation on the vascular thermal response to near-infrared laser pulses.
Li, Dong; Chen, Bin; Wu, Wenjuan; Ying, Zhaoxia
2017-12-01
Port wine stains (PWS) are congenital vascular malformations that progressively darken and thicken with age. To improve the effect of laser therapy in clinical practice, thermal response of blood vessel to a 1064 nm Nd:YAG laser with controlled energy doses and pulse durations was evaluated using the dorsal skin chamber model. A total of 137 vessels with 30-300 μm diameters were selected from the dorsal skin of the mouse to match those capillaries in port wine stains. Experimental results showed that the thermal response of blood vessels to 1064 nm laser irradiation can be classified as follows: vessel dilation, coagulation, constriction with decreased diameter, complete constriction, hemorrhage, and collagen damage with increasing laser radiant exposure. In most cases, that is, 83 of 137 blood vessels (60.6%), Nd:YAG laser irradiation was characterized by complete constriction (immediate blood vessel disappearance). To reveal the possible damage mechanisms and evaluate blood vessel photocoagulation patterns, theoretical investigation using bioheat transfer equation was conducted in mouse skin with a depth of 1000 μm. Complete constriction as the dominant thermal response as evidenced by uniform blood heating within the vessel lumen was noted in both experimental observation and theoretical investigation. To achieve the ideal clinical effect using the Nd:YAG laser treatment, the radiant exposure should not only be high enough to induce complete constriction of the blood vessels but also controlled carefully to avoid surrounding collagen damage. The short pulse duration of 1-3 ms is better than long pulse durations because hemorrhaging of small capillaries is occasionally observed postirradiation with pulse durations longer than 10 ms.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and... or equivalent of not over 11/2 inch diameter or garden hose of not less than 5/8 inch nominal inside diameter. If garden hose is used, it must be of a good commercial grade constructed of an inner rubber tube...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and... or equivalent of not over 11/2 inch diameter or garden hose of not less than 5/8 inch nominal inside diameter. If garden hose is used, it must be of a good commercial grade constructed of an inner rubber tube...
46 CFR 59.10-20 - Patches in shells and tube sheets.
Code of Federal Regulations, 2010 CFR
2010-10-01
... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service... inside the drum or shell and sealed against leakage by welding. Such plates shall have a diameter of at... wasted portion with a new section. The ligaments between the tube holes may be joined by means of welding...
46 CFR 59.10-20 - Patches in shells and tube sheets.
Code of Federal Regulations, 2012 CFR
2012-10-01
... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service... inside the drum or shell and sealed against leakage by welding. Such plates shall have a diameter of at... wasted portion with a new section. The ligaments between the tube holes may be joined by means of welding...
46 CFR 59.10-20 - Patches in shells and tube sheets.
Code of Federal Regulations, 2011 CFR
2011-10-01
... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service... inside the drum or shell and sealed against leakage by welding. Such plates shall have a diameter of at... wasted portion with a new section. The ligaments between the tube holes may be joined by means of welding...
46 CFR 59.10-20 - Patches in shells and tube sheets.
Code of Federal Regulations, 2014 CFR
2014-10-01
... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service... inside the drum or shell and sealed against leakage by welding. Such plates shall have a diameter of at... wasted portion with a new section. The ligaments between the tube holes may be joined by means of welding...
46 CFR 59.10-20 - Patches in shells and tube sheets.
Code of Federal Regulations, 2013 CFR
2013-10-01
... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service... inside the drum or shell and sealed against leakage by welding. Such plates shall have a diameter of at... wasted portion with a new section. The ligaments between the tube holes may be joined by means of welding...
The minimum record time for PIV measurement in a vessel agitated by a Rushton turbine
NASA Astrophysics Data System (ADS)
Šulc, Radek; Ditl, Pavel; Fořt, Ivan; Jašíkova, Darina; Kotek, Michal; Kopecký, Václav; Kysela, Bohuš
In PIV studies published in the literature focusing on the investigation of the flow field in an agitated vessel the record time is ranging from the tenths and the units of seconds. The aim of this work was to determine minimum record time for PIV measurement in a vessel agitated by a Rushton turbine that is necessary to obtain relevant results of velocity field. The velocity fields were measured in a fully baffled cylindrical flat bottom vessel 400 mm in inner diameter agitated by a Rushton turbine 133 mm in diameter using 2-D Time Resolved Particle Image Velocimetry in the impeller Reynolds number range from 50 000 to 189 000. This Re range secures the fully-developed turbulent flow of agitated liquid. Three liquids of different viscosities were used as the agitated liquid. On the basis of the analysis of the radial and axial components of the mean- and fluctuation velocities measured outside the impeller region it was found that dimensionless minimum record time is independent of impeller Reynolds number and is equalled N.tRmin = 103 ± 19.
Automatic segmentation of vessels in in-vivo ultrasound scans
NASA Astrophysics Data System (ADS)
Tamimi-Sarnikowski, Philip; Brink-Kjær, Andreas; Moshavegh, Ramin; Arendt Jensen, Jørgen
2017-03-01
Ultrasound has become highly popular to monitor atherosclerosis, by scanning the carotid artery. The screening involves measuring the thickness of the vessel wall and diameter of the lumen. An automatic segmentation of the vessel lumen, can enable the determination of lumen diameter. This paper presents a fully automatic segmentation algorithm, for robustly segmenting the vessel lumen in longitudinal B-mode ultrasound images. The automatic segmentation is performed using a combination of B-mode and power Doppler images. The proposed algorithm includes a series of preprocessing steps, and performs a vessel segmentation by use of the marker-controlled watershed transform. The ultrasound images used in the study were acquired using the bk3000 ultrasound scanner (BK Ultrasound, Herlev, Denmark) with two transducers "8L2 Linear" and "10L2w Wide Linear" (BK Ultrasound, Herlev, Denmark). The algorithm was evaluated empirically and applied to a dataset of in-vivo 1770 images recorded from 8 healthy subjects. The segmentation results were compared to manual delineation performed by two experienced users. The results showed a sensitivity and specificity of 90.41+/-11.2 % and 97.93+/-5.7% (mean+/-standard deviation), respectively. The amount of overlap of segmentation and manual segmentation, was measured by the Dice similarity coefficient, which was 91.25+/-11.6%. The empirical results demonstrated the feasibility of segmenting the vessel lumen in ultrasound scans using a fully automatic algorithm.
Yau, Po Lai; Ross, Naima; Tirsi, Andrew; Arif, Arslan; Ozinci, Zeynep; Convit, Antonio
2017-06-01
To investigate in adolescents the relationships between retinal vessel diameter, physical fitness, insulin sensitivity, and systemic inflammation. We evaluated 157 adolescents, 112 with excessive weight and 45 lean, all without type 2 diabetes mellitus. All received detailed evaluations, including measurements of retinal vessel diameter, insulin sensitivity, levels of inflammation, and physical fitness. Overweight/obese adolescents had significantly narrower retinal arteriolar and wider venular diameters, significantly lower insulin sensitivity, and physical fitness. They also had decreased levels of anti-inflammatory and increased levels of proinflammatory markers as well as an overall higher inflammation balance score. Fitness was associated with larger retinal arteriolar and narrower venular diameters and these relationships were mediated by insulin sensitivity. We demonstrate that inflammation also mediates the relationship between fitness and retinal venular, but not arterial diameter; insulin sensitivity and inflammation balance score jointly mediate this relationship with little overlap in their effects. Increasing fitness and insulin sensitivity and reducing inflammation among adolescents carrying excess weight may improve microvascular integrity. Interventions to improve physical fitness and insulin function and reduce inflammation in adolescents, a group likely to benefit from such interventions, may reduce not only cardiovascular disease in middle age, but also improve cerebrovascular function later in life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Libicher, Martin, E-mail: martin.libicher@uk-koeln.de; Reichert, V.; Schwabe, H.
2011-06-15
We examined the safety and efficacy of vessel occlusion of the Amplatzer Vascular Plug 4 (AVP-4) in patients with arteriovenous fistulas after in-situ saphenous vein bypass grafts. We treated 18 fistulas of seven patients (four women, mean {+-} standard deviation age 76 {+-} 7 years, range 63-88 years). All fistulas were detected within 14 days after surgery. Initial diagnosis and follow-up was established by sonography. We measured the diameter of the feeding vessel and the time of vessel occlusion after plug deployment. Additionally, we recorded procedure time and the dose area product. Additional interventional procedures were necessary in three patients.more » We successfully used 19 AVP-4 for occlusion of all fistulas without thromboembolic complications. There was no need for recapturing the device, and we did not observe dislocation. Mean occlusion time was 9.6 min (range 5-22 min). Mean diameter of the feeding vessels was 3.5 mm (range 2.6-5.1 mm). Plug sizes ranged from 4-8 mm (mean 5.5 mm) resulting in an oversizing of 33-88%. Mean procedure time for patients with and without additional intervention was 91 {+-} 38 min and 35 {+-} 18 min, respectively. Mean dose area product was 11,790 cGy/cm{sup 2} (range 1,850-23,500 cGy/cm{sup 2}). Permanent occlusion of the fistulas was confirmed by ultrasound after a mean follow-up of 4 months (1-6 months). Occlusion of arteriovenous fistulas with an AVP-4 seems to be effective and safe in patients with in-situ saphenous vein bypass grafts. The AVP-4 is well suited for this purpose because of the appropriate diameter of the feeding vessels.« less
Ohki, Tomohiro; Nakagawa, Atsuhiro; Hirano, Takayuki; Hashimoto, Tokitada; Menezes, Viren; Jokura, Hidefumi; Uenohara, Hiroshi; Sato, Yasuhiko; Saito, Tsutomu; Shirane, Reizo; Tominaga, Teiji; Takayama, Kazuyoshi
2004-01-01
Although water jet technology has been considered as a feasible neuroendoscopic dissection methodology because of its ability to perform selective tissue dissection without thermal damage, problems associated with continuous use of water and the ensuing fountain-effect-with catapulting of the tissue-could make water jets unsuitable for endoscopic use, in terms of safety and ease of handling. Therefore, the authors experimented with minimization of water usage during the application of a pulsed holmium:yttrium-aluminum-garnet (Ho:YAG) laser-induced liquid jet (LILJ), while assuring the dissection quality and the controllability of a conventional water jet dissection device. We have developed the LILJ generator for use as a rigid neuroendoscope, discerned its mechanical behavior, and evaluated its dissection ability using the cadaveric rabbit ventricular wall. The LILJ generator is incorporated into the tip of a stainless steel tube (length: 22 cm; internal diameter: 1.0 mm; external diameter: 1.4 mm), so that the device can be inserted into a commercial, rigid neuroendoscope. Briefly, the LILJ is generated by irradiating an internally supplied water column within the stainless steel tube using the pulsed Ho:YAG laser (wave length: 2.1 microm, pulse duration time: 350 microseconds) and is then ejected through the metal nozzle (internal diameter: 100 microm). The Ho:YAG laser pulse energy is conveyed through optical quartz fiber (core diameter: 400 microm), while cold water (5 degrees C) is internally supplied at a rate of 40 ml/hour. The relationship between laser energy (range: 40-433 mJ/pulse), standoff distance (defined as the distance between the tip of the optical fiber and the nozzle end; range: 10-30 mm), and the velocity, shape, pressure, and average volume of the ejected jet were analyzed by means of high-speed camera, PVDF needle hydrophone, and digital scale. The quality of the dissection plane, the preservation of blood vessels, and the penetration depth were evaluated using five fresh cadaveric rabbit ventricular walls, under neuroendoscopic vision. Jet velocity (7.0-19.6 m/second) and pressure (0.07-0.28 MPa) could be controlled by varying the laser energy, which determined the penetration depth in the cadaveric rabbit ventricular wall (0.07-1.30 mm/shot). The latter could be cut into desirable shapes-without thermal effects-under clear neuroendoscopic vision. The average volume of a single ejected jet could be confined to 0.42-1.52 microl/shot, and there was no accompanying generation of shock waves. Histological specimens revealed a sharp dissection plane and demonstrated that blood vessels of diameter over 100 microm could be preserved, without thermal damage. The present pulsed LILJ system holds promise as a safe and reliable dissection device for deployment in a rigid neuroendoscope. Copyright 2004 Wiley-Liss, Inc.
APPARATUS FOR PRODUCING HIGH VELOCITY SHOCK WAVES IN GASES
Scott, F.R.; Josephson, V.
1960-02-01
>A device for producing a high-energy ionized gas region comprises an evacuated tapered insulating vessel and a substantially hemispherical insulating cap hermetically affixed to the large end of the vessel, an annular electrode having a diameter equal to and supported in the interior wall of the vessel at the large end and having a conductive portion inside the vessel, a second electrode supported at the small end of the vessel, means connected to the vessel for introducing a selected gas therein, a source of high potential having two poles. means for connecting one pole of the high potential source to the annular electrode, and means for connecting the other pole of the potential source to the second electrode.
A robustness test of the braided device foreshortening algorithm
NASA Astrophysics Data System (ADS)
Moyano, Raquel Kale; Fernandez, Hector; Macho, Juan M.; Blasco, Jordi; San Roman, Luis; Narata, Ana Paula; Larrabide, Ignacio
2017-11-01
Different computational methods have been recently proposed to simulate the virtual deployment of a braided stent inside a patient vasculature. Those methods are primarily based on the segmentation of the region of interest to obtain the local vessel morphology descriptors. The goal of this work is to evaluate the influence of the segmentation quality on the method named "Braided Device Foreshortening" (BDF). METHODS: We used the 3DRA images of 10 aneurysmatic patients (cases). The cases were segmented by applying a marching cubes algorithm with a broad range of thresholds in order to generate 10 surface models each. We selected a braided device to apply the BDF algorithm to each surface model. The range of the computed flow diverter lengths for each case was obtained to calculate the variability of the method against the threshold segmentation values. RESULTS: An evaluation study over 10 clinical cases indicates that the final length of the deployed flow diverter in each vessel model is stable, shielding maximum difference of 11.19% in vessel diameter and maximum of 9.14% in the simulated stent length for the threshold values. The average coefficient of variation was found to be 4.08 %. CONCLUSION: A study evaluating how the threshold segmentation affects the simulated length of the deployed FD, was presented. The segmentation algorithm used to segment intracranial aneurysm 3D angiography images presents small variation in the resulting stent simulation.
Lindsey, Brooks D; Shelton, Sarah E; Martin, K Heath; Ozgun, Kathryn A; Rojas, Juan D; Foster, F Stuart; Dayton, Paul A
2017-04-01
Mapping blood perfusion quantitatively allows localization of abnormal physiology and can improve understanding of disease progression. Dynamic contrast-enhanced ultrasound is a low-cost, real-time technique for imaging perfusion dynamics with microbubble contrast agents. Previously, we have demonstrated another contrast agent-specific ultrasound imaging technique, acoustic angiography, which forms static anatomical images of the superharmonic signal produced by microbubbles. In this work, we seek to determine whether acoustic angiography can be utilized for high resolution perfusion imaging in vivo by examining the effect of acquisition rate on superharmonic imaging at low flow rates and demonstrating the feasibility of dynamic contrast-enhanced superharmonic perfusion imaging for the first time. Results in the chorioallantoic membrane model indicate that frame rate and frame averaging do not affect the measured diameter of individual vessels observed, but that frame rate does influence the detection of vessels near and below the resolution limit. The highest number of resolvable vessels was observed at an intermediate frame rate of 3 Hz using a mechanically-steered prototype transducer. We also demonstrate the feasibility of quantitatively mapping perfusion rate in 2D in a mouse model with spatial resolution of ~100 μm. This type of imaging could provide non-invasive, high resolution quantification of microvascular function at penetration depths of several centimeters.
NASA Astrophysics Data System (ADS)
Lisenko, S. A.; Firago, V. A.; Kugeiko, M. M.; Kubarko, A. I.
2016-09-01
We have developed a method for on-the-fl y retrieval of the volume concentration of blood vessels, the average diameter of the blood vessels, the blood oxygenation level, and the molar concentrations of chromophores in the bulbar conjunctiva from its diffuse reflectance spectra, measured when the radiation delivery and detection channels are spatially separated. The relationship between the diffuse reflectance spectrum of the conjunctiva and its unknown parameters is described in terms of an analytical model, constructed on the basis of a highly accurate approximation analog of the Monte Carlo method. We have studied the effect of localization of hemoglobin in erythrocytes and localization of erythrocytes in the blood vessels on the power of the retrieval of structural and morphological parameters for the conjunctiva. We developed a device for obtaining video images of the conjunctiva and contactless measurements of its diffuse reflectance spectrum. By comparing simulated diffuse reflectance spectra of the conjunctiva with the experimental measurements, we established a set of chromophores which must be taken into account in the model for reproducing the experimental data within the measurement error. We observed absorption bands for neuroglobin in the experimental spectra, and provided a theoretical basis for the possibility of determining its absolute concentrations in the conjunctiva. We have shown that our method can detect low bilirubin concentrations in blood.
Visible-light OCT to quantify retinal oxygen metabolism (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zhang, Hao F.; Yi, Ji; Chen, Siyu; Liu, Wenzhong; Soetikno, Brian T.
2016-03-01
We explored, both numerically and experimentally, whether OCT can be a good candidate to accurately measure retinal oxygen metabolism. We first used statistical methods to numerically simulate photon transport in the retina to mimic OCT working under different spectral ranges. Then we analyze accuracy of OCT oximetry subject to parameter variations such as vessel size, pigmentation, and oxygenation. We further developed an experimental OCT system based on the spectral range identified by our simulation work. We applied the newly developed OCT to measure both retinal hemoglobin oxygen saturation (sO2) and retinal retinal flow. After obtaining the retinal sO2 and blood velocity, we further measured retinal vessel diameter and calculated the retinal oxygen metabolism rate (MRO2). To test the capability of our OCT, we imaged wild-type Long-Evans rats ventilated with both normal air and air mixtures with various oxygen concentrations. Our simulation suggested that OCT working within visible spectral range is able to provide accurate measurement of retinal MRO2 using inverse Fourier transform spectral reconstruction. We called this newly developed technology vis-OCT, and showed that vis-OCT was able to measure the sO2 value in every single major retinal vessel around the optical disk as well as in micro retinal vessels. When breathing normal air, the averaged sO2 in arterial and venous blood in Long-Evans rats was measured to be 95% and 72%, respectively. When we challenge the rats using air mixtures with different oxygen concentrations, vis-OCT measurement followed analytical models of retinal oxygen diffusion and pulse oximeter well.
You, Xiaofang; Sun, Xiwen; Yang, Chunyan; Fang, Yong
2017-01-01
Abstract To investigate computed tomography (CT) characteristics of benign and malignant solitary fibrous tumors of the pleura (SFTPs). Preoperative CTs for 60 SFTP cases (49 benign and 11 malignant) with subsequently confirmed diagnoses were retrospectively analyzed. Tumor morphologies included mounded or mushroom umbrella-shape (19 cases, 31.7%), quasi-circular or oval-shape (30 cases, 50%), and growth resembling a casting mould (12 cases, 20%). Maximum tumor diameters were 1.1 to 18.9 cm (average: 6.4 ± 4.8 cm). Fifty-seven cases had clear boundaries, and 3 had partially coarse boundaries. Twenty-seven cases showed homogeneous density; 33, “geographic”-patterned inhomogeneous density; 6, calcifications; 12, intratumor blood vessels; and 3, thick nourishing peritumoral blood vessels. Pleural thickening (regular and irregular) was found adjacent to tumors in 4, compression of adjacent ribs with absorption and cortical sclerosis in 2, and location adjacent to ribs with bony destruction in 1. Four cases had a small amount of lung tissue enfolded along the boundary, 2 had multiple peritumoral pulmonary bullae, and 9 had small ipsilateral pleural effusions. Compared with benign and malignant SFTPs were larger (P < .001), had inhomogeneous density, and were more commonly associated with intratumor blood vessels and pleural effusions (P < .01). CT revealed characteristic patterns in SFTPs, including casting mould-like growth, rich blood supply, and “geographic”-patterned enhancement. In addition, larger tumor size, inhomogeneous intensities, abundant intratumor blood vessels, and pleural effusions were more common with malignancy. Lastly, multislice CT angiography can reveal feeding arteries and help guide surgical management. PMID:29245313
You, Xiaofang; Sun, Xiwen; Yang, Chunyan; Fang, Yong
2017-12-01
To investigate computed tomography (CT) characteristics of benign and malignant solitary fibrous tumors of the pleura (SFTPs).Preoperative CTs for 60 SFTP cases (49 benign and 11 malignant) with subsequently confirmed diagnoses were retrospectively analyzed.Tumor morphologies included mounded or mushroom umbrella-shape (19 cases, 31.7%), quasi-circular or oval-shape (30 cases, 50%), and growth resembling a casting mould (12 cases, 20%). Maximum tumor diameters were 1.1 to 18.9 cm (average: 6.4 ± 4.8 cm). Fifty-seven cases had clear boundaries, and 3 had partially coarse boundaries. Twenty-seven cases showed homogeneous density; 33, "geographic"-patterned inhomogeneous density; 6, calcifications; 12, intratumor blood vessels; and 3, thick nourishing peritumoral blood vessels. Pleural thickening (regular and irregular) was found adjacent to tumors in 4, compression of adjacent ribs with absorption and cortical sclerosis in 2, and location adjacent to ribs with bony destruction in 1. Four cases had a small amount of lung tissue enfolded along the boundary, 2 had multiple peritumoral pulmonary bullae, and 9 had small ipsilateral pleural effusions. Compared with benign and malignant SFTPs were larger (P < .001), had inhomogeneous density, and were more commonly associated with intratumor blood vessels and pleural effusions (P < .01).CT revealed characteristic patterns in SFTPs, including casting mould-like growth, rich blood supply, and "geographic"-patterned enhancement. In addition, larger tumor size, inhomogeneous intensities, abundant intratumor blood vessels, and pleural effusions were more common with malignancy. Lastly, multislice CT angiography can reveal feeding arteries and help guide surgical management.
Evaluation of guidewire path reproducibility
Schafer, Sebastian; Hoffmann, Kenneth R.; Noël, Peter B.; Ionita, Ciprian N.; Dmochowski, Jacek
2008-01-01
The number of minimally invasive vascular interventions is increasing. In these interventions, a variety of devices are directed to and placed at the site of intervention. The device used in almost all of these interventions is the guidewire, acting as a monorail for all devices which are delivered to the intervention site. However, even with the guidewire in place, clinicians still experience difficulties during the interventions. As a first step toward understanding these difficulties and facilitating guidewire and device guidance, we have investigated the reproducibility of the final paths of the guidewire in vessel phantom models on different factors: user, materials and geometry. Three vessel phantoms (vessel diameters ∼4 mm) were constructed having tortuousity similar to the internal carotid artery from silicon tubing and encased in Sylgard elastomer. Several trained users repeatedly passed two guidewires of different flexibility through the phantoms under pulsatile flow conditions. After the guidewire had been placed, rotational c-arm image sequences were acquired (9 in. II mode, 0.185 mm pixel size), and the phantom and guidewire were reconstructed (5123, 0.288 mm voxel size). The reconstructed volumes were aligned. The centerlines of the guidewire and the phantom vessel were then determined using region-growing techniques. Guidewire paths appear similar across users but not across materials. The average root mean square difference of the repeated placement was 0.17±0.02 mm (plastic-coated guidewire), 0.73±0.55 mm (steel guidewire) and 1.15±0.65 mm (steel versus plastic-coated). For a given guidewire, these results indicate that the guidewire path is relatively reproducible in shape and position. PMID:18561663
Evaluation of arterial digital blood flow using Doppler ultrasonography in healthy dairy cows.
Müller, H; Heinrich, M; Mielenz, N; Reese, S; Steiner, A; Starke, A
2017-06-06
Local circulatory disturbances have been implicated in the development of foot disorders in cattle. The goals of this study were to evaluate the suitability of the interdigital artery in the pastern region in both hind limbs using pulsed-wave (PW) Doppler ultrasonography and to investigate quantitative arterial blood flow variables at that site in dairy cows. An Esaote MyLabOne ultrasound machine with a 10-MHz linear transducer was used to assess blood flow in the interdigital artery in the pastern region in both hind limbs of 22 healthy German Holstein cows. The cows originated from three commercial farms and were restrained in a standing hoof trimming chute without sedation. A PW Doppler signal suitable for analysis was obtained in 17 of 22 cows. The blood flow profiles were categorised into four curve types, and the following quantitative variables were measured in three uniform cardiac cycles: vessel diameter, pulse rate, maximum systolic velocity, maximum diastolic velocity, end-diastolic velocity, reverse velocity, maximum time-averaged mean velocity, blood flow rate, resistance index and persistence index. The measurements did not differ among cows from the three farms. Maximum systolic velocity, vessel diameter and pulse rate did not differ but other variables differed significantly among blood flow profiles. Differences in weight-bearing are thought to be responsible for the normal variability of blood flow profiles in healthy cows. The scanning technique used in this report for evaluation of blood flow in the interdigital artery appears suitable for further investigations in healthy and in lame cows.
Flow Correlated Percolation during Vascular Remodeling in Growing Tumors
NASA Astrophysics Data System (ADS)
Lee, D.-S.; Rieger, H.; Bartha, K.
2006-02-01
A theoretical model based on the molecular interactions between a growing tumor and a dynamically evolving blood vessel network describes the transformation of the regular vasculature in normal tissues into a highly inhomogeneous tumor specific capillary network. The emerging morphology, characterized by the compartmentalization of the tumor into several regions differing in vessel density, diameter, and necrosis, is in accordance with experimental data for human melanoma. Vessel collapse due to a combination of severely reduced blood flow and solid stress exerted by the tumor leads to a correlated percolation process that is driven towards criticality by the mechanism of hydrodynamic vessel stabilization.
Leyse, C.F.; Putnam, G.E.
1961-05-01
An irradiation apparatus is described. It comprises a pressure vessel, a neutronic reactor active portion having a substantially greater height than diameter in the pressure vessel, an annular tank surrounding and spaced from the pressure vessel containing an aqueous indium/sup 1//sup 1//sup 5/ sulfate solution of approximately 600 grams per liter concentration, means for circulating separate coolants through the active portion and the space between the annular tank and the pressure vessel, radiator means adapted to receive the materials to be irradiated, and means for flowing the indium/sup 1//sup 1//sup 5/ sulfate solution through the radiator means.
Vassilev, Dobrin; Gil, Robert
2008-12-01
To verify in a clinical scenario a theory for predicting side branch (SB) stenosis after main vessel stent implantation in coronary bifurcation lesions. Many unresolved issues remain regarding SB compromise when the parent vessel is stented. Bifurcation lesions (all Medina types) were subjected to angiographic analysis to determine the angle, defined as alpha, between the axes of the parent vessel and the SB. Using the prediction that the percent diameter stenosis (%DS) is equal to the cosine of angle alpha and relating it to a formula to determine the minimal lumen diameter (MLD) led to the following equation: MLD = ds x (1 -cos alpha); ds refers to the diameter of the SB. The predicted and observed SB stenosis values following angiography were compared. Fifty-two patients with 57 lesions were included in the analysis. Patient demographics and characteristics were similar to those in previous studies. There was a high coefficient of determination between the predicted and observed values of %DS (r(2)= 0.82, P < 0.001) and MLD (r(2)= 0.86, P < 0.001). We determined a cutoff value of 70% for predicted %DS for SB closure. When using multivariate regression analysis, the only predictor of SB ostial stenosis after stenting was alpha angle, whereas the predictors of MLD included the angle alpha and the RVD of the SB. Our analysis shows that the most powerful independent predictor of SB compromise is a new variable angle alpha.
Appropriate donor size for porcine liver xenotransplant.
Soleimani, Mehrdad; Fonouni, Hamidreza; Esmaeilzadeh, Majid; Kashfi, Arash; Fani Yazdi, Seyed Hashem; Golriz, Mohammad; Hafezi, Mohammadreza; Rahbari, Nuh N; Schmidt, Jan; Mehrabi, Arianeb
2012-04-01
Owing to an imbalance between demand and supply, which is more prominent in pediatric transplant, every year more patients lose their lives on waiting lists. In addition to the use of deceased-donor split and living-donor organs, xenotransplant could provide a solution if associated problems, such as immunologic and physiologic ones, are solved. This study sought to analyze the surgical aspects for liver xenotransplant in a porcine model. Landrace pigs (n=22, 23 to 37 kg) underwent a laparotomy under general anesthesia. The hepatic hilum was prepared and the common bile ducts, common hepatic artery, portal vein, supra- and infrahepatic inferior vena cava were identified. The length and diameter of each vessel and bile duct and the weight of the liver were measured. Pearson tests showed a clear correlation between the increase of the pigs' weight and the livers' weight, and the length of the vessels and the bile ducts. We did not find a clear correlation between the increase of the pigs' liver weight and the diameters of the vessels and the bile duct. As the first reporting, this study on xenotransplants from the surgical point of view, we postulate that it could be possible to estimate the size of the liver and the proper length of its vessels and bile duct by weighing only the pigs. It was not feasible to match the diameter of mentioned structures by the livers' weight. However, the weight of pig's liver as well as vascular anatomy of pigs appeared to be suitable alternative for the human liver.
Schrott, Lisa M; Baumgart, Mary Irene; Zhang, Xuewei; Sparber, Sheldon B
2002-10-01
Opiate withdrawal during pregnancy may occur because of voluntary or forced detoxification, or from rapid cycling associated with exposure to short-acting "street" opiates. Thus, animal modeling of prenatal withdrawal and development of potential therapeutic interventions is important. Direct developmental effects of opiates and/or withdrawal can be studied using a chick model. In ovo administration of the long-acting opiate N-desmethyl-l-alpha-noracetylmethadol (NLAAM) induces opiate dependence in the chick embryo. We examined activation of the hypothalamic-pituitary-adrenal (HPA) axis (assessed via serum corticosterone) and hemodynamic changes (assessed as changes in apparent diameter of vitelline (extraembryonic) blood vessels) after chronic NLAAM exposure and naloxone (Nx)-precipitated withdrawal during late stages of embryogenesis. Nx-precipitated withdrawal increased corticosterone 2- to 4.5-fold and diameters of vitelline blood vessels by 15 to 45%. NLAAM exposure itself did not effect these measures. In a second set of experiments, isobutylmethylxanthine (IBMX), a phosphodiesterase inhibitor, was injected into eggs with embryos. IBMX similarly increased corticosterone and vitelline vessel diameter, with a similar time course and response magnitude. Previous studies found that serotonin(2) (5-HT(2)) receptors were involved in other withdrawal manifestations, so we determined whether they were likewise involved. Pretreatment with the 5-HT(2) antagonist ritanserin completely blocked HPA axis activation and vasodilation associated with both Nx-precipitated withdrawal and IBMX administration. This indicates that 5-HT(2) receptors, directly or indirectly, mediate these withdrawal manifestations in the chick embryo.
NASA Astrophysics Data System (ADS)
Xiao, Zhenggang; Xu, Fuming
2018-04-01
In order to investigate the relationship between the slivering point and burning progressivity, a set of 19-perforation propellants containing triethylene glycol dinitrate (TEGDN) with different lengths/outside diameter ratios and perforation diameters was prepared and tested in a closed vessel. The mass fraction of burnt propellant was derived from the recorded pressure-time history of 19-perforation TEGDN propellants in the closed vessel according to the gas state equation and the form function of tested propellants. Based on the form function calculation and the mass fraction of burnt propellant, instantaneous burning surface area and the burning rate were obtained. The influence of length/outside diameter ratios and perforation diameters on the progressive combustion performance is studied through the dynamic vivacity method. With an increase in the length/outsider diameter, the slivering point occurs earlier and the slivering process lasts longer. Further, the burning progressivity of surface area can be improved. For propellants with same length/outside diameter ratio, with a decreasing of perforation diameter, the slivering point lags behind and the burning progressivity becomes greater. The slivering point corresponds to the instantaneous burning area, which is related to the form function and total burning process as well. However, the total burning progressivity of propellant is a very comprehensive result of propellant under multiple actions, including the mass fraction of burnt propellant, grain size and burning rate at different pressure regions. The correlation between them can boost a better understanding on the interaction between grain size, slivering burning process and burning progressivity.
Composite Overwrapped Pressure Vessel (COPV) Stress Rupture Testing
NASA Technical Reports Server (NTRS)
Greene, Nathanael J.; Saulsberry, Regor L.; Leifeste, Mark R.; Yoder, Tommy B.; Keddy, Chris P.; Forth, Scott C.; Russell, Rick W.
2010-01-01
This paper reports stress rupture testing of Kevlar(TradeMark) composite overwrapped pressure vessels (COPVs) at NASA White Sands Test Facility. This 6-year test program was part of the larger effort to predict and extend the lifetime of flight vessels. Tests were performed to characterize control parameters for stress rupture testing, and vessel life was predicted by statistical modeling. One highly instrumented 102-cm (40-in.) diameter Kevlar(TradeMark) COPV was tested to failure (burst) as a single-point model verification. Significant data were generated that will enhance development of improved NDE methods and predictive modeling techniques, and thus better address stress rupture and other composite durability concerns that affect pressure vessel safety, reliability and mission assurance.
Bender, Matthew T; Lin, Li-Mei; Coon, Alexander L; Colby, Geoffrey P
2017-06-14
This is a case of a high-flow, post-traumatic direct carotid-cavernous fistula with a widened arterial defect and a large-diameter internal carotid artery (ICA). The unique aspect of this case is the oversized ICA, >8mm in diameter, which is both a pathological and a therapeutic challenge, given the lack of available neuroendovascular devices for full vessel reconstruction. We present a planned two-stage embolisation paradigm for definitive treatment. Transarterial coil embolisation is performed as the first stage to disconnect the fistula and normalise flow in the ICA. A 3-month recovery period is then allowed for reduction in carotid diameter. Repair of the large vessel defect and pseudoaneurysm is performed as a second stage in a delayed fashion with a flow-diverting device. Follow-up angiography at 6 months demonstrates obliteration of the fistula and curative ICA reconstruction to a diameter <5mm. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Long-term effects of elevated carbon dioxide on sour orange tree specific gravity and anatomy
Michael C. Wiemann; David Kretschmann; Alan Rudie; Bruce A. Kimball; Sherwood B. Idso
2008-01-01
Exposure to elevated levels of atmospheric CO2 for a period of 17 years resulted in small but statistically significant decreases in wood basic specific gravity and number of rays per millimeter. Other anatomical characteristics (percentages of tissues, number of vessels per square millimeter, vessel diameters, and fiber wall thickness) were...
Maki, Syou
2016-01-01
Heat transfer of magnetothermal convection with the presence or absence of the magnetic force acting on the susceptibility gradient (fsc) was examined by three-dimensional numerical computations. Thermal convection of water enclosed in a shallow cylindrical vessel (diameter over vessel height = 6.0) with the Rayleigh-Benard model was adopted as the model, under the conditions of Prandtl number 6.0 and Ra number 7000, respectively. The momentum equations of convection were nondimensionalized, which involved the term of fsc and the term of magnetic force acting on the magnetic field gradient (fb). All the computations resulted in axisymmetric steady rolls. The values of the averaged Nu, the averaged velocity components U, V, and W, and the isothermal distributions and flow patterns were almost completely the same, regardless of the presence or absence of the term of fsc. As a result, we found that the effect of fsc was extremely small, although much previous research emphasized the effect with paramagnetic solutions under an unsteady state. The magnitude of fsc depends not only on magnetic conditions (magnitudes of magnetic susceptibility and magnetic flux density), but also on the thermal properties of the solution (thermal conductivity, thermal diffusivity, and viscosity). Therefore the effect of fb becomes dominant on the magnetothermal convection. Active control over the density gradient with temperature will be required to advance heat transfer with the effect of fsc. PMID:27606823
Dimensional analysis of human saphenous vein grafts: Implications for external mesh support.
Human, Paul; Franz, Thomas; Scherman, Jacques; Moodley, Lovendran; Zilla, Peter
2009-05-01
Constrictive external mesh support of vein grafts was shown to mitigate intimal hyperplasia in animal experiments. To determine the degree of constriction required for the elimination of dimensional irregularities in clinically used vein grafts, a detailed anatomic study of human saphenous veins was conducted. In 200 consecutive patients having coronary artery bypass grafting, harvested saphenous veins (length 34.4 +/- 10.8 cm) were analyzed regarding diameter irregularities, side branch distribution, and microstructure. The mean outer diameter of surgically distended saphenous veins was 4.2 +/- 0.6 mm (men, 4.3 +/- 0.6 mm vs women, 3.9 +/- 0.5 mm; P < .0001). Although the outer diameter significantly decreased over the initial 18 cm (-7.6%; P < .0001), the overall increase between malleolus and thigh was not significant (+11.2%). Smaller-diameter veins (<3.5 mm) had more pronounced diameter fluctuations than larger veins (31.8% +/- 11.0% vs 21.2% +/- 8.8%; P < .0001), with more than 71% of all veins showing caliber changes of more than 20%. There was 1 side branch every 5.4 +/- 4.3 cm, with a significantly higher incidence between 20 and 32 cm from the malleolus (P < .0001 to distal, P < .0004 to proximal). Generally, women had more side branches than men (0.30 +/- 0.15 cm(-1) vs 0.25 +/- 0.12 cm(-1); P = .0190). Thick-walled veins (565.7 +/- 138.4 mum) had a significantly higher number of large side branches (P < .0001), and thin-walled veins (398.7 +/- 123.2 mum) had significantly more small side branches (P < .0001). Pronounced intimal thickening ("cushions") was found in 28% of vessels (119.8 +/- 28.0 mum vs 40.1 +/- 18.2 mum; P < .0001). Although the preferential location of side branches may be addressed by the deliberate discarding of infragenicular vein segments, a diameter constriction of 27% on average would eliminate diameter irregularities in 98% of vein grafts.
The effect of autoimmune retinopathy on retinal vessel oxygen saturation.
Waizel, Maria; Türksever, Cengiz; Todorova, Margarita G
2018-05-22
To study the retinal vessel oxygen saturation alterations in patients with autoimmune retinopathy (AIR) and patients with autoimmune retinopathy associated with retinitis pigmentosa (AIR-RP) in comparison with healthy controls and patients with isolated retinitis pigmentosa (RP). Prospective, cross-sectional, and non-interventional study. Retinal vessel oximetry (RO) was performed on a total of 139 eyes: six eyes suffering from AIR and four eyes with AIR-RP were compared to 59 healthy control eyes and to 70 eyes with RP. A computer-based program of the retinal vessel analyser unit (IMEDOS Systems UG, Jena, Germany) was used to evaluate retinal vessel oxygen saturation. The mean oxygen saturation in the first and second branch retinal arterioles (A-SO 2 ) and venules (V-SO 2 ) were measured and their difference (A-V SO 2 ) was calculated. In addition, we measured the diameter of the retinal arterioles (D-A) and venules (D-V). Oxygen metabolism is altered in patients with isolated AIR and AIR-RP. Both, AIR and AIR-RP groups, differed from healthy controls showing significantly higher V-SO 2 values and significantly lower A-V SO 2 values (p < 0.025). In addition, the AIR-RP group could be differentiated from eyes suffering from isolated RP by means of significantly higher V-SO 2 values. Comparing retinal vessel diameters, both, the AIR and AIR-RP groups, presented with significant arterial (p = 0.05) and venular (p < 0.03) vessel attenuation than the healthy control group. Based on our results, in analogy to patients suffering from RP, oxygen metabolism seems to be altered in AIR patients.
Variability in sublingual microvessel density and flow measurements in healthy volunteers.
Hubble, Sheena M A; Kyte, Hayley L; Gooding, Kim; Shore, Angela C
2009-02-01
As sublingual microvascular indices are increasingly heralded as new resuscitation end-points, better population data are required to power clinical studies. This paper describes improved methods to quantify sublingual microvessel flow and density in images obtained by sidestream dark field (SDF) technology in healthy volunteers, including vessels under 10 microm in diameter. Measurements of sublingual capillary density and flow were obtained by recording three 15-second images in 20 healthy volunteers over three days. Two independent observers quantified capillary density by using two methods: total vessel length (mm/mm2) and counting (number/mm). Both intraoral and temporal variabilities within subject and observer reproducibilities were determined by using coefficients of variability and reproducibility indices. For small (1-10 microm), medium (11-20 microm), and large (21-50 microm) diameter, mean vessel density with standard deviations (SDs) in volunteers was 21.3(+/- 4.9), 5.2 (+/- 1.2), and 2.7 (+/- 0.9) mm/mm2, respectively. Also, 94.0 +/- 1.4% of small vessels, 94.5 +/- 1.4% of medium vessels, and 94.5+/- 4.0% of large vessels had continuous perfusion. Within subjects, the means of all measurements over three days varied less than 13, 22, and 35% in small, medium, and large vessels, respectively. Interobserver reproducibility was good, especially for capillary (1-10 microm) density and flow measurements. Our methods of microvessel flow and density quantification have low observer variability and confirm the stability of microcirculatory measurements over time. These results facilitate the development of SDF-acquired sublingual microvascular indices as feasible microperfusion markers in shock resuscitation.
An 810 ft/sec soil impact test of a 2-foot diameter model nuclear reactor containment system
NASA Technical Reports Server (NTRS)
Puthoff, R. L.
1972-01-01
A soil impact test was conducted on a 880-pound 2-foot diameter sphere model. The impact area consisted of back filled desert earth and rock. The impact generated a crater 5 feet in diameter by 5 feet deep. It buried itself a total of 15 feet - as measured to the bottom of the model. After impact the containment vessel was pressure checked. No leaks were detected nor cracks observed.
Maksimov, Dmitry; Hesser, Jürgen; Brockmann, Carolin; Jochum, Susanne; Dietz, Tiina; Schnitzer, Andreas; Düber, Christoph; Schoenberg, Stefan O; Diehl, Steffen
2009-12-01
Separating bone, calcification, and vessels in computer tomography angiography (CTA) allows for a detailed diagnosis of vessel stenosis. This paper presents a new, graph-based technique that solves this difficult problem with high accuracy. The approach requires one native data set and one that is contrast enhanced. On each data set, an attributed level-graph is derived and both graphs are matched by dynamic programming to differentiate between bone, on one hand side, and vessel/calcification on the other hand side. Lumen and calcified regions are then separated by a profile technique. Evaluation is based on data from vessels of pelvis and lower extremities of elderly patients. Due to substantial calcification and motion of patients between and during the acquisitions, the underlying approach is tested on a class of difficult cases. Analysis requires 3-5 min on a Pentium IV 3 GHz for a 700 MByte data set. Among 37 patients, our approach correctly identifies all three components in 80% of cases correctly compared to visual control. Critical inconsistencies with visual inspection were found in 6% of all cases; 70% of these inconsistencies are due to small vessels that have 1) a diameter near the resolution of the CT and 2) are passing next to bony structures. All other remaining deviations are found in an incorrect handling of the iliac artery since the slice thickness is near the diameter of this vessel and since the orientation is not in cranio-caudal direction. Increasing resolution is thus expected to solve many the aforementioned difficulties.
Analysis of intra-aortic balloon pump model with ovine myocardial infarction.
Abdolrazaghi, Mona; Navidbakhsh, Mahdi; Hassani, Kamran; Rabbani, Shahram; Ahmadi, Hossein
2009-12-01
In this study, we have tried to model the effects of intra-aortic balloon pump (IABP) on myocardial infarction (MI) using the standardized data of MI in sheep which was obtained by ligation of the left anterior descending coronary artery. Mathematical model of whole cardiovascular system was presented in accordance to the arterial tree. The lumped parameter model was primarily obtained for a rigid vessel regarding the vessel diameter. In this study, the proper lumped model of every vessel was obtained by incorporating the rigid vessel lumped model into the capacitance as a compliance of the vessel. Intra-aortic balloon pump was modeled with the hemodynamic parameters of the aorta. It was assumed that balloon pump inflates at the beginning of the diastole and deflates near the beginning of the next systole. During balloon pumping, the vessel diameter variation function counter pulsates sinusoidally with the same period of the cardiac cycle. End systolic pressure and end diastolic pressure decreases along with hemodynamic flow optimized through systemic arteries due to balloon pumping in diastole. It has been shown that the blood flow in subclavian artery increases as well. Moreover, the cardiac work keeps low, which prone to lower oxygen consumption. The results of modeling are in good agreement with IABP documentation. The presented model is a useful tool for studying of the cardiovascular system pathology and the presented modeling data are in good agreement with the experimental ones.
VESGEN Software for Mapping and Quantification of Vascular Regulators
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia A.; Vickerman, Mary B.; Keith, Patricia A.
2012-01-01
VESsel GENeration (VESGEN) Analysis is an automated software that maps and quantifies effects of vascular regulators on vascular morphology by analyzing important vessel parameters. Quantification parameters include vessel diameter, length, branch points, density, and fractal dimension. For vascular trees, measurements are reported as dependent functions of vessel branching generation. VESGEN maps and quantifies vascular morphological events according to fractal-based vascular branching generation. It also relies on careful imaging of branching and networked vascular form. It was developed as a plug-in for ImageJ (National Institutes of Health, USA). VESGEN uses image-processing concepts of 8-neighbor pixel connectivity, skeleton, and distance map to analyze 2D, black-and-white (binary) images of vascular trees, networks, and tree-network composites. VESGEN maps typically 5 to 12 (or more) generations of vascular branching, starting from a single parent vessel. These generations are tracked and measured for critical vascular parameters that include vessel diameter, length, density and number, and tortuosity per branching generation. The effects of vascular therapeutics and regulators on vascular morphology and branching tested in human clinical or laboratory animal experimental studies are quantified by comparing vascular parameters with control groups. VESGEN provides a user interface to both guide and allow control over the users vascular analysis process. An option is provided to select a morphological tissue type of vascular trees, network or tree-network composites, which determines the general collections of algorithms, intermediate images, and output images and measurements that will be produced.
Chandwani, Prakash; Prajapati, Jayesh; Porwal, Sanjay; Khambhati, Bhavesh; Thakkar, Ashok
2015-02-01
Coronary artery disease is the most common catastrophic disease in India. The safety and effectiveness of dual vessel sirolimus-eluting stent (SES) implantation (used as an intervention in CAD) is currently unknown in Indian population. The purpose of this study was to investigate one year clinical outcomes of patients with dual vessel coronary artery disease after implantation of the Supralimus-Core SES, in a "real-world" setting. We evaluated 60 patients between April-2011 and August-2012, who underwent dual vessel percutaneous coronary intervention (PCI) with the Supralimus-Core SES implantation at the same index procedure. Dual vessels were defined as involvement of two major epicardial vessels (right, left anterior descending, circumflex, or left main coronary arteries) or one major epicardial vessel and a branch (≥2.5 mm in diameter) originating from another major epicardial vessel. The primary endpoint was target lesion failure (TLF) defined as the composite of cardiac death, myocardial infarction (MI), and clinically-driven target lesion revascularization (TLR) at one year. Secondary endpoint included combined (definite, probable and possible) stent thrombosis (ST). A total of 120 lesions were treated in 60 enrolled patients (mean age 56.0±9.2 y; 80.0% male) with average stent length of 23.1±8.5 mm. Among 60 patients, diabetes, hypertension and hypercholesterolemia were present in 15 (25.0%), 22 (36.7%) and 25 (41.7%) patients respectively. Indications for PCI were unstable angina in 30 (50.0%) patients and stable angina in 11 (18.3%) patients. Overall, 40 (33.3%) lesions were classified as complex (American College of Cardiology/American Heart Association type B2/C). The cumulative TLF rate was 5.0% (n=3) at one year. Cardiac death, MI and clinically-driven TLR occurred in 1 (1.7%), 0 (0%) and 2 (3.3%) patients, respectively at one year follow-up. The Kaplan-Meier curve of the freedom from overall events at one year was 95.0%. According to the Academic Research Consortium definition, there were no events of stent thrombosis during one year. Our study shows that, dual vessel Supralimus-Core SES implantation allows safe and effective treatment with low rates of TLF at one year follow-up in Indian population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankovich, N.J.; Lambert, T.; Zrimec, T.
