DOE Office of Scientific and Technical Information (OSTI.GOV)
Walston, Leroy J.; Rollins, Katherine E.; LaGory, Kirk E.
Despite the benefits of reduced toxic and carbon emissions and a perpetual energy resource, there is potential for negative environmental impacts resulting from utility-scale solar energy (USSE) development. Although USSE development may represent an avian mortality source, there is little knowledge regarding the magnitude of these impacts in the context of other avian mortality sources. In this study we present a first assessment of avian mortality at USSE facilities through a synthesis of available avian monitoring and mortality information at existing USSE facilities. Using this information, we contextualize USSE avian mortality relative to other forms of avian mortality at 2more » spatial scales: a regional scale (confined to southern California) and a national scale. Systematic avian mortality information was available for three USSE facilities in the southern California region. We estimated annual USSE-related avian mortality to be between 16,200 and 59,400 birds in the southern California region, which was extrapolated to between 37,800 and 138,600 birds for all USSE facilities across the United States that are either installed or under construction. We also discuss issues related to avian–solar interactions that should be addressed in future research and monitoring programs.« less
A Review of Avian Monitoring and Mitigation Information at Existing Utility-Scale Solar Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walston, Leroy J.; Rollins, Katherine E.; Smith, Karen P.
2015-01-01
There are two basic types of solar energy technology: photovoltaic and concentrating solar power. As the number of utility-scale solar energy facilities using these technologies is expected to increase in the United States, so are the potential impacts on wildlife and their habitats. Recent attention is on the risk of fatality to birds. Understanding the current rates of avian mortality and existing monitoring requirements is an important first step in developing science-based mitigation and minimization protocols. The resulting information also allows a comparison of the avian mortality rates of utility-scale solar energy facilities with those from other technologies and sources,more » as well as the identification of data gaps and research needs. This report will present and discuss the current state of knowledge regarding avian issues at utility-scale solar energy facilities.« less
NASA Technical Reports Server (NTRS)
Vellinger, J.; Deuser, M.; Hullinger, R.
1995-01-01
The Avian Development Facility (ADF) is designed to provide a 'window' for the study of embryogenesis in space. It allows researchers to determine and then to mitigate or nullify the forces of altered gravity upon embryos when leaving and re-entering the Earth's gravity. The ADF design will allow investigations to begin their incubation after their experiments have achieved orbit, and shut down the experiment and fix specimens before leaving orbit. In effect, the ADF makes every attempt to minimize launch and re-entry effects in order to isolate and preserve the effects of the experimental variable(s) of the space environment.
Bibliography of Literature for Avian Issues in Solar and Wind Energy and Other Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walston, Leroy J.; White, Ellen M.; Meyers, Stephanie A.
2015-04-01
Utility-scale solar energy has been a rapidly expanding energy sector in the United States in recent years and is expected to continue to grow. In 2014, concerns were raised over the risk of avian fatalities associated with utility-scale solar plants. With funding from the U.S. Department of Energy SunShot Program, Argonne National Laboratory and the National Renewable Energy Laboratory studied the issue and released A Review of Avian Monitoring and Mitigation Information at Existing Utility-Scale Solar Facilities (ANL/EVS-15/2, March 2015). A comprehensive literature review included peer-reviewed journal articles on avian fatalities from solar energy facilities and other sources (e.g., windmore » energy, building collisions, etc.), project-specific technical reports on avian monitoring and fatality at solar facilities, information on mitigation measures and best management practices, and literature pertaining to avian behavioral patterns and habitat use. The source citations are listed in this bibliography; they are current through December 2014.« less
New, Leslie; Bjerre, Emily; Millsap, Brian A.; Otto, Mark C.; Runge, Michael C.
2015-01-01
Wind power is a major candidate in the search for clean, renewable energy. Beyond the technical and economic challenges of wind energy development are environmental issues that may restrict its growth. Avian fatalities due to collisions with rotating turbine blades are a leading concern and there is considerable uncertainty surrounding avian collision risk at wind facilities. This uncertainty is not reflected in many models currently used to predict the avian fatalities that would result from proposed wind developments. We introduce a method to predict fatalities at wind facilities, based on pre-construction monitoring. Our method can directly incorporate uncertainty into the estimates of avian fatalities and can be updated if information on the true number of fatalities becomes available from post-construction carcass monitoring. Our model considers only three parameters: hazardous footprint, bird exposure to turbines and collision probability. By using a Bayesian analytical framework we account for uncertainties in these values, which are then reflected in our predictions and can be reduced through subsequent data collection. The simplicity of our approach makes it accessible to ecologists concerned with the impact of wind development, as well as to managers, policy makers and industry interested in its implementation in real-world decision contexts. We demonstrate the utility of our method by predicting golden eagle (Aquila chrysaetos) fatalities at a wind installation in the United States. Using pre-construction data, we predicted 7.48 eagle fatalities year-1 (95% CI: (1.1, 19.81)). The U.S. Fish and Wildlife Service uses the 80th quantile (11.0 eagle fatalities year-1) in their permitting process to ensure there is only a 20% chance a wind facility exceeds the authorized fatalities. Once data were available from two-years of post-construction monitoring, we updated the fatality estimate to 4.8 eagle fatalities year-1 (95% CI: (1.76, 9.4); 80th quantile, 6.3). In this case, the increased precision in the fatality prediction lowered the level of authorized take, and thus lowered the required amount of compensatory mitigation.
