Drosophila Learn Opposing Components of a Compound Food Stimulus
Das, Gaurav; Klappenbach, Martín; Vrontou, Eleftheria; Perisse, Emmanuel; Clark, Christopher M.; Burke, Christopher J.; Waddell, Scott
2014-01-01
Summary Dopaminergic neurons provide value signals in mammals and insects [1–3]. During Drosophila olfactory learning, distinct subsets of dopaminergic neurons appear to assign either positive or negative value to odor representations in mushroom body neurons [4–9]. However, it is not known how flies evaluate substances that have mixed valence. Here we show that flies form short-lived aversive olfactory memories when trained with odors and sugars that are contaminated with the common insect repellent DEET. This DEET-aversive learning required the MB-MP1 dopaminergic neurons that are also required for shock learning [7]. Moreover, differential conditioning with DEET versus shock suggests that formation of these distinct aversive olfactory memories relies on a common negatively reinforcing dopaminergic mechanism. Surprisingly, as time passed after training, the behavior of DEET-sugar-trained flies reversed from conditioned odor avoidance into odor approach. In addition, flies that were compromised for reward learning exhibited a more robust and longer-lived aversive-DEET memory. These data demonstrate that flies independently process the DEET and sugar components to form parallel aversive and appetitive olfactory memories, with distinct kinetics, that compete to guide learned behavior. PMID:25042590
Developmentally defined forebrain circuits regulate appetitive and aversive olfactory learning.
Muthusamy, Nagendran; Zhang, Xuying; Johnson, Caroline A; Yadav, Prem N; Ghashghaei, H Troy
2017-01-01
Postnatal and adult neurogenesis are region- and modality-specific, but the significance of developmentally distinct neuronal populations remains unclear. We demonstrate that chemogenetic inactivation of a subset of forebrain and olfactory neurons generated at birth disrupts responses to an aversive odor. In contrast, novel appetitive odor learning is sensitive to inactivation of adult-born neurons, revealing that developmentally defined sets of neurons may differentially participate in hedonic aspects of sensory learning.
Olfactory modulation by dopamine in the context of aversive learning
Riffell, Jeffrey A.; Martin, Joshua P.; Gage, Stephanie L.; Nighorn, Alan J.
2012-01-01
The need to detect and process sensory cues varies in different behavioral contexts. Plasticity in sensory coding can be achieved by the context-specific release of neuromodulators in restricted brain areas. The context of aversion triggers the release of dopamine in the insect brain, yet the effects of dopamine on sensory coding are unknown. In this study, we characterize the morphology of dopaminergic neurons that innervate each of the antennal lobes (ALs; the first synaptic neuropils of the olfactory system) of the moth Manduca sexta and demonstrate with electrophysiology that dopamine enhances odor-evoked responses of the majority of AL neurons while reducing the responses of a small minority. Because dopamine release in higher brain areas mediates aversive learning we developed a naturalistic, ecologically inspired aversive learning paradigm in which an innately appetitive host plant floral odor is paired with a mimic of the aversive nectar of herbivorized host plants. This pairing resulted in a decrease in feeding behavior that was blocked when dopamine receptor antagonists were injected directly into the ALs. These results suggest that a transient dopaminergic enhancement of sensory output from the AL contributes to the formation of aversive memories. We propose a model of olfactory modulation in which specific contexts trigger the release of different neuromodulators in the AL to increase olfactory output to downstream areas of processing. PMID:22552185
ERIC Educational Resources Information Center
Geddes, Lisa H.; McQuillan, H. James; Aiken, Alastair; Vergoz, Vanina; Mercer, Alison R.
2013-01-01
Here, we examine effects of the steroid hormone, 20-hydroxyecdysone (20-E), on associative olfactory learning in the honeybee, "Apis mellifera." 20-E impaired the bees' ability to associate odors with punishment during aversive conditioning, but did not interfere with their ability to associate odors with a food reward (appetitive…
Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila.
Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I; Angel, Cristian; Campusano, Jorge M
2015-01-01
The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila.
Tunicamycin impairs olfactory learning and synaptic plasticity in the olfactory bulb.
Tong, Jia; Okutani, Fumino; Murata, Yoshihiro; Taniguchi, Mutsuo; Namba, Toshiharu; Wang, Yu-Jie; Kaba, Hideto
2017-03-06
Tunicamycin (TM) induces endoplasmic reticulum (ER) stress and inhibits N-glycosylation in cells. ER stress is associated with neuronal death in neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease, and most patients complain of the impairment of olfactory recognition. Here we examined the effects of TM on aversive olfactory learning and the underlying synaptic plasticity in the main olfactory bulb (MOB). Behavioral experiments demonstrated that the intrabulbar infusion of TM disabled aversive olfactory learning without affecting short-term memory. Histological analyses revealed that TM infusion upregulated C/EBP homologous protein (CHOP), a marker of ER stress, in the mitral and granule cell layers of MOB. Electrophysiological data indicated that TM inhibited tetanus-induced long-term potentiation (LTP) at the dendrodendritic excitatory synapse from mitral to granule cells. A low dose of TM (250nM) abolished the late phase of LTP, and a high dose (1μM) inhibited the early and late phases of LTP. Further, high-dose, but not low-dose, TM reduced the paired-pulse facilitation ratio, suggesting that the inhibitory effects of TM on LTP are partially mediated through the presynaptic machinery. Thus, our results support the hypothesis that TM-induced ER stress impairs olfactory learning by inhibiting synaptic plasticity via presynaptic and postsynaptic mechanisms in MOB. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila
Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I.; Angel, Cristian; Campusano, Jorge M.
2015-01-01
The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila. PMID:26380118
ERIC Educational Resources Information Center
Kimbrough, Adam; Kwon, Bumsup; Eckel, Lisa A.; Houpt, Thomas A.
2011-01-01
5-bromo-2-deoxyuridine (BrdU) is often used in studies of adult neurogenesis and olfactory learning, but it can also have toxic effects on highly proliferative tissue. We found that pairing Kool-Aid flavors with acute systemic injections of BrdU induced strong conditioned flavor aversions. Intermittent injections during Kool-Aid-glucose…
Effect of Flumethrin on Survival and Olfactory Learning in Honeybees
Tan, Ken; Yang, Shuang; Wang, Zhengwei; Menzel, Randolf
2013-01-01
Flumethrin has been widely used as an acaricide for the control of Varroa mites in commercial honeybee keeping throughout the world for many years. Here we test the mortality of the Asian honeybee Apis cerana cerana after treatment with flumethrin. We also ask (1) how bees react to the odor of flumethrin, (2) whether its odor induces an innate avoidance response, (3) whether its taste transmits an aversive reinforcing component in olfactory learning, and (4) whether its odor or taste can be associated with reward in classical conditioning. Our results show that flumethrin has a negative effect on Apis ceranàs lifespan, induces an innate avoidance response, acts as a punishing reinforcer in olfactory learning, and interferes with the association of an appetitive conditioned stimulus. Furthermore flumethrin uptake within the colony reduces olfactory learning over an extended period of time. PMID:23785490
Aversive olfactory associative memory loses odor specificity over time
König, Christian; Antwi-Adjei, Emmanuel; Ganesan, Mathangi; Kilonzo, Kasyoka; Viswanathan, Vignesh; Durairaja, Archana; Voigt, Anne
2017-01-01
ABSTRACT Avoiding associatively learned predictors of danger is crucial for survival. Aversive memories can, however, become counter-adaptive when they are overly generalized to harmless cues and contexts. In a fruit fly odor–electric shock associative memory paradigm, we found that learned avoidance lost its specificity for the trained odor and became general to novel odors within a day of training. We discuss the possible neural circuit mechanisms of this effect and highlight the parallelism to over-generalization of learned fear behavior after an incubation period in rodents and humans, with due relevance for post-traumatic stress disorder. PMID:28468811
Aversive Olfactory Learning and Associative Long-Term Memory in "Caenorhabditis elegans"
ERIC Educational Resources Information Center
Amano, Hisayuki; Maruyama, Ichiro N.
2011-01-01
The nematode "Caenorhabditis elegans" ("C. elegans") adult hermaphrodite has 302 invariant neurons and is suited for cellular and molecular studies on complex behaviors including learning and memory. Here, we have developed protocols for classical conditioning of worms with 1-propanol, as a conditioned stimulus (CS), and hydrochloride (HCl) (pH…
Appetitive but Not Aversive Olfactory Conditioning Modifies Antennal Movements in Honeybees
ERIC Educational Resources Information Center
Cholé, Hanna; Junca, Pierre; Sandoz, Jean-Christophe
2015-01-01
In honeybees, two olfactory conditioning protocols allow the study of appetitive and aversive Pavlovian associations. Appetitive conditioning of the proboscis extension response (PER) involves associating an odor, the conditioned stimulus (CS) with a sucrose solution, the unconditioned stimulus (US). Conversely, aversive conditioning of the sting…
Olofsson, Birgitta
2014-01-01
Changes in metabolic state alter foraging behavior and food preference in animals. Here, I show that normally attractive food becomes repulsive to Caenorhabditis elegans if animals are chronically undernourished as a result of alimentary tract defects. This behavioral plasticity is achieved in two ways: increased food leaving and induction of aversive behavior towards food. A particularly strong food avoider is defective in the chitin synthase that makes the pharyngeal lining. Food avoidance induced by underfeeding is mediated by cGMP signaling in the olfactory neurons AWC and AWB, and the gustatory neurons ASJ and ASK. Food avoidance is enhanced by increased population density and is reduced if the animals are unable to correctly interpret their nutritional state as a result of defects in the AMP kinase or TOR/S6kinase pathways. The TGF-β/DBL-1 pathway suppresses food avoidance and the cellular basis for this is distinct from its role in aversive olfactory learning of harmful food. This study suggests that nutritional state feedback via nutrient sensors, population size and olfactory neurons guides food preference in C. elegans. PMID:24577446
Non-redundant coding of aversive odours in the main olfactory pathway
Dewan, Adam; Pacifico, Rodrigo; Zhan, Ross; Rinberg, Dmitry; Bozza, Thomas
2013-01-01
Many species are critically dependent on olfaction for survival. In the main olfactory system of mammals, odours are detected by sensory neurons which express a large repertoire of canonical odorant receptors (ORs) and a much smaller repertoire of Trace Amine-Associated Receptors (TAARs)1–4. Odours are encoded in a combinatorial fashion across glomeruli in the main olfactory bulb, with each glomerulus corresponding to a different receptor5–7. The degree to which individual receptor genes contribute to odour perception is unclear. Here we show that genetic deletion of the olfactory TAAR gene family, or even a single TAAR gene, eliminates aversion that mice display to low concentrations of volatile amines and to the odour of predator urine. Our findings identify a role for the TAARs in olfaction, namely in the high-sensitivity detection of innately aversive odours. In addition, our data reveal that aversive amines are represented in a non-redundant fashion, and that individual main olfactory receptor genes can contribute significantly to odour perception. PMID:23624375
Non-redundant coding of aversive odours in the main olfactory pathway.
Dewan, Adam; Pacifico, Rodrigo; Zhan, Ross; Rinberg, Dmitry; Bozza, Thomas
2013-05-23
Many species are critically dependent on olfaction for survival. In the main olfactory system of mammals, odours are detected by sensory neurons that express a large repertoire of canonical odorant receptors and a much smaller repertoire of trace amine-associated receptors (TAARs). Odours are encoded in a combinatorial fashion across glomeruli in the main olfactory bulb, with each glomerulus corresponding to a specific receptor. The degree to which individual receptor genes contribute to odour perception is unclear. Here we show that genetic deletion of the olfactory Taar gene family, or even a single Taar gene (Taar4), eliminates the aversion that mice display to low concentrations of volatile amines and to the odour of predator urine. Our findings identify a role for the TAARs in olfaction, namely, in the high-sensitivity detection of innately aversive odours. In addition, our data reveal that aversive amines are represented in a non-redundant fashion, and that individual main olfactory receptor genes can contribute substantially to odour perception.
Junca, Pierre; Carcaud, Julie; Moulin, Sibyle; Garnery, Lionel; Sandoz, Jean-Christophe
2014-01-01
In Pavlovian conditioning, animals learn to associate initially neutral stimuli with positive or negative outcomes, leading to appetitive and aversive learning respectively. The honeybee (Apis mellifera) is a prominent invertebrate model for studying both versions of olfactory learning and for unraveling the influence of genotype. As a queen bee mates with about 15 males, her worker offspring belong to as many, genetically-different patrilines. While the genetic dependency of appetitive learning is well established in bees, it is not the case for aversive learning, as a robust protocol was only developed recently. In the original conditioning of the sting extension response (SER), bees learn to associate an odor (conditioned stimulus - CS) with an electric shock (unconditioned stimulus - US). This US is however not a natural stimulus for bees, which may represent a potential caveat for dissecting the genetics underlying aversive learning. We thus first tested heat as a potential new US for SER conditioning. We show that thermal stimulation of several sensory structures on the bee’s body triggers the SER, in a temperature-dependent manner. Moreover, heat applied to the antennae, mouthparts or legs is an efficient US for SER conditioning. Then, using microsatellite analysis, we analyzed heat sensitivity and aversive learning performances in ten worker patrilines issued from a naturally inseminated queen. We demonstrate a strong influence of genotype on aversive learning, possibly indicating the existence of a genetic determinism of this capacity. Such determinism could be instrumental for efficient task partitioning within the hive. PMID:24828422
Distinct circuits for the formation and retrieval of an imprinted olfactory memory
Jin, Xin; Pokala, Navin; Bargmann, Cornelia I.
2016-01-01
Summary Memories formed early in life are particularly stable and influential, representing privileged experiences that shape enduring behaviors. Here we show that exposing newly-hatched C. elegans to pathogenic bacteria results in persistent aversion to those bacterial odors, whereas adult exposure generates only transient aversive memory. Long-lasting imprinted aversion has a critical period in the first larval stage, and is specific to the experienced pathogen. Distinct groups of neurons are required during formation (AIB, RIM) and retrieval (AIY, RIA) of the imprinted memory. RIM synthesizes the neuromodulator tyramine, which is required in the L1 stage for learning. AIY memory retrieval neurons sense tyramine via the SER-2 receptor, which is essential for imprinted but not for adult-learned aversion. Odor responses in several neurons, most notably RIA, are altered in imprinted animals. These findings provide insight into neuronal substrates of different forms of memory, and lay a foundation for further understanding of early learning. PMID:26871629
ERIC Educational Resources Information Center
Cui, Wen; Darby-King, Andrea; Grimes, Matthew T.; Howland, John G.; Wang, Yu Tian; McLean, John H.; Harley, Carolyn W.
2011-01-01
An increase in synaptic AMPA receptors is hypothesized to mediate learning and memory. AMPA receptor increases have been reported in aversive learning models, although it is not clear if they are seen with memory maintenance. Here we examine AMPA receptor changes in a cAMP/PKA/CREB-dependent appetitive learning model: odor preference learning in…
Dissecting neural pathways for forgetting in Drosophila olfactory aversive memory
Shuai, Yichun; Hirokawa, Areekul; Ai, Yulian; Zhang, Min; Li, Wanhe; Zhong, Yi
2015-01-01
Recent studies have identified molecular pathways driving forgetting and supported the notion that forgetting is a biologically active process. The circuit mechanisms of forgetting, however, remain largely unknown. Here we report two sets of Drosophila neurons that account for the rapid forgetting of early olfactory aversive memory. We show that inactivating these neurons inhibits memory decay without altering learning, whereas activating them promotes forgetting. These neurons, including a cluster of dopaminergic neurons (PAM-β′1) and a pair of glutamatergic neurons (MBON-γ4>γ1γ2), terminate in distinct subdomains in the mushroom body and represent parallel neural pathways for regulating forgetting. Interestingly, although activity of these neurons is required for memory decay over time, they are not required for acute forgetting during reversal learning. Our results thus not only establish the presence of multiple neural pathways for forgetting in Drosophila but also suggest the existence of diverse circuit mechanisms of forgetting in different contexts. PMID:26627257
Roles of Aminergic Neurons in Formation and Recall of Associative Memory in Crickets
Mizunami, Makoto; Matsumoto, Yukihisa
2010-01-01
We review recent progress in the study of roles of octopaminergic (OA-ergic) and dopaminergic (DA-ergic) signaling in insect classical conditioning, focusing on our studies on crickets. Studies on olfactory learning in honey bees and fruit-flies have suggested that OA-ergic and DA-ergic neurons convey reinforcing signals of appetitive unconditioned stimulus (US) and aversive US, respectively. Our work suggested that this is applicable to olfactory, visual pattern, and color learning in crickets, indicating that this feature is ubiquitous in learning of various sensory stimuli. We also showed that aversive memory decayed much faster than did appetitive memory, and we proposed that this feature is common in insects and humans. Our study also suggested that activation of OA- or DA-ergic neurons is needed for appetitive or aversive memory recall, respectively. To account for this finding, we proposed a model in which it is assumed that two types of synaptic connections are strengthened by conditioning and are activated during memory recall, one type being connections from neurons representing conditioned stimulus (CS) to neurons inducing conditioned response and the other being connections from neurons representing CS to OA- or DA-ergic neurons representing appetitive or aversive US, respectively. The former is called stimulus–response (S–R) connection and the latter is called stimulus–stimulus (S–S) connection by theorists studying classical conditioning in vertebrates. Results of our studies using a second-order conditioning procedure supported our model. We propose that insect classical conditioning involves the formation of S–S connection and its activation for memory recall, which are often called cognitive processes. PMID:21119781
Cognitive impairment and olfactory panic from occupational exposure to VOCs.
Reinhartz, Abe
2006-10-01
A Canadian government clerical worker in her early thirties developed frontal lobe dysfunction from inhalation of volatile organic compounds off-gassed during an office renovation. Pulmonary function, bronchial provocation, allergy testing, and a brain (SPECT) scan were performed. SPECT scanning showed frontotemporal hypoperfusion and neuropsychologic testing revealed deficits in verbal learning and poor organizational memory. A significant component of this worker's impairment was the development of "olfactory panic," a debilitating aversion to odor accompanied by symptoms of panic. The Ontario Workplace Safety and Insurance Appeals Tribunal granted entitlement for her cognitive difficulties and olfactory panic as a result of her toxic exposure.
Ueno, Kohei; Naganos, Shintaro; Hirano, Yukinori; Horiuchi, Junjiro; Saitoe, Minoru
2013-01-01
In Drosophila, the mushroom body (MB) is a critical brain structure for olfactory associative learning. During aversive conditioning, the MBs are thought to associate odour signals, conveyed by projection neurons (PNs) from the antennal lobe (AL), with shock signals conveyed through ascending fibres of the ventral nerve cord (AFV). Although synaptic transmission between AL and MB might play a crucial role for olfactory associative learning, its physiological properties have not been examined directly. Using a cultured Drosophila brain expressing a Ca(2+) indicator in the MBs, we investigated synaptic transmission and plasticity at the AL-MB synapse. Following stimulation with a glass micro-electrode, AL-induced Ca(2+) responses in the MBs were mediated through Drosophila nicotinic acetylcholine receptors (dnAChRs), while AFV-induced Ca(2+) responses were mediated through Drosophila NMDA receptors (dNRs). AL-MB synaptic transmission was enhanced more than 2 h after the simultaneous 'associative-stimulation' of AL and AFV, and such long-term enhancement (LTE) was specifically formed at the AL-MB synapses but not at the AFV-MB synapses. AL-MB LTE was not induced by intense stimulation of the AL alone, and the LTE decays within 60 min after subsequent repetitive AL stimulation. These phenotypes of associativity, input specificity and persistence of AL-MB LTE are highly reminiscent of olfactory memory. Furthermore, similar to olfactory aversive memory, AL-MB LTE formation required activation of the Drosophila D1 dopamine receptor, DopR, along with dnAChR and dNR during associative stimulations. These physiological and genetic analogies indicate that AL-MB LTE might be a relevant cellular model for olfactory memory.
Ueno, Kohei; Naganos, Shintaro; Hirano, Yukinori; Horiuchi, Junjiro; Saitoe, Minoru
2013-01-01
In Drosophila, the mushroom body (MB) is a critical brain structure for olfactory associative learning. During aversive conditioning, the MBs are thought to associate odour signals, conveyed by projection neurons (PNs) from the antennal lobe (AL), with shock signals conveyed through ascending fibres of the ventral nerve cord (AFV). Although synaptic transmission between AL and MB might play a crucial role for olfactory associative learning, its physiological properties have not been examined directly. Using a cultured Drosophila brain expressing a Ca2+ indicator in the MBs, we investigated synaptic transmission and plasticity at the AL–MB synapse. Following stimulation with a glass micro-electrode, AL-induced Ca2+ responses in the MBs were mediated through Drosophila nicotinic acetylcholine receptors (dnAChRs), while AFV-induced Ca2+ responses were mediated through Drosophila NMDA receptors (dNRs). AL–MB synaptic transmission was enhanced more than 2 h after the simultaneous ‘associative-stimulation’ of AL and AFV, and such long-term enhancement (LTE) was specifically formed at the AL–MB synapses but not at the AFV–MB synapses. AL–MB LTE was not induced by intense stimulation of the AL alone, and the LTE decays within 60 min after subsequent repetitive AL stimulation. These phenotypes of associativity, input specificity and persistence of AL–MB LTE are highly reminiscent of olfactory memory. Furthermore, similar to olfactory aversive memory, AL–MB LTE formation required activation of the Drosophila D1 dopamine receptor, DopR, along with dnAChR and dNR during associative stimulations. These physiological and genetic analogies indicate that AL–MB LTE might be a relevant cellular model for olfactory memory. PMID:23027817
Development switch in neural circuitry underlying odor-malaise learning.
Shionoya, Kiseko; Moriceau, Stephanie; Lunday, Lauren; Miner, Cathrine; Roth, Tania L; Sullivan, Regina M
2006-01-01
Fetal and infant rats can learn to avoid odors paired with illness before development of brain areas supporting this learning in adults, suggesting an alternate learning circuit. Here we begin to document the transition from the infant to adult neural circuit underlying odor-malaise avoidance learning using LiCl (0.3 M; 1% of body weight, ip) and a 30-min peppermint-odor exposure. Conditioning groups included: Paired odor-LiCl, Paired odor-LiCl-Nursing, LiCl, and odor-saline. Results showed that Paired LiCl-odor conditioning induced a learned odor aversion in postnatal day (PN) 7, 12, and 23 pups. Odor-LiCl Paired Nursing induced a learned odor preference in PN7 and PN12 pups but blocked learning in PN23 pups. 14C 2-deoxyglucose (2-DG) autoradiography indicated enhanced olfactory bulb activity in PN7 and PN12 pups with odor preference and avoidance learning. The odor aversion in weanling aged (PN23) pups resulted in enhanced amygdala activity in Paired odor-LiCl pups, but not if they were nursing. Thus, the neural circuit supporting malaise-induced aversions changes over development, indicating that similar infant and adult-learned behaviors may have distinct neural circuits.
The participation of cortical amygdala in innate, odour-driven behaviour.
Root, Cory M; Denny, Christine A; Hen, René; Axel, Richard
2014-11-13
Innate behaviours are observed in naive animals without prior learning or experience, suggesting that the neural circuits that mediate these behaviours are genetically determined and stereotyped. The neural circuits that convey olfactory information from the sense organ to the cortical and subcortical olfactory centres have been anatomically defined, but the specific pathways responsible for innate responses to volatile odours have not been identified. Here we devise genetic strategies that demonstrate that a stereotyped neural circuit that transmits information from the olfactory bulb to cortical amygdala is necessary for innate aversive and appetitive behaviours. Moreover, we use the promoter of the activity-dependent gene arc to express the photosensitive ion channel, channelrhodopsin, in neurons of the cortical amygdala activated by odours that elicit innate behaviours. Optical activation of these neurons leads to appropriate behaviours that recapitulate the responses to innate odours. These data indicate that the cortical amygdala plays a critical role in generating innate odour-driven behaviours but do not preclude its participation in learned olfactory behaviours.
Mukilan, Murugan; Bogdanowicz, Wieslaw; Marimuthu, Ganapathy; Rajan, Koilmani Emmanuvel
2018-06-15
Activity-dependent expression of immediate-early genes (IEGs) is induced by exposure to odour. The present study was designed to investigate whether there is differential expression of IEGs ( Egr-1 , C-fos ) in the brain region mediating olfactory memory in the Indian greater short-nosed fruit bat, Cynopterus sphinx We assumed that differential expression of IEGs in different brain regions may orchestrate a preference odour (PO) and aversive odour (AO) memory in C. sphinx We used preferred (0.8% w/w cinnamon powder) and aversive (0.4% w/v citral) odour substances, with freshly prepared chopped apple, to assess the behavioural response and induction of IEGs in the olfactory bulb, hippocampus and amygdala. After experiencing PO and AO, the bats initially responded to both, later only engaging in feeding bouts in response to the PO food. The expression pattern of EGR-1 and c-Fos in the olfactory bulb, hippocampus and amygdala was similar at different time points (15, 30 and 60 min) following the response to PO, but was different for AO. The response to AO elevated the level of c-Fos expression within 30 min and reduced it at 60 min in both the olfactory bulb and the hippocampus, as opposed to the continuous increase noted in the amygdala. In addition, we tested whether an epigenetic mechanism involving protein phosphatase-1 (PP-1) acts on IEG expression. The observed PP-1 expression and the level of unmethylated/methylated promoter revealed that C-fos expression is possibly controlled by odour-mediated regulation of PP-1. These results in turn imply that the differential expression of C-fos in the hippocampus and amygdala may contribute to olfactory learning and memory in C. sphinx . © 2018. Published by The Company of Biologists Ltd.
Food Avoidance Learning in Squirrel Monkeys and Common Marmosets
Laska, Matthias; Metzker, Karin
1998-01-01
Using a conditioned food avoidance learning paradigm, six squirrel monkeys (Saimiri sciureus) and six common marmosets (Callithrix jacchus) were tested for their ability to (1) reliably form associations between visual or olfactory cues of a potential food and its palatability and (2) remember such associations over prolonged periods of time. We found (1) that at the group level both species showed one-trial learning with the visual cues color and shape, whereas only the marmosets were able to do so with the olfactory cue, (2) that all individuals from both species learned to reliably avoid the unpalatable food items within 10 trials, (3) a tendency in both species for quicker acquisition of the association with the visual cues compared with the olfactory cue, (4) a tendency for quicker acquisition and higher reliability of the aversion by the marmosets compared with the squirrel monkeys, and (5) that all individuals from both species were able to reliably remember the significance of the visual cues, color and shape, even after 4 months, whereas only the marmosets showed retention of the significance of the olfactory cues for up to 4 weeks. Furthermore, the results suggest that in both species tested, illness is not a necessary prerequisite for food avoidance learning but that the presumably innate rejection responses toward highly concentrated but nontoxic bitter and sour tastants are sufficient to induce robust learning and retention. PMID:10454364
The participation of cortical amygdala in innate, odor-driven behavior
Root, Cory M.; Denny, Christine A.; Hen, René; Axel, Richard
2014-01-01
Innate behaviors are observed in naïve animals without prior learning or experience, suggesting that the neural circuits that mediate these behaviors are genetically determined and stereotyped. The neural circuits that convey olfactory information from the sense organ to the cortical and subcortical olfactory centers have been anatomically defined1-3 but the specific pathways responsible for innate responses to volatile odors have not been identified. We have devised genetic strategies that demonstrate that a stereotyped neural circuit that transmits information from the olfactory bulb to cortical amygdala is necessary for innate aversive and appetitive behaviors. Moreover, we have employed the promoter of the activity-dependent gene, arc, to express the photosensitive ion channel, channelrhodopsin, in neurons of the cortical amygdala activated by odors that elicit innate behaviors. Optical activation of these neurons leads to appropriate behaviors that recapitulate the responses to innate odors. These data indicate that the cortical amygdala plays a critical role in the generation of innate odor-driven behaviors but do not preclude the participation of cortical amygdala in learned olfactory behaviors. PMID:25383519
Aversive learning of odor-heat associations in ants.
Desmedt, Lucie; Baracchi, David; Devaud, Jean-Marc; Giurfa, Martin; d'Ettorre, Patrizia
2017-12-15
Ants have recently emerged as useful models for the study of olfactory learning. In this framework, the development of a protocol for the appetitive conditioning of the maxilla-labium extension response (MaLER) provided the possibility of studying Pavlovian odor-food learning in a controlled environment. Here we extend these studies by introducing the first Pavlovian aversive learning protocol for harnessed ants in the laboratory. We worked with carpenter ants Camponotus aethiops and first determined the capacity of different temperatures applied to the body surface to elicit the typical aversive mandible opening response (MOR). We determined that 75°C is the optimal temperature to induce MOR and chose the hind legs as the stimulated body region because of their high sensitivity. We then studied the ability of ants to learn and remember odor-heat associations using 75°C as the unconditioned stimulus. We studied learning and short-term retention after absolute (one odor paired with heat) and differential conditioning (a punished odor versus an unpunished odor). Our results show that ants successfully learn the odor-heat association under a differential-conditioning regime and thus exhibit a conditioned MOR to the punished odor. Yet, their performance under an absolute-conditioning regime is poor. These results demonstrate that ants are capable of aversive learning and confirm previous findings about the different attentional resources solicited by differential and absolute conditioning in general. © 2017. Published by The Company of Biologists Ltd.
Learning context modulates aversive taste strength in honey bees.
de Brito Sanchez, Maria Gabriela; Serre, Marion; Avarguès-Weber, Aurore; Dyer, Adrian G; Giurfa, Martin
2015-03-01
The capacity of honey bees (Apis mellifera) to detect bitter substances is controversial because they ingest without reluctance different kinds of bitter solutions in the laboratory, whereas free-flying bees avoid them in visual discrimination tasks. Here, we asked whether the gustatory perception of bees changes with the behavioral context so that tastes that are less effective as negative reinforcements in a given context become more effective in a different context. We trained bees to discriminate an odorant paired with 1 mol l(-1) sucrose solution from another odorant paired with either distilled water, 3 mol l(-1) NaCl or 60 mmol l(-1) quinine. Training was either Pavlovian [olfactory conditioning of the proboscis extension reflex (PER) in harnessed bees], or mainly operant (olfactory conditioning of free-walking bees in a Y-maze). PER-trained and maze-trained bees were subsequently tested both in their original context and in the alternative context. Whereas PER-trained bees transferred their choice to the Y-maze situation, Y-maze-trained bees did not respond with a PER to odors when subsequently harnessed. In both conditioning protocols, NaCl and distilled water were the strongest and the weakest aversive reinforcement, respectively. A significant variation was found for quinine, which had an intermediate aversive effect in PER conditioning but a more powerful effect in the Y-maze, similar to that of NaCl. These results thus show that the aversive strength of quinine varies with the learning context, and reveal the plasticity of the bee's gustatory system. We discuss the experimental constraints of both learning contexts and focus on stress as a key modulator of taste in the honey bee. Further explorations of bee taste are proposed to understand the physiology of taste modulation in bees. © 2015. Published by The Company of Biologists Ltd.
Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae
Widmann, Annekathrin; Artinger, Marc; Biesinger, Lukas; Boepple, Kathrin; Schlechter, Jana; Selcho, Mareike; Thum, Andreas S.
2016-01-01
Memory formation is a highly complex and dynamic process. It consists of different phases, which depend on various neuronal and molecular mechanisms. In adult Drosophila it was shown that memory formation after aversive Pavlovian conditioning includes—besides other forms—a labile short-term component that consolidates within hours to a longer-lasting memory. Accordingly, memory formation requires the timely controlled action of different neuronal circuits, neurotransmitters, neuromodulators and molecules that were initially identified by classical forward genetic approaches. Compared to adult Drosophila, memory formation was only sporadically analyzed at its larval stage. Here we deconstruct the larval mnemonic organization after aversive olfactory conditioning. We show that after odor-high salt conditioning larvae form two parallel memory phases; a short lasting component that depends on cyclic adenosine 3’5’-monophosphate (cAMP) signaling and synapsin gene function. In addition, we show for the first time for Drosophila larvae an anesthesia resistant component, which relies on radish and bruchpilot gene function, protein kinase C activity, requires presynaptic output of mushroom body Kenyon cells and dopamine function. Given the numerical simplicity of the larval nervous system this work offers a unique prospect for studying memory formation of defined specifications, at full-brain scope with single-cell, and single-synapse resolution. PMID:27768692
Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae.
Widmann, Annekathrin; Artinger, Marc; Biesinger, Lukas; Boepple, Kathrin; Peters, Christina; Schlechter, Jana; Selcho, Mareike; Thum, Andreas S
2016-10-01
Memory formation is a highly complex and dynamic process. It consists of different phases, which depend on various neuronal and molecular mechanisms. In adult Drosophila it was shown that memory formation after aversive Pavlovian conditioning includes-besides other forms-a labile short-term component that consolidates within hours to a longer-lasting memory. Accordingly, memory formation requires the timely controlled action of different neuronal circuits, neurotransmitters, neuromodulators and molecules that were initially identified by classical forward genetic approaches. Compared to adult Drosophila, memory formation was only sporadically analyzed at its larval stage. Here we deconstruct the larval mnemonic organization after aversive olfactory conditioning. We show that after odor-high salt conditioning larvae form two parallel memory phases; a short lasting component that depends on cyclic adenosine 3'5'-monophosphate (cAMP) signaling and synapsin gene function. In addition, we show for the first time for Drosophila larvae an anesthesia resistant component, which relies on radish and bruchpilot gene function, protein kinase C activity, requires presynaptic output of mushroom body Kenyon cells and dopamine function. Given the numerical simplicity of the larval nervous system this work offers a unique prospect for studying memory formation of defined specifications, at full-brain scope with single-cell, and single-synapse resolution.
Ferry, Barbara; Duchamp-Viret, Patricia
2014-03-14
To test the selectivity of the orexin A (OXA) system in olfactory sensitivity, the present study compared the effects of fasting and of central infusion of OXA on the memory processes underlying odor-malaise association during the conditioned odor aversion (COA) paradigm. Animals implanted with a cannula in the left ventricle received ICV infusion of OXA or artificial cerebrospinal fluid (ACSF) 1 h before COA acquisition. An additional group of intact rats were food-deprived for 24 h before acquisition. Results showed that the increased olfactory sensitivity induced by fasting and by OXA infusion was accompanied by enhanced COA performance. The present results suggest that fasting-induced central OXA release influenced COA learning by increasing not only olfactory sensitivity, but also the memory processes underlying the odor-malaise association.
Ferry, Barbara; Duchamp-Viret, Patricia
2014-01-01
To test the selectivity of the orexin A (OXA) system in olfactory sensitivity, the present study compared the effects of fasting and of central infusion of OXA on the memory processes underlying odor–malaise association during the conditioned odor aversion (COA) paradigm. Animals implanted with a cannula in the left ventricle received ICV infusion of OXA or artificial cerebrospinal fluid (ACSF) 1 h before COA acquisition. An additional group of intact rats were food-deprived for 24 h before acquisition. Results showed that the increased olfactory sensitivity induced by fasting and by OXA infusion was accompanied by enhanced COA performance. The present results suggest that fasting-induced central OXA release influenced COA learning by increasing not only olfactory sensitivity, but also the memory processes underlying the odor–malaise association. PMID:24634353
Reappraising social insect behavior through aversive responsiveness and learning.
Roussel, Edith; Carcaud, Julie; Sandoz, Jean-Christophe; Giurfa, Martin
2009-01-01
The success of social insects can be in part attributed to their division of labor, which has been explained by a response threshold model. This model posits that individuals differ in their response thresholds to task-associated stimuli, so that individuals with lower thresholds specialize in this task. This model is at odds with findings on honeybee behavior as nectar and pollen foragers exhibit different responsiveness to sucrose, with nectar foragers having higher response thresholds to sucrose concentration. Moreover, it has been suggested that sucrose responsiveness correlates with responsiveness to most if not all other stimuli. If this is the case, explaining task specialization and the origins of division of labor on the basis of differences in response thresholds is difficult. To compare responsiveness to stimuli presenting clear-cut differences in hedonic value and behavioral contexts, we measured appetitive and aversive responsiveness in the same bees in the laboratory. We quantified proboscis extension responses to increasing sucrose concentrations and sting extension responses to electric shocks of increasing voltage. We analyzed the relationship between aversive responsiveness and aversive olfactory conditioning of the sting extension reflex, and determined how this relationship relates to division of labor. Sucrose and shock responsiveness measured in the same bees did not correlate, thus suggesting that they correspond to independent behavioral syndromes, a foraging and a defensive one. Bees which were more responsive to shock learned and memorized better aversive associations. Finally, guards were less responsive than nectar foragers to electric shocks, exhibiting higher tolerance to low voltage shocks. Consequently, foragers, which are more sensitive, were the ones learning and memorizing better in aversive conditioning. Our results constitute the first integrative study on how aversive responsiveness affects learning, memory and social organization in honeybees. We suggest that parallel behavioral modules (e.g. appetitive, aversive) coexist within each individual bee and determine its tendency to adopt a given task. This conclusion, which is at odds with a simple threshold model, should open new opportunities for exploring the division of labor in social insects.
Cross-modal and modality-specific expectancy effects between pain and disgust
Sharvit, Gil; Vuilleumier, Patrik; Delplanque, Sylvain; Corradi-Dell’ Acqua, Corrado
2015-01-01
Pain sensitivity increases when a noxious stimulus is preceded by cues predicting higher intensity. However, it is unclear whether the modulation of nociception by expectancy is sensory-specific (“modality based”) or reflects the aversive-affective consequence of the upcoming event (“unpleasantness”), potentially common with other negative events. Here we compared expectancy effects for pain and disgust by using different, but equally unpleasant, nociceptive (thermal) and olfactory stimulations. Indeed both pain and disgust are aversive, associated with threat to the organism, and processed in partly overlapping brain networks. Participants saw cues predicting the unpleasantness (high/low) and the modality (pain/disgust) of upcoming thermal or olfactory stimulations, and rated the associated unpleasantness after stimuli delivery. Results showed that identical thermal stimuli were perceived as more unpleasant when preceded by cues threatening about high (as opposed to low) pain. A similar expectancy effect was found for olfactory disgust. Critically, cross-modal expectancy effects were observed on inconsistent trials when thermal stimuli were preceded by high-disgust cues or olfactory stimuli preceded by high-pain cues. However, these effects were stronger in consistent than inconsistent conditions. Taken together, our results suggest that expectation of an unpleasant event elicits representations of both its modality-specific properties and its aversive consequences. PMID:26631975
Serotonin is critical for rewarded olfactory short-term memory in Drosophila.
Sitaraman, Divya; LaFerriere, Holly; Birman, Serge; Zars, Troy
2012-06-01
The biogenic amines dopamine, octopamine, and serotonin are critical in establishing normal memories. A common view for the amines in insect memory performance has emerged in which dopamine and octopamine are largely responsible for aversive and appetitive memories. Examination of the function of serotonin begins to challenge the notion of one amine type per memory because altering serotonin function also reduces aversive olfactory memory and place memory levels. Could the function of serotonin be restricted to the aversive domain, suggesting a more specific dopamine/serotonin system interaction? The function of the serotonergic system in appetitive olfactory memory was examined. By targeting the tetanus toxin light chain (TNT) and the human inwardly rectifying potassium channel (Kir2.1) to the serotonin neurons with two different GAL4 driver combinations, the serotonergic system was inhibited. Additional use of the GAL80(ts1) system to control expression of transgenes to the adult stage of the life cycle addressed a potential developmental role of serotonin in appetitive memory. Reduction in appetitive olfactory memory performance in flies with these transgenic manipulations, without altering control behaviors, showed that the serotonergic system is also required for normal appetitive memory. Thus, serotonin appears to have a more general role in Drosophila memory, and implies an interaction with both the dopaminergic and octopaminergic systems.
Weissburg, Marc; Atkins, Lorin; Berkenkamp, Kimberly; Mankin, Danielle
2012-12-01
Blue crabs can distinguish and navigate to attractive (food) odors even when aversive odors (injured crab metabolites) are released nearby. Blue crabs in these conditions detect the aversive odor and avoid it, but find the attractive source with nearly the same success rate as when the attractive source is presented alone. Spatially and temporally distinct odor filaments appear to signal to foragers that the two odor sources are not co-located, and hence navigating to the attractive odor entails an acceptable risk of predation. However, environmentally produced turbulence suppresses tracking by homogenizing the two odors; blue crabs fail to track to the attractive source when the aversive source is present, even though turbulence does not substantially inhibit tracking to the attractive source alone. Removal of sensory input from aesthetascs on the antennules, but not chemosensors on the legs, rescues navigation to attractive-aversive dual plumes in turbulent conditions. These results suggest that mixing in the natural environment may amplify the effects of predators by suppressing tracking to food odors when aversive cues are present, and that the olfactory pathway mediates the response.
Mizunami, Makoto; Matsumoto, Yukihisa
2017-01-01
Revealing neural systems that mediate appetite and aversive signals in associative learning is critical for understanding the brain mechanisms controlling adaptive behavior in animals. In mammals, it has been shown that some classes of dopamine neurons in the midbrain mediate prediction error signals that govern the learning process, whereas other classes of dopamine neurons control execution of learned actions. In this review, based on the results of our studies on Pavlovian conditioning in the cricket Gryllus bimaculatus and by referring to the findings in honey bees and fruit-flies, we argue that comparable aminergic systems exist in the insect brain. We found that administrations of octopamine (the invertebrate counterpart of noradrenaline) and dopamine receptor antagonists impair conditioning to associate an olfactory or visual conditioned stimulus (CS) with water or sodium chloride solution (appetitive or aversive unconditioned stimulus, US), respectively, suggesting that specific octopamine and dopamine neurons mediate appetitive and aversive signals, respectively, in conditioning in crickets. These findings differ from findings in fruit-flies. In fruit-flies, appetitive and aversive signals are mediated by different dopamine neuron subsets, suggesting diversity in neurotransmitters mediating appetitive signals in insects. We also found evidences of “blocking” and “auto-blocking” phenomena, which suggested that the prediction error, the discrepancy between actual US and predicted US, governs the conditioning in crickets and that octopamine neurons mediate prediction error signals for appetitive US. Our studies also showed that activations of octopamine and dopamine neurons are needed for the execution of an appetitive conditioned response (CR) and an aversive CR, respectively, and we, thus, proposed that these neurons mediate US prediction signals that drive appetitive and aversive CRs. Our findings suggest that the basic principles of functioning of aminergic systems in associative learning, i.e., to transmit prediction error signals for conditioning and to convey US prediction signals for execution of CR, are conserved among insects and mammals, on account of the fact that the organization of the insect brain is much simpler than that of the mammalian brain. Further investigation of aminergic systems that govern associative learning in insects should lead to a better understanding of commonalities and diversities of computational rules underlying associative learning in animals. PMID:29311961
Mizunami, Makoto; Matsumoto, Yukihisa
2017-01-01
Revealing neural systems that mediate appetite and aversive signals in associative learning is critical for understanding the brain mechanisms controlling adaptive behavior in animals. In mammals, it has been shown that some classes of dopamine neurons in the midbrain mediate prediction error signals that govern the learning process, whereas other classes of dopamine neurons control execution of learned actions. In this review, based on the results of our studies on Pavlovian conditioning in the cricket Gryllus bimaculatus and by referring to the findings in honey bees and fruit-flies, we argue that comparable aminergic systems exist in the insect brain. We found that administrations of octopamine (the invertebrate counterpart of noradrenaline) and dopamine receptor antagonists impair conditioning to associate an olfactory or visual conditioned stimulus (CS) with water or sodium chloride solution (appetitive or aversive unconditioned stimulus, US), respectively, suggesting that specific octopamine and dopamine neurons mediate appetitive and aversive signals, respectively, in conditioning in crickets. These findings differ from findings in fruit-flies. In fruit-flies, appetitive and aversive signals are mediated by different dopamine neuron subsets, suggesting diversity in neurotransmitters mediating appetitive signals in insects. We also found evidences of "blocking" and "auto-blocking" phenomena, which suggested that the prediction error, the discrepancy between actual US and predicted US, governs the conditioning in crickets and that octopamine neurons mediate prediction error signals for appetitive US. Our studies also showed that activations of octopamine and dopamine neurons are needed for the execution of an appetitive conditioned response (CR) and an aversive CR, respectively, and we, thus, proposed that these neurons mediate US prediction signals that drive appetitive and aversive CRs. Our findings suggest that the basic principles of functioning of aminergic systems in associative learning, i.e., to transmit prediction error signals for conditioning and to convey US prediction signals for execution of CR, are conserved among insects and mammals, on account of the fact that the organization of the insect brain is much simpler than that of the mammalian brain. Further investigation of aminergic systems that govern associative learning in insects should lead to a better understanding of commonalities and diversities of computational rules underlying associative learning in animals.
Wang, Zhengwei; Qu, Yufeng; Dong, Shihao; Wen, Ping; Li, Jianjun; Tan, Ken; Menzel, Randolf
2016-01-01
In Southeast Asia the native honey bee species Apis cerana is often attacked by hornets (Vespa velutina), mainly in the period from April to November. During the co-evolution of these two species honey bees have developed several strategies to defend themselves such as learning the odors of hornets and releasing alarm components to inform other mates. However, so far little is known about whether and how honey bees modulate their olfactory learning in the presence of the hornet predator and alarm components of honey bee itself. In the present study, we test for associative olfactory learning of A. cerana in the presence of predator odors, the alarm pheromone component isopentyl acetate (IPA), or a floral odor (hexanal) as a control. The results show that bees can detect live hornet odors, that there is almost no association between the innately aversive hornet odor and the appetitive stimulus sucrose, and that IPA is less well associated with an appetitive stimulus when compared with a floral odor. In order to imitate natural conditions, e.g. when bees are foraging on flowers and a predator shows up, or alarm pheromone is released by a captured mate, we tested combinations of the hornet odor and floral odor, or IPA and floral odor. Both of these combinations led to reduced learning scores. This study aims to contribute to a better understanding of the prey-predator system between A. cerana and V. velutina.
The wiring diagram of a glomerular olfactory system
Berck, Matthew E; Khandelwal, Avinash; Claus, Lindsey; Hernandez-Nunez, Luis; Si, Guangwei; Tabone, Christopher J; Li, Feng; Truman, James W; Fetter, Rick D; Louis, Matthieu; Samuel, Aravinthan DT; Cardona, Albert
2016-01-01
The sense of smell enables animals to react to long-distance cues according to learned and innate valences. Here, we have mapped with electron microscopy the complete wiring diagram of the Drosophila larval antennal lobe, an olfactory neuropil similar to the vertebrate olfactory bulb. We found a canonical circuit with uniglomerular projection neurons (uPNs) relaying gain-controlled ORN activity to the mushroom body and the lateral horn. A second, parallel circuit with multiglomerular projection neurons (mPNs) and hierarchically connected local neurons (LNs) selectively integrates multiple ORN signals already at the first synapse. LN-LN synaptic connections putatively implement a bistable gain control mechanism that either computes odor saliency through panglomerular inhibition, or allows some glomeruli to respond to faint aversive odors in the presence of strong appetitive odors. This complete wiring diagram will support experimental and theoretical studies towards bridging the gap between circuits and behavior. DOI: http://dx.doi.org/10.7554/eLife.14859.001 PMID:27177418
Pérez-Gómez, Anabel; Bleymehl, Katherin; Stein, Benjamin; Pyrski, Martina; Birnbaumer, Lutz; Munger, Steven D.; Leinders-Zufall, Trese; Zufall, Frank; Chamero, Pablo
2015-01-01
Summary The existence of innate predator aversion evoked by predator-derived chemostimuli called kairomones offers a strong selective advantage for potential prey animals. However, it is unclear how chemically-diverse kairomones can elicit similar avoidance behaviors. Using a combination of behavioral analyses and single-cell Ca2+ imaging in wild-type and gene-targeted mice, we show that innate predator-evoked avoidance is driven by parallel, non-redundant processing of volatile and nonvolatile kairomones through the activation of multiple olfactory subsystems including the Grueneberg ganglion, the vomeronasal organ, and chemosensory neurons within the main olfactory epithelium. Perturbation of chemosensory responses in specific subsystems through disruption of genes encoding key sensory transduction proteins (Cnga3, Gnao1) or by surgical axotomy abolished avoidance behaviors and/or cellular Ca2+ responses to different predator odors. Stimulation of these different subsystems resulted in the activation of widely distributed target regions in the olfactory bulb, as assessed by c-Fos expression. However, in each case this c-Fos increase was observed within the same subnuclei of the medial amygdala and ventromedial hypothalamus, regions implicated in fear, anxiety and defensive behaviors. Thus, the mammalian olfactory system has evolved multiple, parallel mechanisms for kairomone detection that converge in the brain to facilitate a common behavioral response. Our findings provide significant insights into the genetic substrates and circuit logic of predator-driven, innate aversion and may serve as a valuable model for studying instinctive fear [1] and human emotional and panic disorders [2, 3]. PMID:25936549
Pérez-Gómez, Anabel; Bleymehl, Katherin; Stein, Benjamin; Pyrski, Martina; Birnbaumer, Lutz; Munger, Steven D; Leinders-Zufall, Trese; Zufall, Frank; Chamero, Pablo
2015-05-18
The existence of innate predator aversion evoked by predator-derived chemostimuli called kairomones offers a strong selective advantage for potential prey animals. However, it is unclear how chemically diverse kairomones can elicit similar avoidance behaviors. Using a combination of behavioral analyses and single-cell Ca(2+) imaging in wild-type and gene-targeted mice, we show that innate predator-evoked avoidance is driven by parallel, non-redundant processing of volatile and nonvolatile kairomones through the activation of multiple olfactory subsystems including the Grueneberg ganglion, the vomeronasal organ, and chemosensory neurons within the main olfactory epithelium. Perturbation of chemosensory responses in specific subsystems through disruption of genes encoding key sensory transduction proteins (Cnga3, Gnao1) or by surgical axotomy abolished avoidance behaviors and/or cellular Ca(2+) responses to different predator odors. Stimulation of these different subsystems resulted in the activation of widely distributed target regions in the olfactory bulb, as assessed by c-Fos expression. However, in each case, this c-Fos increase was observed within the same subnuclei of the medial amygdala and ventromedial hypothalamus, regions implicated in fear, anxiety, and defensive behaviors. Thus, the mammalian olfactory system has evolved multiple, parallel mechanisms for kairomone detection that converge in the brain to facilitate a common behavioral response. Our findings provide significant insights into the genetic substrates and circuit logic of predator-driven innate aversion and may serve as a valuable model for studying instinctive fear and human emotional and panic disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Junjun; Wang, Zhengwei; Wen, Ping; Qu, Yufeng; Tan, Ken; Nieh, James C
2018-03-01
The nectar of the thunder god vine, Tripterygium hypoglaucum , contains a terpenoid, triptolide (TRP), that may be toxic to the sympatric Asian honey bee, Apis cerana , because honey produced from this nectar is toxic to bees. However, these bees will forage on, recruit for, and pollinate this plant during a seasonal dearth of preferred food sources. Olfactory learning plays a key role in forager constancy and pollination, and we therefore tested the effects of acute and chronic TRP feeding on forager olfactory learning, using proboscis extension reflex conditioning. At concentrations of 0.5-10 µg TRP ml -1 , there were no learning effects of acute exposure. However, memory retention (1 h after the last learning trial) significantly decreased by 56% following acute consumption of 0.5 µg TRP ml -1 Chronic exposure did not alter learning or memory, except at high concentrations (5 and 10 µg TRP ml -1 ). TRP concentrations in nectar may therefore not significantly harm plant pollination. Surprisingly, TRP slightly increased bee survival, and thus other components in T. hypoglaucum honey may be toxic. Long-term exposure to TRP could have colony effects but these may be ameliorated by the bees' aversion to T. hypoglaucum nectar when other food sources are available and, perhaps, by detoxification mechanisms. The co-evolution of this plant and its reluctant visitor may therefore likely illustrate a classic compromise between the interests of both actors. © 2018. Published by The Company of Biologists Ltd.
Jiang, Hui; Hanna, Eriny; Gatto, Cheryl L.; Page, Terry L.; Bhuva, Bharat; Broadie, Kendal
2016-01-01
Background Aversive olfactory classical conditioning has been the standard method to assess Drosophila learning and memory behavior for decades, yet training and testing are conducted manually under exceedingly labor-intensive conditions. To overcome this severe limitation, a fully automated, inexpensive system has been developed, which allows accurate and efficient Pavlovian associative learning/memory analyses for high-throughput pharmacological and genetic studies. New Method The automated system employs a linear actuator coupled to an odorant T-maze with airflow-mediated transfer of animals between training and testing stages. Odorant, airflow and electrical shock delivery are automatically administered and monitored during training trials. Control software allows operator-input variables to define parameters of Drosophila learning, short-term memory and long-term memory assays. Results The approach allows accurate learning/memory determinations with operational fail-safes. Automated learning indices (immediately post-training) and memory indices (after 24 hours) are comparable to traditional manual experiments, while minimizing experimenter involvement. Comparison with Existing Methods The automated system provides vast improvements over labor-intensive manual approaches with no experimenter involvement required during either training or testing phases. It provides quality control tracking of airflow rates, odorant delivery and electrical shock treatments, and an expanded platform for high-throughput studies of combinational drug tests and genetic screens. The design uses inexpensive hardware and software for a total cost of ~$500US, making it affordable to a wide range of investigators. Conclusions This study demonstrates the design, construction and testing of a fully automated Drosophila olfactory classical association apparatus to provide low-labor, high-fidelity, quality-monitored, high-throughput and inexpensive learning and memory behavioral assays. PMID:26703418
Jiang, Hui; Hanna, Eriny; Gatto, Cheryl L; Page, Terry L; Bhuva, Bharat; Broadie, Kendal
2016-03-01
Aversive olfactory classical conditioning has been the standard method to assess Drosophila learning and memory behavior for decades, yet training and testing are conducted manually under exceedingly labor-intensive conditions. To overcome this severe limitation, a fully automated, inexpensive system has been developed, which allows accurate and efficient Pavlovian associative learning/memory analyses for high-throughput pharmacological and genetic studies. The automated system employs a linear actuator coupled to an odorant T-maze with airflow-mediated transfer of animals between training and testing stages. Odorant, airflow and electrical shock delivery are automatically administered and monitored during training trials. Control software allows operator-input variables to define parameters of Drosophila learning, short-term memory and long-term memory assays. The approach allows accurate learning/memory determinations with operational fail-safes. Automated learning indices (immediately post-training) and memory indices (after 24h) are comparable to traditional manual experiments, while minimizing experimenter involvement. The automated system provides vast improvements over labor-intensive manual approaches with no experimenter involvement required during either training or testing phases. It provides quality control tracking of airflow rates, odorant delivery and electrical shock treatments, and an expanded platform for high-throughput studies of combinational drug tests and genetic screens. The design uses inexpensive hardware and software for a total cost of ∼$500US, making it affordable to a wide range of investigators. This study demonstrates the design, construction and testing of a fully automated Drosophila olfactory classical association apparatus to provide low-labor, high-fidelity, quality-monitored, high-throughput and inexpensive learning and memory behavioral assays. Copyright © 2015 Elsevier B.V. All rights reserved.
Appetitive but not aversive olfactory conditioning modifies antennal movements in honeybees
Cholé, Hanna; Junca, Pierre
2015-01-01
In honeybees, two olfactory conditioning protocols allow the study of appetitive and aversive Pavlovian associations. Appetitive conditioning of the proboscis extension response (PER) involves associating an odor, the conditioned stimulus (CS) with a sucrose solution, the unconditioned stimulus (US). Conversely, aversive conditioning of the sting extension response (SER) involves associating the odor CS with an electric or thermal shock US. Each protocol is based on the measure of a different behavioral response (proboscis versus sting) and both only provide binary responses (extension or not of the proboscis or sting). These limitations render the measure of the acquired valence of an odor CS difficult without testing the animals in a freely moving situation. Here, we studied the effects of both olfactory conditioning protocols on the movements of the antennae, which are crucial sensory organs for bees. As bees’ antennae are highly mobile, we asked whether their movements in response to an odorant change following appetitive or aversive conditioning and if so, do odor-evoked antennal movements contain information about the acquired valence of the CS? We implemented a tracking system for harnessed bees’ antennal movements based on a motion capture principle at a high frequency rate. We observed that differential appetitive conditioning had a strong effect on antennal movements. Bees responded to the reinforced odorant with a marked forward motion of the antennae and a strong velocity increase. Conversely, differential aversive conditioning had no associative effect on antennal movements. Rather than revealing the acquired valence of an odorant, antennal movements may represent a novel conditioned response taking place during appetitive conditioning and may provide a possible advantage to bees when foraging in natural situations. PMID:26572651
Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae.
Huser, Annina; Eschment, Melanie; Güllü, Nazli; Collins, Katharina A N; Böpple, Kathrin; Pankevych, Lyubov; Rolsing, Emilia; Thum, Andreas S
2017-01-01
The biogenic amine serotonin (5-HT) is an important neuroactive molecule in the central nervous system of the majority of animal phyla. 5-HT binds to specific G protein-coupled and ligand-gated ion receptors to regulate particular aspects of animal behavior. In Drosophila, as in many other insects this includes the regulation of locomotion and feeding. Due to its genetic amenability and neuronal simplicity the Drosophila larva has turned into a useful model for studying the anatomical and molecular basis of chemosensory behaviors. This is particularly true for the olfactory system, which is mostly described down to the synaptic level over the first three orders of neuronal information processing. Here we focus on the 5-HT receptor system of the Drosophila larva. In a bipartite approach consisting of anatomical and behavioral experiments we describe the distribution and the implications of individual 5-HT receptors on naïve and acquired chemosensory behaviors. Our data suggest that 5-HT1A, 5-HT1B, and 5-HT7 are dispensable for larval naïve olfactory and gustatory choice behaviors as well as for appetitive and aversive associative olfactory learning and memory. In contrast, we show that 5-HT/5-HT2A signaling throughout development, but not as an acute neuronal function, affects associative olfactory learning and memory using high salt concentration as a negative unconditioned stimulus. These findings describe for the first time an involvement of 5-HT signaling in learning and memory in Drosophila larvae. In the longer run these results may uncover developmental, 5-HT dependent principles related to reinforcement processing possibly shared with adult Drosophila and other insects.
Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae
Huser, Annina; Eschment, Melanie; Güllü, Nazli; Collins, Katharina A. N.; Böpple, Kathrin; Pankevych, Lyubov; Rolsing, Emilia; Thum, Andreas S.
2017-01-01
The biogenic amine serotonin (5-HT) is an important neuroactive molecule in the central nervous system of the majority of animal phyla. 5-HT binds to specific G protein-coupled and ligand-gated ion receptors to regulate particular aspects of animal behavior. In Drosophila, as in many other insects this includes the regulation of locomotion and feeding. Due to its genetic amenability and neuronal simplicity the Drosophila larva has turned into a useful model for studying the anatomical and molecular basis of chemosensory behaviors. This is particularly true for the olfactory system, which is mostly described down to the synaptic level over the first three orders of neuronal information processing. Here we focus on the 5-HT receptor system of the Drosophila larva. In a bipartite approach consisting of anatomical and behavioral experiments we describe the distribution and the implications of individual 5-HT receptors on naïve and acquired chemosensory behaviors. Our data suggest that 5-HT1A, 5-HT1B, and 5-HT7 are dispensable for larval naïve olfactory and gustatory choice behaviors as well as for appetitive and aversive associative olfactory learning and memory. In contrast, we show that 5-HT/5-HT2A signaling throughout development, but not as an acute neuronal function, affects associative olfactory learning and memory using high salt concentration as a negative unconditioned stimulus. These findings describe for the first time an involvement of 5-HT signaling in learning and memory in Drosophila larvae. In the longer run these results may uncover developmental, 5-HT dependent principles related to reinforcement processing possibly shared with adult Drosophila and other insects. PMID:28777821
Back, Franklin P; Carobrez, Antonio P
2018-06-01
Stimulation of the midbrain periaqueductal gray matter (PAG) in humans elicits sensations of fear and impending terror, and mediates predator defensive responses in rodents. In rats, pharmacological stimulation of the dorsolateral portion of the PAG (dlPAG) with N-Methyl-d-Aspartate (NMDA) induces aversive conditioning that acts as an unconditioned stimulus (US). In the present work, we investigated the interplay between the vanilloid TRPV1 and cannabinoid CB1 receptors in the NMDA-dlPAG defensive response and in subsequent aversive learning. Rats were subjected to dlPAG NMDA infusion in an olfactory conditioned stimulus (CS) task allowing the evaluation of immediate and long-term defensive behavioral responses during CS presentation. The results indicated that an intermediate dose of NMDA (50 pmol) induced both immediate and long-term effects. A sub-effective dose of NMDA (25 pmol) was potentiated by the TRPV1 receptor agonist capsaicin (CAP, 1 nmol) and the CB1 receptor antagonist, AM251 (200 pmol). CAP (10 nmol) or the combination of CAP (1 nmol) and AM251 (200 pmol) induced long-term effects without increasing immediate defensive responses. The glutamate release inhibitor riluzole (2 or 4 nmol) and the AMPA/kainate receptor antagonist DNQX (2 or 4 nmol) potentiated the immediate effects but blocked the long-term effects. The results showed that immediate defensive responses rely on NMDA receptors, and aversive learning on the fine-tuning of TRPV1, CB1, metabotropic glutamate and AMPA receptors located in pre- and postsynaptic membranes. In conclusion, the activity of the dlPAG determines core affective aspects of aversive memory formation controlled by local TRPV1/CB1 balance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Neurobiology of secure infant attachment and attachment despite adversity: a mouse model.
Roth, T L; Raineki, C; Salstein, L; Perry, R; Sullivan-Wilson, T A; Sloan, A; Lalji, B; Hammock, E; Wilson, D A; Levitt, P; Okutani, F; Kaba, H; Sullivan, R M
2013-10-01
Attachment to an abusive caregiver has wide phylogenetic representation, suggesting that animal models are useful in understanding the neural basis underlying this phenomenon and subsequent behavioral outcomes. We previously developed a rat model, in which we use classical conditioning to parallel learning processes evoked during secure attachment (odor-stroke, with stroke mimicking tactile stimulation from the caregiver) or attachment despite adversity (odor-shock, with shock mimicking maltreatment). Here we extend this model to mice. We conditioned infant mice (postnatal day (PN) 7-9 or 13-14) with presentations of peppermint odor and either stroking or shock. We used (14) C 2-deoxyglucose (2-DG) to assess olfactory bulb and amygdala metabolic changes following learning. PN7-9 mice learned to prefer an odor following either odor-stroke or shock conditioning, whereas odor-shock conditioning at PN13-14 resulted in aversion/fear learning. 2-DG data indicated enhanced bulbar activity in PN7-9 preference learning, whereas significant amygdala activity was present following aversion learning at PN13-14. Overall, the mouse results parallel behavioral and neural results in the rat model of attachment, and provide the foundation for the use of transgenic and knockout models to assess the impact of both genetic (biological vulnerabilities) and environmental factors (abusive) on attachment-related behaviors and behavioral development. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
ERIC Educational Resources Information Center
Xie, Zhiyong; Huang, Cheng; Ci, Bo; Lianzhang, Wang; Zhong, Yi
2013-01-01
Extensive studies of "Drosophila" mushroom body in formation and retrieval of olfactory memories allow us to delineate the functional logic for memory storage and retrieval. Currently, there is a questionable disassociation of circuits for memory storage and retrieval during "Drosophila" olfactory memory processing. Formation…
Freytag, Virginie; Probst, Sabine; Hadziselimovic, Nils; Boglari, Csaba; Hauser, Yannick; Peter, Fabian; Gabor Fenyves, Bank; Milnik, Annette; Demougin, Philippe; Vukojevic, Vanja; de Quervain, Dominique J-F; Papassotiropoulos, Andreas; Stetak, Attila
2017-07-12
The identification of genes related to encoding, storage, and retrieval of memories is a major interest in neuroscience. In the current study, we analyzed the temporal gene expression changes in a neuronal mRNA pool during an olfactory long-term associative memory (LTAM) in Caenorhabditis elegans hermaphrodites. Here, we identified a core set of 712 (538 upregulated and 174 downregulated) genes that follows three distinct temporal peaks demonstrating multiple gene regulation waves in LTAM. Compared with the previously published positive LTAM gene set (Lakhina et al., 2015), 50% of the identified upregulated genes here overlap with the previous dataset, possibly representing stimulus-independent memory-related genes. On the other hand, the remaining genes were not previously identified in positive associative memory and may specifically regulate aversive LTAM. Our results suggest a multistep gene activation process during the formation and retrieval of long-term memory and define general memory-implicated genes as well as conditioning-type-dependent gene sets. SIGNIFICANCE STATEMENT The identification of genes regulating different steps of memory is of major interest in neuroscience. Identification of common memory genes across different learning paradigms and the temporal activation of the genes are poorly studied. Here, we investigated the temporal aspects of Caenorhabditis elegans gene expression changes using aversive olfactory associative long-term memory (LTAM) and identified three major gene activation waves. Like in previous studies, aversive LTAM is also CREB dependent, and CREB activity is necessary immediately after training. Finally, we define a list of memory paradigm-independent core gene sets as well as conditioning-dependent genes. Copyright © 2017 the authors 0270-6474/17/376661-12$15.00/0.
Modulation of Host Learning in Aedes aegypti Mosquitoes.
Vinauger, Clément; Lahondère, Chloé; Wolff, Gabriella H; Locke, Lauren T; Liaw, Jessica E; Parrish, Jay Z; Akbari, Omar S; Dickinson, Michael H; Riffell, Jeffrey A
2018-02-05
How mosquitoes determine which individuals to bite has important epidemiological consequences. This choice is not random; most mosquitoes specialize in one or a few vertebrate host species, and some individuals in a host population are preferred over others. Mosquitoes will also blood feed from other hosts when their preferred is no longer abundant, but the mechanisms mediating these shifts between hosts, and preferences for certain individuals within a host species, remain unclear. Here, we show that olfactory learning may contribute to Aedes aegypti mosquito biting preferences and host shifts. Training and testing to scents of humans and other host species showed that mosquitoes can aversively learn the scent of specific humans and single odorants and learn to avoid the scent of rats (but not chickens). Using pharmacological interventions, RNAi, and CRISPR gene editing, we found that modification of the dopamine-1 receptor suppressed their learning abilities. We further show through combined electrophysiological and behavioral recordings from tethered flying mosquitoes that these odors evoke changes in both behavior and antennal lobe (AL) neuronal responses and that dopamine strongly modulates odor-evoked responses in AL neurons. Not only do these results provide direct experimental evidence that olfactory learning in mosquitoes can play an epidemiological role, but collectively, they also provide neuroanatomical and functional demonstration of the role of dopamine in mediating this learning-induced plasticity, for the first time in a disease vector insect. Copyright © 2017 Elsevier Ltd. All rights reserved.
Krashes, Michael J.; Waddell, Scott
2008-01-01
In Drosophila, formation of aversive olfactory long-term memory (LTM) requires multiple training sessions pairing odor and electric shock punishment with rest intervals. In contrast, here we show that a single 2 min training session pairing odor with a more ethologically relevant sugar reinforcement forms long-term appetitive memory that lasts for days. Appetitive LTM has some mechanistic similarity to aversive LTM in that it can be disrupted by cycloheximide, the dCreb2-b transcriptional repressor, and the crammer and tequila LTM-specific mutations. However, appetitive LTM is completely disrupted by the radish mutation that apparently represents a distinct mechanistic phase of consolidated aversive memory. Furthermore, appetitive LTM requires activity in the dorsal paired medial neuron and mushroom body α′ β′ neuron circuit during the first hour after training and mushroom body αβ neuron output during retrieval, suggesting that appetitive middle-term memory and LTM are mechanistically linked. Last, experiments feeding and/or starving flies after training reveals a critical motivational drive that enables appetitive LTM retrieval. PMID:18354013
van den Bosch, I; van Delft, J M; de Wijk, R A; de Graaf, C; Boesveldt, S
2015-11-01
Evaluative conditioning may be an important mechanism for learning food preferences and aversions; however, in both real life and experimental settings it has not been consistently successful. The current study aimed to gain more insight into which underlying factors may contribute to a successful outcome of olfactory evaluative conditioning. Two groups of 18 participants came in on three consecutive days, and were repeatedly exposed to four novel, neutral odors (CS) coupled to varying disliked, neutral, liked, or no stimuli (taste and/or pictures, US), following a 50% reinforcement schedule, leading to 40 odor presentations per session. Liking ratings, as well as changes in the autonomic nervous system were assessed before, during and after conditioning. We were able to induce negative, but not positive, affective changes by pairing neutral odors with tastes and pictures differing in valence. Negative as well as multimodal stimuli appear to be more potent US, since they may be considered more salient. Lastly, results of the current study imply that heart rate is responsive to changes in valence of olfactory stimuli, and perhaps even more sensitive than explicit ratings of liking. Copyright © 2015 Elsevier Inc. All rights reserved.
Delay, Eugene R; Kondoh, Takashi
2015-02-01
The primary taste of dried bonito dashi is thought to be umami, elicited by inosine 5'-monphosphate (IMP) and L-amino acids. The present study compared the taste qualities of 25% dashi with 5 basic tastes and amino acids using conditioned taste aversion methods. Although wild-type C57BL/6J mice with compromised olfactory systems generalized an aversion of dashi to all 5 basic tastes, generalization was greater to sucrose (sweet), citric acid (sour), and quinine (bitter) than to NaCl (salty) or monosodium L-glutamate (umami) with amiloride. At neutral pH (6.5-6.9), the aversion generalized to l-histidine, L-alanine, L-proline, glycine, L-aspartic acid, L-serine, and monosodium L-glutamate, all mixed with IMP. Lowering pH of the test solutions to 5.7-5.8 (matching dashi) with HCl decreased generalization to some amino acids. However, adding lactic acid to test solutions with the same pH increased generalization to 5'-inosine monophosphate, L-leucine, L-phenylalanine, L-valine, L-arginine, and taurine but eliminated generalization to L-histidine. T1R1 knockout mice readily learned the aversion to dashi and generalized the aversion to sucrose, citric acid, and quinine but not to NaCl, glutamate, or any amino acid. These results suggest that dashi elicits a complex taste in mice that is more than umami, and deleting T1R1 receptor altered but did not eliminate their ability to taste dashi. In addition, lactic acid may alter or modulate taste transduction or cell-to-cell signaling. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Calbiague, Victor Manuel; Olivares, Jesus; Olivares, Erick; Schmachtenberg, Oliver
2017-09-01
Spiders of the family Sicariidae pose a serious threat to affected populations, and Loxosceles laeta (Nicolet) is considered the most venomous species. Development of nontoxic olfaction-based spider repellents or traps is hindered by a current lack of knowledge regarding olfactory system function in arachnids. In the present study, general plant odorants and conspecific odors were tested for behavioral responses in L. laeta. Although general odorants triggered neither attraction nor aversion, conspecific odor of the opposite sex caused aversion in females, and attraction in males. These results support the presence of a specific olfactory system for the detection of conspecifics in L. laeta, but suggest the absence of a broadly tuned system for general odorant detection in this species. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Vinera, Jennifer; Kermen, Florence; Sacquet, Joëlle; Didier, Anne; Mandairon, Nathalie; Richard, Marion
2015-01-01
Noradrenaline contributes to olfactory-guided behaviors but its role in olfactory learning during adulthood is poorly documented. We investigated its implication in olfactory associative and perceptual learning using local infusion of mixed a1-ß adrenergic receptor antagonist (labetalol) in the adult mouse olfactory bulb. We reported that…
The effect of antibiotics on social aversion following early life inflammation.
Kentner, Amanda C; Khan, Urma; MacRae, M; Dowd, Scot E; Yan, Siyang
2018-06-13
Epidemiological evidence suggests that exposure to infection during early development increases the risk for neurodevelopmental disorders associated with symptoms such as a decreased desire to engage in social interactions. In animals, disruptions in social behavior can be modelled by administering bacterial mimetics such as liposaccharide (LPS). However, when evaluating social interactions in the laboratory, attention is rarely directed on the reciprocal relationship as a whole, which is important as peers may drive social withdrawal. Previously, we have shown that male adolescent rats treated neonatally (n) with LPS receive less contact from their conspecifics in a social interaction test, and that this effect is mediated through olfactory communication. In the present study, we reconfirmed this effect using a more direct social test and evaluated the hypothesis that changes in the microbiome underlie the olfactory induced social aversion. Male and female Sprague-Dawley rats were administered nLPS (50 μg/kg, i.p) or nSaline on postnatal days (P)3 and 5. On P40, adolescent nLPS treated males received less contact in a social preference test compared to nSaline treated controls, an effect not observed in females. To confirm that nLPS led male rats to elicit a scent cue, resulting in social aversion, a subset of neurotypical conspecifics underwent an anosmia procedure that disrupted their olfactory processing via olfactory neuroepithelium degeneration. This normalized the contact that they directed towards nLPS and nSaline male rats. Although 16 s rRNA sequencing failed to detect significant differences in bacterial phyla across either sex or neonatal treatment, treating male nLPS rats with an antibiotic cocktail, which induced clear changes in microbial communities, diminished the social rejection effect. Therefore, manipulation of the microbiome appears to affect social communication where there exists an underlying deficit. Moreover, our data reaffirm that social engagement is a reciprocal process and the behavior of all individuals within a dynamic interaction should be evaluated. Copyright © 2018 Elsevier Inc. All rights reserved.