A project is underway to develop automated methods of fusing cerebral magnetic resonance angiography (MRA) and x-ray angiography (XRA) for creating accurate visualizations used in planning treatment of vascular disease. The authors have developed a vascular phantom suitable for testing segmentation and fusion algorithms with either derived images (pseudo-MRA/pseudo-XRA) or actual MRA or XRA image sequences. The initial unilateral arterial phantom design, based on normal human anatomy, contains 48 tapering vascular segments with lumen diameters from 2.5 millimeter to 0.25 millimeter. The initial phantom used rapid prototyping technology (stereolithography) with a 0.9 millimeter vessel wall fabricated in an ultraviolet-cured plastic.more » The model fabrication resulted in a hollow vessel model comprising the internal carotid artery, the ophthalmic artery, and the proximal segments of the anterior, middle, and posterior cerebral arteries. The complete model was fabricated but the model`s lumen could not be cleared for vessels with less than 1 millimeter diameter. Measurements of selected vascular outer diameters as judged against the CAD specification showed an accuracy of 0.14 mm and precision (standard deviation) of 0.15 mm. The plastic vascular model produced provides a fixed geometric framework for the evaluation of imaging protocols and the development of algorithms for both segmentation and fusion.« less
Anatomic vascular phantom for the verification of MRA and XRA visualization and fusion
NASA Astrophysics Data System (ADS)
Mankovich, Nicholas J.; Lambert, Timothy; Zrimec, Tatjana; Hiller, John B.
1995-05-01
A project is underway to develop automated methods of fusing cerebral magnetic resonance angiography (MRA) and x-ray angiography (XRA) for creating accurate visualizations used in planning treatment of vascular disease. We have developed a vascular phantom suitable for testing segmentation and fusion algorithms with either derived images (psuedo-MRA/psuedo-XRA) or actual MRA or XRA image sequences. The initial unilateral arterial phantom design, based on normal human anatomy, contains 48 tapering vascular segments with lumen diameters from 2.5 millimeter to 0.25 millimeter. The initial phantom used rapid prototyping technology (stereolithography) with a 0.9 millimeter vessel wall fabricated in an ultraviolet-cured plastic. The model fabrication resulted in a hollow vessel model comprising the internal carotid artery, the ophthalmic artery, and the proximal segments of the anterior, middle, and posterior cerebral arteries. The complete model was fabricated but the model's lumen could not be cleared for vessels with less than 1 millimeter diameter. Measurements of selected vascular outer diameters as judged against the CAD specification showed an accuracy of 0.14 mm and precision (standard deviation) of 0.15 mm. The plastic vascular model produced provides a fixed geometric framework for the evaluation of imaging protocols and the development of algorithms for both segmentation and fusion.
NASA Astrophysics Data System (ADS)
Jansen, Sanne M.; de Bruin, Daniel M.; Faber, Dirk J.; Dobbe, Iwan J. G. G.; Heeg, Erik; Milstein, Dan M. J.; Strackee, Simon D.; van Leeuwen, Ton G.
2017-08-01
Patient morbidity and mortality due to hemodynamic complications are a major problem in surgery. Optical techniques can image blood flow in real-time and high-resolution, thereby enabling perfusion monitoring intraoperatively. We tested the feasibility and validity of laser speckle contrast imaging (LSCI), optical coherence tomography (OCT), and sidestream dark-field microscopy (SDF) for perfusion diagnostics in a phantom model using whole blood. Microvessels with diameters of 50, 100, and 400 μm were constructed in a scattering phantom. Perfusion was simulated by pumping heparinized human whole blood at five velocities (0 to 20 mm/s). Vessel diameter and blood flow velocity were assessed with LSCI, OCT, and SDF. Quantification of vessel diameter was feasible with OCT and SDF. LSCI could only visualize the 400-μm vessel, perfusion units scaled nonlinearly with blood velocity. OCT could assess blood flow velocity in terms of inverse OCT speckle decorrelation time. SDF was not feasible to measure blood flow; however, for diluted blood the measurements were linear with the input velocity up to 1 mm/s. LSCI, OCT, and SDF were feasible to visualize blood flow. Validated blood flow velocity measurements intraoperatively in the desired parameter (mL·g-1) remain challenging.
Solmaz, Ilker; Onal, Mehmet Bulent; Civelek, Erdinc; Kircelli, Atilla; Ongoru, Onder; Ugurel, Sahin; Erdogan, Ersin; Gonul, Engin
2011-01-01
the aim of this study was to assess and to compare the ability of intrathecal nicergoline and nimodipine in prevention of cerebral vasospasm in a rabbit model of subarachnoid hemorrhage (SAH). twenty male New Zealand white rabbits were allocated into four groups randomly. Subarachnoid hemorrhage was induced by injecting autologous blood into the cisterna magna. The treatment groups were as follows: (1) control [no SAH (n = 5)], (2) SAH only (n = 5), (3) SAH plus nimodipine (n = 5), and (4) SAH plus nicergoline (n = 5). there was a statistically significant difference between the mean basilar artery cross-sectional areas and the mean arterial wall thickness measurements of the control and SAH-only groups (p < 0.05). Basilar artery vessel diameter and luminal section areas in group 3 were significantly higher than in group 2 (p < 0.05). Basilar artery vessel diameter and basilar artery luminal section areas in group 4 were significantly higher than in group 2 (p < 0.05). There was no significant difference between basilar artery vessel diameter and basilar artery luminal section areas in group 3 and group 4. these findings demonstrate that intrathecal nicergoline has a vasodilatatory effect in an experimental model of SAH in rabbits but not more than that of nimodipine.
Washington, Chad W; Derdeyn, Colin P; Dhar, Rajat; Arias, Eric J; Chicoine, Michael R; Cross, DeWitte T; Dacey, Ralph G; Han, Byung Hee; Moran, Christopher J; Rich, Keith M; Vellimana, Ananth K; Zipfel, Gregory J
2016-02-01
Studies show that phosphodiesterase-V (PDE-V) inhibition reduces cerebral vasospasm (CVS) and improves outcomes after experimental subarachnoid hemorrhage (SAH). This study was performed to investigate the safety and effect of sildenafil (an FDA-approved PDE-V inhibitor) on angiographic CVS in SAH patients. A2-phase, prospective, nonrandomized, human trial was implemented. Subarachnoid hemorrhage patients underwent angiography on Day 7 to assess for CVS. Those with CVS were given 10 mg of intravenous sildenafil in the first phase of the study and 30 mg in the second phase. In both, angiography was repeated 30 minutes after infusion. Safety was assessed by monitoring neurological examination findings and vital signs and for the development of adverse reactions. For angiographic assessment, in a blinded fashion, pre- and post-sildenafil images were graded as "improvement" or "no improvement" in CVS. Unblinded measurements were made between pre- and post-sildenafil angiograms. Twelve patients received sildenafil; 5 patients received 10 mg and 7 received 30 mg. There were no adverse reactions. There was no adverse effect on heart rate or intracranial pressure. Sildenafil resulted in a transient decline in mean arterial pressure, an average of 17% with a return to baseline in an average of 18 minutes. Eight patients (67%) were found to have a positive angiographic response to sildenafil, 3 (60%) in the low-dose group and 5 (71%) in the high-dose group. The largest degree of vessel dilation was an average of 0.8 mm (range 0-2.1 mm). This corresponded to an average percentage increase in vessel diameter of 62% (range 0%-200%). The results from this Phase I safety and proof-of-concept trial assessing the use of intravenous sildenafil in patients with CVS show that sildenafil is safe and well tolerated in the setting of SAH. Furthermore, the angiographic data suggest that sildenafil has a positive impact on human CVS.
NASA Technical Reports Server (NTRS)
Askew, John C.
1994-01-01
An alternative to the immersion process for the electrodeposition of chromium from aqueous solutions on the inside diameter (ID) of long tubes is described. The Vessel Plating Process eliminates the need for deep processing tanks, large volumes of solutions, and associated safety and environmental concerns. Vessel Plating allows the process to be monitored and controlled by computer thus increasing reliability, flexibility and quality. Elimination of the trivalent chromium accumulation normally associated with ID plating is intrinsic to the Vessel Plating Process. The construction and operation of a prototype Vessel Plating Facility with emphasis on materials of construction, engineered and operational safety and a unique system for rinse water recovery are described.
Giglio, Nicholas C; Hutchens, Thomas C; Perkins, William C; Latimer, Cassandra; Ward, Arlen; Nau, William H; Fried, Nathaniel M
2014-03-01
Suture ligation with subsequent cutting of blood vessels to maintain hemostasis during surgery is time consuming and skill intensive. Energy-based electrosurgical and ultrasonic devices are often used to replace sutures and mechanical clips to provide rapid hemostasis and decrease surgery time. Some of these devices may create undesirably large collateral zones of thermal damage and tissue necrosis, or require separate mechanical blades for cutting. Infrared lasers are currently being explored as alternative energy sources for vessel sealing applications. In a previous study, a 1470-nm laser was used to seal vessels 1 to 6 mm in diameter in 5 s, yielding burst pressures of ∼500 mmHg. The purpose of this study was to provide vessel sealing times comparable with current energy-based devices, incorporate transection of sealed vessels, and demonstrate high vessel burst pressures to provide a safety margin for future clinical use. A 110-W, 1470-nm laser beam was transmitted through a fiber and beam shaping optics, producing a 90-W linear beam 3.0 by 9.5 mm for sealing (400 W/cm2), and 1.1 by 9.6 mm for cutting (1080 W/cm2). A two-step process sealed and then transected ex vivo porcine renal vessels (1.5 to 8.5 mm diameter) in a bench top setup. Seal and cut times were 1.0 s each. A burst pressure system measured seal strength, and histologic measurements of lateral thermal spread were also recorded. All blood vessels tested (n=55 seal samples) were sealed and cut, with total irradiation times of 2.0 s and mean burst pressures of 1305±783 mmHg. Additional unburst vessels were processed for histological analysis, showing a lateral thermal spread of 0.94±0.48 mm (n=14 seal samples). This study demonstrated that an optical-based system is capable of precisely sealing and cutting a wide range of porcine renal vessel sizes and, with further development, may provide an alternative to radiofrequency- and ultrasonic-based vessel sealing devices.
Scott, Andrew D; Keegan, Jennifer; Firmin, David N
2011-05-01
This study quantitatively assesses the effectiveness of retrospective beat-to-beat respiratory motion correction (B2B-RMC) at near 100% efficiency using high-resolution coronary artery imaging. Three-dimensional (3D) spiral images were obtained in a coronary respiratory motion phantom with B2B-RMC and navigator gating. In vivo, targeted 3D coronary imaging was performed in 10 healthy subjects using B2B-RMC spiral and navigator gated balanced steady-state free-precession (nav-bSSFP) techniques. Vessel diameter and sharpness in proximal and mid arteries were used as a measure of respiratory motion compensation effectiveness and compared between techniques. Phantom acquisitions with B2B-RMC were sharper than those acquired with navigator gating (B2B-RMC vs. navigator gating: 1.01±0.02 mm(-1) vs. 0.86±0.08 mm(-1), P<.05). In vivo B2B-RMC respiratory efficiency was significantly and substantially higher (99.7%±0.5%) than nav-bSSFP (44.0%±8.9%, P<.0001). Proximal and mid vessel sharpnesses were similar (B2B-RMC vs. nav-bSSFP, proximal: 1.00±0.14 mm(-1) vs. 1.08±0.11 mm(-1), mid: 1.01±0.11 mm(-1) vs. 1.05±0.12 mm(-1); both P=not significant [ns]). Mid vessel diameters were not significantly different (2.85±0.39 mm vs. 2.80±0.35 mm, P=ns), but proximal B2B-RMC diameters were slightly higher (2.85±0.38 mm vs. 2.70±0.34 mm, P<.05), possibly due to contrast differences. The respiratory efficiency of B2B-RMC is less variable and significantly higher than navigator gating. Phantom and in vivo vessel sharpness and diameter values suggest that respiratory motion compensation is equally effective. Copyright © 2011 Elsevier Inc. All rights reserved.
Scott, Andrew D.; Keegan, Jennifer; Firmin, David N.
2011-01-01
This study quantitatively assesses the effectiveness of retrospective beat-to-beat respiratory motion correction (B2B-RMC) at near 100% efficiency using high-resolution coronary artery imaging. Three-dimensional (3D) spiral images were obtained in a coronary respiratory motion phantom with B2B-RMC and navigator gating. In vivo, targeted 3D coronary imaging was performed in 10 healthy subjects using B2B-RMC spiral and navigator gated balanced steady-state free-precession (nav-bSSFP) techniques. Vessel diameter and sharpness in proximal and mid arteries were used as a measure of respiratory motion compensation effectiveness and compared between techniques. Phantom acquisitions with B2B-RMC were sharper than those acquired with navigator gating (B2B-RMC vs. navigator gating: 1.01±0.02 mm−1 vs. 0.86±0.08 mm−1, P<.05). In vivo B2B-RMC respiratory efficiency was significantly and substantially higher (99.7%±0.5%) than nav-bSSFP (44.0%±8.9%, P<.0001). Proximal and mid vessel sharpnesses were similar (B2B-RMC vs. nav-bSSFP, proximal: 1.00±0.14 mm−1 vs. 1.08±0.11 mm−1, mid: 1.01±0.11 mm−1 vs. 1.05±0.12 mm−1; both P=not significant [ns]). Mid vessel diameters were not significantly different (2.85±0.39 mm vs. 2.80±0.35 mm, P=ns), but proximal B2B-RMC diameters were slightly higher (2.85±0.38 mm vs. 2.70±0.34 mm, P<.05), possibly due to contrast differences. The respiratory efficiency of B2B-RMC is less variable and significantly higher than navigator gating. Phantom and in vivo vessel sharpness and diameter values suggest that respiratory motion compensation is equally effective. PMID:21292418
Regulation of human retinal blood flow by endothelin-1.
Polak, Kaija; Luksch, Alexandra; Frank, Barbara; Jandrasits, Kerstin; Polska, Elzbieta; Schmetterer, Leopold
2003-05-01
There is evidence from in vitro and animal studies that endothelin is a major regulator of retinal blood flow. We set out to characterize the role of the endothelin-system in the blood flow control of the human retina. Two studies in healthy subjects were performed. The study design was randomized, placebo-controlled, double-masked, balanced, two-way crossover in protocol A and three way-way crossover in protocol B. In protocol A 18 healthy male subjects received intravenous endothelin-1 (ET-1) in a dose of 2.5 ng kg (-1)min(-1) for 30 min or placebo on two different study days and retinal vessel diameters were measured. In protocol B 12 healthy male subjects received ET-1 in stepwise increasing doses of 0, 1.25, 2.5 and 5 ng kg (-1)min(-1) (each infusion step over 20 min) in co-infusion with the specific ET(A)-receptor antagonist BQ123 (60 microg min (-1)) or placebo or BQ123 alone investigating retinal vessel diameters, retinal blood velocity and retinal blood flow. Measurements of retinal vessel size were done with the Zeiss retinal vessel analyzer. Measurements of blood velocities were done with bi-directional laser Doppler velocimetry. From these measurements retinal blood flow was calculated. In protocol A exogenous ET-1 tended to decrease retinal arterial diameter, but this effect was not significant versus placebo. No effect on retinal venous diameter was seen. In protocol B retinal venous blood velocity and retinal blood flow was significantly reduced after administration of exogenous ET-1. These effects were significantly blunted when BQ-123 was co-administered. By contrast, BQ-123 alone had no effect on retinal hemodynamic parameters. Concluding, BQ123 antagonizes the effects of exogenously administered ET-1 on retinal blood flow in healthy subjects. In addition, the results of the present study are compatible with the hypothesis that ET-1 exerts its vasoconstrictor effects in the retina mainly on the microvessels.
46 CFR 117.70 - Ring life buoys.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Ring life buoys. 117.70 Section 117.70 Shipping COAST... Ring Life Buoys and Life Jackets § 117.70 Ring life buoys. (a) A vessel must have one or more ring life... one life buoy of not less than 510 millimeters (20 inches) in diameter; (2) A vessel of more than 7.9...
46 CFR 117.70 - Ring life buoys.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Ring life buoys. 117.70 Section 117.70 Shipping COAST... Ring Life Buoys and Life Jackets § 117.70 Ring life buoys. (a) A vessel must have one or more ring life... one life buoy of not less than 510 millimeters (20 inches) in diameter; (2) A vessel of more than 7.9...
Water Flow through Xylem: An Investigation of a Fluid Dynamics Principle Applied to Plants
ERIC Educational Resources Information Center
Rice, Stanley A.; McArthur, John
2004-01-01
A study was conducted to prove that a large blood or xylem vessel could conduct 256 times more fluid than a vessel or a pipe that is four times smaller. The result of this study proved that if arteriosclerosis causes an artery to loose half its effective diameter, the blood flow would be reduced by fifteen-sixteenths.
46 CFR 117.70 - Ring life buoys.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Ring life buoys. 117.70 Section 117.70 Shipping COAST... Ring Life Buoys and Life Jackets § 117.70 Ring life buoys. (a) A vessel must have one or more ring life... one life buoy of not less than 510 millimeters (20 inches) in diameter; (2) A vessel of more than 7.9...
46 CFR 117.70 - Ring life buoys.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Ring life buoys. 117.70 Section 117.70 Shipping COAST... Ring Life Buoys and Life Jackets § 117.70 Ring life buoys. (a) A vessel must have one or more ring life... one life buoy of not less than 510 millimeters (20 inches) in diameter; (2) A vessel of more than 7.9...
46 CFR 117.70 - Ring life buoys.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Ring life buoys. 117.70 Section 117.70 Shipping COAST... Ring Life Buoys and Life Jackets § 117.70 Ring life buoys. (a) A vessel must have one or more ring life... one life buoy of not less than 510 millimeters (20 inches) in diameter; (2) A vessel of more than 7.9...
Functional photoacoustic microscopy of diabetic vasculature
NASA Astrophysics Data System (ADS)
Krumholz, Arie; Wang, Lidai; Yao, Junjie; Wang, Lihong V.
2012-06-01
We used functional photoacoustic microscopy to image diabetes-induced damage to the microvasculature. To produce an animal model for Type 1 diabetes, we used streptozotocin (STZ), which is particularly toxic to the insulin-producing beta cells of the pancreas in mammals. A set number of ND4 Swiss Webster mice received intraperitoneal injections of STZ for five consecutive days at 50 mg/kg. Most mice developed a significant rise in blood glucose level (~400 mg/dL) within three weeks of the first injection. Changes in vasculature and hemodynamics were monitored for six weeks. The mouse ear was imaged with an optical-resolution photoacoustic microscope at a main blood vessel branch from the root of the ear. There are noticeable and measurable changes associated with the disease, including decreased vessel diameter and possible occlusion due to vessel damage and polyurea. We also observed an increase in the blood flow speed in the vein and a decrease in the artery, which could be due to compensation for the dehydration and vessel diameter changes. Functional and metabolic parameters such as hemoglobin oxygen saturation, oxygen extraction fraction, and oxygen consumption rate were also measured, but showed no significant change.
Functional photoacoustic microscopy of diabetic vasculature
Krumholz, Arie; Wang, Lidai; Yao, Junjie
2012-01-01
Abstract. We used functional photoacoustic microscopy to image diabetes-induced damage to the microvasculature. To produce an animal model for Type 1 diabetes, we used streptozotocin (STZ), which is particularly toxic to the insulin-producing beta cells of the pancreas in mammals. A set number of ND4 Swiss Webster mice received intraperitoneal injections of STZ for five consecutive days at 50 mg/kg. Most mice developed a significant rise in blood glucose level (∼400 mg/dL) within three weeks of the first injection. Changes in vasculature and hemodynamics were monitored for six weeks. The mouse ear was imaged with an optical-resolution photoacoustic microscope at a main blood vessel branch from the root of the ear. There are noticeable and measurable changes associated with the disease, including decreased vessel diameter and possible occlusion due to vessel damage and polyurea. We also observed an increase in the blood flow speed in the vein and a decrease in the artery, which could be due to compensation for the dehydration and vessel diameter changes. Functional and metabolic parameters such as hemoglobin oxygen saturation, oxygen extraction fraction, and oxygen consumption rate were also measured, but showed no significant change. PMID:22734725
On the flow through the normal fetal aortic arc at late gestation
NASA Astrophysics Data System (ADS)
Pekkan, Kerem; Nourparvar, Paymon; Yerneni, Srinivasu; Dasi, Lakshmi; de Zelicourt, Diane; Fogel, Mark; Yoganathan, Ajit
2006-11-01
During the fetal stage, the aortic arc is a complex junction of great vessels (right and left ventricular outflow tracks (RVOT, LVOT), pulmonary arteries (PA), ductus, head-neck vessels, decending aorta (Dao)) delicately distributing the oxygenated blood flow to the lungs and the body -preferential to the brain. Experimental and computational studies are performed in idealized models of the fetal aorta to understand and visualize the unsteady hemodynamics. Unsteady in vitro flow, generated by two peristaltic pumps (RVOT and LVOT) is visualized with two colored dyes and a red laser in a rigid glass model with physiological diameters. Helical flow patterns at the PA's and ductal shunting to the Dao are visualized. Computational fluid dynamics of the same geometry is modeled using the commercial code Fidap with porous boundary conditions representing systemic and pulmonary resistances (˜400000 tetrahedral elements). Combined (RVOT+LVOT) average flow rates ranging from 1.9 to 2.1-L/min for 34 to 38-weeks gestation were simulated with the Reynolds and Womersly numbers (Dao) of 500 and 8. Computational results are compared qualitatively with the flow visualizations at this target flow condition. Understanding fetal hemodynamics is critical for congenital heart defects, tissue engineering, fetal cardiac MRI and surgeries.
Mi, Hao-Yang; Jing, Xin; Yu, Emily; Wang, Xiaofeng; Li, Qian; Turng, Lih-Sheng
2018-02-01
The success of blood vessel transplants with vascular scaffolds (VSs) highly depends on their structure and mechanical properties. The fabrication of small diameter vascular scaffolds (SDVSs) mimicking the properties of native blood vessels has been a challenge. Herein, we propose a facile method to fabricate thermoplastic polyurethane (TPU)/polycaprolactone (PCL) hybrid SDVSs via electrospinning using a modified rotating collector. By varying the ratio between the TPU and the PCL, and changing the electrospinning volume, SDVSs with a wavy configuration and different properties could be obtained. Detailed investigation revealed that certain TPU/PCL hybrid SDVSs closely resembled the mechanical behaviors of blood vessels due to the presence of a wavy region and the combination of flexible TPU and rigid PCL, which mimicked the properties of elastin and collagen in blood vessels. The fabricated TPU/PCL SDVSs achieved lumen diameters of 1-3mm, wall thicknesses of 100-570µm, circumferential moduli of 1-6MPa, ultimate strengths of 2-8MPa, over 250% elongation-at-break values, toe regions of 5.3-9.4%, high recoverability, and compliances close to those of human veins. Moreover, these TPU/PCL SDVSs possessed sufficient suture retention strength and burst pressure to fulfill transplantation requirements and maintain normal blood flow. Human endothelial cell culture revealed good biocompatibility of the scaffolds, and cells were able to grow on the inner surface of the tubular scaffolds, indicating promising prospects for use as tissue-engineered vascular grafts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Relation between diameter and flow in major branches of the arch of the aorta.
Zamir, M; Sinclair, P; Wonnacott, T H
1992-11-01
In the analysis of arterial branching the classical "cube law' has provided a working model for the relation between the diameter of a blood vessel and the flow which the vessel carries on a long-term basis. The law has shown good agreement with biological data, but questions remain regarding its applicability to all levels of the arterial tree. The present study tests the hypothesis that the cube law may not be valid in the first few generations of the arterial tree, where vessel capacitance and gross anatomy may play important roles. Biological data have shown some support for this hypothesis in the past but the heterogeneity characteristic of past data has not allowed a conclusive test so far. We present new data which have been obtained from the same location on the arterial tree and in sufficient number to make this test possible for the first time. Also, while past tests have been based primarily on correlation of the measured data with an assumed power law, we show here that this can be misleading. The present data allow a simpler test which does not involve correlation and which leads to more direct conclusions. For the vessels surveyed, the results show unequivocally that the relation between diameter and flow is governed by a 'square law' rather than the classical cube law. Coupled with past findings this suggests that the square law may apply at the first few levels of the arterial tree, while the cube law continues from there to perhaps the precapillary levels.
Neutronics performance and activation calculation of dense tungsten granular target for China-ADS
NASA Astrophysics Data System (ADS)
Zhang, Yaling; Li, Jianyang; Zhang, Xunchao; Cai, Hanjie; Yan, Xuesong; Yu, Lin; Fu, Fen; Lin, Ping; Gao, Xiaofei; Zhang, Zhilei; Zhang, Yanshi; Yang, Lei
2017-11-01
Spallation target, which constitutes the physical and functional interface between the high power accelerator and the subcritical core, is one of the most important components in Accelerator Driven Subcritical System (ADS). In this paper, we investigated the neutronics performance, the radiation damage and the activation of dense tungsten granular flow spallation target by using the Monte Carlo programs GMT and FLUKA at the proton energy of 250 MeV with a beam current of 10 mA . First, the leaking neutron yield, leaking neutron energy spectrum and laterally leaking neutron distribution at several time nodes and with different target parameters are explored. After that, the displacement per atom (DPA) and the helium/hydrogen production for tungsten grains and structural materials with stainless steel 316L are estimated. Finally, the radioactivity, residual dose rate and afterheat of granular target are presented. Results indicate that granule diameter below 1 cm and the beam profile diameter have negligible impact on neutronics performance, while the target diameter and volume fraction of grain have notable influence. The maximum DPA for target vessel (beam tube) is about 1.0 (1.6) DPA/year in bare target, and increased to 2.6 (2.8) DPA/year in fission environment. Average DPA for tungsten grains is relatively low. The decline rate of radioactivity and afterheat with cooling time grows with the decrease of the irradiation time.
Automated detection of neovascularization for proliferative diabetic retinopathy screening.
Roychowdhury, Sohini; Koozekanani, Dara D; Parhi, Keshab K
2016-08-01
Neovascularization is the primary manifestation of proliferative diabetic retinopathy (PDR) that can lead to acquired blindness. This paper presents a novel method that classifies neovascularizations in the 1-optic disc (OD) diameter region (NVD) and elsewhere (NVE) separately to achieve low false positive rates of neovascularization classification. First, the OD region and blood vessels are extracted. Next, the major blood vessel segments in the 1-OD diameter region are classified for NVD, and minor blood vessel segments elsewhere are classified for NVE. For NVD and NVE classifications, optimal region-based feature sets of 10 and 6 features, respectively, are used. The proposed method achieves classification sensitivity, specificity and accuracy for NVD and NVE of 74%, 98.2%, 87.6%, and 61%, 97.5%, 92.1%, respectively. Also, the proposed method achieves 86.4% sensitivity and 76% specificity for screening images with PDR from public and local data sets. Thus, the proposed NVD and NVE detection methods can play a key role in automated screening and prioritization of patients with diabetic retinopathy.
NASA Astrophysics Data System (ADS)
Beecken, J.; Mellqvist, J.; Salo, K.; Ekholm, J.; Jalkanen, J.-P.; Johansson, L.; Litvinenko, V.; Volodin, K.; Frank-Kamenetsky, D. A.
2014-10-01
Emission factors of SO2, NOx and size distributed particle numbers were measured for approximately 300 different ships in the Gulf of Finland and Neva Bay area during two campaigns in August/September 2011 and June/July 2012. The measurements were carried out from a harbor vessel and from an MI-8 helicopter downwind of passing ships. Other measurements were carried out from shore sites near the island of Kronstadt and along the river Neva in the city area of Saint Petersburg. Most ships were running at reduced speed (10 knots), i.e. not at their optimal load. Vessels for domestic and international shipping were monitored. It was seen that the distribution of the SO2 emission factors is bi-modal with averages of 4.6 gSO2 kgfuel-1 and 18.2 gSO2 kgfuel-1 for the lower and the higher mode, respectively. The emission factors show compliance with the 1% fuel sulfur content SECA limit for 90% of the vessels in 2011 and 97% in 2012. The distribution of the NOx emission factor is mono-modal with an average of 58 gNOx kgfuel-1. The corresponding emission related to the generated power yields an average of 12.1 gNOx kWh-1. The distribution of the emission factors for particulate number shows that nearly 90% of all particles in the 5.6 nm to 10 μm size range were below 70 nm in diameter. The distribution of the corresponding emission factors for the mass indicates two separated main modes, one for particles between 30 and 300 nm the other above 2 μm. The average particle emission factors were found to be in the range from 0.7 to 2.7 × 1016 particles kgfuel-1 and 0.2 to 3.4 gPM kgfuel-1, respectively. The NOx and particulate emissions are comparable with other studies. The measured emission factors were compared, for individual ships, to modeled ones using the Ship Traffic Emission Assessment Model (STEAM) of the Finnish Meteorological Institute. A reasonably good agreement for gaseous sulfur and nitrogen emissions can be seen for ships in international traffic, but significant deviations are found for inland vessels. Considering particulate mass, the modeled data is about two to three times above the measured results, which probably reflects the assumptions made in the modeled fuel sulfur content. The sulfur contents in the fuel retrieved from the measurements were lower than the previously used assumptions by the city of Saint Petersburg when carrying out atmospheric modeling and using these measurements it was possible to better assess the impact of shipping on air quality.
NASA Astrophysics Data System (ADS)
Beecken, J.; Mellqvist, J.; Salo, K.; Ekholm, J.; Jalkanen, J.-P.; Johansson, L.; Litvinenko, V.; Volodin, K.; Frank-Kamenetsky, D. A.
2015-05-01
Emission factors of SO2, NOx and size-distributed particle numbers were measured for approximately 300 different ships in the Gulf of Finland and Neva Bay area during two campaigns in August/September 2011 and June/July 2012. The measurements were carried out from a harbor vessel and from an Mi-8 helicopter downwind of passing ships. Other measurements were carried out from shore sites near the island of Kronstadt and along the Neva River in the urban area of Saint Petersburg. Most ships were running at reduced speed (10 kn), i.e., not at their optimal load. Vessels for domestic and international shipping were monitored. It was seen that the distribution of the SO2 emission factors is bi-modal, with averages of 4.6 and 18.2 gSO2 kgfuel-1 for the lower and the higher mode, respectively. The emission factors show compliance with the 1% fuel sulfur content Sulfur Emission Control Areas (SECA) limit for 90% of the vessels in 2011 and 97% in 2012. The distribution of the NOx emission factor is mono-modal, with an average of 58 gNOx kgfuel-1. The corresponding emission related to the generated power yields an average of 12.1 gNOx kWh-1. The distribution of the emission factors for particulate number shows that nearly 90% of all particles in the 5.6 nm to 10 μm size range were below 70 nm in diameter. The distribution of the corresponding emission factors for the mass indicates two separated main modes, one for particles between 30 and 300 nm and the other for above 2 μm. The average particle emission factors were found to be in the range from 0.7 to 2.7 × 1016 particles kgfuel-1 and 0.2 to 3.4 gPM kgfuel-1, respectively. The NOx and particulate emissions are comparable with other studies. The measured emission factors were compared, for individual ships, to modeled ones using the Ship Traffic Emission Assessment Model (STEAM) of the Finnish Meteorological Institute. A reasonably good agreement for gaseous sulfur and nitrogen emissions can be seen for ships in international traffic, but significant deviations are found for inland vessels. Regarding particulate mass, the values of the modeled data are about 2-3 times higher than the measured results, which probably reflects the assumptions made in the modeled fuel sulfur content. The sulfur contents in the fuel retrieved from the measurements were lower than the previously used assumptions by the City of Saint Petersburg when carrying out atmospheric modeling, and using these measurements it was possible to better assess the impact of shipping on air quality.
Histopathological findings in colorectal liver metastases after electrochemotherapy
Gasljevic, Gorana; Edhemovic, Ibrahim; Cemazar, Maja; Brecelj, Erik; Gadzijev, Eldar M.; Music, Maja M.
2017-01-01
Electrochemotherapy of colorectal liver metastases has been proven to be feasible, safe and effective in a phase I/II study. In that study, a specific group of patients underwent two-stage operation, and the detailed histopathological evaluation of the resected tumors is presented here. Regressive changes in electrochemotherapy-treated liver metastases were evaluated after the second operation (in 8–10 weeks) in 7 patients and 13 metastases when the treated metastases were resected. Macroscopic and microscopic changes were analyzed. Electrochemotherapy induced coagulation necrosis in the treated area encompassing both tumor and a narrow band of normal tissue. The area became necrotic, encapsulated in a fibrous envelope while preserving the functionality of most of the vessels larger than 5 mm in diameter and a large proportion of biliary structures, but the smaller blood vessels displayed various levels of damage. At the time of observation, 8–10 weeks after electrochemotherapy, regenerative changes were already seen in the peripheral parts of the treated area. This study demonstrates regressive changes in the whole electrochemotherapy-treated area of the liver. Further evidence of disruption of vessels less than 5 mm in diameter and preservation of the larger vessels by electrochemotherapy is provided. These findings are important because electrochemotherapy has been indicated for the therapy of metastases near major blood vessels in the liver to provide a safe approach with good antitumor efficacy. PMID:28686650
Histopathological findings in colorectal liver metastases after electrochemotherapy.
Gasljevic, Gorana; Edhemovic, Ibrahim; Cemazar, Maja; Brecelj, Erik; Gadzijev, Eldar M; Music, Maja M; Sersa, Gregor
2017-01-01
Electrochemotherapy of colorectal liver metastases has been proven to be feasible, safe and effective in a phase I/II study. In that study, a specific group of patients underwent two-stage operation, and the detailed histopathological evaluation of the resected tumors is presented here. Regressive changes in electrochemotherapy-treated liver metastases were evaluated after the second operation (in 8-10 weeks) in 7 patients and 13 metastases when the treated metastases were resected. Macroscopic and microscopic changes were analyzed. Electrochemotherapy induced coagulation necrosis in the treated area encompassing both tumor and a narrow band of normal tissue. The area became necrotic, encapsulated in a fibrous envelope while preserving the functionality of most of the vessels larger than 5 mm in diameter and a large proportion of biliary structures, but the smaller blood vessels displayed various levels of damage. At the time of observation, 8-10 weeks after electrochemotherapy, regenerative changes were already seen in the peripheral parts of the treated area. This study demonstrates regressive changes in the whole electrochemotherapy-treated area of the liver. Further evidence of disruption of vessels less than 5 mm in diameter and preservation of the larger vessels by electrochemotherapy is provided. These findings are important because electrochemotherapy has been indicated for the therapy of metastases near major blood vessels in the liver to provide a safe approach with good antitumor efficacy.
Onishi, Takayuki; Onishi, Yuko; Kobayashi, Isshi; Umezawa, Shigeo; Niwa, Akihiro
2018-06-18
The aim of this study is to validate the efficacy of drug-coated balloons (DCBs) for real-world de novo small vessel diseases including chronic total occlusion and bifurcation. DCB angioplasty has been reported to be effective in the treatment of de novo small vessel disease. However, the number of reports that have focused on complex lesions is limited. This observational study comprised consecutive patients who underwent DCB angioplasty for de novo small vessel disease with a reference diameter of less than 2.5 mm by visual estimation. Outcome parameters included late lumen loss, restenosis rate, and major adverse cardiac events, such as cardiac death, non-fatal myocardial infarction, and target lesion revascularization (TLR). Fifty-two patients underwent DCB angioplasty for 59 lesions with a reference vessel diameter of 1.93 ± 0.63 mm. Thirty-eight of the lesions (69%) were classified as type B2/C, including chronic total occlusions (20%) and bifurcations (33%). At the 8-month follow-up, late lumen loss was - 0.01 ± 0.44 mm with a restenosis rate of 20%. No cardiac deaths or myocardial infarctions were reported and only 5 (9%) angiographically driven TLRs were reported. DCB angioplasty offered an acceptable 8-month lumen patency and a stable clinical outcome for real-world complex de novo coronary diseases.
Rapid infrared laser sealing and cutting of porcine renal vessels, ex vivo
NASA Astrophysics Data System (ADS)
Giglio, Nicholas C.; Hutchens, Thomas C.; Perkins, William C.; Latimer, Cassandra; Ward, Arlen; Nau, William H.; Fried, Nathaniel M.
2014-03-01
Suture ligation with subsequent cutting of blood vessels to maintain hemostasis during surgery is time consuming and skill intensive. Energy-based, electrosurgical and ultrasonic devices are often used to replace sutures and mechanical clips to provide rapid hemostasis, and decrease surgical time. Some of these devices may create undesirably large collateral zones of thermal damage and tissue necrosis, or require separate mechanical blades for cutting. Infrared lasers are currently being explored as alternative energy sources for vessel sealing applications. In a previous study, a 1470-nm laser was used to seal vessels of 1-6 mm in diameter in 5 s, yielding burst pressures of ~ 500 mmHg. The purpose of this study was to provide faster sealing, incorporate transection of the sealed vessels, and increase the burst pressure. A 110-Watt, 1470-nm laser beam was transmitted through a fiber and beam shaping optics, producing a linear beam 3.0 mm by 9.5 mm for sealing, and 1.1 mm by 9.6 mm for cutting (FWHM). A twostep process sealed then transected ex vivo porcine renal vessels (1-8.5 mm diameter) in a bench top setup. Seal and cut times were 1.0 s each. A standard burst pressure system measured resulting seal strength, and gross and histologic thermal damage measurements were also recorded. All blood vessels tested (n = 30) were sealed and cut, with total irradiation times of 2.0 s, mean burst pressures > 1000 mmHg (compared to normal systolic blood pressure of 120 mmHg), and combined seal/collateral thermal coagulation zones of 2-3 mm. The results of this study demonstrated that an optical-based system is capable of precisely sealing and cutting a wide range of porcine renal vessel sizes, and with further development, may provide an alternative to radiofrequency and ultrasound-based vessel sealing devices.
Kurata, Naoya; Iida, Osamu; Shiraki, Tatsuya; Fujita, Masashi; Masuda, Masaharu; Okamoto, Shin; Ishihara, Takayuki; Nanto, Kiyonori; Kanda, Takashi; Sunaga, Akihiro; Tsujimura, Takuya; Takahara, Mitsuyoshi; Mano, Toshiaki
2018-04-25
Although stent-to-vessel (S/V) diameter ratio has been described as a restenotic factor after superficial femoral artery (SFA) stenting, the reference vessel diameter is commonly measured distally at a healthy site. It remains unclear whether S/V ratio assessed at the lesion site would be more predictive than that assessed distally at a healthy site.Methods and Results:A total of 117 patients (mean age, 73±7 years; 74% male) who underwent successful nitinol stent implantation in SFA lesions (mean lesion length, 172±104 mm) on intravascular ultrasound (IVUS) were retrospectively analyzed. S/V ratio at the proximal and distal healthy site, and at the smallest lesion site, was evaluated on IVUS. One-year restenosis predictors were evaluated on multivariate analysis. Mean S/V diameter ratio on IVUS at proximal and distal healthy sites, and at the lesion site, was 0.98±0.11, 1.02±0.11 and 1.15±0.16, respectively. One-year primary patency was 77%. On multivariate analysis, lesion length (OR, 1.06 per 10-mm increment; P=0.046) and S/V ratio measured at the lesion site (OR, 1.34 per 0.1 increment; P=0.032), but not that at the distal healthy site (OR, 1.05 per 0.1 increment; P=0.705), were significantly associated with 1-year restenosis. S/V ratio assessed on IVUS at the lesion site, but not at the distal healthy site, was independently associated with 1-year restenosis after SFA stenting.
Fabrication of micro-alginate gel tubes utilizing micro-gelatin fibers
NASA Astrophysics Data System (ADS)
Sakaguchi, Katsuhisa; Arai, Takafumi; Shimizu, Tatsuya; Umezu, Shinjiro
2017-05-01
Tissues engineered utilizing biofabrication techniques have recently been the focus of much attention, because these bioengineered tissues have great potential to improve the quality of life of patients with various hard-to-treat diseases. Most tissues contain micro-tubular structures including blood vessels, lymphatic vessels, and bile canaliculus. Therefore, we bioengineered a micro diameter tube using alginate gel to coat the core gelatin gel. Micro-gelatin fibers were fabricated by the coacervation method and then coated with a very thin alginate gel layer by dipping. A micro diameter alginate tube was produced by dissolving the core gelatin gel. Consequently, these procedures led to the formation of micro-alginate gel tubes of various shapes and sizes. This biofabrication technique should contribute to tissue engineering research fields.
Basic investigation of vascular interventional radiology (IR) using large rabbits.
Nitta, Norihisa; Sonoda, Akinaga; Nitta-Seko, Ayumi; Ohta, Shinichi; Tsuchiya, Keiko; Tanaka, Toyohiko; Kanasaki, Shuzo; Mukaisho, Kenichi; Takahashi, Masashi; Murata, Kiyoshi
2009-10-01
The purpose of this study was to determine the usefulness of large rabbits for basic vascular interventional radiology (IR) experiments. We used 5 Akita large rabbits (Akita) and 5 Japanese white rabbits (JW). We conducted measurements of vessel diameters such as the aorta, and the iliac, renal, superior mesenteric, celiac, and proper hepatic arteries, and of the growth rates of VX2 liver tumors. There were significant differences between Akita and JW in the diameters of the thoracic aorta, lower abdominal aorta, and celiac artery. In other blood vessels, no significant differences were found. There was no difference in the growth rates of the VX2 tumors between Akita and JW. The possibility that Akita large rabbits could be utilized for vascular IR was demonstrated.
Automated analysis of brachial ultrasound time series
NASA Astrophysics Data System (ADS)
Liang, Weidong; Browning, Roger L.; Lauer, Ronald M.; Sonka, Milan
1998-07-01
Atherosclerosis begins in childhood with the accumulation of lipid in the intima of arteries to form fatty streaks, advances through adult life when occlusive vascular disease may result in coronary heart disease, stroke and peripheral vascular disease. Non-invasive B-mode ultrasound has been found useful in studying risk factors in the symptom-free population. Large amount of data is acquired from continuous imaging of the vessels in a large study population. A high quality brachial vessel diameter measurement method is necessary such that accurate diameters can be measured consistently in all frames in a sequence, across different observers. Though human expert has the advantage over automated computer methods in recognizing noise during diameter measurement, manual measurement suffers from inter- and intra-observer variability. It is also time-consuming. An automated measurement method is presented in this paper which utilizes quality assurance approaches to adapt to specific image features, to recognize and minimize the noise effect. Experimental results showed the method's potential for clinical usage in the epidemiological studies.
Wu, Fang; Tian, Shu-Ping; Jin, Xin; Jing, Rui; Yang, Yue-Qing; Jin, Mei; Zhao, Shao-Hong
2017-10-01
To evaluate CT and histopathologic features of lung adenocarcinoma with pure ground-glass nodule (pGGN) ≤10 mm in diameter. CT appearances of 148 patients (150 lesions) who underwent curative resection of lung adenocarcinoma with pGGN ≤10 mm (25 atypical adenomatous hyperplasias, 42 adenocarcinoma in situs, 38 minimally invasive adenocarcinomas, and 45 invasive pulmonary adenocarcinomas) were analyzed for lesion size, density, bubble-like sign, air bronchogram, vessel changes, margin, and tumour-lung interface. CT characteristics were compared among different histopathologic subtypes. Univariate and multivariate analysis were used to assess the relationship between CT characteristics of pGGN and lesion invasiveness, respectively. There were statistically significant differences among histopathologic subtypes in lesion size, vessel changes, and tumour-lung interface (P<0.05). Univariate analysis revealed significant differences of vessel changes, margin and tumour-lung interface between preinvasive and invasive lesions (P<0.05). Logistic regression analysis showed that the vessel changes, unsmooth margin and clear tumour-lung interface were significant predictive factors for lesion invasiveness, with odds ratios (95% CI) of 2.57 (1.17-5.62), 1.83 (1.25-2.68) and 4.25 (1.78-10.14), respectively. Invasive lesions are found in 55.3% of subcentimeter pGGNs in our cohort. Vessel changes, unsmooth margin, and clear lung-tumour interface may indicate the invasiveness of lung adenocarcinoma with subcentimeter pGGN. • Invasive lesions were found in 55.3% of lung adenocarcinomas with subcentimeter pGGNs • Lesion size, vessel changes, and tumour-lung interface showed different among histopathologic subtypes • Vessel changes, unsmooth margin and clear tumour-lung interface were predictors for lesion invasiveness.
A new fundamental bioheat equation for muscle tissue--part II: Temperature of SAV vessels.
Zhu, Liang; Xu, Lisa X; He, Qinghong; Weinbaum, Sheldon
2002-02-01
In this study, a new theoretical framework was developed to investigate temperature variations along countercurrent SAV blood vessels from 300 to 1000 microm diameter in skeletal muscle. Vessels of this size lie outside the range of validity of the Weinbaum-Jiji bioheat equation and, heretofore, have been treated using discrete numerical methods. A new tissue cylinder surrounding these vessel pairs is defined based on vascular anatomy, Murray's law, and the assumption of uniform perfusion. The thermal interaction between the blood vessel pair and surrounding tissue is investigated for two vascular branching patterns, pure branching and pure perfusion. It is shown that temperature variations along these large vessel pairs strongly depend on the branching pattern and the local blood perfusion rate. The arterial supply temperature in different vessel generations was evaluated to estimate the arterial inlet temperature in the modified perfusion source term for the s vessels in Part I of this study. In addition, results from the current research enable one to explore the relative contribution of the SAV vessels and the s vessels to the overall thermal equilibration between blood and tissue.