New, Leslie; Bjerre, Emily; Millsap, Brian; Otto, Mark C.; Runge, Michael C.
2015-01-01
Wind power is a major candidate in the search for clean, renewable energy. Beyond the technical and economic challenges of wind energy development are environmental issues that may restrict its growth. Avian fatalities due to collisions with rotating turbine blades are a leading concern and there is considerable uncertainty surrounding avian collision risk at wind facilities. This uncertainty is not reflected in many models currently used to predict the avian fatalities that would result from proposed wind developments. We introduce a method to predict fatalities at wind facilities, based on pre-construction monitoring. Our method can directly incorporate uncertainty into the estimates of avian fatalities and can be updated if information on the true number of fatalities becomes available from post-construction carcass monitoring. Our model considers only three parameters: hazardous footprint, bird exposure to turbines and collision probability. By using a Bayesian analytical framework we account for uncertainties in these values, which are then reflected in our predictions and can be reduced through subsequent data collection. The simplicity of our approach makes it accessible to ecologists concerned with the impact of wind development, as well as to managers, policy makers and industry interested in its implementation in real-world decision contexts. We demonstrate the utility of our method by predicting golden eagle (Aquila chrysaetos) fatalities at a wind installation in the United States. Using pre-construction data, we predicted 7.48 eagle fatalities year-1 (95% CI: (1.1, 19.81)). The U.S. Fish and Wildlife Service uses the 80th quantile (11.0 eagle fatalities year-1) in their permitting process to ensure there is only a 20% chance a wind facility exceeds the authorized fatalities. Once data were available from two-years of post-construction monitoring, we updated the fatality estimate to 4.8 eagle fatalities year-1 (95% CI: (1.76, 9.4); 80th quantile, 6.3). In this case, the increased precision in the fatality prediction lowered the level of authorized take, and thus lowered the required amount of compensatory mitigation. PMID:26134412
New, Leslie; Bjerre, Emily; Millsap, Brian; Otto, Mark C; Runge, Michael C
2015-01-01
Wind power is a major candidate in the search for clean, renewable energy. Beyond the technical and economic challenges of wind energy development are environmental issues that may restrict its growth. Avian fatalities due to collisions with rotating turbine blades are a leading concern and there is considerable uncertainty surrounding avian collision risk at wind facilities. This uncertainty is not reflected in many models currently used to predict the avian fatalities that would result from proposed wind developments. We introduce a method to predict fatalities at wind facilities, based on pre-construction monitoring. Our method can directly incorporate uncertainty into the estimates of avian fatalities and can be updated if information on the true number of fatalities becomes available from post-construction carcass monitoring. Our model considers only three parameters: hazardous footprint, bird exposure to turbines and collision probability. By using a Bayesian analytical framework we account for uncertainties in these values, which are then reflected in our predictions and can be reduced through subsequent data collection. The simplicity of our approach makes it accessible to ecologists concerned with the impact of wind development, as well as to managers, policy makers and industry interested in its implementation in real-world decision contexts. We demonstrate the utility of our method by predicting golden eagle (Aquila chrysaetos) fatalities at a wind installation in the United States. Using pre-construction data, we predicted 7.48 eagle fatalities year-1 (95% CI: (1.1, 19.81)). The U.S. Fish and Wildlife Service uses the 80th quantile (11.0 eagle fatalities year-1) in their permitting process to ensure there is only a 20% chance a wind facility exceeds the authorized fatalities. Once data were available from two-years of post-construction monitoring, we updated the fatality estimate to 4.8 eagle fatalities year-1 (95% CI: (1.76, 9.4); 80th quantile, 6.3). In this case, the increased precision in the fatality prediction lowered the level of authorized take, and thus lowered the required amount of compensatory mitigation.
USDA-ARS?s Scientific Manuscript database
Avian influenza (AI) virus, avian paramyxovirus Type 1 (APMV-1 or Newcastle disease virus [NDV]), reovirus, rotavirus, turkey astrovirus (TAstV), avian metapneumovirus (aMPV), Marek’s disease virus (MDV-1), avian parvovirus (ChPV) and Salmonella enterica serovar Enteritidis are significant biosafety...
EPA registers disinfectants against Avian Influenza A. Although there are no antimicrobial products registered for the H5N2 subtype of Avian Influenza A virus, based on available scientific information these products will work against other HPAI strains.