Association of Amine-Receptor DNA Sequence Variants with Associative Learning in the Honeybee.
Lagisz, Malgorzata; Mercer, Alison R; de Mouzon, Charlotte; Santos, Luana L S; Nakagawa, Shinichi
2016-03-01
Octopamine- and dopamine-based neuromodulatory systems play a critical role in learning and learning-related behaviour in insects. To further our understanding of these systems and resulting phenotypes, we quantified DNA sequence variations at six loci coding octopamine-and dopamine-receptors and their association with aversive and appetitive learning traits in a population of honeybees. We identified 79 polymorphic sequence markers (mostly SNPs and a few insertions/deletions) located within or close to six candidate genes. Intriguingly, we found that levels of sequence variation in the protein-coding regions studied were low, indicating that sequence variation in the coding regions of receptor genes critical to learning and memory is strongly selected against. Non-coding and upstream regions of the same genes, however, were less conserved and sequence variations in these regions were weakly associated with between-individual differences in learning-related traits. While these associations do not directly imply a specific molecular mechanism, they suggest that the cross-talk between dopamine and octopamine signalling pathways may influence olfactory learning and memory in the honeybee.
[Food intake regulation - 2nd part].
Brunerová, Ludmila; Anděl, Michal
2014-01-01
The review article summarizes the principles of hedonic regulation of food intake which represents the food intake independent on the maintenance of homeostasis. The theory describing hedonic regulation, so called Incentive Salience Theory, comprises three major processes: liking (positive attribution to food stimulus), wanting (motivation to gain it) and learning (identification of these stimuli and distinguishing them from those connected with aversive reaction). Neuronal reward circuits are the anatomical and functional substrates of hedonic regulation. They react to gustatory and olfactory (or visual) stimuli associated with food intake. A food item is preferred in case its consumption is connected with a pleasant feeling thus promoting the behavioural reaction. The probability of this reaction after repetitive exposure to such a stimulus is increased (learned preference). On the contrary, learned aversion after repetitive exposure is connected with avoidance of a food item associated with a negative feeling. Main mediators of hedonic regulation are endocannabinoids, opioids and monoamines (dopamine, serotonin). Dopamine in dorsal striatum via D2 receptors generates food motivation as a key means of survival, however in ventral striatum (nucleus accumbens) is responsible for motivation to food bringing pleasure. Serotonin via its receptors 5-HT1A a T-HT2C decreases intake of palatable food. It plays a significant role in the pathogenesis of eating disorders, particularly mental anorexia. There, a food restriction represents a kind of automedication to constitutionally pathologically increased serotonin levels. Detailed understanding of processes regulating food intake is a key to new pharmacological interventions in eating disorders.
Junca, Pierre; Sandoz, Jean-Christophe
2015-01-01
The recent development of the olfactory conditioning of the sting extension response (SER) has provided new insights into the mechanisms of aversive learning in honeybees. Until now, very little information has been gained concerning US detection and perception. In the initial version of SER conditioning, bees learned to associate an odor CS with an electric shock US. Recently, we proposed a modified version of SER conditioning, in which thermal stimulation with a heated probe is used as US. This procedure has the advantage of allowing topical US applications virtually everywhere on the honeybee body. In this study, we made use of this possibility and mapped thermal responsiveness on the honeybee body, by measuring workers' SER after applying heat on 41 different structures. We then show that bees can learn the CS-US association even when the heat US is applied on body structures that are not prominent sensory organs, here the vertex (back of the head) and the ventral abdomen. Next, we used a neuropharmalogical approach to evaluate the potential role of a recently described Transient Receptor Potential (TRP) channel, HsTRPA, on peripheral heat detection by bees. First, we applied HsTRPA activators to assess if such activation is sufficient for triggering SER. Second, we injected HsTRPA inhibitors to ask whether interfering with this TRP channel affects SER triggered by heat. These experiments suggest that HsTRPA may be involved in heat detection by bees, and represent a potential peripheral detection system in thermal SER conditioning. PMID:26635613
Acetylcholine and Olfactory Perceptual Learning
ERIC Educational Resources Information Center
Wilson, Donald A.; Fletcher, Max L.; Sullivan, Regina M.
2004-01-01
Olfactory perceptual learning is a relatively long-term, learned increase in perceptual acuity, and has been described in both humans and animals. Data from recent electrophysiological studies have indicated that olfactory perceptual learning may be correlated with changes in odorant receptive fields of neurons in the olfactory bulb and piriform…
Olfaction in child and adolescent anorexia nervosa.
Schecklmann, Martin; Pfannstiel, Christoph; Fallgatter, Andreas J; Warnke, Andreas; Gerlach, Manfred; Romanos, Marcel
2012-06-01
Previous studies indicate disturbed olfactory functions in anorexia nervosa with presumable relationship to the clinical symptom of food aversion and weight loss. However, these studies are in part limited due to inadequately matched control samples, insufficient exclusion criteria, complex interactions of the olfactory and trigeminal system, and the lack of regard to co-morbidity and medication. Thus, we investigated olfactory function in 26 female adolescent patients with anorexia nervosa and 23 healthy controls matched for age, gender, handedness, and intelligence. No significant group differences were identified. Controlling for co-morbid disorders, psychopharmacological treatment, and depressivity revealed superior olfactory identification performance in the "pure" anorexia nervosa group (n = 15) in contrast to the controls. Superior identification may be mediated by increased attentional processes towards food stimuli in patients with anorexia nervosa. Effects of co-morbidity and medication highlight the role of neurobiological factors in the etiology of anorexia nervosa. Furthermore, as other neuropsychiatric disorders such as Parkinson's disease or attention deficit hyperactivity disorder show distinct olfactory function patterns, olfaction may be suitable as phenotypic marker with potential relevance for (differential) diagnosis in neuropsychiatric disorders.
AKAPS Act in a Two-Step Mechanism of Memory Acquisition
Scheunemann, Lisa; Skroblin, Philipp; Hundsrucker, Christian; Klussmann, Enno; Efetova, Marina
2013-01-01
Defining the molecular and neuronal basis of associative memories is based upon behavioral preparations that yield high performance due to selection of salient stimuli, strong reinforcement, and repeated conditioning trials. One of those preparations is the Drosophila aversive olfactory conditioning procedure where animals initiate multiple memory components after experience of a single cycle training procedure. Here, we explored the analysis of acquisition dynamics as a means to define memory components and revealed strong correlations between particular chronologies of shock impact and number experienced during the associative training situation and subsequent performance of conditioned avoidance. Analyzing acquisition dynamics in Drosophila memory mutants revealed that rutabaga (rut)-dependent cAMP signals couple in a divergent fashion for support of different memory components. In case of anesthesia-sensitive memory (ASM) we identified a characteristic two-step mechanism that links rut-AC1 to A-kinase anchoring proteins (AKAP)-sequestered protein kinase A at the level of Kenyon cells, a recognized center of olfactory learning within the fly brain. We propose that integration of rut-derived cAMP signals at level of AKAPs might serve as counting register that accounts for the two-step mechanism of ASM acquisition. PMID:24174675
No evidence for visual context-dependency of olfactory learning in Drosophila
NASA Astrophysics Data System (ADS)
Yarali, Ayse; Mayerle, Moritz; Nawroth, Christian; Gerber, Bertram
2008-08-01
How is behaviour organised across sensory modalities? Specifically, we ask concerning the fruit fly Drosophila melanogaster how visual context affects olfactory learning and recall and whether information about visual context is getting integrated into olfactory memory. We find that changing visual context between training and test does not deteriorate olfactory memory scores, suggesting that these olfactory memories can drive behaviour despite a mismatch of visual context between training and test. Rather, both the establishment and the recall of olfactory memory are generally facilitated by light. In a follow-up experiment, we find no evidence for learning about combinations of odours and visual context as predictors for reinforcement even after explicit training in a so-called biconditional discrimination task. Thus, a ‘true’ interaction between visual and olfactory modalities is not evident; instead, light seems to influence olfactory learning and recall unspecifically, for example by altering motor activity, alertness or olfactory acuity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabin, B.M.; Hunt, W.A.; Lee, J.
1987-01-01
Three experiments were run to assess the role of the area postrema in taste-aversion learning resulting from combined treatment with subthreshold unconditioned stimuli and in the acquisition of an amphetamine-induced taste aversion. In the first experiment, it was shown that combined treatment with subthreshold radiation (15 rad) and subthreshold amphetamine (0.5 mg/kg, IP) resulted in the acquisition of a taste aversion. The second experiment showed that lesions of the area postrema blocked taste aversion learning produced by two subthreshold doses of amphetamine. In the third experiment, which looked at the dose-response curve for amphetamine-induced taste aversion learning to intact ratsmore » and rats with area postrema lesions, it was shown that both groups of rats acquired taste aversions following injection of amphetamine, although the rats with lesions showed a less-severe aversion than the intact rats. The results are interpreted as indicating that amphetamine-induced taste-aversion learning may involve area post-remamediated mechanisms, particularly at the lower doses, but an intact area postrema is not a necessary condition of the acquisition of an amphetamine-induced taste aversion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabin, B.M.; Hunt, W.A.; Lee, J.
1987-08-01
Three experiments were run to assess the role of the area postrema in taste aversion learning resulting from combined treatment with subthreshold unconditioned stimuli and in the acquisition of an amphetamine-induced taste aversion. In the first experiment, it was shown that combined treatment with subthreshold radiation (15 rad) and subthreshold amphetamine (0.5 mg/kg, IP) resulted in the acquisition of a taste aversion. The second experiment showed that lesions of the area postrema blocked taste aversion learning produced by two subthreshold doses of amphetamine. In the third experiment, which looked at the dose-response curve for amphetamine-induced taste aversion learning in intactmore » rats and rats with area postrema lesions, it was shown that both groups of rats acquired taste aversions following injection of amphetamine, although the rats with lesions showed a less severe aversion than the intact rats. The results are interpreted as indicating that amphetamine-induced taste aversion learning may involve area postrema-mediated mechanisms, particularly at the lower doses, but that an intact area postrema is not a necessary condition for the acquisition of an amphetamine-induced taste aversion.« less
A Presynaptic Gain Control Mechanism Fine-Tunes Olfactory Behavior
Root, Cory M.; Masuyama, Kaoru; Green, David S.; Enell, Lina E.; Nässel, Dick R.; Lee, Chi-Hon; Wang, Jing W.
2008-01-01
Early sensory processing can play a critical role in sensing environmental cues. We have investigated the physiological and behavioral function of gain control at the first synapse of olfactory processing in Drosophila. We report that olfactory receptor neurons (ORNs) express the GABAB receptor (GABABR) and its expression expands the dynamic range of ORN synaptic transmission that is preserved in projection neuron responses. Strikingly, we find that different ORN channels have unique baseline levels of GABABR expression. ORNs that sense the aversive odorant CO2 do not express GABABRs nor exhibit any presynaptic inhibition. In contrast, pheromone-sensing ORNs express a high level of GABABRs and exhibit strong presynaptic inhibition. Furthermore, a behavioral significance of presynaptic inhibition was revealed by a courtship behavior in which pheromone-dependent mate localization is impaired in flies that lack GABABRs in specific ORNs. Together, these findings indicate that different olfactory receptor channels may employ heterogeneous presynaptic gain control as a mechanism to allow an animal’s innate behavioral responses to match its ecological needs. PMID:18667158
Aversive Learning and Trait Aggression Influence Retaliatory Behavior.
Molapour, Tanaz; Lindström, Björn; Olsson, Andreas
2016-01-01
In two experiments (n = 35, n = 34), we used a modified fear-conditioning paradigm to investigate the role of aversive learning in retaliatory behavior in social context. Participants first completed an initial aversive learning phase in which the pairing of a neutral conditioned stimulus (CS; i.e., neutral face) with a naturally aversive unconditioned stimulus (US; electric shock) was learned. Then they were given an opportunity to interact (i.e., administer 0-2 shocks) with the same faces again, during a Test phase. In Experiment 2, we used the same paradigm with the addition of online trial-by-trial ratings (e.g., US expectancy and anger) to examine the role of aversive learning, anger, and the learned expectancy of receiving punishment more closely. Our results indicate that learned aversions influenced future retaliation in a social context. In both experiments, participants showed largest skin conductance responses (SCRs) to the faces paired with one or two shocks, demonstrating successful aversive learning. Importantly, participants administered more shocks to the faces paired with the most number of shocks when the opportunity was given during test. Also, our results revealed that aggressive traits (Buss and Perry Aggression scale) were associated with retaliation only toward CSs associated with aversive experiences. These two experiments show that aggressive traits, when paired with aversive learning experiences enhance the likelihood to act anti-socially toward others.
Aversive Learning and Trait Aggression Influence Retaliatory Behavior
Molapour, Tanaz; Lindström, Björn; Olsson, Andreas
2016-01-01
In two experiments (n = 35, n = 34), we used a modified fear-conditioning paradigm to investigate the role of aversive learning in retaliatory behavior in social context. Participants first completed an initial aversive learning phase in which the pairing of a neutral conditioned stimulus (CS; i.e., neutral face) with a naturally aversive unconditioned stimulus (US; electric shock) was learned. Then they were given an opportunity to interact (i.e., administer 0–2 shocks) with the same faces again, during a Test phase. In Experiment 2, we used the same paradigm with the addition of online trial-by-trial ratings (e.g., US expectancy and anger) to examine the role of aversive learning, anger, and the learned expectancy of receiving punishment more closely. Our results indicate that learned aversions influenced future retaliation in a social context. In both experiments, participants showed largest skin conductance responses (SCRs) to the faces paired with one or two shocks, demonstrating successful aversive learning. Importantly, participants administered more shocks to the faces paired with the most number of shocks when the opportunity was given during test. Also, our results revealed that aggressive traits (Buss and Perry Aggression scale) were associated with retaliation only toward CSs associated with aversive experiences. These two experiments show that aggressive traits, when paired with aversive learning experiences enhance the likelihood to act anti-socially toward others. PMID:27375520
Awata, Hiroko; Wakuda, Ryo; Ishimaru, Yoshiyasu; Matsuoka, Yuji; Terao, Kanta; Katata, Satomi; Matsumoto, Yukihisa; Hamanaka, Yoshitaka; Noji, Sumihare; Mito, Taro; Mizunami, Makoto
2016-01-01
Revealing reinforcing mechanisms in associative learning is important for elucidation of brain mechanisms of behavior. In mammals, dopamine neurons are thought to mediate both appetitive and aversive reinforcement signals. Studies using transgenic fruit-flies suggested that dopamine neurons mediate both appetitive and aversive reinforcements, through the Dop1 dopamine receptor, but our studies using octopamine and dopamine receptor antagonists and using Dop1 knockout crickets suggested that octopamine neurons mediate appetitive reinforcement and dopamine neurons mediate aversive reinforcement in associative learning in crickets. To fully resolve this issue, we examined the effects of silencing of expression of genes that code the OA1 octopamine receptor and Dop1 and Dop2 dopamine receptors by RNAi in crickets. OA1-silenced crickets exhibited impairment in appetitive learning with water but not in aversive learning with sodium chloride solution, while Dop1-silenced crickets exhibited impairment in aversive learning but not in appetitive learning. Dop2-silenced crickets showed normal scores in both appetitive learning and aversive learning. The results indicate that octopamine neurons mediate appetitive reinforcement via OA1 and that dopamine neurons mediate aversive reinforcement via Dop1 in crickets, providing decisive evidence that neurotransmitters and receptors that mediate appetitive reinforcement indeed differ among different species of insects. PMID:27412401
Awata, Hiroko; Wakuda, Ryo; Ishimaru, Yoshiyasu; Matsuoka, Yuji; Terao, Kanta; Katata, Satomi; Matsumoto, Yukihisa; Hamanaka, Yoshitaka; Noji, Sumihare; Mito, Taro; Mizunami, Makoto
2016-07-14
Revealing reinforcing mechanisms in associative learning is important for elucidation of brain mechanisms of behavior. In mammals, dopamine neurons are thought to mediate both appetitive and aversive reinforcement signals. Studies using transgenic fruit-flies suggested that dopamine neurons mediate both appetitive and aversive reinforcements, through the Dop1 dopamine receptor, but our studies using octopamine and dopamine receptor antagonists and using Dop1 knockout crickets suggested that octopamine neurons mediate appetitive reinforcement and dopamine neurons mediate aversive reinforcement in associative learning in crickets. To fully resolve this issue, we examined the effects of silencing of expression of genes that code the OA1 octopamine receptor and Dop1 and Dop2 dopamine receptors by RNAi in crickets. OA1-silenced crickets exhibited impairment in appetitive learning with water but not in aversive learning with sodium chloride solution, while Dop1-silenced crickets exhibited impairment in aversive learning but not in appetitive learning. Dop2-silenced crickets showed normal scores in both appetitive learning and aversive learning. The results indicate that octopamine neurons mediate appetitive reinforcement via OA1 and that dopamine neurons mediate aversive reinforcement via Dop1 in crickets, providing decisive evidence that neurotransmitters and receptors that mediate appetitive reinforcement indeed differ among different species of insects.
Larsen, Tobias; Collette, Sven; Tyszka, Julian M.; Seymour, Ben; O'Doherty, John P.
2015-01-01
The role of neurons in the substantia nigra (SN) and ventral tegmental area (VTA) of the midbrain in contributing to the elicitation of reward prediction errors during appetitive learning has been well established. Less is known about the differential contribution of these midbrain regions to appetitive versus aversive learning, especially in humans. Here we scanned human participants with high-resolution fMRI focused on the SN and VTA while they participated in a sequential Pavlovian conditioning paradigm involving an appetitive outcome (a pleasant juice), as well as an aversive outcome (an unpleasant bitter and salty flavor). We found a degree of regional specialization within the SN: Whereas a region of ventromedial SN correlated with a temporal difference reward prediction error during appetitive Pavlovian learning, a dorsolateral area correlated instead with an aversive expected value signal in response to the most distal cue, and to a reward prediction error in response to the most proximal cue to the aversive outcome. Furthermore, participants' affective reactions to both the appetitive and aversive conditioned stimuli more than 1 year after the fMRI experiment was conducted correlated with activation in the ventromedial and dorsolateral SN obtained during the experiment, respectively. These findings suggest that, whereas the human ventromedial SN contributes to long-term learning about rewards, the dorsolateral SN may be particularly important for long-term learning in aversive contexts. SIGNIFICANCE STATEMENT The role of the substantia nigra (SN) and ventral tegmental area (VTA) in appetitive learning is well established, but less is known about their contribution to aversive compared with appetitive learning, especially in humans. We used high-resolution fMRI to measure activity in the SN and VTA while participants underwent higher-order Pavlovian learning. We found a regional specialization within the SN: a ventromedial area was selectively engaged during appetitive learning, and a dorsolateral area during aversive learning. Activity in these areas predicted affective reactions to appetitive and aversive conditioned stimuli over 1 year later. These findings suggest that, whereas the human ventromedial SN contributes to long-term learning about rewards, the dorsolateral SN may be particularly important for long-term learning in aversive contexts. PMID:26490862
Visual Aversive Learning Compromises Sensory Discrimination.
Shalev, Lee; Paz, Rony; Avidan, Galia
2018-03-14
Aversive learning is thought to modulate perceptual thresholds, which can lead to overgeneralization. However, it remains undetermined whether this modulation is domain specific or a general effect. Moreover, despite the unique role of the visual modality in human perception, it is unclear whether this aspect of aversive learning exists in this modality. The current study was designed to examine the effect of visual aversive outcomes on the perception of basic visual and auditory features. We tested the ability of healthy participants, both males and females, to discriminate between neutral stimuli, before and after visual learning. In each experiment, neutral stimuli were associated with aversive images in an experimental group and with neutral images in a control group. Participants demonstrated a deterioration in discrimination (higher discrimination thresholds) only after aversive learning. This deterioration was measured for both auditory (tone frequency) and visual (orientation and contrast) features. The effect was replicated in five different experiments and lasted for at least 24 h. fMRI neural responses and pupil size were also measured during learning. We showed an increase in neural activations in the anterior cingulate cortex, insula, and amygdala during aversive compared with neutral learning. Interestingly, the early visual cortex showed increased brain activity during aversive compared with neutral context trials, with identical visual information. Our findings imply the existence of a central multimodal mechanism, which modulates early perceptual properties, following exposure to negative situations. Such a mechanism could contribute to abnormal responses that underlie anxiety states, even in new and safe environments. SIGNIFICANCE STATEMENT Using a visual aversive-learning paradigm, we found deteriorated discrimination abilities for visual and auditory stimuli that were associated with visual aversive stimuli. We showed increased neural activations in the anterior cingulate cortex, insula, and amygdala during aversive learning, compared with neutral learning. Importantly, similar findings were also evident in the early visual cortex during trials with aversive/neutral context, but with identical visual information. The demonstration of this phenomenon in the visual modality is important, as it provides support to the notion that aversive learning can influence perception via a central mechanism, independent of input modality. Given the dominance of the visual system in human perception, our findings hold relevance to daily life, as well as imply a potential etiology for anxiety disorders. Copyright © 2018 the authors 0270-6474/18/382766-14$15.00/0.
The vomeronasal system mediates sick conspecific avoidance.
Boillat, Madlaina; Challet, Ludivine; Rossier, Daniel; Kan, Chenda; Carleton, Alan; Rodriguez, Ivan
2015-01-19
Although sociability offers many advantages, a major drawback is the increased risk of exposure to contagious pathogens, like parasites, viruses, or bacteria. Social species have evolved various behavioral strategies reducing the probability of pathogen exposure. In rodents, sick conspecific avoidance can be induced by olfactory cues emitted by parasitized or infected conspecifics. The neural circuits involved in this behavior remain largely unknown. We observed that olfactory cues present in bodily products of mice in an acute inflammatory state or infected with a viral pathogen are aversive to conspecifics. We found that these chemical signals trigger neural activity in the vomeronasal system, an olfactory subsystem controlling various innate behaviors. Supporting the functional relevance of these observations, we show that preference toward healthy individuals is abolished in mice with impaired vomeronasal function. These findings reveal a novel function played by the vomeronasal system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lateral, not medial, prefrontal cortex contributes to punishment and aversive instrumental learning
Jean-Richard-dit-Bressel, Philip
2016-01-01
Aversive outcomes punish behaviors that cause their occurrence. The prefrontal cortex (PFC) has been implicated in punishment learning and behavior, although the exact roles for different PFC regions in instrumental aversive learning and decision-making remain poorly understood. Here, we assessed the role of the orbitofrontal (OFC), rostral agranular insular (RAIC), prelimbic (PL), and infralimbic (IL) cortex in instrumental aversive learning and decision-making. Rats that pressed two individually presented levers for pellet rewards rapidly suppressed responding to one lever if it also caused mild punishment (punished lever) but continued pressing the other lever that did not cause punishment (unpunished lever). Inactivations of OFC, RAIC, IL, or PL via the GABA agonists baclofen and muscimol (BM) had no effect on the acquisition of instrumental learning. OFC inactivations increased responding on the punished lever during expression of well-learned instrumental aversive learning, whereas RAIC inactivations increased responding on the punished lever when both levers were presented simultaneously in an unpunished choice test. There were few effects of medial PFC (PL and IL) inactivation. These results suggest that lateral PFC, notably OFC and RAIC, have complementary functions in aversive instrumental learning and decision-making; OFC is important for using established aversive instrumental memories to guide behavior away from actions that cause punishment, whereas RAIC is important for aversive decision-making under conditions of choice. PMID:27918280
Ravi, Sridhar; Garcia, Jair E; Wang, Chun; Dyer, Adrian G
2016-11-01
Bees navigate in complex environments using visual, olfactory and mechano-sensorial cues. In the lowest region of the atmosphere, the wind environment can be highly unsteady and bees employ fine motor-skills to enhance flight control. Recent work reveals sophisticated multi-modal processing of visual and olfactory channels by the bee brain to enhance foraging efficiency, but it currently remains unclear whether wind-induced mechano-sensory inputs are also integrated with visual information to facilitate decision making. Individual honeybees were trained in a linear flight arena with appetitive-aversive differential conditioning to use a context-setting cue of 3 m s -1 cross-wind direction to enable decisions about either a 'blue' or 'yellow' star stimulus being the correct alternative. Colour stimuli properties were mapped in bee-specific opponent-colour spaces to validate saliency, and to thus enable rapid reverse learning. Bees were able to integrate mechano-sensory and visual information to facilitate decisions that were significantly different to chance expectation after 35 learning trials. An independent group of bees were trained to find a single rewarding colour that was unrelated to the wind direction. In these trials, wind was not used as a context-setting cue and served only as a potential distracter in identifying the relevant rewarding visual stimuli. Comparison between respective groups shows that bees can learn to integrate visual and mechano-sensory information in a non-elemental fashion, revealing an unsuspected level of sensory processing in honeybees, and adding to the growing body of knowledge on the capacity of insect brains to use multi-modal sensory inputs in mediating foraging behaviour. © 2016. Published by The Company of Biologists Ltd.
Reception of odors and repellents in mosquitoes
Ray, Anandasankar
2015-01-01
Mosquitoes use their sense of smell to find hosts, nectar, and oviposition sites, and to avoid repellents. A small number of mosquito species are adapted to feed on humans and have a major impact on public health by transmitting malaria, dengue, filariasis, etc. The application of odorants for behavioral control has not been fully realized yet due to complexity of the mosquito olfactory system. Recent progress in molecular and computational tools has enabled rigorous investigations of the mosquito olfactory system function and has started to reveal how specific receptors contribute to attractive and aversive behaviors. Here we discuss recent advances in linking odors to receptors and in exploiting this knowledge in finding attractants and repellents for mosquitoes. PMID:26202080
G(o) Activation Is Required for Both Appetitive and Aversive Memory Acquisition in "Drosophila"
ERIC Educational Resources Information Center
Madalan, Adrian; Yang, Xiao; Ferris, Jacob; Zhang, Shixing; Roman, Gregg
2012-01-01
Heterotrimeric G(o) is an abundant brain protein required for negatively reinforced short-term associative olfactory memory in "Drosophila". G(o) is the only known substrate of the S1 subunit of pertussis toxin (PTX) in fly, and acute expression of PTX within the mushroom body neurons (MB) induces a reversible deficit in associative olfactory…
ERIC Educational Resources Information Center
Ferry, Barbara; Duchamp-Viret, Patricia
2014-01-01
To test the selectivity of the orexin A (OXA) system in olfactory sensitivity, the present study compared the effects of fasting and of central infusion of OXA on the memory processes underlying odor-malaise association during the conditioned odor aversion (COA) paradigm. Animals implanted with a cannula in the left ventricle received ICV infusion…
Parametric and genetic analysis of Drosophila appetitive long-term memory and sugar motivation.
Colomb, J; Kaiser, L; Chabaud, M-A; Preat, T
2009-06-01
Distinct forms of memory can be highlighted using different training protocols. In Drosophila olfactory aversive learning, one conditioning session triggers memory formation independently of protein synthesis, while five spaced conditioning sessions lead to the formation of long-term memory (LTM), a long-lasting memory dependent on de novo protein synthesis. In contrast, one session of odour-sugar association appeared sufficient for the fly to form LTM. We designed and tuned an apparatus that facilitates repeated discriminative conditioning by alternate presentations of two odours, one being associated with sugar, as well as a new paradigm to test sugar responsiveness (SR). Our results show that both SR and short-term memory (STM) scores increase with starvation length before conditioning. The protein dependency of appetitive LTM is independent of the repetition and the spacing of training sessions, on the starvation duration and on the strength of the unconditioned stimulus. In contrast to a recent report, our test measures an abnormal SR of radish mutant flies, which might initiate their STM and LTM phenotypes. In addition, our work shows that crammer and tequila mutants, which are deficient for aversive LTM, present both an SR and an appetitive STM defect. Using the MB247-P[switch] system, we further show that tequila is required in the adult mushroom bodies for normal sugar motivation.
The Sound and the Fury—Bees Hiss when Expecting Danger
Galizia, C. Giovanni
2015-01-01
Honey bees are important model systems for the investigation of learning and memory and for a better understanding of the neuronal basics of brain function. Honey bees also possess a rich repertoire of tones and sounds, from queen piping and quacking to worker hissing and buzzing. In this study, we tested whether the worker bees’ sounds can be used as a measure of learning. We therefore conditioned honey bees aversively to odours in a walking arena and recorded both their sound production and their movement. Bees were presented with two odours, one of which was paired with an electric shock. Initially, the bees did not produce any sound upon odour presentation, but responded to the electric shock with a strong hissing response. After learning, many bees hissed at the presentation of the learned odour, while fewer bees hissed upon presentation of another odour. We also found that hissing and movement away from the conditioned odour are independent behaviours that can co-occur but do not necessarily do so. Our data suggest that hissing can be used as a readout for learning after olfactory conditioning, but that there are large individual differences between bees concerning their hissing reaction. The basis for this variability and the possible ecological relevance of the bees’ hissing remain to be investigated. PMID:25747702
The sound and the fury--bees hiss when expecting danger.
Wehmann, Henja-Niniane; Gustav, David; Kirkerud, Nicholas H; Galizia, C Giovanni
2015-01-01
Honey bees are important model systems for the investigation of learning and memory and for a better understanding of the neuronal basics of brain function. Honey bees also possess a rich repertoire of tones and sounds, from queen piping and quacking to worker hissing and buzzing. In this study, we tested whether the worker bees' sounds can be used as a measure of learning. We therefore conditioned honey bees aversively to odours in a walking arena and recorded both their sound production and their movement. Bees were presented with two odours, one of which was paired with an electric shock. Initially, the bees did not produce any sound upon odour presentation, but responded to the electric shock with a strong hissing response. After learning, many bees hissed at the presentation of the learned odour, while fewer bees hissed upon presentation of another odour. We also found that hissing and movement away from the conditioned odour are independent behaviours that can co-occur but do not necessarily do so. Our data suggest that hissing can be used as a readout for learning after olfactory conditioning, but that there are large individual differences between bees concerning their hissing reaction. The basis for this variability and the possible ecological relevance of the bees' hissing remain to be investigated.
Genetic disruptions of Drosophila Pavlovian learning leave extinction learning intact.
Qin, H; Dubnau, J
2010-03-01
Individuals who experience traumatic events may develop persistent posttraumatic stress disorder. Patients with this disorder are commonly treated with exposure therapy, which has had limited long-term success. In experimental neurobiology, fear extinction is a model for exposure therapy. In this behavioral paradigm, animals are repeatedly exposed in a safe environment to the fearful stimulus, which leads to greatly reduced fear. Studying animal models of extinction already has lead to better therapeutic strategies and development of new candidate drugs. Lack of a powerful genetic model of extinction, however, has limited progress in identifying underlying molecular and genetic factors. In this study, we established a robust behavioral paradigm to study the short-term effect (acquisition) of extinction in Drosophila melanogaster. We focused on the extinction of olfactory aversive 1-day memory with a task that has been the main workhorse for genetics of memory in flies. Using this paradigm, we show that extinction can inhibit each of two genetically distinct forms of consolidated memory. We then used a series of single-gene mutants with known impact on associative learning to examine the effects on extinction. We find that extinction is intact in each of these mutants, suggesting that extinction learning relies on different molecular mechanisms than does Pavlovian learning.
Galantamine improves olfactory learning in the Ts65Dn mouse model of Down syndrome
Simoes de Souza, Fabio M.; Busquet, Nicolas; Blatner, Megan; Maclean, Kenneth N.; Restrepo, Diego
2011-01-01
Down syndrome (DS) is the most common form of congenital intellectual disability. Although DS involves multiple disturbances in various tissues, there is little doubt that in terms of quality of life cognitive impairment is the most serious facet and there is no effective treatment for this aspect of the syndrome. The Ts65Dn mouse model of DS recapitulates multiple aspects of DS including cognitive impairment. Here the Ts65Dn mouse model of DS was evaluated in an associative learning paradigm based on olfactory cues. In contrast to disomic controls, trisomic mice exhibited significant deficits in olfactory learning. Treatment of trisomic mice with the acetylcholinesterase inhibitor galantamine resulted in a significant improvement in olfactory learning. Collectively, our study indicates that olfactory learning can be a sensitive tool for evaluating deficits in associative learning in mouse models of DS and that galantamine has therapeutic potential for improving cognitive abilities. PMID:22355654
Galantamine improves olfactory learning in the Ts65Dn mouse model of Down syndrome.
de Souza, Fabio M Simoes; Busquet, Nicolas; Blatner, Megan; Maclean, Kenneth N; Restrepo, Diego
2011-01-01
Down syndrome (DS) is the most common form of congenital intellectual disability. Although DS involves multiple disturbances in various tissues, there is little doubt that in terms of quality of life cognitive impairment is the most serious facet and there is no effective treatment for this aspect of the syndrome. The Ts65Dn mouse model of DS recapitulates multiple aspects of DS including cognitive impairment. Here the Ts65Dn mouse model of DS was evaluated in an associative learning paradigm based on olfactory cues. In contrast to disomic controls, trisomic mice exhibited significant deficits in olfactory learning. Treatment of trisomic mice with the acetylcholinesterase inhibitor galantamine resulted in a significant improvement in olfactory learning. Collectively, our study indicates that olfactory learning can be a sensitive tool for evaluating deficits in associative learning in mouse models of DS and that galantamine has therapeutic potential for improving cognitive abilities.
Roles for Drosophila Mushroom Body Neurons in Olfactory Learning and Memory
ERIC Educational Resources Information Center
Zong, Lin; Tanaka, Nobuaki K.; Ito, Kei; Davis, Ronald L.; Akalal, David-Benjamin G.; Wilson, Curtis F.
2006-01-01
Olfactory learning assays in Drosophila have revealed that distinct brain structures known as mushroom bodies (MBs) are critical for the associative learning and memory of olfactory stimuli. However, the precise roles of the different neurons comprising the MBs are still under debate. The confusion surrounding the roles of the different neurons…
Olfactory-visual integration facilitates perception of subthreshold negative emotion.
Novak, Lucas R; Gitelman, Darren R; Schuyler, Brianna; Li, Wen
2015-10-01
A fast growing literature of multisensory emotion integration notwithstanding, the chemical senses, intimately associated with emotion, have been largely overlooked. Moreover, an ecologically highly relevant principle of "inverse effectiveness", rendering maximal integration efficacy with impoverished sensory input, remains to be assessed in emotion integration. Presenting minute, subthreshold negative (vs. neutral) cues in faces and odors, we demonstrated olfactory-visual emotion integration in improved emotion detection (especially among individuals with weaker perception of unimodal negative cues) and response enhancement in the amygdala. Moreover, while perceptual gain for visual negative emotion involved the posterior superior temporal sulcus/pSTS, perceptual gain for olfactory negative emotion engaged both the associative olfactory (orbitofrontal) cortex and amygdala. Dynamic causal modeling (DCM) analysis of fMRI timeseries further revealed connectivity strengthening among these areas during crossmodal emotion integration. That multisensory (but not low-level unisensory) areas exhibited both enhanced response and region-to-region coupling favors a top-down (vs. bottom-up) account for olfactory-visual emotion integration. Current findings thus confirm the involvement of multisensory convergence areas, while highlighting unique characteristics of olfaction-related integration. Furthermore, successful crossmodal binding of subthreshold aversive cues not only supports the principle of "inverse effectiveness" in emotion integration but also accentuates the automatic, unconscious quality of crossmodal emotion synthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Role of the area postrema in radiation-induced taste aversion learning and emesis in cats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabin, B.M.; Hunt, W.A.; Chedester, A.L.
1986-01-01
The role of the area postrema in radiation-induced emesis and taste aversion learning and the relationship between these behaviors were studied in cats. The potential involvement of neural factors which might be independent of the area postrema was minimized by using low levels of ionizing radiation (100 rads at a dose rate of 40 rads/min) to elicit a taste aversion, and by using body-only exposures (4500 and 6000 rads at 450 rads/min) to produce emesis. Lesions of the area postrema disrupted both taste aversion learning and emesis following irradiation. These results, which indicate that the area postrema is involved inmore » the mediation of both radiation-induced emesis and taste aversion learning in cats under these experimental conditions, are interpreted as being consistent with the hypotheses that similar mechanisms mediate both responses to exposure to ionizing radiation, and that the taste aversion learning paradigm can therefore serve as a model system for studying radiation-induced emesis.« less
Behavioral and Neurophysiological Study of Olfactory Perception and Learning in Honeybees
Sandoz, Jean Christophe
2011-01-01
The honeybee Apis mellifera has been a central insect model in the study of olfactory perception and learning for more than a century, starting with pioneer work by Karl von Frisch. Research on olfaction in honeybees has greatly benefited from the advent of a range of behavioral and neurophysiological paradigms in the Lab. Here I review major findings about how the honeybee brain detects, processes, and learns odors, based on behavioral, neuroanatomical, and neurophysiological approaches. I first address the behavioral study of olfactory learning, from experiments on free-flying workers visiting artificial flowers to laboratory-based conditioning protocols on restrained individuals. I explain how the study of olfactory learning has allowed understanding the discrimination and generalization ability of the honeybee olfactory system, its capacity to grant special properties to olfactory mixtures as well as to retain individual component information. Next, based on the impressive amount of anatomical and immunochemical studies of the bee brain, I detail our knowledge of olfactory pathways. I then show how functional recordings of odor-evoked activity in the brain allow following the transformation of the olfactory message from the periphery until higher-order central structures. Data from extra- and intracellular electrophysiological approaches as well as from the most recent optical imaging developments are described. Lastly, I discuss results addressing how odor representation changes as a result of experience. This impressive ensemble of behavioral, neuroanatomical, and neurophysiological data available in the bee make it an attractive model for future research aiming to understand olfactory perception and learning in an integrative fashion. PMID:22163215
The Neural Foundations of Reaction and Action in Aversive Motivation.
Campese, Vincent D; Sears, Robert M; Moscarello, Justin M; Diaz-Mataix, Lorenzo; Cain, Christopher K; LeDoux, Joseph E
2016-01-01
Much of the early research in aversive learning concerned motivation and reinforcement in avoidance conditioning and related paradigms. When the field transitioned toward the focus on Pavlovian threat conditioning in isolation, this paved the way for the clear understanding of the psychological principles and neural and molecular mechanisms responsible for this type of learning and memory that has unfolded over recent decades. Currently, avoidance conditioning is being revisited, and with what has been learned about associative aversive learning, rapid progress is being made. We review, below, the literature on the neural substrates critical for learning in instrumental active avoidance tasks and conditioned aversive motivation.
Odor preference and olfactory memory are impaired in Olfaxin-deficient mice.
Islam, Saiful; Ueda, Masashi; Nishida, Emika; Wang, Miao-Xing; Osawa, Masatake; Lee, Dongsoo; Itoh, Masanori; Nakagawa, Kiyomi; Tana; Nakagawa, Toshiyuki
2018-06-01
Olfaxin, which is a BNIP2 and Cdc42GAP homology (BCH) domain-containing protein, is predominantly expressed in mitral and tufted (M/T) cells in the olfactory bulb (OB). Olfaxin and Caytaxin, which share 56.3% amino acid identity, are similar in their glutamatergic terminal localization, kidney-type glutaminase (KGA) interaction, and caspase-3 substrate. Although the deletion of Caytaxin protein causes human Cayman ataxia and ataxia in the mutant mouse, the function of Olfaxin is largely unknown. In this study, we generated Prune2 gene mutant mice (Prune2 Ex16-/- ; knock out [KO] mice) using the CRISPR/Cas9 system, during which the exon 16 containing start codon of Olfaxin mRNA was deleted. Exon 16 has 80 nucleotides and is contained in four of five Prune2 isoforms, including PRUNE2, BMCC1, BNIPXL, and Olfaxin/BMCC1s. The levels of Olfaxin mRNA and Olfaxin protein in the OB and piriform cortex of KO mice significantly decreased. Although Prune2 mRNA also significantly decreased in the spinal cord, the gross anatomy of the spinal cord and dorsal root ganglion (DRG) was intact. Further, disturbance of the sensory and motor system was not observed in KO mice. Therefore, in the current study, we examined the role of Olfaxin in the olfactory system where PRUNE2, BMCC1, and BNIPXL are scarcely expressed. Odor preference was impaired in KO mice using opposite-sex urinary scents as well as a non-social odor stimulus (almond). Results of the odor-aversion test demonstrated that odor-associative learning was disrupted in KO mice. Moreover, the NMDAR2A/NMDAR2B subunits switch in the piriform cortex was not observed in KO mice. These results indicated that Olfaxin may play a critical role in odor preference and olfactory memory. Copyright © 2018 Elsevier B.V. All rights reserved.
Naimark, Ari; Barkai, Edi; Matar, Michael A.; Kaplan, Zeev; Kozlovsky, Nitzan; Cohen, Hagit
2007-01-01
We have previously shown that olfactory discrimination learning is accompanied by several forms of long-term enhancement in synaptic connections between layer II pyramidal neurons selectively in the piriform cortex. This study sought to examine whether the previously demonstrated olfactory-learning-task-induced modifications are preceded by suitable changes in the expression of mRNA for neurotrophic factors and in which brain areas this occurs. Rats were trained to discriminate positive cues in pair of odors for a water reward. The relationship between the learning task and local levels of mRNA for brain-derived neurotrophic factor, tyrosine kinase B, nerve growth factor, and neurotrophin-3 in the frontal cortex, hippocampal subregions, and other regions were assessed 24 hours post olfactory learning. The olfactory discrimination learning activated production of endogenous neurotrophic factors and induced their signal transduction in the frontal cortex, but not in other brain areas. These findings suggest that different brain areas may be preferentially involved in different learning/memory tasks. PMID:17710248
Lateral, Not Medial, Prefrontal Cortex Contributes to Punishment and Aversive Instrumental Learning
ERIC Educational Resources Information Center
Jean-Richard-dit-Bressel , Philip; McNally, Gavan P.
2016-01-01
Aversive outcomes punish behaviors that cause their occurrence. The prefrontal cortex (PFC) has been implicated in punishment learning and behavior, although the exact roles for different PFC regions in instrumental aversive learning and decision-making remain poorly understood. Here, we assessed the role of the orbitofrontal (OFC), rostral…
Phenotypic transformation affects associative learning in the desert locust.
Simões, Patrício M V; Niven, Jeremy E; Ott, Swidbert R
2013-12-02
In desert locusts, increased population densities drive phenotypic transformation from the solitarious to the gregarious phase within a generation [1-4]. Here we show that when presented with odor-food associations, the two extreme phases differ in aversive but not appetitive associative learning, with solitarious locusts showing a conditioned aversion more quickly than gregarious locusts. The acquisition of new learned aversions was blocked entirely in acutely crowded solitarious (transiens) locusts, whereas appetitive learning and prior learned associations were unaffected. These differences in aversive learning support phase-specific feeding strategies. Associative training with hyoscyamine, a plant alkaloid found in the locusts' habitat [5, 6], elicits a phase-dependent odor preference: solitarious locusts avoid an odor associated with hyoscyamine, whereas gregarious locusts do not. Remarkably, when solitarious locusts are crowded and then reconditioned with the odor-hyoscyamine pairing as transiens, the specific blockade of aversive acquisition enables them to override their prior aversive memory with an appetitive one. Under fierce food competition, as occurs during crowding in the field, this provides a neuroecological mechanism enabling locusts to reassign an appetitive value to an odor that they learned previously to avoid. Copyright © 2013 Elsevier Ltd. All rights reserved.
A kinase-dependent feedforward loop affects CREBB stability and long term memory formation.
Lee, Pei-Tseng; Lin, Guang; Lin, Wen-Wen; Diao, Fengqiu; White, Benjamin H; Bellen, Hugo J
2018-02-23
In Drosophila , long-term memory (LTM) requires the cAMP-dependent transcription factor CREBB, expressed in the mushroom bodies (MB) and phosphorylated by PKA. To identify other kinases required for memory formation, we integrated Trojan exons encoding T2A-GAL4 into genes encoding putative kinases and selected for genes expressed in MB. These lines were screened for learning/memory deficits using UAS-RNAi knockdown based on an olfactory aversive conditioning assay. We identified a novel, conserved kinase, Meng-Po ( MP , CG11221 , SBK1 in human), the loss of which severely affects 3 hr memory and 24 hr LTM, but not learning. Remarkably, memory is lost upon removal of the MP protein in adult MB but restored upon its reintroduction. Overexpression of MP in MB significantly increases LTM in wild-type flies showing that MP is a limiting factor for LTM. We show that PKA phosphorylates MP and that both proteins synergize in a feedforward loop to control CREBB levels and LTM. key words: Drosophila, Mushroom bodies, SBK1, deGradFP, T2A-GAL4, MiMIC.
Taste Aversions Conditioned by the Aversiveness of Insulin and Formalin: Role of CS Specificity
ERIC Educational Resources Information Center
Domjan, Michael; Levy, Carolyn J.
1977-01-01
Experimenters in the past have reported that when insulin is used as the unconditioned stimulus (US), rats will learn an aversion to a sodium chloride but not a sucrose solution, whereas with formalin as the US, they will learn an aversion to a sucrose but not a saline solution. The present experiments failed to confirm these findings. (Editor)
Molecular Basis of Olfactory Chemoreception in the Common Bed Bug, Cimex lectularius.
Liu, Feng; Chen, Zhou; Liu, Nannan
2017-04-06
As one of the most notorious ectoparasites, bed bugs rely heavily on human or animal blood sources for survival, mating and reproduction. Chemoreception, mediated by the odorant receptors on the membrane of olfactory sensory neurons, plays a vital role in their host seeking and risk aversion processes. We investigated the responses of odorant receptors to a large spectrum of semiochemicals, including human odorants and plant-released volatiles and found that strong responses were sparse; aldehydes/ketones were the most efficient stimuli, while carboxylic acids and aliphatics/aromatics were comparatively less effective in eliciting responses from bed bug odorant receptors. In bed bugs, both the odorant identity and concentrations play important roles in determining the strength of these responses. The odor space constructed based on the responses from all the odorant receptors tested revealed that odorants within the same chemical group are widely dispersed while odorants from different groups are intermingled, suggesting the complexity of odorant encoding in the bed bug odorant receptors. This study provides a comprehensive picture of the olfactory coding mechanisms of bed bugs that will ultimately contribute to the design and development of novel olfactory-based strategies to reduce both the biting nuisance and disease transmission from bed bugs.
Silvers, Jennifer A; Lumian, Daniel S; Gabard-Durnam, Laurel; Gee, Dylan G; Goff, Bonnie; Fareri, Dominic S; Caldera, Christina; Flannery, Jessica; Telzer, Eva H; Humphreys, Kathryn L; Tottenham, Nim
2016-06-15
Early institutional care can be profoundly stressful for the human infant, and, as such, can lead to significant alterations in brain development. In animal models, similar variants of early adversity have been shown to modify amygdala-hippocampal-prefrontal cortex development and associated aversive learning. The current study examined this rearing aberration in human development. Eighty-nine children and adolescents who were either previously institutionalized (PI youth; N = 46; 33 females and 13 males; age range, 7-16 years) or were raised by their biological parents from birth (N = 43; 22 females and 21 males; age range, 7-16 years) completed an aversive-learning paradigm while undergoing functional neuroimaging, wherein visual cues were paired with either an aversive sound (CS+) or no sound (CS-). For the PI youth, better aversive learning was associated with higher concurrent trait anxiety. Both groups showed robust learning and amygdala activation for CS+ versus CS- trials. However, PI youth also exhibited broader recruitment of several regions and increased hippocampal connectivity with prefrontal cortex. Stronger connectivity between the hippocampus and ventromedial PFC predicted significant improvements in future anxiety (measured 2 years later), and this was particularly true within the PI group. These results suggest that for humans as well as for other species, early adversity alters the neurobiology of aversive learning by engaging a broader prefrontal-subcortical circuit than same-aged peers. These differences are interpreted as ontogenetic adaptations and potential sources of resilience. Prior institutionalization is a significant form of early adversity. While nonhuman animal research suggests that early adversity alters aversive learning and associated neurocircuitry, no prior work has examined this in humans. Here, we show that youth who experienced prior institutionalization, but not comparison youth, recruit the hippocampus during aversive learning. Among youth who experienced prior institutionalization, individual differences in aversive learning were associated with worse current anxiety. However, connectivity between the hippocampus and prefrontal cortex prospectively predicted significant improvements in anxiety 2 years following scanning for previously institutionalized youth. Among youth who experienced prior institutionalization, age-atypical engagement of a distributed set of brain regions during aversive learning may serve a protective function. Copyright © 2016 the authors 0270-6474/16/366421-11$15.00/0.
Fear of losing money? Aversive conditioning with secondary reinforcers.
Delgado, M R; Labouliere, C D; Phelps, E A
2006-12-01
Money is a secondary reinforcer that acquires its value through social communication and interaction. In everyday human behavior and laboratory studies, money has been shown to influence appetitive or reward learning. It is unclear, however, if money has a similar impact on aversive learning. The goal of this study was to investigate the efficacy of money in aversive learning, comparing it with primary reinforcers that are traditionally used in fear conditioning paradigms. A series of experiments were conducted in which participants initially played a gambling game that led to a monetary gain. They were then presented with an aversive conditioning paradigm, with either shock (primary reinforcer) or loss of money (secondary reinforcer) as the unconditioned stimulus. Skin conductance responses and subjective ratings indicated that potential monetary loss modulated the conditioned response. Depending on the presentation context, the secondary reinforcer was as effective as the primary reinforcer during aversive conditioning. These results suggest that stimuli that acquire reinforcing properties through social communication and interaction, such as money, can effectively influence aversive learning.
Fuenzalida-Uribe, Nicolás; Campusano, Jorge M
2018-02-10
The communication between sensory systems and the specific brain centers that process this information is crucial to develop adequate behavioral responses. Modulatory systems, including dopaminergic circuits, regulate this communication to finely tune the behavioral response associated to any given stimulus. For instance, the Mushroom Body (MB), an insect brain integration center that receives and processes several sensory stimuli and organizes the execution of motor programs, communicates with MB output neurons (MBONs) to develop behavioral responses associated to olfactory stimuli. This communication is modulated by dopaminergic neural systems. Here we show that silencing dopaminergic neurons increases the aversive response observed in adult flies exposed to Benzaldehyde (Bz) or octanol. We studied the contribution of two dopaminergic clusters that innervate different zones of MB, Protocerebral anterior medial (PAM) and Protocerebral posterior lateral 1 (PPL1), on the innate value to the aversive stimulus and the associated locomotor behavior. In order to do this, we manipulated the synaptic transmission of these neural clusters through the expression of Tetanus toxin, Kir2.1 and Transient receptor potential cation channel A1 (TrpA1) channels. Our results show that neurons in PPL1 and PAM differentially modulate the innate value to Bz in adult flies. On the other hand, blocking neurotransmission or genetic silencing of PAM neurons results in decreased locomotor behavior in flies, an effect not observed when silencing PPL1. Our results suggest that as in mammals, specific dopaminergic pathways differentially modulate locomotor behavior and the innate value for an odorant, a limbic-like response in Drosophila. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Refining the dual olfactory hypothesis: pheromone reward and odour experience.
Martínez-García, Fernando; Martínez-Ricós, Joana; Agustín-Pavón, Carmen; Martínez-Hernández, Jose; Novejarque, Amparo; Lanuza, Enrique
2009-06-25
In rodents, sexual advertisement and gender recognition are mostly (if not exclusively) mediated by chemosignals. Specifically, there is ample evidence indicating that female mice are 'innately' attracted by male sexual pheromones that have critical non-volatile components and are detected by the vomeronasal organ. These pheromones can only get access to the vomeronasal organ by active pumping mechanisms that require close contact with the source of the stimulus (e.g. urine marks) during chemoinvestigation. We have hypothesised that male sexual pheromones are rewarding to female mice. Indeed, male-soiled bedding can be used as a reinforcer to induce conditioned place preference, provided contact with the bedding is allowed. The neural mechanisms of pheromone reward seem, however, different from those employed by other natural reinforcers, such as the sweetness or postingestive effects of sucrose. In contrast to vomeronasal-detected male sexual pheromones, male-derived olfactory stimuli (volatiles) are not intrinsically attractive to female mice. However, after repeated exposure to male-soiled bedding, intact female mice develop an acquired preference for male odours. On the contrary, in females whose accessory olfactory bulbs have been lesioned, exposure to male-soiled bedding induces aversion to male odorants. These considerations, together with data on the different properties of olfactory and vomeronasal receptors, lead us to make a proposal for the complementary roles that the olfactory and vomeronasal systems play in intersexual attraction and in other forms of intra- or inter-species communication.
EOL-1, the Homolog of the Mammalian Dom3Z, Regulates Olfactory Learning in C. elegans
Shen, Yu; Zhang, Jiangwen; Calarco, John A.
2014-01-01
Learning is an essential function of the nervous system. However, our understanding of molecular underpinnings of learning remains incomplete. Here, we characterize a conserved protein EOL-1 that regulates olfactory learning in Caenorhabditis elegans. A recessive allele of eol-1 (enhanced olfactory learning) learns better to adjust its olfactory preference for bacteria foods and eol-1 acts in the URX sensory neurons to regulate learning. The mammalian homolog of EOL-1, Dom3Z, which regulates quality control of pre-mRNAs, can substitute the function of EOL-1 in learning regulation, demonstrating functional conservation between these homologs. Mutating the residues of Dom3Z that are critical for its enzymatic activity, and the equivalent residues in EOL-1, abolishes the function of these proteins in learning. Together, our results provide insights into the function of EOL-1/Dom3Z and suggest that its activity in pre-mRNA quality control is involved in neural plasticity. PMID:25274815
Cross-modal interaction between visual and olfactory learning in Apis cerana.
Zhang, Li-Zhen; Zhang, Shao-Wu; Wang, Zi-Long; Yan, Wei-Yu; Zeng, Zhi-Jiang
2014-10-01
The power of the small honeybee brain carrying out behavioral and cognitive tasks has been shown repeatedly to be highly impressive. The present study investigates, for the first time, the cross-modal interaction between visual and olfactory learning in Apis cerana. To explore the role and molecular mechanisms of cross-modal learning in A. cerana, the honeybees were trained and tested in a modified Y-maze with seven visual and five olfactory stimulus, where a robust visual threshold for black/white grating (period of 2.8°-3.8°) and relatively olfactory threshold (concentration of 50-25%) was obtained. Meanwhile, the expression levels of five genes (AcCREB, Acdop1, Acdop2, Acdop3, Actyr1) related to learning and memory were analyzed under different training conditions by real-time RT-PCR. The experimental results indicate that A. cerana could exhibit cross-modal interactions between visual and olfactory learning by reducing the threshold level of the conditioning stimuli, and that these genes may play important roles in the learning process of honeybees.
Complexity and Competition in Appetitive and Aversive Neural Circuits
Barberini, Crista L.; Morrison, Sara E.; Saez, Alex; Lau, Brian; Salzman, C. Daniel
2012-01-01
Decision-making often involves using sensory cues to predict possible rewarding or punishing reinforcement outcomes before selecting a course of action. Recent work has revealed complexity in how the brain learns to predict rewards and punishments. Analysis of neural signaling during and after learning in the amygdala and orbitofrontal cortex, two brain areas that process appetitive and aversive stimuli, reveals a dynamic relationship between appetitive and aversive circuits. Specifically, the relationship between signaling in appetitive and aversive circuits in these areas shifts as a function of learning. Furthermore, although appetitive and aversive circuits may often drive opposite behaviors – approaching or avoiding reinforcement depending upon its valence – these circuits can also drive similar behaviors, such as enhanced arousal or attention; these processes also may influence choice behavior. These data highlight the formidable challenges ahead in dissecting how appetitive and aversive neural circuits interact to produce a complex and nuanced range of behaviors. PMID:23189037
Hippocampal Processing of Ambiguity Enhances Fear Memory
Amadi, Ugwechi; Lim, Seh Hong; Liu, Elizabeth; Baratta, Michael V.; Goosens, Ki Ann
2016-01-01
Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, where dangerous situations can lead to unpleasant outcomes in unpredictable ways. Here we varied the timing of aversive events following predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of CA1 cells during aversive negative prediction errors prevented this enhancement of fear without impacting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning. PMID:28182526
Hippocampal Processing of Ambiguity Enhances Fear Memory.
Amadi, Ugwechi; Lim, Seh Hong; Liu, Elizabeth; Baratta, Michael V; Goosens, Ki A
2017-02-01
Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, in which dangerous situations can lead to unpleasant outcomes in unpredictable ways. In the current experiments, we varied the timing of aversive events after predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of cornu ammonis 1 cells during aversive negative prediction errors prevented this enhancement of fear without affecting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial-reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning.
Urlacher, Elodie; Monchanin, Coline; Rivière, Coraline; Richard, Freddie-Jeanne; Lombardi, Christie; Michelsen-Heath, Sue; Hageman, Kimberly J; Mercer, Alison R
2016-02-01
Chlorpyrifos is an organophosphate pesticide used around the world to protect food crops against insects and mites. Despite guidelines for chlorpyrifos usage, including precautions to protect beneficial insects, such as honeybees from spray drift, this pesticide has been detected in bees in various countries, indicating that exposure still occurs. Here, we examined chlorpyrifos levels in bees collected from 17 locations in Otago, New Zealand, and compared doses of this pesticide that cause sub-lethal effects on learning performance under laboratory conditions with amounts of chlorpyrifos detected in the bees in the field. The pesticide was detected at 17 % of the sites sampled and in 12 % of the colonies examined. Amounts detected ranged from 35 to 286 pg.bee(-1), far below the LD50 of ~100 ng.bee(-1). We detected no adverse effect of chlorpyrifos on aversive learning, but the formation and retrieval of appetitive olfactory memories was severely affected. Chlorpyrifos fed to bees in amounts several orders of magnitude lower than the LD50, and also lower than levels detected in bees, was found to slow appetitive learning and reduce the specificity of memory recall. As learning and memory play a central role in the behavioral ecology and communication of foraging bees, chlorpyrifos, even in sublethal doses, may threaten the success and survival of this important insect pollinator.
Kohn, Nancy R; Reaume, Christopher J; Moreno, Celine; Burns, James G; Sokolowski, Marla B; Mery, Frederic
2013-01-01
In Drosophila melanogaster, natural genetic variation in the foraging gene affects the foraging behaviour of larval and adult flies, larval reward learning, adult visual learning, and adult aversive training tasks. Sitters (for(s)) are more sedentary and aggregate within food patches whereas rovers (for(R)) have greater movement within and between food patches, suggesting that these natural variants are likely to experience different social environments. We hypothesized that social context would differentially influence rover and sitter behaviour in a cognitive task. We measured adult rover and sitter performance in a classical olfactory training test in groups and alone. All flies were reared in groups, but fly training and testing were done alone and in groups. Sitters trained and tested in a group had significantly higher learning performances compared to sitters trained and tested alone. Rovers performed similarly when trained and tested alone and in a group. In other words, rovers learning ability is independent of group training and testing. This suggests that sitters may be more sensitive to the social context than rovers. These differences in learning performance can be altered by pharmacological manipulations of PKG activity levels, the foraging (for) gene's gene product. Learning and memory is also affected by the type of social interaction (being in a group of the same strain or in a group of a different strain) in rovers, but not in sitters. These results suggest that for mediates social learning and memory in D. melanogaster.
ERIC Educational Resources Information Center
Hegoburu, Chloe; Sevelinges, Yannick; Thevenet, Marc; Gervais, Remi; Parrot, Sandrine; Mouly, Anne-Marie
2009-01-01
Although the amygdala seems to be essential to the formation and storage of fear memories, it might store only some aspects of the aversive event and facilitate the storage of more specific sensory aspects in cortical areas. We addressed the time course of amygdala and cortical activation in the context of odor fear conditioning in rats. Using…
Overcoming Learning Aversion in Evaluating and Managing Uncertain Risks.
Cox, Louis Anthony Tony
2015-10-01
Decision biases can distort cost-benefit evaluations of uncertain risks, leading to risk management policy decisions with predictably high retrospective regret. We argue that well-documented decision biases encourage learning aversion, or predictably suboptimal learning and premature decision making in the face of high uncertainty about the costs, risks, and benefits of proposed changes. Biases such as narrow framing, overconfidence, confirmation bias, optimism bias, ambiguity aversion, and hyperbolic discounting of the immediate costs and delayed benefits of learning, contribute to deficient individual and group learning, avoidance of information seeking, underestimation of the value of further information, and hence needlessly inaccurate risk-cost-benefit estimates and suboptimal risk management decisions. In practice, such biases can create predictable regret in selection of potential risk-reducing regulations. Low-regret learning strategies based on computational reinforcement learning models can potentially overcome some of these suboptimal decision processes by replacing aversion to uncertain probabilities with actions calculated to balance exploration (deliberate experimentation and uncertainty reduction) and exploitation (taking actions to maximize the sum of expected immediate reward, expected discounted future reward, and value of information). We discuss the proposed framework for understanding and overcoming learning aversion and for implementing low-regret learning strategies using regulation of air pollutants with uncertain health effects as an example. © 2015 Society for Risk Analysis.
Sitaraman, Divya; Kramer, Elizabeth F.; Kahsai, Lily; Ostrowski, Daniela; Zars, Troy
2017-01-01
Feedback mechanisms in operant learning are critical for animals to increase reward or reduce punishment. However, not all conditions have a behavior that can readily resolve an event. Animals must then try out different behaviors to better their situation through outcome learning. This form of learning allows for novel solutions and with positive experience can lead to unexpected behavioral routines. Learned helplessness, as a type of outcome learning, manifests in part as increases in escape latency in the face of repeated unpredicted shocks. Little is known about the mechanisms of outcome learning. When fruit fly Drosophila melanogaster are exposed to unpredicted high temperatures in a place learning paradigm, flies both increase escape latencies and have a higher memory when given control of a place/temperature contingency. Here we describe discrete serotonin neuronal circuits that mediate aversive reinforcement, escape latencies, and memory levels after place learning in the presence and absence of unexpected aversive events. The results show that two features of learned helplessness depend on the same modulatory system as aversive reinforcement. Moreover, changes in aversive reinforcement and escape latency depend on local neural circuit modulation, while memory enhancement requires larger modulation of multiple behavioral control circuits. PMID:29321732
Olfactory Cued Learning Paradigm.
Liu, Gary; McClard, Cynthia K; Tepe, Burak; Swanson, Jessica; Pekarek, Brandon; Panneerselvam, Sugi; Arenkiel, Benjamin R
2017-05-05
Sensory stimulation leads to structural changes within the CNS (Central Nervous System), thus providing the fundamental mechanism for learning and memory. The olfactory circuit offers a unique model for studying experience-dependent plasticity, partly due to a continuous supply of integrating adult born neurons. Our lab has recently implemented an olfactory cued learning paradigm in which specific odor pairs are coupled to either a reward or punishment to study downstream circuit changes. The following protocol outlines the basic set up for our learning paradigm. Here, we describe the equipment setup, programming of software, and method of behavioral training.
Flood-conditioned place aversion as a novel non-pharmacological aversive learning procedure in mice.
Goltseker, Koral; Barak, Segev
2018-05-08
The place conditioning paradigm is an efficient, widely-used method to study mechanisms that underlie appetitive or aversive learning and memory processes. However, pharmacological agents used to induce conditioned place preference (CPP) or aversion (CPA) can per se interfere with learning and memory processing, hence confounding the results. Therefore, non-pharmacological place conditioning procedures are of high importance. Here, we introduce a novel procedure for induction of CPA in mice, by water flooding. We found that pairing a context with immersion in moderately cold shallow water resulted in aversion and avoidance of that context during a place preference test. Importantly, place aversion emerged only when mice experienced the onset of flood during conditioning training, but not when mice were placed in a compartment pre-filled with water. We also found that warm water was not sufficiently aversive to induce CPA. Moreover, CPA was observed after two or three context-flood pairings but not after one or four pairings, suggesting that moderate conditioning intensity produces optimal CPA expression. Thus, flood-induced CPA is a simple, cheap, and efficient procedure to form and measure place aversion memories in mice, using an ethologically-relevant threat.
Matching- and Nonmatching-to-Sample Concept Learning in Rats Using Olfactory Stimuli
ERIC Educational Resources Information Center
April, L. Brooke; Bruce, Katherine; Galizio, Mark
2011-01-01
Previous research has shown that rats can learn matching-to-sample relations with olfactory stimuli; however, the specific characteristics of this relational control are unclear. In Experiment 1, 6 rats were trained to either match or nonmatch to sample in a modified operant chamber using common household spices as olfactory stimuli. After…
Odor-Induced Neuronal Rhythms in the Olfactory Bulb Are Profoundly Modified in ob/ob Obese Mice
Chelminski, Yan; Magnan, Christophe; Luquet, Serge H.; Everard, Amandine; Meunier, Nicolas; Gurden, Hirac; Martin, Claire
2017-01-01
Leptin, the product of the Ob(Lep) gene, is a peptide hormone that plays a major role in maintaining the balance between food intake and energy expenditure. In the brain, leptin receptors are expressed by hypothalamic cells but also in the olfactory bulb, the first central structure coding for odors, suggesting a precise function of this hormone in odor-evoked activities. Although olfaction plays a key role in feeding behavior, the ability of the olfactory bulb to integrate the energy-related signal leptin is still missing. Therefore, we studied the fate of odor-induced activity in the olfactory bulb in the genetic context of leptin deficiency using the obese ob/ob mice. By means of an odor discrimination task with concomitant local field potential recordings, we showed that ob/ob mice perform better than wild-type (WT) mice in the early stage of the task. This behavioral gain of function was associated in parallel with profound changes in neuronal oscillations in the olfactory bulb. The distribution of the peaks in the gamma frequency range was shifted toward higher frequencies in ob/ob mice compared to WT mice before learning. More notably, beta oscillatory activity, which has been shown previously to be correlated with olfactory discrimination learning, was longer and stronger in expert ob/ob mice after learning. Since oscillations in the olfactory bulb emerge from mitral to granule cell interactions, our results suggest that cellular dynamics in the olfactory bulb are deeply modified in ob/ob mice in the context of olfactory learning. PMID:28154537
Prepared stimuli enhance aversive learning without weakening the impact of verbal instructions
2018-01-01
Fear-relevant stimuli such as snakes and spiders are thought to capture attention due to evolutionary significance. Classical conditioning experiments indicate that these stimuli accelerate learning, while instructed extinction experiments suggest they may be less responsive to instructions. We manipulated stimulus type during instructed aversive reversal learning and used quantitative modeling to simultaneously test both hypotheses. Skin conductance reversed immediately upon instruction in both groups. However, fear-relevant stimuli enhanced dynamic learning, as measured by higher learning rates in participants conditioned with images of snakes and spiders. Results are consistent with findings that dissociable neural pathways underlie feedback-driven and instructed aversive learning. PMID:29339561
Murakami, Satoshi; Minami-Ohtsubo, Maki; Nakato, Ryuichiro; Shirahige, Katsuhiko; Tabata, Tetsuya
2017-05-31
Multiple components have been identified that exhibit different stabilities for aversive olfactory memory in Drosophila These components have been defined by behavioral and genetic studies and genes specifically required for a specific component have also been identified. Intermediate-term memory generated after single cycle conditioning is divided into anesthesia-sensitive memory (ASM) and anesthesia-resistant memory (ARM), with the latter being more stable. We determined that the ASM and ARM pathways converged on the Rgk1 small GTPase and that the N-terminal domain-deleted Rgk1 was sufficient for ASM formation, whereas the full-length form was required for ARM formation. Rgk1 is specifically accumulated at the synaptic site of the Kenyon cells (KCs), the intrinsic neurons of the mushroom bodies, which play a pivotal role in olfactory memory formation. A higher than normal Rgk1 level enhanced memory retention, which is consistent with the result that Rgk1 suppressed Rac-dependent memory decay; these findings suggest that rgk1 bolsters ASM via the suppression of forgetting. We propose that Rgk1 plays a pivotal role in the regulation of memory stabilization by serving as a molecular node that resides at KC synapses, where the ASM and ARM pathway may interact. SIGNIFICANCE STATEMENT Memory consists of multiple components. Drosophila olfactory memory serves as a fundamental model with which to investigate the mechanisms that underlie memory formation and has provided genetic and molecular means to identify the components of memory, namely short-term, intermediate-term, and long-term memory, depending on how long the memory lasts. Intermediate memory is further divided into anesthesia-sensitive memory (ASM) and anesthesia-resistant memory (ARM), with the latter being more stable. We have identified a small GTPase in Drosophila , Rgk1, which plays a pivotal role in the regulation of olfactory memory stability. Rgk1 is required for both ASM and ARM. Moreover, N-terminal domain-deleted Rgk1 was sufficient for ASM formation, whereas the full-length form was required for ARM formation. Copyright © 2017 the authors 0270-6474/17/375496-•$15.00/0.
Preexposure to Salty and Sour Taste Enhances Conditioned Taste Aversion to Novel Sucrose
ERIC Educational Resources Information Center
Flores, Veronica L.; Moran, Anan; Bernstein, Max; Katz, Donald B.
2016-01-01
Conditioned taste aversion (CTA) is an intensively studied single-trial learning paradigm whereby animals are trained to avoid a taste that has been paired with malaise. Many factors influence the strength of aversion learning; prominently studied among these is taste novelty--the fact that preexposure to the taste conditioned stimulus (CS)…
EOL-1, the homolog of the mammalian Dom3Z, regulates olfactory learning in C. elegans.
Shen, Yu; Zhang, Jiangwen; Calarco, John A; Zhang, Yun
2014-10-01
Learning is an essential function of the nervous system. However, our understanding of molecular underpinnings of learning remains incomplete. Here, we characterize a conserved protein EOL-1 that regulates olfactory learning in Caenorhabditis elegans. A recessive allele of eol-1 (enhanced olfactory learning) learns better to adjust its olfactory preference for bacteria foods and eol-1 acts in the URX sensory neurons to regulate learning. The mammalian homolog of EOL-1, Dom3Z, which regulates quality control of pre-mRNAs, can substitute the function of EOL-1 in learning regulation, demonstrating functional conservation between these homologs. Mutating the residues of Dom3Z that are critical for its enzymatic activity, and the equivalent residues in EOL-1, abolishes the function of these proteins in learning. Together, our results provide insights into the function of EOL-1/Dom3Z and suggest that its activity in pre-mRNA quality control is involved in neural plasticity. Copyright © 2014 the authors 0270-6474/14/3413364-07$15.00/0.
Molecular Basis of Olfactory Chemoreception in the Common Bed Bug, Cimex lectularius
Liu, Feng; Chen, Zhou; Liu, Nannan
2017-01-01
As one of the most notorious ectoparasites, bed bugs rely heavily on human or animal blood sources for survival, mating and reproduction. Chemoreception, mediated by the odorant receptors on the membrane of olfactory sensory neurons, plays a vital role in their host seeking and risk aversion processes. We investigated the responses of odorant receptors to a large spectrum of semiochemicals, including human odorants and plant-released volatiles and found that strong responses were sparse; aldehydes/ketones were the most efficient stimuli, while carboxylic acids and aliphatics/aromatics were comparatively less effective in eliciting responses from bed bug odorant receptors. In bed bugs, both the odorant identity and concentrations play important roles in determining the strength of these responses. The odor space constructed based on the responses from all the odorant receptors tested revealed that odorants within the same chemical group are widely dispersed while odorants from different groups are intermingled, suggesting the complexity of odorant encoding in the bed bug odorant receptors. This study provides a comprehensive picture of the olfactory coding mechanisms of bed bugs that will ultimately contribute to the design and development of novel olfactory-based strategies to reduce both the biting nuisance and disease transmission from bed bugs. PMID:28383033
Awata, Hiroko; Watanabe, Takahito; Hamanaka, Yoshitaka; Mito, Taro; Noji, Sumihare; Mizunami, Makoto
2015-11-02
Elucidation of reinforcement mechanisms in associative learning is an important subject in neuroscience. In mammals, dopamine neurons are thought to play critical roles in mediating both appetitive and aversive reinforcement. Our pharmacological studies suggested that octopamine and dopamine neurons mediate reward and punishment, respectively, in crickets, but recent studies in fruit-flies concluded that dopamine neurons mediates both reward and punishment, via the type 1 dopamine receptor Dop1. To resolve the discrepancy between studies in different insect species, we produced Dop1 knockout crickets using the CRISPR/Cas9 system and found that they are defective in aversive learning with sodium chloride punishment but not appetitive learning with water or sucrose reward. The results suggest that dopamine and octopamine neurons mediate aversive and appetitive reinforcement, respectively, in crickets. We suggest unexpected diversity in neurotransmitters mediating appetitive reinforcement between crickets and fruit-flies, although the neurotransmitter mediating aversive reinforcement is conserved. This study demonstrates usefulness of the CRISPR/Cas9 system for producing knockout animals for the study of learning and memory.