Yang, Santsun; Eto, Hitomi; Kato, Harunosuke; Doi, Kentaro; Kuno, Shinichiro; Kinoshita, Kahori; Ma, Hsu; Tsai, Chi-Han; Chou, Wan-Ting; Yoshimura, Kotaro
2013-12-01
Multipotent stem/progenitor cells localize perivascularly in many organs and vessel walls. These tissue-resident stem/progenitor cells differentiate into vascular endothelial cells, pericytes, and other mesenchymal lineages, and participate in physiological maintenance and repair of vasculatures. In this study, we characterized stromal vascular cells obtained through the explant culture method from three different vessel walls in humans: arterial wall (ART; >500 μm in diameter), venous wall (VN; >500 μm in diameter), and small vessels in adipose tissue (SV; arterioles and venules, <100 μm in diameter). These were examined for functionality and compared with adipose-derived stem/stromal cells (ASCs). All stromal vascular cells of different origins presented fibroblast-like morphology and we could not visually discriminate one population from another. Flow cytometry showed that the cultured population heterogeneously expressed a variety of surface antigens associated with stem/progenitor cells, but CD105 was expressed by most cells in all groups, suggesting that the cells generally shared the characteristics of mesenchymal stem cells. Our histological and flow cytometric data suggested that the main population of vessel wall-derived stromal vascular cells were CD34(+)/CD31(-) and came from the tunica adventitia and areola tissue surrounding the adventitia. CD271 (p75NTR) was expressed by the vasa vasorum in the VN adventitia and by a limited population in the adventitia of SV. All three populations differentiated into multiple lineages as did ASCs. ART cells induced the largest quantity of calcium formation in the osteogenic medium, whereas ASCs showed the greatest adipogenic differentiation. SV and VN stromal cells had greater potency for network formation than did ART stromal cells. In conclusion, the three stromal vascular populations exhibited differential functional properties. Our results have clinical implications for vascular diseases such as arterial wall calcification and possible applications to regenerative therapies involving each vessel wall-resident stromal population.
Imakuma, E S; Bordini, A L; Millan, L S; Massarollo, P C B; Caldini, E T E G
2014-01-01
In living donor liver transplantation, the right-sided graft presents thin and short vessels, bringing forward a more difficult anastomosis. In these cases, an interpositional arterial autograft can be used to favor the performance of the arterial anastomosis, making the procedure easier and avoiding surgical complications. We compared the inferior mesenteric artery (IMA), the splenic artery (SA), the inferior epigastric artery (IEA), the descending branch of the lateral circumflex femoral artery (LCFA), and the proper hepatic artery (PHA) as options for interpositional autograft in living donor liver transplantation. Segments of at least 3 cm of all 5 arteries were harvested from 16 fresh adult cadavers from both genders through standardized dissection. The analyzed measures were proximal and distal diameter and length. The proximal diameter of the RHA and the distal diameter of the SA, IMA, IEA and the LCFA were compared to the distal diameter of the RHA. The proximal and distal diameters of the SA, IEA and LCFA were compared to study caliber gain of each artery. All arteries except the IMA showed statistical significant difference in relation to the RHA in terms of diameter. Regarding caliber gain, the arteries demonstrated statistical significant difference. All the harvested arteries except PHA were 3 cm in length. The IMA demonstrated the best compatibility with the RHA in terms of diameter and showed sufficient length to be employed as interpositional graft. The PHA, the SA, the IEA and the LCFA presented statistically significant different diameters when compared to the RHA. Among these vessels, only the PHA did not show sufficient mean length. Copyright © 2014 Elsevier Inc. All rights reserved.
Doppler optical coherence tomography of retinal circulation.
Tan, Ou; Wang, Yimin; Konduru, Ranjith K; Zhang, Xinbo; Sadda, SriniVas R; Huang, David
2012-09-18
Noncontact retinal blood flow measurements are performed with a Fourier domain optical coherence tomography (OCT) system using a circumpapillary double circular scan (CDCS) that scans around the optic nerve head at 3.40 mm and 3.75 mm diameters. The double concentric circles are performed 6 times consecutively over 2 sec. The CDCS scan is saved with Doppler shift information from which flow can be calculated. The standard clinical protocol calls for 3 CDCS scans made with the OCT beam passing through the superonasal edge of the pupil and 3 CDCS scan through the inferonal pupil. This double-angle protocol ensures that acceptable Doppler angle is obtained on each retinal branch vessel in at least 1 scan. The CDCS scan data, a 3-dimensional volumetric OCT scan of the optic disc scan, and a color photograph of the optic disc are used together to obtain retinal blood flow measurement on an eye. We have developed a blood flow measurement software called "Doppler optical coherence tomography of retinal circulation" (DOCTORC). This semi-automated software is used to measure total retinal blood flow, vessel cross section area, and average blood velocity. The flow of each vessel is calculated from the Doppler shift in the vessel cross-sectional area and the Doppler angle between the vessel and the OCT beam. Total retinal blood flow measurement is summed from the veins around the optic disc. The results obtained at our Doppler OCT reading center showed good reproducibility between graders and methods (<10%). Total retinal blood flow could be useful in the management of glaucoma, other retinal diseases, and retinal diseases. In glaucoma patients, OCT retinal blood flow measurement was highly correlated with visual field loss (R(2)>0.57 with visual field pattern deviation). Doppler OCT is a new method to perform rapid, noncontact, and repeatable measurement of total retinal blood flow using widely available Fourier-domain OCT instrumentation. This new technology may improve the practicality of making these measurements in clinical studies and routine clinical practice.
Fang, Danqi; Tang, Fang Yao; Huang, Haifan; Cheung, Carol Y; Chen, Haoyu
2018-05-29
To investigate the repeatability, interocular correlation and agreement of quantitative swept-source optical coherence tomography angiography (SS-OCTA) metrics in healthy subjects. Thirty-three healthy normal subjects were enrolled. The macula was scanned four times by an SS-OCTA system using the 3 mm×3 mm mode. The superficial capillary map images were analysed using a MATLAB program. A series of parameters were measured: foveal avascular zone (FAZ) area, FAZ perimeter, FAZ circularity, parafoveal vessel density, fractal dimension and vessel diameter index (VDI). The repeatability of four scans was determined by intraclass correlation coefficient (ICC). Then the averaged results were analysed for intereye difference, correlation and agreement using paired t-test, Pearson's correlation coefficient (r), ICC and Bland-Altman plot. The repeatability assessment of the macular metrics exported high ICC values (ranged from 0.853 to 0.996). There is no statistically significant difference in the OCTA metrics between the two eyes. FAZ area (ICC=0.961, r=0.929) and FAZ perimeter (ICC=0.884, r=0.802) showed excellent binocular correlation. Fractal dimension (ICC=0.732, r=0.578) and VDI (ICC=0.707, r=0.547) showed moderate binocular correlation, while parafoveal vessel density had poor binocular correlation. Bland-Altman plots showed the range of agreement was from -0.0763 to 0.0954 mm 2 for FAZ area and from -0.0491 to 0.1136 for parafoveal vessel density. The macular metrics obtained using SS-OCTA showed excellent repeatability in healthy subjects. We showed high intereye correlation in FAZ area and perimeter, moderate correlation in fractal dimension and VDI, while vessel density had poor correlation in normal healthy subjects. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Technical Reports Server (NTRS)
Hamstad, M. A.
1978-01-01
Two hundred and fifty Aramid fiber/epoxy pressure vessels were filament-wound over spherical aluminum mandrels under controlled conditions typical for advanced filament-winding. A random set of 30 vessels was proof-tested to 74% of the expected burst pressure; acoustic emission data were obtained during the proof test. A specially designed fixture was used to permit in situ calibration of the acoustic emission system for each vessel by the fracture of a 4-mm length of pencil lead (0.3 mm in diameter) which was in contact with the vessel. Acoustic emission signatures obtained during testing showed larger than expected variabilities in the mechanical damage done during the proof tests. To date, identification of the cause of these variabilities has not been determined.
CAVITATION THRESHOLD OF MICROBUBBLES IN GEL TUNNELS BY FOCUSED ULTRASOUND
Sassaroli, E.; Hynynen, K.
2007-01-01
The investigation of inertial cavitation in micro-tunnels has significant implications for the development of therapeutic applications of ultrasound such as ultrasound-mediated drug and gene delivery. The threshold for inertial cavitation was investigated using a passive cavitation detector with a center frequency of 1 MHz. Micro-tunnels of various diameters (90 to 800 μm) embedded in gel were fabricated and injected with a solution of Optison™ contrast agent of concentrations 1.2% and 0.2% diluted in water. An ultrasound pulse of duration 500 ms and center frequency 1.736 MHz was used to insonate the microbubbles. The acoustic pressure was increased at one second intervals until broadband noise emission was detected. The pressure threshold at which broadband noise emission was observed was found to be dependent on the diameter of the micro-tunnels, with an average increase of 1.2 to 1.5 between the smallest and the largest tunnels, depending on the microbubble concentration. The evaluation of inertial cavitation in gel tunnels rather than tubes provides a novel opportunity to investigate microbubble collapse in a situation that simulates in vivo blood vessels better than tubes with solid walls do. PMID:17590501
Oxygen Saturation in Closed-Globe Blunt Ocular Trauma
Long, Chongde; Wen, Xin; Gao, Qianying
2016-01-01
Purpose. To evaluate the oxygen saturation in retinal blood vessels in patients after closed-globe blunt ocular trauma. Design. Retrospective observational case series. Methods. Retinal oximetry was performed in both eyes of 29 patients with unilateral closed-globe blunt ocular trauma. Arterial oxygen saturation (SaO2), venous oxygen saturation (SvO2), arteriovenous difference in oxygen saturation (SO2), arteriolar diameter, venular diameter, and arteriovenous difference in diameter were measured. Association parameters including age, finger pulse oximetry, systolic pressure, diastolic pressure, and heart rate were analyzed. Results. The mean SaO2 in traumatic eyes (98.1% ± 6.8%) was not significantly different from SaO2 in unaffected ones (95.3% ± 7.2%) (p = 0.136). Mean SvO2 in traumatic eyes (57.1% ± 10.6%) was significantly lower than in unaffected ones (62.3% ± 8.4%) (p = 0.044). The arteriovenous difference in SO2 in traumatic eyes (41.0% ± 11.2%) was significantly larger than in unaffected ones (33.0% ± 6.9%) (p = 0.002). No significant difference was observed between traumatic eyes and unaffected ones in arteriolar (p = 0.249) and venular diameter (p = 0.972) as well as arteriovenous difference in diameter (p = 0.275). Conclusions. Oxygen consumption is increased in eyes after cgBOT, associated with lower SvO2 and enlarged arteriovenous difference in SO2 but not with changes in diameter of retinal vessels. PMID:27699174
Scallan, Joshua P; Wolpers, John H; Davis, Michael J
2013-01-01
Collecting lymphatic vessels generate pressure to transport lymph downstream to the subclavian vein against a significant pressure head. To investigate their response to elevated downstream pressure, collecting lymphatic vessels containing one valve (incomplete lymphangion) or two valves (complete lymphangion) were isolated from the rat mesentery and tied to glass cannulae capable of independent pressure control. Downstream pressure was selectively raised to various levels, either stepwise or ramp-wise, while keeping upstream pressure constant. Diameter and valve positions were tracked under video microscopy, while intralymphangion pressure was measured concurrently with a servo-null micropipette. Surprisingly, a potent lymphatic constriction occurred in response to the downstream pressure gradient due to (1) a pressure-dependent myogenic constriction and (2) a frequency-dependent decrease in diastolic diameter. The myogenic index of the lymphatic constriction (−3.3 ± 0.6, in mmHg) was greater than that of arterioles or collecting lymphatic vessels exposed to uniform increases in pressure (i.e. upstream and downstream pressures raised together). Additionally, the constriction was transmitted to the upstream lymphatic vessel segment even though it was protected from changes in pressure by a closed intraluminal valve; the conducted constriction was blocked by loading only the pressurized half of the vessel with either ML-7 (0.5 mm) to block contraction, or cromakalim (3 μm) to hyperpolarize the downstream muscle layer. Finally, we provide evidence that the lymphatic constriction is important to maintain normal intraluminal valve closure during each contraction cycle in the face of an adverse pressure gradient, which probably protects the lymphatic capillaries from lymph backflow. PMID:23045335
Knipfer, Thorsten; Barrios-Masias, Felipe H; Cuneo, Italo F; Bouda, Martin; Albuquerque, Caetano P; Brodersen, Craig R; Kluepfel, Daniel A; McElrone, Andrew J
2018-05-30
A germplasm collection containing varied Juglans genotypes holds potential to improve drought resistance of plant materials for commercial production. We used X-ray computed microtomography to evaluate stem xylem embolism susceptibility/repair in relation to vessel anatomical features (size, arrangement, connectivity and pit characteristics) in 2-year-old saplings of three Juglans species. In vivo analysis revealed interspecific variations in embolism susceptibility among Juglans microcarpa, J. hindsii (both native to arid habitats) and J. ailantifolia (native to mesic habitats). Stem xylem of J. microcarpa was more resistant to drought-induced embolism as compared with J. hindsii and J. ailantifolia (differences in embolism susceptibility among older and current year xylem were not detected in any species). Variations in most vessel anatomical traits were negligible among the three species; however, we detected substantial interspecific differences in intervessel pit characteristics. As compared with J. hindsii and J. ailantifolia, low embolism susceptibility in J. microcarpa was associated with smaller pit size in larger diameter vessels, a smaller area of the shared vessel wall occupied by pits, lower pit frequency and no changes in pit characteristics as vessel diameters increased. Changes in amount of embolized vessels following 40 days of re-watering were minor in intact saplings of all three species highlighting that an embolism repair mechanism did not contribute to drought recovery. In conclusion, our data indicate that interspecific variations in drought-induced embolism susceptibility are associated with species-specific pit characteristics, and these traits may provide a future target for breeding efforts aimed at selecting walnut germplasm with improved drought resistance.
Reducing misfocus-related motion artefacts in laser speckle contrast imaging.
Ringuette, Dene; Sigal, Iliya; Gad, Raanan; Levi, Ofer
2015-01-01
Laser Speckle Contrast Imaging (LSCI) is a flexible, easy-to-implement technique for measuring blood flow speeds in-vivo. In order to obtain reliable quantitative data from LSCI the object must remain in the focal plane of the imaging system for the duration of the measurement session. However, since LSCI suffers from inherent frame-to-frame noise, it often requires a moving average filter to produce quantitative results. This frame-to-frame noise also makes the implementation of rapid autofocus system challenging. In this work, we demonstrate an autofocus method and system based on a novel measure of misfocus which serves as an accurate and noise-robust feedback mechanism. This measure of misfocus is shown to enable the localization of best focus with sub-depth-of-field sensitivity, yielding more accurate estimates of blood flow speeds and blood vessel diameters.
HRB-22 preirradiation thermal analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acharya, R.; Sawa, K.
1995-05-01
This report describes the preirradiation thermal analysis of the HRB-22 capsule designed for irradiation in the removable beryllium (RB) position of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). CACA-2 a heavy isotope and fission product concentration calculational code for experimental irradiation capsules was used to determine time dependent fission power for the fuel compacts. The Heat Engineering and Transfer in Nine Geometries (HEATING) computer code, version 7.2, was used to solve the steady-state heat conduction problem. The diameters of the graphite fuel body that contains the compacts and the primary pressure vessel were selected suchmore » that the requirements of running the compacts at an average temperature of < 1,250 C and not exceeding a maximum fuel temperature of 1,350 C was met throughout the four cycles of irradiation.« less
Nuclear reactor vessel fuel thermal insulating barrier
Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.
2013-03-19
The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.
Omae, Tsuneaki; Nagaoka, Taiji; Yoshida, Akitoshi
2015-06-01
To study the relationship between retinal microcirculation and serum adiponectin, an important adipocytokine secreted by adipocytes, concentrations in patients with type 2 diabetes mellitus. Using a laser Doppler velocimetry system, we simultaneously measured the retinal blood flow (RBF) values and retinal vessel diameter and blood velocity in 64 consecutive Japanese patients (mean age ± SD, 59.8 ± 10.4 years) with type 2 diabetes with no or mild nonproliferative diabetic retinopathy. We compared the values with the RBF and serum adiponectin concentrations in these patients. The patients were divided into two groups based on sex (33 males, 31 females). The plasma adiponectin concentrations were correlated positively with the retinal vessel diameter (r = 0.480; P = 0.005), retinal blood velocity (r = 0.399; P = 0.02), and RBF (r = 0.518; P = 0.002) and correlated negatively with the retinal arterial vascular resistance (r = -0.598; P = 0.0002) in males, but not females, with type 2 diabetes with early-stage diabetic retinopathy. Multiple regression analysis showed that the plasma adiponectin level was independently and positively correlated with RBF and negatively correlated with retinal arterial vascular resistance. Our results indicated that a high concentration of serum adiponectin may be associated with increased RBF, probably via the increased blood velocity and dilated vessel diameter in males with type 2 diabetes with early-phase diabetic retinopathy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rawls, G.; Newhouse, N.; Rana, M.
2010-04-13
The Boiler and Pressure Vessel Project Team on Hydrogen Tanks was formed in 2004 to develop Code rules to address the various needs that had been identified for the design and construction of up to 15000 psi hydrogen storage vessel. One of these needs was the development of Code rules for high pressure composite vessels with non-load sharing liners for stationary applications. In 2009, ASME approved new Appendix 8, for Section X Code which contains the rules for these vessels. These vessels are designated as Class III vessels with design pressure ranging from 20.7 MPa (3,000 ps)i to 103.4 MPamore » (15,000 psi) and maximum allowable outside liner diameter of 2.54 m (100 inches). The maximum design life of these vessels is limited to 20 years. Design, fabrication, and examination requirements have been specified, included Acoustic Emission testing at time of manufacture. The Code rules include the design qualification testing of prototype vessels. Qualification includes proof, expansion, burst, cyclic fatigue, creep, flaw, permeability, torque, penetration, and environmental testing.« less
The impact of atherosclerosis and vascular collagen on energy-based vessel sealing.
Martin, Kimberly; Krugman, Kimberly; Latimer, Cassandra; Moore, Camille
2013-12-01
Bipolar energy ligation of vessels in surgery is common. Although rare, serious failures occur. Atherosclerosis may contribute to seal failures by altering vascular compressibility and collagen content; however, no data exist. Femoral and iliac arteries of six Yucatan swine with an identified genetic locus predisposing them to atherosclerosis were denuded with a Fogarty catheter. Animals were fed a high-fat diet for 28 wk. A Yorkshire pig was used as a normal control and fed a standard diet. At 28 wk, arteries were measured for their diameters, sealed, and divided in vivo with LigaSure. The sealed artery sections were excised and subjected to burst pressure testing. Half of the seal distal to the aorta was kept intact for histology and collagen and elastin quantification. A multiple linear regression model was used to assess variables contributing to burst pressure. Covariates included were vessel diameter, degree of atherosclerosis, and collagen content. Experimental animals were hypercholesterolemic. Atherosclerosis occurred in 90% of seals in induced animals, with severe atherosclerosis in 62% of seals. There was site-selective deposition of atherosclerotic plaques in larger diameter iliac vessels. A model including collagen and size best predicted burst pressure. Every 10-U increase in collagen resulted in 15% increase in burst pressure (95% confidence interval = 0.2%-32%, P = 0.047, R(2) = 0.36). Atherosclerosis was unrelated to burst pressure controlling for collagen and size. Collagen and size provide the best model fit for predicting burst pressure. Quantitative research in human vasculature is warranted to better understand the influence of atherosclerosis and collagen content on seal failures. Copyright © 2013 Elsevier Inc. All rights reserved.
Martin, Nancy; Traboulsee, Anthony L; Machan, Lindsay; Klass, Darren; Ellchuk, Tasha; Zhao, Yinshan; Knox, Katherine B; Kopriva, David; Lala, Shantilal; Nickel, Darren; Otani, Robert; Perera, Warren R; Rauscher, Alexander; Sadovnick, A Dessa; Szkup, Peter; Li, David K
2017-05-01
The study sought to assess and compare the prevalence of narrowing of the major extracranial veins in subjects with multiple sclerosis and controls, and to assess the sensitivity and specificity of magnetic resonance venography (MRV) for describing extracranial venous narrowing as it applies to the chronic cerebrospinal venous insufficiency theory, using catheter venography (CV) as the gold standard. The jugular and azygos veins were assessed with time-of-flight MRV in this assessor-blinded, case-control study of subjects with multiple sclerosis, their unaffected siblings, and unrelated controls. The veins were evaluated by diameter and area, and compared with CV. Collateral vessels were also analyzed for maximal diameter, as a potential indicator of compensatory flow. A high prevalence of extracranial venous narrowing was demonstrated in all study groups, collectively up to 84% by diameter criteria and 90% by area, with no significant difference between the groups when assessed independently (P = .34 and .63, respectively). There was high interobserver variability in the reporting of vessel narrowing (kappa = 0.32), and poor vessel per vessel correlation between narrowing on MRV and CV (kappa = 0.064). Collateral neck veins demonstrated no convincing difference in maximum size or correlation with jugular narrowing. There is a high prevalence of narrowing of the major extracranial veins on MRV in all 3 study groups, with no significant difference between them. These findings do not support the chronic cerebrospinal venous insufficiency theory. Although MRV has shown a high sensitivity for identifying venous narrowing, time-of-flight imaging demonstrates poor interobserver agreement and poor specificity when compared with the gold standard CV. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.
Energy cost of vessel disturbance to Kittlitz's Murrelets Brachyramphus brevirostris
Agness, Alison M.; Marshall, Kristin N.; Piatt, John F.; Ha, James C.; VanBlaricom, Glenn R.
2013-01-01
We evaluated the energy cost of vessel disturbance for individual Kittlitz’s Murrelets Brachyramphus brevirostris in Glacier Bay National Park and Preserve in Alaska, USA. We used Monte Carlo simulations to model the daily energy expense associated with flight from vessels by both breeding and non-breeding birds and evaluated risk based on both the magnitude of costs incurred and the degree to which the costs may be chronic. We used two scenarios of vessel disturbance for average- and peak-vessel traffic. Because they are more likely to fly away from vessels, non-breeding birds had a greater increase in energy expenditure when disturbed (up to 30% increase under the average scenario and >50% increase under the peak scenario) than breeders (up to 10% and 30% increases under the average and peak scenarios, respectively). Likewise, non-breeding birds were more likely to experience chronic increases in energy expense (i.e. a greater percentage of days with an increase in energy expenditure) than breeding birds. Our modeling results indicated that breeding and non-breeding birds were both susceptible to fitness consequences (e.g. reduced reproductive success and survival) resulting from the energy cost.
Mocco, J; Brown, Robert D; Torner, James C; Capuano, Ana W; Fargen, Kyle M; Raghavan, Madhavan L; Piepgras, David G; Meissner, Irene; Huston, John
2018-04-01
There are conflicting data between natural history studies suggesting a very low risk of rupture for small, unruptured intracranial aneurysms and retrospective studies that have identified a much higher frequency of small, ruptured aneurysms than expected. To use the prospective International Study of Unruptured Intracranial Aneurysms cohort to identify morphological characteristics predictive of unruptured intracranial aneurysm rupture. A case-control design was used to analyze morphological characteristics associated with aneurysm rupture in the International Study of Unruptured Intracranial Aneurysms database. Fifty-seven patients with ruptured aneurysms during follow-up were matched (by size and location) with 198 patients with unruptured intracranial aneurysms without rupture during follow-up. Twelve morphological metrics were measured from cerebral angiograms in a blinded fashion. Perpendicular height (P = .008) and size ratio (ratio of maximum diameter to the parent vessel diameter; P = .01) were predictors of aneurysm rupture on univariate analysis. Aspect ratio, daughter sacs, multiple lobes, aneurysm angle, neck diameter, parent vessel diameter, and calculated aneurysm volume were not statistically significant predictors of rupture. On multivariate analysis, perpendicular height was the only significant predictor of rupture (Chi-square 7.1, P-value .008). This study underscores the importance of other morphological factors, such as perpendicular height and size ratio, that may influence unruptured intracranial aneurysm rupture risk in addition to greatest diameter and anterior vs posterior location.
Impact of Chronic Rheumatic Valve Diseases on Large Vessels.
Altunbas, Gokhan; Yuce, Murat; Ozer, Hasan O; Davutoglu, Vedat; Ercan, Suleyman; Kizilkan, Nese; Bilici, Muhammet
2016-01-01
BACKGROUND AND AIM OF STUDY: Rheumatic valvular heart disease, which remains a common health problem in developing countries, has numerous consequences on the heart chambers and circulation. The study aim was to investigate the effects of chronic rheumatic valve disease on the diameters of the descending aorta (DA) and inferior vena cava (IVC). METHODS: A total of 88 patients with echocardiographically documented rheumatic valvular heart disease and 112 healthy controls were enrolled into the study. All patients underwent detailed echocardiographic examinations, while their height and body weight were recorded and adjusted to their body surface area. RESULTS: The most common involvement was mitral valve disease, followed by aortic valve disease and tricuspid valve disease. The mean diameter of the DA (indexed to BSA) was 1.79 ± 0.49 cm for patients and 1.53 ± 0.41 for controls (p <0.001). The mean diameter of the IVC (indexed to BSA) was 1.69 ± 0.73 for patients and 1.38 ± 0.35 cm for controls (p <0.001). There was a significant positive correlation between mitral valve mean gradient and IVC diameter (p = 0.01, r = 0.18). There were also strong associations between the mitral valve area and the diameters of the DA (p = 0.001, r = -0.239) and IVC (p <0.001, r = -0.246). CONCLUSION: Rheumatic valve disease, especially mitral stenosis, was closely related to remodeling of the great vessels.
A New Technique to Map the Lymphatic Distribution and Alignment of the Penis.
Long, Liu Yan; Qiang, Pan Fu; Ling, Tao; Wei, Zhang Yan; Long, Zhang Yu; Shan, Meng; Rong, Li Shi; Li, Li Hong
2015-08-01
The present study was to examine the distribution of lymphatic vessels in the penis of normal adult males, which could provide an anatomical basis for improvement of incisions in penile lengthening surgery, and may also help to prevent postoperative refractory edema. Thirteen normal adult male volunteers were recruited for this study. Contrast agent was injected subcutaneously in the foreskin of the penis, and after two minutes magnetic resonance lymphangiography (MRL) was performed. The acquired magnetic resonance images were analyzed to determine the changes in the number and diameter of lymphatic vessels in different parts of the penis. Maximum intensity projections (MIP) and materializes interactive medical image control system (MIMICS) were applied to analyze the overall distribution of lymphatic vessels in the penis. Magnetic resonance imaging (MRI) showed that the lymphatic vessels were in conspicuous contrast with surrounding tissues and could be clearly identified. Penile lymphatic vessels were clearly visible in the root of the penis. At the junction of the penis and the abdominal wall, all lymphatic vessels were found to be concentrated in the dorsal part of the penis. MIP two-dimensional reconstruction showed that the overall distribution of relatively large lymphatic vessels in the dorsal and ventral parts of the penis could be seen clearly on bilateral 45° position, but not inside the abdominal wall because some of lymphatic vessels were overlapped by other tissues in the abdomen. MIMICS three-dimensional reconstruction was able to reveal the overall spatial distribution of lymphatic vessels in the penis from any angle. The reconstruction results showed that there were 1-2 main lymphatic vessels on the root of dorsal penis, which coursed along the cavernous to the first physiological curvature of the penis. Lymphatic vessels merged on both sides of the ventral penis. At the root of the penis, lymphatic vessels gradually coursed to the dorsal surface of the penis and folded at the abdominal wall to the outside, and finally merged into the inguinal lymph nodes. The changes in distribution, number and diameter of the lymphatic vessels in the penis were observed by MRI. MIP and MIMICS reconstructions directly revealed the anatomical features of penile lymphatic vessels such as spatial distribution, overall alignment, and the relations to adjacent structures, drainage and reflux. The study will provide the anatomical basis for penile surgery, penile lymphatic reflux disorders caused by trauma or lymphatic vessels obstruction, and lymph node metastasis in penile cancer. © 2014 Wiley Periodicals, Inc.
Aykut, Aktas; Bumin, Degirmenci; Omer, Yilmaz; Mustafa, Kayan; Meltem, Cetin; Orhan, Celik; Nisa, Unlu; Hikmet, Orhan; Hakan, Demirtas; Mert, Koroglu
2015-09-01
The aim was to compare coronary high-definition CT (HDCT) with standard-definition CT (SDCT) angiography as to radiation dose, image quality and accuracy. 28 patients with history of coronary artery disease scanned by HDCT (Discovery CT750 HD) and SDCT (Somatom Definition AS). The scan modes were both axial prospective ECG-triggered. The vessel diameters and vessel attenuation values of totally 280 measurements from 140 coronary arteries were analyzed by two experienced radiologists. All data was analyzed by intraclass correlation test. Image quality graded by motion and stair step artifacts (grade 1, poor, to grade 4, excellent), accuracy of vessel inner and outer diameters were compared between the two CT units using the independent samples t-test and Mann-Whitney U test. The intraclass correlation coefficient (ICC) of measured vessel attenuation values in SDCT between the two radiologists was exceedingly good. The ICC was higher in HDCT. The radiation dose of HDCT was higher than that of SDCT. The mean tube current was 180 (mA) in HDCT and 147(mA) in SDCT with the same tube voltage (kVp). There was no significant difference between image quality. HDCT has a higher radiation dose but has much more atenuation and the spatial resolution which improve measurement accuracy for imaging coronary arteries.
Controlling diameter distribution of catalyst nanoparticles in arc discharge.
Li, Jian; Volotskova, Olga; Shashurin, Alexey; Keidar, Michael
2011-11-01
It is demonstrated that the diameter distribution of catalyst nanoparticles in arc discharge can be controlled by a magnetic field. The magnetic field affects the arc shape, shortens the diffusing time of the catalyst nanoparticles through the nucleation zone, and consequentially reduces the average diameters of nanoparticles. The average diameter is reduced from about 7.5 nm without magnetic field to about 5 nm is the case of a magnetic field. Decrease of the catalyst nanoparticle diameter with magnetic field correlates well with decrease in the single-wall carbon nanotube and their bundles diameters.
NASA Astrophysics Data System (ADS)
Cheema, Taqi Ahmad; Park, Cheol Woo
2013-08-01
Stenosis is the drastic reduction of blood vessel diameter because of cholesterol accumulation in the vessel wall. In addition to the changes in blood flow characteristics, significant changes occur in the mechanical behavior of a stenotic blood vessel. We conducted a 3-D study of such behavior in micro-scale blood vessels by considering the fluid structure interaction between blood flow and vessel wall structure. The simulation consisted of one-way coupled analysis of blood flow and the resulting structural deformation without a moving mesh. A commercial code based on a finite element method with a hyperelastic material model (Neo-Hookean) of the wall was used to calculate wall deformation. Three different cases of stenosis severity and aspect ratios with and without muscles around the blood vessel were considered. The results showed that the wall deformation in a stenotic channel is directly related to stenosis severity and aspect ratio. The presence of muscles reduces the degree of deformation even in very severe stenosis.
Bertoli, L; Mantero, A; Alpago, R; Graziina, A; Tamponi, M; Pezzano, A
1989-01-01
Thirty-three patients suffering from chronic obstructive lung disease (COLD) were submitted to right heart two-dimensional echocardiographic (2D-ECHO) and hemodynamic study. By the subcostal approach, the right ventricle outflow tract including the pulmonary vessels was visualized in 85% of the patients. Most parameters measured on the right ventricle and pulmonary vessels were significantly higher than those recorded in the healthy control group. Very significant correlations were observed between the mean pulmonary artery pressure (PAP) and the following 2D-ECHO parameters: diameter of the pulmonary artery at valve level (r = 0.62; p less than 0.001); supravalvular diameter of the pulmonary artery (r = 0.44; p less than 0.03); diameter of the left branch of the pulmonary artery (r = 0.48; p less than 0.05); diameter of the right branch of the pulmonary artery (r = 0.39; p less than 0.05), and between the PAP and PaO2 (r = -0.66; p less than 0.001). Furthermore, the sensitivity, specificity, and accuracy of 2D-ECHO measurements were calculated to assess the presence of pulmonary hypertension. Overall sensitivity was 65%, specificity 75%, and accuracy 67%. However, by combining the value of PaO2 with that of the pulmonary valve by means of the multiple regression analysis, sensitivity increased to 84% in identifying pulmonary hypertension. Such data demonstrate that the 2D-ECHO study of the right heart in COLD patients has to carefully measure the dimensions of the pulmonary valve and the great pulmonary vessels, as their modification are mainly linked with the presence of pulmonary hypertension.(ABSTRACT TRUNCATED AT 250 WORDS)
Building multidevice pipeline constructs of favorable metal coverage: a practical guide.
Shapiro, M; Raz, E; Becske, T; Nelson, P K
2014-08-01
The advent of low-porosity endoluminal devices, also known as flow diverters, exemplified by the Pipeline in the United States, produced the greatest paradigm shift in cerebral aneurysm treatment since the introduction of detachable coils. Despite robust evidence of efficacy and safety, key questions regarding the manner of their use remain unanswered. Recent studies demonstrated that the Pipeline device geometry can dramatically affect its metal coverage, emphasizing the negative effects of oversizing the device relative to its target vessels. This follow-up investigation focuses on the geometry and coverage of multidevice constructs. A number of Pipeline devices were deployed in tubes of known diameters and photographed, and the resultant coverage was determined by image segmentation. Multidevice segmentation images were created to study the effects of telescoped devices and provide an estimate of coverages resulting from device overlap. Double overlap yields a range of metal coverage, rather than a single value, determined by the diameters of both devices, the size of the recipient artery, and the degree to which strands of the overlapped devices are coregistered with each other. The potential variation in coverage is greatest during overlap of identical-diameter devices, for example, ranging from 24% to 41% for two 3.75-mm devices deployed in a 3.5-mm vessel. Overlapping devices of progressively different diameters produce correspondingly more uniform ranges of coverage, though reducing the maximum achievable value, for example, yielding a 33%-34% range for 3.75- and 4.75-mm devices deployed in the same 3.5-mm vessel. Rational strategies for building multidevice constructs can achieve favorable geometric outcomes. © 2014 by American Journal of Neuroradiology.
Carotid Arterial Wall Dynamics During Gravity Changes on Partial-g Parabolic Flights
NASA Astrophysics Data System (ADS)
Leguy, C. A. D.; Beck, P.; Gauger, P.; Beck, L. E. J.; Limper, U.
2014-10-01
The investigation of systemic blood pressure (BP) responses under partial-g conditions is of particular importance with respect to post-space-flight orthostatic intolerance. In this study, changes in vessel diameter and wall distension of the common carotid artery (CCA) were assessed under graded gravity. Measurements were performed on 8 healthy subjects in standing position under lunar (0.16 g), Martian (0.38 g), 1.0 g and hypergravity (1.8 g) during partial-g parabolic flights. Data are reported as means ± SE estimated by linear mixed effects modeling. The CCA diameter was significantly enlarged under Martian and lunar-g (6.55 ± 0.2 and 6.54 ± 0.2 mm; p < 0.001 each) with respect to 1.0 g (6.39 ± 0.2 mm). The CCA distension showed significant enlargement under Martian-g (622 ± 91 μm) with respect to 1.0 g (603 ± 82 μm; p < 0.05). Furthermore, the distension was significantly lower under hyper-g with respect to 1.0 g (550 ± 88 μm; p < 0.001). These results show that rapid changes of gravitational stress induce significant modifications of hemodynamic parameters reflected in the CCA vessel wall diameter and distension. The increased vessel wall diameter under partial-g is likely due to the rise in mean BP at the CCA level caused by the absence of hydrostatic pressure and may trigger the baroreflex to maintain homeostatis. We can assume that the increase in distension during the partial-g phase originates from a larger stroke volume and enhanced BP reflections. Furthermore, this study demonstrates the reliability of functional high resolution vascular ultrasound technique during parabolic flights.
Growth of lodgepole pine stands and its relation to mountain pine beetle susceptibility
S.A. Mata; J.M. Schmid; W.K. Olsen
2003-01-01
Periodic diameter and basal area growth were determined for partially cut stands of lodgepole pine at five locations over approximately 10 year periods. After cutting, average diameters in the partially cut plots generally increased by 0.8 inches or more, while average diameter in the uncut controls increased by 0.6 inches or less. Diameter growth in the partially cut...
Shazeeb, Mohammed Salman; Kalpathy-Cramer, Jayashree; Issa, Bashar
2017-11-24
Brain vasculature is conventionally represented as straight cylinders when simulating blood oxygenation level dependent (BOLD) contrast effects in functional magnetic resonance imaging (fMRI). In reality, the vasculature is more complicated with branching and coiling especially in tumors. Diffusion and susceptibility changes can also introduce variations in the relaxation mechanisms within tumors. This study introduces a simple cylinder fork model (CFM) and investigates the effects of vessel topology, diffusion, and susceptibility on the transverse relaxation rates R2* and R2. Simulations using Monte Carlo methods were performed to quantify R2* and R2 by manipulating the CFM at different orientations, bifurcation angles, and rotation angles. Other parameters of the CFM were chosen based on physiologically relevant values: vessel diameters (~2‒10 µm), diffusion rates (1 × 10 -11 ‒1 × 10 -9 m 2 /s), and susceptibility values (3 × 10 -8 -4 × 10 -7 cgs units). R2* and R2 measurements showed a significant dependence on the bifurcation and rotation angles in several scenarios using different vessel diameters, orientations, diffusion rates, and susceptibility values. The angular dependence of R2* and R2 using the CFM could potentially be exploited as a tool to differentiate between normal and tumor vessels. The CFM can also serve as the elementary building block to simulate a capillary network reflecting realistic topological features.
NASA Astrophysics Data System (ADS)
Tambun, R.; Sihombing, R. O.; Simanjuntak, A.; Hanum, F.
2018-02-01
The buoyancy weighing-bar method is a new simple and cost-effective method to determine the particle size distribution both settling and floating particle. In this method, the density change in a suspension due to particle migration is measured by weighing buoyancy against a weighing-bar hung in the suspension, and then the particle size distribution is calculated using the length of the bar and the time-course change in the mass of the bar. The apparatus of this method consists of a weighing-bar and an analytical balance with a hook for under-floor weighing. The weighing bar is used to detect the density change in suspension. In this study we investigate the influences of position of weighing bar in vessel on settling particle size distribution measurements of cement by using the buoyancy weighing-bar method. The vessel used in this experiment is graduated cylinder with the diameter of 65 mm and the position of weighing bar is in center and off center of vessel. The diameter of weighing bar in this experiment is 10 mm, and the kerosene is used as a dispersion liquids. The results obtained show that the positions of weighing bar in vessel have no significant effect on determination the cement’s particle size distribution by using buoyancy weighing-bar method, and the results obtained are comparable to those measured by using settling balance method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venbrux, Anthony C., E-mail: avenbrux@mfa.gwu.edu; Rudakov, Leon, E-mail: leonrudakov@artventivemedical.com; Plass, Andre, E-mail: andre.plass@usz.ch
2013-05-24
PurposeThe purpose of this study was to determine the safety and efficacy of a new endoluminal occlusion device, ArtVentive endoluminal occlusion system (EOS), to occlude the spermatic vein in symptomatic males with varicoceles.MethodsThe ArtVentive EOS device has been developed for percutaneous, peripheral occlusion of the peripheral arterial and venous vasculature. The system is comprised of an implantable occlusion device and a delivery catheter. At present, there are two device sizes: (a) size 1 for target vessels ranging between 3.5 and 5.5 mm in diameter, and (b) size 2 for target vessels 5.5–8.5 mm in diameter. The treatment group included six adult males,more » ages 22–34 years. Nine target vessels were occluded. A total of 20 devices were implanted in six subjects.ResultsThe acute occlusion rate at the end of the procedure was 100 % occurring in nine of nine vessels. The spermatic veins of all patients remained occluded on venography at 30 days follow-up. Pain scores related to varicoceles decreased in five of six patients.ConclusionsAlthough we recognize this study is limited, initial experience indicates that the ArtVentive EOS is a safe and effective new device for occlusion of vessels (varicoceles). The device has potential applications in other clinical conditions requiring occlusion of veins or arteries.« less
Holmium: YAG laser-induced liquid jet knife: possible novel method for dissection.
Nakagawa, Atsuhiro; Hirano, Takayuki; Komatsu, Makoto; Sato, Mariko; Uenohara, Hiroshi; Ohyama, Hideki; Kusaka, Yasuko; Shirane, Reizo; Takayama, Kazuyoshi; Yoshimoto, Takashi
2002-01-01
Making surgical incisions in vessel-rich organs without causing bleeding is difficult. Thus, it is necessary to develop new devices for this purpose, especially for surgery involving small vessels as in neurosurgery, where damage against even small cerebral vessels result in severe neurological deficits. A laser-induced liquid jet was generated by irradiating pulsed Holmium Yttrium-Aluminum-Garnet (Ho: YAG) laser (beams of 350 microseconds pulse width) within a copper tube (internal diameter, 1 mm) with pure water (150 ml /hour). Ho: YAG laser beams were irradiated through an optical fiber (core diameter, 0.4 mm). The influence of the input of laser energy, structure of the nozzle, and the stand-off distance between the optical fiber tip and nozzle exit on the jet velocity was measured by a high-speed video camera to evaluate controllability of jet. The effect on artificial organs made of 10 and 30%(w/v) gelatin, each of which represent features of soft tissue and blood vessels. Jet velocity increased in proportion to gain in laser energy input, and maximum penetration depth into 10%(w/v) gelatin was 35 mm by single exposure at 350 mJ/pulse without impairing a vessel model. Shapes of nozzle also modified jet velocity with optimal nozzle/tube area ratio of 0.25. The laser-induced liquid jet has excellent potential as a new tool for removing soft tissue without damaging vital structures. Copyright 2002 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Zhang, Cong; Tabatabaei, Maryam; Bélanger, Samuel; Girouard, Hélène; Moeini, Mohammad; Lu, Xuecong; Lesage, Frédéric
2018-02-01
Neurovascular coupling (NVC) is defined as a local increase in cerebral blood flow in response to neuronal activity, it forms the basis of functional brain imaging and is altered during epilepsy. Because astrocytic calcium signaling (Ca2+) has been involved in the response of parenchymal vessels, this study investigates the role of this pathway during epilepsy. We exploit 4-Aminopyridine (4-AP) induced epileptic seizures to show that absolute Ca2+ concentration in astrocytic endfeet correlates with the changes in diameter of parenchymal vessels during neural activity in vivo. A two-photon laser scanning fluorescence lifetime microscopy was developed to simultaneously monitor free Ca2+ concentration in astrocytic endfeet with the calcium-sensitive indicator Oregon Green 488 BAPTA-1 (OGB-1) and the diameter of parenchymal vessels in the somatosensory cortex of mice following 4-AP injection. Our results reveal that the resting Ca2+ concentration in glial cells was spatially heterogeneous and that resting Ca2+ concentration in somatic regions was significantly higher than in endfoot regions. Moreover, following 4-AP injection in the somatosensory cortex of mice, we observed increases of Ca2+ in astrocytic endfeet associated with vasodilation of parenchymal vessels for each individual ictal event in the epileptic focus. However, vasodilation was seen to be inhibited by increase in absolute resting Ca2+ concentration. Our results suggest a role for baseline astrocytic Ca2+ concentration in vasodilation.
Cosme, Luiza H M; Schietti, Juliana; Costa, Flávia R C; Oliveira, Rafael S
2017-07-01
Species distributions and assemblage composition may be the result of trait selection through environmental filters. Here, we ask whether filtering of species at the local scale could be attributed to their hydraulic architectural traits, revealing the basis of hydrological microhabitat partitioning in a Central Amazonian forest. We analyzed the hydraulic characteristics at tissue (anatomical traits, wood specific gravity (WSG)), organ (leaf area, specific leaf area (SLA), leaf area : sapwood area ratio) and whole-plant (height) levels for 28 pairs of congeneric species from 14 genera restricted to either valleys or plateaus of a terra-firme forest in Central Amazonia. On plateaus, species had higher WSG, but lower mean vessel area, mean vessel hydraulic diameter, sapwood area and SLA than in valleys; traits commonly associated with hydraulic safety. Mean vessel hydraulic diameter and mean vessel area increased with height for both habitats, but leaf area and leaf area : sapwood area ratio investments with tree height declined in valley vs plateau species. [Correction added after online publication 29 March 2017: the preceding sentence has been reworded.] Two strategies for either efficiency or safety were detected, based on vessel size or allocation to sapwood. In conclusion, contrasting hydrological conditions act as environmental filters, generating differences in species composition at the local scale. This has important implications for the prediction of species distributions under future climate change scenarios. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Statins affect ocular microcirculation in patients with hypercholesterolaemia.
Terai, Naim; Spoerl, Eberhard; Fischer, Sabine; Hornykewycz, Karin; Haustein, Michael; Haentzschel, Janek; Pillunat, Lutz E
2011-09-01
To investigate the effect of statins on ocular microcirculation in patients with hypercholesterolaemia. Ten patients with hypercholesterolaemia were included in this study. The diameter of retinal vessels was measured continuously with the retinal vessel analyser (RVA) before and 4 weeks after statin therapy. After baseline assessment, a monochromatic luminance flicker was applied to evoke retinal vasodilation. Flicker response was then analysed after 50, 150 and 250 seconds after baseline measurement. Additionally, cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL) and triglyceride levels were obtained to find a possible correlation between retinal vessel diameter changes and lipid metabolism before and after statin therapy. The mean diameter of the arterioles before statin therapy at baseline was 106.3 ± 1.5 μm and the mean diameter of the venules at baseline was 127.3 ± 2.5 μm. The mean diameter of the arterioles 4 weeks before statin therapy was 107.3 ± 1.8 μm after 50 seconds, 107.9 ± 1.8 μm after 150 seconds and 108.0 ± 1.8 μm after 250 seconds (p = 0.01). The mean diameter of the venules 4 weeks before statin therapy was 128.0 ± 2.6 μm after 50 seconds, 128.2 ± 2.5 μm after 150 seconds and 128.2 ± 2.3 μm after 250 seconds (p = 0.01). The mean diameter of the arterioles 4 weeks after statin therapy at baseline was 107.1 ± 1.6 μm and the mean diameter of the venules at baseline was 127.7 ± 2.3 μm which was significantly different from measurements before statin therapy (p = 0.004). The diameter of the arterioles 4 weeks after statin therapy increased to 109.2 ± 2.1 μm after 50 seconds, to 110.6 ± 2.6 μm after 150 seconds and to 111.8 ± 2.3 μm after 250 seconds with statistical significance at all time points (p = 0.001). The mean diameter of the venules after statin therapy increased to 130.6 ± 2.7 μm after 50 seconds, to 132.1 ± 2.6 μm after 150 seconds and to 133.5 ± 3.0 μm after 250 seconds with statistical significance at all time points (p = 0.001). The present study demonstrated a significant increase in vasodilatation of retinal arterioles and venules 4 weeks after statin therapy in patients with hypercholesterolaemia indicating pleiotropic effects of statins on the retinal microcirculation which seem to be mediated by the endothelium-dependent, NO-mediated pathway. © 2011 The Authors. Acta Ophthalmologica © 2011 Acta Ophthalmologica Scandinavica Foundation.
Tumor angiogenesis in advanced stage ovarian carcinoma.
