Sample records for aversive visual learning

  1. Visual Aversive Learning Compromises Sensory Discrimination.

    PubMed

    Shalev, Lee; Paz, Rony; Avidan, Galia

    2018-03-14

    Aversive learning is thought to modulate perceptual thresholds, which can lead to overgeneralization. However, it remains undetermined whether this modulation is domain specific or a general effect. Moreover, despite the unique role of the visual modality in human perception, it is unclear whether this aspect of aversive learning exists in this modality. The current study was designed to examine the effect of visual aversive outcomes on the perception of basic visual and auditory features. We tested the ability of healthy participants, both males and females, to discriminate between neutral stimuli, before and after visual learning. In each experiment, neutral stimuli were associated with aversive images in an experimental group and with neutral images in a control group. Participants demonstrated a deterioration in discrimination (higher discrimination thresholds) only after aversive learning. This deterioration was measured for both auditory (tone frequency) and visual (orientation and contrast) features. The effect was replicated in five different experiments and lasted for at least 24 h. fMRI neural responses and pupil size were also measured during learning. We showed an increase in neural activations in the anterior cingulate cortex, insula, and amygdala during aversive compared with neutral learning. Interestingly, the early visual cortex showed increased brain activity during aversive compared with neutral context trials, with identical visual information. Our findings imply the existence of a central multimodal mechanism, which modulates early perceptual properties, following exposure to negative situations. Such a mechanism could contribute to abnormal responses that underlie anxiety states, even in new and safe environments. SIGNIFICANCE STATEMENT Using a visual aversive-learning paradigm, we found deteriorated discrimination abilities for visual and auditory stimuli that were associated with visual aversive stimuli. We showed increased neural activations in the anterior cingulate cortex, insula, and amygdala during aversive learning, compared with neutral learning. Importantly, similar findings were also evident in the early visual cortex during trials with aversive/neutral context, but with identical visual information. The demonstration of this phenomenon in the visual modality is important, as it provides support to the notion that aversive learning can influence perception via a central mechanism, independent of input modality. Given the dominance of the visual system in human perception, our findings hold relevance to daily life, as well as imply a potential etiology for anxiety disorders. Copyright © 2018 the authors 0270-6474/18/382766-14$15.00/0.

  2. Visuocortical Changes During Delay and Trace Aversive Conditioning: Evidence From Steady-State Visual Evoked Potentials

    PubMed Central

    Miskovic, Vladimir; Keil, Andreas

    2015-01-01

    The visual system is biased towards sensory cues that have been associated with danger or harm through temporal co-occurrence. An outstanding question about conditioning-induced changes in visuocortical processing is the extent to which they are driven primarily by top-down factors such as expectancy or by low-level factors such as the temporal proximity between conditioned stimuli and aversive outcomes. Here, we examined this question using two different differential aversive conditioning experiments: participants learned to associate a particular grating stimulus with an aversive noise that was presented either in close temporal proximity (delay conditioning experiment) or after a prolonged stimulus-free interval (trace conditioning experiment). In both experiments we probed cue-related cortical responses by recording steady-state visual evoked potentials (ssVEPs). Although behavioral ratings indicated that all participants successfully learned to discriminate between the grating patterns that predicted the presence versus absence of the aversive noise, selective amplification of population-level responses in visual cortex for the conditioned danger signal was observed only when the grating and the noise were temporally contiguous. Our findings are in line with notions purporting that changes in the electrocortical response of visual neurons induced by aversive conditioning are a product of Hebbian associations among sensory cell assemblies rather than being driven entirely by expectancy-based, declarative processes. PMID:23398582

  3. Aversive learning shapes neuronal orientation tuning in human visual cortex.

    PubMed

    McTeague, Lisa M; Gruss, L Forest; Keil, Andreas

    2015-07-28

    The responses of sensory cortical neurons are shaped by experience. As a result perceptual biases evolve, selectively facilitating the detection and identification of sensory events that are relevant for adaptive behaviour. Here we examine the involvement of human visual cortex in the formation of learned perceptual biases. We use classical aversive conditioning to associate one out of a series of oriented gratings with a noxious sound stimulus. After as few as two grating-sound pairings, visual cortical responses to the sound-paired grating show selective amplification. Furthermore, as learning progresses, responses to the orientations with greatest similarity to the sound-paired grating are increasingly suppressed, suggesting inhibitory interactions between orientation-selective neuronal populations. Changes in cortical connectivity between occipital and fronto-temporal regions mirror the changes in visuo-cortical response amplitudes. These findings suggest that short-term behaviourally driven retuning of human visual cortical neurons involves distal top-down projections as well as local inhibitory interactions.

  4. Aversive Learning of Colored Lights in Walking Honeybees

    PubMed Central

    Kirkerud, Nicholas H.; Schlegel, Ulrike; Giovanni Galizia, C.

    2017-01-01

    The honeybee has been established as an important model organism in studies on visual learning. So far the emphasis has been on appetitive conditioning, simulating floral discrimination, and homing behavior, where bees perform exceptionally well in visual discrimination tasks. However, bees in the wild also face dangers, and recent findings suggest that what is learned about visual percepts is highly context dependent. A stimulus that follows an unpleasant period, is associated with the feeling of relief- or safety in humans and animals, thus acquiring a positive meaning. Whether this is also the case in honeybees is still an open question. Here, we conditioned bees aversively in a walking arena where each half was illuminated by light of a specific wavelength and intensity, one of which was combined with electric shocks. In this paradigm, the bees' preferences to the different lights were modified through nine conditioning trials, forming robust escape, and avoidance behaviors. Strikingly, we found that while 465 nm (human blue) and 590 nm (human yellow) lights both could acquire negative valences (inducing avoidance response), 525 nm (human green) light could not. This indicates that green light holds an innate meaning of safety which is difficult to overrule even through intensive aversive conditioning. The bees had slight initial preferences to green over the blue and the yellow lights, which could be compensated by adjusting light intensity. However, this initial bias played a minor role while the chromatic properties were the most salient characteristics of the light stimuli during aversive conditioning. Moreover, bees could learn the light signaling safety, revealing the existence of a relief component in aversive operant conditioning, similar to what has been observed in other animals. PMID:28588460

  5. Potentiation of the early visual response to learned danger signals in adults and adolescents

    PubMed Central

    Howsley, Philippa; Jordan, Jeff; Johnston, Pat

    2015-01-01

    The reinforcing effects of aversive outcomes on avoidance behaviour are well established. However, their influence on perceptual processes is less well explored, especially during the transition from adolescence to adulthood. Using electroencephalography, we examined whether learning to actively or passively avoid harm can modulate early visual responses in adolescents and adults. The task included two avoidance conditions, active and passive, where two different warning stimuli predicted the imminent, but avoidable, presentation of an aversive tone. To avoid the aversive outcome, participants had to learn to emit an action (active avoidance) for one of the warning stimuli and omit an action for the other (passive avoidance). Both adults and adolescents performed the task with a high degree of accuracy. For both adolescents and adults, increased N170 event-related potential amplitudes were found for both the active and the passive warning stimuli compared with control conditions. Moreover, the potentiation of the N170 to the warning stimuli was stable and long lasting. Developmental differences were also observed; adolescents showed greater potentiation of the N170 component to danger signals. These findings demonstrate, for the first time, that learned danger signals in an instrumental avoidance task can influence early visual sensory processes in both adults and adolescents. PMID:24652856

  6. Previous Institutionalization Is Followed by Broader Amygdala-Hippocampal-PFC Network Connectivity during Aversive Learning in Human Development.

    PubMed

    Silvers, Jennifer A; Lumian, Daniel S; Gabard-Durnam, Laurel; Gee, Dylan G; Goff, Bonnie; Fareri, Dominic S; Caldera, Christina; Flannery, Jessica; Telzer, Eva H; Humphreys, Kathryn L; Tottenham, Nim

    2016-06-15

    Early institutional care can be profoundly stressful for the human infant, and, as such, can lead to significant alterations in brain development. In animal models, similar variants of early adversity have been shown to modify amygdala-hippocampal-prefrontal cortex development and associated aversive learning. The current study examined this rearing aberration in human development. Eighty-nine children and adolescents who were either previously institutionalized (PI youth; N = 46; 33 females and 13 males; age range, 7-16 years) or were raised by their biological parents from birth (N = 43; 22 females and 21 males; age range, 7-16 years) completed an aversive-learning paradigm while undergoing functional neuroimaging, wherein visual cues were paired with either an aversive sound (CS+) or no sound (CS-). For the PI youth, better aversive learning was associated with higher concurrent trait anxiety. Both groups showed robust learning and amygdala activation for CS+ versus CS- trials. However, PI youth also exhibited broader recruitment of several regions and increased hippocampal connectivity with prefrontal cortex. Stronger connectivity between the hippocampus and ventromedial PFC predicted significant improvements in future anxiety (measured 2 years later), and this was particularly true within the PI group. These results suggest that for humans as well as for other species, early adversity alters the neurobiology of aversive learning by engaging a broader prefrontal-subcortical circuit than same-aged peers. These differences are interpreted as ontogenetic adaptations and potential sources of resilience. Prior institutionalization is a significant form of early adversity. While nonhuman animal research suggests that early adversity alters aversive learning and associated neurocircuitry, no prior work has examined this in humans. Here, we show that youth who experienced prior institutionalization, but not comparison youth, recruit the hippocampus during aversive learning. Among youth who experienced prior institutionalization, individual differences in aversive learning were associated with worse current anxiety. However, connectivity between the hippocampus and prefrontal cortex prospectively predicted significant improvements in anxiety 2 years following scanning for previously institutionalized youth. Among youth who experienced prior institutionalization, age-atypical engagement of a distributed set of brain regions during aversive learning may serve a protective function. Copyright © 2016 the authors 0270-6474/16/366421-11$15.00/0.

  7. Differentiating aversive conditioning in bistable perception: Avoidance of a percept vs. salience of a stimulus.

    PubMed

    Wilbertz, Gregor; Sterzer, Philipp

    2018-05-01

    Alternating conscious visual perception of bistable stimuli is influenced by several factors. In order to understand the effect of negative valence, we tested the effect of two types of aversive conditioning on dominance durations in binocular rivalry. Participants received either aversive classical conditioning of the stimuli shown alone between rivalry blocks, or aversive percept conditioning of one of the two possible perceptual choices during rivalry. Both groups showed successful aversive conditioning according to skin conductance responses and affective valence ratings. However, while classical conditioning led to an immediate but short-lived increase in dominance durations of the conditioned stimulus, percept conditioning yielded no significant immediate effect but tended to decrease durations of the conditioned percept during extinction. These results show dissociable effects of value learning on perceptual inference in situations of perceptual conflict, depending on whether learning relates to the decision between conflicting perceptual choices or the sensory stimuli per se. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Dissociable Learning Processes Underlie Human Pain Conditioning

    PubMed Central

    Zhang, Suyi; Mano, Hiroaki; Ganesh, Gowrishankar; Robbins, Trevor; Seymour, Ben

    2016-01-01

    Summary Pavlovian conditioning underlies many aspects of pain behavior, including fear and threat detection [1], escape and avoidance learning [2], and endogenous analgesia [3]. Although a central role for the amygdala is well established [4], both human and animal studies implicate other brain regions in learning, notably ventral striatum and cerebellum [5]. It remains unclear whether these regions make different contributions to a single aversive learning process or represent independent learning mechanisms that interact to generate the expression of pain-related behavior. We designed a human parallel aversive conditioning paradigm in which different Pavlovian visual cues probabilistically predicted thermal pain primarily to either the left or right arm and studied the acquisition of conditioned Pavlovian responses using combined physiological recordings and fMRI. Using computational modeling based on reinforcement learning theory, we found that conditioning involves two distinct types of learning process. First, a non-specific “preparatory” system learns aversive facial expressions and autonomic responses such as skin conductance. The associated learning signals—the learned associability and prediction error—were correlated with fMRI brain responses in amygdala-striatal regions, corresponding to the classic aversive (fear) learning circuit. Second, a specific lateralized system learns “consummatory” limb-withdrawal responses, detectable with electromyography of the arm to which pain is predicted. Its related learned associability was correlated with responses in ipsilateral cerebellar cortex, suggesting a novel computational role for the cerebellum in pain. In conclusion, our results show that the overall phenotype of conditioned pain behavior depends on two dissociable reinforcement learning circuits. PMID:26711494

  9. Different Roles for Honey Bee Mushroom Bodies and Central Complex in Visual Learning of Colored Lights in an Aversive Conditioning Assay

    PubMed Central

    Plath, Jenny A.; Entler, Brian V.; Kirkerud, Nicholas H.; Schlegel, Ulrike; Galizia, C. Giovanni; Barron, Andrew B.

    2017-01-01

    The honey bee is an excellent visual learner, but we know little about how and why it performs so well, or how visual information is learned by the bee brain. Here we examined the different roles of two key integrative regions of the brain in visual learning: the mushroom bodies and the central complex. We tested bees' learning performance in a new assay of color learning that used electric shock as punishment. In this assay a light field was paired with electric shock. The other half of the conditioning chamber was illuminated with light of a different wavelength and not paired with shocks. The unrestrained bee could run away from the light stimulus and thereby associate one wavelength with punishment, and the other with safety. We compared learning performance of bees in which either the central complex or mushroom bodies had been transiently inactivated by microinjection of the reversible anesthetic procaine. Control bees learned to escape the shock-paired light field and to spend more time in the safe light field after a few trials. When ventral lobe neurons of the mushroom bodies were silenced, bees were no longer able to associate one light field with shock. By contrast, silencing of one collar region of the mushroom body calyx did not alter behavior in the learning assay in comparison to control treatment. Bees with silenced central complex neurons did not leave the shock-paired light field in the middle trials of training, even after a few seconds of being shocked. We discussed how mushroom bodies and the central complex both contribute to aversive visual learning with an operant component. PMID:28611605

  10. Dissociable Learning Processes Underlie Human Pain Conditioning.

    PubMed

    Zhang, Suyi; Mano, Hiroaki; Ganesh, Gowrishankar; Robbins, Trevor; Seymour, Ben

    2016-01-11

    Pavlovian conditioning underlies many aspects of pain behavior, including fear and threat detection [1], escape and avoidance learning [2], and endogenous analgesia [3]. Although a central role for the amygdala is well established [4], both human and animal studies implicate other brain regions in learning, notably ventral striatum and cerebellum [5]. It remains unclear whether these regions make different contributions to a single aversive learning process or represent independent learning mechanisms that interact to generate the expression of pain-related behavior. We designed a human parallel aversive conditioning paradigm in which different Pavlovian visual cues probabilistically predicted thermal pain primarily to either the left or right arm and studied the acquisition of conditioned Pavlovian responses using combined physiological recordings and fMRI. Using computational modeling based on reinforcement learning theory, we found that conditioning involves two distinct types of learning process. First, a non-specific "preparatory" system learns aversive facial expressions and autonomic responses such as skin conductance. The associated learning signals-the learned associability and prediction error-were correlated with fMRI brain responses in amygdala-striatal regions, corresponding to the classic aversive (fear) learning circuit. Second, a specific lateralized system learns "consummatory" limb-withdrawal responses, detectable with electromyography of the arm to which pain is predicted. Its related learned associability was correlated with responses in ipsilateral cerebellar cortex, suggesting a novel computational role for the cerebellum in pain. In conclusion, our results show that the overall phenotype of conditioned pain behavior depends on two dissociable reinforcement learning circuits. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. An evil face? Verbal evaluative multi-CS conditioning enhances face-evoked mid-latency magnetoencephalographic responses

    PubMed Central

    Junghöfer, Markus; Rehbein, Maimu Alissa; Maitzen, Julius; Schindler, Sebastian

    2017-01-01

    Abstract Humans have a remarkable capacity for rapid affective learning. For instance, using first-order US such as odors or electric shocks, magnetoencephalography (MEG) studies of multi-CS conditioning demonstrate enhanced early (<150 ms) and mid-latency (150–300 ms) visual evoked responses to affectively conditioned faces, together with changes in stimulus evaluation. However, particularly in social contexts, human affective learning is often mediated by language, a class of complex higher-order US. To elucidate mechanisms of this type of learning, we investigate how face processing changes following verbal evaluative multi-CS conditioning. Sixty neutral expression male faces were paired with phrases about aversive crimes (30) or neutral occupations (30). Post conditioning, aversively associated faces evoked stronger magnetic fields in a mid-latency interval between 220 and 320 ms, localized primarily in left visual cortex. Aversively paired faces were also rated as more arousing and more unpleasant, evaluative changes occurring both with and without contingency awareness. However, no early MEG effects were found, implying that verbal evaluative conditioning may require conceptual processing and does not engage rapid, possibly sub-cortical, pathways. Results demonstrate the efficacy of verbal evaluative multi-CS conditioning and indicate both common and distinct neural mechanisms of first- and higher-order multi-CS conditioning, thereby informing theories of associative learning. PMID:28008078

  12. An evil face? Verbal evaluative multi-CS conditioning enhances face-evoked mid-latency magnetoencephalographic responses.

    PubMed

    Junghöfer, Markus; Rehbein, Maimu Alissa; Maitzen, Julius; Schindler, Sebastian; Kissler, Johanna

    2017-04-01

    Humans have a remarkable capacity for rapid affective learning. For instance, using first-order US such as odors or electric shocks, magnetoencephalography (MEG) studies of multi-CS conditioning demonstrate enhanced early (<150 ms) and mid-latency (150-300 ms) visual evoked responses to affectively conditioned faces, together with changes in stimulus evaluation. However, particularly in social contexts, human affective learning is often mediated by language, a class of complex higher-order US. To elucidate mechanisms of this type of learning, we investigate how face processing changes following verbal evaluative multi-CS conditioning. Sixty neutral expression male faces were paired with phrases about aversive crimes (30) or neutral occupations (30). Post conditioning, aversively associated faces evoked stronger magnetic fields in a mid-latency interval between 220 and 320 ms, localized primarily in left visual cortex. Aversively paired faces were also rated as more arousing and more unpleasant, evaluative changes occurring both with and without contingency awareness. However, no early MEG effects were found, implying that verbal evaluative conditioning may require conceptual processing and does not engage rapid, possibly sub-cortical, pathways. Results demonstrate the efficacy of verbal evaluative multi-CS conditioning and indicate both common and distinct neural mechanisms of first- and higher-order multi-CS conditioning, thereby informing theories of associative learning. © The Author (2016). Published by Oxford University Press.

  13. Interpersonal touch suppresses visual processing of aversive stimuli

    PubMed Central

    Kawamichi, Hiroaki; Kitada, Ryo; Yoshihara, Kazufumi; Takahashi, Haruka K.; Sadato, Norihiro

    2015-01-01

    Social contact is essential for survival in human society. A previous study demonstrated that interpersonal contact alleviates pain-related distress by suppressing the activity of its underlying neural network. One explanation for this is that attention is shifted from the cause of distress to interpersonal contact. To test this hypothesis, we conducted a functional MRI (fMRI) study wherein eight pairs of close female friends rated the aversiveness of aversive and non-aversive visual stimuli under two conditions: joining hands either with a rubber model (rubber-hand condition) or with a close friend (human-hand condition). Subsequently, participants rated the overall comfortableness of each condition. The rating result after fMRI indicated that participants experienced greater comfortableness during the human-hand compared to the rubber-hand condition, whereas aversiveness ratings during fMRI were comparable across conditions. The fMRI results showed that the two conditions commonly produced aversive-related activation in both sides of the visual cortex (including V1, V2, and V5). An interaction between aversiveness and hand type showed rubber-hand-specific activation for (aversive > non-aversive) in other visual areas (including V1, V2, V3, and V4v). The effect of interpersonal contact on the processing of aversive stimuli was negatively correlated with the increment of attentional focus to aversiveness measured by a pain-catastrophizing scale. These results suggest that interpersonal touch suppresses the processing of aversive visual stimuli in the occipital cortex. This effect covaried with aversiveness-insensitivity, such that aversive-insensitive individuals might require a lesser degree of attentional capture to aversive-stimulus processing. As joining hands did not influence the subjective ratings of aversiveness, interpersonal touch may operate by redirecting excessive attention away from aversive characteristics of the stimuli. PMID:25904856

  14. Roles of Octopamine and Dopamine Neurons for Mediating Appetitive and Aversive Signals in Pavlovian Conditioning in Crickets

    PubMed Central

    Mizunami, Makoto; Matsumoto, Yukihisa

    2017-01-01

    Revealing neural systems that mediate appetite and aversive signals in associative learning is critical for understanding the brain mechanisms controlling adaptive behavior in animals. In mammals, it has been shown that some classes of dopamine neurons in the midbrain mediate prediction error signals that govern the learning process, whereas other classes of dopamine neurons control execution of learned actions. In this review, based on the results of our studies on Pavlovian conditioning in the cricket Gryllus bimaculatus and by referring to the findings in honey bees and fruit-flies, we argue that comparable aminergic systems exist in the insect brain. We found that administrations of octopamine (the invertebrate counterpart of noradrenaline) and dopamine receptor antagonists impair conditioning to associate an olfactory or visual conditioned stimulus (CS) with water or sodium chloride solution (appetitive or aversive unconditioned stimulus, US), respectively, suggesting that specific octopamine and dopamine neurons mediate appetitive and aversive signals, respectively, in conditioning in crickets. These findings differ from findings in fruit-flies. In fruit-flies, appetitive and aversive signals are mediated by different dopamine neuron subsets, suggesting diversity in neurotransmitters mediating appetitive signals in insects. We also found evidences of “blocking” and “auto-blocking” phenomena, which suggested that the prediction error, the discrepancy between actual US and predicted US, governs the conditioning in crickets and that octopamine neurons mediate prediction error signals for appetitive US. Our studies also showed that activations of octopamine and dopamine neurons are needed for the execution of an appetitive conditioned response (CR) and an aversive CR, respectively, and we, thus, proposed that these neurons mediate US prediction signals that drive appetitive and aversive CRs. Our findings suggest that the basic principles of functioning of aminergic systems in associative learning, i.e., to transmit prediction error signals for conditioning and to convey US prediction signals for execution of CR, are conserved among insects and mammals, on account of the fact that the organization of the insect brain is much simpler than that of the mammalian brain. Further investigation of aminergic systems that govern associative learning in insects should lead to a better understanding of commonalities and diversities of computational rules underlying associative learning in animals. PMID:29311961

  15. Roles of Octopamine and Dopamine Neurons for Mediating Appetitive and Aversive Signals in Pavlovian Conditioning in Crickets.

    PubMed

    Mizunami, Makoto; Matsumoto, Yukihisa

    2017-01-01

    Revealing neural systems that mediate appetite and aversive signals in associative learning is critical for understanding the brain mechanisms controlling adaptive behavior in animals. In mammals, it has been shown that some classes of dopamine neurons in the midbrain mediate prediction error signals that govern the learning process, whereas other classes of dopamine neurons control execution of learned actions. In this review, based on the results of our studies on Pavlovian conditioning in the cricket Gryllus bimaculatus and by referring to the findings in honey bees and fruit-flies, we argue that comparable aminergic systems exist in the insect brain. We found that administrations of octopamine (the invertebrate counterpart of noradrenaline) and dopamine receptor antagonists impair conditioning to associate an olfactory or visual conditioned stimulus (CS) with water or sodium chloride solution (appetitive or aversive unconditioned stimulus, US), respectively, suggesting that specific octopamine and dopamine neurons mediate appetitive and aversive signals, respectively, in conditioning in crickets. These findings differ from findings in fruit-flies. In fruit-flies, appetitive and aversive signals are mediated by different dopamine neuron subsets, suggesting diversity in neurotransmitters mediating appetitive signals in insects. We also found evidences of "blocking" and "auto-blocking" phenomena, which suggested that the prediction error, the discrepancy between actual US and predicted US, governs the conditioning in crickets and that octopamine neurons mediate prediction error signals for appetitive US. Our studies also showed that activations of octopamine and dopamine neurons are needed for the execution of an appetitive conditioned response (CR) and an aversive CR, respectively, and we, thus, proposed that these neurons mediate US prediction signals that drive appetitive and aversive CRs. Our findings suggest that the basic principles of functioning of aminergic systems in associative learning, i.e., to transmit prediction error signals for conditioning and to convey US prediction signals for execution of CR, are conserved among insects and mammals, on account of the fact that the organization of the insect brain is much simpler than that of the mammalian brain. Further investigation of aminergic systems that govern associative learning in insects should lead to a better understanding of commonalities and diversities of computational rules underlying associative learning in animals.

  16. One-trial overshadowing: Evidence for fast specific fear learning in humans.

    PubMed

    Haesen, Kim; Beckers, Tom; Baeyens, Frank; Vervliet, Bram

    2017-03-01

    Adaptive defensive actions necessitate a fear learning system that is both fast and specific. Fast learning serves to minimize the number of threat confrontations, while specific learning ensures that the acquired fears are tied to threat-relevant cues only. In Pavlovian fear conditioning, fear acquisition is typically studied via repetitive pairings of a single cue with an aversive experience, which is not optimal for the examination of fast specific fear learning. In this study, we adopted the one-trial overshadowing procedure from basic learning research, in which a combination of two visual cues is presented once and paired with an aversive electrical stimulation. Using on-line shock expectancy ratings, skin conductance reactivity and startle reflex modulation as indices of fear learning, we found evidence of strong fear after a single conditioning trial (fast learning) as well as attenuated fear responding when only half of the trained stimulus combination was presented (specific learning). Moreover, specificity of fear responding tended to correlate with levels of state and trait anxiety. These results suggest that one-trial overshadowing can be used as a model to study fast specific fear learning in humans and individual differences therein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Interactions between radiation and amphetamine in taste-aversion learning and the role of the area postrema in amphetamine-induced conditioned taste aversions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1987-01-01

    Three experiments were run to assess the role of the area postrema in taste-aversion learning resulting from combined treatment with subthreshold unconditioned stimuli and in the acquisition of an amphetamine-induced taste aversion. In the first experiment, it was shown that combined treatment with subthreshold radiation (15 rad) and subthreshold amphetamine (0.5 mg/kg, IP) resulted in the acquisition of a taste aversion. The second experiment showed that lesions of the area postrema blocked taste aversion learning produced by two subthreshold doses of amphetamine. In the third experiment, which looked at the dose-response curve for amphetamine-induced taste aversion learning to intact ratsmore » and rats with area postrema lesions, it was shown that both groups of rats acquired taste aversions following injection of amphetamine, although the rats with lesions showed a less-severe aversion than the intact rats. The results are interpreted as indicating that amphetamine-induced taste-aversion learning may involve area post-remamediated mechanisms, particularly at the lower doses, but an intact area postrema is not a necessary condition of the acquisition of an amphetamine-induced taste aversion.« less

  18. Interactions between radiation and amphetamine in taste aversion learning and the role of the area postrema in amphetamine-induced conditioned taste aversions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1987-08-01

    Three experiments were run to assess the role of the area postrema in taste aversion learning resulting from combined treatment with subthreshold unconditioned stimuli and in the acquisition of an amphetamine-induced taste aversion. In the first experiment, it was shown that combined treatment with subthreshold radiation (15 rad) and subthreshold amphetamine (0.5 mg/kg, IP) resulted in the acquisition of a taste aversion. The second experiment showed that lesions of the area postrema blocked taste aversion learning produced by two subthreshold doses of amphetamine. In the third experiment, which looked at the dose-response curve for amphetamine-induced taste aversion learning in intactmore » rats and rats with area postrema lesions, it was shown that both groups of rats acquired taste aversions following injection of amphetamine, although the rats with lesions showed a less severe aversion than the intact rats. The results are interpreted as indicating that amphetamine-induced taste aversion learning may involve area postrema-mediated mechanisms, particularly at the lower doses, but that an intact area postrema is not a necessary condition for the acquisition of an amphetamine-induced taste aversion.« less

  19. Aversive Learning and Trait Aggression Influence Retaliatory Behavior.

    PubMed

    Molapour, Tanaz; Lindström, Björn; Olsson, Andreas

    2016-01-01

    In two experiments (n = 35, n = 34), we used a modified fear-conditioning paradigm to investigate the role of aversive learning in retaliatory behavior in social context. Participants first completed an initial aversive learning phase in which the pairing of a neutral conditioned stimulus (CS; i.e., neutral face) with a naturally aversive unconditioned stimulus (US; electric shock) was learned. Then they were given an opportunity to interact (i.e., administer 0-2 shocks) with the same faces again, during a Test phase. In Experiment 2, we used the same paradigm with the addition of online trial-by-trial ratings (e.g., US expectancy and anger) to examine the role of aversive learning, anger, and the learned expectancy of receiving punishment more closely. Our results indicate that learned aversions influenced future retaliation in a social context. In both experiments, participants showed largest skin conductance responses (SCRs) to the faces paired with one or two shocks, demonstrating successful aversive learning. Importantly, participants administered more shocks to the faces paired with the most number of shocks when the opportunity was given during test. Also, our results revealed that aggressive traits (Buss and Perry Aggression scale) were associated with retaliation only toward CSs associated with aversive experiences. These two experiments show that aggressive traits, when paired with aversive learning experiences enhance the likelihood to act anti-socially toward others.

  20. Aversive Learning and Trait Aggression Influence Retaliatory Behavior

    PubMed Central

    Molapour, Tanaz; Lindström, Björn; Olsson, Andreas

    2016-01-01

    In two experiments (n = 35, n = 34), we used a modified fear-conditioning paradigm to investigate the role of aversive learning in retaliatory behavior in social context. Participants first completed an initial aversive learning phase in which the pairing of a neutral conditioned stimulus (CS; i.e., neutral face) with a naturally aversive unconditioned stimulus (US; electric shock) was learned. Then they were given an opportunity to interact (i.e., administer 0–2 shocks) with the same faces again, during a Test phase. In Experiment 2, we used the same paradigm with the addition of online trial-by-trial ratings (e.g., US expectancy and anger) to examine the role of aversive learning, anger, and the learned expectancy of receiving punishment more closely. Our results indicate that learned aversions influenced future retaliation in a social context. In both experiments, participants showed largest skin conductance responses (SCRs) to the faces paired with one or two shocks, demonstrating successful aversive learning. Importantly, participants administered more shocks to the faces paired with the most number of shocks when the opportunity was given during test. Also, our results revealed that aggressive traits (Buss and Perry Aggression scale) were associated with retaliation only toward CSs associated with aversive experiences. These two experiments show that aggressive traits, when paired with aversive learning experiences enhance the likelihood to act anti-socially toward others. PMID:27375520

  1. The malleability of emotional perception: Short-term plasticity in retinotopic neurons accompanies the formation of perceptual biases to threat.

    PubMed

    Thigpen, Nina N; Bartsch, Felix; Keil, Andreas

    2017-04-01

    Emotional experience changes visual perception, leading to the prioritization of sensory information associated with threats and opportunities. These emotional biases have been extensively studied by basic and clinical scientists, but their underlying mechanism is not known. The present study combined measures of brain-electric activity and autonomic physiology to establish how threat biases emerge in human observers. Participants viewed stimuli designed to differentially challenge known properties of different neuronal populations along the visual pathway: location, eye, and orientation specificity. Biases were induced using aversive conditioning with only 1 combination of eye, orientation, and location predicting a noxious loud noise and replicated in a separate group of participants. Selective heart rate-orienting responses for the conditioned threat stimulus indicated bias formation. Retinotopic visual brain responses were persistently and selectively enhanced after massive aversive learning for only the threat stimulus and dissipated after extinction training. These changes were location-, eye-, and orientation-specific, supporting the hypothesis that short-term plasticity in primary visual neurons mediates the formation of perceptual biases to threat. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Roles of OA1 octopamine receptor and Dop1 dopamine receptor in mediating appetitive and aversive reinforcement revealed by RNAi studies

    PubMed Central

    Awata, Hiroko; Wakuda, Ryo; Ishimaru, Yoshiyasu; Matsuoka, Yuji; Terao, Kanta; Katata, Satomi; Matsumoto, Yukihisa; Hamanaka, Yoshitaka; Noji, Sumihare; Mito, Taro; Mizunami, Makoto

    2016-01-01

    Revealing reinforcing mechanisms in associative learning is important for elucidation of brain mechanisms of behavior. In mammals, dopamine neurons are thought to mediate both appetitive and aversive reinforcement signals. Studies using transgenic fruit-flies suggested that dopamine neurons mediate both appetitive and aversive reinforcements, through the Dop1 dopamine receptor, but our studies using octopamine and dopamine receptor antagonists and using Dop1 knockout crickets suggested that octopamine neurons mediate appetitive reinforcement and dopamine neurons mediate aversive reinforcement in associative learning in crickets. To fully resolve this issue, we examined the effects of silencing of expression of genes that code the OA1 octopamine receptor and Dop1 and Dop2 dopamine receptors by RNAi in crickets. OA1-silenced crickets exhibited impairment in appetitive learning with water but not in aversive learning with sodium chloride solution, while Dop1-silenced crickets exhibited impairment in aversive learning but not in appetitive learning. Dop2-silenced crickets showed normal scores in both appetitive learning and aversive learning. The results indicate that octopamine neurons mediate appetitive reinforcement via OA1 and that dopamine neurons mediate aversive reinforcement via Dop1 in crickets, providing decisive evidence that neurotransmitters and receptors that mediate appetitive reinforcement indeed differ among different species of insects. PMID:27412401

  3. Roles of OA1 octopamine receptor and Dop1 dopamine receptor in mediating appetitive and aversive reinforcement revealed by RNAi studies.

    PubMed

    Awata, Hiroko; Wakuda, Ryo; Ishimaru, Yoshiyasu; Matsuoka, Yuji; Terao, Kanta; Katata, Satomi; Matsumoto, Yukihisa; Hamanaka, Yoshitaka; Noji, Sumihare; Mito, Taro; Mizunami, Makoto

    2016-07-14

    Revealing reinforcing mechanisms in associative learning is important for elucidation of brain mechanisms of behavior. In mammals, dopamine neurons are thought to mediate both appetitive and aversive reinforcement signals. Studies using transgenic fruit-flies suggested that dopamine neurons mediate both appetitive and aversive reinforcements, through the Dop1 dopamine receptor, but our studies using octopamine and dopamine receptor antagonists and using Dop1 knockout crickets suggested that octopamine neurons mediate appetitive reinforcement and dopamine neurons mediate aversive reinforcement in associative learning in crickets. To fully resolve this issue, we examined the effects of silencing of expression of genes that code the OA1 octopamine receptor and Dop1 and Dop2 dopamine receptors by RNAi in crickets. OA1-silenced crickets exhibited impairment in appetitive learning with water but not in aversive learning with sodium chloride solution, while Dop1-silenced crickets exhibited impairment in aversive learning but not in appetitive learning. Dop2-silenced crickets showed normal scores in both appetitive learning and aversive learning. The results indicate that octopamine neurons mediate appetitive reinforcement via OA1 and that dopamine neurons mediate aversive reinforcement via Dop1 in crickets, providing decisive evidence that neurotransmitters and receptors that mediate appetitive reinforcement indeed differ among different species of insects.

  4. Distinct Contributions of Ventromedial and Dorsolateral Subregions of the Human Substantia Nigra to Appetitive and Aversive Learning

    PubMed Central

    Larsen, Tobias; Collette, Sven; Tyszka, Julian M.; Seymour, Ben; O'Doherty, John P.

    2015-01-01

    The role of neurons in the substantia nigra (SN) and ventral tegmental area (VTA) of the midbrain in contributing to the elicitation of reward prediction errors during appetitive learning has been well established. Less is known about the differential contribution of these midbrain regions to appetitive versus aversive learning, especially in humans. Here we scanned human participants with high-resolution fMRI focused on the SN and VTA while they participated in a sequential Pavlovian conditioning paradigm involving an appetitive outcome (a pleasant juice), as well as an aversive outcome (an unpleasant bitter and salty flavor). We found a degree of regional specialization within the SN: Whereas a region of ventromedial SN correlated with a temporal difference reward prediction error during appetitive Pavlovian learning, a dorsolateral area correlated instead with an aversive expected value signal in response to the most distal cue, and to a reward prediction error in response to the most proximal cue to the aversive outcome. Furthermore, participants' affective reactions to both the appetitive and aversive conditioned stimuli more than 1 year after the fMRI experiment was conducted correlated with activation in the ventromedial and dorsolateral SN obtained during the experiment, respectively. These findings suggest that, whereas the human ventromedial SN contributes to long-term learning about rewards, the dorsolateral SN may be particularly important for long-term learning in aversive contexts. SIGNIFICANCE STATEMENT The role of the substantia nigra (SN) and ventral tegmental area (VTA) in appetitive learning is well established, but less is known about their contribution to aversive compared with appetitive learning, especially in humans. We used high-resolution fMRI to measure activity in the SN and VTA while participants underwent higher-order Pavlovian learning. We found a regional specialization within the SN: a ventromedial area was selectively engaged during appetitive learning, and a dorsolateral area during aversive learning. Activity in these areas predicted affective reactions to appetitive and aversive conditioned stimuli over 1 year later. These findings suggest that, whereas the human ventromedial SN contributes to long-term learning about rewards, the dorsolateral SN may be particularly important for long-term learning in aversive contexts. PMID:26490862

  5. Attentional Bias for Uncertain Cues of Shock in Human Fear Conditioning: Evidence for Attentional Learning Theory

    PubMed Central

    Koenig, Stephan; Uengoer, Metin; Lachnit, Harald

    2017-01-01

    We conducted a human fear conditioning experiment in which three different color cues were followed by an aversive electric shock on 0, 50, and 100% of the trials, and thus induced low (L), partial (P), and high (H) shock expectancy, respectively. The cues differed with respect to the strength of their shock association (L < P < H) and the uncertainty of their prediction (L < P > H). During conditioning we measured pupil dilation and ocular fixations to index differences in the attentional processing of the cues. After conditioning, the shock-associated colors were introduced as irrelevant distracters during visual search for a shape target while shocks were no longer administered and we analyzed the cues’ potential to capture and hold overt attention automatically. Our findings suggest that fear conditioning creates an automatic attention bias for the conditioned cues that depends on their correlation with the aversive outcome. This bias was exclusively linked to the strength of the cues’ shock association for the early attentional processing of cues in the visual periphery, but additionally was influenced by the uncertainty of the shock prediction after participants fixated on the cues. These findings are in accord with attentional learning theories that formalize how associative learning shapes automatic attention. PMID:28588466

  6. Spatio-temporal dynamics of brain mechanisms in aversive classical conditioning: high-density event-related potential and brain electrical tomography analyses.

    PubMed

    Pizzagalli, Diego A; Greischar, Lawrence L; Davidson, Richard J

    2003-01-01

    Social cognition, including complex social judgments and attitudes, is shaped by individual learning experiences, where affect often plays a critical role. Aversive classical conditioning-a form of associative learning involving a relationship between a neutral event (conditioned stimulus, CS) and an aversive event (unconditioned stimulus, US)-represents a well-controlled paradigm to study how the acquisition of socially relevant knowledge influences behavior and the brain. Unraveling the temporal unfolding of brain mechanisms involved appears critical for an initial understanding about how social cognition operates. Here, 128-channel ERPs were recorded in 50 subjects during the acquisition phase of a differential aversive classical conditioning paradigm. The CS+ (two fearful faces) were paired 50% of the time with an aversive noise (CS upward arrow + /Paired), whereas in the remaining 50% they were not (CS upward arrow + /Unpaired); the CS- (two different fearful faces) were never paired with the noise. Scalp ERP analyses revealed differences between CS upward arrow + /Unpaired and CS- as early as approximately 120 ms post-stimulus. Tomographic source localization analyses revealed early activation modulated by the CS+ in the ventral visual pathway (e.g. fusiform gyrus, approximately 120 ms), right middle frontal gyrus (approximately 176 ms), and precuneus (approximately 240 ms). At approximately 120 ms, the CS- elicited increased activation in the left insula and left middle frontal gyrus. These findings not only confirm a critical role of prefrontal, insular, and precuneus regions in aversive conditioning, but they also suggest that biologically and socially salient information modulates activation at early stages of the information processing flow, and thus furnish initial insight about how affect and social judgments operate.

  7. Segregating the significant from the mundane on a moment-to-moment basis via direct and indirect amygdala contributions

    PubMed Central

    Lim, Seung-Lark; Padmala, Srikanth; Pessoa, Luiz

    2009-01-01

    If the amygdala is involved in shaping perceptual experience when affectively significant visual items are encountered, responses in this structure should be correlated with both visual cortex responses and behavioral reports. Here, we investigated how affective significance shapes visual perception during an attentional blink paradigm combined with aversive conditioning. Behaviorally, following aversive learning, affectively significant scenes (CS+) were better detected than neutral (CS−) ones. In terms of mean brain responses, both amygdala and visual cortical responses were stronger during CS+ relative to CS− trials. Increased brain responses in these regions were associated with improved behavioral performance across participants and followed a mediation-like pattern. Importantly, the mediation pattern was observed in a trial-by-trial analysis, revealing that the specific pattern of trial-by-trial variability in brain responses was closely related to single-trial behavioral performance. Furthermore, the influence of the amygdala on visual cortical responses was consistent with a mediation, although partial, via frontal brain regions. Our results thus suggest that affective significance potentially determines the fate of a visual item during competitive interactions by enhancing sensory processing through both direct and indirect paths. In so doing, the amygdala helps separate the significant from the mundane. PMID:19805383

  8. Lateral, not medial, prefrontal cortex contributes to punishment and aversive instrumental learning

    PubMed Central

    Jean-Richard-dit-Bressel, Philip

    2016-01-01

    Aversive outcomes punish behaviors that cause their occurrence. The prefrontal cortex (PFC) has been implicated in punishment learning and behavior, although the exact roles for different PFC regions in instrumental aversive learning and decision-making remain poorly understood. Here, we assessed the role of the orbitofrontal (OFC), rostral agranular insular (RAIC), prelimbic (PL), and infralimbic (IL) cortex in instrumental aversive learning and decision-making. Rats that pressed two individually presented levers for pellet rewards rapidly suppressed responding to one lever if it also caused mild punishment (punished lever) but continued pressing the other lever that did not cause punishment (unpunished lever). Inactivations of OFC, RAIC, IL, or PL via the GABA agonists baclofen and muscimol (BM) had no effect on the acquisition of instrumental learning. OFC inactivations increased responding on the punished lever during expression of well-learned instrumental aversive learning, whereas RAIC inactivations increased responding on the punished lever when both levers were presented simultaneously in an unpunished choice test. There were few effects of medial PFC (PL and IL) inactivation. These results suggest that lateral PFC, notably OFC and RAIC, have complementary functions in aversive instrumental learning and decision-making; OFC is important for using established aversive instrumental memories to guide behavior away from actions that cause punishment, whereas RAIC is important for aversive decision-making under conditions of choice. PMID:27918280

  9. Roles of Aminergic Neurons in Formation and Recall of Associative Memory in Crickets

    PubMed Central

    Mizunami, Makoto; Matsumoto, Yukihisa

    2010-01-01

    We review recent progress in the study of roles of octopaminergic (OA-ergic) and dopaminergic (DA-ergic) signaling in insect classical conditioning, focusing on our studies on crickets. Studies on olfactory learning in honey bees and fruit-flies have suggested that OA-ergic and DA-ergic neurons convey reinforcing signals of appetitive unconditioned stimulus (US) and aversive US, respectively. Our work suggested that this is applicable to olfactory, visual pattern, and color learning in crickets, indicating that this feature is ubiquitous in learning of various sensory stimuli. We also showed that aversive memory decayed much faster than did appetitive memory, and we proposed that this feature is common in insects and humans. Our study also suggested that activation of OA- or DA-ergic neurons is needed for appetitive or aversive memory recall, respectively. To account for this finding, we proposed a model in which it is assumed that two types of synaptic connections are strengthened by conditioning and are activated during memory recall, one type being connections from neurons representing conditioned stimulus (CS) to neurons inducing conditioned response and the other being connections from neurons representing CS to OA- or DA-ergic neurons representing appetitive or aversive US, respectively. The former is called stimulus–response (S–R) connection and the latter is called stimulus–stimulus (S–S) connection by theorists studying classical conditioning in vertebrates. Results of our studies using a second-order conditioning procedure supported our model. We propose that insect classical conditioning involves the formation of S–S connection and its activation for memory recall, which are often called cognitive processes. PMID:21119781

  10. Long-Term Visuo-Gustatory Appetitive and Aversive Conditioning Potentiate Human Visual Evoked Potentials

    PubMed Central

    Christoffersen, Gert R. J.; Laugesen, Jakob L.; Møller, Per; Bredie, Wender L. P.; Schachtman, Todd R.; Liljendahl, Christina; Viemose, Ida

    2017-01-01

    Human recognition of foods and beverages are often based on visual cues associated with flavors. The dynamics of neurophysiological plasticity related to acquisition of such long-term associations has only recently become the target of investigation. In the present work, the effects of appetitive and aversive visuo-gustatory conditioning were studied with high density EEG-recordings focusing on late components in the visual evoked potentials (VEPs), specifically the N2-P3 waves. Unfamiliar images were paired with either a pleasant or an unpleasant juice and VEPs evoked by the images were compared before and 1 day after the pairings. In electrodes located over posterior visual cortex areas, the following changes were observed after conditioning: the amplitude from the N2-peak to the P3-peak increased and the N2 peak delay was reduced. The percentage increase of N2-to-P3 amplitudes was asymmetrically distributed over the posterior hemispheres despite the fact that the images were bilaterally symmetrical across the two visual hemifields. The percentage increases of N2-to-P3 amplitudes in each experimental subject correlated with the subject’s evaluation of positive or negative hedonic valences of the two juices. The results from 118 scalp electrodes gave surface maps of theta power distributions showing increased power over posterior visual areas after the pairings. Source current distributions calculated from swLORETA revealed that visual evoked currents rose as a result of conditioning in five cortical regions—from primary visual areas and into the inferior temporal gyrus (ITG). These learning-induced changes were seen after both appetitive and aversive training while a sham trained control group showed no changes. It is concluded that long-term visuo-gustatory conditioning potentiated the N2-P3 complex, and it is suggested that the changes are regulated by the perceived hedonic valence of the US. PMID:28983243

  11. Underlying Processes of an Inverted Personalization Effect in Multimedia Learning – An Eye-Tracking Study

    PubMed Central

    Zander, Steffi; Wetzel, Stefanie; Kühl, Tim; Bertel, Sven

    2017-01-01

    One of the frequently examined design principles in multimedia learning is the personalization principle. Based on empirical evidence this principle states that using personalized messages in multimedia learning is more beneficial than using formal language (e.g., using ‘you’ instead of ‘the’). Although there is evidence that these slight changes in regard to the language style affect learning, motivation and the perceived cognitive load, it remains unclear, (1) whether the positive effects of personalized language can be transferred to all kinds of content of learning materials (e.g., specific potentially aversive health issues) and (2) which are the underlying processes (e.g., attention allocation) of the personalization effect. German university students (N = 37) learned symptoms and causes of cerebral hemorrhages either with a formal or a personalized version of the learning material. Analysis revealed comparable results to the few existing previous studies, indicating an inverted personalization effect for potentially aversive learning material. This effect was specifically revealed in regard to decreased average fixation duration and the number of fixations exclusively on the images in the personalized compared to the formal version. These results can be seen as indicators for an inverted effect of personalization on the level of visual attention. PMID:29326630

  12. Evaluation of color preference in zebrafish for learning and memory.

    PubMed

    Avdesh, Avdesh; Martin-Iverson, Mathew T; Mondal, Alinda; Chen, Mengqi; Askraba, Sreten; Morgan, Newman; Lardelli, Michael; Groth, David M; Verdile, Giuseppe; Martins, Ralph N

    2012-01-01

    There is growing interest in using zebrafish (Danio rerio) as a model of neurodegenerative disorders such as Alzheimer's disease. A zebrafish model of tauopathies has recently been developed and characterized in terms of presence of the pathological hallmarks (i.e., neurofibrillary tangles and cell death). However, it is also necessary to validate these models for function by assessing learning and memory. The majority of tools to assess memory and learning in animal models involve visual stimuli, including color preference. The color preference of zebrafish has received little attention. To validate zebrafish as a model for color-associated-learning and memory, it is necessary to evaluate its natural preferences or any pre-existing biases towards specific colors. In the present study, we have used four different colors (red, yellow, green, and blue) to test natural color preferences of the zebrafish using two procedures: Place preference and T-maze. Results from both experiments indicate a strong aversion toward blue color relative to all other colors (red, yellow, and green) when tested in combinations. No preferences or biases were found among reds, yellows, and greens in the place preference procedure. However, red and green were equally preferred and both were preferred over yellow by zebrafish in the T-maze procedure. The results from the present study show a strong aversion towards blue color compared to red, green, and yellow, with yellow being less preferred relative to red and green. The findings from this study may underpin any further designing of color-based learning and memory paradigms or experiments involving aversion, anxiety, or fear in the zebrafish.

  13. Role of the area postrema in radiation-induced taste aversion learning and emesis in cats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B.M.; Hunt, W.A.; Chedester, A.L.

    1986-01-01

    The role of the area postrema in radiation-induced emesis and taste aversion learning and the relationship between these behaviors were studied in cats. The potential involvement of neural factors which might be independent of the area postrema was minimized by using low levels of ionizing radiation (100 rads at a dose rate of 40 rads/min) to elicit a taste aversion, and by using body-only exposures (4500 and 6000 rads at 450 rads/min) to produce emesis. Lesions of the area postrema disrupted both taste aversion learning and emesis following irradiation. These results, which indicate that the area postrema is involved inmore » the mediation of both radiation-induced emesis and taste aversion learning in cats under these experimental conditions, are interpreted as being consistent with the hypotheses that similar mechanisms mediate both responses to exposure to ionizing radiation, and that the taste aversion learning paradigm can therefore serve as a model system for studying radiation-induced emesis.« less

  14. The Neural Foundations of Reaction and Action in Aversive Motivation.

    PubMed

    Campese, Vincent D; Sears, Robert M; Moscarello, Justin M; Diaz-Mataix, Lorenzo; Cain, Christopher K; LeDoux, Joseph E

    2016-01-01

    Much of the early research in aversive learning concerned motivation and reinforcement in avoidance conditioning and related paradigms. When the field transitioned toward the focus on Pavlovian threat conditioning in isolation, this paved the way for the clear understanding of the psychological principles and neural and molecular mechanisms responsible for this type of learning and memory that has unfolded over recent decades. Currently, avoidance conditioning is being revisited, and with what has been learned about associative aversive learning, rapid progress is being made. We review, below, the literature on the neural substrates critical for learning in instrumental active avoidance tasks and conditioned aversive motivation.

  15. Lateral, Not Medial, Prefrontal Cortex Contributes to Punishment and Aversive Instrumental Learning

    ERIC Educational Resources Information Center

    Jean-Richard-dit-Bressel , Philip; McNally, Gavan P.

    2016-01-01

    Aversive outcomes punish behaviors that cause their occurrence. The prefrontal cortex (PFC) has been implicated in punishment learning and behavior, although the exact roles for different PFC regions in instrumental aversive learning and decision-making remain poorly understood. Here, we assessed the role of the orbitofrontal (OFC), rostral…

  16. Memory Performance for Everyday Motivational and Neutral Objects Is Dissociable from Attention

    PubMed Central

    Schomaker, Judith; Wittmann, Bianca C.

    2017-01-01

    Episodic memory is typically better for items coupled with monetary reward or punishment during encoding. It is yet unclear whether memory is also enhanced for everyday objects with appetitive or aversive values learned through a lifetime of experience, and to what extent episodic memory enhancement for motivational and neutral items is attributable to attention. In a first experiment, we investigated attention to everyday motivational objects using eye-tracking during free-viewing and subsequently tested episodic memory using a remember/know procedure. Attention was directed more to aversive stimuli, as evidenced by longer viewing durations, whereas recollection was higher for both appetitive and aversive objects. In the second experiment, we manipulated the visual contrast of neutral objects through changes of contrast to further dissociate attention and memory encoding. While objects presented with high visual contrast were looked at longer, recollection was best for objects presented in unmodified, medium contrast. Generalized logistic mixed models on recollection performance showed that attention as measured by eye movements did not enhance subsequent memory, while motivational value (Experiment 1) and visual contrast (Experiment 2) had quadratic effects in opposite directions. Our findings suggest that an enhancement of incidental memory encoding for appetitive items can occur without an increase in attention and, vice versa, that enhanced attention towards salient neutral objects is not necessarily associated with memory improvement. Together, our results provide evidence for a double dissociation of attention and memory effects under certain conditions. PMID:28694774

  17. Phenotypic transformation affects associative learning in the desert locust.

    PubMed

    Simões, Patrício M V; Niven, Jeremy E; Ott, Swidbert R

    2013-12-02

    In desert locusts, increased population densities drive phenotypic transformation from the solitarious to the gregarious phase within a generation [1-4]. Here we show that when presented with odor-food associations, the two extreme phases differ in aversive but not appetitive associative learning, with solitarious locusts showing a conditioned aversion more quickly than gregarious locusts. The acquisition of new learned aversions was blocked entirely in acutely crowded solitarious (transiens) locusts, whereas appetitive learning and prior learned associations were unaffected. These differences in aversive learning support phase-specific feeding strategies. Associative training with hyoscyamine, a plant alkaloid found in the locusts' habitat [5, 6], elicits a phase-dependent odor preference: solitarious locusts avoid an odor associated with hyoscyamine, whereas gregarious locusts do not. Remarkably, when solitarious locusts are crowded and then reconditioned with the odor-hyoscyamine pairing as transiens, the specific blockade of aversive acquisition enables them to override their prior aversive memory with an appetitive one. Under fierce food competition, as occurs during crowding in the field, this provides a neuroecological mechanism enabling locusts to reassign an appetitive value to an odor that they learned previously to avoid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Taste Aversions Conditioned by the Aversiveness of Insulin and Formalin: Role of CS Specificity

    ERIC Educational Resources Information Center

    Domjan, Michael; Levy, Carolyn J.

    1977-01-01

    Experimenters in the past have reported that when insulin is used as the unconditioned stimulus (US), rats will learn an aversion to a sodium chloride but not a sucrose solution, whereas with formalin as the US, they will learn an aversion to a sucrose but not a saline solution. The present experiments failed to confirm these findings. (Editor)

  19. Fear of losing money? Aversive conditioning with secondary reinforcers.

    PubMed

    Delgado, M R; Labouliere, C D; Phelps, E A

    2006-12-01

    Money is a secondary reinforcer that acquires its value through social communication and interaction. In everyday human behavior and laboratory studies, money has been shown to influence appetitive or reward learning. It is unclear, however, if money has a similar impact on aversive learning. The goal of this study was to investigate the efficacy of money in aversive learning, comparing it with primary reinforcers that are traditionally used in fear conditioning paradigms. A series of experiments were conducted in which participants initially played a gambling game that led to a monetary gain. They were then presented with an aversive conditioning paradigm, with either shock (primary reinforcer) or loss of money (secondary reinforcer) as the unconditioned stimulus. Skin conductance responses and subjective ratings indicated that potential monetary loss modulated the conditioned response. Depending on the presentation context, the secondary reinforcer was as effective as the primary reinforcer during aversive conditioning. These results suggest that stimuli that acquire reinforcing properties through social communication and interaction, such as money, can effectively influence aversive learning.

  20. Genotypic Influence on Aversive Conditioning in Honeybees, Using a Novel Thermal Reinforcement Procedure

    PubMed Central

    Junca, Pierre; Carcaud, Julie; Moulin, Sibyle; Garnery, Lionel; Sandoz, Jean-Christophe

    2014-01-01

    In Pavlovian conditioning, animals learn to associate initially neutral stimuli with positive or negative outcomes, leading to appetitive and aversive learning respectively. The honeybee (Apis mellifera) is a prominent invertebrate model for studying both versions of olfactory learning and for unraveling the influence of genotype. As a queen bee mates with about 15 males, her worker offspring belong to as many, genetically-different patrilines. While the genetic dependency of appetitive learning is well established in bees, it is not the case for aversive learning, as a robust protocol was only developed recently. In the original conditioning of the sting extension response (SER), bees learn to associate an odor (conditioned stimulus - CS) with an electric shock (unconditioned stimulus - US). This US is however not a natural stimulus for bees, which may represent a potential caveat for dissecting the genetics underlying aversive learning. We thus first tested heat as a potential new US for SER conditioning. We show that thermal stimulation of several sensory structures on the bee’s body triggers the SER, in a temperature-dependent manner. Moreover, heat applied to the antennae, mouthparts or legs is an efficient US for SER conditioning. Then, using microsatellite analysis, we analyzed heat sensitivity and aversive learning performances in ten worker patrilines issued from a naturally inseminated queen. We demonstrate a strong influence of genotype on aversive learning, possibly indicating the existence of a genetic determinism of this capacity. Such determinism could be instrumental for efficient task partitioning within the hive. PMID:24828422

  1. Complexity and Competition in Appetitive and Aversive Neural Circuits

    PubMed Central

    Barberini, Crista L.; Morrison, Sara E.; Saez, Alex; Lau, Brian; Salzman, C. Daniel

    2012-01-01

    Decision-making often involves using sensory cues to predict possible rewarding or punishing reinforcement outcomes before selecting a course of action. Recent work has revealed complexity in how the brain learns to predict rewards and punishments. Analysis of neural signaling during and after learning in the amygdala and orbitofrontal cortex, two brain areas that process appetitive and aversive stimuli, reveals a dynamic relationship between appetitive and aversive circuits. Specifically, the relationship between signaling in appetitive and aversive circuits in these areas shifts as a function of learning. Furthermore, although appetitive and aversive circuits may often drive opposite behaviors – approaching or avoiding reinforcement depending upon its valence – these circuits can also drive similar behaviors, such as enhanced arousal or attention; these processes also may influence choice behavior. These data highlight the formidable challenges ahead in dissecting how appetitive and aversive neural circuits interact to produce a complex and nuanced range of behaviors. PMID:23189037

  2. Hippocampal Processing of Ambiguity Enhances Fear Memory

    PubMed Central

    Amadi, Ugwechi; Lim, Seh Hong; Liu, Elizabeth; Baratta, Michael V.; Goosens, Ki Ann

    2016-01-01

    Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, where dangerous situations can lead to unpleasant outcomes in unpredictable ways. Here we varied the timing of aversive events following predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of CA1 cells during aversive negative prediction errors prevented this enhancement of fear without impacting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning. PMID:28182526

  3. Hippocampal Processing of Ambiguity Enhances Fear Memory.

    PubMed

    Amadi, Ugwechi; Lim, Seh Hong; Liu, Elizabeth; Baratta, Michael V; Goosens, Ki A

    2017-02-01

    Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, in which dangerous situations can lead to unpleasant outcomes in unpredictable ways. In the current experiments, we varied the timing of aversive events after predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of cornu ammonis 1 cells during aversive negative prediction errors prevented this enhancement of fear without affecting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial-reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning.

  4. Overcoming Learning Aversion in Evaluating and Managing Uncertain Risks.

    PubMed

    Cox, Louis Anthony Tony

    2015-10-01

    Decision biases can distort cost-benefit evaluations of uncertain risks, leading to risk management policy decisions with predictably high retrospective regret. We argue that well-documented decision biases encourage learning aversion, or predictably suboptimal learning and premature decision making in the face of high uncertainty about the costs, risks, and benefits of proposed changes. Biases such as narrow framing, overconfidence, confirmation bias, optimism bias, ambiguity aversion, and hyperbolic discounting of the immediate costs and delayed benefits of learning, contribute to deficient individual and group learning, avoidance of information seeking, underestimation of the value of further information, and hence needlessly inaccurate risk-cost-benefit estimates and suboptimal risk management decisions. In practice, such biases can create predictable regret in selection of potential risk-reducing regulations. Low-regret learning strategies based on computational reinforcement learning models can potentially overcome some of these suboptimal decision processes by replacing aversion to uncertain probabilities with actions calculated to balance exploration (deliberate experimentation and uncertainty reduction) and exploitation (taking actions to maximize the sum of expected immediate reward, expected discounted future reward, and value of information). We discuss the proposed framework for understanding and overcoming learning aversion and for implementing low-regret learning strategies using regulation of air pollutants with uncertain health effects as an example. © 2015 Society for Risk Analysis.

  5. Discrete Serotonin Systems Mediate Memory Enhancement and Escape Latencies after Unpredicted Aversive Experience in Drosophila Place Memory

    PubMed Central

    Sitaraman, Divya; Kramer, Elizabeth F.; Kahsai, Lily; Ostrowski, Daniela; Zars, Troy

    2017-01-01

    Feedback mechanisms in operant learning are critical for animals to increase reward or reduce punishment. However, not all conditions have a behavior that can readily resolve an event. Animals must then try out different behaviors to better their situation through outcome learning. This form of learning allows for novel solutions and with positive experience can lead to unexpected behavioral routines. Learned helplessness, as a type of outcome learning, manifests in part as increases in escape latency in the face of repeated unpredicted shocks. Little is known about the mechanisms of outcome learning. When fruit fly Drosophila melanogaster are exposed to unpredicted high temperatures in a place learning paradigm, flies both increase escape latencies and have a higher memory when given control of a place/temperature contingency. Here we describe discrete serotonin neuronal circuits that mediate aversive reinforcement, escape latencies, and memory levels after place learning in the presence and absence of unexpected aversive events. The results show that two features of learned helplessness depend on the same modulatory system as aversive reinforcement. Moreover, changes in aversive reinforcement and escape latency depend on local neural circuit modulation, while memory enhancement requires larger modulation of multiple behavioral control circuits. PMID:29321732

  6. Food Avoidance Learning in Squirrel Monkeys and Common Marmosets

    PubMed Central

    Laska, Matthias; Metzker, Karin

    1998-01-01

    Using a conditioned food avoidance learning paradigm, six squirrel monkeys (Saimiri sciureus) and six common marmosets (Callithrix jacchus) were tested for their ability to (1) reliably form associations between visual or olfactory cues of a potential food and its palatability and (2) remember such associations over prolonged periods of time. We found (1) that at the group level both species showed one-trial learning with the visual cues color and shape, whereas only the marmosets were able to do so with the olfactory cue, (2) that all individuals from both species learned to reliably avoid the unpalatable food items within 10 trials, (3) a tendency in both species for quicker acquisition of the association with the visual cues compared with the olfactory cue, (4) a tendency for quicker acquisition and higher reliability of the aversion by the marmosets compared with the squirrel monkeys, and (5) that all individuals from both species were able to reliably remember the significance of the visual cues, color and shape, even after 4 months, whereas only the marmosets showed retention of the significance of the olfactory cues for up to 4 weeks. Furthermore, the results suggest that in both species tested, illness is not a necessary prerequisite for food avoidance learning but that the presumably innate rejection responses toward highly concentrated but nontoxic bitter and sour tastants are sufficient to induce robust learning and retention. PMID:10454364

  7. Flood-conditioned place aversion as a novel non-pharmacological aversive learning procedure in mice.

    PubMed

    Goltseker, Koral; Barak, Segev

    2018-05-08

    The place conditioning paradigm is an efficient, widely-used method to study mechanisms that underlie appetitive or aversive learning and memory processes. However, pharmacological agents used to induce conditioned place preference (CPP) or aversion (CPA) can per se interfere with learning and memory processing, hence confounding the results. Therefore, non-pharmacological place conditioning procedures are of high importance. Here, we introduce a novel procedure for induction of CPA in mice, by water flooding. We found that pairing a context with immersion in moderately cold shallow water resulted in aversion and avoidance of that context during a place preference test. Importantly, place aversion emerged only when mice experienced the onset of flood during conditioning training, but not when mice were placed in a compartment pre-filled with water. We also found that warm water was not sufficiently aversive to induce CPA. Moreover, CPA was observed after two or three context-flood pairings but not after one or four pairings, suggesting that moderate conditioning intensity produces optimal CPA expression. Thus, flood-induced CPA is a simple, cheap, and efficient procedure to form and measure place aversion memories in mice, using an ethologically-relevant threat.

  8. Conditioned suppression, punishment, and aversion

    NASA Technical Reports Server (NTRS)

    Orme-Johnson, D. W.; Yarczower, M.

    1974-01-01

    The aversive action of visual stimuli was studied in two groups of pigeons which received response-contingent or noncontingent electric shocks in cages with translucent response keys. Presentation of grain for 3 sec, contingent on key pecking, was the visual stimulus associated with conditioned punishment or suppression. The responses of the pigeons in three different experiments are compared.

  9. Prepared stimuli enhance aversive learning without weakening the impact of verbal instructions

    PubMed Central

    2018-01-01

    Fear-relevant stimuli such as snakes and spiders are thought to capture attention due to evolutionary significance. Classical conditioning experiments indicate that these stimuli accelerate learning, while instructed extinction experiments suggest they may be less responsive to instructions. We manipulated stimulus type during instructed aversive reversal learning and used quantitative modeling to simultaneously test both hypotheses. Skin conductance reversed immediately upon instruction in both groups. However, fear-relevant stimuli enhanced dynamic learning, as measured by higher learning rates in participants conditioned with images of snakes and spiders. Results are consistent with findings that dissociable neural pathways underlie feedback-driven and instructed aversive learning. PMID:29339561

  10. Escape from harm: linking affective vision and motor responses during active avoidance

    PubMed Central

    Keil, Andreas

    2014-01-01

    When organisms confront unpleasant objects in their natural environments, they engage in behaviors that allow them to avoid aversive outcomes. Here, we linked visual processing of threat to its behavioral consequences by including a motor response that terminated exposure to an aversive event. Dense-array steady-state visual evoked potentials were recorded in response to conditioned threat and safety signals viewed in active or passive behavioral contexts. The amplitude of neuronal responses in visual cortex increased additively, as a function of emotional value and action relevance. The gain in local cortical population activity for threat relative to safety cues persisted when aversive reinforcement was behaviorally terminated, suggesting a lingering emotionally based response amplification within the visual system. Distinct patterns of long-range neural synchrony emerged between the visual cortex and extravisual regions. Increased coupling between visual and higher-order structures was observed specifically during active perception of threat, consistent with a reorganization of neuronal populations involved in linking sensory processing to action preparation. PMID:24493849

  11. Preexposure to Salty and Sour Taste Enhances Conditioned Taste Aversion to Novel Sucrose

    ERIC Educational Resources Information Center

    Flores, Veronica L.; Moran, Anan; Bernstein, Max; Katz, Donald B.

    2016-01-01

    Conditioned taste aversion (CTA) is an intensively studied single-trial learning paradigm whereby animals are trained to avoid a taste that has been paired with malaise. Many factors influence the strength of aversion learning; prominently studied among these is taste novelty--the fact that preexposure to the taste conditioned stimulus (CS)…

  12. Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets.

    PubMed

    Awata, Hiroko; Watanabe, Takahito; Hamanaka, Yoshitaka; Mito, Taro; Noji, Sumihare; Mizunami, Makoto

    2015-11-02

    Elucidation of reinforcement mechanisms in associative learning is an important subject in neuroscience. In mammals, dopamine neurons are thought to play critical roles in mediating both appetitive and aversive reinforcement. Our pharmacological studies suggested that octopamine and dopamine neurons mediate reward and punishment, respectively, in crickets, but recent studies in fruit-flies concluded that dopamine neurons mediates both reward and punishment, via the type 1 dopamine receptor Dop1. To resolve the discrepancy between studies in different insect species, we produced Dop1 knockout crickets using the CRISPR/Cas9 system and found that they are defective in aversive learning with sodium chloride punishment but not appetitive learning with water or sucrose reward. The results suggest that dopamine and octopamine neurons mediate aversive and appetitive reinforcement, respectively, in crickets. We suggest unexpected diversity in neurotransmitters mediating appetitive reinforcement between crickets and fruit-flies, although the neurotransmitter mediating aversive reinforcement is conserved. This study demonstrates usefulness of the CRISPR/Cas9 system for producing knockout animals for the study of learning and memory.

  13. A behavioural preparation for the study of human Pavlovian conditioning.

    PubMed

    Arcediano, F; Ortega, N; Matute, H

    1996-08-01

    Conditioned suppression is a useful technique for assessing whether subjects have learned a CS-US association, but it is difficult to use in humans because of the need for an aversive US. The purpose of this research was to develop a non-aversive procedure that would produce suppression. Subjects learned to press the space bar of a computer as part of a video game, but they had to stop pressing whenever a visual US appeared, or they would lose points. In Experiment 1, we used an A+/B- discrimination design: The US always followed Stimulus A and never followed Stimulus B. Although no information about the existence of CSs was given to the subjects, suppression ratio results showed a discrimination learning curve-that is, subjects learned to suppress responding in anticipation of the US when Stimulus A was present but not during the presentations of Stimulus B. Experiment 2 explored the potential of this preparation by using two different instruction sets and assessing post-experimental judgements of CS A and CS B in addition to suppression ratios. The results of these experiments suggest that conditioned suppression can be reliably and conveniently used in the human laboratory, providing a bridge between experiments on animal conditioning and experiments on human judgements of causality.

  14. Drosophila Learn Opposing Components of a Compound Food Stimulus

    PubMed Central

    Das, Gaurav; Klappenbach, Martín; Vrontou, Eleftheria; Perisse, Emmanuel; Clark, Christopher M.; Burke, Christopher J.; Waddell, Scott

    2014-01-01

    Summary Dopaminergic neurons provide value signals in mammals and insects [1–3]. During Drosophila olfactory learning, distinct subsets of dopaminergic neurons appear to assign either positive or negative value to odor representations in mushroom body neurons [4–9]. However, it is not known how flies evaluate substances that have mixed valence. Here we show that flies form short-lived aversive olfactory memories when trained with odors and sugars that are contaminated with the common insect repellent DEET. This DEET-aversive learning required the MB-MP1 dopaminergic neurons that are also required for shock learning [7]. Moreover, differential conditioning with DEET versus shock suggests that formation of these distinct aversive olfactory memories relies on a common negatively reinforcing dopaminergic mechanism. Surprisingly, as time passed after training, the behavior of DEET-sugar-trained flies reversed from conditioned odor avoidance into odor approach. In addition, flies that were compromised for reward learning exhibited a more robust and longer-lived aversive-DEET memory. These data demonstrate that flies independently process the DEET and sugar components to form parallel aversive and appetitive olfactory memories, with distinct kinetics, that compete to guide learned behavior. PMID:25042590

  15. Relationship between vomiting and taste aversion learning in the ferret: studies with ionizing radiation, lithium chloride, and amphetamine.

    PubMed

    Rabin, B M; Hunt, W A

    1992-09-01

    The relationship between emesis and taste aversion learning was studied in ferrets (Mustela putorius furo) following exposure to ionizing radiation (50-200 cGy) or injection of lithium chloride (1.5-3.0 mEq/kg, ip). When 10% sucrose or 0.1% saccharin was used as the conditioned stimulus, neither unconditioned stimulus produced a taste aversion, even when vomiting was produced by the stimulus (Experiments 1 and 2). When a canned cat food was used as the conditioned stimulus, lithium chloride, but not ionizing radiation, produced a taste aversion (Experiment 3). Lithium chloride was effective in producing a conditioned taste aversion when administration of the toxin was delayed by up to 90 min following the ingestion of the canned cat food, indicating that the ferrets are capable of showing long-delay learning (Experiment 4). Experiment 5 examined the capacity of amphetamine, which is a qualitatively different stimulus than lithium chloride or ionizing radiation, to produce taste aversion learning in rats and cats as well as in ferrets. Injection of amphetamine (3 mg/kg, ip) produced a taste aversion in rats and cats but not in ferrets which required a higher dose (> 5 mg/kg). The results of these experiments are interpreted as indicating that, at least for the ferret, there is no necessary relationship between toxin-induced illness and the acquisition of a CTA and that gastrointestinal distress is not a sufficient condition for CTA learning.

  16. The Effect of Swimming Experience on Acquisition and Retention of Swimming-Based Taste Aversion Learning in Rats

    ERIC Educational Resources Information Center

    Masaki, Takahisa; Nakajima, Sadahiko

    2010-01-01

    Swimming endows rats with an aversion to a taste solution consumed before swimming. The present study explored whether the experience of swimming before or after the taste-swimming trials interferes with swimming-based taste aversion learning. Experiment 1 demonstrated that a single preexposure to 20 min of swimming was as effective as four or…

  17. Learning context modulates aversive taste strength in honey bees.

    PubMed

    de Brito Sanchez, Maria Gabriela; Serre, Marion; Avarguès-Weber, Aurore; Dyer, Adrian G; Giurfa, Martin

    2015-03-01

    The capacity of honey bees (Apis mellifera) to detect bitter substances is controversial because they ingest without reluctance different kinds of bitter solutions in the laboratory, whereas free-flying bees avoid them in visual discrimination tasks. Here, we asked whether the gustatory perception of bees changes with the behavioral context so that tastes that are less effective as negative reinforcements in a given context become more effective in a different context. We trained bees to discriminate an odorant paired with 1 mol l(-1) sucrose solution from another odorant paired with either distilled water, 3 mol l(-1) NaCl or 60 mmol l(-1) quinine. Training was either Pavlovian [olfactory conditioning of the proboscis extension reflex (PER) in harnessed bees], or mainly operant (olfactory conditioning of free-walking bees in a Y-maze). PER-trained and maze-trained bees were subsequently tested both in their original context and in the alternative context. Whereas PER-trained bees transferred their choice to the Y-maze situation, Y-maze-trained bees did not respond with a PER to odors when subsequently harnessed. In both conditioning protocols, NaCl and distilled water were the strongest and the weakest aversive reinforcement, respectively. A significant variation was found for quinine, which had an intermediate aversive effect in PER conditioning but a more powerful effect in the Y-maze, similar to that of NaCl. These results thus show that the aversive strength of quinine varies with the learning context, and reveal the plasticity of the bee's gustatory system. We discuss the experimental constraints of both learning contexts and focus on stress as a key modulator of taste in the honey bee. Further explorations of bee taste are proposed to understand the physiology of taste modulation in bees. © 2015. Published by The Company of Biologists Ltd.

  18. Attenuation and cross-attenuation in taste-aversion learning in the rat: Studies with ionizing radiation, lithium chloride, and ethanol. Scientific report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1989-01-01

    The pre-exposure paradigm was utilized to evaluate the similarity of ionizing radiation, lithium chloride, and ethanol as unconditioned stimuli for the acquisition of a conditioned taste aversion. Three unpaired pre-exposures to lithium chloride blocked the acquisition of a taste aversion when a novel sucrose solution was paired with either the injection of the same dose of lithium chloride or exposure to ionizing radiation (100 rad). Similar pretreatment with radiation blocked the acquisition of a radiation-induced aversion, but had no effect on taste aversions produced by lithium aversion, but not radiation- or lithium chloride-induced aversions. In contrast, preexposure to either radiationmore » or lithium chloride attenuated an ethanol-induced taste aversion in intact rats, but not in rats with lesions of the area postrema. The results are discussed in terms of relationships between these three unconditioned stimuli and in terms of implications of these results for understanding the nature of the proximal unconditioned stimulus in taste aversion learning.« less

  19. Fear Conditioning in an Abdominal Pain Model: Neural Responses during Associative Learning and Extinction in Healthy Subjects

    PubMed Central

    Kattoor, Joswin; Gizewski, Elke R.; Kotsis, Vassilios; Benson, Sven; Gramsch, Carolin; Theysohn, Nina; Maderwald, Stefan; Forsting, Michael; Schedlowski, Manfred; Elsenbruch, Sigrid

    2013-01-01

    Fear conditioning is relevant for elucidating the pathophysiology of anxiety, but may also be useful in the context of chronic pain syndromes which often overlap with anxiety. Thus far, no fear conditioning studies have employed aversive visceral stimuli from the lower gastrointestinal tract. Therefore, we implemented a fear conditioning paradigm to analyze the conditioned response to rectal pain stimuli using fMRI during associative learning, extinction and reinstatement. In N = 21 healthy humans, visual conditioned stimuli (CS+) were paired with painful rectal distensions as unconditioned stimuli (US), while different visual stimuli (CS−) were presented without US. During extinction, all CSs were presented without US, whereas during reinstatement, a single, unpaired US was presented. In region-of-interest analyses, conditioned anticipatory neural activation was assessed along with perceived CS-US contingency and CS unpleasantness. Fear conditioning resulted in significant contingency awareness and valence change, i.e., learned unpleasantness of a previously neutral stimulus. This was paralleled by anticipatory activation of the anterior cingulate cortex, the somatosensory cortex and precuneus (all during early acquisition) and the amygdala (late acquisition) in response to the CS+. During extinction, anticipatory activation of the dorsolateral prefrontal cortex to the CS− was observed. In the reinstatement phase, a tendency for parahippocampal activation was found. Fear conditioning with rectal pain stimuli is feasible and leads to learned unpleasantness of previously neutral stimuli. Within the brain, conditioned anticipatory activations are seen in core areas of the central fear network including the amygdala and the anterior cingulate cortex. During extinction, conditioned responses quickly disappear, and learning of new predictive cue properties is paralleled by prefrontal activation. A tendency for parahippocampal activation during reinstatement could indicate a reactivation of the old memory trace. Together, these findings contribute to our understanding of aversive visceral learning and memory processes relevant to the pathophysiology of chronic abdominal pain. PMID:23468832

  20. The Procerebrum Is Necessary for Odor-Aversion Learning in the Terrestrial Slug "Limax Valentianus"

    ERIC Educational Resources Information Center

    Kasai, Yoko; Watanabe, Satoshi; Kirino, Yutaka; Matsuo, Ryota

    2006-01-01

    The terrestrial slug "Limax" has a highly developed ability to associate the odor of some foods (e.g., carrot juice) with aversive stimuli such as the bitter taste of quinidine solution. The procerebrum (PC) is a part of the slug's brain thought to be involved in odor-aversion learning, but direct evidence is still lacking. Here, the authors…

  1. Stress and aversive learning in a wild vertebrate: the role of corticosterone in mediating escape from a novel stressor.