Cervantes-Sandoval, Isaac; Phan, Anna; Chakraborty, Molee; Davis, Ronald L
2017-05-10
Current thought envisions dopamine neurons conveying the reinforcing effect of the unconditioned stimulus during associative learning to the axons of Drosophila mushroom body Kenyon cells for normal olfactory learning. Here, we show using functional GFP reconstitution experiments that Kenyon cells and dopamine neurons from axoaxonic reciprocal synapses. The dopamine neurons receive cholinergic input via nicotinic acetylcholine receptors from the Kenyon cells; knocking down these receptors impairs olfactory learning revealing the importance of these receptors at the synapse. Blocking the synaptic output of Kenyon cells during olfactory conditioning reduces presynaptic calcium transients in dopamine neurons, a finding consistent with reciprocal communication. Moreover, silencing Kenyon cells decreases the normal chronic activity of the dopamine neurons. Our results reveal a new and critical role for positive feedback onto dopamine neurons through reciprocal connections with Kenyon cells for normal olfactory learning.
Rabin, B M; Hunt, W A
1992-09-01
The relationship between emesis and taste aversion learning was studied in ferrets (Mustela putorius furo) following exposure to ionizing radiation (50-200 cGy) or injection of lithium chloride (1.5-3.0 mEq/kg, ip). When 10% sucrose or 0.1% saccharin was used as the conditioned stimulus, neither unconditioned stimulus produced a taste aversion, even when vomiting was produced by the stimulus (Experiments 1 and 2). When a canned cat food was used as the conditioned stimulus, lithium chloride, but not ionizing radiation, produced a taste aversion (Experiment 3). Lithium chloride was effective in producing a conditioned taste aversion when administration of the toxin was delayed by up to 90 min following the ingestion of the canned cat food, indicating that the ferrets are capable of showing long-delay learning (Experiment 4). Experiment 5 examined the capacity of amphetamine, which is a qualitatively different stimulus than lithium chloride or ionizing radiation, to produce taste aversion learning in rats and cats as well as in ferrets. Injection of amphetamine (3 mg/kg, ip) produced a taste aversion in rats and cats but not in ferrets which required a higher dose (> 5 mg/kg). The results of these experiments are interpreted as indicating that, at least for the ferret, there is no necessary relationship between toxin-induced illness and the acquisition of a CTA and that gastrointestinal distress is not a sufficient condition for CTA learning.
Drosophila TRPA1 channel is required to avoid the naturally occurring insect repellent citronellal.
Kwon, Young; Kim, Sang Hoon; Ronderos, David S; Lee, Youngseok; Akitake, Bradley; Woodward, Owen M; Guggino, William B; Smith, Dean P; Montell, Craig
2010-09-28
Plants produce insect repellents, such as citronellal, which is the main component of citronellal oil. However, the molecular pathways through which insects sense botanical repellents are unknown. Here, we show that Drosophila use two pathways for direct avoidance of citronellal. The olfactory coreceptor OR83b contributes to citronellal repulsion and is essential for citronellal-evoked action potentials. Mutations affecting the Ca(2+)-permeable cation channel TRPA1 result in a comparable defect in avoiding citronellal vapor. The TRPA1-dependent aversion to citronellal relies on a G protein (Gq)/phospholipase C (PLC) signaling cascade rather than direct detection of citronellal by TRPA1. Loss of TRPA1, Gq, or PLC causes an increase in the frequency of citronellal-evoked action potentials in olfactory receptor neurons. Absence of the Ca(2+)-activated K(+) channel (BK channel) Slowpoke results in a similar impairment in citronellal avoidance and an increase in the frequency of action potentials. These results suggest that TRPA1 is required for activation of a BK channel to modulate citronellal-evoked action potentials and for aversion to citronellal. In contrast to Drosophila TRPA1, Anopheles gambiae TRPA1 is directly and potently activated by citronellal, thereby raising the possibility that mosquito TRPA1 may be a target for developing improved repellents to reduce insect-borne diseases such as malaria. Copyright © 2010 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Masaki, Takahisa; Nakajima, Sadahiko
2010-01-01
Swimming endows rats with an aversion to a taste solution consumed before swimming. The present study explored whether the experience of swimming before or after the taste-swimming trials interferes with swimming-based taste aversion learning. Experiment 1 demonstrated that a single preexposure to 20 min of swimming was as effective as four or…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabin, B.M.; Hunt, W.A.; Lee, J.
1989-01-01
The pre-exposure paradigm was utilized to evaluate the similarity of ionizing radiation, lithium chloride, and ethanol as unconditioned stimuli for the acquisition of a conditioned taste aversion. Three unpaired pre-exposures to lithium chloride blocked the acquisition of a taste aversion when a novel sucrose solution was paired with either the injection of the same dose of lithium chloride or exposure to ionizing radiation (100 rad). Similar pretreatment with radiation blocked the acquisition of a radiation-induced aversion, but had no effect on taste aversions produced by lithium aversion, but not radiation- or lithium chloride-induced aversions. In contrast, preexposure to either radiationmore » or lithium chloride attenuated an ethanol-induced taste aversion in intact rats, but not in rats with lesions of the area postrema. The results are discussed in terms of relationships between these three unconditioned stimuli and in terms of implications of these results for understanding the nature of the proximal unconditioned stimulus in taste aversion learning.« less
Neural Correlates of Olfactory Learning: Critical Role of Centrifugal Neuromodulation
ERIC Educational Resources Information Center
Fletcher, Max L.; Chen, Wei R.
2010-01-01
The mammalian olfactory system is well established for its remarkable capability of undergoing experience-dependent plasticity. Although this process involves changes at multiple stages throughout the central olfactory pathway, even the early stages of processing, such as the olfactory bulb and piriform cortex, can display a high degree of…
Hichami, Aziz; Datiche, Frédérique; Ullah, Sana; Liénard, Fabienne; Chardigny, Jean-Michel; Cattarelli, Martine; Khan, Naim Akhtar
2007-11-22
The long-chain polyunsaturated n-3 fatty acids (n-3 PUFA), particularly docosahexaenoic acid (DHA), are abundantly present in the central nervous system and play an important role in cognitive functions such as learning and memory. We, therefore, investigated the effects of n-3 PUFA-depletion in rats (F2 generation) on the learning of an olfactory discrimination task, progressively acquired within a four-arm maze, and on the mRNA expression of some candidate genes, i.e., c-fos, Gir and glucose transporter (Glut1), which could reflect the level of cerebral activity. We observed that DHA contents were dramatically decreased in the olfactory bulb, the piriform cortex and the neocortex of n-3-depleted rats. Furthermore, the n-3 deficiency resulted in a mild olfactory learning impairment as these rats required more days to master the olfactory task compared to control rats. Real-time RT-PCR experiments revealed that the training induced the expression of c-fos mRNA in all the three regions of the brain whereas Gir and Glut1 mRNA were induced only in olfactory bulb and neocortex. However, such an increase was less marked in the n-3-deficient rats. Taken together, these results allow us to assume that the behavioural impairment in n-3-deficient rats is linked to the depletion of n-3 fatty acids in brain regions processing olfactory cues. Data are discussed in view of the possible role of some of these genes in learning-induced neuronal olfactory plasticity.
The Procerebrum Is Necessary for Odor-Aversion Learning in the Terrestrial Slug "Limax Valentianus"
ERIC Educational Resources Information Center
Kasai, Yoko; Watanabe, Satoshi; Kirino, Yutaka; Matsuo, Ryota
2006-01-01
The terrestrial slug "Limax" has a highly developed ability to associate the odor of some foods (e.g., carrot juice) with aversive stimuli such as the bitter taste of quinidine solution. The procerebrum (PC) is a part of the slug's brain thought to be involved in odor-aversion learning, but direct evidence is still lacking. Here, the authors…
Tan, Ken; Chen, Weiwen; Dong, Shihao; Liu, Xiwen; Wang, Yuchong; Nieh, James C.
2015-01-01
Xenobiotics such as the neonicotinoid pesticide, imidacloprid, are used globally, but their effects on native bee species are poorly understood. We studied the effects of sublethal doses of imidacloprid on olfactory learning in the native honey bee species, Apis cerana, an important pollinator of agricultural and native plants throughout Asia. We provide the first evidence that imidacloprid can impair learning in A. cerana workers exposed as adults or as larvae. Adults that ingested a single imidacloprid dose as low as 0.1 ng/bee had significantly reduced olfactory learning acquisition, which was 1.6-fold higher in control bees. Longer-term learning (1-17 h after the last learning trial) was also impaired. Bees exposed as larvae to a total dose of 0.24 ng/bee did not have reduced survival to adulthood. However, these larval-treated bees had significantly impaired olfactory learning when tested as adults: control bees exhibited up to 4.8-fold better short-term learning acquisition, though longer-term learning was not affected. Thus, sublethal cognitive deficits elicited by neonicotinoids on a broad range of native bee species deserve further study. PMID:26086769
Thaker, Maria; Vanak, Abi T; Lima, Steven L; Hews, Diana K
2010-01-01
Elevated plasma corticosterone during stressful events is linked to rapid changes in behavior in vertebrates and can mediate learning and memory consolidation. We tested the importance of acute corticosterone elevation in aversive learning of a novel stressor by wild male eastern fence lizards (Sceloporus undulatus). We found that inhibiting corticosterone elevation (using metyrapone, a corticosterone synthesis blocker) during an encounter with a novel attacker impaired immediate escape responses and limited learning and recall during future encounters. In the wild and in outdoor enclosures, lizards whose acute corticosterone response was blocked by an earlier metyrapone injection did not alter their escape behavior during repeated encounters with the attacker. Control-injected (unblocked) lizards, however, progressively increased flight initiation distance and decreased hiding duration during subsequent encounters. Aversive responses were also initially higher for control lizards exposed to a higher intensity first attack. Further, we demonstrate a role of corticosterone elevation in recollection, since unblocked lizards had heightened antipredator responses 24-28 h later. Exogenously restoring corticosterone levels in metyrapone-injected lizards maintained aversive behaviors and learning at control (unblocked) levels. We suggest that the corticosterone mediation of antipredator behaviors and aversive learning is a critical and general mechanism for the behavioral flexibility of vertebrate prey.
Neuronal pattern separation in the olfactory bulb improves odor discrimination learning
Lagier, Samuel; Begnaud, Frédéric; Rodriguez, Ivan; Carleton, Alan
2015-01-01
Neuronal pattern separation is thought to enable the brain to disambiguate sensory stimuli with overlapping features thereby extracting valuable information. In the olfactory system, it remains unknown whether pattern separation acts as a driving force for sensory discrimination and the learning thereof. Here we show that overlapping odor-evoked input patterns to the mouse olfactory bulb (OB) are dynamically reformatted in the network at the timescale of a single breath, giving rise to separated patterns of activity in ensemble of output neurons (mitral/tufted cells; M/T). Strikingly, the extent of pattern separation in M/T assemblies predicts behavioral discrimination performance during the learning phase. Furthermore, exciting or inhibiting GABAergic OB interneurons, using optogenetics or pharmacogenetics, altered pattern separation and thereby odor discrimination learning in a bidirectional way. In conclusion, we propose that the OB network can act as a pattern separator facilitating olfactory stimuli distinction, a process that is sculpted by synaptic inhibition. PMID:26301325
Neuronal pattern separation in the olfactory bulb improves odor discrimination learning.
Gschwend, Olivier; Abraham, Nixon M; Lagier, Samuel; Begnaud, Frédéric; Rodriguez, Ivan; Carleton, Alan
2015-10-01
Neuronal pattern separation is thought to enable the brain to disambiguate sensory stimuli with overlapping features, thereby extracting valuable information. In the olfactory system, it remains unknown whether pattern separation acts as a driving force for sensory discrimination and the learning thereof. We found that overlapping odor-evoked input patterns to the mouse olfactory bulb (OB) were dynamically reformatted in the network on the timescale of a single breath, giving rise to separated patterns of activity in an ensemble of output neurons, mitral/tufted (M/T) cells. Notably, the extent of pattern separation in M/T assemblies predicted behavioral discrimination performance during the learning phase. Furthermore, exciting or inhibiting GABAergic OB interneurons, using optogenetics or pharmacogenetics, altered pattern separation and thereby odor discrimination learning in a bidirectional way. In conclusion, we propose that the OB network can act as a pattern separator facilitating olfactory stimulus distinction, a process that is sculpted by synaptic inhibition.
Methods to measure olfactory behavior in mice
Zou, Junhui; Wang, Wenbin; Pan, Yung-Wei; Lu, Song; Xia, Zhengui
2015-01-01
Mice rely on the sense of olfaction to detect food sources, recognize social and mating partners, and avoid predators. Many behaviors of mice including learning and memory, social interaction, fear, and anxiety are closely associated with their function of olfaction, and behavior tasks designed to evaluate those brain functions may use odors as cues. Accurate assessment of olfaction is not only essential for the study of olfactory system but also critical for proper interpretation of various mouse behaviors especially learning and memory, emotionality and affect, and sociality. Here we describe a series of behavior experiments that offer multidimensional and quantitative assessments for mouse’s olfactory function, including olfactory habituation, discrimination, odor preference, odor detection sensitivity, and olfactory memory, to both social and nonsocial odors. PMID:25645244
Learned Helplessness at Fifty: Insights from Neuroscience
Maier, Steven F.; Seligman, Martin E. P.
2016-01-01
Learned helplessness, the failure to escape shock induced by uncontrollable aversive events, was discovered half a century ago. Seligman and Maier (1967) theorized that animals learned that outcomes were independent of their responses—that nothing they did mattered – and that this learning undermined trying to escape. The mechanism of learned helplessness is now very well-charted biologically and the original theory got it backwards. Passivity in response to shock is not learned. It is the default, unlearned response to prolonged aversive events and it is mediated by the serotonergic activity of the dorsal raphe nucleus, which in turn inhibits escape. This passivity can be overcome by learning control, with the activity of the medial prefrontal cortex, which subserves the detection of control leading to the automatic inhibition of the dorsal raphe nucleus. So animals learn that they can control aversive events, but the passive failure to learn to escape is an unlearned reaction to prolonged aversive stimulation. In addition, alterations of the ventromedial prefrontal cortex-dorsal raphe pathway can come to subserve the expectation of control. We speculate that default passivity and the compensating detection and expectation of control may have substantial implications for how to treat depression. PMID:27337390
Learned helplessness at fifty: Insights from neuroscience.
Maier, Steven F; Seligman, Martin E P
2016-07-01
Learned helplessness, the failure to escape shock induced by uncontrollable aversive events, was discovered half a century ago. Seligman and Maier (1967) theorized that animals learned that outcomes were independent of their responses-that nothing they did mattered-and that this learning undermined trying to escape. The mechanism of learned helplessness is now very well-charted biologically, and the original theory got it backward. Passivity in response to shock is not learned. It is the default, unlearned response to prolonged aversive events and it is mediated by the serotonergic activity of the dorsal raphe nucleus, which in turn inhibits escape. This passivity can be overcome by learning control, with the activity of the medial prefrontal cortex, which subserves the detection of control leading to the automatic inhibition of the dorsal raphe nucleus. So animals learn that they can control aversive events, but the passive failure to learn to escape is an unlearned reaction to prolonged aversive stimulation. In addition, alterations of the ventromedial prefrontal cortex-dorsal raphe pathway can come to subserve the expectation of control. We speculate that default passivity and the compensating detection and expectation of control may have substantial implications for how to treat depression. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
ERIC Educational Resources Information Center
Messaoudi, Belkacem; Granjon, Lionel; Mouly, Anne-Marie; Sevelinges, Yannick; Gervais, Remi
2004-01-01
The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of…
ERIC Educational Resources Information Center
Shakhawat, Amin MD.; Harley, Carolyn W.; Yuan, Qi
2012-01-01
In this study, three lines of evidence suggest a role for [alpha][subscript 2]-adrenoreceptors in rat pup odor-preference learning: olfactory bulb infusions of the [alpha][subscript 2]-antagonist, yohimbine, prevents learning; the [alpha][subscript 2]-agonist, clonidine, paired with odor, induces learning; and subthreshold clonidine paired with…
Acquisition of lithium chloride- and radiation-induced taste aversions in hypophysectomized rats.
Rabin, B M; Hunt, W A; Lee, J
1983-03-01
The effects of hypophysectomy on the acquisition of conditioned taste aversions following injection of lithium chloride and following exposure to ionizing radiation were studied using a two-bottle preference test. Hypophysectomy did not disrupt the acquisition of a taste aversion following either treatment. The results are interpreted as: (a) suggesting that pituitary/adrenal hormones do not mediate the acquisition of a conditioned taste aversion following injections of lithium chloride or following exposure to ionizing radiation in a two-bottle preference test, and (b) consistent with other research suggesting that the involvement of pituitary/adrenal hormones in taste aversion learning may be related to the conflict induced by using a one-bottle test and not to the learning itself.
Developmental emergence of fear/threat learning: neurobiology, associations and timing
Tallot, L.; Doyère, V.; Sullivan, R. M.
2016-01-01
Pavlovian fear or threat conditioning, where a neutral stimulus takes on aversive properties through pairing with an aversive stimulus, has been an important tool for exploring the neurobiology of learning. In the past decades, this neurobehavioral approach has been expanded to include the developing infant. Indeed, protracted postnatal brain development permits the exploration of how incorporating the amygdala, prefrontal cortex and hippocampus into this learning system impacts the acquisition and expression of aversive conditioning. Here, we review the developmental trajectory of these key brain areas involved in aversive conditioning and relate it to pups’ transition to independence through weaning. Overall, the data suggests that adult-like features of threat learning emerge as the relevant brain areas become incorporated into this learning. Specifically, the developmental emergence of the amygdala permits cue learning and the emergence of the hippocampus permits context learning. We also describe unique features of learning in early life that block threat learning and enhance interaction with the mother or exploration of the environment. Finally, we describe the development of a sense of time within this learning and its involvement in creating associations. Together these data suggest that the development of threat learning is a useful tool for dissecting adult-like functioning of brain circuits, as well as providing unique insights into ecologically relevant developmental changes. PMID:26534899
Gong, Zhiwen; Wang, Chao; Nieh, James C; Tan, Ken
2016-07-01
DNA methylation plays a key role in invertebrate acquisition and extinction memory. Honey bees have excellent olfactory learning, but the role of DNA methylation in memory formation has, to date, only been studied in Apis mellifera. We inhibited DNA methylation by inhibiting DNA methyltransferase (DNMT) with zebularine (zeb) and studied the resulting effects upon olfactory acquisition and extinction memory in two honey bee species, Apis cerana and A. mellifera. We used the proboscis extension reflex (PER) assay to measure memory. We provide the first demonstration that DNA methylation is also important in the olfactory extinction learning of A. cerana. DNMT did not reduce acquisition learning in either species. However, zeb bidirectionally and differentially altered extinction learning in both species. In particular, zeb provided 1h before acquisition learning improved extinction memory retention in A. mellifera, but reduced extinction memory retention in A. cerana. The reasons for these differences are unclear, but provide a basis for future studies to explore species-specific differences in the effects of methylation on memory formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Learning Modifies Odor Mixture Processing to Improve Detection of Relevant Components
Chen, Jen-Yung; Marachlian, Emiliano; Assisi, Collins; Huerta, Ramon; Smith, Brian H.
2015-01-01
Honey bees have a rich repertoire of olfactory learning behaviors, and they therefore are an excellent model to study plasticity in olfactory circuits. Recent behavioral, physiological, and molecular evidence suggested that the antennal lobe, the first relay of the olfactory system in insects and analog to the olfactory bulb in vertebrates, is involved in associative and nonassociative olfactory learning. Here we use calcium imaging to reveal how responses across antennal lobe projection neurons change after association of an input odor with appetitive reinforcement. After appetitive conditioning to 1-hexanol, the representation of an odor mixture containing 1-hexanol becomes more similar to this odor and less similar to the background odor acetophenone. We then apply computational modeling to investigate how changes in synaptic connectivity can account for the observed plasticity. Our study suggests that experience-dependent modulation of inhibitory interactions in the antennal lobe aids perception of salient odor components mixed with behaviorally irrelevant background odors. PMID:25568113
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabin, B.M.; Hunt, W.A.; Lee, J.
1988-12-01
The preexposure paradigm was utilized to evaluate the similarity of ionizing radiation, lithium chloride and ethanol as unconditioned stimuli for the acquisition of a conditioned taste aversion. Three unpaired preexposures to lithium chloride (3.0 mEq/kg, IP) blocked the acquisition of a taste aversion when a novel sucrose solution was paired with either the injection of the same dose of lithium chloride or exposure to ionizing radiation (100 rad). Similar pretreatment with radiation blocked the acquisition of a radiation-induced aversion, but had no effect on taste aversions produced by lithium chloride (3.0 or 1.5 mEq/kg). Preexposure to ethanol (4 g/kg, PO)more » disrupted the acquisition of an ethanol-induced taste aversion, but not radiation- or lithium chloride-induced aversions. In contrast, preexposure to either radiation or lithium chloride attenuated an ethanol-induced taste aversion in intact rats, but not in rats with lesions of the area postrema. The results are discussed in terms of relationships between these three unconditioned stimuli and in terms of implications of these results for understanding the nature of the proximal unconditioned stimulus in taste aversion learning.« less
Rabin, B M; Hunt, W A; Lee, J
1988-12-01
The preexposure paradigm was utilized to evaluate the similarity of ionizing radiation, lithium chloride and ethanol as unconditioned stimuli for the acquisition of a conditioned taste aversion. Three unpaired preexposures to lithium chloride (3.0 mEq/kg, IP) blocked the acquisition of a taste aversion when a novel sucrose solution was paired with either the injection of the same dose of lithium chloride or exposure to ionizing radiation (100 rad). Similar pretreatment with radiation blocked the acquisition of a radiation-induced aversion, but had no effect on taste aversions produced by lithium chloride (3.0 or 1.5 mEq/kg). Preexposure to ethanol (4 g/kg, PO) disrupted the acquisition of an ethanol-induced taste aversion, but not radiation- or lithium chloride-induced aversions. In contrast, preexposure to either radiation or lithium chloride attenuated an ethanol-induced taste aversion in intact rats, but not in rats with lesions of the area postrema. The results are discussed in terms of relationships between these three unconditioned stimuli and in terms of implications of these results for understanding the nature of the proximal unconditioned stimulus in taste aversion learning.
Post-eclosion odor experience modifies olfactory receptor neuron coding in Drosophila
Iyengar, Atulya; Chakraborty, Tuhin Subhra; Goswami, Sarit Pati; Wu, Chun-Fang; Siddiqi, Obaid
2010-01-01
Olfactory responses of Drosophila undergo pronounced changes after eclosion. The flies develop attraction to odors to which they are exposed and aversion to other odors. Behavioral adaptation is correlated with changes in the firing pattern of olfactory receptor neurons (ORNs). In this article, we present an information-theoretic analysis of the firing pattern of ORNs. Flies reared in a synthetic odorless medium were transferred after eclosion to three different media: (i) a synthetic medium relatively devoid of odor cues, (ii) synthetic medium infused with a single odorant, and (iii) complex cornmeal medium rich in odors. Recordings were made from an identified sensillum (type II), and the Jensen–Shannon divergence (DJS) was used to assess quantitatively the differences between ensemble spike responses to different odors. Analysis shows that prolonged exposure to ethyl acetate and several related esters increases sensitivity to these esters but does not improve the ability of the fly to distinguish between them. Flies exposed to cornmeal display varied sensitivity to these odorants and at the same time develop greater capacity to distinguish between odors. Deprivation of odor experience on an odorless synthetic medium leads to a loss of both sensitivity and acuity. Rich olfactory experience thus helps to shape the ORNs response and enhances its discriminative power. The experiments presented here demonstrate an experience-dependent adaptation at the level of the receptor neuron. PMID:20448199
Post-eclosion odor experience modifies olfactory receptor neuron coding in Drosophila.
Iyengar, Atulya; Chakraborty, Tuhin Subhra; Goswami, Sarit Pati; Wu, Chun-Fang; Siddiqi, Obaid
2010-05-25
Olfactory responses of Drosophila undergo pronounced changes after eclosion. The flies develop attraction to odors to which they are exposed and aversion to other odors. Behavioral adaptation is correlated with changes in the firing pattern of olfactory receptor neurons (ORNs). In this article, we present an information-theoretic analysis of the firing pattern of ORNs. Flies reared in a synthetic odorless medium were transferred after eclosion to three different media: (i) a synthetic medium relatively devoid of odor cues, (ii) synthetic medium infused with a single odorant, and (iii) complex cornmeal medium rich in odors. Recordings were made from an identified sensillum (type II), and the Jensen-Shannon divergence (D(JS)) was used to assess quantitatively the differences between ensemble spike responses to different odors. Analysis shows that prolonged exposure to ethyl acetate and several related esters increases sensitivity to these esters but does not improve the ability of the fly to distinguish between them. Flies exposed to cornmeal display varied sensitivity to these odorants and at the same time develop greater capacity to distinguish between odors. Deprivation of odor experience on an odorless synthetic medium leads to a loss of both sensitivity and acuity. Rich olfactory experience thus helps to shape the ORNs response and enhances its discriminative power. The experiments presented here demonstrate an experience-dependent adaptation at the level of the receptor neuron.
Further evidence for conditioned taste aversion induced by forced swimming.
Masaki, Takahisa; Nakajima, Sadahiko
2005-01-31
A series of experiments with rats reported that aversion to a taste solution can be established by forced swimming in a water pool. Experiment 1 demonstrated that correlation of taste and swimming is a critical factor for this phenomenon, indicating associative (i.e., Pavlovian) nature of this learning. Experiment 2 showed that this learning obeys the Pavlovian law of strength, by displaying a positive relationship between the duration of water immersion in training and the taste aversion observed in subsequent testing. Experiment 3 revealed that swimming rather than being wet is the critical agent, because a water shower did not endow rats with taste aversion. Experiment 4 found that taste aversion was a positive function of water level of the pools in training (0, 12 or 32 cm). These results, taken together, suggest that energy expenditure caused by physical exercise might be involved in the development of taste aversion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabin, B.M.; Hunt, W.A.; Lee, J.
1987-01-01
These experiments were designed to determine whether treatment with two subthreshold doses of radiation or lithium chloride, either alone or in combination, could lead to taste-aversion learning. The first experiment determined the threshold for a radiation-induced taste aversion at 15-20 rad and for lithium chloride at 0.30-0.45 mEq/kg. In the second experiment it was shown that exposing rats to two doses of 15 rad separated by up to 3 hr produced a taste aversion. Treatment with two injections of lithium chloride did produce a taste aversion when the two treatments were administered within 1 hr or each other. The resultsmore » are discussed in terms of the implications of these findings for understanding the nature of the unconditional stimuli leading to the acquisition of a conditioned taste aversion.« less
The strength of aversive and appetitive associations and maladaptive behaviors.
Itzhak, Yossef; Perez-Lanza, Daniel; Liddie, Shervin
2014-08-01
Certain maladaptive behaviors are thought to be acquired through classical Pavlovian conditioning. Exaggerated fear response, which can develop through Pavlovian conditioning, is associated with acquired anxiety disorders such as post-traumatic stress disorders (PTSDs). Inflated reward-seeking behavior, which develops through Pavlovian conditioning, underlies some types of addictive behavior (e.g., addiction to drugs, food, and gambling). These maladaptive behaviors are dependent on associative learning and the development of long-term memory (LTM). In animal models, an aversive reinforcer (fear conditioning) encodes an aversive contextual and cued LTM. On the other hand, an appetitive reinforcer results in conditioned place preference (CPP) that encodes an appetitive contextual LTM. The literature on weak and strong associative learning pertaining to the development of aversive and appetitive LTM is relatively scarce; thus, this review is particularly focused on the strength of associative learning. The strength of associative learning is dependent on the valence of the reinforcer and the salience of the conditioned stimulus that ultimately sways the strength of the memory trace. Our studies suggest that labile (weak) aversive and appetitive LTM may share similar signaling pathways, whereas stable (strong) aversive and appetitive LTM is mediated through different pathways. In addition, we provide some evidence suggesting that extinction of aversive fear memory and appetitive drug memory is likely to be mediated through different signaling molecules. We put forward the importance of studies aimed to investigate the molecular mechanisms underlying the development of weak and strong memories (aversive and appetitive), which would ultimately help in the development of targeted pharmacotherapies for the management of maladaptive behaviors that arise from classical Pavlovian conditioning. © 2014 International Union of Biochemistry and Molecular Biology.
The CC chemokine receptor 5 regulates olfactory and social recognition in mice.
Kalkonde, Y V; Shelton, R; Villarreal, M; Sigala, J; Mishra, P K; Ahuja, S S; Barea-Rodriguez, E; Moretti, P; Ahuja, S K
2011-12-01
Chemokines are chemotactic cytokines that regulate cell migration and are thought to play an important role in a broad range of inflammatory diseases. The availability of chemokine receptor blockers makes them an important therapeutic target. In vitro, chemokines are shown to modulate neurotransmission. However, it is not very clear if chemokines play a role in behavior and cognition. Here we evaluated the role of CC chemokine receptor 5 (CCR5) in various behavioral tasks in mice using Wt (Ccr5⁺/⁺) and Ccr5-null (Ccr5⁻/⁻)mice. Ccr5⁻/⁻ mice showed enhanced social recognition. Administration of CC chemokine ligand 3 (CCL3), one of the CCR5-ligands, impaired social recognition. Since the social recognition task is dependent on the sense of olfaction, we tested olfactory recognition for social and non-social scents in these mice. Ccr5⁻/⁻ mice had enhanced olfactory recognition for both these scents indicating that enhanced performance in social recognition task could be due to enhanced olfactory recognition in these mice. Spatial memory and aversive memory were comparable in Wt and Ccr5⁻/⁻ mice. Collectively, these results suggest that chemokines/chemokine receptors might play an important role in olfactory recognition tasks in mice and to our knowledge represents the first direct demonstration of an in vivo role of CCR5 in modulating social behavior in mice. These studies are important as CCR5 blockers are undergoing clinical trials and can potentially modulate behavior. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Side-Specificity of Olfactory Learning in the Honeybee: Generalization between Odors and Sides
Sandoz, Jean-Christophe; Menzel, Randolf
2001-01-01
Honeybees (Apis mellifera) can be trained to associate an odor stimulus with a sucrose reward. The neural structures involved in the detection and integration of olfactory stimuli are represented bilaterally in the brain. Little is known about the respective roles of the two sides of the brain in olfactory learning. Does each side learn independently of the other, or do they communicate, and if so, to what extent and at what level of neural integration? We addressed these questions using the proboscis extension response (PER) conditioning paradigm applied in a preparation that allows the separation of the two input sides during olfactory stimulations. Bees conditioned to two odorants A and B, one being learned on each side (A+/B+ training), showed in extinction tests rather unspecific responses: They responded to both odorants on both sides. This could be attributable to either a transfer of the learned information between sides, or to a generalization between odorants on each side. By subjecting bees to conditioning on one side only (A+/0 training), we found that the learned information is indeed transferred between sides. However, when bees were trained explicitly to give opposite values to the two odorants on the two sides (A+B−/B+A− training), they showed clear side-specific response patterns to these odorants. These results are used in the elaboration of a functional model of laterality of olfactory learning and memory processing in the honeybee brain. PMID:11584076
Norepinephrine and Learning-Induced Plasticity in Infant Rat Olfactory System
Sullivan, Regina M.; Wilson, Donald A.; Leon, Michael
2007-01-01
Postnatal olfactory learning produces both a conditioned behavioral response and a modified olfactory bulb neural response to the learned odor. The present report describes the role of norepinephrine (NE) on both of these learned responses in neonatal rat pups. Pups received olfactory classical conditioning training from postnatal days (PN) 1-18. Training consisted of 18 trials with an intertrial interval of 24 hr. For the experimental group, a trial consisted of a pairing of unconditioned stimulus (UCS, stroking/tactile stimulation) and the conditioned stimulus (CS, odor). Control groups received either only the CS (Odor only) or only the UCS (Stroke only). Within each training condition, pups were injected with either the NE β-receptor agonist isoproterenol (1, 20, or 4 mg/kg), the NE β-receptor antagonist propranolol (10, 20, 40 mg/kg), or saline 30 min prior to training. On day 20, pups received one of the following tests: (1) behavioral conditioned responding, (2) injection with 14C-2-deoxyglucase (2-DG) and exposed to the CS odor, or (3) tested for olfactory bulb mitral/tufted cell single-unit responses to the CS odor. The results indicated that training with either: (1) Odor-Stroke-Saline, (2) Odor-Stroke-lsoproterenol-Propranolol, or (3) Odor only-lsoproterenol (2 mg/kg) was sufficient to produce a learned behavioral odor preference, enhanced uptake of 14C-2-DG in the odor-specific foci within the bulb, and a modified output signal from the bulb as measured by single-cell recordings of mitral/tufted cells. Moreover, propranolol injected prior to Odor-Stroke training blocked the acquisition of both the learned behavior and olfactory bulb responses. PMID:2585063
Awad, Walaa; Ferreira, Guillaume; Maroun, Mouna
2015-01-01
Medial prefrontal circuits have been reported to undergo a major reorganization over time and gradually take a more important role for remote emotional memories such as contextual fear memory or food aversion memory. The medial prefrontal cortex, and specifically its ventral subregion, the infralimbic cortex (IL), was also reported to be critical for recent memory extinction of contextual fear conditioning and conditioned odor aversion. However, its exact role in the extinction of remotely acquired information is still not clear. Using postretrieval blockade of protein synthesis or inactivation of the IL, we showed that the IL is similarly required for extinction consolidation of recent and remote fear memory. However, in odor aversion memory, the IL was only involved in extinction consolidation of recent, but not remote, memory. In contrast, only remote retrieval of aversion memory induced c-Fos activation in the IL and preretrieval inactivation of the IL with lidocaine impaired subsequent extinction of remote but not recent memory, indicating IL is necessary for extinction learning of remote aversion memory. In contrast to the effects in odor aversion, our data show that the involvement of the IL in the consolidation of fear extinction does not depend on the memory age. More importantly, our data indicate that the IL is implicated in the extinction of fear and nonfear-based associations and suggest dissociation in the engagement of the IL in the learning and consolidation of food aversion extinction over time. PMID:25872918
Behavioral consequences of dopamine deficiency in the Drosophila central nervous system
Riemensperger, Thomas; Isabel, Guillaume; Coulom, Hélène; Neuser, Kirsa; Seugnet, Laurent; Kume, Kazuhiko; Iché-Torres, Magali; Cassar, Marlène; Strauss, Roland; Preat, Thomas; Hirsh, Jay; Birman, Serge
2011-01-01
The neuromodulatory function of dopamine (DA) is an inherent feature of nervous systems of all animals. To learn more about the function of neural DA in Drosophila, we generated mutant flies that lack tyrosine hydroxylase, and thus DA biosynthesis, selectively in the nervous system. We found that DA is absent or below detection limits in the adult brain of these flies. Despite this, they have a lifespan similar to WT flies. These mutants show reduced activity, extended sleep time, locomotor deficits that increase with age, and they are hypophagic. Whereas odor and electrical shock avoidance are not affected, aversive olfactory learning is abolished. Instead, DA-deficient flies have an apparently “masochistic” tendency to prefer the shock-associated odor 2 h after conditioning. Similarly, sugar preference is absent, whereas sugar stimulation of foreleg taste neurons induces normal proboscis extension. Feeding the DA precursor l-DOPA to adults substantially rescues the learning deficit as well as other impaired behaviors that were tested. DA-deficient flies are also defective in positive phototaxis, without alteration in visual perception and optomotor response. Surprisingly, visual tracking is largely maintained, and these mutants still possess an efficient spatial orientation memory. Our findings show that flies can perform complex brain functions in the absence of neural DA, whereas specific behaviors involving, in particular, arousal and choice require normal levels of this neuromodulator. PMID:21187381
Consumption of an acute dose of caffeine reduces acquisition but not memory in the honey bee.
Mustard, Julie A; Dews, Lauren; Brugato, Arlana; Dey, Kevin; Wright, Geraldine A
2012-06-15
Caffeine affects several molecules that are also involved in the processes underlying learning and memory such as cAMP and calcium. However, studies of caffeine's influence on learning and memory in mammals are often contradictory. Invertebrate model systems have provided valuable insight into the actions of many neuroactive compounds including ethanol and cocaine. We use the honey bee (Apis mellifera) to investigate how the ingestion of acute doses of caffeine before, during, and after conditioning influences performance in an appetitive olfactory learning and memory task. Consumption of caffeine doses of 0.01 M or greater during or prior to conditioning causes a significant reduction in response levels during acquisition. Although bees find the taste of caffeine to be aversive at high concentrations, the bitter taste does not explain the reduction in acquisition observed for bees fed caffeine before conditioning. While high doses of caffeine reduced performance during acquisition, the response levels of bees given caffeine were the same as those of the sucrose only control group in a recall test 24h after conditioning. In addition, caffeine administered after conditioning had no affect on recall. These results suggest that caffeine specifically affects performance during acquisition and not the processes involved in the formation of early long term memory. Copyright © 2012 Elsevier B.V. All rights reserved.
Effects of Caffeine on Olfactory Learning in Crickets.
Sugimachi, Seigo; Matsumoto, Yukihisa; Mizunami, Makoto; Okada, Jiro
2016-10-01
Caffeine is a plant-derived alkaloid that is generally known as a central nervous system (CNS) stimulant. In order to examine the effects of caffeine on higher CNS functions in insects, we used an appetitive olfactory learning paradigm for the cricket Gryllus bimaculatus. Crickets can form significant long-term memories (LTMs) after repetitive training sessions, during which they associate a conditioned stimulus (CS: odor) with an unconditioned stimulus (US: reward). Administration of hemolymphal injections of caffeine established LTM after only single-trial conditioning over a wide range of caffeine dosages (1.6 µµg/kg to 39 mg/kg). We investigated the physiological mechanisms underlying this enhancement of olfactory learning performance pharmacologically, focusing on three major physiological roles of caffeine: 1) inhibition of phosphodiesterase (PDE), 2) agonism of ryanodine receptors, and 3) antagonism of adenosine receptors. Application of drugs relevant to these actions resulted in significant effects on LTM formation. These results suggest that externally applied caffeine enhances LTM formation in insect olfactory learning via multiple cellular mechanisms.
Visualizing the engram: learning stabilizes odor representations in the olfactory network.
Shakhawat, Amin M D; Gheidi, Ali; Hou, Qinlong; Dhillon, Sandeep K; Marrone, Diano F; Harley, Carolyn W; Yuan, Qi
2014-11-12
The nature of memory is a central issue in neuroscience. How does our representation of the world change with learning and experience? Here we use the transcription of Arc mRNA, which permits probing the neural representations of temporally separated events, to address this in a well characterized odor learning model. Rat pups readily associate odor with maternal care. In pups, the lateralized olfactory networks are independent, permitting separate training and within-subject control. We use multiday training to create an enduring memory of peppermint odor. Training stabilized rewarded, but not nonrewarded, odor representations in both mitral cells and associated granule cells of the olfactory bulb and in the pyramidal cells of the anterior piriform cortex. An enlarged core of stable, likely highly active neurons represent rewarded odor at both stages of the olfactory network. Odor representations in anterior piriform cortex were sparser than typical in adult rat and did not enlarge with learning. This sparser representation of odor is congruent with the maturation of lateral olfactory tract input in rat pups. Cortical representations elsewhere have been shown to be highly variable in electrophysiological experiments, suggesting brains operate normally using dynamic and network-modulated representations. The olfactory cortical representations here are consistent with the generalized associative model of sparse variable cortical representation, as normal responses to repeated odors were highly variable (∼70% of the cells change as indexed by Arc). Learning and memory modified rewarded odor ensembles to increase stability in a core representational component. Copyright © 2014 the authors 0270-6474/14/3415394-08$15.00/0.
Developmental emergence of fear/threat learning: neurobiology, associations and timing.
Tallot, L; Doyère, V; Sullivan, R M
2016-01-01
Pavlovian fear or threat conditioning, where a neutral stimulus takes on aversive properties through pairing with an aversive stimulus, has been an important tool for exploring the neurobiology of learning. In the past decades, this neurobehavioral approach has been expanded to include the developing infant. Indeed, protracted postnatal brain development permits the exploration of how incorporating the amygdala, prefrontal cortex and hippocampus into this learning system impacts the acquisition and expression of aversive conditioning. Here, we review the developmental trajectory of these key brain areas involved in aversive conditioning and relate it to pups' transition to independence through weaning. Overall, the data suggests that adult-like features of threat learning emerge as the relevant brain areas become incorporated into this learning. Specifically, the developmental emergence of the amygdala permits cue learning and the emergence of the hippocampus permits context learning. We also describe unique features of learning in early life that block threat learning and enhance interaction with the mother or exploration of the environment. Finally, we describe the development of a sense of time within this learning and its involvement in creating associations. Together these data suggest that the development of threat learning is a useful tool for dissecting adult-like functioning of brain circuits, as well as providing unique insights into ecologically relevant developmental changes. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Stress attenuates the flexible updating of aversive value
Raio, Candace M.; Hartley, Catherine A.; Orederu, Temidayo A.; Li, Jian; Phelps, Elizabeth A.
2017-01-01
In a dynamic environment, sources of threat or safety can unexpectedly change, requiring the flexible updating of stimulus−outcome associations that promote adaptive behavior. However, aversive contexts in which we are required to update predictions of threat are often marked by stress. Acute stress is thought to reduce behavioral flexibility, yet its influence on the modulation of aversive value has not been well characterized. Given that stress exposure is a prominent risk factor for anxiety and trauma-related disorders marked by persistent, inflexible responses to threat, here we examined how acute stress affects the flexible updating of threat responses. Participants completed an aversive learning task, in which one stimulus was probabilistically associated with an electric shock, while the other stimulus signaled safety. A day later, participants underwent an acute stress or control manipulation before completing a reversal learning task during which the original stimulus−outcome contingencies switched. Skin conductance and neuroendocrine responses provided indices of sympathetic arousal and stress responses, respectively. Despite equivalent initial learning, stressed participants showed marked impairments in reversal learning relative to controls. Additionally, reversal learning deficits across participants were related to heightened levels of alpha-amylase, a marker of noradrenergic activity. Finally, fitting arousal data to a computational reinforcement learning model revealed that stress-induced reversal learning deficits emerged from stress-specific changes in the weight assigned to prediction error signals, disrupting the adaptive adjustment of learning rates. Our findings provide insight into how stress renders individuals less sensitive to changes in aversive reinforcement and have implications for understanding clinical conditions marked by stress-related psychopathology. PMID:28973957
Dissociable Learning Processes Underlie Human Pain Conditioning
Zhang, Suyi; Mano, Hiroaki; Ganesh, Gowrishankar; Robbins, Trevor; Seymour, Ben
2016-01-01
Summary Pavlovian conditioning underlies many aspects of pain behavior, including fear and threat detection [1], escape and avoidance learning [2], and endogenous analgesia [3]. Although a central role for the amygdala is well established [4], both human and animal studies implicate other brain regions in learning, notably ventral striatum and cerebellum [5]. It remains unclear whether these regions make different contributions to a single aversive learning process or represent independent learning mechanisms that interact to generate the expression of pain-related behavior. We designed a human parallel aversive conditioning paradigm in which different Pavlovian visual cues probabilistically predicted thermal pain primarily to either the left or right arm and studied the acquisition of conditioned Pavlovian responses using combined physiological recordings and fMRI. Using computational modeling based on reinforcement learning theory, we found that conditioning involves two distinct types of learning process. First, a non-specific “preparatory” system learns aversive facial expressions and autonomic responses such as skin conductance. The associated learning signals—the learned associability and prediction error—were correlated with fMRI brain responses in amygdala-striatal regions, corresponding to the classic aversive (fear) learning circuit. Second, a specific lateralized system learns “consummatory” limb-withdrawal responses, detectable with electromyography of the arm to which pain is predicted. Its related learned associability was correlated with responses in ipsilateral cerebellar cortex, suggesting a novel computational role for the cerebellum in pain. In conclusion, our results show that the overall phenotype of conditioned pain behavior depends on two dissociable reinforcement learning circuits. PMID:26711494
Lesions of the rat nucleus basalis magnocellularis disrupt appetitive-to-aversive transfer learning.
Butt, A E; Schultz, J A; Arnold, L L; Garman, E E; George, C L; Garraghty, P E
2003-01-01
Rats with selective lesions of the nucleus basalis magnocellularis (NBM) and sham-lesion control animals were tested in an operant appetitive-to-aversive transfer task. We hypothesized that NBM lesions would not affect performance in the appetitive phase, but that performance would be impaired during subsequent transfer to the aversive phase of the task. Additional groups of NBM lesion and control rats were tested in the avoidance condition only, where we hypothesized that NBM lesions would not disrupt performance. These hypotheses were based on the argument that the NBM is not necessary for simple association learning that does not tax attention. Both the appetitive phase of the transfer task and the avoidance only task depend only on simple associative learning and are argued not to tax attention. Consequently, performance in these tasks was predicted to be spared following NBM lesions. Complex, attention-demanding associative learning, however, is argued to depend on the NBM. Performance in the aversive phase of the transfer task is both attentionally demanding and associatively more complex than in either the appetitive or aversive tasks alone; thus, avoidance performance in the NBM lesion group was predicted to be impaired following transfer from prior appetitive conditioning. Results supported our hypotheses, with the NBM lesion group acquiring the appetitive response normally, but showing impaired performance following transfer to the aversive conditioning phase of the transfer task. Impairments were not attributable to disrupted avoidance learning per se, as avoidance behavior was normal in the NBM lesion group tested in the avoidance condition only.
Falibene, Agustina; Roces, Flavio; Rössler, Wolfgang
2015-01-01
Long-term behavioral changes related to learning and experience have been shown to be associated with structural remodeling in the brain. Leaf-cutting ants learn to avoid previously preferred plants after they have proved harmful for their symbiotic fungus, a process that involves long-term olfactory memory. We studied the dynamics of brain microarchitectural changes after long-term olfactory memory formation following avoidance learning in Acromyrmex ambiguus. After performing experiments to control for possible neuronal changes related to age and body size, we quantified synaptic complexes (microglomeruli, MG) in olfactory regions of the mushroom bodies (MBs) at different times after learning. Long-term avoidance memory formation was associated with a transient change in MG densities. Two days after learning, MG density was higher than before learning. At days 4 and 15 after learning—when ants still showed plant avoidance—MG densities had decreased to the initial state. The structural reorganization of MG triggered by long-term avoidance memory formation clearly differed from changes promoted by pure exposure to and collection of novel plants with distinct odors. Sensory exposure by the simultaneous collection of several, instead of one, non-harmful plant species resulted in a decrease in MG densities in the olfactory lip. We hypothesize that while sensory exposure leads to MG pruning in the MB olfactory lip, the formation of long-term avoidance memory involves an initial growth of new MG followed by subsequent pruning. PMID:25904854
Chaillan, F A; Marchetti, E; Soumireu-Mourat, B; Roman, F S
2005-03-30
A new apparatus, the olfactory tubing maze for mice, was developed recently to study learning and memory processes in mice in regard to their ethological abilities. As in humans, BALB/c mice with selective bilateral lesions of the hippocampal formation showed selective impairment of subcategories of long-term memory when tested with the olfactory tubing maze. After three learning sessions, control mice reached a high percentage of correct responses. They consistently made the olfactory-reward associations, but antero-dorsal and postero-ventral hippocampal-lesioned mice did not. However, all lesioned mice learned the paradigm and the timing of the task as fast and as well as control mice. These data suggest that the olfactory tubing maze can be used to study subcategories of memory, such as declarative and non-declarative memory, which are similar in some respects to those observed in humans. Consequently, possible memory effects of classical approaches (i.e., pharmacological or lesion studies) or genetic modifications in transgenic or gene-targeting mice can be effectively analyzed using this new apparatus.
Naimark, Ari; Barkai, Edi; Michael, Matar A; Kozlovsky, Nitzan; Kaplan, Zeev; Cohen, Hagit
2008-01-01
There is mounting evidence to support the concept that education is associated with the formation of a functional reserve in the brain, a process that appears to provide some protection against certain aspects of severe central nervous system disorders. The goal of this study was to examine whether learning prevents psychosis-like behaviour in an animal model of schizophrenia. A series of behavioural tasks were used to assess olfactory learning-induced protection against the effects of NMDA channel blocker, MK801. This blocker caused sensory-motor disturbances, spatial learning acquisition deficit, and swimming strategy alterations in pseudo-trained and naive rats, but had a considerably lesser effect on trained rats. In sharp contrast, olfactory learning provided no protection against d-amphetamine application. Our data support the notion that learning-induced protection against schizophrenic behaviour is maintained by non-NMDA-mediated enhanced activation of local connections in the relevant cortical networks.
Daroles, Laura; Gribaudo, Simona; Doulazmi, Mohamed; Scotto-Lomassese, Sophie; Dubacq, Caroline; Mandairon, Nathalie; Greer, Charles August; Didier, Anne; Trembleau, Alain; Caillé, Isabelle
2016-07-15
In the adult brain, structural plasticity allowing gain or loss of synapses remodels circuits to support learning. In fragile X syndrome, the absence of fragile X mental retardation protein (FMRP) leads to defects in plasticity and learning deficits. FMRP is a master regulator of local translation but its implication in learning-induced structural plasticity is unknown. Using an olfactory learning task requiring adult-born olfactory bulb neurons and cell-specific ablation of FMRP, we investigated whether learning shapes adult-born neuron morphology during their synaptic integration and its dependence on FMRP. We used alpha subunit of the calcium/calmodulin-dependent kinase II (αCaMKII) mutant mice with altered dendritic localization of αCaMKII messenger RNA, as well as a reporter of αCaMKII local translation to investigate the role of this FMRP messenger RNA target in learning-dependent structural plasticity. Learning induces profound changes in dendritic architecture and spine morphology of adult-born neurons that are prevented by ablation of FMRP in adult-born neurons and rescued by an metabotropic glutamate receptor 5 antagonist. Moreover, dendritically translated αCaMKII is necessary for learning and associated structural modifications and learning triggers an FMRP-dependent increase of αCaMKII dendritic translation in adult-born neurons. Our results strongly suggest that FMRP mediates structural plasticity of olfactory bulb adult-born neurons to support olfactory learning through αCaMKII local translation. This reveals a new role for FMRP-regulated dendritic local translation in learning-induced structural plasticity. This might be of clinical relevance for the understanding of critical periods disruption in autism spectrum disorder patients, among which fragile X syndrome is the primary monogenic cause. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Mukilan, Murugan; Rajathei, David Mary; Jeyaraj, Edwin; Kayalvizhi, Nagarajan; Rajan, Koilmani Emmanuvel
2018-05-30
Earlier, we showed that micro RNA-132 (miR-132) regulate the immediate early genes (IEGs) in the olfactory bulb (OB) of fruit bat Cynopterus sphinx during olfactory learning. This study was designed to examine whether the miR-132 regulate other proteins in OB during olfactory learning. To test this, miR-132 anti-sense oligodeoxynucleotide (AS-ODN) was delivered to the OB and then trained to novel odor. The 2-dimensional gel electrophoresis analysis showed that inhibition of miR-132 altered olfactory training induced expression of 321 proteins. Further, liquid chromatography-mass spectrometry (LC-MS/MS) analysis reveals the identity of differently expressed proteins such as phosphoribosyl transferase domain containing protein (PRTFDC 1), Sorting nexin-8 (SNX8), Creatine kinase B-type (CKB) and Annexin A11 (ANX A11). Among them PRTFDC 1 showing 189 matching peptides with highest sequence coverage (67.0%) and protein-protein interaction analysis showed that PRTFDC 1 is a homolog of hypoxanthine phosphoribosyltransferase-1 (HPRT-1). Subsequent immunohistochemical analysis (IHC) showed that inhibition of miR-132 down-regulated HPRT expression in OB of C. sphinx. In addition, western blot analysis depicts that HPRT, serotonin transporter (SERT), N-methyl-d-asparate (NMDA) receptors (2A,B) were down-regulated, but not altered in OB of non-sense oligodeoxynucleotide (NS-ODN) infused groups. These analyses suggest that miR-132 regulates the process of olfactory learning and memory formation through SERT and NMDA receptors signalling, which is possibly associated with the PRTFDC1-HPRT interaction. Copyright © 2017. Published by Elsevier B.V.
‘Peer pressure’ in larval Drosophila?
Niewalda, Thomas; Jeske, Ines; Michels, Birgit; Gerber, Bertram
2014-01-01
ABSTRACT Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on ‘peer pressure’, that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group of larvae is doing. We found that innate olfactory preference of a target individual was neither affected (i) by the level of innate olfactory preference in the surrounding group nor (ii) by the expression of learned olfactory preference in the group. Likewise, learned olfactory preference of a target individual was neither affected (iii) by the level of innate olfactory preference of the surrounding group nor (iv) by the learned olfactory preference the group was expressing. We conclude that larval Drosophila thus do not take note of specifically what surrounding larvae are doing. This implies that in a strict sense, and to the extent tested, there is no social interaction between larvae. These results validate widely used en mass approaches to the behaviour of larval Drosophila. PMID:24907371
'Peer pressure' in larval Drosophila?
Niewalda, Thomas; Jeske, Ines; Michels, Birgit; Gerber, Bertram
2014-06-06
Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on 'peer pressure', that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group of larvae is doing. We found that innate olfactory preference of a target individual was neither affected (i) by the level of innate olfactory preference in the surrounding group nor (ii) by the expression of learned olfactory preference in the group. Likewise, learned olfactory preference of a target individual was neither affected (iii) by the level of innate olfactory preference of the surrounding group nor (iv) by the learned olfactory preference the group was expressing. We conclude that larval Drosophila thus do not take note of specifically what surrounding larvae are doing. This implies that in a strict sense, and to the extent tested, there is no social interaction between larvae. These results validate widely used en mass approaches to the behaviour of larval Drosophila. © 2014. Published by The Company of Biologists Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabin, B.M.; Hunt, W.A.; Lee, J.
1987-08-01
These experiments were designed to determine whether treatment with two subthreshold doses of radiation or lithium chloride, either alone or in combination, could lead to taste aversion learning. The first experiment determined the thresholds for a radiation-induced taste aversion at 15-20 rad and for lithium chloride at 0.30-0.45 mEq/kg. In the second experiment it was shown that exposing rats to two doses of 15 rad separated by up to 3 hr produced a taste aversion. Treatment with two injections of lithium chloride (0.30 mEq/kg) did not produce a significant reduction in preference. Combined treatment with radiation and lithium chloride didmore » produce a taste aversion when the two treatments were administered within 1 hr of each other. The results are discussed in terms of the implications of these findings for understanding the nature of the unconditioned stimuli leading to the acquisition of a conditioned taste aversion.« less
Rabin, B M; Hunt, W A; Lee, J
1987-08-01
These experiments were designed to determine whether treatment with two subthreshold doses of radiation or lithium chloride, either alone or in combination, could lead to taste aversion learning. The first experiment determined the thresholds for a radiation-induced taste aversion at 15-20 rad and for lithium chloride at 0.30-0.45 mEq/kg. In the second experiment it was shown that exposing rats to two doses of 15 rad separated by up to 3 hr produced a taste aversion. Treatment with two injections of lithium chloride (0.30 mEq/kg) did not produce a significant reduction in preference. Combined treatment with radiation and lithium chloride did produce a taste aversion when the two treatments were administered within 1 hr of each other. The results are discussed in terms of the implications of these findings for understanding the nature of the unconditioned stimuli leading to the acquisition of a conditioned taste aversion.
Conditioned taste aversion, drugs of abuse and palatability
Lin, Jian-You; Arthurs, Joe; Reilly, Steve
2014-01-01
LIN, J.-Y., J. Arthurs and S. Reilly. Conditioned taste aversion: Palatability and drugs of abuse. NEUROSCI BIOBEHAV REV XX(x) XXX-XXX, 2014. – We consider conditioned taste aversion to involve a learned reduction in the palatability of a taste (and hence in amount consumed) based on the association that develops when a taste experience is followed by gastrointestinal malaise. The present article evaluates the well-established finding that drugs of abuse, at doses that are otherwise considered rewarding and self-administered, cause intake suppression. Our recent work using lick pattern analysis shows that drugs of abuse also cause a palatability downshift and, therefore, support conditioned taste aversion learning. PMID:24813806
Nielsen, Birte L.; Rampin, Olivier; Meunier, Nicolas; Bombail, Vincent
2015-01-01
It has long been known that the behavior of an animal can be affected by odors from another species. Such interspecific effects of odorous compounds (allelochemics) are usually characterized according to who benefits (emitter, receiver, or both) and the odors categorized accordingly (allomones, kairomones, and synomones, respectively), which has its origin in the definition of pheromones, i.e., intraspecific communication via volatile compounds. When considering vertebrates, however, interspecific odor-based effects exist which do not fit well in this paradigm. Three aspects in particular do not encompass all interspecific semiochemical effects: one relates to the innateness of the behavioral response, another to the origin of the odor, and the third to the intent of the message. In this review we focus on vertebrates, and present examples of behavioral responses of animals to odors from other species with specific reference to these three aspects. Searching for a more useful classification of allelochemical effects we examine the relationship between the valence of odors (attractive through to aversive), and the relative contributions of learned and unconditioned (innate) behavioral responses to odors from other species. We propose that these two factors (odor valence and learning) may offer an alternative way to describe the nature of interspecific olfactory effects involving vertebrates compared to the current focus on who benefits. PMID:26161069
Resistance to Interference of Olfactory Perceptual Learning
ERIC Educational Resources Information Center
Stevenson, Richard J.; Case, Trevor I.; Tomiczek, Caroline
2007-01-01
Olfactory memory is especially persistent. The current study explored whether this applies to a form of perceptual learning, in which experience of an odor mixture results in greater judged similarity between its elements. Experiment 1A contrasted 2 forms of interference procedure, "compound" (mixture AW, followed by presentation of new mixtures…
Giordano, Giuseppe; Carbone, Marianna; Ciavatta, Maria Letizia; Silvano, Eleonora; Gavagnin, Margherita; Garson, Mary J.; Cheney, Karen L.; Mudianta, I Wayan; Russo, Giovanni Fulvio; Villani, Guido; Magliozzi, Laura; Zidorn, Christian; Cutignano, Adele; Fontana, Angelo; Ghiselin, Michael T.
2017-01-01
Olfaction is considered a distance sense; hence, aquatic olfaction is thought to be mediated only by molecules dissolved in water. Here, we challenge this view by showing that shrimp and fish can recognize the presence of hydrophobic olfactory cues by a “tactile” form of chemoreception. We found that odiferous furanosesquiterpenes protect both the Mediterranean octocoral Maasella edwardsi and its specialist predator, the nudibranch gastropod Tritonia striata, from potential predators. Food treated with the terpenes elicited avoidance responses in the cooccurring shrimp Palaemon elegans. Rejection was also induced in the shrimp by the memory recall of postingestive aversive effects (vomiting), evoked by repeatedly touching the food with chemosensory mouthparts. Consistent with their emetic properties once ingested, the compounds were highly toxic to brine shrimp. Further experiments on the zebrafish showed that this vertebrate aquatic model also avoids food treated with one of the terpenes, after having experienced gastrointestinal malaise. The fish refused the food after repeatedly touching it with their mouths. The compounds studied thus act simultaneously as (i) toxins, (ii) avoidance-learning inducers, and (iii) aposematic odorant cues. Although they produce a characteristic smell when exposed to air, the compounds are detected by direct contact with the emitter in aquatic environments and are perceived at high doses that are not compatible with their transport in water. The mouthparts of both the shrimp and the fish have thus been shown to act as “aquatic noses,” supporting a substantial revision of the current definition of the chemical senses based upon spatial criteria. PMID:28289233
Cholinergic dependence of taste memory formation: evidence of two distinct processes.
Gutiérrez, Ranier; Rodriguez-Ortiz, Carlos J; De La Cruz, Vanesa; Núñez-Jaramillo, Luis; Bermudez-Rattoni, Federico
2003-11-01
Learning the aversive or positive consequences associated with novel taste solutions has a strong significance for an animal's survival. A lack of recognition of a taste's consequences could prevent ingestion of potential edibles or encounter death. We used conditioned taste aversion (CTA) and attenuation of neophobia (AN) to study aversive and safe taste memory formation. To determine if muscarinic receptors in the insular cortex participate differentially in both tasks, we infused the muscarinic antagonists scopolamine at distinct times before or after the presentation of a strong concentration of saccharin, followed by either an i.p. injection of a malaise-inducing agent or no injection. Our results showed that blockade of muscarinic receptors before taste presentation disrupts both learning tasks. However, the same treatment after the taste prevents AN but not CTA. These results clearly demonstrate that cortical cholinergic activity participates in the acquisition of both safe and aversive memory formation, and that cortical muscarinic receptors seem to be necessary for safe but not for aversive taste memory consolidation. These results suggest that the taste memory trace is processed in the insular cortex simultaneously by at least two independent mechanisms, and that their interaction would determine the degree of aversion or preference learned to a novel taste.
Differential Endocannabinoid Regulation of Extinction in Appetitive and Aversive Barnes Maze Tasks
ERIC Educational Resources Information Center
Harloe, John P.; Thorpe, Andrew J.; Lichtman, Aron H.
2008-01-01
CB[subscript 1] receptor-compromised animals show profound deficits in extinguishing learned behavior from aversive conditioning tasks, but display normal extinction learning in appetitive operant tasks. However, it is difficult to discern whether the differential involvement of the endogenous cannabinoid system on extinction results from the…
Of pheromones and kairomones: what receptors mediate innate emotional responses?
Fortes-Marco, Lluis; Lanuza, Enrique; Martinez-Garcia, Fernando
2013-09-01
Some chemicals elicit innate emotionally laden behavioral responses. Pheromones mediate sexual attraction, parental care or agonistic confrontation, whereas predators' kairomones elicit defensive behaviors in their preys. This essay explores the hypothesis that the detection of these semiochemicals relies on highly specific olfactory and/or vomeronasal receptors. The V1R, V2R, and formyl-peptide vomeronasal receptors bind their ligands in highly specific and sensitive way, thus being good candidates for pheromone- or kairomone-detectors (e.g., secreted and excreted proteins, peptides and lipophilic volatiles). The olfactory epithelium also expresses specific receptors, for example trace amine-associated receptors (TAAR) and guanylyl cyclase receptors (GC-D and other types), some of which bind kairomones and putative pheromones. However, most of the olfactory neurons express canonical olfactory receptors (ORs) that bind many ligands with different affinity, being not suitable for mediating responses to pheromones and kairomones. In this respect, trimethylthiazoline (TMT) is considered a fox-derived kairomone for mice and rats, but it seems to be detected by canonical ORs. Therefore, we have reassessed the kairomonal nature of TMT by analyzing the behavioral responses of outbred (CD1) and inbred mice (C57BL/J6) to TMT. Our results confirm that both mouse strains avoid TMT, which increases immobility in C57BL/J6, but not CD1 mice. However, mice of both strains sniff at TMT throughout the test and show no trace of TMT-induced contextual conditioning (immobility or avoidance). This suggests that TMT is not a kairomone but, similar to a loud noise, in high concentrations it induces aversion and stress as unspecific responses to a strong olfactory stimulation. Copyright © 2013 Wiley Periodicals, Inc.
Circuit Analysis of a Drosophila Dopamine Type 2 Receptor That Supports Anesthesia-Resistant Memory.
Scholz-Kornehl, Sabrina; Schwärzel, Martin
2016-07-27
Dopamine is central to reinforcement processing and exerts this function in species ranging from humans to fruit flies. It can do so via two different types of receptors (i.e., D1 or D2) that mediate either augmentation or abatement of cellular cAMP levels. Whereas D1 receptors are known to contribute to Drosophila aversive odor learning per se, we here show that D2 receptors are specific for support of a consolidated form of odor memory known as anesthesia-resistant memory. By means of genetic mosaicism, we localize this function to Kenyon cells, the mushroom body intrinsic neurons, as well as GABAergic APL neurons and local interneurons of the antennal lobes, suggesting that consolidated anesthesia-resistant memory requires widespread dopaminergic modulation within the olfactory circuit. Additionally, dopaminergic neurons themselves require D2R, suggesting a critical role in dopamine release via its recognized autoreceptor function. Considering the dual role of dopamine in balancing memory acquisition (proactive function of dopamine) and its "forgetting" (retroactive function of dopamine), our analysis suggests D2R as central player of either process. Dopamine provides different information; while it mediates reinforcement during the learning act (proactive function), it balances memory performance between two antithetic processes thereafter (retroactive function) (i.e., forgetting and augmentation). Such bidirectional design can also be found at level of dopamine receptors, where augmenting D1 and abating D2 receptors are engaged to balance cellular cAMP levels. Here, we report that consolidated anesthesia-resistant memory (ARM), but not other concomitant memory phases, are sensitive to bidirectional dopaminergic signals. By means of genetic mosaicism, we identified widespread dopaminergic modulation within the olfactory circuit that suggests nonredundant and reiterating functions of D2R in support of ARM. Our results oppose ARM to its concomitant memory phases that localize to mushroom bodies and propose a decentralized organization of consolidated ARM. Copyright © 2016 the authors 0270-6474/16/367936-10$15.00/0.
Prescott, M J; Buchanan-Smith, H M; Smith, A C
2005-04-01
For social species, being a member of a cohesive group and performing activities as a coordinated unit appear to provide a mechanism for the efficient transmission of information about food. Social learning about food palatability was investigated in two captive primates, Saguinus fuscicollis and S. labiatus, which form stable and cohesive mixed-species groups in the wild. We explored whether an induced food aversion toward a preferred food is modified during and after social interaction with non-averse conspecifics or congeners. Sets of intra- and interspecific pairs were presented with two foods, one of which was considered distasteful by one of the pairs (the other was palatable), and their behavior was compared pre-interaction, during interaction, and post-interaction. For the aversely-conditioned individuals of both species, the change in social context corresponded to a change in their preference for the food that they considered unpalatable, regardless of whether they had interacted with a conspecific or congeneric pair, and the change in food preference was maintained post-interaction. In a control condition, in which averse individuals did not have the opportunity to interact with non-averse animals, S. fuscicollis sampled the preferred food, but not as quickly as when given the opportunity to interact. We conclude that the social learning demonstrated here may allow individual tamarins to track environmental change, such as fruit ripening, more efficiently than asocial learning alone, because social learners can more quickly and safely focus on appropriate behavior by sharing up-to-date foraging information. Furthermore, since the behavior of congeners, as well as conspecifics, acts to influence food choice in a more adaptive direction, social learning about food palatability may be an advantage of mixed-species group formation to tamarins of both species. Copyright 2005 Wiley-Liss, Inc
Spermidine-triggered autophagy ameliorates memory during aging.
Sigrist, Stephan J; Carmona-Gutierrez, Didac; Gupta, Varun K; Bhukel, Anuradha; Mertel, Sara; Eisenberg, Tobias; Madeo, Frank
2014-01-01
The aging process drives the progressive deterioration of an organism and is thus subject to a complex interplay of regulatory and executing mechanisms. Our understanding of this process eventually aims at the delay and/or prevention of age-related pathologies, among them the age-dependent decrease in cognitive performance (e.g., learning and memory). Using the fruit fly Drosophila melanogaster, which combines a generally high mechanistic conservation with an efficient experimental access regarding aging and memory studies, we have recently unveiled a protective function of polyamines (including spermidine) against age-induced memory impairment (AMI). The flies' age-dependent decline of aversive olfactory memory, an established model for AMI, can be rescued by both pharmacological treatment with spermidine and genetic modulation that increases endogenous polyamine levels. Notably, we find that this effect strictly depends on autophagy, which is remarkable in light of the fact that autophagy is considered a key regulator of aging in other contexts. Given that polyamines in general and spermidine in particular are endogenous metabolites, our findings place them as candidate target substances for AMI treatment.
Dissociable Learning Processes Underlie Human Pain Conditioning.
Zhang, Suyi; Mano, Hiroaki; Ganesh, Gowrishankar; Robbins, Trevor; Seymour, Ben
2016-01-11
Pavlovian conditioning underlies many aspects of pain behavior, including fear and threat detection [1], escape and avoidance learning [2], and endogenous analgesia [3]. Although a central role for the amygdala is well established [4], both human and animal studies implicate other brain regions in learning, notably ventral striatum and cerebellum [5]. It remains unclear whether these regions make different contributions to a single aversive learning process or represent independent learning mechanisms that interact to generate the expression of pain-related behavior. We designed a human parallel aversive conditioning paradigm in which different Pavlovian visual cues probabilistically predicted thermal pain primarily to either the left or right arm and studied the acquisition of conditioned Pavlovian responses using combined physiological recordings and fMRI. Using computational modeling based on reinforcement learning theory, we found that conditioning involves two distinct types of learning process. First, a non-specific "preparatory" system learns aversive facial expressions and autonomic responses such as skin conductance. The associated learning signals-the learned associability and prediction error-were correlated with fMRI brain responses in amygdala-striatal regions, corresponding to the classic aversive (fear) learning circuit. Second, a specific lateralized system learns "consummatory" limb-withdrawal responses, detectable with electromyography of the arm to which pain is predicted. Its related learned associability was correlated with responses in ipsilateral cerebellar cortex, suggesting a novel computational role for the cerebellum in pain. In conclusion, our results show that the overall phenotype of conditioned pain behavior depends on two dissociable reinforcement learning circuits. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Experimental evidence for olfactory predator recognition in wild mouse lemurs.
Kappel, Philipp; Hohenbrink, Sarah; Radespiel, Ute
2011-09-01
Although primates have remarkable olfactory capabilities, their ability for olfactory predator recognition is still understudied. We investigated this cognitive ability in wild gray and golden-brown mouse lemurs (Microcebus murinus and M. ravelobensis) that were confronted with four different olfactory stimuli, derived from two Malagasy predators (fossa and barn owl) and two local nonpredator species (brown lemur and sifaka). The predator response was tested (1) in a systematic cage setup and (2) in a two-way choice experiment with two Sherman traps on platforms in the forest (stimulus trap vs. nonstimulus trap). For part 1, the study animals were housed in cages during habituation and 5 days of experiments. One stimulus was tested per night and was presented underneath a drinking bottle. The changes in the time spent close to the stimulus and the drinking time at the bottle were used as indicators of predator recognition. A timidity score was established by classifying the strength of the antipredator response during the experiment. The study animals spent significantly less time drinking and less time in the stimulus area when confronted with fossa odor compared with the other stimuli. The timidity score was significantly higher during the fossa stimulus compared with the nonpredator and the control stimuli. The two-way choice experiments revealed a complete avoidance of the fossa odor, which was not found with the other stimuli. Thus, wild mouse lemurs showed clear signs of olfactory predator recognition in the case of the fossa in both experiments, but no signs of avoidance to the other presented stimuli. The lack of owl avoidance may be explained by less or no aversive metabolites in the owl stimulus or by lower significance for olfactory recognition of aerial predators. Furthermore, the results showed slight differences between the two mouse lemur species that may be linked to differences in their ecology. © 2011 Wiley-Liss, Inc.
ERIC Educational Resources Information Center
Pavesi, Eloisa; Gooch, Allison; Lee, Elizabeth; Fletcher, Max L.