Avian Polyomavirus Genome Sequences Recovered from Parrots in Captive Breeding Facilities in Poland
Dayaram, Anisha; Piasecki, Tomasz; Chrząstek, Klaudia; White, Robyn; Julian, Laurel; van Bysterveldt, Katherine
2015-01-01
Eight genomes of avian polyomaviruses (APVs) were recovered and sequenced from deceased Psittacula eupatria, Psittacula krameri, and Melopsittacus undulatus from various breeding facilities in Poland. Of these APV-positive samples, six had previously tested positive for beak and feather disease virus (BFDV) and/or parrot hepatitis B virus (PHBV). PMID:26404592
Avian Polyomavirus Genome Sequences Recovered from Parrots in Captive Breeding Facilities in Poland.
Dayaram, Anisha; Piasecki, Tomasz; Chrząstek, Klaudia; White, Robyn; Julian, Laurel; van Bysterveldt, Katherine; Varsani, Arvind
2015-09-24
Eight genomes of avian polyomaviruses (APVs) were recovered and sequenced from deceased Psittacula eupatria, Psittacula krameri, and Melopsittacus undulatus from various breeding facilities in Poland. Of these APV-positive samples, six had previously tested positive for beak and feather disease virus (BFDV) and/or parrot hepatitis B virus (PHBV). Copyright © 2015 Dayaram et al.
Biosecurity and bird movement practices in upland game bird facilities in the United States.
Slota, Katharine E; Hill, Ashley E; Keefe, Thomas J; Bowen, Richard A; Pabilonia, Kristy L
2011-06-01
Since 1996, the emergence of Asian-origin highly pathogenic avian influenza subtype H5N1 has spurred great concern for the global poultry industry. In the United States, there is concern over the potential of a foreign avian disease incursion into the country. Noncommercial poultry operations, such as upland game bird facilities in the United States, may serve as a potential source of avian disease introduction to other bird populations including the commercial poultry industry, backyard flocks, or wildlife. In order to evaluate how to prevent disease transmission from these facilities to other populations, we examined biosecurity practices and bird movement within the upland game bird industry in the United States. Persons that held a current permit to keep, breed, or release upland game birds were surveyed for information on biosecurity practices, flock and release environments, and bird movement parameters. Biosecurity practices vary greatly among permit holders. Many facilities allow for interaction between wild birds and pen-reared birds, and there is regular long-distance movement of live adult birds among facilities. Results suggest that upland game bird facilities should be targeted for biosecurity education and disease surveillance efforts.
Lee, Hyun-A; Hong, Sunhwa; Chung, Yungho; Kim, Okjin
2011-09-01
Eimeria tenella and Eimeria maxima are important pathogens causing intracellular protozoa infections in laboratory avian animals and are known to affect experimental results obtained from contaminated animals. This study aimed to find a fast, sensitive, and efficient protocol for the molecular identification of E. tenella and E. maxima in experimental samples using chickens as laboratory avian animals. DNA was extracted from fecal samples collected from chickens and polymerase chain reaction (PCR) analysis was employed to detect E. tenella and E. maxima from the extracted DNA. The target nucleic acid fragments were specifically amplified by PCR. Feces secreting E. tenella and E. maxima were detected by a positive PCR reaction. In this study, we were able to successfully detect E. tenella and E. maxima using the molecular diagnostic method of PCR. As such, we recommended PCR for monitoring E. tenella and E. maxima in laboratory avian facilities.
Chamnanpood, Chanpen; Sanguansermsri, Donruedee; Pongcharoen, Sutatip; Sanguansermsri, Phanchana
2011-03-01
Ten specific pathogen free (SPF) chickens were inoculated intranasally with avian influenza virus subtype H5N1. Evaluation revealed distribution of the virus in twelve organs: liver, intestine, bursa, lung, trachea, thymus, heart, pancreas, brain, spleen, kidney, and esophagus. Immunohistochemistry (IHC), chromogenic in situ hybridization (CISH), and real-time polymerase chain reaction (PCR) were developed and compared for detection of the virus from the organs. The distribution of avian influenza H5N1 in chickens varied by animal and detecting technique. The heart, kidneys, intestines, lungs, and pancreas were positive with all three techniques, while the others varied by techique. The three techniques can be used to detect avian influenza effectively, but the pros and cons of each technique need to be determined. The decision of which technique to use depends on the objective of the examination, budget, type and quality of samples, laboratory facilities and technician skills.
Choi, Kyung Min; Lee, Seok Jae; Choi, Jung Hoon; Park, Tae Jung; Park, Jong Wan; Shin, Weon Ho; Kang, Jeung Ku
2010-12-07
A facile route to fabricate a protein-immobilized network pattern circuit for rapid and highly sensitive diagnosis was developed via the evaporation directed impromptu patterning method and selective avian influenza virus (AIV) immobilization. The response to the 10 fg mL(-1) anti-AI antibody demonstrates that this easy and simple circuit has about 1000 times higher sensitivity compared to those of conventional approaches.
Avian Pox in Native Captive Psittacines, Brazil, 2015.