    PubMed

    Thaker, Maria; Vanak, Abi T; Lima, Steven L; Hews, Diana K

    2010-01-01

    Elevated plasma corticosterone during stressful events is linked to rapid changes in behavior in vertebrates and can mediate learning and memory consolidation. We tested the importance of acute corticosterone elevation in aversive learning of a novel stressor by wild male eastern fence lizards (Sceloporus undulatus). We found that inhibiting corticosterone elevation (using metyrapone, a corticosterone synthesis blocker) during an encounter with a novel attacker impaired immediate escape responses and limited learning and recall during future encounters. In the wild and in outdoor enclosures, lizards whose acute corticosterone response was blocked by an earlier metyrapone injection did not alter their escape behavior during repeated encounters with the attacker. Control-injected (unblocked) lizards, however, progressively increased flight initiation distance and decreased hiding duration during subsequent encounters. Aversive responses were also initially higher for control lizards exposed to a higher intensity first attack. Further, we demonstrate a role of corticosterone elevation in recollection, since unblocked lizards had heightened antipredator responses 24-28 h later. Exogenously restoring corticosterone levels in metyrapone-injected lizards maintained aversive behaviors and learning at control (unblocked) levels. We suggest that the corticosterone mediation of antipredator behaviors and aversive learning is a critical and general mechanism for the behavioral flexibility of vertebrate prey.

  2. Learned Helplessness at Fifty: Insights from Neuroscience

    PubMed Central

    Maier, Steven F.; Seligman, Martin E. P.

    2016-01-01

    Learned helplessness, the failure to escape shock induced by uncontrollable aversive events, was discovered half a century ago. Seligman and Maier (1967) theorized that animals learned that outcomes were independent of their responses—that nothing they did mattered – and that this learning undermined trying to escape. The mechanism of learned helplessness is now very well-charted biologically and the original theory got it backwards. Passivity in response to shock is not learned. It is the default, unlearned response to prolonged aversive events and it is mediated by the serotonergic activity of the dorsal raphe nucleus, which in turn inhibits escape. This passivity can be overcome by learning control, with the activity of the medial prefrontal cortex, which subserves the detection of control leading to the automatic inhibition of the dorsal raphe nucleus. So animals learn that they can control aversive events, but the passive failure to learn to escape is an unlearned reaction to prolonged aversive stimulation. In addition, alterations of the ventromedial prefrontal cortex-dorsal raphe pathway can come to subserve the expectation of control. We speculate that default passivity and the compensating detection and expectation of control may have substantial implications for how to treat depression. PMID:27337390

  3. Learned helplessness at fifty: Insights from neuroscience.

    PubMed

    Maier, Steven F; Seligman, Martin E P

    2016-07-01

    Learned helplessness, the failure to escape shock induced by uncontrollable aversive events, was discovered half a century ago. Seligman and Maier (1967) theorized that animals learned that outcomes were independent of their responses-that nothing they did mattered-and that this learning undermined trying to escape. The mechanism of learned helplessness is now very well-charted biologically, and the original theory got it backward. Passivity in response to shock is not learned. It is the default, unlearned response to prolonged aversive events and it is mediated by the serotonergic activity of the dorsal raphe nucleus, which in turn inhibits escape. This passivity can be overcome by learning control, with the activity of the medial prefrontal cortex, which subserves the detection of control leading to the automatic inhibition of the dorsal raphe nucleus. So animals learn that they can control aversive events, but the passive failure to learn to escape is an unlearned reaction to prolonged aversive stimulation. In addition, alterations of the ventromedial prefrontal cortex-dorsal raphe pathway can come to subserve the expectation of control. We speculate that default passivity and the compensating detection and expectation of control may have substantial implications for how to treat depression. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. Acquisition of lithium chloride- and radiation-induced taste aversions in hypophysectomized rats.

    PubMed

    Rabin, B M; Hunt, W A; Lee, J

    1983-03-01

    The effects of hypophysectomy on the acquisition of conditioned taste aversions following injection of lithium chloride and following exposure to ionizing radiation were studied using a two-bottle preference test. Hypophysectomy did not disrupt the acquisition of a taste aversion following either treatment. The results are interpreted as: (a) suggesting that pituitary/adrenal hormones do not mediate the acquisition of a conditioned taste aversion following injections of lithium chloride or following exposure to ionizing radiation in a two-bottle preference test, and (b) consistent with other research suggesting that the involvement of pituitary/adrenal hormones in taste aversion learning may be related to the conflict induced by using a one-bottle test and not to the learning itself.

  5. Developmental emergence of fear/threat learning: neurobiology, associations and timing

    PubMed Central

    Tallot, L.; Doyère, V.; Sullivan, R. M.

    2016-01-01

    Pavlovian fear or threat conditioning, where a neutral stimulus takes on aversive properties through pairing with an aversive stimulus, has been an important tool for exploring the neurobiology of learning. In the past decades, this neurobehavioral approach has been expanded to include the developing infant. Indeed, protracted postnatal brain development permits the exploration of how incorporating the amygdala, prefrontal cortex and hippocampus into this learning system impacts the acquisition and expression of aversive conditioning. Here, we review the developmental trajectory of these key brain areas involved in aversive conditioning and relate it to pups’ transition to independence through weaning. Overall, the data suggests that adult-like features of threat learning emerge as the relevant brain areas become incorporated into this learning. Specifically, the developmental emergence of the amygdala permits cue learning and the emergence of the hippocampus permits context learning. We also describe unique features of learning in early life that block threat learning and enhance interaction with the mother or exploration of the environment. Finally, we describe the development of a sense of time within this learning and its involvement in creating associations. Together these data suggest that the development of threat learning is a useful tool for dissecting adult-like functioning of brain circuits, as well as providing unique insights into ecologically relevant developmental changes. PMID:26534899

  6. Attenuation and cross-attenuation in taste aversion learning in the rat: Studies with ionizing radiation, lithium chloride and ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1988-12-01

    The preexposure paradigm was utilized to evaluate the similarity of ionizing radiation, lithium chloride and ethanol as unconditioned stimuli for the acquisition of a conditioned taste aversion. Three unpaired preexposures to lithium chloride (3.0 mEq/kg, IP) blocked the acquisition of a taste aversion when a novel sucrose solution was paired with either the injection of the same dose of lithium chloride or exposure to ionizing radiation (100 rad). Similar pretreatment with radiation blocked the acquisition of a radiation-induced aversion, but had no effect on taste aversions produced by lithium chloride (3.0 or 1.5 mEq/kg). Preexposure to ethanol (4 g/kg, PO)more » disrupted the acquisition of an ethanol-induced taste aversion, but not radiation- or lithium chloride-induced aversions. In contrast, preexposure to either radiation or lithium chloride attenuated an ethanol-induced taste aversion in intact rats, but not in rats with lesions of the area postrema. The results are discussed in terms of relationships between these three unconditioned stimuli and in terms of implications of these results for understanding the nature of the proximal unconditioned stimulus in taste aversion learning.« less

  7. Attenuation and cross-attenuation in taste aversion learning in the rat: studies with ionizing radiation, lithium chloride and ethanol.

    PubMed

    Rabin, B M; Hunt, W A; Lee, J

    1988-12-01

    The preexposure paradigm was utilized to evaluate the similarity of ionizing radiation, lithium chloride and ethanol as unconditioned stimuli for the acquisition of a conditioned taste aversion. Three unpaired preexposures to lithium chloride (3.0 mEq/kg, IP) blocked the acquisition of a taste aversion when a novel sucrose solution was paired with either the injection of the same dose of lithium chloride or exposure to ionizing radiation (100 rad). Similar pretreatment with radiation blocked the acquisition of a radiation-induced aversion, but had no effect on taste aversions produced by lithium chloride (3.0 or 1.5 mEq/kg). Preexposure to ethanol (4 g/kg, PO) disrupted the acquisition of an ethanol-induced taste aversion, but not radiation- or lithium chloride-induced aversions. In contrast, preexposure to either radiation or lithium chloride attenuated an ethanol-induced taste aversion in intact rats, but not in rats with lesions of the area postrema. The results are discussed in terms of relationships between these three unconditioned stimuli and in terms of implications of these results for understanding the nature of the proximal unconditioned stimulus in taste aversion learning.

  8. Further evidence for conditioned taste aversion induced by forced swimming.

    PubMed

    Masaki, Takahisa; Nakajima, Sadahiko

    2005-01-31

    A series of experiments with rats reported that aversion to a taste solution can be established by forced swimming in a water pool. Experiment 1 demonstrated that correlation of taste and swimming is a critical factor for this phenomenon, indicating associative (i.e., Pavlovian) nature of this learning. Experiment 2 showed that this learning obeys the Pavlovian law of strength, by displaying a positive relationship between the duration of water immersion in training and the taste aversion observed in subsequent testing. Experiment 3 revealed that swimming rather than being wet is the critical agent, because a water shower did not endow rats with taste aversion. Experiment 4 found that taste aversion was a positive function of water level of the pools in training (0, 12 or 32 cm). These results, taken together, suggest that energy expenditure caused by physical exercise might be involved in the development of taste aversion.

  9. Taste-aversion learning produced by combined treatment with subthreshold radiation and lithium chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1987-01-01

    These experiments were designed to determine whether treatment with two subthreshold doses of radiation or lithium chloride, either alone or in combination, could lead to taste-aversion learning. The first experiment determined the threshold for a radiation-induced taste aversion at 15-20 rad and for lithium chloride at 0.30-0.45 mEq/kg. In the second experiment it was shown that exposing rats to two doses of 15 rad separated by up to 3 hr produced a taste aversion. Treatment with two injections of lithium chloride did produce a taste aversion when the two treatments were administered within 1 hr or each other. The resultsmore » are discussed in terms of the implications of these findings for understanding the nature of the unconditional stimuli leading to the acquisition of a conditioned taste aversion.« less

  10. The strength of aversive and appetitive associations and maladaptive behaviors.

    PubMed

    Itzhak, Yossef; Perez-Lanza, Daniel; Liddie, Shervin

    2014-08-01

    Certain maladaptive behaviors are thought to be acquired through classical Pavlovian conditioning. Exaggerated fear response, which can develop through Pavlovian conditioning, is associated with acquired anxiety disorders such as post-traumatic stress disorders (PTSDs). Inflated reward-seeking behavior, which develops through Pavlovian conditioning, underlies some types of addictive behavior (e.g., addiction to drugs, food, and gambling). These maladaptive behaviors are dependent on associative learning and the development of long-term memory (LTM). In animal models, an aversive reinforcer (fear conditioning) encodes an aversive contextual and cued LTM. On the other hand, an appetitive reinforcer results in conditioned place preference (CPP) that encodes an appetitive contextual LTM. The literature on weak and strong associative learning pertaining to the development of aversive and appetitive LTM is relatively scarce; thus, this review is particularly focused on the strength of associative learning. The strength of associative learning is dependent on the valence of the reinforcer and the salience of the conditioned stimulus that ultimately sways the strength of the memory trace. Our studies suggest that labile (weak) aversive and appetitive LTM may share similar signaling pathways, whereas stable (strong) aversive and appetitive LTM is mediated through different pathways. In addition, we provide some evidence suggesting that extinction of aversive fear memory and appetitive drug memory is likely to be mediated through different signaling molecules. We put forward the importance of studies aimed to investigate the molecular mechanisms underlying the development of weak and strong memories (aversive and appetitive), which would ultimately help in the development of targeted pharmacotherapies for the management of maladaptive behaviors that arise from classical Pavlovian conditioning. © 2014 International Union of Biochemistry and Molecular Biology.

  11. Place avoidance learning and memory in a jumping spider.

    PubMed

    Peckmezian, Tina; Taylor, Phillip W

    2017-03-01

    Using a conditioned passive place avoidance paradigm, we investigated the relative importance of three experimental parameters on learning and memory in a salticid, Servaea incana. Spiders encountered an aversive electric shock stimulus paired with one side of a two-sided arena. Our three parameters were the ecological relevance of the visual stimulus, the time interval between trials and the time interval before test. We paired electric shock with either a black or white visual stimulus, as prior studies in our laboratory have demonstrated that S. incana prefer dark 'safe' regions to light ones. We additionally evaluated the influence of two temporal features (time interval between trials and time interval before test) on learning and memory. Spiders exposed to the shock stimulus learned to associate shock with the visual background cue, but the extent to which they did so was dependent on which visual stimulus was present and the time interval between trials. Spiders trained with a long interval between trials (24 h) maintained performance throughout training, whereas spiders trained with a short interval (10 min) maintained performance only when the safe side was black. When the safe side was white, performance worsened steadily over time. There was no difference between spiders tested after a short (10 min) or long (24 h) interval before test. These results suggest that the ecological relevance of the stimuli used and the duration of the interval between trials can influence learning and memory in jumping spiders.

  12. Dissociation of the Role of Infralimbic Cortex in Learning and Consolidation of Extinction of Recent and Remote Aversion Memory

    PubMed Central

    Awad, Walaa; Ferreira, Guillaume; Maroun, Mouna

    2015-01-01

    Medial prefrontal circuits have been reported to undergo a major reorganization over time and gradually take a more important role for remote emotional memories such as contextual fear memory or food aversion memory. The medial prefrontal cortex, and specifically its ventral subregion, the infralimbic cortex (IL), was also reported to be critical for recent memory extinction of contextual fear conditioning and conditioned odor aversion. However, its exact role in the extinction of remotely acquired information is still not clear. Using postretrieval blockade of protein synthesis or inactivation of the IL, we showed that the IL is similarly required for extinction consolidation of recent and remote fear memory. However, in odor aversion memory, the IL was only involved in extinction consolidation of recent, but not remote, memory. In contrast, only remote retrieval of aversion memory induced c-Fos activation in the IL and preretrieval inactivation of the IL with lidocaine impaired subsequent extinction of remote but not recent memory, indicating IL is necessary for extinction learning of remote aversion memory. In contrast to the effects in odor aversion, our data show that the involvement of the IL in the consolidation of fear extinction does not depend on the memory age. More importantly, our data indicate that the IL is implicated in the extinction of fear and nonfear-based associations and suggest dissociation in the engagement of the IL in the learning and consolidation of food aversion extinction over time. PMID:25872918

  13. Chronic stress impairs acoustic conditioning more than visual conditioning in rats: morphological and behavioural evidence.

    PubMed

    Dagnino-Subiabre, A; Terreros, G; Carmona-Fontaine, C; Zepeda, R; Orellana, J A; Díaz-Véliz, G; Mora, S; Aboitiz, F

    2005-01-01

    Chronic stress affects brain areas involved in learning and emotional responses. These alterations have been related with the development of cognitive deficits in major depression. The aim of this study was to determine the effect of chronic immobilization stress on the auditory and visual mesencephalic regions in the rat brain. We analyzed in Golgi preparations whether stress impairs the neuronal morphology of the inferior (auditory processing) and superior colliculi (visual processing). Afterward, we examined the effect of stress on acoustic and visual conditioning using an avoidance conditioning test. We found that stress induced dendritic atrophy in inferior colliculus neurons and did not affect neuronal morphology in the superior colliculus. Furthermore, stressed rats showed a stronger impairment in acoustic conditioning than in visual conditioning. Fifteen days post-stress the inferior colliculus neurons completely restored their dendritic structure, showing a high level of neural plasticity that is correlated with an improvement in acoustic learning. These results suggest that chronic stress has more deleterious effects in the subcortical auditory system than in the visual system and may affect the aversive system and fear-like behaviors. Our study opens a new approach to understand the pathophysiology of stress and stress-related disorders such as major depression.

  14. Developmental emergence of fear/threat learning: neurobiology, associations and timing.

    PubMed

    Tallot, L; Doyère, V; Sullivan, R M

    2016-01-01

    Pavlovian fear or threat conditioning, where a neutral stimulus takes on aversive properties through pairing with an aversive stimulus, has been an important tool for exploring the neurobiology of learning. In the past decades, this neurobehavioral approach has been expanded to include the developing infant. Indeed, protracted postnatal brain development permits the exploration of how incorporating the amygdala, prefrontal cortex and hippocampus into this learning system impacts the acquisition and expression of aversive conditioning. Here, we review the developmental trajectory of these key brain areas involved in aversive conditioning and relate it to pups' transition to independence through weaning. Overall, the data suggests that adult-like features of threat learning emerge as the relevant brain areas become incorporated into this learning. Specifically, the developmental emergence of the amygdala permits cue learning and the emergence of the hippocampus permits context learning. We also describe unique features of learning in early life that block threat learning and enhance interaction with the mother or exploration of the environment. Finally, we describe the development of a sense of time within this learning and its involvement in creating associations. Together these data suggest that the development of threat learning is a useful tool for dissecting adult-like functioning of brain circuits, as well as providing unique insights into ecologically relevant developmental changes. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  15. Stress attenuates the flexible updating of aversive value

    PubMed Central

    Raio, Candace M.; Hartley, Catherine A.; Orederu, Temidayo A.; Li, Jian; Phelps, Elizabeth A.

    2017-01-01

    In a dynamic environment, sources of threat or safety can unexpectedly change, requiring the flexible updating of stimulus−outcome associations that promote adaptive behavior. However, aversive contexts in which we are required to update predictions of threat are often marked by stress. Acute stress is thought to reduce behavioral flexibility, yet its influence on the modulation of aversive value has not been well characterized. Given that stress exposure is a prominent risk factor for anxiety and trauma-related disorders marked by persistent, inflexible responses to threat, here we examined how acute stress affects the flexible updating of threat responses. Participants completed an aversive learning task, in which one stimulus was probabilistically associated with an electric shock, while the other stimulus signaled safety. A day later, participants underwent an acute stress or control manipulation before completing a reversal learning task during which the original stimulus−outcome contingencies switched. Skin conductance and neuroendocrine responses provided indices of sympathetic arousal and stress responses, respectively. Despite equivalent initial learning, stressed participants showed marked impairments in reversal learning relative to controls. Additionally, reversal learning deficits across participants were related to heightened levels of alpha-amylase, a marker of noradrenergic activity. Finally, fitting arousal data to a computational reinforcement learning model revealed that stress-induced reversal learning deficits emerged from stress-specific changes in the weight assigned to prediction error signals, disrupting the adaptive adjustment of learning rates. Our findings provide insight into how stress renders individuals less sensitive to changes in aversive reinforcement and have implications for understanding clinical conditions marked by stress-related psychopathology. PMID:28973957

  16. Lesions of the rat nucleus basalis magnocellularis disrupt appetitive-to-aversive transfer learning.

    PubMed

    Butt, A E; Schultz, J A; Arnold, L L; Garman, E E; George, C L; Garraghty, P E

    2003-01-01

    Rats with selective lesions of the nucleus basalis magnocellularis (NBM) and sham-lesion control animals were tested in an operant appetitive-to-aversive transfer task. We hypothesized that NBM lesions would not affect performance in the appetitive phase, but that performance would be impaired during subsequent transfer to the aversive phase of the task. Additional groups of NBM lesion and control rats were tested in the avoidance condition only, where we hypothesized that NBM lesions would not disrupt performance. These hypotheses were based on the argument that the NBM is not necessary for simple association learning that does not tax attention. Both the appetitive phase of the transfer task and the avoidance only task depend only on simple associative learning and are argued not to tax attention. Consequently, performance in these tasks was predicted to be spared following NBM lesions. Complex, attention-demanding associative learning, however, is argued to depend on the NBM. Performance in the aversive phase of the transfer task is both attentionally demanding and associatively more complex than in either the appetitive or aversive tasks alone; thus, avoidance performance in the NBM lesion group was predicted to be impaired following transfer from prior appetitive conditioning. Results supported our hypotheses, with the NBM lesion group acquiring the appetitive response normally, but showing impaired performance following transfer to the aversive conditioning phase of the transfer task. Impairments were not attributable to disrupted avoidance learning per se, as avoidance behavior was normal in the NBM lesion group tested in the avoidance condition only.

  17. Blue colour preference in honeybees distracts visual attention for learning closed shapes.

    PubMed

    Morawetz, Linde; Svoboda, Alexander; Spaethe, Johannes; Dyer, Adrian G

    2013-10-01

    Spatial vision is an important cue for how honeybees (Apis mellifera) find flowers, and previous work has suggested that spatial learning in free-flying bees is exclusively mediated by achromatic input to the green photoreceptor channel. However, some data suggested that bees may be able to use alternative channels for shape processing, and recent work shows conditioning type and training length can significantly influence bee learning and cue use. We thus tested the honeybees' ability to discriminate between two closed shapes considering either absolute or differential conditioning, and using eight stimuli differing in their spectral characteristics. Consistent with previous work, green contrast enabled reliable shape learning for both types of conditioning, but surprisingly, we found that bees trained with appetitive-aversive differential conditioning could additionally use colour and/or UV contrast to enable shape discrimination. Interestingly, we found that a high blue contrast initially interferes with bee shape learning, probably due to the bees innate preference for blue colours, but with increasing experience bees can learn a variety of spectral and/or colour cues to facilitate spatial learning. Thus, the relationship between bee pollinators and the spatial and spectral cues that they use to find rewarding flowers appears to be a more rich visual environment than previously thought.

  18. Differential Classical Conditioning Selectively Heightens Response Gain of Neural Population Activity in Human Visual Cortex

    PubMed Central

    Song, Inkyung; Keil, Andreas

    2015-01-01

    Neutral cues, after being reliably paired with noxious events, prompt defensive engagement and amplified sensory responses. To examine the neurophysiology underlying these adaptive changes, we quantified the contrast-response function of visual cortical population activity during differential aversive conditioning. Steady-state visual evoked potentials (ssVEPs) were recorded while participants discriminated the orientation of rapidly flickering grating stimuli. During each trial, luminance contrast of the gratings was slowly increased and then decreased. Right-tilted gratings (CS+) were paired with loud white noise but left-tilted gratings (CS−) were not. The contrast-following waveform envelope of ssVEPs showed selective amplification of the CS+ only during the high-contrast stage of the viewing epoch. Findings support the notion that motivational relevance, learned in a time frame of minutes, affects vision through a response gain mechanism. PMID:24981277

  19. The Triangle Technique: a new evidence-based educational tool for pediatric medication calculations.

    PubMed

    Sredl, Darlene

    2006-01-01

    Many nursing student verbalize an aversion to mathematical concepts and experience math anxiety whenever a mathematical problem is confronted. Since nurses confront mathematical problems on a daily basis, they must learn to feel comfortable with their ability to perform these calculations correctly. The Triangle Technique, a new educational tool available to nurse educators, incorporates evidence-based concepts within a graphic model using visual, auditory, and kinesthetic learning styles to demonstrate pediatric medication calculations of normal therapeutic ranges. The theoretical framework for the technique is presented, as is a pilot study examining the efficacy of the educational tool. Statistically significant results obtained by Pearson's product-moment correlation indicate that students are better able to calculate accurate pediatric therapeutic dosage ranges after participation in the educational intervention of learning the Triangle Technique.

  20. Taste aversion learning produced by combined treatment with subthreshold radiation and lithium chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1987-08-01

    These experiments were designed to determine whether treatment with two subthreshold doses of radiation or lithium chloride, either alone or in combination, could lead to taste aversion learning. The first experiment determined the thresholds for a radiation-induced taste aversion at 15-20 rad and for lithium chloride at 0.30-0.45 mEq/kg. In the second experiment it was shown that exposing rats to two doses of 15 rad separated by up to 3 hr produced a taste aversion. Treatment with two injections of lithium chloride (0.30 mEq/kg) did not produce a significant reduction in preference. Combined treatment with radiation and lithium chloride didmore » produce a taste aversion when the two treatments were administered within 1 hr of each other. The results are discussed in terms of the implications of these findings for understanding the nature of the unconditioned stimuli leading to the acquisition of a conditioned taste aversion.« less

  1. Taste aversion learning produced by combined treatment with subthreshold radiation and lithium chloride.

    PubMed

    Rabin, B M; Hunt, W A; Lee, J

    1987-08-01

    These experiments were designed to determine whether treatment with two subthreshold doses of radiation or lithium chloride, either alone or in combination, could lead to taste aversion learning. The first experiment determined the thresholds for a radiation-induced taste aversion at 15-20 rad and for lithium chloride at 0.30-0.45 mEq/kg. In the second experiment it was shown that exposing rats to two doses of 15 rad separated by up to 3 hr produced a taste aversion. Treatment with two injections of lithium chloride (0.30 mEq/kg) did not produce a significant reduction in preference. Combined treatment with radiation and lithium chloride did produce a taste aversion when the two treatments were administered within 1 hr of each other. The results are discussed in terms of the implications of these findings for understanding the nature of the unconditioned stimuli leading to the acquisition of a conditioned taste aversion.

  2. Conditioned taste aversion, drugs of abuse and palatability

    PubMed Central

    Lin, Jian-You; Arthurs, Joe; Reilly, Steve

    2014-01-01

    LIN, J.-Y., J. Arthurs and S. Reilly. Conditioned taste aversion: Palatability and drugs of abuse. NEUROSCI BIOBEHAV REV XX(x) XXX-XXX, 2014. – We consider conditioned taste aversion to involve a learned reduction in the palatability of a taste (and hence in amount consumed) based on the association that develops when a taste experience is followed by gastrointestinal malaise. The present article evaluates the well-established finding that drugs of abuse, at doses that are otherwise considered rewarding and self-administered, cause intake suppression. Our recent work using lick pattern analysis shows that drugs of abuse also cause a palatability downshift and, therefore, support conditioned taste aversion learning. PMID:24813806

  3. Cholinergic dependence of taste memory formation: evidence of two distinct processes.

    PubMed

    Gutiérrez, Ranier; Rodriguez-Ortiz, Carlos J; De La Cruz, Vanesa; Núñez-Jaramillo, Luis; Bermudez-Rattoni, Federico

    2003-11-01

    Learning the aversive or positive consequences associated with novel taste solutions has a strong significance for an animal's survival. A lack of recognition of a taste's consequences could prevent ingestion of potential edibles or encounter death. We used conditioned taste aversion (CTA) and attenuation of neophobia (AN) to study aversive and safe taste memory formation. To determine if muscarinic receptors in the insular cortex participate differentially in both tasks, we infused the muscarinic antagonists scopolamine at distinct times before or after the presentation of a strong concentration of saccharin, followed by either an i.p. injection of a malaise-inducing agent or no injection. Our results showed that blockade of muscarinic receptors before taste presentation disrupts both learning tasks. However, the same treatment after the taste prevents AN but not CTA. These results clearly demonstrate that cortical cholinergic activity participates in the acquisition of both safe and aversive memory formation, and that cortical muscarinic receptors seem to be necessary for safe but not for aversive taste memory consolidation. These results suggest that the taste memory trace is processed in the insular cortex simultaneously by at least two independent mechanisms, and that their interaction would determine the degree of aversion or preference learned to a novel taste.

  4. Differential Endocannabinoid Regulation of Extinction in Appetitive and Aversive Barnes Maze Tasks

    ERIC Educational Resources Information Center

    Harloe, John P.; Thorpe, Andrew J.; Lichtman, Aron H.

    2008-01-01

    CB[subscript 1] receptor-compromised animals show profound deficits in extinguishing learned behavior from aversive conditioning tasks, but display normal extinction learning in appetitive operant tasks. However, it is difficult to discern whether the differential involvement of the endogenous cannabinoid system on extinction results from the…

  5. Social interaction with non-averse group-mates modifies a learned food aversion in single- and mixed-species groups of tamarins (Saguinus fuscicollis and S. labiatus).

    PubMed

    Prescott, M J; Buchanan-Smith, H M; Smith, A C

    2005-04-01

    For social species, being a member of a cohesive group and performing activities as a coordinated unit appear to provide a mechanism for the efficient transmission of information about food. Social learning about food palatability was investigated in two captive primates, Saguinus fuscicollis and S. labiatus, which form stable and cohesive mixed-species groups in the wild. We explored whether an induced food aversion toward a preferred food is modified during and after social interaction with non-averse conspecifics or congeners. Sets of intra- and interspecific pairs were presented with two foods, one of which was considered distasteful by one of the pairs (the other was palatable), and their behavior was compared pre-interaction, during interaction, and post-interaction. For the aversely-conditioned individuals of both species, the change in social context corresponded to a change in their preference for the food that they considered unpalatable, regardless of whether they had interacted with a conspecific or congeneric pair, and the change in food preference was maintained post-interaction. In a control condition, in which averse individuals did not have the opportunity to interact with non-averse animals, S. fuscicollis sampled the preferred food, but not as quickly as when given the opportunity to interact. We conclude that the social learning demonstrated here may allow individual tamarins to track environmental change, such as fruit ripening, more efficiently than asocial learning alone, because social learners can more quickly and safely focus on appropriate behavior by sharing up-to-date foraging information. Furthermore, since the behavior of congeners, as well as conspecifics, acts to influence food choice in a more adaptive direction, social learning about food palatability may be an advantage of mixed-species group formation to tamarins of both species. Copyright 2005 Wiley-Liss, Inc

  6. Long Term Effects of Aversive Reinforcement on Colour Discrimination Learning in Free-Flying Bumblebees

    PubMed Central

    Rodríguez-Gironés, Miguel A.; Trillo, Alejandro; Corcobado, Guadalupe

    2013-01-01

    The results of behavioural experiments provide important information about the structure and information-processing abilities of the visual system. Nevertheless, if we want to infer from behavioural data how the visual system operates, it is important to know how different learning protocols affect performance and to devise protocols that minimise noise in the response of experimental subjects. The purpose of this work was to investigate how reinforcement schedule and individual variability affect the learning process in a colour discrimination task. Free-flying bumblebees were trained to discriminate between two perceptually similar colours. The target colour was associated with sucrose solution, and the distractor could be associated with water or quinine solution throughout the experiment, or with one substance during the first half of the experiment and the other during the second half. Both acquisition and final performance of the discrimination task (measured as proportion of correct choices) were determined by the choice of reinforcer during the first half of the experiment: regardless of whether bees were trained with water or quinine during the second half of the experiment, bees trained with quinine during the first half learned the task faster and performed better during the whole experiment. Our results confirm that the choice of stimuli used during training affects the rate at which colour discrimination tasks are acquired and show that early contact with a strongly aversive stimulus can be sufficient to maintain high levels of attention during several hours. On the other hand, bees which took more time to decide on which flower to alight were more likely to make correct choices than bees which made fast decisions. This result supports the existence of a trade-off between foraging speed and accuracy, and highlights the importance of measuring choice latencies during behavioural experiments focusing on cognitive abilities. PMID:23951186

  7. Pharmacologic attenuation of cross-modal sensory augmentation within the chronic pain insula

    PubMed Central

    Harte, Steven E.; Ichesco, Eric; Hampson, Johnson P.; Peltier, Scott J.; Schmidt-Wilcke, Tobias; Clauw, Daniel J.; Harris, Richard E.

    2016-01-01

    Abstract Pain can be elicited through all mammalian sensory pathways yet cross-modal sensory integration, and its relationship to clinical pain, is largely unexplored. Centralized chronic pain conditions such as fibromyalgia are often associated with symptoms of multisensory hypersensitivity. In this study, female patients with fibromyalgia demonstrated cross-modal hypersensitivity to visual and pressure stimuli compared with age- and sex-matched healthy controls. Functional magnetic resonance imaging revealed that insular activity evoked by an aversive level of visual stimulation was associated with the intensity of fibromyalgia pain. Moreover, attenuation of this insular activity by the analgesic pregabalin was accompanied by concomitant reductions in clinical pain. A multivariate classification method using support vector machines (SVM) applied to visual-evoked brain activity distinguished patients with fibromyalgia from healthy controls with 82% accuracy. A separate SVM classification of treatment effects on visual-evoked activity reliably identified when patients were administered pregabalin as compared with placebo. Both SVM analyses identified significant weights within the insular cortex during aversive visual stimulation. These data suggest that abnormal integration of multisensory and pain pathways within the insula may represent a pathophysiological mechanism in some chronic pain conditions and that insular response to aversive visual stimulation may have utility as a marker for analgesic drug development. PMID:27101425

  8. Central Ghrelin Resistance Permits the Overconsolidation of Fear Memory.

    PubMed

    Harmatz, Elia S; Stone, Lauren; Lim, Seh Hong; Lee, Graham; McGrath, Anna; Gisabella, Barbara; Peng, Xiaoyu; Kosoy, Eliza; Yao, Junmei; Liu, Elizabeth; Machado, Nuno J; Weiner, Veronica S; Slocum, Warren; Cunha, Rodrigo A; Goosens, Ki A

    2017-06-15

    There are many contradictory findings about the role of the hormone ghrelin in aversive processing, with studies suggesting that ghrelin signaling can both inhibit and enhance aversion. Here, we characterize and reconcile the paradoxical role of ghrelin in the acquisition of fearful memories. We used enzyme-linked immunosorbent assay to measure endogenous acyl-ghrelin and corticosterone at time points surrounding auditory fear learning. We used pharmacological (systemic and intra-amygdala) manipulations of ghrelin signaling and examined several aversive and appetitive behaviors. We also used biotin-labeled ghrelin to visualize ghrelin binding sites in coronal brain sections of amygdala. All work was performed in rats. In unstressed rodents, endogenous peripheral acyl-ghrelin robustly inhibits fear memory consolidation through actions in the amygdala and accounts for virtually all interindividual variability in long-term fear memory strength. Higher levels of endogenous ghrelin after fear learning were associated with weaker long-term fear memories, and pharmacological agonism of the ghrelin receptor during the memory consolidation period reduced fear memory strength. These fear-inhibitory effects cannot be explained by changes in appetitive behavior. In contrast, we show that chronic stress, which increases both circulating endogenous acyl-ghrelin and fear memory formation, promotes profound loss of ghrelin binding sites in the amygdala and behavioral insensitivity to ghrelin receptor agonism. These studies provide a new link between stress, a novel type of metabolic resistance, and vulnerability to excessive fear memory formation and reveal that ghrelin can regulate negative emotionality in unstressed animals without altering appetite. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. The touchscreen operant platform for testing learning and memory in rats and mice

    PubMed Central

    Horner, Alexa E.; Heath, Christopher J.; Hvoslef-Eide, Martha; Kent, Brianne A.; Kim, Chi Hun; Nilsson, Simon R. O.; Alsiö, Johan; Oomen, Charlotte A.; Holmes, Andrew; Saksida, Lisa M.; Bussey, Timothy J.

    2014-01-01

    Summary An increasingly popular method of assessing cognitive functions in rodents is the automated touchscreen platform, on which a number of different cognitive tests can be run in a manner very similar to touchscreen methods currently used to test human subjects. This methodology is low stress (using appetitive, rather than aversive reinforcement), has high translational potential, and lends itself to a high degree of standardisation and throughput. Applications include the study of cognition in rodent models of psychiatric and neurodegenerative diseases (e.g., Alzheimer’s disease, schizophrenia, Huntington’s disease, frontotemporal dementia), and characterisation of the role of select brain regions, neurotransmitter systems and genes in rodents. This protocol describes how to perform four touchscreen assays of learning and memory: Visual Discrimination, Object-Location Paired-Associates Learning, Visuomotor Conditional Learning and Autoshaping. It is accompanied by two further protocols using the touchscreen platform to assess executive function, working memory and pattern separation. PMID:24051959

  10. Adaptation in human visual cortex as a mechanism for rapid discrimination of aversive stimuli.

    PubMed

    Keil, Andreas; Stolarova, Margarita; Moratti, Stephan; Ray, William J

    2007-06-01

    The ability to react rapidly and efficiently to adverse stimuli is crucial for survival. Neuroscience and behavioral studies have converged to show that visual information associated with aversive content is processed quickly and accurately and is associated with rapid amplification of the neural responses. In particular, unpleasant visual information has repeatedly been shown to evoke increased cortical activity during early visual processing between 60 and 120 ms following the onset of a stimulus. However, the nature of these early responses is not well understood. Using neutral versus unpleasant colored pictures, the current report examines the time course of short-term changes in the human visual cortex when a subject is repeatedly exposed to simple grating stimuli in a classical conditioning paradigm. We analyzed changes in amplitude and synchrony of large-scale oscillatory activity across 2 days of testing, which included baseline measurements, 2 conditioning sessions, and a final extinction session. We found a gradual increase in amplitude and synchrony of very early cortical oscillations in the 20-35 Hz range across conditioning sessions, specifically for conditioned stimuli predicting aversive visual events. This increase for conditioned stimuli affected stimulus-locked cortical oscillations at a latency of around 60-90 ms and disappeared during extinction. Our findings suggest that reorganization of neural connectivity on the level of the visual cortex acts to optimize early perception of specific features indicative of emotional relevance.

  11. Differential Involvement of the Central Amygdala in Appetitive versus Aversive Learning

    ERIC Educational Resources Information Center

    Lipp, Hans-Peter; Kaczmarek, Leszek; Werka, Tomasz; Knapska, Ewelina; Walasek, Grazyna; Nikolaev, Evgeni; Neuhausser-Wespy, Frieder

    2006-01-01

    Understanding the function of the distinct amygdaloid nuclei in learning comprises a major challenge. In the two studies described herein, we used c-Fos immunolabeling to compare the engagement of various nuclei of the amygdala in appetitive and aversive instrumental training procedures. In the first experiment, rats that had already acquired a…

  12. Electrical Stimulation of the Primate Lateral Habenula Suppresses Saccadic Eye Movement through a Learning Mechanism

    PubMed Central

    Matsumoto, Masayuki; Hikosaka, Okihide

    2011-01-01

    The lateral habenula (LHb) is a brain structure which represents negative motivational value. Neurons in the LHb are excited by unpleasant events such as reward omission and aversive stimuli, and transmit these signals to midbrain dopamine neurons which are involved in learning and motivation. However, it remains unclear whether these phasic changes in LHb neuronal activity actually influence animal behavior. To answer this question, we artificially activated the LHb by electrical stimulation while monkeys were performing a visually guided saccade task. In one block of trials, saccades to one fixed direction (e.g., right direction) were followed by electrical stimulation of the LHb while saccades to the other direction (e.g., left direction) were not. The direction-stimulation contingency was reversed in the next block. We found that the post-saccadic stimulation of the LHb increased the latencies of saccades in subsequent trials. Notably, the increase of the latency occurred gradually as the saccade was repeatedly followed by the stimulation, suggesting that the effect of the post-saccadic stimulation was accumulated across trials. LHb stimulation starting before saccades, on the other hand, had no effect on saccade latency. Together with previous studies showing LHb activation by reward omission and aversive stimuli, the present stimulation experiment suggests that LHb activity contributes to learning to suppress actions which lead to unpleasant events. PMID:22039537

  13. The combination of appetitive and aversive reinforcers and the nature of their interaction during auditory learning.

    PubMed

    Ilango, A; Wetzel, W; Scheich, H; Ohl, F W

    2010-03-31

    Learned changes in behavior can be elicited by either appetitive or aversive reinforcers. It is, however, not clear whether the two types of motivation, (approaching appetitive stimuli and avoiding aversive stimuli) drive learning in the same or different ways, nor is their interaction understood in situations where the two types are combined in a single experiment. To investigate this question we have developed a novel learning paradigm for Mongolian gerbils, which not only allows rewards and punishments to be presented in isolation or in combination with each other, but also can use these opposite reinforcers to drive the same learned behavior. Specifically, we studied learning of tone-conditioned hurdle crossing in a shuttle box driven by either an appetitive reinforcer (brain stimulation reward) or an aversive reinforcer (electrical footshock), or by a combination of both. Combination of the two reinforcers potentiated speed of acquisition, led to maximum possible performance, and delayed extinction as compared to either reinforcer alone. Additional experiments, using partial reinforcement protocols and experiments in which one of the reinforcers was omitted after the animals had been previously trained with the combination of both reinforcers, indicated that appetitive and aversive reinforcers operated together but acted in different ways: in this particular experimental context, punishment appeared to be more effective for initial acquisition and reward more effective to maintain a high level of conditioned responses (CRs). The results imply that learning mechanisms in problem solving were maximally effective when the initial punishment of mistakes was combined with the subsequent rewarding of correct performance. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Does Conspecific Fighting Yield Conditioned Taste Aversion in Rats?

    ERIC Educational Resources Information Center

    Nakajima, Sadahiko; Kumazawa, Gaku; Ieki, Hayato; Hashimoto, Aya

    2012-01-01

    Running in an activity wheel yields conditioned aversion to a taste solution consumed before the running, but its underlying physiological mechanism is unknown. According to the claim that energy expenditure or general stress caused by physical exercise is a critical factor for this taste-aversion learning, not only running but also other…

  15. Visual attention and emotional memory: recall of aversive pictures is partially mediated by concurrent task performance.

    PubMed

    Pottage, Claire L; Schaefer, Alexandre

    2012-02-01

    The emotional enhancement of memory is often thought to be determined by attention. However, recent evidence using divided attention paradigms suggests that attention does not play a significant role in the formation of memories for aversive pictures. We report a study that investigated this question using a paradigm in which participants had to encode lists of randomly intermixed negative and neutral pictures under conditions of full attention and divided attention followed by a free recall test. Attention was divided by a highly demanding concurrent task tapping visual processing resources. Results showed that the advantage in recall for aversive pictures was still present in the DA condition. However, mediation analyses also revealed that concurrent task performance significantly mediated the emotional enhancement of memory under divided attention. This finding suggests that visual attentional processes play a significant role in the formation of emotional memories. PsycINFO Database Record (c) 2012 APA, all rights reserved

  16. Low body temperature, time dilation, and long-trace conditioned flavor aversion in rats.

    PubMed

    Misanin, James R; Anderson, Matthew J; Christianson, John P; Collins, Michele M; Goodhart, Mark G; Rushanan, Scott G; Hinderliter, Charles F

    2002-07-01

    Conditioned flavor aversion was examined in Wistar-derived albino rats that were immersed in cold water for 0, 2.5, 5, or 10 min immediately following 10-min exposure to a.1% saccharin solution and given an intraperitoneal (i.p.) injection of 0.15 M lithium chloride (LiCl) either 90, 135, 180, or 225 min later. Cold water immersion for 2.5, 5, and 10 min led to body temperature decreases of approximately 4.5, 7, and 10 degrees C, respectively. Rats whose body temperatures were not reduced (0 min immersion) showed no saccharin aversion when the LiCl was delayed 90 min. Rats whose body temperatures were reduced 4.5, 7, and 10 degrees C displayed conditioned aversions at LiCl delays up to 135, 180, and 225 min, respectively. These results were interpreted in terms of a cold-induced slowing of a biochemical clock that may uniquely govern specific timing processes involved in associative learning over long delays, such as long-trace conditioned flavor aversion, learned safety, and certain types of learning that involve an extensive time lapse (e.g., extinction of fear). Copyright 2002 Elsevier Science (USA).

  17. Olfactory modulation by dopamine in the context of aversive learning

    PubMed Central

    Riffell, Jeffrey A.; Martin, Joshua P.; Gage, Stephanie L.; Nighorn, Alan J.

    2012-01-01

    The need to detect and process sensory cues varies in different behavioral contexts. Plasticity in sensory coding can be achieved by the context-specific release of neuromodulators in restricted brain areas. The context of aversion triggers the release of dopamine in the insect brain, yet the effects of dopamine on sensory coding are unknown. In this study, we characterize the morphology of dopaminergic neurons that innervate each of the antennal lobes (ALs; the first synaptic neuropils of the olfactory system) of the moth Manduca sexta and demonstrate with electrophysiology that dopamine enhances odor-evoked responses of the majority of AL neurons while reducing the responses of a small minority. Because dopamine release in higher brain areas mediates aversive learning we developed a naturalistic, ecologically inspired aversive learning paradigm in which an innately appetitive host plant floral odor is paired with a mimic of the aversive nectar of herbivorized host plants. This pairing resulted in a decrease in feeding behavior that was blocked when dopamine receptor antagonists were injected directly into the ALs. These results suggest that a transient dopaminergic enhancement of sensory output from the AL contributes to the formation of aversive memories. We propose a model of olfactory modulation in which specific contexts trigger the release of different neuromodulators in the AL to increase olfactory output to downstream areas of processing. PMID:22552185

  18. Negative learning bias is associated with risk aversion in a genetic animal model of depression.

    PubMed

    Shabel, Steven J; Murphy, Ryan T; Malinow, Roberto

    2014-01-01

    The lateral habenula (LHb) is activated by aversive stimuli and the omission of reward, inhibited by rewarding stimuli and is hyperactive in helpless rats-an animal model of depression. Here we test the hypothesis that congenital learned helpless (cLH) rats are more sensitive to decreases in reward size and/or less sensitive to increases in reward than wild-type (WT) control rats. Consistent with the hypothesis, we found that cLH rats were slower to switch preference between two responses after a small upshift in reward size on one of the responses but faster to switch their preference after a small downshift in reward size. cLH rats were also more risk-averse than WT rats-they chose a response delivering a constant amount of reward ("safe" response) more often than a response delivering a variable amount of reward ("risky" response) compared to WT rats. Interestingly, the level of bias toward negative events was associated with the rat's level of risk aversion when compared across individual rats. cLH rats also showed impaired appetitive Pavlovian conditioning but more accurate responding in a two-choice sensory discrimination task. These results are consistent with a negative learning bias and risk aversion in cLH rats, suggesting abnormal processing of rewarding and aversive events in the LHb of cLH rats.

  19. Distinct circuits for the formation and retrieval of an imprinted olfactory memory

    PubMed Central

    Jin, Xin; Pokala, Navin; Bargmann, Cornelia I.

    2016-01-01

    Summary Memories formed early in life are particularly stable and influential, representing privileged experiences that shape enduring behaviors. Here we show that exposing newly-hatched C. elegans to pathogenic bacteria results in persistent aversion to those bacterial odors, whereas adult exposure generates only transient aversive memory. Long-lasting imprinted aversion has a critical period in the first larval stage, and is specific to the experienced pathogen. Distinct groups of neurons are required during formation (AIB, RIM) and retrieval (AIY, RIA) of the imprinted memory. RIM synthesizes the neuromodulator tyramine, which is required in the L1 stage for learning. AIY memory retrieval neurons sense tyramine via the SER-2 receptor, which is essential for imprinted but not for adult-learned aversion. Odor responses in several neurons, most notably RIA, are altered in imprinted animals. These findings provide insight into neuronal substrates of different forms of memory, and lay a foundation for further understanding of early learning. PMID:26871629

  20. Learning shapes the aversion and reward responses of lateral habenula neurons

    PubMed Central

    Wang, Daqing; Li, Yi; Feng, Qiru; Guo, Qingchun; Zhou, Jingfeng; Luo, Minmin

    2017-01-01

    The lateral habenula (LHb) is believed to encode negative motivational values. It remains unknown how LHb neurons respond to various stressors and how learning shapes their responses. Here, we used fiber-photometry and electrophysiology to track LHb neuronal activity in freely-behaving mice. Bitterness, pain, and social attack by aggressors intensively excite LHb neurons. Aversive Pavlovian conditioning induced activation by the aversion-predicting cue in a few trials. The experience of social defeat also conditioned excitatory responses to previously neutral social stimuli. In contrast, fiber photometry and single-unit recordings revealed that sucrose reward inhibited LHb neurons and often produced excitatory rebound. It required prolonged conditioning and high reward probability to induce inhibition by reward-predicting cues. Therefore, LHb neurons can bidirectionally process a diverse array of aversive and reward signals. Importantly, their responses are dynamically shaped by learning, suggesting that the LHb participates in experience-dependent selection of behavioral responses to stressors and rewards. DOI: http://dx.doi.org/10.7554/eLife.23045.001 PMID:28561735

  1. Developmentally defined forebrain circuits regulate appetitive and aversive olfactory learning.

    PubMed

    Muthusamy, Nagendran; Zhang, Xuying; Johnson, Caroline A; Yadav, Prem N; Ghashghaei, H Troy

    2017-01-01

    Postnatal and adult neurogenesis are region- and modality-specific, but the significance of developmentally distinct neuronal populations remains unclear. We demonstrate that chemogenetic inactivation of a subset of forebrain and olfactory neurons generated at birth disrupts responses to an aversive odor. In contrast, novel appetitive odor learning is sensitive to inactivation of adult-born neurons, revealing that developmentally defined sets of neurons may differentially participate in hedonic aspects of sensory learning.

  2. Enhanced Extinction of Aversive Memories by High-Frequency Stimulation of the Rat Infralimbic Cortex

    PubMed Central

    Maroun, Mouna; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara; Motanis, Helen

    2012-01-01

    Electrical stimulation of the rodent medial prefrontal cortex (mPFC), including the infralimbic cortex (IL), immediately prior to or during fear extinction training facilitates extinction memory. Here we examined the effects of high-frequency stimulation (HFS) of the rat IL either prior to conditioning or following retrieval of the conditioned memory, on extinction of Pavlovian fear and conditioned taste aversion (CTA). IL-HFS applied immediately after fear memory retrieval, but not three hours after retrieval or prior to conditioning, subsequently reduced freezing during fear extinction. Similarly, IL-HFS given immediately, but not three hours after, retrieval of a CTA memory reduced aversion during extinction. These data indicate that HFS of the IL may be an effective method for reducing both learned fear and learned aversion. PMID:22586453

  3. Aversive learning of odor-heat associations in ants.

    PubMed

    Desmedt, Lucie; Baracchi, David; Devaud, Jean-Marc; Giurfa, Martin; d'Ettorre, Patrizia

    2017-12-15

    Ants have recently emerged as useful models for the study of olfactory learning. In this framework, the development of a protocol for the appetitive conditioning of the maxilla-labium extension response (MaLER) provided the possibility of studying Pavlovian odor-food learning in a controlled environment. Here we extend these studies by introducing the first Pavlovian aversive learning protocol for harnessed ants in the laboratory. We worked with carpenter ants Camponotus aethiops and first determined the capacity of different temperatures applied to the body surface to elicit the typical aversive mandible opening response (MOR). We determined that 75°C is the optimal temperature to induce MOR and chose the hind legs as the stimulated body region because of their high sensitivity. We then studied the ability of ants to learn and remember odor-heat associations using 75°C as the unconditioned stimulus. We studied learning and short-term retention after absolute (one odor paired with heat) and differential conditioning (a punished odor versus an unpunished odor). Our results show that ants successfully learn the odor-heat association under a differential-conditioning regime and thus exhibit a conditioned MOR to the punished odor. Yet, their performance under an absolute-conditioning regime is poor. These results demonstrate that ants are capable of aversive learning and confirm previous findings about the different attentional resources solicited by differential and absolute conditioning in general. © 2017. Published by The Company of Biologists Ltd.

  4. The answer is blowing in the wind: free-flying honeybees can integrate visual and mechano-sensory inputs for making complex foraging decisions.

    PubMed

    Ravi, Sridhar; Garcia, Jair E; Wang, Chun; Dyer, Adrian G

    2016-11-01

    Bees navigate in complex environments using visual, olfactory and mechano-sensorial cues. In the lowest region of the atmosphere, the wind environment can be highly unsteady and bees employ fine motor-skills to enhance flight control. Recent work reveals sophisticated multi-modal processing of visual and olfactory channels by the bee brain to enhance foraging efficiency, but it currently remains unclear whether wind-induced mechano-sensory inputs are also integrated with visual information to facilitate decision making. Individual honeybees were trained in a linear flight arena with appetitive-aversive differential conditioning to use a context-setting cue of 3 m s -1 cross-wind direction to enable decisions about either a 'blue' or 'yellow' star stimulus being the correct alternative. Colour stimuli properties were mapped in bee-specific opponent-colour spaces to validate saliency, and to thus enable rapid reverse learning. Bees were able to integrate mechano-sensory and visual information to facilitate decisions that were significantly different to chance expectation after 35 learning trials. An independent group of bees were trained to find a single rewarding colour that was unrelated to the wind direction. In these trials, wind was not used as a context-setting cue and served only as a potential distracter in identifying the relevant rewarding visual stimuli. Comparison between respective groups shows that bees can learn to integrate visual and mechano-sensory information in a non-elemental fashion, revealing an unsuspected level of sensory processing in honeybees, and adding to the growing body of knowledge on the capacity of insect brains to use multi-modal sensory inputs in mediating foraging behaviour. © 2016. Published by The Company of Biologists Ltd.

  5. The enigma of conditioned taste aversion learning: stimulus properties of 2-phenylethylamine derivatives.

    PubMed

    Greenshaw, A J; Turrkish, S; Davis, B A

    2002-01-01

    The functional aversive stimulus properties of several IP doses of (+/-)-amphetamine (1.25-10 mg.kg-1), 2-phenylethylamine (PEA, 2.5-10 mg.kg-1, following inhibition of monoamine oxidase with pargyline 50 mg.kg-1) and phenylethanolamine (6.25-50 mg.kg-1) were measured with the conditioned taste aversion (CTA) paradigm. A two-bottle choice procedure was used, water vs. 0.1 % saccharin with one conditioning trial and three retention trials. (+/-)-Amphetamine and phenylethanolamine induced a significant conditioned taste aversion but PEA did not. (+/-)-Amphetamine and PEA increased spontaneous locomotor activity but phenylethanolamine had no effects on this measure. Measurement of whole brain levels of these drugs revealed that the peak brain elevation of PEA occurred at approximately 10 min whereas the peak elevations of (+/-)-amphetamine and phenylethanolamine occurred at approximately 20 min. The present failure of PEA to elicit conditioned taste aversion learning is consistent with previous reports for this compound. The differential functional aversive stimulus effects of these three compounds are surprising since they exhibit similar discriminative stimulus properties and both (+/-)-amphetamine and PEA are self-administered by laboratory animals. The present data suggest that time to maximal brain concentrations following peripheral injection may be a determinant of the aversive stimulus properties of PEA derivatives.

  6. Reappraising social insect behavior through aversive responsiveness and learning.

    PubMed

    Roussel, Edith; Carcaud, Julie; Sandoz, Jean-Christophe; Giurfa, Martin

    2009-01-01

    The success of social insects can be in part attributed to their division of labor, which has been explained by a response threshold model. This model posits that individuals differ in their response thresholds to task-associated stimuli, so that individuals with lower thresholds specialize in this task. This model is at odds with findings on honeybee behavior as nectar and pollen foragers exhibit different responsiveness to sucrose, with nectar foragers having higher response thresholds to sucrose concentration. Moreover, it has been suggested that sucrose responsiveness correlates with responsiveness to most if not all other stimuli. If this is the case, explaining task specialization and the origins of division of labor on the basis of differences in response thresholds is difficult. To compare responsiveness to stimuli presenting clear-cut differences in hedonic value and behavioral contexts, we measured appetitive and aversive responsiveness in the same bees in the laboratory. We quantified proboscis extension responses to increasing sucrose concentrations and sting extension responses to electric shocks of increasing voltage. We analyzed the relationship between aversive responsiveness and aversive olfactory conditioning of the sting extension reflex, and determined how this relationship relates to division of labor. Sucrose and shock responsiveness measured in the same bees did not correlate, thus suggesting that they correspond to independent behavioral syndromes, a foraging and a defensive one. Bees which were more responsive to shock learned and memorized better aversive associations. Finally, guards were less responsive than nectar foragers to electric shocks, exhibiting higher tolerance to low voltage shocks. Consequently, foragers, which are more sensitive, were the ones learning and memorizing better in aversive conditioning. Our results constitute the first integrative study on how aversive responsiveness affects learning, memory and social organization in honeybees. We suggest that parallel behavioral modules (e.g. appetitive, aversive) coexist within each individual bee and determine its tendency to adopt a given task. This conclusion, which is at odds with a simple threshold model, should open new opportunities for exploring the division of labor in social insects.

  7. Development switch in neural circuitry underlying odor-malaise learning.

    PubMed

    Shionoya, Kiseko; Moriceau, Stephanie; Lunday, Lauren; Miner, Cathrine; Roth, Tania L; Sullivan, Regina M

    2006-01-01

    Fetal and infant rats can learn to avoid odors paired with illness before development of brain areas supporting this learning in adults, suggesting an alternate learning circuit. Here we begin to document the transition from the infant to adult neural circuit underlying odor-malaise avoidance learning using LiCl (0.3 M; 1% of body weight, ip) and a 30-min peppermint-odor exposure. Conditioning groups included: Paired odor-LiCl, Paired odor-LiCl-Nursing, LiCl, and odor-saline. Results showed that Paired LiCl-odor conditioning induced a learned odor aversion in postnatal day (PN) 7, 12, and 23 pups. Odor-LiCl Paired Nursing induced a learned odor preference in PN7 and PN12 pups but blocked learning in PN23 pups. 14C 2-deoxyglucose (2-DG) autoradiography indicated enhanced olfactory bulb activity in PN7 and PN12 pups with odor preference and avoidance learning. The odor aversion in weanling aged (PN23) pups resulted in enhanced amygdala activity in Paired odor-LiCl pups, but not if they were nursing. Thus, the neural circuit supporting malaise-induced aversions changes over development, indicating that similar infant and adult-learned behaviors may have distinct neural circuits.

  8. Differential Regulation of Glutamic Acid Decarboxylase Gene Expression after Extinction of a Recent Memory vs. Intermediate Memory

    ERIC Educational Resources Information Center

    Sangha, Susan; Ilenseer, Jasmin; Sosulina, Ludmila; Lesting, Jorg; Pape, Hans-Christian

    2012-01-01

    Extinction reduces fear to stimuli that were once associated with an aversive event by no longer coupling the stimulus with the aversive event. Extinction learning is supported by a network comprising the amygdala, hippocampus, and prefrontal cortex. Previous studies implicate a critical role of GABA in extinction learning, specifically the GAD65…

  9. Null EPAC Mutants Reveal a Sequential Order of Versatile cAMP Effects during "Drosophila" Aversive Odor Learning

    ERIC Educational Resources Information Center

    Richlitzki, Antje; Latour, Philipp; Schwärzel, Martin

    2017-01-01

    Here, we define a role of the cAMP intermediate EPAC in "Drosophila" aversive odor learning by means of null epac mutants. Complementation analysis revealed that EPAC acts downstream from the "rutabaga" adenylyl cyclase and in parallel to protein kinase A. By means of targeted knockdown and genetic rescue we identified mushroom…

  10. Perceived ambiguity as a barrier to intentions to learn genome sequencing results.

    PubMed

    Taber, Jennifer M; Klein, William M P; Ferrer, Rebecca A; Han, Paul K J; Lewis, Katie L; Biesecker, Leslie G; Biesecker, Barbara B

    2015-10-01

    Many variants that could be returned from genome sequencing may be perceived as ambiguous-lacking reliability, credibility, or adequacy. Little is known about how perceived ambiguity influences thoughts about sequencing results. Participants (n = 494) in an NIH genome sequencing study completed a baseline survey before sequencing results were available. We examined how perceived ambiguity regarding sequencing results and individual differences in medical ambiguity aversion and tolerance for uncertainty were associated with cognitions and intentions concerning sequencing results. Perceiving sequencing results as more ambiguous was associated with less favorable cognitions about results and lower intentions to learn and share results. Among participants low in tolerance for uncertainty or optimism, greater perceived ambiguity was associated with lower intentions to learn results for non-medically actionable diseases; medical ambiguity aversion did not moderate any associations. Results are consistent with the phenomenon of "ambiguity aversion" and may influence whether people learn and communicate genomic information.

  11. Affective associative learning modifies the sensory perception of nociceptive stimuli without participant's awareness.

    PubMed

    Wunsch, Annabel; Philippot, Pierre; Plaghki, Léon

    2003-03-01

    The present experiment examined the possibility to change the sensory and/or the affective perception of thermal stimuli by an emotional associative learning procedure known to operate without participants' awareness (evaluative conditioning). In a mixed design, an aversive conditioning procedure was compared between subjects to an appetitive conditioning procedure. Both groups were also compared within-subject to a control condition (neutral conditioning). The aversive conditioning was induced by associating non-painful and painful thermal stimuli - delivered on the right forearm - with unpleasant slides. The appetitive conditioning consisted in an association between thermal stimuli - also delivered on the right forearm - and pleasant slides. The control condition consisted in an association between thermal stimuli - delivered for all participants on the left forearm - and neutral slides. The effects of the conditioning procedures on the sensory and affective dimensions were evaluated with visual analogue scale (VAS)-intensity and VAS-unpleasantness. Startle reflex was used as a physiological index of emotional valence disposition. Results confirmed that no participants were aware of the conditioning procedure. After unpleasant slides (aversive conditioning), non-painful and painful thermal stimuli were judged more intense and more unpleasant than when preceded by neutral slides (control condition) or pleasant slides (appetitive conditioning). Despite a strong correlation between the intensity and the unpleasantness scales, effects were weaker for the affective scale and, became statistically non-significant when VAS-intensity was used as covariate. This experiment shows that it is possible to modify the perception of intensity of thermal stimuli by a non-conscious learning procedure based on the transfer of the valence of the unconditioned stimuli (pleasant or unpleasant slides) towards the conditioned stimuli (non-painful and painful thermal stimuli). These results plead for a conception of pain as a conscious output of complex informational processes all of which are not accessible to participants' awareness. Mechanisms by which affective input may influence sensory experience and clinical implications of the present study are discussed.

  12. The Functional Significance of Aposematic Signals: Geographic Variation in the Responses of Widespread Lizard Predators to Colourful Invertebrate Prey

    PubMed Central

    Tseng, Hui-Yun; Lin, Chung-Ping; Hsu, Jung-Ya; Pike, David A.; Huang, Wen-San

    2014-01-01

    Conspicuous colouration can evolve as a primary defence mechanism that advertises unprofitability and discourages predatory attacks. Geographic overlap is a primary determinant of whether individual predators encounter, and thus learn to avoid, such aposematic prey. We experimentally tested whether the conspicuous colouration displayed by Old World pachyrhynchid weevils (Pachyrhynchus tobafolius and Kashotonus multipunctatus) deters predation by visual predators (Swinhoe’s tree lizard; Agamidae, Japalura swinhonis). During staged encounters, sympatric lizards attacked weevils without conspicuous patterns at higher rates than weevils with intact conspicuous patterns, whereas allopatric lizards attacked weevils with intact patterns at higher rates than sympatric lizards. Sympatric lizards also attacked masked weevils at lower rates, suggesting that other attributes of the weevils (size/shape/smell) also facilitate recognition. Allopatric lizards rapidly learned to avoid weevils after only a single encounter, and maintained aversive behaviours for more than three weeks. The imperfect ability of visual predators to recognize potential prey as unpalatable, both in the presence and absence of the aposematic signal, may help explain how diverse forms of mimicry exploit the predator’s visual system to deter predation. PMID:24614681

  13. Effects of dietary choline availability on latent inhibition of flavor aversion learning.

    PubMed

    Gámiz, Fernando; Recio, Sergio Andrés; Iliescu, Adela Florentina; Gallo, Milagros; de Brugada, Isabel

    2015-08-01

    It has been previously reported that dietary choline supplementation might affect latent inhibition (LI) using a conditioned suppression procedure in rats. We have assessed the effect of dietary choline on LI of flavor aversion learning. Adult male Wistar rats received a choline supplemented (5 g/kg), deficient (0 g/kg), or standard (1.1 g/kg) diet for 3 months. After this supplementation period, all rats went through a conditioned taste aversion (CTA) procedure, half of them being pre-exposed to the conditioned stimulus before the conditioning. The results indicated that choline deficiency prevents LI of conditioned flavor aversion to cider vinegar (3%) induced by a LiCl (0.15 M; 2% body weight) intraperitoneal injection, while choline supplementation enhances CTA leading to slower extinction. The role of the brain systems modulating attentional processes is discussed.

  14. RSK2 Signaling in Brain Habenula Contributes to Place Aversion Learning

    ERIC Educational Resources Information Center

    Darcq, Emmanuel; Koebel, Pascale; Del Boca, Carolina; Pannetier, Solange; Kirstetter, Anne-Sophie; Garnier, Jean-Marie; Hanauer, Andre; Befort, Katia; Kieffer, Brigitte L.

    2011-01-01

    RSK2 is a Ser/Thr kinase acting in the Ras/MAPK pathway. "Rsk2" gene deficiency leads to the Coffin-Lowry Syndrome, notably characterized by cognitive deficits. We found that "mrsk2" knockout mice are unable to associate an aversive stimulus with context in a lithium-induced conditioned place aversion task requiring both high-order cognition and…

  15. Understanding the Uncanny: Both Atypical Features and Category Ambiguity Provoke Aversion toward Humanlike Robots

    PubMed Central

    Strait, Megan K.; Floerke, Victoria A.; Ju, Wendy; Maddox, Keith; Remedios, Jessica D.; Jung, Malte F.; Urry, Heather L.

    2017-01-01

    Robots intended for social contexts are often designed with explicit humanlike attributes in order to facilitate their reception by (and communication with) people. However, observation of an “uncanny valley”—a phenomenon in which highly humanlike entities provoke aversion in human observers—has lead some to caution against this practice. Both of these contrasting perspectives on the anthropomorphic design of social robots find some support in empirical investigations to date. Yet, owing to outstanding empirical limitations and theoretical disputes, the uncanny valley and its implications for human-robot interaction remains poorly understood. We thus explored the relationship between human similarity and people's aversion toward humanlike robots via manipulation of the agents' appearances. To that end, we employed a picture-viewing task (Nagents = 60) to conduct an experimental test (Nparticipants = 72) of the uncanny valley's existence and the visual features that cause certain humanlike robots to be unnerving. Across the levels of human similarity, we further manipulated agent appearance on two dimensions, typicality (prototypic, atypical, and ambiguous) and agent identity (robot, person), and measured participants' aversion using both subjective and behavioral indices. Our findings were as follows: (1) Further substantiating its existence, the data show a clear and consistent uncanny valley in the current design space of humanoid robots. (2) Both category ambiguity, and more so, atypicalities provoke aversive responding, thus shedding light on the visual factors that drive people's discomfort. (3) Use of the Negative Attitudes toward Robots Scale did not reveal any significant relationships between people's pre-existing attitudes toward humanlike robots and their aversive responding—suggesting positive exposure and/or additional experience with robots is unlikely to affect the occurrence of an uncanny valley effect in humanoid robotics. This work furthers our understanding of both the uncanny valley, as well as the visual factors that contribute to an agent's uncanniness. PMID:28912736

  16. Understanding the Uncanny: Both Atypical Features and Category Ambiguity Provoke Aversion toward Humanlike Robots.

    PubMed

    Strait, Megan K; Floerke, Victoria A; Ju, Wendy; Maddox, Keith; Remedios, Jessica D; Jung, Malte F; Urry, Heather L

    2017-01-01

    Robots intended for social contexts are often designed with explicit humanlike attributes in order to facilitate their reception by (and communication with) people. However, observation of an "uncanny valley"-a phenomenon in which highly humanlike entities provoke aversion in human observers-has lead some to caution against this practice. Both of these contrasting perspectives on the anthropomorphic design of social robots find some support in empirical investigations to date. Yet, owing to outstanding empirical limitations and theoretical disputes, the uncanny valley and its implications for human-robot interaction remains poorly understood. We thus explored the relationship between human similarity and people's aversion toward humanlike robots via manipulation of the agents' appearances. To that end, we employed a picture-viewing task ( N agents = 60) to conduct an experimental test ( N participants = 72) of the uncanny valley's existence and the visual features that cause certain humanlike robots to be unnerving. Across the levels of human similarity, we further manipulated agent appearance on two dimensions, typicality (prototypic, atypical, and ambiguous) and agent identity (robot, person), and measured participants' aversion using both subjective and behavioral indices. Our findings were as follows: (1) Further substantiating its existence, the data show a clear and consistent uncanny valley in the current design space of humanoid robots. (2) Both category ambiguity, and more so, atypicalities provoke aversive responding, thus shedding light on the visual factors that drive people's discomfort. (3) Use of the Negative Attitudes toward Robots Scale did not reveal any significant relationships between people's pre-existing attitudes toward humanlike robots and their aversive responding-suggesting positive exposure and/or additional experience with robots is unlikely to affect the occurrence of an uncanny valley effect in humanoid robotics. This work furthers our understanding of both the uncanny valley, as well as the visual factors that contribute to an agent's uncanniness.

  17. Canine companionship is associated with modification of attentional bias in posttraumatic stress disorder.

    PubMed

    Woodward, Steven H; Jamison, Andrea L; Gala, Sasha; Holmes, Tyson H

    2017-01-01

    Attentional bias towards aversive stimuli has been demonstrated in the anxiety disorders and in posttraumatic stress disorder, and attentional bias modification has been proposed as a candidate treatment. This study rigorously assessed attentional bias towards aversive and pleasant visual imagery associated with the presence or absence of a familiar service canine in 23 veterans with chronic military-related posttraumatic stress disorder. Participants were repeatedly tested with and without their service canines present on two tasks designed to elicit spontaneous visual attention to facial and scenic image pairs, respectively. Each stimulus contrasted an emotive image with a neutral image. Via eye-tracking, the difference in visual attention directed to each image was analyzed as a function of the valence contrast and presence/absence of the canine. Across both tasks, the presence of a familiar service canine attenuated the normative attentional bias towards aversive image content. In the facial task, presence of the service canine specifically reduced attention toward angry faces. In that task, as well, accumulated days with the service canine similarly modulated attention toward facial emotion. The results suggest that the presence of a familiar service canine is associated with attenuation of attentional bias to aversive stimuli in chronic military-service-related posttraumatic stress disorder. Questions remain regarding the generalization of such effects to other populations, their dependence on the familiarity, breed, and training of the canine, and on social context.

  18. IntelliCages and automated assessment of learning in group-housed mice

    NASA Astrophysics Data System (ADS)

    Puścian, Alicja; Knapska, Ewelina

    2014-11-01

    IntelliCage is a fully automated, computer controlled system, which can be used for long-term monitoring of behavior of group-housed mice. Using standardized experimental protocols we can assess cognitive abilities and behavioral flexibility in appetitively and aversively motivated tasks, as well as measure social influences on learning of the subjects. We have also identified groups of neurons specifically activated by appetitively and aversively motivated learning within the amygdala, function of which we are going to investigate optogenetically in the future.

  19. Intra-Amygdala ZIP Injections Impair the Memory of Learned Active Avoidance Responses and Attenuate Conditioned Taste-Aversion Acquisition in Rats

    ERIC Educational Resources Information Center

    Gamiz, Fernando; Gallo, Milagros

    2011-01-01

    We have investigated the effect of protein kinase Mzeta (PKM[zeta]) inhibition in the basolateral amygdala (BLA) upon the retention of a nonspatial learned active avoidance response and conditioned taste-aversion (CTA) acquisition in rats. ZIP (10 nmol/[mu]L) injected into the BLA 24 h after training impaired retention of a learned…

  20. Aversive Learning and Appetitive Motivation Toggle Feed-Forward Inhibition in the Drosophila Mushroom Body.

    PubMed

    Perisse, Emmanuel; Owald, David; Barnstedt, Oliver; Talbot, Clifford B; Huetteroth, Wolf; Waddell, Scott

    2016-06-01

    In Drosophila, negatively reinforcing dopaminergic neurons also provide the inhibitory control of satiety over appetitive memory expression. Here we show that aversive learning causes a persistent depression of the conditioned odor drive to two downstream feed-forward inhibitory GABAergic interneurons of the mushroom body, called MVP2, or mushroom body output neuron (MBON)-γ1pedc>α/β. However, MVP2 neuron output is only essential for expression of short-term aversive memory. Stimulating MVP2 neurons preferentially inhibits the odor-evoked activity of avoidance-directing MBONs and odor-driven avoidance behavior, whereas their inhibition enhances odor avoidance. In contrast, odor-evoked activity of MVP2 neurons is elevated in hungry flies, and their feed-forward inhibition is required for expression of appetitive memory at all times. Moreover, imposing MVP2 activity promotes inappropriate appetitive memory expression in food-satiated flies. Aversive learning and appetitive motivation therefore toggle alternate modes of a common feed-forward inhibitory MVP2 pathway to promote conditioned odor avoidance or approach. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Motivational state controls the prediction error in Pavlovian appetitive-aversive interactions.

    PubMed

    Laurent, Vincent; Balleine, Bernard W; Westbrook, R Frederick

    2018-01-01

    Contemporary theories of learning emphasize the role of a prediction error signal in driving learning, but the nature of this signal remains hotly debated. Here, we used Pavlovian conditioning in rats to investigate whether primary motivational and emotional states interact to control prediction error. We initially generated cues that positively or negatively predicted an appetitive food outcome. We then assessed how these cues modulated aversive conditioning when a novel cue was paired with a foot shock. We found that a positive predictor of food enhances, whereas a negative predictor of that same food impairs, aversive conditioning. Critically, we also showed that the enhancement produced by the positive predictor is removed by reducing the value of its associated food. In contrast, the impairment triggered by the negative predictor remains insensitive to devaluation of its associated food. These findings provide compelling evidence that the motivational value attributed to a predicted food outcome can directly control appetitive-aversive interactions and, therefore, that motivational processes can modulate emotional processes to generate the final error term on which subsequent learning is based. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Enhanced Visual Cortical Activation for Emotional Stimuli is Preserved in Patients with Unilateral Amygdala Resection

    PubMed Central

    Edmiston, E. Kale; McHugo, Maureen; Dukic, Mildred S.; Smith, Stephen D.; Abou-Khalil, Bassel; Eggers, Erica

    2013-01-01

    Emotionally arousing pictures induce increased activation of visual pathways relative to emotionally neutral images. A predominant model for the preferential processing and attention to emotional stimuli posits that the amygdala modulates sensory pathways through its projections to visual cortices. However, recent behavioral studies have found intact perceptual facilitation of emotional stimuli in individuals with amygdala damage. To determine the importance of the amygdala to modulations in visual processing, we used functional magnetic resonance imaging to examine visual cortical blood oxygenation level-dependent (BOLD) signal in response to emotionally salient and neutral images in a sample of human patients with unilateral medial temporal lobe resection that included the amygdala. Adults with right (n = 13) or left (n = 5) medial temporal lobe resections were compared with demographically matched healthy control participants (n = 16). In the control participants, both aversive and erotic images produced robust BOLD signal increases in bilateral primary and secondary visual cortices relative to neutral images. Similarly, all patients with amygdala resections showed enhanced visual cortical activations to erotic images both ipsilateral and contralateral to the lesion site. All but one of the amygdala resection patients showed similar enhancements to aversive stimuli and there were no significant group differences in visual cortex BOLD responses in patients compared with controls for either aversive or erotic images. Our results indicate that neither the right nor left amygdala is necessary for the heightened visual cortex BOLD responses observed during emotional stimulus presentation. These data challenge an amygdalo-centric model of emotional modulation and suggest that non-amygdalar processes contribute to the emotional modulation of sensory pathways. PMID:23825407

  3. [Food intake regulation - 2nd part].

    PubMed

    Brunerová, Ludmila; Anděl, Michal

    2014-01-01

    The review article summarizes the principles of hedonic regulation of food intake which represents the food intake independent on the maintenance of homeostasis. The theory describing hedonic regulation, so called Incentive Salience Theory, comprises three major processes: liking (positive attribution to food stimulus), wanting (motivation to gain it) and learning (identification of these stimuli and distinguishing them from those connected with aversive reaction). Neuronal reward circuits are the anatomical and functional substrates of hedonic regulation. They react to gustatory and olfactory (or visual) stimuli associated with food intake. A food item is preferred in case its consumption is connected with a pleasant feeling thus promoting the behavioural reaction. The probability of this reaction after repetitive exposure to such a stimulus is increased (learned preference). On the contrary, learned aversion after repetitive exposure is connected with avoidance of a food item associated with a negative feeling. Main mediators of hedonic regulation are endocannabinoids, opioids and monoamines (dopamine, serotonin). Dopamine in dorsal striatum via D2 receptors generates food motivation as a key means of survival, however in ventral striatum (nucleus accumbens) is responsible for motivation to food bringing pleasure. Serotonin via its receptors 5-HT1A a T-HT2C decreases intake of palatable food. It plays a significant role in the pathogenesis of eating disorders, particularly mental anorexia. There, a food restriction represents a kind of automedication to constitutionally pathologically increased serotonin levels. Detailed understanding of processes regulating food intake is a key to new pharmacological interventions in eating disorders.