2013-01-01
We investigated the role of cholinergic neurotransmission in olfactory fear learning. Mice receiving pairings of odor and foot shock displayed fear to the trained odor the following day. Pretraining injections of the nicotinic antagonist mecamylamine had no effect on subsequent freezing, while the muscarinic antagonist scopolamine significantly…
Mizunami, Makoto; Unoki, Sae; Mori, Yasuhiro; Hirashima, Daisuke; Hatano, Ai; Matsumoto, Yukihisa
2009-08-04
In insect classical conditioning, octopamine (the invertebrate counterpart of noradrenaline) or dopamine has been suggested to mediate reinforcing properties of appetitive or aversive unconditioned stimulus, respectively. However, the roles of octopaminergic and dopaminergic neurons in memory recall have remained unclear. We studied the roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in olfactory and visual conditioning in crickets. We found that pharmacological blockade of octopamine and dopamine receptors impaired aversive memory recall and appetitive memory recall, respectively, thereby suggesting that activation of octopaminergic and dopaminergic neurons and the resulting release of octopamine and dopamine are needed for appetitive and aversive memory recall, respectively. On the basis of this finding, we propose a new model in which it is assumed that two types of synaptic connections are formed by conditioning and are activated during memory recall, one type being connections from neurons representing conditioned stimulus to neurons inducing conditioned response and the other being connections from neurons representing conditioned stimulus to octopaminergic or dopaminergic neurons representing appetitive or aversive unconditioned stimulus, respectively. The former is called 'stimulus-response connection' and the latter is called 'stimulus-stimulus connection' by theorists studying classical conditioning in higher vertebrates. Our model predicts that pharmacological blockade of octopamine or dopamine receptors during the first stage of second-order conditioning does not impair second-order conditioning, because it impairs the formation of the stimulus-response connection but not the stimulus-stimulus connection. The results of our study with a cross-modal second-order conditioning were in full accordance with this prediction. We suggest that insect classical conditioning involves the formation of two kinds of memory traces, which match to stimulus-stimulus connection and stimulus-response connection. This is the first study to suggest that classical conditioning in insects involves, as does classical conditioning in higher vertebrates, the formation of stimulus-stimulus connection and its activation for memory recall, which are often called cognitive processes.
The role of the Drosophila lateral horn in olfactory information processing and behavioral response.
Schultzhaus, Janna N; Saleem, Sehresh; Iftikhar, Hina; Carney, Ginger E
2017-04-01
Animals must rapidly and accurately process environmental information to produce the correct behavioral responses. Reactions to previously encountered as well as to novel but biologically important stimuli are equally important, and one understudied region in the insect brain plays a role in processing both types of stimuli. The lateral horn is a higher order processing center that mainly processes olfactory information and is linked via olfactory projection neurons to another higher order learning center, the mushroom body. This review focuses on the lateral horn of Drosophila where most functional studies have been performed. We discuss connectivity between the primary olfactory center, the antennal lobe, and the lateral horn and mushroom body. We also present evidence for the lateral horn playing roles in innate behavioral responses by encoding biological valence to novel odor cues and in learned responses to previously encountered odors by modulating neural activity within the mushroom body. We describe how these processes contribute to acceptance or avoidance of appropriate or inappropriate mates and food, as well as the identification of predators. The lateral horn is a sexually dimorphic and plastic region of the brain that modulates other regions of the brain to ensure that insects produce rapid and effective behavioral responses to both novel and learned stimuli, yet multiple gaps exist in our knowledge of this important center. We anticipate that future studies on olfactory processing, learning, and innate behavioral responses will include the lateral horn in their examinations, leading to a more comprehensive understanding of olfactory information relay and resulting behaviors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Carlson, Kaitlin S; Whitney, Meredith S; Gadziola, Marie A; Deneris, Evan S; Wesson, Daniel W
2016-01-01
The neurotransmitter serotonin (5-HT) is considered a powerful modulator of sensory system organization and function in a wide range of animals. The olfactory system is innervated by midbrain 5-HT neurons into both its primary and secondary odor-processing stages. Facilitated by this circuitry, 5-HT and its receptors modulate olfactory system function, including odor information input to the olfactory bulb. It is unknown, however, whether the olfactory system requires 5-HT for even its most basic behavioral functions. To address this question, we established a conditional genetic approach to specifically target adult brain tryptophan hydroxylase 2 ( Tph2 ), encoding the rate-limiting enzyme in brain 5-HT synthesis, and nearly eliminate 5-HT from the mouse forebrain. Using this novel model, we investigated the behavior of 5-HT-depleted mice during performance in an olfactory go/no-go task. Surprisingly, the near elimination of 5-HT from the forebrain, including the olfactory bulbs, had no detectable effect on the ability of mice to perform the odor-based task. Tph2 -targeted mice not only were able to learn the task, but also had levels of odor acuity similar to those of control mice when performing coarse odor discrimination. Both groups of mice spent similar amounts of time sampling odors during decision-making. Furthermore, odor reversal learning was identical between 5-HT-depleted and control mice. These results suggest that 5-HT neurotransmission is not necessary for the most essential aspects of olfaction, including odor learning, discrimination, and certain forms of cognitive flexibility.
Differential Involvement of the Central Amygdala in Appetitive versus Aversive Learning
ERIC Educational Resources Information Center
Lipp, Hans-Peter; Kaczmarek, Leszek; Werka, Tomasz; Knapska, Ewelina; Walasek, Grazyna; Nikolaev, Evgeni; Neuhausser-Wespy, Frieder
2006-01-01
Understanding the function of the distinct amygdaloid nuclei in learning comprises a major challenge. In the two studies described herein, we used c-Fos immunolabeling to compare the engagement of various nuclei of the amygdala in appetitive and aversive instrumental training procedures. In the first experiment, rats that had already acquired a…
Martin, Claire; Ravel, Nadine
2014-01-01
Olfactory processing in behaving animals, even at early stages, is inextricable from top down influences associated with odor perception. The anatomy of the olfactory network (olfactory bulb, piriform, and entorhinal cortices) and its unique direct access to the limbic system makes it particularly attractive to study how sensory processing could be modulated by learning and memory. Moreover, olfactory structures have been early reported to exhibit oscillatory population activities easy to capture through local field potential recordings. An attractive hypothesis is that neuronal oscillations would serve to “bind” distant structures to reach a unified and coherent perception. In relation to this hypothesis, we will assess the functional relevance of different types of oscillatory activity observed in the olfactory system of behaving animals. This review will focus primarily on two types of oscillatory activities: beta (15–40 Hz) and gamma (60–100 Hz). While gamma oscillations are dominant in the olfactory system in the absence of odorant, both beta and gamma rhythms have been reported to be modulated depending on the nature of the olfactory task. Studies from the authors of the present review and other groups brought evidence for a link between these oscillations and behavioral changes induced by olfactory learning. However, differences in studies led to divergent interpretations concerning the respective role of these oscillations in olfactory processing. Based on a critical reexamination of those data, we propose hypotheses on the functional involvement of beta and gamma oscillations for odor perception and memory. PMID:25002840
Ilango, A; Wetzel, W; Scheich, H; Ohl, F W
2010-03-31
Learned changes in behavior can be elicited by either appetitive or aversive reinforcers. It is, however, not clear whether the two types of motivation, (approaching appetitive stimuli and avoiding aversive stimuli) drive learning in the same or different ways, nor is their interaction understood in situations where the two types are combined in a single experiment. To investigate this question we have developed a novel learning paradigm for Mongolian gerbils, which not only allows rewards and punishments to be presented in isolation or in combination with each other, but also can use these opposite reinforcers to drive the same learned behavior. Specifically, we studied learning of tone-conditioned hurdle crossing in a shuttle box driven by either an appetitive reinforcer (brain stimulation reward) or an aversive reinforcer (electrical footshock), or by a combination of both. Combination of the two reinforcers potentiated speed of acquisition, led to maximum possible performance, and delayed extinction as compared to either reinforcer alone. Additional experiments, using partial reinforcement protocols and experiments in which one of the reinforcers was omitted after the animals had been previously trained with the combination of both reinforcers, indicated that appetitive and aversive reinforcers operated together but acted in different ways: in this particular experimental context, punishment appeared to be more effective for initial acquisition and reward more effective to maintain a high level of conditioned responses (CRs). The results imply that learning mechanisms in problem solving were maximally effective when the initial punishment of mistakes was combined with the subsequent rewarding of correct performance. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Multimodal Floral Signals and Moth Foraging Decisions
Riffell, Jeffrey A.; Alarcón, Ruben
2013-01-01
Background Combinations of floral traits – which operate as attractive signals to pollinators – act on multiple sensory modalities. For Manduca sexta hawkmoths, how learning modifies foraging decisions in response to those traits remains untested, and the contribution of visual and olfactory floral displays on behavior remains unclear. Methodology/Principal Findings Using M. sexta and the floral traits of two important nectar resources in southwestern USA, Datura wrightii and Agave palmeri, we examined the relative importance of olfactory and visual signals. Natural visual and olfactory cues from D. wrightii and A. palmeri flowers permits testing the cues at their native intensities and composition – a contrast to many studies that have used artificial stimuli (essential oils, single odorants) that are less ecologically relevant. Results from a series of two-choice assays where the olfactory and visual floral displays were manipulated showed that naïve hawkmoths preferred flowers displaying both olfactory and visual cues. Furthermore, experiments using A. palmeri flowers – a species that is not very attractive to hawkmoths – showed that the visual and olfactory displays did not have synergistic effects. The combination of olfactory and visual display of D. wrightii, however – a flower that is highly attractive to naïve hawkmoths – did influence the time moths spent feeding from the flowers. The importance of the olfactory and visual signals were further demonstrated in learning experiments in which experienced moths, when exposed to uncoupled floral displays, ultimately chose flowers based on the previously experienced olfactory, and not visual, signals. These moths, however, had significantly longer decision times than moths exposed to coupled floral displays. Conclusions/Significance These results highlight the importance of specific sensory modalities for foraging hawkmoths while also suggesting that they learn the floral displays as combinatorial signals and use the integrated floral traits from their memory traces to mediate future foraging decisions. PMID:23991154
The olfactory hole-board test in rats: a new paradigm to study aversion and preferences to odors
Wernecke, Kerstin E. A.; Fendt, Markus
2015-01-01
Odors of biological relevance (e.g., predator odors, sex odors) are known to effectively influence basic survival needs of rodents such as anti-predatory defensiveness and mating behaviors. Research focused on the effects of these odors on rats’ behavior mostly includes multi-trial paradigms where animals experience single odor exposures in subsequent, separated experimental sessions. In the present study, we introduce a modification of the olfactory hole-board test that allows studying the effects of different odors on rats’ behavior within single trials. First, we demonstrated that the corner holes of the hole-board were preferentially visited by rats. The placement of different odors under the corner holes changed this hole preference. We showed that holes with carnivore urine samples were avoided, while corner holes with female rat urine samples were preferred. Furthermore, corner holes with urine samples from a carnivore, herbivore, and omnivore were differentially visited indicating that rats can discriminate these odors. To test whether anxiolytic treatment specifically modulates the avoidance of carnivore urine holes, we treated rats with buspirone. Buspirone treatment completely abolished the avoidance of carnivore urine holes. Taken together, our findings indicate that the olfactory hole-board test is a valuable tool for measuring avoidance and preference responses to biologically relevant odors. PMID:26379516
Detection and avoidance of a carnivore odor by prey
Ferrero, David M.; Lemon, Jamie K.; Fluegge, Daniela; Pashkovski, Stan L.; Korzan, Wayne J.; Datta, Sandeep Robert; Spehr, Marc; Fendt, Markus; Liberles, Stephen D.
2011-01-01
Predator–prey relationships provide a classic paradigm for the study of innate animal behavior. Odors from carnivores elicit stereotyped fear and avoidance responses in rodents, although sensory mechanisms involved are largely unknown. Here, we identified a chemical produced by predators that activates a mouse olfactory receptor and produces an innate behavioral response. We purified this predator cue from bobcat urine and identified it to be a biogenic amine, 2-phenylethylamine. Quantitative HPLC analysis across 38 mammalian species indicates enriched 2-phenylethylamine production by numerous carnivores, with some producing >3,000-fold more than herbivores examined. Calcium imaging of neuronal responses in mouse olfactory tissue slices identified dispersed carnivore odor-selective sensory neurons that also responded to 2-phenylethylamine. Two prey species, rat and mouse, avoid a 2-phenylethylamine odor source, and loss-of-function studies involving enzymatic depletion of 2-phenylethylamine from a carnivore odor indicate it to be required for full avoidance behavior. Thus, rodent olfactory sensory neurons and chemosensory receptors have the capacity for recognizing interspecies odors. One such cue, carnivore-derived 2-phenylethylamine, is a key component of a predator odor blend that triggers hard-wired aversion circuits in the rodent brain. These data show how a single, volatile chemical detected in the environment can drive an elaborate danger-associated behavioral response in mammals. PMID:21690383
Does Conspecific Fighting Yield Conditioned Taste Aversion in Rats?
ERIC Educational Resources Information Center
Nakajima, Sadahiko; Kumazawa, Gaku; Ieki, Hayato; Hashimoto, Aya
2012-01-01
Running in an activity wheel yields conditioned aversion to a taste solution consumed before the running, but its underlying physiological mechanism is unknown. According to the claim that energy expenditure or general stress caused by physical exercise is a critical factor for this taste-aversion learning, not only running but also other…
Brain composition and olfactory learning in honey bees
Gronenberg, Wulfila; Couvillon, Margaret J.
2015-01-01
Correlations between brain or brain component size and behavioral measures are frequently studied by comparing different animal species, which sometimes introduces variables that complicate interpretation in terms of brain function. Here, we have analyzed the brain composition of honey bees (Apis mellifera) that have been individually tested in an olfactory learning paradigm. We found that the total brain size correlated with the bees’ learning performance. Among different brain components, only the mushroom body, a structure known to be involved in learning and memory, showed a positive correlation with learning performance. In contrast, visual neuropils were relatively smaller in bees that performed better in the olfactory learning task, suggesting modality-specific behavioral specialization of individual bees. This idea is also supported by inter-individual differences in brain composition. Some slight yet statistically significant differences in the brain composition of European and Africanized honey bees are reported. Larger bees had larger brains, and by comparing brains of different sizes, we report isometric correlations for all brain components except for a small structure, the central body. PMID:20060918
Low body temperature, time dilation, and long-trace conditioned flavor aversion in rats.
Misanin, James R; Anderson, Matthew J; Christianson, John P; Collins, Michele M; Goodhart, Mark G; Rushanan, Scott G; Hinderliter, Charles F
2002-07-01
Conditioned flavor aversion was examined in Wistar-derived albino rats that were immersed in cold water for 0, 2.5, 5, or 10 min immediately following 10-min exposure to a.1% saccharin solution and given an intraperitoneal (i.p.) injection of 0.15 M lithium chloride (LiCl) either 90, 135, 180, or 225 min later. Cold water immersion for 2.5, 5, and 10 min led to body temperature decreases of approximately 4.5, 7, and 10 degrees C, respectively. Rats whose body temperatures were not reduced (0 min immersion) showed no saccharin aversion when the LiCl was delayed 90 min. Rats whose body temperatures were reduced 4.5, 7, and 10 degrees C displayed conditioned aversions at LiCl delays up to 135, 180, and 225 min, respectively. These results were interpreted in terms of a cold-induced slowing of a biochemical clock that may uniquely govern specific timing processes involved in associative learning over long delays, such as long-trace conditioned flavor aversion, learned safety, and certain types of learning that involve an extensive time lapse (e.g., extinction of fear). Copyright 2002 Elsevier Science (USA).
Negative learning bias is associated with risk aversion in a genetic animal model of depression.
Shabel, Steven J; Murphy, Ryan T; Malinow, Roberto
2014-01-01
The lateral habenula (LHb) is activated by aversive stimuli and the omission of reward, inhibited by rewarding stimuli and is hyperactive in helpless rats-an animal model of depression. Here we test the hypothesis that congenital learned helpless (cLH) rats are more sensitive to decreases in reward size and/or less sensitive to increases in reward than wild-type (WT) control rats. Consistent with the hypothesis, we found that cLH rats were slower to switch preference between two responses after a small upshift in reward size on one of the responses but faster to switch their preference after a small downshift in reward size. cLH rats were also more risk-averse than WT rats-they chose a response delivering a constant amount of reward ("safe" response) more often than a response delivering a variable amount of reward ("risky" response) compared to WT rats. Interestingly, the level of bias toward negative events was associated with the rat's level of risk aversion when compared across individual rats. cLH rats also showed impaired appetitive Pavlovian conditioning but more accurate responding in a two-choice sensory discrimination task. These results are consistent with a negative learning bias and risk aversion in cLH rats, suggesting abnormal processing of rewarding and aversive events in the LHb of cLH rats.
Learning shapes the aversion and reward responses of lateral habenula neurons
Wang, Daqing; Li, Yi; Feng, Qiru; Guo, Qingchun; Zhou, Jingfeng; Luo, Minmin
2017-01-01
The lateral habenula (LHb) is believed to encode negative motivational values. It remains unknown how LHb neurons respond to various stressors and how learning shapes their responses. Here, we used fiber-photometry and electrophysiology to track LHb neuronal activity in freely-behaving mice. Bitterness, pain, and social attack by aggressors intensively excite LHb neurons. Aversive Pavlovian conditioning induced activation by the aversion-predicting cue in a few trials. The experience of social defeat also conditioned excitatory responses to previously neutral social stimuli. In contrast, fiber photometry and single-unit recordings revealed that sucrose reward inhibited LHb neurons and often produced excitatory rebound. It required prolonged conditioning and high reward probability to induce inhibition by reward-predicting cues. Therefore, LHb neurons can bidirectionally process a diverse array of aversive and reward signals. Importantly, their responses are dynamically shaped by learning, suggesting that the LHb participates in experience-dependent selection of behavioral responses to stressors and rewards. DOI: http://dx.doi.org/10.7554/eLife.23045.001 PMID:28561735
Enhanced Extinction of Aversive Memories by High-Frequency Stimulation of the Rat Infralimbic Cortex
Maroun, Mouna; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara; Motanis, Helen
2012-01-01
Electrical stimulation of the rodent medial prefrontal cortex (mPFC), including the infralimbic cortex (IL), immediately prior to or during fear extinction training facilitates extinction memory. Here we examined the effects of high-frequency stimulation (HFS) of the rat IL either prior to conditioning or following retrieval of the conditioned memory, on extinction of Pavlovian fear and conditioned taste aversion (CTA). IL-HFS applied immediately after fear memory retrieval, but not three hours after retrieval or prior to conditioning, subsequently reduced freezing during fear extinction. Similarly, IL-HFS given immediately, but not three hours after, retrieval of a CTA memory reduced aversion during extinction. These data indicate that HFS of the IL may be an effective method for reducing both learned fear and learned aversion. PMID:22586453
Olfactory bulb size, odor discrimination and magnetic insensitivity in hummingbirds.
Ioalé, P; Papi, F
1989-05-01
Relative olfactory bulb size with respect to telencephalic hemispheres (olfactory ratio) was measured in five species of hummingbirds. Trochiliformes were found to be next to last among 25 avian orders with respect to olfactory bulb development. One hummingbird species, the White-vented Violetear (Colibri serrirostris), was trained in a successive go/no-go discrimination task, and learned to feed or not to feed from a container dependent on the olfactory stimuli associated with it. Test birds learned to discriminate amyl acetate vs. turpentine essence, jasmine essence vs. lavender essence, eucalyptus essence vs. no odor, beta-ionone vs. no odor, carvone vs. eucalyptol. In contrast, 1-phenylethanol vs. beta-ionone discrimination, two odorants which appear similar to humans, was unsuccessful. Using a similar procedure, attempts were made to condition a White-vented Violetear and a Versicolored Emerald (Amazilia versicolor) to magnetic stimuli. The birds were unable to discriminate between a normal field and an oscillating field (square wave, 1 Hz, amplitude +/- 0.40 G).
2017-01-01
The honeybee olfactory system is a well-established model for understanding functional mechanisms of learning and memory. Olfactory stimuli are first processed in the antennal lobe, and then transferred to the mushroom body and lateral horn through dual pathways termed medial and lateral antennal lobe tracts (m-ALT and l-ALT). Recent studies reported that honeybees can perform elemental learning by associating an odour with a reward signal even after lesions in m-ALT or blocking the mushroom bodies. To test the hypothesis that the lateral pathway (l-ALT) is sufficient for elemental learning, we modelled local computation within glomeruli in antennal lobes with axons of projection neurons connecting to a decision neuron (LHN) in the lateral horn. We show that inhibitory spike-timing dependent plasticity (modelling non-associative plasticity by exposure to different stimuli) in the synapses from local neurons to projection neurons decorrelates the projection neurons’ outputs. The strength of the decorrelations is regulated by global inhibitory feedback within antennal lobes to the projection neurons. By additionally modelling octopaminergic modification of synaptic plasticity among local neurons in the antennal lobes and projection neurons to LHN connections, the model can discriminate and generalize olfactory stimuli. Although positive patterning can be accounted for by the l-ALT model, negative patterning requires further processing and mushroom body circuits. Thus, our model explains several–but not all–types of associative olfactory learning and generalization by a few neural layers of odour processing in the l-ALT. As an outcome of the combination between non-associative and associative learning, the modelling approach allows us to link changes in structural organization of honeybees' antennal lobes with their behavioural performances over the course of their life. PMID:28640825
MaBouDi, HaDi; Shimazaki, Hideaki; Giurfa, Martin; Chittka, Lars
2017-06-01
The honeybee olfactory system is a well-established model for understanding functional mechanisms of learning and memory. Olfactory stimuli are first processed in the antennal lobe, and then transferred to the mushroom body and lateral horn through dual pathways termed medial and lateral antennal lobe tracts (m-ALT and l-ALT). Recent studies reported that honeybees can perform elemental learning by associating an odour with a reward signal even after lesions in m-ALT or blocking the mushroom bodies. To test the hypothesis that the lateral pathway (l-ALT) is sufficient for elemental learning, we modelled local computation within glomeruli in antennal lobes with axons of projection neurons connecting to a decision neuron (LHN) in the lateral horn. We show that inhibitory spike-timing dependent plasticity (modelling non-associative plasticity by exposure to different stimuli) in the synapses from local neurons to projection neurons decorrelates the projection neurons' outputs. The strength of the decorrelations is regulated by global inhibitory feedback within antennal lobes to the projection neurons. By additionally modelling octopaminergic modification of synaptic plasticity among local neurons in the antennal lobes and projection neurons to LHN connections, the model can discriminate and generalize olfactory stimuli. Although positive patterning can be accounted for by the l-ALT model, negative patterning requires further processing and mushroom body circuits. Thus, our model explains several-but not all-types of associative olfactory learning and generalization by a few neural layers of odour processing in the l-ALT. As an outcome of the combination between non-associative and associative learning, the modelling approach allows us to link changes in structural organization of honeybees' antennal lobes with their behavioural performances over the course of their life.
Veron, Antoine D; Bienboire-Frosini, Cécile; Girard, Stéphane D; Sadelli, Kevin; Stamegna, Jean-Claude; Khrestchatisky, Michel; Alexis, Jennifer; Pageat, Patrick; Asproni, Pietro; Mengoli, Manuel; Roman, François S
2018-01-01
Stem cells are considered as promising tools to repair diverse tissue injuries. Among the different stem cell types, the "olfactory ectomesenchymal stem cells" (OE-MSCs) located in the adult olfactory mucosa stand as one of the best candidates. Here, we evaluated if OE-MSC grafts could decrease memory impairments due to ischemic injury. OE-MSCs were collected from syngeneic F344 rats. After a two-step global cerebral ischemia, inducing hippocampal lesions, learning abilities were evaluated using an olfactory associative discrimination task. Cells were grafted into the hippocampus 5 weeks after injury and animal's learning abilities reassessed. Rats were then sacrificed and the brains collected for immunohistochemical analyses. We observed significant impairments in learning and memory abilities following ischemia. However, 4 weeks after OE-MSC grafts, animals displayed learning and memory performances similar to those of controls, while sham rats did not improve them. Immunohistochemical analyses revealed that grafts promoted neuroblast and glial cell proliferation, which could permit to restore cognitive functions. These results demonstrated, for the first time, that syngeneic transplantations of OE-MSCs in rats can restore cognitive abilities impaired after brain injuries and provide support for the development of clinical studies based on grafts of OE-MSCs in amnesic patients following brain injuries.
Greenshaw, A J; Turrkish, S; Davis, B A
2002-01-01
The functional aversive stimulus properties of several IP doses of (+/-)-amphetamine (1.25-10 mg.kg-1), 2-phenylethylamine (PEA, 2.5-10 mg.kg-1, following inhibition of monoamine oxidase with pargyline 50 mg.kg-1) and phenylethanolamine (6.25-50 mg.kg-1) were measured with the conditioned taste aversion (CTA) paradigm. A two-bottle choice procedure was used, water vs. 0.1 % saccharin with one conditioning trial and three retention trials. (+/-)-Amphetamine and phenylethanolamine induced a significant conditioned taste aversion but PEA did not. (+/-)-Amphetamine and PEA increased spontaneous locomotor activity but phenylethanolamine had no effects on this measure. Measurement of whole brain levels of these drugs revealed that the peak brain elevation of PEA occurred at approximately 10 min whereas the peak elevations of (+/-)-amphetamine and phenylethanolamine occurred at approximately 20 min. The present failure of PEA to elicit conditioned taste aversion learning is consistent with previous reports for this compound. The differential functional aversive stimulus effects of these three compounds are surprising since they exhibit similar discriminative stimulus properties and both (+/-)-amphetamine and PEA are self-administered by laboratory animals. The present data suggest that time to maximal brain concentrations following peripheral injection may be a determinant of the aversive stimulus properties of PEA derivatives.
Wilbertz, Gregor; Sterzer, Philipp
2018-05-01
Alternating conscious visual perception of bistable stimuli is influenced by several factors. In order to understand the effect of negative valence, we tested the effect of two types of aversive conditioning on dominance durations in binocular rivalry. Participants received either aversive classical conditioning of the stimuli shown alone between rivalry blocks, or aversive percept conditioning of one of the two possible perceptual choices during rivalry. Both groups showed successful aversive conditioning according to skin conductance responses and affective valence ratings. However, while classical conditioning led to an immediate but short-lived increase in dominance durations of the conditioned stimulus, percept conditioning yielded no significant immediate effect but tended to decrease durations of the conditioned percept during extinction. These results show dissociable effects of value learning on perceptual inference in situations of perceptual conflict, depending on whether learning relates to the decision between conflicting perceptual choices or the sensory stimuli per se. Copyright © 2018 Elsevier Inc. All rights reserved.
Associative Processes in Early Olfactory Preference Acquisition
Sullivan, Regina M.; Wilson, Donald A.; Leon, Michael
2007-01-01
Acquisition of behavioral conditioned responding and learned odor preferences during olfactory classical conditioning in rat pups requires forward or simultaneous pairings of the conditioned stimulus (CS) and the unconditioned stimulus (US). Other temporal relationships between the CS and US do not usually result in learning. The present study examined the influence of this CS-US relationship upon the neural olfactory bulb modifications that are acquired during early classical conditioning. Wistar rat pups were trained from Postnatal Days (PN) 1-18 with either forward (odor overlapping temporally with reinforcing stroking) or backward (stroking followed by odor) CS-US pairings. On PN 19, pups received either a behavioral odor preference test to the odor CS or an injection of 14C 2-DG and exposure to the odor CS, or olfactory bulb single unit responses were recorded in response to exposure to the odor CS. Only pups that received forward presentations of the CS and US exhibited both a preference for the CS and modified olfactory bulb neural responses to the CS. These results, then, suggest that the modified olfactory bulb neural responses acquired during classical conditioning are guided by the same temporal constraints as those which govern the acquisition of behavioral conditioned responses. PMID:17572798
Successful acquisition of an olfactory discrimination test by Asian elephants, Elephas maximus.
Arvidsson, Josefin; Amundin, Mats; Laska, Matthias
2012-02-01
The present study demonstrates that Asian elephants, Elephas maximus, can successfully be trained to cooperate in an olfactory discrimination test based on a food-rewarded two-alternative instrumental conditioning procedure. The animals learned the basic principle of the test within only 60 trials and readily mastered intramodal stimulus transfer tasks. Further, they were capable of distinguishing between structurally related odor stimuli and remembered the reward value of previously learned odor stimuli after 2, 4, 8, and 16 weeks of recess without any signs of forgetting. The precision and consistency of the elephants' performance in tests of odor discrimination ability and long-term odor memory demonstrate the suitability of this method for assessing olfactory function in this proboscid species. An across-species comparison of several measures of olfactory learning capabilities such as speed of initial task acquisition and ability to master intramodal stimulus transfer tasks shows that Asian elephants are at least as good in their performance as mice, rats, and dogs, and clearly superior to nonhuman primates and fur seals. The results support the notion that Asian elephants may use olfactory cues for social communication and food selection and that the sense of smell may play an important role in the control of their behavior. Copyright © 2011 Elsevier Inc. All rights reserved.
Thiebaud, Nicolas; Johnson, Melissa C.; Butler, Jessica L.; Bell, Genevieve A.; Ferguson, Kassandra L.; Fadool, Andrew R.; Fadool, James C.; Gale, Alana M.; Gale, David S.
2014-01-01
Currently, 65% of Americans are overweight, which leads to well-supported cardiovascular and cognitive declines. Little, however, is known concerning obesity's impact on sensory systems. Because olfaction is linked with ingestive behavior to guide food choice, its potential dysfunction during obesity could evoke a positive feedback loop to perpetuate poor ingestive behaviors. To determine the effect of chronic energy imbalance and reveal any structural or functional changes associated with obesity, we induced long-term, diet-induced obesity by challenging mice to high-fat diets: (1) in an obesity-prone (C57BL/6J) and obesity-resistant (Kv1.3−/−) line of mice, and compared this with (2) late-onset, genetic-induced obesity in MC4R−/− mice in which diabetes secondarily precipitates after disruption of the hypothalamic axis. We report marked loss of olfactory sensory neurons and their axonal projections after exposure to a fatty diet, with a concomitant reduction in electro-olfactogram amplitude. Loss of olfactory neurons and associated circuitry is linked to changes in neuronal proliferation and normal apoptotic cycles. Using a computer-controlled, liquid-based olfactometer, mice maintained on fatty diets learn reward-reinforced behaviors more slowly, have deficits in reversal learning demonstrating behavioral inflexibility, and exhibit reduced olfactory discrimination. When obese mice are removed from their high-fat diet to regain normal body weight and fasting glucose, olfactory dysfunctions are retained. We conclude that chronic energy imbalance therefore presents long-lasting structural and functional changes in the operation of the sensory system designed to encode external and internal chemical information and leads to altered olfactory- and reward-driven behaviors. PMID:24828650
ERIC Educational Resources Information Center
Sangha, Susan; Ilenseer, Jasmin; Sosulina, Ludmila; Lesting, Jorg; Pape, Hans-Christian
2012-01-01
Extinction reduces fear to stimuli that were once associated with an aversive event by no longer coupling the stimulus with the aversive event. Extinction learning is supported by a network comprising the amygdala, hippocampus, and prefrontal cortex. Previous studies implicate a critical role of GABA in extinction learning, specifically the GAD65…
ERIC Educational Resources Information Center
Richlitzki, Antje; Latour, Philipp; Schwärzel, Martin
2017-01-01
Here, we define a role of the cAMP intermediate EPAC in "Drosophila" aversive odor learning by means of null epac mutants. Complementation analysis revealed that EPAC acts downstream from the "rutabaga" adenylyl cyclase and in parallel to protein kinase A. By means of targeted knockdown and genetic rescue we identified mushroom…
Perceived ambiguity as a barrier to intentions to learn genome sequencing results.
Taber, Jennifer M; Klein, William M P; Ferrer, Rebecca A; Han, Paul K J; Lewis, Katie L; Biesecker, Leslie G; Biesecker, Barbara B
2015-10-01
Many variants that could be returned from genome sequencing may be perceived as ambiguous-lacking reliability, credibility, or adequacy. Little is known about how perceived ambiguity influences thoughts about sequencing results. Participants (n = 494) in an NIH genome sequencing study completed a baseline survey before sequencing results were available. We examined how perceived ambiguity regarding sequencing results and individual differences in medical ambiguity aversion and tolerance for uncertainty were associated with cognitions and intentions concerning sequencing results. Perceiving sequencing results as more ambiguous was associated with less favorable cognitions about results and lower intentions to learn and share results. Among participants low in tolerance for uncertainty or optimism, greater perceived ambiguity was associated with lower intentions to learn results for non-medically actionable diseases; medical ambiguity aversion did not moderate any associations. Results are consistent with the phenomenon of "ambiguity aversion" and may influence whether people learn and communicate genomic information.
Ganesh, Ambigapathy; Bogdanowicz, Wieslaw; Haupt, Moritz; Marimuthu, Ganapathy; Rajan, Koilmani Emmanuvel
2010-09-17
The role of olfactory bulb (OB) serotonin [5-hydroxytryptamine (5-HT)] in olfactory learning and memory was tested in the greater short-nosed fruit bat, Cynopterus sphinx (family Pteropodidae). Graded concentrations (25, 40, and 60microg) of 5,7-dihydroxytryptamine (5,7-DHT) or saline were injected into the OB of bats one day before training to the novel odor. In a behavioral test, 5,7-DHT (60microg) injected bats made significantly fewer feeding attempts and bouts when compared to saline-injected bats during learning and in the memory test. Subsequent biochemical analysis showed that 5-HT level was effectively depleted in the OB of 5,7-DHT injected bats. To test odor-induced 5-HT mediated changes in 5-HT receptors and second messenger cascade in the OB, we examined the expression of 5-HT receptors and mitogen-activated protein kinase (MAPK)/Erk cascade after training to the novel odor. We found that odor stimulation up-regulated the expression of 5-HT(1A) receptor, Erk1 and Creb1 mRNA, and phosphorylation of ERK1 and CREB1. Odor stimulation failed to induce expression in 5-HT-depleted bats, which is similar to control bats and significantly low compared to saline-treated bats. Together these data revealed that the level of 5-HT in the OB may regulate olfactory learning and memory in C. sphinx through Erk and CREB.
Effects of dietary choline availability on latent inhibition of flavor aversion learning.
Gámiz, Fernando; Recio, Sergio Andrés; Iliescu, Adela Florentina; Gallo, Milagros; de Brugada, Isabel
2015-08-01
It has been previously reported that dietary choline supplementation might affect latent inhibition (LI) using a conditioned suppression procedure in rats. We have assessed the effect of dietary choline on LI of flavor aversion learning. Adult male Wistar rats received a choline supplemented (5 g/kg), deficient (0 g/kg), or standard (1.1 g/kg) diet for 3 months. After this supplementation period, all rats went through a conditioned taste aversion (CTA) procedure, half of them being pre-exposed to the conditioned stimulus before the conditioning. The results indicated that choline deficiency prevents LI of conditioned flavor aversion to cider vinegar (3%) induced by a LiCl (0.15 M; 2% body weight) intraperitoneal injection, while choline supplementation enhances CTA leading to slower extinction. The role of the brain systems modulating attentional processes is discussed.
RSK2 Signaling in Brain Habenula Contributes to Place Aversion Learning
ERIC Educational Resources Information Center
Darcq, Emmanuel; Koebel, Pascale; Del Boca, Carolina; Pannetier, Solange; Kirstetter, Anne-Sophie; Garnier, Jean-Marie; Hanauer, Andre; Befort, Katia; Kieffer, Brigitte L.
2011-01-01
RSK2 is a Ser/Thr kinase acting in the Ras/MAPK pathway. "Rsk2" gene deficiency leads to the Coffin-Lowry Syndrome, notably characterized by cognitive deficits. We found that "mrsk2" knockout mice are unable to associate an aversive stimulus with context in a lithium-induced conditioned place aversion task requiring both high-order cognition and…
ERIC Educational Resources Information Center
Pavesi, Eloisa; Heldt, Scott A.; Fletcher, Max L.
2013-01-01
Experience-induced changes associated with odor learning are mediated by a number of signaling molecules, including nitric oxide (NO), which is predominantly synthesized by neuronal nitric oxide synthase (nNOS) in the brain. In the current study, we investigated the role of nNOS in the acquisition and retention of conditioned olfactory fear. Mice…
IntelliCages and automated assessment of learning in group-housed mice
NASA Astrophysics Data System (ADS)
Puścian, Alicja; Knapska, Ewelina
2014-11-01
IntelliCage is a fully automated, computer controlled system, which can be used for long-term monitoring of behavior of group-housed mice. Using standardized experimental protocols we can assess cognitive abilities and behavioral flexibility in appetitively and aversively motivated tasks, as well as measure social influences on learning of the subjects. We have also identified groups of neurons specifically activated by appetitively and aversively motivated learning within the amygdala, function of which we are going to investigate optogenetically in the future.
ERIC Educational Resources Information Center
Gamiz, Fernando; Gallo, Milagros
2011-01-01
We have investigated the effect of protein kinase Mzeta (PKM[zeta]) inhibition in the basolateral amygdala (BLA) upon the retention of a nonspatial learned active avoidance response and conditioned taste-aversion (CTA) acquisition in rats. ZIP (10 nmol/[mu]L) injected into the BLA 24 h after training impaired retention of a learned…
Olfactory coding: giant inhibitory neuron governs sparse odor codes.
Gupta, Nitin; Stopfer, Mark
2011-07-12
Electrophysiological investigations in locusts have revealed that the sparseness of odor representations, in the brain region expected to mediate olfactory learning, is shaped by a unique inhibitory neuron. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ishida, Yuko; Ozaki, Mamiko
2012-01-01
In the blowfly Phormia regina, exposure to d-limonene for 5 days during feeding inhibits proboscis extension reflex behavior due to decreasing tyramine (TA) titer in the brain. TA is synthesized by tyrosine decarboxylase (Tdc) and catalyzed into octopamine (OA) by TA ß-hydroxylase (Tbh). To address the mechanisms of TA titer regulation in the blowfly, we cloned Tdc and Tbh cDNAs from P. regina (PregTdc and PregTbh). The deduced amino acid sequences of both proteins showed high identity to those of the corresponding proteins from Drosophila melanogaster at the amino acid level. PregTdc was expressed in the antenna, labellum, and tarsus whereas PregTbh was expressed in the head, indicating that TA is mainly synthesized in the sensory organs whereas OA is primarily synthesized in the brain. d-Limonene exposure significantly decreased PregTdc expression in the antenna but not in the labellum and the tarsus, indicating that PregTdc expressed in the antenna is responsible for decreasing TA titer. PregTdc-like immunoreactive material was localized in the thin-walled sensillum. In contrast, the OA/TA receptor (PregOAR/TAR) was localized to the thick-walled sensillum. The results indicated that d-limonene inhibits PregTdc expression in the olfactory receptor neurons in the thin-walled sensilla, likely resulting in reduced TA levels in the receptor neurons in the antenna. TA may be transferred from the receptor neuron to the specific synaptic junction in the antennal lobe of the brain through the projection neurons and play a role in conveying the aversive odorant information to the projection and local neurons.
Perisse, Emmanuel; Owald, David; Barnstedt, Oliver; Talbot, Clifford B; Huetteroth, Wolf; Waddell, Scott
2016-06-01
In Drosophila, negatively reinforcing dopaminergic neurons also provide the inhibitory control of satiety over appetitive memory expression. Here we show that aversive learning causes a persistent depression of the conditioned odor drive to two downstream feed-forward inhibitory GABAergic interneurons of the mushroom body, called MVP2, or mushroom body output neuron (MBON)-γ1pedc>α/β. However, MVP2 neuron output is only essential for expression of short-term aversive memory. Stimulating MVP2 neurons preferentially inhibits the odor-evoked activity of avoidance-directing MBONs and odor-driven avoidance behavior, whereas their inhibition enhances odor avoidance. In contrast, odor-evoked activity of MVP2 neurons is elevated in hungry flies, and their feed-forward inhibition is required for expression of appetitive memory at all times. Moreover, imposing MVP2 activity promotes inappropriate appetitive memory expression in food-satiated flies. Aversive learning and appetitive motivation therefore toggle alternate modes of a common feed-forward inhibitory MVP2 pathway to promote conditioned odor avoidance or approach. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Motivational state controls the prediction error in Pavlovian appetitive-aversive interactions.
Laurent, Vincent; Balleine, Bernard W; Westbrook, R Frederick
2018-01-01
Contemporary theories of learning emphasize the role of a prediction error signal in driving learning, but the nature of this signal remains hotly debated. Here, we used Pavlovian conditioning in rats to investigate whether primary motivational and emotional states interact to control prediction error. We initially generated cues that positively or negatively predicted an appetitive food outcome. We then assessed how these cues modulated aversive conditioning when a novel cue was paired with a foot shock. We found that a positive predictor of food enhances, whereas a negative predictor of that same food impairs, aversive conditioning. Critically, we also showed that the enhancement produced by the positive predictor is removed by reducing the value of its associated food. In contrast, the impairment triggered by the negative predictor remains insensitive to devaluation of its associated food. These findings provide compelling evidence that the motivational value attributed to a predicted food outcome can directly control appetitive-aversive interactions and, therefore, that motivational processes can modulate emotional processes to generate the final error term on which subsequent learning is based. Copyright © 2017 Elsevier Inc. All rights reserved.
Ganesh, Ambigapathy; Bogdanowicz, Wieslaw; Balamurugan, Krishnaswamy; Ragu Varman, Durairaj; Rajan, Koilmani Emmanuvel
2012-08-30
Postsynaptic densities (PSDs) contain proteins that regulate synaptic transmission. We examined two important examples of these, calcium/calmodulin-dependent protein kinase II (CaMKII) and PSD-95, in regard to the functional role of early growth response gene-1 (egr-1) in regulation of olfactory learning in the greater short-nosed fruit bat Cynopterus sphinx (family Pteropodidae). To test whether activation of egr-1 in the olfactory bulb (OB) is required for olfactory memory of these bats, bilaterally canulated individuals were infused with antisense (AS) or non-sense (NS)-oligodeoxynucleotides (ODN) of egr-1, or with phosphate buffer saline (PBS), 2h before the olfactory training. Our results showed that behavioral training significantly up-regulates immediate early gene (IEG) EGR-1 and key synaptic proteins Synaptotagmin-1(SYT-1), CaMKII and PSD-95, and phosphorylation of CaMKII in the OB at the protein level per se. Subsequently, we observed that egr-1 antisense-ODN infusion in the OB impaired olfactory memory and down regulates the expression of CaMKII and PSD-95, and the phosphorylation of CaMKII but not SYT-1. In contrast, NS-ODN or PBS had no effect on the expression of the PSDs CaMKII or PSD-95, or on the phosphorylation of CaMKII. When the egr-1 NS-ODN was infused in the OB after training for the novel odor there was no effect on olfactory memory. These findings suggest that egr-1 control the activation of CaMKII and PSD-95 during the process of olfactory memory formation. Copyright © 2012 Elsevier B.V. All rights reserved.
The Olfactory Mosaic: Bringing an Olfactory Network Together for Odor Perception.
Courtiol, Emmanuelle; Wilson, Donald A
2017-01-01
Olfactory perception and its underlying neural mechanisms are not fixed, but rather vary over time, dependent on various parameters such as state, task, or learning experience. In olfaction, one of the primary sensory areas beyond the olfactory bulb is the piriform cortex. Due to an increasing number of functions attributed to the piriform cortex, it has been argued to be an associative cortex rather than a simple primary sensory cortex. In fact, the piriform cortex plays a key role in creating olfactory percepts, helping to form configural odor objects from the molecular features extracted in the nose. Moreover, its dynamic interactions with other olfactory and nonolfactory areas are also critical in shaping the olfactory percept and resulting behavioral responses. In this brief review, we will describe the key role of the piriform cortex in the larger olfactory perceptual network, some of the many actors of this network, and the importance of the dynamic interactions among the piriform-trans-thalamic and limbic pathways.
Mustard, Julie A; Wright, Geraldine A; Edgar, Elaina A; Mazade, Reece E.; Wu, Chen; Lillvis, Joshua L
2008-01-01
Invertebrates are valuable models for increasing our understanding of the effects of ethanol on the nervous system, but most studies on invertebrates and ethanol have focused on the effects of ethanol on locomotor behavior. In this work we investigate the influence of an acute dose of ethanol on appetitive olfactory learning in the honey bee (Apis mellifera), a model system for learning and memory. Adult worker honey bees were fed a range of doses (2.5, 5, 10 or 25%) of ethanol and then conditioned to associate an odor with a sucrose reward using either a simple or differential conditioning paradigm. Consumption of ethanol before conditioning significantly reduced both the rate of acquisition and the asymptotic strength of the association. Honey bees also exhibited a dose dependent reduction in arousal/attention during conditioning. Consumption of ethanol after conditioning did not affect recall 24 h later. The observed deficits in acquisition were not due to the affect of ethanol on gustatory sensitivity or motor function. However, honey bees given higher doses of ethanol had difficulty discriminating amongst different odors suggesting that ethanol consumption influences olfactory processing. Taken together, these results demonstrate that an acute dose of ethanol affects appetitive learning and olfactory perception in the honey bee. PMID:18723103
A role for TENM1 mutations in congenital general anosmia.
Alkelai, A; Olender, T; Haffner-Krausz, R; Tsoory, M M; Boyko, V; Tatarskyy, P; Gross-Isseroff, R; Milgrom, R; Shushan, S; Blau, I; Cohn, E; Beeri, R; Levy-Lahad, E; Pras, E; Lancet, D
2016-09-01
Congenital general anosmia (CGA) is a neurological disorder entailing a complete innate inability to sense odors. While the mechanisms underlying vertebrate olfaction have been studied in detail, there are still gaps in our understanding of the molecular genetic basis of innate olfactory disorders. Applying whole-exome sequencing to a family multiply affected with CGA, we identified three members with a rare X-linked missense mutation in the TENM1 (teneurin 1) gene (ENST00000422452:c.C4829T). In Drosophila melanogaster, TENM1 functions in synaptic-partner-matching between axons of olfactory sensory neurons and target projection neurons and is involved in synapse organization in the olfactory system. We used CRISPR-Cas9 system to generate a Tenm1 disrupted mouse model. Tenm1(-/-) and point-mutated Tenm1(A) (/A) adult mice were shown to have an altered ability to locate a buried food pellet. Tenm1(A) (/A) mice also displayed an altered ability to sense aversive odors. Results of our study, that describes a new Tenm1 mouse, agree with the hypothesis that TENM1 has a role in olfaction. However, additional studies should be done in larger CGA cohorts, to provide statistical evidence that loss-of-function mutations in TENM1 can solely cause the disease in our and other CGA cases. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Yildizoglu, Tugce; Weislogel, Jan-Marek; Mohammad, Farhan; Chan, Edwin S-Y; Assam, Pryseley N; Claridge-Chang, Adam
2015-12-01
Genetic studies in Drosophila reveal that olfactory memory relies on a brain structure called the mushroom body. The mainstream view is that each of the three lobes of the mushroom body play specialized roles in short-term aversive olfactory memory, but a number of studies have made divergent conclusions based on their varying experimental findings. Like many fields, neurogenetics uses null hypothesis significance testing for data analysis. Critics of significance testing claim that this method promotes discrepancies by using arbitrary thresholds (α) to apply reject/accept dichotomies to continuous data, which is not reflective of the biological reality of quantitative phenotypes. We explored using estimation statistics, an alternative data analysis framework, to examine published fly short-term memory data. Systematic review was used to identify behavioral experiments examining the physiological basis of olfactory memory and meta-analytic approaches were applied to assess the role of lobular specialization. Multivariate meta-regression models revealed that short-term memory lobular specialization is not supported by the data; it identified the cellular extent of a transgenic driver as the major predictor of its effect on short-term memory. These findings demonstrate that effect sizes, meta-analysis, meta-regression, hierarchical models and estimation methods in general can be successfully harnessed to identify knowledge gaps, synthesize divergent results, accommodate heterogeneous experimental design and quantify genetic mechanisms.
Processing of Intraoral Olfactory and Gustatory Signals in the Gustatory Cortex of Awake Rats
Fontanini, Alfredo
2017-01-01
The integration of gustatory and olfactory information is essential to the perception of flavor. Human neuroimaging experiments have pointed to the gustatory cortex (GC) as one of the areas involved in mediating flavor perception. Although GC's involvement in encoding the chemical identity and hedonic value of taste stimuli is well studied, it is unknown how single GC neurons process olfactory stimuli emanating from the mouth. In this study, we relied on multielectrode recordings to investigate how single GC neurons respond to intraorally delivered tastants and tasteless odorants dissolved in water and whether/how these two modalities converge in the same neurons. We found that GC neurons could either be unimodal, responding exclusively to taste (taste-only) or odor (odor-only), or bimodal, responding to both gustatory and olfactory stimuli. Odor responses were confirmed to result from retronasal olfaction: monitoring respiration revealed that exhalation preceded odor-evoked activity and reversible inactivation of olfactory receptors in the nasal epithelium significantly reduced responses to intraoral odorants but not to tastants. Analysis of bimodal neurons revealed that they encode palatability significantly better than the unimodal taste-only group. Bimodal neurons exhibited similar responses to palatable tastants and odorants dissolved in water. This result suggested that odorized water could be palatable. This interpretation was further supported with a brief access task, where rats avoided consuming aversive taste stimuli and consumed the palatable tastants and dissolved odorants. These results demonstrate the convergence of the chemosensory components of flavor onto single GC neurons and provide evidence for the integration of flavor with palatability coding. SIGNIFICANCE STATEMENT Food perception and choice depend upon the concurrent processing of olfactory and gustatory signals from the mouth. The primary gustatory cortex has been proposed to integrate chemosensory stimuli; however, no study has examined the single-unit responses to intraoral odorant presentation. Here we found that neurons in gustatory cortex can respond either exclusively to tastants, exclusively to odorants, or to both (bimodal). Several differences exist between these groups' responses; notably, bimodal neurons code palatability significantly better than unimodal neurons. This group of neurons might represent a substrate for how odorants gain the quality of tastants. PMID:28077705
Davis, Catherine M; Rice, Kenner C; Riley, Anthony L
2009-10-01
The Fischer 344 (F344) and Lewis (LEW) inbred rat strains react differently to morphine in a number of behavioral and physiological preparations, including the acquisition of aversions induced by this compound. The present experiment tested the ability of various compounds with relative selectivity at kappa, delta and mu receptor subtypes to assess the relative roles of these subtypes in mediating the differential aversive effects of morphine in the two strains. In the assessment of the role of the kappa receptor in morphine-induced aversions, animals in both strains were given access to saccharin followed by varying doses of the kappa agonist (-)-U50,488H (0.0, 0.28, 0.90 and 1.60 mg/kg). Although (-)-U50,488H induced aversions in both strains, no strain differences emerged. A separate subset of subjects was trained with the selective delta opioid agonist, SNC80 (0.0, 5.6, 10.0 and 18.0 mg/kg), and again although SNC80 induced aversions, there were no strain differences. Finally, a third subset of subjects was trained with heroin (0.0, 3.2, 5.6 and 10.0 mg/kg), a compound with activity at all three opiate receptor subtypes. Although heroin induced aversions in both strains, the aversions were significantly greater in the F344 strain, suggesting that differential activation of the mu opioid receptor likely mediates the reported strain differences in morphine-induced aversion learning. These data were discussed in terms of strain differences in opioid system functioning and the implications of such differences for other morphine-induced behavioral effects reported in F344 and LEW rats.
The role of risk aversion in non-conscious decision making.
Wang, Shuo; Krajbich, Ian; Adolphs, Ralph; Tsuchiya, Naotsugu
2012-01-01
To what extent can people choose advantageously without knowing why they are making those choices? This hotly debated question has capitalized on the Iowa Gambling Task (IGT), in which people often learn to choose advantageously without appearing to know why. However, because the IGT is unconstrained in many respects, this finding remains debated and other interpretations are possible (e.g., risk aversion, ambiguity aversion, limits of working memory, or insensitivity to reward/punishment can explain the finding of the IGT). Here we devised an improved variant of the IGT in which the deck-payoff contingency switches after subjects repeatedly choose from a good deck, offering the statistical power of repeated within-subject measures based on learning the reward contingencies associated with each deck. We found that participants exhibited low confidence in their choices, as probed with post-decision wagering, despite high accuracy in selecting advantageous decks in the task, which is putative evidence for non-conscious decision making. However, such a behavioral dissociation could also be explained by risk aversion, a tendency to avoid risky decisions under uncertainty. By explicitly measuring risk aversion for each individual, we predicted subjects' post-decision wagering using Bayesian modeling. We found that risk aversion indeed does play a role, but that it did not explain the entire effect. Moreover, independently measured risk aversion was uncorrelated with risk aversion exhibited during our version of the IGT, raising the possibility that the latter risk aversion may be non-conscious. Our findings support the idea that people can make optimal choices without being fully aware of the basis of their decision. We suggest that non-conscious decision making may be mediated by emotional feelings of risk that are based on mechanisms distinct from those that support cognitive assessment of risk.
The Role of Risk Aversion in Non-Conscious Decision Making
Wang, Shuo; Krajbich, Ian; Adolphs, Ralph; Tsuchiya, Naotsugu
2012-01-01
To what extent can people choose advantageously without knowing why they are making those choices? This hotly debated question has capitalized on the Iowa Gambling Task (IGT), in which people often learn to choose advantageously without appearing to know why. However, because the IGT is unconstrained in many respects, this finding remains debated and other interpretations are possible (e.g., risk aversion, ambiguity aversion, limits of working memory, or insensitivity to reward/punishment can explain the finding of the IGT). Here we devised an improved variant of the IGT in which the deck-payoff contingency switches after subjects repeatedly choose from a good deck, offering the statistical power of repeated within-subject measures based on learning the reward contingencies associated with each deck. We found that participants exhibited low confidence in their choices, as probed with post-decision wagering, despite high accuracy in selecting advantageous decks in the task, which is putative evidence for non-conscious decision making. However, such a behavioral dissociation could also be explained by risk aversion, a tendency to avoid risky decisions under uncertainty. By explicitly measuring risk aversion for each individual, we predicted subjects’ post-decision wagering using Bayesian modeling. We found that risk aversion indeed does play a role, but that it did not explain the entire effect. Moreover, independently measured risk aversion was uncorrelated with risk aversion exhibited during our version of the IGT, raising the possibility that the latter risk aversion may be non-conscious. Our findings support the idea that people can make optimal choices without being fully aware of the basis of their decision. We suggest that non-conscious decision making may be mediated by emotional feelings of risk that are based on mechanisms distinct from those that support cognitive assessment of risk. PMID:22375133
An olfactory subsystem that detects carbon disulfide and mediates food-related social learning.
Munger, Steven D; Leinders-Zufall, Trese; McDougall, Lisa M; Cockerham, Renee E; Schmid, Andreas; Wandernoth, Petra; Wennemuth, Gunther; Biel, Martin; Zufall, Frank; Kelliher, Kevin R
2010-08-24
Olfactory signals influence social interactions in a variety of species. In mammals, pheromones and other social cues can promote mating or aggression behaviors; can communicate information about social hierarchies, genetic identity and health status; and can contribute to associative learning. However, the molecular, cellular, and neural mechanisms underlying many olfactory-mediated social interactions remain poorly understood. Here, we report that a specialized olfactory subsystem that includes olfactory sensory neurons (OSNs) expressing the receptor guanylyl cyclase GC-D, the cyclic nucleotide-gated channel subunit CNGA3, and the carbonic anhydrase isoform CAII (GC-D(+) OSNs) is required for the acquisition of socially transmitted food preferences (STFPs) in mice. Using electrophysiological recordings from gene-targeted mice, we show that GC-D(+) OSNs are highly sensitive to the volatile semiochemical carbon disulfide (CS(2)), a component of rodent breath and a known social signal mediating the acquisition of STFPs. Olfactory responses to CS(2) are drastically reduced in mice lacking GC-D, CNGA3, or CAII. Disruption of this sensory transduction cascade also results in a failure to acquire STFPs from either live or surrogate demonstrator mice or to exhibit hippocampal correlates of STFP retrieval. Our findings indicate that GC-D(+) OSNs detect chemosignals that facilitate food-related social interactions. Copyright 2010 Elsevier Ltd. All rights reserved.
Odourant dominance in olfactory mixture processing: what makes a strong odourant?
Schubert, Marco; Sandoz, Jean-Christophe; Galizia, Giovanni; Giurfa, Martin
2015-01-01
The question of how animals process stimulus mixtures remains controversial as opposing views propose that mixtures are processed analytically, as the sum of their elements, or holistically, as unique entities different from their elements. Overshadowing is a widespread phenomenon that can help decide between these alternatives. In overshadowing, an individual trained with a binary mixture learns one element better at the expense of the other. Although element salience (learning success) has been suggested as a main explanation for overshadowing, the mechanisms underlying this phenomenon remain unclear. We studied olfactory overshadowing in honeybees to uncover the mechanisms underlying olfactory-mixture processing. We provide, to our knowledge, the most comprehensive dataset on overshadowing to date based on 90 experimental groups involving more than 2700 bees trained either with six odourants or with their resulting 15 binary mixtures. We found that bees process olfactory mixtures analytically and that salience alone cannot predict overshadowing. After normalizing learning success, we found that an unexpected feature, the generalization profile of an odourant, was determinant for overshadowing. Odourants that induced less generalization enhanced their distinctiveness and became dominant in the mixture. Our study thus uncovers features that determine odourant dominance within olfactory mixtures and allows the referring of this phenomenon to differences in neural activity both at the receptor and the central level in the insect nervous system. PMID:25652840
Brain–immune interactions and the neural basis of disease-avoidant ingestive behaviour
Pacheco-López, Gustavo; Bermúdez-Rattoni, Federico
2011-01-01
Neuro–immune interactions are widely manifested in animal physiology. Since immunity competes for energy with other physiological functions, it is subject to a circadian trade-off between other energy-demanding processes, such as neural activity, locomotion and thermoregulation. When immunity is challenged, this trade-off is tilted to an adaptive energy protecting and reallocation strategy that is identified as ‘sickness behaviour’. We review diverse disease-avoidant behaviours in the context of ingestion, indicating that several adaptive advantages have been acquired by animals (including humans) during phylogenetic evolution and by ontogenetic experiences: (i) preventing waste of energy by reducing appetite and consequently foraging/hunting (illness anorexia), (ii) avoiding unnecessary danger by promoting safe environments (preventing disease encounter by olfactory cues and illness potentiation neophobia), (iii) help fighting against pathogenic threats (hyperthermia/somnolence), and (iv) by associative learning evading specific foods or environments signalling danger (conditioned taste avoidance/aversion) and/or at the same time preparing the body to counteract by anticipatory immune responses (conditioning immunomodulation). The neurobiology behind disease-avoidant ingestive behaviours is reviewed with special emphasis on the body energy balance (intake versus expenditure) and an evolutionary psychology perspective. PMID:22042916
Short- and long-term memory in Drosophila require cAMP signaling in distinct neuron types.
Blum, Allison L; Li, Wanhe; Cressy, Mike; Dubnau, Josh
2009-08-25
A common feature of memory and its underlying synaptic plasticity is that each can be dissected into short-lived forms involving modification or trafficking of existing proteins and long-term forms that require new gene expression. An underlying assumption of this cellular view of memory consolidation is that these different mechanisms occur within a single neuron. At the neuroanatomical level, however, different temporal stages of memory can engage distinct neural circuits, a notion that has not been conceptually integrated with the cellular view. Here, we investigated this issue in the context of aversive Pavlovian olfactory memory in Drosophila. Previous studies have demonstrated a central role for cAMP signaling in the mushroom body (MB). The Ca(2+)-responsive adenylyl cyclase RUTABAGA is believed to be a coincidence detector in gamma neurons, one of the three principle classes of MB Kenyon cells. We were able to separately restore short-term or long-term memory to a rutabaga mutant with expression of rutabaga in different subsets of MB neurons. Our findings suggest a model in which the learning experience initiates two parallel associations: a short-lived trace in MB gamma neurons, and a long-lived trace in alpha/beta neurons.
Effects of loss aversion on neural responses to loss outcomes: An event-related potential study.
Kokmotou, Katerina; Cook, Stephanie; Xie, Yuxin; Wright, Hazel; Soto, Vicente; Fallon, Nicholas; Giesbrecht, Timo; Pantelous, Athanasios; Stancak, Andrej
2017-05-01
Loss aversion is the tendency to prefer avoiding losses over acquiring gains of the same amount. To shed light on the spatio-temporal processes underlying loss aversion, we analysed the associations between individual loss aversion and electrophysiological responses to loss and gain outcomes in a monetary gamble task. Electroencephalographic feedback-related negativity (FRN) was computed in 29 healthy participants as the difference in electrical potentials between losses and gains. Loss aversion was evaluated using non-linear parametric fitting of choices in a separate gamble task. Loss aversion correlated positively with FRN amplitude (233-263ms) at electrodes covering the lower face. Feedback related potentials were modelled by five equivalent source dipoles. From these dipoles, stronger activity in a source located in the orbitofrontal cortex was associated with loss aversion. The results suggest that loss aversion implemented during risky decision making is related to a valuation process in the orbitofrontal cortex, which manifests during learning choice outcomes. Copyright © 2017. Published by Elsevier B.V.
Evolutionary Responses to Invasion: Cane Toad Sympatric Fish Show Enhanced Avoidance Learning
Caller, Georgina; Brown, Culum
2013-01-01
The introduced cane toad (Bufo marinus) poses a major threat to biodiversity due to its lifelong toxicity. Several terrestrial native Australian vertebrates are adapting to the cane toad’s presence and lab trials have demonstrated that repeated exposure to B. marinus can result in learnt avoidance behaviour. Here we investigated whether aversion learning is occurring in aquatic ecosystems by comparing cane toad naïve and sympatric populations of crimson spotted rainbow fish (Melanotaenia duboulayi). The first experiment indicated that fish from the sympatric population had pre-existing aversion to attacking cane toad tadpoles but also showed reduced attacks on native tadpoles. The second experiment revealed that fish from both naïve and sympatric populations learned to avoid cane toad tadpoles following repeated, direct exposure. Allopatric fish also developed a general aversion to tadpoles. The aversion learning abilities of both groups was examined using an experiment involving novel distasteful prey items. While both populations developed a general avoidance of edible pellets in the presence of distasteful pellets, only the sympatric population significantly reduced the number of attacks on the novel distasteful prey item. These results indicate that experience with toxic prey items over multiple generations can enhance avoidance leaning capabilities via natural selection. PMID:23372788
Lesions of the lateral habenula facilitate active avoidance learning and threat extinction.
Song, Mihee; Jo, Yong Sang; Lee, Yeon-Kyung; Choi, June-Seek
2017-02-01
The lateral habenula (LHb) is an epithalamic brain structure that provides strong projections to midbrain monoaminergic systems that are involved in motivation, emotion, and reinforcement learning. LHb neurons are known to convey information about aversive outcomes and negative prediction errors, suggesting a role in learning from aversive events. To test this idea, we examined the effects of electrolytic lesions of the LHb on signaled two-way active avoidance learning in which rats were trained to avoid an unconditioned stimulus (US) by taking a proactive shuttling response to an auditory conditioned stimulus (CS). The lesioned animals learned the avoidance response significantly faster than the control groups. In a separate experiment, we also investigated whether the LHb contributes to Pavlovian threat (fear) conditioning and extinction. Following paired presentations of the CS and the US, LHb-lesioned animals showed normal acquisition of conditioned response (CR) measured with freezing. However, extinction of the CR in the subsequent CS-only session was significantly faster. The enhanced performance in avoidance learning and in threat extinction jointly suggests that the LHb normally plays an inhibitory role in learning driven by absence of aversive outcomes. Copyright © 2016 Elsevier B.V. All rights reserved.
Crowe, Simon F; Hale, Matthew W
2002-09-01
The single-trial passive avoidance task is a useful procedure for examining learning and memory in the young chick. However, it has recently been suggested that discrepant results reported by different laboratories are due to differences in training procedure. The present study investigated a number of parameters surrounding the passive avoidance task, using day-old White Leghorn, Black Australorp cockerels. The results suggested that presentation of a water-dipped bead immediately after the aversive bead significantly altered retention levels. In addition, when the water-dipped bead was presented after the aversive bead, chicks failed to discriminate between beads for a period of 10 min following exposure to the aversant experience. A novel variant of the passive avoidance procedure, involving pretraining with a water-dipped red bead, training with an aversant-coated red bead, and testing with a dry red bead, was evaluated. A measure of avoidance was calculated using all three trials. It is suggested that the use of a single bead, measured both before and after the training experience and using both aversant- and water-trained controls, results in the most concise characterization of memory-related phenomena in the chick which is not contaminated by a carryover effect from the aversive training experience to the nonaversive bead.
A distinct entorhinal cortex to hippocampal CA1 direct circuit for olfactory associative learning.
Li, Yiding; Xu, Jiamin; Liu, Yafeng; Zhu, Jia; Liu, Nan; Zeng, Wenbo; Huang, Ning; Rasch, Malte J; Jiang, Haifei; Gu, Xiang; Li, Xiang; Luo, Minhua; Li, Chengyu; Teng, Junlin; Chen, Jianguo; Zeng, Shaoqun; Lin, Longnian; Zhang, Xiaohui
2017-04-01
Lateral and medial parts of entorhinal cortex (EC) convey nonspatial 'what' and spatial 'where' information, respectively, into hippocampal CA1, via both the indirect EC layer 2→ hippocampal dentate gyrus→CA3→CA1 and the direct EC layer 3→CA1 paths. However, it remains elusive how the direct path transfers distinct information and contributes to hippocampal learning functions. Here we report that lateral EC projection neurons selectively form direct excitatory synapses onto a subpopulation of morphologically complex, calbindin-expressing pyramidal cells (PCs) in the dorsal CA1 (dCA1), while medial EC neurons uniformly innervate all dCA1 PCs. Optogenetically inactivating the distinct lateral EC-dCA1 connections or the postsynaptic dCA1 calbindin-expressing PC activity slows olfactory associative learning. Moreover, optetrode recordings reveal that dCA1 calbindin-expressing PCs develop more selective spiking responses to odor cues during learning. Thus, our results identify a direct lateral EC→dCA1 circuit that is required for olfactory associative learning.
What are the elements of motivation for acquisition of conditioned taste aversion?
Mita, Koichi; Okuta, Akiko; Okada, Ryuichi; Hatakeyama, Dai; Otsuka, Emi; Yamagishi, Miki; Morikawa, Mika; Naganuma, Yuki; Fujito, Yutaka; Dyakonova, Varvara; Lukowiak, Ken; Ito, Etsuro
2014-01-01
The pond snail Lymnaea stagnalis is capable of being classically conditioned to avoid food and to consolidate this aversion into a long-term memory (LTM). Previous studies have shown that the length of food deprivation is important for both the acquisition of taste aversion and its consolidation into LTM, which is referred to as conditioned taste aversion (CTA). Here we tested the hypothesis that the hemolymph glucose concentration is an important factor in the learning and memory of CTA. One-day food deprivation resulted in the best learning and memory, whereas more prolonged food deprivation had diminishing effects. Five-day food deprivation resulted in snails incapable of learning or remembering. During this food deprivation period, the hemolymph glucose concentration decreased. If snails were fed for 2days following the 5-day food deprivation, their glucose levels increased significantly and they exhibited both learning and memory, but neither learning nor memory was as good as with the 1-day food-deprived snails. Injection of the snails with insulin to reduce glucose levels resulted in better learning and memory. Insulin is also known to cause a long-term enhancement of synaptic transmission between the feeding-related neurons. On the other hand, injection of glucose into 5-day food-deprived snails did not alter their inability to learn and remember. However, if these snails were fed on sucrose for 3min, they then exhibited learning and memory formation. Our data suggest that hemolymph glucose concentration is an important factor in motivating acquisition of CTA in Lymnaea and that the action of insulin in the brain and the feeding behavior are also important factors. Copyright © 2013 Elsevier Inc. All rights reserved.
Stimulus properties of inhaled substances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, R.W.
1978-10-01
Inhaled substances can modify behavior by their toxic action, or because they are discriminable events, or because they can support or suppress behavior. They can be used as discriminative stimuli at concentrations above the olfactory threshold. Inhalants can elicit unconditioned reflexes. As aversive stimuli, they can be studied in respondent conditioning experiments (e.g. conditioned suppression), in punishment paradigms, or as negative reinforcers in escape paradigms. Inhalants can also be positive reinforcers; their intoxication properties have engendered patterns of chronic self-administration (solvent abuse). Such stimulus properties should be considered in industrial hygiene and environmental quality decisions. Laboratory techniques to study suchmore » properties abound.« less
Stimulus properties of inhaled substances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, R.W.
1978-01-01
Inhaled substances can modify behavior by their toxic action, or because they are discriminable events, or because they can support or suppress behavior. They can be used as discriminative stimuli at concentrations above the olfactory threshold. Inhalants can elicit unconditioned reflexes. As aversive stimuli, they can be studied in respondent conditioning experiments (e.g. conditioned suppression), in punishment paradigms, or as negative reinforcers in escape paradigms. Inhalants can also be positive reinforcers; their intoxicating properties have engendered patterns of chronic self-administration (solvent abuse). Such stimulus properties should be considered in industrial hygiene and environmental quality decisions. Laboratory techniques to study suchmore » properties abound.« less
Xu, Shiyu; Chan, Tammy; Shah, Vruntant; Zhang, Shixing; Pletcher, Scott D.; Roman, Gregg
2012-01-01
Alcohol activates reward systems through an unknown mechanism, in some cases leading to alcohol abuse and dependence. Herein, we utilized a two-choice Capillary Feeding assay to address the neural and molecular basis for ethanol self-administration in Drosophila melanogaster. Wild-type Drosophila demonstrates a significant preference for food containing between 5 and 15% ethanol. Preferred ethanol self-administration does not appear to be due to caloric advantage, nor due to perceptual biases, suggesting a hedonic bias for ethanol exists in Drosophila. Interestingly, rutabaga adenylyl cyclase expression within intrinsic mushroom body neurons is necessary for robust ethanol self-administration. The expression of rutabaga in mushroom bodies is also required for both appetitive and aversive olfactory associative memories, suggesting that reinforced behavior has an important role in the ethanol self-administration in Drosophila. However, rutabaga expression is required more broadly within the mushroom bodies for the preference for ethanol-containing food than for olfactory memories reinforced by sugar reward. Together these data implicate cAMP signaling and behavioral reinforcement for preferred ethanol self-administration in Drosophila melanogaster. PMID:22624869
Daisley, Jonathan N.; Gruss, Michael; Rose, Steven P. R.; Braun, Katharina
1998-01-01
In the young chick, the intermediate medial hyperstriatum ventrale is involved in learning paradigms, including imprinting and passive avoidance learning. Biochemical changes in the intermediate medial hyperstriatum ventrale following learning include an up-regulation of amino-acid transmitter levels and receptor activity. To follow the changes of extracellular amino acid levels during passive avoidance training, we used an in vivo microdialysis technique. Probes were implanted in chicks before training the animals, either on a methyl- anthranylate-or water-coated bead. One hour later, recall was tested in both groups by presenting a similar bead. An increase of extra-cellular glutamate levels accompanied training and testing in both groups; during training, glutamate release was higher in methylanthranylate- trained than in water-trained chicks. When compared with the methylanthranylate-trained chicks during testing, the water-trained chicks showed enhanced extra-cellular glutamate levels. No other amino acid examined showed significant changes. After testing, the chicks were anesthetized and release- stimulated with an infusion of 50 mM potassium. Extra-cellular glutamate and taurine levels were significantly increased in both methylanthranylate-and water-trained chicks. The presentation of methylanthranylate as an. olfactory stimulus significantly enhanced glutamate levels, especially in methylanthranylate-trained chicks. The results suggest that such changes in extra-cellular glutamate levels in the intermediate medial hyperstriatum ventrale accompany pecking at either the water- or the methylanthranylate-bead. The taste of the aversant may be responsible for the greater increases found in methylanthranylate-trained birds. PMID:9920682
Naganos, Shintaro; Ueno, Kohei; Horiuchi, Junjiro; Saitoe, Minoru
2016-04-06
Reduced insulin/insulin-like growth factor signaling (IIS) is a major cause of symmetrical intrauterine growth retardation (IUGR), an impairment in cell proliferation during prenatal development that results in global growth defects and mental retardation. In Drosophila, chico encodes the only insulin receptor substrate. Similar to other animal models of IUGR, chico mutants have defects in global growth and associative learning. However, the physiological and molecular bases of learning defects caused by chico mutations, and by symmetrical IUGR, are not clear. In this study, we found that chico mutations impair memory-associated synaptic plasticity in the mushroom bodies (MBs), neural centers for olfactory learning. Mutations in chico reduce expression of the rutabaga-type adenylyl cyclase (rut), leading to decreased cAMP synthesis in the MBs. Expressing a rut (+) transgene in the MBs restores memory-associated plasticity and olfactory associative learning in chico mutants, without affecting growth. Thus chico mutations disrupt olfactory learning, at least in part, by reducing cAMP signaling in the MBs. Our results suggest that some cognitive defects associated with reduced IIS may occur, independently of developmental defects, from acute reductions in cAMP signaling.