Esteves, Felipe C B; Marín, Sandra Y; Resende, Maurício; Silva, Aila S G; Coelho, Hannah L G; Barbosa, Mayara B; D'Aparecida, Natália S; de Resende, José S; Torres, Ana C D; Martins, Nelson R S
2017-01-01
To investigate an outbreak of avian pox in psittacines in a conservation facility, we examined 94 birds of 10 psittacine species, including sick and healthy birds. We found psittacine pox virus in 23 of 27 sick birds and 4 of 67 healthy birds. Further characterization is needed for these isolates.
Working safely with H5N1 viruses.
García-Sastre, Adolfo
2012-01-01
Research on H5N1 influenza viruses has received much attention recently due to the possible dangers associated with newly developed avian H5N1 viruses that were derived from highly pathogenic avian viruses and are now transmissible among ferrets via respiratory droplets. An appropriate discussion, based on scientific facts about the risks that such viruses pose and on the biocontainment facilities and practices necessary for working safely with these viruses, is needed. Selecting the right level of biocontainment is critical for minimizing the risks associated with H5N1 research while simultaneously allowing an appropriately fast pace of discovery. Rational countermeasures for preventing the spread of influenza can be developed only by gaining a thorough knowledge of the molecular mechanisms at work in host specificity and transmission.
Diseases of whooping cranes seen during annual migration of the Rocky Mountain flock
Snyder, S. Bret; Richard, Michael J.; Drewien, Roderick C.; Thomas, Nancy J.; Thilsted, John P.; Junge, Randall E.
1991-01-01
Diagnosis and treatment of ill whooping cranes of the Rocky Mountain flock was provided by a zoological facility. Cases of avian cholera, lead poisoning and avian tuberculosis were encountered. The zoo efforts were an adjunct to the U.S. Fish and Wildlife Service, Whooping Crane Recovery Plan.
USDA-ARS?s Scientific Manuscript database
Reoccurring infection of reticuloendotheliosis virus (REV), an avian oncogenic retrovirus, has been a major obstacle in attempts to breed and release an endangered grouse, the Attwater's prairie chicken (Tympanicus cupido attwateri). REV infection of these birds in breeding facilities was found to r...
USDA-ARS?s Scientific Manuscript database
Terrestrial wild birds commonly associated with poultry farms have the potential to contribute to the spread of H5N1 highly pathogenic avian influenza virus within or between poultry facilities or between domesticated and wild bird populations. This potential, however, varies between species and is...
NASA Technical Reports Server (NTRS)
Larson, Vickie L.; Rowe, Sean P.; Breininger, David R.
1997-01-01
Spatial and temporal patterns in bird abundance within the five-mile airspace at the Shuttle Landing Facility (SLF) on John F. Kennedy Space Center (KSC), Florida, USA were investigated for purposes of quantifying Bird Aircraft Strike Hazards (BASH). The airspace is surrounded by the Merritt Island National Wildlife Refuge (MINWR) which provides habitat for approximately 331 resident and migratory bird species. Potential bird strike hazards were greatest around sunrise and sunset for most avian taxonomic groups, including wading birds, most raptors, pelicans, gulls/terns, shorebirds, and passerines. Turkey Vultures and Black Vultures were identified as a primary threat to aircraft operations and were represented in 33% of the samples. Diurnal vulture activity varied seasonally with the development of air thermals in the airspace surrounding the SLF. Variation in the presence and abundance of migratory species was shown for American Robins, swallows, and several species of shorebirds. Analyses of bird activities provides for planning of avionics operations during periods of low-dsk and allows for risk minimization measures during periods of high-risk.
Jennelle, Christopher S.; Carstensen, Michelle; Hildebrand, Erik C.; Cornicelli, Louis; Wolf, Paul C.; Grear, Daniel A.; Ip, Hon S.; VanDalen, Kaci K.; Minicucci, Larissa A.
2016-01-01
In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To clarify the role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9–June 4, 2015. HPAIV was isolated from a Cooper’s hawk but not from waterfowl.
Jennelle, Christopher S; Carstensen, Michelle; Hildebrand, Erik C; Cornicelli, Louis; Wolf, Paul; Grear, Daniel A; Ip, Hon S; Vandalen, Kaci K; Minicucci, Larissa A
2016-07-01
In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To understand the potential role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9-June 4, 2015. HPAIV was isolated from a Cooper's hawk but not from waterfowl fecal samples.
Avian viral surveillance in Victoria, Australia, and detection of two novel avian herpesviruses
Hartley, Carol A.; Vaz, Paola K.; Marenda, Marc S.; Owens, Jane; Eden, Paul A.; Devlin, Joanne M.