  4. Rapid prefrontal cortex activation towards aversively paired faces and enhanced contingency detection are observed in highly trait-anxious women under challenging conditions

    PubMed Central

    Rehbein, Maimu Alissa; Wessing, Ida; Zwitserlood, Pienie; Steinberg, Christian; Eden, Annuschka Salima; Dobel, Christian; Junghöfer, Markus

    2015-01-01

    Relative to healthy controls, anxiety-disorder patients show anomalies in classical conditioning that may either result from, or provide a risk factor for, clinically relevant anxiety. Here, we investigated whether healthy participants with enhanced anxiety vulnerability show abnormalities in a challenging affective-conditioning paradigm, in which many stimulus-reinforcer associations had to be acquired with only few learning trials. Forty-seven high and low trait-anxious females underwent MultiCS conditioning, in which 52 different neutral faces (CS+) were paired with an aversive noise (US), while further 52 faces (CS−) remained unpaired. Emotional learning was assessed by evaluative (rating), behavioral (dot-probe, contingency report), and neurophysiological (magnetoencephalography) measures before, during, and after learning. High and low trait-anxious groups did not differ in evaluative ratings or response priming before or after conditioning. High trait-anxious women, however, were better than low trait-anxious women at reporting CS+/US contingencies after conditioning, and showed an enhanced prefrontal cortex (PFC) activation towards CS+ in the M1 (i.e., 80–117 ms) and M170 time intervals (i.e., 140–160 ms) during acquisition. These effects in MultiCS conditioning observed in individuals with elevated trait anxiety are consistent with theories of enhanced conditionability in anxiety vulnerability. Furthermore, they point towards increased threat monitoring and detection in highly trait-anxious females, possibly mediated by alterations in visual working memory. PMID:26113814

  5. Opiate-agonist induced taste aversion learning in the Fischer 344 and Lewis inbred rat strains: evidence for differential mu opioid receptor activation.

    PubMed

    Davis, Catherine M; Rice, Kenner C; Riley, Anthony L

    2009-10-01

    The Fischer 344 (F344) and Lewis (LEW) inbred rat strains react differently to morphine in a number of behavioral and physiological preparations, including the acquisition of aversions induced by this compound. The present experiment tested the ability of various compounds with relative selectivity at kappa, delta and mu receptor subtypes to assess the relative roles of these subtypes in mediating the differential aversive effects of morphine in the two strains. In the assessment of the role of the kappa receptor in morphine-induced aversions, animals in both strains were given access to saccharin followed by varying doses of the kappa agonist (-)-U50,488H (0.0, 0.28, 0.90 and 1.60 mg/kg). Although (-)-U50,488H induced aversions in both strains, no strain differences emerged. A separate subset of subjects was trained with the selective delta opioid agonist, SNC80 (0.0, 5.6, 10.0 and 18.0 mg/kg), and again although SNC80 induced aversions, there were no strain differences. Finally, a third subset of subjects was trained with heroin (0.0, 3.2, 5.6 and 10.0 mg/kg), a compound with activity at all three opiate receptor subtypes. Although heroin induced aversions in both strains, the aversions were significantly greater in the F344 strain, suggesting that differential activation of the mu opioid receptor likely mediates the reported strain differences in morphine-induced aversion learning. These data were discussed in terms of strain differences in opioid system functioning and the implications of such differences for other morphine-induced behavioral effects reported in F344 and LEW rats.

  6. The role of risk aversion in non-conscious decision making.

    PubMed

    Wang, Shuo; Krajbich, Ian; Adolphs, Ralph; Tsuchiya, Naotsugu

    2012-01-01

    To what extent can people choose advantageously without knowing why they are making those choices? This hotly debated question has capitalized on the Iowa Gambling Task (IGT), in which people often learn to choose advantageously without appearing to know why. However, because the IGT is unconstrained in many respects, this finding remains debated and other interpretations are possible (e.g., risk aversion, ambiguity aversion, limits of working memory, or insensitivity to reward/punishment can explain the finding of the IGT). Here we devised an improved variant of the IGT in which the deck-payoff contingency switches after subjects repeatedly choose from a good deck, offering the statistical power of repeated within-subject measures based on learning the reward contingencies associated with each deck. We found that participants exhibited low confidence in their choices, as probed with post-decision wagering, despite high accuracy in selecting advantageous decks in the task, which is putative evidence for non-conscious decision making. However, such a behavioral dissociation could also be explained by risk aversion, a tendency to avoid risky decisions under uncertainty. By explicitly measuring risk aversion for each individual, we predicted subjects' post-decision wagering using Bayesian modeling. We found that risk aversion indeed does play a role, but that it did not explain the entire effect. Moreover, independently measured risk aversion was uncorrelated with risk aversion exhibited during our version of the IGT, raising the possibility that the latter risk aversion may be non-conscious. Our findings support the idea that people can make optimal choices without being fully aware of the basis of their decision. We suggest that non-conscious decision making may be mediated by emotional feelings of risk that are based on mechanisms distinct from those that support cognitive assessment of risk.

  7. The Role of Risk Aversion in Non-Conscious Decision Making

    PubMed Central

    Wang, Shuo; Krajbich, Ian; Adolphs, Ralph; Tsuchiya, Naotsugu

    2012-01-01

    To what extent can people choose advantageously without knowing why they are making those choices? This hotly debated question has capitalized on the Iowa Gambling Task (IGT), in which people often learn to choose advantageously without appearing to know why. However, because the IGT is unconstrained in many respects, this finding remains debated and other interpretations are possible (e.g., risk aversion, ambiguity aversion, limits of working memory, or insensitivity to reward/punishment can explain the finding of the IGT). Here we devised an improved variant of the IGT in which the deck-payoff contingency switches after subjects repeatedly choose from a good deck, offering the statistical power of repeated within-subject measures based on learning the reward contingencies associated with each deck. We found that participants exhibited low confidence in their choices, as probed with post-decision wagering, despite high accuracy in selecting advantageous decks in the task, which is putative evidence for non-conscious decision making. However, such a behavioral dissociation could also be explained by risk aversion, a tendency to avoid risky decisions under uncertainty. By explicitly measuring risk aversion for each individual, we predicted subjects’ post-decision wagering using Bayesian modeling. We found that risk aversion indeed does play a role, but that it did not explain the entire effect. Moreover, independently measured risk aversion was uncorrelated with risk aversion exhibited during our version of the IGT, raising the possibility that the latter risk aversion may be non-conscious. Our findings support the idea that people can make optimal choices without being fully aware of the basis of their decision. We suggest that non-conscious decision making may be mediated by emotional feelings of risk that are based on mechanisms distinct from those that support cognitive assessment of risk. PMID:22375133

  8. Effects of loss aversion on neural responses to loss outcomes: An event-related potential study.

    PubMed

    Kokmotou, Katerina; Cook, Stephanie; Xie, Yuxin; Wright, Hazel; Soto, Vicente; Fallon, Nicholas; Giesbrecht, Timo; Pantelous, Athanasios; Stancak, Andrej

    2017-05-01

    Loss aversion is the tendency to prefer avoiding losses over acquiring gains of the same amount. To shed light on the spatio-temporal processes underlying loss aversion, we analysed the associations between individual loss aversion and electrophysiological responses to loss and gain outcomes in a monetary gamble task. Electroencephalographic feedback-related negativity (FRN) was computed in 29 healthy participants as the difference in electrical potentials between losses and gains. Loss aversion was evaluated using non-linear parametric fitting of choices in a separate gamble task. Loss aversion correlated positively with FRN amplitude (233-263ms) at electrodes covering the lower face. Feedback related potentials were modelled by five equivalent source dipoles. From these dipoles, stronger activity in a source located in the orbitofrontal cortex was associated with loss aversion. The results suggest that loss aversion implemented during risky decision making is related to a valuation process in the orbitofrontal cortex, which manifests during learning choice outcomes. Copyright © 2017. Published by Elsevier B.V.

  9. The touchscreen operant platform for testing learning and memory in rats and mice.

    PubMed

    Horner, Alexa E; Heath, Christopher J; Hvoslef-Eide, Martha; Kent, Brianne A; Kim, Chi Hun; Nilsson, Simon R O; Alsiö, Johan; Oomen, Charlotte A; Holmes, Andrew; Saksida, Lisa M; Bussey, Timothy J

    2013-10-01

    An increasingly popular method of assessing cognitive functions in rodents is the automated touchscreen platform, on which a number of different cognitive tests can be run in a manner very similar to touchscreen methods currently used to test human subjects. This methodology is low stress (using appetitive rather than aversive reinforcement), has high translational potential and lends itself to a high degree of standardization and throughput. Applications include the study of cognition in rodent models of psychiatric and neurodegenerative diseases (e.g., Alzheimer's disease, schizophrenia, Huntington's disease, frontotemporal dementia), as well as the characterization of the role of select brain regions, neurotransmitter systems and genes in rodents. This protocol describes how to perform four touchscreen assays of learning and memory: visual discrimination, object-location paired-associates learning, visuomotor conditional learning and autoshaping. It is accompanied by two further protocols (also published in this issue) that use the touchscreen platform to assess executive function, working memory and pattern separation.

  10. Evolutionary Responses to Invasion: Cane Toad Sympatric Fish Show Enhanced Avoidance Learning

    PubMed Central

    Caller, Georgina; Brown, Culum

    2013-01-01

    The introduced cane toad (Bufo marinus) poses a major threat to biodiversity due to its lifelong toxicity. Several terrestrial native Australian vertebrates are adapting to the cane toad’s presence and lab trials have demonstrated that repeated exposure to B. marinus can result in learnt avoidance behaviour. Here we investigated whether aversion learning is occurring in aquatic ecosystems by comparing cane toad naïve and sympatric populations of crimson spotted rainbow fish (Melanotaenia duboulayi). The first experiment indicated that fish from the sympatric population had pre-existing aversion to attacking cane toad tadpoles but also showed reduced attacks on native tadpoles. The second experiment revealed that fish from both naïve and sympatric populations learned to avoid cane toad tadpoles following repeated, direct exposure. Allopatric fish also developed a general aversion to tadpoles. The aversion learning abilities of both groups was examined using an experiment involving novel distasteful prey items. While both populations developed a general avoidance of edible pellets in the presence of distasteful pellets, only the sympatric population significantly reduced the number of attacks on the novel distasteful prey item. These results indicate that experience with toxic prey items over multiple generations can enhance avoidance leaning capabilities via natural selection. PMID:23372788

  11. Lesions of the lateral habenula facilitate active avoidance learning and threat extinction.

    PubMed

    Song, Mihee; Jo, Yong Sang; Lee, Yeon-Kyung; Choi, June-Seek

    2017-02-01

    The lateral habenula (LHb) is an epithalamic brain structure that provides strong projections to midbrain monoaminergic systems that are involved in motivation, emotion, and reinforcement learning. LHb neurons are known to convey information about aversive outcomes and negative prediction errors, suggesting a role in learning from aversive events. To test this idea, we examined the effects of electrolytic lesions of the LHb on signaled two-way active avoidance learning in which rats were trained to avoid an unconditioned stimulus (US) by taking a proactive shuttling response to an auditory conditioned stimulus (CS). The lesioned animals learned the avoidance response significantly faster than the control groups. In a separate experiment, we also investigated whether the LHb contributes to Pavlovian threat (fear) conditioning and extinction. Following paired presentations of the CS and the US, LHb-lesioned animals showed normal acquisition of conditioned response (CR) measured with freezing. However, extinction of the CR in the subsequent CS-only session was significantly faster. The enhanced performance in avoidance learning and in threat extinction jointly suggests that the LHb normally plays an inhibitory role in learning driven by absence of aversive outcomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Carryover effects associated with the single-trial passive avoidance learning task in the young chick.

    PubMed

    Crowe, Simon F; Hale, Matthew W

    2002-09-01

    The single-trial passive avoidance task is a useful procedure for examining learning and memory in the young chick. However, it has recently been suggested that discrepant results reported by different laboratories are due to differences in training procedure. The present study investigated a number of parameters surrounding the passive avoidance task, using day-old White Leghorn, Black Australorp cockerels. The results suggested that presentation of a water-dipped bead immediately after the aversive bead significantly altered retention levels. In addition, when the water-dipped bead was presented after the aversive bead, chicks failed to discriminate between beads for a period of 10 min following exposure to the aversant experience. A novel variant of the passive avoidance procedure, involving pretraining with a water-dipped red bead, training with an aversant-coated red bead, and testing with a dry red bead, was evaluated. A measure of avoidance was calculated using all three trials. It is suggested that the use of a single bead, measured both before and after the training experience and using both aversant- and water-trained controls, results in the most concise characterization of memory-related phenomena in the chick which is not contaminated by a carryover effect from the aversive training experience to the nonaversive bead.

  13. What are the elements of motivation for acquisition of conditioned taste aversion?

    PubMed

    Mita, Koichi; Okuta, Akiko; Okada, Ryuichi; Hatakeyama, Dai; Otsuka, Emi; Yamagishi, Miki; Morikawa, Mika; Naganuma, Yuki; Fujito, Yutaka; Dyakonova, Varvara; Lukowiak, Ken; Ito, Etsuro

    2014-01-01

    The pond snail Lymnaea stagnalis is capable of being classically conditioned to avoid food and to consolidate this aversion into a long-term memory (LTM). Previous studies have shown that the length of food deprivation is important for both the acquisition of taste aversion and its consolidation into LTM, which is referred to as conditioned taste aversion (CTA). Here we tested the hypothesis that the hemolymph glucose concentration is an important factor in the learning and memory of CTA. One-day food deprivation resulted in the best learning and memory, whereas more prolonged food deprivation had diminishing effects. Five-day food deprivation resulted in snails incapable of learning or remembering. During this food deprivation period, the hemolymph glucose concentration decreased. If snails were fed for 2days following the 5-day food deprivation, their glucose levels increased significantly and they exhibited both learning and memory, but neither learning nor memory was as good as with the 1-day food-deprived snails. Injection of the snails with insulin to reduce glucose levels resulted in better learning and memory. Insulin is also known to cause a long-term enhancement of synaptic transmission between the feeding-related neurons. On the other hand, injection of glucose into 5-day food-deprived snails did not alter their inability to learn and remember. However, if these snails were fed on sucrose for 3min, they then exhibited learning and memory formation. Our data suggest that hemolymph glucose concentration is an important factor in motivating acquisition of CTA in Lymnaea and that the action of insulin in the brain and the feeding behavior are also important factors. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Value generalization in human avoidance learning

    PubMed Central

    Robbins, Trevor W; Seymour, Ben

    2018-01-01

    Generalization during aversive decision-making allows us to avoid a broad range of potential threats following experience with a limited set of exemplars. However, over-generalization, resulting in excessive and inappropriate avoidance, has been implicated in a variety of psychological disorders. Here, we use reinforcement learning modelling to dissect out different contributions to the generalization of instrumental avoidance in two groups of human volunteers (N = 26, N = 482). We found that generalization of avoidance could be parsed into perceptual and value-based processes, and further, that value-based generalization could be subdivided into that relating to aversive and neutral feedback − with corresponding circuits including primary sensory cortex, anterior insula, amygdala and ventromedial prefrontal cortex. Further, generalization from aversive, but not neutral, feedback was associated with self-reported anxiety and intrusive thoughts. These results reveal a set of distinct mechanisms that mediate generalization in avoidance learning, and show how specific individual differences within them can yield anxiety. PMID:29735014

  15. Value generalization in human avoidance learning.

    PubMed

    Norbury, Agnes; Robbins, Trevor W; Seymour, Ben

    2018-05-08

    Generalization during aversive decision-making allows us to avoid a broad range of potential threats following experience with a limited set of exemplars. However, over-generalization, resulting in excessive and inappropriate avoidance, has been implicated in a variety of psychological disorders. Here, we use reinforcement learning modelling to dissect out different contributions to the generalization of instrumental avoidance in two groups of human volunteers ( N = 26, N = 482). We found that generalization of avoidance could be parsed into perceptual and value-based processes, and further, that value-based generalization could be subdivided into that relating to aversive and neutral feedback - with corresponding circuits including primary sensory cortex, anterior insula, amygdala and ventromedial prefrontal cortex. Further, generalization from aversive, but not neutral, feedback was associated with self-reported anxiety and intrusive thoughts. These results reveal a set of distinct mechanisms that mediate generalization in avoidance learning, and show how specific individual differences within them can yield anxiety. © 2018, Norbury et al.

  16. Functional interaction of mGlu5 and NMDA receptors in aversive learning in rats

    PubMed Central

    Fowler, S.W.; Ramsey, A.K.; Walker, J.M.; Serfozo, P.; Olive, M.F.; Schachtman, T.R.; Simonyi, A.

    2010-01-01

    Metabotropic glutamate receptor 5 (mGlu5) has been implicated in a variety of learning processes and is important for inhibitory avoidance and conditioned taste aversion learning. MGlu5 receptors are physically connected with NMDA receptors and they interact with, and modulate, the function of one another in several brain regions. The present studies used systemic co-administration of an mGlu5 receptor positive allosteric modulator, 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) and an NMDA receptor antagonist dizocilpine maleate (MK-801) to characterize the interactions of these receptors in two aversive learning tasks. Male Sprague-Dawley rats were trained in a single-trial step-down inhibitory avoidance or conditioned taste aversion task. CDPPB (3 or 10 mg/kg, s.c.), delivered by itself prior to the conditioning trial, did not have any effect on performance in either task 48 hours after training. However, CDPPB (at 3 mg/kg) attenuated the MK-801 (0.2 mg/kg, i.p.) induced learning deficit in both tasks. CDPPB also reduced MK-801-induced hyperactivity. These results underlie the importance of mGlu5 and NMDA receptor interactions in modulating memory processing, and are consistent with findings showing the efficacy of positive allosteric modulators of mGlu5 receptors in reversing the negative effects of NMDA receptor antagonists on other behaviors such as stereotypy, sensorimotor gating, or working, spatial and recognition memory. PMID:21093598

  17. Cannabinoid transmission in the prelimbic cortex bidirectionally controls opiate reward and aversion signaling through dissociable kappa versus μ-opiate receptor dependent mechanisms.

    PubMed

    Ahmad, Tasha; Lauzon, Nicole M; de Jaeger, Xavier; Laviolette, Steven R

    2013-09-25

    Cannabinoid, dopamine (DA), and opiate receptor pathways play integrative roles in emotional learning, associative memory, and sensory perception. Modulation of cannabinoid CB1 receptor transmission within the medial prefrontal cortex (mPFC) regulates the emotional valence of both rewarding and aversive experiences. Furthermore, CB1 receptor substrates functionally interact with opiate-related motivational processing circuits, particularly in the context of reward-related learning and memory. Considerable evidence demonstrates functional interactions between CB1 and DA signaling pathways during the processing of motivationally salient information. However, the role of mPFC CB1 receptor transmission in the modulation of behavioral opiate-reward processing is not currently known. Using an unbiased conditioned place preference paradigm with rats, we examined the role of intra-mPFC CB1 transmission during opiate reward learning. We report that activation or inhibition of CB1 transmission within the prelimbic cortical (PLC) division of the mPFC bidirectionally regulates the motivational valence of opiates; whereas CB1 activation switched morphine reward signaling into an aversive stimulus, blockade of CB1 transmission potentiated the rewarding properties of normally sub-reward threshold conditioning doses of morphine. Both of these effects were dependent upon DA transmission as systemic blockade of DAergic transmission prevented CB1-dependent modulation of morphine reward and aversion behaviors. We further report that CB1-mediated intra-PLC opiate motivational signaling is mediated through a μ-opiate receptor-dependent reward pathway, or a κ-opiate receptor-dependent aversion pathway, directly within the ventral tegmental area. Our results provide evidence for a novel CB1-mediated motivational valence switching mechanism within the PLC, controlling dissociable subcortical reward and aversion pathways.

  18. Conditioned taste aversions: From poisons to pain to drugs of abuse.

    PubMed

    Lin, Jian-You; Arthurs, Joe; Reilly, Steve

    2017-04-01

    Learning what to eat and what not to eat is fundamental to our well-being, quality of life, and survival. In particular, the acquisition of conditioned taste aversions (CTAs) protects all animals (including humans) against ingesting foods that contain poisons or toxins. Counterintuitively, CTAs can also develop in situations in which we know with absolute certainty that the food did not cause the subsequent aversive systemic effect. Recent nonhuman animal research, analyzing palatability shifts, has indicated that a wider range of stimuli than has been traditionally acknowledged can induce CTAs. This article integrates these new findings with a reappraisal of some known characteristics of CTA and presents a novel conceptual analysis that is broader and more comprehensive than previous accounts of CTA learning.

  19. Conditioned taste aversions: From poisons to pain to drugs of abuse

    PubMed Central

    Lin, Jian-You; Arthurs, Joe; Reilly, Steve

    2018-01-01

    Learning what to eat and what not to eat is fundamental to our well-being, quality of life and survival. In particular, the acquisition of conditioned taste aversions (CTAs) protects all animals (including humans) against ingesting foods that contain poisons or toxins. Counterintuitively, CTAs can also develop in situations where we know with absolute certainty that the food did not cause the subsequent aversive systemic effect. Recent non-human animal research, analyzing palatability shifts, indicates that a wider range of stimuli than traditionally acknowledged can induce CTAs. This article integrates these new findings with a reappraisal of some known characteristics of CTA, and presents a novel conceptual analysis that is broader and more comprehensive than other accounts of CTA learning. PMID:27301407

  20. Effects of and attention to graphic warning labels on cigarette packages.

    PubMed

    Süssenbach, Philipp; Niemeier, Sarah; Glock, Sabine

    2013-01-01

    The present study investigates the effects of graphic cigarette warnings compared to text-only cigarette warnings on smokers' explicit (i.e. ratings of the packages, cognitions about smoking, perceived health risk, quit intentions) and implicit attitudes. In addition, participants' visual attention towards the graphic warnings was recorded using eye-tracking methodology. Sixty-three smokers participated in the present study and either viewed graphic cigarette warnings with aversive and non-aversive images or text-only warnings. Data were analysed using analysis of variance and correlation analysis. Especially, graphic cigarette warnings with aversive content drew attention and elicited high threat. However, whereas attention directed to the textual information of the graphic warnings predicted smokers' risk perceptions, attention directed to the images of the graphic warnings did not. Moreover, smokers' in the graphic warning condition reported more positive cognitions about smoking, thus revealing cognitive dissonance. Smokers employ defensive psychological mechanisms when confronted with threatening warnings. Although aversive images attract attention, they do not promote health knowledge. Implications for graphic health warnings and the importance of taking their content (i.e. aversive vs. non-aversive images) into account are discussed.

  1. Lesion of the rostromedial tegmental nucleus increases voluntary ethanol consumption and accelerates extinction of ethanol-induced conditioned taste aversion.

    PubMed

    Sheth, Chandni; Furlong, Teri M; Keefe, Kristen A; Taha, Sharif A

    2016-10-01

    Ethanol has rewarding and aversive properties, and the balance of these properties influences voluntary ethanol consumption. Preclinical and clinical evidence show that the aversive properties of ethanol limit intake. The neural circuits underlying ethanol-induced aversion learning are not fully understood. We have previously shown that the lateral habenula (LHb), a region critical for aversive conditioning, plays an important role in ethanol-directed behaviors. However, the neurocircuitry through which LHb exerts its actions is unknown. In the present study, we investigate a role for the rostromedial tegmental nucleus (RMTg), a major LHb projection target, in regulating ethanol-directed behaviors. Rats received either sham or RMTg lesions and were studied during voluntary ethanol consumption; operant ethanol self-administration, extinction, and yohimbine-induced reinstatement of ethanol-seeking; and ethanol-induced conditioned taste aversion (CTA). RMTg lesions increased voluntary ethanol consumption and accelerated extinction of ethanol-induced CTA. The RMTg plays an important role in regulating voluntary ethanol consumption, possibly by mediating ethanol-induced aversive conditioning.

  2. Effects of antiemetics on the acquisition and recall of radiation- and lithium chloride-induced conditioned taste aversions.

    PubMed

    Rabin, B M; Hunt, W A

    1983-04-01

    A series of experiments were run to evaluate the effect of antiemetics on the acquisition and recall of a conditioned taste aversion induced by exposure to ionizing radiation or by injection of lithium chloride. Groups of male rats were exposed to 100 rad gamma radiation or 3 mEq/kg lithium chloride following consumption of a 10% sucrose solution. They were then injected with saline or with one of three antiemetics (prochlorperazine, trimethobenzamide, or cyclizine) at dose levels that have been reported to be effective in attenuating a previously acquired lithium chloride-induced taste aversion. The pretreatments with antiemetics had no effect on the acquisition or recall of either the lithium chloride- or radiation-induced taste aversion. The data suggest that antiemetics do not disrupt lithium chloride-induced taste aversions as previously reported, nor do they effect radiation-induced taste aversion learning.

  3. Aversive olfactory associative memory loses odor specificity over time

    PubMed Central

    König, Christian; Antwi-Adjei, Emmanuel; Ganesan, Mathangi; Kilonzo, Kasyoka; Viswanathan, Vignesh; Durairaja, Archana; Voigt, Anne

    2017-01-01

    ABSTRACT Avoiding associatively learned predictors of danger is crucial for survival. Aversive memories can, however, become counter-adaptive when they are overly generalized to harmless cues and contexts. In a fruit fly odor–electric shock associative memory paradigm, we found that learned avoidance lost its specificity for the trained odor and became general to novel odors within a day of training. We discuss the possible neural circuit mechanisms of this effect and highlight the parallelism to over-generalization of learned fear behavior after an incubation period in rodents and humans, with due relevance for post-traumatic stress disorder. PMID:28468811

  4. A conditioned aversion study of sucrose and SC45647 taste in TRPM5 knockout mice.

    PubMed

    Eddy, Meghan C; Eschle, Benjamin K; Peterson, Darlene; Lauras, Nathan; Margolskee, Robert F; Delay, Eugene R

    2012-06-01

    Previously, published studies have reported mixed results regarding the role of the TRPM5 cation channel in signaling sweet taste by taste sensory cells. Some studies have reported a complete loss of sweet taste preference in TRPM5 knockout (KO) mice, whereas others have reported only a partial loss of sweet taste preference. This study reports the results of conditioned aversion studies designed to motivate wild-type (WT) and KO mice to respond to sweet substances. In conditioned taste aversion experiments, WT mice showed nearly complete LiCl-induced response suppression to sucrose and SC45647. In contrast, TRPM5 KO mice showed a much smaller conditioned aversion to either sweet substance, suggesting a compromised, but not absent, ability to detect sweet taste. A subsequent conditioned flavor aversion experiment was conducted to determine if TRPM5 KO mice were impaired in their ability to learn a conditioned aversion. In this experiment, KO and WT mice were conditioned to a mixture of SC45647 and amyl acetate (an odor cue). Although WT mice avoided both components of the stimulus mixture, they avoided SC45647 more than the odor cue. The KO mice also avoided both stimuli, but they avoided the odor component more than SC45647, suggesting that while the KO mice are capable of learning an aversion, to them the odor cue was more salient than the taste cue. Collectively, these findings suggest the TRPM5 KO mice have some residual ability to detect SC45647 and sucrose, and, like bitter, there may be a TRPM5-independent transduction pathway for detecting these substances.

  5. Medial prefrontal cortex dopamine controls the persistent storage of aversive memories

    PubMed Central

    Gonzalez, María C.; Kramar, Cecilia P.; Tomaiuolo, Micol; Katche, Cynthia; Weisstaub, Noelia; Cammarota, Martín; Medina, Jorge H.

    2014-01-01

    Medial prefrontal cortex (mPFC) is essential for initial memory processing and expression but its involvement in persistent memory storage has seldom been studied. Using the hippocampus dependent inhibitory avoidance learning task and the hippocampus-independent conditioned taste aversion paradigm together with specific dopamine receptor agonists and antagonists we found that persistence but not formation of long-term aversive memories requires dopamine D1/D5 receptors activation in mPFC immediately after training and, depending on the task, between 6 and 12 h later. Our results indicate that besides its well-known participation in retrieval and early consolidation, mPFC also modulates the endurance of long-lasting aversive memories regardless of whether formation of the aversive mnemonic trace requires the participation of the hippocampus. PMID:25506318

  6. Pupillometry reveals the physiological underpinnings of the aversion to holes.

    PubMed

    Ayzenberg, Vladislav; Hickey, Meghan R; Lourenco, Stella F

    2018-01-01

    An unusual, but common, aversion to images with clusters of holes is known as trypophobia. Recent research suggests that trypophobic reactions are caused by visual spectral properties also present in aversive images of evolutionary threatening animals (e.g., snakes and spiders). However, despite similar spectral properties, it remains unknown whether there is a shared emotional response to holes and threatening animals. Whereas snakes and spiders are known to elicit a fear reaction, associated with the sympathetic nervous system, anecdotal reports from self-described trypophobes suggest reactions more consistent with disgust, which is associated with activation of the parasympathetic nervous system. Here we used pupillometry in a novel attempt to uncover the distinct emotional response associated with a trypophobic response to holes. Across two experiments, images of holes elicited greater constriction compared to images of threatening animals and neutral images. Moreover, this effect held when controlling for level of arousal and accounting for the pupil grating response. This pattern of pupillary response is consistent with involvement of the parasympathetic nervous system and suggests a disgust, not a fear, response to images of holes. Although general aversion may be rooted in shared visual-spectral properties, we propose that the specific emotion is determined by cognitive appraisal of the distinct image content.

  7. Pupillometry reveals the physiological underpinnings of the aversion to holes

    PubMed Central

    Hickey, Meghan R.

    2018-01-01

    An unusual, but common, aversion to images with clusters of holes is known as trypophobia. Recent research suggests that trypophobic reactions are caused by visual spectral properties also present in aversive images of evolutionary threatening animals (e.g., snakes and spiders). However, despite similar spectral properties, it remains unknown whether there is a shared emotional response to holes and threatening animals. Whereas snakes and spiders are known to elicit a fear reaction, associated with the sympathetic nervous system, anecdotal reports from self-described trypophobes suggest reactions more consistent with disgust, which is associated with activation of the parasympathetic nervous system. Here we used pupillometry in a novel attempt to uncover the distinct emotional response associated with a trypophobic response to holes. Across two experiments, images of holes elicited greater constriction compared to images of threatening animals and neutral images. Moreover, this effect held when controlling for level of arousal and accounting for the pupil grating response. This pattern of pupillary response is consistent with involvement of the parasympathetic nervous system and suggests a disgust, not a fear, response to images of holes. Although general aversion may be rooted in shared visual-spectral properties, we propose that the specific emotion is determined by cognitive appraisal of the distinct image content. PMID:29312818

  8. Conditioned flavor aversion and location avoidance in hamsters from toxic extract of tall larkspur (Delphinium barbeyi)

    USDA-ARS?s Scientific Manuscript database

    Studies were conducted to address conditioned flavour aversion (CFA) and place avoidance learning in hamsters given injections of alkaloid extracts from tall larkspur (Delphinium barbeyi), to determine if larkspur had reinforcing or negative properties sufficient to cause place avoidance or preferen...

  9. Differences between appetitive and aversive reinforcement on reorientation in a spatial working memory task.

    PubMed

    Golob, Edward J; Taube, Jeffrey S

    2002-10-17

    Tasks using appetitive reinforcers show that following disorientation rats use the shape of an arena to reorient, and cannot distinguish two geometrically similar corners to obtain a reward, despite the presence of a prominent visual cue that provides information to differentiate the two corners. Other studies show that disorientation impairs performance on certain appetitive, but not aversive, tasks. This study evaluated whether rats would make similar geometric errors in a working memory task that used aversive reinforcement. We hypothesized that in a task that used aversive reinforcement rats that were initially disoriented would not reorient by arena shape and thus make similar geometric errors. Tests were performed in a rectangular arena having one polarizing cue. In the appetitive condition water consumption was the reward. The aversive condition was a water maze task with reinforcement provided by escape to a hidden platform. In the aversive condition rats returned to the reinforced corner significantly more often than in the dry condition, and did not favor the diagonally opposite corner. Results show that rats can use cues besides arena shape to reorient in an aversive reinforcement condition. These findings may also reflect different strategies, with an escape/homing strategy in the wet condition and a foraging strategy in the dry condition.

  10. Lesions of the Lateral Habenula Increase Voluntary Ethanol Consumption and Operant Self-Administration, Block Yohimbine-Induced Reinstatement of Ethanol Seeking, and Attenuate Ethanol-Induced Conditioned Taste Aversion

    PubMed Central

    Schwager, Andrea L.; Sinclair, Michael S.; Tandon, Shashank; Taha, Sharif A.

    2014-01-01

    The lateral habenula (LHb) plays an important role in learning driven by negative outcomes. Many drugs of abuse, including ethanol, have dose-dependent aversive effects that act to limit intake of the drug. However, the role of the LHb in regulating ethanol intake is unknown. In the present study, we compared voluntary ethanol consumption and self-administration, yohimbine-induced reinstatement of ethanol seeking, and ethanol-induced conditioned taste aversion in rats with sham or LHb lesions. In rats given home cage access to 20% ethanol in an intermittent access two bottle choice paradigm, lesioned animals escalated their voluntary ethanol consumption more rapidly than sham-lesioned control animals and maintained higher stable rates of voluntary ethanol intake. Similarly, lesioned animals exhibited higher rates of responding for ethanol in operant self-administration sessions. In addition, LHb lesion blocked yohimbine-induced reinstatement of ethanol seeking after extinction. Finally, LHb lesion significantly attenuated an ethanol-induced conditioned taste aversion. Our results demonstrate an important role for the LHb in multiple facets of ethanol-directed behavior, and further suggest that the LHb may contribute to ethanol-directed behaviors by mediating learning driven by the aversive effects of the drug. PMID:24695107

  11. Lesions of the lateral habenula increase voluntary ethanol consumption and operant self-administration, block yohimbine-induced reinstatement of ethanol seeking, and attenuate ethanol-induced conditioned taste aversion.

    PubMed

    Haack, Andrew K; Sheth, Chandni; Schwager, Andrea L; Sinclair, Michael S; Tandon, Shashank; Taha, Sharif A

    2014-01-01

    The lateral habenula (LHb) plays an important role in learning driven by negative outcomes. Many drugs of abuse, including ethanol, have dose-dependent aversive effects that act to limit intake of the drug. However, the role of the LHb in regulating ethanol intake is unknown. In the present study, we compared voluntary ethanol consumption and self-administration, yohimbine-induced reinstatement of ethanol seeking, and ethanol-induced conditioned taste aversion in rats with sham or LHb lesions. In rats given home cage access to 20% ethanol in an intermittent access two bottle choice paradigm, lesioned animals escalated their voluntary ethanol consumption more rapidly than sham-lesioned control animals and maintained higher stable rates of voluntary ethanol intake. Similarly, lesioned animals exhibited higher rates of responding for ethanol in operant self-administration sessions. In addition, LHb lesion blocked yohimbine-induced reinstatement of ethanol seeking after extinction. Finally, LHb lesion significantly attenuated an ethanol-induced conditioned taste aversion. Our results demonstrate an important role for the LHb in multiple facets of ethanol-directed behavior, and further suggest that the LHb may contribute to ethanol-directed behaviors by mediating learning driven by the aversive effects of the drug.

  12. Midbrain dopamine neurons signal aversion in a reward-context-dependent manner

    PubMed Central

    Matsumoto, Hideyuki; Tian, Ju; Uchida, Naoshige; Watabe-Uchida, Mitsuko

    2016-01-01

    Dopamine is thought to regulate learning from appetitive and aversive events. Here we examined how optogenetically-identified dopamine neurons in the lateral ventral tegmental area of mice respond to aversive events in different conditions. In low reward contexts, most dopamine neurons were exclusively inhibited by aversive events, and expectation reduced dopamine neurons’ responses to reward and punishment. When a single odor predicted both reward and punishment, dopamine neurons’ responses to that odor reflected the integrated value of both outcomes. Thus, in low reward contexts, dopamine neurons signal value prediction errors (VPEs) integrating information about both reward and aversion in a common currency. In contrast, in high reward contexts, dopamine neurons acquired a short-latency excitation to aversive events that masked their VPE signaling. Our results demonstrate the importance of considering the contexts to examine the representation in dopamine neurons and uncover different modes of dopamine signaling, each of which may be adaptive for different environments. DOI: http://dx.doi.org/10.7554/eLife.17328.001 PMID:27760002

  13. Differences in Risk Aversion between Young and Older Adults.

    PubMed

    Albert, Steven M; Duffy, John

    2012-01-15

    Research on decision-making strategies among younger and older adults suggests that older adults may be more risk averse than younger people in the case of potential losses. These results mostly come from experimental studies involving gambling paradigms. Since these paradigms involve substantial demands on memory and learning, differences in risk aversion or other features of decision-making attributed to age may in fact reflect age-related declines in cognitive abilities. In the current study, older and younger adults completed a simpler, paired lottery choice task used in the experimental economics literature to elicit risk aversion. A similar approach was used to elicit participants' discount rates. The older adult group was more risk averse than younger adults (p < .05) and also had a higher discount rate (15.6-21.0% vs. 10.3-15.5%, p < .01), indicating lower expected utility from future income. Risk aversion and implied discount rates were weakly correlated. It may be valuable to investigate developmental changes in neural correlates of decision-making across the lifespan.

  14. Differences in Risk Aversion between Young and Older Adults

    PubMed Central

    Albert, Steven M.; Duffy, John

    2013-01-01

    Research on decision-making strategies among younger and older adults suggests that older adults may be more risk averse than younger people in the case of potential losses. These results mostly come from experimental studies involving gambling paradigms. Since these paradigms involve substantial demands on memory and learning, differences in risk aversion or other features of decision-making attributed to age may in fact reflect age-related declines in cognitive abilities. In the current study, older and younger adults completed a simpler, paired lottery choice task used in the experimental economics literature to elicit risk aversion. A similar approach was used to elicit participants' discount rates. The older adult group was more risk averse than younger adults (p < .05) and also had a higher discount rate (15.6-21.0% vs. 10.3-15.5%, p < .01), indicating lower expected utility from future income. Risk aversion and implied discount rates were weakly correlated. It may be valuable to investigate developmental changes in neural correlates of decision-making across the lifespan. PMID:24319671

  15. Region-Specific Involvement of Actin Rearrangement-Related Synaptic Structure Alterations in Conditioned Taste Aversion Memory

    ERIC Educational Resources Information Center

    Bi, Ai-Ling; Wang, Yue; Li, Bo-Qin; Wang, Qian-Qian; Ma, Ling; Yu, Hui; Zhao, Ling; Chen, Zhe-Yu

    2010-01-01

    Actin rearrangement plays an essential role in learning and memory; however, the spatial and temporal regulation of actin dynamics in different phases of associative memory has not been fully understood. Here, using the conditioned taste aversion (CTA) paradigm, we investigated the region-specific involvement of actin rearrangement-related…

  16. Glucocorticoids Enhance Taste Aversion Memory via Actions in the Insular Cortex and Basolateral Amygdala

    ERIC Educational Resources Information Center

    Miranda, Maria Isabel; Quirarte, Gina L.; Rodriguez-Garcia, Gabriela; McGaugh, James L.; Roozendaal, Benno

    2008-01-01

    It is well established that glucocorticoid hormones strengthen the consolidation of hippocampus-dependent spatial and contextual memory. The present experiments investigated glucocorticoid effects on the long-term formation of conditioned taste aversion (CTA), an associative learning task that does not depend critically on hippocampal function.…

  17. ABA, AAB and ABC Renewal in Taste Aversion Learning

    ERIC Educational Resources Information Center

    Bernal-Gamboa, Rodolfo; Juarez, Yectivani; Gonzalez-Martin, Gabriela; Carranza, Rodrigo; Sanchez-Carrasco, Livia; Nieto, Javier

    2012-01-01

    Context renewal is identified when the conditioned response (CR) elicited by an extinguished conditioned stimulus (CS) reappears as a result of changing the contextual cues during the test. Two experiments were designed for testing contextual renewal in a conditioned taste aversion preparation. Experiment 1 assessed ABA and AAB context renewal,…

  18. Temporary Basolateral Amygdala Lesions Disrupt Acquisition of Socially Transmitted Food Preferences in Rats

    ERIC Educational Resources Information Center

    Fontanini, Alfredo; Katz, Donald B.; Wang, Yunyan

    2006-01-01

    Lesions of the basolateral amygdala (BLA) have long been associated with abnormalities of taste-related behaviors and with failure in a variety of taste- and odor-related learning paradigms, including taste-potentiated odor aversion, conditioned taste preference, and conditioned taste aversion. Still, the general role of the amygdala in…

  19. Counterintuitive effects of negative social feedback on attention.

    PubMed

    Anderson, Brian A

    2017-04-01

    Which stimuli we pay attention to is strongly influenced by learning. Stimuli previously associated with reward outcomes, such as money and food, and stimuli previously associated with aversive outcomes, such as monetary loss and electric shock, automatically capture attention. Social reward (happy expressions) can bias attention towards associated stimuli, but the role of negative social feedback in biasing attentional selection remains unexplored. On the one hand, negative social feedback often serves to discourage particular behaviours. If attentional selection can be curbed much like any other behavioural preference, we might expect stimuli associated with negative social feedback to be more readily ignored. On the other hand, if negative social feedback influences attention in the same way that other aversive outcomes do, such feedback might ironically bias attention towards the stimuli it is intended to discourage selection of. In the present study, participants first completed a training phase in which colour targets were associated with negative social feedback. Then, in a subsequent test phase, these same colour stimuli served as task-irrelevant distractors during a visual search task. The results strongly support the latter interpretation in that stimuli previously associated with negative social feedback impaired search performance.

  20. Effects of endurance, resistance, and concurrent exercise on learning and memory after morphine withdrawal in rats.

    PubMed

    Zarrinkalam, Ebrahim; Heidarianpour, Ali; Salehi, Iraj; Ranjbar, Kamal; Komaki, Alireza

    2016-07-15

    Continuous morphine consumption contributes to the development of cognitive disorders. This work investigates the impacts of different types of exercise on learning and memory in morphine-dependent rats. Forty morphine-dependent rats were randomly divided into five groups: sedentary-dependent (Sed-D), endurance exercise-dependent (En-D), strength exercise-dependent (St-D), and combined (concurrent) exercise-dependent (Co-D). Healthy rats were used as controls (Con). After 10weeks of regular exercise (endurance, strength, and concurrent; each five days per week), spatial and aversive learning and memory were assessed using the Morris water maze and shuttle box tests. The results showed that morphine addiction contributes to deficits in spatial learning and memory. Furthermore, each form of exercise training restored spatial learning and memory performance in morphine-dependent rats to levels similar to those of healthy controls. Aversive learning and memory during the acquisition phase were not affected by morphine addiction or exercise, but were significantly decreased by morphine dependence. Only concurrent training returned the time spent in the dark compartment in the shuttle box test to control levels. These findings show that different types of exercise exert similar effects on spatial learning and memory, but show distinct effects on aversive learning and memory. Further, morphine dependence-induced deficits in cognitive function were blocked by exercise. Therefore, different exercise regimens may represent practical treatment methods for cognitive and behavioral impairments associated with morphine-related disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Loss of CaMKI function disrupts salt aversive learning in C. elegans.

    PubMed

    Lim, Jana P; Fehlauer, Holger; Das, Alakananda; Saro, Gabriella; Glauser, Dominique A; Brunet, Anne; Goodman, Miriam B

    2018-06-06

    The ability to adapt behavior to environmental fluctuations is critical for survival of organisms ranging from invertebrates to mammals. Caenorhabditis elegans can learn to avoid sodium chloride when it is paired with starvation. This behavior may help animals avoid areas without food. While some genes have been implicated in this salt aversive learning behavior, critical genetic components, and the neural circuit in which they act, remain elusive. Here, we show that the sole worm ortholog of mammalian CaMKI/IV, CMK-1, is essential for salt aversive learning behavior in C. elegans hermaphrodites. We find that CMK-1 acts in the primary salt-sensing ASE neurons to regulate this behavior. By characterizing the intracellular calcium dynamics in ASE neurons using microfluidics, we find that loss of cmk-1 has subtle effects on sensory-evoked calcium responses in ASE axons and their modulation by salt conditioning. Our study implicates the expression of the conserved CaMKI/CMK-1 in chemosensory neurons as a regulator of behavioral plasticity to environmental salt in C. elegans SIGNIFICANCE STATEMENT Like other animals, the nematode Caenorhabditis elegans depends on salt for survival and navigates toward high concentrations of this essential mineral. Besides its role as an essential nutrient, salt also causes osmotic stress at high concentrations. A growing body of evidence indicates that C. elegans balances the requirement for salt with the danger it presents through a process called salt aversive learning. We show that this behavior depends on expression of a calcium/calmodulin-dependent kinase, CMK-1, in the ASE salt sensing neurons. Our study identifies CMK-1 and salt-sensitive chemosensory neurons as key factors in this form of behavioral plasticity. Copyright © 2018 the authors.

  2. Evolution of social learning when high expected payoffs are associated with high risk of failure.

    PubMed

    Arbilly, Michal; Motro, Uzi; Feldman, Marcus W; Lotem, Arnon

    2011-11-07

    In an environment where the availability of resources sought by a forager varies greatly, individual foraging is likely to be associated with a high risk of failure. Foragers that learn where the best sources of food are located are likely to develop risk aversion, causing them to avoid the patches that are in fact the best; the result is sub-optimal behaviour. Yet, foragers living in a group may not only learn by themselves, but also by observing others. Using evolutionary agent-based computer simulations of a social foraging game, we show that in an environment where the most productive resources occur with the lowest probability, socially acquired information is strongly favoured over individual experience. While social learning is usually regarded as beneficial because it filters out maladaptive behaviours, the advantage of social learning in a risky environment stems from the fact that it allows risk aversion to be circumvented and the best food source to be revisited despite repeated failures. Our results demonstrate that the consequences of individual risk aversion may be better understood within a social context and suggest one possible explanation for the strong preference for social information over individual experience often observed in both humans and animals.

  3. Evolution of social learning when high expected payoffs are associated with high risk of failure

    PubMed Central

    Arbilly, Michal; Motro, Uzi; Feldman, Marcus W.; Lotem, Arnon

    2011-01-01

    In an environment where the availability of resources sought by a forager varies greatly, individual foraging is likely to be associated with a high risk of failure. Foragers that learn where the best sources of food are located are likely to develop risk aversion, causing them to avoid the patches that are in fact the best; the result is sub-optimal behaviour. Yet, foragers living in a group may not only learn by themselves, but also by observing others. Using evolutionary agent-based computer simulations of a social foraging game, we show that in an environment where the most productive resources occur with the lowest probability, socially acquired information is strongly favoured over individual experience. While social learning is usually regarded as beneficial because it filters out maladaptive behaviours, the advantage of social learning in a risky environment stems from the fact that it allows risk aversion to be circumvented and the best food source to be revisited despite repeated failures. Our results demonstrate that the consequences of individual risk aversion may be better understood within a social context and suggest one possible explanation for the strong preference for social information over individual experience often observed in both humans and animals. PMID:21508013

  4. Aversive Learning Modulates Cortical Representations of Object Categories

    PubMed Central

    Dunsmoor, Joseph E.; Kragel, Philip A.; Martin, Alex; LaBar, Kevin S.

    2014-01-01

    Experimental studies of conditioned learning reveal activity changes in the amygdala and unimodal sensory cortex underlying fear acquisition to simple stimuli. However, real-world fears typically involve complex stimuli represented at the category level. A consequence of category-level representations of threat is that aversive experiences with particular category members may lead one to infer that related exemplars likewise pose a threat, despite variations in physical form. Here, we examined the effect of category-level representations of threat on human brain activation using 2 superordinate categories (animals and tools) as conditioned stimuli. Hemodynamic activity in the amygdala and category-selective cortex was modulated by the reinforcement contingency, leading to widespread fear of different exemplars from the reinforced category. Multivariate representational similarity analyses revealed that activity patterns in the amygdala and object-selective cortex were more similar among exemplars from the threat versus safe category. Learning to fear animate objects was additionally characterized by enhanced functional coupling between the amygdala and fusiform gyrus. Finally, hippocampal activity co-varied with object typicality and amygdala activation early during training. These findings provide novel evidence that aversive learning can modulate category-level representations of object concepts, thereby enabling individuals to express fear to a range of related stimuli. PMID:23709642

  5. A Quantitative Relationship between Signal Detection in Attention and Approach/Avoidance Behavior

    PubMed Central

    Viswanathan, Vijay; Sheppard, John P.; Kim, Byoung W.; Plantz, Christopher L.; Ying, Hao; Lee, Myung J.; Raman, Kalyan; Mulhern, Frank J.; Block, Martin P.; Calder, Bobby; Lee, Sang; Mortensen, Dale T.; Blood, Anne J.; Breiter, Hans C.

    2017-01-01

    This study examines how the domains of reward and attention, which are often studied as independent processes, in fact interact at a systems level. We operationalize divided attention with a continuous performance task and variables from signal detection theory (SDT), and reward/aversion with a keypress task measuring approach/avoidance in the framework of relative preference theory (RPT). Independent experiments with the same subjects showed a significant association between one SDT and two RPT variables, visualized as a three-dimensional structure. Holding one of these three variables constant, further showed a significant relationship between a loss aversion-like metric from the approach/avoidance task, and the response bias observed during the divided attention task. These results indicate that a more liberal response bias under signal detection (i.e., a higher tolerance for noise, resulting in a greater proportion of false alarms) is associated with higher “loss aversion.” Furthermore, our functional model suggests a mechanism for processing constraints with divided attention and reward/aversion. Together, our results argue for a systematic relationship between divided attention and reward/aversion processing in humans. PMID:28270776

  6. A Quantitative Relationship between Signal Detection in Attention and Approach/Avoidance Behavior.

    PubMed

    Viswanathan, Vijay; Sheppard, John P; Kim, Byoung W; Plantz, Christopher L; Ying, Hao; Lee, Myung J; Raman, Kalyan; Mulhern, Frank J; Block, Martin P; Calder, Bobby; Lee, Sang; Mortensen, Dale T; Blood, Anne J; Breiter, Hans C

    2017-01-01

    This study examines how the domains of reward and attention, which are often studied as independent processes, in fact interact at a systems level. We operationalize divided attention with a continuous performance task and variables from signal detection theory (SDT), and reward/aversion with a keypress task measuring approach/avoidance in the framework of relative preference theory (RPT). Independent experiments with the same subjects showed a significant association between one SDT and two RPT variables, visualized as a three-dimensional structure. Holding one of these three variables constant, further showed a significant relationship between a loss aversion-like metric from the approach/avoidance task, and the response bias observed during the divided attention task. These results indicate that a more liberal response bias under signal detection (i.e., a higher tolerance for noise, resulting in a greater proportion of false alarms) is associated with higher "loss aversion." Furthermore, our functional model suggests a mechanism for processing constraints with divided attention and reward/aversion. Together, our results argue for a systematic relationship between divided attention and reward/aversion processing in humans.

  7. Enhancing exposure therapy for anxiety disorders with glucocorticoids: from basic mechanisms of emotional learning to clinical applications.

    PubMed

    Bentz, Dorothée; Michael, Tanja; de Quervain, Dominique J-F; Wilhelm, Frank H

    2010-03-01

    Current neurophysiological and psychological accounts view exposure therapy as the clinical analog of extinction learning that results in persistent modifications of the fear memory involved in the pathogenesis, symptomatology, and maintenance of anxiety disorders. Evidence from studies in animals and humans indicate that glucocorticoids have the potential to facilitate the processes that underlie extinction learning during exposure therapy. Particularly, glucocorticoids can restrict retrieval of previous aversive learning episodes and enhance consolidation of memory traces relating to non-fearful responding in feared situations. Thus, glucocorticoid treatment especially in combination with exposure therapy might be a promising approach to optimize treatment of anxiety disorders. This review examines the processes involved in aversive conditioning, fear learning and fear extinction, and how glucocorticoids might enhance restructuring of fear memories during therapy. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. The effects of cocaine, alcohol and cocaine/alcohol combinations in conditioned taste aversion learning.

    PubMed

    Busse, Gregory D; Verendeev, Andrey; Jones, Jermaine; Riley, Anthony L

    2005-09-01

    We have recently reported that alcohol attenuates cocaine place preferences. Although the basis for this effect is unknown, alcohol may attenuate cocaine reward by potentiating its aversive effects. To examine this possibility, these experiments assessed the effects of alcohol on cocaine-induced taste aversions under conditions similar to those that resulted in attenuated place preferences. Specifically, Experiments 1 and 2 assessed the effects of alcohol (0.5 g/kg) on taste aversions induced by 20, 30 and 40 mg/kg cocaine. Experiment 3 examined the role of intertrial interval in the effects of alcohol (0.5 g/kg) on cocaine (30 mg/kg) taste aversions. In Experiments 1 and 2, cocaine was effective at conditioning aversions. Alcohol produced no measurable effect. Combining cocaine and alcohol produced no greater aversion than cocaine alone (and, in fact, weakened aversions at the lowest dose of cocaine). In Experiment 3, varying the intertrial interval from 3 days (as in the case of Experiments 1 and 2) to 1 day (a procedure identical to that in which alcohol attenuated cocaine place preferences) resulted in significant alcohol- and cocaine-induced taste aversions. Nonetheless, alcohol remained ineffective in potentiating cocaine aversions. Thus, under these conditions alcohol does not potentiate cocaine's aversiveness. These results were discussed in terms of their implication for the effects of alcohol on cocaine-induced place preferences. Further, the effects of alcohol on place preferences conditioned by cocaine were discussed in relation to other assessments of the effects of alcohol on the affective properties of cocaine and the implications of these interactions for alcohol and cocaine co-use.

  9. Communication of uncertainty regarding individualized cancer risk estimates: effects and influential factors.

    PubMed

    Han, Paul K J; Klein, William M P; Lehman, Tom; Killam, Bill; Massett, Holly; Freedman, Andrew N

    2011-01-01

    To examine the effects of communicating uncertainty regarding individualized colorectal cancer risk estimates and to identify factors that influence these effects. Two Web-based experiments were conducted, in which adults aged 40 years and older were provided with hypothetical individualized colorectal cancer risk estimates differing in the extent and representation of expressed uncertainty. The uncertainty consisted of imprecision (otherwise known as "ambiguity") of the risk estimates and was communicated using different representations of confidence intervals. Experiment 1 (n = 240) tested the effects of ambiguity (confidence interval v. point estimate) and representational format (textual v. visual) on cancer risk perceptions and worry. Potential effect modifiers, including personality type (optimism), numeracy, and the information's perceived credibility, were examined, along with the influence of communicating uncertainty on responses to comparative risk information. Experiment 2 (n = 135) tested enhanced representations of ambiguity that incorporated supplemental textual and visual depictions. Communicating uncertainty led to heightened cancer-related worry in participants, exemplifying the phenomenon of "ambiguity aversion." This effect was moderated by representational format and dispositional optimism; textual (v. visual) format and low (v. high) optimism were associated with greater ambiguity aversion. However, when enhanced representations were used to communicate uncertainty, textual and visual formats showed similar effects. Both the communication of uncertainty and use of the visual format diminished the influence of comparative risk information on risk perceptions. The communication of uncertainty regarding cancer risk estimates has complex effects, which include heightening cancer-related worry-consistent with ambiguity aversion-and diminishing the influence of comparative risk information on risk perceptions. These responses are influenced by representational format and personality type, and the influence of format appears to be modifiable and content dependent.

  10. Steroid Hormone (20-Hydroxyecdysone) Modulates the Acquisition of Aversive Olfactory Memories in Pollen Forager Honeybees

    ERIC Educational Resources Information Center

    Geddes, Lisa H.; McQuillan, H. James; Aiken, Alastair; Vergoz, Vanina; Mercer, Alison R.

    2013-01-01

    Here, we examine effects of the steroid hormone, 20-hydroxyecdysone (20-E), on associative olfactory learning in the honeybee, "Apis mellifera." 20-E impaired the bees' ability to associate odors with punishment during aversive conditioning, but did not interfere with their ability to associate odors with a food reward (appetitive…

  11. Pontine and Thalamic Influences on Fluid Rewards: II. Sucrose and Corn Oil Conditioned Aversions

    PubMed Central

    Liang, Nu-Chu; Grigson, Patricia S.; Norgren, Ralph

    2011-01-01

    In this study conditioned aversions were produced in sham feeding rats to limit postingestive feedback from the oral stimulus. All control rats learned an aversion to either 100% corn oil or 0.3M sucrose when ingestion of these stimuli was followed by an injection of lithium chloride (LiCl). Rats with lesions of the ventroposteromedial thalamus also learned to avoid either corn oil or sucrose. After 3 trials, rats with damage to the parabrachial nuclei (PBN) learned to avoid 100% corn oil, but failed to do so when the stimulus was 0.3M sucrose. These results support our hypothesis that the PBN is necessary to appropriately respond to a taste, but not an oil cue as a function of experience (i.e., pairings with LiCl). The results also are consistent with our results from operant tasks demonstrating that the trigeminal thalamus, the ventroposteromedial nucleus, is not required for responding to the rewarding properties of sucrose, oil, or for modifying the response to these stimuli as a function of experience. PMID:21699909

  12. Behavioral consequences of dopamine deficiency in the Drosophila central nervous system

    PubMed Central

    Riemensperger, Thomas; Isabel, Guillaume; Coulom, Hélène; Neuser, Kirsa; Seugnet, Laurent; Kume, Kazuhiko; Iché-Torres, Magali; Cassar, Marlène; Strauss, Roland; Preat, Thomas; Hirsh, Jay; Birman, Serge

    2011-01-01

    The neuromodulatory function of dopamine (DA) is an inherent feature of nervous systems of all animals. To learn more about the function of neural DA in Drosophila, we generated mutant flies that lack tyrosine hydroxylase, and thus DA biosynthesis, selectively in the nervous system. We found that DA is absent or below detection limits in the adult brain of these flies. Despite this, they have a lifespan similar to WT flies. These mutants show reduced activity, extended sleep time, locomotor deficits that increase with age, and they are hypophagic. Whereas odor and electrical shock avoidance are not affected, aversive olfactory learning is abolished. Instead, DA-deficient flies have an apparently “masochistic” tendency to prefer the shock-associated odor 2 h after conditioning. Similarly, sugar preference is absent, whereas sugar stimulation of foreleg taste neurons induces normal proboscis extension. Feeding the DA precursor l-DOPA to adults substantially rescues the learning deficit as well as other impaired behaviors that were tested. DA-deficient flies are also defective in positive phototaxis, without alteration in visual perception and optomotor response. Surprisingly, visual tracking is largely maintained, and these mutants still possess an efficient spatial orientation memory. Our findings show that flies can perform complex brain functions in the absence of neural DA, whereas specific behaviors involving, in particular, arousal and choice require normal levels of this neuromodulator. PMID:21187381

  13. NMDA and Muscarinic Receptors of the Nucleus Accumbens Have Differential Effects on Taste Memory Formation

    ERIC Educational Resources Information Center

    Bermudez-Rattoni, Federico; Ramirez-Lugo, Leticia; Zavala-Vega, Sergio

    2006-01-01

    Animals recognize a taste cue as aversive when it has been associated with post-ingestive malaise; this associative learning is known as conditioned taste aversion (CTA). When an animal consumes a new taste and no negative consequences follow, it becomes recognized as a safe signal, leading to an increase in its consumption in subsequent…

  14. A Comparison of Two Methods of Assessing Representation-Mediated Food Aversions Based on Shock or Illness

    ERIC Educational Resources Information Center

    Holland, Peter C.

    2008-01-01

    In experiments that measured food consumption, Holland (1981; "Learning and Motivation," 12, 1-18) found that food aversions were formed when an exteroceptive associate of food was paired with illness, but not when such an associate was paired with shock. By contrast, measuring the ability of food to reinforce instrumental responding,…

  15. Hippocampal Erk Mechanisms Linking Prediction Error to Fear Extinction: Roles of Shock Expectancy and Contextual Aversive Valence

    ERIC Educational Resources Information Center

    Huh, Kyu Hwan; Guzman, Yomayra F.; Tronson, Natalie C.; Guedea, Anita L.; Gao, Can; Radulovic, Jelena

    2009-01-01

    Extinction of fear requires learning that anticipated aversive events no longer occur. Animal models reveal that sustained phosphorylation of the extracellular signal-regulated kinase (Erk) in hippocampal CA1 neurons plays an important role in this process. However, the key signals triggering and regulating the activity of Erk are not known. By…

  16. The Role of Muscarinic and Nicotinic Cholinergic Neurotransmission in Aversive Conditioning: Comparing Pavlovian Fear Conditioning and Inhibitory Avoidance

    ERIC Educational Resources Information Center

    Tinsley, Matthew R.; Quinn, Jennifer J.; Fanselow, Michael S.

    2004-01-01

    Aversive conditioning is an ideal model for studying cholinergic effects on the processes of learning and memory for several reasons. First, deficits produced by selective lesions of the anatomical structures shown to be critical for Pavlovian fear conditioning and inhibitory avoidance (such as the amygdala and hippocampus) resemble those deficits…

  17. Systemic 5-Bromo-2-Deoxyuridine Induces Conditioned Flavor Aversion and C-Fos in the Visceral Neuraxis

    ERIC Educational Resources Information Center

    Kimbrough, Adam; Kwon, Bumsup; Eckel, Lisa A.; Houpt, Thomas A.

    2011-01-01

    5-bromo-2-deoxyuridine (BrdU) is often used in studies of adult neurogenesis and olfactory learning, but it can also have toxic effects on highly proliferative tissue. We found that pairing Kool-Aid flavors with acute systemic injections of BrdU induced strong conditioned flavor aversions. Intermittent injections during Kool-Aid-glucose…

  18. What a relief! A role for dopamine in positive (but not negative) valence.

    PubMed

    Sharpe, Melissa J

    2018-02-27

    We have long known that dopamine encodes the predictive relationship between cues and rewards. But what about relief learning? In this issue of Neuropsychopharmacology, Meyer et al. show that the same circuits encoding rewarding events also encode relief from aversive events. And this appears to be in a manner distinct from encoding of the aversive event itself. So does dopamine only contribute to learning about positive events? And are these events encoded in the same way regardless of how that positive experience came about? Not quite. Turns out, the devil is in the details.

  19. Response to palatability after area postrema lesions: a result of learned aversions.

    PubMed

    Tomoyasu, N; Kenney, N J

    1989-11-01

    The role of palatability, novelty, and food aversion in determining changes of food choice after ablation of the area postrema and caudal-medial aspect of the nucleus of the solitary tract (AP/cmNTS) is examined through a series of studies utilizing 24-h, two-food choice tests. On test days, the food that the animal has ingested since the time of lesioning or sham surgery is presented along with a novel food that varies in palatability. The results indicate that postlesion diet history is the major determinant of food choice by lesioned rats. Lesioned rats consistently take less of their familiar postlesion food than diet-matched controls, suggesting that the lesioned rats have developed an aversion to that food. Over-ingestion of the novel food may occur, but this outcome is not reliable. No indication that the animals' response to food palatability is affected by AP/cmNTS ablation was found. Learned aversion to a food ingested after AP/cmNTS ablation may account not only for changes of food preference after the lesion but also may be involved in the hypophagia and weight loss resulting from the ablation.

  20. Opponent appetitive-aversive neural processes underlie predictive learning of pain relief.

    PubMed

    Seymour, Ben; O'Doherty, John P; Koltzenburg, Martin; Wiech, Katja; Frackowiak, Richard; Friston, Karl; Dolan, Raymond

    2005-09-01

    Termination of a painful or unpleasant event can be rewarding. However, whether the brain treats relief in a similar way as it treats natural reward is unclear, and the neural processes that underlie its representation as a motivational goal remain poorly understood. We used fMRI (functional magnetic resonance imaging) to investigate how humans learn to generate expectations of pain relief. Using a pavlovian conditioning procedure, we show that subjects experiencing prolonged experimentally induced pain can be conditioned to predict pain relief. This proceeds in a manner consistent with contemporary reward-learning theory (average reward/loss reinforcement learning), reflected by neural activity in the amygdala and midbrain. Furthermore, these reward-like learning signals are mirrored by opposite aversion-like signals in lateral orbitofrontal cortex and anterior cingulate cortex. This dual coding has parallels to 'opponent process' theories in psychology and promotes a formal account of prediction and expectation during pain.

  1. Evaluation of ambiguous associations in the amygdala by learning the structure of the environment

    PubMed Central

    Madarasz, Tamas J.; Diaz-Mataix, Lorenzo; Akhand, Omar; Ycu, Edgar A.; LeDoux, Joseph E.; Johansen, Joshua P.

    2017-01-01

    Recognizing predictive relationships is critical for survival, but an understanding of the underlying neural mechanisms remains elusive. In particular it is unclear how the brain distinguishes predictive relationships from spurious ones when evidence about a relationship is ambiguous, or how it computes predictions given such uncertainty. To better understand this process we introduced ambiguity into an associative learning task by presenting aversive outcomes both in the presence and absence of a predictive cue. Electrophysiological and optogenetic approaches revealed that amygdala neurons directly regulate and track the effects of ambiguity on learning. Contrary to established accounts of associative learning however, interference from competing associations was not required to assess an ambiguous cue-outcome contingency. Instead, animals’ behavior was explained by a normative account that evaluates different models of the environment’s statistical structure. These findings suggest an alternative view on the role of amygdala circuits in resolving ambiguity during aversive learning. PMID:27214568

  2. Evaluation of ambiguous associations in the amygdala by learning the structure of the environment.

    PubMed

    Madarasz, Tamas J; Diaz-Mataix, Lorenzo; Akhand, Omar; Ycu, Edgar A; LeDoux, Joseph E; Johansen, Joshua P

    2016-07-01

    Recognizing predictive relationships is critical for survival, but an understanding of the underlying neural mechanisms remains elusive. In particular, it is unclear how the brain distinguishes predictive relationships from spurious ones when evidence about a relationship is ambiguous, or how it computes predictions given such uncertainty. To better understand this process, we introduced ambiguity into an associative learning task by presenting aversive outcomes both in the presence and in the absence of a predictive cue. Electrophysiological and optogenetic approaches revealed that amygdala neurons directly regulated and tracked the effects of ambiguity on learning. Contrary to established accounts of associative learning, however, interference from competing associations was not required to assess an ambiguous cue-outcome contingency. Instead, animals' behavior was explained by a normative account that evaluates different models of the environment's statistical structure. These findings suggest an alternative view of amygdala circuits in resolving ambiguity during aversive learning.

  3. The habenula encodes negative motivational value associated with primary punishment in humans.

    PubMed

    Lawson, Rebecca P; Seymour, Ben; Loh, Eleanor; Lutti, Antoine; Dolan, Raymond J; Dayan, Peter; Weiskopf, Nikolaus; Roiser, Jonathan P

    2014-08-12

    Learning what to approach, and what to avoid, involves assigning value to environmental cues that predict positive and negative events. Studies in animals indicate that the lateral habenula encodes the previously learned negative motivational value of stimuli. However, involvement of the habenula in dynamic trial-by-trial aversive learning has not been assessed, and the functional role of this structure in humans remains poorly characterized, in part, due to its small size. Using high-resolution functional neuroimaging and computational modeling of reinforcement learning, we demonstrate positive habenula responses to the dynamically changing values of cues signaling painful electric shocks, which predict behavioral suppression of responses to those cues across individuals. By contrast, negative habenula responses to monetary reward cue values predict behavioral invigoration. Our findings show that the habenula plays a key role in an online aversive learning system and in generating associated motivated behavior in humans.

  4. Intra-accumbal blockade of endocannabinoid CB1 receptors impairs learning but not retention of conditioned relief.

    PubMed

    Bergado Acosta, Jorge R; Schneider, Miriam; Fendt, Markus

    2017-10-01

    Humans and animals are able to associate an environmental cue with the feeling of relief from an aversive event, a phenomenon called relief learning. Relief from an aversive event is rewarding and a relief-associated cue later induces an attenuation of the startle magnitude or approach behavior. Previous studies demonstrated that the nucleus accumbens is essential for relief learning. Here, we asked whether accumbal cannabinoid type 1 (CB1) receptors are involved in relief learning. In rats, we injected the CB1 receptor antagonist/inverse agonist SR141716A (rimonabant) directly into the nucleus accumbens at different time points during a relief learning experiment. SR141716A injections immediately before the conditioning inhibited relief learning. However, SR141716A injected immediately before the retention test was not effective when conditioning was without treatment. These findings indicate that accumbal CB1 receptors play an important role in the plasticity processes underlying relief learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Impaired modulation of attention and emotion in schizophrenia.

    PubMed

    Dichter, Gabriel S; Bellion, Carolyn; Casp, Michael; Belger, Aysenil

    2010-05-01

    Fronto-limbic interactions facilitate the generation of task-relevant responses while inhibiting interference from emotionally distracting information. Schizophrenia is associated with deficits in both executive attention and affective regulation. This study aims to elucidate the neural correlates of emotion-attention regulation and shifting in schizophrenia. We employed functional magnetic resonance imaging to probe the fronto-limbic regions in 16 adults with schizophrenia and 13 matched adults with no history of psychiatric illness. Subjects performed a forced-choice visual oddball task where they detected infrequent target circles embedded in a series of infrequent nontarget aversive and neutral pictures and frequent squares. In control participants, target events activated a dorsal frontoparietal network, whereas these regions were deactivated by aversive stimuli. Conversely, ventral frontolimbic brain regions were activated by aversive stimuli and deactivated by target events. In the patient group, regional hemodynamic timecourses revealed not only reduced activation to target and aversive events in dorsal executive and ventral limbic regions, respectively, but also reduced deactivation to target and aversive stimuli in ventral and dorsal regions, respectively, relative to the control group. Patients further showed reduced spatial extent of activation in the right inferior frontal gyrus during the target and aversive conditions. Activation of the anterior cingulate to aversive images was inversely related to severity of avolition and anhedonia symptoms in the schizophrenia group. These results suggest both frontal and limbic dysfunction in schizophrenia as well as aberrant reciprocal inhibitions between these regions during attention-emotion modulation in this disorder.

  6. Electrical Stimulation of Lateral Habenula during Learning: Frequency-Dependent Effects on Acquisition but Not Retrieval of a Two-Way Active Avoidance Response

    PubMed Central

    Wetzel, Wolfram; Scheich, Henning; Ohl, Frank W.

    2013-01-01

    The lateral habenula (LHb) is an epithalamic structure involved in signaling reward omission and aversive stimuli, and it inhibits dopaminergic neurons during motivated behavior. Less is known about LHb involvement in the acquisition and retrieval of avoidance learning. Our previous studies indicated that brief electrical stimulation of the LHb, time-locked to the avoidance of aversive footshock (presumably during the positive affective “relief” state that occurs when an aversive outcome is averted), inhibited the acquisition of avoidance learning. In the present study, we used the same paradigm to investigate different frequencies of LHb stimulation. The effect of 20 Hz vs. 50 Hz vs. 100 Hz stimulation was investigated during two phases, either during acquisition or retrieval in Mongolian gerbils. The results indicated that 50 Hz, but not 20 Hz, was sufficient to produce a long-term impairment in avoidance learning, and was somewhat more effective than 100 Hz in this regard. None of the stimulation parameters led to any effects on retrieval of avoidance learning, nor did they affect general motor activity. This suggests that, at frequencies in excess of the observed tonic firing rates of LHb neurons (>1–20 Hz), LHb stimulation may serve to interrupt the consolidation of new avoidance memories. However, these stimulation parameters are not capable of modifying avoidance memories that have already undergone extensive consolidation. PMID:23840355

  7. Long-term changes in amphetamine-induced reinforcement and aversion in rats following exposure to 56Fe particle

    NASA Astrophysics Data System (ADS)

    Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.

    Exposing rats to heavy particles produces alterations in the functioning of dopaminergic neurons and in the behaviors that depend upon the integrity of the dopaminergic system. Two of these dopamine-dependent behaviors include amphetamine-induced reinforcement, measure using the conditioned place preference procedure, and amphetamine-induced reinforcement, measured using the conditioned place preference procedure, and amphetamine-induced aversion, measured using the conditioned taste aversion. Previous research has shown that exposing rats to 1.0 Gy of 1GeV/n 56Fe particles produced a disruption of an amphetamine-induced taste aversion 3 days following exposure, but produced an apparent enhancement of the aversion 112 days following exposure. The present experiments were designed to provide a further evaluation of these results by examining taste aversion learning 154 days following exposure to 1.0Gy 56Fe particles and to establish the convergent validity of the taste aversion results by looking at the effects of exposure on the establishment of an amphetamine-induced conditioned place preference 3, 7, and 16 weeks following irradiation. The taste aversion results failed to confirm the apparent enhancement of the amphetamine-induced CTA observed in the prior experiment. However, exposure to 56Fe particles prevented the acquisition of amphetamine-induced place preference at all three-time intervals. The results are interpreted as indicating that exposure to heavy particles can produce long-term changes in behavioral functioning.

  8. Worrying affects associative fear learning: a startle fear conditioning study.

    PubMed

    Gazendam, Femke J; Kindt, Merel

    2012-01-01

    A valuable experimental model for the pathogenesis of anxiety disorders is that they originate from a learned association between an intrinsically non-aversive event (Conditioned Stimulus, CS) and an anticipated disaster (Unconditioned Stimulus, UCS). Most anxiety disorders, however, do not evolve from a traumatic experience. Insights from neuroscience show that memory can be modified post-learning, which may elucidate how pathological fear can develop after relatively mild aversive events. Worrying--a process frequently observed in anxiety disorders--is a potential candidate to strengthen the formation of fear memory after learning. Here we tested in a discriminative fear conditioning procedure whether worry strengthens associative fear memory. Participants were randomly assigned to either a Worry (n = 23) or Control condition (n = 25). After fear acquisition, the participants in the Worry condition processed six worrisome questions regarding the personal aversive consequences of an electric stimulus (UCS), whereas the Control condition received difficult but neutral questions. Subsequently, extinction, reinstatement and re-extinction of fear were tested. Conditioned responding was measured by fear-potentiated startle (FPS), skin conductance (SCR) and UCS expectancy ratings. Our main results demonstrate that worrying resulted in increased fear responses (FPS) to both the feared stimulus (CS(+)) and the originally safe stimulus (CS(-)), whereas FPS remained unchanged in the Control condition. In addition, worrying impaired both extinction and re-extinction learning of UCS expectancy. The implication of our findings is that they show how worry may contribute to the development of anxiety disorders by affecting associative fear learning.

  9. Aversive aftertaste changes visual food cue reactivity: An fMRI study on cross-modal perception.

    PubMed

    Wabnegger, Albert; Schwab, Daniela; Schienle, Anne

    2018-04-23

    In western cultures, we are surrounded by appealing visual food cues that stimulate our desire to eat, overeating and subsequent weight gain. Cognitive control of appetite (reappraisal) requires substantial attentional resources and effort in order to work. Therefore, we tested an alternative approach for appetite regulation via functional magnetic resonance imaging. Healthy, normal-weight women were presented with images depicting food (high-/low-caloric), once in combination with a bitter aftertaste (a gustatory stop signal) and once with a neutral taste (water), in a retest design. The aversive aftertaste elicited increased activation in the orbitofrontal/dorsolateral prefrontal cortex (OFC, DLPFC), striatum and frontal operculum during the viewing of high-caloric food (vs. low-caloric food). In addition, the increase in DLPFC activity to high-caloric food in the bitter condition was correlated with reported appetite reduction. The findings indicate that this aftertaste procedure was able to reduce the appetitive value of visual food cues. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Beyond negative valence: 2-week administration of a serotonergic antidepressant enhances both reward and effort learning signals.

    PubMed

    Scholl, Jacqueline; Kolling, Nils; Nelissen, Natalie; Browning, Michael; Rushworth, Matthew F S; Harmer, Catherine J

    2017-02-01

    To make good decisions, humans need to learn about and integrate different sources of appetitive and aversive information. While serotonin has been linked to value-based decision-making, its role in learning is less clear, with acute manipulations often producing inconsistent results. Here, we show that when the effects of a selective serotonin reuptake inhibitor (SSRI, citalopram) are studied over longer timescales, learning is robustly improved. We measured brain activity with functional magnetic resonance imaging (fMRI) in volunteers as they performed a concurrent appetitive (money) and aversive (effort) learning task. We found that 2 weeks of citalopram enhanced reward and effort learning signals in a widespread network of brain regions, including ventromedial prefrontal and anterior cingulate cortex. At a behavioral level, this was accompanied by more robust reward learning. This suggests that serotonin can modulate the ability to learn via a mechanism that is independent of stimulus valence. Such effects may partly underlie SSRIs' impact in treating psychological illnesses. Our results highlight both a specific function in learning for serotonin and the importance of studying its role across longer timescales.