Value generalization in human avoidance learning
Robbins, Trevor W; Seymour, Ben
2018-01-01
Generalization during aversive decision-making allows us to avoid a broad range of potential threats following experience with a limited set of exemplars. However, over-generalization, resulting in excessive and inappropriate avoidance, has been implicated in a variety of psychological disorders. Here, we use reinforcement learning modelling to dissect out different contributions to the generalization of instrumental avoidance in two groups of human volunteers (N = 26, N = 482). We found that generalization of avoidance could be parsed into perceptual and value-based processes, and further, that value-based generalization could be subdivided into that relating to aversive and neutral feedback − with corresponding circuits including primary sensory cortex, anterior insula, amygdala and ventromedial prefrontal cortex. Further, generalization from aversive, but not neutral, feedback was associated with self-reported anxiety and intrusive thoughts. These results reveal a set of distinct mechanisms that mediate generalization in avoidance learning, and show how specific individual differences within them can yield anxiety. PMID:29735014
Value generalization in human avoidance learning.
Norbury, Agnes; Robbins, Trevor W; Seymour, Ben
2018-05-08
Generalization during aversive decision-making allows us to avoid a broad range of potential threats following experience with a limited set of exemplars. However, over-generalization, resulting in excessive and inappropriate avoidance, has been implicated in a variety of psychological disorders. Here, we use reinforcement learning modelling to dissect out different contributions to the generalization of instrumental avoidance in two groups of human volunteers ( N = 26, N = 482). We found that generalization of avoidance could be parsed into perceptual and value-based processes, and further, that value-based generalization could be subdivided into that relating to aversive and neutral feedback - with corresponding circuits including primary sensory cortex, anterior insula, amygdala and ventromedial prefrontal cortex. Further, generalization from aversive, but not neutral, feedback was associated with self-reported anxiety and intrusive thoughts. These results reveal a set of distinct mechanisms that mediate generalization in avoidance learning, and show how specific individual differences within them can yield anxiety. © 2018, Norbury et al.
Early olfactory environment influences social behaviour in adult Octodon degus.
Márquez, Natalia; Martínez-Harms, Jaime; Vásquez, Rodrigo A; Mpodozis, Jorge
2015-01-01
We evaluated the extent to which manipulation of early olfactory environment can influence social behaviours in the South American Hystricognath rodent Octodon degus. The early olfactory environment of newborn degus was manipulated by scenting all litter members with eucalyptol during the first month of life. The social behaviour of sexually mature animals (5-7 months old) towards conspecifics was then assessed using a y-maze to compare the response of control (naïve) and treated animals to two different olfactory configurations (experiment 1): (i) a non-familiarized conspecific impregnated with eucalyptol (eucalyptol arm) presented against (ii) a non-familiarized unscented conspecific (control arm). In addition, in dyadic encounters, we assessed the behaviour of control and eucalyptol treated animals towards a non-familiarized conspecific scented with eucalyptol (experiment 2). We found that control subjects explored and spent significantly less time in the eucalyptol arm, indicating neophobic behaviours towards the artificially scented conspecific. Treated subjects explored and spent similar time in both arms of the maze, showing the same interest for both olfactory stimuli presented. During dyadic encounters in experiment 2, an interaction effect between early experience and sex was observed. Control males escaped and avoided their scented partner more frequently than eucalyptol treated male subjects and than females. Both groups did not differ in the exploration of their scented partners, suggesting that avoidance within agonistic context does not relate to neophobic behaviours. Our results suggest that the exposure to eucalyptol during early ontogeny decreases evasive behaviours within an agonistic context as a result of olfactory learning. Altogether, these results indicate that olfactory cues learned in early ontogeny can influence olfactory-guided behaviours in adult degus.
Rohwedder, Astrid; Selcho, Mareike; Chassot, Bérénice; Thum, Andreas S
2015-12-15
All organisms continuously have to adapt their behavior according to changes in the environment in order to survive. Experience-driven changes in behavior are usually mediated and maintained by modifications in signaling within defined brain circuits. Given the simplicity of the larval brain of Drosophila and its experimental accessibility on the genetic and behavioral level, we analyzed if Drosophila neuropeptide F (dNPF) neurons are involved in classical olfactory conditioning. dNPF is an ortholog of the mammalian neuropeptide Y, a highly conserved neuromodulator that stimulates food-seeking behavior. We provide a comprehensive anatomical analysis of the dNPF neurons on the single-cell level. We demonstrate that artificial activation of dNPF neurons inhibits appetitive olfactory learning by modulating the sugar reward signal during acquisition. No effect is detectable for the retrieval of an established appetitive olfactory memory. The modulatory effect is based on the joint action of three distinct cell types that, if tested on the single-cell level, inhibit and invert the conditioned behavior. Taken together, our work describes anatomically and functionally a new part of the sugar reinforcement signaling pathway for classical olfactory conditioning in Drosophila larvae. © 2015 Wiley Periodicals, Inc.
Effects of diversity in olfactory environment on children's sense of smell.
Martinec Nováková, Lenka; Fialová, Jitka; Havlíček, Jan
2018-02-13
Diversity in children's everyday olfactory environment may affect the development of their olfactory abilities and odor awareness. To test this, we collected data on olfactory abilities using the Sniffin' Sticks and odor awareness with Children's Olfactory Behaviors in Everyday Life Questionnaire in 153 preschool children and retested them one and a half year later. Parents completed an inventory on children's exposure to a variety of odors and on their own odor awareness using the Odor Awareness Scale. We controlled for the effects of age and verbal fluency on the children's performance. We found that the children's odor identification and discrimination scores differed as a function of parental odor awareness. Although these effects were rather small, they were commensurate in size with those of gender and age. To the best of our knowledge, this study is the first to present evidence that diversity in children's olfactory environment affects variation in their olfactory abilities and odor awareness. We suggest that future studies consider the long-term impact of perceptual learning out of the laboratory and its consequences for olfactory development.
Functional interaction of mGlu5 and NMDA receptors in aversive learning in rats
Fowler, S.W.; Ramsey, A.K.; Walker, J.M.; Serfozo, P.; Olive, M.F.; Schachtman, T.R.; Simonyi, A.
2010-01-01
Metabotropic glutamate receptor 5 (mGlu5) has been implicated in a variety of learning processes and is important for inhibitory avoidance and conditioned taste aversion learning. MGlu5 receptors are physically connected with NMDA receptors and they interact with, and modulate, the function of one another in several brain regions. The present studies used systemic co-administration of an mGlu5 receptor positive allosteric modulator, 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) and an NMDA receptor antagonist dizocilpine maleate (MK-801) to characterize the interactions of these receptors in two aversive learning tasks. Male Sprague-Dawley rats were trained in a single-trial step-down inhibitory avoidance or conditioned taste aversion task. CDPPB (3 or 10 mg/kg, s.c.), delivered by itself prior to the conditioning trial, did not have any effect on performance in either task 48 hours after training. However, CDPPB (at 3 mg/kg) attenuated the MK-801 (0.2 mg/kg, i.p.) induced learning deficit in both tasks. CDPPB also reduced MK-801-induced hyperactivity. These results underlie the importance of mGlu5 and NMDA receptor interactions in modulating memory processing, and are consistent with findings showing the efficacy of positive allosteric modulators of mGlu5 receptors in reversing the negative effects of NMDA receptor antagonists on other behaviors such as stereotypy, sensorimotor gating, or working, spatial and recognition memory. PMID:21093598
Functional Neuroanatomy of "Drosophila" Olfactory Memory Formation
ERIC Educational Resources Information Center
Guven-Ozkan, Tugba; Davis, Ronald L.
2014-01-01
New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying "Drosophila" learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive…
Teaching children with autism spectrum disorder to tact olfactory stimuli.
Dass, Tina K; Kisamore, April N; Vladescu, Jason C; Reeve, Kenneth F; Reeve, Sharon A; Taylor-Santa, Catherine
2018-05-28
Research on tact acquisition by children with autism spectrum disorder (ASD) has often focused on teaching participants to tact visual stimuli. It is important to evaluate procedures for teaching tacts of nonvisual stimuli (e.g., olfactory, tactile). The purpose of the current study was to extend the literature on secondary target instruction and tact training by evaluating the effects of a discrete-trial instruction procedure involving (a) echoic prompts, a constant prompt delay, and error correction for primary targets; (b) inclusion of secondary target stimuli in the consequent portion of learning trials; and (c) multiple exemplar training on the acquisition of item tacts of olfactory stimuli, emergence of category tacts of olfactory stimuli, generalization of category tacts, and emergence of category matching, with three children diagnosed with ASD. Results showed that all participants learned the item and category tacts following teaching, participants demonstrated generalization across category tacts, and category matching emerged for all participants. © 2018 Society for the Experimental Analysis of Behavior.
Ahmad, Tasha; Lauzon, Nicole M; de Jaeger, Xavier; Laviolette, Steven R
2013-09-25
Cannabinoid, dopamine (DA), and opiate receptor pathways play integrative roles in emotional learning, associative memory, and sensory perception. Modulation of cannabinoid CB1 receptor transmission within the medial prefrontal cortex (mPFC) regulates the emotional valence of both rewarding and aversive experiences. Furthermore, CB1 receptor substrates functionally interact with opiate-related motivational processing circuits, particularly in the context of reward-related learning and memory. Considerable evidence demonstrates functional interactions between CB1 and DA signaling pathways during the processing of motivationally salient information. However, the role of mPFC CB1 receptor transmission in the modulation of behavioral opiate-reward processing is not currently known. Using an unbiased conditioned place preference paradigm with rats, we examined the role of intra-mPFC CB1 transmission during opiate reward learning. We report that activation or inhibition of CB1 transmission within the prelimbic cortical (PLC) division of the mPFC bidirectionally regulates the motivational valence of opiates; whereas CB1 activation switched morphine reward signaling into an aversive stimulus, blockade of CB1 transmission potentiated the rewarding properties of normally sub-reward threshold conditioning doses of morphine. Both of these effects were dependent upon DA transmission as systemic blockade of DAergic transmission prevented CB1-dependent modulation of morphine reward and aversion behaviors. We further report that CB1-mediated intra-PLC opiate motivational signaling is mediated through a μ-opiate receptor-dependent reward pathway, or a κ-opiate receptor-dependent aversion pathway, directly within the ventral tegmental area. Our results provide evidence for a novel CB1-mediated motivational valence switching mechanism within the PLC, controlling dissociable subcortical reward and aversion pathways.
Cohen, Yaniv; Wilson, Donald A.; Barkai, Edi
2015-01-01
Learning of a complex olfactory discrimination (OD) task results in acquisition of rule learning after prolonged training. Previously, we demonstrated enhanced synaptic connectivity between the piriform cortex (PC) and its ascending and descending inputs from the olfactory bulb (OB) and orbitofrontal cortex (OFC) following OD rule learning. Here, using recordings of evoked field postsynaptic potentials in behaving animals, we examined the dynamics by which these synaptic pathways are modified during rule acquisition. We show profound differences in synaptic connectivity modulation between the 2 input sources. During rule acquisition, the ascending synaptic connectivity from the OB to the anterior and posterior PC is simultaneously enhanced. Furthermore, post-training stimulation of the OB enhanced learning rate dramatically. In sharp contrast, the synaptic input in the descending pathway from the OFC was significantly reduced until training completion. Once rule learning was established, the strength of synaptic connectivity in the 2 pathways resumed its pretraining values. We suggest that acquisition of olfactory rule learning requires a transient enhancement of ascending inputs to the PC, synchronized with a parallel decrease in the descending inputs. This combined short-lived modulation enables the PC network to reorganize in a manner that enables it to first acquire and then maintain the rule. PMID:23960200
Conditioned taste aversions: From poisons to pain to drugs of abuse.
Lin, Jian-You; Arthurs, Joe; Reilly, Steve
2017-04-01
Learning what to eat and what not to eat is fundamental to our well-being, quality of life, and survival. In particular, the acquisition of conditioned taste aversions (CTAs) protects all animals (including humans) against ingesting foods that contain poisons or toxins. Counterintuitively, CTAs can also develop in situations in which we know with absolute certainty that the food did not cause the subsequent aversive systemic effect. Recent nonhuman animal research, analyzing palatability shifts, has indicated that a wider range of stimuli than has been traditionally acknowledged can induce CTAs. This article integrates these new findings with a reappraisal of some known characteristics of CTA and presents a novel conceptual analysis that is broader and more comprehensive than previous accounts of CTA learning.
Conditioned taste aversions: From poisons to pain to drugs of abuse
Lin, Jian-You; Arthurs, Joe; Reilly, Steve
2018-01-01
Learning what to eat and what not to eat is fundamental to our well-being, quality of life and survival. In particular, the acquisition of conditioned taste aversions (CTAs) protects all animals (including humans) against ingesting foods that contain poisons or toxins. Counterintuitively, CTAs can also develop in situations where we know with absolute certainty that the food did not cause the subsequent aversive systemic effect. Recent non-human animal research, analyzing palatability shifts, indicates that a wider range of stimuli than traditionally acknowledged can induce CTAs. This article integrates these new findings with a reappraisal of some known characteristics of CTA, and presents a novel conceptual analysis that is broader and more comprehensive than other accounts of CTA learning. PMID:27301407
Sheth, Chandni; Furlong, Teri M; Keefe, Kristen A; Taha, Sharif A
2016-10-01
Ethanol has rewarding and aversive properties, and the balance of these properties influences voluntary ethanol consumption. Preclinical and clinical evidence show that the aversive properties of ethanol limit intake. The neural circuits underlying ethanol-induced aversion learning are not fully understood. We have previously shown that the lateral habenula (LHb), a region critical for aversive conditioning, plays an important role in ethanol-directed behaviors. However, the neurocircuitry through which LHb exerts its actions is unknown. In the present study, we investigate a role for the rostromedial tegmental nucleus (RMTg), a major LHb projection target, in regulating ethanol-directed behaviors. Rats received either sham or RMTg lesions and were studied during voluntary ethanol consumption; operant ethanol self-administration, extinction, and yohimbine-induced reinstatement of ethanol-seeking; and ethanol-induced conditioned taste aversion (CTA). RMTg lesions increased voluntary ethanol consumption and accelerated extinction of ethanol-induced CTA. The RMTg plays an important role in regulating voluntary ethanol consumption, possibly by mediating ethanol-induced aversive conditioning.
Aversive Learning of Colored Lights in Walking Honeybees
Kirkerud, Nicholas H.; Schlegel, Ulrike; Giovanni Galizia, C.
2017-01-01
The honeybee has been established as an important model organism in studies on visual learning. So far the emphasis has been on appetitive conditioning, simulating floral discrimination, and homing behavior, where bees perform exceptionally well in visual discrimination tasks. However, bees in the wild also face dangers, and recent findings suggest that what is learned about visual percepts is highly context dependent. A stimulus that follows an unpleasant period, is associated with the feeling of relief- or safety in humans and animals, thus acquiring a positive meaning. Whether this is also the case in honeybees is still an open question. Here, we conditioned bees aversively in a walking arena where each half was illuminated by light of a specific wavelength and intensity, one of which was combined with electric shocks. In this paradigm, the bees' preferences to the different lights were modified through nine conditioning trials, forming robust escape, and avoidance behaviors. Strikingly, we found that while 465 nm (human blue) and 590 nm (human yellow) lights both could acquire negative valences (inducing avoidance response), 525 nm (human green) light could not. This indicates that green light holds an innate meaning of safety which is difficult to overrule even through intensive aversive conditioning. The bees had slight initial preferences to green over the blue and the yellow lights, which could be compensated by adjusting light intensity. However, this initial bias played a minor role while the chromatic properties were the most salient characteristics of the light stimuli during aversive conditioning. Moreover, bees could learn the light signaling safety, revealing the existence of a relief component in aversive operant conditioning, similar to what has been observed in other animals. PMID:28588460
Rabin, B M; Hunt, W A
1983-04-01
A series of experiments were run to evaluate the effect of antiemetics on the acquisition and recall of a conditioned taste aversion induced by exposure to ionizing radiation or by injection of lithium chloride. Groups of male rats were exposed to 100 rad gamma radiation or 3 mEq/kg lithium chloride following consumption of a 10% sucrose solution. They were then injected with saline or with one of three antiemetics (prochlorperazine, trimethobenzamide, or cyclizine) at dose levels that have been reported to be effective in attenuating a previously acquired lithium chloride-induced taste aversion. The pretreatments with antiemetics had no effect on the acquisition or recall of either the lithium chloride- or radiation-induced taste aversion. The data suggest that antiemetics do not disrupt lithium chloride-induced taste aversions as previously reported, nor do they effect radiation-induced taste aversion learning.
Chemical factors determine olfactory system beta oscillations in waking rats.
Lowry, Catherine A; Kay, Leslie M
2007-07-01
Recent studies have pointed to olfactory system beta oscillations of the local field potential (15-30 Hz) and their roles both in learning and as specific responses to predator odors. To describe odorant physical properties, resultant behavioral responses and changes in the central olfactory system that may induce these oscillations without associative learning, we tested rats with 26 monomolecular odorants spanning 6 log units of theoretical vapor pressure (estimate of relative vapor phase concentration) and 10 different odor mixtures. We found odorant vapor phase concentration to be inversely correlated with investigation time on the first presentation, after which investigation times were brief and not different across odorants. Analysis of local field potentials from the olfactory bulb and anterior piriform cortex shows that beta oscillations in waking rats occur specifically in response to the class of volatile organic compounds with vapor pressures of 1-120 mmHg. Beta oscillations develop over the first three to four presentations and are weakly present for some odorants in anesthetized rats. Gamma oscillations show a smaller effect that is not restricted to the same range of odorants. Olfactory bulb theta oscillations were also examined as a measure of effective afferent input strength, and the power of these oscillations did not vary systematically with vapor pressure, suggesting that it is not olfactory bulb drive strength that determines the presence of beta oscillations. Theta band coherence analysis shows that coupling strength between the olfactory bulb and piriform cortex increases linearly with vapor phase concentration, which may facilitate beta oscillations above a threshold.
Miskovic, Vladimir; Keil, Andreas
2015-01-01
The visual system is biased towards sensory cues that have been associated with danger or harm through temporal co-occurrence. An outstanding question about conditioning-induced changes in visuocortical processing is the extent to which they are driven primarily by top-down factors such as expectancy or by low-level factors such as the temporal proximity between conditioned stimuli and aversive outcomes. Here, we examined this question using two different differential aversive conditioning experiments: participants learned to associate a particular grating stimulus with an aversive noise that was presented either in close temporal proximity (delay conditioning experiment) or after a prolonged stimulus-free interval (trace conditioning experiment). In both experiments we probed cue-related cortical responses by recording steady-state visual evoked potentials (ssVEPs). Although behavioral ratings indicated that all participants successfully learned to discriminate between the grating patterns that predicted the presence versus absence of the aversive noise, selective amplification of population-level responses in visual cortex for the conditioned danger signal was observed only when the grating and the noise were temporally contiguous. Our findings are in line with notions purporting that changes in the electrocortical response of visual neurons induced by aversive conditioning are a product of Hebbian associations among sensory cell assemblies rather than being driven entirely by expectancy-based, declarative processes. PMID:23398582
Kaplan, Bernhard A; Lansner, Anders
2014-01-01
Olfactory sensory information passes through several processing stages before an odor percept emerges. The question how the olfactory system learns to create odor representations linking those different levels and how it learns to connect and discriminate between them is largely unresolved. We present a large-scale network model with single and multi-compartmental Hodgkin-Huxley type model neurons representing olfactory receptor neurons (ORNs) in the epithelium, periglomerular cells, mitral/tufted cells and granule cells in the olfactory bulb (OB), and three types of cortical cells in the piriform cortex (PC). Odor patterns are calculated based on affinities between ORNs and odor stimuli derived from physico-chemical descriptors of behaviorally relevant real-world odorants. The properties of ORNs were tuned to show saturated response curves with increasing concentration as seen in experiments. On the level of the OB we explored the possibility of using a fuzzy concentration interval code, which was implemented through dendro-dendritic inhibition leading to winner-take-all like dynamics between mitral/tufted cells belonging to the same glomerulus. The connectivity from mitral/tufted cells to PC neurons was self-organized from a mutual information measure and by using a competitive Hebbian-Bayesian learning algorithm based on the response patterns of mitral/tufted cells to different odors yielding a distributed feed-forward projection to the PC. The PC was implemented as a modular attractor network with a recurrent connectivity that was likewise organized through Hebbian-Bayesian learning. We demonstrate the functionality of the model in a one-sniff-learning and recognition task on a set of 50 odorants. Furthermore, we study its robustness against noise on the receptor level and its ability to perform concentration invariant odor recognition. Moreover, we investigate the pattern completion capabilities of the system and rivalry dynamics for odor mixtures.
Kaplan, Bernhard A.; Lansner, Anders
2014-01-01
Olfactory sensory information passes through several processing stages before an odor percept emerges. The question how the olfactory system learns to create odor representations linking those different levels and how it learns to connect and discriminate between them is largely unresolved. We present a large-scale network model with single and multi-compartmental Hodgkin–Huxley type model neurons representing olfactory receptor neurons (ORNs) in the epithelium, periglomerular cells, mitral/tufted cells and granule cells in the olfactory bulb (OB), and three types of cortical cells in the piriform cortex (PC). Odor patterns are calculated based on affinities between ORNs and odor stimuli derived from physico-chemical descriptors of behaviorally relevant real-world odorants. The properties of ORNs were tuned to show saturated response curves with increasing concentration as seen in experiments. On the level of the OB we explored the possibility of using a fuzzy concentration interval code, which was implemented through dendro-dendritic inhibition leading to winner-take-all like dynamics between mitral/tufted cells belonging to the same glomerulus. The connectivity from mitral/tufted cells to PC neurons was self-organized from a mutual information measure and by using a competitive Hebbian–Bayesian learning algorithm based on the response patterns of mitral/tufted cells to different odors yielding a distributed feed-forward projection to the PC. The PC was implemented as a modular attractor network with a recurrent connectivity that was likewise organized through Hebbian–Bayesian learning. We demonstrate the functionality of the model in a one-sniff-learning and recognition task on a set of 50 odorants. Furthermore, we study its robustness against noise on the receptor level and its ability to perform concentration invariant odor recognition. Moreover, we investigate the pattern completion capabilities of the system and rivalry dynamics for odor mixtures. PMID:24570657
A model of olfactory associative learning
NASA Astrophysics Data System (ADS)
Tavoni, Gaia; Balasubramanian, Vijay
We propose a mechanism, rooted in the known anatomy and physiology of the vertebrate olfactory system, by which presentations of rewarded and unrewarded odors lead to formation of odor-valence associations between piriform cortex (PC) and anterior olfactory nucleus (AON) which, in concert with neuromodulators release in the bulb, entrains a direct feedback from the AON representation of valence to a group of mitral cells (MCs). The model makes several predictions concerning MC activity during and after associative learning: (a) AON feedback produces synchronous divergent responses in a localized subset of MCs; (b) such divergence propagates to other MCs by lateral inhibition; (c) after learning, MC responses reconverge; (d) recall of the newly formed associations in the PC increases feedback inhibition in the MCs. These predictions have been confirmed in disparate experiments which we now explain in a unified framework. For cortex, our model further predicts that the response divergence developed during learning reshapes odor representations in the PC, with the effects of (a) decorrelating PC representations of odors with different valences, (b) increasing the size and reliability of those representations, and enabling recall correction and redundancy reduction after learning. Simons Foundation for Mathematical Modeling of Living Systems.
Social modulation of associative fear learning by pheromone communication
Bredy, Timothy W.; Barad, Mark
2009-01-01
Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned familiar mouse and by the putative stress-related anxiogenic pheromone β-phenylethylamine (β-PEA). Together, these findings suggest social modulation of higher-order cognitive processing through pheromone communication and support the concurrent excitor hypothesis of extinction learning. PMID:19117912
Social modulation of associative fear learning by pheromone communication.
Bredy, Timothy W; Barad, Mark
2009-01-01
Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned familiar mouse and by the putative stress-related anxiogenic pheromone beta-phenylethylamine (beta-PEA). Together, these findings suggest social modulation of higher-order cognitive processing through pheromone communication and support the concurrent excitor hypothesis of extinction learning.
A conditioned aversion study of sucrose and SC45647 taste in TRPM5 knockout mice.
Eddy, Meghan C; Eschle, Benjamin K; Peterson, Darlene; Lauras, Nathan; Margolskee, Robert F; Delay, Eugene R
2012-06-01
Previously, published studies have reported mixed results regarding the role of the TRPM5 cation channel in signaling sweet taste by taste sensory cells. Some studies have reported a complete loss of sweet taste preference in TRPM5 knockout (KO) mice, whereas others have reported only a partial loss of sweet taste preference. This study reports the results of conditioned aversion studies designed to motivate wild-type (WT) and KO mice to respond to sweet substances. In conditioned taste aversion experiments, WT mice showed nearly complete LiCl-induced response suppression to sucrose and SC45647. In contrast, TRPM5 KO mice showed a much smaller conditioned aversion to either sweet substance, suggesting a compromised, but not absent, ability to detect sweet taste. A subsequent conditioned flavor aversion experiment was conducted to determine if TRPM5 KO mice were impaired in their ability to learn a conditioned aversion. In this experiment, KO and WT mice were conditioned to a mixture of SC45647 and amyl acetate (an odor cue). Although WT mice avoided both components of the stimulus mixture, they avoided SC45647 more than the odor cue. The KO mice also avoided both stimuli, but they avoided the odor component more than SC45647, suggesting that while the KO mice are capable of learning an aversion, to them the odor cue was more salient than the taste cue. Collectively, these findings suggest the TRPM5 KO mice have some residual ability to detect SC45647 and sucrose, and, like bitter, there may be a TRPM5-independent transduction pathway for detecting these substances.
Medial prefrontal cortex dopamine controls the persistent storage of aversive memories
Gonzalez, María C.; Kramar, Cecilia P.; Tomaiuolo, Micol; Katche, Cynthia; Weisstaub, Noelia; Cammarota, Martín; Medina, Jorge H.
2014-01-01
Medial prefrontal cortex (mPFC) is essential for initial memory processing and expression but its involvement in persistent memory storage has seldom been studied. Using the hippocampus dependent inhibitory avoidance learning task and the hippocampus-independent conditioned taste aversion paradigm together with specific dopamine receptor agonists and antagonists we found that persistence but not formation of long-term aversive memories requires dopamine D1/D5 receptors activation in mPFC immediately after training and, depending on the task, between 6 and 12 h later. Our results indicate that besides its well-known participation in retrieval and early consolidation, mPFC also modulates the endurance of long-lasting aversive memories regardless of whether formation of the aversive mnemonic trace requires the participation of the hippocampus. PMID:25506318
Social Modulation of Associative Fear Learning by Pheromone Communication
ERIC Educational Resources Information Center
Bredy, Timothy W.; Barad, Mark
2009-01-01
Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned…
Distinct Neural Mechanisms Mediate Olfactory Memory Formation at Different Timescales
ERIC Educational Resources Information Center
McNamara, Ann Marie; Magidson, Phillip D.; Linster, Christiane; Wilson, Donald A.; Cleland, Thomas A.
2008-01-01
Habituation is one of the oldest forms of learning, broadly expressed across sensory systems and taxa. Here, we demonstrate that olfactory habituation induced at different timescales (comprising different odor exposure and intertrial interval durations) is mediated by different neural mechanisms. First, the persistence of habituation memory is…
USDA-ARS?s Scientific Manuscript database
Studies were conducted to address conditioned flavour aversion (CFA) and place avoidance learning in hamsters given injections of alkaloid extracts from tall larkspur (Delphinium barbeyi), to determine if larkspur had reinforcing or negative properties sufficient to cause place avoidance or preferen...
Chaillan, F A; Marchetti, E; Delfosse, F; Roman, F S; Soumireu-Mourat, B
1997-01-01
In this study, the functional properties of the dorsomedial prefrontal cortex (dmPFC) of the rat were examined in two olfactory tasks. In a successive cue olfactory discrimination task, dmPFC lesioned animals improved performance across sessions more rapidly than operated control animals. In an olfactory task using fixed interval training, animals with similar lesions were impaired. Both effects, although opposite, can be explained by a temporal processing deficit. The present results seem to indicate that the dmPFC is required for timing, classified as part of non-declarative memory. As reference memory improved in the lesioned animals, the finding is that the dmPFC supports non-declarative memory and thus interacts with declarative memory in the long-term formation of the associations between a particular stimulus (olfactory cue) and particular responses.
Cabirol, Amélie; Brooks, Rufus; Groh, Claudia; Barron, Andrew B; Devaud, Jean-Marc
2017-10-01
The honey bee mushroom bodies (MBs) are brain centers required for specific learning tasks. Here, we show that environmental conditions experienced as young adults affect the maturation of MB neuropil and performance in a MB-dependent learning task. Specifically, olfactory reversal learning was selectively impaired following early exposure to an impoverished environment lacking some of the sensory and social interactions present in the hive. In parallel, the overall number of synaptic boutons increased within the MB olfactory neuropil, whose volume remained unaffected. This suggests that experience of the rich in-hive environment promotes MB maturation and the development of MB-dependent learning capacities. © 2017 Cabirol et al.; Published by Cold Spring Harbor Laboratory Press.
Processing of Intraoral Olfactory and Gustatory Signals in the Gustatory Cortex of Awake Rats.
Samuelsen, Chad L; Fontanini, Alfredo
2017-01-11
The integration of gustatory and olfactory information is essential to the perception of flavor. Human neuroimaging experiments have pointed to the gustatory cortex (GC) as one of the areas involved in mediating flavor perception. Although GC's involvement in encoding the chemical identity and hedonic value of taste stimuli is well studied, it is unknown how single GC neurons process olfactory stimuli emanating from the mouth. In this study, we relied on multielectrode recordings to investigate how single GC neurons respond to intraorally delivered tastants and tasteless odorants dissolved in water and whether/how these two modalities converge in the same neurons. We found that GC neurons could either be unimodal, responding exclusively to taste (taste-only) or odor (odor-only), or bimodal, responding to both gustatory and olfactory stimuli. Odor responses were confirmed to result from retronasal olfaction: monitoring respiration revealed that exhalation preceded odor-evoked activity and reversible inactivation of olfactory receptors in the nasal epithelium significantly reduced responses to intraoral odorants but not to tastants. Analysis of bimodal neurons revealed that they encode palatability significantly better than the unimodal taste-only group. Bimodal neurons exhibited similar responses to palatable tastants and odorants dissolved in water. This result suggested that odorized water could be palatable. This interpretation was further supported with a brief access task, where rats avoided consuming aversive taste stimuli and consumed the palatable tastants and dissolved odorants. These results demonstrate the convergence of the chemosensory components of flavor onto single GC neurons and provide evidence for the integration of flavor with palatability coding. Food perception and choice depend upon the concurrent processing of olfactory and gustatory signals from the mouth. The primary gustatory cortex has been proposed to integrate chemosensory stimuli; however, no study has examined the single-unit responses to intraoral odorant presentation. Here we found that neurons in gustatory cortex can respond either exclusively to tastants, exclusively to odorants, or to both (bimodal). Several differences exist between these groups' responses; notably, bimodal neurons code palatability significantly better than unimodal neurons. This group of neurons might represent a substrate for how odorants gain the quality of tastants. Copyright © 2017 the authors 0270-6474/17/370244-14$15.00/0.
Schwager, Andrea L.; Sinclair, Michael S.; Tandon, Shashank; Taha, Sharif A.
2014-01-01
The lateral habenula (LHb) plays an important role in learning driven by negative outcomes. Many drugs of abuse, including ethanol, have dose-dependent aversive effects that act to limit intake of the drug. However, the role of the LHb in regulating ethanol intake is unknown. In the present study, we compared voluntary ethanol consumption and self-administration, yohimbine-induced reinstatement of ethanol seeking, and ethanol-induced conditioned taste aversion in rats with sham or LHb lesions. In rats given home cage access to 20% ethanol in an intermittent access two bottle choice paradigm, lesioned animals escalated their voluntary ethanol consumption more rapidly than sham-lesioned control animals and maintained higher stable rates of voluntary ethanol intake. Similarly, lesioned animals exhibited higher rates of responding for ethanol in operant self-administration sessions. In addition, LHb lesion blocked yohimbine-induced reinstatement of ethanol seeking after extinction. Finally, LHb lesion significantly attenuated an ethanol-induced conditioned taste aversion. Our results demonstrate an important role for the LHb in multiple facets of ethanol-directed behavior, and further suggest that the LHb may contribute to ethanol-directed behaviors by mediating learning driven by the aversive effects of the drug. PMID:24695107
Haack, Andrew K; Sheth, Chandni; Schwager, Andrea L; Sinclair, Michael S; Tandon, Shashank; Taha, Sharif A
2014-01-01
The lateral habenula (LHb) plays an important role in learning driven by negative outcomes. Many drugs of abuse, including ethanol, have dose-dependent aversive effects that act to limit intake of the drug. However, the role of the LHb in regulating ethanol intake is unknown. In the present study, we compared voluntary ethanol consumption and self-administration, yohimbine-induced reinstatement of ethanol seeking, and ethanol-induced conditioned taste aversion in rats with sham or LHb lesions. In rats given home cage access to 20% ethanol in an intermittent access two bottle choice paradigm, lesioned animals escalated their voluntary ethanol consumption more rapidly than sham-lesioned control animals and maintained higher stable rates of voluntary ethanol intake. Similarly, lesioned animals exhibited higher rates of responding for ethanol in operant self-administration sessions. In addition, LHb lesion blocked yohimbine-induced reinstatement of ethanol seeking after extinction. Finally, LHb lesion significantly attenuated an ethanol-induced conditioned taste aversion. Our results demonstrate an important role for the LHb in multiple facets of ethanol-directed behavior, and further suggest that the LHb may contribute to ethanol-directed behaviors by mediating learning driven by the aversive effects of the drug.
Olfactory Blocking and Odorant Similarity in the Honeybee
ERIC Educational Resources Information Center
Gerber, Bertram; Giurfa, Martin; Guerrieri, Fernando; Lachnit, Harald
2005-01-01
Blocking occurs when previous training with a stimulus A reduces (blocks) subsequent learning about a stimulus B, when A and B are trained in compound. The question of whether blocking exists in olfactory conditioning of proboscis extension reflex (PER) in honeybees is under debate. The last published accounts on blocking in honeybees state that…
Kinase Activity in the Olfactory Bulb Is Required for Odor Memory Consolidation
ERIC Educational Resources Information Center
Tong, Michelle T.; Kim, Tae-Young P.; Cleland, Thomas A.
2018-01-01
Long-term fear memory formation in the hippocampus and neocortex depends upon brain-derived neurotrophic factor (BDNF) signaling after acquisition. Incremental, appetitive odor discrimination learning is thought to depend substantially on the differentiation of adult-born neurons within the olfactory bulb (OB)--a process that is closely associated…
Neonicotinoid-induced impairment of odour coding in the honeybee
Andrione, Mara; Vallortigara, Giorgio; Antolini, Renzo; Haase, Albrecht
2016-01-01
Exposure to neonicotinoid pesticides is considered one of the possible causes of honeybee (Apis mellifera) population decline. At sublethal doses, these chemicals have been shown to negatively affect a number of behaviours, including performance of olfactory learning and memory, due to their interference with acetylcholine signalling in the mushroom bodies. Here we provide evidence that neonicotinoids can affect odour coding upstream of the mushroom bodies, in the first odour processing centres of the honeybee brain, i.e. the antennal lobes (ALs). In particular, we investigated the effects of imidacloprid, the most common neonicotinoid, in the AL glomeruli via in vivo two-photon calcium imaging combined with pulsed odour stimulation. Following acute imidacloprid treatment, odour-evoked calcium response amplitude in single glomeruli decreases, and at the network level the representations of different odours are no longer separated. This demonstrates that, under neonicotinoid influence, olfactory information might reach the mushroom bodies in a form that is already incorrect. Thus, some of the impairments in olfactory learning and memory caused by neonicotinoids could, in fact, arise from the disruption in odor coding and olfactory discrimination ability of the honey bees. PMID:27905515
Garavan, H; Morgan, R E; Mactutus, C F; Levitsky, D A; Booze, R M; Strupp, B J
2000-08-01
This study assessed the effects of prenatal cocaine exposure on cognitive functioning, using an intravenous (IV) rodent model that closely mimics the pharmacokinetics seen in humans after smoking or IV injection and that avoids maternal stress and undernutrition. Cocaine-exposed males were significantly impaired on a 3-choice, but not 2-choice, olfactory serial reversal learning task. Both male and female cocaine-exposed rats were significantly impaired on extradimensional shift tasks that required shifting from olfactory to spatial cues; however, they showed no impairment when required to shift from spatial to olfactory cues. In-depth analyses of discrete learning phases implicated deficient selective attention as the basis of impairment in both tasks. These data provide clear evidence that prenatal cocaine exposure produces long-lasting cognitive dysfunction, but they also underscore the specificity of the impairment.
Midbrain dopamine neurons signal aversion in a reward-context-dependent manner
Matsumoto, Hideyuki; Tian, Ju; Uchida, Naoshige; Watabe-Uchida, Mitsuko
2016-01-01
Dopamine is thought to regulate learning from appetitive and aversive events. Here we examined how optogenetically-identified dopamine neurons in the lateral ventral tegmental area of mice respond to aversive events in different conditions. In low reward contexts, most dopamine neurons were exclusively inhibited by aversive events, and expectation reduced dopamine neurons’ responses to reward and punishment. When a single odor predicted both reward and punishment, dopamine neurons’ responses to that odor reflected the integrated value of both outcomes. Thus, in low reward contexts, dopamine neurons signal value prediction errors (VPEs) integrating information about both reward and aversion in a common currency. In contrast, in high reward contexts, dopamine neurons acquired a short-latency excitation to aversive events that masked their VPE signaling. Our results demonstrate the importance of considering the contexts to examine the representation in dopamine neurons and uncover different modes of dopamine signaling, each of which may be adaptive for different environments. DOI: http://dx.doi.org/10.7554/eLife.17328.001 PMID:27760002
Differences in Risk Aversion between Young and Older Adults.
Albert, Steven M; Duffy, John
2012-01-15
Research on decision-making strategies among younger and older adults suggests that older adults may be more risk averse than younger people in the case of potential losses. These results mostly come from experimental studies involving gambling paradigms. Since these paradigms involve substantial demands on memory and learning, differences in risk aversion or other features of decision-making attributed to age may in fact reflect age-related declines in cognitive abilities. In the current study, older and younger adults completed a simpler, paired lottery choice task used in the experimental economics literature to elicit risk aversion. A similar approach was used to elicit participants' discount rates. The older adult group was more risk averse than younger adults (p < .05) and also had a higher discount rate (15.6-21.0% vs. 10.3-15.5%, p < .01), indicating lower expected utility from future income. Risk aversion and implied discount rates were weakly correlated. It may be valuable to investigate developmental changes in neural correlates of decision-making across the lifespan.
Differences in Risk Aversion between Young and Older Adults
Albert, Steven M.; Duffy, John
2013-01-01
Research on decision-making strategies among younger and older adults suggests that older adults may be more risk averse than younger people in the case of potential losses. These results mostly come from experimental studies involving gambling paradigms. Since these paradigms involve substantial demands on memory and learning, differences in risk aversion or other features of decision-making attributed to age may in fact reflect age-related declines in cognitive abilities. In the current study, older and younger adults completed a simpler, paired lottery choice task used in the experimental economics literature to elicit risk aversion. A similar approach was used to elicit participants' discount rates. The older adult group was more risk averse than younger adults (p < .05) and also had a higher discount rate (15.6-21.0% vs. 10.3-15.5%, p < .01), indicating lower expected utility from future income. Risk aversion and implied discount rates were weakly correlated. It may be valuable to investigate developmental changes in neural correlates of decision-making across the lifespan. PMID:24319671
ERIC Educational Resources Information Center
Bi, Ai-Ling; Wang, Yue; Li, Bo-Qin; Wang, Qian-Qian; Ma, Ling; Yu, Hui; Zhao, Ling; Chen, Zhe-Yu
2010-01-01
Actin rearrangement plays an essential role in learning and memory; however, the spatial and temporal regulation of actin dynamics in different phases of associative memory has not been fully understood. Here, using the conditioned taste aversion (CTA) paradigm, we investigated the region-specific involvement of actin rearrangement-related…
ERIC Educational Resources Information Center
Miranda, Maria Isabel; Quirarte, Gina L.; Rodriguez-Garcia, Gabriela; McGaugh, James L.; Roozendaal, Benno
2008-01-01
It is well established that glucocorticoid hormones strengthen the consolidation of hippocampus-dependent spatial and contextual memory. The present experiments investigated glucocorticoid effects on the long-term formation of conditioned taste aversion (CTA), an associative learning task that does not depend critically on hippocampal function.…
ABA, AAB and ABC Renewal in Taste Aversion Learning
ERIC Educational Resources Information Center
Bernal-Gamboa, Rodolfo; Juarez, Yectivani; Gonzalez-Martin, Gabriela; Carranza, Rodrigo; Sanchez-Carrasco, Livia; Nieto, Javier
2012-01-01
Context renewal is identified when the conditioned response (CR) elicited by an extinguished conditioned stimulus (CS) reappears as a result of changing the contextual cues during the test. Two experiments were designed for testing contextual renewal in a conditioned taste aversion preparation. Experiment 1 assessed ABA and AAB context renewal,…
ERIC Educational Resources Information Center
Fontanini, Alfredo; Katz, Donald B.; Wang, Yunyan
2006-01-01
Lesions of the basolateral amygdala (BLA) have long been associated with abnormalities of taste-related behaviors and with failure in a variety of taste- and odor-related learning paradigms, including taste-potentiated odor aversion, conditioned taste preference, and conditioned taste aversion. Still, the general role of the amygdala in…
A natural odor attraction between lactic acid bacteria and the nematode Caenorhabditis elegans.
Choi, Jae Im; Yoon, Kyoung-Hye; Subbammal Kalichamy, Saraswathi; Yoon, Sung-Sik; Il Lee, Jin
2016-03-01
Animal predators can track prey using their keen sense of smell. The bacteriovorous nematode Caenorhabditis elegans employs sensitive olfactory sensory neurons that express vertebrate-like odor receptors to locate bacteria. C. elegans displays odor-related behaviors such as attraction, aversion and adaptation, but the ecological significance of these behaviors is not known. Using a combination of food microbiology and genetics, we elucidate a possible predator-prey relationship between C. elegans and lactic acid bacteria (LAB) in rotting citrus fruit. LAB produces the volatile odor diacetyl as an oxidized by-product of fermentation in the presence of citrate. We show that C. elegans is attracted to LAB when grown on citrate media or Citrus medica L, commonly known as yuzu, a citrus fruit native to East Asia, and this attraction is mediated by the diacetyl odor receptor, ODR-10. We isolated a wild LAB strain and a wild C. elegans-related nematode from rotten yuzu, and demonstrate that the wild nematode was attracted to the diacetyl produced by LAB. These results not only identify an ecological function for a C. elegans olfactory behavior, but contribute to the growing understanding of ecological relationships between the microbial and metazoan worlds.
A natural odor attraction between lactic acid bacteria and the nematode Caenorhabditis elegans
Choi, Jae Im; Yoon, Kyoung-hye; Subbammal Kalichamy, Saraswathi; Yoon, Sung-Sik; Il Lee, Jin
2016-01-01
Animal predators can track prey using their keen sense of smell. The bacteriovorous nematode Caenorhabditis elegans employs sensitive olfactory sensory neurons that express vertebrate-like odor receptors to locate bacteria. C. elegans displays odor-related behaviors such as attraction, aversion and adaptation, but the ecological significance of these behaviors is not known. Using a combination of food microbiology and genetics, we elucidate a possible predator–prey relationship between C. elegans and lactic acid bacteria (LAB) in rotting citrus fruit. LAB produces the volatile odor diacetyl as an oxidized by-product of fermentation in the presence of citrate. We show that C. elegans is attracted to LAB when grown on citrate media or Citrus medica L, commonly known as yuzu, a citrus fruit native to East Asia, and this attraction is mediated by the diacetyl odor receptor, ODR-10. We isolated a wild LAB strain and a wild C. elegans-related nematode from rotten yuzu, and demonstrate that the wild nematode was attracted to the diacetyl produced by LAB. These results not only identify an ecological function for a C. elegans olfactory behavior, but contribute to the growing understanding of ecological relationships between the microbial and metazoan worlds. PMID:26241504
Circadian modulation of consolidated memory retrieval following sleep deprivation in Drosophila.
Le Glou, Eric; Seugnet, Laurent; Shaw, Paul J; Preat, Thomas; Goguel, Valérie
2012-10-01
Several lines of evidence indicate that sleep plays a critical role in learning and memory. The aim of this study was to evaluate anesthesia resistant memory following sleep deprivation in Drosophila. Four to 16 h after aversive olfactory training, flies were sleep deprived for 4 h. Memory was assessed 24 h after training. Training, sleep deprivation, and memory tests were performed at different times during the day to evaluate the importance of the time of day for memory formation. The role of circadian rhythms was further evaluated using circadian clock mutants. Memory was disrupted when flies were exposed to 4 h of sleep deprivation during the consolidation phase. Interestingly, normal memory was observed following sleep deprivation when the memory test was performed during the 2 h preceding lights-off, a period characterized by maximum wake in flies. We also show that anesthesia resistant memory was less sensitive to sleep deprivation in flies with disrupted circadian rhythms. Our results indicate that anesthesia resistant memory, a consolidated memory less costly than long-term memory, is sensitive to sleep deprivation. In addition, we provide evidence that circadian factors influence memory vulnerability to sleep deprivation and memory retrieval. Taken together, the data show that memories weakened by sleep deprivation can be retrieved if the animals are tested at the optimal circadian time.
Meng, Lifeng; Huo, Xinmei; Feng, Mao; Fang, Yu; Han, Bin; Hu, Han; Wu, Fan; Li, Jianke
2018-01-01
The eastern (Apis cerana cerana, Acc) and western (Apis mellifera ligustica, Aml) honeybee are two major honeybee species. Surprisingly, little is known about the fundamental molecular neurobiology of brain suborgans of Acc and Aml. We characterized and compared the proteomes of mushroom bodies (MBs), antennal lobes (ALs) and optical lobes (OLs) in the brain of both species, and biologically validated the functions related to learning and memory. Acc and Aml have evolved similar proteome signatures in MBs and OLs to drive the domain-specific neural activities. In MBs of both species, commonly enriched and enhanced functional groups related to protein metabolism and Ca2+ transport relative to ALs and OLs, suggests that proteins and Ca2+ are vital for consolidating learning and memory via modulation of synaptic structure and signal transduction. Furthermore, in OLs of both species, the mainly enriched ribonucleoside metabolism suggests its vital role as second messenger in promoting phototransduction. Notably, in ALs of both species, distinct proteome settings have shaped to prime olfactory learning and memory. In ALs of Acc, this is supported by the enriched cytoskeleton organization to sustain olfactory signaling through modulation of plasticity in glomeruli and intracellular transport. In ALs of Aml, however, the enriched functional groups implicated in hydrogen ion transport are indicative of their importance in supporting olfactory processes by regulation of synaptic transmission. The biological confirmation of enhanced activities of protein metabolism and signal transduction in ALs and MBs of Acc relative to in Aml demonstrates that a stronger sense of olfactory learning and memory has evolved in Acc. The reported first in-depth proteome data of honeybee brain suborgans provide a novel insight into the molecular basis of neurobiology, and is potentially useful for further neurological studies in honeybees and other insects. PMID:29187519
Circuit oscillations in odor perception and memory.
Kay, Leslie M
2014-01-01
Olfactory system neural oscillations as seen in the local field potential have been studied for many decades. Recent research has shown that there is a functional role for the most studied gamma oscillations (40-100Hz in rats and mice, and 20Hz in insects), without which fine odor discrimination is poor. When these oscillations are increased artificially, fine discrimination is increased, and when rats learn difficult and highly overlapping odor discriminations, gamma is increased in power. Because of the depth of study on this oscillation, it is possible to point to specific changes in neural firing patterns as represented by the increase in gamma oscillation amplitude. However, we know far less about the mechanisms governing beta oscillations (15-30Hz in rats and mice), which are best associated with associative learning of responses to odor stimuli. These oscillations engage every part of the olfactory system that has so far been tested, plus the hippocampus, and the beta oscillation frequency band is the one that is most reliably coherent with other regions during odor processing. Respiratory oscillations overlapping with the theta frequency band (2-12Hz) are associated with odor sniffing and normal breathing in rats. They also show coupling in some circumstances between olfactory areas and rare coupling between the hippocampus and olfactory bulb. The latter occur in specific learning conditions in which coherence strength is negatively or positively correlated with performance, depending on the task. There is still much to learn about the role of neural oscillations in learning and memory, but techniques that have been brought to bear on gamma oscillations (current source density, computational modeling, slice physiology, behavioral studies) should deliver much needed knowledge of these events. © 2014 Elsevier B.V. All rights reserved.
Mammalian social odours: attraction and individual recognition
Brennan, Peter A; Kendrick, Keith M
2006-01-01
Mammalian social systems rely on signals passed between individuals conveying information including sex, reproductive status, individual identity, ownership, competitive ability and health status. Many of these signals take the form of complex mixtures of molecules sensed by chemosensory systems and have important influences on a variety of behaviours that are vital for reproductive success, such as parent–offspring attachment, mate choice and territorial marking. This article aims to review the nature of these chemosensory cues and the neural pathways mediating their physiological and behavioural effects. Despite the complexities of mammalian societies, there are instances where single molecules can act as classical pheromones attracting interest and approach behaviour. Chemosignals with relatively high volatility can be used to signal at a distance and are sensed by the main olfactory system. Most mammals also possess a vomeronasal system, which is specialized to detect relatively non-volatile chemosensory cues following direct contact. Single attractant molecules are sensed by highly specific receptors using a labelled line pathway. These act alongside more complex mixtures of signals that are required to signal individual identity. There are multiple sources of such individuality chemosignals, based on the highly polymorphic genes of the major histocompatibility complex (MHC) or lipocalins such as the mouse major urinary proteins. The individual profile of volatile components that make up an individual odour signature can be sensed by the main olfactory system, as the pattern of activity across an array of broadly tuned receptor types. In addition, the vomeronasal system can respond highly selectively to non-volatile peptide ligands associated with the MHC, acting at the V2r class of vomeronasal receptor. The ability to recognize individuals or their genetic relatedness plays an important role in mammalian social behaviour. Thus robust systems for olfactory learning and recognition of chemosensory individuality have evolved, often associated with major life events, such as mating, parturition or neonatal development. These forms of learning share common features, such as increased noradrenaline evoked by somatosensory stimulation, which results in neural changes at the level of the olfactory bulb. In the main olfactory bulb, these changes are likely to refine the pattern of activity in response to the learned odour, enhancing its discrimination from those of similar odours. In the accessory olfactory bulb, memory formation is hypothesized to involve a selective inhibition, which disrupts the transmission of the learned chemosignal from the mating male. Information from the main olfactory and vomeronasal systems is integrated at the level of the corticomedial amygdala, which forms the most important pathway by which social odours mediate their behavioural and physiological effects. Recent evidence suggests that this region may also play an important role in the learning and recognition of social chemosignals. PMID:17118924
Phenomenal and access consciousness in olfaction.
Stevenson, Richard J
2009-12-01
Contemporary literature on consciousness, with some exceptions, rarely considers the olfactory system. In this article the characteristics of olfactory consciousness, viewed from the standpoint of the phenomenal (P)/access (A) distinction, are examined relative to the major senses. The review details several qualitative differences in both olfactory P consciousness (shifts in the felt location, universal synesthesia-like and affect-rich experiences, and misperceptions) and A consciousness (recovery from habituation, capacity for conscious processing, access to semantic and episodic memory, learning, attention, and in the serial-unitary nature of olfactory percepts). The basis for these differences is argued to arise from the functions that the olfactory system performs and from the unique neural architecture needed to instantiate them. These data suggest, at a minimum, that P and A consciousness are uniquely configured in olfaction and an argument can be made that the P and A distinction may not hold for this sensory system.
Zhang, Wei; Zhu, Guangjian; Tan, Liangjing; Yang, Jian; Chen, Yi; Liu, Qi; Shen, Qiqi; Chen, Jinping; Zhang, Libiao
2014-03-01
We observed the foraging behavior of short-nosed fruit bats, Cynopterus sphinx, in captivity. The role of olfaction in their foraging behavior was examined using real fruit, mimetic fruit, and mimetic fruit soaked in the juice of real fruit. The results showed that C. sphinx visited the real fruit more often than the mimetic fruit, but they had no preference between real fruit and treated mimetic fruit. Our experiment indicates that this bat has the ability to find and identify fruit by olfaction. We also tested for behavior of trial-and-error learning. Our observations revealed that the bats could form a sensory memory of the olfactory cue (cedar wood oil) after five days of training because they responded to the olfactory cues. Our results provide the evidence that C. sphinx can establish the connection between the fruit and a non-natural odor through learning and memory with the assistance of olfaction, and can thus recognize a variety of odors by trial-and-error learning. This behavioral flexibility based on olfactory cues will be beneficial for the short-nosed fruit bat in foraging. Copyright © 2013 Elsevier B.V. All rights reserved.
Zarrinkalam, Ebrahim; Heidarianpour, Ali; Salehi, Iraj; Ranjbar, Kamal; Komaki, Alireza
2016-07-15
Continuous morphine consumption contributes to the development of cognitive disorders. This work investigates the impacts of different types of exercise on learning and memory in morphine-dependent rats. Forty morphine-dependent rats were randomly divided into five groups: sedentary-dependent (Sed-D), endurance exercise-dependent (En-D), strength exercise-dependent (St-D), and combined (concurrent) exercise-dependent (Co-D). Healthy rats were used as controls (Con). After 10weeks of regular exercise (endurance, strength, and concurrent; each five days per week), spatial and aversive learning and memory were assessed using the Morris water maze and shuttle box tests. The results showed that morphine addiction contributes to deficits in spatial learning and memory. Furthermore, each form of exercise training restored spatial learning and memory performance in morphine-dependent rats to levels similar to those of healthy controls. Aversive learning and memory during the acquisition phase were not affected by morphine addiction or exercise, but were significantly decreased by morphine dependence. Only concurrent training returned the time spent in the dark compartment in the shuttle box test to control levels. These findings show that different types of exercise exert similar effects on spatial learning and memory, but show distinct effects on aversive learning and memory. Further, morphine dependence-induced deficits in cognitive function were blocked by exercise. Therefore, different exercise regimens may represent practical treatment methods for cognitive and behavioral impairments associated with morphine-related disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Schöpf, V; Kollndorfer, K
2015-07-01
Olfactory dysfunction and loss of smell are mostly associated with an immense decrease in the quality of life. The aim of the presented study was to report on particularities in the acquisition of patients with olfactory dysfunction. During July 2011 and May 2014 we were contacted by 300 potential patients with self-reported loss of smell, 95 (54 female, 41 male, mean age 53) of which were invited for clinical testing after phone interviews. Clinical smell testing revealed 46 patients with anosmia, 38 with hyposmia, and 11 with normosmia. Self-assessment of olfactory function only correlated with clinical scores if patients had nearly no olfactory function left. The ability of self-assessment of olfactory function was independent of age or sex. Further, most patients were not able to report on the reason for or the duration of their olfactory dysfunction. Our report shows that patients with olfactory dysfunction are hardly ever ably to assess their grade of performance reduction. Awareness among patients with a reduced sense of smell is of great general importance, since it can be an indicator of neurodegenerative diseases. This should especially be noted for patients older than 50 who are not able to indicate a reason for their loss of smell.
Loss of CaMKI function disrupts salt aversive learning in C. elegans.
Lim, Jana P; Fehlauer, Holger; Das, Alakananda; Saro, Gabriella; Glauser, Dominique A; Brunet, Anne; Goodman, Miriam B
2018-06-06
The ability to adapt behavior to environmental fluctuations is critical for survival of organisms ranging from invertebrates to mammals. Caenorhabditis elegans can learn to avoid sodium chloride when it is paired with starvation. This behavior may help animals avoid areas without food. While some genes have been implicated in this salt aversive learning behavior, critical genetic components, and the neural circuit in which they act, remain elusive. Here, we show that the sole worm ortholog of mammalian CaMKI/IV, CMK-1, is essential for salt aversive learning behavior in C. elegans hermaphrodites. We find that CMK-1 acts in the primary salt-sensing ASE neurons to regulate this behavior. By characterizing the intracellular calcium dynamics in ASE neurons using microfluidics, we find that loss of cmk-1 has subtle effects on sensory-evoked calcium responses in ASE axons and their modulation by salt conditioning. Our study implicates the expression of the conserved CaMKI/CMK-1 in chemosensory neurons as a regulator of behavioral plasticity to environmental salt in C. elegans SIGNIFICANCE STATEMENT Like other animals, the nematode Caenorhabditis elegans depends on salt for survival and navigates toward high concentrations of this essential mineral. Besides its role as an essential nutrient, salt also causes osmotic stress at high concentrations. A growing body of evidence indicates that C. elegans balances the requirement for salt with the danger it presents through a process called salt aversive learning. We show that this behavior depends on expression of a calcium/calmodulin-dependent kinase, CMK-1, in the ASE salt sensing neurons. Our study identifies CMK-1 and salt-sensitive chemosensory neurons as key factors in this form of behavioral plasticity. Copyright © 2018 the authors.
Evolution of social learning when high expected payoffs are associated with high risk of failure.
Arbilly, Michal; Motro, Uzi; Feldman, Marcus W; Lotem, Arnon
2011-11-07
In an environment where the availability of resources sought by a forager varies greatly, individual foraging is likely to be associated with a high risk of failure. Foragers that learn where the best sources of food are located are likely to develop risk aversion, causing them to avoid the patches that are in fact the best; the result is sub-optimal behaviour. Yet, foragers living in a group may not only learn by themselves, but also by observing others. Using evolutionary agent-based computer simulations of a social foraging game, we show that in an environment where the most productive resources occur with the lowest probability, socially acquired information is strongly favoured over individual experience. While social learning is usually regarded as beneficial because it filters out maladaptive behaviours, the advantage of social learning in a risky environment stems from the fact that it allows risk aversion to be circumvented and the best food source to be revisited despite repeated failures. Our results demonstrate that the consequences of individual risk aversion may be better understood within a social context and suggest one possible explanation for the strong preference for social information over individual experience often observed in both humans and animals.
Evolution of social learning when high expected payoffs are associated with high risk of failure
Arbilly, Michal; Motro, Uzi; Feldman, Marcus W.; Lotem, Arnon
2011-01-01
In an environment where the availability of resources sought by a forager varies greatly, individual foraging is likely to be associated with a high risk of failure. Foragers that learn where the best sources of food are located are likely to develop risk aversion, causing them to avoid the patches that are in fact the best; the result is sub-optimal behaviour. Yet, foragers living in a group may not only learn by themselves, but also by observing others. Using evolutionary agent-based computer simulations of a social foraging game, we show that in an environment where the most productive resources occur with the lowest probability, socially acquired information is strongly favoured over individual experience. While social learning is usually regarded as beneficial because it filters out maladaptive behaviours, the advantage of social learning in a risky environment stems from the fact that it allows risk aversion to be circumvented and the best food source to be revisited despite repeated failures. Our results demonstrate that the consequences of individual risk aversion may be better understood within a social context and suggest one possible explanation for the strong preference for social information over individual experience often observed in both humans and animals. PMID:21508013
Aversive Learning Modulates Cortical Representations of Object Categories
Dunsmoor, Joseph E.; Kragel, Philip A.; Martin, Alex; LaBar, Kevin S.
2014-01-01
Experimental studies of conditioned learning reveal activity changes in the amygdala and unimodal sensory cortex underlying fear acquisition to simple stimuli. However, real-world fears typically involve complex stimuli represented at the category level. A consequence of category-level representations of threat is that aversive experiences with particular category members may lead one to infer that related exemplars likewise pose a threat, despite variations in physical form. Here, we examined the effect of category-level representations of threat on human brain activation using 2 superordinate categories (animals and tools) as conditioned stimuli. Hemodynamic activity in the amygdala and category-selective cortex was modulated by the reinforcement contingency, leading to widespread fear of different exemplars from the reinforced category. Multivariate representational similarity analyses revealed that activity patterns in the amygdala and object-selective cortex were more similar among exemplars from the threat versus safe category. Learning to fear animate objects was additionally characterized by enhanced functional coupling between the amygdala and fusiform gyrus. Finally, hippocampal activity co-varied with object typicality and amygdala activation early during training. These findings provide novel evidence that aversive learning can modulate category-level representations of object concepts, thereby enabling individuals to express fear to a range of related stimuli. PMID:23709642
Han, Peng; Niu, Chang-Ying; Lei, Chao-Liang; Cui, Jin-Jie; Desneux, Nicolas
2010-11-01
Transgenic Cry1Ac+CpTI cotton (CCRI41) is a promising cotton cultivar throughout China but side effects and especially sublethal effects of this transgenic cultivar on beneficial insects remain poorly studied. More specifically potential sublethal effects on behavioural traits of the honey bee Apis mellifera L. have not been formally assessed despite the importance of honey bees for pollination. The goal of our study was to assess potential effects of CCRI41 cotton pollen on visual and olfactory learning by honey bees. After a 7-day oral chronic exposure to honey mixed with either CCRI41 pollen, imidacloprid-treated conventional pollen (used as positive sublethal control) or conventional pollen (control), learning performance was evaluated by the classical proboscis extension reflex (PER) procedure as well as a T-tube maze test. The latter assay was designed as a new device to assess potential side effects of pesticides on visual associative learning of honey bees. These two procedures were complementary because the former focused on olfactory learning while the latter was involved in visual learning based on visual orientation ability. Oral exposure to CCRI41 pollen did not affect learning capacities of honey bees in both the T-tube maze and PER tests. However, exposure to imidacloprid resulted in reduced visual learning capacities in T-tube maze evaluation and decreased olfactory learning performances measured with PER. The implications of these results are discussed in terms of risks of transgenic CCRI41 cotton crops for honey bees.
Bentz, Dorothée; Michael, Tanja; de Quervain, Dominique J-F; Wilhelm, Frank H
2010-03-01
Current neurophysiological and psychological accounts view exposure therapy as the clinical analog of extinction learning that results in persistent modifications of the fear memory involved in the pathogenesis, symptomatology, and maintenance of anxiety disorders. Evidence from studies in animals and humans indicate that glucocorticoids have the potential to facilitate the processes that underlie extinction learning during exposure therapy. Particularly, glucocorticoids can restrict retrieval of previous aversive learning episodes and enhance consolidation of memory traces relating to non-fearful responding in feared situations. Thus, glucocorticoid treatment especially in combination with exposure therapy might be a promising approach to optimize treatment of anxiety disorders. This review examines the processes involved in aversive conditioning, fear learning and fear extinction, and how glucocorticoids might enhance restructuring of fear memories during therapy. Copyright 2009 Elsevier Ltd. All rights reserved.
Busse, Gregory D; Verendeev, Andrey; Jones, Jermaine; Riley, Anthony L
2005-09-01
We have recently reported that alcohol attenuates cocaine place preferences. Although the basis for this effect is unknown, alcohol may attenuate cocaine reward by potentiating its aversive effects. To examine this possibility, these experiments assessed the effects of alcohol on cocaine-induced taste aversions under conditions similar to those that resulted in attenuated place preferences. Specifically, Experiments 1 and 2 assessed the effects of alcohol (0.5 g/kg) on taste aversions induced by 20, 30 and 40 mg/kg cocaine. Experiment 3 examined the role of intertrial interval in the effects of alcohol (0.5 g/kg) on cocaine (30 mg/kg) taste aversions. In Experiments 1 and 2, cocaine was effective at conditioning aversions. Alcohol produced no measurable effect. Combining cocaine and alcohol produced no greater aversion than cocaine alone (and, in fact, weakened aversions at the lowest dose of cocaine). In Experiment 3, varying the intertrial interval from 3 days (as in the case of Experiments 1 and 2) to 1 day (a procedure identical to that in which alcohol attenuated cocaine place preferences) resulted in significant alcohol- and cocaine-induced taste aversions. Nonetheless, alcohol remained ineffective in potentiating cocaine aversions. Thus, under these conditions alcohol does not potentiate cocaine's aversiveness. These results were discussed in terms of their implication for the effects of alcohol on cocaine-induced place preferences. Further, the effects of alcohol on place preferences conditioned by cocaine were discussed in relation to other assessments of the effects of alcohol on the affective properties of cocaine and the implications of these interactions for alcohol and cocaine co-use.
Sublethal Dosage of Imidacloprid Reduces the Microglomerular Density of Honey Bee Mushroom Bodies
Peng, Yi-Chan; Yang, En-Cheng
2016-01-01
The dramatic loss of honey bees is a major concern worldwide. Previous studies have indicated that neonicotinoid insecticides cause behavioural abnormalities and have proven that exposure to sublethal doses of imidacloprid during the larval stage decreases the olfactory learning ability of adults. The present study shows the effect of sublethal doses of imidacloprid on the neural development of the honey bee brain by immunolabelling synaptic units in the calyces of mushroom bodies. We found that the density of the synaptic units in the region of the calyces, which are responsible for olfactory and visual functions, decreased after being exposed to a sublethal dose of imidacloprid. This not only links a decrease in olfactory learning ability to abnormal neural connectivity but also provides evidence that imidacloprid damages the development of the nervous system in regions responsible for both olfaction and vision during the larval stage of the honey bee. PMID:26757950
Pontine and Thalamic Influences on Fluid Rewards: II. Sucrose and Corn Oil Conditioned Aversions
Liang, Nu-Chu; Grigson, Patricia S.; Norgren, Ralph
2011-01-01
In this study conditioned aversions were produced in sham feeding rats to limit postingestive feedback from the oral stimulus. All control rats learned an aversion to either 100% corn oil or 0.3M sucrose when ingestion of these stimuli was followed by an injection of lithium chloride (LiCl). Rats with lesions of the ventroposteromedial thalamus also learned to avoid either corn oil or sucrose. After 3 trials, rats with damage to the parabrachial nuclei (PBN) learned to avoid 100% corn oil, but failed to do so when the stimulus was 0.3M sucrose. These results support our hypothesis that the PBN is necessary to appropriately respond to a taste, but not an oil cue as a function of experience (i.e., pairings with LiCl). The results also are consistent with our results from operant tasks demonstrating that the trigeminal thalamus, the ventroposteromedial nucleus, is not required for responding to the rewarding properties of sucrose, oil, or for modifying the response to these stimuli as a function of experience. PMID:21699909
Noradrenergic Control of Odor Recognition in a Nonassociative Olfactory Learning Task in the Mouse
ERIC Educational Resources Information Center
Veyrac, Alexandra; Nguyen, Veronique; Marien, Marc; Didier, Anne; Jourdan, Francois
2007-01-01
The present study examined the influence of pharmacological modulations of the locus coeruleus noradrenergic system on odor recognition in the mouse. Mice exposed to a nonrewarded olfactory stimulation (training) were able to memorize this odor and to discriminate it from a new odor in a recall test performed 15 min later. At longer delays (30 or…
Zheng, Xiaomin; Liang, Liang; Hei, Changchun; Yang, Wenjuan; Zhang, Tingyuan; Wu, Kai; Qin, Yi; Chang, Qing
2018-04-17
Chloroform-induced olfactory mucosal degeneration has been reported in adult rats following gavage. We used fixed-point chloroform infusions on different postnatal days (PNDs) to investigate the effects of early olfactory bilateral deprivation on the main olfactory bulbs in Sprague Dawley rats. The experimental groups included rats infused with chloroform (5 μl) or saline (sham, 5 μl) on PNDs 3 and 8, and rats not receiving infusions (control) (n = 6 in all groups). Rats receiving chloroform on PND 3 showed significant hypoevolutism when compared to those in other groups (P < 0.05). There was a complete disappearance and a significant reduction in the size of olfactory glomeruli in the PND 3 and 8 groups, respectively, when compared to the respective sham groups. Rats receiving chloroform on PND 3 had significant memory impairment (P < 0.01) and increased levels of learned helplessness (P < 0.05), as measured using the Morris water maze and tail suspension tests, respectively. GABA A receptor alpha5 subunit (α5GABA A R) expression in hippocampal neurons was significantly lower in rats receiving chloroform on PND 3 than in rats in other groups (P < 0.01), as measured using immunohistochemistry and polymerase chain reaction. There was thus a critical period for the preservation of regenerative ability in olfactory receptor neurons, during which damage and olfactory deprivation led to altered rhinencephalon structure and disappearance of olfactory glomeruli, which induced hypoevolutism. Olfactory deprivation after the critical period had no significant effect on olfactory receptor neuron regeneration, leading to reduced developmental and behavioral effects in Sprague Dawley rats.
Learning in the Absence of Experience-Dependent Regulation of NMDAR Composition
ERIC Educational Resources Information Center
Lebel, David; Sidhu, Nishchal; Barkai, Edi; Quinlan, Elizabeth M.
2006-01-01
Olfactory discrimination (OD) learning consists of two phases: an initial N-methyl-d-aspartate (NMDA) receptor--sensitive rule-learning phase, followed by an NMDA receptor (NMDAR)--insensitive pair-learning phase. The rule-learning phase is accompanied by changes in the composition and function of NMDARs at synapses in the piriform cortex,…
ERIC Educational Resources Information Center
Bermudez-Rattoni, Federico; Ramirez-Lugo, Leticia; Zavala-Vega, Sergio
2006-01-01
Animals recognize a taste cue as aversive when it has been associated with post-ingestive malaise; this associative learning is known as conditioned taste aversion (CTA). When an animal consumes a new taste and no negative consequences follow, it becomes recognized as a safe signal, leading to an increase in its consumption in subsequent…
ERIC Educational Resources Information Center
Holland, Peter C.
2008-01-01
In experiments that measured food consumption, Holland (1981; "Learning and Motivation," 12, 1-18) found that food aversions were formed when an exteroceptive associate of food was paired with illness, but not when such an associate was paired with shock. By contrast, measuring the ability of food to reinforce instrumental responding,…
ERIC Educational Resources Information Center
Huh, Kyu Hwan; Guzman, Yomayra F.; Tronson, Natalie C.; Guedea, Anita L.; Gao, Can; Radulovic, Jelena
2009-01-01
Extinction of fear requires learning that anticipated aversive events no longer occur. Animal models reveal that sustained phosphorylation of the extracellular signal-regulated kinase (Erk) in hippocampal CA1 neurons plays an important role in this process. However, the key signals triggering and regulating the activity of Erk are not known. By…
ERIC Educational Resources Information Center
Tinsley, Matthew R.; Quinn, Jennifer J.; Fanselow, Michael S.
2004-01-01
Aversive conditioning is an ideal model for studying cholinergic effects on the processes of learning and memory for several reasons. First, deficits produced by selective lesions of the anatomical structures shown to be critical for Pavlovian fear conditioning and inhibitory avoidance (such as the amygdala and hippocampus) resemble those deficits…
What a relief! A role for dopamine in positive (but not negative) valence.
Sharpe, Melissa J
2018-02-27
We have long known that dopamine encodes the predictive relationship between cues and rewards. But what about relief learning? In this issue of Neuropsychopharmacology, Meyer et al. show that the same circuits encoding rewarding events also encode relief from aversive events. And this appears to be in a manner distinct from encoding of the aversive event itself. So does dopamine only contribute to learning about positive events? And are these events encoded in the same way regardless of how that positive experience came about? Not quite. Turns out, the devil is in the details.
Response to palatability after area postrema lesions: a result of learned aversions.
Tomoyasu, N; Kenney, N J
1989-11-01
The role of palatability, novelty, and food aversion in determining changes of food choice after ablation of the area postrema and caudal-medial aspect of the nucleus of the solitary tract (AP/cmNTS) is examined through a series of studies utilizing 24-h, two-food choice tests. On test days, the food that the animal has ingested since the time of lesioning or sham surgery is presented along with a novel food that varies in palatability. The results indicate that postlesion diet history is the major determinant of food choice by lesioned rats. Lesioned rats consistently take less of their familiar postlesion food than diet-matched controls, suggesting that the lesioned rats have developed an aversion to that food. Over-ingestion of the novel food may occur, but this outcome is not reliable. No indication that the animals' response to food palatability is affected by AP/cmNTS ablation was found. Learned aversion to a food ingested after AP/cmNTS ablation may account not only for changes of food preference after the lesion but also may be involved in the hypophagia and weight loss resulting from the ablation.
Color Modulates Olfactory Learning in Honeybees by an Occasion-Setting Mechanism
ERIC Educational Resources Information Center
Mota, Theo; Giurfa, Martin; Sandoz, Jean-Christophe
2011-01-01
A sophisticated form of nonelemental learning is provided by occasion setting. In this paradigm, animals learn to disambiguate an uncertain conditioned stimulus using alternative stimuli that do not enter into direct association with the unconditioned stimulus. For instance, animals may learn to discriminate odor rewarded from odor nonrewarded…
Opponent appetitive-aversive neural processes underlie predictive learning of pain relief.