2018-01-01
Viruses in avian hosts can pose threats to avian health and some have zoonotic potential. Hospitals that provide veterinary care for avian patients may serve as a site of exposure of other birds and human staff in the facility to these viruses. They can also provide a useful location to collect samples from avian patients in order to examine the viruses present in wild birds. This study aimed to investigate viruses of biosecurity and/or zoonotic significance in Australian birds by screening samples collected from 409 birds presented to the Australian Wildlife Health Centre at Zoos Victoria’s Healesville Sanctuary for veterinary care between December 2014 and December 2015. Samples were tested for avian influenza viruses, herpesviruses, paramyxoviruses and coronaviruses, using genus- or family-wide polymerase chain reaction methods coupled with sequencing and phylogenetic analyses for detection and identification of both known and novel viruses. A very low prevalence of viruses was detected. Columbid alphaherpesvirus 1 was detected from a powerful owl (Ninox strenua) with inclusion body hepatitis, and an avian paramyxovirus most similar to Avian avulavirus 5 was detected from a musk lorikeet (Glossopsitta concinna). Two distinct novel avian alphaherpesviruses were detected in samples from a sulphur-crested cockatoo (Cacatua galerita) and a tawny frogmouth (Podargus strigoides). Avian influenza viruses and avian coronaviruses were not detected. The clinical significance of the newly detected viruses remains undetermined. Further studies are needed to assess the host specificity, epidemiology, pathogenicity and host-pathogen relationships of these novel viruses. Further genome characterization is also indicated, and would be required before these viruses can be formally classified taxonomically. The detection of these viruses contributes to our knowledge on avian virodiversity. The low level of avian virus detection, and the absence of any viruses with zoonotic potential, suggests low risk to biosecurity and human health. PMID:29570719
Carstensen, Michelle; Hildebrand, Erik C.; Cornicelli, Louis; Wolf, Paul; Grear, Daniel A.; Ip, Hon S.; Vandalen, Kaci K.; Minicucci, Larissa A.
2016-01-01
In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To understand the potential role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9–June 4, 2015. HPAIV was isolated from a Cooper’s hawk but not from waterfowl fecal samples. PMID:27064759
Beston, Julie A.; Diffendorfer, Jay E.; Loss, Scott R.; Johnson, Douglas H.
2016-01-01
Recent growth in the wind energy industry has increased concerns about its impacts on wildlife populations. Direct impacts of wind energy include bird and bat collisions with turbines whereas indirect impacts include changes in wildlife habitat and behavior. Although many species may withstand these effects, species that are long-lived with low rates of reproduction, have specialized habitat preferences, or are attracted to turbines may be more prone to declines in population abundance. We developed a prioritization system to identify the avian species most likely to experience population declines from wind facilities based on their current conservation status and their expected risk from turbines. We developed 3 metrics of turbine risk that incorporate data on collision fatalities at wind facilities, population size, life history, species’ distributions relative to turbine locations, number of suitable habitat types, and species’ conservation status. We calculated at least 1 measure of turbine risk for 428 avian species that breed in the United States. We then simulated 100,000 random sets of cutoff criteria (i.e., the metric values used to assign species to different priority categories) for each turbine risk metric and for conservation status. For each set of criteria, we assigned each species a priority score and calculated the average priority score across all sets of criteria. Our prioritization system highlights both species that could potentially experience population decline caused by wind energy and species at low risk of population decline. For instance, several birds of prey, such as the long-eared owl, ferruginous hawk, Swainson’s hawk, and golden eagle, were at relatively high risk of population decline across a wide variety of cutoff values, whereas many passerines were at relatively low risk of decline. This prioritization system is a first step that will help researchers, conservationists, managers, and industry target future study and management activity. PMID:26963254
Beston, Julie A.; Diffendorfer, James E.; Loss, Scott; Johnson, Douglas H.
2016-01-01
Recent growth in the wind energy industry has increased concerns about its impacts on wildlife populations. Direct impacts of wind energy include bird and bat collisions with turbines whereas indirect impacts include changes in wildlife habitat and behavior. Although many species may withstand these effects, species that are long-lived with low rates of reproduction, have specialized habitat preferences, or are attracted to turbines may be more prone to declines in population abundance. We developed a prioritization system to identify the avian species most likely to experience population declines from wind facilities based on their current conservation status and their expected risk from turbines. We developed 3 metrics of turbine risk that incorporate data on collision fatalities at wind facilities, population size, life history, species’ distributions relative to turbine locations, number of suitable habitat types, and species’ conservation status. We calculated at least 1 measure of turbine risk for 428 avian species that breed in the United States. We then simulated 100,000 random sets of cutoff criteria (i.e., the metric values used to assign species to different priority categories) for each turbine risk metric and for conservation status. For each set of criteria, we assigned each species a priority score and calculated the average priority score across all sets of criteria. Our prioritization system highlights both species that could potentially experience population decline caused by wind energy and species at low risk of population decline. For instance, several birds of prey, such as the long-eared owl, ferruginous hawk, Swainson’s hawk, and golden eagle, were at relatively high risk of population decline across a wide variety of cutoff values, whereas many passerines were at relatively low risk of decline. This prioritization system is a first step that will help researchers, conservationists, managers, and industry target future study and management activity.