  11. A test of the opponent-process theory of motivation using lesions that selectively block morphine reward.

    PubMed

    Vargas-Perez, Hector; Ting-A-Kee, Ryan A; Heinmiller, Andrew; Sturgess, Jessica E; van der Kooy, Derek

    2007-06-01

    The opponent-process theory of motivation postulates that motivational stimuli activate a rewarding process that is followed by an opposed aversive process in a homeostatic control mechanism. Thus, an acute injection of morphine in nondependent animals should evoke an acute rewarding response, followed by a later aversive response. Indeed, the tegmental pedunculopontine nucleus (TPP) mediates the rewarding effects of opiates in previously morphine-naive animals, but not other unconditioned effects of opiates, or learning ability. The aversive opponent process for acute morphine reward was revealed using a place-conditioning paradigm. The conditioned place aversion induced by 16-h spontaneous morphine withdrawal from an acute morphine injection in nondependent rats was abolished by TPP lesions performed prior to drug experience. However, TPP-lesioned rats did show conditioned aversions for an environment paired with the acute administration of the opioid antagonist naloxone, which blocks endogenous opioids. The results show that blocking the rewarding effects of morphine with TPP lesions also blocked the opponent aversive effects of acute morphine withdrawal in nondependent animals. Thus, this spontaneous withdrawal aversion (the opponent process) is induced by the acute rewarding effects of morphine and not by other unconditioned effects of morphine, the pharmacological effects of morphine or endogenous opioids being displaced from opiate receptors.

  12. Excitation of lateral habenula neurons as a neural mechanism underlying ethanol-induced conditioned taste aversion.

    PubMed

    Tandon, Shashank; Keefe, Kristen A; Taha, Sharif A

    2017-02-15

    The lateral habenula (LHb) has been implicated in regulation of drug-seeking behaviours through aversion-mediated learning. In this study, we recorded neuronal activity in the LHb of rats during an operant task before and after ethanol-induced conditioned taste aversion (CTA) to saccharin. Ethanol-induced CTA caused significantly higher baseline firing rates in LHb neurons, as well as elevated firing rates in response to cue presentation, lever press and saccharin taste. In a separate cohort of rats, we found that bilateral LHb lesions blocked ethanol-induced CTA. Our results strongly suggest that excitation of LHb neurons is required for ethanol-induced CTA, and point towards a mechanism through which LHb firing may regulate voluntary ethanol consumption. Ethanol, like other drugs of abuse, has both rewarding and aversive properties. Previous work suggests that sensitivity to ethanol's aversive effects negatively modulates voluntary alcohol intake and thus may be important in vulnerability to developing alcohol use disorders. We previously found that rats with lesions of the lateral habenula (LHb), which is implicated in aversion-mediated learning, show accelerated escalation of voluntary ethanol consumption. To understand neural encoding in the LHb contributing to ethanol-induced aversion, we recorded neural firing in the LHb of freely behaving, water-deprived rats before and after an ethanol-induced (1.5 g kg -1 20% ethanol, i.p.) conditioned taste aversion (CTA) to saccharin taste. Ethanol-induced CTA strongly decreased motivation for saccharin in an operant task to obtain the tastant. Comparison of LHb neural firing before and after CTA induction revealed four main differences in firing properties. First, baseline firing after CTA induction was significantly higher. Second, firing evoked by cues signalling saccharin availability shifted from a pattern of primarily inhibition before CTA to primarily excitation after CTA induction. Third, CTA induction reduced the magnitude of lever press-evoked inhibition. Finally, firing rates were significantly higher during consumption of the devalued saccharin solution after CTA induction. Next, we studied sham- and LHb-lesioned rats in our operant CTA paradigm and found that LHb lesion significantly attenuated CTA effects in the operant task. Our data demonstrate the importance of LHb excitation in regulating expression of ethanol-induced aversion and suggest a mechanism for its role in modulating escalation of voluntary ethanol intake. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  13. Hedonic and Nucleus Accumbens Neural Responses to a Natural Reward Are Regulated by Aversive Conditioning

    ERIC Educational Resources Information Center

    Roitman, Mitchell F.; Wheeler, Robert A.; Tiesinga, Paul H. E.; Roitman, Jamie D.; Carelli, Regina M.

    2010-01-01

    The nucleus accumbens (NAc) plays a role in hedonic reactivity to taste stimuli. Learning can alter the hedonic valence of a given stimulus, and it remains unclear how the NAc encodes this shift. The present study examined whether the population response of NAc neurons to a taste stimulus is plastic using a conditioned taste aversion (CTA)…

  14. Instructed knowledge shapes feedback-driven aversive learning in striatum and orbitofrontal cortex, but not the amygdala

    PubMed Central

    Atlas, Lauren Y; Doll, Bradley B; Li, Jian; Daw, Nathaniel D; Phelps, Elizabeth A

    2016-01-01

    Socially-conveyed rules and instructions strongly shape expectations and emotions. Yet most neuroscientific studies of learning consider reinforcement history alone, irrespective of knowledge acquired through other means. We examined fear conditioning and reversal in humans to test whether instructed knowledge modulates the neural mechanisms of feedback-driven learning. One group was informed about contingencies and reversals. A second group learned only from reinforcement. We combined quantitative models with functional magnetic resonance imaging and found that instructions induced dissociations in the neural systems of aversive learning. Responses in striatum and orbitofrontal cortex updated with instructions and correlated with prefrontal responses to instructions. Amygdala responses were influenced by reinforcement similarly in both groups and did not update with instructions. Results extend work on instructed reward learning and reveal novel dissociations that have not been observed with punishments or rewards. Findings support theories of specialized threat-detection and may have implications for fear maintenance in anxiety. DOI: http://dx.doi.org/10.7554/eLife.15192.001 PMID:27171199

  15. Early Life Manipulations Alter Learning and Memory in Rats

    PubMed Central

    Kosten, Therese A; Kim, Jeansok J; Lee, Hongjoo J.

    2012-01-01

    Much research shows early life manipulations have enduring behavioral, neural, and hormonal effects. However, findings of learning and memory performance vary widely across studies. We reviewed studies in which pre-weaning rat pups were exposed to stressors and tested on learning and memory tasks in adulthood. Tasks were classified as aversive conditioning, inhibitory learning, or spatial/relational memory. Variables of duration, type, and timing of neonatal manipulation and sex and strain of animals were examined to determine if any predict enhanced or impaired performance. Brief separations enhanced and prolonged separations impaired performance on spatial/relational tasks. Performance was impaired in aversive conditioning and enhanced in inhibitory learning tasks regardless of manipulation duration. Opposing effects on performance for spatial/relational memory also depended upon timing of manipulation. Enhanced performance was likely if the manipulation occurred during postnatal week 3 but performance was impaired if it was confined to the first two postnatal weeks. Thus, the relationship between early life experiences and adulthood learning and memory performance is multifaceted and decidedly task-dependent. PMID:22819985

  16. Is there evidence of learned helplessness in horses?

    PubMed

    Hall, Carol; Goodwin, Deborah; Heleski, Camie; Randle, Hayley; Waran, Natalie

    2008-01-01

    Learned helplessness is a psychological condition whereby individuals learn that they have no control over unpleasant or harmful conditions, that their actions are futile, and that they are helpless. In a series of experiments in which dogs were exposed to inescapable shocks, this lack of control subsequently interfered with the ability to learn an avoidance task. There is evidence that both neural adaptations and behavioral despair occur in response to uncontrollable aversive experiences in rodents, although this has yet to be demonstrated in other species such as horses. However, certain traditional methods of horse training and some behavioral modification techniques--it has been suggested--may involve aversive conditions over which the horse has little or no control. When training and management procedures are repeatedly unpleasant for the horse and there is no clear association between behavior and outcome, this is likely to interfere with learning and performance-in addition to compromising welfare. This article reviews published literature and anecdotal evidence to explore the possibility that the phenomenon, learned helplessness, occurs in the horse.

  17. Relationship between Fear Conditionability and Aversive Memories: Evidence from a Novel Conditioned-Intrusion Paradigm

    PubMed Central

    Wegerer, Melanie; Blechert, Jens; Kerschbaum, Hubert; Wilhelm, Frank H.

    2013-01-01

    Intrusive memories – a hallmark symptom of posttraumatic stress disorder (PTSD) – are often triggered by stimuli possessing similarity with cues that predicted or accompanied the traumatic event. According to learning theories, intrusive memories can be seen as a conditioned response to trauma reminders. However, direct laboratory evidence for the link between fear conditionability and intrusive memories is missing. Furthermore, fear conditioning studies have predominantly relied on standardized aversive stimuli (e.g. electric stimulation) that bear little resemblance to typical traumatic events. To investigate the general relationship between fear conditionability and aversive memories, we tested 66 mentally healthy females in a novel conditioned-intrusion paradigm designed to model real-life traumatic experiences. The paradigm included a differential fear conditioning procedure with neutral sounds as conditioned stimuli and short violent film clips as unconditioned stimuli. Subsequent aversive memories were assessed through a memory triggering task (within 30 minutes, in the laboratory) and ambulatory assessment (involuntary aversive memories in the 2 days following the experiment). Skin conductance responses and subjective ratings demonstrated successful differential conditioning indicating that naturalistic aversive film stimuli can be used in a fear conditioning experiment. Furthermore, aversive memories were elicited in response to the conditioned stimuli during the memory triggering task and also occurred in the 2 days following the experiment. Importantly, participants who displayed higher conditionability showed more aversive memories during the memory triggering task and during ambulatory assessment. This suggests that fear conditioning constitutes an important source of persistent aversive memories. Implications for PTSD and its treatment are discussed. PMID:24244407

  18. Animal behavior: fly flight moves forward.

    PubMed

    Fox, Jessica L; Frye, Mark

    2013-04-08

    A new study has resolved the paradox of how flies maintain reflexive aversion to your approaching swatter, whilst tolerating similar visual signals during normal forward flight. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. The Neural Basis of Taste-visual Modal Conflict Control in Appetitive and Aversive Gustatory Context.

    PubMed

    Xiao, Xiao; Dupuis-Roy, Nicolas; Jiang, Jun; Du, Xue; Zhang, Mingmin; Zhang, Qinglin

    2018-02-21

    The functional magnetic resonance imaging (fMRI) technique was used to investigate brain activations related to conflict control in a taste-visual cross-modal pairing task. On each trial, participants had to decide whether the taste of a gustatory stimulus matched or did not match the expected taste of the food item depicted in an image. There were four conditions: Negative match (NM; sour gustatory stimulus and image of sour food), negative mismatch (NMM; sour gustatory stimulus and image of sweet food), positive match (PM; sweet gustatory stimulus and image of sweet food), positive mismatch (PMM; sweet gustatory stimulus and image of sour food). Blood oxygenation level-dependent (BOLD) contrasts between the NMM and the NM conditions revealed an increased activity in the middle frontal gyrus (MFG) (BA 6), the lingual gyrus (LG) (BA 18), and the postcentral gyrus. Furthermore, the NMM minus NM BOLD differences observed in the MFG were correlated with the NMM minus NM differences in response time. These activations were specifically associated with conflict control during the aversive gustatory stimulation. BOLD contrasts between the PMM and the PM condition revealed no significant positive activation, which supported the hypothesis that the human brain is especially sensitive to aversive stimuli. Altogether, these results suggest that the MFG is associated with the taste-visual cross-modal conflict control. A possible role of the LG as an information conflict detector at an early perceptual stage is further discussed, along with a possible involvement of the postcentral gyrus in the processing of the taste-visual cross-modal sensory contrast. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Perceived ambiguity as a barrier to intentions to learn genome sequencing results

    PubMed Central

    Taber, Jennifer M.; Klein, William M.P.; Ferrer, Rebecca A.; Han, Paul K. J.; Lewis, Katie L.; Biesecker, Leslie G.; Biesecker, Barbara B.

    2015-01-01

    Many variants that could be returned from genome sequencing may be perceived as ambiguous—lacking reliability, credibility, or adequacy. Little is known about how perceived ambiguity influences thoughts about sequencing results. Participants (n=494) in an NIH genome sequencing study completed a baseline survey before sequencing results were available. We examined how perceived ambiguity regarding sequencing results and individual differences in medical ambiguity aversion and tolerance for uncertainty were associated with cognitions and intentions concerning sequencing results. Perceiving sequencing results as more ambiguous was associated with less favorable cognitions about results and lower intentions to learn and share results. Among participants low in tolerance for uncertainty or optimism, greater perceived ambiguity was associated with lower intentions to learn results for non-medically actionable diseases; medical ambiguity aversion did not moderate any associations. Results are consistent with the phenomenon of “ambiguity aversion” and may influence whether people learn and communicate genomic information. PMID:26003053

  1. Long-term changes in amphetamine-induced reinforcement and aversion in rats following exposure to 56Fe particle

    NASA Technical Reports Server (NTRS)

    Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.

    2003-01-01

    Exposing rats to heavy particles produces alterations in the functioning of dopaminergic neurons and in the behaviors that depend upon the integrity of the dopaminergic system. Two of these dopamine-dependent behaviors include amphetamine-induced reinforcement, measure using the conditioned place preference procedure, and amphetamine-induced reinforcement, measured using the conditioned place preference procedure, and amphetamine-induced aversion, measured using the conditioned taste aversion. Previous research has shown that exposing rats to 1.0 Gy of 1GeV/n 56Fe particles produced a disruption of an amphetamine-induced taste aversion 3 days following exposure, but produced an apparent enhancement of the aversion 112 days following exposure. The present experiments were designed to provide a further evaluation of these results by examining taste aversion learning 154 days following exposure to 1.0 Gy 56Fe particles and to establish the convergent validity of the taste aversion results by looking at the effects of exposure on the establishment of an amphetamine-induced conditioned place preference 3, 7, and 16 weeks following irradiation. The taste aversion results failed to confirm the apparent enhancement of the amphetamine-induced CTA observed in the prior experiment. However, exposure to 56Fe particles prevented the acquisition of amphetamine-induced place preference at all three-time intervals. The results are interpreted as indicating that exposure to heavy particles can produce long-term changes in behavioral functioning. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  2. Innate food aversions and culturally transmitted food taboos in pregnant women in rural southwest India: separate systems to protect the fetus?

    PubMed

    Placek, Caitlyn D; Madhivanan, Purnima; Hagen, Edward H

    2017-11-01

    Pregnancy increases women's nutritional requirements, yet causes aversions to nutritious foods. Most societies further restrict pregnant women's diet with food taboos. Pregnancy food aversions are theorized to protect mothers and fetuses from teratogens and pathogens or increase dietary diversity in response to resource scarcity. Tests of these hypotheses have had mixed results, perhaps because many studies are in Westernized populations with reliable access to food and low exposure to pathogens. If pregnancy food aversions are adaptations, however, then they likely evolved in environments with uncertain access to food and high exposure to pathogens. Pregnancy food taboos, on the other hand, have been theorized to limit resource consumption, mark social identity, or also protect mothers and fetuses from dangerous foods. There have been few tests of evolutionary theories of culturally transmitted food taboos. We investigated these and other theories of psychophysiological food aversions and culturally transmitted food taboos among two non-Western populations of pregnant women in Mysore, India, that vary in food insecurity and exposure to infectious disease. The first was a mixed caste rural farming population ( N = 72), and the second was the Jenu Kurubas , a resettled population of former hunter-gatherers ( N = 30). Women rated their aversions to photos of 31 foods and completed structured interviews that assessed aversions and socially learned avoidances of foods, pathogen exposure, food insecurity, sources of culturally acquired dietary advice, and basic sociodemographic information. Aversions to spicy foods were associated with early trimester and nausea and vomiting, supporting a protective role against plant teratogens. Variation in exposure to pathogens did not explain variation in meat aversions or avoidances, however, raising some doubts about the importance of pathogen avoidance. Aversions to staple foods were common, but were not associated with resource stress, providing mixed support for the role of dietary diversification. Avoided foods outnumbered aversive foods, were believed to be abortifacients or otherwise harmful to the fetus, influenced diet throughout pregnancy, and were largely distinct from aversive foods. These results suggest that aversions target foods with cues of toxicity early in pregnancy, and taboos target suspected abortifacients throughout pregnancy.

  3. Stress Sensitive Healthy Females Show Less Left Amygdala Activation in Response to Withdrawal-Related Visual Stimuli under Passive Viewing Conditions

    ERIC Educational Resources Information Center

    Baeken, Chris; Van Schuerbeek, Peter; De Raedt, Rudi; Vanderhasselt, Marie-Anne; De Mey, Johan; Bossuyt, Axel; Luypaert, Robert

    2012-01-01

    The amygdalae are key players in the processing of a variety of emotional stimuli. Especially aversive visual stimuli have been reported to attract attention and activate the amygdalae. However, as it has been argued that passively viewing withdrawal-related images could attenuate instead of activate amygdalae neuronal responses, its role under…

  4. The role of visual and mechanosensory cues in structuring forward flight in Drosophila melanogaster.

    PubMed

    Budick, Seth A; Reiser, Michael B; Dickinson, Michael H

    2007-12-01

    It has long been known that many flying insects use visual cues to orient with respect to the wind and to control their groundspeed in the face of varying wind conditions. Much less explored has been the role of mechanosensory cues in orienting insects relative to the ambient air. Here we show that Drosophila melanogaster, magnetically tethered so as to be able to rotate about their yaw axis, are able to detect and orient into a wind, as would be experienced during forward flight. Further, this behavior is velocity dependent and is likely subserved, at least in part, by the Johnston's organs, chordotonal organs in the antennae also involved in near-field sound detection. These wind-mediated responses may help to explain how flies are able to fly forward despite visual responses that might otherwise inhibit this behavior. Expanding visual stimuli, such as are encountered during forward flight, are the most potent aversive visual cues known for D. melanogaster flying in a tethered paradigm. Accordingly, tethered flies strongly orient towards a focus of contraction, a problematic situation for any animal attempting to fly forward. We show in this study that wind stimuli, transduced via mechanosensory means, can compensate for the aversion to visual expansion and thus may help to explain how these animals are indeed able to maintain forward flight.

  5. Emotional reactivity and cognitive performance in aversively motivated tasks: a comparison between four rat strains.

    PubMed

    van der Staay, F Josef; Schuurman, Teun; van Reenen, Cornelis G; Korte, S Mechiel

    2009-12-15

    Cognitive function might be affected by the subjects' emotional reactivity. We assessed whether behavior in different tests of emotional reactivity is correlated with performance in aversively motivated learning tasks, using four strains of rats generally considered to have a different emotional reactivity. The performance of male Brown Norway, Lewis, Fischer 344, and Wistar Kyoto rats in open field (OF), elevated plus-maze (EPM), and circular light-dark preference box (cLDB) tasks, which are believed to provide measures of emotional reactivity, was evaluated. Spatial working and reference memory were assessed in two aversively motivated learning and memory tasks: the standard and the "repeated acquisition" versions of the Morris water maze escape task, respectively. All rats were also tested in a passive avoidance task. At the end of the study, levels of serotonin (5-HT) and 5-hydroxyindoleacetic acid, and 5-HT turnover in the hippocampus and frontal cortex were determined. Strain differences showed a complex pattern across behavioral tests and serotonergic measures. Fischer 344 rats had the poorest performance in both versions of the Morris water escape task, whereas Brown Norway rats performed these tasks very well but the passive avoidance task poorly. Neither correlation analysis nor principal component analysis provided convincing support for the notion that OF, EPM, and cLDB tasks measure the same underlying trait. Our findings do not support the hypothesis that the level of emotional reactivity modulates cognitive performance in aversively motivated tasks. Concepts such as "emotional reactivity" and "learning and memory" cannot adequately be tapped with only one behavioral test. Our results emphasize the need for multiple testing.

  6. APIS—a novel approach for conditioning honey bees

    PubMed Central

    Kirkerud, Nicholas H.; Wehmann, Henja-Niniane; Galizia, C. Giovanni; Gustav, David

    2013-01-01

    Honey bees perform robustly in different conditioning paradigms. This makes them excellent candidates for studying mechanisms of learning and memory at both an individual and a population level. Here we introduce a novel method of honey bee conditioning: APIS, the Automatic Performance Index System. In an enclosed walking arena where the interior is covered with an electric grid, presentation of odors from either end can be combined with weak electric shocks to form aversive associations. To quantify behavioral responses, we continuously monitor the movement of the bee by an automatic tracking system. We found that escapes from one side to the other, changes in velocity as well as distance and time spent away from the punished odor are suitable parameters to describe the bee's learning capabilities. Our data show that in a short-term memory test the response rate for the conditioned stimulus (CS) in APIS correlates well with response rate obtained from conventional Proboscis Extension Response (PER)-conditioning. Additionally, we discovered that bees modulate their behavior to aversively learned odors by reducing their rate, speed and magnitude of escapes and that both generalization and extinction seem to be different between appetitive and aversive stimuli. The advantages of this automatic system make it ideal for assessing learning rates in a standardized and convenient way, and its flexibility adds to the toolbox for studying honey bee behavior. PMID:23616753

  7. APIS-a novel approach for conditioning honey bees.

    PubMed

    Kirkerud, Nicholas H; Wehmann, Henja-Niniane; Galizia, C Giovanni; Gustav, David

    2013-01-01

    Honey bees perform robustly in different conditioning paradigms. This makes them excellent candidates for studying mechanisms of learning and memory at both an individual and a population level. Here we introduce a novel method of honey bee conditioning: APIS, the Automatic Performance Index System. In an enclosed walking arena where the interior is covered with an electric grid, presentation of odors from either end can be combined with weak electric shocks to form aversive associations. To quantify behavioral responses, we continuously monitor the movement of the bee by an automatic tracking system. We found that escapes from one side to the other, changes in velocity as well as distance and time spent away from the punished odor are suitable parameters to describe the bee's learning capabilities. Our data show that in a short-term memory test the response rate for the conditioned stimulus (CS) in APIS correlates well with response rate obtained from conventional Proboscis Extension Response (PER)-conditioning. Additionally, we discovered that bees modulate their behavior to aversively learned odors by reducing their rate, speed and magnitude of escapes and that both generalization and extinction seem to be different between appetitive and aversive stimuli. The advantages of this automatic system make it ideal for assessing learning rates in a standardized and convenient way, and its flexibility adds to the toolbox for studying honey bee behavior.

  8. Further characterization of an aversive learning task in Drosophila melanogaster: intensity of the stimulus, relearning, and use of rutabaga mutants.

    PubMed

    Perisse, Emmanuel; Portelli, Geoffrey; Le Goas, Solène; Teste, Elsa; Le Bourg, Eric

    2007-11-01

    Various learning tasks have been described in Drosophila melanogaster, flies being either tested in groups or at the individual level. Le Bourg and Buecher (Anim Learn Behav 33:330-341, 2002) have designed a task at the individual level: photopositive flies crossing a T-maze learn to prefer the dark exit when the lighted one is associated with the presence of aversive stimuli (humidity and quinine). Previous studies have reported various results (e.g. no effect of age) and the present article further characterizes this task by studying the possible effects of: (1) the intensity of the stimuli (quantity of water or concentration of quinine), (2) various delays between two learning sessions on the learning score at the second session, (3) the rutabaga learning mutation on the learning score. More concentrated quinine solutions increased learning scores but the quantity of water had no effect. Learning scores at the second session were higher with shorter delays between the two learning sessions and retrograde amnesia could decrease this memory score. rutabaga mutants showed learning deficits as in experiments testing groups of flies. This learning task could particularly be used to verify whether learning mutants isolated after experiments testing flies in groups display similar deficits when tested at the individual level.

  9. Female babies and risk-aversion: Causal evidence from hospital wards.

    PubMed

    Pogrebna, Ganna; Oswald, Andrew J; Haig, David

    2018-03-01

    Using ultrasound scan data from paediatric hospitals, and the exogenous 'shock' of learning the gender of an unborn baby, the paper documents the first causal evidence that offspring gender affects adult risk-aversion. On a standard Holt-Laury criterion, parents of daughters, whether unborn or recently born, become almost twice as risk-averse as parents of sons. The study demonstrates this in longitudinal and cross-sectional data, for fathers and mothers, for babies in the womb and new-born children, and in a West European nation and East European nation. These findings may eventually aid our understanding of risky health behaviors and gender inequalities. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Alterations of male sexual behavior by learned aversions to hamster vaginal secretion.

    PubMed

    Johnston, R E; Zahorik, D M; Immler, K; Zakon, H

    1978-02-01

    Male hamsters poisoned after their first adult exposure to the vaginal secretion of female hamsters became hesitant to approach and ingest the secretion. The same aversion-training procedure also altered the responses of males to estrous females, changing the latency, frequency, and duration of a variety of behaviors that are commonly taken as indexes of sexual attraction or arousal and of copulatory performance. The effects suggest that the aversions to vaginal secretion alter the perceived meaning of the secretion for male hamsters, and analysis of the correlations between various measures of sexual arousal and performance support the hypothesis that separate mechanisms underlie the effects of the secretion on appetitive and consummatory sexual behavior.

  11. Beyond negative valence: 2-week administration of a serotonergic antidepressant enhances both reward and effort learning signals

    PubMed Central

    Kolling, Nils; Nelissen, Natalie; Browning, Michael; Rushworth, Matthew F. S.; Harmer, Catherine J.

    2017-01-01

    To make good decisions, humans need to learn about and integrate different sources of appetitive and aversive information. While serotonin has been linked to value-based decision-making, its role in learning is less clear, with acute manipulations often producing inconsistent results. Here, we show that when the effects of a selective serotonin reuptake inhibitor (SSRI, citalopram) are studied over longer timescales, learning is robustly improved. We measured brain activity with functional magnetic resonance imaging (fMRI) in volunteers as they performed a concurrent appetitive (money) and aversive (effort) learning task. We found that 2 weeks of citalopram enhanced reward and effort learning signals in a widespread network of brain regions, including ventromedial prefrontal and anterior cingulate cortex. At a behavioral level, this was accompanied by more robust reward learning. This suggests that serotonin can modulate the ability to learn via a mechanism that is independent of stimulus valence. Such effects may partly underlie SSRIs’ impact in treating psychological illnesses. Our results highlight both a specific function in learning for serotonin and the importance of studying its role across longer timescales. PMID:28207733

  12. Integration of Neurobiological and Computational Analyses of the Neural Network Essentials for Conditioned Taste Aversions

    DTIC Science & Technology

    1990-06-30

    gastronomes . In Food Aversion Learning, ed. N. W. Milgram, L. Krames, T. Alloway. New York: Plenum Press, 1977. Grill, H. J., Berridge, K. C. Taste...Jun 25 10:4,6:21 1990 ZLS: syr GRP: Po JOB: aug 0V: 12 Pb ok, &,vpr. VoL 4&, 000-=. 0 Pervnoe Press pl. 1990. Prited a tft USA . 0031-938"S90 53.00 + .00

  13. Enhancement of Inhibitory Avoidance and Conditioned Taste Aversion Memory with Insular Cortex Infusions of 8-Br-cAMP: Involvement of the Basolateral Amygdala

    ERIC Educational Resources Information Center

    Miranda, Maria I.; McGaugh, James L.

    2004-01-01

    There is considerable evidence that in rats, the insular cortex (IC) and amygdala are involved in the learning and memory of aversively motivated tasks. The present experiments examined the effects of 8-Br-cAMP, an analog of cAMP, and oxotremorine, a muscarinic agonist, infused into the IC after inhibitory avoidance (IA) training and during the…

  14. Honeybees (Apis mellifera) Learn Color Discriminations via Differential Conditioning Independent of Long Wavelength (Green) Photoreceptor Modulation

    PubMed Central

    Wijesekara Witharanage, Randika; Rosa, Marcello G. P.

    2012-01-01

    Background Recent studies on colour discrimination suggest that experience is an important factor in how a visual system processes spectral signals. In insects it has been shown that differential conditioning is important for processing fine colour discriminations. However, the visual system of many insects, including the honeybee, has a complex set of neural pathways, in which input from the long wavelength sensitive (‘green’) photoreceptor may be processed either as an independent achromatic signal or as part of a trichromatic opponent-colour system. Thus, a potential confound of colour learning in insects is the possibility that modulation of the ‘green’ photoreceptor could underlie observations. Methodology/Principal Findings We tested honeybee vision using light emitting diodes centered on 414 and 424 nm wavelengths, which limit activation to the short-wavelength-sensitive (‘UV’) and medium-wavelength-sensitive (‘blue’) photoreceptors. The absolute irradiance spectra of stimuli was measured and modelled at both receptor and colour processing levels, and stimuli were then presented to the bees in a Y-maze at a large visual angle (26°), to ensure chromatic processing. Sixteen bees were trained over 50 trials, using either appetitive differential conditioning (N = 8), or aversive-appetitive differential conditioning (N = 8). In both cases the bees slowly learned to discriminate between the target and distractor with significantly better accuracy than would be expected by chance. Control experiments confirmed that changing stimulus intensity in transfers tests does not significantly affect bee performance, and it was possible to replicate previous findings that bees do not learn similar colour stimuli with absolute conditioning. Conclusion Our data indicate that honeybee colour vision can be tuned to relatively small spectral differences, independent of ‘green’ photoreceptor contrast and brightness cues. We thus show that colour vision is at least partly experience dependent, and behavioural plasticity plays an important role in how bees exploit colour information. PMID:23155394

  15. Differential effects of beta-adrenergic receptor blockade in the medial prefrontal cortex during aversive and incidental taste memory formation.

    PubMed

    Reyes-López, J; Nuñez-Jaramillo, L; Morán-Guel, E; Miranda, M I

    2010-08-11

    The medial prefrontal cortex (mPFC) is a brain area crucial for memory, attention, and decision making. Specifically, the noradrenergic system in this cortex is involved in aversive learning, as well as in the retrieval of these memories. Some evidence suggests that this area has an important role during taste memory, particularly during conditioned taste aversion (CTA), a model of aversive memory. Despite some previous evidence, there is scarce information about the role of adrenergic receptors in the mPFC during formation of aversive taste memory and appetitive/incidental taste memory. The goal of this research was to evaluate the role of mPFC beta-adrenergic receptors during CTA acquisition/consolidation or CTA retrieval, as well as during incidental taste memory formation using the model of latent inhibition of CTA. The results showed that infusions in the mPFC of the beta-adrenergic antagonist propranolol before CTA acquisition impaired both short- and long-term aversive taste memory formation, and also that propranolol infusions before the memory test impaired CTA retrieval. However, propranolol infusions before pre-exposure to the taste during the latent inhibition procedure had no effect on incidental taste memory acquisition or consolidation. These data indicate that beta-adrenergic receptors in the mPFC have different functions during taste memory formation: they have an important role during aversive taste association as well as during aversive retrieval but not during incidental taste memory formation. Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Developmental differences in aversive conditioning, extinction, and reinstatement: A study with children, adolescents, and adults.

    PubMed

    Waters, Allison M; Theresiana, Cindy; Neumann, David L; Craske, Michelle G

    2017-07-01

    This study investigated developmental differences in aversive conditioning, extinction, and reinstatement (i.e., the recovery of conditioned aversive associations following reexposure to the unconditioned stimulus [US] post-extinction). This study examined these mechanisms in children (M age =8.8years), adolescents (M age =16.1years), and adults (M age =32.3years) using differential aversive conditioning with a geometric shape conditional stimulus (CS+) paired with an aversive sound US and another shape (CS-) presented alone. Following an extinction phase in which both CSs were presented alone, half of the participants in each age group received three US exposures (reinstatement condition) and the other half did not (control condition), followed by all participants completing an extinction retest phase on the same day. Findings indicated (a) significant differences in generalizing aversive expectancies to safe stimuli during conditioning and extinction that persisted during retest in children relative to adults and adolescents, (b) significantly less positive CS reevaluations during extinction that persisted during retest in adolescents relative to adults and children, and (c) reinstatement of US expectancies to the CS+ relative to the CS- in all age groups. Results suggest important differences in stimulus safety learning in children and stimulus valence reevaluation in adolescents relative to adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The Small GTPase Rac1 Contributes to Extinction of Aversive Memories of Drug Withdrawal by Facilitating GABAA Receptor Endocytosis in the vmPFC.

    PubMed

    Wang, Weisheng; Ju, Yun-Yue; Zhou, Qi-Xin; Tang, Jian-Xin; Li, Meng; Zhang, Lei; Kang, Shuo; Chen, Zhong-Guo; Wang, Yu-Jun; Ji, Hui; Ding, Yu-Qiang; Xu, Lin; Liu, Jing-Gen

    2017-07-26

    Extinction of aversive memories has been a major concern in neuropsychiatric disorders, such as anxiety disorders and drug addiction. However, the mechanisms underlying extinction of aversive memories are not fully understood. Here, we report that extinction of conditioned place aversion (CPA) to naloxone-precipitated opiate withdrawal in male rats activates Rho GTPase Rac1 in the ventromedial prefrontal cortex (vmPFC) in a BDNF-dependent manner, which determines GABA A receptor (GABA A R) endocytosis via triggering synaptic translocation of activity-regulated cytoskeleton-associated protein (Arc) through facilitating actin polymerization. Active Rac1 is essential and sufficient for GABA A R endocytosis and CPA extinction. Knockdown of Rac1 expression within the vmPFC of rats using Rac1-shRNA suppressed GABA A R endocytosis and CPA extinction, whereas expression of a constitutively active form of Rac1 accelerated GABA A R endocytosis and CPA extinction. The crucial role of GABA A R endocytosis in the LTP induction and CPA extinction is evinced by the findings that blockade of GABA A R endocytosis by a dynamin function-blocking peptide (Myr-P4) abolishes LTP induction and CPA extinction. Thus, the present study provides first evidence that Rac1-dependent GABA A R endocytosis plays a crucial role in extinction of aversive memories and reveals the sequence of molecular events that contribute to learning experience modulation of synaptic GABA A R endocytosis. SIGNIFICANCE STATEMENT This study reveals that Rac1-dependent GABA A R endocytosis plays a crucial role in extinction of aversive memories associated with drug withdrawal and identifies Arc as a downstream effector of Rac1 regulations of synaptic plasticity as well as learning and memory, thereby suggesting therapeutic targets to promote extinction of the unwanted memories. Copyright © 2017 the authors 0270-6474/17/377096-15$15.00/0.

  18. Conditioned social dominance threat: observation of others' social dominance biases threat learning.

    PubMed

    Haaker, Jan; Molapour, Tanaz; Olsson, Andreas

    2016-10-01

    Social groups are organized along dominance hierarchies, which determine how we respond to threats posed by dominant and subordinate others. The persuasive impact of these dominance threats on mental and physical well-being has been well described but it is unknown how dominance rank of others bias our experience and learning in the first place. We introduce a model of conditioned social dominance threat in humans, where the presence of a dominant other is paired with an aversive event. Participants first learned about the dominance rank of others by observing their dyadic confrontations. During subsequent fear learning, the dominant and subordinate others were equally predictive of an aversive consequence (mild electric shock) to the participant. In three separate experiments, we show that participants' eye-blink startle responses and amygdala reactivity adaptively tracked dominance of others during observation of confrontation. Importantly, during fear learning dominant vs subordinate others elicited stronger and more persistent learned threat responses as measured by physiological arousal and amygdala activity. Our results characterize the neural basis of learning through observing conflicts between others, and how this affects subsequent learning through direct, personal experiences. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. Conditioned social dominance threat: observation of others’ social dominance biases threat learning

    PubMed Central

    Molapour, Tanaz; Olsson, Andreas

    2016-01-01

    Social groups are organized along dominance hierarchies, which determine how we respond to threats posed by dominant and subordinate others. The persuasive impact of these dominance threats on mental and physical well-being has been well described but it is unknown how dominance rank of others bias our experience and learning in the first place. We introduce a model of conditioned social dominance threat in humans, where the presence of a dominant other is paired with an aversive event. Participants first learned about the dominance rank of others by observing their dyadic confrontations. During subsequent fear learning, the dominant and subordinate others were equally predictive of an aversive consequence (mild electric shock) to the participant. In three separate experiments, we show that participants’ eye-blink startle responses and amygdala reactivity adaptively tracked dominance of others during observation of confrontation. Importantly, during fear learning dominant vs subordinate others elicited stronger and more persistent learned threat responses as measured by physiological arousal and amygdala activity. Our results characterize the neural basis of learning through observing conflicts between others, and how this affects subsequent learning through direct, personal experiences. PMID:27217107

  20. Lipopolysaccharide (LPS) induced sickness in adolescent female rats alters the acute-phase response and lithium chloride (LiCl)- induced impairment of conditioned place avoidance/aversion learning, following a homotypic LPS challenge in adulthood.

    PubMed

    Cloutier, Caylen J; Kavaliers, Martin; Ossenkopp, Klaus-Peter

    2018-10-01

    The multi-variable locomotor activity effects of LiCl treatment in female rats were examined in a conditioned place avoidance/aversion (CPA) paradigm. In addition, the sickness effects of an LPS injection (200 μg/kg), given during adolescents, on CPA learning in adulthood were examined, as were the effects of a homotypic LPS injection (200 μg/kg) just prior to CPA acquisition trials. Female rats were injected with LPS or saline during adolescents (6 weeks of age) and later pretreated with LPS again or saline in an automated two-chamber CPA paradigm with LiCl (95 mg/kg) treatments as the aversive toxin. Results showed that, while adolescent LPS treatment had no long-term effect on the establishment of CPA, it did interfere with the ability of a second LPS challenge in adulthood to impair CPA learning, an effect obtained in subjects pretreated with LPS in the CPA procedure in adulthood only. The results of this study demonstrate the importance of considering the adolescent stage of development when evaluating the effects of environmental challenges on adult behavior. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Neural correlates of appetitive-aversive interactions in Pavlovian fear conditioning.

    PubMed

    Nasser, Helen M; McNally, Gavan P

    2013-03-19

    We used Pavlovian counterconditioning in rats to identify the neural mechanisms for appetitive-aversive motivational interactions. In Stage I, rats were trained on conditioned stimulus (CS)-food (unconditioned stimulus [US]) pairings. In Stage II, this appetitive CS was transformed into a fear CS via pairings with footshock. The development of fear responses was retarded in rats that had received Stage I appetitive training. This counterconditioning was associated with increased levels of phosphorylated mitogen activated protein kinase immunoreactivity (pMAPK-IR) in several brain regions, including midline thalamus, rostral agranular insular cortex (RAIC), lateral amygdala, and nucleus accumbens core and shell, but decreased expression in the ventrolateral quadrant of the midbrain periaqueductal gray. These brain regions showing differential pMAPK-IR have previously been identified as part of the fear prediction error circuit. We then examined the causal role of RAIC MAPK in fear learning and showed that Stage II fear learning was prevented by RAIC infusions of the MEK inhibitor PD098059 (0.5 µg/hemisphere). Taken together, these results show that there are opponent interactions between the appetitive and aversive motivational systems during fear learning and that the transformation of a reward CS into a fear CS is linked to heightened activity in the fear prediction error circuit.

  2. Associations of emotional arousal, dissociation and symptom severity with operant conditioning in borderline personality disorder.

    PubMed

    Paret, Christian; Hoesterey, Steffen; Kleindienst, Nikolaus; Schmahl, Christian

    2016-10-30

    Those with borderline personality disorder (BPD) display altered evaluations regarding reward and punishment compared to others. The processing of rewards is basal for operant conditioning. However, studies addressing operant conditioning in BPD patients are rare. In the current study, an operant conditioning task combining learning acquisition and reversal was used. BPD patients and matched healthy controls (HCs) were exposed to aversive and neutral stimuli to assess the influence of emotion on learning. Picture content, dissociation, aversive tension and symptom severity were rated. Error rates were measured. Results showed no group interactions between aversive versus neutral scenes. The higher emotional arousal, dissociation and tension, the worse the acquisition, but not reversal, scores were for BPD patients. Scores from the Borderline Symptom List were associated with more errors in the reversal, but not the acquisition phase. The results are preliminary evidence for impaired acquisition learning due to increased emotional arousal, dissociation and tension in BPD patients. A failure to process punishment in the reversal phase was associated with symptom severity and may be related to neuropsychological dysfunctioning involving the ventromedial prefrontal cortex. Conclusions are limited due to the correlational study design and the small sample size. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Drug-induced conditioned place preference and aversion in mice.

    PubMed

    Cunningham, Christopher L; Gremel, Christina M; Groblewski, Peter A

    2006-01-01

    This protocol describes the equipment and methods used to establish conditioned place preference (CPP) or aversion (CPA). Place conditioning is a form of Pavlovian conditioning routinely used to measure the rewarding or aversive motivational effects of objects or experiences (e.g., abused drugs). Here, we present a place conditioning procedure that has been used extensively to study the motivational effects of ethanol and other abused drugs in mice. This protocol involves three phases: (i) habituation (or a pretest), (ii) conditioning of an association between the drug and a tactile or visual stimulus and (iii) a test that offers a choice between the drug-associated cue and a neutral cue. If the drug has motivational significance, mice will spend significantly more time (CPP) or less time (CPA) in proximity to the drug-associated cue. Potential problems in the design and interpretation of place conditioning studies are discussed. A typical experiment lasts 2 weeks.

  4. Using signals associated with safety in avoidance learning: computational model of sex differences

    PubMed Central

    Beck, Kevin D.; Pang, Kevin C.H.; Myers, Catherine E.

    2015-01-01

    Avoidance behavior involves learning responses that prevent upcoming aversive events; these responses typically extinguish when the aversive events stop materializing. Stimuli that signal safety from aversive events can paradoxically inhibit extinction of avoidance behavior. In animals, males and females process safety signals differently. These differences help explain why women are more likely to be diagnosed with an anxiety disorder and exhibit differences in symptom presentation and course compared to men. In the current study, we extend an existing model of strain differences in avoidance behavior to simulate sex differences in rats. The model successfully replicates data showing that the omission of a signal associated with a period of safety can facilitate extinction in females, but not males, and makes novel predictions that this effect should depend on the duration of the period, the duration of the signal itself, and its occurrence within that period. Non-reinforced responses during the safe period were also found to be important in the expression of these patterns. The model also allowed us to explore underlying mechanisms for the observed sex effects, such as whether safety signals serve as occasion setters for aversive events, to determine why removing them can facilitate extinction of avoidance. The simulation results argue against this account, and instead suggest the signal may serve as a conditioned reinforcer of avoidance behavior. PMID:26213650

  5. Preexposure to salty and sour taste enhances conditioned taste aversion to novel sucrose

    PubMed Central

    Flores, Veronica L.; Moran, Anan; Bernstein, Max

    2016-01-01

    Conditioned taste aversion (CTA) is an intensively studied single-trial learning paradigm whereby animals are trained to avoid a taste that has been paired with malaise. Many factors influence the strength of aversion learning; prominently studied among these is taste novelty—the fact that preexposure to the taste conditioned stimulus (CS) reduces its associability. The effect of exposure to tastes other than the CS has, in contrast, received little investigation. Here, we exposed rats to sodium chloride (N) and citric acid (C), either before or within a conditioning session involving novel sucrose (S). Presentation of this taste array within the conditioning session weakened the resultant S aversion, as expected. The opposite effect, however, was observed when exposure to the taste array was provided in sessions that preceded conditioning: such experience enhanced the eventual S aversion—a result that was robust to differences in CS delivery method and number of tastes presented in conditioning sessions. This “non-CS preexposure effect” scaled with the number of tastes in the exposure array (experience with more stimuli was more effective than experience with fewer) and with the amount of exposure sessions (three preexposure sessions were more effective than two). Together, our results provide evidence that exposure and experience with the realm of tastes changes an animal's future handling of even novel tastes. PMID:27084929

  6. [Extinction and Reconsolidation of Memory].

    PubMed

    Zuzina, A B; Balaban, P M

    2015-01-01

    Retrieval of memory followed by reconsolidation can strengthen a memory, while retrieval followed by extinction results in a decrease of memory performance due to weakening of existing memory or formation of a competing memory. In our study we analyzed the behavior and responses of identified neurons involved in the network underlying aversive learning in terrestrial snail Helix, and made an attempt to describe the conditions in which the retrieval of memory leads either to extinction or reconsolidation. In the network underlying the withdrawal behavior, sensory neurons, premotor interneurons, motor neurons, and modulatory for this network serotonergic neurons are identified and recordings from representatives of these groups were made before and after aversive learning. In the network underlying feeding behavior, the premotor modulatory serotonergic interneurons and motor neurons involved in motor program of feeding are identified. Analysis of changes in neural activity after aversive learning showed that modulatory neurons of feeding behavior do not demonstrate any changes (sometimes a decrease of responses to food was observed), while responses to food in withdrawal behavior premotor interneurons changed qualitatively, from under threshold EPSPs to spike discharges. Using a specific for serotonergic neurons neurotoxin 5,7-DiHT it was shown previously that the serotonergic system is necessary for the aversive learning, but is not necessary for maintenance and retrieval of this memory. These results suggest that the serotonergic neurons that are necessary as part of a reinforcement for developing the associative changes in the network may be not necessary for the retrieval of memory. The hypothesis presented in this review concerns the activity of the "reinforcement" serotonergic neurons that is suggested to be the gate condition for the choice between extinction/reconsolidation triggered by memory retrieval: if these serotonergic neurons do not respond during the retrieval due to adaptation, habituation, changes in environment, etc., then we will observe the extinction; while if these neurons respond to the CS during memory retrieval, we will observe the reconsolidation phenomenon.

  7. Brain Circuits of Methamphetamine Place Reinforcement Learning: The Role of the Hippocampus-VTA Loop.

    PubMed

    Keleta, Yonas B; Martinez, Joe L

    2012-03-01

    The reinforcing effects of addictive drugs including methamphetamine (METH) involve the midbrain ventral tegmental area (VTA). VTA is primary source of dopamine (DA) to the nucleus accumbens (NAc) and the ventral hippocampus (VHC). These three brain regions are functionally connected through the hippocampal-VTA loop that includes two main neural pathways: the bottom-up pathway and the top-down pathway. In this paper, we take the view that addiction is a learning process. Therefore, we tested the involvement of the hippocampus in reinforcement learning by studying conditioned place preference (CPP) learning by sequentially conditioning each of the three nuclei in either the bottom-up order of conditioning; VTA, then VHC, finally NAc, or the top-down order; VHC, then VTA, finally NAc. Following habituation, the rats underwent experimental modules consisting of two conditioning trials each followed by immediate testing (test 1 and test 2) and two additional tests 24 h (test 3) and/or 1 week following conditioning (test 4). The module was repeated three times for each nucleus. The results showed that METH, but not Ringer's, produced positive CPP following conditioning each brain area in the bottom-up order. In the top-down order, METH, but not Ringer's, produced either an aversive CPP or no learning effect following conditioning each nucleus of interest. In addition, METH place aversion was antagonized by coadministration of the N-methyl-d-aspartate (NMDA) receptor antagonist MK801, suggesting that the aversion learning was an NMDA receptor activation-dependent process. We conclude that the hippocampus is a critical structure in the reward circuit and hence suggest that the development of target-specific therapeutics for the control of addiction emphasizes on the hippocampus-VTA top-down connection.

  8. Food for song: expression of c-Fos and ZENK in the zebra finch song nuclei during food aversion learning.

    PubMed

    Tokarev, Kirill; Tiunova, Anna; Scharff, Constance; Anokhin, Konstantin

    2011-01-01

    Specialized neural pathways, the song system, are required for acquiring, producing, and perceiving learned avian vocalizations. Birds that do not learn to produce their vocalizations lack telencephalic song system components. It is not known whether the song system forebrain regions are exclusively evolved for song or whether they also process information not related to song that might reflect their 'evolutionary history'. To address this question we monitored the induction of two immediate-early genes (IEGs) c-Fos and ZENK in various regions of the song system in zebra finches (Taeniopygia guttata) in response to an aversive food learning paradigm; this involves the association of a food item with a noxious stimulus that affects the oropharyngeal-esophageal cavity and tongue, causing subsequent avoidance of that food item. The motor response results in beak and head movements but not vocalizations. IEGs have been extensively used to map neuro-molecular correlates of song motor production and auditory processing. As previously reported, neurons in two pallial vocal motor regions, HVC and RA, expressed IEGs after singing. Surprisingly, c-Fos was induced equivalently also after food aversion learning in the absence of singing. The density of c-Fos positive neurons was significantly higher than that of birds in control conditions. This was not the case in two other pallial song nuclei important for vocal plasticity, LMAN and Area X, although singing did induce IEGs in these structures, as reported previously. Our results are consistent with the possibility that some of the song nuclei may participate in non-vocal learning and the populations of neurons involved in the two tasks show partial overlap. These findings underscore the previously advanced notion that the specialized forebrain pre-motor nuclei controlling song evolved from circuits involved in behaviors related to feeding.

  9. Emotional reactivity and cognitive performance in aversively motivated tasks: a comparison between four rat strains

    PubMed Central

    2009-01-01

    Background Cognitive function might be affected by the subjects' emotional reactivity. We assessed whether behavior in different tests of emotional reactivity is correlated with performance in aversively motivated learning tasks, using four strains of rats generally considered to have a different emotional reactivity. Methods The performance of male Brown Norway, Lewis, Fischer 344, and Wistar Kyoto rats in open field (OF), elevated plus-maze (EPM), and circular light-dark preference box (cLDB) tasks, which are believed to provide measures of emotional reactivity, was evaluated. Spatial working and reference memory were assessed in two aversively motivated learning and memory tasks: the standard and the "repeated acquisition" versions of the Morris water maze escape task, respectively. All rats were also tested in a passive avoidance task. At the end of the study, levels of serotonin (5-HT) and 5-hydroxyindoleacetic acid, and 5-HT turnover in the hippocampus and frontal cortex were determined. Results Strain differences showed a complex pattern across behavioral tests and serotonergic measures. Fischer 344 rats had the poorest performance in both versions of the Morris water escape task, whereas Brown Norway rats performed these tasks very well but the passive avoidance task poorly. Neither correlation analysis nor principal component analysis provided convincing support for the notion that OF, EPM, and cLDB tasks measure the same underlying trait. Conclusions Our findings do not support the hypothesis that the level of emotional reactivity modulates cognitive performance in aversively motivated tasks. Concepts such as "emotional reactivity" and "learning and memory" cannot adequately be tapped with only one behavioral test. Our results emphasize the need for multiple testing. PMID:20003525

  10. Comparative effects of pulmonary and parenteral Δ⁹-tetrahydrocannabinol exposure on extinction of opiate-induced conditioned aversion in rats.

    PubMed

    Manwell, Laurie A; Mallet, Paul E

    2015-05-01

    Evidence suggesting that the endogenous cannabinoid (eCB) system can be manipulated to facilitate or impair extinction of learned behaviours has important consequences for opiate withdrawal and abstinence. We demonstrated that the fatty acid amide hydrolase (FAAH) inhibitor URB597, which increases eCB levels, facilitates extinction of a naloxone-precipitated morphine withdrawal-induced conditioned place aversion (CPA). The potential of the exogenous CB1 ligand, Δ(9)-tetrahydrocannabinol (Δ(9)-THC), to facilitate extinction of this CPA was tested. Effects of both pulmonary and parenteral Δ(9)-THC exposure were evaluated using comparable doses previously determined. Rats trained to associate a naloxone-precipitated morphine withdrawal with a floor cue were administered Δ(9)-THC-pulmonary (1, 5, 10 mg vapour inhalation) or parenteral (0.5, 1.0, 1.5 mg/kg intraperitoneal injection)-prior to each of 20 to 28 extinction/testing trials. Vapourized Δ(9)-THC facilitated extinction of the CPA in a dose- and time-dependent manner: 5 and 10 mg facilitated extinction compared to vehicle and 1 mg Δ(9)-THC. Injected Δ(9)-THC significantly impaired extinction only for the 1.0-mg/kg dose: it prolonged the CPA fourfold longer than the vehicle and 0.5- and 1.5-mg/kg doses. These data suggest that both dose and route of Δ(9)-THC administration have important consequences for its pharmacokinetic and behavioural effects; specifically, pulmonary exposure at higher doses facilitates, whereas pulmonary and parenteral exposure at lower doses impairs, rates of extinction learning for CPA. Pulmonary-administered Δ(9)-THC may prove beneficial for potentiation of extinction learning for aversive memories, such as those supporting drug-craving/seeking in opiate withdrawal syndrome, and other causes of conditioned aversions, such as illness and stress.

  11. Taste-dependent sociophobia: when food and company do not mix.

    PubMed

    Guitton, Matthieu J; Klin, Yael; Dudai, Yadin

    2008-08-22

    Using a combination of the paradigm of conditioned taste aversion (CTA) and of the paradigm of social interactions, we report here that in the rat, eating while anxious may result in long-term alterations in social behavior. In the conventional CTA, the subject learns to associate a tastant (the conditioned stimulus, CS) with delayed toxicosis (an unconditioned stimulus, UCS) to yield taste aversion (the conditioned response, CR). However, the association of taste with delayed negative internal states that could generate CRs that are different from taste aversion should not be neglected. Such associations may contribute to the ontogenesis, reinforcement and symptoms of some types of taste- and food-related disorders. We have recently reported that a delayed anxiety-like state, induced by the anxiogenic drug meta-chlorophenylpiperazine (mCPP), can specifically associate with taste to produce CTA. We now show that a similar protocol results in a marked lingering impairment in social interactions in response to the conditioned taste. This is hence a learned situation in which food and company do not mix well.

  12. Ontogeny of Odor-LiCl vs. Odor-Shock Learning: Similar Behaviors but Divergent Ages of Functional Amygdala Emergence

    ERIC Educational Resources Information Center

    Raineki, Charlis; Shionoya, Kiseko; Sander, Kristin; Sullivan, Regina M.

    2009-01-01

    Both odor-preference and odor-aversion learning occur in perinatal pups before the maturation of brain structures that support this learning in adults. To characterize the development of odor learning, we compared three learning paradigms: (1) odor-LiCl (0.3M; 1% body weight, ip) and (2) odor-1.2-mA shock (hindlimb, 1sec)--both of which…

  13. Serotoninergic regulation of emotional and behavioural control processes.

    PubMed

    Cools, Roshan; Roberts, Angela C; Robbins, Trevor W

    2008-01-01

    5-Hydroxytryptamine (5-HT, serotonin) has long been implicated in a wide variety of emotional, cognitive and behavioural control processes. However, its precise contribution is still not well understood. Depletion of 5-HT enhances behavioural and brain responsiveness to punishment or other aversive signals, while disinhibiting previously rewarded but now punished behaviours. Findings suggest that 5-HT modulates the impact of punishment-related signals on learning and emotion (aversion), but also promotes response inhibition. Exaggerated aversive processing and deficient response inhibition could underlie distinct symptoms of a range of affective disorders, namely stress- or threat-vulnerability and compulsive behaviour, respectively. We review evidence from studies with human volunteers and experimental animals that begins to elucidate the neurobiological systems underlying these different effects.

  14. Periaqueductal gray glutamatergic, cannabinoid and vanilloid receptor interplay in defensive behavior and aversive memory formation.

    PubMed

    Back, Franklin P; Carobrez, Antonio P

    2018-06-01

    Stimulation of the midbrain periaqueductal gray matter (PAG) in humans elicits sensations of fear and impending terror, and mediates predator defensive responses in rodents. In rats, pharmacological stimulation of the dorsolateral portion of the PAG (dlPAG) with N-Methyl-d-Aspartate (NMDA) induces aversive conditioning that acts as an unconditioned stimulus (US). In the present work, we investigated the interplay between the vanilloid TRPV1 and cannabinoid CB1 receptors in the NMDA-dlPAG defensive response and in subsequent aversive learning. Rats were subjected to dlPAG NMDA infusion in an olfactory conditioned stimulus (CS) task allowing the evaluation of immediate and long-term defensive behavioral responses during CS presentation. The results indicated that an intermediate dose of NMDA (50 pmol) induced both immediate and long-term effects. A sub-effective dose of NMDA (25 pmol) was potentiated by the TRPV1 receptor agonist capsaicin (CAP, 1 nmol) and the CB1 receptor antagonist, AM251 (200 pmol). CAP (10 nmol) or the combination of CAP (1 nmol) and AM251 (200 pmol) induced long-term effects without increasing immediate defensive responses. The glutamate release inhibitor riluzole (2 or 4 nmol) and the AMPA/kainate receptor antagonist DNQX (2 or 4 nmol) potentiated the immediate effects but blocked the long-term effects. The results showed that immediate defensive responses rely on NMDA receptors, and aversive learning on the fine-tuning of TRPV1, CB1, metabotropic glutamate and AMPA receptors located in pre- and postsynaptic membranes. In conclusion, the activity of the dlPAG determines core affective aspects of aversive memory formation controlled by local TRPV1/CB1 balance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Epilepsy as an Analogue of Learned Helplessness.

    ERIC Educational Resources Information Center

    DeVellis, Robert F.; And Others

    The occurrence of unpredictable and often unavoidable aversive seizures in epilepsy bears a striking resemblance to the conditions known to induce learned helplessness. Additionally, depression and other characteristics associated with helplessness seem to occur more frequently among persons with epilepsy. Data from a national survey of…

  16. Plasticity in the Interoceptive System.

    PubMed

    Torrealba, Fernando; Madrid, Carlos; Contreras, Marco; Gómez, Karina

    2017-01-01

    The most outstanding manifestations of the plastic capacities of brain circuits and their neuronal and synaptic components in the adult CNS are learning and memory. A reduced number of basic plastic mechanisms underlie learning capacities at many levels and regions of the brain. The interoceptive system is no exception, and some of the most studied behavioral changes that involve learning and memory engage the interoceptive pathways at many levels of their anatomical and functional organization.In this chapter, we will review four examples of learning, mostly in rats, where the interoceptive system has a role. In the case of conditioned taste aversion, the interoceptive system is of outstanding importance. In drug addiction, the role of the insular cortex - the highest level of the interoceptive system- is unusual and complex, as many forebrain regions are engaged by the process of addiction. In the third example, neophobia, the gustatory region of the insular cortex plays a major role. Finally, the role of different areas of the insular cortex in different processes of aversive memory, particularly fear conditioning, will be reviewed.

  17. Place preference and vocal learning rely on distinct reinforcers in songbirds.

    PubMed

    Murdoch, Don; Chen, Ruidong; Goldberg, Jesse H

    2018-04-30

    In reinforcement learning (RL) agents are typically tasked with maximizing a single objective function such as reward. But it remains poorly understood how agents might pursue distinct objectives at once. In machines, multiobjective RL can be achieved by dividing a single agent into multiple sub-agents, each of which is shaped by agent-specific reinforcement, but it remains unknown if animals adopt this strategy. Here we use songbirds to test if navigation and singing, two behaviors with distinct objectives, can be differentially reinforced. We demonstrate that strobe flashes aversively condition place preference but not song syllables. Brief noise bursts aversively condition song syllables but positively reinforce place preference. Thus distinct behavior-generating systems, or agencies, within a single animal can be shaped by correspondingly distinct reinforcement signals. Our findings suggest that spatially segregated vocal circuits can solve a credit assignment problem associated with multiobjective learning.

  18. Do general practitioners' risk-taking propensities and learning styles influence their continuing medical education preferences?

    PubMed

    Robinson, Geoffrey

    2002-01-01

    US studies have shown that a clinician's risk-taking propensity significantly predicts clinical behaviour. Other US studies examining relationships between family practice doctors' preferences for CME and their Kolb learning style have described conflicting findings. The aim of the present study was to investigate GPs' learning styles, risk-taking propensities and CME preferences, and to explore links between them. A descriptive confidential cross-sectional postal questionnaire survey of the 304 general practitioner principals within Portsmouth and South East Hampshire Health Authority was conducted. Two hundred and seventy-four GPs returned questionnaires, a response rate of 90.1%. The Kolb learning style types were assimilators 43.8% (predominant learning abilities watching and thinking), divergers 21.1% (feeling and watching), convergers 18.3% (doing and thinking), and accommodators 16.8% (doing and feeling). The Pearson risk-taking propensities were 65.8% risk neutral, 19.4% risk seeking and 14.8% risk averse. Risk-seeking GPs were significantly more likely to be accommodators or convergers than divergers or assimilators (p = 0.006). Majorities of 54.9% stated that the present PGEA system works well, 85% welcomed feedback from their peers, and 76.8% stated that learning should be an activity for all the practice team. Further majorities would welcome help to decide their learning needs (63.8%) and are looking to judge CME effectiveness by changes in GP performance or patient care (54.8%). Further significant correlations and cross-tabulations were found between learning style and risk-taking and CME attitudes, experiences and preferences. It is concluded that risk seekers and accommodators (doing and feeling) prefer feedback, interaction and practical hands-on learning, and assimilators (watching and thinking) and the risk averse tend towards lectures, theoretical learning formats and less interactive activities. Sharing feelings in groups may be difficult for the risk averse and assimilators. The success of a combined educational strategy will depend on an inclusive philosophy, both recognizing and engaging the wide range of differences in learning style and risk taking for all the individuals who make up learning teams.

  19. Domestic pigs' (Sus scrofa domestica) use of direct and indirect visual and auditory cues in an object choice task.

    PubMed

    Nawroth, Christian; von Borell, Eberhard

    2015-05-01

    Recently, foraging strategies have been linked to the ability to use indirect visual information. More selective feeders should express a higher aversion against losses compared to non-selective feeders and should therefore be more prone to avoid empty food locations. To extend these findings, in this study, we present a series of studies investigating the use of direct and indirect visual and auditory information by an omnivorous but selective feeder-the domestic pig. Subjects had to choose between two buckets, with only one containing a reward. Before making a choice, the subjects in Experiment 1 (N = 8) received full information regarding both the baited and non-baited location, either in a visual or auditory domain. In this experiment, the subjects were able to use visual but not auditory cues to infer the location of the reward spontaneously. Additionally, four individuals learned to use auditory cues after a period of training. In Experiment 2 (N = 8), the pigs were given different amounts of visual information about the content of the buckets-lifting either both of the buckets (full information), the baited bucket (direct information), the empty bucket (indirect information) or no bucket at all (no information). The subjects as a group were able to use direct and indirect visual cues. However, over the course of the experiment, the performance dropped to chance level when indirect information was provided. A final experiment (N = 3) provided preliminary results for pigs' use of indirect auditory information to infer the location of a reward. We conclude that pigs at a very young age are able to make decisions based on indirect information in the visual domain, whereas their performance in the use of indirect auditory information warrants further investigation.

  20. p38 МАРK is Involved in Regulation of Epigenetic Mechanisms of Food Aversion Learning.

    PubMed

    Grinkevich, L N

    2017-08-01

    Consolidation of the conditioned food aversion response in Helix lucorum was associated with induction of histone H3 acetylation and methylation. We hypothesized that not only activatory, but also inhibitory p38 MARK-mediated pathways are involved in these processes. To assess the contribution of p38 MAPK to epigenetic processes, we studied the effect p38 MAPK inhibitor SB203580 on acetylation of histone H3 during training of Helix lucorum. Administration of SB203580 decreased learning-induced enhancement of histone H3 acetylation in the CNS of Helix lucorum, which was accompanied by long-term memory impairment. Thus, p38 MAPK is involved in the regulation of epigenetic mechanisms of long-term memory.

  1. Social environment influences performance in a cognitive task in natural variants of the foraging gene.

    PubMed

    Kohn, Nancy R; Reaume, Christopher J; Moreno, Celine; Burns, James G; Sokolowski, Marla B; Mery, Frederic

    2013-01-01

    In Drosophila melanogaster, natural genetic variation in the foraging gene affects the foraging behaviour of larval and adult flies, larval reward learning, adult visual learning, and adult aversive training tasks. Sitters (for(s)) are more sedentary and aggregate within food patches whereas rovers (for(R)) have greater movement within and between food patches, suggesting that these natural variants are likely to experience different social environments. We hypothesized that social context would differentially influence rover and sitter behaviour in a cognitive task. We measured adult rover and sitter performance in a classical olfactory training test in groups and alone. All flies were reared in groups, but fly training and testing were done alone and in groups. Sitters trained and tested in a group had significantly higher learning performances compared to sitters trained and tested alone. Rovers performed similarly when trained and tested alone and in a group. In other words, rovers learning ability is independent of group training and testing. This suggests that sitters may be more sensitive to the social context than rovers. These differences in learning performance can be altered by pharmacological manipulations of PKG activity levels, the foraging (for) gene's gene product. Learning and memory is also affected by the type of social interaction (being in a group of the same strain or in a group of a different strain) in rovers, but not in sitters. These results suggest that for mediates social learning and memory in D. melanogaster.

  2. Ambiguity Aversion in Rhesus Macaques

    PubMed Central

    Hayden, Benjamin Y.; Heilbronner, Sarah R.; Platt, Michael L.

    2010-01-01

    People generally prefer risky options, which have fully specified outcome probabilities, to ambiguous options, which have unspecified probabilities. This preference, formalized in economics, is strong enough that people will reliably prefer a risky option to an ambiguous option with a greater expected value. Explanations for ambiguity aversion often invoke uniquely human faculties like language, self-justification, or a desire to avoid public embarrassment. Challenging these ideas, here we demonstrate that a preference for unambiguous options is shared with rhesus macaques. We trained four monkeys to choose between pairs of options that both offered explicitly cued probabilities of large and small juice outcomes. We then introduced occasional trials where one of the options was obscured and examined their resulting preferences; we ran humans in a parallel experiment on a nearly identical task. We found that monkeys reliably preferred risky options to ambiguous ones, even when this bias was costly, closely matching the behavior of humans in the analogous task. Notably, ambiguity aversion varied parametrically with the extent of ambiguity. As expected, ambiguity aversion gradually declined as monkeys learned the underlying probability distribution of rewards. These data indicate that ambiguity aversion reflects fundamental cognitive biases shared with other animals rather than uniquely human factors guiding decisions. PMID:20922060

  3. Proximal antecedents and correlates of adopted error approach: a self-regulatory perspective.

    PubMed

    Van Dyck, Cathy; Van Hooft, Edwin; De Gilder, Dick; Liesveld, Lillian

    2010-01-01

    The current study aims to further investigate earlier established advantages of an error mastery approach over an error aversion approach. The two main purposes of the study relate to (1) self-regulatory traits (i.e., goal orientation and action-state orientation) that may predict which error approach (mastery or aversion) is adopted, and (2) proximal, psychological processes (i.e., self-focused attention and failure attribution) that relate to adopted error approach. In the current study participants' goal orientation and action-state orientation were assessed, after which they worked on an error-prone task. Results show that learning goal orientation related to error mastery, while state orientation related to error aversion. Under a mastery approach, error occurrence did not result in cognitive resources "wasted" on self-consciousness. Rather, attention went to internal-unstable, thus controllable, improvement oriented causes of error. Participants that had adopted an aversion approach, in contrast, experienced heightened self-consciousness and attributed failure to internal-stable or external causes. These results imply that when working on an error-prone task, people should be stimulated to take on a mastery rather than an aversion approach towards errors.

  4. Innate and Conditioned Responses to Chemosensory and Visual Cues in Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae), Vector of Huanglongbing Pathogens

    PubMed Central

    Patt, Joseph M.; Stockton, Dara; Meikle, William G.; Sétamou, Mamoudou; Mafra-Neto, Agenor; Adamczyk, John J.

    2014-01-01

    Asian citrus psyllid (Diaphorina citri) transmits Huanglongbing, a devastating disease that threatens citrus trees worldwide. A better understanding of the psyllid’s host-plant selection process may lead to the development of more efficient means of monitoring it and predicting its movements. Since behavioral adaptations, such as associative learning, may facilitate recognition of suitable host-plants, we examined whether adult D. citri could be conditioned to visual and chemosensory stimuli from host and non-host-plant sources. Response was measured as the frequency of salivary sheaths, the residue of psyllid probing activity, in a line of emulsified wax on the surface of a test arena. The psyllids displayed both appetitive and aversive conditioning to two different chemosensory stimuli. They could also be conditioned to recognize a blue-colored probing substrate and their response to neutral visual cues was enhanced by chemosensory stimuli. Conditioned psyllids were sensitive to the proportion of chemosensory components present in binary mixtures. Naïve psyllids displayed strong to moderate innate biases to several of the test compounds. While innate responses are probably the psyllid’s primary behavioral mechanism for selecting host-plants, conditioning may enhance its ability to select host-plants during seasonal transitions and dispersal. PMID:26462949

  5. Not everything is black and white: color and behavioral variation reveal a continuum between cryptic and aposematic strategies in a polymorphic poison frog.

    PubMed

    Willink, Beatriz; Brenes-Mora, Esteban; Bolaños, Federico; Pröhl, Heike

    2013-10-01

    Aposematism and crypsis are often viewed as two extremes of a continuum of visual conspicuousness to predators. Theory predicts that behavioral and coloration conspicuousness should vary in tandem along the conspicuousness spectrum for antipredator strategies to be effective. Here we used visual modeling of contrast and behavioral observations to examine the conspicuousness of four populations of the granular poison frog, Oophaga granulifera, which exhibits almost continuous variation in dorsal color. The patterns of geographic variation in color, visual contrast, and behavior support a gradient of overall conspicuousness along the distribution of O. granulifera. Red and green populations, at the extremes of the color distribution, differ in all elements of color, contrast, and behavior, strongly reflecting aposematic and cryptic strategies. However, there is no smooth cline in any elements of behavior or coloration between the two extremes. Instead populations of intermediate colors attain intermediate conspicuousness by displaying different combinations of aposematic and cryptic traits. We argue that coloration divergence among populations may be linked to the evolution of a gradient of strategies to balance the costs of detection by predators and the benefits of learned aversion. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  6. An autism-associated serotonin transporter variant disrupts multisensory processing.

    PubMed

    Siemann, J K; Muller, C L; Forsberg, C G; Blakely, R D; Veenstra-VanderWeele, J; Wallace, M T

    2017-03-21

    Altered sensory processing is observed in many children with autism spectrum disorder (ASD), with growing evidence that these impairments extend to the integration of information across the different senses (that is, multisensory function). The serotonin system has an important role in sensory development and function, and alterations of serotonergic signaling have been suggested to have a role in ASD. A gain-of-function coding variant in the serotonin transporter (SERT) associates with sensory aversion in humans, and when expressed in mice produces traits associated with ASD, including disruptions in social and communicative function and repetitive behaviors. The current study set out to test whether these mice also exhibit changes in multisensory function when compared with wild-type (WT) animals on the same genetic background. Mice were trained to respond to auditory and visual stimuli independently before being tested under visual, auditory and paired audiovisual (multisensory) conditions. WT mice exhibited significant gains in response accuracy under audiovisual conditions. In contrast, although the SERT mutant animals learned the auditory and visual tasks comparably to WT littermates, they failed to show behavioral gains under multisensory conditions. We believe these results provide the first behavioral evidence of multisensory deficits in a genetic mouse model related to ASD and implicate the serotonin system in multisensory processing and in the multisensory changes seen in ASD.

  7. Innate and Conditioned Responses to Chemosensory and Visual Cues in Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae), Vector of Huanglongbing Pathogens.

    PubMed

    Patt, Joseph M; Stockton, Dara; Meikle, William G; Sétamou, Mamoudou; Mafra-Neto, Agenor; Adamczyk, John J

    2014-11-19

    Asian citrus psyllid (Diaphorina citri) transmits Huanglongbing, a devastating disease that threatens citrus trees worldwide. A better understanding of the psyllid's host-plant selection process may lead to the development of more efficient means of monitoring it and predicting its movements. Since behavioral adaptations, such as associative learning, may facilitate recognition of suitable host-plants, we examined whether adult D. citri could be conditioned to visual and chemosensory stimuli from host and non-host-plant sources. Response was measured as the frequency of salivary sheaths, the residue of psyllid probing activity, in a line of emulsified wax on the surface of a test arena. The psyllids displayed both appetitive and aversive conditioning to two different chemosensory stimuli. They could also be conditioned to recognize a blue-colored probing substrate and their response to neutral visual cues was enhanced by chemosensory stimuli. Conditioned psyllids were sensitive to the proportion of chemosensory components present in binary mixtures. Naïve psyllids displayed strong to moderate innate biases to several of the test compounds. While innate responses are probably the psyllid's primary behavioral mechanism for selecting host-plants, conditioning may enhance its ability to select host-plants during seasonal transitions and dispersal.

  8. D1 Receptor Activation in the Mushroom Bodies Rescues Sleep Loss Induced Learning Impairments in Drosophila

    PubMed Central

    Seugnet, Laurent; Suzuki, Yasuko; Vine, Lucy; Gottschalk, Laura; Shaw, Paul J

    2008-01-01

    Background Extended wakefulness disrupts acquisition of short term memories in mammals. However, the underlying molecular mechanisms triggered by extended waking and restored by sleep are unknown. Moreover, the neuronal circuits that depend on sleep for optimal learning remain unidentified. Results Learning was evaluated using Aversive Phototaxic Suppression (APS). In this task, flies learn to avoid light that is paired with an aversive stimulus (quinine /humidity). We demonstrate extensive homology in sleep deprivation induced learning impairment between flies and humans. Both 6 h and 12 h of sleep deprivation are sufficient to impair learning in Canton-S (Cs) flies. Moreover, learning is impaired at the end of the normal waking-day in direct correlation with time spent awake. Mechanistic studies indicate that this task requires intact mushroom bodies (MBs) and requires the Dopamine D1-like receptor (dDA1). Importantly, sleep deprivation induced learning impairments could be rescued by targeted gene expression of the dDA1 receptor to the MBs. Conclusion These data provide direct evidence that extended wakefulness disrupts learning in Drosophila. These results demonstrate that it is possible to prevent the effects of sleep deprivation by targeting a single neuronal structure and identify cellular and molecular targets adversely affected by extended waking in a genetically tractable model organism. PMID:18674913

  9. Mechanisms of Radiation-Induced Conditioned Taste Aversion Learning

    DTIC Science & Technology

    1986-01-01

    to Walter A. Hunt. 86 4 21 144 . J Jr -.W U *’ = 7 . 7 .: M: W. ,WLW;i , .-, -’ .’P. %k T .- - ’ .: ’W ; .a --,.-" -. t .:-. , 56 RABIN AND HUNT can...8217. 7m. U RADIATION-INDUCED TASTE AVERSIONS 57 induced CTA 11021. Alternatively, when the antihistamine is [ 21 . A radiation-induced CTA can be...in rats. Pharmmad psychioactive drugs. J (omp Phvsiod Pvchld .;’: 21 -26. 1972. Biochem Behav 17: 305-311. 1982. 4. Berger. B. D.. C. D. Wise and L

  10. Development of an aversive Pavlovian-to-instrumental transfer task in rat

    PubMed Central

    Campese, Vincent; McCue, Margaret; Lázaro-Muñoz, Gabriel; LeDoux, Joseph E.; Cain, Christopher K.

    2013-01-01

    Pavlovian-to-instrumental transfer (PIT) is an effect whereby a classically conditioned stimulus (CS) enhances ongoing instrumental responding. PIT has been extensively studied with appetitive conditioning but barely at all with aversive conditioning. Although it's been argued that conditioned suppression is a form of aversive PIT, this effect is fundamentally different from appetitive PIT because the CS suppresses, instead of facilitates, responding. Five experiments investigated the importance of a variety of factors on aversive PIT in a rodent Sidman avoidance paradigm in which ongoing shuttling behavior (unsignaled active avoidance or USAA) was facilitated by an aversive CS. Experiment 1 demonstrated a basic PIT effect. Experiment 2 found that a moderate amount of USAA extinction produces the strongest PIT with shuttling rates best at around 2 responses per minute prior to the CS. Experiment 3 tested a protocol in which the USAA behavior was required to reach the 2-response per minute mark in order to trigger the CS presentation and found that this produced robust and reliable PIT. Experiment 4 found that the Pavlovian conditioning US intensity was not a major determinant of PIT strength. Experiment 5 demonstrated that if the CS and US were not explicitly paired during Pavlovian conditioning, PIT did not occur, showing that CS-US learning is required. Together, these studies demonstrate a robust, reliable and stable aversive PIT effect that is amenable to analysis of neural circuitry. PMID:24324417

  11. Aversive disinhibition of behavior and striatal signaling in social avoidance.

    PubMed

    Ly, Verena; Cools, Roshan; Roelofs, Karin

    2014-10-01

    Social avoidance is a major factor contributing to the development and maintenance of anxiety and depressive symptoms. Converging evidence suggests that social avoidance is associated with abnormal aversive processing and hyperactive amygdala signaling. However, what are the consequences of such abnormal aversive processing for action and for the neural mechanisms implementing action is unclear. Existing literature is conflicting, pointing at either enhanced or reduced action inhibition. We investigated the interaction between aversion and action in social avoidance by comparing the effects of aversive vs appetitive faces on a go/no-go task and associated striatal signals in 42 high and low socially avoidant individuals. We combined fMRI with a novel probabilistic learning task, in which emotional valence (angry and happy faces) and optimal response (go- and no-go-responses) were manipulated independently. High compared with low socially avoidant individuals showed reduced behavioral inhibition (proportion no-go-responses) for angry relative to happy faces. This behavioral disinhibition correlated with greater striatal signal during no-go-responses for angry relative to happy faces. The results suggest that social avoidant coping style is accompanied by disinhibition of action and striatal signal in the context of social threat. The findings concur with recent theorizing about aversive disinhibition and affective disorders. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Odor Preference Learning and Memory Modify GluA1 Phosphorylation and GluA1 Distribution in the Neonate Rat Olfactory Bulb: Testing the AMPA Receptor Hypothesis in an Appetitive Learning Model

    ERIC Educational Resources Information Center

    Cui, Wen; Darby-King, Andrea; Grimes, Matthew T.; Howland, John G.; Wang, Yu Tian; McLean, John H.; Harley, Carolyn W.