Seymour, Ben; O'Doherty, John P; Koltzenburg, Martin; Wiech, Katja; Frackowiak, Richard; Friston, Karl; Dolan, Raymond
2005-09-01
Termination of a painful or unpleasant event can be rewarding. However, whether the brain treats relief in a similar way as it treats natural reward is unclear, and the neural processes that underlie its representation as a motivational goal remain poorly understood. We used fMRI (functional magnetic resonance imaging) to investigate how humans learn to generate expectations of pain relief. Using a pavlovian conditioning procedure, we show that subjects experiencing prolonged experimentally induced pain can be conditioned to predict pain relief. This proceeds in a manner consistent with contemporary reward-learning theory (average reward/loss reinforcement learning), reflected by neural activity in the amygdala and midbrain. Furthermore, these reward-like learning signals are mirrored by opposite aversion-like signals in lateral orbitofrontal cortex and anterior cingulate cortex. This dual coding has parallels to 'opponent process' theories in psychology and promotes a formal account of prediction and expectation during pain.
Evaluation of ambiguous associations in the amygdala by learning the structure of the environment
Madarasz, Tamas J.; Diaz-Mataix, Lorenzo; Akhand, Omar; Ycu, Edgar A.; LeDoux, Joseph E.; Johansen, Joshua P.
2017-01-01
Recognizing predictive relationships is critical for survival, but an understanding of the underlying neural mechanisms remains elusive. In particular it is unclear how the brain distinguishes predictive relationships from spurious ones when evidence about a relationship is ambiguous, or how it computes predictions given such uncertainty. To better understand this process we introduced ambiguity into an associative learning task by presenting aversive outcomes both in the presence and absence of a predictive cue. Electrophysiological and optogenetic approaches revealed that amygdala neurons directly regulate and track the effects of ambiguity on learning. Contrary to established accounts of associative learning however, interference from competing associations was not required to assess an ambiguous cue-outcome contingency. Instead, animals’ behavior was explained by a normative account that evaluates different models of the environment’s statistical structure. These findings suggest an alternative view on the role of amygdala circuits in resolving ambiguity during aversive learning. PMID:27214568
Evaluation of ambiguous associations in the amygdala by learning the structure of the environment.
Madarasz, Tamas J; Diaz-Mataix, Lorenzo; Akhand, Omar; Ycu, Edgar A; LeDoux, Joseph E; Johansen, Joshua P
2016-07-01
Recognizing predictive relationships is critical for survival, but an understanding of the underlying neural mechanisms remains elusive. In particular, it is unclear how the brain distinguishes predictive relationships from spurious ones when evidence about a relationship is ambiguous, or how it computes predictions given such uncertainty. To better understand this process, we introduced ambiguity into an associative learning task by presenting aversive outcomes both in the presence and in the absence of a predictive cue. Electrophysiological and optogenetic approaches revealed that amygdala neurons directly regulated and tracked the effects of ambiguity on learning. Contrary to established accounts of associative learning, however, interference from competing associations was not required to assess an ambiguous cue-outcome contingency. Instead, animals' behavior was explained by a normative account that evaluates different models of the environment's statistical structure. These findings suggest an alternative view of amygdala circuits in resolving ambiguity during aversive learning.
The habenula encodes negative motivational value associated with primary punishment in humans.
Lawson, Rebecca P; Seymour, Ben; Loh, Eleanor; Lutti, Antoine; Dolan, Raymond J; Dayan, Peter; Weiskopf, Nikolaus; Roiser, Jonathan P
2014-08-12
Learning what to approach, and what to avoid, involves assigning value to environmental cues that predict positive and negative events. Studies in animals indicate that the lateral habenula encodes the previously learned negative motivational value of stimuli. However, involvement of the habenula in dynamic trial-by-trial aversive learning has not been assessed, and the functional role of this structure in humans remains poorly characterized, in part, due to its small size. Using high-resolution functional neuroimaging and computational modeling of reinforcement learning, we demonstrate positive habenula responses to the dynamically changing values of cues signaling painful electric shocks, which predict behavioral suppression of responses to those cues across individuals. By contrast, negative habenula responses to monetary reward cue values predict behavioral invigoration. Our findings show that the habenula plays a key role in an online aversive learning system and in generating associated motivated behavior in humans.
Bergado Acosta, Jorge R; Schneider, Miriam; Fendt, Markus
2017-10-01
Humans and animals are able to associate an environmental cue with the feeling of relief from an aversive event, a phenomenon called relief learning. Relief from an aversive event is rewarding and a relief-associated cue later induces an attenuation of the startle magnitude or approach behavior. Previous studies demonstrated that the nucleus accumbens is essential for relief learning. Here, we asked whether accumbal cannabinoid type 1 (CB1) receptors are involved in relief learning. In rats, we injected the CB1 receptor antagonist/inverse agonist SR141716A (rimonabant) directly into the nucleus accumbens at different time points during a relief learning experiment. SR141716A injections immediately before the conditioning inhibited relief learning. However, SR141716A injected immediately before the retention test was not effective when conditioning was without treatment. These findings indicate that accumbal CB1 receptors play an important role in the plasticity processes underlying relief learning. Copyright © 2017 Elsevier Inc. All rights reserved.
Carcaud, Julie; Giurfa, Martin; Sandoz, Jean Christophe
2016-01-01
The function of parallel neural processing is a fundamental problem in Neuroscience, as it is found across sensory modalities and evolutionary lineages, from insects to humans. Recently, parallel processing has attracted increased attention in the olfactory domain, with the demonstration in both insects and mammals that different populations of second-order neurons encode and/or process odorant information differently. Among insects, Hymenoptera present a striking olfactory system with a clear neural dichotomy from the periphery to higher-order centers, based on two main tracts of second-order (projection) neurons: the medial and lateral antennal lobe tracts (m-ALT and l-ALT). To unravel the functional role of these two pathways, we combined specific lesions of the m-ALT tract with behavioral experiments, using the classical conditioning of the proboscis extension response (PER conditioning). Lesioned and intact bees had to learn to associate an odorant (1-nonanol) with sucrose. Then the bees were subjected to a generalization procedure with a range of odorants differing in terms of their carbon chain length or functional group. We show that m-ALT lesion strongly affects acquisition of an odor-sucrose association. However, lesioned bees that still learned the association showed a normal gradient of decreasing generalization responses to increasingly dissimilar odorants. Generalization responses could be predicted to some extent by in vivo calcium imaging recordings of l-ALT neurons. The m-ALT pathway therefore seems necessary for normal classical olfactory conditioning performance. PMID:26834589
The Serotonergic Central Nervous System of the Drosophila Larva: Anatomy and Behavioral Function
Apostolopoulou, Anthi A.; Widmann, Annekathrin; Pfitzenmaier, Johanna E.; Maiolo, Elena M.; Selcho, Mareike; Pauls, Dennis; von Essen, Alina; Gupta, Tripti; Sprecher, Simon G.; Birman, Serge; Riemensperger, Thomas; Stocker, Reinhard F.; Thum, Andreas S.
2012-01-01
The Drosophila larva has turned into a particularly simple model system for studying the neuronal basis of innate behaviors and higher brain functions. Neuronal networks involved in olfaction, gustation, vision and learning and memory have been described during the last decade, often up to the single-cell level. Thus, most of these sensory networks are substantially defined, from the sensory level up to third-order neurons. This is especially true for the olfactory system of the larva. Given the wealth of genetic tools in Drosophila it is now possible to address the question how modulatory systems interfere with sensory systems and affect learning and memory. Here we focus on the serotonergic system that was shown to be involved in mammalian and insect sensory perception as well as learning and memory. Larval studies suggested that the serotonergic system is involved in the modulation of olfaction, feeding, vision and heart rate regulation. In a dual anatomical and behavioral approach we describe the basic anatomy of the larval serotonergic system, down to the single-cell level. In parallel, by expressing apoptosis-inducing genes during embryonic and larval development, we ablate most of the serotonergic neurons within the larval central nervous system. When testing these animals for naïve odor, sugar, salt and light perception, no profound phenotype was detectable; even appetitive and aversive learning was normal. Our results provide the first comprehensive description of the neuronal network of the larval serotonergic system. Moreover, they suggest that serotonin per se is not necessary for any of the behaviors tested. However, our data do not exclude that this system may modulate or fine-tune a wide set of behaviors, similar to its reported function in other insect species or in mammals. Based on our observations and the availability of a wide variety of genetic tools, this issue can now be addressed. PMID:23082175
The serotonergic central nervous system of the Drosophila larva: anatomy and behavioral function.
Huser, Annina; Rohwedder, Astrid; Apostolopoulou, Anthi A; Widmann, Annekathrin; Pfitzenmaier, Johanna E; Maiolo, Elena M; Selcho, Mareike; Pauls, Dennis; von Essen, Alina; Gupta, Tripti; Sprecher, Simon G; Birman, Serge; Riemensperger, Thomas; Stocker, Reinhard F; Thum, Andreas S
2012-01-01
The Drosophila larva has turned into a particularly simple model system for studying the neuronal basis of innate behaviors and higher brain functions. Neuronal networks involved in olfaction, gustation, vision and learning and memory have been described during the last decade, often up to the single-cell level. Thus, most of these sensory networks are substantially defined, from the sensory level up to third-order neurons. This is especially true for the olfactory system of the larva. Given the wealth of genetic tools in Drosophila it is now possible to address the question how modulatory systems interfere with sensory systems and affect learning and memory. Here we focus on the serotonergic system that was shown to be involved in mammalian and insect sensory perception as well as learning and memory. Larval studies suggested that the serotonergic system is involved in the modulation of olfaction, feeding, vision and heart rate regulation. In a dual anatomical and behavioral approach we describe the basic anatomy of the larval serotonergic system, down to the single-cell level. In parallel, by expressing apoptosis-inducing genes during embryonic and larval development, we ablate most of the serotonergic neurons within the larval central nervous system. When testing these animals for naïve odor, sugar, salt and light perception, no profound phenotype was detectable; even appetitive and aversive learning was normal. Our results provide the first comprehensive description of the neuronal network of the larval serotonergic system. Moreover, they suggest that serotonin per se is not necessary for any of the behaviors tested. However, our data do not exclude that this system may modulate or fine-tune a wide set of behaviors, similar to its reported function in other insect species or in mammals. Based on our observations and the availability of a wide variety of genetic tools, this issue can now be addressed.
Han, Peng; Lei, Chao-Liang; Cui, Jin-Jie; Desneux, Nicolas
2010-01-01
Transgenic Cry1Ac+CpTI cotton (CCRI41) is a promising cotton cultivar throughout China but side effects and especially sublethal effects of this transgenic cultivar on beneficial insects remain poorly studied. More specifically potential sublethal effects on behavioural traits of the honey bee Apis mellifera L. have not been formally assessed despite the importance of honey bees for pollination. The goal of our study was to assess potential effects of CCRI41 cotton pollen on visual and olfactory learning by honey bees. After a 7-day oral chronic exposure to honey mixed with either CCRI41 pollen, imidacloprid-treated conventional pollen (used as positive sublethal control) or conventional pollen (control), learning performance was evaluated by the classical proboscis extension reflex (PER) procedure as well as a T-tube maze test. The latter assay was designed as a new device to assess potential side effects of pesticides on visual associative learning of honey bees. These two procedures were complementary because the former focused on olfactory learning while the latter was involved in visual learning based on visual orientation ability. Oral exposure to CCRI41 pollen did not affect learning capacities of honey bees in both the T-tube maze and PER tests. However, exposure to imidacloprid resulted in reduced visual learning capacities in T-tube maze evaluation and decreased olfactory learning performances measured with PER. The implications of these results are discussed in terms of risks of transgenic CCRI41 cotton crops for honey bees. PMID:20872243
Wetzel, Wolfram; Scheich, Henning; Ohl, Frank W.
2013-01-01
The lateral habenula (LHb) is an epithalamic structure involved in signaling reward omission and aversive stimuli, and it inhibits dopaminergic neurons during motivated behavior. Less is known about LHb involvement in the acquisition and retrieval of avoidance learning. Our previous studies indicated that brief electrical stimulation of the LHb, time-locked to the avoidance of aversive footshock (presumably during the positive affective “relief” state that occurs when an aversive outcome is averted), inhibited the acquisition of avoidance learning. In the present study, we used the same paradigm to investigate different frequencies of LHb stimulation. The effect of 20 Hz vs. 50 Hz vs. 100 Hz stimulation was investigated during two phases, either during acquisition or retrieval in Mongolian gerbils. The results indicated that 50 Hz, but not 20 Hz, was sufficient to produce a long-term impairment in avoidance learning, and was somewhat more effective than 100 Hz in this regard. None of the stimulation parameters led to any effects on retrieval of avoidance learning, nor did they affect general motor activity. This suggests that, at frequencies in excess of the observed tonic firing rates of LHb neurons (>1–20 Hz), LHb stimulation may serve to interrupt the consolidation of new avoidance memories. However, these stimulation parameters are not capable of modifying avoidance memories that have already undergone extensive consolidation. PMID:23840355
NASA Astrophysics Data System (ADS)
Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.
Exposing rats to heavy particles produces alterations in the functioning of dopaminergic neurons and in the behaviors that depend upon the integrity of the dopaminergic system. Two of these dopamine-dependent behaviors include amphetamine-induced reinforcement, measure using the conditioned place preference procedure, and amphetamine-induced reinforcement, measured using the conditioned place preference procedure, and amphetamine-induced aversion, measured using the conditioned taste aversion. Previous research has shown that exposing rats to 1.0 Gy of 1GeV/n 56Fe particles produced a disruption of an amphetamine-induced taste aversion 3 days following exposure, but produced an apparent enhancement of the aversion 112 days following exposure. The present experiments were designed to provide a further evaluation of these results by examining taste aversion learning 154 days following exposure to 1.0Gy 56Fe particles and to establish the convergent validity of the taste aversion results by looking at the effects of exposure on the establishment of an amphetamine-induced conditioned place preference 3, 7, and 16 weeks following irradiation. The taste aversion results failed to confirm the apparent enhancement of the amphetamine-induced CTA observed in the prior experiment. However, exposure to 56Fe particles prevented the acquisition of amphetamine-induced place preference at all three-time intervals. The results are interpreted as indicating that exposure to heavy particles can produce long-term changes in behavioral functioning.
Burenkova, O V; Aleksandrova, E A; Zaraĭskaia, I Iu
2013-02-01
In the brain, histone acetylation underlies both learning and the maintenance of long-term sustained effects of early experience which is further epigenetically inherited. However, the role of acetylation in learning previously has only been studied in adult animals: high level of learning could be dependent on high levels of histone H3 acetylation in the brain. The role of acetylation in the mechanisms of early learning has not been studied. In the present work, we were interested whether histone deacetylase inhibitor sodium valproate which increases the level of histone H3 acetylation will affect early olfactory discrimination learning in 8-day-old pups of 129Sv mice that are characterized by low efficiency of learning with imitation of maternal grooming. Multiple valproate injections from 3rd to 6th postnatal day had a gender-dependent effect: learning was selectively improved in male but not in female pups. In the female pups, learning improvement was observed after multiple injections of saline. Possible epigenetic mechanisms underlying these sex differences are discussed.
Kin recognition in zebrafish: a 24-hour window for olfactory imprinting
Gerlach, Gabriele; Hodgins-Davis, Andrea; Avolio, Carla; Schunter, Celia
2008-01-01
Distinguishing kin from non-kin profoundly impacts the evolution of social behaviour. Individuals able to assess the genetic relatedness of conspecifics can preferentially allocate resources towards related individuals and avoid inbreeding. We have addressed the question of how animals acquire the ability to recognize kin by studying the development of olfactory kin preference in zebrafish (Danio rerio). Previously, we showed that zebrafish use an olfactory template to recognize even unfamiliar kin through phenotype matching. Here, we show for the first time that this phenotype matching is based on a learned olfactory imprinting process in which exposure to kin individuals on day 6 post fertilization (pf) is necessary and sufficient for imprinting. Larvae that were exposed to kin before or after but not on day 6 pf did not recognize kin. Larvae isolated from all contact with conspecifics did not imprint on their own chemical cues; therefore, we see no evidence for kin recognition through self-matching in this species. Surprisingly, exposure to non-kin odour during the sensitive phase of development did not result in imprinting on the odour cues of unrelated individuals, suggesting a genetic predisposition to kin odour. Urine-born peptides expressed by genes of the immune system (MHC) are important messengers carrying information about ‘self’ and ‘other’. We suggest that phenotype matching is acquired through a time-sensitive learning process that, in zebrafish, includes a genetic predisposition potentially involving MHC genes expressed in the olfactory receptor neurons. PMID:18544507
Kin recognition in zebrafish: a 24-hour window for olfactory imprinting.
Gerlach, Gabriele; Hodgins-Davis, Andrea; Avolio, Carla; Schunter, Celia
2008-09-22
Distinguishing kin from non-kin profoundly impacts the evolution of social behaviour. Individuals able to assess the genetic relatedness of conspecifics can preferentially allocate resources towards related individuals and avoid inbreeding. We have addressed the question of how animals acquire the ability to recognize kin by studying the development of olfactory kin preference in zebrafish (Danio rerio). Previously, we showed that zebrafish use an olfactory template to recognize even unfamiliar kin through phenotype matching. Here, we show for the first time that this phenotype matching is based on a learned olfactory imprinting process in which exposure to kin individuals on day 6 post fertilization (pf) is necessary and sufficient for imprinting. Larvae that were exposed to kin before or after but not on day 6 pf did not recognize kin. Larvae isolated from all contact with conspecifics did not imprint on their own chemical cues; therefore, we see no evidence for kin recognition through self-matching in this species. Surprisingly, exposure to non-kin odour during the sensitive phase of development did not result in imprinting on the odour cues of unrelated individuals, suggesting a genetic predisposition to kin odour. Urine-born peptides expressed by genes of the immune system (MHC) are important messengers carrying information about 'self' and 'other'. We suggest that phenotype matching is acquired through a time-sensitive learning process that, in zebrafish, includes a genetic predisposition potentially involving MHC genes expressed in the olfactory receptor neurons.
ERIC Educational Resources Information Center
Boisselier, Lise; Ferry, Barbara; Gervais, Rémi
2017-01-01
The hippocampal formation has been extensively described as a key component for object recognition in conjunction with place and context. The present study aimed at describing neural mechanisms in the hippocampal formation that support olfactory-tactile (OT) object discrimination in a task where space and context were not taken into account. The…
Worrying affects associative fear learning: a startle fear conditioning study.
Gazendam, Femke J; Kindt, Merel
2012-01-01
A valuable experimental model for the pathogenesis of anxiety disorders is that they originate from a learned association between an intrinsically non-aversive event (Conditioned Stimulus, CS) and an anticipated disaster (Unconditioned Stimulus, UCS). Most anxiety disorders, however, do not evolve from a traumatic experience. Insights from neuroscience show that memory can be modified post-learning, which may elucidate how pathological fear can develop after relatively mild aversive events. Worrying--a process frequently observed in anxiety disorders--is a potential candidate to strengthen the formation of fear memory after learning. Here we tested in a discriminative fear conditioning procedure whether worry strengthens associative fear memory. Participants were randomly assigned to either a Worry (n = 23) or Control condition (n = 25). After fear acquisition, the participants in the Worry condition processed six worrisome questions regarding the personal aversive consequences of an electric stimulus (UCS), whereas the Control condition received difficult but neutral questions. Subsequently, extinction, reinstatement and re-extinction of fear were tested. Conditioned responding was measured by fear-potentiated startle (FPS), skin conductance (SCR) and UCS expectancy ratings. Our main results demonstrate that worrying resulted in increased fear responses (FPS) to both the feared stimulus (CS(+)) and the originally safe stimulus (CS(-)), whereas FPS remained unchanged in the Control condition. In addition, worrying impaired both extinction and re-extinction learning of UCS expectancy. The implication of our findings is that they show how worry may contribute to the development of anxiety disorders by affecting associative fear learning.
Pizzagalli, Diego A; Greischar, Lawrence L; Davidson, Richard J
2003-01-01
Social cognition, including complex social judgments and attitudes, is shaped by individual learning experiences, where affect often plays a critical role. Aversive classical conditioning-a form of associative learning involving a relationship between a neutral event (conditioned stimulus, CS) and an aversive event (unconditioned stimulus, US)-represents a well-controlled paradigm to study how the acquisition of socially relevant knowledge influences behavior and the brain. Unraveling the temporal unfolding of brain mechanisms involved appears critical for an initial understanding about how social cognition operates. Here, 128-channel ERPs were recorded in 50 subjects during the acquisition phase of a differential aversive classical conditioning paradigm. The CS+ (two fearful faces) were paired 50% of the time with an aversive noise (CS upward arrow + /Paired), whereas in the remaining 50% they were not (CS upward arrow + /Unpaired); the CS- (two different fearful faces) were never paired with the noise. Scalp ERP analyses revealed differences between CS upward arrow + /Unpaired and CS- as early as approximately 120 ms post-stimulus. Tomographic source localization analyses revealed early activation modulated by the CS+ in the ventral visual pathway (e.g. fusiform gyrus, approximately 120 ms), right middle frontal gyrus (approximately 176 ms), and precuneus (approximately 240 ms). At approximately 120 ms, the CS- elicited increased activation in the left insula and left middle frontal gyrus. These findings not only confirm a critical role of prefrontal, insular, and precuneus regions in aversive conditioning, but they also suggest that biologically and socially salient information modulates activation at early stages of the information processing flow, and thus furnish initial insight about how affect and social judgments operate.
Potentiation of the early visual response to learned danger signals in adults and adolescents
Howsley, Philippa; Jordan, Jeff; Johnston, Pat
2015-01-01
The reinforcing effects of aversive outcomes on avoidance behaviour are well established. However, their influence on perceptual processes is less well explored, especially during the transition from adolescence to adulthood. Using electroencephalography, we examined whether learning to actively or passively avoid harm can modulate early visual responses in adolescents and adults. The task included two avoidance conditions, active and passive, where two different warning stimuli predicted the imminent, but avoidable, presentation of an aversive tone. To avoid the aversive outcome, participants had to learn to emit an action (active avoidance) for one of the warning stimuli and omit an action for the other (passive avoidance). Both adults and adolescents performed the task with a high degree of accuracy. For both adolescents and adults, increased N170 event-related potential amplitudes were found for both the active and the passive warning stimuli compared with control conditions. Moreover, the potentiation of the N170 to the warning stimuli was stable and long lasting. Developmental differences were also observed; adolescents showed greater potentiation of the N170 component to danger signals. These findings demonstrate, for the first time, that learned danger signals in an instrumental avoidance task can influence early visual sensory processes in both adults and adolescents. PMID:24652856
Scholl, Jacqueline; Kolling, Nils; Nelissen, Natalie; Browning, Michael; Rushworth, Matthew F S; Harmer, Catherine J
2017-02-01
To make good decisions, humans need to learn about and integrate different sources of appetitive and aversive information. While serotonin has been linked to value-based decision-making, its role in learning is less clear, with acute manipulations often producing inconsistent results. Here, we show that when the effects of a selective serotonin reuptake inhibitor (SSRI, citalopram) are studied over longer timescales, learning is robustly improved. We measured brain activity with functional magnetic resonance imaging (fMRI) in volunteers as they performed a concurrent appetitive (money) and aversive (effort) learning task. We found that 2 weeks of citalopram enhanced reward and effort learning signals in a widespread network of brain regions, including ventromedial prefrontal and anterior cingulate cortex. At a behavioral level, this was accompanied by more robust reward learning. This suggests that serotonin can modulate the ability to learn via a mechanism that is independent of stimulus valence. Such effects may partly underlie SSRIs' impact in treating psychological illnesses. Our results highlight both a specific function in learning for serotonin and the importance of studying its role across longer timescales.
Vargas-Perez, Hector; Ting-A-Kee, Ryan A; Heinmiller, Andrew; Sturgess, Jessica E; van der Kooy, Derek
2007-06-01
The opponent-process theory of motivation postulates that motivational stimuli activate a rewarding process that is followed by an opposed aversive process in a homeostatic control mechanism. Thus, an acute injection of morphine in nondependent animals should evoke an acute rewarding response, followed by a later aversive response. Indeed, the tegmental pedunculopontine nucleus (TPP) mediates the rewarding effects of opiates in previously morphine-naive animals, but not other unconditioned effects of opiates, or learning ability. The aversive opponent process for acute morphine reward was revealed using a place-conditioning paradigm. The conditioned place aversion induced by 16-h spontaneous morphine withdrawal from an acute morphine injection in nondependent rats was abolished by TPP lesions performed prior to drug experience. However, TPP-lesioned rats did show conditioned aversions for an environment paired with the acute administration of the opioid antagonist naloxone, which blocks endogenous opioids. The results show that blocking the rewarding effects of morphine with TPP lesions also blocked the opponent aversive effects of acute morphine withdrawal in nondependent animals. Thus, this spontaneous withdrawal aversion (the opponent process) is induced by the acute rewarding effects of morphine and not by other unconditioned effects of morphine, the pharmacological effects of morphine or endogenous opioids being displaced from opiate receptors.
Tandon, Shashank; Keefe, Kristen A; Taha, Sharif A
2017-02-15
The lateral habenula (LHb) has been implicated in regulation of drug-seeking behaviours through aversion-mediated learning. In this study, we recorded neuronal activity in the LHb of rats during an operant task before and after ethanol-induced conditioned taste aversion (CTA) to saccharin. Ethanol-induced CTA caused significantly higher baseline firing rates in LHb neurons, as well as elevated firing rates in response to cue presentation, lever press and saccharin taste. In a separate cohort of rats, we found that bilateral LHb lesions blocked ethanol-induced CTA. Our results strongly suggest that excitation of LHb neurons is required for ethanol-induced CTA, and point towards a mechanism through which LHb firing may regulate voluntary ethanol consumption. Ethanol, like other drugs of abuse, has both rewarding and aversive properties. Previous work suggests that sensitivity to ethanol's aversive effects negatively modulates voluntary alcohol intake and thus may be important in vulnerability to developing alcohol use disorders. We previously found that rats with lesions of the lateral habenula (LHb), which is implicated in aversion-mediated learning, show accelerated escalation of voluntary ethanol consumption. To understand neural encoding in the LHb contributing to ethanol-induced aversion, we recorded neural firing in the LHb of freely behaving, water-deprived rats before and after an ethanol-induced (1.5 g kg -1 20% ethanol, i.p.) conditioned taste aversion (CTA) to saccharin taste. Ethanol-induced CTA strongly decreased motivation for saccharin in an operant task to obtain the tastant. Comparison of LHb neural firing before and after CTA induction revealed four main differences in firing properties. First, baseline firing after CTA induction was significantly higher. Second, firing evoked by cues signalling saccharin availability shifted from a pattern of primarily inhibition before CTA to primarily excitation after CTA induction. Third, CTA induction reduced the magnitude of lever press-evoked inhibition. Finally, firing rates were significantly higher during consumption of the devalued saccharin solution after CTA induction. Next, we studied sham- and LHb-lesioned rats in our operant CTA paradigm and found that LHb lesion significantly attenuated CTA effects in the operant task. Our data demonstrate the importance of LHb excitation in regulating expression of ethanol-induced aversion and suggest a mechanism for its role in modulating escalation of voluntary ethanol intake. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
ERIC Educational Resources Information Center
Roitman, Mitchell F.; Wheeler, Robert A.; Tiesinga, Paul H. E.; Roitman, Jamie D.; Carelli, Regina M.
2010-01-01
The nucleus accumbens (NAc) plays a role in hedonic reactivity to taste stimuli. Learning can alter the hedonic valence of a given stimulus, and it remains unclear how the NAc encodes this shift. The present study examined whether the population response of NAc neurons to a taste stimulus is plastic using a conditioned taste aversion (CTA)…
Atlas, Lauren Y; Doll, Bradley B; Li, Jian; Daw, Nathaniel D; Phelps, Elizabeth A
2016-01-01
Socially-conveyed rules and instructions strongly shape expectations and emotions. Yet most neuroscientific studies of learning consider reinforcement history alone, irrespective of knowledge acquired through other means. We examined fear conditioning and reversal in humans to test whether instructed knowledge modulates the neural mechanisms of feedback-driven learning. One group was informed about contingencies and reversals. A second group learned only from reinforcement. We combined quantitative models with functional magnetic resonance imaging and found that instructions induced dissociations in the neural systems of aversive learning. Responses in striatum and orbitofrontal cortex updated with instructions and correlated with prefrontal responses to instructions. Amygdala responses were influenced by reinforcement similarly in both groups and did not update with instructions. Results extend work on instructed reward learning and reveal novel dissociations that have not been observed with punishments or rewards. Findings support theories of specialized threat-detection and may have implications for fear maintenance in anxiety. DOI: http://dx.doi.org/10.7554/eLife.15192.001 PMID:27171199
Early Life Manipulations Alter Learning and Memory in Rats
Kosten, Therese A; Kim, Jeansok J; Lee, Hongjoo J.
2012-01-01
Much research shows early life manipulations have enduring behavioral, neural, and hormonal effects. However, findings of learning and memory performance vary widely across studies. We reviewed studies in which pre-weaning rat pups were exposed to stressors and tested on learning and memory tasks in adulthood. Tasks were classified as aversive conditioning, inhibitory learning, or spatial/relational memory. Variables of duration, type, and timing of neonatal manipulation and sex and strain of animals were examined to determine if any predict enhanced or impaired performance. Brief separations enhanced and prolonged separations impaired performance on spatial/relational tasks. Performance was impaired in aversive conditioning and enhanced in inhibitory learning tasks regardless of manipulation duration. Opposing effects on performance for spatial/relational memory also depended upon timing of manipulation. Enhanced performance was likely if the manipulation occurred during postnatal week 3 but performance was impaired if it was confined to the first two postnatal weeks. Thus, the relationship between early life experiences and adulthood learning and memory performance is multifaceted and decidedly task-dependent. PMID:22819985
Is there evidence of learned helplessness in horses?
Hall, Carol; Goodwin, Deborah; Heleski, Camie; Randle, Hayley; Waran, Natalie
2008-01-01
Learned helplessness is a psychological condition whereby individuals learn that they have no control over unpleasant or harmful conditions, that their actions are futile, and that they are helpless. In a series of experiments in which dogs were exposed to inescapable shocks, this lack of control subsequently interfered with the ability to learn an avoidance task. There is evidence that both neural adaptations and behavioral despair occur in response to uncontrollable aversive experiences in rodents, although this has yet to be demonstrated in other species such as horses. However, certain traditional methods of horse training and some behavioral modification techniques--it has been suggested--may involve aversive conditions over which the horse has little or no control. When training and management procedures are repeatedly unpleasant for the horse and there is no clear association between behavior and outcome, this is likely to interfere with learning and performance-in addition to compromising welfare. This article reviews published literature and anecdotal evidence to explore the possibility that the phenomenon, learned helplessness, occurs in the horse.
Enhancing Academic Performance: Seven Perceptual Styles of Learning.
ERIC Educational Resources Information Center
Higbee, Jeanne L.; And Others
1991-01-01
Presents Galbraith and James's taxonomy of seven perceptual modalities (i.e., print, aural, interactive, visual, haptic, kinesthetic, and olfactory). Discusses ways educators can demonstrate perceptual modalities in the classroom and help students identify their personal style of learning. Explains how this knowledge can facilitate learning in a…
Family scents: developmental changes in the perception of kin body odor?
Ferdenzi, Camille; Schaal, Benoist; Roberts, S Craig
2010-08-01
There is increasing evidence that human body odors are involved in adaptive behaviors, such as parental attachment in infants or partner choice in adults. The aim of the present study was to investigate changes in body-odor perception around puberty, a period largely ignored for odor-mediated behavioral changes, despite major changes in social needs and in odor emission and perception. Nine families with two children (8 pre-pubertal, aged 7-10, and 10 pubertal, aged 11-18) evaluated body odors of family members and unfamiliar individuals for pleasantness, intensity, and masculinity, and performed a recognition task. The hypothesized emergence of a parent-child mutual aversion for the odor of opposite-sex family members at puberty was not found, contradicting one of the few studies on the topic (Weisfeld et al., J. Exp. Child Psychol. 85:279-295, 2003). However, some developmental changes were observed, including reduced aversion for odor of the same-sex parent, and increased ability of adults, compared to children, to recognize odor of family members. Sex and personality (depressive and aggressive traits) also significantly influenced odor judgments. Further research with larger samples is needed to investigate the poorly explored issue of how olfactory perception of self and family members develops, and how it could correlate with normal reorganizations in social interactions at adolescence.
Wegerer, Melanie; Blechert, Jens; Kerschbaum, Hubert; Wilhelm, Frank H.
2013-01-01
Intrusive memories – a hallmark symptom of posttraumatic stress disorder (PTSD) – are often triggered by stimuli possessing similarity with cues that predicted or accompanied the traumatic event. According to learning theories, intrusive memories can be seen as a conditioned response to trauma reminders. However, direct laboratory evidence for the link between fear conditionability and intrusive memories is missing. Furthermore, fear conditioning studies have predominantly relied on standardized aversive stimuli (e.g. electric stimulation) that bear little resemblance to typical traumatic events. To investigate the general relationship between fear conditionability and aversive memories, we tested 66 mentally healthy females in a novel conditioned-intrusion paradigm designed to model real-life traumatic experiences. The paradigm included a differential fear conditioning procedure with neutral sounds as conditioned stimuli and short violent film clips as unconditioned stimuli. Subsequent aversive memories were assessed through a memory triggering task (within 30 minutes, in the laboratory) and ambulatory assessment (involuntary aversive memories in the 2 days following the experiment). Skin conductance responses and subjective ratings demonstrated successful differential conditioning indicating that naturalistic aversive film stimuli can be used in a fear conditioning experiment. Furthermore, aversive memories were elicited in response to the conditioned stimuli during the memory triggering task and also occurred in the 2 days following the experiment. Importantly, participants who displayed higher conditionability showed more aversive memories during the memory triggering task and during ambulatory assessment. This suggests that fear conditioning constitutes an important source of persistent aversive memories. Implications for PTSD and its treatment are discussed. PMID:24244407
Ikemoto, Satoshi; Qin, Mei; Liu, Zhong-Hua
2005-05-18
When projection analyses placed the nucleus accumbens and olfactory tubercle in the striatal system, functional links between these sites began to emerge. The accumbens has been implicated in the rewarding effects of psychomotor stimulants, whereas recent work suggests that the medial accumbens shell and medial olfactory tubercle mediate the rewarding effects of cocaine. Interestingly, anatomical evidence suggests that medial portions of the shell and tubercle receive afferents from common zones in a number of regions. Here, we report results suggesting that the current division of the ventral striatum into the accumbens core and shell and the olfactory tubercle does not reflect the functional organization for amphetamine reward. Rats quickly learned to self-administer D-amphetamine into the medial shell or medial tubercle, whereas they failed to learn to do so into the accumbens core, ventral shell, or lateral tubercle. Our results suggest that primary reinforcement of amphetamine is mediated via the medial portion of the ventral striatum. Thus, the medial shell and medial tubercle are more functionally related than the medial and ventral shell or the medial and lateral tubercle. The current core-shell-tubercle scheme should be reconsidered in light of recent anatomical data and these functional findings.
Role of the vomeronasal system in intersexual attraction in female mice.
Martínez-Ricós, J; Agustín-Pavón, C; Lanuza, E; Martínez-García, F
2008-05-02
Although it is generally accepted that rodents' sociosexual behavior relies mainly on chemosignals, the specific roles played by the vomeronasal and olfactory systems in detecting these signals are presently unclear. This work reports the results of three experiments aimed at clarifying the role of the vomeronasal system on gender recognition and intersexual attraction, by analyzing the effects of lesions of the accessory olfactory bulbs (AOB) in chemically naïve female mice. The first experiment demonstrates that lesions of the AOB abolish the preference that females show for male-soiled bedding in tests in which the females can contact the bedding, thus having access to both volatile and involatile male chemosignals. The second experiment shows that airborne male-derived chemosignals are not attractive to intact, chemically naïve females but tend to be preferentially explored by females whose AOB has been lesioned. However, repeated exposure to male-soiled bedding has opposite effects in sham-operated and AOB-lesioned female mice. Whereas after this experience sham-operated females show an (acquired) attraction toward male airborne chemosignals, in AOB-lesioned females the same experience makes male-derived volatiles aversive. Finally, in the third experiment we have confirmed that our AOB-lesioned females are able to detect urine-borne male odorants, as well as to discriminate them from the synthetic terpene geraniol. These findings strongly suggest that in mice, the involatile male sexual pheromone that is intrinsically attractive is detected by the vomeronasal system of the females. In addition, the repeated experience of females with male-soiled bedding would probably allow the association of this pheromone, acting as unconditioned stimulus, with olfactory stimuli (odorants) that therefore would become conditioned attractors to the females.
Perceived ambiguity as a barrier to intentions to learn genome sequencing results
Taber, Jennifer M.; Klein, William M.P.; Ferrer, Rebecca A.; Han, Paul K. J.; Lewis, Katie L.; Biesecker, Leslie G.; Biesecker, Barbara B.
2015-01-01
Many variants that could be returned from genome sequencing may be perceived as ambiguous—lacking reliability, credibility, or adequacy. Little is known about how perceived ambiguity influences thoughts about sequencing results. Participants (n=494) in an NIH genome sequencing study completed a baseline survey before sequencing results were available. We examined how perceived ambiguity regarding sequencing results and individual differences in medical ambiguity aversion and tolerance for uncertainty were associated with cognitions and intentions concerning sequencing results. Perceiving sequencing results as more ambiguous was associated with less favorable cognitions about results and lower intentions to learn and share results. Among participants low in tolerance for uncertainty or optimism, greater perceived ambiguity was associated with lower intentions to learn results for non-medically actionable diseases; medical ambiguity aversion did not moderate any associations. Results are consistent with the phenomenon of “ambiguity aversion” and may influence whether people learn and communicate genomic information. PMID:26003053
NASA Technical Reports Server (NTRS)
Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.
2003-01-01
Exposing rats to heavy particles produces alterations in the functioning of dopaminergic neurons and in the behaviors that depend upon the integrity of the dopaminergic system. Two of these dopamine-dependent behaviors include amphetamine-induced reinforcement, measure using the conditioned place preference procedure, and amphetamine-induced reinforcement, measured using the conditioned place preference procedure, and amphetamine-induced aversion, measured using the conditioned taste aversion. Previous research has shown that exposing rats to 1.0 Gy of 1GeV/n 56Fe particles produced a disruption of an amphetamine-induced taste aversion 3 days following exposure, but produced an apparent enhancement of the aversion 112 days following exposure. The present experiments were designed to provide a further evaluation of these results by examining taste aversion learning 154 days following exposure to 1.0 Gy 56Fe particles and to establish the convergent validity of the taste aversion results by looking at the effects of exposure on the establishment of an amphetamine-induced conditioned place preference 3, 7, and 16 weeks following irradiation. The taste aversion results failed to confirm the apparent enhancement of the amphetamine-induced CTA observed in the prior experiment. However, exposure to 56Fe particles prevented the acquisition of amphetamine-induced place preference at all three-time intervals. The results are interpreted as indicating that exposure to heavy particles can produce long-term changes in behavioral functioning. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Can honey bees discriminate between floral-fragrance isomers?
Aguiar, João Marcelo Robazzi Bignelli Valente; Roselino, Ana Carolina; Sazima, Marlies; Giurfa, Martin
2018-05-24
Many flowering plants present variable complex fragrances, which usually include different isomers of the same molecule. As fragrance is an essential cue for flower recognition by pollinators, we ask if honey bees discriminate between floral-fragrance isomers in an appetitive context. We used the olfactory conditioning of the proboscis extension response (PER), which allows training a restrained bee to an odor paired with sucrose solution. Bees were trained under an absolute (a single odorant rewarded) or a differential conditioning regime (a rewarded vs. a non-rewarded odorant) using four different pairs of isomers. One hour after training, discrimination and generalization between pairs of isomers were tested. Bees trained under absolute conditioning exhibited high generalization between isomers and discriminated only one out of four isomer pairs; after differential conditioning, they learned to differentiate between two out of four pairs of isomers but in all cases generalization responses to the non-rewarding isomer remained high. Adding an aversive taste to the non-rewarded isomer facilitated discrimination of isomers that otherwise seemed non-discriminable, but generalization remained high. Although honey bees discriminated isomers under certain conditions, they achieved the task with difficulty and tended to generalize between them, thus showing that these molecules were perceptually similar to them. We conclude that the presence of isomers within floral fragrances might not necessarily contribute to a dramatic extent to floral odor diversity. © 2018. Published by The Company of Biologists Ltd.
Mukilan, Murugan; Ragu Varman, Durairaj; Sudhakar, Sivasubramaniam; Rajan, Koilmani Emmanuvel
2015-04-01
The activity-dependent expression of immediate-early genes (IEGs) and microRNA (miR)-132 has been implicated in synaptic plasticity and the formation of long-term memory (LTM). In the present study, we show that olfactory training induces the expression of IEGs (EGR-1, C-fos, C-jun) and miR-132 at similar time scale in olfactory bulb (OB) of Cynopterus sphinx. We examined the role of miR-132 in the OB using antisense oligodeoxynucleotide (AS-ODN) and demonstrated that a local infusion of AS-ODN in the OB 2h prior to training impaired olfactory memory formation in C. sphinx. However, the infusion of AS-ODN post-training did not cause a deficit in memory formation. Furthermore, the inhibition of miR-132 reduced the olfactory training-induced expression of IEGs and post synaptic density protein-95 (PSD-95) in the OB. Additionally, we show that miR-132 regulates the activation of calcium/calmodulin-dependent protein kinase-II (CaMKII) and cAMP response element binding protein (CREB), possibly through miR-148a. These data suggest that olfactory training induces the expression of miR-132 and IEGs, which in turn activates post-synaptic proteins that regulate olfactory memory formation. Copyright © 2015 Elsevier Inc. All rights reserved.
Placek, Caitlyn D; Madhivanan, Purnima; Hagen, Edward H
2017-11-01
Pregnancy increases women's nutritional requirements, yet causes aversions to nutritious foods. Most societies further restrict pregnant women's diet with food taboos. Pregnancy food aversions are theorized to protect mothers and fetuses from teratogens and pathogens or increase dietary diversity in response to resource scarcity. Tests of these hypotheses have had mixed results, perhaps because many studies are in Westernized populations with reliable access to food and low exposure to pathogens. If pregnancy food aversions are adaptations, however, then they likely evolved in environments with uncertain access to food and high exposure to pathogens. Pregnancy food taboos, on the other hand, have been theorized to limit resource consumption, mark social identity, or also protect mothers and fetuses from dangerous foods. There have been few tests of evolutionary theories of culturally transmitted food taboos. We investigated these and other theories of psychophysiological food aversions and culturally transmitted food taboos among two non-Western populations of pregnant women in Mysore, India, that vary in food insecurity and exposure to infectious disease. The first was a mixed caste rural farming population ( N = 72), and the second was the Jenu Kurubas , a resettled population of former hunter-gatherers ( N = 30). Women rated their aversions to photos of 31 foods and completed structured interviews that assessed aversions and socially learned avoidances of foods, pathogen exposure, food insecurity, sources of culturally acquired dietary advice, and basic sociodemographic information. Aversions to spicy foods were associated with early trimester and nausea and vomiting, supporting a protective role against plant teratogens. Variation in exposure to pathogens did not explain variation in meat aversions or avoidances, however, raising some doubts about the importance of pathogen avoidance. Aversions to staple foods were common, but were not associated with resource stress, providing mixed support for the role of dietary diversification. Avoided foods outnumbered aversive foods, were believed to be abortifacients or otherwise harmful to the fetus, influenced diet throughout pregnancy, and were largely distinct from aversive foods. These results suggest that aversions target foods with cues of toxicity early in pregnancy, and taboos target suspected abortifacients throughout pregnancy.
One-trial overshadowing: Evidence for fast specific fear learning in humans.
Haesen, Kim; Beckers, Tom; Baeyens, Frank; Vervliet, Bram
2017-03-01
Adaptive defensive actions necessitate a fear learning system that is both fast and specific. Fast learning serves to minimize the number of threat confrontations, while specific learning ensures that the acquired fears are tied to threat-relevant cues only. In Pavlovian fear conditioning, fear acquisition is typically studied via repetitive pairings of a single cue with an aversive experience, which is not optimal for the examination of fast specific fear learning. In this study, we adopted the one-trial overshadowing procedure from basic learning research, in which a combination of two visual cues is presented once and paired with an aversive electrical stimulation. Using on-line shock expectancy ratings, skin conductance reactivity and startle reflex modulation as indices of fear learning, we found evidence of strong fear after a single conditioning trial (fast learning) as well as attenuated fear responding when only half of the trained stimulus combination was presented (specific learning). Moreover, specificity of fear responding tended to correlate with levels of state and trait anxiety. These results suggest that one-trial overshadowing can be used as a model to study fast specific fear learning in humans and individual differences therein. Copyright © 2016 Elsevier Ltd. All rights reserved.
van der Staay, F Josef; Schuurman, Teun; van Reenen, Cornelis G; Korte, S Mechiel
2009-12-15
Cognitive function might be affected by the subjects' emotional reactivity. We assessed whether behavior in different tests of emotional reactivity is correlated with performance in aversively motivated learning tasks, using four strains of rats generally considered to have a different emotional reactivity. The performance of male Brown Norway, Lewis, Fischer 344, and Wistar Kyoto rats in open field (OF), elevated plus-maze (EPM), and circular light-dark preference box (cLDB) tasks, which are believed to provide measures of emotional reactivity, was evaluated. Spatial working and reference memory were assessed in two aversively motivated learning and memory tasks: the standard and the "repeated acquisition" versions of the Morris water maze escape task, respectively. All rats were also tested in a passive avoidance task. At the end of the study, levels of serotonin (5-HT) and 5-hydroxyindoleacetic acid, and 5-HT turnover in the hippocampus and frontal cortex were determined. Strain differences showed a complex pattern across behavioral tests and serotonergic measures. Fischer 344 rats had the poorest performance in both versions of the Morris water escape task, whereas Brown Norway rats performed these tasks very well but the passive avoidance task poorly. Neither correlation analysis nor principal component analysis provided convincing support for the notion that OF, EPM, and cLDB tasks measure the same underlying trait. Our findings do not support the hypothesis that the level of emotional reactivity modulates cognitive performance in aversively motivated tasks. Concepts such as "emotional reactivity" and "learning and memory" cannot adequately be tapped with only one behavioral test. Our results emphasize the need for multiple testing.
Junghöfer, Markus; Rehbein, Maimu Alissa; Maitzen, Julius; Schindler, Sebastian
2017-01-01
Abstract Humans have a remarkable capacity for rapid affective learning. For instance, using first-order US such as odors or electric shocks, magnetoencephalography (MEG) studies of multi-CS conditioning demonstrate enhanced early (<150 ms) and mid-latency (150–300 ms) visual evoked responses to affectively conditioned faces, together with changes in stimulus evaluation. However, particularly in social contexts, human affective learning is often mediated by language, a class of complex higher-order US. To elucidate mechanisms of this type of learning, we investigate how face processing changes following verbal evaluative multi-CS conditioning. Sixty neutral expression male faces were paired with phrases about aversive crimes (30) or neutral occupations (30). Post conditioning, aversively associated faces evoked stronger magnetic fields in a mid-latency interval between 220 and 320 ms, localized primarily in left visual cortex. Aversively paired faces were also rated as more arousing and more unpleasant, evaluative changes occurring both with and without contingency awareness. However, no early MEG effects were found, implying that verbal evaluative conditioning may require conceptual processing and does not engage rapid, possibly sub-cortical, pathways. Results demonstrate the efficacy of verbal evaluative multi-CS conditioning and indicate both common and distinct neural mechanisms of first- and higher-order multi-CS conditioning, thereby informing theories of associative learning. PMID:28008078
Junghöfer, Markus; Rehbein, Maimu Alissa; Maitzen, Julius; Schindler, Sebastian; Kissler, Johanna
2017-04-01
Humans have a remarkable capacity for rapid affective learning. For instance, using first-order US such as odors or electric shocks, magnetoencephalography (MEG) studies of multi-CS conditioning demonstrate enhanced early (<150 ms) and mid-latency (150-300 ms) visual evoked responses to affectively conditioned faces, together with changes in stimulus evaluation. However, particularly in social contexts, human affective learning is often mediated by language, a class of complex higher-order US. To elucidate mechanisms of this type of learning, we investigate how face processing changes following verbal evaluative multi-CS conditioning. Sixty neutral expression male faces were paired with phrases about aversive crimes (30) or neutral occupations (30). Post conditioning, aversively associated faces evoked stronger magnetic fields in a mid-latency interval between 220 and 320 ms, localized primarily in left visual cortex. Aversively paired faces were also rated as more arousing and more unpleasant, evaluative changes occurring both with and without contingency awareness. However, no early MEG effects were found, implying that verbal evaluative conditioning may require conceptual processing and does not engage rapid, possibly sub-cortical, pathways. Results demonstrate the efficacy of verbal evaluative multi-CS conditioning and indicate both common and distinct neural mechanisms of first- and higher-order multi-CS conditioning, thereby informing theories of associative learning. © The Author (2016). Published by Oxford University Press.
APIS—a novel approach for conditioning honey bees
Kirkerud, Nicholas H.; Wehmann, Henja-Niniane; Galizia, C. Giovanni; Gustav, David
2013-01-01
Honey bees perform robustly in different conditioning paradigms. This makes them excellent candidates for studying mechanisms of learning and memory at both an individual and a population level. Here we introduce a novel method of honey bee conditioning: APIS, the Automatic Performance Index System. In an enclosed walking arena where the interior is covered with an electric grid, presentation of odors from either end can be combined with weak electric shocks to form aversive associations. To quantify behavioral responses, we continuously monitor the movement of the bee by an automatic tracking system. We found that escapes from one side to the other, changes in velocity as well as distance and time spent away from the punished odor are suitable parameters to describe the bee's learning capabilities. Our data show that in a short-term memory test the response rate for the conditioned stimulus (CS) in APIS correlates well with response rate obtained from conventional Proboscis Extension Response (PER)-conditioning. Additionally, we discovered that bees modulate their behavior to aversively learned odors by reducing their rate, speed and magnitude of escapes and that both generalization and extinction seem to be different between appetitive and aversive stimuli. The advantages of this automatic system make it ideal for assessing learning rates in a standardized and convenient way, and its flexibility adds to the toolbox for studying honey bee behavior. PMID:23616753
APIS-a novel approach for conditioning honey bees.
Kirkerud, Nicholas H; Wehmann, Henja-Niniane; Galizia, C Giovanni; Gustav, David
2013-01-01
Honey bees perform robustly in different conditioning paradigms. This makes them excellent candidates for studying mechanisms of learning and memory at both an individual and a population level. Here we introduce a novel method of honey bee conditioning: APIS, the Automatic Performance Index System. In an enclosed walking arena where the interior is covered with an electric grid, presentation of odors from either end can be combined with weak electric shocks to form aversive associations. To quantify behavioral responses, we continuously monitor the movement of the bee by an automatic tracking system. We found that escapes from one side to the other, changes in velocity as well as distance and time spent away from the punished odor are suitable parameters to describe the bee's learning capabilities. Our data show that in a short-term memory test the response rate for the conditioned stimulus (CS) in APIS correlates well with response rate obtained from conventional Proboscis Extension Response (PER)-conditioning. Additionally, we discovered that bees modulate their behavior to aversively learned odors by reducing their rate, speed and magnitude of escapes and that both generalization and extinction seem to be different between appetitive and aversive stimuli. The advantages of this automatic system make it ideal for assessing learning rates in a standardized and convenient way, and its flexibility adds to the toolbox for studying honey bee behavior.
Perisse, Emmanuel; Portelli, Geoffrey; Le Goas, Solène; Teste, Elsa; Le Bourg, Eric
2007-11-01
Various learning tasks have been described in Drosophila melanogaster, flies being either tested in groups or at the individual level. Le Bourg and Buecher (Anim Learn Behav 33:330-341, 2002) have designed a task at the individual level: photopositive flies crossing a T-maze learn to prefer the dark exit when the lighted one is associated with the presence of aversive stimuli (humidity and quinine). Previous studies have reported various results (e.g. no effect of age) and the present article further characterizes this task by studying the possible effects of: (1) the intensity of the stimuli (quantity of water or concentration of quinine), (2) various delays between two learning sessions on the learning score at the second session, (3) the rutabaga learning mutation on the learning score. More concentrated quinine solutions increased learning scores but the quantity of water had no effect. Learning scores at the second session were higher with shorter delays between the two learning sessions and retrograde amnesia could decrease this memory score. rutabaga mutants showed learning deficits as in experiments testing groups of flies. This learning task could particularly be used to verify whether learning mutants isolated after experiments testing flies in groups display similar deficits when tested at the individual level.
Female babies and risk-aversion: Causal evidence from hospital wards.
Pogrebna, Ganna; Oswald, Andrew J; Haig, David
2018-03-01
Using ultrasound scan data from paediatric hospitals, and the exogenous 'shock' of learning the gender of an unborn baby, the paper documents the first causal evidence that offspring gender affects adult risk-aversion. On a standard Holt-Laury criterion, parents of daughters, whether unborn or recently born, become almost twice as risk-averse as parents of sons. The study demonstrates this in longitudinal and cross-sectional data, for fathers and mothers, for babies in the womb and new-born children, and in a West European nation and East European nation. These findings may eventually aid our understanding of risky health behaviors and gender inequalities. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Alterations of male sexual behavior by learned aversions to hamster vaginal secretion.
Johnston, R E; Zahorik, D M; Immler, K; Zakon, H
1978-02-01
Male hamsters poisoned after their first adult exposure to the vaginal secretion of female hamsters became hesitant to approach and ingest the secretion. The same aversion-training procedure also altered the responses of males to estrous females, changing the latency, frequency, and duration of a variety of behaviors that are commonly taken as indexes of sexual attraction or arousal and of copulatory performance. The effects suggest that the aversions to vaginal secretion alter the perceived meaning of the secretion for male hamsters, and analysis of the correlations between various measures of sexual arousal and performance support the hypothesis that separate mechanisms underlie the effects of the secretion on appetitive and consummatory sexual behavior.
Kolling, Nils; Nelissen, Natalie; Browning, Michael; Rushworth, Matthew F. S.; Harmer, Catherine J.
2017-01-01
To make good decisions, humans need to learn about and integrate different sources of appetitive and aversive information. While serotonin has been linked to value-based decision-making, its role in learning is less clear, with acute manipulations often producing inconsistent results. Here, we show that when the effects of a selective serotonin reuptake inhibitor (SSRI, citalopram) are studied over longer timescales, learning is robustly improved. We measured brain activity with functional magnetic resonance imaging (fMRI) in volunteers as they performed a concurrent appetitive (money) and aversive (effort) learning task. We found that 2 weeks of citalopram enhanced reward and effort learning signals in a widespread network of brain regions, including ventromedial prefrontal and anterior cingulate cortex. At a behavioral level, this was accompanied by more robust reward learning. This suggests that serotonin can modulate the ability to learn via a mechanism that is independent of stimulus valence. Such effects may partly underlie SSRIs’ impact in treating psychological illnesses. Our results highlight both a specific function in learning for serotonin and the importance of studying its role across longer timescales. PMID:28207733
1990-06-30
gastronomes . In Food Aversion Learning, ed. N. W. Milgram, L. Krames, T. Alloway. New York: Plenum Press, 1977. Grill, H. J., Berridge, K. C. Taste...Jun 25 10:4,6:21 1990 ZLS: syr GRP: Po JOB: aug 0V: 12 Pb ok, &,vpr. VoL 4&, 000-=. 0 Pervnoe Press pl. 1990. Prited a tft USA . 0031-938"S90 53.00 + .00
ERIC Educational Resources Information Center
Miranda, Maria I.; McGaugh, James L.
2004-01-01
There is considerable evidence that in rats, the insular cortex (IC) and amygdala are involved in the learning and memory of aversively motivated tasks. The present experiments examined the effects of 8-Br-cAMP, an analog of cAMP, and oxotremorine, a muscarinic agonist, infused into the IC after inhibitory avoidance (IA) training and during the…
How olfaction disorders can cause depression? The role of habenular degeneration.
Oral, E; Aydin, M D; Aydin, N; Ozcan, H; Hacimuftuoglu, A; Sipal, S; Demirci, E
2013-06-14
The removal of bilateral olfactory bulbs (OBs) can result in serious behavioral, neurochemical, neuroendocrine, and neuroimmune alterations in depressed patients. However, there is little information on how olfactory bulbectomy (OBX) leads to depression. Habenular nuclei and their connections are important in the regulation of psychomotor and psychosocial behaviors through afferent impulses of the olfactory system. Therefore, we investigated whether OB lesions lead to habenular degeneration. We used a sample of 50 rats (25 female and 25 male) for this study. Of these rats, five male and five female rats were taken as the control group. The remaining 40 rats (20 male and 20 female rats) constituted the study group, and frontal burr holes were performed at the OB level on these rats. OB cauterization was applied to 10 male and 10 female rats (n=10, 10; study group 1), mechanical OBX was applied to five male and five female rats (n=5, 5; study group 2), and no procedure was performed on the remaining 10 rats (n=5, 5). The psychomotor movements; pregnancy rates; and sexual, feeding, maternal, social, and grooming behaviors for both study groups were observed daily for 3 months. Their OBs, olfactory cortices, and habenular complexes were examined using stereological methods. All of the animals in the study groups, especially in the cauterization group, demonstrated anorexia, nutritional disorders, weight loss, psychomotor retardation, sexual aversion, decreased grooming behavior, and reduced social interaction similar to depression symptoms. As compared to the control group, the pregnancy rates, number of offspring per mother rat, and birth weights in the study groups were lower, whereas the number of stillbirths was higher. Gross anatomical examinations revealed that the OBs of all of the animals in the study groups were atrophied. Histopathological examinations detected prominent neuronal loss due to apoptosis in the habenular structures in the study groups. We detected a relationship between a decreased healthy neuronal density of the habenula and depressive symptomatology in rats with OBX. We suggest that olfaction disorders might cause neuropsychiatric disorders by affecting neuronal degeneration in habenular nuclei. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Reyes-López, J; Nuñez-Jaramillo, L; Morán-Guel, E; Miranda, M I
2010-08-11
The medial prefrontal cortex (mPFC) is a brain area crucial for memory, attention, and decision making. Specifically, the noradrenergic system in this cortex is involved in aversive learning, as well as in the retrieval of these memories. Some evidence suggests that this area has an important role during taste memory, particularly during conditioned taste aversion (CTA), a model of aversive memory. Despite some previous evidence, there is scarce information about the role of adrenergic receptors in the mPFC during formation of aversive taste memory and appetitive/incidental taste memory. The goal of this research was to evaluate the role of mPFC beta-adrenergic receptors during CTA acquisition/consolidation or CTA retrieval, as well as during incidental taste memory formation using the model of latent inhibition of CTA. The results showed that infusions in the mPFC of the beta-adrenergic antagonist propranolol before CTA acquisition impaired both short- and long-term aversive taste memory formation, and also that propranolol infusions before the memory test impaired CTA retrieval. However, propranolol infusions before pre-exposure to the taste during the latent inhibition procedure had no effect on incidental taste memory acquisition or consolidation. These data indicate that beta-adrenergic receptors in the mPFC have different functions during taste memory formation: they have an important role during aversive taste association as well as during aversive retrieval but not during incidental taste memory formation. Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Distinct molecular underpinnings of Drosophila olfactory trace conditioning
Shuai, Yichun; Hu, Ying; Qin, Hongtao; Campbell, Robert A. A.; Zhong, Yi
2011-01-01
Trace conditioning is valued as a simple experimental model to assess how the brain associates events that are discrete in time. Here, we adapted an olfactory trace conditioning procedure in Drosophila melanogaster by training fruit flies to avoid an odor that is followed by foot shock many seconds later. The molecular underpinnings of the learning are distinct from the well-characterized simultaneous conditioning, where odor and punishment temporally overlap. First, Rutabaga adenylyl cyclase (Rut-AC), a putative molecular coincidence detector vital for simultaneous conditioning, is dispensable in trace conditioning. Second, dominant-negative Rac expression, thought to sustain early labile memory, significantly enhances learning of trace conditioning, but leaves simultaneous conditioning unaffected. We further show that targeting Rac inhibition to the mushroom body (MB) but not the antennal lobe (AL) suffices to achieve the enhancement effect. Moreover, the absence of trace conditioning learning in D1 dopamine receptor mutants is rescued by restoration of expression specifically in the adult MB. These results suggest the MB as a crucial neuroanatomical locus for trace conditioning, which may harbor a Rac activity-sensitive olfactory “sensory buffer” that later converges with the punishment signal carried by dopamine signaling. The distinct molecular signature of trace conditioning revealed here shall contribute to the understanding of how the brain overcomes a temporal gap in potentially related events. PMID:22123966
Waters, Allison M; Theresiana, Cindy; Neumann, David L; Craske, Michelle G
2017-07-01
This study investigated developmental differences in aversive conditioning, extinction, and reinstatement (i.e., the recovery of conditioned aversive associations following reexposure to the unconditioned stimulus [US] post-extinction). This study examined these mechanisms in children (M age =8.8years), adolescents (M age =16.1years), and adults (M age =32.3years) using differential aversive conditioning with a geometric shape conditional stimulus (CS+) paired with an aversive sound US and another shape (CS-) presented alone. Following an extinction phase in which both CSs were presented alone, half of the participants in each age group received three US exposures (reinstatement condition) and the other half did not (control condition), followed by all participants completing an extinction retest phase on the same day. Findings indicated (a) significant differences in generalizing aversive expectancies to safe stimuli during conditioning and extinction that persisted during retest in children relative to adults and adolescents, (b) significantly less positive CS reevaluations during extinction that persisted during retest in adolescents relative to adults and children, and (c) reinstatement of US expectancies to the CS+ relative to the CS- in all age groups. Results suggest important differences in stimulus safety learning in children and stimulus valence reevaluation in adolescents relative to adults. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Weisheng; Ju, Yun-Yue; Zhou, Qi-Xin; Tang, Jian-Xin; Li, Meng; Zhang, Lei; Kang, Shuo; Chen, Zhong-Guo; Wang, Yu-Jun; Ji, Hui; Ding, Yu-Qiang; Xu, Lin; Liu, Jing-Gen
2017-07-26
Extinction of aversive memories has been a major concern in neuropsychiatric disorders, such as anxiety disorders and drug addiction. However, the mechanisms underlying extinction of aversive memories are not fully understood. Here, we report that extinction of conditioned place aversion (CPA) to naloxone-precipitated opiate withdrawal in male rats activates Rho GTPase Rac1 in the ventromedial prefrontal cortex (vmPFC) in a BDNF-dependent manner, which determines GABA A receptor (GABA A R) endocytosis via triggering synaptic translocation of activity-regulated cytoskeleton-associated protein (Arc) through facilitating actin polymerization. Active Rac1 is essential and sufficient for GABA A R endocytosis and CPA extinction. Knockdown of Rac1 expression within the vmPFC of rats using Rac1-shRNA suppressed GABA A R endocytosis and CPA extinction, whereas expression of a constitutively active form of Rac1 accelerated GABA A R endocytosis and CPA extinction. The crucial role of GABA A R endocytosis in the LTP induction and CPA extinction is evinced by the findings that blockade of GABA A R endocytosis by a dynamin function-blocking peptide (Myr-P4) abolishes LTP induction and CPA extinction. Thus, the present study provides first evidence that Rac1-dependent GABA A R endocytosis plays a crucial role in extinction of aversive memories and reveals the sequence of molecular events that contribute to learning experience modulation of synaptic GABA A R endocytosis. SIGNIFICANCE STATEMENT This study reveals that Rac1-dependent GABA A R endocytosis plays a crucial role in extinction of aversive memories associated with drug withdrawal and identifies Arc as a downstream effector of Rac1 regulations of synaptic plasticity as well as learning and memory, thereby suggesting therapeutic targets to promote extinction of the unwanted memories. Copyright © 2017 the authors 0270-6474/17/377096-15$15.00/0.
Conditioned social dominance threat: observation of others' social dominance biases threat learning.
Haaker, Jan; Molapour, Tanaz; Olsson, Andreas
2016-10-01
Social groups are organized along dominance hierarchies, which determine how we respond to threats posed by dominant and subordinate others. The persuasive impact of these dominance threats on mental and physical well-being has been well described but it is unknown how dominance rank of others bias our experience and learning in the first place. We introduce a model of conditioned social dominance threat in humans, where the presence of a dominant other is paired with an aversive event. Participants first learned about the dominance rank of others by observing their dyadic confrontations. During subsequent fear learning, the dominant and subordinate others were equally predictive of an aversive consequence (mild electric shock) to the participant. In three separate experiments, we show that participants' eye-blink startle responses and amygdala reactivity adaptively tracked dominance of others during observation of confrontation. Importantly, during fear learning dominant vs subordinate others elicited stronger and more persistent learned threat responses as measured by physiological arousal and amygdala activity. Our results characterize the neural basis of learning through observing conflicts between others, and how this affects subsequent learning through direct, personal experiences. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Conditioned social dominance threat: observation of others’ social dominance biases threat learning
Molapour, Tanaz; Olsson, Andreas
2016-01-01
Social groups are organized along dominance hierarchies, which determine how we respond to threats posed by dominant and subordinate others. The persuasive impact of these dominance threats on mental and physical well-being has been well described but it is unknown how dominance rank of others bias our experience and learning in the first place. We introduce a model of conditioned social dominance threat in humans, where the presence of a dominant other is paired with an aversive event. Participants first learned about the dominance rank of others by observing their dyadic confrontations. During subsequent fear learning, the dominant and subordinate others were equally predictive of an aversive consequence (mild electric shock) to the participant. In three separate experiments, we show that participants’ eye-blink startle responses and amygdala reactivity adaptively tracked dominance of others during observation of confrontation. Importantly, during fear learning dominant vs subordinate others elicited stronger and more persistent learned threat responses as measured by physiological arousal and amygdala activity. Our results characterize the neural basis of learning through observing conflicts between others, and how this affects subsequent learning through direct, personal experiences. PMID:27217107
Cloutier, Caylen J; Kavaliers, Martin; Ossenkopp, Klaus-Peter
2018-10-01
The multi-variable locomotor activity effects of LiCl treatment in female rats were examined in a conditioned place avoidance/aversion (CPA) paradigm. In addition, the sickness effects of an LPS injection (200 μg/kg), given during adolescents, on CPA learning in adulthood were examined, as were the effects of a homotypic LPS injection (200 μg/kg) just prior to CPA acquisition trials. Female rats were injected with LPS or saline during adolescents (6 weeks of age) and later pretreated with LPS again or saline in an automated two-chamber CPA paradigm with LiCl (95 mg/kg) treatments as the aversive toxin. Results showed that, while adolescent LPS treatment had no long-term effect on the establishment of CPA, it did interfere with the ability of a second LPS challenge in adulthood to impair CPA learning, an effect obtained in subjects pretreated with LPS in the CPA procedure in adulthood only. The results of this study demonstrate the importance of considering the adolescent stage of development when evaluating the effects of environmental challenges on adult behavior. Copyright © 2018 Elsevier B.V. All rights reserved.
Neural correlates of appetitive-aversive interactions in Pavlovian fear conditioning.
Nasser, Helen M; McNally, Gavan P
2013-03-19
We used Pavlovian counterconditioning in rats to identify the neural mechanisms for appetitive-aversive motivational interactions. In Stage I, rats were trained on conditioned stimulus (CS)-food (unconditioned stimulus [US]) pairings. In Stage II, this appetitive CS was transformed into a fear CS via pairings with footshock. The development of fear responses was retarded in rats that had received Stage I appetitive training. This counterconditioning was associated with increased levels of phosphorylated mitogen activated protein kinase immunoreactivity (pMAPK-IR) in several brain regions, including midline thalamus, rostral agranular insular cortex (RAIC), lateral amygdala, and nucleus accumbens core and shell, but decreased expression in the ventrolateral quadrant of the midbrain periaqueductal gray. These brain regions showing differential pMAPK-IR have previously been identified as part of the fear prediction error circuit. We then examined the causal role of RAIC MAPK in fear learning and showed that Stage II fear learning was prevented by RAIC infusions of the MEK inhibitor PD098059 (0.5 µg/hemisphere). Taken together, these results show that there are opponent interactions between the appetitive and aversive motivational systems during fear learning and that the transformation of a reward CS into a fear CS is linked to heightened activity in the fear prediction error circuit.
Paret, Christian; Hoesterey, Steffen; Kleindienst, Nikolaus; Schmahl, Christian
2016-10-30
Those with borderline personality disorder (BPD) display altered evaluations regarding reward and punishment compared to others. The processing of rewards is basal for operant conditioning. However, studies addressing operant conditioning in BPD patients are rare. In the current study, an operant conditioning task combining learning acquisition and reversal was used. BPD patients and matched healthy controls (HCs) were exposed to aversive and neutral stimuli to assess the influence of emotion on learning. Picture content, dissociation, aversive tension and symptom severity were rated. Error rates were measured. Results showed no group interactions between aversive versus neutral scenes. The higher emotional arousal, dissociation and tension, the worse the acquisition, but not reversal, scores were for BPD patients. Scores from the Borderline Symptom List were associated with more errors in the reversal, but not the acquisition phase. The results are preliminary evidence for impaired acquisition learning due to increased emotional arousal, dissociation and tension in BPD patients. A failure to process punishment in the reversal phase was associated with symptom severity and may be related to neuropsychological dysfunctioning involving the ventromedial prefrontal cortex. Conclusions are limited due to the correlational study design and the small sample size. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Brain activation associated to olfactory conditioned same-sex partner preference in male rats.
Coria-Avila, Genaro A; Cibrian-Llanderal, Tamara; Díaz-Estrada, Victor X; García, Luis I; Toledo-Cárdenas, Rebeca; Pfaus, James G; Manzo, Jorge
2018-03-01
Sexual preferences can be strongly modified by Pavlovian learning. For instance, olfactory conditioned same-sex partner preference can occur when a sexually naïve male cohabits with an scented male during repeated periods under the effects of enhanced D2-type activity. Preference is observed days later via social and sexual behaviors. Herein we explored brain activity related to learned same-sex preference (Fos-Immunoreactivity, IR) following exposure to a conditioned odor paired with same-sex preference. During conditioning trials males received either saline or the D2-type receptor agonist quinpirole (QNP) and cohabitated during 24 h with a stimulus male that bore almond scent on the back as conditioned stimulus. This was repeated every 4 days, for a total of three trials. In a drug-free final test we assessed socio/sexual partner preference between the scented male and a receptive female. The results indicated that QNP-conditioned males developed a same-sex preference observed via contact, time spent, olfactory investigations, and non-contact erections. By contrast, saline-conditioned and intact (non-exposed to conditioning) males expressed an unconditioned preference for the female. Four days later the males were exposed to almond scent and their brains were processed for Fos-IR. Results indicated that the QNP-conditioned group expressed more Fos-IR in the nucleus accumbens (AcbSh), medial preoptic area (MPA), piriform cortex (Pir) and ventromedial nucleus of the hypothalamus (VMH) as compared to saline-conditioned. Intact males expressed the lowest Fos-IR in AcbSh and VMH, but the highest in MPA and Pir. We discuss the role of these areas in the learning process of same-sex partner preferences and olfactory discrimination. Copyright © 2018 Elsevier Inc. All rights reserved.
Olfactory enrichment and scent cue associative learning in captive birds of prey.
Nelson Slater, Melissa; Hauber, Mark E
2017-03-01
As the use of enrichment in zoos has become a standardized husbandry practice, the continued improvement of enrichment programs should be concomitant with empirical validation of those practices. The role of scent as enrichment remains an unexplored avenue for many bird species. We conducted a multi-phase experiment to introduce wrapped food packages and scent cuing to indicate food presence into the exhibits of several birds of prey species at the Bronx Zoo, New York City, to assess if scent can function as enrichment in these species. Our research found support for these birds associating a novel scent cue from a package with the presence of food inside. When tested with sham (empty) packages, these individuals more often and more extensively handled scented versus unscented packages. Overall, these results indicate the ability of some our small sample of individuals to learn olfactory cues and provide support for trials to include olfactory enrichment as a potential part of the daily routine for some birds of prey in zoo settings. © 2017 Wiley Periodicals, Inc.