Hollingsworth, H C; Kohn, E C; Steinberg, S M; Rothenberg, M L; Merino, M J
1995-07-01
Tumor angiogenesis has been found to have prognostic significance in many tumor types for predicting an increased risk of metastasis. We assessed tumor vascularity in 43 cases of advanced stage (International Federation of Gynecologists and Obstetricians stages III and IV) ovarian cancer by using the highly specific endothelial cell marker CD34. Microvessel counts and stage were associated with disease-free survival and with overall survival by Kaplan-Meier analysis. The plots show that higher stage, higher average vessel count at 200x (200x avg) and 400x (400x avg) magnification and highest vessel count at 400x (400x high) magnification confer a worse prognosis for disease-free survival. Average vessel count of less than 16 (400x avg, P2 = 0.01) and less than 45 (200x avg, P2 = 0.026) suggested a better survival. Similarly, a high vessel count of less than 20 (400x high, P2 = 0.019) conferred a better survival as well. The plots suggest that higher stage, higher average vessel count at 200x and 400x, and highest vessel count at 200x and 400x show a trend to worse overall survival as well. With the Cox proportional hazards model, stage was the best predictor of overall survival, however, the average microvessel count at 400x was found to be the best predictor of disease-free survival. These results suggest that analysis of neovascularization in advanced stage ovarian cancer may be a useful prognostic factor.
Why do veins appear blue? A new look at an old question
NASA Astrophysics Data System (ADS)
Kienle, Alwin; Hibst, Raimund; Steiner, Rudolf; Lilge, Lothar; Vitkin, I. Alex; Wilson, Brian C.; Patterson, Michael S.
1996-03-01
We investigate why vessels that contain blood, which has a red or a dark red color, may look bluish in human tissue. A CCD camera was used to make images of diffusely reflected light at different wavelengths. Measurements of reflectance that are due to model blood vessels in scattering media and of human skin containing a prominent vein are presented. Monte Carlo simulations were used to calculate the spatially resolved diffuse reflectance for both situations. We show that the color of blood vessels is scattering and absorption characteristics of skin at different wavelengths, (ii) the oxygenation state of blood, which affects its absorption properties, (iii) the diameter and the depth of the vessels, and (iv) the visual perception process.
Hyaluronic acid enhancement of expanded polytetrafluoroethylene for small diameter vascular grafts
NASA Astrophysics Data System (ADS)
Lewis, Nicole R.
Cardiovascular disease is the leading cause of mortality and morbidity in the United States and other developed countries. In the United States alone, 8 million people are diagnosed with peripheral arterial disease per year and over 250,000 patients have coronary bypass surgery each year. Autologous blood vessels are the standard graft used in small diameter (<6mm) arterial bypass procedures. Synthetic small diameter grafts have had limited success. While polyethylene (Dacron) and expanded polytetrafluoroethylene (ePTFE) are the most commonly used small diameter synthetic vascular graft materials, there are significant limitations that make these materials unfavorable for use in the low blood flow conditions of the small diameter arteries. Specifically, Dacron and ePTFE grafts display failure due to early thrombosis or late intimal hyperplasia. With the shortage of tissue donors and the limited supply of autologous blood vessels available, there is a need for a small diameter synthetic vascular graft alternative. The aim of this research is to create and characterize ePTFE grafts prepared with hyaluronic acid (HA), evaluate thrombogenic potential of ePTFE-HA grafts, and evaluate graft mechanical properties and coating durability. The results in this work indicate the successful production of ePTFE-HA materials using a solvent infiltration technique. Surface interactions with blood show increased platelet adhesion on HA-modified surfaces, though evidence may suggest less platelet activation and erythrocyte lysis. Significant changes in mechanical properties of HA-modified ePTFE materials were observed. Further investigation into solvent selection, uniformity of HA, endothelialization, and dynamic flow testing would be beneficial in the evaluation of these materials for use in small diameter vascular graft bypass procedures.
Start-up control system and vessel for LMFBR
Durrant, Oliver W.; Kakarala, Chandrasekhara R.; Mandel, Sheldon W.
1987-01-01
A reflux condensing start-up system includes a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.
Start-up control system and vessel for LMFBR
Durrant, Oliver W.; Kakarala, Chandrasekhara R.; Mandel, Sheldon W.
1987-01-01
A reflux condensing start-up system comprises a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.
Measurement of retinal wall-to-lumen ratio by adaptive optics retinal camera: a clinical research.
Meixner, Eva; Michelson, Georg
2015-11-01
To measure the wall-to-lumen ratio (WLR) and the cross-sectional area of the vascular wall (WCSA) of retinal arterioles by an Adaptive Optics (AO) retinal camera. Forty-seven human subjects were examined and their medical history was explored. WLR and WCSA were measured on the basis of retinal arteriolar wall thickness (VW), lumen diameter (LD) and vessel diameter (VD) assessed by rtx1 Adaptive Optics retinal camera. WLR was calculated by the formula [Formula: see text]. Arterio-venous ratio (AVR) and microvascular abnormalities were attained by quantitative and qualitative assessment of fundus photographs. Influence of age, arterial hypertension, body mass index (BMI) and retinal microvascular abnormalities on the WLR was examined. An age-adjusted WLR was created to test influences on WLR independently of age. Considering WLR and WCSA, a distinction between eutrophic and hypertrophic retinal remodeling processes was possible. The intra-observer variability (IOV) was 6 % ± 0.9 for arteriolar wall thickness and 2 % ± 0.2 for arteriolar wall thickness plus vessel lumen. WLR depended significantly on the wall thickness (r = 0.715; p < 0.01) of retinal arterioles, but was independent of the total vessel diameter (r = 0.052; p = 0.728). WLR correlated significantly with age (r = 0.769; p < 0.01). Arterial hypertension and a higher BMI were significantly associated with an increased age-adjusted WLR. WLR correlated significantly with the stage of microvascular abnormalities. 55 % of the hypertensive subjects and 11 % of the normotensive subjects showed eutrophic remodeling, while hypertrophic remodeling was not detectable. WLR correlated inversely with AVR. AVR was independent of the arteriolar wall thickness, age and arterial hypertension. The technique of AO retinal imaging allows a direct measurement of the retinal vessel wall and lumen diameter with good intra-observer variability. Age, arterial hypertension and an elevated BMI level are significantly associated with an increased WLR. The wall-to-lumen ratio measured by AO can be used to detect structural retinal microvascular alterations in an early stage of remodeling processes.
van de Pol, Daan; Maas, Mario; Terpstra, Aart; Pannekoek-Hekman, Marja; Alaeikhanehshir, Sena; Kuijer, P Paul F M; Planken, R Nils
2017-03-01
To determine the prevalence of posterior circumflex humeral artery (PCHA) aneurysms and vessel characteristics of the PCHA and deep brachial artery (DBA) in elite volleyball players. Two-hundred and eighty players underwent standardized ultrasound assessment of the dominant arm by a vascular technologist. Assessment included determination of PCHA aneurysms (defined as segmental vessel dilatation ≥150 %), PCHA and DBA anatomy, branching pattern, vessel course and diameter. The PCHA and DBA were identified in 100 % and 93 % (260/280) of cases, respectively. The prevalence of PCHA aneurysms was 4.6 % (13/280). All aneurysms were detected in proximal PCHA originating from the axillary artery (AA). The PCHA originated from the AA in 81 % of cases (228/280), and showed a curved course dorsally towards the humeral head in 93 % (211/228). The DBA originated from the AA in 73 % of cases (190/260), and showed a straight course parallel to the AA in 93 % (177/190). PCHA aneurysm prevalence in elite volleyball players is high and associated with a specific branching type: a PCHA that originates from the axillary artery. Radiologists should have a high index of suspicion for this vascular overuse injury. For the first time vessel characteristics and reference values are described to facilitate ultrasound assessment. • Prevalence of PCHA aneurysms is 4.6 % among elite volleyball players. • All aneurysms are in proximal PCHA that originates directly from AA. • Vessel characteristics and reference values are described to facilitate US assessment. • Mean PCHA and DBA diameters can be used as reference values. • Radiologists need a high index of suspicion for this vascular overuse injury.
Wide-field absolute transverse blood flow velocity mapping in vessel centerline
NASA Astrophysics Data System (ADS)
Wu, Nanshou; Wang, Lei; Zhu, Bifeng; Guan, Caizhong; Wang, Mingyi; Han, Dingan; Tan, Haishu; Zeng, Yaguang
2018-02-01
We propose a wide-field absolute transverse blood flow velocity measurement method in vessel centerline based on absorption intensity fluctuation modulation effect. The difference between the light absorption capacities of red blood cells and background tissue under low-coherence illumination is utilized to realize the instantaneous and average wide-field optical angiography images. The absolute fuzzy connection algorithm is used for vessel centerline extraction from the average wide-field optical angiography. The absolute transverse velocity in the vessel centerline is then measured by a cross-correlation analysis according to instantaneous modulation depth signal. The proposed method promises to contribute to the treatment of diseases, such as those related to anemia or thrombosis.
Applying Hanford Tank Mixing Data to Define Pulse Jet Mixer Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, Beric E.; Bamberger, Judith A.; Recknagle, Kurtis P.
Pulse jet mixed (PJM) process vessels are being developed for storing, blending, and chemical processing of nuclear waste slurries at the Waste Treatment and Immobilization Plant (WTP) to be built at Hanford, Washington. These waste slurries exhibit variable process feed characteristics including Newtonian to non-Newtonian rheologies over a range of solids loadings. Waste feed to the WTP from the Hanford Tank Farms will be accomplished via the Waste Feed Delivery (WFD) system which includes million-gallon underground storage double-shell tanks (DSTs) with dual-opposed jet mixer pumps. Experience using WFD type jet mixer pumps to mobilize actual Hanford waste in DSTs maymore » be used to establish design threshold criteria of interest to pulse jet mixed process vessel operation. This paper describes a method to evaluate the pulse jet mixed vessel capability to process waste based on information obtained during mobilizing and suspending waste by the WFD system jet mixer pumps in a DST. Calculations of jet velocity and wall shear stress in a specific pulse jet mixed process vessel were performed using a commercial computational fluid dynamics (CFD) code. The CFD-modelled process vessel consists of a 4.9-m- (16-ft-) diameter tank with a 2:1 semi-elliptical head, a single, 10-cm (4-in.) downward facing 60-degree conical nozzle, and a 0.61-m (24-in.) inside diameter PJM. The PJM is located at 70% of the vessel radius with the nozzle stand-off-distance 14 cm (6 in.) above the vessel head. The CFD modeled fluid velocity and wall shear stress can be used to estimate vessel waste-processing performance by comparison to available actual WFD system process data. Test data from the operation of jet mixer pumps in the 23-m (75-ft) diameter DSTs have demonstrated mobilization, solid particles in a sediment matrix were moved from their initial location, and suspension, mobilized solid particles were moved to a higher elevation in the vessel than their initial location, of waste solids. Jet mixer pumps were used in Hanford waste tank 241-AZ-101, and at least 95% of the 0.46-m (18-in.) deep sediment, with a shear strength of 1,500 to 4,200 Pa, was mobilized. Solids with a median particle size of 43 μm, 90th percentile of 94μm, were suspended in tank 241-AZ-101 to at least 5.5 m (216 in.) above the vessel bottom. Analytical calculations for this jet mixer pump test were used to estimate the velocities and wall shear stress that mobilized and suspended the waste. These velocities and wall shear stresses provide design threshold criteria which are metrics for system performance that can be evaluated via testing. If the fluid motion in a specific pulse jet mixed process vessel meets or exceeds the fluid motion of the demonstrated performance in the WFD system, confidence is provided that that vessel will similarly mobilize and suspend those solids if they were within the WTP. The single PJM CFD-calculated jet velocity and wall shear stress compare favorably with the design threshold criterion estimated for the tank 241-AZ-101 process data. Therefore, for both mobilization and suspension, the performance data evaluated from the WFD system testing increases confidence that the performance of the pulse jet mixed process vessels will be sufficient to process that waste even if that waste is not fully characterized.« less
Kang, Dong-Wan; Jeong, Han-Gil; Kim, Do Yeon; Yang, Wookjin; Lee, Seung-Hoon
2017-06-01
The susceptibility vessel sign (SVS) is a hypointense signal visualized because of the susceptibility effect of thrombi, sensitively detected on susceptibility-weighted magnetic resonance imaging. The relationship of SVS parameters with the stroke subtype and recanalization status after endovascular treatment remains uncertain. The data from 89 patients with acute stroke caused by anterior circulation infarcts who underwent susceptibility-weighted magnetic resonance imaging before endovascular treatment were examined. Independent reviewers, blinded to the stroke subtype and recanalization status, measured the SVS diameter, length, and estimated volume. The intra- and interrater agreements of the SVS parameters were assessed. The SVS was identified in 78% of the patients. SVS was more commonly associated with cardioembolism than with noncardioembolism ( P =0.01). The SVS diameter ( P <0.01) and length ( P =0.01) were larger in the cardioembolism group. The SVS diameter was larger in the recanalization group (thrombolysis in cerebral infarction ≥2b) than in the nonrecanalization group ( P =0.04). Multivariable analysis revealed that the SVS diameter was an independent predictor of cardioembolism (adjusted odds ratio, 1.97; 95% confidence interval, 1.34-2.90; P <0.01). There was no significant association between the SVS volume and the recanalization status (adjusted odds ratio, 1.003; 95% confidence interval, 0.999-1.006; P =0.12). The optimal cutoff value of the SVS diameter for the cardioembolism was 5.5 mm (sensitivity, 45.6%; specificity, 93.8%). Increased SVS diameter on susceptibility-weighted magnetic resonance imaging may predict cardioembolism. No clear association was found between SVS volume and endovascular recanalization. © 2017 The Authors.
Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin
NASA Astrophysics Data System (ADS)
Archid, Rami; Patzelt, Alexa; Lange-Asschenfeldt, Bernhard; Ahmad, Sufian S.; Ulrich, Martina; Stockfleth, Eggert; Philipp, Sandra; Sterry, Wolfram; Lademann, Juergen
2012-10-01
An important and most likely active role in the pathogenesis of psoriasis has been attributed to changes in cutaneous blood vessels. The purpose of this study was to use confocal laser-scanning microscopy (CLSM) to investigate dermal capillaries in psoriatic and normal skin. The structures of the capillary loops in 5 healthy participants were compared with those in affected skin of 13 psoriasis patients. The diameters of the capillaries and papillae were measured for each group with CLSM. All investigated psoriasis patients showed elongated, widened, and tortuous microvessels in the papillary dermis, whereas all healthy controls showed a single capillary loop in each dermal papilla. The capillaries of the papillary loop and the dermal papilla were significantly enlarged in the psoriatic skin lesions (diameters 24.39±2.34 and 146.46±28.52 μm, respectively) in comparison to healthy skin (diameters 9.53±1.8 and 69.48±17.16 μm, respectively) (P<0.001). CLSM appears to represent a promising noninvasive technique for evaluating dermal capillaries in patients with psoriasis. The diameter of the vessels could be seen as a well-quantifiable indicator for the state of psoriatic skin. CLSM could be useful for therapeutic monitoring to delay possible recurrences.
CT findings of persistent pure ground glass opacity: can we predict the invasiveness?
Liu, Li-Heng; Liu, Ming; Wei, Ran; Jin, Er-Hu; Liu, Yu-Hui; Xu, Liang; Li, Wen-Wu; Huang, Yong
2015-01-01
To investigate whether CT findings can predict the invasiveness of persistent cancerous pure ground glass opacity (pGGO) by correlating the CT imaging features of persistent pGGO with pathological changes. Ninety five patients with persistent pGGOs were included. Three radiologists evaluated the morphologic features of these pGGOs at high resolution CT (HRCT). Binary logistic regression was used to assess the association between CT findings and histopathological classification (pre-invasive and invasive groups). Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of diameters. A total of 105 pGGOs were identified. Between pre-invasive (atypical adenomatous hyperplasia, AAH, and adenocarcinoma in situ, AIS) and invasive group (minimally invasive adenocarcinoma, MIA and invasive lung adenocarcinomas, ILA), there were significant differences in diameter, spiculation and vessel dilatation (p<0.05). No difference was found in air-bronchogram, bubble- lucency, lobulated-margin, pleural indentation or vascular convergence (p>0.05). The optimal threshold value of the diameters to predict the invasiveness of pGGO was 12.50mm. HRCT features can predict the invasiveness of persistent pGGO. The pGGO with a diameter more than 12.50mm, presences of spiculation and vessel dilatation are important factors to differentiate invasive adenocarcinoma from pre-invasive cancerous lesions.
Naik, Vishal D; Lunde-Young, Emilie R; Davis-Anderson, Katie L; Orzabal, Marcus; Ivanov, Ivan; Ramadoss, Jayanth
2016-11-01
We aimed to investigate pressure-dependent maternal uterine artery responses and vessel remodeling following gestational binge alcohol exposure. Two groups of pregnant rats were used: the alcohol group (28.5% wt/v, 6.0 g/kg, once-daily orogastric gavage in a binge paradigm between gestational day (GD) 5-19) and pair-fed controls (isocalorically matched). On GD20, excised, pressurized primary uterine arteries were studied following equilibration (60 mm Hg) using dual chamber arteriograph. The uterine artery diameter stabilized at 20 mm Hg, showed passive distension at 40 mm Hg, and redeveloped tone at 60 mm Hg. An alcohol effect (P = 0.0025) was observed on the percent constriction of vessel diameter with greater pressure-dependent myogenic constriction. Similar alcohol effect was noted with lumen diameter response (P = 0.0020). The percent change in media:lumen ratio was higher in the alcohol group (P < 0.0001). Thus, gestational alcohol affects pressure-induced uterine artery reactivity, inward-hypotrophic remodeling, and adaptations critical for nutrient delivery to the fetus. Copyright © 2016 Elsevier Inc. All rights reserved.
Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy
NASA Astrophysics Data System (ADS)
Fredriksson, Ingemar; Larsson, Marcus; Strömberg, Tomas
2012-04-01
Model based data analysis of diffuse reflectance spectroscopy data enables the estimation of optical and structural tissue parameters. The aim of this study was to present an inverse Monte Carlo method based on spectra from two source-detector distances (0.4 and 1.2 mm), using a multilayered tissue model. The tissue model variables include geometrical properties, light scattering properties, tissue chromophores such as melanin and hemoglobin, oxygen saturation and average vessel diameter. The method utilizes a small set of presimulated Monte Carlo data for combinations of different levels of epidermal thickness and tissue scattering. The path length distributions in the different layers are stored and the effect of the other parameters is added in the post-processing. The accuracy of the method was evaluated using Monte Carlo simulations of tissue-like models containing discrete blood vessels, evaluating blood tissue fraction and oxygenation. It was also compared to a homogeneous model. The multilayer model performed better than the homogeneous model and all tissue parameters significantly improved spectral fitting. Recorded in vivo spectra were fitted well at both distances, which we previously found was not possible with a homogeneous model. No absolute intensity calibration is needed and the algorithm is fast enough for real-time processing.
Trevorrow, Mark V; Mackas, David L; Benfield, Mark C
2005-06-01
An investigation of midwater zooplankton aggregations in a coastal fjord was conducted in November 2002. This study focused on quantitative comparisons between a calibrated, three-frequency (38, 120, and 200 kHz) vessel-based echo-sounder, a multinet towed zooplankton sampler (BIONESS), and a high-resolution underwater camera (ZOOVIS). Daytime layers of euphausiids and amphipods near 70-90-m depth were observed in lower parts of the inlet, especially concentrated by tidal flows around a sill. Quantitative backscatter measurements of euphausiids and amphipods, combined with in situ size and abundance estimates, and using an assumed tilt-angle distribution, were in agreement with averaged fluid-cylinder scattering models produced by Stanton and Chu [ICES J. Mar. Sci. 57, 793-807, (2000)]. Acoustic measurements of physonect siphonophores in the upper inlet were found to have a strong 38-kHz scattering strength, in agreement with a damped bubble scattering model using a diameter of 0.4 mm. In relatively dense euphausiid layers, ZOOVIS abundance estimates were found to be a factor of 2 to 4 higher than the acoustic estimates, potentially due to deviations from assumed euphausiid orientation. Nocturnal near-surface euphausiid scattering exhibited a strong (15 dB) and rapid (seconds) sensitivity to vessel lights, interpreted as due to changing animal orientation.
NASA Astrophysics Data System (ADS)
Trevorrow, Mark V.; Mackas, David L.; Benfield, Mark C.
2005-06-01
An investigation of midwater zooplankton aggregations in a coastal fjord was conducted in November 2002. This study focused on quantitative comparisons between a calibrated, three-frequency (38, 120, and 200 kHz) vessel-based echo-sounder, a multinet towed zooplankton sampler (BIONESS), and a high-resolution underwater camera (ZOOVIS). Daytime layers of euphausiids and amphipods near 70-90-m depth were observed in lower parts of the inlet, especially concentrated by tidal flows around a sill. Quantitative backscatter measurements of euphausiids and amphipods, combined with in situ size and abundance estimates, and using an assumed tilt-angle distribution, were in agreement with averaged fluid-cylinder scattering models produced by Stanton and Chu [ICES J. Mar. Sci. 57, 793-807, (2000)]. Acoustic measurements of physonect siphonophores in the upper inlet were found to have a strong 38-kHz scattering strength, in agreement with a damped bubble scattering model using a diameter of 0.4 mm. In relatively dense euphausiid layers, ZOOVIS abundance estimates were found to be a factor of 2 to 4 higher than the acoustic estimates, potentially due to deviations from assumed euphausiid orientation. Nocturnal near-surface euphausiid scattering exhibited a strong (15 dB) and rapid (seconds) sensitivity to vessel lights, interpreted as due to changing animal orientation. .
Tamaki, Katsuyoshi; Shimizu, Ichiro; Oshio, Atsuo; Fukuno, Hiroshi; Inoue, Hiroshi; Tsutsui, Akemi; Shibata, Hiroshi; Sano, Nobuya; Ito, Susumu
2004-12-01
To determine whether the presence of large intrahepatic blood vessels (>/=3 mm) affect radiofrequency (RF)-induced coagulation necrosis, the gross and histological characteristics of RF-ablated areas proximal to or around vessels were examined in normal pig livers. An RF ablation treatment using a two-stepwise extension technique produced 12 lesions: six contained vessels (Group A), and the other six were localized around vessels (Group B). Gross examination revealed that the longest and shortest diameters of the ablated lesions were significantly larger in Group B than in Group A. In Group A, patent vessels contiguous to the lesion were present in a tongue-shaped area, whereas the lesions in Group B were spherical. Staining with nicotinamide adenine dinucleotide diaphorase was negative within the ablated area; but, if vessels were present in the ablated area, the cells around the vessels in an opposite direction to the ablation were stained blue. Roll-off can be achieved with 100% cellular destruction within a lesion that does not contain large vessels. The ablated area was decreased in lesions that contained large vessels, suggesting that the presence of large vessels in the ablated area further increases the cooling effect and may require repeated RF ablation treatment to achieve complete coagulation necrosis.
Retinal vasculature classification using novel multifractal features
NASA Astrophysics Data System (ADS)
Ding, Y.; Ward, W. O. C.; Duan, Jinming; Auer, D. P.; Gowland, Penny; Bai, L.
2015-11-01
Retinal blood vessels have been implicated in a large number of diseases including diabetic retinopathy and cardiovascular diseases, which cause damages to retinal blood vessels. The availability of retinal vessel imaging provides an excellent opportunity for monitoring and diagnosis of retinal diseases, and automatic analysis of retinal vessels will help with the processes. However, state of the art vascular analysis methods such as counting the number of branches or measuring the curvature and diameter of individual vessels are unsuitable for the microvasculature. There has been published research using fractal analysis to calculate fractal dimensions of retinal blood vessels, but so far there has been no systematic research extracting discriminant features from retinal vessels for classifications. This paper introduces new methods for feature extraction from multifractal spectra of retinal vessels for classification. Two publicly available retinal vascular image databases are used for the experiments, and the proposed methods have produced accuracies of 85.5% and 77% for classification of healthy and diabetic retinal vasculatures. Experiments show that classification with multiple fractal features produces better rates compared with methods using a single fractal dimension value. In addition to this, experiments also show that classification accuracy can be affected by the accuracy of vessel segmentation algorithms.
Angioarchitecture of the bovine spermatic cord.
Polguj, Michał; Jȩdrzejewski, Kazimierz S; Topol, Mirosław
2011-04-01
We described the topography and morphometry of the testicular artery, pampiniform plexus veins, and indirect connections between them in the spermatic cord of the bull. Sixty microcorrosive casts of bovine spermatic cords were analyzed macroscopically, by stereomicroscopy, and by scanning electron microscopy. The average size of the testicles was 94.6 × 49.7 × 54.7 mm. The testicular artery formed a superiorly pointed cone-like structure with its base fixed to the proximal part of the gonad. The artery gave off one or two branches to the head of epididymis and to the deferens duct. The pampiniform plexus originated from intra-tunical veins. Veins of the pampiniform plexus were of smaller diameter but larger number than intra-tunical ones. The density of the veins of the pampiniform plexus was 9.37 ± 1.07 mm(-2) . The testicular vein began 90-121 mm above the superior pole of the testis. In 2.9% of specimens, the testicular vein was doubled. Numerous anastomoses among veins of pampiniform plexus were observed. Additionally, indirect anastomoses between the testicular artery and pampiniform plexus veins formed by the capillary network of the vasa vasorum of the testicular artery were visualized by scanning electron microscopy. In all cases, narrowings in the casts of the precapillary vessel were observed. We also documented the vasa vasorum of the testicular artery in bulls. The density of these vessels was 22.87 ± 11.48 mm(-2) . The indirect arteriovenous connections together with the presence of circular constrictions of the lumen in precapillary vessels may play a role in testicular blood flow regulation. Copyright © 2011 Wiley-Liss, Inc.
Arterial pressure transfer characteristics: effects of travel time.
Westerhof, Berend E; Guelen, Ilja; Stok, Wim J; Wesseling, Karel H; Spaan, Jos A E; Westerhof, Nico; Bos, Willem Jan; Stergiopulos, Nikos
2007-02-01
We investigated the quantitative contribution of all local conduit arterial, blood, and distal load properties to the pressure transfer function from brachial artery to aorta. The model was based on anatomical data, Young's modulus, wall viscosity, blood viscosity, and blood density. A three-element windkessel represented the distal arterial tree. Sensitivity analysis was performed in terms of frequency and magnitude of the peak of the transfer function and in terms of systolic, diastolic, and pulse pressure in the aorta. The root mean square error (RMSE) described the accuracy in wave-shape prediction. The percent change of these variables for a 25% alteration of each of the model parameters was calculated. Vessel length and diameter are found to be the most important parameters determining pressure transfer. Systolic and diastolic pressure changed <3% and RMSE <1.8 mmHg for a 25% change in vessel length and diameter. To investigate how arterial tapering influences the pressure transfer, a single uniform lossless tube was modeled. This simplification introduced only small errors in systolic and diastolic pressures (1% and 0%, respectively), and wave shape was less well described (RMSE, approximately 2.1 mmHg). Local (arm) vasodilation affects the transfer function little, because it has limited effect on the reflection coefficient. Since vessel length and diameter translate into travel time, this parameter can describe the transfer accurately. We suggest that with a, preferably, noninvasively measured travel time, an accurate individualized description of pressure transfer can be obtained.
Influence Of Low Intensity Laser Therapy On Diabetic Polyneuropathy
NASA Astrophysics Data System (ADS)
Abdel-Raoof, N. A.; Elnhas, N. G.; Elsayed, I. M.
2011-09-01
Diabetic peripheral neuropathy is a consequence of diabetes-mediated impairment of blood flow, and resultant hypoxia of nerves that may develop within 10 years of the onset of diabetes in 40-50% of people with type 1 or type 2 diabetes. Low Intensity Laser Therapy (LILT) has been advocated for the treatment of chronic pain disorders as blood flow is an important determinant for pain relief. Comparing the effect of Helium-Neon Laser therapy versus Infrared laser therapy on blood vessels diameter and flow as well as level of sensation for neuropathy. Twenty diabetic patients suffering from neuropathy were enrolled in the study with age 45-55 years. They were assigned randomly into two equal groups in number; Group A underwent an application of He-Neon laser while Group B underwent an application of Infrared laser. Both groups received laser for 2 months. Blood flow velocity, and blood vessel diameter were investigated by using duplex Doppler ultrasound and peripheral neuropathy parameters were investigated by Semmes-Weinstein monofilament assessment. The results revealed that He-Neon laser as well as Infrared laser groups showed significant improvement in blood flow velocity, blood vessel diameter & neuropathy tested parameters after treatment but there was no significance difference between the two types of LILT. LILT is a safe, non-invasive and drug free method for improving blood flow & sensation in patients suffering from diabetic polyneuropathy in addition to preventing one of the most threatening microvascular complications of diabetes.
NASA Astrophysics Data System (ADS)
Kanick, Stephen Chad; van der Leest, Cor; Aerts, Joachim G. J. V.; Hoogsteden, Henk C.; Kaščáková, Slávka; Sterenborg, Henricus J. C. M.; Amelink, Arjen
2010-01-01
We describe the incorporation of a single-fiber reflectance spectroscopy probe into the endoscopic ultrasound fine-needle aspiration (EUS-FNA) procedure utilized for lung cancer staging. A mathematical model is developed to extract information about the physiological and morphological properties of lymph tissue from single-fiber reflectance spectra, e.g., microvascular saturation, blood volume fraction, bilirubin concentration, average vessel diameter, and Mie slope. Model analysis of data from a clinical pilot study shows that the single-fiber reflectance measurement is capable of detecting differences in the physiology between normal and metastatic lymph nodes. Moreover, the clinical data show that probe manipulation within the lymph node can perturb the in vivo environment, a concern that must be carefully considered when developing a sampling strategy. The data show the feasibility of this novel technique; however, the potential clinical utility has yet to be determined.
Large Eddy Simulation of Ducted Propulsors in Crashback
NASA Astrophysics Data System (ADS)
Jang, Hyunchul; Mahesh, Krishnan
2009-11-01
Flow around a ducted marine propulsor is computed using the large eddy simulation methodology under crashback conditions. Crashback is an operating condition where a propulsor rotates in the reverse direction while the vessel moves in the forward direction. It is characterized by massive flow separation and highly unsteady propeller loads, which affect both blade life and maneuverability. The simulations are performed on unstructured grids using the discrete kinetic energy conserving algorithm developed by Mahesh at al. (2004, J. Comput. Phys 197). Numerical challenges posed by sharp blade edges and small blade tip clearances are discussed. The flow is computed at the advance ratio J=-0.7 and Reynolds number Re=480,000 based on the propeller diameter. Average and RMS values of the unsteady loads such as thrust, torque, and side force on the blades and duct are compared to experiment, and the effect of the duct on crashback is discussed.
Tissue Engineering of Blood Vessels: Functional Requirements, Progress, and Future Challenges.
Kumar, Vivek A; Brewster, Luke P; Caves, Jeffrey M; Chaikof, Elliot L
2011-09-01
Vascular disease results in the decreased utility and decreased availability of autologus vascular tissue for small diameter (< 6 mm) vessel replacements. While synthetic polymer alternatives to date have failed to meet the performance of autogenous conduits, tissue-engineered replacement vessels represent an ideal solution to this clinical problem. Ongoing progress requires combined approaches from biomaterials science, cell biology, and translational medicine to develop feasible solutions with the requisite mechanical support, a non-fouling surface for blood flow, and tissue regeneration. Over the past two decades interest in blood vessel tissue engineering has soared on a global scale, resulting in the first clinical implants of multiple technologies, steady progress with several other systems, and critical lessons-learned. This review will highlight the current inadequacies of autologus and synthetic grafts, the engineering requirements for implantation of tissue-engineered grafts, and the current status of tissue-engineered blood vessel research.
How to quantify conduits in wood?
Scholz, Alexander; Klepsch, Matthias; Karimi, Zohreh; Jansen, Steven
2013-01-01
Vessels and tracheids represent the most important xylem cells with respect to long distance water transport in plants. Wood anatomical studies frequently provide several quantitative details of these cells, such as vessel diameter, vessel density, vessel element length, and tracheid length, while important information on the three dimensional structure of the hydraulic network is not considered. This paper aims to provide an overview of various techniques, although there is no standard protocol to quantify conduits due to high anatomical variation and a wide range of techniques available. Despite recent progress in image analysis programs and automated methods for measuring cell dimensions, density, and spatial distribution, various characters remain time-consuming and tedious. Quantification of vessels and tracheids is not only important to better understand functional adaptations of tracheary elements to environment parameters, but will also be essential for linking wood anatomy with other fields such as wood development, xylem physiology, palaeobotany, and dendrochronology.
Intraoperative intravital microscopy permits the study of human tumour vessels
Fisher, Daniel T.; Muhitch, Jason B.; Kim, Minhyung; Doyen, Kurt C.; Bogner, Paul N.; Evans, Sharon S.; Skitzki, Joseph J.
2016-01-01
Tumour vessels have been studied extensively as they are critical sites for drug delivery, anti-angiogenic therapies and immunotherapy. As a preclinical tool, intravital microscopy (IVM) allows for in vivo real-time direct observation of vessels at the cellular level. However, to date there are no reports of intravital high-resolution imaging of human tumours in the clinical setting. Here we report the feasibility of IVM examinations of human malignant disease with an emphasis on tumour vasculature as the major site of tumour-host interactions. Consistent with preclinical observations, we show that patient tumour vessels are disorganized, tortuous and ∼50% do not support blood flow. Human tumour vessel diameters are larger than predicted from immunohistochemistry or preclinical IVM, and thereby have lower wall shear stress, which influences delivery of drugs and cellular immunotherapies. Thus, real-time clinical imaging of living human tumours is feasible and allows for detection of characteristics within the tumour microenvironment. PMID:26883450
Experimental study of cryogen spray properties for application in dermatologic laser surgery.
Aguilar, Guillermo; Majaron, Boris; Karapetian, Emil; Lavernia, Enrique J; Nelson, J Stuart
2003-07-01
Cryogenic sprays are used for cooling human skin during laser dermatologic surgery. In this paper, six straight-tube nozzles are characterized by photographs of cryogenic spray shapes, as well as measurements of average droplet diameter, velocity, and temperature. A single-droplet evaporation model to predict average spray droplet diameter and temperature is tested using the experimental data presented here. The results show two distinct spray patterns--sprays for 1.4-mm-diameter nozzles (wide nozzles) show significantly larger average droplet diameters and higher temperatures as a function of distance from the nozzle compared with those for 0.5-0.8-mm-diameter nozzles (narrow nozzles). These results complement and support previously reported studies, indicating that wide nozzles induce more efficient heat extraction than the narrow nozzles.
NASA Astrophysics Data System (ADS)
Simonetto, A.; Platania, P.; Garavaglia, S.; Gittini, G.; Granucci, G.; Pallotta, F.
2018-02-01
Plasma position reflectometry for ITER requires interfaces between in-vessel and ex-vessel waveguides. An ultra broadband interface (15-75 GHz) was designed between moderately oversized rectangular waveguide (20 × 12 mm), operated in TE01 (i.e., tall waveguide mode), and circular corrugated waveguide, with 88.9-mm internal diameter, propagating HE11. The interface was designed both as a sequence of waveguide components and as a quasi-optical confocal telescope. The design and the simulated performance are described for both concepts. The latter one requires more space but has better performance, and shall be prototyped.
Blood pulse wave velocity measured by photoacoustic microscopy
NASA Astrophysics Data System (ADS)
Yeh, Chenghung; Hu, Song; Maslov, Konstantin; Wang, Lihong V.
2013-03-01
Blood pulse wave velocity (PWV) is an important indicator for vascular stiffness. In this letter, we present electrocardiogram-synchronized photoacoustic microscopy for in vivo noninvasive quantification of the PWV in the peripheral vessels of mice. Interestingly, strong correlation between blood flow speed and ECG were clearly observed in arteries but not in veins. PWV is measured by the pulse travel time and the distance between two spot of a chose vessel, where simultaneously recorded electrocardiograms served as references. Statistical analysis shows a linear correlation between the PWV and the vessel diameter, which agrees with known physiology. Keywords: photoacoustic microscopy, photoacoustic spectroscopy, bilirubin, scattering medium.
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia; Radbakrishnan, Krisbnan; Vickerman, Mary B.; Kaiser, Peter K.
2010-01-01
PURPOSE. Vascular dropout and angiogenesis are hallmarks of the progression of diabetic retinopathy (DR). However, current evaluation of DR relies on grading of secondary vascular effects, such as microaneurysms and hemorrhages, by clinical examination instead of by evaluation of actual vascular changes. The purpose of this study was to map and quantify vascular changes during progression of DR by VESsel GENeration Analysis (VESGEN). METHODS. In this prospective cross-sectional study, 15 eyes with DR were evaluated with fluorescein angiography (FA) and color fundus photography, and were graded using modified Early Treatment Diabetic Retinopathy Study criteria. FA images were separated by semiautomatic image processing into arterial and venous trees. Vessel length density (L(sub v)), number density (N(sub v)), and diameter (D(sub v)) were analyzed in a masked fashion with VESGEN software. Each vascular tree was automatically segmented into branching generations (G(sub 1)...G(sub 8) or G(sub 9)) by vessel diameter and branching. Vascular remodeling status (VRS) for N(sub v) and L(sub v) was graded 1 to 4 for increasing severity of vascular change. RESULTS. By N(sub v) and L(sub v), VRS correlated significantly with the independent clinical diagnosis of mild to proliferative DR (13/15 eyes). N(sub v) and L(sub v) of smaller vessels (G(sub >=6) increased from VRS1 to VRS2 by 2.4 X and 1.6 X, decreased from VRS2 to VRS3 by 0.4 X and 0.6X, and increased from VRS3 to VRS4 by 1.7 X and 1.5 X (P < 0.01). Throughout DR progression, the density of larger vessels (G(sub 1-5)) remained essentially unchanged, and D(sub v1-5) increased slightly. CONCLUSIONS. Vessel density oscillated with the progression of DR. Alternating phases of angiogenesis/neovascularization and vascular dropout were dominated first by remodeling of arteries and subsequently by veins.
Polysaccharides from astragali radix restore chemical-induced blood vessel loss in zebrafish
2012-01-01
Background Astragali Radix has been used widely for the treatment of cardiovascular and cerebrovascular diseases, and to enhance endurance and stamina in traditional Chinese medicine (TCM) for over 2000 years. The polysaccharide constituents of Astragali Radix (ARP) are considered as one of the major constituents contributing to the multiple pharmacological effects of this medicinal plant. The purpose of the study is to evaluate the vascular regenerative activities of ARPs in a chemically-induced blood vessel loss model in zebrafish. Methods Blood vessel loss was induced in both Tg(fli-1a:EGFP)y1 and Tg(fli-1a:nEGFP)y7 embryos by administration of 300 nM VEGFR tyrosine kinase inhibitor II (VRI) for 3 h at 24 hpf (hour post-fertilization). Then, the blood vessel damaged zebrafish were treated with ARPs for 21 h and 45 h after VRI withdrawal. Morphological changes in intersegmental vessels (ISVs) of zebrafish larvae were observed under the fluorescence microscope and measured quantitatively. The rescue effect of ARPs in the zebrafish models was validated by measuring the relative mRNA expressions of Kdrl, Kdr and Flt-1 using real-time PCR. Results Two polysaccharide fractions, P4 (50000 D < molecular weight & diameter < 0.1 μm) and P5 (molecular diameter > 0.1 μm), isolated from Astragali Radix by ultrafiltration, produced a significant and dose-dependent recovery in VRI-induced blood vessel loss in zebrafish. Furthermore, the down-regulation of Flk-1 and Flt-1 mRNA expression induced by VRI was reversed by treatment with P4. Conclusion The present study demonstrates that P4 isolated from Astragali Radix reduces VRI-induced blood vessel loss in zebrafish. These findings support the hypothesis that polysaccharides are one of the active constituents in Astragali Radix, contributing to its beneficial effect on treatment of diseases associated with a deficiency in angiogenesis. PMID:22357377
Transport of particles by magnetic forces and cellular blood flow in a model microvessel
NASA Astrophysics Data System (ADS)
Freund, J. B.; Shapiro, B.
2012-05-01
The transport of particles (diameter 0.56 μm) by magnetic forces in a small blood vessel (diameter D = 16.9 μm, mean velocity U = 2.89 mm/s, red cell volume fraction Hc = 0.22) is studied using a simulation model that explicitly includes hydrodynamic interactions with realistically deformable red blood cells. A biomedical application of such a system is targeted drug or hyperthermia delivery, for which transport to the vessel wall is essential for localizing therapy. In the absence of magnetic forces, it is seen that interactions with the unsteadily flowing red cells cause lateral particle velocity fluctuations with an approximately normal distribution with variance σ = 140 μm/s. The resulting dispersion is over 100 times faster than expected for Brownian diffusion, which we neglect. Magnetic forces relative to the drag force on a hypothetically fixed particle at the vessel center are selected to range from Ψ = 0.006 to 0.204. The stronger forces quickly drive the magnetic particles to the vessel wall, though in this case the red cells impede margination; for weaker forces, many of the particles are marginated more quickly than might be predicted for a homogeneous fluid by the apparently chaotic stirring induced by the motions of the red cells. A corresponding non-dimensional parameter Ψ', which is based on the characteristic fluctuation velocity σ rather than the centerline velocity, explains the switch-over between these behaviors. Forces that are applied parallel to the vessel are seen to have a surprisingly strong effect due to the streamwise-asymmetric orientation of the flowing blood cells. In essence, the cells act as low-Reynolds number analogs of turning vanes, causing streamwise accelerated particles to be directed toward the vessel center and streamwise decelerated particles to be directed toward the vessel wall.
Peregrina-Barreto, Hayde; Perez-Corona, Elizabeth; Rangel-Magdaleno, Jose; Ramos-Garcia, Ruben; Chiu, Roger; Ramirez-San-Juan, Julio C
2017-06-01
Visualization of deep blood vessels in speckle images is an important task as it is used to analyze the dynamics of the blood flow and the health status of biological tissue. Laser speckle imaging is a wide-field optical technique to measure relative blood flow speed based on the local speckle contrast analysis. However, it has been reported that this technique is limited to certain deep blood vessels (about ? = 300 ?? ? m ) because of the high scattering of the sample; beyond this depth, the quality of the vessel’s image decreases. The use of a representation based on homogeneity values, computed from the co-occurrence matrix, is proposed as it provides an improved vessel definition and its corresponding diameter. Moreover, a methodology is proposed for automatic blood vessel location based on the kurtosis analysis. Results were obtained from the different skin phantoms, showing that it is possible to identify the vessel region for different morphologies, even up to 900 ?? ? m in depth.
Survival and growth of black walnut families after 7 years in West Virginia
G. W. Wendel; Donald E. Dorn; Donald E. Dorn
1985-01-01
Average survival, 7-year stem diameter, and stem diameter growth differed significantly among 34 black walnut families planted in West Virginia. Average total height, height growth, and diameter at breast height were not significantly different among families. Families were from seed collected in West Virginia, Pennsylvania, North Carolina, and Tennessee. The 7-year...
Diameter Growth of Southern Bottomland Hardwoods
Henry Bull
1945-01-01
There is very little published information on average rates of diameter growth of southern bottomland hardwoods. Probably the best information of this kind is given by Winters, Putnam, and Eldredge,2 who summarize forest survey data on average rates of diameter growth for 4 size classes and 20 species or species groups (including pine and cyress), and for all species...
Height diameter relations of maple street trees
David J. Nowak
1990-01-01
Height and diameter measurements were taken for silver, sugar and Norway maple street trees in Rochester and Syracuse, New York. Mature silver maples proved to be the tallest of the three species. Average sugar maple height was consistently taller than Norway maple height until diameters reached 28 inches. Average mature tree height for all three species level off in...
Pabittei, Dara R; Heger, Michal; Beek, Johan F; van Tuijl, Sjoerd; Simonet, Marc; van der Wal, Allard C; de Mol, Bas A; Balm, Ron
2011-01-01
Poor welding strength constitutes an obstacle in the clinical employment of laser-assisted vascular repair (LAVR) and anastomosis. We therefore investigated the feasibility of using electrospun poly(ε-caprolactone) (PCL) scaffold as reinforcement material in LAVR of medium-sized vessels. In vitro solder-doped scaffold LAVR (ssLAVR) was performed on porcine carotid arteries or abdominal aortas using a 670-nm diode laser, a solder composed of 50% bovine serum albumin and 0.5% methylene blue, and electrospun PCL scaffolds. The correlation between leaking point pressures (LPPs) and arterial diameter, the extent of thermal damage, structural and mechanical alterations of the scaffold following ssLAVR, and the weak point were investigated. A strong negative correlation existed between LPP and vessel diameter, albeit LPP (484±111 mmHg) remained well above pathophysiological pressures. Histological analysis revealed that thermal damage extended into the medial layer with a well-preserved internal elastic lamina and endothelial cells. Laser irradiation of PCL fibers and coagulation of solder material resulted in a strong and stiff scaffold. The weak point of the ssLAVR modality was predominantly characterized by cohesive failure. In conclusion, ssLAVR produced supraphysiological LPPs and limited tissue damage. Despite heat-induced structural/mechanical alterations of the scaffold, PCL is a suitable polymer for weld reinforcement in medium-sized vessel ssLAVR.
Progress in joining, reuse, and customization of WR284 waveguide in the laboratory
NASA Astrophysics Data System (ADS)
Clark, Mike; Flanagan, Ken; Milhone, Jason; Nonn, Paul; Forest, Cary
2017-10-01
A system of five 20 kW magnetrons is being installed for the Big Red Ball (BRB) to produce and heat the plasma with 2.45GHz RF energy. An existing system of two 6 kW magentrons of the same frequency is actively used for the same purpose on Plasma Couette Experiment Upgrade (PCX-U). In each experiment, the RF is transmitted to the vessel via WR284 waveguide. Waveguide occasionally needs to be disassembled, modified and rebuilt for different reasons such as physics interests, ongoing problems (arcing), or efficient utilization of laboratory space. Reuse of disassembled waveguide parts is desirable for cost savings. Methods of assembly, disassembly, and modification of waveguide will be discussed. Also, frequently used designs of chokes, windows, and limiters will be shown. Materials used include copper, brass, and even aluminum. The vacuum vessel of PCX-U is a 1 meter diameter, 1 meter tall cylinder comprised of ¼'' thick stainless steel. PCX-U has one removable end. The vacuum vessel of the BRB is a 3 meter diameter, sphere comprised of two hemispheres of 1-¼'' thick cast A356 aluminum. Rings comprised of hundreds of SmCo magnets in each vessel create a cusp field to contain the plasma and provide a resonance surface for the RF. Supported by NSF and DoE.
Pabittei, Dara R.; Heger, Michal; Beek, Johan F.; van Tuijl, Sjoerd; Simonet, Marc; van der Wal, Allard C.; de Mol, Bas A.