    2011-01-01

    An increase in synaptic AMPA receptors is hypothesized to mediate learning and memory. AMPA receptor increases have been reported in aversive learning models, although it is not clear if they are seen with memory maintenance. Here we examine AMPA receptor changes in a cAMP/PKA/CREB-dependent appetitive learning model: odor preference learning in…

  13. Adaptive Learning and Risk Taking

    ERIC Educational Resources Information Center

    Denrell, Jerker

    2007-01-01

    Humans and animals learn from experience by reducing the probability of sampling alternatives with poor past outcomes. Using simulations, J. G. March (1996) illustrated how such adaptive sampling could lead to risk-averse as well as risk-seeking behavior. In this article, the author develops a formal theory of how adaptive sampling influences risk…

  14. Prepared Stimuli Enhance Aversive Learning without Weakening the Impact of Verbal Instructions

    ERIC Educational Resources Information Center

    Atlas, Lauren Y.; Phelps, Elizabeth A.

    2018-01-01

    Fear-relevant stimuli such as snakes and spiders are thought to capture attention due to evolutionary significance. Classical conditioning experiments indicate that these stimuli accelerate learning, while instructed extinction experiments suggest they may be less responsive to instructions. We manipulated stimulus type during instructed aversive…

  15. Leadership for Learning: An Action Theory of School Change.

    ERIC Educational Resources Information Center

    Wagner, Tony

    2001-01-01

    Common factors contributing to teachers' resistance include risk aversion, craft expertise, and autonomy and isolation. Leaders' problem is to create ownership, not buy-in. Principals cannot make change alone or by edict, but must nurture engagement and commitment and motivate groups to learn and solve problems cooperatively. (MLH)

  16. Where There is Smoke There is Fear-Impaired Contextual Inhibition of Conditioned Fear in Smokers.

    PubMed

    Haaker, Jan; Lonsdorf, Tina B; Schümann, Dirk; Bunzeck, Nico; Peters, Jan; Sommer, Tobias; Kalisch, Raffael

    2017-07-01

    The odds-ratio of smoking is elevated in populations with neuropsychiatric diseases, in particular in the highly prevalent diagnoses of post-traumatic stress and anxiety disorders. Yet, the association between smoking and a key dimensional phenotype of these disorders-maladaptive deficits in fear learning and fear inhibition-is unclear. We therefore investigated acquisition and memory of fear and fear inhibition in healthy smoking and non-smoking participants (N=349, 22% smokers). We employed a well validated paradigm of context-dependent fear and safety learning (day 1) including a memory retrieval on day 2. During fear learning, a geometrical shape was associated with an aversive electrical stimulation (classical fear conditioning, in danger context) and fear responses were extinguished within another context (extinction learning, in safe context). On day 2, the conditioned stimuli were presented again in both contexts, without any aversive stimulation. Autonomic physiological measurements of skin conductance responses as well as subjective evaluations of fear and expectancy of the aversive stimulation were acquired. We found that impairment of fear inhibition (extinction) in the safe context during learning (day 1) was associated with the amount of pack-years in smokers. During retrieval of fear memories (day 2), smokers showed an impairment of contextual (safety context-related) fear inhibition as compared with non-smokers. These effects were found in physiological as well as subjective measures of fear. We provide initial evidence that smokers as compared with non-smokers show an impairment of fear inhibition. We propose that smokers have a deficit in integrating contextual signs of safety, which is a hallmark of post-traumatic stress and anxiety disorders.

  17. Training memory without aversion: Appetitive hole-board spatial learning increases adult hippocampal neurogenesis.

    PubMed

    Sampedro-Piquero, Patricia; Moreno-Fernández, Román D; Carmen Mañas-Padilla, M; Gil-Rodríguez, Sara; Gavito, Ana Luisa; Pavón, Francisco J; Pedraza, Carmen; García-Fernández, María; Ladrón de Guevara-Miranda, David; Santín, Luis J; Castilla-Ortega, Estela

    2018-05-01

    Learning experiences are potent modulators of adult hippocampal neurogenesis (AHN). However, the vast majority of findings on the learning-induced regulation of AHN derive from aversively-motivated tasks, mainly the water maze paradigm, in which stress is a confounding factor that affects the AHN outcome. Currently, little is known regarding the effect of appetitively-motivated training on AHN. Hence we studied how spatial learning to find food rewards in a hole-board maze modulates AHN (cell proliferation and immature neurons) and AHN-related hippocampal neuroplasticity markers (BDNF, IGF-II and CREB phosphorylation) in mice. The 'Trained' mice were tested for both spatial reference and working memory and compared to 'Pseudotrained' mice (exposed to different baited holes in each session, thus avoiding the reference memory component of the task) and 'Control' mice (exposed to the maze without rewards). In contrast to Pseudotrained and Control mice, the number of proliferating hippocampal cells were reduced in Trained mice, but they notably increased their population of immature neurons assessed by immunohistochemistry. This evidence shows that hole-board spatial reference learning diminishes cell proliferation in favor of enhancing young neurons' survival. Interestingly, the enhanced AHN in the Trained mice (specifically in the suprapyramidal blade) positively correlated with their reference memory performance, but not with their working memory. Furthermore, the Trained animals increased the hippocampal protein expression of all the neuroplasticity markers analyzed by western blot. Results show that the appetitively-motivated hole-board task is a useful paradigm to potentiate and/or investigate AHN and hippocampal plasticity minimizing aversive variables such as fear or stress. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Avoidance-based human Pavlovian-to-instrumental transfer

    PubMed Central

    Lewis, Andrea H.; Niznikiewicz, Michael A.; Delamater, Andrew R.; Delgado, Mauricio R.

    2013-01-01

    The Pavlovian-to-instrumental transfer (PIT) paradigm probes the influence of Pavlovian cues over instrumentally learned behavior. The paradigm has been used extensively to probe basic cognitive and motivational processes in studies of animal learning but, more recently, PIT and its underlying neural basis have been extended to investigations in humans. These initial neuroimaging studies of PIT have focused on the influence of appetitively conditioned stimuli on instrumental responses maintained by positive reinforcement, and highlight the involvement of the striatum. In the current study, we sought to understand the neural correlates of PIT in an aversive Pavlovian learning situation when instrumental responding was maintained through negative reinforcement. Participants exhibited specific PIT, wherein selective increases in instrumental responding to conditioned stimuli occurred when the stimulus signaled a specific aversive outcome whose omission negatively reinforced the instrumental response. Additionally, a general PIT effect was observed such that when a stimulus was associated with a different aversive outcome than was used to negatively reinforce instrumental behavior, the presence of that stimulus caused a non-selective increase in overall instrumental responding. Both specific and general PIT behavioral effects correlated with increased activation in corticostriatal circuitry, particularly in the striatum, a region involved in cognitive and motivational processes. These results suggest that avoidance-based PIT utilizes a similar neural mechanism to that seen with PIT in an appetitive context, which has implications for understanding mechanisms of drug-seeking behavior during addiction and relapse. PMID:24118624

  19. Excitation of lateral habenula neurons as a neural mechanism underlying ethanol‐induced conditioned taste aversion

    PubMed Central

    Keefe, Kristen A.; Taha, Sharif A.

    2016-01-01

    Key points The lateral habenula (LHb) has been implicated in regulation of drug‐seeking behaviours through aversion‐mediated learning.In this study, we recorded neuronal activity in the LHb of rats during an operant task before and after ethanol‐induced conditioned taste aversion (CTA) to saccharin.Ethanol‐induced CTA caused significantly higher baseline firing rates in LHb neurons, as well as elevated firing rates in response to cue presentation, lever press and saccharin taste.In a separate cohort of rats, we found that bilateral LHb lesions blocked ethanol‐induced CTA.Our results strongly suggest that excitation of LHb neurons is required for ethanol‐induced CTA, and point towards a mechanism through which LHb firing may regulate voluntary ethanol consumption. Abstract Ethanol, like other drugs of abuse, has both rewarding and aversive properties. Previous work suggests that sensitivity to ethanol's aversive effects negatively modulates voluntary alcohol intake and thus may be important in vulnerability to developing alcohol use disorders. We previously found that rats with lesions of the lateral habenula (LHb), which is implicated in aversion‐mediated learning, show accelerated escalation of voluntary ethanol consumption. To understand neural encoding in the LHb contributing to ethanol‐induced aversion, we recorded neural firing in the LHb of freely behaving, water‐deprived rats before and after an ethanol‐induced (1.5 g kg−1 20% ethanol, i.p.) conditioned taste aversion (CTA) to saccharin taste. Ethanol‐induced CTA strongly decreased motivation for saccharin in an operant task to obtain the tastant. Comparison of LHb neural firing before and after CTA induction revealed four main differences in firing properties. First, baseline firing after CTA induction was significantly higher. Second, firing evoked by cues signalling saccharin availability shifted from a pattern of primarily inhibition before CTA to primarily excitation after CTA induction. Third, CTA induction reduced the magnitude of lever press‐evoked inhibition. Finally, firing rates were significantly higher during consumption of the devalued saccharin solution after CTA induction. Next, we studied sham‐ and LHb‐lesioned rats in our operant CTA paradigm and found that LHb lesion significantly attenuated CTA effects in the operant task. Our data demonstrate the importance of LHb excitation in regulating expression of ethanol‐induced aversion and suggest a mechanism for its role in modulating escalation of voluntary ethanol intake. PMID:27682823

  20. Requirement of NF-kappa B Activation in Different Mice Brain Areas during Long-Term Memory Consolidation in Two Contextual One-Trial Tasks with Opposing Valences

    PubMed Central

    Salles, Angeles; Krawczyk, Maria del C.; Blake, Mariano; Romano, Arturo; Boccia, Mariano M.; Freudenthal, Ramiro

    2017-01-01

    NF-kappa B is a transcription factor whose activation has been shown to be necessary for long-term memory consolidation in several species. NF-kappa B is activated and translocates to the nucleus of cells in a specific temporal window during consolidation. Our work focuses on a one trial learning tasks associated to the inhibitory avoidance (IA) setting. Mice were trained either receiving or not a footshock when entering a dark compartment (aversive vs. appetitive learning). Regardless of training condition (appetitive or aversive), latencies to step-through during testing were significantly different to those measured during training. Additionally, these testing latencies were also different from those of a control group that only received a shock unrelated to context. Moreover, nuclear NF-kappa B DNA-binding activity was augmented in the aversive and the appetitive tasks when compared with control and naïve animals. NF-kappa B inhibition by Sulfasalazine injected either in the Hippocampus, Amygdala or Nucleus accumbens immediately after training was able to impair retention in both training versions. Our results suggest that NF-kappa B is a critical molecular step, in different brain areas on memory consolidation. This was the case for both the IA task and also the modified version of the same task where the footshock was omitted during training. This work aims to further investigate how appetitive and aversive memories are consolidated. PMID:28439227

  1. Evidence of Pavlovian conditioned fear following electrical stimulation of the periaqueductal grey in the rat.

    PubMed

    Di Scala, G; Mana, M J; Jacobs, W J; Phillips, A G

    1987-01-01

    Stimulation of the periaqueductal grey (PAG) has been used to support aversive conditioning in a variety of species with several experimental paradigms. However, it has not been clearly demonstrated whether the behavioral changes produced by PAG stimulation in these paradigms are mediated by associative or nonassociative mechanisms. The present studies demonstrate that electrical stimulation of the PAG in the rat may be used to support associative learning in a Pavlovian paradigm. In each experiment, a fully controlled conditional emotional response (CER) procedure was used to examine the unconditional aversive properties of PAG stimulation. In Experiment 1a, weak associative conditioning was observed when a light CS was paired with PAG stimulation over 6 conditioning trials. In Experiment 1b, robust associative conditioning was obtained with a light CS when 18 conditioning trials were used. In Experiment 2, robust associative conditioning was demonstrated with a tone CS when 6 conditioning trials were used. The results parallel those found when other aversive stimuli are used as a UCS (e.g., footshock or intraorbital air puff), and because the present experiments included the proper control procedures the results clearly indicate that the behavioral changes produced by PAG stimulation are mediated by associative Pavlovian learning mechanisms rather than nonassociative mechanisms such as sensitization or pseudoconditioning. The present technique may be useful for assessing the neuroanatomical and neurochemical substrates underlying the aversive effects of brain-stimulation, and for screening the effects of drugs on the conditional and unconditional responses produced by such stimulation.

  2. Oxytocin decreases aversion to angry faces in an associative learning task.

    PubMed

    Evans, Simon; Shergill, Sukhwinder S; Averbeck, Bruno B

    2010-12-01

    Social and financial considerations are often integrated when real life decisions are made, and recent studies have provided evidence that similar brain networks are engaged when either social or financial information is integrated. Other studies, however, have suggested that the neuropeptide oxytocin can specifically affect social behaviors, which would suggest separable mechanisms at the pharmacological level. Thus, we examined the hypothesis that oxytocin would specifically affect social and not financial information in a decision making task, in which participants learned which of the two faces, one smiling and the other angry or sad, was most often being rewarded. We found that oxytocin specifically decreased aversion to angry faces, without affecting integration of positive or negative financial feedback or choices related to happy vs sad faces.

  3. Serotonin affects association of aversive outcomes to past actions.

    PubMed

    Tanaka, Saori C; Shishida, Kazuhiro; Schweighofer, Nicolas; Okamoto, Yasumasa; Yamawaki, Shigeto; Doya, Kenji

    2009-12-16

    Impairment in the serotonergic system has been linked to action choices that are less advantageous in a long run. Such impulsive choices can be caused by a deficit in linking a given reward or punishment with past actions. Here, we tested the effect of manipulation of the serotonergic system by tryptophan depletion and loading on learning the association of current rewards and punishments with past actions. We observed slower associative learning when actions were followed by a delayed punishment in the low serotonergic condition. Furthermore, a model-based analysis revealed a positive correlation between the length of the memory trace for aversive choices and subjects' blood tryptophan concentration. Our results suggest that the serotonergic system regulates the time scale of retrospective association of punishments to past actions.

  4. Unpacking buyer-seller differences in valuation from experience: A cognitive modeling approach.

    PubMed

    Pachur, Thorsten; Scheibehenne, Benjamin

    2017-12-01

    People often indicate a higher price for an object when they own it (i.e., as sellers) than when they do not (i.e., as buyers)-a phenomenon known as the endowment effect. We develop a cognitive modeling approach to formalize, disentangle, and compare alternative psychological accounts (e.g., loss aversion, loss attention, strategic misrepresentation) of such buyer-seller differences in pricing decisions of monetary lotteries. To also be able to test possible buyer-seller differences in memory and learning, we study pricing decisions from experience, obtained with the sampling paradigm, where people learn about a lottery's payoff distribution from sequential sampling. We first formalize different accounts as models within three computational frameworks (reinforcement learning, instance-based learning theory, and cumulative prospect theory), and then fit the models to empirical selling and buying prices. In Study 1 (a reanalysis of published data with hypothetical decisions), models assuming buyer-seller differences in response bias (implementing a strategic-misrepresentation account) performed best; models assuming buyer-seller differences in choice sensitivity or memory (implementing a loss-attention account) generally fared worst. In a new experiment involving incentivized decisions (Study 2), models assuming buyer-seller differences in both outcome sensitivity (as proposed by a loss-aversion account) and response bias performed best. In both Study 1 and 2, the models implemented in cumulative prospect theory performed best. Model recovery studies validated our cognitive modeling approach, showing that the models can be distinguished rather well. In summary, our analysis supports a loss-aversion account of the endowment effect, but also reveals a substantial contribution of simple response bias.

  5. Active avoidance learning requires prefrontal suppression of amygdala-mediated defensive reactions.

    PubMed

    Moscarello, Justin M; LeDoux, Joseph E

    2013-02-27

    Signaled active avoidance (AA) paradigms train subjects to prevent an aversive outcome by performing a learned behavior during the presentation of a conditioned cue. This complex form of conditioning involves pavlovian and instrumental components, which produce competing behavioral responses that must be reconciled for the subject to successfully avoid an aversive stimulus. In signaled AA paradigm for rat, we tested the hypothesis that the instrumental component of AA training recruits infralimbic prefrontal cortex (ilPFC) to inhibit central amygdala (CeA)-mediated Pavlovian reactions. Pretraining lesions of ilPFC increased conditioned freezing while causing a corresponding decrease in avoidance; lesions of CeA produced opposite effects, reducing freezing and facilitating avoidance behavior. Pharmacological inactivation experiments demonstrated that ilPFC is relevant to both acquisition and expression phases of AA learning. Inactivation experiments also revealed that AA produces an ilPFC-mediated diminution of pavlovian reactions that extends beyond the training context, even when the conditioned stimulus is presented in an environment that does not allow the avoidance response. Finally, injection of a protein synthesis inhibitor into either ilPFC or CeA impaired or facilitated AA, respectively, showing that avoidance training produces two opposing memory traces in these regions. These data support a model in which AA learning recruits ilPFC to inhibit CeA-mediated defense behaviors, leading to a robust suppression of freezing that generalizes across environments. Thus, ilPFC functions as an inhibitory interface, allowing instrumental control over an aversive outcome to attenuate the expression of freezing and other reactions to conditioned threat.

  6. Predator experience overrides learned aversion to heterospecifics in stickleback species pairs

    PubMed Central

    Kozak, Genevieve M.; Boughman, Janette W.

    2015-01-01

    Predation risk can alter female mating decisions because the costs of mate searching and selecting attractive mates increase when predators are present. In response to predators, females have been found to plastically adjust mate preference within species, but little is known about how predators alter sexual isolation and hybridization among species. We tested the effects of predator exposure on sexual isolation between benthic and limnetic threespine sticklebacks (Gasterosteus spp.). Female discrimination against heterospecific mates was measured before and after females experienced a simulated attack by a trout predator or a control exposure to a harmless object. In the absence of predators, females showed increased aversion to heterospecifics over time. We found that predator exposure made females less discriminating and precluded this learned aversion to heterospecifics. Benthic and limnetic males differ in coloration, and predator exposure also affected sexual isolation by weakening female preferences for colourful males. Predator effects on sexual selection were also tested but predators had few effects on female choosiness among conspecific mates. Our results suggest that predation risk may disrupt the cognitive processes associated with mate choice and lead to fluctuations in the strength of sexual isolation between species. PMID:25808887

  7. Comparing Electric Shock and a Fearful Screaming Face as Unconditioned Stimuli for Fear Learning

    PubMed Central

    Glenn, Catherine R.; Lieberman, Lynne; Hajcak, Greg

    2012-01-01

    The potency of an unconditioned stimulus (UCS) can impact the degree of fear learning. One of the most common and effective UCSs is an electric shock, which is inappropriate for certain populations (e.g., children). To address this need, a novel fear learning paradigm was recently developed that uses a fearful female face and scream as the UCS. The present study directly compared the efficacy of the screaming female UCS and a traditional shock UCS in two fear learning paradigms. Thirty-six young adults completed two fear learning tasks and a measure of trait anxiety; fear learning was indexed with fear-potentiated startle (FPS) and self-reported fear ratings. Results indicated comparable FPS across the two tasks. However, larger overall startle responses were exhibited in the shock task, and participants rated the shock UCS and overall task as more aversive than the screaming female. In addition, trait anxiety was only related to FPS in the fear learning task that employed a shock as the UCS. Taken together, results indicate that, although both UCS paradigms can be used for fear conditioning (i.e., to produce differences between CS+ and CS−), the shock UCS paradigm is more aversive and potentially more sensitive to individual differences in anxiety. PMID:23007035

  8. Fractionation of Spatial Memory in GRM2/3 (mGlu2/mGlu3) Double Knockout Mice Reveals a Role for Group II Metabotropic Glutamate Receptors at the Interface Between Arousal and Cognition

    PubMed Central

    Lyon, Louisa; Burnet, Philip WJ; Kew, James NC; Corti, Corrado; Rawlins, J Nicholas P; Lane, Tracy; De Filippis, Bianca; Harrison, Paul J; Bannerman, David M

    2011-01-01

    Group II metabotropic glutamate receptors (mGluR2 and mGluR3, encoded by GRM2 and GRM3) are implicated in hippocampal function and cognition, and in the pathophysiology and treatment of schizophrenia and other psychiatric disorders. However, pharmacological and behavioral studies with group II mGluR agonists and antagonists have produced complex results. Here, we studied hippocampus-dependent memory in GRM2/3 double knockout (GRM2/3−/−) mice in an iterative sequence of experiments. We found that they were impaired on appetitively motivated spatial reference and working memory tasks, and on a spatial novelty preference task that relies on animals' exploratory drive, but were unimpaired on aversively motivated spatial memory paradigms. GRM2/3−/− mice also performed normally on an appetitively motivated, non-spatial, visual discrimination task. These results likely reflect an interaction between GRM2/3 genotype and the arousal-inducing properties of the experimental paradigm. The deficit seen on appetitive and exploratory spatial memory tasks may be absent in aversive tasks because the latter induce higher levels of arousal, which rescue spatial learning. Consistent with an altered arousal–cognition relationship in GRM2/3−/− mice, injection stress worsened appetitively motivated, spatial working memory in wild-types, but enhanced performance in GRM2/3−/− mice. GRM2/3−/− mice were also hypoactive in response to amphetamine. This fractionation of hippocampus-dependent memory depending on the appetitive-aversive context is to our knowledge unique, and suggests a role for group II mGluRs at the interface of arousal and cognition. These arousal-dependent effects may explain apparently conflicting data from previous studies, and have translational relevance for the involvement of these receptors in schizophrenia and other disorders. PMID:21832989

  9. Aversive Olfactory Learning and Associative Long-Term Memory in "Caenorhabditis elegans"

    ERIC Educational Resources Information Center

    Amano, Hisayuki; Maruyama, Ichiro N.

    2011-01-01

    The nematode "Caenorhabditis elegans" ("C. elegans") adult hermaphrodite has 302 invariant neurons and is suited for cellular and molecular studies on complex behaviors including learning and memory. Here, we have developed protocols for classical conditioning of worms with 1-propanol, as a conditioned stimulus (CS), and hydrochloride (HCl) (pH…

  10. Learned Together, Extinguished Apart: Reducing Fear to Complex Stimuli

    ERIC Educational Resources Information Center

    Jones, Carolyn E.; Ringuet, Stephanie; Monfils, Marie-H.

    2013-01-01

    Pairing a previously neutral conditioned stimulus (CS; e.g., a tone) to an aversive unconditioned stimulus (US; e.g., a footshock) leads to associative learning such that the tone alone comes to elicit a conditioned response (e.g., freezing). We have previously shown that an extinction session that occurs within the reconsolidation window…

  11. Food for Song: Expression of C-Fos and ZENK in the Zebra Finch Song Nuclei during Food Aversion Learning

    PubMed Central

    Tokarev, Kirill; Tiunova, Anna

    2011-01-01

    Background Specialized neural pathways, the song system, are required for acquiring, producing, and perceiving learned avian vocalizations. Birds that do not learn to produce their vocalizations lack telencephalic song system components. It is not known whether the song system forebrain regions are exclusively evolved for song or whether they also process information not related to song that might reflect their ‘evolutionary history’. Methodology/Principal Findings To address this question we monitored the induction of two immediate-early genes (IEGs) c-Fos and ZENK in various regions of the song system in zebra finches (Taeniopygia guttata) in response to an aversive food learning paradigm; this involves the association of a food item with a noxious stimulus that affects the oropharyngeal-esophageal cavity and tongue, causing subsequent avoidance of that food item. The motor response results in beak and head movements but not vocalizations. IEGs have been extensively used to map neuro-molecular correlates of song motor production and auditory processing. As previously reported, neurons in two pallial vocal motor regions, HVC and RA, expressed IEGs after singing. Surprisingly, c-Fos was induced equivalently also after food aversion learning in the absence of singing. The density of c-Fos positive neurons was significantly higher than that of birds in control conditions. This was not the case in two other pallial song nuclei important for vocal plasticity, LMAN and Area X, although singing did induce IEGs in these structures, as reported previously. Conclusions/Significance Our results are consistent with the possibility that some of the song nuclei may participate in non-vocal learning and the populations of neurons involved in the two tasks show partial overlap. These findings underscore the previously advanced notion that the specialized forebrain pre-motor nuclei controlling song evolved from circuits involved in behaviors related to feeding. PMID:21695176

  12. Memory-updating abrogates extinction of learned immunosuppression.

    PubMed

    Hadamitzky, Martin; Bösche, Katharina; Wirth, Timo; Buck, Benjamin; Beetz, Oliver; Christians, Uwe; Schniedewind, Björn; Lückemann, Laura; Güntürkün, Onur; Engler, Harald; Schedlowski, Manfred

    2016-02-01

    When memories are recalled, they enter a transient labile phase in which they can be impaired or enhanced followed by a new stabilization process termed reconsolidation. It is unknown, however, whether reconsolidation is restricted to neurocognitive processes such as fear memories or can be extended to peripheral physiological functions as well. Here, we show in a paradigm of behaviorally conditioned taste aversion in rats memory-updating in learned immunosuppression. The administration of sub-therapeutic doses of the immunosuppressant cyclosporin A together with the conditioned stimulus (CS/saccharin) during retrieval blocked extinction of conditioned taste aversion and learned suppression of T cell cytokine (interleukin-2; interferon-γ) production. This conditioned immunosuppression is of clinical relevance since it significantly prolonged the survival time of heterotopically transplanted heart allografts in rats. Collectively, these findings demonstrate that memories can be updated on both neural and behavioral levels as well as on the level of peripheral physiological systems such as immune functioning. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Learning and memory in streptozotocin-induced diabetic rats in a novel spatial/object discrimination task.

    PubMed

    Popoviç, M; Biessels, G J; Isaacson, R L; Gispen, W H

    2001-08-01

    Diabetes mellitus is associated with disturbances of cognitive functioning. The aim of this study was to examine cognitive functioning in diabetic rats using the 'Can test', a novel spatial/object learning and memory task, without the use of aversive stimuli. Rats were trained to select a single rewarded can from seven cans. Mild water deprivation provided the motivation to obtain the reward (0.3 ml of water). After 5 days of baseline training, in which the rewarded can was marked by its surface and position in an open field, the animals were divided into two groups. Diabetes was induced in one group, by an intravenous injection of streptozotocin. Retention of baseline training was tested at 2-weekly intervals for 10 weeks. Next, two adapted versions of the task were used, with 4 days of training in each version. The rewarded can was a soft-drink can with coloured print. In a 'simple visual task' the soft-drink can was placed among six white cans, whereas in a 'complex visual task' it was placed among six soft-drink cans from different brands with distinct prints. In diabetic rats the number of correct responses was lower and number of reference and working memory errors higher than in controls in the various versions of the test. Switches between tasks and increases in task complexity accentuated the performance deficits, which may reflect an inability of diabetic rats to adapt behavioural strategies to the demands of the tasks.

  14. New perspectives in gaze sensitivity research.

    PubMed

    Davidson, Gabrielle L; Clayton, Nicola S

    2016-03-01

    Attending to where others are looking is thought to be of great adaptive benefit for animals when avoiding predators and interacting with group members. Many animals have been reported to respond to the gaze of others, by co-orienting their gaze with group members (gaze following) and/or responding fearfully to the gaze of predators or competitors (i.e., gaze aversion). Much of the literature has focused on the cognitive underpinnings of gaze sensitivity, namely whether animals have an understanding of the attention and visual perspectives in others. Yet there remain several unanswered questions regarding how animals learn to follow or avoid gaze and how experience may influence their behavioral responses. Many studies on the ontogeny of gaze sensitivity have shed light on how and when gaze abilities emerge and change across development, indicating the necessity to explore gaze sensitivity when animals are exposed to additional information from their environment as adults. Gaze aversion may be dependent upon experience and proximity to different predator types, other cues of predation risk, and the salience of gaze cues. Gaze following in the context of information transfer within social groups may also be dependent upon experience with group-members; therefore we propose novel means to explore the degree to which animals respond to gaze in a flexible manner, namely by inhibiting or enhancing gaze following responses. We hope this review will stimulate gaze sensitivity research to expand beyond the narrow scope of investigating underlying cognitive mechanisms, and to explore how gaze cues may function to communicate information other than attention.

  15. Context memory formation requires activity-dependent protein degradation in the hippocampus.

    PubMed

    Cullen, Patrick K; Ferrara, Nicole C; Pullins, Shane E; Helmstetter, Fred J

    2017-11-01

    Numerous studies have indicated that the consolidation of contextual fear memories supported by an aversive outcome like footshock requires de novo protein synthesis as well as protein degradation mediated by the ubiquitin-proteasome system (UPS). Context memory formed in the absence of an aversive stimulus by simple exposure to a novel environment requires de novo protein synthesis in both the dorsal (dHPC) and ventral (vHPC) hippocampus. However, the role of UPS-mediated protein degradation in the consolidation of context memory in the absence of a strong aversive stimulus has not been investigated. In the present study, we used the context preexposure facilitation effect (CPFE) procedure, which allows for the dissociation of context learning from context-shock learning, to investigate the role of activity-dependent protein degradation in the dHPC and vHPC during the formation of a context memory. We report that blocking protein degradation with the proteasome inhibitor clasto-lactacystin β-lactone (βLac) or blocking protein synthesis with anisomycin (ANI) immediately after context preexposure significantly impaired context memory formation. Additionally, we examined 20S proteasome activity at different time points following context exposure and saw that the activity of proteasomes in the dHPC increases immediately after stimulus exposure while the vHPC exhibits a biphasic pattern of proteolytic activity. Taken together, these data suggest that the requirement of increased proteolysis during memory consolidation is not driven by processes triggered by the strong aversive outcome (i.e., shock) normally used to support fear conditioning. © 2017 Cullen et al.; Published by Cold Spring Harbor Laboratory Press.

  16. Training Strategies for the M1 Abrams Tank Driver Trainer

    DTIC Science & Technology

    1984-10-01

    positive reinforcement. The automatic freeze after incorrect performance, for example, may even be aversive to the trainee. The TECEP learning algorithms ...Aagard, J.A. and Braby, R. Learning Guidelines and Algorithms for Types of Training Objectives. (TAEG Report No. 23). Orlando, FL: Training Analysis and...checklist ite. flake it identical to operational setting. () Cresponde to the g;uideli ne number Tor thiss oast. Figure B-I. Learning Algorithm for

  17. Modulation for emergent networks: serotonin and dopamine.

    PubMed

    Weng, Juyang; Paslaski, Stephen; Daly, James; VanDam, Courtland; Brown, Jacob

    2013-05-01

    In autonomous learning, value-sensitive experiences can improve the efficiency of learning. A learning network needs be motivated so that the limited computational resources and the limited lifetime are devoted to events that are of high value for the agent to compete in its environment. The neuromodulatory system of the brain is mainly responsible for developing such a motivation system. Although reinforcement learning has been extensively studied, many existing models are symbolic whose internal nodes or modules have preset meanings. Neural networks have been used to automatically generate internal emergent representations. However, modeling an emergent motivational system for neural networks is still a great challenge. By emergent, we mean that the internal representations emerge autonomously through interactions with the external environments. This work proposes a generic emergent modulatory system for emergent networks, which includes two subsystems - the serotonin system and the dopamine system. The former signals a large class of stimuli that are intrinsically aversive (e.g., stress or pain). The latter signals a large class of stimuli that are intrinsically appetitive (e.g., pleasure or sweet). We experimented with this motivational system for two settings. The first is a visual recognition setting to investigate how such a system can learn through interactions with a teacher, who does not directly give answers, but only punishments and rewards. The second is a setting for wandering in the presence of a friend and a foe. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Economic decision-making in the ultimatum game by smokers.

    PubMed

    Takahashi, Taiki

    2007-10-01

    No study to date compared degrees of inequity aversion in economic decision-making in the ultimatum game between non-addictive and addictive reinforcers. The comparison is potentially important in neuroeconomics and reinforcement learning theory of addiction. We compared the degrees of inequity aversion in the ultimatum game between money and cigarettes in habitual smokers. Smokers avoided inequity in the ultimatum game more dramatically for money than for cigarettes; i.e., there was a "domain effect" in decision-making in the ultimatum game. Reward-processing neural activities in the brain for non-addictive and addictive reinforcers may be distinct and the insula activation due to cue-induced craving may conflict with unfair offer-induced insula activation. Future studies in neuroeconomics of addiction should employ game-theoretic decision tasks for elucidating reinforcement learning processes in dopaminergic neural circuits.

  19. Laboratory-induced learned helplessness attenuates approach motivation as indexed by posterior versus frontal theta activity.

    PubMed

    Reznik, Samantha J; Nusslock, Robin; Pornpattananangkul, Narun; Abramson, Lyn Y; Coan, James A; Harmon-Jones, Eddie

    2017-08-01

    Research suggests that midline posterior versus frontal electroencephalographic (EEG) theta activity (PFTA) may reflect a novel neurophysiological index of approach motivation. Elevated PFTA has been associated with approach-related tendencies both at rest and during laboratory tasks designed to enhance approach motivation. PFTA is sensitive to changes in dopamine signaling within the fronto-striatal neural circuit, which is centrally involved in approach motivation, reward processing, and goal-directed behavior. To date, however, no studies have examined PFTA during a laboratory task designed to reduce approach motivation or goal-directed behavior. Considerable animal and human research supports the hypothesis put forth by the learned helplessness theory that exposure to uncontrollable aversive stimuli decreases approach motivation by inducing a state of perceived uncontrollability. Accordingly, the present study examined the effect of perceived uncontrollability (i.e., learned helplessness) on PFTA. EEG data were collected from 74 participants (mean age = 19.21 years; 40 females) exposed to either Controllable (n = 26) or Uncontrollable (n = 25) aversive noise bursts, or a No-Noise Condition (n = 23). In line with prediction, individuals exposed to uncontrollable aversive noise bursts displayed a significant decrease in PFTA, reflecting reduced approach motivation, relative to both individuals exposed to controllable noise bursts or the No-Noise Condition. There was no relationship between perceived uncontrollability and frontal EEG alpha asymmetry, another commonly used neurophysiological index of approach motivation. Results have implications for understanding the neurophysiology of approach motivation and establishing PFTA as a neurophysiological index of approach-related tendencies.

  20. Lessons Learned from the Private Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robichaud, Robert J

    This session is focused on lessons learned from private sector energy projects that could be applied to the federal sector. This presentation tees up the subsequent presentations by outlining the differences between private and federal sectors in objectives, metrics for determining success, funding resources/mechanisms, payback and ROI evaluation, risk tolerance/aversion, new technology adoption perspectives, and contracting mechanisms.

  1. Serotonin 5-HTTLPR Genotype Modulates Reactive Visual Scanning of Social and Non-social Affective Stimuli in Young Children

    PubMed Central

    Christou, Antonios I.; Wallis, Yvonne; Bair, Hayley; Zeegers, Maurice; McCleery, Joseph P.

    2017-01-01

    Previous studies have documented the 5-HTTLPR polymorphisms as genetic variants that are involved in serotonin availability and also associated with emotion regulation and facial emotion processing. In particular, neuroimaging and behavioral studies of healthy populations have produced evidence to suggest that carriers of the Short allele exhibit heightened neurophysiological and behavioral reactivity when processing aversive stimuli, particularly in brain regions involved in fear. However, an additional distinction has emerged in the field, which highlights particular types of fearful information, i.e., aversive information which involves a social component versus non-social aversive stimuli. Although processing of each of these stimulus types (social and non-social) is believed to involve a subcortical neural system which includes the amygdala, evidence also suggests that the amygdala itself may be particularly responsive to socially significant environmental information, potentially due to the critical relevance of social information for humans. Examining individual differences in neurotransmitter systems which operate within this subcortical network, and in particular the serotonin system, may be critically informative for furthering our understanding of the neurobiological mechanisms underlying responses to emotional and affective stimuli. In the present study we examine visual scanning patterns in response to both aversive and positive images of a social or non-social nature in relation to 5-HTTLPR genotypes, in 49 children aged 4–7 years. Results indicate that children with at least one Short 5-HTTLPR allele spent less time fixating the threat-related non-social stimuli, compared with participants with two copies of the Long allele. Interestingly, a separate set of analyses suggests that carriers of two copies of the short 5-HTTLPR allele also spent less time fixating both the negative and positive non-social stimuli. Together, these findings support the hypothesis that genetically mediated differences in serotonin availability mediate behavioral responses to different types of emotional stimuli in young children. PMID:28690502

  2. Acquisition and expression of conditioned taste aversion differentially affects extracellular signal regulated kinase and glutamate receptor phosphorylation in rat prefrontal cortex and nucleus accumbens

    PubMed Central

    Marotta, Roberto; Fenu, Sandro; Scheggi, Simona; Vinci, Stefania; Rosas, Michela; Falqui, Andrea; Gambarana, Carla; De Montis, M. Graziella; Acquas, Elio

    2014-01-01

    Conditioned taste aversion (CTA) can be applied to study associative learning and its relevant underpinning molecular mechanisms in discrete brain regions. The present study examined, by immunohistochemistry and immunocytochemistry, the effects of acquisition and expression of lithium-induced CTA on activated Extracellular signal Regulated Kinase (p-ERK) in the prefrontal cortex (PFCx) and nucleus accumbens (Acb) of male Sprague-Dawley rats. The study also examined, by immunoblotting, whether acquisition and expression of lithium-induced CTA resulted in modified levels of phosphorylation of glutamate receptor subunits (NR1 and GluR1) and Thr34- and Thr75-Dopamine-and-cAMP-Regulated PhosphoProtein (DARPP-32). CTA acquisition was associated with an increase of p-ERK-positive neurons and phosphorylated NR1 receptor subunit (p-NR1) in the PFCx, whereas p-GluR1, p-Thr34- and p-Thr75-DARPP-32 levels were not changed in this brain region. CTA expression increased the number of p-ERK-positive neurons in the shell (AcbSh) and core (AcbC) but left unmodified p-NR1, p-GluR1, p-Thr34- and p-Thr75-DARPP-32 levels. Furthermore, post-embedding immunogold quantitative analysis in AcbSh revealed that CTA expression significantly increased nuclear p-ERK immunostaining as well as p-ERK-labeled axo-spinous contacts. Overall, these results indicate that ERK and NR1, but not GluR1 and DARPP-32, are differentially phosphorylated as a consequence of acquisition and expression of aversive associative learning. Moreover, these results confirm that CTA represents an useful approach to study the molecular basis of associative learning in rats and suggest the involvement of ERK cascade in learning-associated synaptic plasticity. PMID:24847227

  3. Peer passenger influences on male adolescent drivers’ visual scanning behavior during simulated driving

    PubMed Central

    Pradhan, Anuj K.; Li, Kaigang; Bingham, C. Raymond; Simons-Morton, Bruce; Ouimet, Marie Claude; Shope, Jean T.

    2014-01-01

    Purpose There is a higher likelihood of crashes and fatalities when an adolescent drives with peer passengers, especially for male drivers and male passengers. Simulated driving of male adolescent drivers with male peer passengers was studied to examine passenger influences on distraction and inattention. Methods Male adolescents drove in a high-fidelity driving simulator with a male confederate who posed either as a risk-accepting or risk-averse passenger. Drivers’ eye-movements were recorded. The visual scanning behavior of the drivers was compared when driving alone versus when driving with a passenger, and when driving with a risk-accepting versus a risk-averse passenger. Results The visual scanning of a driver significantly narrowed horizontally and vertically when driving with a peer passenger. There were no significant differences in the times the drivers’ eyes were off the forward roadway when driving with a passenger versus when driving alone. Some significant correlations were found between personality characteristics and the outcome measures. Conclusions The presence of a male peer passenger was associated with a reduction in the visual scanning range of male adolescent drivers. This reduction could be a result of potential cognitive load imposed on the driver due to the presence of a passenger and the real or perceived normative influences or expectations from the passenger. Implications and contribution The presence of male peer passengers was associated with deficient visual scanning in male adolescent drivers. Such reduced scanning behavior is evident in drivers with high cognitive load. Further investigation of passenger influences on adolescent drivers should include examination of distraction and inattention aspects of passenger influence. PMID:24759440

  4. Effects of pramipexole on the processing of rewarding and aversive taste stimuli.

    PubMed

    McCabe, Ciara; Harwood, James; Brouwer, Sietske; Harmer, Catherine J; Cowen, Philip J

    2013-07-01

    Pramipexole, a D2/D3 dopamine receptor agonist, has been implicated in the development of impulse control disorders in patients with Parkinson's disease. Investigation of single doses of pramipexole in healthy participants in reward-based learning tasks has shown inhibition of the neural processing of reward, presumptively through stimulation of dopamine autoreceptors. This study aims to examine the effects of pramipexole on the neural response to the passive receipt of rewarding and aversive sight and taste stimuli. We used functional magnetic resonance imaging to examine the neural responses to the sight and taste of pleasant (chocolate) and aversive (mouldy strawberry) stimuli in 16 healthy volunteers who received a single dose of pramipexole (0.25 mg) and placebo in a double-blind, within-subject, design. Relative to placebo, pramipexole treatment reduced blood oxygen level-dependent activation to the chocolate stimuli in the areas known to play a key role in reward, including the ventromedial prefrontal cortex, the orbitofrontal cortex, striatum, thalamus and dorsal anterior cingulate cortex. Pramipexole also reduced activation to the aversive condition in the dorsal anterior cingulate cortex. There were no effects of pramipexole on the subjective ratings of the stimuli. Our results are consistent with an ability of acute, low-dose pramipexole to diminish dopamine-mediated responses to both rewarding and aversive taste stimuli, perhaps through an inhibitory action of D2/3 autoreceptors on phasic burst activity of midbrain dopamine neurones. The ability of pramipexole to inhibit aversive processing might potentiate its adverse behavioural effects and could also play a role in its proposed efficacy in treatment-resistant depression.

  5. Lesions of the medial prefrontal cortex cause maladaptive sexual behavior in male rats.

    PubMed

    Davis, Jon F; Loos, Maarten; Di Sebastiano, Andrea R; Brown, Jennifer L; Lehman, Michael N; Coolen, Lique M

    2010-06-15

    An inability to inhibit behaviors once they become maladaptive is a component of several psychiatric illnesses, and the medial prefrontal cortex (mPFC) was identified as a potential mediator of behavioral inhibition. The current study tested if the mPFC is involved in inhibition of sexual behavior when associated with aversive outcomes. Using male rats, effects of lesions of the infralimbic and prelimbic areas of the mPFC on expression of sexual behavior and ability to inhibit mating were tested using a paradigm of copulation-contingent aversion. Medial prefrontal cortex lesions did not alter expression of sexual behavior. In contrast, mPFC lesions completely blocked the acquisition of sex-aversion conditioning and lesioned animals continued to mate, in contrast to the robust behavioral inhibition toward copulation in mPFC intact male animals, resulting in only 22% of intact male animals continuing to mate. However, rats with mPFC lesions were capable of forming a conditioned place preference to sexual reward and conditioned place aversion for lithium chloride, suggesting that these lesions did not alter associative learning or sensitivity for lithium chloride. The current study indicates that animals with mPFC lesions are likely capable of forming the associations with aversive outcomes of their behavior but lack the ability to suppress seeking of sexual reward in the face of aversive consequences. These data may contribute to a better understanding of a common pathology underlying impulse control disorders, as compulsive sexual behavior has a high prevalence of comorbidity with psychiatric disorders and Parkinson's disease.

  6. How fear-relevant illusory correlations might develop and persist in anxiety disorders: A model of contributing factors.

    PubMed

    Wiemer, Julian; Pauli, Paul

    2016-12-01

    Fear-relevant illusory correlations (ICs) are defined as the overestimation of the relationship between a fear-relevant stimulus and aversive consequences. ICs reflect biased cognitions affecting the learning and unlearning of fear in anxiety disorders, and a deeper understanding might help to improve treatment. A model for the maintenance of ICs is proposed that highlights the importance of amplified aversiveness and salience of fear-relevant outcomes, impaired executive contingency monitoring and an availability heuristic. The model explains why ICs are enhanced in high fearful individuals and allows for some implications that might be applied to augment the effectiveness of cognitive behavior therapy, such as emotion regulation and the direction of attention to non-aversive experiences. Finally, we suggest possible future research directions and an alternative measure of ICs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Cognitive emotion regulation enhances aversive prediction error activity while reducing emotional responses.

    PubMed

    Mulej Bratec, Satja; Xie, Xiyao; Schmid, Gabriele; Doll, Anselm; Schilbach, Leonhard; Zimmer, Claus; Wohlschläger, Afra; Riedl, Valentin; Sorg, Christian

    2015-12-01

    Cognitive emotion regulation is a powerful way of modulating emotional responses. However, despite the vital role of emotions in learning, it is unknown whether the effect of cognitive emotion regulation also extends to the modulation of learning. Computational models indicate prediction error activity, typically observed in the striatum and ventral tegmental area, as a critical neural mechanism involved in associative learning. We used model-based fMRI during aversive conditioning with and without cognitive emotion regulation to test the hypothesis that emotion regulation would affect prediction error-related neural activity in the striatum and ventral tegmental area, reflecting an emotion regulation-related modulation of learning. Our results show that cognitive emotion regulation reduced emotion-related brain activity, but increased prediction error-related activity in a network involving ventral tegmental area, hippocampus, insula and ventral striatum. While the reduction of response activity was related to behavioral measures of emotion regulation success, the enhancement of prediction error-related neural activity was related to learning performance. Furthermore, functional connectivity between the ventral tegmental area and ventrolateral prefrontal cortex, an area involved in regulation, was specifically increased during emotion regulation and likewise related to learning performance. Our data, therefore, provide first-time evidence that beyond reducing emotional responses, cognitive emotion regulation affects learning by enhancing prediction error-related activity, potentially via tegmental dopaminergic pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Contingency Awareness Shapes Acquisition and Extinction of Emotional Responses in a Conditioning Model of Pain-Related Fear

    PubMed Central

    Labrenz, Franziska; Icenhour, Adriane; Benson, Sven; Elsenbruch, Sigrid

    2015-01-01

    As a fundamental learning process, fear conditioning promotes the formation of associations between predictive cues and biologically significant signals. In its application to pain, conditioning may provide important insight into mechanisms underlying pain-related fear, although knowledge especially in interoceptive pain paradigms remains scarce. Furthermore, while the influence of contingency awareness on excitatory learning is subject of ongoing debate, its role in pain-related acquisition is poorly understood and essentially unknown regarding extinction as inhibitory learning. Therefore, we addressed the impact of contingency awareness on learned emotional responses to pain- and safety-predictive cues in a combined dataset of two pain-related conditioning studies. In total, 75 healthy participants underwent differential fear acquisition, during which rectal distensions as interoceptive unconditioned stimuli (US) were repeatedly paired with a predictive visual cue (conditioned stimulus; CS+) while another cue (CS−) was presented unpaired. During extinction, both CS were presented without US. CS valence, indicating learned emotional responses, and CS-US contingencies were assessed on visual analog scales (VAS). Based on an integrative measure of contingency accuracy, a median-split was performed to compare groups with low vs. high contingency accuracy regarding learned emotional responses. To investigate predictive value of contingency accuracy, regression analyses were conducted. Highly accurate individuals revealed more pronounced negative emotional responses to CS+ and increased positive responses to CS− when compared to participants with low contingency accuracy. Following extinction, highly accurate individuals had fully extinguished pain-predictive cue properties, while exhibiting persistent positive emotional responses to safety signals. In contrast, individuals with low accuracy revealed equally positive emotional responses to both, CS+ and CS−. Contingency accuracy predicted variance in the formation of positive responses to safety cues while no predictive value was found for danger cues following acquisition and for neither cue following extinction. Our findings underscore specific roles of learned danger and safety in pain-related acquisition and extinction. Contingency accuracy appears to distinctly impact learned emotional responses to safety and danger cues, supporting aversive learning to occur independently from CS-US awareness. The interplay of cognitive and emotional factors in shaping excitatory and inhibitory pain-related learning may contribute to altered pain processing, underscoring its clinical relevance in chronic pain. PMID:26640433

  9. Contingency Awareness Shapes Acquisition and Extinction of Emotional Responses in a Conditioning Model of Pain-Related Fear.

    PubMed

    Labrenz, Franziska; Icenhour, Adriane; Benson, Sven; Elsenbruch, Sigrid

    2015-01-01

    As a fundamental learning process, fear conditioning promotes the formation of associations between predictive cues and biologically significant signals. In its application to pain, conditioning may provide important insight into mechanisms underlying pain-related fear, although knowledge especially in interoceptive pain paradigms remains scarce. Furthermore, while the influence of contingency awareness on excitatory learning is subject of ongoing debate, its role in pain-related acquisition is poorly understood and essentially unknown regarding extinction as inhibitory learning. Therefore, we addressed the impact of contingency awareness on learned emotional responses to pain- and safety-predictive cues in a combined dataset of two pain-related conditioning studies. In total, 75 healthy participants underwent differential fear acquisition, during which rectal distensions as interoceptive unconditioned stimuli (US) were repeatedly paired with a predictive visual cue (conditioned stimulus; CS(+)) while another cue (CS(-)) was presented unpaired. During extinction, both CS were presented without US. CS valence, indicating learned emotional responses, and CS-US contingencies were assessed on visual analog scales (VAS). Based on an integrative measure of contingency accuracy, a median-split was performed to compare groups with low vs. high contingency accuracy regarding learned emotional responses. To investigate predictive value of contingency accuracy, regression analyses were conducted. Highly accurate individuals revealed more pronounced negative emotional responses to CS(+) and increased positive responses to CS(-) when compared to participants with low contingency accuracy. Following extinction, highly accurate individuals had fully extinguished pain-predictive cue properties, while exhibiting persistent positive emotional responses to safety signals. In contrast, individuals with low accuracy revealed equally positive emotional responses to both, CS(+) and CS(-). Contingency accuracy predicted variance in the formation of positive responses to safety cues while no predictive value was found for danger cues following acquisition and for neither cue following extinction. Our findings underscore specific roles of learned danger and safety in pain-related acquisition and extinction. Contingency accuracy appears to distinctly impact learned emotional responses to safety and danger cues, supporting aversive learning to occur independently from CS-US awareness. The interplay of cognitive and emotional factors in shaping excitatory and inhibitory pain-related learning may contribute to altered pain processing, underscoring its clinical relevance in chronic pain.

  10. Glia protein aquaporin-4 regulates aversive motivation of spatial memory in Morris water maze.

    PubMed

    Zhang, Ji; Li, Ying; Chen, Zhong-Guo; Dang, Hui; Ding, Jian-Hua; Fan, Yi; Hu, Gang

    2013-12-01

    Although extensive investigation has revealed that an astrocyte-specific protein aquaporin-4 (AQP4) participates in regulating synaptic plasticity and memory, a functional relationship between AQP4 and learning processing has not been clearly established. This study was designed to test our hypothesis that AQP4 modulates the aversive motivation in Morris water maze (MWM). Using hidden platform training, we observed that AQP4 KO mice significantly decreased their swimming velocity compared with wild-type (WT) mice. To test for a relationship between velocities and escape motivation, we removed the platform and subjected a new group of mice similar to the session of hidden platform training. We found that KO mice exhibited a gradual reduction in swimming velocity, while WT mice did not alter their velocity. In the subsequent probe trial, KO mice after no platform training significantly decreased their mean velocity compared with those KO mice after hide platform training. However, all of KO mice were not impaired in their ability to locate a visible, cued escape platform. Our findings, along with a previous report that AQP4 regulates memory consolidation, implicate a novel role for this glial protein in modulating the aversive motivation in spatial learning paradigm. © 2013 John Wiley & Sons Ltd.

  11. The role of injection cues in the production of the morphine preexposure effect in taste aversion learning.

    PubMed

    Davis, Catherine M; de Brugada, Isabel; Riley, Anthony L

    2010-05-01

    The attenuation of an LiCl-induced conditioned taste aversion (CTA) by LiCl preexposure is mediated primarily by associative blocking via injection-related cues. Given that preexposure to morphine attenuates morphine-induced CTAs, it was of interest to determine whether injection cues also mediate this effect. Certain morphine-induced behaviors such as analgesic tolerance are controlled associatively, via injection-related cues. Accordingly, animals in the present experiments were preexposed to morphine (or vehicle) every other day for five total exposures, followed by an extinction phase, in which the subjects were given saline injections (or no treatment) for 8 (Experiment 1) or 16 (Experiment 2) consecutive days. All of the animals then received five CTA trials with morphine (or vehicle). The morphine-preexposed animals in Experiment 1 displayed an attenuation of the morphine CTA that was unaffected by extinction saline injections, suggesting that blocking by injection cues during morphine preexposure does not mediate this effect. All of the morphine-preexposed subjects in Experiment 2 displayed a weakened preexposure effect, an effect inconsistent with a selective extinction of drug-associated stimuli. The attenuating effects of morphine preexposure in aversion learning are most likely controlled by nonassociative mechanisms, like drug tolerance.

  12. Prediction and Uncertainty in Human Pavlovian to Instrumental Transfer

    ERIC Educational Resources Information Center

    Trick, Leanne; Hogarth, Lee; Duka, Theodora

    2011-01-01

    Attentional capture and behavioral control by conditioned stimuli have been dissociated in animals. The current study assessed this dissociation in humans. Participants were trained on a Pavlovian schedule in which 3 visual stimuli, A, B, and C, predicted the occurrence of an aversive noise with 90%, 50%, or 10% probability, respectively.…

  13. Gaze Aversion to Stuttered Speech: A Pilot Study Investigating Differential Visual Attention to Stuttered and Fluent Speech

    ERIC Educational Resources Information Center

    Bowers, Andrew L.; Crawcour, Stephen C.; Saltuklaroglu, Tim; Kalinowski, Joseph

    2010-01-01

    Background: People who stutter are often acutely aware that their speech disruptions, halted communication, and aberrant struggle behaviours evoke reactions in communication partners. Considering that eye gaze behaviours have emotional, cognitive, and pragmatic overtones for communicative interactions and that previous studies have indicated…

  14. Memory Elicited by Courtship Conditioning Requires Mushroom Body Neuronal Subsets Similar to Those Utilized in Appetitive Memory.

    PubMed

    Montague, Shelby A; Baker, Bruce S

    2016-01-01

    An animal's ability to learn and to form memories is essential for its survival. The fruit fly has proven to be a valuable model system for studies of learning and memory. One learned behavior in fruit flies is courtship conditioning. In Drosophila courtship conditioning, male flies learn not to court females during training with an unreceptive female. He retains a memory of this training and for several hours decreases courtship when subsequently paired with any female. Courtship conditioning is a unique learning paradigm; it uses a positive-valence stimulus, a female fly, to teach a male to decrease an innate behavior, courtship of the female. As such, courtship conditioning is not clearly categorized as either appetitive or aversive conditioning. The mushroom body (MB) region in the fruit fly brain is important for several types of memory; however, the precise subsets of intrinsic and extrinsic MB neurons necessary for courtship conditioning are unknown. Here, we disrupted synaptic signaling by driving a shibirets effector in precise subsets of MB neurons, defined by a collection of split-GAL4 drivers. Out of 75 lines tested, 32 showed defects in courtship conditioning memory. Surprisingly, we did not have any hits in the γ lobe Kenyon cells, a region previously implicated in courtship conditioning memory. We did find that several γ lobe extrinsic neurons were necessary for courtship conditioning memory. Overall, our memory hits in the dopaminergic neurons (DANs) and the mushroom body output neurons were more consistent with results from appetitive memory assays than aversive memory assays. For example, protocerebral anterior medial DANs were necessary for courtship memory, similar to appetitive memory, while protocerebral posterior lateral 1 (PPL1) DANs, important for aversive memory, were not needed. Overall, our results indicate that the MB circuits necessary for courtship conditioning memory coincide with circuits necessary for appetitive memory.

  15. Memory Elicited by Courtship Conditioning Requires Mushroom Body Neuronal Subsets Similar to Those Utilized in Appetitive Memory

    PubMed Central

    Montague, Shelby A.; Baker, Bruce S.

    2016-01-01

    An animal’s ability to learn and to form memories is essential for its survival. The fruit fly has proven to be a valuable model system for studies of learning and memory. One learned behavior in fruit flies is courtship conditioning. In Drosophila courtship conditioning, male flies learn not to court females during training with an unreceptive female. He retains a memory of this training and for several hours decreases courtship when subsequently paired with any female. Courtship conditioning is a unique learning paradigm; it uses a positive-valence stimulus, a female fly, to teach a male to decrease an innate behavior, courtship of the female. As such, courtship conditioning is not clearly categorized as either appetitive or aversive conditioning. The mushroom body (MB) region in the fruit fly brain is important for several types of memory; however, the precise subsets of intrinsic and extrinsic MB neurons necessary for courtship conditioning are unknown. Here, we disrupted synaptic signaling by driving a shibirets effector in precise subsets of MB neurons, defined by a collection of split-GAL4 drivers. Out of 75 lines tested, 32 showed defects in courtship conditioning memory. Surprisingly, we did not have any hits in the γ lobe Kenyon cells, a region previously implicated in courtship conditioning memory. We did find that several γ lobe extrinsic neurons were necessary for courtship conditioning memory. Overall, our memory hits in the dopaminergic neurons (DANs) and the mushroom body output neurons were more consistent with results from appetitive memory assays than aversive memory assays. For example, protocerebral anterior medial DANs were necessary for courtship memory, similar to appetitive memory, while protocerebral posterior lateral 1 (PPL1) DANs, important for aversive memory, were not needed. Overall, our results indicate that the MB circuits necessary for courtship conditioning memory coincide with circuits necessary for appetitive memory. PMID:27764141

  16. What and How Much Do Children Lose in Academic Settings Owing to Parental Separation?

    PubMed Central

    Corrás, Tania; Seijo, Dolores; Fariña, Francisca; Novo, Mercedes; Arce, Ramón; Cabanach, Ramón G.

    2017-01-01

    The literature has firmly established an association between parental separation and school failure. Nevertheless, parental separation does not affect academic aptitudes. Thus, mediators explain such relationship. A field study was designed to identify and quantify damage in the mediating variables between parental separation and school failure (i.e., external school adjustment, aversion to institution, aversion to learning, aversion to instruction, aversion to teachers, indiscipline). A total of 196 children, classified into three age cohorts: 109 in level 1 (from 8 to 11 years), 46 in level 2 (from 12 to 14 years), and 41 in level 3 (15 or more years), were assessed in school adjustment and in underlying dimensions of school (mal)adjustment. The results showed significant effects of parental separation in school adjustment and in the underlying dimensions to maladjustment in the three classification levels. The magnitude of damage increased with age, i.e., small in level 1, moderate in 2, and large in 3. Damage in all the sub-dimensions underlying school (mal)adjustment was quantified. The implications of the results for the design and implementation of prevention and intervention programs for children from separated parents are discussed. PMID:28955270

  17. Depletion of nucleus accumbens dopamine leads to impaired reward and aversion processing in mice: Relevance to motivation pathologies.

    PubMed

    Bergamini, Giorgio; Sigrist, Hannes; Ferger, Boris; Singewald, Nicolas; Seifritz, Erich; Pryce, Christopher R

    2016-10-01

    Dopamine (DA) neurotransmission, particularly the ventral tegmental area-nucleus accumbens (VTA-NAcc) projection, underlies reward and aversion processing, and deficient DA function could underlie motivational impairments in psychiatric disorders. 6-hydroxydopamine (6-OHDA) injection is an established method for chronic DA depletion, principally applied in rat to study NAcc DA regulation of reward motivation. Given the increasing focus on studying environmental and genetic regulation of DA function in mouse models, it is important to establish the effects of 6-OHDA DA depletion in mice, in terms of reward and aversion processing. This mouse study investigated effects of 6-OHDA-induced NAcc DA depletion using the operant behavioural test battery of progressive ratio schedule (PRS), learned non-reward (LNR), learned helplessness (LH), treadmill, and in addition Pavlovian fear conditioning. 6-OHDA NAcc DA depletion, confirmed by ex vivo HPLC-ED, reduced operant responding: for gustatory reward under effortful conditions in the PRS test; to a stimulus recently associated with gustatory non-reward in the LNR test; to escape footshock recently experienced as uncontrollable in the LH test; and to avoid footshock by physical effort in the treadmill test. Evidence for specificity of effects to NAcc DA was provided by lack of effect of medial prefrontal cortex DA depletion in the LNR and LH tests. These findings add significantly to the evidence that NAcc DA is a major regulator of behavioural responding, particularly at the motivational level, to both reward and aversion. They demonstrate the suitability of mouse models for translational study of causation and reversal of pathophysiological DA function underlying motivation psychopathologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in an insect.

    PubMed

    Mizunami, Makoto; Unoki, Sae; Mori, Yasuhiro; Hirashima, Daisuke; Hatano, Ai; Matsumoto, Yukihisa

    2009-08-04

    In insect classical conditioning, octopamine (the invertebrate counterpart of noradrenaline) or dopamine has been suggested to mediate reinforcing properties of appetitive or aversive unconditioned stimulus, respectively. However, the roles of octopaminergic and dopaminergic neurons in memory recall have remained unclear. We studied the roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in olfactory and visual conditioning in crickets. We found that pharmacological blockade of octopamine and dopamine receptors impaired aversive memory recall and appetitive memory recall, respectively, thereby suggesting that activation of octopaminergic and dopaminergic neurons and the resulting release of octopamine and dopamine are needed for appetitive and aversive memory recall, respectively. On the basis of this finding, we propose a new model in which it is assumed that two types of synaptic connections are formed by conditioning and are activated during memory recall, one type being connections from neurons representing conditioned stimulus to neurons inducing conditioned response and the other being connections from neurons representing conditioned stimulus to octopaminergic or dopaminergic neurons representing appetitive or aversive unconditioned stimulus, respectively. The former is called 'stimulus-response connection' and the latter is called 'stimulus-stimulus connection' by theorists studying classical conditioning in higher vertebrates. Our model predicts that pharmacological blockade of octopamine or dopamine receptors during the first stage of second-order conditioning does not impair second-order conditioning, because it impairs the formation of the stimulus-response connection but not the stimulus-stimulus connection. The results of our study with a cross-modal second-order conditioning were in full accordance with this prediction. We suggest that insect classical conditioning involves the formation of two kinds of memory traces, which match to stimulus-stimulus connection and stimulus-response connection. This is the first study to suggest that classical conditioning in insects involves, as does classical conditioning in higher vertebrates, the formation of stimulus-stimulus connection and its activation for memory recall, which are often called cognitive processes.

  19. Neurobiology of secure infant attachment and attachment despite adversity: a mouse model.

    PubMed

    Roth, T L; Raineki, C; Salstein, L; Perry, R; Sullivan-Wilson, T A; Sloan, A; Lalji, B; Hammock, E; Wilson, D A; Levitt, P; Okutani, F; Kaba, H; Sullivan, R M

    2013-10-01

    Attachment to an abusive caregiver has wide phylogenetic representation, suggesting that animal models are useful in understanding the neural basis underlying this phenomenon and subsequent behavioral outcomes. We previously developed a rat model, in which we use classical conditioning to parallel learning processes evoked during secure attachment (odor-stroke, with stroke mimicking tactile stimulation from the caregiver) or attachment despite adversity (odor-shock, with shock mimicking maltreatment). Here we extend this model to mice. We conditioned infant mice (postnatal day (PN) 7-9 or 13-14) with presentations of peppermint odor and either stroking or shock. We used (14) C 2-deoxyglucose (2-DG) to assess olfactory bulb and amygdala metabolic changes following learning. PN7-9 mice learned to prefer an odor following either odor-stroke or shock conditioning, whereas odor-shock conditioning at PN13-14 resulted in aversion/fear learning. 2-DG data indicated enhanced bulbar activity in PN7-9 preference learning, whereas significant amygdala activity was present following aversion learning at PN13-14. Overall, the mouse results parallel behavioral and neural results in the rat model of attachment, and provide the foundation for the use of transgenic and knockout models to assess the impact of both genetic (biological vulnerabilities) and environmental factors (abusive) on attachment-related behaviors and behavioral development. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  20. β-Adrenergic Receptors Regulate the Acquisition and Consolidation Phases of Aversive Memory Formation Through Distinct, Temporally Regulated Signaling Pathways

    PubMed Central

    Schiff, Hillary C; Johansen, Joshua P; Hou, Mian; Bush, David E A; Smith, Emily K; Klein, JoAnna E; LeDoux, Joseph E; Sears, Robert M

    2017-01-01

    Memory formation requires the temporal coordination of molecular events and cellular processes following a learned event. During Pavlovian threat (fear) conditioning (PTC), sensory and neuromodulatory inputs converge on post-synaptic neurons within the lateral nucleus of the amygdala (LA). By activating an intracellular cascade of signaling molecules, these G-protein-coupled neuromodulatory receptors are capable of recruiting a diverse profile of plasticity-related proteins. Here we report that norepinephrine, through its actions on β-adrenergic receptors (βARs), modulates aversive memory formation following PTC through two molecularly and temporally distinct signaling mechanisms. Specifically, using behavioral pharmacology and biochemistry in adult rats, we determined that βAR activity during, but not after PTC training initiates the activation of two plasticity-related targets: AMPA receptors (AMPARs) for memory acquisition and short-term memory and extracellular regulated kinase (ERK) for consolidating the learned association into a long-term memory. These findings reveal that βAR activity during, but not following PTC sets in motion cascading molecular events for the acquisition (AMPARs) and subsequent consolidation (ERK) of learned associations. PMID:27762270

  1. β-Adrenergic Receptors Regulate the Acquisition and Consolidation Phases of Aversive Memory Formation Through Distinct, Temporally Regulated Signaling Pathways.

    PubMed

    Schiff, Hillary C; Johansen, Joshua P; Hou, Mian; Bush, David E A; Smith, Emily K; Klein, JoAnna E; LeDoux, Joseph E; Sears, Robert M

    2017-03-01

    Memory formation requires the temporal coordination of molecular events and cellular processes following a learned event. During Pavlovian threat (fear) conditioning (PTC), sensory and neuromodulatory inputs converge on post-synaptic neurons within the lateral nucleus of the amygdala (LA). By activating an intracellular cascade of signaling molecules, these G-protein-coupled neuromodulatory receptors are capable of recruiting a diverse profile of plasticity-related proteins. Here we report that norepinephrine, through its actions on β-adrenergic receptors (βARs), modulates aversive memory formation following PTC through two molecularly and temporally distinct signaling mechanisms. Specifically, using behavioral pharmacology and biochemistry in adult rats, we determined that βAR activity during, but not after PTC training initiates the activation of two plasticity-related targets: AMPA receptors (AMPARs) for memory acquisition and short-term memory and extracellular regulated kinase (ERK) for consolidating the learned association into a long-term memory. These findings reveal that βAR activity during, but not following PTC sets in motion cascading molecular events for the acquisition (AMPARs) and subsequent consolidation (ERK) of learned associations.

  2. The endocannabinoid system and associative learning and memory in zebrafish.

    PubMed

    Ruhl, Tim; Moesbauer, Kirstin; Oellers, Nadine; von der Emde, Gerhard

    2015-09-01

    In zebrafish the medial pallium of the dorsal telencephalon represents an amygdala homolog structure, which is crucially involved in emotional associative learning and memory. Similar to the mammalian amygdala, the medial pallium contains a high density of endocannabinoid receptor CB1. To elucidate the role of the zebrafish endocannabinoid system in associative learning, we tested the influence of acute and chronic administration of receptor agonists (THC, WIN55,212-2) and antagonists (Rimonabant, AM-281) on two different learning paradigms. In an appetitively motivated two-alternative choice paradigm, animals learned to associate a certain color with a food reward. In a second set-up, a fish shuttle-box, animals associated the onset of a light stimulus with the occurrence of a subsequent electric shock (avoidance conditioning). Once fish successfully had learned to solve these behavioral tasks, acute receptor activation or inactivation had no effect on memory retrieval, suggesting that established associative memories were stable and not alterable by the endocannabinoid system. In both learning tasks, chronic treatment with receptor antagonists improved acquisition learning, and additionally facilitated reversal learning during color discrimination. In contrast, chronic CB1 activation prevented aversively motivated acquisition learning, while different effects were found on appetitively motivated acquisition learning. While THC significantly improved behavioral performance, WIN55,212-2 significantly impaired color association. Our findings suggest that the zebrafish endocannabinoid system can modulate associative learning and memory. Stimulation of the CB1 receptor might play a more specific role in acquisition and storage of aversive learning and memory, while CB1 blocking induces general enhancement of cognitive functions. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Reduced autobiographical memory specificity is associated with impaired discrimination learning in anxiety disorder patients

    PubMed Central

    Lenaert, Bert; Boddez, Yannick; Vervliet, Bram; Schruers, Koen; Hermans, Dirk

    2015-01-01

    Associative learning plays an important role in the development of anxiety disorders, but a thorough understanding of the variables that impact such learning is still lacking. We investigated whether individual differences in autobiographical memory specificity are related to discrimination learning and generalization. In an associative learning task, participants learned the association between two pictures of female faces and a non-aversive outcome. Subsequently, six morphed pictures functioning as generalization stimuli (GSs) were introduced. In a sample of healthy participants (Study 1), we did not find evidence for differences in discrimination learning as a function of memory specificity. In a sample of anxiety disorder patients (Study 2), individuals who were characterized by low memory specificity showed deficient discrimination learning relative to high specific individuals. In contrast to previous findings, results revealed no effect of memory specificity on generalization. These results indicate that impaired discrimination learning, previously shown in patients suffering from an anxiety disorder, may be—in part—due to limited memory specificity. Together, these studies emphasize the importance of incorporating cognitive variables in associative learning theories and their implications for the development of anxiety disorders. In addition, re-analyses of the data (Study 3) showed that patients suffering from panic disorder showed higher outcome expectancies in the presence of the stimulus that was never followed by an outcome during discrimination training, relative to patients suffering from other anxiety disorders and healthy participants. Because we used a neutral, non-aversive outcome (i.e., drawing of a lightning bolt), these data suggest that learning abnormalities in panic disorder may not be restricted to fear learning, but rather reflect a more general associative learning deficit that also manifests in fear irrelevant contexts. PMID:26191015

  4. Dried bonito dashi: taste qualities evaluated using conditioned taste aversion methods in wild-type and T1R1 knockout mice.

    PubMed

    Delay, Eugene R; Kondoh, Takashi

    2015-02-01

    The primary taste of dried bonito dashi is thought to be umami, elicited by inosine 5'-monphosphate (IMP) and L-amino acids. The present study compared the taste qualities of 25% dashi with 5 basic tastes and amino acids using conditioned taste aversion methods. Although wild-type C57BL/6J mice with compromised olfactory systems generalized an aversion of dashi to all 5 basic tastes, generalization was greater to sucrose (sweet), citric acid (sour), and quinine (bitter) than to NaCl (salty) or monosodium L-glutamate (umami) with amiloride. At neutral pH (6.5-6.9), the aversion generalized to l-histidine, L-alanine, L-proline, glycine, L-aspartic acid, L-serine, and monosodium L-glutamate, all mixed with IMP. Lowering pH of the test solutions to 5.7-5.8 (matching dashi) with HCl decreased generalization to some amino acids. However, adding lactic acid to test solutions with the same pH increased generalization to 5'-inosine monophosphate, L-leucine, L-phenylalanine, L-valine, L-arginine, and taurine but eliminated generalization to L-histidine. T1R1 knockout mice readily learned the aversion to dashi and generalized the aversion to sucrose, citric acid, and quinine but not to NaCl, glutamate, or any amino acid. These results suggest that dashi elicits a complex taste in mice that is more than umami, and deleting T1R1 receptor altered but did not eliminate their ability to taste dashi. In addition, lactic acid may alter or modulate taste transduction or cell-to-cell signaling. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Medial Amygdala Lesions Selectively Block Aversive Pavlovian–Instrumental Transfer in Rats

    PubMed Central

    McCue, Margaret G.; LeDoux, Joseph E.; Cain, Christopher K.

    2014-01-01

    Pavlovian conditioned stimuli (CSs) play an important role in the reinforcement and motivation of instrumental active avoidance (AA). Conditioned threats can also invigorate ongoing AA responding [aversive Pavlovian–instrumental transfer (PIT)]. The neural circuits mediating AA are poorly understood, although lesion studies suggest that lateral, basal, and central amygdala nuclei, as well as infralimbic prefrontal cortex, make key, and sometimes opposing, contributions. We recently completed an extensive analysis of brain c-Fos expression in good vs. poor avoiders following an AA test (Martinez et al., 2013, Learning and Memory). This analysis identified medial amygdala (MeA) as a potentially important region for Pavlovian motivation of instrumental actions. MeA is known to mediate defensive responding to innate threats as well as social behaviors, but its role in mediating aversive Pavlovian–instrumental interactions is unknown. We evaluated the effect of MeA lesions on Pavlovian conditioning, Sidman two-way AA conditioning (shuttling) and aversive PIT in rats. Mild footshocks served as the unconditioned stimulus in all conditioning phases. MeA lesions had no effect on AA but blocked the expression of aversive PIT and 22 kHz ultrasonic vocalizations in the AA context. Interestingly, MeA lesions failed to affect Pavlovian freezing to discrete threats but reduced freezing to contextual threats when assessed outside of the AA chamber. These findings differentiate MeA from lateral and central amygdala, as lesions of these nuclei disrupt Pavlovian freezing and aversive PIT, but have opposite effects on AA performance. Taken together, these results suggest that MeA plays a selective role in the motivation of instrumental avoidance by general or uncertain Pavlovian threats. PMID:25278858

  6. Odor-mediated taste learning requires dorsal hippocampus, but not basolateral amygdala activity

    PubMed Central

    Wheeler, Daniel S.; Chang, Stephen E.; Holland, Peter C.

    2013-01-01

    Mediated learning is a unique cognitive phenomenon in which mental representations of physically absent stimuli enter into associations with directly-activated representations of physically present stimuli. Three experiments investigated the functional physiology of mediated learning involving the use of odor-taste associations. In Experiments 1a and 1b, basolateral amygdala lesions failed to attenuate mediated taste aversion learning. In Experiment 2, dorsal hippocampus inactivation impaired mediated learning, but left direct learning intact. Considered with past studies, the results implicate the dorsal hippocampus in mediated learning generally, and suggest a limit on the importance of the basolateral amygdala. PMID:23274135

  7. The nature-disorder paradox: A perceptual study on how nature is disorderly yet aesthetically preferred.

    PubMed

    Kotabe, Hiroki P; Kardan, Omid; Berman, Marc G

    2017-08-01

    Natural environments have powerful aesthetic appeal linked to their capacity for psychological restoration. In contrast, disorderly environments are aesthetically aversive, and have various detrimental psychological effects. But in our research, we have repeatedly found that natural environments are perceptually disorderly. What could explain this paradox? We present 3 competing hypotheses: the aesthetic preference for naturalness is more powerful than the aesthetic aversion to disorder (the nature-trumps-disorder hypothesis ); disorder is trivial to aesthetic preference in natural contexts (the harmless-disorder hypothesis ); and disorder is aesthetically preferred in natural contexts (the beneficial-disorder hypothesis ). Utilizing novel methods of perceptual study and diverse stimuli, we rule in the nature-trumps-disorder hypothesis and rule out the harmless-disorder and beneficial-disorder hypotheses. In examining perceptual mechanisms, we find evidence that high-level scene semantics are both necessary and sufficient for the nature-trumps-disorder effect. Necessity is evidenced by the effect disappearing in experiments utilizing only low-level visual stimuli (i.e., where scene semantics have been removed) and experiments utilizing a rapid-scene-presentation procedure that obscures scene semantics. Sufficiency is evidenced by the effect reappearing in experiments utilizing noun stimuli which remove low-level visual features. Furthermore, we present evidence that the interaction of scene semantics with low-level visual features amplifies the nature-trumps-disorder effect-the effect is weaker both when statistically adjusting for quantified low-level visual features and when using noun stimuli which remove low-level visual features. These results have implications for psychological theories bearing on the joint influence of low- and high-level perceptual inputs on affect and cognition, as well as for aesthetic design. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Gentle vs. aversive handling of pregnant ewes: II. Physiology and behavior of the lambs.