Using signals associated with safety in avoidance learning: computational model of sex differences
Beck, Kevin D.; Pang, Kevin C.H.; Myers, Catherine E.
2015-01-01
Avoidance behavior involves learning responses that prevent upcoming aversive events; these responses typically extinguish when the aversive events stop materializing. Stimuli that signal safety from aversive events can paradoxically inhibit extinction of avoidance behavior. In animals, males and females process safety signals differently. These differences help explain why women are more likely to be diagnosed with an anxiety disorder and exhibit differences in symptom presentation and course compared to men. In the current study, we extend an existing model of strain differences in avoidance behavior to simulate sex differences in rats. The model successfully replicates data showing that the omission of a signal associated with a period of safety can facilitate extinction in females, but not males, and makes novel predictions that this effect should depend on the duration of the period, the duration of the signal itself, and its occurrence within that period. Non-reinforced responses during the safe period were also found to be important in the expression of these patterns. The model also allowed us to explore underlying mechanisms for the observed sex effects, such as whether safety signals serve as occasion setters for aversive events, to determine why removing them can facilitate extinction of avoidance. The simulation results argue against this account, and instead suggest the signal may serve as a conditioned reinforcer of avoidance behavior. PMID:26213650
Preexposure to salty and sour taste enhances conditioned taste aversion to novel sucrose
Flores, Veronica L.; Moran, Anan; Bernstein, Max
2016-01-01
Conditioned taste aversion (CTA) is an intensively studied single-trial learning paradigm whereby animals are trained to avoid a taste that has been paired with malaise. Many factors influence the strength of aversion learning; prominently studied among these is taste novelty—the fact that preexposure to the taste conditioned stimulus (CS) reduces its associability. The effect of exposure to tastes other than the CS has, in contrast, received little investigation. Here, we exposed rats to sodium chloride (N) and citric acid (C), either before or within a conditioning session involving novel sucrose (S). Presentation of this taste array within the conditioning session weakened the resultant S aversion, as expected. The opposite effect, however, was observed when exposure to the taste array was provided in sessions that preceded conditioning: such experience enhanced the eventual S aversion—a result that was robust to differences in CS delivery method and number of tastes presented in conditioning sessions. This “non-CS preexposure effect” scaled with the number of tastes in the exposure array (experience with more stimuli was more effective than experience with fewer) and with the amount of exposure sessions (three preexposure sessions were more effective than two). Together, our results provide evidence that exposure and experience with the realm of tastes changes an animal's future handling of even novel tastes. PMID:27084929
[Extinction and Reconsolidation of Memory].
Zuzina, A B; Balaban, P M
2015-01-01
Retrieval of memory followed by reconsolidation can strengthen a memory, while retrieval followed by extinction results in a decrease of memory performance due to weakening of existing memory or formation of a competing memory. In our study we analyzed the behavior and responses of identified neurons involved in the network underlying aversive learning in terrestrial snail Helix, and made an attempt to describe the conditions in which the retrieval of memory leads either to extinction or reconsolidation. In the network underlying the withdrawal behavior, sensory neurons, premotor interneurons, motor neurons, and modulatory for this network serotonergic neurons are identified and recordings from representatives of these groups were made before and after aversive learning. In the network underlying feeding behavior, the premotor modulatory serotonergic interneurons and motor neurons involved in motor program of feeding are identified. Analysis of changes in neural activity after aversive learning showed that modulatory neurons of feeding behavior do not demonstrate any changes (sometimes a decrease of responses to food was observed), while responses to food in withdrawal behavior premotor interneurons changed qualitatively, from under threshold EPSPs to spike discharges. Using a specific for serotonergic neurons neurotoxin 5,7-DiHT it was shown previously that the serotonergic system is necessary for the aversive learning, but is not necessary for maintenance and retrieval of this memory. These results suggest that the serotonergic neurons that are necessary as part of a reinforcement for developing the associative changes in the network may be not necessary for the retrieval of memory. The hypothesis presented in this review concerns the activity of the "reinforcement" serotonergic neurons that is suggested to be the gate condition for the choice between extinction/reconsolidation triggered by memory retrieval: if these serotonergic neurons do not respond during the retrieval due to adaptation, habituation, changes in environment, etc., then we will observe the extinction; while if these neurons respond to the CS during memory retrieval, we will observe the reconsolidation phenomenon.
Keleta, Yonas B; Martinez, Joe L
2012-03-01
The reinforcing effects of addictive drugs including methamphetamine (METH) involve the midbrain ventral tegmental area (VTA). VTA is primary source of dopamine (DA) to the nucleus accumbens (NAc) and the ventral hippocampus (VHC). These three brain regions are functionally connected through the hippocampal-VTA loop that includes two main neural pathways: the bottom-up pathway and the top-down pathway. In this paper, we take the view that addiction is a learning process. Therefore, we tested the involvement of the hippocampus in reinforcement learning by studying conditioned place preference (CPP) learning by sequentially conditioning each of the three nuclei in either the bottom-up order of conditioning; VTA, then VHC, finally NAc, or the top-down order; VHC, then VTA, finally NAc. Following habituation, the rats underwent experimental modules consisting of two conditioning trials each followed by immediate testing (test 1 and test 2) and two additional tests 24 h (test 3) and/or 1 week following conditioning (test 4). The module was repeated three times for each nucleus. The results showed that METH, but not Ringer's, produced positive CPP following conditioning each brain area in the bottom-up order. In the top-down order, METH, but not Ringer's, produced either an aversive CPP or no learning effect following conditioning each nucleus of interest. In addition, METH place aversion was antagonized by coadministration of the N-methyl-d-aspartate (NMDA) receptor antagonist MK801, suggesting that the aversion learning was an NMDA receptor activation-dependent process. We conclude that the hippocampus is a critical structure in the reward circuit and hence suggest that the development of target-specific therapeutics for the control of addiction emphasizes on the hippocampus-VTA top-down connection.
Tokarev, Kirill; Tiunova, Anna; Scharff, Constance; Anokhin, Konstantin
2011-01-01
Specialized neural pathways, the song system, are required for acquiring, producing, and perceiving learned avian vocalizations. Birds that do not learn to produce their vocalizations lack telencephalic song system components. It is not known whether the song system forebrain regions are exclusively evolved for song or whether they also process information not related to song that might reflect their 'evolutionary history'. To address this question we monitored the induction of two immediate-early genes (IEGs) c-Fos and ZENK in various regions of the song system in zebra finches (Taeniopygia guttata) in response to an aversive food learning paradigm; this involves the association of a food item with a noxious stimulus that affects the oropharyngeal-esophageal cavity and tongue, causing subsequent avoidance of that food item. The motor response results in beak and head movements but not vocalizations. IEGs have been extensively used to map neuro-molecular correlates of song motor production and auditory processing. As previously reported, neurons in two pallial vocal motor regions, HVC and RA, expressed IEGs after singing. Surprisingly, c-Fos was induced equivalently also after food aversion learning in the absence of singing. The density of c-Fos positive neurons was significantly higher than that of birds in control conditions. This was not the case in two other pallial song nuclei important for vocal plasticity, LMAN and Area X, although singing did induce IEGs in these structures, as reported previously. Our results are consistent with the possibility that some of the song nuclei may participate in non-vocal learning and the populations of neurons involved in the two tasks show partial overlap. These findings underscore the previously advanced notion that the specialized forebrain pre-motor nuclei controlling song evolved from circuits involved in behaviors related to feeding.
Evaluation of color preference in zebrafish for learning and memory.
Avdesh, Avdesh; Martin-Iverson, Mathew T; Mondal, Alinda; Chen, Mengqi; Askraba, Sreten; Morgan, Newman; Lardelli, Michael; Groth, David M; Verdile, Giuseppe; Martins, Ralph N
2012-01-01
There is growing interest in using zebrafish (Danio rerio) as a model of neurodegenerative disorders such as Alzheimer's disease. A zebrafish model of tauopathies has recently been developed and characterized in terms of presence of the pathological hallmarks (i.e., neurofibrillary tangles and cell death). However, it is also necessary to validate these models for function by assessing learning and memory. The majority of tools to assess memory and learning in animal models involve visual stimuli, including color preference. The color preference of zebrafish has received little attention. To validate zebrafish as a model for color-associated-learning and memory, it is necessary to evaluate its natural preferences or any pre-existing biases towards specific colors. In the present study, we have used four different colors (red, yellow, green, and blue) to test natural color preferences of the zebrafish using two procedures: Place preference and T-maze. Results from both experiments indicate a strong aversion toward blue color relative to all other colors (red, yellow, and green) when tested in combinations. No preferences or biases were found among reds, yellows, and greens in the place preference procedure. However, red and green were equally preferred and both were preferred over yellow by zebrafish in the T-maze procedure. The results from the present study show a strong aversion towards blue color compared to red, green, and yellow, with yellow being less preferred relative to red and green. The findings from this study may underpin any further designing of color-based learning and memory paradigms or experiments involving aversion, anxiety, or fear in the zebrafish.
Active Sampling State Dynamically Enhances Olfactory Bulb Odor Representation.
Jordan, Rebecca; Fukunaga, Izumi; Kollo, Mihaly; Schaefer, Andreas T
2018-06-27
The olfactory bulb (OB) is the first site of synaptic odor information processing, yet a wealth of contextual and learned information has been described in its activity. To investigate the mechanistic basis of contextual modulation, we use whole-cell recordings to measure odor responses across rapid learning episodes in identified mitral/tufted cells (MTCs). Across these learning episodes, diverse response changes occur already during the first sniff cycle. Motivated mice develop active sniffing strategies across learning that robustly correspond to the odor response changes, resulting in enhanced odor representation. Evoking fast sniffing in different behavioral states demonstrates that response changes during active sampling exceed those predicted from feedforward input alone. Finally, response changes are highly correlated in tufted cells, but not mitral cells, indicating there are cell-type-specific effects on odor representation during active sampling. Altogether, we show that active sampling is strongly associated with enhanced OB responsiveness on rapid timescales. Copyright © 2018 The Francis Crick Institute. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Benelli, Giovanni; Stefanini, Cesare; Giunti, Giulia; Geri, Serena; Messing, Russell H.; Canale, Angelo
2014-09-01
Animals rely on associative learning for a wide range of purposes, including danger avoidance. This has been demonstrated for several insects, including cockroaches, mosquitoes, drosophilid flies, paper wasps, stingless bees, bumblebees and honeybees, but less is known for parasitic wasps. We tested the ability of Psyttalia concolor (Hymenoptera: Braconidae) females to associate different dosages of two innately attractive host-induced plant volatiles (HIPVs), ethyl octanoate and decanal, with danger (electric shocks). We conducted an associative treatment involving odours and shocks and two non-associative controls involving shocks but not odours and odours but not shocks. In shock-only and odour-only trained wasps, females preferred on HIPV-treated than on blank discs. In associative-trained wasps, however, P. concolor's innate positive chemotaxis for HIPVs was nullified (lowest HIPV dosage tested) or reversed (highest HIPV dosage tested). This is the first report of associative learning of olfactory cues for danger avoidance in parasitic wasps, showing that the effects of learning can override innate positive chemotaxes.
Differential associative training enhances olfactory acuity in Drosophila melanogaster.
Barth, Jonas; Dipt, Shubham; Pech, Ulrike; Hermann, Moritz; Riemensperger, Thomas; Fiala, André
2014-01-29
Training can improve the ability to discriminate between similar, confusable stimuli, including odors. One possibility of enhancing behaviorally expressed discrimination (i.e., sensory acuity) relies on differential associative learning, during which animals are forced to detect the differences between similar stimuli. Drosophila represents a key model organism for analyzing neuronal mechanisms underlying both odor processing and olfactory learning. However, the ability of flies to enhance fine discrimination between similar odors through differential associative learning has not been analyzed in detail. We performed associative conditioning experiments using chemically similar odorants that we show to evoke overlapping neuronal activity in the fly's antennal lobes and highly correlated activity in mushroom body lobes. We compared the animals' performance in discriminating between these odors after subjecting them to one of two types of training: either absolute conditioning, in which only one odor is reinforced, or differential conditioning, in which one odor is reinforced and a second odor is explicitly not reinforced. First, we show that differential conditioning decreases behavioral generalization of similar odorants in a choice situation. Second, we demonstrate that this learned enhancement in olfactory acuity relies on both conditioned excitation and conditioned inhibition. Third, inhibitory local interneurons in the antennal lobes are shown to be required for behavioral fine discrimination between the two similar odors. Fourth, differential, but not absolute, training causes decorrelation of odor representations in the mushroom body. In conclusion, differential training with similar odors ultimately induces a behaviorally expressed contrast enhancement between the two similar stimuli that facilitates fine discrimination.
The GABAergic Anterior Paired Lateral Neurons Facilitate Olfactory Reversal Learning in "Drosophila"
ERIC Educational Resources Information Center
Wu, Yanying; Ren, Qingzhong; Li, Hao; Guo, Aike
2012-01-01
Reversal learning has been widely used to probe the implementation of cognitive flexibility in the brain. Previous studies in monkeys identified an essential role of the orbitofrontal cortex (OFC) in reversal learning. However, the underlying circuits and molecular mechanisms are poorly understood. Here, we use the T-maze to investigate the neural…
2009-01-01
Background Cognitive function might be affected by the subjects' emotional reactivity. We assessed whether behavior in different tests of emotional reactivity is correlated with performance in aversively motivated learning tasks, using four strains of rats generally considered to have a different emotional reactivity. Methods The performance of male Brown Norway, Lewis, Fischer 344, and Wistar Kyoto rats in open field (OF), elevated plus-maze (EPM), and circular light-dark preference box (cLDB) tasks, which are believed to provide measures of emotional reactivity, was evaluated. Spatial working and reference memory were assessed in two aversively motivated learning and memory tasks: the standard and the "repeated acquisition" versions of the Morris water maze escape task, respectively. All rats were also tested in a passive avoidance task. At the end of the study, levels of serotonin (5-HT) and 5-hydroxyindoleacetic acid, and 5-HT turnover in the hippocampus and frontal cortex were determined. Results Strain differences showed a complex pattern across behavioral tests and serotonergic measures. Fischer 344 rats had the poorest performance in both versions of the Morris water escape task, whereas Brown Norway rats performed these tasks very well but the passive avoidance task poorly. Neither correlation analysis nor principal component analysis provided convincing support for the notion that OF, EPM, and cLDB tasks measure the same underlying trait. Conclusions Our findings do not support the hypothesis that the level of emotional reactivity modulates cognitive performance in aversively motivated tasks. Concepts such as "emotional reactivity" and "learning and memory" cannot adequately be tapped with only one behavioral test. Our results emphasize the need for multiple testing. PMID:20003525
Manwell, Laurie A; Mallet, Paul E
2015-05-01
Evidence suggesting that the endogenous cannabinoid (eCB) system can be manipulated to facilitate or impair extinction of learned behaviours has important consequences for opiate withdrawal and abstinence. We demonstrated that the fatty acid amide hydrolase (FAAH) inhibitor URB597, which increases eCB levels, facilitates extinction of a naloxone-precipitated morphine withdrawal-induced conditioned place aversion (CPA). The potential of the exogenous CB1 ligand, Δ(9)-tetrahydrocannabinol (Δ(9)-THC), to facilitate extinction of this CPA was tested. Effects of both pulmonary and parenteral Δ(9)-THC exposure were evaluated using comparable doses previously determined. Rats trained to associate a naloxone-precipitated morphine withdrawal with a floor cue were administered Δ(9)-THC-pulmonary (1, 5, 10 mg vapour inhalation) or parenteral (0.5, 1.0, 1.5 mg/kg intraperitoneal injection)-prior to each of 20 to 28 extinction/testing trials. Vapourized Δ(9)-THC facilitated extinction of the CPA in a dose- and time-dependent manner: 5 and 10 mg facilitated extinction compared to vehicle and 1 mg Δ(9)-THC. Injected Δ(9)-THC significantly impaired extinction only for the 1.0-mg/kg dose: it prolonged the CPA fourfold longer than the vehicle and 0.5- and 1.5-mg/kg doses. These data suggest that both dose and route of Δ(9)-THC administration have important consequences for its pharmacokinetic and behavioural effects; specifically, pulmonary exposure at higher doses facilitates, whereas pulmonary and parenteral exposure at lower doses impairs, rates of extinction learning for CPA. Pulmonary-administered Δ(9)-THC may prove beneficial for potentiation of extinction learning for aversive memories, such as those supporting drug-craving/seeking in opiate withdrawal syndrome, and other causes of conditioned aversions, such as illness and stress.
Taste-dependent sociophobia: when food and company do not mix.
Guitton, Matthieu J; Klin, Yael; Dudai, Yadin
2008-08-22
Using a combination of the paradigm of conditioned taste aversion (CTA) and of the paradigm of social interactions, we report here that in the rat, eating while anxious may result in long-term alterations in social behavior. In the conventional CTA, the subject learns to associate a tastant (the conditioned stimulus, CS) with delayed toxicosis (an unconditioned stimulus, UCS) to yield taste aversion (the conditioned response, CR). However, the association of taste with delayed negative internal states that could generate CRs that are different from taste aversion should not be neglected. Such associations may contribute to the ontogenesis, reinforcement and symptoms of some types of taste- and food-related disorders. We have recently reported that a delayed anxiety-like state, induced by the anxiogenic drug meta-chlorophenylpiperazine (mCPP), can specifically associate with taste to produce CTA. We now show that a similar protocol results in a marked lingering impairment in social interactions in response to the conditioned taste. This is hence a learned situation in which food and company do not mix well.
ERIC Educational Resources Information Center
Raineki, Charlis; Shionoya, Kiseko; Sander, Kristin; Sullivan, Regina M.
2009-01-01
Both odor-preference and odor-aversion learning occur in perinatal pups before the maturation of brain structures that support this learning in adults. To characterize the development of odor learning, we compared three learning paradigms: (1) odor-LiCl (0.3M; 1% body weight, ip) and (2) odor-1.2-mA shock (hindlimb, 1sec)--both of which…
ERIC Educational Resources Information Center
Cabirol, Amélie; Brooks, Rufus; Groh, Claudia; Barron, Andrew B.; Devaud, Jean-Marc
2017-01-01
The honey bee mushroom bodies (MBs) are brain centers required for specific learning tasks. Here, we show that environmental conditions experienced as young adults affect the maturation of MB neuropil and performance in a MB-dependent learning task. Specifically, olfactory reversal learning was selectively impaired following early exposure to an…
Serotoninergic regulation of emotional and behavioural control processes.
Cools, Roshan; Roberts, Angela C; Robbins, Trevor W
2008-01-01
5-Hydroxytryptamine (5-HT, serotonin) has long been implicated in a wide variety of emotional, cognitive and behavioural control processes. However, its precise contribution is still not well understood. Depletion of 5-HT enhances behavioural and brain responsiveness to punishment or other aversive signals, while disinhibiting previously rewarded but now punished behaviours. Findings suggest that 5-HT modulates the impact of punishment-related signals on learning and emotion (aversion), but also promotes response inhibition. Exaggerated aversive processing and deficient response inhibition could underlie distinct symptoms of a range of affective disorders, namely stress- or threat-vulnerability and compulsive behaviour, respectively. We review evidence from studies with human volunteers and experimental animals that begins to elucidate the neurobiological systems underlying these different effects.
Peripheral and Central Olfactory Tuning in a Moth
Ong, Rose C.
2012-01-01
Animals can be innately attracted to certain odorants. Because these attractants are particularly salient, they might be expected to induce relatively strong responses throughout the olfactory pathway, helping animals detect the most relevant odors but limiting flexibility to respond to other odors. Alternatively, specific neural wiring might link innately preferred odors to appropriate behaviors without a need for intensity biases. How nonpheromonal attractants are processed by the general olfactory system remains largely unknown. In the moth Manduca sexta, we studied this with a set of innately preferred host plant odors and other, neutral odors. Electroantennogram recordings showed that, as a population, olfactory receptor neurons (ORNs) did not respond with greater intensity to host plant odors, and further local field potential recordings showed that no specific amplification of signals induced by host plant odors occurred between the first olfactory center and the second. Moreover, when odorants were mutually diluted to elicit equally intense output from the ORNs, moths were able to learn to associate all tested odorants equally well with food reward. Together, these results suggest that, although nonpheromonal host plant odors activate broadly distributed responses, they may be linked to attractive behaviors mainly through specific wiring in the brain. PMID:22362866
Epilepsy as an Analogue of Learned Helplessness.
ERIC Educational Resources Information Center
DeVellis, Robert F.; And Others
The occurrence of unpredictable and often unavoidable aversive seizures in epilepsy bears a striking resemblance to the conditions known to induce learned helplessness. Additionally, depression and other characteristics associated with helplessness seem to occur more frequently among persons with epilepsy. Data from a national survey of…
Plasticity in the Interoceptive System.
Torrealba, Fernando; Madrid, Carlos; Contreras, Marco; Gómez, Karina
2017-01-01
The most outstanding manifestations of the plastic capacities of brain circuits and their neuronal and synaptic components in the adult CNS are learning and memory. A reduced number of basic plastic mechanisms underlie learning capacities at many levels and regions of the brain. The interoceptive system is no exception, and some of the most studied behavioral changes that involve learning and memory engage the interoceptive pathways at many levels of their anatomical and functional organization.In this chapter, we will review four examples of learning, mostly in rats, where the interoceptive system has a role. In the case of conditioned taste aversion, the interoceptive system is of outstanding importance. In drug addiction, the role of the insular cortex - the highest level of the interoceptive system- is unusual and complex, as many forebrain regions are engaged by the process of addiction. In the third example, neophobia, the gustatory region of the insular cortex plays a major role. Finally, the role of different areas of the insular cortex in different processes of aversive memory, particularly fear conditioning, will be reviewed.
Aversive learning shapes neuronal orientation tuning in human visual cortex.
McTeague, Lisa M; Gruss, L Forest; Keil, Andreas
2015-07-28
The responses of sensory cortical neurons are shaped by experience. As a result perceptual biases evolve, selectively facilitating the detection and identification of sensory events that are relevant for adaptive behaviour. Here we examine the involvement of human visual cortex in the formation of learned perceptual biases. We use classical aversive conditioning to associate one out of a series of oriented gratings with a noxious sound stimulus. After as few as two grating-sound pairings, visual cortical responses to the sound-paired grating show selective amplification. Furthermore, as learning progresses, responses to the orientations with greatest similarity to the sound-paired grating are increasingly suppressed, suggesting inhibitory interactions between orientation-selective neuronal populations. Changes in cortical connectivity between occipital and fronto-temporal regions mirror the changes in visuo-cortical response amplitudes. These findings suggest that short-term behaviourally driven retuning of human visual cortical neurons involves distal top-down projections as well as local inhibitory interactions.
Place preference and vocal learning rely on distinct reinforcers in songbirds.
Murdoch, Don; Chen, Ruidong; Goldberg, Jesse H
2018-04-30
In reinforcement learning (RL) agents are typically tasked with maximizing a single objective function such as reward. But it remains poorly understood how agents might pursue distinct objectives at once. In machines, multiobjective RL can be achieved by dividing a single agent into multiple sub-agents, each of which is shaped by agent-specific reinforcement, but it remains unknown if animals adopt this strategy. Here we use songbirds to test if navigation and singing, two behaviors with distinct objectives, can be differentially reinforced. We demonstrate that strobe flashes aversively condition place preference but not song syllables. Brief noise bursts aversively condition song syllables but positively reinforce place preference. Thus distinct behavior-generating systems, or agencies, within a single animal can be shaped by correspondingly distinct reinforcement signals. Our findings suggest that spatially segregated vocal circuits can solve a credit assignment problem associated with multiobjective learning.
Robinson, Geoffrey
2002-01-01
US studies have shown that a clinician's risk-taking propensity significantly predicts clinical behaviour. Other US studies examining relationships between family practice doctors' preferences for CME and their Kolb learning style have described conflicting findings. The aim of the present study was to investigate GPs' learning styles, risk-taking propensities and CME preferences, and to explore links between them. A descriptive confidential cross-sectional postal questionnaire survey of the 304 general practitioner principals within Portsmouth and South East Hampshire Health Authority was conducted. Two hundred and seventy-four GPs returned questionnaires, a response rate of 90.1%. The Kolb learning style types were assimilators 43.8% (predominant learning abilities watching and thinking), divergers 21.1% (feeling and watching), convergers 18.3% (doing and thinking), and accommodators 16.8% (doing and feeling). The Pearson risk-taking propensities were 65.8% risk neutral, 19.4% risk seeking and 14.8% risk averse. Risk-seeking GPs were significantly more likely to be accommodators or convergers than divergers or assimilators (p = 0.006). Majorities of 54.9% stated that the present PGEA system works well, 85% welcomed feedback from their peers, and 76.8% stated that learning should be an activity for all the practice team. Further majorities would welcome help to decide their learning needs (63.8%) and are looking to judge CME effectiveness by changes in GP performance or patient care (54.8%). Further significant correlations and cross-tabulations were found between learning style and risk-taking and CME attitudes, experiences and preferences. It is concluded that risk seekers and accommodators (doing and feeling) prefer feedback, interaction and practical hands-on learning, and assimilators (watching and thinking) and the risk averse tend towards lectures, theoretical learning formats and less interactive activities. Sharing feelings in groups may be difficult for the risk averse and assimilators. The success of a combined educational strategy will depend on an inclusive philosophy, both recognizing and engaging the wide range of differences in learning style and risk taking for all the individuals who make up learning teams.
Perceptual and Neural Olfactory Similarity in Honeybees
Sandoz, Jean-Christophe
2005-01-01
The question of whether or not neural activity patterns recorded in the olfactory centres of the brain correspond to olfactory perceptual measures remains unanswered. To address this question, we studied olfaction in honeybees Apis mellifera using the olfactory conditioning of the proboscis extension response. We conditioned bees to odours and tested generalisation responses to different odours. Sixteen odours were used, which varied both in their functional group (primary and secondary alcohols, aldehydes and ketones) and in their carbon-chain length (from six to nine carbons).The results obtained by presentation of a total of 16 × 16 odour pairs show that (i) all odorants presented could be learned, although acquisition was lower for short-chain ketones; (ii) generalisation varied depending both on the functional group and the carbon-chain length of odours trained; higher generalisation was found between long-chain than between short-chain molecules and between groups such as primary and secondary alcohols; (iii) for some odour pairs, cross-generalisation between odorants was asymmetric; (iv) a putative olfactory space could be defined for the honeybee with functional group and carbon-chain length as inner dimensions; (v) perceptual distances in such a space correlate well with physiological distances determined from optophysiological recordings of antennal lobe activity. We conclude that functional group and carbon-chain length are inner dimensions of the honeybee olfactory space and that neural activity in the antennal lobe reflects the perceptual quality of odours. PMID:15736975
The impact of expertise in olfaction
Royet, Jean-Pierre; Plailly, Jane; Saive, Anne-Lise; Veyrac, Alexandra; Delon-Martin, Chantal
2013-01-01
Olfactory expertise remains poorly understood, most likely because experts in odor, such as perfumers, sommeliers, and oenologists, are much rarer than experts in other modalities, such as musicians or sportsmen. In this review, we address the specificities of odor expertise in both odor experts and in a priori untrained individuals who have undergone specific olfactory training in the frame of an experiment, such as repeated exposure to odors or associative learning. Until the 21st century, only the behavioral effects of olfactory training of untrained control individuals had been reported, revealing an improvement of olfactory performance in terms of sensitivity, discrimination, memory, and identification. Behavioral studies of odor experts have been scarce, with inconsistent or inconclusive results. Recently, the development of cerebral imaging techniques has enabled the identification of brain areas and neural networks involved in odor processing, revealing functional and structural modifications as a function of experience. The behavioral approach to odor expertise has also evolved. Researchers have particularly focused on odor mental imagery, which is characteristic of odor experts, because this ability is absent in the average person but is part of a perfumer’s professional practice. This review summarizes behavioral, functional, and structural findings on odor expertise. These data are compared with those obtained using animals subjected to prolonged olfactory exposure or to olfactory-enriched environments and are discussed in the context of functional and structural plasticity. PMID:24379793
p38 МАРK is Involved in Regulation of Epigenetic Mechanisms of Food Aversion Learning.
Grinkevich, L N
2017-08-01
Consolidation of the conditioned food aversion response in Helix lucorum was associated with induction of histone H3 acetylation and methylation. We hypothesized that not only activatory, but also inhibitory p38 MARK-mediated pathways are involved in these processes. To assess the contribution of p38 MAPK to epigenetic processes, we studied the effect p38 MAPK inhibitor SB203580 on acetylation of histone H3 during training of Helix lucorum. Administration of SB203580 decreased learning-induced enhancement of histone H3 acetylation in the CNS of Helix lucorum, which was accompanied by long-term memory impairment. Thus, p38 MAPK is involved in the regulation of epigenetic mechanisms of long-term memory.
Ambiguity Aversion in Rhesus Macaques
Hayden, Benjamin Y.; Heilbronner, Sarah R.; Platt, Michael L.
2010-01-01
People generally prefer risky options, which have fully specified outcome probabilities, to ambiguous options, which have unspecified probabilities. This preference, formalized in economics, is strong enough that people will reliably prefer a risky option to an ambiguous option with a greater expected value. Explanations for ambiguity aversion often invoke uniquely human faculties like language, self-justification, or a desire to avoid public embarrassment. Challenging these ideas, here we demonstrate that a preference for unambiguous options is shared with rhesus macaques. We trained four monkeys to choose between pairs of options that both offered explicitly cued probabilities of large and small juice outcomes. We then introduced occasional trials where one of the options was obscured and examined their resulting preferences; we ran humans in a parallel experiment on a nearly identical task. We found that monkeys reliably preferred risky options to ambiguous ones, even when this bias was costly, closely matching the behavior of humans in the analogous task. Notably, ambiguity aversion varied parametrically with the extent of ambiguity. As expected, ambiguity aversion gradually declined as monkeys learned the underlying probability distribution of rewards. These data indicate that ambiguity aversion reflects fundamental cognitive biases shared with other animals rather than uniquely human factors guiding decisions. PMID:20922060
Proximal antecedents and correlates of adopted error approach: a self-regulatory perspective.
Van Dyck, Cathy; Van Hooft, Edwin; De Gilder, Dick; Liesveld, Lillian
2010-01-01
The current study aims to further investigate earlier established advantages of an error mastery approach over an error aversion approach. The two main purposes of the study relate to (1) self-regulatory traits (i.e., goal orientation and action-state orientation) that may predict which error approach (mastery or aversion) is adopted, and (2) proximal, psychological processes (i.e., self-focused attention and failure attribution) that relate to adopted error approach. In the current study participants' goal orientation and action-state orientation were assessed, after which they worked on an error-prone task. Results show that learning goal orientation related to error mastery, while state orientation related to error aversion. Under a mastery approach, error occurrence did not result in cognitive resources "wasted" on self-consciousness. Rather, attention went to internal-unstable, thus controllable, improvement oriented causes of error. Participants that had adopted an aversion approach, in contrast, experienced heightened self-consciousness and attributed failure to internal-stable or external causes. These results imply that when working on an error-prone task, people should be stimulated to take on a mastery rather than an aversion approach towards errors.
Seugnet, Laurent; Suzuki, Yasuko; Vine, Lucy; Gottschalk, Laura; Shaw, Paul J
2008-01-01
Background Extended wakefulness disrupts acquisition of short term memories in mammals. However, the underlying molecular mechanisms triggered by extended waking and restored by sleep are unknown. Moreover, the neuronal circuits that depend on sleep for optimal learning remain unidentified. Results Learning was evaluated using Aversive Phototaxic Suppression (APS). In this task, flies learn to avoid light that is paired with an aversive stimulus (quinine /humidity). We demonstrate extensive homology in sleep deprivation induced learning impairment between flies and humans. Both 6 h and 12 h of sleep deprivation are sufficient to impair learning in Canton-S (Cs) flies. Moreover, learning is impaired at the end of the normal waking-day in direct correlation with time spent awake. Mechanistic studies indicate that this task requires intact mushroom bodies (MBs) and requires the Dopamine D1-like receptor (dDA1). Importantly, sleep deprivation induced learning impairments could be rescued by targeted gene expression of the dDA1 receptor to the MBs. Conclusion These data provide direct evidence that extended wakefulness disrupts learning in Drosophila. These results demonstrate that it is possible to prevent the effects of sleep deprivation by targeting a single neuronal structure and identify cellular and molecular targets adversely affected by extended waking in a genetically tractable model organism. PMID:18674913
Mechanisms of Radiation-Induced Conditioned Taste Aversion Learning
1986-01-01
to Walter A. Hunt. 86 4 21 144 . J Jr -.W U *’ = 7 . 7 .: M: W. ,WLW;i , .-, -’ .’P. %k T .- - ’ .: ’W ; .a --,.-" -. t .:-. , 56 RABIN AND HUNT can...8217. 7m. U RADIATION-INDUCED TASTE AVERSIONS 57 induced CTA 11021. Alternatively, when the antihistamine is [ 21 . A radiation-induced CTA can be...in rats. Pharmmad psychioactive drugs. J (omp Phvsiod Pvchld .;’: 21 -26. 1972. Biochem Behav 17: 305-311. 1982. 4. Berger. B. D.. C. D. Wise and L
Faghihi, Faramarz; Kolodziejski, Christoph; Fiala, André; Wörgötter, Florentin; Tetzlaff, Christian
2013-12-20
Fruit flies (Drosophila melanogaster) rely on their olfactory system to process environmental information. This information has to be transmitted without system-relevant loss by the olfactory system to deeper brain areas for learning. Here we study the role of several parameters of the fly's olfactory system and the environment and how they influence olfactory information transmission. We have designed an abstract model of the antennal lobe, the mushroom body and the inhibitory circuitry. Mutual information between the olfactory environment, simulated in terms of different odor concentrations, and a sub-population of intrinsic mushroom body neurons (Kenyon cells) was calculated to quantify the efficiency of information transmission. With this method we study, on the one hand, the effect of different connectivity rates between olfactory projection neurons and firing thresholds of Kenyon cells. On the other hand, we analyze the influence of inhibition on mutual information between environment and mushroom body. Our simulations show an expected linear relation between the connectivity rate between the antennal lobe and the mushroom body and firing threshold of the Kenyon cells to obtain maximum mutual information for both low and high odor concentrations. However, contradicting all-day experiences, high odor concentrations cause a drastic, and unrealistic, decrease in mutual information for all connectivity rates compared to low concentration. But when inhibition on the mushroom body is included, mutual information remains at high levels independent of other system parameters. This finding points to a pivotal role of inhibition in fly information processing without which the system efficiency will be substantially reduced.
Development of an aversive Pavlovian-to-instrumental transfer task in rat
Campese, Vincent; McCue, Margaret; Lázaro-Muñoz, Gabriel; LeDoux, Joseph E.; Cain, Christopher K.
2013-01-01
Pavlovian-to-instrumental transfer (PIT) is an effect whereby a classically conditioned stimulus (CS) enhances ongoing instrumental responding. PIT has been extensively studied with appetitive conditioning but barely at all with aversive conditioning. Although it's been argued that conditioned suppression is a form of aversive PIT, this effect is fundamentally different from appetitive PIT because the CS suppresses, instead of facilitates, responding. Five experiments investigated the importance of a variety of factors on aversive PIT in a rodent Sidman avoidance paradigm in which ongoing shuttling behavior (unsignaled active avoidance or USAA) was facilitated by an aversive CS. Experiment 1 demonstrated a basic PIT effect. Experiment 2 found that a moderate amount of USAA extinction produces the strongest PIT with shuttling rates best at around 2 responses per minute prior to the CS. Experiment 3 tested a protocol in which the USAA behavior was required to reach the 2-response per minute mark in order to trigger the CS presentation and found that this produced robust and reliable PIT. Experiment 4 found that the Pavlovian conditioning US intensity was not a major determinant of PIT strength. Experiment 5 demonstrated that if the CS and US were not explicitly paired during Pavlovian conditioning, PIT did not occur, showing that CS-US learning is required. Together, these studies demonstrate a robust, reliable and stable aversive PIT effect that is amenable to analysis of neural circuitry. PMID:24324417
Aversive disinhibition of behavior and striatal signaling in social avoidance.
Ly, Verena; Cools, Roshan; Roelofs, Karin
2014-10-01
Social avoidance is a major factor contributing to the development and maintenance of anxiety and depressive symptoms. Converging evidence suggests that social avoidance is associated with abnormal aversive processing and hyperactive amygdala signaling. However, what are the consequences of such abnormal aversive processing for action and for the neural mechanisms implementing action is unclear. Existing literature is conflicting, pointing at either enhanced or reduced action inhibition. We investigated the interaction between aversion and action in social avoidance by comparing the effects of aversive vs appetitive faces on a go/no-go task and associated striatal signals in 42 high and low socially avoidant individuals. We combined fMRI with a novel probabilistic learning task, in which emotional valence (angry and happy faces) and optimal response (go- and no-go-responses) were manipulated independently. High compared with low socially avoidant individuals showed reduced behavioral inhibition (proportion no-go-responses) for angry relative to happy faces. This behavioral disinhibition correlated with greater striatal signal during no-go-responses for angry relative to happy faces. The results suggest that social avoidant coping style is accompanied by disinhibition of action and striatal signal in the context of social threat. The findings concur with recent theorizing about aversive disinhibition and affective disorders. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Raccuglia, Davide; Mueller, Uli
2013-01-01
Throughout the animal kingdom, the inhibitory neurotransmitter ?-aminobutyric acid (GABA) is a key modulator of physiological processes including learning. With respect to associative learning, the exact time in which GABA interferes with the molecular events of learning has not yet been clearly defined. To address this issue, we used two…
Chronically Increased G[subscript s][alpha] Signaling Disrupts Associative and Spatial Learning
ERIC Educational Resources Information Center
Bourtchouladze, Rusiko; Patterson, Susan L.; Kelly, Michele P.; Kreibich, Arati; Kandel, Eric R.; Abel, Ted
2006-01-01
The cAMP/PKA pathway plays a critical role in learning and memory systems in animals ranging from mice to "Drosophila" to "Aplysia." Studies of olfactory learning in "Drosophila" suggest that altered expression of either positive or negative regulators of the cAMP/PKA signaling pathway beyond a certain optimum range may be deleterious. Here we…
ERIC Educational Resources Information Center
Cohen-Matsliah, Sivan Ida; Seroussi, Yaron; Rosenblum, Kobi; Barkai, Edi
2008-01-01
Pyramidal neurons in the piriform cortex from olfactory-discrimination (OD) trained rats undergo synaptic modifications that last for days after learning. A particularly intriguing modification is reduced paired-pulse facilitation (PPF) in the synapses interconnecting these cells; a phenomenon thought to reflect enhanced synaptic release. The…
CaMKII knockdown affects both early and late phases of olfactory long-term memory in the honeybee.
Scholl, Christina; Kübert, Natalie; Muenz, Thomas S; Rössler, Wolfgang
2015-12-01
Honeybees are able to solve complex learning tasks and memorize learned information for long time periods. The molecular mechanisms mediating long-term memory (LTM) in the honeybee Apis mellifera are, to a large part, still unknown. We approached this question by investigating the potential function of the calcium/calmodulin-dependent protein kinase II (CaMKII), an enzyme known as a 'molecular memory switch' in vertebrates. CaMKII is able to switch to a calcium-independent constitutively active state, providing a mechanism for a molecular memory and has further been shown to play an essential role in structural synaptic plasticity. Using a combination of knockdown by RNA interference and pharmacological manipulation, we disrupted the function of CaMKII during olfactory learning and memory formation. We found that learning, memory acquisition and mid-term memory were not affected, but all manipulations consistently resulted in an impaired LTM. Both early LTM (24 h after learning) and late LTM (72 h after learning) were significantly disrupted, indicating the necessity of CaMKII in two successive stages of LTM formation in the honeybee. © 2015. Published by The Company of Biologists Ltd.
Insulin effects on honeybee appetitive behaviour.
Mengoni Goñalons, Carolina; Guiraud, Marie; de Brito Sanchez, María Gabriela; Farina, Walter M
2016-10-01
Worker honeybees (Apis mellifera) carry out multiple tasks throughout their adult lifespan. It has been suggested that the insulin/insulin-like signalling pathway participates in regulating behavioural maturation in eusocial insects. Insulin signalling increases as the honeybee worker transitions from nurse to food processor to forager. As behavioural shifts require differential usage of sensory modalities, our aim was to assess insulin effects on olfactory and gustatory responsiveness as well as on olfactory learning in preforaging honeybee workers of different ages. Adults were reared in the laboratory or in the hive. Immediately after being injected with insulin or vehicle (control), and focusing on the proboscis extension response, bees were tested for their spontaneous response to odours, sucrose responsiveness and ability to discriminate odours through olfactory conditioning. Bees injected with insulin have higher spontaneous odour responses. Sucrose responsiveness and odour discrimination are differentially affected by treatment according to age: whereas insulin increases gustatory responsiveness and diminishes learning abilities of younger workers, it has the opposite effect on older bees. In summary, insulin can improve chemosensory responsiveness in young workers, but also worsens their learning abilities to discriminate odours. The insulin signalling pathway is responsive in young workers, although they are not yet initiating outdoor activities. Our results show strong age-dependent effects of insulin on appetitive behaviour, which uncover differences in insulin signalling regulation throughout the honeybee worker's adulthood. © 2016. Published by The Company of Biologists Ltd.
Murphy, Matthew C; Poplawsky, Alexander J; Vazquez, Alberto L; Chan, Kevin C; Kim, Seong-Gi; Fukuda, Mitsuhiro
2016-08-15
Functional MRI (fMRI) is a popular and important tool for noninvasive mapping of neural activity. As fMRI measures the hemodynamic response, the resulting activation maps do not perfectly reflect the underlying neural activity. The purpose of this work was to design a data-driven model to improve the spatial accuracy of fMRI maps in the rat olfactory bulb. This system is an ideal choice for this investigation since the bulb circuit is well characterized, allowing for an accurate definition of activity patterns in order to train the model. We generated models for both cerebral blood volume weighted (CBVw) and blood oxygen level dependent (BOLD) fMRI data. The results indicate that the spatial accuracy of the activation maps is either significantly improved or at worst not significantly different when using the learned models compared to a conventional general linear model approach, particularly for BOLD images and activity patterns involving deep layers of the bulb. Furthermore, the activation maps computed by CBVw and BOLD data show increased agreement when using the learned models, lending more confidence to their accuracy. The models presented here could have an immediate impact on studies of the olfactory bulb, but perhaps more importantly, demonstrate the potential for similar flexible, data-driven models to improve the quality of activation maps calculated using fMRI data. Copyright © 2016 Elsevier Inc. All rights reserved.
Zander, Steffi; Wetzel, Stefanie; Kühl, Tim; Bertel, Sven
2017-01-01
One of the frequently examined design principles in multimedia learning is the personalization principle. Based on empirical evidence this principle states that using personalized messages in multimedia learning is more beneficial than using formal language (e.g., using ‘you’ instead of ‘the’). Although there is evidence that these slight changes in regard to the language style affect learning, motivation and the perceived cognitive load, it remains unclear, (1) whether the positive effects of personalized language can be transferred to all kinds of content of learning materials (e.g., specific potentially aversive health issues) and (2) which are the underlying processes (e.g., attention allocation) of the personalization effect. German university students (N = 37) learned symptoms and causes of cerebral hemorrhages either with a formal or a personalized version of the learning material. Analysis revealed comparable results to the few existing previous studies, indicating an inverted personalization effect for potentially aversive learning material. This effect was specifically revealed in regard to decreased average fixation duration and the number of fixations exclusively on the images in the personalized compared to the formal version. These results can be seen as indicators for an inverted effect of personalization on the level of visual attention. PMID:29326630
Adaptive Learning and Risk Taking
ERIC Educational Resources Information Center
Denrell, Jerker
2007-01-01
Humans and animals learn from experience by reducing the probability of sampling alternatives with poor past outcomes. Using simulations, J. G. March (1996) illustrated how such adaptive sampling could lead to risk-averse as well as risk-seeking behavior. In this article, the author develops a formal theory of how adaptive sampling influences risk…
Prepared Stimuli Enhance Aversive Learning without Weakening the Impact of Verbal Instructions
ERIC Educational Resources Information Center
Atlas, Lauren Y.; Phelps, Elizabeth A.
2018-01-01
Fear-relevant stimuli such as snakes and spiders are thought to capture attention due to evolutionary significance. Classical conditioning experiments indicate that these stimuli accelerate learning, while instructed extinction experiments suggest they may be less responsive to instructions. We manipulated stimulus type during instructed aversive…
Leadership for Learning: An Action Theory of School Change.
ERIC Educational Resources Information Center
Wagner, Tony
2001-01-01
Common factors contributing to teachers' resistance include risk aversion, craft expertise, and autonomy and isolation. Leaders' problem is to create ownership, not buy-in. Principals cannot make change alone or by edict, but must nurture engagement and commitment and motivate groups to learn and solve problems cooperatively. (MLH)
Where There is Smoke There is Fear-Impaired Contextual Inhibition of Conditioned Fear in Smokers.
Haaker, Jan; Lonsdorf, Tina B; Schümann, Dirk; Bunzeck, Nico; Peters, Jan; Sommer, Tobias; Kalisch, Raffael
2017-07-01
The odds-ratio of smoking is elevated in populations with neuropsychiatric diseases, in particular in the highly prevalent diagnoses of post-traumatic stress and anxiety disorders. Yet, the association between smoking and a key dimensional phenotype of these disorders-maladaptive deficits in fear learning and fear inhibition-is unclear. We therefore investigated acquisition and memory of fear and fear inhibition in healthy smoking and non-smoking participants (N=349, 22% smokers). We employed a well validated paradigm of context-dependent fear and safety learning (day 1) including a memory retrieval on day 2. During fear learning, a geometrical shape was associated with an aversive electrical stimulation (classical fear conditioning, in danger context) and fear responses were extinguished within another context (extinction learning, in safe context). On day 2, the conditioned stimuli were presented again in both contexts, without any aversive stimulation. Autonomic physiological measurements of skin conductance responses as well as subjective evaluations of fear and expectancy of the aversive stimulation were acquired. We found that impairment of fear inhibition (extinction) in the safe context during learning (day 1) was associated with the amount of pack-years in smokers. During retrieval of fear memories (day 2), smokers showed an impairment of contextual (safety context-related) fear inhibition as compared with non-smokers. These effects were found in physiological as well as subjective measures of fear. We provide initial evidence that smokers as compared with non-smokers show an impairment of fear inhibition. We propose that smokers have a deficit in integrating contextual signs of safety, which is a hallmark of post-traumatic stress and anxiety disorders.
Sampedro-Piquero, Patricia; Moreno-Fernández, Román D; Carmen Mañas-Padilla, M; Gil-Rodríguez, Sara; Gavito, Ana Luisa; Pavón, Francisco J; Pedraza, Carmen; García-Fernández, María; Ladrón de Guevara-Miranda, David; Santín, Luis J; Castilla-Ortega, Estela
2018-05-01
Learning experiences are potent modulators of adult hippocampal neurogenesis (AHN). However, the vast majority of findings on the learning-induced regulation of AHN derive from aversively-motivated tasks, mainly the water maze paradigm, in which stress is a confounding factor that affects the AHN outcome. Currently, little is known regarding the effect of appetitively-motivated training on AHN. Hence we studied how spatial learning to find food rewards in a hole-board maze modulates AHN (cell proliferation and immature neurons) and AHN-related hippocampal neuroplasticity markers (BDNF, IGF-II and CREB phosphorylation) in mice. The 'Trained' mice were tested for both spatial reference and working memory and compared to 'Pseudotrained' mice (exposed to different baited holes in each session, thus avoiding the reference memory component of the task) and 'Control' mice (exposed to the maze without rewards). In contrast to Pseudotrained and Control mice, the number of proliferating hippocampal cells were reduced in Trained mice, but they notably increased their population of immature neurons assessed by immunohistochemistry. This evidence shows that hole-board spatial reference learning diminishes cell proliferation in favor of enhancing young neurons' survival. Interestingly, the enhanced AHN in the Trained mice (specifically in the suprapyramidal blade) positively correlated with their reference memory performance, but not with their working memory. Furthermore, the Trained animals increased the hippocampal protein expression of all the neuroplasticity markers analyzed by western blot. Results show that the appetitively-motivated hole-board task is a useful paradigm to potentiate and/or investigate AHN and hippocampal plasticity minimizing aversive variables such as fear or stress. Copyright © 2018 Elsevier Inc. All rights reserved.
Avoidance-based human Pavlovian-to-instrumental transfer
Lewis, Andrea H.; Niznikiewicz, Michael A.; Delamater, Andrew R.; Delgado, Mauricio R.
2013-01-01
The Pavlovian-to-instrumental transfer (PIT) paradigm probes the influence of Pavlovian cues over instrumentally learned behavior. The paradigm has been used extensively to probe basic cognitive and motivational processes in studies of animal learning but, more recently, PIT and its underlying neural basis have been extended to investigations in humans. These initial neuroimaging studies of PIT have focused on the influence of appetitively conditioned stimuli on instrumental responses maintained by positive reinforcement, and highlight the involvement of the striatum. In the current study, we sought to understand the neural correlates of PIT in an aversive Pavlovian learning situation when instrumental responding was maintained through negative reinforcement. Participants exhibited specific PIT, wherein selective increases in instrumental responding to conditioned stimuli occurred when the stimulus signaled a specific aversive outcome whose omission negatively reinforced the instrumental response. Additionally, a general PIT effect was observed such that when a stimulus was associated with a different aversive outcome than was used to negatively reinforce instrumental behavior, the presence of that stimulus caused a non-selective increase in overall instrumental responding. Both specific and general PIT behavioral effects correlated with increased activation in corticostriatal circuitry, particularly in the striatum, a region involved in cognitive and motivational processes. These results suggest that avoidance-based PIT utilizes a similar neural mechanism to that seen with PIT in an appetitive context, which has implications for understanding mechanisms of drug-seeking behavior during addiction and relapse. PMID:24118624
Keefe, Kristen A.; Taha, Sharif A.
2016-01-01
Key points The lateral habenula (LHb) has been implicated in regulation of drug‐seeking behaviours through aversion‐mediated learning.In this study, we recorded neuronal activity in the LHb of rats during an operant task before and after ethanol‐induced conditioned taste aversion (CTA) to saccharin.Ethanol‐induced CTA caused significantly higher baseline firing rates in LHb neurons, as well as elevated firing rates in response to cue presentation, lever press and saccharin taste.In a separate cohort of rats, we found that bilateral LHb lesions blocked ethanol‐induced CTA.Our results strongly suggest that excitation of LHb neurons is required for ethanol‐induced CTA, and point towards a mechanism through which LHb firing may regulate voluntary ethanol consumption. Abstract Ethanol, like other drugs of abuse, has both rewarding and aversive properties. Previous work suggests that sensitivity to ethanol's aversive effects negatively modulates voluntary alcohol intake and thus may be important in vulnerability to developing alcohol use disorders. We previously found that rats with lesions of the lateral habenula (LHb), which is implicated in aversion‐mediated learning, show accelerated escalation of voluntary ethanol consumption. To understand neural encoding in the LHb contributing to ethanol‐induced aversion, we recorded neural firing in the LHb of freely behaving, water‐deprived rats before and after an ethanol‐induced (1.5 g kg−1 20% ethanol, i.p.) conditioned taste aversion (CTA) to saccharin taste. Ethanol‐induced CTA strongly decreased motivation for saccharin in an operant task to obtain the tastant. Comparison of LHb neural firing before and after CTA induction revealed four main differences in firing properties. First, baseline firing after CTA induction was significantly higher. Second, firing evoked by cues signalling saccharin availability shifted from a pattern of primarily inhibition before CTA to primarily excitation after CTA induction. Third, CTA induction reduced the magnitude of lever press‐evoked inhibition. Finally, firing rates were significantly higher during consumption of the devalued saccharin solution after CTA induction. Next, we studied sham‐ and LHb‐lesioned rats in our operant CTA paradigm and found that LHb lesion significantly attenuated CTA effects in the operant task. Our data demonstrate the importance of LHb excitation in regulating expression of ethanol‐induced aversion and suggest a mechanism for its role in modulating escalation of voluntary ethanol intake. PMID:27682823
Salles, Angeles; Krawczyk, Maria del C.; Blake, Mariano; Romano, Arturo; Boccia, Mariano M.; Freudenthal, Ramiro
2017-01-01
NF-kappa B is a transcription factor whose activation has been shown to be necessary for long-term memory consolidation in several species. NF-kappa B is activated and translocates to the nucleus of cells in a specific temporal window during consolidation. Our work focuses on a one trial learning tasks associated to the inhibitory avoidance (IA) setting. Mice were trained either receiving or not a footshock when entering a dark compartment (aversive vs. appetitive learning). Regardless of training condition (appetitive or aversive), latencies to step-through during testing were significantly different to those measured during training. Additionally, these testing latencies were also different from those of a control group that only received a shock unrelated to context. Moreover, nuclear NF-kappa B DNA-binding activity was augmented in the aversive and the appetitive tasks when compared with control and naïve animals. NF-kappa B inhibition by Sulfasalazine injected either in the Hippocampus, Amygdala or Nucleus accumbens immediately after training was able to impair retention in both training versions. Our results suggest that NF-kappa B is a critical molecular step, in different brain areas on memory consolidation. This was the case for both the IA task and also the modified version of the same task where the footshock was omitted during training. This work aims to further investigate how appetitive and aversive memories are consolidated. PMID:28439227
Di Scala, G; Mana, M J; Jacobs, W J; Phillips, A G
1987-01-01
Stimulation of the periaqueductal grey (PAG) has been used to support aversive conditioning in a variety of species with several experimental paradigms. However, it has not been clearly demonstrated whether the behavioral changes produced by PAG stimulation in these paradigms are mediated by associative or nonassociative mechanisms. The present studies demonstrate that electrical stimulation of the PAG in the rat may be used to support associative learning in a Pavlovian paradigm. In each experiment, a fully controlled conditional emotional response (CER) procedure was used to examine the unconditional aversive properties of PAG stimulation. In Experiment 1a, weak associative conditioning was observed when a light CS was paired with PAG stimulation over 6 conditioning trials. In Experiment 1b, robust associative conditioning was obtained with a light CS when 18 conditioning trials were used. In Experiment 2, robust associative conditioning was demonstrated with a tone CS when 6 conditioning trials were used. The results parallel those found when other aversive stimuli are used as a UCS (e.g., footshock or intraorbital air puff), and because the present experiments included the proper control procedures the results clearly indicate that the behavioral changes produced by PAG stimulation are mediated by associative Pavlovian learning mechanisms rather than nonassociative mechanisms such as sensitization or pseudoconditioning. The present technique may be useful for assessing the neuroanatomical and neurochemical substrates underlying the aversive effects of brain-stimulation, and for screening the effects of drugs on the conditional and unconditional responses produced by such stimulation.
Oxytocin decreases aversion to angry faces in an associative learning task.
Evans, Simon; Shergill, Sukhwinder S; Averbeck, Bruno B
2010-12-01
Social and financial considerations are often integrated when real life decisions are made, and recent studies have provided evidence that similar brain networks are engaged when either social or financial information is integrated. Other studies, however, have suggested that the neuropeptide oxytocin can specifically affect social behaviors, which would suggest separable mechanisms at the pharmacological level. Thus, we examined the hypothesis that oxytocin would specifically affect social and not financial information in a decision making task, in which participants learned which of the two faces, one smiling and the other angry or sad, was most often being rewarded. We found that oxytocin specifically decreased aversion to angry faces, without affecting integration of positive or negative financial feedback or choices related to happy vs sad faces.
Serotonin affects association of aversive outcomes to past actions.
Tanaka, Saori C; Shishida, Kazuhiro; Schweighofer, Nicolas; Okamoto, Yasumasa; Yamawaki, Shigeto; Doya, Kenji
2009-12-16
Impairment in the serotonergic system has been linked to action choices that are less advantageous in a long run. Such impulsive choices can be caused by a deficit in linking a given reward or punishment with past actions. Here, we tested the effect of manipulation of the serotonergic system by tryptophan depletion and loading on learning the association of current rewards and punishments with past actions. We observed slower associative learning when actions were followed by a delayed punishment in the low serotonergic condition. Furthermore, a model-based analysis revealed a positive correlation between the length of the memory trace for aversive choices and subjects' blood tryptophan concentration. Our results suggest that the serotonergic system regulates the time scale of retrospective association of punishments to past actions.
Olfactory function and quality of life after olfaction rehabilitation in total laryngectomees.
Santos, Christiane Gouvêa Dos; Bergmann, Anke; Coça, Kaliani Lima; Garcia, Angela Albuquerque; Valente, Tânia Cristina de Oliveira
2016-01-01
To evaluate the effects of olfaction rehabilitation in the olfactory function and quality of life of total laryngectomized patients. Pre-post intervention clinical study conducted with total laryngectomees submitted to olfaction rehabilitation by means of the Nasal Airflow-Inducing Maneuver (NAIM) using the University of Pennsylvania Smell Identification Test (UPSIT), Olfactory Acuity Questionnaires, a Monitoring Questionnaire, and the University of Washington Quality of Life Questionnaire (UW-QOL). Participants were 45 total laryngectomees. Before olfaction rehabilitation, 48.9% of the participants had their olfactic abilities classified as anosmia, 46.8% as microsmia, and 4.4% were considered within the normal range. After olfaction rehabilitation, 4.4% of the participants were classified as anosmia and 31.1% were within the normal range. In the Smell Identification Test, the mean score after rehabilitation showed statistically significant improvement. Reponses to the Olfactory Acuity Questionnaires after rehabilitation showed improvement in the frequency of perception regarding smell, taste, and the ability to smell perfume, food, leaking gas, and smoke, after learning the maneuver. Although the scores in the Quality of Life Questionnaire already indicated good quality of life before the surgery, post-intervention values were statistically significant. Olfaction rehabilitation improves olfactory function and has a positive impact on the activities of daily living and quality of life of total laryngectomized patients.
Bernhard, Nirit; van der Kooy, Derek
2000-01-01
Continuous presentation of an olfactory stimulus causes a decrement of the chemotaxis response in the nematode Caenorhabditis elegans. However, the differences between the learning process of habituation (a readily reversible decrease in behavioral response) and other types of olfactory plasticity such as adaptation (a decrement in response due to sensory fatigue, which cannot be dishabituated) have not been addressed. The volatile odorant diacetyl (DA) was used within a single paradigm to assess the distinct processes of olfactory adaptation and habituation. Preexposing and testing worms to 100% DA vapors caused a chemotaxis decrement that was not reversible despite the presentation of potentially dishabituating stimuli. This DA adaptation was abolished in worms with an odr-10 mutation (encoding a high-affinity DA receptor on the AWA neuron), even though naive chemotaxis remained unaffected. Conversely, DA adaptation remained intact in odr-1 mutants (defective in AWC neuron-mediated olfactory behavior), even though naive chemotaxis to DA decreased. Surprisingly, exposure to vapors of intermediate concentrations of DA (0.01% and 25%) did not cause worms to exhibit any response decrement. In contrast to preexposure to high DA concentrations, preexposure to low DA concentrations (0.001%) produced habituation of the chemotaxis response (a dishabituating stimulus could reverse the response decrement back to baseline levels). The distinct behavioral effects produced by DA preexposure highlight a concentration-dependent dissociation between two decremental olfactory processes: adaptation at high DA concentrations versus habituation at low DA concentrations. PMID:10940320
Unpacking buyer-seller differences in valuation from experience: A cognitive modeling approach.
Pachur, Thorsten; Scheibehenne, Benjamin
2017-12-01
People often indicate a higher price for an object when they own it (i.e., as sellers) than when they do not (i.e., as buyers)-a phenomenon known as the endowment effect. We develop a cognitive modeling approach to formalize, disentangle, and compare alternative psychological accounts (e.g., loss aversion, loss attention, strategic misrepresentation) of such buyer-seller differences in pricing decisions of monetary lotteries. To also be able to test possible buyer-seller differences in memory and learning, we study pricing decisions from experience, obtained with the sampling paradigm, where people learn about a lottery's payoff distribution from sequential sampling. We first formalize different accounts as models within three computational frameworks (reinforcement learning, instance-based learning theory, and cumulative prospect theory), and then fit the models to empirical selling and buying prices. In Study 1 (a reanalysis of published data with hypothetical decisions), models assuming buyer-seller differences in response bias (implementing a strategic-misrepresentation account) performed best; models assuming buyer-seller differences in choice sensitivity or memory (implementing a loss-attention account) generally fared worst. In a new experiment involving incentivized decisions (Study 2), models assuming buyer-seller differences in both outcome sensitivity (as proposed by a loss-aversion account) and response bias performed best. In both Study 1 and 2, the models implemented in cumulative prospect theory performed best. Model recovery studies validated our cognitive modeling approach, showing that the models can be distinguished rather well. In summary, our analysis supports a loss-aversion account of the endowment effect, but also reveals a substantial contribution of simple response bias.
Active avoidance learning requires prefrontal suppression of amygdala-mediated defensive reactions.
Moscarello, Justin M; LeDoux, Joseph E
2013-02-27
Signaled active avoidance (AA) paradigms train subjects to prevent an aversive outcome by performing a learned behavior during the presentation of a conditioned cue. This complex form of conditioning involves pavlovian and instrumental components, which produce competing behavioral responses that must be reconciled for the subject to successfully avoid an aversive stimulus. In signaled AA paradigm for rat, we tested the hypothesis that the instrumental component of AA training recruits infralimbic prefrontal cortex (ilPFC) to inhibit central amygdala (CeA)-mediated Pavlovian reactions. Pretraining lesions of ilPFC increased conditioned freezing while causing a corresponding decrease in avoidance; lesions of CeA produced opposite effects, reducing freezing and facilitating avoidance behavior. Pharmacological inactivation experiments demonstrated that ilPFC is relevant to both acquisition and expression phases of AA learning. Inactivation experiments also revealed that AA produces an ilPFC-mediated diminution of pavlovian reactions that extends beyond the training context, even when the conditioned stimulus is presented in an environment that does not allow the avoidance response. Finally, injection of a protein synthesis inhibitor into either ilPFC or CeA impaired or facilitated AA, respectively, showing that avoidance training produces two opposing memory traces in these regions. These data support a model in which AA learning recruits ilPFC to inhibit CeA-mediated defense behaviors, leading to a robust suppression of freezing that generalizes across environments. Thus, ilPFC functions as an inhibitory interface, allowing instrumental control over an aversive outcome to attenuate the expression of freezing and other reactions to conditioned threat.
USDA-ARS?s Scientific Manuscript database
Most insects have evolved highly sensitive olfactory systems which respond to odors in their environment. The extremely sensitive nature of the insect olfaction system is enhanced by the ability to learn to associate external stimuli with resources, such as food, hosts, and mates. There have been a ...
Dai, Ping-Li; Jia, Hui-Ru; Geng, Li-Li; Diao, Qing-Yun
2016-04-27
The honey bee (Apis mellifera L.) is a key nontarget insect in environmental risk assessments of insect-resistant genetically modified crops. In controlled laboratory conditions, we evaluated the potential effects of Cry1Ie toxin on survival, pollen consumption, and olfactory learning of young adult honey bees. We exposed worker bees to syrup containing 20, 200, or 20,000 ng/ml Cry1Ie toxin, and also exposed some bees to 48 ng/ml imidacloprid as a positive control for exposure to a sublethal concentration of a toxic product. Results suggested that Cry1Ie toxin carries no risk to survival, pollen consumption, or learning capabilities of young adult honey bees. However, during oral exposure to the imidacloprid treatments, honey bee learning behavior was affected and bees consumed significantly less pollen than the control and Cry1Ie groups. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ceccanti, Mauro; Coccurello, Roberto; Carito, Valentina; Ciafrè, Stefania; Ferraguti, Giampiero; Giacovazzo, Giacomo; Mancinelli, Rosanna; Tirassa, Paola; Chaldakov, George N; Pascale, Esterina; Ceccanti, Marco; Codazzo, Claudia; Fiore, Marco
2016-07-01
Ethanol (EtOH) exposure during pregnancy induces cognitive and physiological deficits in the offspring. However, the role of paternal alcohol exposure (PAE) on offspring EtOH sensitivity and neurotrophins has not received much attention. The present study examined whether PAE may disrupt nerve growth factor (NGF) and/or brain-derived neurotrophic factor (BDNF) and affect EtOH preference/rewarding properties in the male offspring. CD1 sire mice were chronically addicted for EtOH or administered with sucrose. Their male offsprings when adult were assessed for EtOH preference by a conditioned place preference paradigm. NGF and BDNF, their receptors (p75(NTR) , TrkA and TrkB), dopamine active transporter (DAT), dopamine receptors D1 and D2, pro-NGF and pro-BDNF were also evaluated in brain areas. PAE affected NGF levels in frontal cortex, striatum, olfactory lobes, hippocampus and hypothalamus. BDNF alterations in frontal cortex, striatum and olfactory lobes were found. PAE induced a higher susceptibility to the EtOH rewarding effects mostly evident at the lower concentration (0.5 g/kg) that was ineffective in non-PAE offsprings. Moreover, higher ethanol concentrations (1.5 g/kg) produced an aversive response in PAE animals and a significant preference in non-PAE offspring. PAE affected also TrkA in the hippocampus and p75(NTR) in the frontal cortex. DAT was affected in the olfactory lobes in PAE animals treated with 0.5 g/kg of ethanol while no differences were found on D1/D2 receptors and for pro-NGF or pro-BDNF. In conclusion, this study shows that: PAE affects NGF and BDNF expression in the mouse brain; PAE may induce ethanol intake preference in the male offspring. © 2015 Society for the Study of Addiction.
Predator experience overrides learned aversion to heterospecifics in stickleback species pairs
Kozak, Genevieve M.; Boughman, Janette W.
2015-01-01
Predation risk can alter female mating decisions because the costs of mate searching and selecting attractive mates increase when predators are present. In response to predators, females have been found to plastically adjust mate preference within species, but little is known about how predators alter sexual isolation and hybridization among species. We tested the effects of predator exposure on sexual isolation between benthic and limnetic threespine sticklebacks (Gasterosteus spp.). Female discrimination against heterospecific mates was measured before and after females experienced a simulated attack by a trout predator or a control exposure to a harmless object. In the absence of predators, females showed increased aversion to heterospecifics over time. We found that predator exposure made females less discriminating and precluded this learned aversion to heterospecifics. Benthic and limnetic males differ in coloration, and predator exposure also affected sexual isolation by weakening female preferences for colourful males. Predator effects on sexual selection were also tested but predators had few effects on female choosiness among conspecific mates. Our results suggest that predation risk may disrupt the cognitive processes associated with mate choice and lead to fluctuations in the strength of sexual isolation between species. PMID:25808887
Olfactory Interference during Inhibitory Backward Pairing in Honey Bees
Dacher, Matthieu; Smith, Brian H.
2008-01-01
Background Restrained worker honey bees are a valuable model for studying the behavioral and neural bases of olfactory plasticity. The proboscis extension response (PER; the proboscis is the mouthpart of honey bees) is released in response to sucrose stimulation. If sucrose stimulation is preceded one or a few times by an odor (forward pairing), the bee will form a memory for this association, and subsequent presentations of the odor alone are sufficient to elicit the PER. However, backward pairing between the two stimuli (sucrose, then odor) has not been studied to any great extent in bees, although the vertebrate literature indicates that it elicits a form of inhibitory plasticity. Methodology/Principal Findings If hungry bees are fed with sucrose, they will release a long lasting PER; however, this PER can be interrupted if an odor is presented 15 seconds (but not 7 or 30 seconds) after the sucrose (backward pairing). We refer to this previously unreported process as olfactory interference. Bees receiving this 15 second backward pairing show reduced performance after a subsequent single forward pairing (excitatory conditioning) trial. Analysis of the results supported a relationship between olfactory interference and a form of backward pairing-induced inhibitory learning/memory. Injecting the drug cimetidine into the deutocerebrum impaired olfactory interference. Conclusions/Significance Olfactory interference depends on the associative link between odor and PER, rather than between odor and sucrose. Furthermore, pairing an odor with sucrose can lead either to association of this odor to PER or to the inhibition of PER by this odor. Olfactory interference may provide insight into processes that gate how excitatory and inhibitory memories for odor-PER associations are formed. PMID:18946512
Comparing Electric Shock and a Fearful Screaming Face as Unconditioned Stimuli for Fear Learning
Glenn, Catherine R.; Lieberman, Lynne; Hajcak, Greg
2012-01-01
The potency of an unconditioned stimulus (UCS) can impact the degree of fear learning. One of the most common and effective UCSs is an electric shock, which is inappropriate for certain populations (e.g., children). To address this need, a novel fear learning paradigm was recently developed that uses a fearful female face and scream as the UCS. The present study directly compared the efficacy of the screaming female UCS and a traditional shock UCS in two fear learning paradigms. Thirty-six young adults completed two fear learning tasks and a measure of trait anxiety; fear learning was indexed with fear-potentiated startle (FPS) and self-reported fear ratings. Results indicated comparable FPS across the two tasks. However, larger overall startle responses were exhibited in the shock task, and participants rated the shock UCS and overall task as more aversive than the screaming female. In addition, trait anxiety was only related to FPS in the fear learning task that employed a shock as the UCS. Taken together, results indicate that, although both UCS paradigms can be used for fear conditioning (i.e., to produce differences between CS+ and CS−), the shock UCS paradigm is more aversive and potentially more sensitive to individual differences in anxiety. PMID:23007035
Childhood Esthesioneuroblastoma Treatment (PDQ®)—Patient Version
Childhood esthesioneuroblastoma (olfactory neuroblastoma) treatment options may include surgery, radiation therapy, and/or chemotherapy. Learn more about the symptoms, diagnosis, prognosis, and treatment of childhood esthesioneuroblastoma in this expert-reviewed summary.
Reference memory, anxiety and estrous cyclicity in C57BL/6NIA mice are affected by age and sex.
Frick, K M; Burlingame, L A; Arters, J A; Berger-Sweeney, J
2000-01-01
Age-related changes in learning and memory are common in rodents. However, direct comparisons of the effects of aging on learning and memory in both males and females are lacking. The present study examined whether memory deteriorates with increasing age in C57BL/6NIA mice, and whether age-related changes in learning and memory are similar in both sexes. Male and female mice (five, 17 and 25 months of age) were tested in a battery of behavioral tasks including the Morris water maze (spatial and non-spatial reference memory), simple odor discrimination (olfactory reference memory), plus maze (anxiety/exploration), locomotor activity, and basic reflexes. Five-month-old mice learned the water maze and odor discrimination tasks rapidly. Relative to five-month-old mice, 25-month-old mice exhibited impaired spatial and olfactory reference memory, but intact non-spatial reference memory. The spatial reference memory of 17-month-old mice was also impaired, but less so than 25-month mice. Seventeen-month-old mice exhibited intact non-spatial (visual and olfactory) reference memory. Five and 25-month-old mice had similar levels of plus maze exploration and locomotor activity, whereas 17-month-old mice were more active than both groups and were slightly less exploratory than five-month-old mice. Although sex differences were not observed in the five- and 25-month groups, 17-month-old females exhibited more impaired spatial reference memory and increased anxiety relative to 17-month-old males. Estrous cycling in females deteriorated significantly with increased age; all 25-month-old females had ceased cycling and 80% of 17-month-old females displayed either irregular or absent estrous cycling. This study is the first to directly compare age-related mnemonic decline in male and female mice. The results suggest that: (i) aged mice exhibit significant deficits in spatial and olfactory reference memory relative to young mice, whereas middle-aged mice exhibit only a moderate spatial memory deficit and; (ii) spatial reference memory decline begins at an earlier age in females than in males, a finding that may be related to the cessation of estrous cycling.
Predicting human olfactory perception from chemical features of odor molecules.
Keller, Andreas; Gerkin, Richard C; Guan, Yuanfang; Dhurandhar, Amit; Turu, Gabor; Szalai, Bence; Mainland, Joel D; Ihara, Yusuke; Yu, Chung Wen; Wolfinger, Russ; Vens, Celine; Schietgat, Leander; De Grave, Kurt; Norel, Raquel; Stolovitzky, Gustavo; Cecchi, Guillermo A; Vosshall, Leslie B; Meyer, Pablo
2017-02-24
It is still not possible to predict whether a given molecule will have a perceived odor or what olfactory percept it will produce. We therefore organized the crowd-sourced DREAM Olfaction Prediction Challenge. Using a large olfactory psychophysical data set, teams developed machine-learning algorithms to predict sensory attributes of molecules based on their chemoinformatic features. The resulting models accurately predicted odor intensity and pleasantness and also successfully predicted 8 among 19 rated semantic descriptors ("garlic," "fish," "sweet," "fruit," "burnt," "spices," "flower," and "sour"). Regularized linear models performed nearly as well as random forest-based ones, with a predictive accuracy that closely approaches a key theoretical limit. These models help to predict the perceptual qualities of virtually any molecule with high accuracy and also reverse-engineer the smell of a molecule. Copyright © 2017, American Association for the Advancement of Science.