2010-01-01
Poor welding strength constitutes an obstacle in the clinical employment of laser-assisted vascular repair (LAVR) and anastomosis. We therefore investigated the feasibility of using electrospun poly(ε-caprolactone) (PCL) scaffold as reinforcement material in LAVR of medium-sized vessels. In vitro solder-doped scaffold LAVR (ssLAVR) was performed on porcine carotid arteries or abdominal aortas using a 670-nm diode laser, a solder composed of 50% bovine serum albumin and 0.5% methylene blue, and electrospun PCL scaffolds. The correlation between leaking point pressures (LPPs) and arterial diameter, the extent of thermal damage, structural and mechanical alterations of the scaffold following ssLAVR, and the weak point were investigated. A strong negative correlation existed between LPP and vessel diameter, albeit LPP (484 ± 111 mmHg) remained well above pathophysiological pressures. Histological analysis revealed that thermal damage extended into the medial layer with a well-preserved internal elastic lamina and endothelial cells. Laser irradiation of PCL fibers and coagulation of solder material resulted in a strong and stiff scaffold. The weak point of the ssLAVR modality was predominantly characterized by cohesive failure. In conclusion, ssLAVR produced supraphysiological LPPs and limited tissue damage. Despite heat-induced structural/mechanical alterations of the scaffold, PCL is a suitable polymer for weld reinforcement in medium-sized vessel ssLAVR. PMID:20835847
Kwech, Horst
1989-04-18
A robotic arm positionable within a nuclear vessel by access through a small diameter opening and having a mounting tube supported within the vessel and mounting a plurality of arm sections for movement lengthwise of the mounting tube as well as for movement out of a window provided in the wall of the mounting tube. An end effector, such as a grinding head or welding element, at an operating end of the robotic arm, can be located and operated within the nuclear vessel through movement derived from six different axes of motion provided by mounting and drive connections between arm sections of the robotic arm. The movements are achieved by operation of remotely-controllable servo motors, all of which are mounted at a control end of the robotic arm to be outside the nuclear vessel.
NASA Astrophysics Data System (ADS)
Kim, Hoon Sup; Lee, Songhyun; Lee, Kiri; Eom, Tae Joong; Kim, Jae G.
2016-02-01
We previously reported the potential of using vascular reactivity during respiratory challenges as a marker to predict the response of breast tumor to chemotherapy in a rat model by using a continuous wave near-infrared spectroscopy. However, it cannot visualize how the vascular reactivity from tumor vessel can predict the tumor response to its treatment. In this study, we utilized a spectral domain optical coherence tomography (SD-OCT) system to visualize vascular reactivity of both tumor and normal vasculature during respiratory challenges in a mouse model. We adapted intensity based Doppler variance algorithm to draw angiogram from the ear of mouse (8-week-old Balb/c nu/nu). Animals were anesthetized using 1.5% isoflurane, and the body temperature was maintained by a heating pad. Inhalational gas was switched from air (10min) to 100% oxygen (10min), and a pulse oximeter was used to monitor arterial oxygen saturation and heart rate. OCT angiograms were acquired 5 min after the onset of each gas. The vasoconstriction effect of hyperoxic gas on vasculature was shown by subtracting an en-face image acquired during 100% oxygen from the image acquired during air inhalation. The quantitative change in the vessel diameter was measured from the en-face OCT images of the individual blood vessels. The percentage of blood vessel diameter reduction varied from 1% to 12% depending on arterial, capillary, or venous blood vessel. The vascular reactivity change during breast tumor progression and post chemotherapy will be monitored by OCT angiography.
Morphometry of A1 segment of the anterior cerebral artery and its clinical importance.
Krishnamurthy, A; Nayak, S R; Bagoji, I B; D'Costa, S; Pai, M M; Jiji, P J; Kumar, C G; Rai, R
2010-01-01
Anterior cerebral artery, one of the terminal branches of the internal carotid artery is an important vessel taking part in the formation of circle of Willis. It supplies a large part of the medial surface of the cerebral hemisphere containing the areas of motor and somatosensory cortices of the lower limb. Aim of this study was the morphometry of A1 segment of the anterior cerebral artery. 93 formalin fixed brain specimen of either sex and of Indian origin were studied. The mean length, mean external diameter and the anomalies present in A1 segment of the vessel were studied in detail and photographed. The mean length of A1 segment of the vessel was 14.49+/-0.28 mm and 14.22+/-0.22 mm on right and left side respectively. The mean external diameter of the vessel on right and left side was 2.12+/-0.07 mm and 2.32+/-0.06 mm respectively. Narrowing, aneurysm formation, buttonhole formation and median anterior cerebral artery were the anomalies seen with an occurrence of 15.05%, 5.37%, 3.22% and 12.9%, respectively. The above anomalies did not have any sex or side predilection. Knowledge of morphometry of the vessel will be of use to neurosurgeons while performing the shunt operation, in assessing the feasibility of such operations and in the choice of patients. From this study we infer that the morphometry of anterior cerebral artery varies in different population and that the neurosurgeons operating should have a thorough knowledge of the possible variations.
Automatic arteriovenous crossing phenomenon detection on retinal fundus images
NASA Astrophysics Data System (ADS)
Hatanaka, Yuji; Muramatsu, Chisako; Hara, Takeshi; Fujita, Hiroshi
2011-03-01
Arteriolosclerosis is one cause of acquired blindness. Retinal fundus image examination is useful for early detection of arteriolosclerosis. In order to diagnose the presence of arteriolosclerosis, the physicians find the silver-wire arteries, the copper-wire arteries and arteriovenous crossing phenomenon on retinal fundus images. The focus of this study was to develop the automated detection method of the arteriovenous crossing phenomenon on the retinal images. The blood vessel regions were detected by using a double ring filter, and the crossing sections of artery and vein were detected by using a ring filter. The center of that ring was an interest point, and that point was determined as a crossing section when there were over four blood vessel segments on that ring. And two blood vessels gone through on the ring were classified into artery and vein by using the pixel values on red and blue component image. Finally, V2-to-V1 ratio was measured for recognition of abnormalities. V1 was the venous diameter far from the blood vessel crossing section, and V2 was the venous diameter near from the blood vessel crossing section. The crossing section with V2-to-V1 ratio over 0.8 was experimentally determined as abnormality. Twenty four images, including 27 abnormalities and 54 normal crossing sections, were used for preliminary evaluation of the proposed method. The proposed method was detected 73% of crossing sections when the 2.8 sections per image were mis-detected. And, 59% of abnormalities were detected by measurement of V1-to-V2 ratio when the 1.7 sections per image were mis-detected.
Tumor-line specific causes of intertumor heterogeneity in blood supply in human melanoma xenografts.
Simonsen, Trude G; Gaustad, Jon-Vidar; Leinaas, Marit N; Rofstad, Einar K
2013-01-01
The efficacy of most cancer treatments is strongly influenced by the tumor blood supply. The results of experimental studies using xenografted tumors to evaluate novel cancer treatments may therefore vary considerably depending on the blood supply of the specific tumor model being used. Mechanisms underlying intertumor heterogeneity in the blood supply of xenografted tumors derived from same tumor line are poorly understood, and were investigated here by using intravital microscopy to assess tumor blood supply and vascular morphology in human melanomas growing in dorsal window chambers in BALB/c nu/nu mice. Two melanoma lines, A-07 and R-18, were included in the study. These lines differed substantially in angiogenic profiles. Thus, when the expression of 84 angiogenesis-related genes was investigated with a quantitative PCR array, 25% of these genes showed more than a 10-fold difference in expression. Furthermore, A-07 tumors showed higher vascular density, higher vessel tortuosity, higher vessel diameters, shorter vessel segments, and more chaotic vascular architecture than R-18 tumors. Both lines showed large intertumor heterogeneity in blood supply. In the A-07 line, tumors with low microvascular density, long vessel segment, and high vessel tortuosity showed poor blood supply, whereas in the R-18 line, poor tumor blood supply was associated with low tumor arteriolar diameters. Thus, tumor-line specific causes of intertumor heterogeneity in blood supply were identified in human melanoma xenografts, and these tumor-line specific mechanisms were possibly a result of tumor-line specific angiogenic profiles. Copyright © 2012 Elsevier Inc. All rights reserved.
Hori, Katsuyoshi; Nishihara, Masamichi; Yokoyama, Masayuki
2010-01-01
Particles larger than a specific size have been thought to extravasate from tumor vessels but not from normal vessels. Therefore, various nanoparticles incorporating anticancer drugs have been developed to realize selective drug delivery to solid tumors. However, it is not yet clear whether nanoparticles extravasate readily from all tumor vessels including vessels of microtumors. To answer this question, we synthesized new polymeric micelles labeled with fluorescein isothiocyanate (FITC) and injected them into the tail vein of rats with implanted skinfold transparent chambers. We also analyzed, by means of time-lapse vital microscopy with image analysis, extravasation of FITC micelles from tumor vessels at different stages of growth of Yoshida ascites sarcoma LY80. Polymeric micelles readily leaked from vessels at the interface between normal and tumor tissues and those at the interface between tumor tissues and necrotic areas. The micelles showed negligible extravasation, however, from the vascular network of microtumors less than 1 mm in diameter and did not accumulate in the microtumor. Our results suggest that we must develop a novel therapeutic strategy that can deliver sufficient nanomedicine to microtumors.
Comparative analysis of methods for extracting vessel network on breast MRI images
NASA Astrophysics Data System (ADS)
Gaizer, Bence T.; Vassiou, Katerina G.; Lavdas, Eleftherios; Arvanitis, Dimitrios L.; Fezoulidis, Ioannis V.; Glotsos, Dimitris T.
2017-11-01
Digital processing of MRI images aims to provide an automatized diagnostic evaluation of regular health screenings. Cancerous lesions are proven to cause an alteration in the vessel structure of the diseased organ. Currently there are several methods used for extraction of the vessel network in order to quantify its properties. In this work MRI images (Signa HDx 3.0T, GE Healthcare, courtesy of University Hospital of Larissa) of 30 female breasts were subjected to three different vessel extraction algorithms to determine the location of their vascular network. The first method is an experiment to build a graph over known points of the vessel network; the second algorithm aims to determine the direction and diameter of vessels at these points; the third approach is a seed growing algorithm, spreading selection to neighbors of the known vessel pixels. The possibilities shown by the different methods were analyzed, and quantitative measurements were performed. The data provided by these measurements showed no clear correlation with the presence or malignancy of tumors, based on the radiological diagnosis of skilled physicians.
50 CFR 665.245 - Gear restrictions.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Panels must have at least four unobstructed circular holes no smaller than 67 mm in diameter, with... until the NWHI lobster season opens on July 1. (8) A vessel whose owner has a limited access permit...
50 CFR 665.245 - Gear restrictions.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Panels must have at least four unobstructed circular holes no smaller than 67 mm in diameter, with... until the NWHI lobster season opens on July 1. (8) A vessel whose owner has a limited access permit...
50 CFR 665.245 - Gear restrictions.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Panels must have at least four unobstructed circular holes no smaller than 67 mm in diameter, with... until the NWHI lobster season opens on July 1. (8) A vessel whose owner has a limited access permit...
Static-stress analysis of dual-axis safety vessel
NASA Astrophysics Data System (ADS)
Bultman, D. H.
1992-11-01
An 8 ft diameter safety vessel, made of HSLA-100 steel, is evaluated to determine its ability to contain the quasi-static residual pressure from a high explosive (HE) blast. The safety vessel is designed for use with the Dual-Axis Radiographic Hydrotest (DARHT) facility being developed at Los Alamos National Laboratory. A smaller confinement vessel fits inside the safety vessel and contains the actual explosion, and the safety vessel functions as a second layer of containment in the unlikely case of a confinement vessel leak. The safety vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section 8, Division 1, and the Welding Research Council Bulletin, WRC107. Combined stresses that result from internal pressure and external loads on nozzles are calculated and compared to the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzle components are adequately designed for a static pressure of 830 psi, plus the maximum expected external loads. Shell stresses at the 'shell to nozzle' interface, produced from external loads on the nozzles, were less than 700 psi. The maximum combined stress resulting from the internal pressure plus external loads was 17,384 psi, which is significantly less than the allowable stress of 42,375 psi for HSLA-100 steel.
John R. Brooks
2007-01-01
A technique for estimating stand average dominant height based solely on field inventory data is investigated. Using only 45.0919 percent of the largest trees per acre in the diameter distribution resulted in estimates of average dominant height that were within 4.3 feet of the actual value, when averaged over stands of very different structure and history. Cubic foot...
NASA Astrophysics Data System (ADS)
Zhang, F.; Chen, Y.; Tian, C.; Li, J.; Zhang, G.; Matthias, V.
2015-09-01
Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbor districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel engine power offshore vessels in China were measured in this study. Concentrations, fuel-based and power-based emissions factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emissions factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low engine power vessel than for the two higher engine power vessels. Fuel-based average emissions factors for all pollutants except sulfur dioxide in the low engine power engineering vessel were significantly higher than that of the previous studies, while for the two higher engine power vessels, the fuel-based average emissions factors for all pollutants were comparable to the results of the previous studies. The fuel-based average emissions factor for nitrogen oxides for the small engine power vessel was more than twice the International Maritime Organization standard, while those for the other two vessels were below the standard. Emissions factors for all three vessels were significantly different during different operating modes. Organic carbon and elemental carbon were the main components of particulate matter, while water-soluble ions and elements were present in trace amounts. Best-fit engine speeds during actual operation should be based on both emissions factors and economic costs.
Growth of ponderosa pine stands in relation to mountain pine beetle susceptibility
R. A. Obedzinski; J. M. Schmid; S. A. Mata; W. K. Olsen; R. R. Kessler
1999-01-01
Ten-year diameter and basal area growth were determined for partially cut stands at 4 locations. Average diameters in the partially cut plots generally increased by 1 inch or more, while average diameter in the uncut controls increased by 0.9 inches or less. Individual tree growth is discussed in relation to potential susceptibility to mountain pine beetle infestation...
Oui, Heejin; Oh, Juyeon; Keh, Seoyeon; Lee, Gahyun; Jeon, Sunghoon; Kim, Hyunwook; Yoon, Junghee; Choi, Jihye
2015-01-01
This study reassessed the previously reported radiographic method of comparing pulmonary vessels versus rib diameter for differentiating healthy dogs and dogs with mitral regurgitation. The width of the right cranial pulmonary artery and vein at the fourth rib level, right caudal pulmonary artery and vein at the ninth rib level, and the diameters of the fourth rib and ninth rib were measured in prospectively recruited healthy dogs (n = 40) and retrospectively recruited dogs with mitral regurgitation (n = 58). In healthy dogs, the pulmonary arteries and accompanying veins were similar in size. The cranial lobar vessels were smaller than the fourth rib. However, 67.5% of right caudal pulmonary artery diameters and 65% of vein diameters were larger than the ninth rib in healthy dogs. The right caudal pulmonary vein diameter in dogs with mitral regurgitation, particularly those within moderate and severe grades, was significantly larger than that in healthy dogs (P < 0.001). The comparative method used to detect enlargement of the right caudal pulmonary vein relative to the accompanying pulmonary artery had the highest sensitivity (80.2%) and specificity (82.5%) for predicting mitral regurgitation. A cut-off of 1.22 when applying the ninth rib criterion had better specificity (73%) than the most used value ≤ 1 (89.7% sensitivity and 63.8% specificity), although it has less sensitivity (73%). We recommend using the accompanying pulmonary artery and 1.22 × the diameter of the ninth rib as a radiographic criterion for assessing the size of the right caudal pulmonary vein and differentiating healthy dogs from those with mitral regurgitation. © 2014 American College of Veterinary Radiology.
High-energy long duration frequency-doubled Nd:YAG laser and application to venous occlusion
NASA Astrophysics Data System (ADS)
Zhang, Laiming; Yang, Guilong; Li, Dianjun; Lu, Qipeng; Gu, Huadong; Zhu, Linlin; Zhao, Zhenwu; Li, Xin; Tang, Yuguo; Guo, Jin
2005-01-01
Laser treatment represents an attractive option to other methods of vessel diseases especially varicose veins. A long pulse (30~50ms) 532nm laser (Fig.1) is used in our experiments with the pulse duration matching the thermal relaxation time of the vessels and the green laser matching the absorption spectrum peak of the blood. Laser irradiates nude vein vessels directly or exterior skin to finish operation faster and to acquire the practical data for upper enteron varicose vein treatment in several animal experiments performed in vivo. The 5J-energy pulse allows us to finely occlude rabbit or dog"s vein vessels up to 2 mm in diameter when irradiating them off external skin (Fig.2). Blood vessels are occluded at once and later biopsy specimens show the immediate and long-term lasting occlusion effect. While irradiating vessels directly (Fig.3), the vessels are usually irradiated to perforate, detailed causes are still under investigation. Animal experiments show long pulse green laser therapy is a safe and effective solution to the vein"s occlusion, which promises such laser with high energy of each pulse and 30~50 ms duration is an ideal candidate for vessel diseases treatment.
NASA Astrophysics Data System (ADS)
Liang, Chia-Pin; Nakajima, Takahito; Watanabe, Rira; Sato, Kazuhide; Choyke, Peter L.; Chen, Yu; Kobayashi, Hisataka
2014-09-01
Photoimmunotherapy (PIT) is a cell-specific cancer therapy based on an armed antibody conjugate that induces rapid and highly selective cancer cell necrosis after exposure to near-infrared (NIR) light. The PIT treatment also induces the superenhanced permeability and retention effect, which allows high concentrations of nanoparticles to accumulate in the tumor bed. In our pilot studies, optical coherence tomography (OCT) reveals dramatic hemodynamic changes during PIT. We developed and applied speckle variance analysis, Doppler flow measurement, bulk motion removal, and automatic region of interest selection to quantify vessel diameter and blood velocity within tumors in vivo. OCT imaging reveals that blood velocity in peripheral tumor vessels quickly drops below the detection limit while the vessel lumen remains open (4 vessels from 3 animals). On the other hand, control tumor vessels (receive NIR illumination but no PIT drug) do not show the sustained blood velocity drop (5 vessels from 3 animals). Ultraslow blood velocity could result in a long drug circulation time in tumor. Increase of the blood pool volume within the central tumor (shown in histology) may be the leading cause of the periphery blood velocity drop and could also increase the drug pool volume in tumor vessels.
Braun, Birgit; Dorgan, John R; Chandler, John P
2008-04-01
Mathematical treatment of light scattering within the Rayleigh-Gans-Debye limit for spheroids with polydispersity in both length and diameter is developed and experimentally tested using cellulosic nanowhiskers (CNW). Polydispersity indices are obtained by fitting the theoretical formfactor to experimental data. Good agreement is achieved using a polydispersity of 2.3 for the length, independent of the type of acid used. Diameter polydispersities are 2.1 and 3.0 for sulfuric and hydrochloric acids, respectively. These polydispersities allow the determination of average dimensions from the z-average mean-square radius (z) and the weight-average molecular weight (M w) easily obtained from Berry plots. For cotton linter hydrolyzed by hydrochloric acid, the average length and diameter are 244 and 22 nm. This compares to average length and diameter of 272 and 13 nm for sulfuric acid. This study establishes a new light-scattering methodology as a quick and robust tool for size characterization of polydisperse spheroidal nanoparticles.
High-Aspect-Ratio Rotating Cell-Culture Vessel
NASA Technical Reports Server (NTRS)
Wolf, David A.; Sams, Clarence; Schwarz, Ray P.
1992-01-01
Cylindrical rotating cell-culture vessel with thin culture-medium layer of large surface area provides exchange of nutrients and products of metabolism with minimal agitation. Rotation causes averaging of buoyant forces otherwise separating components of different densities. Vessel enables growth of cells in homogeneous distribution with little agitation and little shear stress.
Huber, Birgit; Engelhardt, Sascha; Meyer, Wolfdietrich; Krüger, Hartmut; Wenz, Annika; Schönhaar, Veronika; Tovar, Günter E. M.; Kluger, Petra J.; Borchers, Kirsten
2016-01-01
Blood vessel reconstruction is still an elusive goal for the development of in vitro models as well as artificial vascular grafts. In this study, we used a novel photo-curable cytocompatible polyacrylate material (PA) for freeform generation of synthetic vessels. We applied stereolithography for the fabrication of arbitrary 3D tubular structures with total dimensions in the centimeter range, 300 µm wall thickness, inner diameters of 1 to 2 mm and defined pores with a constant diameter of approximately 100 µm or 200 µm. We established a rinsing protocol to remove remaining cytotoxic substances from the photo-cured PA and applied thio-modified heparin and RGDC-peptides to functionalize the PA surface for enhanced endothelial cell adhesion. A rotating seeding procedure was introduced to ensure homogenous endothelial monolayer formation at the inner luminal tube wall. We showed that endothelial cells stayed viable and adherent and aligned along the medium flow under fluid-flow conditions comparable to native capillaries. The combined technology approach comprising of freeform additive manufacturing (AM), biomimetic design, cytocompatible materials which are applicable to AM, and biofunctionalization of AM constructs has been introduced as BioRap® technology by the authors. PMID:27104576
Assessment of a Polyester-Covered Nitinol Stent in the Canine Aorta and Iliac Arteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castaneda, Flavio; Ball-Kell, Susan M.; Young, Kate
Purpose: To evaluate the patency and healing characteristics of a woven polyester fabric-covered stent in the canine model.Methods: Twenty-four self-expanding covered stents were placed in the infrarenal aorta and bilateral common iliac arteries of eight dogs and evaluated at 1 (n = 2), 3 (n = 2), and 6 (n = 4) months. Stent assessment was done using angiography prior to euthanasia, and light and scanning electron microscopy.Results: Angiographically, just prior to euthanasia, 8 of 8 aortic and 14 of 16 iliac endovascular covered stents were patent. Histologically, the stented regions showed complete endothelialization 6 months after graft implantation. Amore » neointima had formed inside the stented vessel regions resulting in complete encasement of the fabric-covered stent by 3 months after graft implantation. Medial compression with smooth muscle cell atrophy was present in all stented regions. Explanted stent wires, examined by scanning electron microscopy, showed pitting but no cracks or breakage.Conclusion: The covered stent demonstrated predictable healing and is effective in preventing stenosis in vessels 10.0 mm or greater in diameter but does not completely preclude stenosis in vessels 6.0 mm or less in diameter.« less
A new method for in vivo visualization of vessel remodeling using a near-infrared dye
Billaud, Marie; Ross, Jeremy A; Greyson, Mark A; Bruce, Anthony C; Seaman, Scott A; Heberlein, Katherine R; Han, Jenny; Best, Angela K; Peirce, Shayn M; Isakson, Brant E
2011-01-01
Intro Vascular obstructive events can be partially compensated for by remodeling processes that increase vessel diameter and collateral tortuosity. However, methods for visualizing remodeling events in vivo and with temporal comparisons from the same animal remain elusive. Methods Using a novel infrared conjugated polyethylene glycol dye, we investigated the possibility of intravital vascular imaging of the mouse ear before and after ligation of the primary feeder artery. For comparison, we used two different mouse models known to have impaired vascular remodeling post ligation (i.e. aged and PAI-1−/− mice). The results obtained with the infrared dye were confirmed using immunofluorescence labeling of the ear microvasculature with confocal microscopy. Results After ligation, increases in vessel diameter (between 10% and 60%) and tortuosity (approximately 15%) were observed in C57Bl/6 mice using both the infrared dye and the immunofluorescence technique. However, aged C57Bl/6 and PAI-1−/− mice did not show vascular remodeling following ligation. Conclusion Vascular remodeling can be visualized and accurately quantified using a new infrared dye in vivo. This analysis technique could be generally employed for quantitative investigations of changes in vascular remodeling. PMID:21418375
Zone-specific remodeling of tumor blood vessels affects tumor growth.
Tilki, Derya; Kilic, Nerbil; Sevinc, Sema; Zywietz, Friedrich; Stief, Christian G; Ergun, Suleyman
2007-11-15
Chaotic organization, abnormal leakiness, and structural instability are characteristics of tumor vessels. However, morphologic events of vascular remodeling in relation to tumor growth are not sufficiently studied yet. By using the rat rhabdomyosarcoma tumor model vascular morphogenesis was studied by light and electron microscopy and immunohistochemistry in relation to tumor regions such as tumor surrounding (TSZ), marginal (TMZ), intermediate (TIZ), and center (TCZ) zones. The analyses revealed that blood vessels of TSZ display a regular ultrastructure, whereas blood vessels of TMZ showed a chaotic organization and unstable structure with a diffuse or even lacking basal lamina, and missing or irregular assembled periendothelial cells. In contrast, blood vessels of TIZ and TCZ exhibited a more or less stabilized vessel structure with increased diameter. Correspondingly, normal assembly of alpha-smooth-muscle-actin (alpha-SMA)-positive cells into the vessel wall was observed in blood vessels of TSZ, TIZ, and TCZ. Also, Ang1 immunostaining was strongest in large vessels of TIZ and TCZ, whereas Ang2 staining was prominent in small vessels of TIZ. Tie2 staining was detectable in small and large vessels of all tumor zones. Immunostaining for alpha(v)beta(3)-integrin was strongest in small vessels of TMZ, whereas large vessels of TIZ and TCZ were almost negative. The results indicate a zone-specific remodeling of tumor blood vessels by stabilization of vessels in TIZ and TCZ, whereas small vessels of these zones obviously undergo regression leading to tumor necrosis. Thus, a better understanding of vascular remodeling and stabilization in tumors would enable new strategies in tumor therapy and imaging. (c) 2007 American Cancer Society.
Thermal depth profiling of vascular lesions: automated regularization of reconstruction algorithms
NASA Astrophysics Data System (ADS)
Verkruysse, Wim; Choi, Bernard; Zhang, Jenny R.; Kim, Jeehyun; Nelson, J. Stuart
2008-03-01
Pulsed photo-thermal radiometry (PPTR) is a non-invasive, non-contact diagnostic technique used to locate cutaneous chromophores such as melanin (epidermis) and hemoglobin (vascular structures). Clinical utility of PPTR is limited because it typically requires trained user intervention to regularize the inversion solution. Herein, the feasibility of automated regularization was studied. A second objective of this study was to depart from modeling port wine stain PWS, a vascular skin lesion frequently studied with PPTR, as strictly layered structures since this may influence conclusions regarding PPTR reconstruction quality. Average blood vessel depths, diameters and densities derived from histology of 30 PWS patients were used to generate 15 randomized lesion geometries for which we simulated PPTR signals. Reconstruction accuracy for subjective regularization was compared with that for automated regularization methods. The objective regularization approach performed better. However, the average difference was much smaller than the variation between the 15 simulated profiles. Reconstruction quality depended more on the actual profile to be reconstructed than on the reconstruction algorithm or regularization method. Similar, or better, accuracy reconstructions can be achieved with an automated regularization procedure which enhances prospects for user friendly implementation of PPTR to optimize laser therapy on an individual patient basis.
Microvascular Branching as a Determinant of Blood Flow by Intravital Particle Imaging Velocimetry
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia; McKay, Terri L.; Vickerman, Mary B.; Wernet, Mark P.; Myers, Jerry G.; Radhakrishnan, Krishnan
2007-01-01
The effects of microvascular branching on blood flow were investigated in vivo by microscopic particle imaging velocimetry (micro-PIV). We use micro-PIV to measure blood flow by tracking red blood cells (RBC) as the moving particles. Velocity flow fields, including flow pulsatility, were analyzed for the first four branching orders of capillaries, postcapillary venules and small veins of the microvascular network within the developing avian yolksac at embryonic day 5 (E5). Increasing volumetric flowrates were obtained from parabolic laminar flow profiles as a function of increasing vessel diameter and branching order. Maximum flow velocities increased approximately twenty-fold as the function of increasing vessel diameter and branching order compared to flow velocities of 100 - 150 micron/sec in the capillaries. Results from our study will be useful for the increased understanding of blood flow within anastomotic, heterogeneous microvascular networks.
Requirements analysis and preliminary design of a robotic assistant for reconstructive microsurgery.
Vanthournhout, L; Herman, B; Duisit, J; Château, F; Szewczyk, J; Lengelé, B; Raucent, B
2015-08-01
Microanastomosis is a microsurgical gesture that involves suturing two very small blood vessels together. This gesture is used in many operations such as avulsed member auto-grafting, pediatric surgery, reconstructive surgery - including breast reconstruction by free flap. When vessels have diameters smaller than one millimeter, hand tremors make movements difficult to control. This paper introduces our preliminary steps towards robotic assistance for helping surgeons to perform microanastomosis in optimal conditions, in order to increase gesture quality and reliability even on smaller diameters. A general needs assessment and an experimental motion analysis were performed to define the requirements of the robot. Geometric parameters of the kinematic structure were then optimized to fulfill specific objectives. A prototype of the robot is currently being designed and built in order to providing a sufficient increase in accuracy without prolonging the duration of the procedure.
Alagöz, Cengiz; Pekel, Gökhan; Alagöz, Neşe; Sayın, Nihat; Yüksel, Kemal; Yıldırım, Yusuf; Yazıcı, Ahmet Taylan
2016-12-01
Our aim was to evaluate the alterations of subfoveal choroidal thickness (SFCT), photoreceptor layer thickness (PRT), and retinal vessel diameter in the dark and light adaptation. Twenty-four eyes of 24 healthy volunteers (12 males, 12 females) were included in this cross-sectional and observational study. The SFCT, PRT, retinal arteriole, and venule caliber measurements were performed with spectral domain optical coherence tomography in the dark (0.0 cd/m 2 ) and under light (80 cd/m 2 ) adapted conditions. The mean age of the participants was 30.4 ± 4.4 years (range: 22-42). The SFCT increased statistically significantly in dark adaptation (p < 0.001), then returned to baseline values following light adaptation. The PRT, retinal arteriole, and venule caliber measurements were similar in the dark and light (p > 0.05). While SFCT increased, PRT, and retinal vessel diameter did not change following transition from light to dark.
Alberta, H B; Takayama, T; Smits, T C; Wendorff, B B; Cambria, R P; Farber, M A; Jordan, W D; Patel, V; Azizzadeh, A; Rovin, J D; Matsumura, J S
2015-12-01
To assess aortic arch morphology and aortic length in patients with dissection, traumatic injury, and aneurysm undergoing TEVAR, and to identify characteristics specific to different pathologies. This was a retrospective analysis of the aortic arch morphology and aortic length of dissection, traumatic injury, and aneurysmal patients. Computed tomography imaging was evaluated of 210 patients (49 dissection, 99 traumatic injury, 62 aneurysm) enrolled in three trials that received the conformable GORE TAG thoracic endoprosthesis. The mean age of trauma patients was 43 ± 19.6 years, 57 ± 11.7 years for dissection and 72 ± 9.6 years for aneurysm patients. A standardized protocol was used to measure aortic arch diameter, length, and take-off angle and clockface orientation of branch vessels. Differences in arch anatomy and length were assessed using ANOVA and independent t tests. Of the 210 arches evaluated, 22% had arch vessel common trunk configurations. The aortic diameter and the distance from the left main coronary (LMC) to the left common carotid (LCC) were greater in dissection patients than in trauma or aneurysm patients (p < .001). Aortic diameter in aneurysm patients was greater compared with trauma patients (p < .05). The distances from the branch vessels to the celiac artery (CA) were greater in dissection and aneurysm patients than in trauma patients (p < .001). The take-off angle of the innominate (I), LCCA, and left subclavian (LS) were greater, between 19% and 36%, in trauma patients than in dissection and aneurysm patients (p < .001). Clockface orientation of the arch vessels varies between pathologies. Arch anatomy has significant morphologic differences when comparing aortic pathologies. Describing these differences in a large sample of patients is beneficial for device designs and patient selection. Copyright © 2015 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
CFD-based Thrombotic Risk Assessment in Kawasaki Disease Patients with Coronary Artery Aneurysms
NASA Astrophysics Data System (ADS)
Sengupta, Dibyendu; Kung, Ethan; Kahn, Andrew; Burns, Jane; Marsden, Alison
2012-11-01
Coronary aneurysms occur in 25% of untreated Kawasaki Disease (KD) patients and put patients at increased risk for myocardial infarction and sudden death. Clinical guidelines recommend using aneurysm diameter >8 mm as the arbitrary criterion for treating with anti-coagulation therapy. This study uses patient-specific modeling to non-invasively determine hemodynamic parameters and quantify thrombotic risk. Anatomic models were constructed from CT angiographic image data from 5 KD aneurysm patients and one normal control. CFD simulations were performed to obtain hemodynamic data including WSS and particle residence times (PRT). Thrombosis was clinically observed in 4/9 aneurysmal coronaries. Thrombosed vessels required twice as many cardiac cycles (mean 8.2 vs. 4.2) for particles to exit, and had lower mean WSS (1.3 compared to 2.8 dynes/cm2) compared to vessels with non-thrombosed aneurysms of similar max diameter. 1 KD patient in the cohort with acute thrombosis had diameter < 8 mm. Regions of low WSS and high PRT predicted by simulations correlated with regions of subsequent thrombus formation. Thrombotic risk stratification for KD aneurysms may be improved by incorporating both hemodynamic and geometric quantities. Current clinical guidelines to assess patient risk based only on aneurysm diameter may be misleading. Further prospective study is warranted to evaluate the utility of patient-specific modeling in risk stratifying KD patients with coronary aneurysms. NIH R21.
Variations and anomalies of the posterior communicating artery in Northwest Indian brains.
Sahni, Daisy; Jit, Indar; Lal, Vivek
2007-10-01
The PCoA is a major branch of the supraclinoid internal carotid artery. Thorough knowledge of the anatomy and awareness of the variations and anomalies are of clinical importance. The PCoA was studied in 200 male and 80 female adults and in 20 male and 25 female children. These were medicolegal cases that died of an accident or poisoning after staying in a hospital for a few days. In addition to autopsy specimens, PCoA was also examined in 45 fetuses obtained from the department of obstetrics and gynecology of this institute. In fetal brains, at 61 to 70 mm CR stage, the average diameter of PCoA was more than that of the proximal part of the PCA; at 91 to 100 mm CR stage, the diameters of both vessels were equal and remained so until 130 mm CR stage; thereafter, the diameter of the proximal part of PCA became larger than PCoA. Incidence of tortuosity was more on the left than on the right side in children, and the reverse was the case in adults. Tortuosity was not found in fetal brains. The incidence of hypoplasticity and absence of PCoA in children and adults in both sexes were noted. The embryonic type (where the diameter of PCoA is more than the diameter of proximal part of PCA) was observed in 3 children and 20 adults. The incidence of aneurysms involving PCoA was 0.92% in adults. They were not seen in fetuses, newborns, and children. Because of hemodynamic factors in fetuses of more than 130 mm CR stage, the diameter of PCA becomes larger than that of the PCoA. An aneurysm was seen in only 1 male adult (0.5%), other anomalies present were absence, hypoplasticity, and duplication of PCoA. Present observations were different from the findings of 2 groups of the Indian workers (J Neurosurg 1984;60:572-576; J Anat Soc India 1970;19:71-79). Case history of the patients with anomalies of PCoA did not show any mental aberration.
Epila, Jackie; De Baerdemaeker, Niels J F; Vergeynst, Lidewei L; Maes, Wouter H; Beeckman, Hans; Steppe, Kathy
2017-04-01
The impact of drought on the hydraulic functioning of important African tree species, like Maesopsis eminii Engl., is poorly understood. To map the hydraulic response to drought-induced cavitation, sole reliance on the water potential at which 50% loss of xylem hydraulic conductivity (ψ50) occurs might be limiting and at times misleading as the value alone does not give a comprehensive overview of strategies evoked by M. eminii to cope with drought. This article therefore uses a methodological framework to study the different aspects of drought-induced cavitation and water relations in M. eminii. Hydraulic functioning of whole-branch segments was investigated during bench-top dehydration. Cumulative acoustic emissions and continuous weight measurements were used to quantify M. eminii's vulnerability to drought-induced cavitation and hydraulic capacitance. Wood structural traits, including wood density, vessel area, diameter and wall thickness, vessel grouping index, solitary vessel index and vessel wall reinforcement, were used to underpin observed physiological responses. On average, M. eminii's ψ50 (±SE) was -1.9 ± 0.1 MPa, portraying its xylem as drought vulnerable, just as one would expect for a common tropical pioneer. However, M. eminii additionally employed an interesting desiccation delay strategy, fuelled by internal relocation of leaf water, hydraulic capacitance and the presence of parenchyma around the xylem vessels. Our findings suggest that exclusive dependence on ψ50 would have misdirected our assessments of M. eminii's drought stress vulnerability. Hydraulic capacitance linked to anatomy and leaf-water relocation behaviour was equally important to better understand M. eminii's drought survival strategies. Because our study was conducted on branches of 3-year-old greenhouse-grown M. eminii seedlings, the findings cannot be simply extrapolated to adult M. eminii trees or their mature wood, because structural and physiological plant properties change with age. The techniques and methodological framework used in this study are, however, transferable to other species regardless of age. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Cai, Jing; Li, Shan; Zhang, Haixin; Zhang, Shuoxin; Tyree, Melvin T
2014-01-01
Vulnerability curves (VCs) generally can be fitted to the Weibull equation; however, a growing number of VCs appear to be recalcitrant, that is, deviate from a Weibull but seem to fit dual Weibull curves. We hypothesize that dual Weibull curves in Hippophae rhamnoides L. are due to different vessel diameter classes, inter-vessel hydraulic connections or vessels versus fibre tracheids. We used dye staining techniques, hydraulic measurements and quantitative anatomy measurements to test these hypotheses. The fibres contribute 1.3% of the total stem conductivity, which eliminates the hypothesis that fibre tracheids account for the second Weibull curve. Nevertheless, the staining pattern of vessels and fibre tracheids suggested that fibres might function as a hydraulic bridge between adjacent vessels. We also argue that fibre bridges are safer than vessel-to-vessel pits and put forward the concept as a new paradigm. Hence, we tentatively propose that the first Weibull curve may be accounted by vessels connected to each other directly by pit fields, while the second Weibull curve is associated with vessels that are connected almost exclusively by fibre bridges. Further research is needed to test the concept of fibre bridge safety in species that have recalcitrant or normal Weibull curves. © 2013 John Wiley & Sons Ltd.
Static-stress analysis of dual-axis confinement vessel
NASA Astrophysics Data System (ADS)
Bultman, D. H.
1992-11-01
This study evaluates the static-pressure containment capability of a 6-ft-diameter, spherical vessel, made of HSLA-100 steel, to be used for high-explosive (HE) containment. The confinement vessel is designed for use with the Dual-Axis Radiographic Hydrotest Facility (DARHT) being developed at Los Alamos National Laboratory. Two sets of openings in the vessel are covered with x-ray transparent covers to allow radiographic imaging of an explosion as it occurs inside the vessel. The confinement vessel is analyzed as a pressure vessel based on the ASME Boiler and Pressure Vessel Code, Section 8, Division 1, and the Welding Research Council Bulletin, WRC-107. Combined stresses resulting from internal pressure and external loads on nozzles are calculated and compared with the allowable stresses for HSLA-100 steel. Results confirm that the shell and nozzles of the confinement vessel are adequately designed to safely contain the maximum residual pressure of 1675 psi that would result from an HE charge of 24.2 kg detonated in a vacuum. Shell stresses at the shell-to-nozzle interface, produced from external loads on the nozzles, were less than 400 psi. The maximum combined stress resulting from the internal pressure plus external loads was 16,070 psi, which is less than half the allowable stress of 42,375 psi for HSLA-100 steel.
Manrique, Oscar J; Bishop, Sarah N; Ciudad, Pedro; Adabi, Kian; Martinez-Jorge, Jorys; Moran, Steven L; Huang, Tony; Vijayasekaran, Aparna; Chen, Shih-Heng; Chen, Hung-Chi
2018-05-16
Lower extremity salvage following significant soft tissue loss can be complicated by lack of recipient vessel for free tissue transfer. We describe our experience in lower limb salvage for patients with no recipient vessels with the use of pedicle, free and cable bridge flaps. A retrospective review from 1985 to 2017 of patients undergoing lower limb salvage using a contralateral pedicle cross leg (PCL) flaps, free cross leg (FCL) flaps, or free cable bridge (FCB) flaps was conducted. Demographics, etiology of the reconstruction, type of flap used, donor-site vessels, defect size, operating time, time of pedicle division, length of hospital stay, time to ambulation, and complications were analyzed. A total of 53 patients (48 males and 5 females) with an average age of 35 years (range, 29-38 years) were identified. The etiology for the reconstruction was trauma in 52 patients and oncological resection in 1 patient. There were 18 PCL, 25 FCL, and 10 FCB completed. The recipient vessels for all flaps were the posterior tibial artery and vein. The average operating room times for PCL, FCL, and FCB flaps were 4, 9, and 10 hours, respectively. The average length of hospital stay was 5 weeks and average time to ambulation was 4 weeks. The average follow-up time was 7.5 years (range, 3-12 years). Complications encountered were hematoma (six), prolonged pain (six), total flap loss (two), reoperation (five), and infection (four). Limb salvage rates were 96.2%. When ipsilateral limb vessels are not available, and other reconstructive options have been exhausted, cross leg flaps can be a viable option for limb salvage in the setting of extensive defects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Association Between Vascular Anatomy and Posterior Communicating Artery Aneurysms.
Can, Anil; Ho, Allen L; Emmer, Bart J; Dammers, Ruben; Dirven, Clemens M F; Du, Rose
2015-11-01
Hemodynamic stress, conditioned by the geometry and morphology of the vessel trees, plays an important role in the formation of intracranial aneurysms. The aim of this study was to identify image-based location-specific morphologic parameters that are associated with posterior communicating artery (PCoA) aneurysms. Morphologic parameters obtained from computed tomography angiography of 56 patients with PCoA aneurysms and 23 control patients were evaluated with 3D Slicer, an open-source image analysis software, to generate 3-dimensional models of the aneurysms and surrounding vasculature. Segment lengths, diameters, and vessel-to-vessel angles were examined. To control for genetic and clinical risk factors, the unaffected contralateral side of patients with unilateral PCoA aneurysms was used as a control group for internal carotid artery (ICA)-related parameters. A separate control group with visible PCoAs and aneurysms elsewhere was used as a control group for PCoA-related parameters. Internal carotid artery-related parameters were not statistically different between the PCoA aneurysm and control groups. Univariate and multivariate subgroup analysis for patients with visualized PCoAs demonstrated that a larger PCoA diameter was significantly associated with the presence of a PCoA aneurysm (odds ratio = 12.1, 95% confidence interval = 1.3-17.1, P = 0.04) after adjusting for other morphologic parameters. Larger PCoA diameters are associated with the presence of PCoA aneurysms. These parameters may provide objective metrics to assess aneurysm formation and growth risk stratification in high-risk patients. Copyright © 2015 Elsevier Inc. All rights reserved.
Kuhn, M A; Burch, M; Chinnock, R E; Fenton, M J
2017-10-01
Intravascular ultrasound (IVUS) has been routinely used in some centers to investigate cardiac allograft vasculopathy in pediatric heart transplant recipients. We present an alternative method using more sophisticated imaging software. This study presents a comparison of this method with an established standard method. All patients who had IVUS performed in 2014 were retrospectively evaluated. The standard technique consisted of analysis of 10 operator-selected segments along the vessel. Each study was re-evaluated using a longitudinal technique, taken at every third cardiac cycle, along the entire vessel. Semiautomatic edge detection software was used to detect vessel imaging planes. Measurements included outer and inner diameter, total and luminal area, maximal intimal thickness (MIT), and intimal index. Each IVUS was graded for severity using the Stanford classification. All results were given as mean ± standard deviation (SD). Groups were compared using Student t test. A P value <.05 was considered significant. There were 59 IVUS studies performed on 58 patients. There was no statistically significant difference between outer diameter, inner diameter, or total area. In the longitudinal group, there was a significantly smaller luminal area, higher MIT, and higher intimal index. Using the longitudinal technique, there was an increase in Stanford classification in 20 patients. The longitudinal technique appeared more sensitive in assessing the degree of cardiac allograft vasculopathy and may play a role in the increase in the degree of thickening seen. It may offer an alternative way of grading severity of cardiac allograft vasculopathy in pediatric heart transplant recipients. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Casper, Malte; Schulz-Hildebrandt, Hinnerk; Evers, Michael; Nguyen, Cuc; Birngruber, Reginald; Hüttmann, Gereon; Manstein, Dieter
2017-02-01
In dermatology the reflexes of vasoconstriction and vasodilation are known as important mechanisms of thermoregulation of the inner body. Imaging the physiology of microvasculature of the skin with high spatial resolution in three dimensions while reacting to changes in temperature is crucial for understanding the complex processes of vasodynamics, which result in constriction and dilation of vessels. However, previous studies using Laser-Doppler flowmetry and -imaging could not provide reliable angiographic images which allow to quantify changes in blood vessel diameter. Here, we report a different approach for angiographic imaging of microvasculature of a anaesthetized rodent model using speckle variance optical coherence tomography (svOCT) during and after localized cooling. Therefore a commercial OCT with a center wavelength of 1.3 μm and a spatial resolution of 13µm was used in combination with a custom built cooling device to image such reflexes at the mouse ear pinna and dorsal skinfold. Cooling was applied in steps of 2-5° C starting at the baseline temperature of 27° C down to -10° C. To our surprise and in contrast to the general opinion in literature, we were able to observe that the majority of vessels with a diameter larger than 20 μm maintain perfused with a constant diameter when the tissue is cooled from baseline to subzero temperatures. However, vasoconstriction was observed very rarely and only in veins, which led to their occlusion. The results of this experiment lead us to reconsider essential aspects of previous understanding of temperature-induced vasodynamics in cutaneous microvasculature.
Stahlberg, Erik; Planert, Mathis; Anton, Susanne; Panagiotopoulos, Nikolaos; Horn, Marco; Barkhausen, Joerg; Goltz, Jan Peter
2018-07-01
Background Accurate vessel sizing might affect treatment outcome of endovascular therapy. Purpose To compare accuracy of peripheral vessel diameter measurements using pre-interventional computed tomography angiography post processing software (CTA-PPS) and extravascularly located calibrated devices used during digital subtraction angiography (DSA) with an intravascular scaled catheter (SC). Material and Methods In 33 patients (28 men, mean age = 72 ± 11 years) a SC was used during DSA of the femoro-popliteal territory. Simultaneously, one scaled radiopaque tape (SRT) was affixed to the lateral thigh, one scaled radiopaque ruler (SRR) was positioned on the angiography table. For each patient, diameters of five anatomic landmarks were measured on DSA images after calibration using different scaled devices and CTA-PPS. Diameters were compared to SC (reference) and between groups of non-obese (NOB) and obese (OB) patients. Results In total, 660 measurements were performed. Compared to the reference, SRT overestimated the diameter by 1.2% (range = -10-12, standard deviation [SD] = 4.1%, intraclass correlation coefficient [ICC] = 0.992, 95% confidence interval [CI] = 0.989-0.992, P = 0.01), the SRR and CTA-PPS underestimated it by 21.3% (range = 1-47, SD = 9.4%, ICC = 0.864, 95% CI = 0.11-0.963, P = 0.08) and 3.2% (range = 17-38, SD = 9.7%, ICC = 0.976, 95% CI = 0.964-0.983, P = 0.01), respectively. Underestimation using the SRR was greatest in the proximal superficial-femoral artery (31%) and lowest at the P2 level of the popliteal artery (15%). In the NOB group, diameter overestimation of the SRT was 0.8% (range = 4-7, SD = 4.2%, B = 0.071, 95% CI = 0.293-0.435, P = 0.08) compared to the OB group of 1.6% (range = -7-4, SD = 2.9%, B = 0.010, 95% CI = 0.474-0.454, P = 0.96). Diameter underestimation of the SRR was 17.3% (range = 13-21, SD = 3.1%, B = 0.946, 95% CI = 0.486-1.405, P = 0.002) in the NOB group, 23.3% (range = 11-36, SD = 6.6%, B = 0.870, 95% CI = 0.268-1.472, P = 0.007) in the OB group. Conclusion For calibrated measurements SRT and CTA-PPS prove accurate compared to the reference, while SRR does not. Obesity has a significant impact on underestimation of diameter if SRR is used.