Beston, Julie A; Diffendorfer, Jay E; Loss, Scott R; Johnson, Douglas H
2016-01-01
Recent growth in the wind energy industry has increased concerns about its impacts on wildlife populations. Direct impacts of wind energy include bird and bat collisions with turbines whereas indirect impacts include changes in wildlife habitat and behavior. Although many species may withstand these effects, species that are long-lived with low rates of reproduction, have specialized habitat preferences, or are attracted to turbines may be more prone to declines in population abundance. We developed a prioritization system to identify the avian species most likely to experience population declines from wind facilities based on their current conservation status and their expected risk from turbines. We developed 3 metrics of turbine risk that incorporate data on collision fatalities at wind facilities, population size, life history, species' distributions relative to turbine locations, number of suitable habitat types, and species' conservation status. We calculated at least 1 measure of turbine risk for 428 avian species that breed in the United States. We then simulated 100,000 random sets of cutoff criteria (i.e., the metric values used to assign species to different priority categories) for each turbine risk metric and for conservation status. For each set of criteria, we assigned each species a priority score and calculated the average priority score across all sets of criteria. Our prioritization system highlights both species that could potentially experience population decline caused by wind energy and species at low risk of population decline. For instance, several birds of prey, such as the long-eared owl, ferruginous hawk, Swainson's hawk, and golden eagle, were at relatively high risk of population decline across a wide variety of cutoff values, whereas many passerines were at relatively low risk of decline. This prioritization system is a first step that will help researchers, conservationists, managers, and industry target future study and management activity.
Review of avian mortality studies at concentrating solar power plants
NASA Astrophysics Data System (ADS)
Ho, Clifford K.
2016-05-01
This paper reviews past and current avian mortality studies at concentrating solar power (CSP) plants and facilities including Solar One in California, the Solar Energy Development Center in Israel, Ivanpah Solar Electric Generating System in California, Crescent Dunes in Nevada, and Gemasolar in Spain. Findings indicate that the leading causes of bird deaths at CSP plants are from collisions (primarily with reflective surfaces; i.e., heliostats) and singeing caused by concentrated solar flux. Safe irradiance levels for birds have been reported to range between 4 and 50 kW/m2. Above these levels, singeing and irreversible damage to the feathers can occur. Despite observations of large numbers of "streamers" in concentrated flux regions and reports that suggest these streamers indicate complete vaporization of birds, analyses in this paper show that complete vaporization of birds is highly improbable, and the observed streamers are likely due to insects flying into the concentrated flux. The levelized avian mortality rate during the first year of operation at Ivanpah was estimated to be 0.7 - 3.5 fatalities per GWh, which is less than the levelized avian mortality reported for fossil fuel plants but greater than that for nuclear and wind power plants. Mitigation measures include acoustic, visual, tactile, and chemosensory deterrents to keep birds away from the plant, and heliostat aiming strategies that reduce the solar flux during standby.
Public health concerns associated with care of free-living birds.
Whittington, Julia K
2011-09-01
Free-living birds are not only susceptible to certain infectious diseases; wild bird populations serve as reservoirs of several important diseases of public health concern. Bacterial and viral diseases endemic in populations of free-living birds such as tuberculosis, avian influenza, arboviral infections, and enteropathogens have been classified as emerging or reemerging. Providing care to wild avian patients increases the opportunity for direct contact with infected birds and the possibility of transmission of infectious disease to human handlers. Awareness of disease potential is critical to disease monitoring of wild populations and will allow for the implementation of precautionary measures when working with wild avian species. Biosecurity measures designed to minimize risk must be evaluated by individual facilities.
Making avian influenza vaccines available, an industry point of view (IFAH).
van Aarle, P
2006-01-01
Vaccination against avian influenza (AI) has proved to be an efficient tool in the reduction of virus excretion and in increasing the threshold for infection. Vaccination in outbreaks, as part of a complete programme, has proved to be an essential component of control and eradication programmes. Avian influenza is a serious threat to public health. In contingency plans for outbreaks of highly pathogenic AI (HPAI), the option of emergency vaccination, using inactivated or recombinant vaccines, should be considered. The availability of suitable vaccines has to be ensured in 'peace time' in a contract for a vaccine or antigen bank. Unlike the human influenza vaccines, poultry AI vaccines have proved to provide protection against a wide range of strains within the same H-subtype. However, in case new H5 or H7 strains emerge in poultry, there is no regulatory guideline to support a swift reaction by the vaccine industry. Production of HPAI virus should take place in facilities with a Biosafety Level 3 (BSL3) to safeguard containment of virus and to prevent infection of manufacturing staff. Vaccine strains for inactivated vaccines should preferably be low pathogenicity AI (LPAI). In a new outbreak, it is essential to determine early which vaccine strain will provide protection against the field virus. Sequencing does not predict the protective capacity of vaccines. Challenge studies, providing essential information, take too much time and can be carried out only in BSL3 facilities. Serological matching of vaccine and field strains would provide a faster system. It is recommended that a matching system be developed and validated.