IGF1-Dependent Synaptic Plasticity of Mitral Cells in Olfactory Memory during Social Learning.
Liu, Zhihui; Chen, Zijun; Shang, Congping; Yan, Fei; Shi, Yingchao; Zhang, Jiajing; Qu, Baole; Han, Hailin; Wang, Yanying; Li, Dapeng; Südhof, Thomas C; Cao, Peng
2017-07-05
During social transmission of food preference (STFP), mice form long-term memory of food odors presented by a social partner. How does the brain associate a social context with odor signals to promote memory encoding? Here we show that odor exposure during STFP, but not unconditioned odor exposure, induces glomerulus-specific long-term potentiation (LTP) of synaptic strength selectively at the GABAergic component of dendrodendritic synapses of granule and mitral cells in the olfactory bulb. Conditional deletion of synaptotagmin-10, the Ca 2+ sensor for IGF1 secretion from mitral cells, or deletion of IGF1 receptor in the olfactory bulb prevented the socially relevant GABAergic LTP and impaired memory formation after STFP. Conversely, the addition of IGF1 to acute olfactory bulb slices elicited the GABAergic LTP in mitral cells by enhancing postsynaptic GABA receptor responses. Thus, our data reveal a synaptic substrate for a socially conditioned long-term memory that operates at the level of the initial processing of sensory information. Copyright © 2017 Elsevier Inc. All rights reserved.
c-Fos expression predicts long-term social memory retrieval in mice.
Lüscher Dias, Thomaz; Fernandes Golino, Hudson; Moura de Oliveira, Vinícius Elias; Dutra Moraes, Márcio Flávio; Schenatto Pereira, Grace
2016-10-15
The way the rodent brain generally processes socially relevant information is rather well understood. How social information is stored into long-term social memory, however, is still under debate. Here, brain c-Fos expression was measured after adult mice were exposed to familiar or novel juveniles and expression was compared in several memory and socially relevant brain areas. Machine Learning algorithm Random Forest was then used to predict the social interaction category of adult mice based on c-Fos expression in these areas. Interaction with a familiar co-specific altered brain activation in the olfactory bulb, amygdala, hippocampus, lateral septum and medial prefrontal cortex. Remarkably, Random Forest was able to predict interaction with a familiar juvenile with 100% accuracy. Activity in the olfactory bulb, amygdala, hippocampus and the medial prefrontal cortex were crucial to this prediction. From our results, we suggest long-term social memory depends on initial social olfactory processing in the medial amygdala and its output connections synergistically with non-social contextual integration by the hippocampus and medial prefrontal cortex top-down modulation of primary olfactory structures. Copyright © 2016 Elsevier B.V. All rights reserved.
Ghezzi, Alfredo; Cady, Amanda M.; Najjar, Kristina; Hatch, Michael M.; Shah, Ruchita R.; Bhat, Amar; Hariri, Omar; Haroun, Kareem B.; Young, Melvin C.; Fife, Kathryn; Hooten, Jeff; Tran, Tuan; Goan, Daniel; Desai, Foram; Husain, Farhan; Godinez, Ryan M.; Sun, Jeffrey C.; Corpuz, Jonathan; Moran, Jacxelyn; Zhong, Allen C.; Chen, William Y.; Atkinson, Nigel S.
2012-01-01
Drosophila melanogaster has proven to be a useful model system for the genetic analysis of ethanol-associated behaviors. However, past studies have focused on the response of the adult fly to large, and often sedating, doses of ethanol. The pharmacological effects of low and moderate quantities of ethanol have remained understudied. In this study, we tested the acute effects of low doses of ethanol (∼7 mM internal concentration) on Drosophila larvae. While ethanol did not affect locomotion or the response to an odorant, we observed that ethanol impaired associative olfactory learning when the heat shock unconditioned stimulus (US) intensity was low but not when the heat shock US intensity was high. We determined that the reduction in learning at low US intensity was not a result of ethanol anesthesia since ethanol-treated larvae responded to the heat shock in the same manner as untreated animals. Instead, low doses of ethanol likely impair the neuronal plasticity that underlies olfactory associative learning. This impairment in learning was reversible indicating that exposure to low doses of ethanol does not leave any long lasting behavioral or physiological effects. PMID:22624024
Learned Together, Extinguished Apart: Reducing Fear to Complex Stimuli
ERIC Educational Resources Information Center
Jones, Carolyn E.; Ringuet, Stephanie; Monfils, Marie-H.
2013-01-01
Pairing a previously neutral conditioned stimulus (CS; e.g., a tone) to an aversive unconditioned stimulus (US; e.g., a footshock) leads to associative learning such that the tone alone comes to elicit a conditioned response (e.g., freezing). We have previously shown that an extinction session that occurs within the reconsolidation window…
Brooks, Elizabeth S.; Greer, Christina L.; Romero-Calderón, Rafael; Serway, Christine N.; Grygoruk, Anna; Haimovitz, Jasmine M.; Nguyen, Bac T.; Najibi, Rod; Tabone, Christopher J.; de Belle, J. Steven; Krantz, David E.
2011-01-01
Summary Storage and release of classical and amino acid neurotransmitters requires vesicular transporters. Some neurons lack known vesicular transporters, suggesting additional neurotransmitter systems remain unidentified. Insect mushroom bodies (MBs) are critical for several behaviors, including learning, but the neurotransmitters released by the intrinsic Kenyon cells (KCs) remain unknown. Likewise, KCs do not express a known vesicular transporter. We report the identification of a novel Drosophila gene portabella (prt) that is structurally similar to known vesicular transporters. Both larval and adult brains express PRT in the KCs of the MBs. Additional PRT cells project to the central complex and optic ganglia. prt mutation causes an olfactory learning deficit and an unusual defect in the male’s position during copulation that is rescued by expression in KCs. Since prt is expressed in neurons that lack other known vesicular transporters or neurotransmitters, it may define a previously unknown neurotransmitter system responsible for sexual behavior and a component of olfactory learning. PMID:22017990
Tokarev, Kirill; Tiunova, Anna
2011-01-01
Background Specialized neural pathways, the song system, are required for acquiring, producing, and perceiving learned avian vocalizations. Birds that do not learn to produce their vocalizations lack telencephalic song system components. It is not known whether the song system forebrain regions are exclusively evolved for song or whether they also process information not related to song that might reflect their ‘evolutionary history’. Methodology/Principal Findings To address this question we monitored the induction of two immediate-early genes (IEGs) c-Fos and ZENK in various regions of the song system in zebra finches (Taeniopygia guttata) in response to an aversive food learning paradigm; this involves the association of a food item with a noxious stimulus that affects the oropharyngeal-esophageal cavity and tongue, causing subsequent avoidance of that food item. The motor response results in beak and head movements but not vocalizations. IEGs have been extensively used to map neuro-molecular correlates of song motor production and auditory processing. As previously reported, neurons in two pallial vocal motor regions, HVC and RA, expressed IEGs after singing. Surprisingly, c-Fos was induced equivalently also after food aversion learning in the absence of singing. The density of c-Fos positive neurons was significantly higher than that of birds in control conditions. This was not the case in two other pallial song nuclei important for vocal plasticity, LMAN and Area X, although singing did induce IEGs in these structures, as reported previously. Conclusions/Significance Our results are consistent with the possibility that some of the song nuclei may participate in non-vocal learning and the populations of neurons involved in the two tasks show partial overlap. These findings underscore the previously advanced notion that the specialized forebrain pre-motor nuclei controlling song evolved from circuits involved in behaviors related to feeding. PMID:21695176
Memory-updating abrogates extinction of learned immunosuppression.
Hadamitzky, Martin; Bösche, Katharina; Wirth, Timo; Buck, Benjamin; Beetz, Oliver; Christians, Uwe; Schniedewind, Björn; Lückemann, Laura; Güntürkün, Onur; Engler, Harald; Schedlowski, Manfred
2016-02-01
When memories are recalled, they enter a transient labile phase in which they can be impaired or enhanced followed by a new stabilization process termed reconsolidation. It is unknown, however, whether reconsolidation is restricted to neurocognitive processes such as fear memories or can be extended to peripheral physiological functions as well. Here, we show in a paradigm of behaviorally conditioned taste aversion in rats memory-updating in learned immunosuppression. The administration of sub-therapeutic doses of the immunosuppressant cyclosporin A together with the conditioned stimulus (CS/saccharin) during retrieval blocked extinction of conditioned taste aversion and learned suppression of T cell cytokine (interleukin-2; interferon-γ) production. This conditioned immunosuppression is of clinical relevance since it significantly prolonged the survival time of heterotopically transplanted heart allografts in rats. Collectively, these findings demonstrate that memories can be updated on both neural and behavioral levels as well as on the level of peripheral physiological systems such as immune functioning. Copyright © 2015 Elsevier Inc. All rights reserved.
C. elegans positive butanone learning, short-term, and long-term associative memory assays.
Kauffman, Amanda; Parsons, Lance; Stein, Geneva; Wills, Airon; Kaletsky, Rachel; Murphy, Coleen
2011-03-11
The memory of experiences and learned information is critical for organisms to make choices that aid their survival. C. elegans navigates its environment through neuron-specific detection of food and chemical odors, and can associate nutritive states with chemical odors, temperature, and the pathogenicity of a food source. Here, we describe assays of C. elegans associative learning and short- and long-term associative memory. We modified an aversive olfactory learning paradigm to instead produce a positive response; the assay involves starving ~400 worms, then feeding the worms in the presence of the AWC neuron-sensed volatile chemoattractant butanone at a concentration that elicits a low chemotactic index (similar to Toroyama et al.). A standard population chemotaxis assay1 tests the worms' attraction to the odorant immediately or minutes to hours after conditioning. After conditioning, wild-type animals' chemotaxis to butanone increases ~0.6 Chemotaxis Index units, its "Learning Index". Associative learning is dependent on the presence of both food and butanone during training. Pairing food and butanone for a single conditioning period ("massed training") produces short-term associative memory that lasts ~2 hours. Multiple conditioning periods with rest periods between ("spaced training") yields long-term associative memory (<40 hours), and is dependent on the cAMP Response Element Binding protein (CREB), a transcription factor required for long-term memory across species. Our protocol also includes image analysis methods for quick and accurate determination of chemotaxis indices. High-contrast images of animals on chemotaxis assay plates are captured and analyzed by worm counting software in MatLab. The software corrects for uneven background using a morphological tophat transformation. Otsu's method is then used to determine a threshold to separate worms from the background. Very small particles are removed automatically and larger non-worm regions (plate edges or agar punches) are removed by manual selection. The software then estimates the size of single worm by ignoring regions that are above a specified maximum size and taking the median size of the remaining regions. The number of worms is then estimated by dividing the total area identified as occupied by worms by the estimated size of a single worm. We have found that learning and short- and long-term memory can be distinguished, and that these processes share similar key molecules with higher organisms. Our assays can quickly test novel candidate genes or molecules that affect learning and short- or long-term memory in C. elegans that are relevant across species.
Ezak , Meredith J.; Hong , Elizabeth; Chaparro-Garcia , Angela; Ferkey , Denise M.
2010-01-01
Olfaction and some forms of taste (including bitter) are mediated by G protein-coupled signal transduction pathways. Olfactory and gustatory ligands bind to chemosensory G protein-coupled receptors (GPCRs) in specialized sensory cells to activate intracellular signal transduction cascades. G protein-coupled receptor kinases (GRKs) are negative regulators of signaling that specifically phosphorylate activated GPCRs to terminate signaling. Although loss of GRK function usually results in enhanced cellular signaling, Caenorhabditis elegans lacking GRK-2 function are not hypersensitive to chemosensory stimuli. Instead, grk-2 mutant animals do not chemotax toward attractive olfactory stimuli or avoid aversive tastes and smells. We show here that loss-of-function mutations in the transient receptor potential vanilloid (TRPV) channels OSM-9 and OCR-2 selectively restore grk-2 behavioral avoidance of bitter tastants, revealing modality-specific mechanisms for TRPV channel function in the regulation of C. elegans chemosensation. Additionally, a single amino acid point mutation in OCR-2 that disrupts TRPV channel-mediated gene expression, but does not decrease channel function in chemosensory primary signal transduction, also restores grk-2 bitter taste avoidance. Thus, loss of GRK-2 function may lead to changes in gene expression, via OSM-9/OCR-2, to selectively alter the levels of signaling components that transduce or regulate bitter taste responses. Our results suggest a novel mechanism and multiple modality-specific pathways that sensory cells employ in response to aberrant signal transduction. PMID:20176974
Context memory formation requires activity-dependent protein degradation in the hippocampus.
Cullen, Patrick K; Ferrara, Nicole C; Pullins, Shane E; Helmstetter, Fred J
2017-11-01
Numerous studies have indicated that the consolidation of contextual fear memories supported by an aversive outcome like footshock requires de novo protein synthesis as well as protein degradation mediated by the ubiquitin-proteasome system (UPS). Context memory formed in the absence of an aversive stimulus by simple exposure to a novel environment requires de novo protein synthesis in both the dorsal (dHPC) and ventral (vHPC) hippocampus. However, the role of UPS-mediated protein degradation in the consolidation of context memory in the absence of a strong aversive stimulus has not been investigated. In the present study, we used the context preexposure facilitation effect (CPFE) procedure, which allows for the dissociation of context learning from context-shock learning, to investigate the role of activity-dependent protein degradation in the dHPC and vHPC during the formation of a context memory. We report that blocking protein degradation with the proteasome inhibitor clasto-lactacystin β-lactone (βLac) or blocking protein synthesis with anisomycin (ANI) immediately after context preexposure significantly impaired context memory formation. Additionally, we examined 20S proteasome activity at different time points following context exposure and saw that the activity of proteasomes in the dHPC increases immediately after stimulus exposure while the vHPC exhibits a biphasic pattern of proteolytic activity. Taken together, these data suggest that the requirement of increased proteolysis during memory consolidation is not driven by processes triggered by the strong aversive outcome (i.e., shock) normally used to support fear conditioning. © 2017 Cullen et al.; Published by Cold Spring Harbor Laboratory Press.
Training Strategies for the M1 Abrams Tank Driver Trainer
1984-10-01
positive reinforcement. The automatic freeze after incorrect performance, for example, may even be aversive to the trainee. The TECEP learning algorithms ...Aagard, J.A. and Braby, R. Learning Guidelines and Algorithms for Types of Training Objectives. (TAEG Report No. 23). Orlando, FL: Training Analysis and...checklist ite. flake it identical to operational setting. () Cresponde to the g;uideli ne number Tor thiss oast. Figure B-I. Learning Algorithm for
Economic decision-making in the ultimatum game by smokers.
Takahashi, Taiki
2007-10-01
No study to date compared degrees of inequity aversion in economic decision-making in the ultimatum game between non-addictive and addictive reinforcers. The comparison is potentially important in neuroeconomics and reinforcement learning theory of addiction. We compared the degrees of inequity aversion in the ultimatum game between money and cigarettes in habitual smokers. Smokers avoided inequity in the ultimatum game more dramatically for money than for cigarettes; i.e., there was a "domain effect" in decision-making in the ultimatum game. Reward-processing neural activities in the brain for non-addictive and addictive reinforcers may be distinct and the insula activation due to cue-induced craving may conflict with unfair offer-induced insula activation. Future studies in neuroeconomics of addiction should employ game-theoretic decision tasks for elucidating reinforcement learning processes in dopaminergic neural circuits.
Reznik, Samantha J; Nusslock, Robin; Pornpattananangkul, Narun; Abramson, Lyn Y; Coan, James A; Harmon-Jones, Eddie
2017-08-01
Research suggests that midline posterior versus frontal electroencephalographic (EEG) theta activity (PFTA) may reflect a novel neurophysiological index of approach motivation. Elevated PFTA has been associated with approach-related tendencies both at rest and during laboratory tasks designed to enhance approach motivation. PFTA is sensitive to changes in dopamine signaling within the fronto-striatal neural circuit, which is centrally involved in approach motivation, reward processing, and goal-directed behavior. To date, however, no studies have examined PFTA during a laboratory task designed to reduce approach motivation or goal-directed behavior. Considerable animal and human research supports the hypothesis put forth by the learned helplessness theory that exposure to uncontrollable aversive stimuli decreases approach motivation by inducing a state of perceived uncontrollability. Accordingly, the present study examined the effect of perceived uncontrollability (i.e., learned helplessness) on PFTA. EEG data were collected from 74 participants (mean age = 19.21 years; 40 females) exposed to either Controllable (n = 26) or Uncontrollable (n = 25) aversive noise bursts, or a No-Noise Condition (n = 23). In line with prediction, individuals exposed to uncontrollable aversive noise bursts displayed a significant decrease in PFTA, reflecting reduced approach motivation, relative to both individuals exposed to controllable noise bursts or the No-Noise Condition. There was no relationship between perceived uncontrollability and frontal EEG alpha asymmetry, another commonly used neurophysiological index of approach motivation. Results have implications for understanding the neurophysiology of approach motivation and establishing PFTA as a neurophysiological index of approach-related tendencies.
Gutiérrez-Castellanos, Nicolás; Pardo-Bellver, Cecília; Martínez-García, Fernando; Lanuza, Enrique
2014-01-01
Most mammals possess a vomeronasal system that detects predominantly chemical signals of biological relevance. Vomeronasal information is relayed to the accessory olfactory bulb (AOB), whose unique cortical target is the posteromedial cortical nucleus of the amygdala. This cortical structure should therefore be considered the primary vomeronasal cortex. In the present work, we describe the afferent and efferent connections of the posteromedial cortical nucleus of the amygdala in female mice, using anterograde (biotinylated dextranamines) and retrograde (Fluorogold) tracers, and zinc selenite as a tracer specific for zinc-enriched (putative glutamatergic) projections. The results show that the posteromedial cortical nucleus of the amygdala is strongly interconnected not only with the rest of the vomeronasal system (AOB and its target structures in the amygdala), but also with the olfactory system (piriform cortex, olfactory-recipient nuclei of the amygdala and entorhinal cortex). Therefore, the posteromedial cortical nucleus of the amygdala probably integrates olfactory and vomeronasal information. In addition, the posteromedial cortical nucleus of the amygdala shows moderate interconnections with the associative (basomedial) amygdala and with the ventral hippocampus, which may be involved in emotional and spatial learning (respectively) induced by chemical signals. Finally, the posteromedial cortical nucleus of the amygdala gives rise to zinc-enriched projections to the ventrolateral septum and the ventromedial striatum (including the medial islands of Calleja). This pattern of intracortical connections (with the olfactory cortex and hippocampus, mainly) and cortico-striatal excitatory projections (with the olfactory tubercle and septum) is consistent with its proposed nature as the primary vomeronasal cortex. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Lessons Learned from the Private Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robichaud, Robert J
This session is focused on lessons learned from private sector energy projects that could be applied to the federal sector. This presentation tees up the subsequent presentations by outlining the differences between private and federal sectors in objectives, metrics for determining success, funding resources/mechanisms, payback and ROI evaluation, risk tolerance/aversion, new technology adoption perspectives, and contracting mechanisms.
Sensory memory for odors is encoded in spontaneous correlated activity between olfactory glomeruli.
Galán, Roberto F; Weidert, Marcel; Menzel, Randolf; Herz, Andreas V M; Galizia, C Giovanni
2006-01-01
Sensory memory is a short-lived persistence of a sensory stimulus in the nervous system, such as iconic memory in the visual system. However, little is known about the mechanisms underlying olfactory sensory memory. We have therefore analyzed the effect of odor stimuli on the first odor-processing network in the honeybee brain, the antennal lobe, which corresponds to the vertebrate olfactory bulb. We stained output neurons with a calcium-sensitive dye and measured across-glomerular patterns of spontaneous activity before and after a stimulus. Such a single-odor presentation changed the relative timing of spontaneous activity across glomeruli in accordance with Hebb's theory of learning. Moreover, during the first few minutes after odor presentation, correlations between the spontaneous activity fluctuations suffice to reconstruct the stimulus. As spontaneous activity is ubiquitous in the brain, modifiable fluctuations could provide an ideal substrate for Hebbian reverberations and sensory memory in other neural systems.
Radtke, Christine; Wewetzer, Konstantin
2009-06-12
Olfactory ensheathing cells (OECs) are Schwann cell-like glial cells of the olfactory system that have been shown to promote axonal regeneration and remyelination in a variety of different lesion paradigms. It is still a matter of debate in how far OECs differ from Schwann cells regarding their regenerative potential and molecular setup. The fact that OECs have been already used for transplantation in humans may imply that the need of the hour is the fine-tuning of clinical application details rather than to cross the bridge between laboratory animal and man. Considering the therapeutic transplantation of OECs, however, the basic question to date is not 'how' to translate but rather 'what' to translate into clinical practice. The aim of the present article is to provide a summary of the current literature and to define the open issues relevant for translating basic research on OECs into clinical practice.
Marotta, Roberto; Fenu, Sandro; Scheggi, Simona; Vinci, Stefania; Rosas, Michela; Falqui, Andrea; Gambarana, Carla; De Montis, M. Graziella; Acquas, Elio
2014-01-01
Conditioned taste aversion (CTA) can be applied to study associative learning and its relevant underpinning molecular mechanisms in discrete brain regions. The present study examined, by immunohistochemistry and immunocytochemistry, the effects of acquisition and expression of lithium-induced CTA on activated Extracellular signal Regulated Kinase (p-ERK) in the prefrontal cortex (PFCx) and nucleus accumbens (Acb) of male Sprague-Dawley rats. The study also examined, by immunoblotting, whether acquisition and expression of lithium-induced CTA resulted in modified levels of phosphorylation of glutamate receptor subunits (NR1 and GluR1) and Thr34- and Thr75-Dopamine-and-cAMP-Regulated PhosphoProtein (DARPP-32). CTA acquisition was associated with an increase of p-ERK-positive neurons and phosphorylated NR1 receptor subunit (p-NR1) in the PFCx, whereas p-GluR1, p-Thr34- and p-Thr75-DARPP-32 levels were not changed in this brain region. CTA expression increased the number of p-ERK-positive neurons in the shell (AcbSh) and core (AcbC) but left unmodified p-NR1, p-GluR1, p-Thr34- and p-Thr75-DARPP-32 levels. Furthermore, post-embedding immunogold quantitative analysis in AcbSh revealed that CTA expression significantly increased nuclear p-ERK immunostaining as well as p-ERK-labeled axo-spinous contacts. Overall, these results indicate that ERK and NR1, but not GluR1 and DARPP-32, are differentially phosphorylated as a consequence of acquisition and expression of aversive associative learning. Moreover, these results confirm that CTA represents an useful approach to study the molecular basis of associative learning in rats and suggest the involvement of ERK cascade in learning-associated synaptic plasticity. PMID:24847227
Brünner, Yvonne F; Rodriguez-Raecke, Rea; Mutic, Smiljana; Benedict, Christian; Freiherr, Jessica
2016-10-01
This fMRI study intended to establish 3D-simulated mazes with olfactory and visual cues and examine the effect of intranasally applied insulin on memory performance in healthy subjects. The effect of insulin on hippocampus-dependent brain activation was explored using a double-blind and placebo-controlled design. Following intranasal administration of either insulin (40IU) or placebo, 16 male subjects participated in two experimental MRI sessions with olfactory and visual mazes. Each maze included two separate runs. The first was an encoding maze during which subjects learned eight olfactory or eight visual cues at different target locations. The second was a recall maze during which subjects were asked to remember the target cues at spatial locations. For eleven included subjects in the fMRI analysis we were able to validate brain activation for odor perception and visuospatial tasks. However, we did not observe an enhancement of declarative memory performance in our behavioral data or hippocampal activity in response to insulin application in the fMRI analysis. It is therefore possible that intranasal insulin application is sensitive to the methodological variations e.g. timing of task execution and dose of application. Findings from this study suggest that our method of 3D-simulated mazes is feasible for studying neural correlates of olfactory and visual memory performance. Copyright © 2016 Elsevier Inc. All rights reserved.
First demonstration of olfactory learning and long term memory in honey bee queens.
Gong, Zhiwen; Tan, Ken; Nieh, James C
2018-05-18
As the primary source of colony reproduction, social insect queens play a vital role. However, the cognitive abilities of queens are not well understood, although queen learning and memory are essential in multiple species such as honey bees, in which virgin queens must leave the nest and then successful learn to navigate back over repeated nuptial flights. Honey bee queen learning has never been previously demonstrated. We therefore tested olfactory learning in queens and workers and examined the role of DNA methylation, which plays a key role in long term memory formation. We provide the first evidence that honey bee queens have excellent learning and memory. The proportion of honey bee queens that exhibited learning was 5-fold higher than workers at every tested age and, for memory, 4-fold higher than workers at a very young age. DNA methylation may play a key role in this queen memory because queens exhibiting remote memory had a more consistent elevation in Dnmt3 gene expression as compared to workers. Both castes also showed excellent remote memory (7 day memory), which was reduced by 14-20% by the DNA methylation inhibitor, zebularine. Given that queens live about 10-fold longer than workers, these results suggest that queens can serve as an excellently long-term reservoir of colony memory. © 2018. Published by The Company of Biologists Ltd.
Behavioral consequences of innate preferences and olfactory learning in hawkmoth–flower interactions
Riffell, Jeffrey A.; Alarcón, Ruben; Abrell, Leif; Davidowitz, Goggy; Bronstein, Judith L.; Hildebrand, John G.
2008-01-01
Spatiotemporal variability in floral resources can have ecological and evolutionary consequences for both plants and the pollinators on which they depend. Seldom, however, can patterns of flower abundance and visitation in the field be linked with the behavioral mechanisms that allow floral visitors to persist when a preferred resource is scarce. To explore these mechanisms better, we examined factors controlling floral preference in the hawkmoth Manduca sexta in the semiarid grassland of Arizona. Here, hawkmoths forage primarily on flowers of the bat-adapted agave, Agave palmeri, but shift to the moth-adapted flowers of their larval host plant, Datura wrightii, when these become abundant. Both plants emit similar concentrations of floral odor, but scent composition, nectar, and flower reflectance are distinct between the two species, and A. palmeri flowers provide six times as much chemical energy as flowers of D. wrightii. Behavioral experiments with both naïve and experienced moths revealed that hawkmoths learn to feed from agave flowers through olfactory conditioning but readily switch to D. wrightii flowers, for which they are the primary pollinator, based on an innate odor preference. Behavioral flexibility and the olfactory contrast between flowers permit the hawkmoths to persist within a dynamic environment, while at the same time to function as the major pollinator of one plant species. PMID:18305169
Effects of pramipexole on the processing of rewarding and aversive taste stimuli.
McCabe, Ciara; Harwood, James; Brouwer, Sietske; Harmer, Catherine J; Cowen, Philip J
2013-07-01
Pramipexole, a D2/D3 dopamine receptor agonist, has been implicated in the development of impulse control disorders in patients with Parkinson's disease. Investigation of single doses of pramipexole in healthy participants in reward-based learning tasks has shown inhibition of the neural processing of reward, presumptively through stimulation of dopamine autoreceptors. This study aims to examine the effects of pramipexole on the neural response to the passive receipt of rewarding and aversive sight and taste stimuli. We used functional magnetic resonance imaging to examine the neural responses to the sight and taste of pleasant (chocolate) and aversive (mouldy strawberry) stimuli in 16 healthy volunteers who received a single dose of pramipexole (0.25 mg) and placebo in a double-blind, within-subject, design. Relative to placebo, pramipexole treatment reduced blood oxygen level-dependent activation to the chocolate stimuli in the areas known to play a key role in reward, including the ventromedial prefrontal cortex, the orbitofrontal cortex, striatum, thalamus and dorsal anterior cingulate cortex. Pramipexole also reduced activation to the aversive condition in the dorsal anterior cingulate cortex. There were no effects of pramipexole on the subjective ratings of the stimuli. Our results are consistent with an ability of acute, low-dose pramipexole to diminish dopamine-mediated responses to both rewarding and aversive taste stimuli, perhaps through an inhibitory action of D2/3 autoreceptors on phasic burst activity of midbrain dopamine neurones. The ability of pramipexole to inhibit aversive processing might potentiate its adverse behavioural effects and could also play a role in its proposed efficacy in treatment-resistant depression.
Lesions of the medial prefrontal cortex cause maladaptive sexual behavior in male rats.
Davis, Jon F; Loos, Maarten; Di Sebastiano, Andrea R; Brown, Jennifer L; Lehman, Michael N; Coolen, Lique M
2010-06-15
An inability to inhibit behaviors once they become maladaptive is a component of several psychiatric illnesses, and the medial prefrontal cortex (mPFC) was identified as a potential mediator of behavioral inhibition. The current study tested if the mPFC is involved in inhibition of sexual behavior when associated with aversive outcomes. Using male rats, effects of lesions of the infralimbic and prelimbic areas of the mPFC on expression of sexual behavior and ability to inhibit mating were tested using a paradigm of copulation-contingent aversion. Medial prefrontal cortex lesions did not alter expression of sexual behavior. In contrast, mPFC lesions completely blocked the acquisition of sex-aversion conditioning and lesioned animals continued to mate, in contrast to the robust behavioral inhibition toward copulation in mPFC intact male animals, resulting in only 22% of intact male animals continuing to mate. However, rats with mPFC lesions were capable of forming a conditioned place preference to sexual reward and conditioned place aversion for lithium chloride, suggesting that these lesions did not alter associative learning or sensitivity for lithium chloride. The current study indicates that animals with mPFC lesions are likely capable of forming the associations with aversive outcomes of their behavior but lack the ability to suppress seeking of sexual reward in the face of aversive consequences. These data may contribute to a better understanding of a common pathology underlying impulse control disorders, as compulsive sexual behavior has a high prevalence of comorbidity with psychiatric disorders and Parkinson's disease.
Wiemer, Julian; Pauli, Paul
2016-12-01
Fear-relevant illusory correlations (ICs) are defined as the overestimation of the relationship between a fear-relevant stimulus and aversive consequences. ICs reflect biased cognitions affecting the learning and unlearning of fear in anxiety disorders, and a deeper understanding might help to improve treatment. A model for the maintenance of ICs is proposed that highlights the importance of amplified aversiveness and salience of fear-relevant outcomes, impaired executive contingency monitoring and an availability heuristic. The model explains why ICs are enhanced in high fearful individuals and allows for some implications that might be applied to augment the effectiveness of cognitive behavior therapy, such as emotion regulation and the direction of attention to non-aversive experiences. Finally, we suggest possible future research directions and an alternative measure of ICs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mulej Bratec, Satja; Xie, Xiyao; Schmid, Gabriele; Doll, Anselm; Schilbach, Leonhard; Zimmer, Claus; Wohlschläger, Afra; Riedl, Valentin; Sorg, Christian
2015-12-01
Cognitive emotion regulation is a powerful way of modulating emotional responses. However, despite the vital role of emotions in learning, it is unknown whether the effect of cognitive emotion regulation also extends to the modulation of learning. Computational models indicate prediction error activity, typically observed in the striatum and ventral tegmental area, as a critical neural mechanism involved in associative learning. We used model-based fMRI during aversive conditioning with and without cognitive emotion regulation to test the hypothesis that emotion regulation would affect prediction error-related neural activity in the striatum and ventral tegmental area, reflecting an emotion regulation-related modulation of learning. Our results show that cognitive emotion regulation reduced emotion-related brain activity, but increased prediction error-related activity in a network involving ventral tegmental area, hippocampus, insula and ventral striatum. While the reduction of response activity was related to behavioral measures of emotion regulation success, the enhancement of prediction error-related neural activity was related to learning performance. Furthermore, functional connectivity between the ventral tegmental area and ventrolateral prefrontal cortex, an area involved in regulation, was specifically increased during emotion regulation and likewise related to learning performance. Our data, therefore, provide first-time evidence that beyond reducing emotional responses, cognitive emotion regulation affects learning by enhancing prediction error-related activity, potentially via tegmental dopaminergic pathways. Copyright © 2015 Elsevier Inc. All rights reserved.
Glia protein aquaporin-4 regulates aversive motivation of spatial memory in Morris water maze.
Zhang, Ji; Li, Ying; Chen, Zhong-Guo; Dang, Hui; Ding, Jian-Hua; Fan, Yi; Hu, Gang
2013-12-01
Although extensive investigation has revealed that an astrocyte-specific protein aquaporin-4 (AQP4) participates in regulating synaptic plasticity and memory, a functional relationship between AQP4 and learning processing has not been clearly established. This study was designed to test our hypothesis that AQP4 modulates the aversive motivation in Morris water maze (MWM). Using hidden platform training, we observed that AQP4 KO mice significantly decreased their swimming velocity compared with wild-type (WT) mice. To test for a relationship between velocities and escape motivation, we removed the platform and subjected a new group of mice similar to the session of hidden platform training. We found that KO mice exhibited a gradual reduction in swimming velocity, while WT mice did not alter their velocity. In the subsequent probe trial, KO mice after no platform training significantly decreased their mean velocity compared with those KO mice after hide platform training. However, all of KO mice were not impaired in their ability to locate a visible, cued escape platform. Our findings, along with a previous report that AQP4 regulates memory consolidation, implicate a novel role for this glial protein in modulating the aversive motivation in spatial learning paradigm. © 2013 John Wiley & Sons Ltd.
Davis, Catherine M; de Brugada, Isabel; Riley, Anthony L
2010-05-01
The attenuation of an LiCl-induced conditioned taste aversion (CTA) by LiCl preexposure is mediated primarily by associative blocking via injection-related cues. Given that preexposure to morphine attenuates morphine-induced CTAs, it was of interest to determine whether injection cues also mediate this effect. Certain morphine-induced behaviors such as analgesic tolerance are controlled associatively, via injection-related cues. Accordingly, animals in the present experiments were preexposed to morphine (or vehicle) every other day for five total exposures, followed by an extinction phase, in which the subjects were given saline injections (or no treatment) for 8 (Experiment 1) or 16 (Experiment 2) consecutive days. All of the animals then received five CTA trials with morphine (or vehicle). The morphine-preexposed animals in Experiment 1 displayed an attenuation of the morphine CTA that was unaffected by extinction saline injections, suggesting that blocking by injection cues during morphine preexposure does not mediate this effect. All of the morphine-preexposed subjects in Experiment 2 displayed a weakened preexposure effect, an effect inconsistent with a selective extinction of drug-associated stimuli. The attenuating effects of morphine preexposure in aversion learning are most likely controlled by nonassociative mechanisms, like drug tolerance.
ERIC Educational Resources Information Center
Roth, Tania L.; Moriceau, Stephanie; Sullivan, Regina M.
2006-01-01
Paradoxically, fear conditioning (odor-0.5 mA shock) yields a learned odor preference in the neonate, presumably due to a unique learning and memory circuit that does not include apparent amygdala participation. Post-training opioid antagonism with naltrexone (NTX) blocks consolidation of this odor preference and instead yields memory of a learned…
Adult Mammalian Neurogenesis and Motivated Behaviors.
Jorgensen, Claudia
2018-05-31
Adult neurogenesis continues to captivate the curiosity of the scientific community; and researchers seem to have a particular interest in identifying the functional implications of such plasticity. While the majority of research focuses on the association between adult neurogenesis and learning and memory (including spatial learning associated with hippocampal neurogenesis and olfactory discrimination associated with neurogenesis in the olfactory system), the following review will explore the link to motivated behaviors. In particular, goal-directed behaviors such as sociosexual, parental, aggressive, as well as depression- and anxiety-like behaviors and their reciprocal association to adult neurogenesis will be evaluated. The review will detail research in humans and other mammalian species. Furthermore, the potential mechanisms underlying these neurogenic alterations will be highlighted. Lastly, the review will conclude with a discussion on the functional significance of these newly generated cells in mediating goal-directed behaviors. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Mujagic, Samir; Sarkander, Jana; Erber, Barbara; Erber, Joachim
2010-01-01
The experiments analyze different forms of learning and 24-h retention in the field and in the laboratory in bees that accept sucrose with either low (=3%) or high (>/=30% or >/=50%) concentrations. In the field we studied color learning at a food site and at the hive entrance. In the laboratory olfactory conditioning of the proboscis extension response (PER) was examined. In the color learning protocol at a feeder, bees with low sucrose acceptance thresholds (=3%) show significantly faster and better acquisition than bees with high thresholds (>/=50%). Retention after 24 h is significantly different between the two groups of bees and the choice reactions converge. Bees with low and high acceptance thresholds in the field show no differences in the sucrose sensitivity PER tests in the laboratory. Acceptance thresholds in the field are thus a more sensitive behavioral measure than PER responsiveness in the laboratory. Bees with low acceptance thresholds show significantly better acquisition and 24-h retention in olfactory learning in the laboratory compared to bees with high thresholds. In the learning protocol at the hive entrance bees learn without sucrose reward that a color cue signals an open entrance. In this experiment, bees with high sucrose acceptance thresholds showed significantly better learning and reversal learning than bees with low thresholds. These results demonstrate that sucrose acceptance thresholds affect only those forms of learning in which sucrose serves as the reward. The results also show that foraging behavior in the field is a good predictor for learning behavior in the field and in the laboratory.
Olfactory system gamma oscillations: the physiological dissection of a cognitive neural system
Rojas-Líbano, Daniel
2008-01-01
Oscillatory phenomena have been a focus of dynamical systems research since the time of the classical studies on the pendulum by Galileo. Fast cortical oscillations also have a long and storied history in neurophysiology, and olfactory oscillations have led the way with a depth of explanation not present in the literature of most other cortical systems. From the earliest studies of odor-evoked oscillations by Adrian, many reports have focused on mechanisms and functional associations of these oscillations, in particular for the so-called gamma oscillations. As a result, much information is now available regarding the biophysical mechanisms that underlie the oscillations in the mammalian olfactory system. Recent studies have expanded on these and addressed functionality directly in mammals and in the analogous insect system. Sub-bands within the rodent gamma oscillatory band associated with specific behavioral and cognitive states have also been identified. All this makes oscillatory neuronal networks a unique interdisciplinary platform from which to study neurocognitive and dynamical phenomena in intact, freely behaving animals. We present here a summary of what has been learned about the functional role and mechanisms of gamma oscillations in the olfactory system as a guide for similar studies in other cortical systems. PMID:19003484
Haverkamp, Alexander; Hansson, Bill S.; Knaden, Markus
2018-01-01
Insects, including those which provide vital ecosystems services as well as those which are devastating pests or disease vectors, locate their resources mainly based on olfaction. Understanding insect olfaction not only from a neurobiological but also from an ecological perspective is therefore crucial to balance insect control and conservation. However, among all sensory stimuli olfaction is particularly hard to grasp. Our chemical environment is made up of thousands of different compounds, which might again be detected by our nose in multiple ways. Due to this complexity, researchers have only recently begun to explore the chemosensory ecology of model organisms such as Drosophila, linking the tools of chemical ecology to those of neurogenetics. This cross-disciplinary approach has enabled several studies that range from single odors and their ecological relevance, via olfactory receptor genes and neuronal processing, up to the insects' behavior. We learned that the insect olfactory system employs strategies of combinatorial coding to process general odors as well as labeled lines for specific compounds that call for an immediate response. These studies opened new doors to the olfactory world in which insects feed, oviposit, and mate. PMID:29449815
Locatelli, Fernando F; Fernandez, Patricia C; Smith, Brian H
2016-09-01
Natural odors are typically mixtures of several chemical components. Mixtures vary in composition among odor objects that have the same meaning. Therefore a central 'categorization' problem for an animal as it makes decisions about odors in natural contexts is to correctly identify odor variants that have the same meaning and avoid variants that have a different meaning. We propose that identified mechanisms of associative and non-associative plasticity in early sensory processing in the insect antennal lobe and mammalian olfactory bulb are central to solving this problem. Accordingly, this plasticity should work to improve categorization of odors that have the opposite meanings in relation to important events. Using synthetic mixtures designed to mimic natural odor variation among flowers, we studied how honey bees learn about and generalize among floral odors associated with food. We behaviorally conditioned honey bees on a difficult odor discrimination problem using synthetic mixtures that mimic natural variation among snapdragon flowers. We then used calcium imaging to measure responses of projection neurons of the antennal lobe, which is the first synaptic relay of olfactory sensory information in the brain, to study how ensembles of projection neurons change as a result of behavioral conditioning. We show how these ensembles become 'tuned' through plasticity to improve categorization of odors that have the different meanings. We argue that this tuning allows more efficient use of the immense coding space of the antennal lobe and olfactory bulb to solve the categorization problem. Our data point to the need for a better understanding of the 'statistics' of the odor space. © 2016. Published by The Company of Biologists Ltd.
Montague, Shelby A; Baker, Bruce S
2016-01-01
An animal's ability to learn and to form memories is essential for its survival. The fruit fly has proven to be a valuable model system for studies of learning and memory. One learned behavior in fruit flies is courtship conditioning. In Drosophila courtship conditioning, male flies learn not to court females during training with an unreceptive female. He retains a memory of this training and for several hours decreases courtship when subsequently paired with any female. Courtship conditioning is a unique learning paradigm; it uses a positive-valence stimulus, a female fly, to teach a male to decrease an innate behavior, courtship of the female. As such, courtship conditioning is not clearly categorized as either appetitive or aversive conditioning. The mushroom body (MB) region in the fruit fly brain is important for several types of memory; however, the precise subsets of intrinsic and extrinsic MB neurons necessary for courtship conditioning are unknown. Here, we disrupted synaptic signaling by driving a shibirets effector in precise subsets of MB neurons, defined by a collection of split-GAL4 drivers. Out of 75 lines tested, 32 showed defects in courtship conditioning memory. Surprisingly, we did not have any hits in the γ lobe Kenyon cells, a region previously implicated in courtship conditioning memory. We did find that several γ lobe extrinsic neurons were necessary for courtship conditioning memory. Overall, our memory hits in the dopaminergic neurons (DANs) and the mushroom body output neurons were more consistent with results from appetitive memory assays than aversive memory assays. For example, protocerebral anterior medial DANs were necessary for courtship memory, similar to appetitive memory, while protocerebral posterior lateral 1 (PPL1) DANs, important for aversive memory, were not needed. Overall, our results indicate that the MB circuits necessary for courtship conditioning memory coincide with circuits necessary for appetitive memory.
Montague, Shelby A.; Baker, Bruce S.
2016-01-01
An animal’s ability to learn and to form memories is essential for its survival. The fruit fly has proven to be a valuable model system for studies of learning and memory. One learned behavior in fruit flies is courtship conditioning. In Drosophila courtship conditioning, male flies learn not to court females during training with an unreceptive female. He retains a memory of this training and for several hours decreases courtship when subsequently paired with any female. Courtship conditioning is a unique learning paradigm; it uses a positive-valence stimulus, a female fly, to teach a male to decrease an innate behavior, courtship of the female. As such, courtship conditioning is not clearly categorized as either appetitive or aversive conditioning. The mushroom body (MB) region in the fruit fly brain is important for several types of memory; however, the precise subsets of intrinsic and extrinsic MB neurons necessary for courtship conditioning are unknown. Here, we disrupted synaptic signaling by driving a shibirets effector in precise subsets of MB neurons, defined by a collection of split-GAL4 drivers. Out of 75 lines tested, 32 showed defects in courtship conditioning memory. Surprisingly, we did not have any hits in the γ lobe Kenyon cells, a region previously implicated in courtship conditioning memory. We did find that several γ lobe extrinsic neurons were necessary for courtship conditioning memory. Overall, our memory hits in the dopaminergic neurons (DANs) and the mushroom body output neurons were more consistent with results from appetitive memory assays than aversive memory assays. For example, protocerebral anterior medial DANs were necessary for courtship memory, similar to appetitive memory, while protocerebral posterior lateral 1 (PPL1) DANs, important for aversive memory, were not needed. Overall, our results indicate that the MB circuits necessary for courtship conditioning memory coincide with circuits necessary for appetitive memory. PMID:27764141
Circadian Modulation of Consolidated Memory Retrieval Following Sleep Deprivation in Drosophila
Glou, Eric Le; Seugnet, Laurent; Shaw, Paul J.; Preat, Thomas; Goguel, Valérie
2012-01-01
Objectives: Several lines of evidence indicate that sleep plays a critical role in learning and memory. The aim of this study was to evaluate anesthesia resistant memory following sleep deprivation in Drosophila. Design: Four to 16 h after aversive olfactory training, flies were sleep deprived for 4 h. Memory was assessed 24 h after training. Training, sleep deprivation, and memory tests were performed at different times during the day to evaluate the importance of the time of day for memory formation. The role of circadian rhythms was further evaluated using circadian clock mutants. Results Memory was disrupted when flies were exposed to 4 h of sleep deprivation during the consolidation phase. Interestingly, normal memory was observed following sleep deprivation when the memory test was performed during the 2 h preceding lights-off, a period characterized by maximum wake in flies. We also show that anesthesia resistant memory was less sensitive to sleep deprivation in flies with disrupted circadian rhythms. Conclusions Our results indicate that anesthesia resistant memory, a consolidated memory less costly than long-term memory, is sensitive to sleep deprivation. In addition, we provide evidence that circadian factors influence memory vulnerability to sleep deprivation and memory retrieval. Taken together, the data show that memories weakened by sleep deprivation can be retrieved if the animals are tested at the optimal circadian time. Citation: Le Glou E; Seugnet L; Shaw PJ; Preat T; Goguel V. Circadian modulation of consolidated memory retrieval following sleep deprivation in Drosophila. SLEEP 2012;35(10):1377-1384. PMID:23024436
What and How Much Do Children Lose in Academic Settings Owing to Parental Separation?
Corrás, Tania; Seijo, Dolores; Fariña, Francisca; Novo, Mercedes; Arce, Ramón; Cabanach, Ramón G.
2017-01-01
The literature has firmly established an association between parental separation and school failure. Nevertheless, parental separation does not affect academic aptitudes. Thus, mediators explain such relationship. A field study was designed to identify and quantify damage in the mediating variables between parental separation and school failure (i.e., external school adjustment, aversion to institution, aversion to learning, aversion to instruction, aversion to teachers, indiscipline). A total of 196 children, classified into three age cohorts: 109 in level 1 (from 8 to 11 years), 46 in level 2 (from 12 to 14 years), and 41 in level 3 (15 or more years), were assessed in school adjustment and in underlying dimensions of school (mal)adjustment. The results showed significant effects of parental separation in school adjustment and in the underlying dimensions to maladjustment in the three classification levels. The magnitude of damage increased with age, i.e., small in level 1, moderate in 2, and large in 3. Damage in all the sub-dimensions underlying school (mal)adjustment was quantified. The implications of the results for the design and implementation of prevention and intervention programs for children from separated parents are discussed. PMID:28955270
Impaired associative learning after chronic exposure to pesticides in young adult honey bees.
Mengoni Goñalons, Carolina; Farina, Walter M
2018-04-11
Neonicotinoids are the most widespread insecticides in agriculture, preferred for their low toxicity to mammals and their systemic nature. Nevertheless, there have been increasing concerns regarding their impact on non-target organisms. Glyphosate is also widely used in crops and, therefore, traces of this pesticide are likely to be found together with neonicotinoids. Although glyphosate is considered a herbicide, adverse effects have been found on animal species, including honey bees. Apis mellifera is one of the most important pollinators in agroecosystems and is exposed to both these pesticides. Traces can be found in nectar and pollen of flowers that honey bees visit, but also in honey stores inside the hive. Young workers, which perform in-hive tasks that are crucial for colony maintenance, are potentially exposed to both these contaminated resources. These workers present high plasticity and are susceptible to stimuli that can modulate their behaviour and impact on colony state. Therefore, by performing standardised assays to study sublethal effects of these pesticides, these bees can be used as bioindicators. We studied the effect of chronic joint exposure to field-realistic concentrations of the neonicotinoid imidacloprid and glyphosate on gustatory perception and olfactory learning. Both pesticides reduced sucrose responsiveness and had a negative effect on olfactory learning. Glyphosate also reduced food uptake during rearing. The results indicate differential susceptibility according to honey bee age. The two agrochemicals had adverse effects on different aspects of honey bee appetitive behaviour, which could have repercussions for food distribution, propagation of olfactory information and task coordination within the nest. © 2018. Published by The Company of Biologists Ltd.
Decoding an olfactory mechanism of kin recognition and inbreeding avoidance in a primate.
Boulet, Marylène; Charpentier, Marie J E; Drea, Christine M
2009-12-03
Like other vertebrates, primates recognize their relatives, primarily to minimize inbreeding, but also to facilitate nepotism. Although associative, social learning is typically credited for discrimination of familiar kin, discrimination of unfamiliar kin remains unexplained. As sex-biased dispersal in long-lived species cannot consistently prevent encounters between unfamiliar kin, inbreeding remains a threat and mechanisms to avoid it beg explanation. Using a molecular approach that combined analyses of biochemical and microsatellite markers in 17 female and 19 male ring-tailed lemurs (Lemur catta), we describe odor-gene covariance to establish the feasibility of olfactory-mediated kin recognition. Despite derivation from different genital glands, labial and scrotal secretions shared about 170 of their respective 338 and 203 semiochemicals. In addition, these semiochemicals encoded information about genetic relatedness within and between the sexes. Although the sexes showed opposite seasonal patterns in signal complexity, the odor profiles of related individuals (whether same-sex or mixed-sex dyads) converged most strongly in the competitive breeding season. Thus, a strong, mutual olfactory signal of genetic relatedness appeared specifically when such information would be crucial for preventing inbreeding. That weaker signals of genetic relatedness might exist year round could provide a mechanism to explain nepotism between unfamiliar kin. We suggest that signal convergence between the sexes may reflect strong selective pressures on kin recognition, whereas signal convergence within the sexes may arise as its by-product or function independently to prevent competition between unfamiliar relatives. The link between an individual's genome and its olfactory signals could be mediated by biosynthetic pathways producing polymorphic semiochemicals or by carrier proteins modifying the individual bouquet of olfactory cues. In conclusion, we unveil a possible olfactory mechanism of kin recognition that has specific relevance to understanding inbreeding avoidance and nepotistic behavior observed in free-ranging primates, and broader relevance to understanding the mechanisms of vertebrate olfactory communication.
Biological complexity and adaptability of simple mammalian olfactory memory systems.
Brennan, P; Keverne, E B
2015-03-01
Chemosensory systems play vital roles in the lives of most mammals, including the detection and identification of predators, as well as sex and reproductive status and the identification of individual conspecifics. All of these capabilities require a process of recognition involving a combination of innate (kairomonal/pheromonal) and learned responses. Across very different phylogenies, the mechanisms for pheromonal and odour learning have much in common. They are frequently associated with plasticity of GABA-ergic feedback at the initial level of processing the chemosensory information, which enhances its pattern separation capability. Association of odourant features into an odour object primarily involves anterior piriform cortex for non-social odours. However, the medial amygdala appears to be involved in both the recognition of social odours and their association with chemosensory information sensed by the vomeronasal system. Unusually not only the sensory neurons themselves, but also the GABA-ergic interneurons in the olfactory bulb are continually being replaced, with implications for the induction and maintenance of learned chemosensory responses. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Bergamini, Giorgio; Sigrist, Hannes; Ferger, Boris; Singewald, Nicolas; Seifritz, Erich; Pryce, Christopher R
2016-10-01
Dopamine (DA) neurotransmission, particularly the ventral tegmental area-nucleus accumbens (VTA-NAcc) projection, underlies reward and aversion processing, and deficient DA function could underlie motivational impairments in psychiatric disorders. 6-hydroxydopamine (6-OHDA) injection is an established method for chronic DA depletion, principally applied in rat to study NAcc DA regulation of reward motivation. Given the increasing focus on studying environmental and genetic regulation of DA function in mouse models, it is important to establish the effects of 6-OHDA DA depletion in mice, in terms of reward and aversion processing. This mouse study investigated effects of 6-OHDA-induced NAcc DA depletion using the operant behavioural test battery of progressive ratio schedule (PRS), learned non-reward (LNR), learned helplessness (LH), treadmill, and in addition Pavlovian fear conditioning. 6-OHDA NAcc DA depletion, confirmed by ex vivo HPLC-ED, reduced operant responding: for gustatory reward under effortful conditions in the PRS test; to a stimulus recently associated with gustatory non-reward in the LNR test; to escape footshock recently experienced as uncontrollable in the LH test; and to avoid footshock by physical effort in the treadmill test. Evidence for specificity of effects to NAcc DA was provided by lack of effect of medial prefrontal cortex DA depletion in the LNR and LH tests. These findings add significantly to the evidence that NAcc DA is a major regulator of behavioural responding, particularly at the motivational level, to both reward and aversion. They demonstrate the suitability of mouse models for translational study of causation and reversal of pathophysiological DA function underlying motivation psychopathologies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Schiff, Hillary C; Johansen, Joshua P; Hou, Mian; Bush, David E A; Smith, Emily K; Klein, JoAnna E; LeDoux, Joseph E; Sears, Robert M
2017-01-01
Memory formation requires the temporal coordination of molecular events and cellular processes following a learned event. During Pavlovian threat (fear) conditioning (PTC), sensory and neuromodulatory inputs converge on post-synaptic neurons within the lateral nucleus of the amygdala (LA). By activating an intracellular cascade of signaling molecules, these G-protein-coupled neuromodulatory receptors are capable of recruiting a diverse profile of plasticity-related proteins. Here we report that norepinephrine, through its actions on β-adrenergic receptors (βARs), modulates aversive memory formation following PTC through two molecularly and temporally distinct signaling mechanisms. Specifically, using behavioral pharmacology and biochemistry in adult rats, we determined that βAR activity during, but not after PTC training initiates the activation of two plasticity-related targets: AMPA receptors (AMPARs) for memory acquisition and short-term memory and extracellular regulated kinase (ERK) for consolidating the learned association into a long-term memory. These findings reveal that βAR activity during, but not following PTC sets in motion cascading molecular events for the acquisition (AMPARs) and subsequent consolidation (ERK) of learned associations. PMID:27762270
Schiff, Hillary C; Johansen, Joshua P; Hou, Mian; Bush, David E A; Smith, Emily K; Klein, JoAnna E; LeDoux, Joseph E; Sears, Robert M
2017-03-01
Memory formation requires the temporal coordination of molecular events and cellular processes following a learned event. During Pavlovian threat (fear) conditioning (PTC), sensory and neuromodulatory inputs converge on post-synaptic neurons within the lateral nucleus of the amygdala (LA). By activating an intracellular cascade of signaling molecules, these G-protein-coupled neuromodulatory receptors are capable of recruiting a diverse profile of plasticity-related proteins. Here we report that norepinephrine, through its actions on β-adrenergic receptors (βARs), modulates aversive memory formation following PTC through two molecularly and temporally distinct signaling mechanisms. Specifically, using behavioral pharmacology and biochemistry in adult rats, we determined that βAR activity during, but not after PTC training initiates the activation of two plasticity-related targets: AMPA receptors (AMPARs) for memory acquisition and short-term memory and extracellular regulated kinase (ERK) for consolidating the learned association into a long-term memory. These findings reveal that βAR activity during, but not following PTC sets in motion cascading molecular events for the acquisition (AMPARs) and subsequent consolidation (ERK) of learned associations.
The endocannabinoid system and associative learning and memory in zebrafish.
Ruhl, Tim; Moesbauer, Kirstin; Oellers, Nadine; von der Emde, Gerhard
2015-09-01
In zebrafish the medial pallium of the dorsal telencephalon represents an amygdala homolog structure, which is crucially involved in emotional associative learning and memory. Similar to the mammalian amygdala, the medial pallium contains a high density of endocannabinoid receptor CB1. To elucidate the role of the zebrafish endocannabinoid system in associative learning, we tested the influence of acute and chronic administration of receptor agonists (THC, WIN55,212-2) and antagonists (Rimonabant, AM-281) on two different learning paradigms. In an appetitively motivated two-alternative choice paradigm, animals learned to associate a certain color with a food reward. In a second set-up, a fish shuttle-box, animals associated the onset of a light stimulus with the occurrence of a subsequent electric shock (avoidance conditioning). Once fish successfully had learned to solve these behavioral tasks, acute receptor activation or inactivation had no effect on memory retrieval, suggesting that established associative memories were stable and not alterable by the endocannabinoid system. In both learning tasks, chronic treatment with receptor antagonists improved acquisition learning, and additionally facilitated reversal learning during color discrimination. In contrast, chronic CB1 activation prevented aversively motivated acquisition learning, while different effects were found on appetitively motivated acquisition learning. While THC significantly improved behavioral performance, WIN55,212-2 significantly impaired color association. Our findings suggest that the zebrafish endocannabinoid system can modulate associative learning and memory. Stimulation of the CB1 receptor might play a more specific role in acquisition and storage of aversive learning and memory, while CB1 blocking induces general enhancement of cognitive functions. Copyright © 2015 Elsevier B.V. All rights reserved.
Lenaert, Bert; Boddez, Yannick; Vervliet, Bram; Schruers, Koen; Hermans, Dirk
2015-01-01
Associative learning plays an important role in the development of anxiety disorders, but a thorough understanding of the variables that impact such learning is still lacking. We investigated whether individual differences in autobiographical memory specificity are related to discrimination learning and generalization. In an associative learning task, participants learned the association between two pictures of female faces and a non-aversive outcome. Subsequently, six morphed pictures functioning as generalization stimuli (GSs) were introduced. In a sample of healthy participants (Study 1), we did not find evidence for differences in discrimination learning as a function of memory specificity. In a sample of anxiety disorder patients (Study 2), individuals who were characterized by low memory specificity showed deficient discrimination learning relative to high specific individuals. In contrast to previous findings, results revealed no effect of memory specificity on generalization. These results indicate that impaired discrimination learning, previously shown in patients suffering from an anxiety disorder, may be—in part—due to limited memory specificity. Together, these studies emphasize the importance of incorporating cognitive variables in associative learning theories and their implications for the development of anxiety disorders. In addition, re-analyses of the data (Study 3) showed that patients suffering from panic disorder showed higher outcome expectancies in the presence of the stimulus that was never followed by an outcome during discrimination training, relative to patients suffering from other anxiety disorders and healthy participants. Because we used a neutral, non-aversive outcome (i.e., drawing of a lightning bolt), these data suggest that learning abnormalities in panic disorder may not be restricted to fear learning, but rather reflect a more general associative learning deficit that also manifests in fear irrelevant contexts. PMID:26191015
It takes two-coincidence coding within the dual olfactory pathway of the honeybee.
Brill, Martin F; Meyer, Anneke; Rössler, Wolfgang
2015-01-01
To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g., in the visual system), increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrate information from different sources. Coincidence has been shown to promote associative learning and memory or stimulus feature detection (e.g., in auditory delay lines). Within the dual olfactory pathway of the honeybee both of these mechanisms might be implemented by uniglomerular projection neurons (PNs) that transfer information from the primary olfactory centers, the antennal lobe (AL), to a multimodal integration center, the mushroom body (MB). PNs from anatomically distinct tracts respond to the same stimulus space, but have different physiological properties, characteristics that are prerequisites for parallel processing of different stimulus aspects. However, the PN pathways also display mirror-imaged like anatomical trajectories that resemble neuronal coincidence detectors as known from auditory delay lines. To investigate temporal processing of olfactory information, we recorded PN odor responses simultaneously from both tracts and measured coincident activity of PNs within and between tracts. Our results show that coincidence levels are different within each of the two tracts. Coincidence also occurs between tracts, but to a minor extent compared to coincidence within tracts. Taken together our findings support the relevance of spike timing in coding of olfactory information (temporal code).
Medial Amygdala Lesions Selectively Block Aversive Pavlovian–Instrumental Transfer in Rats
McCue, Margaret G.; LeDoux, Joseph E.; Cain, Christopher K.
2014-01-01
Pavlovian conditioned stimuli (CSs) play an important role in the reinforcement and motivation of instrumental active avoidance (AA). Conditioned threats can also invigorate ongoing AA responding [aversive Pavlovian–instrumental transfer (PIT)]. The neural circuits mediating AA are poorly understood, although lesion studies suggest that lateral, basal, and central amygdala nuclei, as well as infralimbic prefrontal cortex, make key, and sometimes opposing, contributions. We recently completed an extensive analysis of brain c-Fos expression in good vs. poor avoiders following an AA test (Martinez et al., 2013, Learning and Memory). This analysis identified medial amygdala (MeA) as a potentially important region for Pavlovian motivation of instrumental actions. MeA is known to mediate defensive responding to innate threats as well as social behaviors, but its role in mediating aversive Pavlovian–instrumental interactions is unknown. We evaluated the effect of MeA lesions on Pavlovian conditioning, Sidman two-way AA conditioning (shuttling) and aversive PIT in rats. Mild footshocks served as the unconditioned stimulus in all conditioning phases. MeA lesions had no effect on AA but blocked the expression of aversive PIT and 22 kHz ultrasonic vocalizations in the AA context. Interestingly, MeA lesions failed to affect Pavlovian freezing to discrete threats but reduced freezing to contextual threats when assessed outside of the AA chamber. These findings differentiate MeA from lateral and central amygdala, as lesions of these nuclei disrupt Pavlovian freezing and aversive PIT, but have opposite effects on AA performance. Taken together, these results suggest that MeA plays a selective role in the motivation of instrumental avoidance by general or uncertain Pavlovian threats. PMID:25278858
Context-dependent memory: colour versus odour.
Pointer, S C; Bond, N W
1998-06-01
An olfactory stimulus and a visual stimulus were employed in a context-dependent memory study using a prose passage as the to-be-remembered item. Ninety-five university students (aged 17-35 years) learned the passage of prose in the presence of one of the stimuli and were then asked to recall the passage with the original context either reinstated or not reinstated. The results revealed a significant context-dependent memory effect for the olfactory cue but not for the visual cue. They demonstrate support for the effectiveness of odours as context cues and it is suggested that context-dependent memory processes may underlie the formation and retrieval of odour-evoked autobiographical memories.
Abramowitz, Eitan G; Lichtenberg, Pesach
2009-04-01
The authors developed a technique, which they call hypnotherapeutic olfactory conditioning (HOC), for exploiting the ability of scents to arouse potent emotional reactions. During hypnosis, the patient learns to associate pleasant scents with a sense of security and self-control. The patient can subsequently use this newfound association to overcome phobias and prevent panic attacks. This may be especially effective for posttraumatic stress disorder (PTSD) with episodes of anxiety, flashbacks, and dissociation triggered by smells. The authors present 3 cases, patients with needle phobia, panic disorder, and combat-induced PTSD who were successfully treated with the HOC technique.
Affect in Human-Robot Interaction
2014-01-01
is capable of learning and producing a large number of facial expressions based on Ekman’s Facial Action Coding System, FACS (Ekman and Friesen 1978... tactile (pushed, stroked, etc.), auditory (loud sound), temperature and olfactory (alcohol, smoke, etc.). The personality of the robot consists of...robot’s behavior through decision-making, learning , or action selection, a number of researchers used the fuzzy logic approach to emotion generation
Das De, Tanwee; Thomas, Tina; Verma, Sonia; Singla, Deepak; Chauhan, Charu; Srivastava, Vartika; Sharma, Punita; Kumari, Seena; Tevatiya, Sanjay; Rani, Jyoti; Hasija, Yasha; Pandey, Kailash C; Dixit, Rajnikant
2018-01-01
Decoding the molecular basis of host seeking and blood feeding behavioral evolution/adaptation in the adult female mosquitoes may provide an opportunity to design new molecular strategy to disrupt human-mosquito interactions. Although there is a great progress in the field of mosquito olfaction and chemo-detection, little is known about the sex-specific evolution of the specialized olfactory system of adult female mosquitoes that enables them to drive and manage the complex blood-feeding associated behavioral responses. A comprehensive RNA-Seq analysis of prior and post blood meal olfactory system of An. culicifacies mosquito revealed a minor but unique change in the nature and regulation of key olfactory genes that may play a pivotal role in managing diverse behavioral responses. Based on age-dependent transcriptional profiling, we further demonstrated that adult female mosquito's chemosensory system gradually learned and matured to drive the host-seeking and blood feeding behavior at the age of 5-6 days. A time scale expression analysis of Odorant Binding Proteins (OBPs) unravels unique association with a late evening to midnight peak biting time. Blood meal-induced switching of unique sets of OBP genes and Odorant Receptors (Ors) expression coincides with the change in the innate physiological status of the mosquitoes. Blood meal follows up experiments further provide enough evidence that how a synergistic and concurrent action of OBPs-Ors may drive "prior and post blood meal" associated complex behavioral events. A dominant expression of two sensory appendages proteins (SAP-1 & SAP2) in the legs of An. culicifacies suggests that this mosquito species may draw an extra advantage of having more sensitive appendages than An. stephensi , an urban malarial vector in the Indian subcontinents. Finally, our molecular modeling analysis predicts crucial amino acid residues for future functional characterization of the sensory appendages proteins which may play a central role in regulating multiple behaviors of An. culicifacies mosquito. SIGNIFICANCE Evolution and adaptation of blood feeding behavior not only favored the reproductive success of adult female mosquitoes but also make them important disease-transmitting vectors. An environmental exposure after emergence may favor the broadly tuned olfactory system of mosquitoes to drive complex behavioral responses. But, how these olfactory derived genetic factors manage female specific "pre and post" blood meal associated complex behavioral responses are not well known. Our findings suggest that a synergistic action of olfactory factors may govern an innate to prime learning strategy to facilitate rapid blood meal acquisition and downstream behavioral activities. A species-specific transcriptional profiling and an in-silico analysis predict that "sensory appendages protein" may be a unique target to design disorientation strategy against the mosquito Anopheles culicifacies .
Odor-mediated taste learning requires dorsal hippocampus, but not basolateral amygdala activity
Wheeler, Daniel S.; Chang, Stephen E.; Holland, Peter C.
2013-01-01
Mediated learning is a unique cognitive phenomenon in which mental representations of physically absent stimuli enter into associations with directly-activated representations of physically present stimuli. Three experiments investigated the functional physiology of mediated learning involving the use of odor-taste associations. In Experiments 1a and 1b, basolateral amygdala lesions failed to attenuate mediated taste aversion learning. In Experiment 2, dorsal hippocampus inactivation impaired mediated learning, but left direct learning intact. Considered with past studies, the results implicate the dorsal hippocampus in mediated learning generally, and suggest a limit on the importance of the basolateral amygdala. PMID:23274135
Gentle vs. aversive handling of pregnant ewes: II. Physiology and behavior of the lambs.
Coulon, M; Hild, S; Schroeer, A; Janczak, A M; Zanella, A J
2011-07-06
We compared the effects of aversive and gentle handling in late pregnant ewes on fearfulness, heart rate variability and spatial learning in lambs. Twenty-four Norwegian-Dala ewes were studied. Ewes were subjected to gentle (i.e. soft talking and calm behavior) or aversive handling (i.e. swift movements and shouting) for 10 min twice a day during the last five weeks of pregnancy. Lambs from aversively (AVS) or gently (GEN) treated ewes were tested at 4 weeks of age. Lamb behavior was recorded during a) a human approach test, composed of 4 min of isolation and 4 min of exposure to an unfamiliar human, b) an umbrella startle test followed by 5-min recording, and c) two repetitions of a maze test. In addition, heart rate variability was recorded telemetrically before and after the human and startle tests. The baseline heart rate variability measures suggested a lower influence of vagal stimulation in AVS lambs. In the human approach test, AVS lambs vocalized and explored the environment less, and were slower to approach the human. They also tended to have higher flight distances during the startle test than the GEN lambs. The prenatal treatment had no significant effect in the maze test. In conclusion, we showed that aversive handling of pregnant ewes increased fearfulness and reduced vagal tone in their progeny compared to GEN lambs. These effects can have consequences for how lambs cope with rearing conditions. Copyright © 2011 Elsevier Inc. All rights reserved.
Inhibition of Fear by Learned Safety Signals: minisymposium review
Fernando, Anushka B. P.; Kazama, Andy M.; Jovanovic, Tanja; Ostroff, Linnaea E.; Sangha, Susan
2012-01-01
Safety signals are learned cues that predict the non-occurrence of an aversive event. As such, safety signals are potent inhibitors of fear and stress responses. Investigations of safety signal learning have increased over the last few years due in part to the finding that traumatized persons are unable to utilize safety cues to inhibit fear, making it a clinically relevant phenotype. The goal of this review is to present recent advances relating to the neural and behavioral mechanisms of safety learning and expression in rodents, non-human primates and humans. PMID:23055481
Lateralization of visual learning in the honeybee.
Letzkus, Pinar; Boeddeker, Norbert; Wood, Jeff T; Zhang, Shao-Wu; Srinivasan, Mandyam V
2008-02-23
Lateralization is a well-described phenomenon in humans and other vertebrates and there are interesting parallels across a variety of different vertebrate species. However, there are only a few studies of lateralization in invertebrates. In a recent report, we showed lateralization of olfactory learning in the honeybee (Apis mellifera). Here, we investigate lateralization of another sensory modality, vision. By training honeybees on a modified version of a visual proboscis extension reflex task, we find that bees learn a colour stimulus better with their right eye.
Sex differences in learning processes of classical and operant conditioning
Dalla, Christina; Shors, Tracey J.
2009-01-01
Males and females learn and remember differently at different times in their lives. These differences occur in most species, from invertebrates to humans. We review here sex differences as they occur in laboratory rodent species. We focus on classical and operant conditioning paradigms, including classical eyeblink conditioning, fear conditioning, active avoidance and conditioned taste aversion. Sex differences have been reported during acquisition, retention and extinction in most of these paradigms. In general, females perform better than males in the classical eyeblink conditioning, in fear-potentiated startle and in most operant conditioning tasks, such as the active avoidance test. However, in the classical fear conditioning paradigm, in certain lever-pressing paradigms and in the conditioned taste aversion males outperform females or are more resistant to extinction. Most sex differences in conditioning are dependent on organizational effects of gonadal hormones during early development of the brain, in addition to modulation by activational effects during puberty and adulthood. Critically, sex differences in performance account for some of the reported effects on learning and these are discussed throughout the review. Because so many mental disorders are more prevalent on one sex than the other, it is important to consider sex differences in learning when applying animal models of learning for these disorders. Finally, we discuss how sex differences in learning continue to alter the brain throughout the lifespan. Thus, sex differences in learning are not only mediated by sex differences in the brain, but also contribute to them. PMID:19272397
Sex differences in learning processes of classical and operant conditioning.
Dalla, Christina; Shors, Tracey J
2009-05-25
Males and females learn and remember differently at different times in their lives. These differences occur in most species, from invertebrates to humans. We review here sex differences as they occur in laboratory rodent species. We focus on classical and operant conditioning paradigms, including classical eyeblink conditioning, fear-conditioning, active avoidance and conditioned taste aversion. Sex differences have been reported during acquisition, retention and extinction in most of these paradigms. In general, females perform better than males in the classical eyeblink conditioning, in fear-potentiated startle and in most operant conditioning tasks, such as the active avoidance test. However, in the classical fear-conditioning paradigm, in certain lever-pressing paradigms and in the conditioned taste aversion, males outperform females or are more resistant to extinction. Most sex differences in conditioning are dependent on organizational effects of gonadal hormones during early development of the brain, in addition to modulation by activational effects during puberty and adulthood. Critically, sex differences in performance account for some of the reported effects on learning and these are discussed throughout the review. Because so many mental disorders are more prevalent in one sex than the other, it is important to consider sex differences in learning when applying animal models of learning for these disorders. Finally, we discuss how sex differences in learning continue to alter the brain throughout the lifespan. Thus, sex differences in learning are not only mediated by sex differences in the brain, but also contribute to them.
Migliore, Michele; Hines, Michael L.; Shepherd, Gordon M.
2014-01-01
The precise mechanism by which synaptic excitation and inhibition interact with each other in odor coding through the unique dendrodendritic synaptic microcircuits present in olfactory bulb is unknown. Here a scaled-up model of the mitral–granule cell network in the rodent olfactory bulb is used to analyze dendrodendritic processing of experimentally determined odor patterns. We found that the interaction between excitation and inhibition is responsible for two fundamental computational mechanisms: (1) a balanced excitation/inhibition in strongly activated mitral cells, leading to a sparse representation of odorant input, and (2) an unbalanced excitation/inhibition (inhibition dominated) in surrounding weakly activated mitral cells, leading to lateral inhibition. These results suggest how both mechanisms can carry information about the input patterns, with optimal level of synaptic excitation and inhibition producing the highest level of sparseness and decorrelation in the network response. The results suggest how the learning process, through the emergent development of these mechanisms, can enhance odor representation of olfactory bulb. PMID:25297097