Microfluidic strategy to investigate dynamics of small blood vessel function
NASA Astrophysics Data System (ADS)
Yasotharan, Sanjesh; Bolz, Steffen-Sebastian; Guenther, Axel
2010-11-01
Resistance arteries (RAs, 30-300 microns in diameter) that are located within the terminal part of the vascular tree regulate the laminar perfusion of tissue with blood, via the peripheral vascular resistance, and hence controls the systemic blood pressure. The structure of RAs is adapted to actively controlling flow resistance by dynamically changing their diameter, which is non-linearly dependent on the temporal variation of the transmural pressure, perfusion flow rate and spatiotemporal changes in the chemical environment. Increases in systemic blood pressure (hypertension) resulting from pathologic changes in the RA response represent the primary risk factor for cardiovascular diseases. We use a microfluidic strategy to investigate small blood vessels by quantifying structural variations within the arterial wall, RA outer contour and diameter over time. First, we document the artery response to vasomotor drugs that were homogeneously applied at step-wise increasing concentration. Second, we investigate the response in the presence of well-defined axial and circumferential heterogeneities. Artery per- and superfusion is discussed based on microscale PIV measurements of the fluid velocity on both sides of the arterial wall. Structural changes in the arterial wall are quantified using cross-correlation and proper orthogonal decomposition analyses of bright-field micrographs.
Cerebral blood velocity and other cardiovascular responses to 2 days of head-down tilt
NASA Technical Reports Server (NTRS)
Frey, Mary A. B.; Mader, Thomas H.; Bagian, James P.; Charles, John B.; Meehan, Richard T.
1993-01-01
Spaceflight induces a cephalad redistribution of fluid volume and blood flow within the human body, and space motion sickness, which is a problem during the first few days of space flight, could be related to these changes in fluid status and in blood flow of the cerebrum and vestibular system. To evaluate possible changes in cerebral blood flow during simulated weightlessness, we measured blood velocity in the middle cerebral artery (MCA) along with retinal vascular diameters, intraocular pressure, impedance cardiography, and sphygmomanometry on nine men (26.2 +/- 6.6 yr) morning and evening for 2 days during continuous 10 deg head-down tilt (HDT). When subjects went from seated to head-down bed rest, their heart rate and retinal diameters decreased, and intraocular pressures increased. After 48 h of HDT, blood flow velocity in the MCA was decreased and thoracic impedance was increased, indicating less fluid in the thorax. Percent changes in blood flow velocities in the MCA after 48 h of HDT were inversely correlated with percent changes in retinal vascular diameters. Blood flow velocities in the MCA were inversely correlated (intersubject) with arterial pressures and retinal vascular diameters. Heart rate, stroke volume, cardiac output, systolic arterial pressure, and at times pulse pressure and blood flow velocities in the MCA were greater in the evening. Total peripheral resistance was higher in the morning. Although cerebral blood velocity is reduced after subjects are head down for 2 days, the inverse relationship with retinal vessel diameters, which have control analogous to that of cerebral vessels, indicates cerebral blood flow is not reduced.
Bypass of the maxillary artery to proximal middle cerebral artery.
Ma, Lin; Ren, He-cheng; Huang, Ying
2015-03-01
The objective of this work was to explore the feasibility of bypass between the maxillary artery (MA) and proximity of middle cerebral artery (MCA). Ten fixed and perfused adult cadaver heads were dissected bilaterally, 20 sides in total. The superficial temporal artery and its 2 branches were dissected, and outer diameters were measured. The MA and its branch were exposed as well as deep temporal artery; outer diameter of MA was measured. The lengths between the external carotid artery, internal carotid artery, maxillary artery, and proximal middle cerebral artery were measured. Ten healthy adults as targets (20 sides), inner diameter and blood flow dynamic parameters of the common carotid artery, external carotid artery, internal carotid artery, maxillary artery, superficial temporal artery, and its 2 branches were done with ultrasound examination. The mean outer diameter of MA (2.60 ± 0.20 mm) was larger than that of the temporal artery trunk (1.70 ± 0.30 mm). The mean lengths of graft vessels between the internal carotid artery, external carotid artery, and the bifurcation section of MCA (171.00 ± 2.70 and 162.40 ± 2.60 mm) were longer than the mean lengths of graft vessels between MA and MCA bifurcation section (61.70 ± 1.50 mm). In adults, the mean blood flow of the second part of MA (62.70 ± 13.30 mL/min) was more than that of the 2 branches of the superficial temporal artery (15.90 ± 3.70 mL/min and 17.70 ± 4.10 ml/min). Bypass between the maxillary artery and proximity of middle cerebral artery is feasible. It is a kind of effective high flow bypass with which the graft vessel is shorter and straighter than the bypass between internal carotid artery or external carotid artery and proximity of middle cerebral artery.
On connecting large vessels to small. The meaning of Murray's law
1981-01-01
A large part of the branching vasculature of the mammalian circulatory and respiratory systems obeys Murray's law, which states that the cube of the radius of a parent vessel equals the sum of the cubes of the radii of the daughters. Where this law is obeyed, a functional relationship exists between vessel radius and volumetric flow, average linear velocity of flow, velocity profile, vessel-wall shear stress, Reynolds number, and pressure gradient in individual vessels. In homogeneous, full-flow sets of vessels, a relation is also established between vessel radius and the conductance, resistance, and cross- sectional area of a full-flow set. PMID:7288393
A large volume striped bass egg incubation chamber: design and comparison with a traditional method
Harper, C.J.
2009-01-01
I conducted a comparative study of a new jar design (experimental chamber) with a standard egg incubation vessel (McDonald jar). Experimental chambers measured 0.4 m in diameter by 1.3 m in height and had a volume of 200 L. McDonald hatching jars measured 16 cm in diameter by 45 cm in height and had a volume of 6 L. Post-hatch survival was estimated at 48, 96 and 144 h. Stocking rates resulted in an average egg density of 21.9 eggs ml-1 (range = 21.6 – 22.1) for McDonald jars and 10.9 eggs ml-1 (range = 7.0 – 16.8) for experimental chambers. I was unable to detect an effect of container type on survival to 48, 96 or 144 h. At 144 h striped bass fry survival averaged 37.3% for McDonald jars and 34.2% for experimental chambers. Survival among replicates was significantly different. Survival of striped bass significantly decreased between 96 and 144 h. Mean survival among replicates ranged from 12.4 to 57.3%. I was unable to detect an effect of initial stocking density on survival. Experimental jars allow for incubation of a larger number of eggs in a much smaller space. As hatchery production is often limited by space or water supply, experimental chambers offer an alternative to extending spawning activities, thereby reducing manpower and cost. However, the increase in the number of eggs per rearing container does increase the risk associated with catastrophic loss of a production unit. I conclude the experimental chamber is suitable for striped bass egg incubation.
Efaw, Morgan L.; Williams, Rebecca M.
2013-01-01
Advances in understanding the molecular regulation of longitudinal growth have led to development of novel drug therapies for growth plate disorders. Despite progress, a major unmet challenge is delivering therapeutic agents to avascular-cartilage plates. Dense extracellular matrix and lack of penetrating blood vessels create a semipermeable “barrier,” which hinders molecular transport at the vascular-cartilage interface. To overcome this obstacle, we used a hindlimb heating model to manipulate bone circulation in 5-wk-old female mice (n = 22). Temperatures represented a physiological range of normal human knee joints. We used in vivo multiphoton microscopy to quantify temperature-enhanced delivery of large molecules into tibial growth plates. We tested the hypothesis that increasing hindlimb temperature from 22°C to 34°C increases vascular access of large systemic molecules, modeled using 10, 40, and 70 kDa dextrans that approximate sizes of physiological regulators. Vascular access was quantified by vessel diameter, velocity, and dextran leakage from subperichondrial plexus vessels and accumulation in growth plate cartilage. Growth plate entry of 10 kDa dextrans increased >150% at 34°C. Entry of 40 and 70 kDa dextrans increased <50%, suggesting a size-dependent temperature enhancement. Total dextran levels in the plexus increased at 34°C, but relative leakage out of vessels was not temperature dependent. Blood velocity and vessel diameter increased 118% and 31%, respectively, at 34°C. These results demonstrate that heat enhances vascular carrying capacity and bioavailability of large molecules around growth plates, suggesting that temperature could be a noninvasive strategy for modulating delivery of therapeutics to impaired growth plates of children. PMID:24371019
Common iliac artery aneurysms in patients with abdominal aortic aneurysms.
Armon, M P; Wenham, P W; Whitaker, S C; Gregson, R H; Hopkinson, B R
1998-03-01
To determine the incidence of common iliac artery (CIA) aneurysms in patients with abdominal aortic aneurysms (AAA) and to evaluate the relationship between AAA and CIA diameter. Spiral CT angiography was used to measure the maximum diameters of the abdominal aorta and the common iliac arteries of 215 patients with AAA. The median CIA diameter was 1.7 cm--significantly greater than the published mean of 1.25 (2 S.D. = 0.85-1.65) cm of an age-matched, non-vascular population. Thirty-four patients (16%) had unilateral and 26 patients (12%) bilateral CIA aneurysms > or = 2.4 cm diameter. Eight-six vessels (20%) were affected. Right CIA diameters were wider than left CIA diameters (p < 0.0001, Wilcoxon matched-pairs signed rank test). The correlation between AAA size and CIA diameter was weak. The AAA population has abnormally dilated common iliac arteries. In this population, common iliac artery aneurysms should be defined as those greater than 2.4 cm diameter. 20% of CIAs in patients with AAA are aneurysmal according to this definition.
Imhof, Katharina; Faude, Oliver; Donath, Lars; Bean-Eisenhut, Salome; Hanssen, Henner; Zahner, Lukas
2016-01-01
Socio-economic status during childhood has been shown to be a strong predictor of adult health outcome. Therefore, we examined associations of parental educational level, household income and migrant background with physical fitness, spinal flexibility, spinal posture as well as retinal vessel diameters in children of an urban Swiss region. A total of 358 first graders of the Swiss canton Basel-Stadt (age: 7.3, SD: 0.4) were examined. Physical fitness (20 m shuttle run test, 20 m sprint, jumping sidewards and balancing backwards), spinal flexibility and spinal posture (MediMouse®, Idiag, Fehraltdorf, Switzerland) and retinal microcirculation (Static Retinal Vessel Analyzer, Imedos Systems UG, Jena, Germany) were assessed. Parental education, household income, migrant background and activity behaviour were evaluated with a questionnaire. Parental education was associated with child aerobic fitness (P = 0.03) and screen time (P < 0.001). Household income was associated with jumping sidewards (P = 0.009), balancing backwards (P = 0.03) and sports club participation (P = 0.02). Migrant background was associated with BMI (P = 0.001), body fat (P = 0.03), aerobic fitness (P = 0.007), time spent playing outdoors (P < 0.001) and screen time (P < 0.001). For spinal flexibility and retinal vessel diameter, no associations were found (0.06 < P < 0.8). Low parental education, low household income and a migrant background are associated with poor physical fitness, higher BMI and body fat percentage and low-activity behaviour.
Breast tumor angiogenesis analysis using 3D power Doppler ultrasound
NASA Astrophysics Data System (ADS)
Chang, Ruey-Feng; Huang, Sheng-Fang; Lee, Yu-Hau; Chen, Dar-Ren; Moon, Woo Kyung
2006-03-01
Angiogenesis is the process that correlates to tumor growth, invasion, and metastasis. Breast cancer angiogenesis has been the most extensively studied and now serves as a paradigm for understanding the biology of angiogenesis and its effects on tumor outcome and patient prognosis. Most studies on characterization of angiogenesis focus on pixel/voxel counts more than morphological analysis. Nevertheless, in cancer, the blood flow is greatly affected by the morphological changes, such as the number of vessels, branching pattern, length, and diameter. This paper presents a computer-aided diagnostic (CAD) system that can quantify vascular morphology using 3-D power Doppler ultrasound (US) on breast tumors. We propose a scheme to extract the morphological information from angiography and to relate them to tumor diagnosis outcome. At first, a 3-D thinning algorithm helps narrow down the vessels into their skeletons. The measurements of vascular morphology significantly rely on the traversing of the vascular trees produced from skeletons. Our study of 3-D assessment of vascular morphological features regards vessel count, length, bifurcation, and diameter of vessels. Investigations into 221 solid breast tumors including 110 benign and 111 malignant cases, the p values using the Student's t-test for all features are less than 0.05 indicating that the proposed features are deemed statistically significant. Our scheme focuses on the vascular architecture without involving the technique of tumor segmentation. The results show that the proposed method is feasible, and have a good agreement with the diagnosis of the pathologists.
Feasibility of Using the Marginal Blood Vessels as Reference Landmarks for CT Colonography
Wei, Zhuoshi; Yao, Jianhua; Wang, Shijun; Liu, Jiamin; Dwyer, Andrew J.; Pickhardt, Perry J.; Nowinski, Wieslaw L.; Summers, Ronald M.
2015-01-01
OBJECTIVE The purpose of this study was to show the spatial relationship of the colonic marginal blood vessels and the teniae coli on CT colonography (CTC) and the use of the marginal blood vessels for supine-prone registration of polyps and for determination of proper connectivity of collapsed colonic segments. MATERIALS AND METHODS We manually labeled the marginal blood vessels on 15 CTC examinations. Colon segmentation, centerline extraction, teniae detection, and teniae identification were automatically performed. For assessment of their spatial relationships, the distances from the marginal blood vessels to the three teniae coli and to the colon were measured. Student t tests (paired, two-tailed) were performed to evaluate the differences among these distances. To evaluate the reliability of the marginal vessels as reference points for polyp correlation, we analyzed 20 polyps from 20 additional patients who underwent supine and prone CTC. The average difference of the circumferential polyp position on the supine and prone scans was computed. Student t tests (paired, two-tailed) were performed to evaluate the supine-prone differences of the distance. We performed a study on 10 CTC studies from 10 patients with collapsed colonic segments by manually tracing the marginal blood vessels near the collapsed regions to resolve the ambiguity of the colon path. RESULTS The average distances (± SD) from the marginal blood vessels to the tenia mesocolica, tenia omentalis, and tenia libera were 20.1 ± 3.1 mm (95% CI, 18.5–21.6 mm), 39.5 ± 4.8 mm (37.1–42.0 mm), and 36.9 ± 4.2 mm (34.8–39.1 mm), respectively. Pairwise comparison showed that these distances to the tenia libera and tenia omentalis were significantly different from the distance to the tenia mesocolica (p < 0.001). The average distance from the marginal blood vessels to the colon wall was 15.3 ± 2.0 mm (14.2–16.3 mm). For polyp localization, the average difference of the circumferential polyp position on the supine and prone scans was 9.6 ± 9.4 mm (5.5–13.7 mm) (p = 0.15) and expressed as a percentage of the colon circumference was 3.1% ± 2.0% (2.3–4.0%) (p = 0.83). We were able to trace the marginal blood vessels for 10 collapsed colonic segments and determine the paths of the colon in these regions. CONCLUSION The marginal blood vessels run parallel to the colon in proximity to the tenia mesocolica and enable accurate supine-prone registration of polyps and localization of the colon path in areas of collapse. Thus, the marginal blood vessels may be used as reference landmarks complementary to the colon centerline and teniae coli. PMID:24370165
The potential applications of high-intensity focused ultrasound (HIFU) in vascular neurosurgery.
Serrone, Joseph; Kocaeli, Hasan; Douglas Mast, T; Burgess, Mark T; Zuccarello, Mario
2012-02-01
This review assesses the feasibilty of high-intensity focused ultrasound (HIFU) in neurosurgical applications, specifically occlusion of intact blood vessels. Fourteen articles were examined. In summary, MRI was effective for HIFU guidance whereas MR angiography assessed vessel occlusion. Several studies noted immediate occlusion of blood vessels with HIFU. Long-term data, though scarce, indicated a trend of vessel recanalization and return to pre-treatment diameters. Effective parameters for extracranial vascular occlusion included intensity ranges of 1,690-8,800 W/cm(2), duration <15 seconds, and 0.68-3.3 MHz frequency. A threshold frequency-intensity product of 8,250 MHzW/cm(2) was needed for vascular occlusion with a sensitivity of 70% and a specificity of 86%. Complications include skin burns, hemorrhage, and damage to surrounding structures. With evidence that HIFU can successfully occlude extracranial blood vessels, refinement in applications and demonstrable intracranial occlusion are needed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mechanisms for microvascular damage induced by ultrasound-activated microbubbles
NASA Astrophysics Data System (ADS)
Chen, Hong; Brayman, Andrew A.; Evan, Andrew P.; Matula, Thomas J.
2012-10-01
To provide insight into the mechanisms of microvascular damage induced by ultrasound-activated microbubbles, experimental studies were performed to correlate microvascular damage to the dynamics of bubble-vessel interactions. High-speed photomicrography was used to record single microbubbles interacting with microvessels in ex vivo tissue, under the exposure of short ultrasound pulses with a center frequency of 1 MHz and peak negative pressures (PNP) ranging from 0.8-4 MPa. Vascular damage associated with observed bubble-vessel interactions was either indicated directly by microbubble extravasation or examined by transmission electron microscopy (TEM) analyses. As observed previously, the high-speed images revealed that ultrasound-activated microbubbles could cause distention and invagination of adjacent vessel walls, and could form liquid jets in microvessels. Vessel distention, invagination, and liquid jets were associated with the damage of microvessels whose diameters were smaller than those of maximally expanded microbubbles. However, vessel invagination appeared to be the dominant mechanism for the damage of relative large microvessels.
Mechanisms for microvascular damage induced by ultrasound-activated microbubbles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Hong; Brayman, Andrew A.; Evan, Andrew P.
To provide insight into the mechanisms of microvascular damage induced by ultrasound-activated microbubbles, experimental studies were performed to correlate microvascular damage to the dynamics of bubble-vessel interactions. High-speed photomicrography was used to record single microbubbles interacting with microvessels in ex vivo tissue, under the exposure of short ultrasound pulses with a center frequency of 1 MHz and peak negative pressures (PNP) ranging from 0.8-4 MPa. Vascular damage associated with observed bubble-vessel interactions was either indicated directly by microbubble extravasation or examined by transmission electron microscopy (TEM) analyses. As observed previously, the high-speed images revealed that ultrasound-activated microbubbles could cause distentionmore » and invagination of adjacent vessel walls, and could form liquid jets in microvessels. Vessel distention, invagination, and liquid jets were associated with the damage of microvessels whose diameters were smaller than those of maximally expanded microbubbles. However, vessel invagination appeared to be the dominant mechanism for the damage of relative large microvessels.« less
Patch-based automatic retinal vessel segmentation in global and local structural context.
Cao, Shuoying; Bharath, Anil A; Parker, Kim H; Ng, Jeffrey
2012-01-01
In this paper, we extend our published work [1] and propose an automated system to segment retinal vessel bed in digital fundus images with enough adaptability to analyze images from fluorescein angiography. This approach takes into account both the global and local context and enables both vessel segmentation and microvascular centreline extraction. These tools should allow researchers and clinicians to estimate and assess vessel diameter, capillary blood volume and microvascular topology for early stage disease detection, monitoring and treatment. Global vessel bed segmentation is achieved by combining phase-invariant orientation fields with neighbourhood pixel intensities in a patch-based feature vector for supervised learning. This approach is evaluated against benchmarks on the DRIVE database [2]. Local microvascular centrelines within Regions-of-Interest (ROIs) are segmented by linking the phase-invariant orientation measures with phase-selective local structure features. Our global and local structural segmentation can be used to assess both pathological structural alterations and microemboli occurrence in non-invasive clinical settings in a longitudinal study.
Retinal imaging analysis based on vessel detection.
Jamal, Arshad; Hazim Alkawaz, Mohammed; Rehman, Amjad; Saba, Tanzila
2017-07-01
With an increase in the advancement of digital imaging and computing power, computationally intelligent technologies are in high demand to be used in ophthalmology cure and treatment. In current research, Retina Image Analysis (RIA) is developed for optometrist at Eye Care Center in Management and Science University. This research aims to analyze the retina through vessel detection. The RIA assists in the analysis of the retinal images and specialists are served with various options like saving, processing and analyzing retinal images through its advanced interface layout. Additionally, RIA assists in the selection process of vessel segment; processing these vessels by calculating its diameter, standard deviation, length, and displaying detected vessel on the retina. The Agile Unified Process is adopted as the methodology in developing this research. To conclude, Retina Image Analysis might help the optometrist to get better understanding in analyzing the patient's retina. Finally, the Retina Image Analysis procedure is developed using MATLAB (R2011b). Promising results are attained that are comparable in the state of art. © 2017 Wiley Periodicals, Inc.
Graph representation of hepatic vessel based on centerline extraction and junction detection
NASA Astrophysics Data System (ADS)
Zhang, Xing; Tian, Jie; Deng, Kexin; Li, Xiuli; Yang, Fei
2012-02-01
In the area of computer-aided diagnosis (CAD), segmentation and analysis of hepatic vessel is a prerequisite for hepatic diseases diagnosis and surgery planning. For liver surgery planning, it is crucial to provide the surgeon with a patient-individual three-dimensional representation of the liver along with its vasculature and lesions. The representation allows an exploration of the vascular anatomy and the measurement of vessel diameters, following by intra-patient registration, as well as the analysis of the shape and volume of vascular territories. In this paper, we present an approach for generation of hepatic vessel graph based on centerline extraction and junction detection. The proposed approach involves the following concepts and methods: 1) Flux driven automatic centerline extraction; 2) Junction detection on the centerline using hollow sphere filtering; 3) Graph representation of hepatic vessel based on the centerline and junction. The approach is evaluated on contrast-enhanced liver CT datasets to demonstrate its availability and effectiveness.
Roubliova, Xenia I; Verbeken, Eric K; Wu, Jun; Vaast, Pascal; Jani, Jacques; Deprest, Jan A
2004-09-01
This study was undertaken to evaluate the effects on peripheric pulmonary vessel muscularization by tracheal occlusion (TO) performed at different gestational ages in fetal rabbits with surgically induced diaphragmatic hernia. In 23 New Zealand white does, both ovarian end fetuses underwent surgical creation of diaphragmatic hernia at 23 days of gestation (pseudoglandular phase). At 26, 27, or 28 days 1 fetus underwent TO, the contralateral one underwent a sham operation for a total of 46 fetuses. At 30 days (alveolar phase), fetuses were harvested together with 1 nonoperated internal control. Lungs were processed for vascular morphometry. Proportionate medial thickness and muscularization of intra-acinar vessels were evaluated. Late TO (day 28; saccular phase) normalizes the lung-to-body weight ratio and causes significant medial thinning in vessels up to 35 microm diameter. Tracheal occlusion decreases muscularization of intra-acinar pulmonary vessels in a gestational age-dependent fashion, with maximal effect when TO is performed at 28 days.
New presentation method for magnetic resonance angiography images based on skeletonization
NASA Astrophysics Data System (ADS)
Nystroem, Ingela; Smedby, Orjan
2000-04-01
Magnetic resonance angiography (MRA) images are usually presented as maximum intensity projections (MIP), and the choice of viewing direction is then critical for the detection of stenoses. We propose a presentation method that uses skeletonization and distance transformations, which visualizes variations in vessel width independent of viewing direction. In the skeletonization, the object is reduced to a surface skeleton and further to a curve skeleton. The skeletal voxels are labeled with their distance to the original background. For the curve skeleton, the distance values correspond to the minimum radius of the object at that point, i.e., half the minimum diameter of the blood vessel at that level. The following image processing steps are performed: resampling to cubic voxels, segmentation of the blood vessels, skeletonization ,and reverse distance transformation on the curve skeleton. The reconstructed vessels may be visualized with any projection method. Preliminary results are shown. They indicate that locations of possible stenoses may be identified by presenting the vessels as a structure with the minimum radius at each point.
Okada, Kozo; Honda, Yasuhiro; Kitahara, Hideki; Otagiri, Kyuhachi; Tanaka, Shigemitsu; Hollak, M Brooke; Yock, Paul G; Popma, Jeffrey J; Kusano, Hajime; Cheong, Wai-Fung; Sudhir, Krishnankutty; Fitzgerald, Peter J; Kimura, Takeshi
2018-04-09
The aim of this study was to characterize post-procedural intravascular ultrasound (IVUS) findings in the ABSORB Japan trial, specifically stratified by the size of target coronary arteries. Despite overall noninferiority confirmed in recent randomized trials comparing bioresorbable vascular scaffolds (BVS) (Absorb BVS) and cobalt-chromium everolimus-eluting metallic stents (CoCr-EES), higher event rates of Absorb BVS have been reported with suboptimal deployment, especially in small coronary arteries. In the ABSORB Japan trial, 150 patients (2:1 randomization) were scheduled in the IVUS cohort. Small vessel was defined as mean reference lumen diameter <2.75 mm. Tapered-vessel lesions were defined as tapering index (proximal/distal reference lumen diameter) ≥1.2. Overall, IVUS revealed that the Absorb BVS arm had smaller device expansion than the CoCr-EES arm did, which was particularly prominent in small- and tapered-vessel lesions. Higher tapering index was also associated with higher rates of incomplete strut apposition in Absorb BVS, but not in CoCr-EES. With respect to procedural techniques, small-vessel lesions were treated more frequently with noncompliant balloons at post-dilatation but using significantly lower pressure in the Absorb BVS arm. In contrast, tapered-vessel lesions were post-dilated at equivalent pressure but with significantly smaller balloon catheters in the Absorb BVS arm, compared with the CoCr-EES arm. The significantly smaller device expansion especially in small vessels may account for the poorer outcomes of Absorb BVS in this lesion type. Appropriate optimization strategy, possibly different between polymeric and metallic devices, needs to be established for bioresorbable scaffold technology. (AVJ-301 Clinical Trial: A Clinical Evaluation of AVJ-301 Absorb™ BVS) in Japanese Population [ABSORB JAPAN]; NCT01844284). Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Shibuya, K; Hoshino, H; Chiyo, M; Iyoda, A; Yoshida, S; Sekine, Y; Iizasa, T; Saitoh, Y; Baba, M; Hiroshima, K; Ohwada, H; Fujisawa, T
2003-11-01
We investigated the use of high magnification bronchovideoscopy combined with narrow band imaging (NBI) for the detailed examination of angiogenic squamous dysplasia (ASD). This was carried out in relation to bronchial vascular patterns with abnormal mucosal fluorescence in heavy smokers at high risk for lung cancer. Forty eight patients with sputum cytology specimens suspicious or positive for malignancy were entered into the study. Conventional white light and fluorescence bronchoscopic examination was first performed. Observations by high magnification bronchovideoscopy with conventional white light were made primarily at sites of abnormal fluorescence, and then repeated with NBI light to examine microvascular networks in the bronchial mucosa. Spectral features on the RGB (Red/Green/Blue) sequential videoscope system were changed from the conventional RGB broadband filter to the new NBI filter. The wavelength ranges of the new NBI filter were B1: 400-430 nm, B2: 420-470 nm, and G: 560-590 nm. ASD tissues were also examined using a confocal laser scanning microscope equipped with argon-krypton (488 nm) and argon (514 nm) laser sources. The microvessels, vascular networks of various grades, and dotted vessels in ASD tissues were clearly observed in NBI-B1 images. Diameters of the dotted vessels visible on NBI-B1 images agreed with the diameters of ASD capillary blood vessels diagnosed by pathological examination. Capillary blood vessels were also clearly visualised by green fluorescence by confocal laser scanning microscopy. There was a significant association between the frequency of dotted vessels by NBI-B1 imaging and tissues confirmed as ASD pathologically (p=0.002). High magnification bronchovideoscopy combined with NBI was useful in the detection of capillary blood vessels in ASD lesions at sites of abnormal fluorescence. This may enable the discrimination between ASD and another pre-invasive bronchial lesion.
Histological Comparison of Cold versus Hot Snare Resections of the Colorectal Mucosa.
Takayanagi, Daisuke; Nemoto, Daiki; Isohata, Noriyuki; Endo, Shungo; Aizawa, Masato; Utano, Kenichi; Kumamoto, Kensuke; Hojo, Hiroshi; Lefor, Alan Kawarai; Togashi, Kazutomo
2018-06-25
Delayed postpolypectomy bleeding occurs more frequently after hot resection than after cold resection. To elucidate the underlying mechanism, we performed a histological comparison of tissue after cold and hot snare resections. This is a prospective study, registered in the University Hospital Medical Information Network (UMIN000020104). This study was conducted at Aizu Medical Center, Fukushima Medical University, Japan. Fifteen patients scheduled to undergo resection of colorectal cancer were enrolled. On the day before surgery, 2 mucosal resections (hot and cold) of normal mucosa were performed on each patient using the same snare without saline injection. The difference was only the application of electrocautery or not. Resection sites were placed close to the cancer to be included in the surgical specimen. The primary outcome measure was the depth of destruction. Secondary outcome measures included the width of destruction, depth of the remaining submucosa, and number of vessels remaining at the resection sites. The number and diameter of vessels in undamaged submucosa were also evaluated. All cold resections were limited to the shallow submucosa, whereas 60% of hot resections advanced to the deep submucosa and 20% to the muscularis propria (p < 0.001). There was no significant difference in the width of destruction. The number of remaining large vessels after hot resections trended toward fewer (p = 0.15) with a decreased depth of remaining submucosa (p = 0.007). In the deep submucosa, the vessel diameter was larger (p < 0.001) and the number of large vessels was greater (p = 0.018). Histological assessment was not blinded to the 2 reviewers. Normal mucosa was used instead of adenomatous tissue. Hot resection caused damage to deeper layers involving more large vessels. This may explain the mechanism for the reduced incidence of hemorrhage after cold snare polypectomy. See Video Abstract at http://links.lww.com/DCR/A631.
Sadick, N S; Prieto, V G; Shea, C R; Nicholson, J; McCaffrey, T
2001-05-01
The goal of sclerotherapy, laser therapy, and intense pulsed-light therapy is to produce long-term, cosmetically significant elimination of disfiguring leg veins. This study examines the histologic and clinical effects of using a 1064-nm Nd:YAG laser system on lower extremity vessels. A single treatment using the following parameters: wavelength, 1064 nm (multiple synchronized pulsing); spot size, 6 mm; pulse duration, 14 milliseconds (single pulse); and fluence, 130 J/cm(2). Private dermatology practice. Thirteen women (mean age, 38.5 years) with blue venulectasia, 0.5 to 1.5 mm in diameter (class 2), and reticular veins, 1.5 to 3.0 mm in diameter (class 3), on the thighs. Examination of treated and untreated areas by 2 masked observers using macrophotography (1, 2, 3, and 6 months after treatment), Doppler, and optical chromatographic changes. Findings from three 2-mm punch biopsies from treated (immediately and 4 weeks after treatment) and untreated sites. Routine histologic examination; special stains (for elastic and connective tissue and for mucopolysaccharides); and immunohistochemical analysis for expression of the heat shock protein hsp70, tie2 (an endothelial cell-specific receptor tyrosine kinase), and transforming growth factors beta1 and beta2. Eight patients (62%) manifested 75% to 100% clearing of treated vessel surface area. Treated areas revealed perivascular hemorrhage, thrombi, fragmentation and homogenization of elastic fibers, and eosinophilia of vessel walls. Expression of hsp70 and transforming growth factor beta was increased in treated vessels. Our data confirm the effectiveness of 1064-nm Nd:YAG laser treatment in clearing dilated lower extremity veins, probably by heat-induced vessel damage and subsequent fibrosis. Maintenance of clearing was achieved for up to 6 months. However, the presence of recanalized thrombi in some of the specimens suggests the potential for long-term vessel reappearance.
2011-02-24
shape. At higher concentrations, the albumin would not flow through the extruder. Quarter 4 We used our temperature-controlled extruder to create...albumin stents with an outside diameter from 2 mm and various inner lumen diameters. Dissolution studies in flowing blood indicated that the stents 3...at the same rate. Determined that gamma sterilization procedure does not affect dissolution. Determined that flow rate affects the dissolution rate
Carbon Fiber and Tungsten Disulfide Nanoscale Architectures for Armor Applications
2012-06-01
picture of the gas gun setup. The breech is smaller cylinder on the right and the sample holder is the larger vessel on the left side of the barrel ...through the hard ceramic when impacted with a projectile travels at a different speed than in the ductile backing. While the initial shock wave compresses ...diameter and the heated length was 12 inches. A one inch outside diameter quartz tube was placed into the bore of the furnace. Stainless steel fittings
NASA Astrophysics Data System (ADS)
Caparanga, Alvin R.; Reyes, Rachael Anne L.; Rivas, Reiner L.; De Vera, Flordeliza C.; Retnasamy, Vithyacharan; Aris, Hasnizah
2017-11-01
This study utilized the 3k factorial design with k as the two varying factors namely, temperature and air velocity. The effects of temperature and air velocity on the drying rate curves and on the average particle diameter of the arrowroot starch were investigated. Extracted arrowroot starch samples were dried based on the designed parameters until constant weight was obtained. The resulting initial moisture content of the arrowroot starch was 49.4%. Higher temperatures correspond to higher drying rates and faster drying time while air velocity effects were approximately negligible or had little effect. Drying rate is a function of temperature and time. The constant rate period was not observed for the drying rate of arrowroot starch. The drying curves were fitted against five mathematical models: Lewis, Page, Henderson and Pabis, Logarithmic and Midili. The Midili Model was the best fit for the experimental data since it yielded the highest R2 and the lowest RSME values for all runs. Scanning electron microscopy (SEM) was used for qualitative analysis and for determination of average particle diameter of the starch granules. The starch granules average particle diameter had a range of 12.06 - 24.60 μm. The use of ANOVA proved that particle diameters for each run varied significantly with each other. And, the Taguchi Design proved that high temperatures yield lower average particle diameter, while high air velocities yield higher average particle diameter.
Cloez, J L; Hda, A; Khalife, K; Marçon, F; Worms, A M; Pernot, C
1983-05-01
The value of 2D echocardiography was assessed prospectively in 82 patients (average age 2.6 months) including 41 newborn babies, in the emergency investigation of cardiac distress. The recording was made before any other investigations or treatment and associated subcostal and supra sternal views, and the results were compared with angiography (64 cases) or anatomical findings (44 cases). A cardiac abnormality was excluded in 5 cyanotic newborn children (persistent foetal circulation) and a precise diagnosis was made in 74 of the remaining 77 patients (94 p. 100). All cases of malposition of the great vessels were recognised (17 cases). The diagnosis was based on the simultaneous recording of the vessels, proximal branches and their ventricular connections. In conditions with severe obstruction of the pulmonary outflow tract (26 cases), 2D echo enabled an exact evaluation of ventriculo arterial concordance, pulmonary confluence and a quantitative assessment of the diameter of the pulmonary artery in 25 patients. Angiography provided little further information, mainly concerning associated lesions (anterior muscular VSDs, abnormalities of the supra aortic vessels). On the other hand, 2D echocardiography was superior to angiocardiography for the study of the atrioventricular values and intracavitary and subvalvular obstruction. 2D echo is a reliable method for emergency assessment of the indication for therapeutic catheterisation (atrioseptostomy). In other cases it allows it to be deferred and guided. The comparison of the results of 2D echo and angiocardiography in this series suggests the possibility of reducing the number of endocavitary investigations in the newborn and infant in the future, even in cases where surgery is being considered.
Huang, Qi-Fang; Wei, Fang-Fei; Zhang, Zhen-Yu; Raaijmakers, Anke; Asayama, Kei; Thijs, Lutgarde; Yang, Wen-Yi; Mujaj, Blerim; Allegaert, Karel; Verhamme, Peter; Struijker-Boudier, Harry A J; Li, Yan; Staessen, Jan A
2018-03-10
Retinal microvascular traits predict adverse health outcomes. The Singapore I Vessel Assessment (SIVA) software improved automated postprocessing of retinal photographs. In addition to microvessel caliber, it generates measures of arteriolar and venular geometry. Few studies addressed the reproducibility of SIVA measurements across a wide age range. In the current study, 2 blinded graders read images obtained by nonmydriatic retinal photography twice in 20 11-year-old children, born prematurely (n = 10) or at term (n = 10) and in 60 adults (age range, 18.9-86.1 years). Former preterm compared with term children had lower microvessel diameter and disorganized vessel geometry with no differences in intraobserver and interobserver variability. Among adults, microvessel caliber decreased with age and blood pressure and arteriolar geometry was inversely correlated with female sex and age. Intraobserver differences estimated by the Bland-Altman method did not reach significance for any measurement. Across measurements, median reproducibility (RM) expressed as percent of the average trait value was 8.8% in children (median intraclass correlation coefficient [ICC], 0.94) and 8.0% (0.97) in adults. Likewise, interobserver differences did not reach significance with RM (ICC) of 10.6% (0.85) in children and 10.4% (0.93) in adults. Reproducibility was best for microvessel caliber (intraobserver/interobserver RM, 4.7%/6.0%; ICC, 0.98/0.96), worst for venular geometry (17.0%/18.8%; 0.93/0.84), and intermediate for arteriolar geometry (10.9%/14.9%; 0.95/0.86). SIVA produces repeatable measures of the retinal microvasculature in former preterm and term children and in adults, thereby proving its usability from childhood to old age.
Quantitative study of the microvasculature and its endothelial cells in the porcine iris.
Yang, Hongfang; Yu, Paula K; Cringle, Stephen J; Sun, Xinghuai; Yu, Dao-Yi
2015-03-01
The roles of the iris microvasculature have been increasingly recognised in the pathogenesis of glaucoma and cataract; however limited information exists regarding the iris microvasculature and its endothelium. This study quantitatively assessed the iris microvascular network and its endothelium using intra-luminal micro-perfusion, fixation, and staining of the porcine iris. The temporal long posterior ciliary artery of 11 isolated porcine eyes was cannulated, perfusion-fixed and labelled using silver nitrate. The iris microvasculature was studied for its distribution, orders and endothelial morphometrics. The density of three layers of microvasculature was measured. Endothelial cell length and width were measured for each vessel order. The iris has an unusual vascular distribution which consisted of abundant large vessels in the middle of the iris stroma, branching over a relatively short distance to the microvasculature located in the superficial and deep stroma as well as the pupil edge. The average vascular density of the middle, superficial, and deep layers were 38.9 ± 1.93%, 10.9 ± 1.61% and 8.0 ± 0.79% respectively. Multiple orders of iris vessels (capillary, 6 orders of arteries, and 4 orders of veins) with relatively large capillary and input arteries (319.5 ± 25.6 μm) were found. Significant heterogeneity of vascular diameter and shape of the endothelia was revealed in different orders of the iris vasculature. Detailed information of topography and endothelium of the iris microvasculature combined with unique structural features of the iris may help us to further understand the physiological and pathogenic roles of the iris in relevant ocular diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, R.B.; Bolton, C.J.
1997-02-01
Magnox steel reactor pressure vessels differ significantly from US LWR vessels in terms of the type of steel used, as well as their operating environment (dose level, exposure temperature range, and neutron spectra). The large diameter ferritic steel vessels are constructed from C-Mn steel plates and forgings joined together with manual metal and submerged-arc welds which are stress-relieved. All Magnox vessels are now at least thirty years old and their continued operation is being vigorously pursued. Vessel surveillance and other programmes are summarized which support this objective. The current understanding of the roles of matrix irradiation damage, irradiation-enhanced copper impuritymore » precipitation and intergranular embrittlement effects is described in so far as these influence the form of the embrittlement and hardening trend curves for each material. An update is given on the influence of high temperature exposure, and on the role of differing neutron spectra. Finally, the validation offered by the results of an initial vessel sampling exercise is summarized together with the objectives of a more extensive future sampling programme.« less
Pan, Ying; Zhang, Yunshu; Peng, Yan; Zhao, Qinghua; Sun, Shucun
2015-01-01
Aquatic microcosm studies often increase either chamber height or base diameter (to increase water volume) to test spatial ecology theories such as "scale" effects on ecological processes, but it is unclear whether the increase of chamber height or base diameter have the same effect on the processes, i.e., whether the effect of the shape of three-dimensional spaces is significant. We orthogonally manipulated chamber height and base diameter and determined swimming activity, average swimming velocity and grazing rates of the cladocerans Daphnia magna and Moina micrura (on two algae Scenedesmus quadricauda and Chlorella vulgaris; leading to four aquatic algae-cladoceran systems in total) under different microcosm conditions. Across all the four aquatic systems, increasing chamber height at a given base diameter significantly decreased the duration and velocity of horizontal swimming, and it tended to increase the duration but decrease the velocity of vertical swimming. These collectively led to decreases in both average swimming velocity and grazing rate of the cladocerans in the tall chambers (at a given base diameter), in accordance with the positive relationship between average swimming velocity and grazing rate. In contrast, an increase of base diameter at a given chamber height showed contrasting effects on the above parameters. Consistently, at a given chamber volume increasing ratio of chamber height to base diameter decreased the average swimming velocity and grazing rate across all the aquatic systems. In general, increasing chamber depth and base diameter may exert contrasting effects on zooplankton behavior and thus phytoplankton-zooplankton interactions. We suggest that spatial shape plays an important role in determining ecological process and thus should be considered in a theoretical framework of spatial ecology and also the physical setting of aquatic microcosm experiments.
Pan, Ying; Zhang, Yunshu; Peng, Yan; Zhao, Qinghua; Sun, Shucun
2015-01-01
Aquatic microcosm studies often increase either chamber height or base diameter (to increase water volume) to test spatial ecology theories such as “scale” effects on ecological processes, but it is unclear whether the increase of chamber height or base diameter have the same effect on the processes, i.e., whether the effect of the shape of three-dimensional spaces is significant. We orthogonally manipulated chamber height and base diameter and determined swimming activity, average swimming velocity and grazing rates of the cladocerans Daphnia magna and Moina micrura (on two algae Scenedesmus quadricauda and Chlorella vulgaris; leading to four aquatic algae-cladoceran systems in total) under different microcosm conditions. Across all the four aquatic systems, increasing chamber height at a given base diameter significantly decreased the duration and velocity of horizontal swimming, and it tended to increase the duration but decrease the velocity of vertical swimming. These collectively led to decreases in both average swimming velocity and grazing rate of the cladocerans in the tall chambers (at a given base diameter), in accordance with the positive relationship between average swimming velocity and grazing rate. In contrast, an increase of base diameter at a given chamber height showed contrasting effects on the above parameters. Consistently, at a given chamber volume increasing ratio of chamber height to base diameter decreased the average swimming velocity and grazing rate across all the aquatic systems. In general, increasing chamber depth and base diameter may exert contrasting effects on zooplankton behavior and thus phytoplankton-zooplankton interactions. We suggest that spatial shape plays an important role in determining ecological process and thus should be considered in a theoretical framework of spatial ecology and also the physical setting of aquatic microcosm experiments. PMID:26273836
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-10
... opening provided at 12 a.m. (midnight) for vessels providing advance notice before 4 p.m. on the afternoon before the requested opening. Vessel traffic along this part of the Atlantic Intracoastal Waterway... on the amount of vessel openings but on the average number of waterway users, which showed that there...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-17
... optional opening provided at 12 a.m. (midnight) for vessels providing advance notice before 4 p.m. on the afternoon before the requested opening. Vessel traffic along this part of the Atlantic Intracoastal Waterway... on the amount of vessel openings but on the average number of waterway users, which showed that there...
40 CFR 63.505 - Parameter monitoring levels and excursions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... section, is less than 4 hours in an operating day and more than two of the hours during the period of..., averaged over the duration of the filling period for the storage vessel, is above the maximum level or... storage vessel's monitoring plan, during the filling period for the storage vessel. (ii) If the monitoring...
40 CFR 63.505 - Parameter monitoring levels and excursions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... section, is less than 4 hours in an operating day and more than two of the hours during the period of..., averaged over the duration of the filling period for the storage vessel, is above the maximum level or... storage vessel's monitoring plan, during the filling period for the storage vessel. (ii) If the monitoring...
40 CFR 63.505 - Parameter monitoring levels and excursions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... section, is less than 4 hours in an operating day and more than two of the hours during the period of..., averaged over the duration of the filling period for the storage vessel, is above the maximum level or... storage vessel's monitoring plan, during the filling period for the storage vessel. (ii) If the monitoring...
40 CFR 63.505 - Parameter monitoring levels and excursions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... section, is less than 4 hours in an operating day and more than two of the hours during the period of..., averaged over the duration of the filling period for the storage vessel, is above the maximum level or... storage vessel's monitoring plan, during the filling period for the storage vessel. (ii) If the monitoring...
46 CFR 309.204 - Proof of loss.
Code of Federal Regulations, 2010 CFR
2010-10-01
... of consumable stores on board at the time the vessel was ready to sail, determined by multiplying the...) The average daily consumption cost times the number of days from the date the vessel was ready to sail... time the vessel was ready to sail, determined by multiplying the agreed cost for one man per day by the...
46 CFR 309.204 - Proof of loss.
Code of Federal Regulations, 2011 CFR
2011-10-01
... of consumable stores on board at the time the vessel was ready to sail, determined by multiplying the...) The average daily consumption cost times the number of days from the date the vessel was ready to sail... time the vessel was ready to sail, determined by multiplying the agreed cost for one man per day by the...
Estimation of retinal vessel caliber using model fitting and random forests
NASA Astrophysics Data System (ADS)
Araújo, Teresa; Mendonça, Ana Maria; Campilho, Aurélio
2017-03-01
Retinal vessel caliber changes are associated with several major diseases, such as diabetes and hypertension. These caliber changes can be evaluated using eye fundus images. However, the clinical assessment is tiresome and prone to errors, motivating the development of automatic methods. An automatic method based on vessel crosssection intensity profile model fitting for the estimation of vessel caliber in retinal images is herein proposed. First, vessels are segmented from the image, vessel centerlines are detected and individual segments are extracted and smoothed. Intensity profiles are extracted perpendicularly to the vessel, and the profile lengths are determined. Then, model fitting is applied to the smoothed profiles. A novel parametric model (DoG-L7) is used, consisting on a Difference-of-Gaussians multiplied by a line which is able to describe profile asymmetry. Finally, the parameters of the best-fit model are used for determining the vessel width through regression using ensembles of bagged regression trees with random sampling of the predictors (random forests). The method is evaluated on the REVIEW public dataset. A precision close to the observers is achieved, outperforming other state-of-the-art methods. The method is robust and reliable for width estimation in images with pathologies and artifacts, with performance independent of the range of diameters.
NASA Astrophysics Data System (ADS)
Chaturvedi, Amal; Shukair, Shetha A.; Le Rolland, Paul; Vijayvergia, Mayank; Subramanian, Hariharan; Gunn, Jonathan W.