    PubMed

    Coulon, M; Hild, S; Schroeer, A; Janczak, A M; Zanella, A J

    2011-07-06

    We compared the effects of aversive and gentle handling in late pregnant ewes on fearfulness, heart rate variability and spatial learning in lambs. Twenty-four Norwegian-Dala ewes were studied. Ewes were subjected to gentle (i.e. soft talking and calm behavior) or aversive handling (i.e. swift movements and shouting) for 10 min twice a day during the last five weeks of pregnancy. Lambs from aversively (AVS) or gently (GEN) treated ewes were tested at 4 weeks of age. Lamb behavior was recorded during a) a human approach test, composed of 4 min of isolation and 4 min of exposure to an unfamiliar human, b) an umbrella startle test followed by 5-min recording, and c) two repetitions of a maze test. In addition, heart rate variability was recorded telemetrically before and after the human and startle tests. The baseline heart rate variability measures suggested a lower influence of vagal stimulation in AVS lambs. In the human approach test, AVS lambs vocalized and explored the environment less, and were slower to approach the human. They also tended to have higher flight distances during the startle test than the GEN lambs. The prenatal treatment had no significant effect in the maze test. In conclusion, we showed that aversive handling of pregnant ewes increased fearfulness and reduced vagal tone in their progeny compared to GEN lambs. These effects can have consequences for how lambs cope with rearing conditions. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Inhibition of Fear by Learned Safety Signals: minisymposium review

    PubMed Central

    Fernando, Anushka B. P.; Kazama, Andy M.; Jovanovic, Tanja; Ostroff, Linnaea E.; Sangha, Susan

    2012-01-01

    Safety signals are learned cues that predict the non-occurrence of an aversive event. As such, safety signals are potent inhibitors of fear and stress responses. Investigations of safety signal learning have increased over the last few years due in part to the finding that traumatized persons are unable to utilize safety cues to inhibit fear, making it a clinically relevant phenotype. The goal of this review is to present recent advances relating to the neural and behavioral mechanisms of safety learning and expression in rodents, non-human primates and humans. PMID:23055481

  10. Sex differences in learning processes of classical and operant conditioning

    PubMed Central

    Dalla, Christina; Shors, Tracey J.

    2009-01-01

    Males and females learn and remember differently at different times in their lives. These differences occur in most species, from invertebrates to humans. We review here sex differences as they occur in laboratory rodent species. We focus on classical and operant conditioning paradigms, including classical eyeblink conditioning, fear conditioning, active avoidance and conditioned taste aversion. Sex differences have been reported during acquisition, retention and extinction in most of these paradigms. In general, females perform better than males in the classical eyeblink conditioning, in fear-potentiated startle and in most operant conditioning tasks, such as the active avoidance test. However, in the classical fear conditioning paradigm, in certain lever-pressing paradigms and in the conditioned taste aversion males outperform females or are more resistant to extinction. Most sex differences in conditioning are dependent on organizational effects of gonadal hormones during early development of the brain, in addition to modulation by activational effects during puberty and adulthood. Critically, sex differences in performance account for some of the reported effects on learning and these are discussed throughout the review. Because so many mental disorders are more prevalent on one sex than the other, it is important to consider sex differences in learning when applying animal models of learning for these disorders. Finally, we discuss how sex differences in learning continue to alter the brain throughout the lifespan. Thus, sex differences in learning are not only mediated by sex differences in the brain, but also contribute to them. PMID:19272397

  11. Sex differences in learning processes of classical and operant conditioning.

    PubMed

    Dalla, Christina; Shors, Tracey J

    2009-05-25

    Males and females learn and remember differently at different times in their lives. These differences occur in most species, from invertebrates to humans. We review here sex differences as they occur in laboratory rodent species. We focus on classical and operant conditioning paradigms, including classical eyeblink conditioning, fear-conditioning, active avoidance and conditioned taste aversion. Sex differences have been reported during acquisition, retention and extinction in most of these paradigms. In general, females perform better than males in the classical eyeblink conditioning, in fear-potentiated startle and in most operant conditioning tasks, such as the active avoidance test. However, in the classical fear-conditioning paradigm, in certain lever-pressing paradigms and in the conditioned taste aversion, males outperform females or are more resistant to extinction. Most sex differences in conditioning are dependent on organizational effects of gonadal hormones during early development of the brain, in addition to modulation by activational effects during puberty and adulthood. Critically, sex differences in performance account for some of the reported effects on learning and these are discussed throughout the review. Because so many mental disorders are more prevalent in one sex than the other, it is important to consider sex differences in learning when applying animal models of learning for these disorders. Finally, we discuss how sex differences in learning continue to alter the brain throughout the lifespan. Thus, sex differences in learning are not only mediated by sex differences in the brain, but also contribute to them.

  12. Pregnenolone sulphate enhances spatial orientation and object discrimination in adult male rats: evidence from a behavioural and electrophysiological study.

    PubMed

    Plescia, Fulvio; Sardo, Pierangelo; Rizzo, Valerio; Cacace, Silvana; Marino, Rosa Anna Maria; Brancato, Anna; Ferraro, Giuseppe; Carletti, Fabio; Cannizzaro, Carla

    2014-01-01

    Neurosteroids can alter neuronal excitability interacting with specific neurotransmitter receptors, thus affecting several functions such as cognition and emotionality. In this study we investigated, in adult male rats, the effects of the acute administration of pregnenolone-sulfate (PREGS) (10mg/kg, s.c.) on cognitive processes using the Can test, a non aversive spatial/visual task which allows the assessment of both spatial orientation-acquisition and object discrimination in a simple and in a complex version of the visual task. Electrophysiological recordings were also performed in vivo, after acute PREGS systemic administration in order to investigate on the neuronal activation in the hippocampus and the perirhinal cortex. Our results indicate that, PREGS induces an improvement in spatial orientation-acquisition and in object discrimination in the simple and in the complex visual task; the behavioural responses were also confirmed by electrophysiological recordings showing a potentiation in the neuronal activity of the hippocampus and the perirhinal cortex. In conclusion, this study demonstrates that PREGS systemic administration in rats exerts cognitive enhancing properties which involve both the acquisition and utilization of spatial information, and object discrimination memory, and also correlates the behavioural potentiation observed to an increase in the neuronal firing of discrete cerebral areas critical for spatial learning and object recognition. This provides further evidence in support of the role of PREGS in exerting a protective and enhancing role on human memory. Copyright © 2013. Published by Elsevier B.V.

  13. Optogenetic Induction of Aversive Taste Memory

    PubMed Central

    C. Keene, Alex; Masek, Pavel

    2013-01-01

    The Drosophila melanogaster gustatory system consists of several neuronal pathways representing diverse taste modalities. The two predominant modalities are a sweet sensing pathway that mediates attraction, and a bitter sensing pathway that mediates avoidance. A central question is how flies integrate stimuli from these pathways and generate the appropriate behavioral response. We have developed a novel assay for induction of taste memories. We demonstrate that the gustatory response to fructose is suppressed when followed by the presence of bitter quinine. We employ optogenetic neural activation using infrared laser in combination with heat sensitive channel - TRPA1 to precisely activate gustatory neurons. This optogenetic system allows for spatially and temporally controlled activation of distinct neural classes in the gustatory circuit. We directly activated bitter-sensing neurons together with presentation of fructose for remote induction of aversive taste memories. Here we report that activation of bitter-sensing neurons in the proboscis suffices as a conditioning stimulus. Spatially restricted stimulation indicates that the conditioning stimulus is indeed a signal from the bitter neurons in the proboscis and it is independent of postingestive feedback. The coincidence of temporally specific activation of bitter-sensing neurons with fructose presentation is crucial for memory formation, establishing aversive taste learning in Drosophila as associative learning. Taken together, this optogenetic system provides a powerful new tool for interrogation of the central brain circuits that mediate memory formation. PMID:22820051

  14. A pilot study to investigate the induction and manipulation of learned helplessness in healthy adults.

    PubMed

    Taylor, Joseph J; Neitzke, Daniel J; Khouri, George; Borckardt, Jeffrey J; Acierno, Ron; Tuerk, Peter W; Schmidt, Matthew; George, Mark S

    2014-11-30

    Eliminating the controllability of a noxious stimulus may induce a learned helplessness (LH) that resembles aspects of depression and post-traumatic stress disorder (PTSD). This study examined whether repetitive transcranial magnetic stimulation (rTMS) of the left dorsolateral prefrontal cortex (DLPFC) promotes resilience in an aversive stimulus model of LH. All 55 participants were told that an undisclosed sequence of button presses would terminate an aversive stimulus on their forearm. In truth, only half had control (+C). The other half had no control (-C). All participants received real (R) or sham (S) left DLPFC rTMS during the paradigm (+C/R, -C/S,+C/S,-C/R). We evaluated the cognitive effects of LH using an anagram task. The LH paradigm successfully reduced perceived control in the -C groups. As predicted, the +C/R and +C/S groups tended to give up less quickly and take less time to solve each anagram than did the -C/S group. Superior anagram performance in the -C/R group approached statistical significance. Our preliminary results suggest that manipulating the controllability of an aversive stimulus may induce an LH effect that manifests as impaired anagram performance. Further research is needed to refine this model and determine if DLPFC rTMS mitigates any LH effects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. A pilot study to investigate the induction and manipulation of learned helplessness in healthy adults

    PubMed Central

    Taylor, Joseph J.; Neitzke, Daniel J.; Khouri, George; Borckardt, Jeffrey J.; Acierno, Ron; Tuerk, Peter W.; Schmidt, Matthew; George, Mark S.

    2014-01-01

    Eliminating the controllability of a noxious stimulus may induce a learned helplessness (LH) that resembles aspects of depression and post-traumatic stress disorder (PTSD). This study examined whether repetitive transcranial magnetic stimulation (rTMS) of the left dorsolateral prefrontal cortex (DLPFC) promotes resilience in an aversive stimulus model of LH. All 55 participants were told that an undisclosed sequence of button presses would terminate an aversive stimulus on their forearm. In truth, only half had control (+C). The other half had no control (−C). All participants received real (R) or sham (S) left DLPFC rTMS during the paradigm (+C/R, −C/S,+C/S, −C/R). We evaluated the cognitive effects of LH using an anagram task. The LH paradigm successfully reduced perceived control in the −C groups. As predicted, the +C/R and +C/S groups tended to give up less quickly and take less time to solve each anagram than did the −C/S group. Superior anagram performance in the −C/R group approached statistical significance. Our preliminary results suggest that manipulating the controllability of an aversive stimulus may induce a LH effect that manifests as impaired anagram performance. Further research is needed to refine this model and determine if DLPFC rTMS mitigates any LH effects. PMID:25023370

  16. Parabrachial gustatory lesions impair taste aversion learning in rats.

    PubMed

    Spector, A C; Norgren, R; Grill, H J

    1992-02-01

    Lesions in the gustatory zone of the parabrachial nuclei (PBN) severely impair acquisition of a conditioned taste aversion (CTA) in rats. To test whether this deficit has a memorial basis, intact rats (n = 15) and rats with PBN lesions (PBNX; n = 10) received seven intraoral taste stimulus infusions (30 s, 0.5 ml) distributed over a 30.5-min period after either LiCl or NaCl injection. This task measures the rapid formation of a CTA and has minimum demands on memory. LiCl-injected intact rats progressively changed their oromotor response profile from one of ingestion to one of aversion. NaCl-injected intact rats did not change their ingestive pattern of responding. In contrast, there was no difference between LiCl- and NaCl-injected PBNX rats. These same PBNX rats failed to avoid licking the taste stimulus when tested in a different paradigm. A simple impairment in a memorial process is not likely the basis for the CTA deficit.

  17. Serotonin engages an anxiety and fear-promoting circuit in the extended amygdala.

    PubMed

    Marcinkiewcz, Catherine A; Mazzone, Christopher M; D'Agostino, Giuseppe; Halladay, Lindsay R; Hardaway, J Andrew; DiBerto, Jeffrey F; Navarro, Montserrat; Burnham, Nathan; Cristiano, Claudia; Dorrier, Cayce E; Tipton, Gregory J; Ramakrishnan, Charu; Kozicz, Tamas; Deisseroth, Karl; Thiele, Todd E; McElligott, Zoe A; Holmes, Andrew; Heisler, Lora K; Kash, Thomas L

    2016-09-01

    Serotonin (also known as 5-hydroxytryptamine (5-HT)) is a neurotransmitter that has an essential role in the regulation of emotion. However, the precise circuits have not yet been defined through which aversive states are orchestrated by 5-HT. Here we show that 5-HT from the dorsal raphe nucleus (5-HT DRN ) enhances fear and anxiety and activates a subpopulation of corticotropin-releasing factor (CRF) neurons in the bed nucleus of the stria terminalis (CRF BNST ) in mice. Specifically, 5-HT DRN projections to the BNST, via actions at 5-HT 2C receptors (5-HT 2C Rs), engage a CRF BNST inhibitory microcircuit that silences anxiolytic BNST outputs to the ventral tegmental area and lateral hypothalamus. Furthermore, we demonstrate that this CRF BNST inhibitory circuit underlies aversive behaviour following acute exposure to selective serotonin reuptake inhibitors (SSRIs). This early aversive effect is mediated via the corticotrophin-releasing factor type 1 receptor (CRF 1 R, also known as CRHR1), given that CRF 1 R antagonism is sufficient to prevent acute SSRI-induced enhancements in aversive learning. These results reveal an essential 5-HT DRN →CRF BNST circuit governing fear and anxiety, and provide a potential mechanistic explanation for the clinical observation of early adverse events to SSRI treatment in some patients with anxiety disorders.

  18. Reward, motivation and emotion of pain and its relief

    PubMed Central

    Porreca, Frank; Navratilova, Edita

    2016-01-01

    The experience of pain depends on interpretation of context and past experience that guide the choice of an immediate behavioral response and influence future decisions of actions to avoid harm. The aversive qualities of pain underlie its physiological role in learning and motivation. In this review, we highlight findings from human and animal investigations that suggest that both pain, and the relief of pain, are complex emotions that are comprised of feelings and their motivational consequences. Relief of aversive states, including pain, is rewarding. How relief of pain aversiveness occurs is not well understood. Termination of aversive states can directly provide relief as well as reinforce behaviors that result in avoidance of pain. Emerging preclinical data also suggests that relief may elicit a positive hedonic value that results from activation of neural cortical and mesolimbic brain circuits that may also motivate behavior. Brain circuits mediating the reward of pain relief, as well as relief-induced motivation are significantly impacted as pain becomes chronic. In chronic pain states, the negative motivational value of nociception may be increased while the value of the reward of pain relief may decrease. As a consequence, the impact of pain on these ancient, and conserved brain limbic circuits suggest a path forward for discovery of new pain therapies. PMID:28106670

  19. Prostaglandin-dependent modulation of dopaminergic neurotransmission elicits inflammation-induced aversion in mice

    PubMed Central

    Fritz, Michael; Klawonn, Anna M.; Nilsson, Anna; Singh, Anand Kumar; Zajdel, Joanna; Björk Wilhelms, Daniel; Lazarus, Michael; Löfberg, Andreas; Jaarola, Maarit; Örtegren Kugelberg, Unn; Billiar, Timothy R.; Hackam, David J.; Sodhi, Chhinder P.; Breyer, Matthew D.; Jakobsson, Johan; Schwaninger, Markus; Schütz, Günther; Rodriguez Parkitna, Jan; Saper, Clifford B.; Blomqvist, Anders; Engblom, David

    2015-01-01

    Systemic inflammation causes malaise and general feelings of discomfort. This fundamental aspect of the sickness response reduces the quality of life for people suffering from chronic inflammatory diseases and is a nuisance during mild infections like common colds or the flu. To investigate how inflammation is perceived as unpleasant and causes negative affect, we used a behavioral test in which mice avoid an environment that they have learned to associate with inflammation-induced discomfort. Using a combination of cell-type–specific gene deletions, pharmacology, and chemogenetics, we found that systemic inflammation triggered aversion through MyD88-dependent activation of the brain endothelium followed by COX1-mediated cerebral prostaglandin E2 (PGE2) synthesis. Further, we showed that inflammation-induced PGE2 targeted EP1 receptors on striatal dopamine D1 receptor–expressing neurons and that this signaling sequence induced aversion through GABA-mediated inhibition of dopaminergic cells. Finally, we demonstrated that inflammation-induced aversion was not an indirect consequence of fever or anorexia but that it constituted an independent inflammatory symptom triggered by a unique molecular mechanism. Collectively, these findings demonstrate that PGE2-mediated modulation of the dopaminergic motivational circuitry is a key mechanism underlying the negative affect induced by inflammation. PMID:26690700

  20. Social signals and aversive learning in honey bee drones and workers

    PubMed Central

    Pérez, Eddie; Vallejo, Lianna; Pérez, María E.; Abramson, Charles I.; Giray, Tugrul

    2017-01-01

    ABSTRACT The dissemination of information is a basic element of group cohesion. In honey bees (Apis mellifera Linnaeus 1758), like in other social insects, the principal method for colony-wide information exchange is communication via pheromones. This medium of communication allows multiple individuals to conduct tasks critical to colony survival. Social signaling also establishes conflict at the level of the individual who must trade-off between attending to the immediate environment or the social demand. In this study we examined this conflict by challenging highly social worker honey bees, and less social male drone honey bees undergoing aversive training by presenting them with a social stress signal (isopentyl acetate, IPA). We utilized IPA exposure methods that caused lower learning performance in appetitive learning in workers. Exposure to isopentyl acetate (IPA) did not affect performance of drones and had a dose-specific effect on worker response, with positive effects diminishing at higher IPA doses. The IPA effects are specific because non-social cues, such as the odor cineole, improve learning performance in drones, and social homing signals (geraniol) did not have a discernible effect on drone or worker performance. We conclude that social signals do generate conflict and that response to them is dependent on signal relevance to the individual as well as the context. We discuss the effect of social signal on learning both related to its social role and potential evolutionary history. PMID:27895050

  1. Depletion of Serotonin Selectively Impairs Short-Term Memory without Affecting Long-Term Memory in Odor Learning in the Terrestrial Slug "Limax Valentianus"

    ERIC Educational Resources Information Center

    Santa, Tomofumi; Kirino, Yutaka; Watanabe, Satoshi; Shirahata, Takaaki; Tsunoda, Makoto

    2006-01-01

    The terrestrial slug "Limax" is able to acquire short-term and long-term memories during aversive odor-taste associative learning. We investigated the effect of the selective serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) on memory. Behavioral studies indicated that 5,7-DHT impaired short-term memory but not long-term memory. HPLC…

  2. Attenuating GABAA Receptor Signaling in Dopamine Neurons Selectively Enhances Reward Learning and Alters Risk Preference in Mice

    PubMed Central

    Parker, Jones G.; Wanat, Matthew J.; Soden, Marta E.; Ahmad, Kinza; Zweifel, Larry S.; Bamford, Nigel S.; Palmiter, Richard D.

    2011-01-01

    Phasic dopamine transmission encodes the value of reward-predictive stimuli and influences both learning and decision-making. Altered dopamine signaling is associated with psychiatric conditions characterized by risky choices such as pathological gambling. These observations highlight the importance of understanding how dopamine neuron activity is modulated. While excitatory drive onto dopamine neurons is critical for generating phasic dopamine responses, emerging evidence suggests that inhibitory signaling also modulates these responses. To address the functional importance of inhibitory signaling in dopamine neurons, we generated mice lacking the β3 subunit of the GABAA receptor specifically in dopamine neurons (β3-KO mice) and examined their behavior in tasks that assessed appetitive learning, aversive learning, and risk preference. Dopamine neurons in midbrain slices from β3-KO mice exhibited attenuated GABA-evoked inhibitory post-synaptic currents. Furthermore, electrical stimulation of excitatory afferents to dopamine neurons elicited more dopamine release in the nucleus accumbens of β3-KO mice as measured by fast-scan cyclic voltammetry. β3-KO mice were more active than controls when given morphine, which correlated with potential compensatory upregulation of GABAergic tone onto dopamine neurons. β3-KO mice learned faster in two food-reinforced learning paradigms, but extinguished their learned behavior normally. Enhanced learning was specific for appetitive tasks, as aversive learning was unaffected in β3-KO mice. Finally, we found that β3-KO mice had enhanced risk preference in a probabilistic selection task that required mice to choose between a small certain reward and a larger uncertain reward. Collectively, these findings identify a selective role for GABAA signaling in dopamine neurons in appetitive learning and decision-making. PMID:22114279

  3. Dopamine and Octopamine Influence Avoidance Learning of Honey Bees in a Place Preference Assay

    PubMed Central

    Agarwal, Maitreyi; Giannoni Guzmán, Manuel; Morales-Matos, Carla; Del Valle Díaz, Rafael Alejandro; Abramson, Charles I.; Giray, Tugrul

    2011-01-01

    Biogenic amines are widely characterized in pathways evaluating reward and punishment, resulting in appropriate aversive or appetitive responses of vertebrates and invertebrates. We utilized the honey bee model and a newly developed spatial avoidance conditioning assay to probe effects of biogenic amines octopamine (OA) and dopamine (DA) on avoidance learning. In this new protocol non-harnessed bees associate a spatial color cue with mild electric shock punishment. After a number of experiences with color and shock the bees no longer enter the compartment associated with punishment. Intrinsic aspects of avoidance conditioning are associated with natural behavior of bees such as punishment (lack of food, explosive pollination mechanisms, danger of predation, heat, etc.) and their association to floral traits or other spatial cues during foraging. The results show that DA reduces the punishment received whereas octopamine OA increases the punishment received. These effects are dose-dependent and specific to the acquisition phase of training. The effects during acquisition are specific as shown in experiments using the antagonists Pimozide and Mianserin for DA and OA receptors, respectively. This study demonstrates the integrative role of biogenic amines in aversive learning in the honey bee as modeled in a novel non-appetitive avoidance learning assay. PMID:21980435

  4. Acquisition of CS-US contingencies during Pavlovian fear conditioning and extinction in social anxiety disorder and posttraumatic stress disorder.

    PubMed

    Rabinak, Christine A; Mori, Shoko; Lyons, Maryssa; Milad, Mohammed R; Phan, K Luan

    2017-01-01

    Fear-based disorders, like social anxiety disorder (SAD) and posttraumatic stress disorder (PTSD), are characterized by an exaggerated fear response and avoidance to trigger cues, suggesting a transdiagnostic mechanism of psychopathology. Current theories suggest that abnormalities in conditioned fear is a primary contributor to the pathophysiology of these disorders. The primary goal of this study was to compare acquisition of conditioned stimulus (CS) and aversive unconditioned stimulus (US) contingencies during fear learning and extinction in individuals with SAD and PTSD. In a standard Pavlovian fear conditioning-extinction paradigm we measured subjective US expectancy ratings to different CSs in patients with SAD (n=16) compared to patients with PTSD (n=13) and healthy controls (n=15) RESULTS: Both patient groups (SAD, PTSD) acquired differential conditioning between a CS that predicted US (CS+) and a CS that never predicted the US (CS-), however, both groups reported an increased expectancy that the US would occur following the CS-. Additionally, the PTSD group overestimated that the US would occur in general. Neither patient group showed evidence of successful extinction of the CS+-US contingency nor differentiated their expectation of US occurrence between the CS+ and CS- during extinction learning. Group sample sizes were small and we did not include a trauma-exposed group without PTSD CONCLUSIONS: Both SAD and PTSD generalize expectations of an aversive outcome across CSs, even when a CS never signals an aversive outcome and PTSD may tend to over-expect threat. Fear learning and extinction abnormalities may be a core feature underlying shared symptoms across fear-based disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Sex differences in adult Wistar rats in the voluntary consumption of ethanol after pre-exposure to ethanol-induced flavor avoidance learning.

    PubMed

    de la Torre, M Lourdes; Escarabajal, M Dolores; Agüero, Ángeles

    2015-10-01

    Vulnerability to ethanol abuse may be a function of the balance between the opposing (aversive and rewarding) motivational effects of the drug. The study of these effects is particularly important for understanding alcohol addiction. Research in this field seems to point out that ethanol effects are determined by a set of internal factors (sex, ethanol intake history, etc.), as well as by environmental conditions surrounding the individual (i.e., stress) and, of course, the interactions between all these factors. This work explores sex differences in sensitivity to aversive effects of ethanol using the procedure of flavor avoidance learning (FAL), as well as the effect of this learning experience on subsequent voluntary ethanol consumption, in adult rats. The results obtained indicated a slight sex based difference in the amount of FAL acquired in that females acquisition was weaker (experiment 1), and a differing influence of previous experience with the aversive effects of ethanol on the voluntary consumption of the drug for each sex (experiment 2). In particular, it was observed that female ethanol-naive rats showed a higher intake level and preference for ethanol than both ethanol-experienced female rats and ethanol-naive male rats. In contrast, the ethanol-experienced male rats showed a greater consumption of and preference for ethanol than ethanol-naive male rats and ethanol-experienced female rats. These data are discussed noting a range of possible explicative factors (sex hormones, hedonic processing, etc.), but further studies are warranted to elucidate the mechanisms by which ethanol pre-exposure influences the subsequent intake of ethanol differently by sex. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction

    PubMed Central

    Kutlu, Munir Gunes

    2016-01-01

    It has long been hypothesized that conditioning mechanisms play major roles in addiction. Specifically, the associations between rewarding properties of drugs of abuse and the drug context can contribute to future use and facilitate the transition from initial drug use into drug dependency. On the other hand, the self-medication hypothesis of drug abuse suggests that negative consequences of drug withdrawal result in relapse to drug use as an attempt to alleviate the negative symptoms. In this review, we explored these hypotheses and the involvement of the hippocampus in the development and maintenance of addiction to widely abused drugs such as cocaine, amphetamine, nicotine, alcohol, opiates, and cannabis. Studies suggest that initial exposure to stimulants (i.e., cocaine, nicotine, and amphetamine) and alcohol may enhance hippocampal function and, therefore, the formation of augmented drug-context associations that contribute to the development of addiction. In line with the self-medication hypothesis, withdrawal from stimulants, ethanol, and cannabis results in hippocampus-dependent learning and memory deficits, which suggest that an attempt to alleviate these deficits may contribute to relapse to drug use and maintenance of addiction. Interestingly, opiate withdrawal leads to enhancement of hippocampus-dependent learning and memory. Given that a conditioned aversion to drug context develops during opiate withdrawal, the cognitive enhancement in this case may result in the formation of an augmented association between withdrawal-induced aversion and withdrawal context. Therefore, individuals with opiate addiction may return to opiate use to avoid aversive symptoms triggered by the withdrawal context. Overall, the systematic examination of the role of the hippocampus in drug addiction may help to formulate a better understanding of addiction and underlying neural substrates. PMID:27634143

  7. Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction.

    PubMed

    Kutlu, Munir Gunes; Gould, Thomas J

    2016-10-01

    It has long been hypothesized that conditioning mechanisms play major roles in addiction. Specifically, the associations between rewarding properties of drugs of abuse and the drug context can contribute to future use and facilitate the transition from initial drug use into drug dependency. On the other hand, the self-medication hypothesis of drug abuse suggests that negative consequences of drug withdrawal result in relapse to drug use as an attempt to alleviate the negative symptoms. In this review, we explored these hypotheses and the involvement of the hippocampus in the development and maintenance of addiction to widely abused drugs such as cocaine, amphetamine, nicotine, alcohol, opiates, and cannabis. Studies suggest that initial exposure to stimulants (i.e., cocaine, nicotine, and amphetamine) and alcohol may enhance hippocampal function and, therefore, the formation of augmented drug-context associations that contribute to the development of addiction. In line with the self-medication hypothesis, withdrawal from stimulants, ethanol, and cannabis results in hippocampus-dependent learning and memory deficits, which suggest that an attempt to alleviate these deficits may contribute to relapse to drug use and maintenance of addiction. Interestingly, opiate withdrawal leads to enhancement of hippocampus-dependent learning and memory. Given that a conditioned aversion to drug context develops during opiate withdrawal, the cognitive enhancement in this case may result in the formation of an augmented association between withdrawal-induced aversion and withdrawal context. Therefore, individuals with opiate addiction may return to opiate use to avoid aversive symptoms triggered by the withdrawal context. Overall, the systematic examination of the role of the hippocampus in drug addiction may help to formulate a better understanding of addiction and underlying neural substrates. © 2016 Kutlu and Gould; Published by Cold Spring Harbor Laboratory Press.

  8. Motivation versus aversive processing during perception.

    PubMed

    Padmala, Srikanth; Pessoa, Luiz

    2014-06-01

    Reward facilitates performance and boosts cognitive performance across many tasks. At the same time, negative affective stimuli interfere with performance when they are not relevant to the task at hand. Yet, the investigation of how reward and negative stimuli impact perception and cognition has taken place in a manner that is largely independent of each other. How reward and negative emotion simultaneously contribute to behavioral performance is currently poorly understood. The aim of the present study was to investigate how the simultaneous manipulation of positive motivational processing (here manipulated via reward) and aversive processing (here manipulated via negative picture viewing) influence behavior during a perceptual task. We tested 2 competing hypotheses about the impact of reward on negative picture viewing. On the one hand, suggestions about the automaticity of emotional processing predict that negative picture interference would be relatively immune to reward. On the other, if affective visual processing is not obligatory, as we have argued in the past, reward may counteract the deleterious effect of more potent negative pictures. We found that reward counteracted the effect of potent, negative distracters during a visual discrimination task. Thus, when sufficiently motivated, participants were able to reduce the deleterious impact of bodily mutilation stimuli.

  9. Failure to Find Ethanol-Induced Conditioned Taste Aversion in Honey Bees (Apis mellifera L.).

    PubMed

    Varnon, Christopher A; Dinges, Christopher W; Black, Timothy E; Wells, Harrington; Abramson, Charles I

    2018-04-24

    Conditioned taste aversion (CTA) learning is a highly specialized form of conditioning found across taxa that leads to avoidance of an initially neutral stimulus, such as taste or odor, that is associated with, but is not the cause of, a detrimental health condition. This study examines if honey bees (Apis mellifera L.) develop ethanol (EtOH)-induced CTA. Restrained bees were first administered a sucrose solution that was cinnamon scented, lavender scented, or unscented, and contained either 0, 2.5, 5, 10, or 20% EtOH. Then, 30 minutes later, we used a proboscis extension response (PER) conditioning procedure where the bees were taught to associate either cinnamon odor, lavender odor, or an air-puff with repeated sucrose feedings. For some bees, the odor of the previously consumed EtOH solution was the same as the odor associated with sucrose in the conditioning procedure. If bees are able to learn EtOH-induced CTA, they should show an immediate low level of response to odors previously associated with EtOH. We found that bees did not develop CTA despite the substantial inhibitory and aversive effects EtOH has on behavior. Instead, bees receiving a conditioning odor that was previously associated with EtOH showed an immediate high level of response. While this demonstrates bees are capable of one-trial learning common to CTA experiments, this high level of response is the opposite of what would occur if the bees developed a CTA. Responding on subsequent trials also showed a general inhibitory effect of EtOH. Finally, we found that consumption of cinnamon extract reduced the effects of EtOH. The honey bees' lack of learned avoidance to EtOH mirrors that seen in human alcoholism. These findings demonstrate the usefulness of honey bees as an insect model for EtOH consumption. Copyright © 2018 by the Research Society on Alcoholism.

  10. Lmo4 in the Basolateral Complex of the Amygdala Modulates Fear Learning

    PubMed Central

    Maiya, Rajani; Kharazia, Viktor; Lasek, Amy W.; Heberlein, Ulrike

    2012-01-01

    Pavlovian fear conditioning is an associative learning paradigm in which mice learn to associate a neutral conditioned stimulus with an aversive unconditioned stimulus. In this study, we demonstrate a novel role for the transcriptional regulator Lmo4 in fear learning. LMO4 is predominantly expressed in pyramidal projection neurons of the basolateral complex of the amygdala (BLC). Mice heterozygous for a genetrap insertion in the Lmo4 locus (Lmo4gt/+), which express 50% less Lmo4 than their wild type (WT) counterparts display enhanced freezing to both the context and the cue in which they received the aversive stimulus. Small-hairpin RNA-mediated knockdown of Lmo4 in the BLC, but not the dentate gyrus region of the hippocampus recapitulated this enhanced conditioning phenotype, suggesting an adult- and brain region-specific role for Lmo4 in fear learning. Immunohistochemical analyses revealed an increase in the number of c-Fos positive puncta in the BLC of Lmo4gt/+ mice in comparison to their WT counterparts after fear conditioning. Lastly, we measured anxiety-like behavior in Lmo4gt/+ mice and in mice with BLC-specific downregulation of Lmo4 using the elevated plus maze, open field, and light/dark box tests. Global or BLC-specific knockdown of Lmo4 did not significantly affect anxiety-like behavior. These results suggest a selective role for LMO4 in the BLC in modulating learned but not unlearned fear. PMID:22509321

  11. Dissecting neural pathways for forgetting in Drosophila olfactory aversive memory

    PubMed Central

    Shuai, Yichun; Hirokawa, Areekul; Ai, Yulian; Zhang, Min; Li, Wanhe; Zhong, Yi

    2015-01-01

    Recent studies have identified molecular pathways driving forgetting and supported the notion that forgetting is a biologically active process. The circuit mechanisms of forgetting, however, remain largely unknown. Here we report two sets of Drosophila neurons that account for the rapid forgetting of early olfactory aversive memory. We show that inactivating these neurons inhibits memory decay without altering learning, whereas activating them promotes forgetting. These neurons, including a cluster of dopaminergic neurons (PAM-β′1) and a pair of glutamatergic neurons (MBON-γ4>γ1γ2), terminate in distinct subdomains in the mushroom body and represent parallel neural pathways for regulating forgetting. Interestingly, although activity of these neurons is required for memory decay over time, they are not required for acute forgetting during reversal learning. Our results thus not only establish the presence of multiple neural pathways for forgetting in Drosophila but also suggest the existence of diverse circuit mechanisms of forgetting in different contexts. PMID:26627257

  12. Inactivation of the Ventrolateral Orbitofrontal Cortex Impairs Flexible Use of Safety Signals.

    PubMed

    Sarlitto, Mary C; Foilb, Allison R; Christianson, John P

    2018-05-21

    Survival depends on adaptation to shifting environmental risks and opportunities. Regarding risks, the mechanisms which permit acquisition, recall, and flexible use of aversive associations is poorly understood. Drawing on the evidence that the orbital frontal cortex is critical to integrating outcome expectancies with flexible appetitive behavioral responses, we hypothesized that OFC would contribute to behavioral flexibility within an aversive learning domain. We introduce a fear conditioning procedure in which adult male rats were presented with shock-paired conditioned stimulus (CS+) or a safety cue (CS-). In a recall test, rats exhibit greater freezing to the CS+ than the CS-. Temporary inactivation of the ventrolateral OFC with muscimol prior to conditioning did not affect later discrimination, but inactivation after learning and prior to recall impaired discrimination between safety and danger cues. This result complements prior research in the appetitive domain and suggests that the OFC plays a general role in behavioral flexibility regardless of the valence of the CS. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Effects of treadmill exercise on the LiCl-induced conditioned taste aversion in rats.

    PubMed

    Tsuboi, Hisanori; Hirai, Yoshiyuki; Maezawa, Hitoshi; Notani, Kenji; Inoue, Nobuo; Funahashi, Makoto

    2015-01-01

    Studies have shown that exercise can enhance learning and memory. Conditioned taste aversion (CTA) is an avoidance behavior induced by associative memory of the taste sensation for something pleasant or neutral with a negative visceral reaction caused by the coincident action of a toxic substance that is tasteless or administered systemically. We sought to measure the effects of treadmill exercise on CTA in rats by investigating the effects of exercise on acquisition, extinction and spontaneous recovery of CTA. We made two groups of rats: an exercise group that ran on a treadmill, and a control group that did not have structured exercise periods. To condition rats to disfavor a sweet taste, consumption of a 0.1% saccharin solution in place of drinking water was paired with 0.15M LiCl (2% body weight, i.p.) to induce visceral discomfort. We measured changes of saccharin consumption during acquisition and extinction of CTA. The exercise and no-exercise groups both acquired CTA to similar levels and showed maximum extinction of CTA around 6 days after acquisition. This result indicates that exercise affects neither acquisition nor extinction of CTA. However, in testing for preservation of CTA after much longer extinction periods that included exercise or not during the intervening period, exercising animals showed a significantly lower saccharin intake, irrespective of having exercised or not during the conditioning phase of the trial. This result suggests that exercise may help to preserve aversive memory (taste aversion in this example) as evidence by the significant spontaneous recovery of aversion in exercising animals. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Neural circuits underlying visually evoked escapes in larval zebrafish

    PubMed Central

    Dunn, Timothy W.; Gebhardt, Christoph; Naumann, Eva A.; Riegler, Clemens; Ahrens, Misha B.; Engert, Florian; Del Bene, Filippo

    2015-01-01

    SUMMARY Escape behaviors deliver organisms away from imminent catastrophe. Here, we characterize behavioral responses of freely swimming larval zebrafish to looming visual stimuli simulating predators. We report that the visual system alone can recruit lateralized, rapid escape motor programs, similar to those elicited by mechanosensory modalities. Two-photon calcium imaging of retino-recipient midbrain regions isolated the optic tectum as an important center processing looming stimuli, with ensemble activity encoding the critical image size determining escape latency. Furthermore, we describe activity in retinal ganglion cell terminals and superficial inhibitory interneurons in the tectum during looming and propose a model for how temporal dynamics in tectal periventricular neurons might arise from computations between these two fundamental constituents. Finally, laser ablations of hindbrain circuitry confirmed that visual and mechanosensory modalities share the same premotor output network. Together, we establish a circuit for the processing of aversive stimuli in the context of an innate visual behavior. PMID:26804997

  15. Children's and adults' memory for emotional pictures: examining age-related patterns using the Developmental Affective Photo System.

    PubMed

    Cordon, Ingrid M; Melinder, Annika M D; Goodman, Gail S; Edelstein, Robin S

    2013-02-01

    Two studies were conducted to examine theoretical questions about children's and adults' memory for emotional visual stimuli. In Study 1, 7- to 9-year-olds and adults (N=172) participated in the initial creation of the Developmental Affective Photo System (DAPS). Ratings of emotional valence, arousal, and complexity were obtained. In Study 2, DAPS pictures were presented to 20 8- to 12-year-olds and 30 adults, followed by a recognition memory test. Children and adults recognized aversive images better than neutral images. Moreover, children and adults recognized high and moderate arousal images more accurately than low arousal images. Adults' memory for neutral images exceeded that of children, but there were no developmental differences in memory for aversive pictures. Theoretical and methodological implications are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila.

    PubMed

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I; Angel, Cristian; Campusano, Jorge M

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila.

  17. Effects of Aversive Classical Conditioning on Sexual Response in Women With Dyspareunia and Sexually Functional Controls.

    PubMed

    Both, Stephanie; Brauer, Marieke; Weijenborg, Philomeen; Laan, Ellen

    2017-05-01

    In dyspareunia-a somatically unexplained vulvovaginal pain associated with sexual intercourse-learned pain-related fear and inhibited sexual arousal are supposed to play a pivotal role. Based on research findings indicating that enhanced pain conditioning is involved in the etiology and maintenance of chronic pain, in the present study it was hypothesized that enhanced pain conditioning also might be involved in dyspareunia. To test whether learned associations between pain and sex negatively affect sexual response; whether women with dyspareunia show stronger aversive learning; and whether psychological distress, pain-related anxiety, vigilance, catastrophizing, and sexual excitation and inhibition were associated with conditioning effects. Women with dyspareunia (n = 36) and healthy controls (n = 35) completed a differential conditioning experiment, with one erotic picture (the CS + ) paired with a painful unconditional stimulus and one erotic picture never paired with pain (the CS - ). Genital sexual response was measured by vaginal photoplethysmography, and ratings of affective value and sexual arousal in response to the CS + and CS - were obtained. Psychological distress, pain cognitions, and sexual excitation and inhibition were assessed by validated questionnaires. The two groups showed stronger negative affect and weaker subjective sexual arousal to the CS + during the extinction phase, but, contrary to expectations, women with dyspareunia showed weaker differential responding. Controls showed more prominent lower genital response to the CS + during acquisition than women with dyspareunia. In addition, women with dyspareunia showed stronger expectancy for the unconditional stimulus in response to the safe CS - . Higher levels of pain-related fear, pain catastrophizing, and sexual inhibition were associated with weaker differential conditioning effects. Pairing of sex with pain negatively affects sexual response. The results indicate that a learned association of sex with pain and possibly deficient safety learning play a role in dyspareunia. Both S, Brauer M, Weijenborg P, Laan E. Effects of Aversive Classical Conditioning on Sexual Response in Women With Dyspareunia and Sexually Functional Controls. J Sex Med 2017;14:687-701. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  18. Motor coordination defects in mice deficient for the Sam68 RNA-binding protein.

    PubMed

    Lukong, Kiven E; Richard, Stéphane

    2008-06-03

    The role of RNA-binding proteins in the central nervous system and more specifically their role in motor coordination and learning are poorly understood. We previously reported that ablation of RNA-binding protein Sam68 in mice results in male sterility and delayed mammary gland development and protection against osteoporosis in females. Sam68 however is highly expressed in most regions of the brain especially the cerebellum and thus we investigated the cerebellar-related manifestations in Sam68-null mice. We analyzed the mice for motor function, sensory function, and learning and memory abilities. Herein, we report that Sam68-null mice have motor coordination defects as assessed by beam walking and rotorod performance. Forty-week-old Sam68-null mice (n=12) were compared to their wild-type littermates (n=12). The Sam68-null mice exhibited more hindpaw faults in beam walking tests and fell from the rotating drum at lower speeds and prematurely compared to the wild-type controls. The Sam68-null mice were, however, normal for forelimb strength, tail-hang reflex, balance test, grid walking, the Morris water task, recognition memory, visual discrimination, auditory stimulation and conditional taste aversion. Our findings support a role for Sam68 in the central nervous system in the regulation of motor coordination.

  19. Hippocampal-dependent memory in the plus-maze discriminative avoidance task: The role of spatial cues and CA1 activity.

    PubMed

    Leão, Anderson H F F; Medeiros, André M; Apolinário, Gênedy K S; Cabral, Alícia; Ribeiro, Alessandra M; Barbosa, Flávio F; Silva, Regina H

    2016-05-01

    The plus-maze discriminative avoidance task (PMDAT) has been used to investigate interactions between aversive memory and an anxiety-like response in rodents. Suitable performance in this task depends on the activity of the basolateral amygdala, similar to other aversive-based memory tasks. However, the role of spatial cues and hippocampal-dependent learning in the performance of PMDAT remains unknown. Here, we investigated the role of proximal and distal cues in the retrieval of this task. Animals tested under misplaced proximal cues had diminished performance, and animals tested under both misplaced proximal cues and absent distal cues could not discriminate the aversive arm. We also assessed the role of the dorsal hippocampus (CA1) in this aversive memory task. Temporary bilateral inactivation of dorsal CA1 was conducted with muscimol (0.05 μg, 0.1 μg, and 0.2 μg) prior to the training session. While the acquisition of the task was not altered, muscimol impaired the performance in the test session and reduced the anxiety-like response in the training session. We also performed a spreading analysis of a fluorophore-conjugated muscimol to confirm selective inhibition of CA1. In conclusion, both distal and proximal cues are required to retrieve the task, with the latter being more relevant to spatial orientation. Dorsal CA1 activity is also required for aversive memory formation in this task, and interfered with the anxiety-like response as well. Importantly, both effects were detected by different parameters in the same paradigm, endorsing the previous findings of independent assessment of aversive memory and anxiety-like behavior in the PMDAT. Taken together, these findings suggest that the PMDAT probably requires an integration of multiple systems for memory formation, resembling an episodic-like memory rather than a pure conditioning behavior. Furthermore, the concomitant and independent assessment of emotionality and memory in rodents is relevant to elucidate how these memory systems interact during aversive memory formation. Thus, the PMDAT can be useful for studying hippocampal-dependent memory when it involves emotional content. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Investigating motion sickness using the conditioned taste aversion paradigm

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.

    1991-01-01

    The avoidance of foods which are associated with uncomfortable or aversive internal states has long been recognized. Many people are aware, either directly or via anecdotal reports, of individuals who avoid foods which were eaten just before the onset of sickness. Awareness of this phenomenon can be traced to the writings of John Locke. The disruption of diet during cancer therapy is sometimes ascribed to the attribution of an unpleasant quality to foods eaten preceding the sickness induced by therapy itself. In addition, it has long been recognized by the manufacturers of rodent poisons that animals avoid the injection of food treated with nonlethal doses of poison. An important part of the laboratory study of this phenomenon was directed toward studying the role learning plays in this type of avoidance behavior. Following the lead of Garcia and his associates, this avoidance has come to be interpreted as arising from a form of classical conditioning. In typical laboratory studies of this bahavior, a novel food is ingested just prior to exposure to some stimulus, commonly poisoning or irradiation, which produces illness. Following the terminology of classical conditioning, it is common to describe this procedure as one of 'pairing' a conditioned stimulus (CS), the novel food, with an unconditioned stimulus (US), the illness induced by toxicosis or irradiation. Avoidance of the food in succeeding feeding opportunities is viewed as a learned response or a conditioned taste aversion (CTA). Garcia et al. asserted that motion sickness could produce 'gustatory' aversions, but passive motion was first reported as an US to establish CTA by Green and Rachlin. The purpose is to review the manner in which CTA has been used to study motion sickness. Numerous reviews concentrating on other aspects of CTA are available in the existing literature. Readers are encouraged to consult the various papers and edited books for extensive information on other aspects of this literature.

  1. Ecological Origins of Object Salience: Reward, Uncertainty, Aversiveness, and Novelty

    PubMed Central

    Ghazizadeh, Ali; Griggs, Whitney; Hikosaka, Okihide

    2016-01-01

    Among many objects around us, some are more salient than others (i.e., attract our attention automatically). Some objects may be inherently salient (e.g., brighter), while others may become salient by virtue of their ecological relevance through experience. However, the role of ecological experience in automatic attention has not been studied systematically. To address this question, we let subjects (macaque monkeys) view a large number of complex objects (>300), each experienced repeatedly (>5 days) with rewarding, aversive or no outcome association (mere-perceptual exposure). Test of salience was done on separate days using free viewing with no outcome. We found that gaze was biased among the objects from the outset, affecting saccades to objects or fixations within objects. When the outcome was rewarding, gaze preference was stronger (i.e., positive) for objects with larger or equal but uncertain rewards. The effects of aversive outcomes were variable. Gaze preference was positive for some outcome associations (e.g., airpuff), but negative for others (e.g., time-out), possibly due to differences in threat levels. Finally, novel objects attracted gaze, but mere perceptual exposure of objects reduced their salience (learned negative salience). Our results show that, in primates, object salience is strongly influenced by previous ecological experience and is supported by a large memory capacity. Owing to such high capacity for learned salience, the ability to rapidly choose important objects can grow during the entire life to promote biological fitness. PMID:27594825

  2. Brain response to visceral aversive conditioning: a functional magnetic resonance imaging study.

    PubMed

    Yágüez, Lidia; Coen, Steven; Gregory, Lloyd J; Amaro, Edson; Altman, Christian; Brammer, Michael J; Bullmore, Edward T; Williams, Steven C R; Aziz, Qasim

    2005-06-01

    Brain-imaging studies to date have confounded visceral pain perception with anticipation. We used functional magnetic resonance imaging of the human brain to study the neuroanatomic network involved in aversive conditioning of visceral pain and, thus, anticipation. Eight healthy volunteers (5 male) participated in the study. We used a classic conditioning paradigm in which 3 neutral stimuli (differently colored circles) that acted as conditioned stimuli were paired with painful esophageal distention, air puff to the wrist, or nothing, which acted as unconditioned stimuli. Neural activity was measured during learning, anticipation (pairing only 50% of conditioned stimuli with their unconditioned stimuli), and extinction (unpaired conditioned stimuli) phases. For magnetic resonance imaging, axial slices depicting blood oxygen level-dependent contrast were acquired with a 1.5-T system. Neural responses during the learning phase included areas commonly associated with visceral pain (anterior cingulate cortex, insula, and primary and secondary somatosensory cortices) and innocuous somatosensory perception (primary and secondary somatosensory cortices and insula). During the anticipation and extinction phases of aversive stimulation, brain activity resembled that seen during actual painful esophageal stimulation. In contrast, anticipation and extinction of the innocuous somatic stimulus failed to show that effect. We have shown that actual and anticipated visceral pain elicit similar cortical responses. These results have implications for the design and interpretation of brain-imaging studies of visceral pain. They not only contribute to our understanding of the processing of visceral pain, but also have clinical implications for the management of chronic pain states.

  3. Credit assignment in movement-dependent reinforcement learning

    PubMed Central

    Boggess, Matthew J.; Crossley, Matthew J.; Parvin, Darius; Ivry, Richard B.; Taylor, Jordan A.

    2016-01-01

    When a person fails to obtain an expected reward from an object in the environment, they face a credit assignment problem: Did the absence of reward reflect an extrinsic property of the environment or an intrinsic error in motor execution? To explore this problem, we modified a popular decision-making task used in studies of reinforcement learning, the two-armed bandit task. We compared a version in which choices were indicated by key presses, the standard response in such tasks, to a version in which the choices were indicated by reaching movements, which affords execution failures. In the key press condition, participants exhibited a strong risk aversion bias; strikingly, this bias reversed in the reaching condition. This result can be explained by a reinforcement model wherein movement errors influence decision-making, either by gating reward prediction errors or by modifying an implicit representation of motor competence. Two further experiments support the gating hypothesis. First, we used a condition in which we provided visual cues indicative of movement errors but informed the participants that trial outcomes were independent of their actual movements. The main result was replicated, indicating that the gating process is independent of participants’ explicit sense of control. Second, individuals with cerebellar degeneration failed to modulate their behavior between the key press and reach conditions, providing converging evidence of an implicit influence of movement error signals on reinforcement learning. These results provide a mechanistically tractable solution to the credit assignment problem. PMID:27247404

  4. Credit assignment in movement-dependent reinforcement learning.

    PubMed

    McDougle, Samuel D; Boggess, Matthew J; Crossley, Matthew J; Parvin, Darius; Ivry, Richard B; Taylor, Jordan A

    2016-06-14

    When a person fails to obtain an expected reward from an object in the environment, they face a credit assignment problem: Did the absence of reward reflect an extrinsic property of the environment or an intrinsic error in motor execution? To explore this problem, we modified a popular decision-making task used in studies of reinforcement learning, the two-armed bandit task. We compared a version in which choices were indicated by key presses, the standard response in such tasks, to a version in which the choices were indicated by reaching movements, which affords execution failures. In the key press condition, participants exhibited a strong risk aversion bias; strikingly, this bias reversed in the reaching condition. This result can be explained by a reinforcement model wherein movement errors influence decision-making, either by gating reward prediction errors or by modifying an implicit representation of motor competence. Two further experiments support the gating hypothesis. First, we used a condition in which we provided visual cues indicative of movement errors but informed the participants that trial outcomes were independent of their actual movements. The main result was replicated, indicating that the gating process is independent of participants' explicit sense of control. Second, individuals with cerebellar degeneration failed to modulate their behavior between the key press and reach conditions, providing converging evidence of an implicit influence of movement error signals on reinforcement learning. These results provide a mechanistically tractable solution to the credit assignment problem.

  5. Role of the Bed Nucleus of the Stria Terminalis in Aversive Learning and Memory

    ERIC Educational Resources Information Center

    Goode, Travis D.; Maren, Stephen

    2017-01-01

    Surviving threats in the environment requires brain circuits for detecting (or anticipating) danger and for coordinating appropriate defensive responses (e.g., increased cardiac output, stress hormone release, and freezing behavior). The bed nucleus of the stria terminalis (BNST) is a critical interface between the "affective…

  6. Individual Differences in Learner Controlled CAI.

    ERIC Educational Resources Information Center

    Judd, Wilson A.; And Others

    Two assumptions in support of learner-controlled computer-assisted instruction (CAI) are that (1) instruction administered under learner control will be less aversive than if administered under program control, and (2) the student is sufficiently aware of his learning state to make, in most instances, his own instructional decisions. Some 130…

  7. Perirhinal Cortex Muscarinic Receptor Blockade Impairs Taste Recognition Memory Formation

    ERIC Educational Resources Information Center

    Gutierrez, Ranier; De la Cruz, Vanesa; Rodriguez-Ortiz, Carlos J.; Bermudez-Rattoni, Federico

    2004-01-01

    The relevance of perirhinal cortical cholinergic and glutamatergic neurotransmission for taste recognition memory and learned taste aversion was assessed by microinfusions of muscarinic (scopolamine), NMDA (AP-5), and AMPA (NBQX) receptor antagonists. Infusions of scopolamine, but not AP5 or NBQX, prevented the consolidation of taste recognition…

  8. Constructive Disruptions for Effective Collaborative Learning: Navigating the Affordances of Social Media for Meaningful Engagement

    ERIC Educational Resources Information Center

    Rambe, Patient

    2012-01-01

    The essentialist view that new technological innovations (especially Social Media) disrupt higher education delivery ride on educators' risk averse attitudes toward full scale adoption of unproven technologies. However, this unsubstantiated logic forecloses possibilities for embracing the constructive dimensions of disruptions, and grasping the…

  9. The Effects of Non-Contingent Reinforcement on Children.

    ERIC Educational Resources Information Center

    Tramill, James L.; Kleinhammer, P. Jeannie

    Typical learned helplessness research has involved the presentation of non-contingent, aversive events followed by measures of performance on subsequent tasks; recent investigations have focused on the effect of non-contingent rewards. To examine the effects of non-contingent rewards on children, two studies were conducted, in which children were…

  10. Two Essays on Learning Disabilities in the Application of Fundamental Financial Principles

    ERIC Educational Resources Information Center

    Auciello, Daria Joy

    2010-01-01

    This dissertation consists of two essays which examine the relationship between dyslexia and the application and acquisition of financial knowledge. Recent behavioral research has documented that factors such as representativeness, overconfidence, loss aversion, naivete, wealth, age and gender all impact a person's risk perception and asset…

  11. Effects of Participant Modeling on Information Acquisition and Skill Utilization.

    ERIC Educational Resources Information Center

    Klingman, Avigdor; And Others

    1984-01-01

    Assessed the contribution of active participant modeling in coping skills training in children (N=38) highly fearful of dentists. Results provided evidence for the greater efficacy of active practice relative to symbolic modeling for the learning and utilization of coping strategies to reduce stress during aversive procedures. (LLL)

  12. Risk-Aversion: Understanding Teachers' Resistance to Technology Integration

    ERIC Educational Resources Information Center

    Howard, Sarah K.

    2013-01-01

    Teachers who do not integrate technology are often labelled as "resistant" to change. Yet, considerable uncertainties remain about appropriate uses and actual value of technology in teaching and learning, which can make integration and change seem risky. The purpose of this article is to explore the nature of teachers' analytical and…

  13. The Role of the Basolateral Amygdala in Punishment

    ERIC Educational Resources Information Center

    Dit-Bressel, Philip Jean-Richard; McNally, Gavan P.

    2015-01-01

    Aversive stimuli not only support fear conditioning to their environmental antecedents, they also punish behaviors that cause their occurrence. The amygdala, especially the basolateral nucleus (BLA), has been critically implicated in Pavlovian fear learning but its role in punishment remains poorly understood. Here, we used a within-subjects…

  14. Risk: The Ethics of a Creative Curriculum

    ERIC Educational Resources Information Center

    Hargreaves, Janet

    2008-01-01

    Higher education in the UK espouses to develop intelligence and critical skills in undergraduates. To do this requires exposing students to challenge and thus risk. However, current models of quality assurance are risk-averse and thus potentially limit the scope of creative learning and teaching strategies. Using two case studies, this paper…

  15. Enhancement of Inhibitory Avoidance and Conditioned Taste Aversion Memory With Insular Cortex Infusions of 8-Br-cAMP: Involvement of the Basolateral Amygdala

    PubMed Central

    Miranda, María I.; McGaugh, James L.

    2004-01-01

    There is considerable evidence that in rats, the insular cortex (IC) and amygdala are involved in the learning and memory of aversively motivated tasks. The present experiments examined the effects of 8-Br-cAMP, an analog of cAMP, and oxotremorine, a muscarinic agonist, infused into the IC after inhibitory avoidance (IA) training and during the acquisition/consolidation of conditioned taste aversion (CTA). Posttraining infusion into the IC of 0.3 μg oxotremorine and 1.25 μg 8-Br-cAMP enhanced IA retention. Infusions of 8-Br-cAMP, but not oxotremorine, into the IC enhanced taste aversion. The experiments also examined whether noradrenergic activity in the basolateral amygdala (BLA) is critical in enabling the enhancement of CTA and IA memory induced by drug infusions administered into the IC. For both CTA and IA, ipsilateral infusions of β-adrenergic antagonist propranolol administered into the BLA blocked the retention-enhancing effect of 8-Br-cAMP or oxotremorine infused into the IC. These results indicate that the IC is involved in the consolidation of memory for both IA and CTA, and this effect requires intact noradrenergic activity into the BLA. These findings provide additional evidence that the BLA interacts with other brain regions, including sensory cortex, in modulating memory consolidation. PMID:15169861

  16. Social signals and aversive learning in honey bee drones and workers.

    PubMed

    Avalos, Arian; Pérez, Eddie; Vallejo, Lianna; Pérez, María E; Abramson, Charles I; Giray, Tugrul

    2017-01-15

    The dissemination of information is a basic element of group cohesion. In honey bees (Apis mellifera Linnaeus 1758), like in other social insects, the principal method for colony-wide information exchange is communication via pheromones. This medium of communication allows multiple individuals to conduct tasks critical to colony survival. Social signaling also establishes conflict at the level of the individual who must trade-off between attending to the immediate environment or the social demand. In this study we examined this conflict by challenging highly social worker honey bees, and less social male drone honey bees undergoing aversive training by presenting them with a social stress signal (isopentyl acetate, IPA). We utilized IPA exposure methods that caused lower learning performance in appetitive learning in workers. Exposure to isopentyl acetate (IPA) did not affect performance of drones and had a dose-specific effect on worker response, with positive effects diminishing at higher IPA doses. The IPA effects are specific because non-social cues, such as the odor cineole, improve learning performance in drones, and social homing signals (geraniol) did not have a discernible effect on drone or worker performance. We conclude that social signals do generate conflict and that response to them is dependent on signal relevance to the individual as well as the context. We discuss the effect of social signal on learning both related to its social role and potential evolutionary history. © 2017. Published by The Company of Biologists Ltd.

  17. Mouse model of fragile X syndrome: behavioral and hormonal response to stressors.

    PubMed

    Nielsen, Darci M; Evans, Jeffrey J; Derber, William J; Johnston, Kenzie A; Laudenslager, Mark L; Crnic, Linda S; Maclean, Kenneth N

    2009-06-01

    Fragile X syndrome, a form of mental retardation caused by inadequate levels of fragile X mental retardation protein (FMRP), is characterized by extreme sensitivity to sensory stimuli and increased behavioral and hormonal reactivity to stressors. Fmr1 knockout mice lack FMRP and exhibit abnormal responses to auditory stimuli. This study sought to determine whether Fmr1 knockout mice on an F1 hybrid background are normal in their response to footshock. Knockout mice were also examined for signs of hyperexcitation across an extended trial range, and serum corticosterone levels were evaluated in response to various stressors. The ability to acquire conditioned taste aversion was also assessed. Knockout mice exhibited no impairment in associative aversive learning or memory, since they successfully expressed conditioned taste aversion. Footshock-sensitivity, freezing behavior, and corticosterone response to various stressors did not differ between knockout and wild-type mice. However, knockout mice exhibited significantly increased responses during the extended test. The knockout mice's increased responsiveness to footshock in the extended test may be an indication of increased vulnerability to stress or enhanced emotional reactivity. Copyright (c) 2009 APA, all rights reserved.

  18. Overshadowing: a silver lining to a dark cloud in horse training.

    PubMed

    McLean, Andrew N

    2008-01-01

    Overshadowing is a process known in behavioral science that occurs when two stimuli of different strengths are applied simultaneously to a nonhuman animal. Typically, the stronger stimulus overshadows the weaker one, resulting in attenuation of the weaker stimulus. This phenomenon explains ways in which the decreased responsiveness and consequent conflict behaviors (and possibly learned helplessness and wastage) in some performance horses can result from the application of two concurrent aversive stimuli. Despite some adverse consequences in the context of ridden horses, overshadowing can have serendipitous benefits because it offers an efficient method of desensitization for certain stimuli that are sometimes highly aversive: the saddle/girth pressure, clippers, aerosols, and needles. Desensitization with concurrent overshadowing appears to be comparatively rapid, particularly with highly aversive stimuli, possibly because attentional mechanisms are diverted to the more salient stimulus. It is important to note that, following the overshadowing procedure, the effects appear to be retained when assessed on subsequent days. Using 4 examples, this article presents a preliminary exploration of the beneficial use of a poorly understood, underutilized--yet promising--phenomenon that warrants further investigation.

  19. Tunicamycin impairs olfactory learning and synaptic plasticity in the olfactory bulb.

    PubMed

    Tong, Jia; Okutani, Fumino; Murata, Yoshihiro; Taniguchi, Mutsuo; Namba, Toshiharu; Wang, Yu-Jie; Kaba, Hideto

    2017-03-06

    Tunicamycin (TM) induces endoplasmic reticulum (ER) stress and inhibits N-glycosylation in cells. ER stress is associated with neuronal death in neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease, and most patients complain of the impairment of olfactory recognition. Here we examined the effects of TM on aversive olfactory learning and the underlying synaptic plasticity in the main olfactory bulb (MOB). Behavioral experiments demonstrated that the intrabulbar infusion of TM disabled aversive olfactory learning without affecting short-term memory. Histological analyses revealed that TM infusion upregulated C/EBP homologous protein (CHOP), a marker of ER stress, in the mitral and granule cell layers of MOB. Electrophysiological data indicated that TM inhibited tetanus-induced long-term potentiation (LTP) at the dendrodendritic excitatory synapse from mitral to granule cells. A low dose of TM (250nM) abolished the late phase of LTP, and a high dose (1μM) inhibited the early and late phases of LTP. Further, high-dose, but not low-dose, TM reduced the paired-pulse facilitation ratio, suggesting that the inhibitory effects of TM on LTP are partially mediated through the presynaptic machinery. Thus, our results support the hypothesis that TM-induced ER stress impairs olfactory learning by inhibiting synaptic plasticity via presynaptic and postsynaptic mechanisms in MOB. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Natural aversive learning in Tetramorium ants reveals ability to form a generalizable memory of predators' pit traps.

    PubMed

    Hollis, Karen L; McNew, Kelsey; Sosa, Talisa; Harrsch, Felicia A; Nowbahari, Elise

    2017-06-01

    Many species of ants fall prey to pit-digging larval antlions (Myrmeleon spp.), extremely sedentary predators that wait, nearly motionless at the bottom of their pit traps, for prey to stumble inside. Previous research, both in the field and laboratory, has demonstrated a remarkable ability of these ants to rescue trapped nestmates, thus sabotaging antlions' attempts to capture them. Here we show that pavement ants, Tetramorium sp. E, an invasive species and a major threat to biodiversity, possess yet another, more effective, antipredator strategy, namely the ability to learn to avoid antlion traps following a single successful escape from a pit. More importantly, we show that this learned antipredator behavior, an example of natural aversive learning in insects, is more complicated than a single cue-to-consequence form of associative learning. That is, pavement ants were able to generalize, after one experience, from the learned characteristics of the pit and its specific location, to other pits and other contexts that differed in many features. Such generalization, often described as a lack of precise stimulus control, nonetheless would be especially adaptive in nature, enabling ants to negotiate antlions' pit fields, which contain a hundred or more pits within a few centimetres of one another. Indeed, the ability to generalize in exactly this way almost certainly is responsible for the sudden, and heretofore inexplicable, behavioural modifications of ants in response to an invasion of antlions in the vicinity of an ant colony. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Eliciting conditioned taste aversion in lizards: Live toxic prey are more effective than scent and taste cues alone.

    PubMed

    Ward-Fear, Georgia; Thomas, Jai; Webb, Jonathan K; Pearson, David J; Shine, Richard

    2017-03-01

    Conditioned taste aversion (CTA) is an adaptive learning mechanism whereby a consumer associates the taste of a certain food with symptoms caused by a toxic substance, and thereafter avoids eating that type of food. Recently, wildlife researchers have employed CTA to discourage native fauna from ingesting toxic cane toads (Rhinella marina), a species that is invading tropical Australia. In this paper, we compare the results of 2 sets of CTA trials on large varanid lizards ("goannas," Varanus panoptes). One set of trials (described in this paper) exposed recently-captured lizards to sausages made from cane toad flesh, laced with a nausea-inducing chemical (lithium chloride) to reinforce the aversion response. The other trials (in a recently-published paper, reviewed herein) exposed free-ranging lizards to live juvenile cane toads. The effectiveness of the training was judged by how long a lizard survived in the wild before it was killed (fatally poisoned) by a cane toad. Both stimuli elicited rapid aversion to live toads, but the CTA response did not enhance survival rates of the sausage-trained goannas after they were released into the wild. In contrast, the goannas exposed to live juvenile toads exhibited higher long-term survival rates than did untrained conspecifics. Our results suggest that although it is relatively easy to elicit short-term aversion to toad cues in goannas, a biologically realistic stimulus (live toads, encountered by free-ranging predators) is most effective at buffering these reptiles from the impact of invasive toxic prey. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  2. Effects of internal and external factors on the budgeting between defensive and non-defensive responses in Aplysia.

    PubMed

    Leod, Kaitlyn A Mac; Seas, Alexandra; Wainwright, Marcy L; Mozzachiodi, Riccardo

    2018-04-25

    Following exposure to aversive stimuli, organisms budget their behaviors by augmenting defensive responses and reducing/suppressing non-defensive behaviors. This budgeting process must be flexible to accommodate modifications in the animal's internal and/or external state that require the normal balance between defensive and non-defensive behaviors to be adjusted. When exposed to aversive stimuli, the mollusk Aplysia budgets its behaviors by concurrently enhancing defensive withdrawal reflexes (an elementary form of learning known as sensitization) and suppressing feeding. Sensitization and feeding suppression are consistently co-expressed following different training protocols and share common temporal domains, suggesting that they are interlocked. In this study, we attempted to uncouple the co-expression of sensitization and feeding suppression using: 1) manipulation of the animal's motivational state through prolonged food deprivation and 2) extended training with aversive stimuli that induces sensitization lasting for weeks. Both manipulations uncoupled the co-expression of the above behavioral changes. Prolonged food deprivation prevented the expression of sensitization, but not of feeding suppression. Following the extended training, sensitization and feeding suppression were co-expressed only for a limited time (i.e., 24 h), after which feeding returned to baseline levels as sensitization persisted for up to seven days. These findings indicate that sensitization and feeding suppression are not interlocked and that their co-expression can be uncoupled by internal (prolonged food deprivation) and external (extended aversive training) factors. The different strategies, by which the co-expression of sensitization and feeding suppression was altered, provide an example of how budgeting strategies triggered by an identical aversive experience can vary depending on the state of the organism. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Externalizing proneness and brain response during pre-cuing and viewing of emotional pictures

    PubMed Central

    Foell, Jens; Brislin, Sarah J.; Strickland, Casey M.; Seo, Dongju; Sabatinelli, Dean

    2016-01-01

    Externalizing proneness, or trait disinhibition, is a concept relevant to multiple high-impact disorders involving impulsive-aggressive behavior. Its mechanisms remain disputed: major models posit hyperresponsive reward circuitry or heightened threat-system reactivity as sources of disinhibitory tendencies. This study evaluated alternative possibilities by examining relations between trait disinhibition and brain reactivity during preparation for and processing of visual affective stimuli. Forty females participated in a functional neuroimaging procedure with stimuli presented in blocks containing either pleasurable or aversive pictures interspersed with neutral, with each picture preceded by a preparation signal. Preparing to view elicited activation in regions including nucleus accumbens, whereas visual regions and bilateral amygdala were activated during viewing of emotional pictures. High disinhibition predicted reduced nucleus accumbens activation during preparation within pleasant/neutral picture blocks, along with enhanced amygdala reactivity during viewing of pleasant and aversive pictures. Follow-up analyses revealed that the augmented amygdala response was related to reduced preparatory activation. Findings indicate that participants high in disinhibition are less able to process implicit cues and mentally prepare for upcoming stimuli, leading to limbic hyperreactivity during processing of actual stimuli. This outcome is helpful for integrating findings from studies suggesting reward-system hyperreactivity and others suggesting threat-system hyperreactivity as mechanisms for externalizing proneness. PMID:26113614

  4. Neural responses to salient visual stimuli.

    PubMed Central

    Morris, J S; Friston, K J; Dolan, R J

    1997-01-01

    The neural mechanisms involved in the selective processing of salient or behaviourally important stimuli are uncertain. We used an aversive conditioning paradigm in human volunteer subjects to manipulate the salience of visual stimuli (emotionally expressive faces) presented during positron emission tomography (PET) neuroimaging. Increases in salience, and conflicts between the innate and acquired value of the stimuli, produced augmented activation of the pulvinar nucleus of the right thalamus. Furthermore, this pulvinar activity correlated positively with responses in structures hypothesized to mediate value in the brain right amygdala and basal forebrain (including the cholinergic nucleus basalis of Meynert). The results provide evidence that the pulvinar nucleus of the thalamus plays a crucial modulatory role in selective visual processing, and that changes in perceptual salience are mediated by value-dependent plasticity in pulvinar responses. PMID:9178546

  5. Ethanol-Induced Effects on Sting Extension Response and Punishment Learning in the Western Honey Bee (Apis mellifera)

    PubMed Central

    Giannoni-Guzmán, Manuel A.; Giray, Tugrul; Agosto-Rivera, Jose Luis; Stevison, Blake K.; Freeman, Brett; Ricci, Paige; Brown, Erika A.; Abramson, Charles I.

    2014-01-01

    Acute ethanol administration is associated with sedation and analgesia as well as behavioral disinhibition and memory loss but the mechanisms underlying these effects remain to be elucidated. During the past decade, insects have emerged as important model systems to understand the neural and genetic bases of alcohol effects. However, novel assays to assess ethanol's effects on complex behaviors in social or isolated contexts are necessary. Here we used the honey bee as an especially relevant model system since bees are typically exposed to ethanol in nature when collecting standing nectar crop of flowers, and there is recent evidence for independent biological significance of this exposure for social behavior. Bee's inhibitory control of the sting extension response (SER) and a conditioned-place aversion assay were used to study ethanol effects on analgesia, behavioral disinhibition, and associative learning. Our findings indicate that although ethanol, in a dose-dependent manner, increases SER thresholds (analgesic effects), it disrupts the ability of honey bees to inhibit SER and to associate aversive stimuli with their environment. These results suggest that ethanol's effects on analgesia, behavioral disinhibition and associative learning are common across vertebrates and invertebrates. These results add to the use of honey bees as an ethanol model to understand ethanol's effects on complex, socially relevant behaviors. PMID:24988309

  6. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila

    PubMed Central

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I.; Angel, Cristian; Campusano, Jorge M.

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila. PMID:26380118

  7. Effects of Choice and Social-Undesirability on Unprovoked Aggression.

    ERIC Educational Resources Information Center

    Sejwacz, Dorothy; Dion, Kenneth L.

    Female subjects in this study were induced to harm another person in an alleged "learning" study by administering aversive noise to a confederate-victim as she performed a problem-solving task. The subjects consisted of forty-six female undergraduates enrolled in Introductory Psychology at the University of Toronto. They were randomly assigned to…

  8. The Additive Effects of Choice and Control.

    ERIC Educational Resources Information Center

    Karbowski, Joseph; And Others

    In separate research studies, students who were given a choice of learning materials or who had control over aversive noise, demonstrated higher motivation and better task performance. To investigate the additive effects of choice and control on perception of control, 80 male and female college students participated in a 2 (choice vs. no-choice) X…

  9. Learned Helplessness and Students with Emotional or Behavioral Disorders: Deprivation in the Classroom

    ERIC Educational Resources Information Center

    Sutherland, Kevin S.; Singh, Nirbhay N.

    2004-01-01

    Students with emotional or behavioral disorders (E/BD) are characterized by academic deficits and classroom behavioral problems. The relationship between problem behavior and academic difficulties is complex, and some researchers have hypothesized that the classroom behavior problems of students with E/BD are responses to aversive stimuli, namely…

  10. Acute stress affects risk taking but not ambiguity aversion

    PubMed Central

    Buckert, Magdalena; Schwieren, Christiane; Kudielka, Brigitte M.; Fiebach, Christian J.

    2014-01-01

    Economic decisions are often made in stressful situations (e.g., at the trading floor), but the effects of stress on economic decision making have not been systematically investigated so far. The present study examines how acute stress influences economic decision making under uncertainty (risk and ambiguity) using financially incentivized lotteries. We varied the domain of decision making as well as the expected value of the risky prospect. Importantly, no feedback was provided to investigate risk taking and ambiguity aversion independent from learning processes. In a sample of 75 healthy young participants, 55 of whom underwent a stress induction protocol (Trier Social Stress Test for Groups), we observed more risk seeking for gains. This effect was restricted to a subgroup of participants that showed a robust cortisol response to acute stress (n = 26). Gambling under ambiguity, in contrast to gambling under risk, was not influenced by the cortisol response to stress. These results show that acute psychosocial stress affects economic decision making under risk, independent of learning processes. Our results further point to the importance of cortisol as a mediator of this effect. PMID:24834024

  11. Acute stress affects risk taking but not ambiguity aversion.

    PubMed

    Buckert, Magdalena; Schwieren, Christiane; Kudielka, Brigitte M; Fiebach, Christian J

    2014-01-01

    Economic decisions are often made in stressful situations (e.g., at the trading floor), but the effects of stress on economic decision making have not been systematically investigated so far. The present study examines how acute stress influences economic decision making under uncertainty (risk and ambiguity) using financially incentivized lotteries. We varied the domain of decision making as well as the expected value of the risky prospect. Importantly, no feedback was provided to investigate risk taking and ambiguity aversion independent from learning processes. In a sample of 75 healthy young participants, 55 of whom underwent a stress induction protocol (Trier Social Stress Test for Groups), we observed more risk seeking for gains. This effect was restricted to a subgroup of participants that showed a robust cortisol response to acute stress (n = 26). Gambling under ambiguity, in contrast to gambling under risk, was not influenced by the cortisol response to stress. These results show that acute psychosocial stress affects economic decision making under risk, independent of learning processes. Our results further point to the importance of cortisol as a mediator of this effect.