Quail Egg compared to a quarter
NASA Technical Reports Server (NTRS)
2003-01-01
Quail eggs are small (shown here with a quarter for scale) and develop quickly, making them ideal for space experiments. The Avian Development Facility (ADF) supports 36 eggs in two carousels (below), one of which rotates to provide a 1-g control for comparing to eggs grown in microgravity. The ADF originated in NASA's Shuttle Student Involvement program in the 1980s and was developed under the NASA Small Business Irnovation Research program. In late 2001, the ADF made its first flight and carried eggs used in two investigations, Development and function of the inner-ear balance system in normal and altered gravity environments, and Skeletal development in embryonic quail.
Exo-erythrocytic development of avian malaria and related haemosporidian parasites.
Valkiūnas, Gediminas; Iezhova, Tatjana A
2017-03-03
Avian malaria parasites (Plasmodium spp.) and related haemosporidians (Haemosporida) are responsible for diseases which can be severe and even lethal in avian hosts. These parasites cause not only blood pathology, but also damage various organs due to extensive exo-erythrocytic development all over the body, which is not the case during Plasmodium infections in mammals. However, exo-erythrocytic development (tissue merogony or schizogony) remains the most poorly investigated part of life cycle in all groups of wildlife haemosporidian parasites. In spite of remarkable progress in studies of genetic diversity, ecology and evolutionary biology of avian haemosporidians during the past 20 years, there is not much progress in understanding patterns of exo-erythrocytic development in these parasites. The purpose of this review is to overview the main information on exo-erythrocytic development of avian Plasmodium species and related haemosporidian parasites as a baseline for assisting academic and veterinary medicine researchers in morphological identification of these parasites using tissue stages, and to define future research priorities in this field of avian malariology. The data were considered from peer-reviewed articles and histological material that was accessed in zoological collections in museums of Australia, Europe and the USA. Articles describing tissue stages of avian haemosporidians were included from 1908 to the present. Histological preparations of various organs infected with the exo-erythrocytic stages of different haemosporidian parasites were examined. In all, 229 published articles were included in this review. Exo-erythrocytic stages of avian Plasmodium, Fallisia, Haemoproteus, Leucocytozoon, and Akiba species were analysed, compared and illustrated. Morphological characters of tissue stages that can be used for diagnostic purposes were specified. Recent molecular studies combined with histological research show that avian haemosporidians are more virulent than formerly believed. The exo-erythrocytic stages can cause severe disease, especially in non-adapted avian hosts, suggesting the existence of a group of underestimated malignant infections. The development of a given haemosporidian strain can be markedly different in different avian hosts, resulting in significantly different virulence. A methodology combining the traditional histology techniques with molecular diagnostic tools is essential to speed research in this field of avian malariology.
Wolff, P L
1996-03-01
Zoos, quarantine stations, and bird markets, dealers and breeders are in the business of propagating or moving birds. Facilities often house and transport birds which have unknown histories of exposure to disease. As few tests are available for disease screening and monitoring in exotic avian species, familiarization with significant avian pathogens will enable the manager and veterinarian to recognize and prevent a disease outbreak. Implementing aviary management practices which minimize the spread of pathogens, in conjunction with quarantine and the proper handling of birds during shipment, can greatly reduce the threat of disease. The author reviews the husbandry practices (caging, nutrition, transport, quarantine) which can reduce the incidence and spread of infectious disease. Significant avian pathogens (bacteria, viruses, parasites) are listed, together with their host range and modes of transmission.
Grear, Daniel A.; Dusek, Robert J.; Walsh, Daniel P.; Hall, Jeffrey S.
2017-01-01
We evaluated the potential transmission of avian influenza viruses (AIV) in wildlife species in three settings in association with an outbreak at a poultry facility: 1) small birds and small mammals on a poultry facility that was affected with highly pathogenic AIV (HPAIV) in April 2015; 2) small birds and small mammals on a nearby poultry facility that was unaffected by HPAIV; and 3) small birds, small mammals, and waterfowl in a nearby natural area. We live-captured small birds and small mammals and collected samples from hunter-harvested waterfowl to test for active viral shedding and evidence of exposure (serum antibody) to AIV and the H5N2 HPAIV that affected the poultry facility. We detected no evidence of shedding or specific antibody to AIV in small mammals and small birds 5 mo after depopulation of the poultry. We detected viral shedding and exposure to AIV in waterfowl and estimated approximately 15% viral shedding and 60% antibody prevalence. In waterfowl, we did not detect shedding or exposure to the HPAIV that affected the poultry facility. We also conducted camera trapping around poultry carcass depopulation composting barns and found regular visitation by four species of medium-sized mammals. We provide preliminary data suggesting that peridomestic wildlife were not an important factor in the transmission of AIV during the poultry outbreak, nor did small birds and mammals in natural wetland settings show wide evidence of AIV shedding or exposure, despite the opportunity for exposure.