2016-03-01
Minimally invasive operations require surgeons to make difficult cuts to blood vessels and other tissues with impaired tactile and visual feedback. This leads to inadvertent cuts to blood vessels hidden beneath tissue, causing serious health risks to patients and a non-reimbursable financial burden to hospitals. Intraoperative imaging technologies have been developed, but these expensive systems can be cumbersome and provide only a high-level view of blood vessel networks. In this research, we propose a lean reflectance-based system, comprised of a dual wavelength LED, photodiode, and novel signal processing algorithms for rapid vessel characterization. Since this system takes advantage of the inherent pulsatile light absorption characteristics of blood vessels, no contrast agent is required for its ability to detect the presence of a blood vessel buried deep inside any tissue type (up to a cm) in real time. Once a vessel is detected, the system is able to estimate the distance of the vessel from the probe and the diameter size of the vessel (with a resolution of ~2mm), as well as delineate the type of tissue surrounding the vessel. The system is low-cost, functions in real-time, and could be mounted on already existing surgical tools, such as Kittner dissectors or laparoscopic suction irrigation cannulae. Having been successfully validated ex vivo, this technology will next be tested in a live porcine study and eventually in clinical trials.
[Molecular imaging of tumor blood vessels].
Tilki, D; Singer, B; Seitz, M; Stief, C G; Ergün, S
2007-09-01
In the past three decades many efforts have been undertaken to understand the mechanisms of tumor angiogenesis. The introduction of the anti-angiogenic drugs in tumor therapy during the last few years necessitates the establishment of new techniques enabling molecular imaging of vascular remodeling. Tumor imaging by X-ray, CT, MRI and ultrasound has to be improved by coupling with molecular markers targeting the tumor vessels. The determination of tumor size as commonly used is not appropriate since the extended necrosis under anti-angiogenic therapy does not result in a reduction of tumor diameter. But remodeling of the tumor vessels under anti-angiogenic therapy obviously occurs at an early stage and seems to be a convincing parameter for tumor imaging. Despite the enormous progress in this field during the last few years the resolution is still not high enough to evaluate the remodeling of the microtumor vessels. Thus, new imaging approaches are needed to overcome this issue.
Characterizing phantom arteries with multi-channel laser ultrasonics and photo-acoustics.
Johnson, Jami L; van Wijk, Kasper; Sabick, Michelle
2014-03-01
Multi-channel photo-acoustic and laser ultrasonic waves are used to sense the characteristics of proxies for healthy and diseased vessels. The acquisition system is non-contacting and non-invasive with a pulsed laser source and a laser vibrometer detector. As the wave signatures of our targets are typically low in amplitude, we exploit multi-channel acquisition and processing techniques. These are commonly used in seismology to improve the signal-to-noise ratio of data. We identify vessel proxies with a diameter on the order of 1 mm, at a depth of 18 mm. Variations in scattered and photo-acoustic signatures are related to differences in vessel wall properties and content. The methods described have the potential to improve imaging and better inform interventions for atherosclerotic vessels, such as the carotid artery. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Thermographic venous blood flow characterization with external cooling stimulation
NASA Astrophysics Data System (ADS)
Saxena, Ashish; Ng, E. Y. K.; Raman, Vignesh
2018-05-01
Experimental characterization of blood flow in a human forearm is done with the application of continuous external cooling based active thermography method. Qualitative and quantitative detection of the blood vessel in a thermal image is done, along with the evaluation of blood vessel diameter, blood flow direction, and velocity in the target blood vessel. Subtraction based image manipulation is performed to enhance the feature contrast of the thermal image acquired after the removal of external cooling. To demonstrate the effect of occlusion diseases (obstruction), an external cuff based occlusion is applied after the removal of cooling and its effect on the skin rewarming is studied. Using external cooling, a transit time method based blood flow velocity estimation is done. From the results obtained, it is evident that an external cooling based active thermography method can be used to develop a diagnosis tool for superficial blood vessel diseases.
Chkadua, T Z; Kuz'mina, I V; Ramazanova, Iu I
2010-01-01
For surgical treatment of patients with inherent microtia of the III degree we use one stage method of otoplasty with silicone implant and parietotemporal fascial flap. In order to receive most full picture of the status of superficial temporal artery and its branches the additional diagnostic study is necessary. Method of ultrasound duplex scanning let to study any vessel in real time regimen under monitor screen control. Received by us results of ultrasound duplex scanning of superficial temporal artery branches in patients with inherent microtia of the III degree let us to conclude about the status of the vessel wall, to determine diameter and vessel occlusion, to evaluate and measure blood flow parameters. It is diagnostically necessary criteria for answering the question about flap vitality and in such a way let to avoid possible complications.
Cryogenic distribution box for Fermi National Accelerator Laboratory
NASA Astrophysics Data System (ADS)
Svehla, M. R.; Bonnema, E. C.; Cunningham, E. K.
2017-12-01
Meyer Tool & Mfg., Inc (Meyer Tool) of Oak Lawn, Illinois is manufacturing a cryogenic distribution box for Fermi National Accelerator Laboratory (FNAL). The distribution box will be used for the Muon-to-electron conversion (Mu2e) experiment. The box includes twenty-seven cryogenic valves, two heat exchangers, a thermal shield, and an internal nitrogen separator vessel, all contained within a six-foot diameter ASME coded vacuum vessel. This paper discusses the design and manufacturing processes that were implemented to meet the unique fabrication requirements of this distribution box. Design and manufacturing features discussed include: 1) Thermal strap design and fabrication, 2) Evolution of piping connections to heat exchangers, 3) Nitrogen phase separator design, 4) ASME code design of vacuum vessel, and 5) Cryogenic valve installation.
Measurement and interpretation of skin prick test results.
van der Valk, J P M; Gerth van Wijk, R; Hoorn, E; Groenendijk, L; Groenendijk, I M; de Jong, N W
2015-01-01
There are several methods to read skin prick test results in type-I allergy testing. A commonly used method is to characterize the wheal size by its 'average diameter'. A more accurate method is to scan the area of the wheal to calculate the actual size. In both methods, skin prick test (SPT) results can be corrected for histamine-sensitivity of the skin by dividing the results of the allergic reaction by the histamine control. The objectives of this study are to compare different techniques of quantifying SPT results, to determine a cut-off value for a positive SPT for histamine equivalent prick -index (HEP) area, and to study the accuracy of predicting cashew nut reactions in double-blind placebo-controlled food challenge (DBPCFC) tests with the different SPT methods. Data of 172 children with cashew nut sensitisation were used for the analysis. All patients underwent a DBPCFC with cashew nut. Per patient, the average diameter and scanned area of the wheal size were recorded. In addition, the same data for the histamine-induced wheal were collected for each patient. The accuracy in predicting the outcome of the DBPCFC using four different SPT readings (i.e. average diameter, area, HEP-index diameter, HEP-index area) were compared in a Receiver-Operating Characteristic (ROC) plot. Characterizing the wheal size by the average diameter method is inaccurate compared to scanning method. A wheal average diameter of 3 mm is generally considered as a positive SPT cut-off value and an equivalent HEP-index area cut-off value of 0.4 was calculated. The four SPT methods yielded a comparable area under the curve (AUC) of 0.84, 0.85, 0.83 and 0.83, respectively. The four methods showed comparable accuracy in predicting cashew nut reactions in a DBPCFC. The 'scanned area method' is theoretically more accurate in determining the wheal area than the 'average diameter method' and is recommended in academic research. A HEP-index area of 0.4 is determined as cut-off value for a positive SPT. However, in clinical practice, the 'average diameter method' is also useful, because this method provides similar accuracy in predicting cashew nut allergic reactions in the DBPCFC. Trial number NTR3572.
Alessandri, N; Tufano, F; Petrassi, M; Alessandri, C; Lanzi, L; Fusco, L; Moscariello, F; De Angelis, C; Tomao, E
2010-05-01
The hysto-morfological composition of the ascending aorta wall gives to the vessel its characteristic elasticity/distensibility, which is deteriorated due to both physiological (age) and pathological events (hypertension, diabetes, dyslipidemia). This contributes to reduce the wall elasticity and to occurrence of cardiovascular events. Thirty young healthy subjects (20 males, 10 females, age <30 yr), were subjected to different postural conditions with and without Lower Body Negative Pressure (LBNP) with conventional procedures, to simulate the microgravity conditions in space flight. During this procedure the cardiovascular parameters and the aorta elasticity were assessed with ecocardiography. The observation of results and statistical comparison showed that despite different hemodynamic conditions and with significant variation of blood pressure related to posture, elasticity/distensibility did not change significantly. The elasticity/distensibility of arterial vessels is the result of two interdependent variables such as blood pressure and systolic and diastolic diameters. While blood pressure and heart rate vary physiologically in relation to posture, the compensation of the vessel diameters modifications maintains the aortic compliance invariate. Therefore, in young healthy people, despite the significant postural and the sudden pressure changes (equivalent to parietal stress) aortic compliance does not alter. This behavior might be related to the low rate of cardiovascular events that are present in healthy people aged under 30 yrs.
NASA Astrophysics Data System (ADS)
Šulc, Radek; Ditl, Pavel; Fořt, Ivan; Jašíkova, Darina; Kotek, Michal; Kopecký, Václav; Kysela, Bohuš
2018-06-01
Hydrodynamics and flow field were measured in an agitated vessel using 2-D Time Resolved Particle Image Velocimetry (2-D TR PIV). The experiments were carried out in a fully baffled cylindrical flat bottom vessel 400 mm in inner diameter agitated by a tooth impeller 133 mm in diameter. The velocity fields were measured in the impeller discharge flow for impeller rotation speeds from 300 rpm to 700 rpm and three liquids of different viscosities (i.e. (i) distilled water, ii) a 28% vol. aqueous solution of glycol, and iii) a 43% vol. aqueous solution of glycol), corresponding to the impeller Reynolds number in the range 68 000 < Re < 221 000. This Re range secures the fully-developed turbulent flow of agitated liquid. In accordance with the theory of mixing, the dimensionless mean and fluctuation velocities in the measured directions were found to be constant and independent of the impeller Reynolds number. On the basis of the test results the spatial distributions of dimensionless velocities were calculated. The radial turbulence intensity was found to be in the majority in the range from 0.3 to 0.9, which corresponds to the high level of this quantity.
Yamazaki, Tomoko; Li, Wenling; Yang, Ling; Li, Ping; Cao, Haiming; Motegi, Sei-Ichiro; Udey, Mark C; Bernhard, Elise; Nakamura, Takahisa; Mukouyama, Yoh-Suke
2018-01-11
Obesity and type 2 diabetes are frequently associated with peripheral neuropathy. Though there are multiple methods for diagnosis and analysis of morphological changes of peripheral nerves and blood vessels, three-dimensional high-resolution imaging is necessary to appreciate the pathogenesis with an anatomically recognizable branching morphogenesis and patterning. Here we established a novel technique for whole-mount imaging of adult mouse ear skin to visualize branching morphogenesis and patterning of peripheral nerves and blood vessels. Whole-mount immunostaining of adult mouse ear skin showed that peripheral sensory and sympathetic nerves align with large-diameter blood vessels. Diet-induced obesity (DIO) mice exhibit defective vascular smooth muscle cells (VSMCs) coverage, while there is no significant change in the amount of peripheral nerves. The leptin receptor-deficient db/db mice, a severe obese and type 2 diabetic mouse model, exhibit defective VSMC coverage and a large increase in the amount of smaller-diameter nerve bundles with myelin sheath and unmyelinated nerve fibers. Interestingly, an increase in the amount of myeloid immune cells was observed in the DIO but not db/db mouse skin. These data suggest that our whole-mount imaging method enables us to investigate the neuro-vascular and neuro-immune phenotypes in the animal models of obesity and diabetes.
Ken, Yukawa; Noriko, Tachikawa; Furuichi, Akiko; Shohei, Kasugai
2016-12-01
This study investigated the biological reaction to porous poly-DL-lactic acid (PDLLA) scaffolds with holes for soft tissue augmentation. The control group was porous PDLLA with a diameter of 5.0 mm and a height of 2.0 mm. For the 2 test groups, 7 holes were drilled from the upper to the lower base of the scaffolds; the holes had diameters of 0.5 and 1.0 mm. A scaffold was placed in the periosteum of the cranium. The height and molecular weight (Mw) of the scaffolds were measured at 4 and 8 weeks. Hematoxylin and eosin staining was used to measure the connective tissue and blood vessel areas. All groups had similar scaffold heights, but the Mw decreased significantly over time. There were significant differences in the connective tissue and blood vessel areas among the control, 0.5-mm, and 1.0-mm groups at the same time point. The soft tissue was increased by drilling holes in the scaffolds. Porous poly-DL-lactic acid (PDLLA) contributed favorable prognosis for soft tissue. A wider hole was associated with increased connective tissue and blood vessel areas. The scaffold height and Mw were not impacted by size of the holes.
Experimental Evaluation of the Heat Sink Effect in Hepatic Microwave Ablation.
Ringe, Kristina I; Lutat, Carolin; Rieder, Christian; Schenk, Andrea; Wacker, Frank; Raatschen, Hans-Juergen
2015-01-01
To demonstrate and quantify the heat sink effect in hepatic microwave ablation (MWA) in a standardized ex vivo model, and to analyze the influence of vessel distance and blood flow on lesion volume and shape. 108 ex vivo MWA procedures were performed in freshly harvested pig livers. Antennas were inserted parallel to non-perfused and perfused (700,1400 ml/min) glass tubes (diameter 5mm) at different distances (10, 15, 20mm). Ablation zones (radius, area) were analyzed and compared (Kruskal-Wallis Test, Dunn's multiple comparison Test). Temperature changes adjacent to the tubes were measured throughout the ablation cycle. Maximum temperature decreased significantly with increasing flow and distance (p<0.05). Compared to non-perfused tubes, ablation zones were significantly deformed by perfused tubes within 15 mm distance to the antenna (p<0.05). At a flow rate of 700 ml/min ablation zone radius was reduced to 37.2% and 80.1% at 10 and 15 mm tube distance, respectively; ablation zone area was reduced to 50.5% and 89.7%, respectively. Significant changes of ablation zones were demonstrated in a pig liver model. Considerable heat sink effect was observed within a diameter of 15 mm around simulated vessels, dependent on flow rate. This has to be taken into account when ablating liver lesions close to vessels.
Yu, Jun; Bergaya, Sonia; Murata, Takahisa; Alp, Ilkay F.; Bauer, Michael P.; Lin, Michelle I.; Drab, Marek; Kurzchalia, Teymuras V.; Stan, Radu V.; Sessa, William C.
2006-01-01
Caveolae in endothelial cells have been implicated as plasma membrane microdomains that sense or transduce hemodynamic changes into biochemical signals that regulate vascular function. Therefore we compared long- and short-term flow-mediated mechanotransduction in vessels from WT mice, caveolin-1 knockout (Cav-1 KO) mice, and Cav-1 KO mice reconstituted with a transgene expressing Cav-1 specifically in endothelial cells (Cav-1 RC mice). Arterial remodeling during chronic changes in flow and shear stress were initially examined in these mice. Ligation of the left external carotid for 14 days to lower blood flow in the common carotid artery reduced the lumen diameter of carotid arteries from WT and Cav-1 RC mice. In Cav-1 KO mice, the decrease in blood flow did not reduce the lumen diameter but paradoxically increased wall thickness and cellular proliferation. In addition, in isolated pressurized carotid arteries, flow-mediated dilation was markedly reduced in Cav-1 KO arteries compared with those of WT mice. This impairment in response to flow was rescued by reconstituting Cav-1 into the endothelium. In conclusion, these results showed that endothelial Cav-1 and caveolae are necessary for both rapid and long-term mechanotransduction in intact blood vessels. PMID:16670769
Estimation of prenatal aorta intima-media thickness in ultrasound examination
NASA Astrophysics Data System (ADS)
Veronese, Elisa; Poletti, Enea; Cosmi, Erich; Grisan, Enrico
2012-03-01
Prenatal events such as intrauterine growth restriction have been shown to be associated with an increased thickness of abdominal aorta in the fetus. Therefore the measurement of abdominal aortic intima-media thickness (aIMT) has been recently considered a sensitive marker of artherosclerosis risk. To date measure of aortic diameter and of aIMT has been performed manually on US fetal images, thus being susceptible to intra- and inter- operator variability. This work introduces an automatic algorithm that identifies abdominal aorta and estimates its diameter and aIMT from videos recorded during routine third trimester ultrasonographic fetal biometry. Firstly, in each frame, the algorithm locates and segments the region corresponding to aorta by means of an active contour driven by two different external forces: a static vector field convolution force and a dynamic pressure force. Then, in each frame, the mean diameter of the vessel is computed, to reconstruct the cardiac cycle: in fact, we expect the diameter to have a sinusoidal trend, according to the heart rate. From the obtained sinusoid, we identify the frames corresponding to the end diastole and to the end systole. Finally, in these frames we assess the aIMT. According to its definition, we consider as aIMT the distance between the leading edge of the blood-intima interface, and the leading edge of the media-adventitia interface on the far wall of the vessel. The correlation between end-diastole and end-systole aIMT automatic and manual measures is 0.90 and 0.84 respectively.
Brain Arterial Diameters as a Risk Factor for Vascular Events.
Gutierrez, Jose; Cheung, Ken; Bagci, Ahmet; Rundek, Tatjana; Alperin, Noam; Sacco, Ralph L; Wright, Clinton B; Elkind, Mitchell S V
2015-08-06
Arterial luminal diameters are routinely used to assess for vascular disease. Although small diameters are typically considered pathological, arterial dilatation has also been associated with disease. We hypothesize that extreme arterial diameters are biomarkers of the risk of vascular events. Participants in the Northern Manhattan Study who had a time-of-flight magnetic resonance angiography were included in this analysis (N=1034). A global arterial Z-score, called the brain arterial remodeling (BAR) score, was obtained by averaging the measured diameters within each individual. Individuals with a BAR score <-2 SDs were considered to have the smallest diameters, individuals with a BAR score >-2 and <2 SDs had average diameters, and individuals with a BAR score >2 SDs had the largest diameters. All vascular events were recorded prospectively after the brain magnetic resonance imaging. Spline curves and incidence rates were used to test our hypothesis. The association of the BAR score with death (P=0.001), vascular death (P=0.02), any vascular event (P=0.05), and myocardial infarction (P=0.10) was U-shaped except for ischemic stroke (P=0.74). Consequently, incidence rates for death, vascular death, myocardial infarction, and any vascular event were higher in individuals with the largest diameters, whereas individuals with the smallest diameters had a higher incidence of death, vascular death, any vascular event, and ischemic stroke compared with individuals with average diameters. The risk of death, vascular death, and any vascular event increased at both extremes of brain arterial diameters. The pathophysiology linking brain arterial remodeling to systemic vascular events needs further research. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Catto, Valentina; Farè, Silvia; Cattaneo, Irene; Figliuzzi, Marina; Alessandrino, Antonio; Freddi, Giuliano; Remuzzi, Andrea; Tanzi, Maria Cristina
2015-09-01
To overcome the drawbacks of autologous grafts currently used in clinical practice, vascular tissue engineering represents an alternative approach for the replacement of small diameter blood vessels. In the present work, the production and characterization of small diameter tubular matrices (inner diameter (ID)=4.5 and 1.5 mm), obtained by electrospinning (ES) of Bombyx mori silk fibroin (SF), have been considered. ES-SF tubular scaffolds with ID=1.5 mm are original, and can be used as vascular grafts in pediatrics or in hand microsurgery. Axial and circumferential tensile tests on ES-SF tubes showed appropriate properties for the specific application. The burst pressure and the compliance of ES-SF tubes were estimated using the Laplace's law. Specifically, the estimated burst pressure was higher than the physiological pressures and the estimated compliance was similar or higher than that of native rat aorta and Goretex® prosthesis. Enzymatic in vitro degradation tests demonstrated a decrease of order and crystallinity of the SF outer surface as a consequence of the enzyme activity. The in vitro cytocompatibility of the ES-SF tubes was confirmed by the adhesion and growth of primary porcine smooth muscle cells. The in vivo subcutaneous implant into the rat dorsal tissue indicated that ES-SF matrices caused a mild host reaction. Thus, the results of this investigation, in which comprehensive morphological and mechanical aspects, in vitro degradation and in vitro and in vivo biocompatibility were considered, indicate the potential suitability of these ES-SF tubular matrices as scaffolds for the regeneration of small diameter blood vessels. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Christy M.; Gaber, M. Waleed; Sabek, Omaima M.
2009-07-01
Purpose: In this article, we investigate the role of tumor necrosis factor-alpha (TNF) in the initiation of acute damage to the blood-brain barrier (BBB) and brain tissue following radiotherapy (RT) for CNS tumors. Methods and Materials: Intravital microscopy and a closed cranial window technique were used to measure quantitatively BBB permeability to FITC-dextran 4.4-kDa molecules, leukocyte adhesion (Rhodamine-6G) and vessel diameters before and after 20-Gy cranial radiation with and without treatment with anti-TNF. Immunohistochemistry was used to quantify astrogliosis post-RT and immunofluorescence was used to visualize protein expression of TNF and ICAM-1 post-RT. Recombinant TNF (rTNF) was used to elucidatemore » the role of TNF in leukocyte adhesion and vessel diameter. Results: Mice treated with anti-TNF showed significantly lower permeability and leukocyte adhesion at 24 and 48 h post-RT vs. RT-only animals. We observed a significant decrease in arteriole diameters at 48 h post-RT that was inhibited in TNF-treated animals. We also saw a significant increase in activated astrocytes following RT that was significantly lower in the anti-TNF-treated group. In addition, immunofluorescence showed protein expression of TNF and ICAM-1 in the cerebral cortex that was inhibited with anti-TNF treatment. Finally, administration of rTNF induced a decrease in arteriole diameter and a significant increase in leukocyte adhesion in venules and arterioles. Conclusions: TNF plays a significant role in acute changes in BBB permeability, leukocyte adhesion, arteriole diameter, and astrocyte activation following cranial radiation. Treatment with anti-TNF protects the brain's microvascular network from the acute damage following RT.« less
Okamura, Yukiyasu; Sugiura, Teiichi; Ito, Takaaki; Yamamoto, Yusuke; Ashida, Ryo; Aramaki, Takeshi; Uesaka, Katsuhiko
2018-06-05
Previous studies have shown that microscopic vessel invasion (MVI) occurs in hepatocellular carcinoma (HCC) with a treatment history due to its poorer malignant behavior in comparison with primary HCC. The aim of the present study was to determine the predictors of MVI and overall survival in HCC patients with a treatment history. This retrospective study included 580 patients who underwent hepatectomy and whose preoperative imaging showed no evidence of macroscopic vessel invasion. The patients were classified into two groups: primary HCC (n = 425) and HCC with a treatment history (n = 155). MVI was defined as the presence of either microscopic portal vein invasion or venous invasion, which was invisible on preoperative imaging. MVI was identified in 34 (21.9%) patients with a treatment history. A multivariate analysis showed that a high des-gamma-carboxy prothrombin (odds ratio [OR] 5.16, P = 0.002) and a large tumor diameter (OR 2.57, P = 0.030) were the significant predictor of MVI in HCC with a treatment history. Moreover, the presence of MVI (hazard ratio [HR] 2.27, P = 0.001) and tumor diameter >27 mm (HR 2.04, P = 0.006) remained significant predictors of the overall survival in HCC with a treatment history. The tumor diameter cutoff value for predicting MVI (27 mm) in HCC with a treatment history was smaller than in primary HCC (37 mm). The presence of MVI was a significant predictor in the HCC patients with a treatment history. The tumor diameter is an important factor that can be used to predict the presence of MVI, especially in HCC with a treatment history.
Microanatomical bases for intraoperative division of the posterior communicating artery.
Gabrovsky, N
2002-11-01
Micro-anatomical parameters of the hypoplastic posterior communicating artery (PCoA) are assessed and compared with the micro-anatomical parameters of the adult type PCoA. Based on the results obtained, the safest place is proposed for PCoA division during basilar tip aneurysm surgery via the pterional route. In 35 human cadaver brains, red coloured latex was injected and micro-anatomical dissection was performed. Seventy PCoA were found. Adult type PCoA was found in 29 cases (41.43%) with mean length 12.58 mm. Reduction of the PCoA diameter from its anterior to its posterior third by up to 20% was found in 27% and by more than 20% in 10% of the cases. The mean perforating vessel number was 8.17, distributed in each third: 3.48, 2.90 and 1.79, respectively. A hypoplastic PCoA was found in 33 cases (47.14%) with mean length 16.09 mm. The PCoA's diameter reduction by up to 20% was found in 24% and by more in 27% of the cases. In 6% of the cases an extreme reduction by up to 70% was observed. The mean perforating vessel (PV) number was 8.82, distributed in each third: 3.18, 3.36 and 2.27, respectively. Hypoplastic PCoA tends to be longer and with a more distinct diameter reduction from the anterior to the posterior third than the adult type PCoA. The PV anatomical parameters are similar for both groups. The posterior third of the PCoA seems to be the area where the risk of perforating vessel damage is the least when performing intra-operative PCoA division.
Coronary Collateral Growth—Back to the Future
Chilian, William M.; Penn, Marc S.; Pung, Yuh Fen; Dong, Feng; Mayorga, Maritza; Ohanyan, Vahagn; Logan, Suzanna; Yin, Liya
2012-01-01
The coronary collateral circulation is critically important as an adaptation of the heart to prevent the damage from ischemic insults. In their native state, collaterals in the heart would be classified as part of the microcirculation, existing as arterial-arterial anastomotic connections in the range of 30 to 100 μM in diameter. However, these vessels also show a propensity to remodel into components of the macrocirculation and can become arteries larger than a 1000 μM in diameter. This process of outward remodelling is critically important in the adaptation of the heart to ischemia because the resistance to blood flow is inversely related to the fourth power of the diameter of the vessel. Thus, an expansion of a vessel from 100 to 1000 μM would reduce resistance (in this part of the circuit) to a negligible amount and enable delivery of flow to the region at risk. Our goal in this review is to highlight the voids in understanding this adaptation to ischemia—the growth of the coronary collateral circulation. In doing so we discuss the controversies and unknown aspects of the causal factors that stimulate growth of the collateral circulation, the role of genetics, and the role of endogenous stem and progenitor cells in the context of the normal, physiological situation and under more pathological conditions of ischemic heart disease or with some of the underlying risk factors, e.g., diabetes. The major conclusion of this review is that there are many gaps in our knowledge of coronary collateral growth and this knowledge is critical before the potential of stimulating collateralization in the hearts of patients can be realized. PMID:22210280
Electrospun Polycaprolactone Scaffolds for Small-Diameter Tissue Engineered Blood Vessels
NASA Astrophysics Data System (ADS)
Lee, Carol Hsiu-Yueh
Cardiovascular disease is the leading cause of death in the United States with many patients requiring coronary artery bypass grafting. The current standard is using autografts such as the saphenous vein or intimal mammary artery, however creating a synthetic graft could eliminate this painful and inconvenient procedure. Large diameter grafts have long been established with materials such as DacronRTM and TeflonRTM, however these materials have not proved successful in small-diameter (< 6 mm) grafts where thrombosis and intimal hyperplasia are common in graft failure. With the use of a synthetic biodegradable polymer (polycaprolactone) we utilize our expertise in electrospinning and femtosecond laser ablation to create a novel tri-layered tissue engineered blood vessel containing microchannels. The benefits of creating a tri-layer is to mimic native arteries that contain an endothelium to prevent thrombosis in the inner layer, aligned smooth muscle cells in the middle to control vasodilation and constriction, and a mechanically robust outer layer. The following work evaluates the mechanical properties of such a graft (tensile, fatigue, burst pressure, and suture retention strength), the ability to rapidly align cells in laser ablated microchannels in PCL scaffolds, and the biological integration (co-culture of endothelial and smooth muscle cells) with electrospun PCL scaffolds. The conclusions from this work establish that the electrospun tri-layers provide adequate mechanical strength as a tissue engineered blood vessel, that laser ablated microchannels are able to contain the smooth muscle cells, and that cells are able to adhere to PCL fibers. However, future work includes adjusting microchannel dimensions to properly align smooth muscle cells along with perfect co-cultures of endothelial and smooth muscle cells on the electrospun tri-layer.
Gerber, Markus; Endes, Katharina; Brand, Serge; Herrmann, Christian; Colledge, Flora; Donath, Lars; Faude, Oliver; Pühse, Uwe; Hanssen, Henner; Zahner, Lukas
2017-02-01
Hair cortisol measurement has become an increasingly accepted approach in endocrinology and biopsychology. However, while in adult research hair cortisol has been proposed as a relevant biomarker for chronic stress (and its adverse consequences), studies with children are scarce. Therefore, the goal of the present exploratory study was to examine the associations between hair cortisol concentrations (HCCs), stress, and a series of health-related outcomes in a sample of Swiss first grade schoolchildren. The sample consisted of 318 children (53% girls, M age =7.26, SD=0.35). Hair strands were taken near the scalp from a posterior vertex position, and HCCs were tested for the first 3-cm hair segment. Parents provided information about their children's age, gender, parental education, children's stress (recent critical life events, daily hassles), health-related quality of life, and psychosomatic complaints. Body composition, blood pressure, retinal vessel diameters, and cardiorespiratory fitness were measured with established methods. In multiple regression analyses, higher HCCs were weakly associated with increased BMI in girls (β=0.22, p<0.001), whereas higher HCCs were associated with increased somatic complaints in boys (β=0.20, p<0.05). No significant relationships were found between HCCs and parental reports of stress, health-related quality of life, blood pressure, retinal vessel diameters, and cardiorespiratory fitness. Although small significant relationships were found between HCCs, BMI and somatic complaints, the findings of this exploratory study challenge the view that HCCs can be used as a reliable biomarker of recent critical life events, daily hassles, health-related quality of life, and cardiovascular health indicators in non-clinical young children. Copyright © 2016 Elsevier Ltd. All rights reserved.
Extraction of liver volumetry based on blood vessel from the portal phase CT dataset
NASA Astrophysics Data System (ADS)
Maklad, Ahmed S.; Matsuhiro, Mikio; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Utsunomiya, Tohru; Shimada, Mitsuo
2012-02-01
At liver surgery planning stage, the liver volumetry would be essential for surgeons. Main problem at liver extraction is the wide variability of livers in shapes and sizes. Since, hepatic blood vessels structure varies from a person to another and covers liver region, the present method uses that information for extraction of liver in two stages. The first stage is to extract abdominal blood vessels in the form of hepatic and nonhepatic blood vessels. At the second stage, extracted vessels are used to control extraction of liver region automatically. Contrast enhanced CT datasets at only the portal phase of 50 cases is used. Those data include 30 abnormal livers. A reference for all cases is done through a comparison of two experts labeling results and correction of their inter-reader variability. Results of the proposed method agree with the reference at an average rate of 97.8%. Through application of different metrics mentioned at MICCAI workshop for liver segmentation, it is found that: volume overlap error is 4.4%, volume difference is 0.3%, average symmetric distance is 0.7 mm, Root mean square symmetric distance is 0.8 mm, and maximum distance is 15.8 mm. These results represent the average of overall data and show an improved accuracy compared to current liver segmentation methods. It seems to be a promising method for extraction of liver volumetry of various shapes and sizes.
Indirect and direct methods for measuring a dynamic throat diameter in a solid rocket motor
NASA Astrophysics Data System (ADS)
Colbaugh, Lauren
In a solid rocket motor, nozzle throat erosion is dictated by propellant composition, throat material properties, and operating conditions. Throat erosion has a significant effect on motor performance, so it must be accurately characterized to produce a good motor design. In order to correlate throat erosion rate to other parameters, it is first necessary to know what the throat diameter is throughout a motor burn. Thus, an indirect method and a direct method for determining throat diameter in a solid rocket motor are investigated in this thesis. The indirect method looks at the use of pressure and thrust data to solve for throat diameter as a function of time. The indirect method's proof of concept was shown by the good agreement between the ballistics model and the test data from a static motor firing. The ballistics model was within 10% of all measured and calculated performance parameters (e.g. average pressure, specific impulse, maximum thrust, etc.) for tests with throat erosion and within 6% of all measured and calculated performance parameters for tests without throat erosion. The direct method involves the use of x-rays to directly observe a simulated nozzle throat erode in a dynamic environment; this is achieved with a dynamic calibration standard. An image processing algorithm is developed for extracting the diameter dimensions from the x-ray intensity digital images. Static and dynamic tests were conducted. The measured diameter was compared to the known diameter in the calibration standard. All dynamic test results were within +6% / -7% of the actual diameter. Part of the edge detection method consists of dividing the entire x-ray image by an average pixel value, calculated from a set of pixels in the x-ray image. It was found that the accuracy of the edge detection method depends upon the selection of the average pixel value area and subsequently the average pixel value. An average pixel value sensitivity analysis is presented. Both the indirect method and the direct method prove to be viable approaches to determining throat diameter during solid rocket motor operation.
PHYSICAL PROPERTIES OF LARGE AND SMALL GRANULES IN SOLAR QUIET REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Daren; Xie Zongxia; Hu Qinghua
The normal mode observations of seven quiet regions obtained by the Hinode spacecraft are analyzed to study the physical properties of granules. An artificial intelligence technique is introduced to automatically find the spatial distribution of granules in feature spaces. In this work, we investigate the dependence of granular continuum intensity, mean Doppler velocity, and magnetic fields on granular diameter. We recognized 71,538 granules by an automatic segmentation technique and then extracted five properties: diameter, continuum intensity, Doppler velocity, and longitudinal and transverse magnetic flux density to describe the granules. To automatically explore the intrinsic structures of the granules in themore » five-dimensional parameter space, the X-means clustering algorithm and one-rule classifier are introduced to define the rules for classifying the granules. It is found that diameter is a dominating parameter in classifying the granules and two families of granules are derived: small granules with diameters smaller than 1.''44, and large granules with diameters larger than 1.''44. Based on statistical analysis of the detected granules, the following results are derived: (1) the averages of diameter, continuum intensity, and Doppler velocity in the upward direction of large granules are larger than those of small granules; (2) the averages of absolute longitudinal, transverse, and unsigned flux density of large granules are smaller than those of small granules; (3) for small granules, the average of continuum intensity increases with their diameters, while the averages of Doppler velocity, transverse, absolute longitudinal, and unsigned magnetic flux density decrease with their diameters. However, the mean properties of large granules are stable; (4) the intensity distributions of all granules and small granules do not satisfy Gaussian distribution, while that of large granules almost agrees with normal distribution with a peak at 1.04 I{sub 0}.« less
NASA Astrophysics Data System (ADS)
Ignatov, D.; Zhurbina, N.; Gerasimenko, A.
2017-01-01
3-D composites are widely used in tissue engineering. A comprehensive analysis by X-ray microtomography was conducted to study the structure of the 3-D composites. Comprehensive analysis of the structure of the 3-D composites consisted of scanning, image reconstruction of shadow projections, two-dimensional and three-dimensional visualization of the reconstructed images and quantitative analysis of the samples. Experimental samples of composites were formed by laser vaporization of the aqueous dispersion BSA and single-walled (SWCNTs) and multi-layer (MWCNTs) carbon nanotubes. The samples have a homogeneous structure over the entire volume, the percentage of porosity of 3-D composites based on SWCNTs and MWCNTs - 16.44%, 28.31%, respectively. An average pore diameter of 3-D composites based on SWCNTs and MWCNTs - 45 μm 93 μm. 3-D composites based on carbon nanotubes in bovine serum albumin matrix can be used in tissue engineering of bone and cartilage, providing cell proliferation and blood vessel sprouting.
Reduced clot debris size using standing waves formed via high intensity focused ultrasound
NASA Astrophysics Data System (ADS)
Guo, Shifang; Du, Xuan; Wang, Xin; Lu, Shukuan; Shi, Aiwei; Xu, Shanshan; Bouakaz, Ayache; Wan, Mingxi
2017-09-01
The feasibility of utilizing high intensity focused ultrasound (HIFU) to induce thrombolysis has been demonstrated previously. However, clinical concerns still remain related to the clot debris produced via fragmentation of the original clot potentially being too large and hence occluding downstream vessels, causing hazardous emboli. This study investigates the use of standing wave fields formed via HIFU to disintegrate the thrombus while achieving a reduced clot debris size in vitro. The results showed that the average diameter of the clot debris calculated by volume percentage was smaller in the standing wave mode than in the travelling wave mode at identical ultrasound thrombolysis settings. Furthermore, the inertial cavitation dose was shown to be lower in the standing wave mode, while the estimated cavitation bubble size distribution was similar in both modes. These results show that a reduction of the clot debris size with standing waves may be attributed to the particle trapping of the acoustic potential well which contributed to particle fragmentation.
NASA Astrophysics Data System (ADS)
Munn, Lance
2009-11-01
``Normalization'' of tumor blood vessels has shown promise to improve the efficacy of chemotherapeutics. In theory, anti-angiogenic drugs targeting endothelial VEGF signaling can improve vessel network structure and function, enhancing the transport of subsequent cytotoxic drugs to cancer cells. In practice, the effects are unpredictable, with varying levels of success. The predominant effects of anti-VEGF therapies are decreased vessel leakiness (hydraulic conductivity), decreased vessel diameters and pruning of the immature vessel network. It is thought that each of these can influence perfusion of the vessel network, inducing flow in regions that were previously sluggish or stagnant. Unfortunately, when anti-VEGF therapies affect vessel structure and function, the changes are dynamic and overlapping in time, and it has been difficult to identify a consistent and predictable normalization ``window'' during which perfusion and subsequent drug delivery is optimal. This is largely due to the non-linearity in the system, and the inability to distinguish the effects of decreased vessel leakiness from those due to network structural changes in clinical trials or animal studies. We have developed a mathematical model to calculate blood flow in complex tumor networks imaged by two-photon microscopy. The model incorporates the necessary and sufficient components for addressing the problem of normalization of tumor vasculature: i) lattice-Boltzmann calculations of the full flow field within the vasculature and within the tissue, ii) diffusion and convection of soluble species such as oxygen or drugs within vessels and the tissue domain, iii) distinct and spatially-resolved vessel hydraulic conductivities and permeabilities for each species, iv) erythrocyte particles advecting in the flow and delivering oxygen with real oxygen release kinetics, v) shear stress-mediated vascular remodeling. This model, guided by multi-parameter intravital imaging of tumor vessel structure and function, provides a tool for identifying the structural and functional determinants of tumor vessel normalization.
Impaired Retinal Vasodilator Responses in Prediabetes and Type 2 Diabetes
Lott, Mary E.J.; Slocomb, Julia E.; Shivkumar, Vikram; Smith, Bruce; Quillen, David; Gabbay, Robert A.; Gardner, Thomas W.; Bettermann, Kerstin
2013-01-01
Purpose In diabetes, endothelial dysfunction and subsequent structural damage to blood vessels can lead to heart attacks, retinopathy and strokes. However, it is unclear whether prediabetic subjects exhibit microvascular dysfunction indicating early stages of arteriosclerosis and vascular risk. The purpose of this study was to examine whether retinal reactivity may be impaired early in the hyperglycemic continuum and may be associated with markers of inflammation. Methods Individuals with prediabetes (n = 22), type 2 diabetes (n = 25) and healthy age and body composition matched controls (n = 19) were studied. We used the Dynamic Vessel Analyzer to assess retinal vasoreactivity (percent change in vessel diameter) during a flickering light stimulation. Fasting highly sensitive c-reactive protein (hs-CRP), a marker of inflammation, was measured in blood plasma. Results Prediabetic and diabetic individuals had attenuated peak vasodilator and relative amplitude changes in retinal vein diameters to the flickering light stimulus compared to healthy controls (peak dilation: prediabetic subjects 3.3 ± 1.8 %, diabetic subjects 3.3 ± 2.1% controls 5.6 ± 2.6%, p = .001; relative amplitude: prediabetic subjects 4.3 ± 2.2%, diabetic subjects 5.0 ± 2.6% and control subjects 7.2 ± 3.2%, p = .003). Similar findings were observed in retinal arteries. Levels of hs-CRP were not associated with either retinal vessel response parameters. Conclusion Retinal reactivity was impaired in prediabetic and type 2 diabetic individuals in parallel with reduced insulin sensitivity but not associated with levels of hs-CRP. Retinal vasoreactivity measurements may be a sensitive tool to assess early vascular risk. PMID:23742315
Automated retinal vessel type classification in color fundus images
NASA Astrophysics Data System (ADS)
Yu, H.; Barriga, S.; Agurto, C.; Nemeth, S.; Bauman, W.; Soliz, P.
2013-02-01
Automated retinal vessel type classification is an essential first step toward machine-based quantitative measurement of various vessel topological parameters and identifying vessel abnormalities and alternations in cardiovascular disease risk analysis. This paper presents a new and accurate automatic artery and vein classification method developed for arteriolar-to-venular width ratio (AVR) and artery and vein tortuosity measurements in regions of interest (ROI) of 1.5 and 2.5 optic disc diameters from the disc center, respectively. This method includes illumination normalization, automatic optic disc detection and retinal vessel segmentation, feature extraction, and a partial least squares (PLS) classification. Normalized multi-color information, color variation, and multi-scale morphological features are extracted on each vessel segment. We trained the algorithm on a set of 51 color fundus images using manually marked arteries and veins. We tested the proposed method in a previously unseen test data set consisting of 42 images. We obtained an area under the ROC curve (AUC) of 93.7% in the ROI of AVR measurement and 91.5% of AUC in the ROI of tortuosity measurement. The proposed AV classification method has the potential to assist automatic cardiovascular disease early detection and risk analysis.
NASA Astrophysics Data System (ADS)
Kaliatka, T.; Povilaitis, M.; Kaliatka, A.; Urbonavicius, E.
2012-10-01
Wendelstein nuclear fusion device W7-X is a stellarator type experimental device, developed by Max Planck Institute of plasma physics. Rupture of one of the 40 mm inner diameter coolant pipes providing water for the divertor targets during the "baking" regime of the facility operation is considered to be the most severe accident in terms of the plasma vessel pressurization. "Baking" regime is the regime of the facility operation during which plasma vessel structures are heated to the temperature acceptable for the plasma ignition in the vessel. This paper presents the model of W7-X cooling system (pumps, valves, pipes, hydro-accumulators, and heat exchangers), developed using thermal-hydraulic state-of-the-art RELAP5 Mod3.3 code, and model of plasma vessel, developed by employing the lumped-parameter code COCOSYS. Using both models the numerical simulation of processes in W7-X cooling system and plasma vessel has been performed. The results of simulation showed, that the automatic valve closure time 1 s is the most acceptable (no water hammer effect occurs) and selected area of the burst disk is sufficient to prevent pressure in the plasma vessel.
Libondi, Guido; Ramakrishnan, Venkat
2017-01-01
Background The transverse upper gracilis (TUG) flap is the senior authors’ second choice for autologous breast reconstruction when the DIEP flap is not available. It provides durable, pliable tissue with well hidden scars. The main criticism of this flap is the limited volume, donor site complications, short pedicle and vessel mismatch depending on which recipient vessels are used. We described methods of reducing vessel mismatch, complications of venous coupler and refinements to help give a more superior aesthetic outcome. Methods We describe several maneuvers to help reduce vessel mismatch with the use of the internal mammary (IM) perforator vessels with a modification of the Harashina fish-mouth technique or the use of a vessel bifurcation to increase vessel diameter. We also describe the optimum method of perforator preparation and potential methods to prevent palpable venous couplers. The author’s describe their case series of 14 TUG flaps to reconstruct 13 breasts in 12 patients. Results Eight unilateral, 2 partial breast reconstruction, 1 bilateral and 1 bilateral TUG flap for a unilateral reconstruction was carried out. All flaps survived with one partial flap necrosis, one donor site seroma and two cases of palpable/tender venous couplers. The mean reconstructed breast was 320 grams. Conclusions The TUG flap is a reconstructive challenge, but with correct planning a good aesthetic outcome is possible. The IM perforator is our first choice recipient vessel in TUG breast reconstructions. With meticulous preparation and by overcoming vessel mismatch the use of this recipient vessel is a reliable option. PMID:28861378
Lazzari, Maurizio; Bettini, Simone; Ciani, Franco; Franceschini, Valeria
2008-10-01
The GLUT-1 isoform of the glucose transporter is commonly considered a reliable molecular marker of blood-brain barrier endothelia in the neural vasculature organized in a three-dimensional network of single vessels. The central nervous system of the axolotl Ambystoma mexicanum is characterized by a vascular architecture that contains both single and paired vessels. The presence and distribution of the GLUT-1 transporter are studied in this urodele using both immunoperoxidase histochemistry and immunogold technique. Light microscopy reveals immunopositivity in both parenchymal and meningeal vessels. The transverse-sectioned pairs of vessels do not show the same size. Furthermore, in the same pair, the two elements often differ in diameter. The main regions of the central nervous system show a different percentage of the paired structures. Only immunogold cytochemistry reveals different staining intensity in the two adjoined elements of a vascular pair. Colloidal gold particles show an asymmetric distribution in the endothelia of both single and paired vessels. These particles are more numerous on the abluminal surface than on the luminal one. The particle density is calculated in both vascular types. The different values could indicate functional differences between single and paired vessels and between the two adjoined elements of a pair, regarding glucose transport.
Optimal occlusion uniformly partitions red blood cells fluxes within a microvascular network
Tu, Shenyinying; Liu, Yu-Hsiu; Savage, Van M.; Hsiai, Tzung K.; Roper, Marcus
2017-01-01
In animals, gas exchange between blood and tissues occurs in narrow vessels, whose diameter is comparable to that of a red blood cell. Red blood cells must deform to squeeze through these narrow vessels, transiently blocking or occluding the vessels they pass through. Although the dynamics of vessel occlusion have been studied extensively, it remains an open question why microvessels need to be so narrow. We study occlusive dynamics within a model microvascular network: the embryonic zebrafish trunk. We show that pressure feedbacks created when red blood cells enter the finest vessels of the trunk act together to uniformly partition red blood cells through the microvasculature. Using mathematical models as well as direct observation, we show that these occlusive feedbacks are tuned throughout the trunk network to prevent the vessels closest to the heart from short-circuiting the network. Thus occlusion is linked with another open question of microvascular function: how are red blood cells delivered at the same rate to each micro-vessel? Our analysis shows that tuning of occlusive feedbacks increase the total dissipation within the network by a factor of 11, showing that uniformity of flows rather than minimization of transport costs may be prioritized by the microvascular network. PMID:29244812
NASA Astrophysics Data System (ADS)
Le, Du; Wang, Quanzeng; Ramella-Roman, Jessica; Pfefer, Joshua
2012-06-01
Narrow-band imaging (NBI) is a spectrally-selective reflectance imaging technique for enhanced visualization of superficial vasculature. Prior clinical studies have indicated NBI's potential for detection of vasculature abnormalities associated with gastrointestinal mucosal neoplasia. While the basic mechanisms behind the increased vessel contrast - hemoglobin absorption and tissue scattering - are known, a quantitative understanding of the effect of tissue and device parameters has not been achieved. In this investigation, we developed and implemented a numerical model of light propagation that simulates NBI reflectance distributions. This was accomplished by incorporating mucosal tissue layers and vessel-like structures in a voxel-based Monte Carlo algorithm. Epithelial and mucosal layers as well as blood vessels were defined using wavelength-specific optical properties. The model was implemented to calculate reflectance distributions and vessel contrast values as a function of vessel depth (0.05 to 0.50 mm) and diameter (0.01 to 0.10 mm). These relationships were determined for NBI wavelengths of 410 nm and 540 nm, as well as broadband illumination common to standard endoscopic imaging. The effects of illumination bandwidth on vessel contrast were also simulated. Our results provide a quantitative analysis of the effect of absorption and scattering on vessel contrast. Additional insights and potential approaches for improving NBI system contrast are discussed.