  12. Conditioned taste aversion dependent regulation of amygdala gene expression.

    PubMed

    Panguluri, Siva K; Kuwabara, Nobuyuki; Kang, Yi; Cooper, Nigel; Lundy, Robert F

    2012-02-28

    The present experiments investigated gene expression in the amygdala following contingent taste/LiCl treatment that supports development of conditioned taste aversion (CTA). The use of whole genome chips and stringent data set filtering led to the identification of 168 genes regulated by CTA compared to non-contingent LiCl treatment that does not support CTA learning. Seventy-six of these genes were eligible for network analysis. Such analysis identified "behavior" as the top biological function, which was represented by 15 of the 76 genes. These genes included several neuropeptides, G protein-coupled receptors, ion channels, kinases, and phosphatases. Subsequent qRT-PCR analyses confirmed changes in mRNA expression for 5 of 7 selected genes. We were able to demonstrate directionally consistent changes in protein level for 3 of these genes; insulin 1, oxytocin, and major histocompatibility complex class I-C. Behavioral analyses demonstrated that blockade of central insulin receptors produced a weaker CTA that was less resistant to extinction. Together, these results support the notion that we have identified downstream genes in the amygdala that contribute to CTA learning. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs

    PubMed Central

    Wu, Ming; Nern, Aljoscha; Williamson, W Ryan; Morimoto, Mai M; Reiser, Michael B; Card, Gwyneth M; Rubin, Gerald M

    2016-01-01

    Visual projection neurons (VPNs) provide an anatomical connection between early visual processing and higher brain regions. Here we characterize lobula columnar (LC) cells, a class of Drosophila VPNs that project to distinct central brain structures called optic glomeruli. We anatomically describe 22 different LC types and show that, for several types, optogenetic activation in freely moving flies evokes specific behaviors. The activation phenotypes of two LC types closely resemble natural avoidance behaviors triggered by a visual loom. In vivo two-photon calcium imaging reveals that these LC types respond to looming stimuli, while another type does not, but instead responds to the motion of a small object. Activation of LC neurons on only one side of the brain can result in attractive or aversive turning behaviors depending on the cell type. Our results indicate that LC neurons convey information on the presence and location of visual features relevant for specific behaviors. DOI: http://dx.doi.org/10.7554/eLife.21022.001 PMID:28029094

  14. Components of the anorexia-cachexia syndrome: gastrointestinal symptom correlates of cancer anorexia.

    PubMed

    Yavuzsen, Tugba; Walsh, Declan; Davis, Mellar P; Kirkova, Jordanka; Jin, Tao; LeGrand, Susan; Lagman, Ruth; Bicanovsky, Lesley; Estfan, Bassam; Cheema, Bushra; Haddad, Abdo

    2009-12-01

    Cancer-related anorexia is traditionally considered part of a complex but ill-defined anorexia-cachexia syndrome in which anorexia is intimately associated with other gastrointestinal (GI) symptoms and weight loss. We surveyed cancer patients with anorexia to learn more about the relationship between anorexia and these symptoms. A 22-item GI questionnaire assessed the severity of anorexia and the prevalence of concurrent GI symptoms, including taste changes, food aversions, altered sense of smell, and diurnal food intake changes. The relationship between anorexia severity and anticancer therapy and prior menstrual or pregnancy-related appetite changes was also assessed. Ninety-five of 101 patients with anorexia surveyed had complete data. Seventy-eight percent of them had moderate or severe anorexia. Abnormal diurnal appetite variation, taste changes, and food aversions were present in over 50% of all those with anorexia. Judged by the numerical rating scale, the worse the anorexia, the more prevalent were early satiety, constipation, vomiting, and food aversions. Those with more severe anorexia had greater weight loss, and worse performance status. Anorexia severity did not correlate with that during prior menses/pregnancy or antitumor therapy. Evaluation of multiple other GI symptoms is important in understanding the total experience of cancer anorexia. Early satiety, taste changes, food aversions, and altered sense of smell are important accompanying GI symptoms. Most validated anorexia tools do not assess these commonly associated GI symptoms. Future research should develop a comprehensive anorexia symptom questionnaire.

  15. Situational relevance: Context as a factor in serial overshadowing of taste aversion learning.

    PubMed

    Kwok, Dorothy W S; Boakes, Robert A

    2017-08-31

    In a serial overshadowing procedure a target stimulus, A, is followed after an interval by a potentially interfering stimulus, B, and this is then followed by an unconditioned stimulus, US. Revusky (1977) proposed that the degree to which B overshadows conditioning of A depends on whether or not the two events take place in the same context. To test this proposal two experiments used a 1-trial long-delay conditioned taste aversion (CTA) procedure; sucrose served as the target taste (A) and dilute hydrochloric acid (HCl) as the overshadowing taste (B), with lithium chloride injection providing the US. In Experiment 1 these tastes were novel; weaker overshadowing by HCl of an aversion to sucrose was found when the two tastes were presented in different contexts. Experiment 2 tested whether the effect of pre-exposure to HCl, thereby rendering it less effective in overshadowing a sucrose aversion, was also context-dependent. In the conditioning session rats again received either context-same or context-different presentations of sucrose and HCl. However, for some rats HCl was pre-exposed in the same context to which it was later presented during conditioning (Consistent), while others were pre-exposed to HCl in a different context to the one in which it was presented during conditioning (Inconsistent). The Inconsistent group produced greater overshadowing than the Consistent group and thus confirmed that the latent inhibition effect was also context dependent. This study supports Revusky's (1977) idea of situational relevance.

  16. Epinephrine increases contextual learning through activation of peripheral β2-adrenoceptors.

    PubMed

    Alves, Ester; Lukoyanov, Nikolay; Serrão, Paula; Moura, Daniel; Moreira-Rodrigues, Mónica

    2016-06-01

    Phenylethanolamine-N-methyltransferase knockout (Pnmt-KO) mice are unable to synthesize epinephrine and display reduced contextual fear. However, the precise mechanism responsible for impaired contextual fear learning in these mice is unknown. Our aim was to study the mechanism of epinephrine-dependent contextual learning. Wild-type (WT) or Pnmt-KO (129x1/SvJ) mice were submitted to a fear conditioning test either in the absence or in the presence of epinephrine, isoprenaline (non-selective β-adrenoceptor agonist), fenoterol (selective β2-adrenoceptor agonist), epinephrine plus sotalol (non-selective β-adrenoceptor antagonist), and dobutamine (selective β1-adrenoceptor agonist). Catecholamines were separated by reverse-phase HPLC and quantified by electrochemical detection. Blood glucose was measured by coulometry. Re-exposure to shock context induced higher freezing in WT and Pnmt-KO mice treated with epinephrine and fenoterol than in mice treated with vehicle. In addition, freezing response in Pnmt-KO mice was much lower than in WT mice. Freezing induced by epinephrine was blocked by sotalol in Pnmt-KO mice. Epinephrine and fenoterol treatment restored glycemic response in Pnmt-KO mice. Re-exposure to shock context did not induce a significant difference in freezing in Pnmt-KO mice treated with dobutamine and vehicle. Aversive memories are best retained if moderately high plasma epinephrine concentrations occur at the same moment as the aversive stimulus. In addition, epinephrine increases context fear learning by acting on peripheral β2-adrenoceptors, which may induce high levels of blood glucose. Since glucose crosses the blood-brain barrier, it may enhance hippocampal-dependent contextual learning.

  17. Stuttering Thoughts: Negative Self-Referent Thinking Is Less Sensitive to Aversive Outcomes in People with Higher Levels of Depressive Symptoms

    PubMed Central

    Iijima, Yudai; Takano, Keisuke; Boddez, Yannick; Raes, Filip; Tanno, Yoshihiko

    2017-01-01

    Learning theories of depression have proposed that depressive cognitions, such as negative thoughts with reference to oneself, can develop through a reinforcement learning mechanism. This negative self-reference is considered to be positively reinforced by rewarding experiences such as genuine support from others after negative self-disclosure, and negatively reinforced by avoidance of potential aversive situations. The learning account additionally predicts that negative self-reference would be maintained by an inability to adjust one’s behavior when negative self-reference no longer leads to such reward. To test this prediction, we designed an adapted version of the reversal-learning task. In this task, participants were reinforced to choose and engage in either negative or positive self-reference by probabilistic economic reward and punishment. Although participants were initially trained to choose negative self-reference, the stimulus-reward contingencies were reversed to prompt a shift toward positive self-reference (Study 1) and a further shift toward negative self-reference (Study 2). Model-based computational analyses showed that depressive symptoms were associated with a low learning rate of negative self-reference, indicating a high level of reward expectancy for negative self-reference even after the contingency reversal. Furthermore, the difficulty in updating outcome predictions of negative self-reference was significantly associated with the extent to which one possesses negative self-images. These results suggest that difficulty in adjusting action-outcome estimates for negative self-reference increases the chance to be faced with negative aspects of self, which may result in depressive symptoms. PMID:28824511

  18. Stuttering Thoughts: Negative Self-Referent Thinking Is Less Sensitive to Aversive Outcomes in People with Higher Levels of Depressive Symptoms.

    PubMed

    Iijima, Yudai; Takano, Keisuke; Boddez, Yannick; Raes, Filip; Tanno, Yoshihiko

    2017-01-01

    Learning theories of depression have proposed that depressive cognitions, such as negative thoughts with reference to oneself, can develop through a reinforcement learning mechanism. This negative self-reference is considered to be positively reinforced by rewarding experiences such as genuine support from others after negative self-disclosure, and negatively reinforced by avoidance of potential aversive situations. The learning account additionally predicts that negative self-reference would be maintained by an inability to adjust one's behavior when negative self-reference no longer leads to such reward. To test this prediction, we designed an adapted version of the reversal-learning task. In this task, participants were reinforced to choose and engage in either negative or positive self-reference by probabilistic economic reward and punishment. Although participants were initially trained to choose negative self-reference, the stimulus-reward contingencies were reversed to prompt a shift toward positive self-reference (Study 1) and a further shift toward negative self-reference (Study 2). Model-based computational analyses showed that depressive symptoms were associated with a low learning rate of negative self-reference, indicating a high level of reward expectancy for negative self-reference even after the contingency reversal. Furthermore, the difficulty in updating outcome predictions of negative self-reference was significantly associated with the extent to which one possesses negative self-images. These results suggest that difficulty in adjusting action-outcome estimates for negative self-reference increases the chance to be faced with negative aspects of self, which may result in depressive symptoms.

  19. Human amygdala activation by the sound produced during dental treatment: A fMRI study.

    PubMed

    Yu, Jen-Fang; Lee, Kun-Che; Hong, Hsiang-Hsi; Kuo, Song-Bor; Wu, Chung-De; Wai, Yau-Yau; Chen, Yi-Fen; Peng, Ying-Chin

    2015-01-01

    During dental treatments, patients may experience negative emotions associated with the procedure. This study was conducted with the aim of using functional magnetic resonance imaging (fMRI) to visualize cerebral cortical stimulation among dental patients in response to auditory stimuli produced by ultrasonic scaling and power suction equipment. Subjects (n = 7) aged 23-35 years were recruited for this study. All were right-handed and underwent clinical pure-tone audiometry testing to reveal a normal hearing threshold below 20 dB hearing level (HL). As part of the study, subjects initially underwent a dental calculus removal treatment. During the treatment, subjects were exposed to ultrasonic auditory stimuli originating from the scaling handpiece and salivary suction instruments. After dental treatment, subjects were imaged with fMRI while being exposed to recordings of the noise from the same dental instrument so that cerebral cortical stimulation in response to aversive auditory stimulation could be observed. The independent sample confirmatory t-test was used. Subjects also showed stimulation in the amygdala and prefrontal cortex, indicating that the ultrasonic auditory stimuli elicited an unpleasant response in the subjects. Patients experienced unpleasant sensations caused by contact stimuli in the treatment procedure. In addition, this study has demonstrated that aversive auditory stimuli such as sounds from the ultrasonic scaling handpiece also cause aversive emotions. This study was indicated by observed stimulation of the auditory cortex as well as the amygdala, indicating that noise from the ultrasonic scaling handpiece was perceived as an aversive auditory stimulus by the subjects. Subjects can experience unpleasant sensations caused by the sounds from the ultrasonic scaling handpiece based on their auditory stimuli.

  20. Human amygdala activation by the sound produced during dental treatment: A fMRI study

    PubMed Central

    Yu, Jen-Fang; Lee, Kun-Che; Hong, Hsiang-Hsi; Kuo, Song-Bor; Wu, Chung-De; Wai, Yau-Yau; Chen, Yi-Fen; Peng, Ying-Chin

    2015-01-01

    During dental treatments, patients may experience negative emotions associated with the procedure. This study was conducted with the aim of using functional magnetic resonance imaging (fMRI) to visualize cerebral cortical stimulation among dental patients in response to auditory stimuli produced by ultrasonic scaling and power suction equipment. Subjects (n = 7) aged 23-35 years were recruited for this study. All were right-handed and underwent clinical pure-tone audiometry testing to reveal a normal hearing threshold below 20 dB hearing level (HL). As part of the study, subjects initially underwent a dental calculus removal treatment. During the treatment, subjects were exposed to ultrasonic auditory stimuli originating from the scaling handpiece and salivary suction instruments. After dental treatment, subjects were imaged with fMRI while being exposed to recordings of the noise from the same dental instrument so that cerebral cortical stimulation in response to aversive auditory stimulation could be observed. The independent sample confirmatory t-test was used. Subjects also showed stimulation in the amygdala and prefrontal cortex, indicating that the ultrasonic auditory stimuli elicited an unpleasant response in the subjects. Patients experienced unpleasant sensations caused by contact stimuli in the treatment procedure. In addition, this study has demonstrated that aversive auditory stimuli such as sounds from the ultrasonic scaling handpiece also cause aversive emotions. This study was indicated by observed stimulation of the auditory cortex as well as the amygdala, indicating that noise from the ultrasonic scaling handpiece was perceived as an aversive auditory stimulus by the subjects. Subjects can experience unpleasant sensations caused by the sounds from the ultrasonic scaling handpiece based on their auditory stimuli. PMID:26356376

  1. A qualitative study exploring the emotional responses of female patients learning to perform clean intermittent self-catheterisation.

    PubMed

    Ramm, Dianne; Kane, Ros

    2011-11-01

    This paper is a report of a study exploring the lived experiences and emotional responses of female patients learning to perform clean intermittent self-catheterisation (CISC). There is general consensus that CISC should be considered in preference to in-dwelling catheterisation wherever feasible. Published literature has tended to focus on quality of life issues and technical and physical aspects. There has been less investigation into patients' initial perceptions of CISC and into their subsequent experiences of learning the technique. This qualitative study used a phenomenological research design. A series of semi-structured, in-depth interviews were held with a purposive sample of adult female patients performing CISC aged 34-64 years. Interviews were tape recorded and transcribed verbatim. Data were analysed using the 'Framework' method. This study identified six recurrent themes: grief and loss, lack of knowledge (regarding female anatomy, bladder dysfunction and catheters), negative associations and stigma, psychological aversion and embarrassment, nursing approaches and coping mechanisms. Loss of normal bladder function may represent a devastating event and trigger emotional responses associated with grief and loss. Patients may experience a range of reactions whilst learning CISC, including embarrassment and aversion, which may not dissipate over time. However, psychological distress is not inevitable and varies enormously between individuals. The nursing approach is vital, as individualised, empathic care is recognised and valued. This study adds to an emerging body of knowledge providing an enhanced understanding of the lived experiences of patients learning CISC. Nurses need to be alert to a range of potential emotional responses. This will facilitate the adoption of individualised teaching and learning strategies, designed to optimise the patient's assimilation of CISC into their lifestyle, promoting physical health, psychological wellbeing and independent living. © 2011 Blackwell Publishing Ltd.

  2. Impairment of decision-making in multiple sclerosis: A neuroeconomic approach.

    PubMed

    Sepúlveda, Maria; Fernández-Diez, Begoña; Martínez-Lapiscina, Elena H; Llufriu, Sara; Sola-Valls, Nuria; Zubizarreta, Irati; Blanco, Yolanda; Saiz, Albert; Levy, Dino; Glimcher, Paul; Villoslada, Pablo

    2017-11-01

    To assess the decision-making impairment in patients with multiple sclerosis (MS) and how they relate to other cognitive domains. We performed a cross-sectional analysis in 84 patients with MS, and 21 matched healthy controls using four tasks taken from behavioral economics: (1) risk preferences, (2) choice consistency, (3) delay of gratification, and (4) rate of learning. All tasks were conducted using real-world reward outcomes (food or money) in different real-life conditions. Participants underwent cognitive examination using the Brief Repeatable Battery-Neuropsychology. Patients showed higher risk aversion (general propensity to choose the lottery was 0.51 vs 0.64, p = 0.009), a trend to choose more immediate rewards over larger but delayed rewards ( p = 0.108), and had longer reactions times ( p = 0.033). Choice consistency and learning rates were not different between groups. Progressive patients chose slower than relapsing patients. In relation to general cognitive impairments, we found correlations between impaired decision-making and impaired verbal memory ( r = 0.29, p = 0.009), visual memory ( r = -0.37, p = 0.001), and reduced processing speed ( r = -0.32, p = 0.001). Normalized gray matter volume correlated with deliberation time ( r = -0.32, p = 0.005). Patients with MS suffer significant decision-making impairments, even at the early stages of the disease, and may affect patients' quality and social life.

  3. Emotion-based learning systems and the development of morality.

    PubMed

    Blair, R J R

    2017-10-01

    In this paper it is proposed that important components of moral development and moral judgment rely on two forms of emotional learning: stimulus-reinforcement and response-outcome learning. Data in support of this position will be primarily drawn from work with individuals with the developmental condition of psychopathy as well as fMRI studies with healthy individuals. Individuals with psychopathy show impairment on moral judgment tasks and a pronounced increased risk for instrumental antisocial behavior. It will be argued that these impairments are developmental consequences of impaired stimulus-aversive conditioning on the basis of distress cue reinforcers and response-outcome learning in individuals with this disorder. Copyright © 2017. Published by Elsevier B.V.

  4. Cellular, molecular, and epigenetic mechanisms in non-associative conditioning: implications for pain and memory.

    PubMed

    Rahn, Elizabeth J; Guzman-Karlsson, Mikael C; David Sweatt, J

    2013-10-01

    Sensitization is a form of non-associative conditioning in which amplification of behavioral responses can occur following presentation of an aversive or noxious stimulus. Understanding the cellular and molecular underpinnings of sensitization has been an overarching theme spanning the field of learning and memory as well as that of pain research. In this review we examine how sensitization, both in the context of learning as well as pain processing, shares evolutionarily conserved behavioral, cellular/synaptic, and epigenetic mechanisms across phyla. First, we characterize the behavioral phenomenon of sensitization both in invertebrates and vertebrates. Particular emphasis is placed on long-term sensitization (LTS) of withdrawal reflexes in Aplysia following aversive stimulation or injury, although additional invertebrate models are also covered. In the context of vertebrates, sensitization of mammalian hyperarousal in a model of post-traumatic stress disorder (PTSD), as well as mammalian models of inflammatory and neuropathic pain is characterized. Second, we investigate the cellular and synaptic mechanisms underlying these behaviors. We focus our discussion on serotonin-mediated long-term facilitation (LTF) and axotomy-mediated long-term hyperexcitability (LTH) in reduced Aplysia systems, as well as mammalian spinal plasticity mechanisms of central sensitization. Third, we explore recent evidence implicating epigenetic mechanisms in learning- and pain-related sensitization. This review illustrates the fundamental and functional overlay of the learning and memory field with the pain field which argues for homologous persistent plasticity mechanisms in response to sensitizing stimuli or injury across phyla. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. The Betrayal Aversion Elicitation Task: An Individual Level Betrayal Aversion Measure

    PubMed Central

    Aimone, Jason; Ball, Sheryl; King-Casas, Brooks

    2015-01-01

    Research on betrayal aversion shows that individuals’ response to risk depends not only on probabilities and payoffs, but also on whether the risk includes a betrayal of trust. While previous studies focus on measuring aggregate levels of betrayal aversion, the connection between an individual’s own betrayal aversion and other individually varying factors, including risk preferences, are currently unexplored. This paper develops a new task to elicit an individual’s level of betrayal aversion that can then be compared to individual characteristics. We demonstrate the feasibility of our new task and show that our aggregate individual results are consistent with previous studies. We then use this classification to ask whether betrayal aversion is correlated with risk aversion. While we find risk aversion and betrayal aversion have no significant relationship, we do observe that risk aversion is correlated with non-social risk preferences, but not the social, betrayal related, risk component of the new task. PMID:26331944

  6. The Betrayal Aversion Elicitation Task: An Individual Level Betrayal Aversion Measure.

    PubMed

    Aimone, Jason; Ball, Sheryl; King-Casas, Brooks

    2015-01-01

    Research on betrayal aversion shows that individuals' response to risk depends not only on probabilities and payoffs, but also on whether the risk includes a betrayal of trust. While previous studies focus on measuring aggregate levels of betrayal aversion, the connection between an individual's own betrayal aversion and other individually varying factors, including risk preferences, are currently unexplored. This paper develops a new task to elicit an individual's level of betrayal aversion that can then be compared to individual characteristics. We demonstrate the feasibility of our new task and show that our aggregate individual results are consistent with previous studies. We then use this classification to ask whether betrayal aversion is correlated with risk aversion. While we find risk aversion and betrayal aversion have no significant relationship, we do observe that risk aversion is correlated with non-social risk preferences, but not the social, betrayal related, risk component of the new task.

  7. Opposite Actions of Dopamine on Aversive and Appetitive Memories in the Crab

    ERIC Educational Resources Information Center

    Klappenbach, Martin; Maldonado, Hector; Locatelli, Fernando; Kaczer, Laura

    2012-01-01

    The understanding of how the reinforcement is represented in the central nervous system during memory formation is a current issue in neurobiology. Several studies in insects provide evidence of the instructive role of biogenic amines during the learning and memory process. In insects it was widely accepted that dopamine (DA) mediates aversive…

  8. "A Question of Balance:" A Conference on Risk and Adventure in Society.

    ERIC Educational Resources Information Center

    Reed, Chris

    2000-01-01

    In November 2000, a conference in London hosted by three outdoor education associations examined the growing culture of risk aversion in the United Kingdom, the role of risk in learning, the increasing difficulty of finding a balance between risk and adventure, and the challenges of tempting children away from computer games and dealing with…

  9. Optogenetic Activation of Presynaptic Inputs in Lateral Amygdala Forms Associative Fear Memory

    ERIC Educational Resources Information Center

    Kwon, Jeong-Tae; Nakajima, Ryuichi; Hyung-Su, Kim; Jeong, Yire; Augustine, George J.; Han, Jin-Hee

    2014-01-01

    In Pavlovian fear conditioning, the lateral amygdala (LA) has been highlighted as a key brain site for association between sensory cues and aversive stimuli. However, learning-related changes are also found in upstream sensory regions such as thalamus and cortex. To isolate the essential neural circuit components for fear memory association, we…

  10. Good Vibrations: Cross-Frequency Coupling in the Human Nucleus Accumbens during Reward Processing

    ERIC Educational Resources Information Center

    Cohen, Michael X.; Axmacher, Nikolai; Lenartz, Doris; Elger, Christian E.; Sturm, Volker; Schlaepfer, Thomas E.

    2009-01-01

    The nucleus accumbens is critical for reward-guided learning and decision-making. It is thought to "gate" the flow of a diverse range of information (e.g., rewarding, aversive, and novel events) from limbic afferents to basal ganglia outputs. Gating and information encoding may be achieved via cross-frequency coupling, in which bursts of…

  11. Facilitation of Taste Memory Acquisition by Experiencing Previous Novel Taste Is Protein-Synthesis Dependent

    ERIC Educational Resources Information Center

    Merhav, Maayan; Rosenblum, Kobi

    2008-01-01

    Very little is known about the biological and molecular mechanisms that determine the effect of previous experience on implicit learning tasks. In the present study, we first defined weak and strong taste inputs according to measurements in the behavioral paradigm known as latent inhibition of conditioned taste aversion. We then demonstrated that…

  12. Active vs. Reactive Threat Responding is Associated with Differential c-Fos Expression in Specific Regions of Amygdala and Prefrontal Cortex

    ERIC Educational Resources Information Center

    Martinez, Raquel C. R.; Gupta, Nikita; Lazaro-Munoz, Gabriel; Sears, Robert M.; Kim, Soojeong; Moscarello, Justin M.; LeDoux, Joseph E.; Cain, Christopher K.

    2013-01-01

    Active avoidance (AA) is an important paradigm for studying mechanisms of aversive instrumental learning, pathological anxiety, and active coping. Unfortunately, AA neurocircuits are poorly understood, partly because behavior is highly variable and reflects a competition between Pavlovian reactions and instrumental actions. Here we exploited the…

  13. A conditioned visual orientation requires the ellipsoid body in Drosophila

    PubMed Central

    Guo, Chao; Du, Yifei; Yuan, Deliang; Li, Meixia; Gong, Haiyun; Gong, Zhefeng

    2015-01-01

    Orientation, the spatial organization of animal behavior, is an essential faculty of animals. Bacteria and lower animals such as insects exhibit taxis, innate orientation behavior, directly toward or away from a directional cue. Organisms can also orient themselves at a specific angle relative to the cues. In this study, using Drosophila as a model system, we established a visual orientation conditioning paradigm based on a flight simulator in which a stationary flying fly could control the rotation of a visual object. By coupling aversive heat shocks to a fly's orientation toward one side of the visual object, we found that the fly could be conditioned to orientate toward the left or right side of the frontal visual object and retain this conditioned visual orientation. The lower and upper visual fields have different roles in conditioned visual orientation. Transfer experiments showed that conditioned visual orientation could generalize between visual targets of different sizes, compactness, or vertical positions, but not of contour orientation. Rut—Type I adenylyl cyclase and Dnc—phosphodiesterase were dispensable for visual orientation conditioning. Normal activity and scb signaling in R3/R4d neurons of the ellipsoid body were required for visual orientation conditioning. Our studies established a visual orientation conditioning paradigm and examined the behavioral properties and neural circuitry of visual orientation, an important component of the insect's spatial navigation. PMID:25512578

  14. How to make loss aversion disappear and reverse: tests of the decision by sampling origin of loss aversion.

    PubMed

    Walasek, Lukasz; Stewart, Neil

    2015-02-01

    One of the most robust empirical findings in the behavioral sciences is loss aversion--the finding that losses loom larger than gains. We offer a new psychological explanation of the origins of loss aversion in which loss aversion emerges from differences in the distribution of gains and losses people experience. In 4 experiments, we tested this proposition by manipulating the range of gains and losses that individuals saw during the process of eliciting their loss aversion. We were able to find loss aversion, loss neutrality, and even the reverse of loss aversion.

  15. Direction of attention bias to threat relates to differences in fear acquisition and extinction in anxious children.

    PubMed

    Waters, Allison M; Kershaw, Rachel

    2015-01-01

    Anxious children show attention biases towards and away from threat stimuli. Moreover, threat avoidance compared to vigilance predicts a poorer outcome from exposure-based treatments, such as cognitive-behavioural therapy (CBT), yet the mechanisms underlying this differential response are unclear. Pavlovian fear conditioning is a widely accepted theory to explain the acquisition and extinction of fear, including exposure-based treatments, such as CBT. In typical fear conditioning experiments, anxious children have shown larger physiological responses to an aversive unconditional stimulus (i.e., US on CS+ trials) and to non-reinforced stimuli (CS-) during fear acquisition and to both CSs during fear extinction compared to non-anxious peers. This study examined whether threat avoidance compared to threat vigilance was related to differences in fear acquisition and extinction in anxious children. Thirty-four clinically-anxious children completed a visual probe task including angry-neutral face pairs to determine the direction of threat attention bias as well as a discriminant conditioning and extinction task in which a geometric shape CS+ was paired with an aversive tone US, while the CS- geometric shape was always presented alone during acquisition trials. Both CSs were presented alone during extinction trials. Fear acquisition and extinction were indexed by skin conductance responses (SCR) and subjective measures. Children were classified as threat vigilant (N = 18) and threat avoidant (n = 16) based on the direction of threat attention bias on the visual probe task. During acquisition, threat avoidant relative to threat vigilant anxious children displayed larger orienting SCRs to both CSs during the first block of trials and larger third interval SCRs to the US on CS+ trials as well as on CS- trials. During extinction, threat avoidant anxious children showed delayed extinction of SCRs to both the CS+ and CS- and reported higher subjective anxiety ratings after extinction compared to threat vigilant anxious children. Threat avoidant anxious children may be more reactive physiologically to novel cues and to stimuli that become associated with threat and this may interfere with extinction learning. These findings could help explain previous evidence that threat avoidant anxious children do not respond as well as threat vigilant anxious children to exposure-based CBT. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Externalizing proneness and brain response during pre-cuing and viewing of emotional pictures.

    PubMed

    Foell, Jens; Brislin, Sarah J; Strickland, Casey M; Seo, Dongju; Sabatinelli, Dean; Patrick, Christopher J

    2016-07-01

    Externalizing proneness, or trait disinhibition, is a concept relevant to multiple high-impact disorders involving impulsive-aggressive behavior. Its mechanisms remain disputed: major models posit hyperresponsive reward circuitry or heightened threat-system reactivity as sources of disinhibitory tendencies. This study evaluated alternative possibilities by examining relations between trait disinhibition and brain reactivity during preparation for and processing of visual affective stimuli. Forty females participated in a functional neuroimaging procedure with stimuli presented in blocks containing either pleasurable or aversive pictures interspersed with neutral, with each picture preceded by a preparation signal. Preparing to view elicited activation in regions including nucleus accumbens, whereas visual regions and bilateral amygdala were activated during viewing of emotional pictures. High disinhibition predicted reduced nucleus accumbens activation during preparation within pleasant/neutral picture blocks, along with enhanced amygdala reactivity during viewing of pleasant and aversive pictures. Follow-up analyses revealed that the augmented amygdala response was related to reduced preparatory activation. Findings indicate that participants high in disinhibition are less able to process implicit cues and mentally prepare for upcoming stimuli, leading to limbic hyperreactivity during processing of actual stimuli. This outcome is helpful for integrating findings from studies suggesting reward-system hyperreactivity and others suggesting threat-system hyperreactivity as mechanisms for externalizing proneness. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. Evidence for an expectancy-based theory of avoidance behaviour.

    PubMed

    Declercq, Mieke; De Houwer, Jan; Baeyens, Frank

    2008-01-01

    In most studies on avoidance learning, participants receive an aversive unconditioned stimulus after a warning signal is presented, unless the participant performs a particular response. Lovibond (2006) recently proposed a cognitive theory of avoidance learning, according to which avoidance behaviour is a function of both Pavlovian and instrumental conditioning. In line with this theory, we found that avoidance behaviour was based on an integration of acquired knowledge about, on the one hand, the relation between stimuli and, on the other hand, the relation between behaviour and stimuli.

  18. Activation of D1/5 Dopamine Receptors: A Common Mechanism for Enhancing Extinction of Fear and Reward-Seeking Behaviors.

    PubMed

    Abraham, Antony D; Neve, Kim A; Lattal, K Matthew

    2016-07-01

    Dopamine is critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine's function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in appetitive tasks. A parallel and growing literature indicates that dopamine signaling is involved in consolidation of memories into stable representations in aversive tasks such as fear conditioning. Relatively little is known about how dopamine may modulate memories that form during extinction, when organisms learn that the relation between previously associated events is severed. We investigated whether fear and reward extinction share common mechanisms that could be enhanced with dopamine D1/5 receptor activation. Pharmacological activation of dopamine D1/5 receptors (with SKF 81297) enhanced extinction of both cued and contextual fear. These effects also occurred in the extinction of cocaine-induced conditioned place preference, suggesting that the observed effects on extinction were not specific to a particular type of procedure (aversive or appetitive). A cAMP/PKA biased D1 agonist (SKF 83959) did not affect fear extinction, whereas a broadly efficacious D1 agonist (SKF 83822) promoted fear extinction. Together, these findings show that dopamine D1/5 receptor activation is a target for the enhancement of fear or reward extinction.

  19. Do infants find snakes aversive? Infants' physiological responses to "fear-relevant" stimuli.

    PubMed

    Thrasher, Cat; LoBue, Vanessa

    2016-02-01

    In the current research, we sought to measure infants' physiological responses to snakes-one of the world's most widely feared stimuli-to examine whether they find snakes aversive or merely attention grabbing. Using a similar method to DeLoache and LoBue (Developmental Science, 2009, Vol. 12, pp. 201-207), 6- to 9-month-olds watched a series of multimodal (both auditory and visual) stimuli: a video of a snake (fear-relevant) or an elephant (non-fear-relevant) paired with either a fearful or happy auditory track. We measured physiological responses to the pairs of stimuli, including startle magnitude, latency to startle, and heart rate. Results suggest that snakes capture infants' attention; infants showed the fastest startle responses and lowest average heart rate to the snakes, especially when paired with a fearful voice. Unexpectedly, they also showed significantly reduced startle magnitude during this same snake video plus fearful voice combination. The results are discussed with respect to theoretical perspectives on fear acquisition. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Misophonia: diagnostic criteria for a new psychiatric disorder.

    PubMed

    Schröder, Arjan; Vulink, Nienke; Denys, Damiaan

    2013-01-01

    Some patients report a preoccupation with a specific aversive human sound that triggers impulsive aggression. This condition is relatively unknown and has hitherto never been described, although the phenomenon has anecdotally been named misophonia. 42 patients who reported misophonia were recruited by our hospital website. All patients were interviewed by an experienced psychiatrist and were screened with an adapted version of the Y-BOCS, HAM-D, HAM-A, SCL-90 and SCID II. The misophonia patients shared a similar pattern of symptoms in which an auditory or visual stimulus provoked an immediate aversive physical reaction with anger, disgust and impulsive aggression. The intensity of these emotions caused subsequent obsessions with the cue, avoidance and social dysfunctioning with intense suffering. The symptoms cannot be classified in the current nosological DSM-IV TR or ICD-10 systems. We suggest that misophonia should be classified as a discrete psychiatric disorder. Diagnostic criteria could help to officially recognize the patients and the disorder, improve its identification by professional health carers, and encourage scientific research.

  1. Working memory load reduces the late positive potential and this effect is attenuated with increasing anxiety.

    PubMed

    MacNamara, Annmarie; Ferri, Jamie; Hajcak, Greg

    2011-09-01

    Emotion regulation decreases the processing of arousing stimuli, as indexed by the late positive potential (LPP), an electrocortical component that varies in amplitude with emotional arousal. Emotion regulation increases activity in the prefrontal areas associated with cognitive control, including the dosolateral prefrontal cortex (DLPFC). The present study manipulated working memory load, known to activate the DLPFC, and recorded the LPP elicited by aversive and neutral IAPS pictures presented during the retention interval. The LPP was larger on low-load compared to high-load trials, and on trials with aversive compared to neutral pictures. These LPP data suggest that emotional content and working memory load have opposing effects on attention to distracting stimuli. State anxiety was associated with reduced modulation of the LPP by working memory load. Results are discussed in terms of competition for attention between emotion and cognition and suggest a relationship between DLPFC activation and the allocation of attentional resources to distracting visual stimuli-a relationship that may be disrupted with increasing anxiety.

  2. Orbitofrontal cortex and basolateral amygdala lesions result in suboptimal and dissociable reward choices on cue-guided effort in rats

    PubMed Central

    Ostrander, Serena; Cazares, Victor A.; Kim, Charissa; Cheung, Shauna; Gonzalez, Isabel; Izquierdo, Alicia

    2011-01-01

    The orbitofrontal cortex (OFC) and basolateral nucleus of the amygdala (BLA) are important neural regions in responding adaptively to changes in the incentive value of reward. Recent evidence suggests these structures may be differentially engaged in effort and cue-guided choice behavior. In two t-maze experiments, we examined the effects of bilateral lesions of either BLA or OFC on 1) effortful choices where rats could climb a barrier for a high reward or select a low reward with no effort and 2) effortful choices when a visual cue signaled changes in reward magnitude. In both experiments, BLA rats displayed transient work aversion, choosing the effortless low reward option. OFC rats were work averse only in the no cue conditions, displaying a pattern of attenuated recovery from the cue conditions signaling reward unavailability in the effortful arm. Control measures rule out an inability to discriminate the cue in either lesion group. PMID:21639604

  3. Representation of aversive prediction errors in the human periaqueductal gray

    PubMed Central

    Roy, Mathieu; Shohamy, Daphna; Daw, Nathaniel; Jepma, Marieke; Wimmer, Elliott; Wager, Tor D.

    2014-01-01

    Pain is a primary driver of learning and motivated action. It is also a target of learning, as nociceptive brain responses are shaped by learning processes. We combined an instrumental pain avoidance task with an axiomatic approach to assessing fMRI signals related to prediction errors (PEs), which drive reinforcement-based learning. We found that pain PEs were encoded in the periaqueductal gray (PAG), an important structure for pain control and learning in animal models. Axiomatic tests combined with dynamic causal modeling suggested that ventromedial prefrontal cortex, supported by putamen, provides an expected value-related input to the PAG, which then conveys PE signals to prefrontal regions important for behavioral regulation, including orbitofrontal, anterior mid-cingulate, and dorsomedial prefrontal cortices. Thus, pain-related learning involves distinct neural circuitry, with implications for behavior and pain dynamics. PMID:25282614

  4. The role of the basolateral amygdala in punishment

    PubMed Central

    Jean-Richard-Dit-Bressel, Philip

    2015-01-01

    Aversive stimuli not only support fear conditioning to their environmental antecedents, they also punish behaviors that cause their occurrence. The amygdala, especially the basolateral nucleus (BLA), has been critically implicated in Pavlovian fear learning but its role in punishment remains poorly understood. Here, we used a within-subjects punishment task to assess the role of the BLA in the acquisition and expression of punishment as well as aversive choice. Rats that pressed two individually presented levers for pellet rewards rapidly suppressed responding to one lever if it also caused footshock deliveries (punished lever) but continued pressing a second lever that did not cause footshock (unpunished lever). Infusions of GABA agonists baclofen and muscimol (BM) into the BLA significantly impaired the acquisition of this suppression. BLA inactivations using BM also reduced the expression of well-trained punishment. There was anatomical segregation within the BLA so that caudal, not rostral, BLA was implicated in punishment. However, when presented with punished and unpunished levers simultaneously in a choice test without deliveries of shock punisher, rats expressed a preference for unpunished over the punished lever and BLA inactivations had no effect on this preference. Taken together, these findings indicate that the BLA is important for both the acquisition and expression of punishment but not for aversive choice. This role appears to be linked to neurons in the caudal BLA, rather than rostral BLA, although the circuitry that contributes to this functional segregation is currently unknown, and is most parsimoniously interpreted as a role for caudal BLA in determining the aversive value of the shock punisher. PMID:25593299

  5. Honeybees in a virtual reality environment learn unique combinations of colour and shape.

    PubMed

    Rusch, Claire; Roth, Eatai; Vinauger, Clément; Riffell, Jeffrey A

    2017-10-01

    Honeybees are well-known models for the study of visual learning and memory. Whereas most of our knowledge of learned responses comes from experiments using free-flying bees, a tethered preparation would allow fine-scale control of the visual stimuli as well as accurate characterization of the learned responses. Unfortunately, conditioning procedures using visual stimuli in tethered bees have been limited in their efficacy. In this study, using a novel virtual reality environment and a differential training protocol in tethered walking bees, we show that the majority of honeybees learn visual stimuli, and need only six paired training trials to learn the stimulus. We found that bees readily learn visual stimuli that differ in both shape and colour. However, bees learn certain components over others (colour versus shape), and visual stimuli are learned in a non-additive manner with the interaction of specific colour and shape combinations being crucial for learned responses. To better understand which components of the visual stimuli the bees learned, the shape-colour association of the stimuli was reversed either during or after training. Results showed that maintaining the visual stimuli in training and testing phases was necessary to elicit visual learning, suggesting that bees learn multiple components of the visual stimuli. Together, our results demonstrate a protocol for visual learning in restrained bees that provides a powerful tool for understanding how components of a visual stimulus elicit learned responses as well as elucidating how visual information is processed in the honeybee brain. © 2017. Published by The Company of Biologists Ltd.

  6. Exploring Reticence in Research Methods: The Experience of Studying Psychological Research Methods in Higher Education

    ERIC Educational Resources Information Center

    Kingsley, Barbara E.; Robertson, Julia M.

    2017-01-01

    As a fundamental element of any psychology degree, the teaching and learning of research methods is repeatedly brought into sharp focus, and it is often regarded as a real challenge by undergraduate students. The reasons for this are complex, but frequently attributed to an aversion of maths. To gain a more detailed understanding of students'…

  7. Characterization of the Amplificatory Effect of Norepinephrine in the Acquisition of Pavlovian Threat Associations

    ERIC Educational Resources Information Center

    Díaz-Mataix, Lorenzo; Piper, Walter T.; Schiff, Hillary C.; Roberts, Clark H.; Campese, Vincent D.; Sears, Robert M.; LeDoux, Joseph E.

    2017-01-01

    The creation of auditory threat Pavlovian memory requires an initial learning stage in which a neutral conditioned stimulus (CS), such as a tone, is paired with an aversive one (US), such as a shock. In this phase, the CS acquires the capacity of predicting the occurrence of the US and therefore elicits conditioned defense responses.…

  8. Consistency of Fear of Failure Score Meanings among 8- to 18-Year-Old Female Athletes

    ERIC Educational Resources Information Center

    Conroy, David E.; Coatsworth, J. Douglas; Kaye, Miranda P.

    2007-01-01

    Fear of failure (FF) energizes individuals to avoid failure because of the learned aversive consequences of failing (e.g., shame). Although FF is socialized in childhood, little is known about the meaning of scores from FF measures used with children and adolescents. This study addresses that void by establishing a preliminary nomological network…

  9. Control of Appetitive and Aversive Taste-Reactivity Responses by an Auditory Conditioned Stimulus in a Devaluation Task: A FOS and Behavioral Analysis

    ERIC Educational Resources Information Center

    Kerfoot, Erin C.; Agarwal, Isha; Lee, Hongjoo J.; Holland, Peter C.

    2007-01-01

    Through associative learning, cues for biologically significant reinforcers such as food may gain access to mental representations of those reinforcers. Here, we used devaluation procedures, behavioral assessment of hedonic taste-reactivity responses, and measurement of immediate-early gene (IEG) expression to show that a cue for food engages…

  10. Failing Safely: Increasing Theology and Religious Studies Students' Resilience and Academic Confidence via Risk-Taking in Formative Assessment

    ERIC Educational Resources Information Center

    Cornwall, Susannah

    2018-01-01

    Students increasingly appear anxious, risk-averse, and worried about getting things "wrong." They may appear to lack intellectual curiosity, and be unwilling to engage in independent study. This essay explores how teaching and assessment in theology and religious studies might help students learn to take intellectual risks, and increase…

  11. Why Is My Child Hurting? Positive Approaches to Dealing with Difficult Behaviors. A Monograph for Parents of Children with Disabilities.

    ERIC Educational Resources Information Center

    Lehr, Susan; Lehr, Robert

    This monograph aims to assist parents in dealing with behavior problems of children with disabilities. It begins with a case history of an 8-year-old girl with learning disabilities, emotional problems, and behavior problems and her parents' advocacy efforts to obtain an appropriate educational environment for her. Aversive interventions are…

  12. Functionally distinct amygdala subregions identified using DTI and high-resolution fMRI

    PubMed Central

    Balderston, Nicholas L.; Schultz, Douglas H.; Hopkins, Lauren

    2015-01-01

    Although the amygdala is often directly linked with fear and emotion, amygdala neurons are activated by a wide variety of emotional and non-emotional stimuli. Different subregions within the amygdala may be engaged preferentially by different aspects of emotional and non-emotional tasks. To test this hypothesis, we measured and compared the effects of novelty and fear on amygdala activity. We used high-resolution blood oxygenation level-dependent (BOLD) imaging and streamline tractography to subdivide the amygdala into three distinct functional subunits. We identified a laterobasal subregion connected with the visual cortex that responds generally to visual stimuli, a non-projecting region that responds to salient visual stimuli, and a centromedial subregion connected with the diencephalon that responds only when a visual stimulus predicts an aversive outcome. We provide anatomical and functional support for a model of amygdala function where information enters through the laterobasal subregion, is processed by intrinsic circuits in the interspersed tissue, and is then passed to the centromedial subregion, where activation leads to behavioral output. PMID:25969533

  13. Combining D-cycloserine with appetitive extinction learning modulates amygdala activity during recall.

    PubMed

    Ebrahimi, Claudia; Koch, Stefan P; Friedel, Eva; Crespo, Ilsoray; Fydrich, Thomas; Ströhle, Andreas; Heinz, Andreas; Schlagenhauf, Florian

    2017-07-01

    Appetitive Pavlovian conditioning plays a crucial role in the pathogenesis of drug addiction and conditioned reward cues can trigger craving and relapse even after long phases of abstinence. Promising preclinical work showed that the NMDA-receptor partial agonist D-cycloserine (DCS) facilitates Pavlovian extinction learning of fear and drug cues. Furthermore, DCS-augmented exposure therapy seems to be beneficial in various anxiety disorders, while the supposed working mechanism of DCS during human appetitive or aversive extinction learning is still not confirmed. To test the hypothesis that DCS administration before extinction training improves extinction learning, healthy adults (n=32) underwent conditioning, extinction, and extinction recall on three successive days in a randomized, double-blind, placebo-controlled fMRI design. Monetary wins and losses served as unconditioned stimuli during conditioning to probe appetitive and aversive learning. An oral dose of 50mg of DCS or placebo was administered 1h before extinction training and DCS effects during extinction recall were evaluated on a behavioral and neuronal level. We found attenuated amygdala activation in the DCS compared to the placebo group during recall of the extinguished appetitive cue, along with evidence for enhanced functional amygdala-vmPFC coupling in the DCS group. While the absence of additional physiological measures of conditioned responses during recall in this study prevent the evaluation of a behavioral DCS effect, our neuronal findings are in accordance with recent theories linking successful extinction recall in humans to modulatory top-down influences from the vmPFC that inhibit amygdala activation. Our results should encourage further translational studies concerning the usefulness of DCS to target maladaptive Pavlovian reward associations. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Interference Conditions of the Reconsolidation Process in Humans: The Role of Valence and Different Memory Systems

    PubMed Central

    Fernández, Rodrigo S.; Bavassi, Luz; Kaczer, Laura; Forcato, Cecilia; Pedreira, María E.

    2016-01-01

    Following the presentation of a reminder, consolidated memories become reactivated followed by a process of re-stabilization, which is referred to as reconsolidation. The most common behavioral tool used to reveal this process is interference produced by new learning shortly after memory reactivation. Memory interference is defined as a decrease in memory retrieval, the effect is generated when new information impairs an acquired memory. In general, the target memory and the interference task used are the same. Here we investigated how different memory systems and/or their valence could produce memory reconsolidation interference. We showed that a reactivated neutral declarative memory could be interfered by new learning of a different neutral declarative memory. Then, we revealed that an aversive implicit memory could be interfered by the presentation of a reminder followed by a threatening social event. Finally, we showed that the reconsolidation of a neutral declarative memory is unaffected by the acquisition of an aversive implicit memory and conversely, this memory remains intact when the neutral declarative memory is used as interference. These results suggest that the interference of memory reconsolidation is effective when two task rely on the same memory system or both evoke negative valence. PMID:28066212

  15. Implicit aversive memory under anaesthesia in animal models: a narrative review.

    PubMed

    Samuel, N; Taub, A H; Paz, R; Raz, A

    2018-07-01

    Explicit memory after anaesthesia has gained considerable attention because of its negative implications, while implicit memory, which is more elusive and lacks patients' explicit recall, has received less attention and dedicated research. This is despite the likely impact of implicit memory on postoperative long-term well-being and behaviour. Given the scarcity of human data, fear conditioning in animals offers a reliable model of implicit learning, and importantly, one where we already have a good understanding of the underlying neural circuitry in awake conditions. Animal studies provide evidence that fear conditioning occurs under anaesthesia. The effects of different anaesthetics on memory are complex, with different drugs interacting at different stages of learning. Modulatory suppressive effects can be because of context, specific drugs, and dose dependency. In some cases, low doses of general anaesthetics can actually lead to a paradoxical opposite effect. The underlying mechanisms involve several neurotransmitter systems, acting mainly in the amygdala, hippocampus, and neocortex. Here, we review animal studies of aversive conditioning under anaesthesia, discuss the complex picture that arises, identify the gaps in knowledge that require further investigation, and highlight the potential translational relevance of the models. Copyright © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

  16. Interference Conditions of the Reconsolidation Process in Humans: The Role of Valence and Different Memory Systems.

    PubMed

    Fernández, Rodrigo S; Bavassi, Luz; Kaczer, Laura; Forcato, Cecilia; Pedreira, María E

    2016-01-01

    Following the presentation of a reminder, consolidated memories become reactivated followed by a process of re-stabilization, which is referred to as reconsolidation. The most common behavioral tool used to reveal this process is interference produced by new learning shortly after memory reactivation. Memory interference is defined as a decrease in memory retrieval, the effect is generated when new information impairs an acquired memory. In general, the target memory and the interference task used are the same. Here we investigated how different memory systems and/or their valence could produce memory reconsolidation interference. We showed that a reactivated neutral declarative memory could be interfered by new learning of a different neutral declarative memory. Then, we revealed that an aversive implicit memory could be interfered by the presentation of a reminder followed by a threatening social event. Finally, we showed that the reconsolidation of a neutral declarative memory is unaffected by the acquisition of an aversive implicit memory and conversely, this memory remains intact when the neutral declarative memory is used as interference. These results suggest that the interference of memory reconsolidation is effective when two task rely on the same memory system or both evoke negative valence.

  17. Updating of aversive memories after temporal error detection is differentially modulated by mTOR across development

    PubMed Central

    Tallot, Lucille; Diaz-Mataix, Lorenzo; Perry, Rosemarie E.; Wood, Kira; LeDoux, Joseph E.; Mouly, Anne-Marie; Sullivan, Regina M.; Doyère, Valérie

    2017-01-01

    The updating of a memory is triggered whenever it is reactivated and a mismatch from what is expected (i.e., prediction error) is detected, a process that can be unraveled through the memory's sensitivity to protein synthesis inhibitors (i.e., reconsolidation). As noted in previous studies, in Pavlovian threat/aversive conditioning in adult rats, prediction error detection and its associated protein synthesis-dependent reconsolidation can be triggered by reactivating the memory with the conditioned stimulus (CS), but without the unconditioned stimulus (US), or by presenting a CS–US pairing with a different CS–US interval than during the initial learning. Whether similar mechanisms underlie memory updating in the young is not known. Using similar paradigms with rapamycin (an mTORC1 inhibitor), we show that preweaning rats (PN18–20) do form a long-term memory of the CS–US interval, and detect a 10-sec versus 30-sec temporal prediction error. However, the resulting updating/reconsolidation processes become adult-like after adolescence (PN30–40). Our results thus show that while temporal prediction error detection exists in preweaning rats, specific infant-type mechanisms are at play for associative learning and memory. PMID:28202715

  18. A hippocampal insulin-growth factor 2 pathway regulates the extinction of fear memories

    PubMed Central

    Agis-Balboa, Roberto Carlos; Arcos-Diaz, Dario; Wittnam, Jessica; Govindarajan, Nambirajan; Blom, Kim; Burkhardt, Susanne; Haladyniak, Ulla; Agbemenyah, Hope Yao; Zovoilis, Athanasios; Salinas-Riester, Gabriella; Opitz, Lennart; Sananbenesi, Farahnaz; Fischer, Andre

    2011-01-01

    Extinction learning refers to the phenomenon that a previously learned response to an environmental stimulus, for example, the expression of an aversive behaviour upon exposure to a specific context, is reduced when the stimulus is repeatedly presented in the absence of a previously paired aversive event. Extinction of fear memories has been implicated with the treatment of anxiety disease but the molecular processes that underlie fear extinction are only beginning to emerge. Here, we show that fear extinction initiates upregulation of hippocampal insulin-growth factor 2 (Igf2) and downregulation of insulin-growth factor binding protein 7 (Igfbp7). In line with this observation, we demonstrate that IGF2 facilitates fear extinction, while IGFBP7 impairs fear extinction in an IGF2-dependent manner. Furthermore, we identify one cellular substrate of altered IGF2 signalling during fear extinction. To this end, we show that fear extinction-induced IGF2/IGFBP7 signalling promotes the survival of 17–19-day-old newborn hippocampal neurons. In conclusion, our data suggest that therapeutic strategies that enhance IGF2 signalling and adult neurogenesis might be suitable to treat disease linked to excessive fear memory. PMID:21873981

  19. Progression of multiple behavioral deficits with various ages of onset in a murine model of Hurler syndrome.

    PubMed

    Pan, Dao; Sciascia, Anthony; Vorhees, Charles V; Williams, Michael T

    2008-01-10

    Mucopolysaccharidosis type I (MPS I) is one of the most common lysosomal storage diseases with progressive neurological dysfunction. To characterize the chronological behavioral profiles and identify the onset of functional deficits in a MPS I mouse model (IDUA(-/-)), we evaluated anxiety, locomotor behavior, startle, spatial learning and memory with mice at 2, 4, 6 and 8 months of age. In automated open-field test, IDUA(-/-) mice showed hypoactivity as early as 2 months of age and altered anxiety starting from 6 months of age during the initial exploratory phase, even though normal habituation was observed at all ages. In the marble-burying task, the anxiety-like compulsive behavior was normal in IDUA(-/-) mice at almost all tested ages, but significantly reduced in 8-month old male IDUA(-/-) mice which coincided with the rapid death of IDUA(-/-) males starting from 7 months of age. In the Morris water maze, IDUA(-/-) mice exhibited impaired proficient learning only at 4 months of age during the acquisition phase. Spatial memory deficits were observed in IDUA(-/-) mice during both 1 and 7 days probe trials at 4 and 8 months of age. The IDUA(-/-) mice performed normally in a novel object recognition task at younger ages until 8 months old when reduced visual cognitive memory retention was noted in the IDUA(-/-) mice. In addition, 8-month-old IDUA(-/-) mice failed to habituate to repeated open-field exposure, suggesting deficits in non-aversive and non-associative memory. In acoustic startle assessment, significantly more non-responders were found in IDUA(-/-) mice, but normal performance was seen in those that did show a response. These results presented a temporal evaluation of phenotypic behavioral dysfunctions in IDUA(-/-) mice from adolescence to maturity, indicating the impairments, with different ages of onset, in locomotor and anxiety-like compulsive behaviors, spatial learning and memory, visual recognition and short-term non-associative memory retention. This study would also provide guidelines for the experimental designs of behavioral evaluation on innovative therapies for the treatment of MPS type I.

  20. Compound Stimulus Presentation Does Not Deepen Extinction in Human Causal Learning

    PubMed Central

    Griffiths, Oren; Holmes, Nathan; Westbrook, R. Fred

    2017-01-01

    Models of associative learning have proposed that cue-outcome learning critically depends on the degree of prediction error encountered during training. Two experiments examined the role of error-driven extinction learning in a human causal learning task. Target cues underwent extinction in the presence of additional cues, which differed in the degree to which they predicted the outcome, thereby manipulating outcome expectancy and, in the absence of any change in reinforcement, prediction error. These prediction error manipulations have each been shown to modulate extinction learning in aversive conditioning studies. While both manipulations resulted in increased prediction error during training, neither enhanced extinction in the present human learning task (one manipulation resulted in less extinction at test). The results are discussed with reference to the types of associations that are regulated by prediction error, the types of error terms involved in their regulation, and how these interact with parameters involved in training. PMID:28232809

  1. The Rhetoric of Disfigurement in First World War Britain

    PubMed Central

    Biernoff, Suzannah

    2011-01-01

    Summary During the First World War, the horror of facial mutilation was evoked in journalism, poems, memoirs and fiction; but in Britain it was almost never represented visually outside the professional contexts of clinical medicine and medical history. This article asks why, and offers an account of British visual culture in which visual anxiety and aversion are of central importance. By comparing the rhetoric of disfigurement to the parallel treatment of amputees, an asymmetrical picture emerges in which the ‘worst loss of all’—the loss of one's face—is perceived as a loss of humanity. The only hope was surgery or, if that failed, prosthetic repair: innovations that were often wildly exaggerated in the popular press. Francis Derwent Wood was one of several sculptors whose technical skill and artistic ‘wizardry’ played a part in the improvised reconstruction of identity and humanity.

  2. A common neural network differentially mediates direct and social fear learning.

    PubMed

    Lindström, Björn; Haaker, Jan; Olsson, Andreas

    2018-02-15

    Across species, fears often spread between individuals through social learning. Yet, little is known about the neural and computational mechanisms underlying social learning. Addressing this question, we compared social and direct (Pavlovian) fear learning showing that they showed indistinguishable behavioral effects, and involved the same cross-modal (self/other) aversive learning network, centered on the amygdala, the anterior insula (AI), and the anterior cingulate cortex (ACC). Crucially, the information flow within this network differed between social and direct fear learning. Dynamic causal modeling combined with reinforcement learning modeling revealed that the amygdala and AI provided input to this network during direct and social learning, respectively. Furthermore, the AI gated learning signals based on surprise (associability), which were conveyed to the ACC, in both learning modalities. Our findings provide insights into the mechanisms underlying social fear learning, with implications for understanding common psychological dysfunctions, such as phobias and other anxiety disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Heat Perception and Aversive Learning in Honey Bees: Putative Involvement of the Thermal/Chemical Sensor AmHsTRPA

    PubMed Central

    Junca, Pierre; Sandoz, Jean-Christophe

    2015-01-01

    The recent development of the olfactory conditioning of the sting extension response (SER) has provided new insights into the mechanisms of aversive learning in honeybees. Until now, very little information has been gained concerning US detection and perception. In the initial version of SER conditioning, bees learned to associate an odor CS with an electric shock US. Recently, we proposed a modified version of SER conditioning, in which thermal stimulation with a heated probe is used as US. This procedure has the advantage of allowing topical US applications virtually everywhere on the honeybee body. In this study, we made use of this possibility and mapped thermal responsiveness on the honeybee body, by measuring workers' SER after applying heat on 41 different structures. We then show that bees can learn the CS-US association even when the heat US is applied on body structures that are not prominent sensory organs, here the vertex (back of the head) and the ventral abdomen. Next, we used a neuropharmalogical approach to evaluate the potential role of a recently described Transient Receptor Potential (TRP) channel, HsTRPA, on peripheral heat detection by bees. First, we applied HsTRPA activators to assess if such activation is sufficient for triggering SER. Second, we injected HsTRPA inhibitors to ask whether interfering with this TRP channel affects SER triggered by heat. These experiments suggest that HsTRPA may be involved in heat detection by bees, and represent a potential peripheral detection system in thermal SER conditioning. PMID:26635613

  4. Neural signatures of trust in reciprocity: a coordinate-based meta-analysis

    PubMed Central

    Bellucci, Gabriele; Chernyak, Sergey V.; Goodyear, Kimberly; Eickhoff, Simon B.; Krueger, Frank

    2017-01-01

    Trust in reciprocity (TR) is defined as the risky decision to invest valued resources in another party with the hope of mutual benefit. Several fMRI studies have investigated the neural correlates of TR in one-shot and multi-round versions of the investment game (IG). However, an overall characterization of the underlying neural networks remains elusive. Here, we employed a coordinate-based meta-analysis (activation likelihood estimation method, 30 papers) to investigate consistent brain activations in each of the IG stages (i.e., the trust, reciprocity and feedback stage). Our results showed consistent activations in the anterior insula (AI) during trust decisions in the one-shot IG and decisions to reciprocate in the multi-round IG, likely related to representations of aversive feelings. Moreover, decisions to reciprocate also consistently engaged the intraparietal sulcus, probably involved in evaluations of the reciprocity options. On the contrary, trust decisions in the multi-round IG consistently activated the ventral striatum, likely associated with reward prediction error signals. Finally, the dorsal striatum was found consistently recruited during the feedback stage of the multi-round IG, likely related to reinforcement learning. In conclusion, our results indicate different neural networks underlying trust, reciprocity and feedback learning. These findings suggest that although decisions to trust and reciprocate may elicit aversive feelings likely evoked by the uncertainty about the decision outcomes and the pressing requirements of social standards, multiple interactions allow people to build interpersonal trust for cooperation via a learning mechanism by which they arguably learn to distinguish trustworthy from untrustworthy partners. PMID:27859899

  5. Neural signatures of trust in reciprocity: A coordinate-based meta-analysis.

    PubMed

    Bellucci, Gabriele; Chernyak, Sergey V; Goodyear, Kimberly; Eickhoff, Simon B; Krueger, Frank

    2017-03-01

    Trust in reciprocity (TR) is defined as the risky decision to invest valued resources in another party with the hope of mutual benefit. Several fMRI studies have investigated the neural correlates of TR in one-shot and multiround versions of the investment game (IG). However, an overall characterization of the underlying neural networks remains elusive. Here, a coordinate-based meta-analysis was employed (activation likelihood estimation method, 30 articles) to investigate consistent brain activations in each of the IG stages (i.e., the trust, reciprocity and feedback stage). Results showed consistent activations in the anterior insula (AI) during trust decisions in the one-shot IG and decisions to reciprocate in the multiround IG, likely related to representations of aversive feelings. Moreover, decisions to reciprocate also consistently engaged the intraparietal sulcus, probably involved in evaluations of the reciprocity options. On the contrary, trust decisions in the multiround IG consistently activated the ventral striatum, likely associated with reward prediction error signals. Finally, the dorsal striatum was found consistently recruited during the feedback stage of the multiround IG, likely related to reinforcement learning. In conclusion, our results indicate different neural networks underlying trust, reciprocity, and feedback learning. These findings suggest that although decisions to trust and reciprocate may elicit aversive feelings likely evoked by the uncertainty about the decision outcomes and the pressing requirements of social standards, multiple interactions allow people to build interpersonal trust for cooperation via a learning mechanism by which they arguably learn to distinguish trustworthy from untrustworthy partners. Hum Brain Mapp 38:1233-1248, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Alcohol-Aversion Therapy: Relation Between Strength of Aversion and Abstinence.

    ERIC Educational Resources Information Center

    Cannon, Dale S.; And Others

    1986-01-01

    Assessed degree of alcohol aversion in 60 alcoholics who received emetic alcohol-aversion therapy. Results revealed changes in response to alcoholic, but not to nonalcoholic, flavors, including decreased consumption in taste tests, more negative flavor ratings, overt behavioral indicants of aversion and increased tachycardiac response. (Author/NB)

  7. Brain activity associated with illusory correlations in animal phobia

    PubMed Central

    Wiemer, Julian; Schulz, Stefan M.; Reicherts, Philipp; Glotzbach-Schoon, Evelyn; Andreatta, Marta

    2015-01-01

    Anxiety disorder patients were repeatedly found to overestimate the association between disorder-relevant stimuli and aversive outcomes despite random contingencies. Such an illusory correlation (IC) might play an important role in the return of fear after extinction learning; yet, little is known about how this cognitive bias emerges in the brain. In a functional magnetic resonance imaging study, 18 female patients with spider phobia and 18 healthy controls were exposed to pictures of spiders, mushrooms and puppies followed randomly by either a painful electrical shock or nothing. In advance, both patients and healthy controls expected more shocks after spider pictures. Importantly, only patients with spider phobia continued to overestimate this association after the experiment. The strength of this IC was predicted by increased outcome aversiveness ratings and primary sensory motor cortex activity in response to the shock after spider pictures. Moreover, increased activation of the left dorsolateral prefrontal cortex (dlPFC) to spider pictures predicted the IC. These results support the theory that phobia-relevant stimuli amplify unpleasantness and sensory motor representations of aversive stimuli, which in turn may promote their overestimation. Hyper-activity in dlPFC possibly reflects a pre-occupation of executive resources with phobia-relevant stimuli, thus complicating the accurate monitoring of objective contingencies and the unlearning of fear. PMID:25411452

  8. Is the hibiscus harlequin bug aposematic? The importance of testing multiple predators

    PubMed Central

    Fabricant, Scott A; Smith, Carolynn L

    2014-01-01

    Aposematism involves predators learning conspicuous signals of defended prey. However, prey species utilize a wide range of chemical (or physical) defenses, which are not likely to be equally aversive to all predators. Aposematism may therefore only be effective against a physiologically sensitive subset of potential predators, and this can only be identified through behavioral testing. We studied the emerging model organism Tectocoris diophthalmus (Heteroptera: Scutelleridae), an aposematically colored but weakly defended shieldback stinkbug, to test the efficacy of its defenses against a suite of predator types. We predicted the bugs' defenses would be ineffectual against both experienced and naïve birds but aversive to predaceous insects. Surprisingly, the opposite pattern was found. Both habituated wild passerines and naïve chickens avoided the bugs, the chickens after only one or two encounters. To avian predators, T. diophthalmus is aposematic. However, praying mantids showed no repellency, aversion, or toxicity associated with adult or juvenile bugs after multiple trials. Comparison with prior studies on mantids using bugs with chemically similar but more concentrated defenses underscores the importance of dose in addition to chemical identity in the efficacy of chemical defenses. Our results also emphasize the importance of behavioral testing with multiple ecologically relevant predators to understand selective pressures shaping aposematic signals and chemical defenses. PMID:24558567

  9. Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae

    PubMed Central

    Widmann, Annekathrin; Artinger, Marc; Biesinger, Lukas; Boepple, Kathrin; Schlechter, Jana; Selcho, Mareike; Thum, Andreas S.

    2016-01-01

    Memory formation is a highly complex and dynamic process. It consists of different phases, which depend on various neuronal and molecular mechanisms. In adult Drosophila it was shown that memory formation after aversive Pavlovian conditioning includes—besides other forms—a labile short-term component that consolidates within hours to a longer-lasting memory. Accordingly, memory formation requires the timely controlled action of different neuronal circuits, neurotransmitters, neuromodulators and molecules that were initially identified by classical forward genetic approaches. Compared to adult Drosophila, memory formation was only sporadically analyzed at its larval stage. Here we deconstruct the larval mnemonic organization after aversive olfactory conditioning. We show that after odor-high salt conditioning larvae form two parallel memory phases; a short lasting component that depends on cyclic adenosine 3’5’-monophosphate (cAMP) signaling and synapsin gene function. In addition, we show for the first time for Drosophila larvae an anesthesia resistant component, which relies on radish and bruchpilot gene function, protein kinase C activity, requires presynaptic output of mushroom body Kenyon cells and dopamine function. Given the numerical simplicity of the larval nervous system this work offers a unique prospect for studying memory formation of defined specifications, at full-brain scope with single-cell, and single-synapse resolution. PMID:27768692

  10. Is aversive learning a marker of risk for anxiety disorders in children?

    PubMed Central

    Craske, Michelle G.; Waters, Allison M.; Bergman, R. Lindsey; Naliboff, Bruce; Lipp, Ottmar V.; Negoro, Hideki; Ornitz, Edward M.

    2016-01-01

    Aversive conditioning and extinction were evaluated in children with anxiety disorders (n = 23), at-risk for anxiety disorders (n = 15), and controls (n = 11). Participants underwent 16 trials of discriminative conditioning of two geometric figures, with (CS+) or without (CS−) an aversive tone (US), followed by 8 extinction trials (4 CS+, 4 CS−), and 8 extinction re-test trials averaging 2 weeks later. Skin conductance responses and verbal ratings of valence and arousal to the CS+/CS− stimuli were measured. Anxiety disordered children showed larger anticipatory and unconditional skin conductance responses across conditioning, and larger orienting and anticipatory skin conductance responses across extinction and extinction re-test, all to the CS+ and CS−, relative to controls. At-risk children showed larger unconditional responses during conditioning, larger orienting responses during the first block of extinction, and larger anticipatory responses during extinction re-test, all to the CS+ and CS−, relative to controls. Also, anxiety disordered children rated the CS+ as more unpleasant than the other groups. Elevated skin conductance responses to signals of threat (CS+) and signals of safety (CS−; CS+ during extinction) are discussed as features of manifestation of and risk for anxiety in children, compared to the specificity of valence judgments to the manifestation of anxiety. PMID:18539262

  11. Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae.

    PubMed

    Widmann, Annekathrin; Artinger, Marc; Biesinger, Lukas; Boepple, Kathrin; Peters, Christina; Schlechter, Jana; Selcho, Mareike; Thum, Andreas S

    2016-10-01

    Memory formation is a highly complex and dynamic process. It consists of different phases, which depend on various neuronal and molecular mechanisms. In adult Drosophila it was shown that memory formation after aversive Pavlovian conditioning includes-besides other forms-a labile short-term component that consolidates within hours to a longer-lasting memory. Accordingly, memory formation requires the timely controlled action of different neuronal circuits, neurotransmitters, neuromodulators and molecules that were initially identified by classical forward genetic approaches. Compared to adult Drosophila, memory formation was only sporadically analyzed at its larval stage. Here we deconstruct the larval mnemonic organization after aversive olfactory conditioning. We show that after odor-high salt conditioning larvae form two parallel memory phases; a short lasting component that depends on cyclic adenosine 3'5'-monophosphate (cAMP) signaling and synapsin gene function. In addition, we show for the first time for Drosophila larvae an anesthesia resistant component, which relies on radish and bruchpilot gene function, protein kinase C activity, requires presynaptic output of mushroom body Kenyon cells and dopamine function. Given the numerical simplicity of the larval nervous system this work offers a unique prospect for studying memory formation of defined specifications, at full-brain scope with single-cell, and single-synapse resolution.

  12. Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex.

    PubMed

    Ramírez-Lugo, Leticia; Peñas-Rincón, Ana; Ángeles-Durán, Sandybel; Sotres-Bayon, Francisco

    2016-10-12

    The ability to select an appropriate behavioral response guided by previous emotional experiences is critical for survival. Although much is known about brain mechanisms underlying emotional associations, little is known about how these associations guide behavior when several choices are available. To address this, we performed local pharmacological inactivations of several cortical regions before retrieval of an aversive memory in choice-based versus no-choice-based conditioned taste aversion (CTA) tasks in rats. Interestingly, we found that inactivation of the orbitofrontal cortex (OFC), but not the dorsal or ventral medial prefrontal cortices, blocked retrieval of choice CTA. However, OFC inactivation left retrieval of no-choice CTA intact, suggesting its role in guiding choice, but not in retrieval of CTA memory. Consistently, OFC activity increased in the choice condition compared with no-choice, as measured with c-Fos immunolabeling. Notably, OFC inactivation did not affect choice behavior when it was guided by innate taste aversion. Consistent with an anterior insular cortex (AIC) involvement in storing taste memories, we found that AIC inactivation impaired retrieval of both choice and no-choice CTA. Therefore, this study provides evidence for OFC's role in guiding choice behavior and shows that this is dissociable from AIC-dependent taste aversion memory. Together, our results suggest that OFC is required and recruited to guide choice selection between options of taste associations relayed from AIC. Survival and mental health depend on being able to choose stimuli not associated with danger. This is particularly important when danger is associated with stimuli that we ingest. Although much is known about the brain mechanisms that underlie associations with dangerous taste stimuli, very little is known about how these stored emotional associations guide behavior when it involves choice. By combining pharmacological and immunohistochemistry tools with taste-guided tasks, our study provides evidence for the key role of orbitofrontal cortex activity in choice behavior and shows that this is dissociable from the adjacent insular cortex-dependent taste aversion memory. Understanding the brain mechanisms that underlie the impact that emotional associations have on survival choice behaviors may lead to better treatments for mental disorders characterized by emotional decision-making deficits. Copyright © 2016 the authors 0270-6474/16/3610574-10$15.00/0.

  13. AFRRI (Armed Forces Radiobiology Research Institute) reports, October, January-March 1989. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    Contents include: effects of ethiofos (WR-2721) and radiation on monkey visual discrimination performance; gamma radiolysis of RNA: an ESR and spin-trapping study; phospholipid storage in the secretory granule of the mast cell; physiological localization of an agonist-sensitive pool of Ca{sup 2+} in parotid acinar cells; changes in canine neutrophil function(s) following cellular isolation by percoll gradient centrifugation or isotoniclysis; impaired repair of uvc-induced DNA damage in l5178Y-R cells: sedimentation studies with the use of 5'-bromodeoxyuridine photolysis; comparative behavioral toxicity of four sulfhydryl radioprotective compounds in mice: WR-2721, cysteamine, diethyldithiocarbamate, and n-acetylcysteine; measurement of the radiosensitivity of rat marrow by flowmore » cytometry; radioprotection by biological response modifiers alone and in combination with WR-2721; postirradiation glucan administration enhances the radioprotective effects of WR-2721; attenuation and cross-attenuation in taste aversion learning in the rat: studies with ionizing radiation, lithium chloride, and ethanol; a low-energy x-ray irradiator for electrophysiological studies; thermospray liquid chromatography mass spectrometry of thiol radioprotective agents: characteristic spectra; radioprotection by leukotrienes: is there a receptor mechanism and a low-energy x-ray irradiator for electrophysiological studies.« less

  14. Brief Report: Risk-Aversion and Rationality in Autism Spectrum Disorders.

    PubMed

    Gosling, Corentin J; Moutier, Sylvain

    2018-05-30

    Risk-aversion and rationality have both been highlighted as core features of decision making in individuals with Autism Spectrum Disorders (ASD). This study tested whether risk-aversion is related to rational decision-making in ASD individuals. ASD and matched control adults completed a decision-making task that discriminated between the use of risk-averse and rational strategies. Results showed that overall, ASD participants were more risk-averse than control participants. Specifically, both groups made similar choices when risk-aversion was the less rational strategy but ASD participants chose more rational options than control participants when risk-aversion was the most rational strategy. This study confirmed that risk-aversion is a core feature of ASD and revealed that ASD individuals can switch their decision-making strategy adaptively to avoid negative consequences.

  15. How to Make Loss Aversion Disappear and Reverse: Tests of the Decision by Sampling Origin of Loss Aversion

    PubMed Central

    2014-01-01

    One of the most robust empirical findings in the behavioral sciences is loss aversion—the finding that losses loom larger than gains. We offer a new psychological explanation of the origins of loss aversion in which loss aversion emerges from differences in the distribution of gains and losses people experience. In 4 experiments, we tested this proposition by manipulating the range of gains and losses that individuals saw during the process of eliciting their loss aversion. We were able to find loss aversion, loss neutrality, and even the reverse of loss aversion. PMID:25485606

  16. Reward and motivation in pain and pain relief

    PubMed Central

    Navratilova, Edita; Porreca, Frank

    2015-01-01

    Pain is fundamentally unpleasant, a feature that protects the organism by promoting motivation and learning. Relief of aversive states, including pain, is rewarding. The aversiveness of pain, as well as the reward from relief of pain, is encoded by brain reward/motivational mesocorticolimbic circuitry. In this Review, we describe current knowledge of the impact of acute and chronic pain on reward/motivation circuits gained from preclinical models and from human neuroimaging. We highlight emerging clinical evidence suggesting that anatomical and functional changes in these circuits contribute to the transition from acute to chronic pain. We propose that assessing activity in these conserved circuits can offer new outcome measures for preclinical evaluation of analgesic efficacy to improve translation and speed drug discovery. We further suggest that targeting reward/motivation circuits may provide a path for normalizing the consequences of chronic pain to the brain, surpassing symptomatic management to promote recovery from chronic pain. PMID:25254980

  17. Dopamine in motivational control: rewarding, aversive, and alerting

    PubMed Central

    Bromberg-Martin, Ethan S.; Matsumoto, Masayuki; Hikosaka, Okihide

    2010-01-01

    SUMMARY Midbrain dopamine neurons are well known for their strong responses to rewards and their critical role in positive motivation. It has become increasingly clear, however, that dopamine neurons also transmit signals related to salient but non-rewarding experiences such as aversive and alerting events. Here we review recent advances in understanding the reward and non-reward functions of dopamine. Based on this data, we propose that dopamine neurons come in multiple types that are connected with distinct brain networks and have distinct roles in motivational control. Some dopamine neurons encode motivational value, supporting brain networks for seeking, evaluation, and value learning. Others encode motivational salience, supporting brain networks for orienting, cognition, and general motivation. Both types of dopamine neurons are augmented by an alerting signal involved in rapid detection of potentially important sensory cues. We hypothesize that these dopaminergic pathways for value, salience, and alerting cooperate to support adaptive behavior. PMID:21144997

  18. Exposure to a Fearful Context during Periods of Memory Plasticity Impairs Extinction via Hyperactivation of Frontal-Amygdalar Circuits

    ERIC Educational Resources Information Center

    Stafford, James M.; Maughan, DeeAnna K.; Ilioi, Elena C.; Lattal, K. Matthew

    2013-01-01

    An issue of increasing theoretical and translational importance is to understand the conditions under which learned fear can be suppressed, or even eliminated. Basic research has pointed to extinction, in which an organism is exposed to a fearful stimulus (such as a context) in the absence of an expected aversive outcome (such as a shock). This…

  19. The Effect of Shyness on Children's Formation and Retention of Novel Word-Object Mappings

    ERIC Educational Resources Information Center

    Hilton, Matt; Westermann, Gert

    2017-01-01

    This study set out to examine whether shyness, an aversion to novelty and unfamiliar social situations, can affect the processes that underlie early word learning. Twenty-four-month-old children (n = 32 ) were presented with sets of one novel and two familiar objects, and it was found that shyer children were less likely to select a novel object…

  20. Acute stress impairs the retrieval of extinction memory in humans

    PubMed Central

    Raio, Candace M.; Brignoni-Perez, Edith; Goldman, Rachel; Phelps, Elizabeth A.