Wang, Qingyu; Canton, Gador; Guo, Jian; Guo, Xiaoya; Hatsukami, Thomas S.; Billiar, Kristen L.; Yuan, Chun; Wu, Zheyang
2017-01-01
Background Image-based computational models are widely used to determine atherosclerotic plaque stress/strain conditions and investigate their association with plaque progression and rupture. However, patient-specific vessel material properties are in general lacking in those models, limiting the accuracy of their stress/strain measurements. A noninvasive approach of combining in vivo 3D multi-contrast and Cine magnetic resonance imaging (MRI) and computational modeling was introduced to quantify patient-specific carotid plaque material properties for potential plaque model improvements. Vessel material property variation in patients, along vessel segment, and between baseline and follow up were investigated. Methods In vivo 3D multi-contrast and Cine MRI carotid plaque data were acquired from 8 patients with follow-up (18 months) with written informed consent obtained. 3D thin-layer models and an established iterative procedure were used to determine parameter values of the Mooney-Rivlin models for the 81slices from 16 plaque samples. Effective Young’s Modulus (YM) values were calculated for comparison and analysis. Results Average Effective Young’s Modulus (YM) and circumferential shrinkage rate (C-Shrink) value of the 81 slices was 411kPa and 5.62%, respectively. Slice YM value varied from 70 kPa (softest) to 1284 kPa (stiffest), a 1734% difference. Average slice YM values by vessel varied from 109 kPa (softest) to 922 kPa (stiffest), a 746% difference. Location-wise, the maximum slice YM variation rate within a vessel was 311% (149 kPa vs. 613 kPa). The average slice YM variation rate for the 16 vessels was 134%. The average variation of YM values for all patients from baseline to follow up was 61.0%. The range of the variation of YM values was [-28.4%, 215%]. For plaque progression study, YM at follow-up showed negative correlation with plaque progression measured by wall thickness increase (WTI) (r = -0.7764, p = 0.0235). Wall thickness at baseline correlated with WTI negatively, with r = -0.5253 (p = 0.1813). Plaque burden at baseline correlated with YM change between baseline and follow-up, with r = 0.5939 (p = 0.1205). Conclusion In vivo carotid vessel material properties have large variations from patient to patient, along the diseased segment within a patient, and with time. The use of patient-specific, location specific and time-specific material properties in plaque models could potentially improve the accuracy of model stress/strain calculations. PMID:28715441
USDA-ARS?s Scientific Manuscript database
Ultrasonography of each testicle was used to capture a coronal-saggital image of the veins of the pampiniform plexus (PP) and the testicular artery of 239 boars at approximately 6 months of age. Three to 10 vessels of the PP were used to derive the average area of right PP vessels (AAR) and the aver...
Stefani, I; Cooper-White, J J
2016-05-01
Cardiovascular diseases remain the largest cause of death worldwide, and half of these deaths are the result of failure of the vascular system. Tissue engineering promises to provide new, and potentially more effective therapeutic strategies to replace damaged or degenerated vessels with functional vessels. However, these engineered vessels have substantial performance criteria, including vessel-like tubular shape, structure and mechanical property slate. Further, whether implanted without or with prior in vitro culture, such tubular scaffolds must provide a suitable environment for cell adhesion and growth and be of sufficient porosity to permit cell colonization. This study investigates the fabrication of slowly degradable, composite tubular polymer scaffolds made from polycaprolactone (PCL) and acrylated l-lactide-co-trimethylene carbonate (aPLA-co-TMC). The addition of acrylate groups permits the 'in-process' formation of crosslinks between aPLA-co-TMC chains during electrospinning of the composite system, exemplifying a novel process to produce multicomponent, elastomeric electrospun polymer scaffolds. Although PCL and aPLA-co-TMC were miscible in a co-solvent, a criteria for electrospinning, due to thermodynamic incompatibility of the two polymers as melts, solvent evaporation during electrospinning drove phase separation of these two systems, producing 'core-shell' fibres, with the core being composed of PCL, and the shell of crosslinked elastomeric aPLA-co-TMC. The resulting elastic fibrous scaffolds displayed burst pressures and suture retention strengths comparable with human arteries. Cytocompatibility testing with human mesenchymal stem cells confirmed adhesion to, and proliferation on the three-dimensional fibrous network, as well as alignment with highly-organized fibres. This new processing methodology and resulting mechanically-robust composite scaffolds hold significant promise for tubular tissue engineering applications. Autologous small diameter blood vessel grafts are unsuitable solutions for vessel repair. Engineered solutions such as tubular biomaterial scaffolds however have substantial performance criteria to meet, including vessel-like tubular shape, structure and mechanical property slate. We detail herein an innovative methodology to co-electrospin and 'in-process' crosslink composite mixtures of Poly(caprolactone) and a newly synthesised acrylated-Poly(lactide-co-trimethylene-carbonate) to create elastomeric, core-shell nanofibrous porous scaffolds in a one-step process. This novel composite system can be used to make aligned scaffolds that encourage stem cell adhesion, growth and morphological control, and produce robust tubular scaffolds of tunable internal diameter and wall thickness that possess mechanical properties approaching those of native vessels, ideal for future applications in the field of vessel tissue engineering. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Telinius, Niklas; Drewsen, Nanna; Pilegaard, Hans; Kold-Petersen, Henrik; de Leval, Marc; Aalkjaer, Christian; Hjortdal, Vibeke; Boedtkjer, Donna Briggs
2010-09-01
The current study characterizes the mechanical properties of the human thoracic duct and demonstrates a role for adrenoceptors, thromboxane, and endothelin receptors in human lymph vessel function. With ethical permission and informed consent, portions of the thoracic duct (2-5 cm) were resected and retrieved at T(7)-T(9) during esophageal and cardia cancer surgery. Ring segments (2 mm long) were mounted in a myograph for isometric tension (N/m) measurement. The diameter-tension relationship was established using ducts from 10 individuals. Peak active tension of 6.24 +/- 0.75 N/m was observed with a corresponding passive tension of 3.11 +/- 0.67 N/m and average internal diameter of 2.21 mm. The equivalent active and passive transmural pressures by LaPlace's law were 47.3 +/- 4.7 and 20.6 +/- 3.2 mmHg, respectively. Subsequently, pharmacology was performed on rings from 15 ducts that were normalized by stretching them until an equivalent pressure of 21 mmHg was calculable from the wall tension. At low concentrations, norepinephrine, endothelin-1, and the thromboxane-A(2) analog U-46619 evoked phasic contractions (analogous to lymphatic pumping), whereas at higher contractions they induced tonic activity (maximum tension values of 4.46 +/- 0.63, 5.90 +/- 1.4, and 6.78 +/- 1.4 N/m, respectively). Spontaneous activity was observed in 44% of ducts while 51% of all the segments produced phasic contractions after agonist application. Acetylcholine and bradykinin relaxed norepinephrine preconstrictions by approximately 20% and approximately 40%, respectively. These results demonstrate that the human thoracic duct can develop wall tensions that permit contractility to be maintained across a wide range of transmural pressures and that isolated ducts contract in response to important vasoactive agents.
Method for accurate sizing of pulmonary vessels from 3D medical images
NASA Astrophysics Data System (ADS)
O'Dell, Walter G.
2015-03-01
Detailed characterization of vascular anatomy, in particular the quantification of changes in the distribution of vessel sizes and of vascular pruning, is essential for the diagnosis and management of a variety of pulmonary vascular diseases and for the care of cancer survivors who have received radiation to the thorax. Clinical estimates of vessel radii are typically based on setting a pixel intensity threshold and counting how many "On" pixels are present across the vessel cross-section. A more objective approach introduced recently involves fitting the image with a library of spherical Gaussian filters and utilizing the size of the best matching filter as the estimate of vessel diameter. However, both these approaches have significant accuracy limitations including mis-match between a Gaussian intensity distribution and that of real vessels. Here we introduce and demonstrate a novel approach for accurate vessel sizing using 3D appearance models of a tubular structure along a curvilinear trajectory in 3D space. The vessel branch trajectories are represented with cubic Hermite splines and the tubular branch surfaces represented as a finite element surface mesh. An iterative parameter adjustment scheme is employed to optimally match the appearance models to a patient's chest X-ray computed tomography (CT) scan to generate estimates for branch radii and trajectories with subpixel resolution. The method is demonstrated on pulmonary vasculature in an adult human CT scan, and on 2D simulated test cases.
A simplified, low power system for effective vessel sealing
NASA Astrophysics Data System (ADS)
Lyle, Allison B.; Kennedy, Jenifer S.; Schmaltz, Dale F.; Kennedy, Aaron S.
2015-03-01
The first bipolar vessel sealing system was developed nearly 15 years ago and has since become standard of care in surgery. These systems make use of radio frequency current that is delivered between bipolar graspers to permanently seal arteries, veins and tissue bundles. Conventional vessel sealing generators are based off traditional electrosurgery generator architecture and deliver high power (150-300 Watts) and high current using complex control and sense algorithms to adjust the output for vessel sealing applications. In recent years, a need for small-scale surgical vessel sealers has developed as surgeons strive to further reduce their footprint on patients. There are many technical challenges associated with miniaturization of vessel sealing devices including maintaining electrical isolation while delivering high current in a saline environment. Research into creating a small, 3mm diameter vessel sealer revealed that a highly simplified generator system could be used to achieve excellent results and subsequently a low power vessel sealing system was developed. This system delivers 25 Watts constant power while limiting voltage (<= Vrms) and current (<= Amps) until an impedance endpoint is achieved, eliminating the use of complicated control and sensing software. The result is optimized tissue effect, where high seal strength is maintained (> 360mmHg), but seal times (1.7 +/- 0.7s versus 4.1 +/- 0.7s), thermal spread (<1mm vs <=2mm) and total energy delivery are reduced, when compared to an existing high power system.
Mates, Martin; Hrabos, Vladimir; Hajek, Petr; Rataj, Ondrej; Vojacek, Jan
2005-05-01
To assess long-term results after deferring coronary intervention (percutaneous coronary intervention (PCI)) of an intermediate lesion with a value of myocardial fractional flow reserve (FFR) > or = 0.75 in a 'real life' patient population with no respect to results of stress tests (if performed) or coronary disease extent. PCI of an intermediate lesion was deferred in a group of 85 consecutive patients (54 men, 61+/-10 years) on the basis of the result of FFR > or = 0.75 (mean FFR, 0.89+/-0.06%). FFR was measured in 111 stenoses (mean diameter stenosis, 54+/-8%, left anterior descending coronary artery, 65 (58%), left circumflex coronary artery, 24 (22%), right coronary artery, 22 (20%). Multi-vessel disease (defined as visually assessed diameter reduction of more than 50% in at least two arteries of more than 1.5 mm diameter, supplying at least two of the three major coronary artery perfusion territories) was present in 67% of patients (one-vessel disease, 28 patients (33%), two-vessel disease, 39 patients (46%), three-vessel disease, 18 patients (21%). Recorded events during follow-up were as follows: all-cause death, cardiac death, non-fatal myocardial infarction, ischemia-driven target lesion transcatheter revascularization (TLR) and coronary artery bypass graft (CABG). Angina class (Canadian Cardiovascular Society (CCS) classification) and the need for anti-anginal drugs were recorded. Follow-up was completed in 85 patients (100%). Mean duration of follow-up was 22.6+/-6.6 months (range 4-33 months). Events occurred in 11 patients (13%). Seven patients died; this included two cardiac deaths. A non-fatal myocardial infarction occurred in one patient, one patient needed TLR and three patients underwent CABG. Estimated 33 month cardiac-event-free survival (Kaplan-Meier) was 91+/-4%. Angina class decreased [1.6+/-1.2 compared with 0.8+/-0.8 (P < 0.0001)] without difference with respect to the use of anti-anginal drugs (1.7+/-0.8 compared with 1.7+/-0.9, P = NS). Deferring coronary interventions of intermediate stenosis based on FFR measurement is safe with respect to long-term follow-up, irrespective of the extent of coronary artery disease.
Modular Small Diameter Vascular Grafts with Bioactive Functionalities
Neufurth, Meik; Wang, Xiaohong; Tolba, Emad; Dorweiler, Bernhard; Schröder, Heinz C.; Link, Thorben; Diehl-Seifert, Bärbel; Müller, Werner E. G.
2015-01-01
We report the fabrication of a novel type of artificial small diameter blood vessels, termed biomimetic tissue-engineered blood vessels (bTEBV), with a modular composition. They are composed of a hydrogel scaffold consisting of two negatively charged natural polymers, alginate and a modified chitosan, N,O-carboxymethyl chitosan (N,O-CMC). Into this biologically inert scaffold two biofunctionally active biopolymers are embedded, inorganic polyphosphate (polyP) and silica, as well as gelatin which exposes the cell recognition signal, Arg-Gly-Asp (RGD). These materials can be hardened by exposure to Ca2+ through formation of Ca2+ bridges between the polyanions, alginate, N,O-CMC, and polyP (alginate-Ca2+-N,O-CMC-polyP). The bTEBV are formed by pressing the hydrogel through an extruder into a hardening solution, containing Ca2+. In this universal scaffold of the bTEBV biomaterial, polycations such as poly(l-Lys), poly(d-Lys) or a His/Gly-tagged RGD peptide (three RGD units) were incorporated, which promote the adhesion of endothelial cells to the vessel surface. The mechanical properties of the biopolymer material (alginate-Ca2+-N,O-CMC-polyP-silica) revealed a hardness (elastic modulus) of 475 kPa even after a short incubation period in CaCl2 solution. The material of the artificial vascular grafts (bTEBVs with an outer size 6 mm and 1.8 mm, and an inner diameter 4 mm and 0.8 mm, respectively) turned out to be durable in 4-week pulsatile flow experiments at an alternating pressure between 25 and 100 mbar (18.7 and 75.0 mm Hg). The burst pressure of the larger (smaller) vessels was 850 mbar (145 mbar). Incorporation of polycationic poly(l-Lys), poly(d-Lys), and especially the His/Gly-tagged RGD peptide, markedly increased the adhesion of human, umbilical vein/vascular endothelial cells, EA.HY926 cells, to the surface of the hydrogel. No significant effect of the polyP samples on the clotting of human plasma is measured. We propose that the metabolically degradable polymeric scaffold bTEBV is a promising biomaterial for future prosthetic vascular grafts. PMID:26204529
New algorithm for detecting smaller retinal blood vessels in fundus images
NASA Astrophysics Data System (ADS)
LeAnder, Robert; Bidari, Praveen I.; Mohammed, Tauseef A.; Das, Moumita; Umbaugh, Scott E.
2010-03-01
About 4.1 million Americans suffer from diabetic retinopathy. To help automatically diagnose various stages of the disease, a new blood-vessel-segmentation algorithm based on spatial high-pass filtering was developed to automatically segment blood vessels, including the smaller ones, with low noise. Methods: Image database: Forty, 584 x 565-pixel images were collected from the DRIVE image database. Preprocessing: Green-band extraction was used to obtain better contrast, which facilitated better visualization of retinal blood vessels. A spatial highpass filter of mask-size 11 was applied. A histogram stretch was performed to enhance contrast. A median filter was applied to mitigate noise. At this point, the gray-scale image was converted to a binary image using a binary thresholding operation. Then, a NOT operation was performed by gray-level value inversion between 0 and 255. Postprocessing: The resulting image was AND-ed with its corresponding ring mask to remove the outer-ring (lens-edge) artifact. At this point, the above algorithm steps had extracted most of the major and minor vessels, with some intersections and bifurcations missing. Vessel segments were reintegrated using the Hough transform. Results: After applying the Hough transform, both the average peak SNR and the RMS error improved by 10%. Pratt's Figure of Merit (PFM) was decreased by 6%. Those averages were better than [1] by 10-30%. Conclusions: The new algorithm successfully preserved the details of smaller blood vessels and should prove successful as a segmentation step for automatically identifying diseases that affect retinal blood vessels.
Sultanov, Renat A; Guster, Dennis
2009-01-01
We report computational results of blood flow through a model of the human aortic arch and a vessel of actual diameter and length. A realistic pulsatile flow is used in all simulations. Calculations for bifurcation type vessels are also carried out and presented. Different mathematical methods for numerical solution of the fluid dynamics equations have been considered. The non-Newtonian behaviour of the human blood is investigated together with turbulence effects. A detailed time-dependent mathematical convergence test has been carried out. The results of computer simulations of the blood flow in vessels of three different geometries are presented: for pressure, strain rate and velocity component distributions we found significant disagreements between our results obtained with realistic non-Newtonian treatment of human blood and the widely used method in the literature: a simple Newtonian approximation. A significant increase of the strain rate and, as a result, the wall shear stress distribution, is found in the region of the aortic arch. Turbulent effects are found to be important, particularly in the case of bifurcation vessels.
Power consumption for an agitated vessel equipped with pitched blade turbine and short baffles.
Major-Godlewska, Marta; Karcz, Joanna
2018-01-01
Power characteristics for an agitated vessel equipped with planar short baffles of length L and pitched blade turbine of pitch β are presented in the paper. The studies were carried out in the vessel of inner diameter D = 0.6 m, where the baffles were located in the distance p from the vessel bottom ( p + L = H ). Torque was measured using strain gauge method within the turbulent regime of the flow of Newtonian liquid in the agitated vessel. The effects of the pitch β and geometrical parameter p / H on the power number Ne were determined mathematically. The results showed that, for the assumed value of the angle β , the function Ne = f ( L / H ) decreases with the decrease in the baffle length L (i.e. with the increase in the parameter p ). Moreover, for the assumed value of the baffle length L , the function Ne = f ( β ) increases with the increase in the angle β of the inclination of the impeller blade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, T.Y.; Bentz, J.H.; Bergeron, K.D.
1994-04-01
The possibility of achieving in-vessel core retention by flooding the reactor cavity, or the ``flooded cavity``, is an accident management concept currently under consideration for advanced light water reactors (ALWR), as well as for existing light water reactors (LWR). The CYBL (CYlindrical BoiLing) facility is a facility specifically designed to perform large-scale confirmatory testing of the flooded cavity concept. CYBL has a tank-within-a-tank design; the inner 3.7 m diameter tank simulates the reactor vessel, and the outer tank simulates the reactor cavity. The energy deposition on the bottom head is simulated with an array of radiant heaters. The array canmore » deliver a tailored heat flux distribution corresponding to that resulting from core melt convection. The present paper provides a detailed description of the capabilities of the facility, as well as results of recent experiments with heat flux in the range of interest to those required for in-vessel retention in typical ALWRs. The paper concludes with a discussion of other experiments for the flooded cavity applications.« less
Hollow fiber clinostat for simulating microgravity in cell culture
NASA Technical Reports Server (NTRS)
Rhodes, Percy H. (Inventor); Miller, Teresa Y. (Inventor); Snyder, Robert S. (Inventor)
1992-01-01
A clinostat for simulating microgravity on cell systems carried in a fiber fixedly mounted in a rotatable culture vessel is disclosed. The clinostat is rotated horizontally along its longitudinal axis to simulate microgravity or vertically as a control response. Cells are injected into the fiber and the ends of the fiber are sealed and secured to spaced end pieces of a fiber holder assembly which consists of the end pieces, a hollow fiber, a culture vessel, and a tension spring with three alignment pins. The tension spring is positioned around the culture vessel with its ends abutting the end pieces for alignment of the spring. After the fiber is secured, the spring is decompressed to maintain tension on the fiber while it is being rotated. This assures that the fiber remains aligned along the axis of rotation. The fiber assembly is placed in the culture vessel and culture medium is added. The culture vessel is then inserted into the rotatable portion of the clinostat and subjected to rotate at selected rpms. The internal diameter of the hollow fiber determines the distance the cells are from the axis of rotation.
Photoacoustic imaging for transvascular drug delivery to the rat brain
NASA Astrophysics Data System (ADS)
Watanabe, Ryota; Sato, Shunichi; Tsunoi, Yasuyuki; Kawauchi, Satoko; Takemura, Toshiya; Terakawa, Mitsuhiro
2015-03-01
Transvascular drug delivery to the brain is difficult due to the blood-brain barrier (BBB). Thus, various methods for safely opening the BBB have been investigated, for which real-time imaging methods are desired both for the blood vessels and distribution of a drug. Photoacoustic (PA) imaging, which enables depth-resolved visualization of chromophores in tissue, would be useful for this purpose. In this study, we performed in vivo PA imaging of the blood vessels and distribution of a drug in the rat brain by using an originally developed compact PA imaging system with fiber-based illumination. As a test drug, Evans blue (EB) was injected to the tail vein, and a photomechanical wave was applied to the targeted brain tissue to increase the permeability of the blood vessel walls. For PA imaging of blood vessels and EB distribution, nanosecond pulses at 532 nm and 670 nm were used, respectively. We clearly visualized blood vessels with diameters larger than 50 μm and the distribution of EB in the brain, showing spatiotemporal characteristics of EB that was transvascularly delivered to the target tissue in the brain.
Acoustic emission testing of composite vessels under sustained loading
NASA Technical Reports Server (NTRS)
Lark, R. F.; Moorhead, P. E.
1978-01-01
Acoustic emissions (AE) generated from Kevlar 49/epoxy composite pressure vessels subjected to sustained load-to-failure tests were studied. Data from two different transducer locations on the vessels were compared. It was found that AE from vessel wall-mounted transducers showed a wide variance from those for identical vessels subjected to the same pressure loading. Emissions from boss-mounted transducers did, however, yield values that were relatively consistent. It appears that the signals from the boss-mounted transducers represent an integrated average of the emissions generated by fibers fracturing during the vessel tests. The AE from boss-mounted transducers were also independent of time for vessel failure. This suggests that a similar number of fiber fractures must occur prior to initiation of vessel failure. These studies indicate a potential for developing an AE test procedure for predicting the residual service life or integrity of composite vessels.
Mathematical modelling of the human cardiovascular system in the presence of stenosis
NASA Technical Reports Server (NTRS)
Sud, V. K.; Srinivasan, R. S.; Charles, J. B.; Bungo, M. W.
1993-01-01
This paper reports a theoretical study on the distribution of blood flow in the human cardiovascular system when one or more blood vessels are affected by stenosis. The analysis employs a mathematical model of the entire system based on the finite element method. The arterial-venous network is represented by a large number of interconnected segments in the model. Values for the model parameters are based upon the published data on the physiological and rheological properties of blood. Computational results show how blood flow through various parts of the cardiovascular system is affected by stenosis in different blood vessels. No significant changes in the flow parameters of the cardiovascular system were found to occur when the reduction in the lumen diameter of the stenosed vessels was less than 65%.
Roybal, C Nathaniel; Tsui, Irena; Sanfilippo, Christian; Hubschman, Jean-Pierre
2013-01-01
External drainage of subretinal fluid as part of a scleral buckling procedure rapidly restores the retinal pigment epithelium-neural retina interface in rhegmatogenous retinal detachments but carries the inherent risk of subretinal hemorrhage and retinal incarceration. The authors investigated variations to the technique to reduce the chance of subretinal hemorrhage originating from the choroid. A novel method for needle drainage using electrocautery of the sclerochoroidal layers before puncture was employed. The effect of 0% to 50% scleral electrocautery in a porcine model was investigated. A significant decrease in choroidal vessel diameter and choroidal vessel density at 40% electrocautery was demonstrated. Electrocautery without scleral cut-down before external drainage of subretinal fluid likely decreases the chance of subretinal hemorrhage by decreasing choroidal vascularity. Copyright 2013, SLACK Incorporated.
49 CFR 178.360-3 - Dimensions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Dimensions. 178.360-3 Section 178.360-3 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Packagings for Class 7 (Radioactive) Materials § 178.360-3 Dimensions. (a) The inside diameter of the vessel...
49 CFR 178.360-3 - Dimensions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Dimensions. 178.360-3 Section 178.360-3 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Packagings for Class 7 (Radioactive) Materials § 178.360-3 Dimensions. (a) The inside diameter of the vessel...
49 CFR 178.360-3 - Dimensions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Dimensions. 178.360-3 Section 178.360-3 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Packagings for Class 7 (Radioactive) Materials § 178.360-3 Dimensions. (a) The inside diameter of the vessel...
NASA Technical Reports Server (NTRS)
Verhage, Joseph M.; Bower, Mark V.; Gilbert, Paul A. (Technical Monitor)
2001-01-01
The focus of this study is on the suitability in the application of classical laminate theory analysis tools for filament wound pressure vessels with adhesive laminated joints in particular: pressure vessel wall performance, joint stiffness and failure prediction. Two 18-inch diameter 12-ply filament wound pressure vessels were fabricated. One vessel was fabricated with a 24-ply pyramid laminated adhesive double strap butt joint. The second vessel was fabricated with the same number of plies in an inverted pyramid joint. Results from hydrostatic tests are presented. Experimental results were used as input to the computer programs GENLAM and Laminate, and the output compared to test. By using the axial stress resultant, the classical laminate theory results show a correlation within 1% to the experimental results in predicting the pressure vessel wall pressure performance. The prediction of joint stiffness for the two adhesive joints in the axial direction is within 1% of the experimental results. The calculated hoop direction joint stress resultant is 25% less than the measured resultant for both joint configurations. A correction factor is derived and used in the joint analysis. The correction factor is derived from the hoop stress resultant from the tank wall performance investigation. The vessel with the pyramid joint is determined to have failed in the joint area at a hydrostatic pressure 33% value below predicted failure. The vessel with the inverted pyramid joint failed in the wall acreage at a hydrostatic pressure within 10% of the actual failure pressure.
Root resistance to cavitation is accurately measured using a centrifuge technique.
Pratt, R B; MacKinnon, E D; Venturas, M D; Crous, C J; Jacobsen, A L
2015-02-01
Plants transport water under negative pressure and this makes their xylem vulnerable to cavitation. Among plant organs, root xylem is often highly vulnerable to cavitation due to water stress. The use of centrifuge methods to study organs, such as roots, that have long vessels are hypothesized to produce erroneous estimates of cavitation resistance due to the presence of open vessels through measured samples. The assumption that roots have long vessels may be premature since data for root vessel length are sparse; moreover, recent studies have not supported the existence of a long-vessel artifact for stems when a standard centrifuge technique was used. We examined resistance to cavitation estimated using a standard centrifuge technique and compared these values with native embolism measurements for roots of seven woody species grown in a common garden. For one species we also measured vulnerability using single-vessel air injection. We found excellent agreement between root native embolism and the levels of embolism measured using a centrifuge technique, and with air-seeding estimates from single-vessel injection. Estimates of cavitation resistance measured from centrifuge curves were biologically meaningful and were correlated with field minimum water potentials, vessel diameter (VD), maximum xylem-specific conductivity (Ksmax) and vessel length. Roots did not have unusually long vessels compared with stems; moreover, root vessel length was not correlated to VD or to the vessel length of stems. These results suggest that root cavitation resistance can be accurately and efficiently measured using a standard centrifuge method and that roots are highly vulnerable to cavitation. The role of root cavitation resistance in determining drought tolerance of woody species deserves further study, particularly in the context of climate change. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kono, Kenichi; Terada, Tomoaki
2016-02-01
A closed-cell stent called Enterprise has been used for stent-assisted coil embolization of cerebral aneurysms. The Enterprise stent tends to cause kinks and vessel wall malposition in curved vessels and may cause thromboembolic complications. We evaluated vessel wall apposition of a new closed-cell stent, Enterprise 2, compared with a previous Enterprise stent, using curved vascular silicone models. The Enterprise or Enterprise 2 stent was deployed in curved vascular models with various radii of approximately 5 to 10 mm. Stent deployment was performed 25 times in each stent. A push-pull technique was used to minimize incomplete wall apposition. To evaluate conformity of stents, gaps between a stent and a vessel wall were measured. The gap ratio (gap / a wall diameter) was 15 % ± 17 % (mean ± standard deviation) and 41 % ± 15 % with the Enterprise 2 stent and the Enterprise stent, respectively. Taking gap ratios and radii of vessel curvature into consideration, the Enterprise 2 stent had significantly better wall apposition than the Enterprise stent (p = 0.005). In the same radius of vessel curvature, the Enterprise 2 stent had approximately half of the gap compared with the Enterprise stent. There were no significant differences in vessel straightening effects between the two stents. The Enterprise 2 stent has better wall apposition in curved vessels than the Enterprise stent. The gap between a vessel wall and the Enterprise 2 stent is approximately half that of the Enterprise stent. However, gaps and kinks are still present in curved vessels with a small radius. Caution should be taken for kinks and malposition in acutely curved vessels, such as the siphon of the internal carotid artery.
Segmentation of Retinal Blood Vessels Based on Cake Filter
Bao, Xi-Rong; Ge, Xin; She, Li-Huang; Zhang, Shi
2015-01-01
Segmentation of retinal blood vessels is significant to diagnosis and evaluation of ocular diseases like glaucoma and systemic diseases such as diabetes and hypertension. The retinal blood vessel segmentation for small and low contrast vessels is still a challenging problem. To solve this problem, a new method based on cake filter is proposed. Firstly, a quadrature filter band called cake filter band is made up in Fourier field. Then the real component fusion is used to separate the blood vessel from the background. Finally, the blood vessel network is got by a self-adaption threshold. The experiments implemented on the STARE database indicate that the new method has a better performance than the traditional ones on the small vessels extraction, average accuracy rate, and true and false positive rate. PMID:26636095
A new formation control of multiple underactuated surface vessels
NASA Astrophysics Data System (ADS)
Xie, Wenjing; Ma, Baoli; Fernando, Tyrone; Iu, Herbert Ho-Ching
2018-05-01
This work investigates a new formation control problem of multiple underactuated surface vessels. The controller design is based on input-output linearisation technique, graph theory, consensus idea and some nonlinear tools. The proposed smooth time-varying distributed control law guarantees that the multiple underactuated surface vessels globally exponentially converge to some desired geometric shape, which is especially centred at the initial average position of vessels. Furthermore, the stability analysis of zero dynamics proves that the orientations of vessels tend to some constants that are dependent on the initial values of vessels, and the velocities and control inputs of the vessels decay to zero. All the results are obtained under the communication scenarios of static directed balanced graph with a spanning tree. Effectiveness of the proposed distributed control scheme is demonstrated using a simulation example.
NASA Technical Reports Server (NTRS)
Burbach, T.
1985-01-01
The heat transfer from hot water to a cold copper pipe in laminar and turbulent flow condition is determined. The mean flow through velocity in the pipe, relative test length and initial temperature in the vessel were varied extensively during tests. Measurements confirm Nusselt's theory for large test lengths in laminar range. A new equation is derived for heat transfer for large starting lengths which agrees satisfactorily with measurements for large starting lengths. Test results are compared with the new Prandtl equation for heat transfer and correlated well. Test material for 200- and to 400-diameter test length is represented at four different vessel temperatures.
Ding, Yongbo; Kan, Jianquan
2017-12-01
Chemically modified starch (RS4) nanoparticles were synthesized through homogenization and water-in-oil mini-emulsion cross-linking. Homogenization was optimized with regard to z-average diameter by using a three-factor-three-level Box-Behnken design. Homogenization pressure (X 1 ), oil/water ratio (X 2 ), and surfactant (X 3 ) were selected as independent variables, whereas z-average diameter was considered as a dependent variable. The following optimum preparation conditions were obtained to achieve the minimum average size of these nanoparticles: 50 MPa homogenization pressure, 10:1 oil/water ratio, and 2 g surfactant amount, when the predicted z-average diameter was 303.6 nm. The physicochemical properties of these nanoparticles were also determined. Dynamic light scattering experiments revealed that RS4 nanoparticles measuring a PdI of 0.380 and an average size of approximately 300 nm, which was very close to the predicted z-average diameter (303.6 nm). The absolute value of zeta potential of RS4 nanoparticles (39.7 mV) was higher than RS4 (32.4 mV), with strengthened swelling power. X-ray diffraction results revealed that homogenization induced a disruption in crystalline structure of RS4 nanoparticles led to amorphous or low-crystallinity. Results of stability analysis showed that RS4 nanosuspensions (particle size) had good stability at 30 °C over 24 h.
Yue, Xiao-Qiang; Gao, Jing-Dong; Zhai, Xiao-Feng; Liu, Qing; Jiang, Dong; Ling, Chang-Quan
2006-09-01
To explore the correlation between the width of lingual varix and changes of hemodynamics of portal system in patients with primary liver cancer so as to supply the data for the forecast of portal hypertension by observing lingual varix. The diameter of lingual vein (Dlv) was measured by vernier caliper as dependent variable, and the diameters and indexes of hemodynamics of portal vessels were measured by Doppler as independent variables, then a multipe stepwise analysis was performed. The diameters of portal vein (Dpv) and splenic vein (Dsv) entered the formula Dlv (mm) = 0.185 + 0.311 Dsv (mm) + 0.236 Dpv (mm) when the entry and removal values were alpha(in)=0.10 and alpha(out)=0.15, respectively. The width of lingual vein is closely correlated with the diameters of portal vein and splenic vein in patients with primary liver cancer.
Shiitake mushroom production on small diameter oak logs in Ohio
S.M. Bratkovich
1991-01-01
Yields of different strains of shiitake mushrooms (Lentinus edodes) were evaluated when produced on small diameter oak logs in Ohio. Logs averaging between 3-4 inches in diameter were inoculated with four spawn strains in 1985.
Kharche, Sanjay R.; So, Aaron; Salerno, Fabio; Lee, Ting-Yim; Ellis, Chris; Goldman, Daniel; McIntyre, Christopher W.
2018-01-01
Dialysis prolongs life but augments cardiovascular mortality. Imaging data suggests that dialysis increases myocardial blood flow (BF) heterogeneity, but its causes remain poorly understood. A biophysical model of human coronary vasculature was used to explain the imaging observations, and highlight causes of coronary BF heterogeneity. Post-dialysis CT images from patients under control, pharmacological stress (adenosine), therapy (cooled dialysate), and adenosine and cooled dialysate conditions were obtained. The data presented disparate phenotypes. To dissect vascular mechanisms, a 3D human vasculature model based on known experimental coronary morphometry and a space filling algorithm was implemented. Steady state simulations were performed to investigate the effects of altered aortic pressure and blood vessel diameters on myocardial BF heterogeneity. Imaging showed that stress and therapy potentially increased mean and total BF, while reducing heterogeneity. BF histograms of one patient showed multi-modality. Using the model, it was found that total coronary BF increased as coronary perfusion pressure was increased. BF heterogeneity was differentially affected by large or small vessel blocking. BF heterogeneity was found to be inversely related to small blood vessel diameters. Simulation of large artery stenosis indicates that BF became heterogeneous (increase relative dispersion) and gave multi-modal histograms. The total transmural BF as well as transmural BF heterogeneity reduced due to large artery stenosis, generating large patches of very low BF regions downstream. Blocking of arteries at various orders showed that blocking larger arteries results in multi-modal BF histograms and large patches of low BF, whereas smaller artery blocking results in augmented relative dispersion and fractal dimension. Transmural heterogeneity was also affected. Finally, the effects of augmented aortic pressure in the presence of blood vessel blocking shows differential effects on BF heterogeneity as well as transmural BF. Improved aortic blood pressure may improve total BF. Stress and therapy may be effective if they dilate small vessels. A potential cause for the observed complex BF distributions (multi-modal BF histograms) may indicate existing large vessel stenosis. The intuitive BF heterogeneity methods used can be readily used in clinical studies. Further development of the model and methods will permit personalized assessment of patient BF status. PMID:29867555
Kersemans, Veerle; Kannan, Pavitra; Beech, John S.; Bates, Russell; Irving, Benjamin; Gilchrist, Stuart; Allen, Philip D.; Thompson, James; Kinchesh, Paul; Casteleyn, Christophe; Schnabel, Julia; Partridge, Mike; Muschel, Ruth J.; Smart, Sean C.
2015-01-01
Introduction Preclinical in vivo CT is commonly used to visualise vessels at a macroscopic scale. However, it is prone to many artefacts which can degrade the quality of CT images significantly. Although some artefacts can be partially corrected for during image processing, they are best avoided during acquisition. Here, a novel imaging cradle and tumour holder was designed to maximise CT resolution. This approach was used to improve preclinical in vivo imaging of the tumour vasculature. Procedures A custom built cradle containing a tumour holder was developed and fix-mounted to the CT system gantry to avoid artefacts arising from scanner vibrations and out-of-field sample positioning. The tumour holder separated the tumour from bones along the axis of rotation of the CT scanner to avoid bone-streaking. It also kept the tumour stationary and insensitive to respiratory motion. System performance was evaluated in terms of tumour immobilisation and reduction of motion and bone artefacts. Pre- and post-contrast CT followed by sequential DCE-MRI of the tumour vasculature in xenograft transplanted mice was performed to confirm vessel patency and demonstrate the multimodal capacity of the new cradle. Vessel characteristics such as diameter, and branching were quantified. Results Image artefacts originating from bones and out-of-field sample positioning were avoided whilst those resulting from motions were reduced significantly, thereby maximising the resolution that can be achieved with CT imaging in vivo. Tumour vessels ≥ 77 μm could be resolved and blood flow to the tumour remained functional. The diameter of each tumour vessel was determined and plotted as histograms and vessel branching maps were created. Multimodal imaging using this cradle assembly was preserved and demonstrated. Conclusions The presented imaging workflow minimised image artefacts arising from scanner induced vibrations, respiratory motion and radiopaque structures and enabled in vivo CT imaging and quantitative analysis of the tumour vasculature at higher resolution than was possible before. Moreover, it can be applied in a multimodal setting, therefore combining anatomical and dynamic information. PMID:26046526
[Mobilization of the stomach and colon using high-frequency electric welding of tissues apparatus].
Sukhin, I A; Ostapenko, O M; Kachan, S H; Bilylovets', O M; Honchar, I V
2012-08-01
The experience of the native high-frequency electrical generator 300M EC-1 "Patonmed" for mobilization of advanced vascular network, particularly stomach and colon are presented. The variants of modes depending on the diameter of blood vessels and accompanied diseases are suggested.
46 CFR 173.095 - Towline pull criterion.
Code of Federal Regulations, 2010 CFR
2010-10-01
... diameter in feet (meters). s=that fraction of the propeller circle cylinder which would be intercepted by... shaft centerline at rudder to towing bitts in feet (meters). Δ=displacement in long tons (metric tons). f=minimum freeboard along the length of the vessel in feet (meters). B=molded beam in feet (meters...
High-definition computed tomography for coronary artery stent imaging: a phantom study.
Yang, Wen Jie; Chen, Ke Min; Pang, Li Fang; Guo, Ying; Li, Jian Ying; Zhang, Huang; Pan, Zi Lai
2012-01-01
To assess the performance of a high-definition CT (HDCT) for imaging small caliber coronary stents (≤ 3 mm) by comparing different scan modes of a conventional 64-row standard-definition CT (SDCT). A cardiac phantom with twelve stents (2.5 mm and 3.0 mm in diameter) was scanned by HDCT and SDCT. The scan modes were retrospective electrocardiography (ECG)-gated helical and prospective ECG-triggered axial with tube voltages of 120 kVp and 100 kVp, respectively. The inner stent diameters (ISD) and the in-stent attenuation value (AV(in-stent)) and the in-vessel extra-stent attenuation value (AV(in-vessel)) were measured by two observers. The artificial lumen narrowing (ALN = [ISD - ISD(measured)]/ISD) and artificial attenuation increase between in-stent and in-vessel (AAI = AV(in-stent) - AV(in-vessel)) were calculated. All data was analyzed by intraclass correlation and ANOVA-test. The correlation coefficient of ISD, AV(in-vessel) and AV(in-stent) between the two observers was good. The ALNs of HDCT were statistically lower than that of SDCT (30 ± 5.7% versus 35 ± 5.4%, p < 0.05). HDCT had statistically lower AAI values than SDCT (15.7 ± 81.4 HU versus 71.4 ± 90.5 HU, p < 0.05). The prospective axial dataset demonstrated smaller ALN than the retrospective helical dataset on both HDCT and SDCT (p < 0.05). Additionally, there were no differences in ALN between the 120 kVp and 100 kVp tube voltages on HDCT (p = 0.05). High-definition CT helps improve measurement accuracy for imaging coronary stents compared to SDCT. HDCT with 100 kVp and the prospective ECG-triggered axial technique, with a lower radiation dose than 120 kVp application, may be advantageous in evaluating coronary stents with smaller calibers (≤ 3 mm).
Pfautsch, Sebastian; Aspinwall, Michael J; Drake, John E; Chacon-Doria, Larissa; Langelaan, Rob J A; Tissue, David T; Tjoelker, Mark G; Lens, Frederic
2018-01-25
Sapwood traits like vessel diameter and intervessel pit characteristics play key roles in maintaining hydraulic integrity of trees. Surprisingly little is known about how sapwood traits covary with tree height and how such trait-based variation could affect the efficiency of water transport in tall trees. This study presents a detailed analysis of structural and functional traits along the vertical axes of tall Eucalyptus grandis trees. To assess a wide range of anatomical and physiological traits, light and electron microscopy was used, as well as field measurements of tree architecture, water use, stem water potential and leaf area distribution. Strong apical dominance of water transport resulted in increased volumetric water supply per unit leaf area with tree height. This was realized by continued narrowing (from 250 to 20 µm) and an exponential increase in frequency (from 600 to 13 000 cm-2) of vessels towards the apex. The widest vessels were detected at least 4 m above the stem base, where they were associated with the thickest intervessel pit membranes. In addition, this study established the lower limit of pit membrane thickness in tall E. grandis at ~375 nm. This minimum thickness was maintained over a large distance in the upper stem, where vessel diameters continued to narrow. The analyses of xylem ultrastructure revealed complex, synchronized trait covariation and trade-offs with increasing height in E. grandis. Anatomical traits related to xylem vessels and those related to architecture of pit membranes were found to increase efficiency and apical dominance of water transport. This study underlines the importance of studying tree hydraulic functioning at organismal scale. Results presented here will improve understanding height-dependent structure-function patterns in tall trees. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Summary of Activities for Health Monitoring of Composite Overwrapped Pressure Vessels
NASA Technical Reports Server (NTRS)
Russell, Rick
2012-01-01
This new start project (FY12-14) will design and demonstrate the ability of nondestructive evaluation sensors for the measurement of stresses on the inner diameter of a Composite Overwrapped Pressure Vessel overwrap. Results will be correlated with other nondestructive evaluation technologies such as Acoustic Emission. The project will build upon a proof of concept study performed at KSC which demonstrated the ability of Magnetic Stress Gages to measure stresses at internal overwraps and upon current acoustic emission research being performed at WSTF; The gages will be produced utilizing Maundering Winding Magnetometer and/or Maundering Winding Magnetometer-array eddy current technology. The proof-of-concept study demonstrated a correlation between the sensor response and pressure or strain. The study also demonstrated the ability of Maundering Winding Magnetometer technology to monitor the stresses in a Composite Overwrapped Pressure Vessel at different orientations and depths. The ultimate goal is to utilize this technology for the health monitoring of Composite Overwrapped Pressure Vessels for all future flight programs.
Fay, K.; Dunn, B.E.; Gruenloh, S.K.; Narayanan, J.; Jacobs, E.R.; Medhora, M.
2013-01-01
1. The chick chorioallantoic membrane (CAM) subserves gas exchange in the developing embryo and shell-less culture affords a unique opportunity for direct observations over time of individual blood vessels to pharmacologic interventions. We tested a number of lipids including prostaglandins PGE1&2 for vascular effects and signaling in the CAM. Application of PGE1&2 induced a decrease in the diameter of large blood vessels and a concentration-dependent, localized, reversible loss of blood flow through small vessels. The loss of flow was also mimicked by misoprostol, an agonist for 3 of 4 known PGE receptors, EP2-4, and by U46619, a thromboxane mimetic. Selective receptor antagonists for EP3 and thromboxane each partially blocked the response. This is a first report of the effects of prostaglandins on vasoreactivity in the CAM. Our model allows the unique ability to examine simultaneous responses of large and small vessels in real time and in vivo. PMID:22858445
Architectural Analyses and Developments of 1 mm Diameter Micro Forceps for Catheter Surgery
NASA Astrophysics Data System (ADS)
Nokata, Makoto; Hashimoto, Yusuke; Obayashi, Takumi
Blockage in a blood vessel due to cardiovascular disease such as arteriosclerosis or aneurysms requires minimally invasive placement of a mesh tube or platinum coil stent via a catheter to open the affected area. Stents are positioned using a guide wire via a catheter, but the stent may be dropped on the way to its destination and requires much time in surgery, increasing the burden on the patient. Medical apparatuses are thus desired having a mechanism to grasp artifacts securely in blood vessels. We designed prototype microforceps for use on the end of a catheter for grasping operation in blood vessels and to contribute to medical apparatuses in this field. The microforceps we designed using a minimum number of parts uses metal injection molding (MIM) to realize strong mass production. Microforceps installed in the tip of a catheter. Stress analysis verified its capability to grasp, bend and turn within the confines of a blood vessels model.
A boosted optimal linear learner for retinal vessel segmentation
NASA Astrophysics Data System (ADS)
Poletti, E.; Grisan, E.
2014-03-01
Ocular fundus images provide important information about retinal degeneration, which may be related to acute pathologies or to early signs of systemic diseases. An automatic and quantitative assessment of vessel morphological features, such as diameters and tortuosity, can improve clinical diagnosis and evaluation of retinopathy. At variance with available methods, we propose a data-driven approach, in which the system learns a set of optimal discriminative convolution kernels (linear learner). The set is progressively built based on an ADA-boost sample weighting scheme, providing seamless integration between linear learner estimation and classification. In order to capture the vessel appearance changes at different scales, the kernels are estimated on a pyramidal decomposition of the training samples. The set is employed as a rotating bank of matched filters, whose response is used by the boosted linear classifier to provide a classification of each image pixel into the two classes of interest (vessel/background). We tested the approach fundus images available from the DRIVE dataset. We show that the segmentation performance yields an accuracy of 0.94.
Simulations of the Microcirculation in the Human Conjunctiva
NASA Astrophysics Data System (ADS)
Dow, William; Jacobitz, Frank; Chen, Peter
2012-11-01
The microcirculation in the conjunctiva of a healthy human subject is analyzed using a simulation approach. A comparison between healthy and diseased states may lead to early diagnosis for a variety of vascular related disorders. Previous work suggests that hypertension, arteriosclerosis, and diabetes mellitus have noticeable very early changes in the microvasculature (Davis and Landau, 1957; Ditzel, 1968; Kunitomo, 1974) and the vessels of the conjunctiva are specifically useful for this research because they can be studied non-invasively. The microcirculation in the conjunctiva has been documented over the course of disease treatments, providing both still images and video footage for information on vessel length, diameter, and connectivity as well as the direction of blood flow. The numerical method is based on a Hagen-Poiseuille balance in the microvessels and a sparse matrix solver is used to obtain the solution. The simulations use realistic vessel topology for the microvasculature, reconstructed from microscope images of tissue samples, and consider blood rheology as well as passive and active vessel properties.