    2014-01-01

    Extinction training is a form of inhibitory learning that allows an organism to associate a previously aversive cue with a new, safe outcome. Extinction does not erase a fear association, but instead creates a competing association that may or may not be retrieved when a cue is subsequently encountered. Characterizing the conditions under which extinction learning is expressed is important to enhancing the treatment of anxiety disorders that rely on extinction-based exposure therapy as a primary treatment technique. The ventromedial prefrontal cortex, which plays an important role in the expression of extinction memory, has been shown to be functionally impaired after stress exposure. Further, recent research in rodents found that exposure to stress led to deficits in extinction retrieval, although this has yet to be tested in humans. To explore how stress might influence extinction retrieval in humans, participants underwent a differential aversive learning paradigm, in which one image was probabilistically paired with an aversive shock while the other image denoted safety. Extinction training directly followed, at which point reinforcement was omitted. A day later, participants returned to the lab and either completed an acute stress manipulation (i.e., cold pressor), or a control task, before undergoing an extinction retrieval test. Skin conductance responses and salivary cortisol concentrations were measured throughout each session as indices of fear arousal and neuroendocrine stress responses, respectively. The efficacy of our stress induction was established by observing significant increases in cortisol for the stress condition only. We examined extinction retrieval by comparing conditioned responses during the last trial of extinction (day 1) with that of the first trial of re-extinction (day 2). Groups did not differ on initial fear acquisition or extinction, however, one day later participants in the stress group (n = 27) demonstrated significantly less extinction retrieval (i.e., greater fear recovery) than those in the control group (n = 25). Our results suggest that acute stress impairs extinction memory retrieval and offers insight into why treatment strategies used in the clinic may be challenging to recruit in daily life where stress is pervasive. PMID:24508065

  1. Age-dependent MDPV-induced taste aversions and thermoregulation in adolescent and adult rats.

    PubMed

    Merluzzi, Andrew P; Hurwitz, Zachary E; Briscione, Maria A; Cobuzzi, Jennifer L; Wetzell, Bradley; Rice, Kenner C; Riley, Anthony L

    2014-07-01

    Adolescent rats are more sensitive to the rewarding and less sensitive to the aversive properties of various drugs of abuse than their adult counterparts. Given a nationwide increase in use of "bath salts," the present experiment employed the conditioned taste aversion procedure to assess the aversive effects of 3,4-methylenedioxypyrovalerone (MDPV; 0, 1.0, 1.8, or 3.2 mg/kg), a common constituent in "bath salts," in adult and adolescent rats. As similar drugs induce thermoregulatory changes in rats, temperature was recorded following MDPV administration to assess if thermoregulatory changes were related to taste aversion conditioning. Both age groups acquired taste aversions, although these aversions were weaker and developed at a slower rate in the adolescent subjects. Adolescents increased and adults decreased body temperature following MDPV administration with no correlation to aversions. The relative insensitivity of adolescents to the aversive effects of MDPV suggests that MDPV may confer an increased risk in this population. © 2013 Wiley Periodicals, Inc.

  2. Gender differences in financial risk aversion and career choices are affected by testosterone.

    PubMed

    Sapienza, Paola; Zingales, Luigi; Maestripieri, Dario

    2009-09-08

    Women are generally more risk averse than men. We investigated whether between- and within-gender variation in financial risk aversion was accounted for by variation in salivary concentrations of testosterone and in markers of prenatal testosterone exposure in a sample of >500 MBA students. Higher levels of circulating testosterone were associated with lower risk aversion among women, but not among men. At comparably low concentrations of salivary testosterone, however, the gender difference in risk aversion disappeared, suggesting that testosterone has nonlinear effects on risk aversion regardless of gender. A similar relationship between risk aversion and testosterone was also found using markers of prenatal testosterone exposure. Finally, both testosterone levels and risk aversion predicted career choices after graduation: Individuals high in testosterone and low in risk aversion were more likely to choose risky careers in finance. These results suggest that testosterone has both organizational and activational effects on risk-sensitive financial decisions and long-term career choices.

  3. An appeal to undergraduate wildlife programs: send scientists to learn statistics

    USGS Publications Warehouse

    Kendall, W.L.; Gould, W.R.

    2002-01-01

    Undergraduate wildlife students taking introductory statistics too often are poorly prepared and insufficiently motivated to learn statistics. We have also encountered too many wildlife professionals, even with graduate degrees, who exhibit an aversion to thinking statistically, either relying too heavily on statisticians or avoiding statistics altogether. We believe part of the reason for these problems is that wildlife majors are insufficiently grounded in the scientific method and analytical thinking before they take statistics. We suggest that a partial solution is to assure wildlife majors are trained in the scientific method at the very beginning of their academic careers.

  4. Risk seeking for losses modulates the functional connectivity of the default mode and left frontoparietal networks in young males.

    PubMed

    Deza Araujo, Yacila I; Nebe, Stephan; Neukam, Philipp T; Pooseh, Shakoor; Sebold, Miriam; Garbusow, Maria; Heinz, Andreas; Smolka, Michael N

    2018-06-01

    Value-based decision making (VBDM) is a principle that states that humans and other species adapt their behavior according to the dynamic subjective values of the chosen or unchosen options. The neural bases of this process have been extensively investigated using task-based fMRI and lesion studies. However, the growing field of resting-state functional connectivity (RSFC) may shed light on the organization and function of brain connections across different decision-making domains. With this aim, we used independent component analysis to study the brain network dynamics in a large cohort of young males (N = 145) and the relationship of these dynamics with VBDM. Participants completed a battery of behavioral tests that evaluated delay aversion, risk seeking for losses, risk aversion for gains, and loss aversion, followed by an RSFC scan session. We identified a set of large-scale brain networks and conducted our analysis only on the default mode network (DMN) and networks comprising cognitive control, appetitive-driven, and reward-processing regions. Higher risk seeking for losses was associated with increased connectivity between medial temporal regions, frontal regions, and the DMN. Higher risk seeking for losses was also associated with increased coupling between the left frontoparietal network and occipital cortices. These associations illustrate the participation of brain regions involved in prospective thinking, affective decision making, and visual processing in participants who are greater risk-seekers, and they demonstrate the sensitivity of RSFC to detect brain connectivity differences associated with distinct VBDM parameters.

  5. Tetrahydrobiopterin improves hippocampal nitric oxide-linked long-term memory.

    PubMed

    Latini, Alexandra; de Bortoli da Silva, Lucila; da Luz Scheffer, Débora; Pires, Ananda Christina Staats; de Matos, Filipe José; Nesi, Renata T; Ghisoni, Karina; de Paula Martins, Roberta; de Oliveira, Paulo Alexandre; Prediger, Rui D; Ghersi, Marisa; Gabach, Laura; Pérez, Mariela Fernanda; Rubiales-Barioglio, Susana; Raisman-Vozari, Rita; Mongeau, Raymond; Lanfumey, Laurence; Aguiar, Aderbal Silva

    2018-06-11

    Tetrahydrobiopterin (BH4) is synthesized by the combined action of three metabolic pathways, namely de novo synthesis, recycling, and salvage pathways. The best-known function of BH4 is its mandatory action as a natural cofactor of the aromatic amino acid hydroxylases and nitric oxide synthases. Thus, BH4 is essential for the synthesis of nitric oxide, a retrograde neurotransmitter involved in learning and memory. We investigated the effect of BH4 (4-4000 pmol) intracerebroventricular administration on aversive memory, and on BH4 metabolism in the hippocampus of rodents. Memory-related behaviors were assessed in Swiss and C57BL/6 J mice, and in Wistar rats. It was consistently observed across all rodent species that BH4 facilitates aversive memory acquisition and consolidation by increasing the latency to step-down in the inhibitory avoidance task. This effect was associated with a reduced threshold to generate hippocampal long-term potentiation process. In addition, two inhibitors of memory formation (N(ω)-nitro-L-arginine methyl ester - L-Name - and dizocilpine - MK-801 -) blocked the enhanced effect of BH4 on memory, while the amnesic effect was not rescue by the co-administration of BH4 or a cGMP analog (8-Br-cGMP). The data strongly suggest that BH4 enhances aversive memory by activating the glutamatergic neurotransmission and the retrograde activity of NO. It was also demonstrated that BH2 can be converted into BH4 by activating the BH4 salvage pathway under physiological conditions in the hippocampus. This is the first evidence showing that BH4 enhances aversive memory and that the BH4 salvage pathway is active in the hippocampus. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. The role of the basolateral amygdala in punishment.

    PubMed

    Jean-Richard-Dit-Bressel, Philip; McNally, Gavan P

    2015-02-01

    Aversive stimuli not only support fear conditioning to their environmental antecedents, they also punish behaviors that cause their occurrence. The amygdala, especially the basolateral nucleus (BLA), has been critically implicated in Pavlovian fear learning but its role in punishment remains poorly understood. Here, we used a within-subjects punishment task to assess the role of the BLA in the acquisition and expression of punishment as well as aversive choice. Rats that pressed two individually presented levers for pellet rewards rapidly suppressed responding to one lever if it also caused footshock deliveries (punished lever) but continued pressing a second lever that did not cause footshock (unpunished lever). Infusions of GABA agonists baclofen and muscimol (BM) into the BLA significantly impaired the acquisition of this suppression. BLA inactivations using BM also reduced the expression of well-trained punishment. There was anatomical segregation within the BLA so that caudal, not rostral, BLA was implicated in punishment. However, when presented with punished and unpunished levers simultaneously in a choice test without deliveries of shock punisher, rats expressed a preference for unpunished over the punished lever and BLA inactivations had no effect on this preference. Taken together, these findings indicate that the BLA is important for both the acquisition and expression of punishment but not for aversive choice. This role appears to be linked to neurons in the caudal BLA, rather than rostral BLA, although the circuitry that contributes to this functional segregation is currently unknown, and is most parsimoniously interpreted as a role for caudal BLA in determining the aversive value of the shock punisher. © 2015 Jean-Richard-Dit-Bressel and McNally; Published by Cold Spring Harbor Laboratory Press.

  7. The effect of accountability on loss aversion.

    PubMed

    Vieider, Ferdinand M

    2009-09-01

    This paper investigates the effect of accountability-the expectation on the side of the decision maker of having to justify his/her decisions to somebody else-on loss aversion. Loss aversion is commonly thought to be the strongest component of risk aversion. Accountability is found to reduce the bias of loss aversion. This effect is explained by the higher cognitive effort induced by accountability, which triggers a rational check on emotional reactions at the base of loss aversion, leading to a reduction of the latter. Connections to dual-processing models are discussed.

  8. An Integrative Perspective on the Role of Dopamine in Schizophrenia

    PubMed Central

    Maia, Tiago V.; Frank, Michael J.

    2017-01-01

    We propose that schizophrenia involves a combination of decreased phasic dopamine responses for relevant stimuli and increased spontaneous phasic dopamine release. Using insights from computational reinforcement-learning models and basic-science studies of the dopamine system, we show that each of these two disturbances contributes to a specific symptom domain and explains a large set of experimental findings associated with that domain. Reduced phasic responses for relevant stimuli help to explain negative symptoms and provide a unified explanation for the following experimental findings in schizophrenia, most of which have been shown to correlate with negative symptoms: reduced learning from rewards; blunted activation of the ventral striatum, midbrain, and other limbic regions for rewards and positive prediction errors; blunted activation of the ventral striatum during reward anticipation; blunted autonomic responding for relevant stimuli; blunted neural activation for aversive outcomes and aversive prediction errors; reduced willingness to expend effort for rewards; and psychomotor slowing. Increased spontaneous phasic dopamine release helps to explain positive symptoms and provides a unified explanation for the following experimental findings in schizophrenia, most of which have been shown to correlate with positive symptoms: aberrant learning for neutral cues (assessed with behavioral and autonomic responses), and aberrant, increased activation of the ventral striatum, midbrain, and other limbic regions for neutral cues, neutral outcomes, and neutral prediction errors. Taken together, then, these two disturbances explain many findings in schizophrenia. We review evidence supporting their co-occurrence and consider their differential implications for the treatment of positive and negative symptoms. PMID:27452791

  9. Neurobiological mechanisms underlying the blocking effect in aversive learning.

    PubMed

    Eippert, Falk; Gamer, Matthias; Büchel, Christian

    2012-09-19

    Current theories of classical conditioning assume that learning depends on the predictive relationship between events, not just on their temporal contiguity. Here we employ the classic experiment substantiating this reasoning-the blocking paradigm-in combination with functional magnetic resonance imaging (fMRI) to investigate whether human amygdala responses in aversive learning conform to these assumptions. In accordance with blocking, we demonstrate that significantly stronger behavioral and amygdala responses are evoked by conditioned stimuli that are predictive of the unconditioned stimulus than by conditioned stimuli that have received the same pairing with the unconditioned stimulus, yet have no predictive value. When studying the development of this effect, we not only observed that it was related to the strength of previous conditioned responses, but also that predictive compared with nonpredictive conditioned stimuli received more overt attention, as measured by fMRI-concurrent eye tracking, and that this went along with enhanced amygdala responses. We furthermore observed that prefrontal regions play a role in the development of the blocking effect: ventromedial prefrontal cortex (subgenual anterior cingulate) only exhibited responses when conditioned stimuli had to be established as nonpredictive for an outcome, whereas dorsolateral prefrontal cortex also showed responses when conditioned stimuli had to be established as predictive. Most importantly, dorsolateral prefrontal cortex connectivity to amygdala flexibly switched between positive and negative coupling, depending on the requirements posed by predictive relationships. Together, our findings highlight the role of predictive value in explaining amygdala responses and identify mechanisms that shape these responses in human fear conditioning.

  10. Loss Aversion Reflects Information Accumulation, Not Bias: A Drift-Diffusion Model Study.

    PubMed

    Clay, Summer N; Clithero, John A; Harris, Alison M; Reed, Catherine L

    2017-01-01

    Defined as increased sensitivity to losses, loss aversion is often conceptualized as a cognitive bias. However, findings that loss aversion has an attentional or emotional regulation component suggest that it may instead reflect differences in information processing. To distinguish these alternatives, we applied the drift-diffusion model (DDM) to choice and response time (RT) data in a card gambling task with unknown risk distributions. Loss aversion was measured separately for each participant. Dividing the participants into terciles based on loss aversion estimates, we found that the most loss-averse group showed a significantly lower drift rate than the other two groups, indicating overall slower uptake of information. In contrast, neither the starting bias nor the threshold separation (barrier) varied by group, suggesting that decision thresholds are not affected by loss aversion. These results shed new light on the cognitive mechanisms underlying loss aversion, consistent with an account based on information accumulation.

  11. Loss Aversion Reflects Information Accumulation, Not Bias: A Drift-Diffusion Model Study

    PubMed Central

    Clay, Summer N.; Clithero, John A.; Harris, Alison M.; Reed, Catherine L.

    2017-01-01

    Defined as increased sensitivity to losses, loss aversion is often conceptualized as a cognitive bias. However, findings that loss aversion has an attentional or emotional regulation component suggest that it may instead reflect differences in information processing. To distinguish these alternatives, we applied the drift-diffusion model (DDM) to choice and response time (RT) data in a card gambling task with unknown risk distributions. Loss aversion was measured separately for each participant. Dividing the participants into terciles based on loss aversion estimates, we found that the most loss-averse group showed a significantly lower drift rate than the other two groups, indicating overall slower uptake of information. In contrast, neither the starting bias nor the threshold separation (barrier) varied by group, suggesting that decision thresholds are not affected by loss aversion. These results shed new light on the cognitive mechanisms underlying loss aversion, consistent with an account based on information accumulation. PMID:29066987

  12. Establishing a learned-helplessness effect paradigm in C57BL/6 mice: behavioural evidence for emotional, motivational and cognitive effects of aversive uncontrollability per se.

    PubMed

    Pryce, Christopher R; Azzinnari, Damiano; Sigrist, Hannes; Gschwind, Tilo; Lesch, Klaus-Peter; Seifritz, Erich

    2012-01-01

    Uncontrollability of major life events has been proposed to be central to depression onset and maintenance. The learned helplessness (LH) effect describes a deficit in terminating controllable aversive stimuli in individuals that experienced aversive stimuli as uncontrollable relative to individuals that experienced the same stimuli as controllable. The LH effect translates across species and therefore can provide an objective-valid readout in animal models of depression. Paradigms for a robust LH effect are established and currently applied in rat but there are few reports of prior and current study of the LH effect in mouse. This includes the C57BL/6 mouse, typically the strain of choice for application of molecular-genetic tools in pre-clinical depression research. The aims of this study were to develop a robust paradigm for the LH effect in BL/6 mice, provide evidence for underlying psychological processes, and study the effect of a depression-relevant genotype on the LH effect. The apparatus used for in/escapable electro-shock exposure and escape test was a two-way shuttle arena with continuous automated measurement of locomotion, compartment transfers, e-shock escapes, vertical activity and freezing. Brother-pairs of BL/6 mice were allocated to either escapable e-shocks (ES) or inescapable e-shocks (IS), with escape latencies of the ES brother used as e-shock durations for the IS brother. The standard two-way shuttle paradigm was modified: the central gate was replaced by a raised divider and e-shock escape required transfer to the distal part of the safe compartment. These refinements yielded reduced superstitious, pre-adaptive e-shock transfers in IS mice and thereby increased the LH effect. To obtain a robust LH effect in all brother pairs, pre-screening for minor between-brother ES differences was necessary and did not confound the LH effect. IS mice developed reduced motor responses to e-shock, consistent with a motivational deficit, and absence of a learning curve for escapes at escape test, consistent with a cognitive deficit. When a tone CS was used to predict e-shock, IS mice exhibited increased reactivity to the CS, consistent with hyper-emotionality. There was no ES-IS difference in pain sensitivity. Mice heterozygous knockout for the 5-HTT gene exhibited an increased LH effect relative to wildtype mice. This mouse model will allow for the detailed molecular study of the aetiology, psychology, neurobiology and neuropharmacology of uncontrollability of aversive stimuli, a potential major aetiological factor and state marker in depression. This article is part of a Special Issue entitled 'Anxiety and Depression'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Plasticity-related genes in brain development and amygdala-dependent learning.

    PubMed

    Ehrlich, D E; Josselyn, S A

    2016-01-01

    Learning about motivationally important stimuli involves plasticity in the amygdala, a temporal lobe structure. Amygdala-dependent learning involves a growing number of plasticity-related signaling pathways also implicated in brain development, suggesting that learning-related signaling in juveniles may simultaneously influence development. Here, we review the pleiotropic functions in nervous system development and amygdala-dependent learning of a signaling pathway that includes brain-derived neurotrophic factor (BDNF), extracellular signaling-related kinases (ERKs) and cyclic AMP-response element binding protein (CREB). Using these canonical, plasticity-related genes as an example, we discuss the intersection of learning-related and developmental plasticity in the immature amygdala, when aversive and appetitive learning may influence the developmental trajectory of amygdala function. We propose that learning-dependent activation of BDNF, ERK and CREB signaling in the immature amygdala exaggerates and accelerates neural development, promoting amygdala excitability and environmental sensitivity later in life. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  14. Playing it safe but losing anyway – serotonergic signaling of aversive outcomes in dorsomedial prefrontal cortex in the context of risk-aversion

    PubMed Central

    Macoveanu, Julian; Rowe, James B; Hornboll, Bettina; Elliott, Rebecca; Paulson, Olaf B; Knudsen, Gitte M; Siebner, Hartwig R

    2015-01-01

    Risk avoidance is an important determinant of human behavior. The neurotransmitter serotonin has long been implicated in processing aversive outcomes caused by risky decisions. However, it is unclear whether serotonin provides a neurobiological link between making a risk aversive decision and the response to an aversive outcome. Using pharmacological fMRI, we manipulated the availability of serotonin in healthy volunteers while performing a gambling task. The same group of participants was studied in three fMRI sessions: (i) during intravenous administration of the SSRI citalopram to increase the serotonergic tone, (ii) after acute tryptophan depletion (ATD) to reduce central serotonin levels, or (iii) without interventions. ATD and citalopran had opposite effects on outcome related activity in dorsomedial prefrontal cortex (dmPFC) and amygdala. Relative to the control condition, ATD increased and citalopram decreased the neural response to aversive outcomes in dmPFC. Conversely, ATD decreased and citalopram increased the neural response to aversive outcomes in left amygdala. Critically, these pharmacological effects were restricted to aversive outcomes that were caused by low-risk decision and led to a high missed reward. ATD and citalopram did not alter the neural response to positive outcomes in dmPFC, but relative to ATD, citalopram produced a bilateral increase in the amygdala response to large wins caused by high-risk choices. The results show a selective involvement of the serotonergic system in neocortical processing of aversive outcomes resulting from risk-averse decisions, thereby linking risk aversion and processing of aversive outcomes in goal-directed behaviors. PMID:23051938

  15. Incidental fear cues increase monetary loss aversion.

    PubMed

    Schulreich, Stefan; Gerhardt, Holger; Heekeren, Hauke R

    2016-04-01

    In many everyday decisions, people exhibit loss aversion-a greater sensitivity to losses relative to gains of equal size. Loss aversion is thought to be (at least partly) mediated by emotional--in particular, fear-related--processes. Decision research has shown that even incidental emotions, which are unrelated to the decision at hand, can influence decision making. The effect of incidental fear on loss aversion, however, is thus far unclear. In two studies, we experimentally investigated how incidental fear cues, presented during (Study 1) or before (Study 2) choices to accept or reject mixed gambles over real monetary stakes, influence monetary loss aversion. We find that the presentation of fearful faces, relative to the presentation of neutral faces, increased risk aversion-an effect that could be attributed to increased loss aversion. The size of this effect was moderated by psychopathic personality: Fearless dominance, in particular its interpersonal facet, but not self-centered impulsivity, attenuated the effect of incidental fear cues on loss aversion, consistent with reduced fear reactivity. Together, these results highlight the sensitivity of loss aversion to the affective context. (c) 2016 APA, all rights reserved).

  16. Caudate nucleus reactivity predicts perceptual learning rate for visual feature conjunctions.

    PubMed

    Reavis, Eric A; Frank, Sebastian M; Tse, Peter U

    2015-04-15

    Useful information in the visual environment is often contained in specific conjunctions of visual features (e.g., color and shape). The ability to quickly and accurately process such conjunctions can be learned. However, the neural mechanisms responsible for such learning remain largely unknown. It has been suggested that some forms of visual learning might involve the dopaminergic neuromodulatory system (Roelfsema et al., 2010; Seitz and Watanabe, 2005), but this hypothesis has not yet been directly tested. Here we test the hypothesis that learning visual feature conjunctions involves the dopaminergic system, using functional neuroimaging, genetic assays, and behavioral testing techniques. We use a correlative approach to evaluate potential associations between individual differences in visual feature conjunction learning rate and individual differences in dopaminergic function as indexed by neuroimaging and genetic markers. We find a significant correlation between activity in the caudate nucleus (a component of the dopaminergic system connected to visual areas of the brain) and visual feature conjunction learning rate. Specifically, individuals who showed a larger difference in activity between positive and negative feedback on an unrelated cognitive task, indicative of a more reactive dopaminergic system, learned visual feature conjunctions more quickly than those who showed a smaller activity difference. This finding supports the hypothesis that the dopaminergic system is involved in visual learning, and suggests that visual feature conjunction learning could be closely related to associative learning. However, no significant, reliable correlations were found between feature conjunction learning and genotype or dopaminergic activity in any other regions of interest. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Visual memory and learning in extremely low-birth-weight/extremely preterm adolescents compared with controls: a geographic study.

    PubMed

    Molloy, Carly S; Wilson-Ching, Michelle; Doyle, Lex W; Anderson, Vicki A; Anderson, Peter J

    2014-04-01

    Contemporary data on visual memory and learning in survivors born extremely preterm (EP; <28 weeks gestation) or with extremely low birth weight (ELBW; <1,000 g) are lacking. Geographically determined cohort study of 298 consecutive EP/ELBW survivors born in 1991 and 1992, and 262 randomly selected normal-birth-weight controls. Visual learning and memory data were available for 221 (74.2%) EP/ELBW subjects and 159 (60.7%) controls. EP/ELBW adolescents exhibited significantly poorer performance across visual memory and learning variables compared with controls. Visual learning and delayed visual memory were particularly problematic and remained so after controlling for visual-motor integration and visual perception and excluding adolescents with neurosensory disability, and/or IQ <70. Male EP/ELBW adolescents or those treated with corticosteroids had poorer outcomes. EP/ELBW adolescents have poorer visual memory and learning outcomes compared with controls, which cannot be entirely explained by poor visual perceptual or visual constructional skills or intellectual impairment.

  18. The role of visual representation in physics learning: dynamic versus static visualization

    NASA Astrophysics Data System (ADS)

    Suyatna, Agus; Anggraini, Dian; Agustina, Dina; Widyastuti, Dini

    2017-11-01

    This study aims to examine the role of visual representation in physics learning and to compare the learning outcomes of using dynamic and static visualization media. The study was conducted using quasi-experiment with Pretest-Posttest Control Group Design. The samples of this research are students of six classes at State Senior High School in Lampung Province. The experimental class received a learning using dynamic visualization and control class using static visualization media. Both classes are given pre-test and post-test with the same instruments. Data were tested with N-gain analysis, normality test, homogeneity test and mean difference test. The results showed that there was a significant increase of mean (N-Gain) learning outcomes (p <0.05) in both experimental and control classes. The averages of students’ learning outcomes who are using dynamic visualization media are significantly higher than the class that obtains learning by using static visualization media. It can be seen from the characteristics of visual representation; each visualization provides different understanding support for the students. Dynamic visual media is more suitable for explaining material related to movement or describing a process, whereas static visual media is appropriately used for non-moving physical phenomena and requires long-term observation.

  19. Enhanced extinction of cocaine seeking in brain-derived neurotrophic factor Val66Met knock-in mice.

    PubMed

    Briand, Lisa A; Lee, Francis S; Blendy, Julie A; Pierce, R Christopher

    2012-03-01

    The Val66Met polymorphism in the brain-derived neurotropic factor (BDNF) gene results in alterations in fear extinction behavior in both human populations and mouse models. However, it is not clear whether this polymorphism plays a similar role in extinction of appetitive behaviors. Therefore, we examined operant learning and extinction of both food and cocaine self-administration behavior in an inbred genetic knock-in mouse strain expressing the variant Bdnf. These mice provide a unique opportunity to relate alterations in aversive and appetitive extinction learning as well as provide insight into how human genetic variation can lead to differences in behavior. BDNF(Met/Met) mice exhibited a severe deficit in operant learning as demonstrated by an inability to learn the food self-administration task. Therefore, extinction experiments were performed comparing wildtype (BDNF(Val/Val) ) animals to mice heterozygous for the Met allele (BDNF(Val/Met) ), which did not differ in food or cocaine self-administration behavior. In contrast to the deficit in fear extinction previously demonstrated in these mice, we found that BDNF(Val/Met) mice exhibited more rapid extinction of cocaine responding compared to wildtype mice. No differences were found between the genotypes in the extinction of food self-administration behavior or the reinstatement of cocaine seeking, indicating that the effect is specific to extinction of cocaine responding. These results suggest that the molecular mechanisms underlying aversive and appetitive extinction are distinct from one another and BDNF may play opposing roles in the two phenomena. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  20. Nicotine increases fear responses and brain acetylcholinesterase activity in a context-dependent manner in zebrafish.

    PubMed

    Ziani, Paola R; Müller, Talise E; Stefanello, Flavia V; Fontana, Barbara D; Duarte, Tâmie; Canzian, Julia; Rosemberg, Denis B

    2018-07-01

    Nicotine is an alkaloid with positive effects on learning and memory processes. Exposure to conspecific alarm substance (CAS) elicits fear responses in zebrafish, but the effects of nicotine on aversive behaviors and associative learning in this species remain unclear. Here, we evaluated whether nicotine enhances contextual fear responses in zebrafish and investigated a putative involvement of brain acetylcholinesterase (AChE) in associative learning. Fish were exposed to 1 mg/L nicotine for 3 min and then kept in non-chlorinated water for 20 min. Later, animals were transferred to experimental tanks in the absence or presence of 3.5 mL/L CAS for 5 min (training session). After 24 h, fish were tested in tanks with similar or altered context in the absence of CAS (post-training session) and brain AChE activity was further assessed. At training, CAS increased freezing, erratic movements, and decreased the time spent in top area, while nicotine abolished the effects of CAS on erratic movements. Nicotine/CAS group tested in a similar context showed exacerbated freezing and reduced transitions to top area. Moreover, a decrease in distance traveled was observed in control, nicotine, and nicotine/CAS groups at post-training. Nicotine also stimulated brain AChE activity in CAS-exposed animals reintroduced in tanks with similar context. Although freezing bouts and time spent in top could serve as behavioral endpoints that reflect CAS-induced sensitization, the effects of nicotine occurred in a context-dependent manner. Collectively, our data suggest an involvement of cholinergic signaling in aversive learning, reinforcing the growing utility of zebrafish models to explore the neurobehavioral effects of nicotine in vertebrates. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. The Influence of State Anxiety on Fear Discrimination and Extinction in Females

    PubMed Central

    Dibbets, Pauline; Evers, Elisabeth A. T.

    2017-01-01

    Formal theories have linked pathological anxiety to a failure in fear response inhibition. Previously, we showed that aberrant response inhibition is not restricted to anxiety patients, but can also be observed in anxiety-prone adults. However, less is known about the influence of currently experienced levels of anxiety on inhibitory learning. The topic is highly important as state anxiety has a debilitating effect on cognition, emotion, and physiology and is linked to several anxiety disorders. In the present study, healthy female volunteers performed a fear conditioning task, after being informed that they will have to perform the Trier Social Stress Test task (n = 25; experimental group) or a control task (n = 25; control group) upon completion of the conditioning task. The results showed that higher levels of state anxiety corresponded with a reduced discrimination between a stimulus (CS+) typically followed by an aversive event and a stimulus (CS-) that is never followed by an aversive event both during the acquisition and the extinction phase. No effect of state anxiety on the skin conductance response associated with CS+ and CS- was found. Additionally, higher levels of state anxiety coincided with more negative valence ratings of the CSs. The results suggest that increased stress-induced state anxiety might lead to stimulus generalization during fear acquisition, thereby impairing associative learning. PMID:28360869

  2. Differential regulation of glutamic acid decarboxylase gene expression after extinction of a recent memory vs. intermediate memory.

    PubMed

    Sangha, Susan; Ilenseer, Jasmin; Sosulina, Ludmila; Lesting, Jörg; Pape, Hans-Christian

    2012-04-17

    Extinction reduces fear to stimuli that were once associated with an aversive event by no longer coupling the stimulus with the aversive event. Extinction learning is supported by a network comprising the amygdala, hippocampus, and prefrontal cortex. Previous studies implicate a critical role of GABA in extinction learning, specifically the GAD65 isoform of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD). However, a detailed analysis of changes in gene expression of GAD in the subregions comprising the extinction network has not been undertaken. Here, we report changes in gene expression of the GAD65 and GAD67 isoforms of GAD, as measured by relative quantitative real-time RT-PCR, in subregions of the amygdala, hippocampus, and prefrontal cortex 24-26 h after extinction of a recent (1-d) or intermediate (14-d) fear memory. Our results show that extinction of a recent memory induces a down-regulation of Gad65 gene expression in the hippocampus (CA1, dentate gyrus) and an up-regulation of Gad67 gene expression in the infralimbic cortex. Extinguishing an intermediate memory increased Gad65 gene expression in the central amygdala. These results indicate a differential regulation of Gad gene expression after extinction of a recent memory vs. intermediate memory.

  3. Associative visual learning by tethered bees in a controlled visual environment.

    PubMed

    Buatois, Alexis; Pichot, Cécile; Schultheiss, Patrick; Sandoz, Jean-Christophe; Lazzari, Claudio R; Chittka, Lars; Avarguès-Weber, Aurore; Giurfa, Martin

    2017-10-10

    Free-flying honeybees exhibit remarkable cognitive capacities but the neural underpinnings of these capacities cannot be studied in flying insects. Conversely, immobilized bees are accessible to neurobiological investigation but display poor visual learning. To overcome this limitation, we aimed at establishing a controlled visual environment in which tethered bees walking on a spherical treadmill learn to discriminate visual stimuli video projected in front of them. Freely flying bees trained to walk into a miniature Y-maze displaying these stimuli in a dark environment learned the visual discrimination efficiently when one of them (CS+) was paired with sucrose and the other with quinine solution (CS-). Adapting this discrimination to the treadmill paradigm with a tethered, walking bee was successful as bees exhibited robust discrimination and preferred the CS+ to the CS- after training. As learning was better in the maze, movement freedom, active vision and behavioral context might be important for visual learning. The nature of the punishment associated with the CS- also affects learning as quinine and distilled water enhanced the proportion of learners. Thus, visual learning is amenable to a controlled environment in which tethered bees learn visual stimuli, a result that is important for future neurobiological studies in virtual reality.

  4. Learned helplessness: unique features and translational value of a cognitive depression model.

    PubMed

    Vollmayr, Barbara; Gass, Peter

    2013-10-01

    The concept of learned helplessness defines an escape or avoidance deficit after uncontrollable stress and is regarded as a depression-like coping deficit in aversive but avoidable situations. Based on a psychological construct, it ideally complements other stress-induced or genetic animal models for major depression. Because of excellent face, construct, and predictive validity, it has contributed to the elaboration of several pathophysiological concepts and has brought forward new treatment targets. Whereas learned helplessness can be modeled not only in a broad variety of mammals, but also in fish and Drosophila, we will focus here on the use of this model in rats and mice, which are today the most common species for preclinical in vivo research in psychiatry.

  5. Infantile Amnesia: A Critical Period of Learning to Learn and Remember

    PubMed Central

    Travaglia, Alessio

    2017-01-01

    Infantile amnesia, the inability of adults to recollect early episodic memories, is associated with the rapid forgetting that occurs in childhood. It has been suggested that infantile amnesia is due to the underdevelopment of the infant brain, which would preclude memory consolidation, or to deficits in memory retrieval. Although early memories are inaccessible to adults, early-life events, such as neglect or aversive experiences, can greatly impact adult behavior and may predispose individuals to various psychopathologies. It remains unclear how a brain that rapidly forgets, or is not yet able to form long-term memories, can exert such a long-lasting and important influence. Here, with a particular focus on the hippocampal memory system, we review the literature and discuss new evidence obtained in rats that illuminates the paradox of infantile amnesia. We propose that infantile amnesia reflects a developmental critical period during which the learning system is learning how to learn and remember. PMID:28615475

  6. Misophonia: Diagnostic Criteria for a New Psychiatric Disorder

    PubMed Central

    Schröder, Arjan; Vulink, Nienke; Denys, Damiaan

    2013-01-01

    Background Some patients report a preoccupation with a specific aversive human sound that triggers impulsive aggression. This condition is relatively unknown and has hitherto never been described, although the phenomenon has anecdotally been named misophonia. Methodology and Principal Findings 42 patients who reported misophonia were recruited by our hospital website. All patients were interviewed by an experienced psychiatrist and were screened with an adapted version of the Y-BOCS, HAM-D, HAM-A, SCL-90 and SCID II. The misophonia patients shared a similar pattern of symptoms in which an auditory or visual stimulus provoked an immediate aversive physical reaction with anger, disgust and impulsive aggression. The intensity of these emotions caused subsequent obsessions with the cue, avoidance and social dysfunctioning with intense suffering. The symptoms cannot be classified in the current nosological DSM-IV TR or ICD-10 systems. Conclusions We suggest that misophonia should be classified as a discrete psychiatric disorder. Diagnostic criteria could help to officially recognize the patients and the disorder, improve its identification by professional health carers, and encourage scientific research. PMID:23372758

  7. Aversion substance(s) of the rat coagulating glands

    USGS Publications Warehouse

    Gawienowski, Anthony M.; Berry, Iver J.; Kennelly, James J.

    1982-01-01

    The aversive substance(s) present in adult male urine were not found in castrate rat urine. Removal of the coagulating glands also resulted in a loss of the aversion compounds. The aversion substances were restored to the urine after androgen treatment of the castrate rats.

  8. Does Risk Aversion Affect Transmission and Generation Planning? A Western North America Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz, Francisco; van der Weijde, Adriaan Hendrik; Hobbs, Benjamin F.

    Here, we investigate the effects of risk aversion on optimal transmission and generation expansion planning in a competitive and complete market. To do so, we formulate a stochastic model that minimizes a weighted average of expected transmission and generation costs and their conditional value at risk (CVaR). We also show that the solution of this optimization problem is equivalent to the solution of a perfectly competitive risk-averse Stackelberg equilibrium, in which a risk-averse transmission planner maximizes welfare after which risk-averse generators maximize profits. Furthermore, this model is then applied to a 240-bus representation of the Western Electricity Coordinating Council, inmore » which we examine the impact of risk aversion on levels and spatial patterns of generation and transmission investment. Although the impact of risk aversion remains small at an aggregate level, state-level impacts on generation and transmission investment can be significant, which emphasizes the importance of explicit consideration of risk aversion in planning models.« less

  9. Does Risk Aversion Affect Transmission and Generation Planning? A Western North America Case Study

    DOE PAGES

    Munoz, Francisco; van der Weijde, Adriaan Hendrik; Hobbs, Benjamin F.; ...

    2017-04-07

    Here, we investigate the effects of risk aversion on optimal transmission and generation expansion planning in a competitive and complete market. To do so, we formulate a stochastic model that minimizes a weighted average of expected transmission and generation costs and their conditional value at risk (CVaR). We also show that the solution of this optimization problem is equivalent to the solution of a perfectly competitive risk-averse Stackelberg equilibrium, in which a risk-averse transmission planner maximizes welfare after which risk-averse generators maximize profits. Furthermore, this model is then applied to a 240-bus representation of the Western Electricity Coordinating Council, inmore » which we examine the impact of risk aversion on levels and spatial patterns of generation and transmission investment. Although the impact of risk aversion remains small at an aggregate level, state-level impacts on generation and transmission investment can be significant, which emphasizes the importance of explicit consideration of risk aversion in planning models.« less

  10. Mothers' depressive symptoms predict both increased and reduced negative reactivity: aversion sensitivity and the regulation of emotion.

    PubMed

    Dix, Theodore; Moed, Anat; Anderson, Edward R

    2014-07-01

    This study examined whether, as mothers' depressive symptoms increase, their expressions of negative emotion to children increasingly reflect aversion sensitivity and motivation to minimize ongoing stress or discomfort. In multiple interactions over 2 years, negative affect expressed by 319 mothers and their children was observed across variations in mothers' depressive symptoms, the aversiveness of children's immediate behavior, and observed differences in children's general negative reactivity. As expected, depressive symptoms predicted reduced maternal negative reactivity when child behavior was low in aversiveness, particularly with children who were high in negative reactivity. Depressive symptoms predicted high negative reactivity and steep increases in negative reactivity as the aversiveness of child behavior increased, particularly when high and continued aversiveness from the child was expected (i.e., children were high in negative reactivity). The findings are consistent with the proposal that deficits in parenting competence as depressive symptoms increase reflect aversion sensitivity and motivation to avoid conflict and suppress children's aversive behavior. © The Author(s) 2014.

  11. Repetitive Transcranial Direct Current Stimulation Induced Excitability Changes of Primary Visual Cortex and Visual Learning Effects-A Pilot Study.

    PubMed

    Sczesny-Kaiser, Matthias; Beckhaus, Katharina; Dinse, Hubert R; Schwenkreis, Peter; Tegenthoff, Martin; Höffken, Oliver

    2016-01-01

    Studies on noninvasive motor cortex stimulation and motor learning demonstrated cortical excitability as a marker for a learning effect. Transcranial direct current stimulation (tDCS) is a non-invasive tool to modulate cortical excitability. It is as yet unknown how tDCS-induced excitability changes and perceptual learning in visual cortex correlate. Our study aimed to examine the influence of tDCS on visual perceptual learning in healthy humans. Additionally, we measured excitability in primary visual cortex (V1). We hypothesized that anodal tDCS would improve and cathodal tDCS would have minor or no effects on visual learning. Anodal, cathodal or sham tDCS were applied over V1 in a randomized, double-blinded design over four consecutive days (n = 30). During 20 min of tDCS, subjects had to learn a visual orientation-discrimination task (ODT). Excitability parameters were measured by analyzing paired-stimulation behavior of visual-evoked potentials (ps-VEP) and by measuring phosphene thresholds (PTs) before and after the stimulation period of 4 days. Compared with sham-tDCS, anodal tDCS led to an improvement of visual discrimination learning (p < 0.003). We found reduced PTs and increased ps-VEP ratios indicating increased cortical excitability after anodal tDCS (PT: p = 0.002, ps-VEP: p = 0.003). Correlation analysis within the anodal tDCS group revealed no significant correlation between PTs and learning effect. For cathodal tDCS, no significant effects on learning or on excitability could be seen. Our results showed that anodal tDCS over V1 resulted in improved visual perceptual learning and increased cortical excitability. tDCS is a promising tool to alter V1 excitability and, hence, perceptual visual learning.

  12. The prefrontal cortex and hybrid learning during iterative competitive games.

    PubMed

    Abe, Hiroshi; Seo, Hyojung; Lee, Daeyeol

    2011-12-01

    Behavioral changes driven by reinforcement and punishment are referred to as simple or model-free reinforcement learning. Animals can also change their behaviors by observing events that are neither appetitive nor aversive when these events provide new information about payoffs available from alternative actions. This is an example of model-based reinforcement learning and can be accomplished by incorporating hypothetical reward signals into the value functions for specific actions. Recent neuroimaging and single-neuron recording studies showed that the prefrontal cortex and the striatum are involved not only in reinforcement and punishment, but also in model-based reinforcement learning. We found evidence for both types of learning, and hence hybrid learning, in monkeys during simulated competitive games. In addition, in both the dorsolateral prefrontal cortex and orbitofrontal cortex, individual neurons heterogeneously encoded signals related to actual and hypothetical outcomes from specific actions, suggesting that both areas might contribute to hybrid learning. © 2011 New York Academy of Sciences.

  13. Visual discrimination transfer and modulation by biogenic amines in honeybees.

    PubMed

    Vieira, Amanda Rodrigues; Salles, Nayara; Borges, Marco; Mota, Theo

    2018-05-10

    For more than a century, visual learning and memory have been studied in the honeybee Apis mellifera using operant appetitive conditioning. Although honeybees show impressive visual learning capacities in this well-established protocol, operant training of free-flying animals cannot be combined with invasive protocols for studying the neurobiological basis of visual learning. In view of this, different attempts have been made to develop new classical conditioning protocols for studying visual learning in harnessed honeybees, though learning performance remains considerably poorer than that for free-flying animals. Here, we investigated the ability of honeybees to use visual information acquired during classical conditioning in a new operant context. We performed differential visual conditioning of the proboscis extension reflex (PER) followed by visual orientation tests in a Y-maze. Classical conditioning and Y-maze retention tests were performed using the same pair of perceptually isoluminant chromatic stimuli, to avoid the influence of phototaxis during free-flying orientation. Visual discrimination transfer was clearly observed, with pre-trained honeybees significantly orienting their flights towards the former positive conditioned stimulus (CS+), thus showing that visual memories acquired by honeybees are resistant to context changes between conditioning and the retention test. We combined this visual discrimination approach with selective pharmacological injections to evaluate the effect of dopamine and octopamine in appetitive visual learning. Both octopaminergic and dopaminergic antagonists impaired visual discrimination performance, suggesting that both these biogenic amines modulate appetitive visual learning in honeybees. Our study brings new insight into cognitive and neurobiological mechanisms underlying visual learning in honeybees. © 2018. Published by The Company of Biologists Ltd.

  14. Ventral Pallidum Encodes Contextual Information and Controls Aversive Behaviors.

    PubMed

    Saga, Yosuke; Richard, Augustin; Sgambato-Faure, Véronique; Hoshi, Eiji; Tobler, Philippe N; Tremblay, Léon

    2017-04-01

    Successful avoidance of aversive outcomes is crucial for the survival of animals. Although accumulating evidence indicates that an indirect pathway in the basal ganglia is involved in aversive behavior, the ventral pallidum (VP), which is an important component of this pathway, has so far been implicated primarily in appetitive behavior. In this study, we used single-cell recordings and bicuculline (GABAA antagonist) injections to elucidate the role of VP both in the encoding of aversive context and in active avoidance. We found 2 populations of neurons that were preferentially activated by appetitive and aversive conditioned stimuli (CSs). In addition, VP showed appetitive and aversive outcome anticipatory activities. These activity patterns indicate that VP is involved in encoding and maintaining CS-induced aversive contextual information. Furthermore, the disturbance of VP activity by bicuculline injection increased the number of error trials in aversive trials. In particular, the subjects released the response bar prematurely, showed no response at all, or failed to avoid the aversive outcome. Overall, these results suggest that VP plays a central role in controlling CS-induced negative motivation to produce avoidance behavior. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Schizophrenia illness severity is associated with reduced loss aversion.

    PubMed

    Currie, James; Buruju, Dheeraj; Perrin, Jennifer S; Reid, Ian C; Steele, J Douglas; Feltovich, Nick

    2017-06-01

    Loss aversion, whereby losses weigh more heavily than equal-sized gains, has been demonstrated in many decision-making settings. Previous research has suggested reduced loss aversion in schizophrenia, but with little evidence of a link between loss aversion and schizophrenia illness severity. In this study, 20 individuals with schizophrenia and 16 control participants, matched by age and sex, played two versions of the Iterated Prisoners' Dilemma, one version with only positive payoffs and another version in which negative payoffs were possible, with the second version being derived from the first by subtracting a constant value from all payoffs. The control group demonstrated significantly lower cooperation rates under negative payoffs, compared with the version with only positive payoffs, indicative of loss aversion. The patient group on average showed no loss aversion response. Moreover, the extent of loss aversion in patients was found to be negatively correlated with schizophrenia illness severity, with less ill patients showing loss aversion more similar to controls. Results were found to be robust to the inclusion of potential confounding factors as covariates within rigorous probit regression analyses. Reduced loss aversion is a feature of schizophrenia and related to illness severity. Copyright © 2017. Published by Elsevier B.V.

  16. Risk sensitivity as an evolutionary adaptation

    NASA Astrophysics Data System (ADS)

    Hintze, Arend; Olson, Randal S.; Adami, Christoph; Hertwig, Ralph

    2015-02-01

    Risk aversion is a common behavior universal to humans and animals alike. Economists have traditionally defined risk preferences by the curvature of the utility function. Psychologists and behavioral economists also make use of concepts such as loss aversion and probability weighting to model risk aversion. Neurophysiological evidence suggests that loss aversion has its origins in relatively ancient neural circuitries (e.g., ventral striatum). Could there thus be an evolutionary origin to risk aversion? We study this question by evolving strategies that adapt to play the equivalent mean payoff gamble. We hypothesize that risk aversion in this gamble is beneficial as an adaptation to living in small groups, and find that a preference for risk averse strategies only evolves in small populations of less than 1,000 individuals, or in populations segmented into groups of 150 individuals or fewer - numbers thought to be comparable to what humans encountered in the past. We observe that risk aversion only evolves when the gamble is a rare event that has a large impact on the individual's fitness. As such, we suggest that rare, high-risk, high-payoff events such as mating and mate competition could have driven the evolution of risk averse behavior in humans living in small groups.

  17. Visual and Verbal Learning Deficits in Veterans with Alcohol and Substance Use Disorders

    PubMed Central

    Bell, Morris D.; Vissicchio, Nicholas A.; Weinstein, Andrea J.

    2015-01-01

    Background This study examined visual and verbal learning in the early phase of recovery for 48 Veterans with alcohol use (AUD) and substance use disorders (SUD, primarily cocaine and opiate abusers). Previous studies have demonstrated visual and verbal learning deficits in AUD, however little is known about the differences between AUD and SUD on these domains. Since the DSM-5 specifically identifies problems with learning in AUD and not in SUD, and problems with visual and verbal learning have been more prevalent in the literature for AUD than SUD, we predicted that people with AUD would be more impaired on measures of visual and verbal learning than people with SUD. Methods: Participants were enrolled in a comprehensive rehabilitation program and were assessed within the first 5 weeks of abstinence. Verbal learning was measured using the Hopkins Verbal Learning Test (HVLT) and visual learning was assessed using the Brief Visuospatial Memory Test (BVMT). Results Results indicated significantly greater decline in verbal learning on the HVLT across the three learning trials for AUD participants but not for SUD participants (F=4.653, df =48, p=.036). Visual learning was less impaired than verbal learning across learning trials for both diagnostic groups (F=0.197, df=48, p=.674); there was no significant difference between groups on visual learning (F=0.401, df=14, p=.538). Discussion Older Veterans in the early phase of recovery from AUD may have difficulty learning new verbal information. Deficits in verbal learning may reduce the effectiveness of verbally-based interventions such as psycho-education. PMID:26684868

  18. Visual and verbal learning deficits in Veterans with alcohol and substance use disorders.

    PubMed

    Bell, Morris D; Vissicchio, Nicholas A; Weinstein, Andrea J

    2016-02-01

    This study examined visual and verbal learning in the early phase of recovery for 48 Veterans with alcohol use (AUD) and substance use disorders (SUD, primarily cocaine and opiate abusers). Previous studies have demonstrated visual and verbal learning deficits in AUD, however little is known about the differences between AUD and SUD on these domains. Since the DSM-5 specifically identifies problems with learning in AUD and not in SUD, and problems with visual and verbal learning have been more prevalent in the literature for AUD than SUD, we predicted that people with AUD would be more impaired on measures of visual and verbal learning than people with SUD. Participants were enrolled in a comprehensive rehabilitation program and were assessed within the first 5 weeks of abstinence. Verbal learning was measured using the Hopkins Verbal Learning Test (HVLT) and visual learning was assessed using the Brief Visuospatial Memory Test (BVMT). Results indicated significantly greater decline in verbal learning on the HVLT across the three learning trials for AUD participants but not for SUD participants (F=4.653, df=48, p=0.036). Visual learning was less impaired than verbal learning across learning trials for both diagnostic groups (F=0.197, df=48, p=0.674); there was no significant difference between groups on visual learning (F=0.401, df=14, p=0.538). Older Veterans in the early phase of recovery from AUD may have difficulty learning new verbal information. Deficits in verbal learning may reduce the effectiveness of verbally-based interventions such as psycho-education. Published by Elsevier Ireland Ltd.

  19. Conditioned taste aversion and motion sickness in cats and squirrel monkeys

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.; Corcoran, Meryl Lee; Brizzee, Kenneth R.

    1991-01-01

    The relationship between vomiting and conditioned taste aversion was studied in intact cats and squirrel monkeys and in cats and squirrel monkeys in which the area postrema was ablated by thermal cautery. In cats conditioned 7-12 months after ablation of the area postrema, three successive treatments with xylazine failed to produce either vomiting or conditioned taste aversion to a novel fluid. Intact cats, however, vomited and formed a conditioned aversion. In squirrel monkeys conditioned 6 months after ablation of the area postrema, three treatments with lithium chloride failed to produce conditioned taste aversion. Intact monkeys did condition with these treatments. Neither intact nor ablated monkeys vomited or evidenced other signs of illness when injected with lithium chloride. When the same ablated cats and monkeys were exposed to a form of motion that produced vomiting prior to surgery, conditioned taste aversion can be produced after ablation of the area postrema. The utility of conditioned taste aversion as a measure of subemetic motion sickness is discussed by examining agreement and disagreement between identifications of motion sickness by conditioned taste aversion and vomiting. It is suggested that a convincing demonstration of the utility of conditioned taste aversion as a measure of nausea requires the identification of physiological correlates of nausea, and caution should be exercised when attempting to interpret conditioned taste aversion as a measure of nausea.

  20. Neural Correlates of Decision-Making Under Ambiguity and Conflict.

    PubMed

    Pushkarskaya, Helen; Smithson, Michael; Joseph, Jane E; Corbly, Christine; Levy, Ifat

    2015-01-01

    HIGHLIGHTS We use a simple gambles design in an fMRI study to compare two conditions: ambiguity and conflict.Participants were more conflict averse than ambiguity averse.Ambiguity aversion did not correlate with conflict aversion.Activation in the medial prefrontal cortex correlated with ambiguity level and ambiguity aversion.Activation in the ventral striatum correlated with conflict level and conflict aversion. Studies of decision making under uncertainty generally focus on imprecise information about outcome probabilities ("ambiguity"). It is not clear, however, whether conflicting information about outcome probabilities affects decision making in the same manner as ambiguity does. Here we combine functional magnetic resonance imaging (fMRI) and a simple gamble design to study this question. In this design the levels of ambiguity and conflict are parametrically varied, and ambiguity and conflict gambles are matched on expected value. Behaviorally, participants avoided conflict more than ambiguity, and attitudes toward ambiguity and conflict did not correlate across participants. Neurally, regional brain activation was differentially modulated by ambiguity level and aversion to ambiguity and by conflict level and aversion to conflict. Activation in the medial prefrontal cortex was correlated with the level of ambiguity and with ambiguity aversion, whereas activation in the ventral striatum was correlated with the level of conflict and with conflict aversion. These novel results indicate that decision makers process imprecise and conflicting information differently, a finding that has important implications for basic and clinical research.

  1. Neural Correlates of Decision-Making Under Ambiguity and Conflict

    PubMed Central

    Pushkarskaya, Helen; Smithson, Michael; Joseph, Jane E.; Corbly, Christine; Levy, Ifat

    2015-01-01

    HIGHLIGHTS We use a simple gambles design in an fMRI study to compare two conditions: ambiguity and conflict.Participants were more conflict averse than ambiguity averse.Ambiguity aversion did not correlate with conflict aversion.Activation in the medial prefrontal cortex correlated with ambiguity level and ambiguity aversion.Activation in the ventral striatum correlated with conflict level and conflict aversion. Studies of decision making under uncertainty generally focus on imprecise information about outcome probabilities (“ambiguity”). It is not clear, however, whether conflicting information about outcome probabilities affects decision making in the same manner as ambiguity does. Here we combine functional magnetic resonance imaging (fMRI) and a simple gamble design to study this question. In this design the levels of ambiguity and conflict are parametrically varied, and ambiguity and conflict gambles are matched on expected value. Behaviorally, participants avoided conflict more than ambiguity, and attitudes toward ambiguity and conflict did not correlate across participants. Neurally, regional brain activation was differentially modulated by ambiguity level and aversion to ambiguity and by conflict level and aversion to conflict. Activation in the medial prefrontal cortex was correlated with the level of ambiguity and with ambiguity aversion, whereas activation in the ventral striatum was correlated with the level of conflict and with conflict aversion. These novel results indicate that decision makers process imprecise and conflicting information differently, a finding that has important implications for basic and clinical research. PMID:26640434

  2. Risk aversion and compliance in markets for pollution control.

    PubMed

    Stranlund, John K

    2008-07-01

    This paper examines the effects of risk aversion on compliance choices in markets for pollution control. A firm's decision to be compliant or not is independent of its manager's risk preference. However, non-compliant firms with risk-averse managers will have lower violations than otherwise identical firms with risk-neutral managers. The violations of non-compliant firms with risk-averse managers are independent of differences in their profit functions and their initial allocations of permits if and only if their managers' utility functions exhibit constant absolute risk aversion. However, firm-level characteristics do impact violation choices when managers have coefficients of absolute risk aversion that are increasing or decreasing in profit levels. Finally, in the equilibrium of a market for emissions rights with widespread non-compliance, risk aversion is associated with higher permit prices, better environmental quality, and lower aggregate violations.

  3. Brain activity associated with illusory correlations in animal phobia.

    PubMed

    Wiemer, Julian; Schulz, Stefan M; Reicherts, Philipp; Glotzbach-Schoon, Evelyn; Andreatta, Marta; Pauli, Paul

    2015-07-01

    Anxiety disorder patients were repeatedly found to overestimate the association between disorder-relevant stimuli and aversive outcomes despite random contingencies. Such an illusory correlation (IC) might play an important role in the return of fear after extinction learning; yet, little is known about how this cognitive bias emerges in the brain. In a functional magnetic resonance imaging study, 18 female patients with spider phobia and 18 healthy controls were exposed to pictures of spiders, mushrooms and puppies followed randomly by either a painful electrical shock or nothing. In advance, both patients and healthy controls expected more shocks after spider pictures. Importantly, only patients with spider phobia continued to overestimate this association after the experiment. The strength of this IC was predicted by increased outcome aversiveness ratings and primary sensory motor cortex activity in response to the shock after spider pictures. Moreover, increased activation of the left dorsolateral prefrontal cortex (dlPFC) to spider pictures predicted the IC. These results support the theory that phobia-relevant stimuli amplify unpleasantness and sensory motor representations of aversive stimuli, which in turn may promote their overestimation. Hyper-activity in dlPFC possibly reflects a pre-occupation of executive resources with phobia-relevant stimuli, thus complicating the accurate monitoring of objective contingencies and the unlearning of fear. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. [Acceptance and Commitment Therapy in the Treatment of Chronic Disease].

    PubMed

    Kuba, Katharina; Weißflog, Gregor

    2017-12-01

    Acceptance and Commitment Therapy (ACT) is an intervention representing a transdiagnostic and contextual approach that assumes that psychological suffering is caused by experiential avoidance. The primary intention of ACT is not to eliminate symptoms and to treat mental disorders. Instead, ACT aims to increase psychological flexibility, i. e. to broaden the repertoire of cognitions and behaviors when facing inner and outer aversive events or experiences. Psychological flexibility can be enhanced by working with the 6 core components of the ACT model. Experience-focused methods like metaphors and exercises for acceptance play a crucial role in the therapeutic work. In short, with ACT patients can learn: ▪ that rigid and inflexible attempts to fight aversive experience are problematic ▪ a mindful experience of inner and outer experience ▪ to differentiate between unchangeable and changeable events (acceptance) ▪ to identify values or respectively life goals and to behave in a way that is consistent with them (commitment)The therapeutic focus of ACT is to create a balance between acceptance and behavioral change consistent with chosen values. Chronic diseases are often associated with aversive inner and outer experiences. A growing number of studies support the efficacy of ACT. There is evidence that ACT can increase psychological flexibility and potentially also lead to better self-management within the context of chronic somatic diseases. © Georg Thieme Verlag KG Stuttgart · New York.

  5. [Cognitive mechanisms in risky decision-making in cannabis users].

    PubMed

    J R, Alameda-Bailén; M P, Salguero-Alcañiz; A, Merchán-Clavellino; S, Paíno-Quesada

    2014-01-01

    The relationship between the use of cannabis and the decision-making processes was explored. A computerized version of the Iowa Gambling Task (Cards Software) in its normal and reverse version was used, and the Prospect Valence Learning (PVL) model, which characterize the process of decision-making based on the parameters: Recency, Consistency, Loss aversion and Utility shape, was applied. Seventy-three cannabis consumers and a control group with 73 nonconsumers participated in the study. In the normal mode, subjects in the control group scored higher than cannabis consumers. Both groups showed consistent responses and aversion to loss. Nonconsumers showed greater influence of the gain-loss frequency, while consumers were more influenced by the magnitude of the gain-loss. The influence of immediate choices was higher among consumers who showed a quick oblivion while in the control group this process was more gradual. In the reverse mode, task performance was better among control group participants. Both groups showed consistency, loss aversion, more influenced by the magnitude of the gain-loss, and low influence of immediate elections. The results show the relationship between drug use and the decision-making processes, being consistent with the results obtained in other studies where consumers had worse results than control group. Moreover, the PVL parameters allow to adequately characterize decision-making. This confirms the relationship between drug use and decision-making by either the vulnerability prior to consumption or the neurotoxicity of drugs.

  6. Unpleasant odors increase aversion to monetary losses.

    PubMed

    Stancak, Andrej; Xie, Yuxin; Fallon, Nicholas; Bulsing, Patricia; Giesbrecht, Timo; Thomas, Anna; Pantelous, Athanasios A

    2015-04-01

    Loss aversion is the tendency to prefer avoiding losses over acquiring gains of equal nominal values. Unpleasant odors not only influence affective state but have also been shown to activate brain regions similar to those mediating loss aversion. Therefore, we hypothesized a stronger loss aversion in a monetary gamble task if gambles were associated with an unpleasant as opposed to pleasant odor. In thirty human subjects, unpleasant (methylmercaptan), pleasant (jasmine), and neutral (clean air) odors were presented for 4 s. At the same time, uncertain gambles offering an equal chance of gain or loss of a variable amount of money, or a prospect of an assured win were displayed. One hundred different gambles were presented three times, each time paired with a different odor. Loss aversion, risk aversion, and logit sensitivity were evaluated using non-linear fitting of individual gamble decisions. Loss aversion was larger when prospects were displayed in the presence of methylmercaptan compared to jasmine or clean air. Moreover, individual differences in changes in loss aversion to the unpleasant as compared to pleasant odor correlated with odor pleasantness but not with odor intensity. Skin conductance responses to losses during the outcome period were larger when gambles were associated with methylmercaptan compared to jasmine. Increased loss aversion while perceiving an unpleasant odor suggests a dynamic adjustment of loss aversion toward greater sensitivity to losses. Given that odors are biological signals of hazards, such adjustment of loss aversion may have adaptive value in situations entailing threat or danger. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Effects of pharmacological manipulation of the kappa opioid receptors on the aversive effects of nicotine.

    PubMed

    Ward, Melissa; Norman, Haval; D'Souza, Manoranjan S

    2018-02-15

    Nicotine, an addictive component of tobacco smoke, produces both rewarding and aversive effects. Increasing the aversive effects of nicotine may help in promoting smoking cessation. However, neural targets mediating the aversive effects of nicotine have not been fully identified. In this study, we evaluated the role of kappa opioid receptors (KORs) in the aversive effects of nicotine (0.4 mg/kg, base; s.c.) using the nicotine-induced conditioned taste aversion (CTA) model in Wistar rats. The KORs were activated using the selective KOR agonist (±)U-50,488H (0, 0.03, 0.15 & 0.3mg/kg; s.c.) and inhibited using the KOR antagonist nor-binaltorphimine (nor-BNI; 0, 15 & 30mg/kg; s.c.) in separate groups of rats using a between-subjects design. Pretreatment with the KOR agonist (±)U-50,488H (0.3mg/kg) significantly increased aversion for the nicotine-associated solution. Additionally, (±)U-50,488H (0.3mg/kg) on its own induced aversion to the flavored solution associated with it even in the absence of nicotine, suggesting that the KOR agonist induced increase in nicotine-induced aversion was an additive effect. Interestingly, administration of the KOR antagonist nor-BNI (30mg/kg) prior to conditioning with nicotine/saline, but not after conditioning with nicotine/saline, attenuated nicotine-induced aversive effects compared to saline controls. Taken together, these data suggest a role for KORs in the aversive effects of nicotine. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The effects of nicotine on ethanol-induced conditioned taste aversions in Long-Evans rats.

    PubMed

    Rinker, Jennifer A; Busse, Gregory D; Roma, Peter G; Chen, Scott A; Barr, Christina S; Riley, Anthony L

    2008-04-01

    Overall drug acceptability is thought to be a function of the balance between its rewarding and aversive effects, the latter of which is reportedly affected by polydrug use. Given that nicotine and alcohol are commonly co-used, the present experiments sought to assess nicotine's impact on ethanol's aversive effects within a conditioned taste aversion design. Experiment 1 examined various doses of nicotine (0, 0.4, 0.8, 1.2 mg/kg) to determine a behaviorally active dose, and experiment 2 examined various doses of ethanol (0, 0.5, 1.0, 1.5 g/kg) to determine a dose that produced intermediate aversions. Experiment 3 then examined the aversive effects of nicotine (0.8 mg/kg) and ethanol (1.0 g/kg) alone and in combination. Additionally, nicotine's effects on blood alcohol concentrations (BAC) and ethanol-induced hypothermia were examined. Nicotine and ethanol combined produced aversions significantly greater than those produced by either drug alone or the summed aversive effects of the individual compounds. These effects were unrelated to changes in BAC, but nicotine and ethanol combined produced a prolonged hypothermic effect which may contribute to the increased aversions induced by the combination. These data demonstrate that nicotine may interact with ethanol, increasing ethanol's aversive effects. Although the rewarding effects of concurrently administered nicotine and ethanol were not assessed, these data do indicate that the reported high incidence of nicotine and ethanol co-use is unlikely due to reductions in the aversiveness of ethanol with concurrently administered nicotine. It is more likely attributable to nicotine-related changes in ethanol's rewarding effects.

  9. Public Computer Assisted Learning Facilities for Children with Visual Impairment: Universal Design for Inclusive Learning

    ERIC Educational Resources Information Center

    Siu, Kin Wai Michael; Lam, Mei Seung

    2012-01-01

    Although computer assisted learning (CAL) is becoming increasingly popular, people with visual impairment face greater difficulty in accessing computer-assisted learning facilities. This is primarily because most of the current CAL facilities are not visually impaired friendly. People with visual impairment also do not normally have access to…

  10. Effects of Computer-Based Visual Representation on Mathematics Learning and Cognitive Load

    ERIC Educational Resources Information Center

    Yung, Hsin I.; Paas, Fred

    2015-01-01

    Visual representation has been recognized as a powerful learning tool in many learning domains. Based on the assumption that visual representations can support deeper understanding, we examined the effects of visual representations on learning performance and cognitive load in the domain of mathematics. An experimental condition with visual…

  11. Threat captures attention but does not affect learning of contextual regularities.

    PubMed

    Yamaguchi, Motonori; Harwood, Sarah L

    2017-04-01

    Some of the stimulus features that guide visual attention are abstract properties of objects such as potential threat to one's survival, whereas others are complex configurations such as visual contexts that are learned through past experiences. The present study investigated the two functions that guide visual attention, threat detection and learning of contextual regularities, in visual search. Search arrays contained images of threat and non-threat objects, and their locations were fixed on some trials but random on other trials. Although they were irrelevant to the visual search task, threat objects facilitated attention capture and impaired attention disengagement. Search time improved for fixed configurations more than for random configurations, reflecting learning of visual contexts. Nevertheless, threat detection had little influence on learning of the contextual regularities. The results suggest that factors guiding visual attention are different from factors that influence learning to guide visual attention.

  12. Kissing bugs can generalize and discriminate between different bitter compounds.

    PubMed

    Asparch, Yamila; Pontes, Gina; Masagué, Santiago; Minoli, Sebastian; Barrozo, Romina B

    2016-10-01

    Animals make use of contact chemoreception structures to examine the quality of potential food sources. During this evaluation they can detect nutritious compounds that promote feeding and recognize toxins that trigger evasive behaviors. Although animals can easily distinguish between stimuli of different gustatory qualities (bitter, salty, sweet, etc.), their ability to discriminate between compounds of the same quality may be limited. Numerous plants produce alkaloids, compounds that elicit aversive behaviors in phytophagous insects and almost uniformly evoke a bitter taste for man. In hematophagous insects, however, the effect of feeding deterrent molecules has been barely studied. Recent studies showed that feeding in Rhodnius prolixus can be negatively modulated by the presence of alkaloids such as quinine (QUI) and caffeine (CAF), compounds that elicit similar aversive responses. Here, we applied associative and non-associative learning paradigms to examine under two behavioral contexts the ability of R. prolixus to distinguish, discriminate and/or generalize between these two bitter compounds, QUI and CAF. Our results show that bugs innately repelled by bitter compounds can change their behavior from avoidance to indifference or even to preference according to their previous experiences. After an aversive operant conditioning with QUI or CAF, R. prolixus modified its behavior in a direct but also in a cross-compound manner, suggesting the occurrence of a generalization process between these two alkaloids. Conversely, after a long pre-exposure to each alkaloid, bugs decreased their avoidance to the compound used during pre-exposure but still expressed an avoidance of the novel compound, proving that QUI and CAF are detected separately. Our results suggest that R. prolixus is able to discriminate between QUI and CAF, although after an associative conditioning they express a symmetrical cross-generalization. This kind of studies adds insight into the gustatory sense of a blood-sucking model but also into the learning abilities of hematophagous insects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Social Fear Conditioning Paradigm in Virtual Reality: Social vs. Electrical Aversive Conditioning

    PubMed Central

    Reichenberger, Jonas; Porsch, Sonja; Wittmann, Jasmin; Zimmermann, Verena; Shiban, Youssef

    2017-01-01

    In a previous study we could show that social fear can be induced and extinguished using virtual reality (VR). In the present study, we aimed to investigate the belongingness effect in an operant social fear conditioning (SFC) paradigm which consisted of an acquisition and an extinction phase. Forty-three participants used a joystick to approach different virtual male agents that served as conditioned stimuli. Participants were randomly allocated to one of two experimental conditions. In the electroshock condition, the unconditioned stimulus (US) used during acquisition was an electric stimulation. In the social threat condition, the US consisted of an offense: a spit in the face, mimicked by a sound and a weak air blast to the participant’s neck combined with an insult. In both groups the US was presented when participants were close to the agent (75% contingency for CS+). Outcome variables included subjective, psychophysiological and behavioral data. As expected, fear and contingency ratings increased significantly during acquisition and the differentiation between CS+ and CS- vanished during extinction. Furthermore, a clear difference in skin conductance between CS+ and CS- at the beginning of the acquisition indicated that SFC had been successful. However, a fast habituation to the US was found toward the end of the acquisition phase for the physiological response. Furthermore, participants showed avoidance behavior toward CS+ in both conditions. The results show that social fear can successfully be induced and extinguished in VR in a human sample. Thus, our paradigm can help to gain insight into learning and unlearning of social fear. Regarding the belongingness effect, the social threat condition benefits from a better differentiation between the aversive and the non-aversive stimuli. As next step we suggest comparing social-phobic patients to healthy controls in order to investigate possible differences in discrimination learning and to foster the development of more efficient treatments for social phobia. PMID:29250000

  14. Social Fear Conditioning Paradigm in Virtual Reality: Social vs. Electrical Aversive Conditioning.

    PubMed

    Reichenberger, Jonas; Porsch, Sonja; Wittmann, Jasmin; Zimmermann, Verena; Shiban, Youssef

    2017-01-01

    In a previous study we could show that social fear can be induced and extinguished using virtual reality (VR). In the present study, we aimed to investigate the belongingness effect in an operant social fear conditioning (SFC) paradigm which consisted of an acquisition and an extinction phase. Forty-three participants used a joystick to approach different virtual male agents that served as conditioned stimuli. Participants were randomly allocated to one of two experimental conditions. In the electroshock condition, the unconditioned stimulus (US) used during acquisition was an electric stimulation. In the social threat condition, the US consisted of an offense: a spit in the face, mimicked by a sound and a weak air blast to the participant's neck combined with an insult. In both groups the US was presented when participants were close to the agent (75% contingency for CS+). Outcome variables included subjective, psychophysiological and behavioral data. As expected, fear and contingency ratings increased significantly during acquisition and the differentiation between CS+ and CS- vanished during extinction. Furthermore, a clear difference in skin conductance between CS+ and CS- at the beginning of the acquisition indicated that SFC had been successful. However, a fast habituation to the US was found toward the end of the acquisition phase for the physiological response. Furthermore, participants showed avoidance behavior toward CS+ in both conditions. The results show that social fear can successfully be induced and extinguished in VR in a human sample. Thus, our paradigm can help to gain insight into learning and unlearning of social fear. Regarding the belongingness effect, the social threat condition benefits from a better differentiation between the aversive and the non-aversive stimuli. As next step we suggest comparing social-phobic patients to healthy controls in order to investigate possible differences in discrimination learning and to foster the development of more efficient treatments for social phobia.

  15. Hiring a Gay Man, Taking a Risk?: A Lab Experiment on Employment Discrimination and Risk Aversion.

    PubMed

    Baert, Stijn

    2018-01-01

    We investigate risk aversion as a driver of labor market discrimination against homosexual men. We show that more hiring discrimination by more risk-averse employers is consistent with taste-based and statistical discrimination. To test this hypothesis we conduct a scenario experiment in which experimental employers take a fictitious hiring decision concerning a heterosexual or homosexual male job candidate. In addition, participants are surveyed on their risk aversion and other characteristics that might correlate with this risk aversion. Analysis of the (post-)experimental data confirms our hypothesis. The likelihood of a beneficial hiring decision for homosexual male candidates decreases by 31.7% when employers are a standard deviation more risk-averse.

  16. Size doesn't really matter: ambiguity aversion in Ellsberg urns with few balls.

    PubMed

    Pulford, Briony D; Colman, Andrew M

    2008-01-01

    When attempting to draw a ball of a specified color either from an urn containing 50 red balls and 50 black balls or from an urn containing an unknown ratio of 100 red and black balls, a majority of decision makers prefer the known-risk urn, and this ambiguity aversion effect violates expected utility theory. In an experimental investigation of the effect of urn size on ambiguity aversion, 149 participants showed similar levels of aversion when choosing from urns containing 2, 10, or 100 balls. The occurrence of a substantial and significant ambiguity aversion effect even in the smallest urn suggests that influential theoretical interpretations of ambiguity aversion may need to be reconsidered.

  17. Medical professionalism in the formal curriculum: 5th year medical students' experiences.

    PubMed

    Stockley, Amelia J; Forbes, Karen

    2014-11-30

    The standards and outcomes outlined in the General Medical Council's publication 'Tomorrow's Doctors' include proposals that medical professionalism be included in undergraduate curricula. Learning the values and attitudes necessary to become a 'doctor as a professional' has traditionally been left largely to the informal and hidden curricula. There remains no consensus or confirmed evidence upon which to base best practice for teaching in this area. In 2010, as part of a revision of the fifth year curriculum the University of Bristol Medical School introduced tutorials which focused on students' achievement of the learning objectives in 'Tomorrow's Doctors Outcomes 3: the doctor as a professional'. This study sought to explore the students' experiences of these tutorials in order to develop the evidence base further. Sixteen medical students participated in three focus-group interviews exploring their experiences of medical professionalism tutorials. A course evaluation questionnaire to all fifth year students also provided data. Data were analysed using the principles of Interpretative Phenomenological Analysis. Four main themes were identified: students' aversion to 'ticking-boxes', lack of engagement by the students, lack of engagement by the tutors and students' views on how medical professionalism should be taught. A curriculum innovation which placed the achievement of medical professionalism in the formal curriculum was not unanimously embraced by students or faculty. Further consideration of the students' aversion to 'ticking-boxes' is warranted. With continued demand for increased accountability and transparency in medical education, detailed check-lists of specific learning objectives will continue to feature as a means by which medical schools and learners demonstrate attainment. Students' experiences and acceptance of these check-lists deserves attention in order to inform teaching and learning in this area. Learner and faculty 'buy in' are imperative to the success of curriculum change and vital if the students are to attain the intended learning objectives. Effective faculty development and student induction programmes could be employed to facilitate engagement by both parties.

  18. The Odor Context Facilitates the Perception of Low-Intensity Facial Expressions of Emotion

    PubMed Central

    Leleu, Arnaud; Demily, Caroline; Franck, Nicolas; Durand, Karine; Schaal, Benoist; Baudouin, Jean-Yves

    2015-01-01

    It has been established that the recognition of facial expressions integrates contextual information. In this study, we aimed to clarify the influence of contextual odors. The participants were asked to match a target face varying in expression intensity with non-ambiguous expressive faces. Intensity variations in the target faces were designed by morphing expressive faces with neutral faces. In addition, the influence of verbal information was assessed by providing half the participants with the emotion names. Odor cues were manipulated by placing participants in a pleasant (strawberry), aversive (butyric acid), or no-odor control context. The results showed two main effects of the odor context. First, the minimum amount of visual information required to perceive an expression was lowered when the odor context was emotionally congruent: happiness was correctly perceived at lower intensities in the faces displayed in the pleasant odor context, and the same phenomenon occurred for disgust and anger in the aversive odor context. Second, the odor context influenced the false perception of expressions that were not used in target faces, with distinct patterns according to the presence of emotion names. When emotion names were provided, the aversive odor context decreased intrusions for disgust ambiguous faces but increased them for anger. When the emotion names were not provided, this effect did not occur and the pleasant odor context elicited an overall increase in intrusions for negative expressions. We conclude that olfaction plays a role in the way facial expressions are perceived in interaction with other contextual influences such as verbal information. PMID:26390036

  19. Colouring the Gaps in Learning Design: Aesthetics and the Visual in Learning

    ERIC Educational Resources Information Center

    Carroll, Fiona; Kop, Rita

    2016-01-01

    The visual is a dominant mode of information retrieval and understanding however, the focus on the visual dimension of Technology Enhanced Learning (TEL) is still quite weak in relation to its predominant focus on usability. To accommodate the future needs of the visual learner, designers of e-learning environments should advance the current…

  20. Visual and Verbal Learning in a Genetic Metabolic Disorder

    ERIC Educational Resources Information Center

    Spilkin, Amy M.; Ballantyne, Angela O.; Trauner, Doris A.

    2009-01-01

    Visual and verbal learning in a genetic metabolic disorder (cystinosis) were examined in the following three studies. The goal of Study I was to provide a normative database and establish the reliability and validity of a new test of visual learning and memory (Visual Learning and Memory Test; VLMT) that was modeled after a widely used test of…

Top