Grear, Daniel A; Dusek, Robert J; Walsh, Daniel P; Hall, Jeffrey S
2017-01-01
We evaluated the potential transmission of avian influenza viruses (AIV) in wildlife species in three settings in association with an outbreak at a poultry facility: 1) small birds and small mammals on a poultry facility that was affected with highly pathogenic AIV (HPAIV) in April 2015; 2) small birds and small mammals on a nearby poultry facility that was unaffected by HPAIV; and 3) small birds, small mammals, and waterfowl in a nearby natural area. We live-captured small birds and small mammals and collected samples from hunter-harvested waterfowl to test for active viral shedding and evidence of exposure (serum antibody) to AIV and the H5N2 HPAIV that affected the poultry facility. We detected no evidence of shedding or specific antibody to AIV in small mammals and small birds 5 mo after depopulation of the poultry. We detected viral shedding and exposure to AIV in waterfowl and estimated approximately 15% viral shedding and 60% antibody prevalence. In waterfowl, we did not detect shedding or exposure to the HPAIV that affected the poultry facility. We also conducted camera trapping around poultry carcass depopulation composting barns and found regular visitation by four species of medium-sized mammals. We provide preliminary data suggesting that peridomestic wildlife were not an important factor in the transmission of AIV during the poultry outbreak, nor did small birds and mammals in natural wetland settings show wide evidence of AIV shedding or exposure, despite the opportunity for exposure.
Ability of regional hospitals to meet projected avian flu pandemic surge capacity requirements.
Ten Eyck, Raymond P
2008-01-01
Hospital surge capacity is a crucial part of community disaster preparedness planning, which focuses on the requirements for additional beds, equipment, personnel, and special capabilities. The scope and urgency of these requirements must be balanced with a practical approach addressing cost and space concerns. Renewed concerns for infectious disease threats, particularly from a potential avian flu pandemic perspective, have emphasized the need to be prepared for a prolonged surge that could last six to eight weeks. The surge capacity that realistically would be generated by the cumulative Greater Dayton Area Hospital Association (GDAHA) plan is sufficient to meet the demands of an avian influenza pandemic as predicted by the [US] Centers for Disease Control and Prevention (CDC) models. Using a standardized data form, surge response plans for each hospital in the GDAHA were assessed. The cumulative results were compared to the demand projected for an avian influenza pandemic using the CDC's FluAid and FluSurge models. The cumulative GDAHA capacity is sufficient to meet the projected demand for bed space, intensive care unit beds, ventilators, morgue space, and initial personal protective equipment (PPE) use. There is a shortage of negative pressure rooms, some basic equipment, and neuraminidase inhibitors. Many facilities lack a complete set of written surge policies, including screening plans to segregate contaminated patients and staff prior to entering the hospital. Few hospitals have agreements with nursing homes or home healthcare agencies to provide care for patients discharged in order to clear surge beds. If some of the assumptions in the CDC's models are changed to match the morbidity and mortality rates reported from the 1918 pandemic, the surge capacity of GDAHA facilities would not meet the projected demand. The GDAHA hospitals should test their regional distributors' ability to resupply PPE for multiple facilities simultaneously. Facilities should retrofit current air exchange systems to increase the number of potential negative pressure rooms and include such designs in all future construction. Neuraminidase inhibitor supplies should be increased to provide treatment for healthcare workers exposed in the course of their duties. Each hospital should have a complete set of policies to address the special considerations for a prolonged surge. Additional capacity is required to meet the predicted demands of a threat similar to the 1918 pandemic.
Bauerle Bass, Sarah; Burt Ruzek, Sheryl; Ward, Lawrence; Gordon, Thomas F; Hanlon, Alexandra; Hausman, Alice J; Hagen, Michael
2010-06-01
An influenza pandemic, such as that of the H1N1 virus, raises questions about how to respond effectively to a lethal outbreak. Most plans have focused on minimizing impact by containing the virus through quarantine, but quarantine has not been used widely in the United States and little is known about what would be the public's response. The purpose of this study was to investigate factors that influence an individual's decision to comply with a hypothetical avian influenza quarantine order. A total of 1204 adult Pennsylvania residents participated in a random digit dial telephone sample. The residents were interviewed regarding their attitudes about and knowledge of avian influenza and about compliance with quarantine orders, including staying at home or traveling to a government-designated facility. Analysis of variance showed differences among demographic groups in willingness to comply with quarantine orders, with women and individuals not presently employed more willing to stay at home or to travel to a government-designated facility if ordered. Those who did not regularly attend religious services were significantly less willing than those who did attend regularly to comply with any type of quarantine order. Regression analysis indicated that demographic variables, overall knowledge of avian influenza, attitudes about its severity, and the belief that the respondent and/or his or her significant other(s) may contract it were predictive. The results of this study can provide health planners and policy makers with information for improving their efforts to conduct a quarantine successfully, including crafting messages and targeting information to certain groups of people to communicate risk about the epidemic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Tony, E-mail: tc282@nau.edu; Nielsen, Erik, E-mail: erik.nielsen@nau.edu; Auberle, William, E-mail: william.auberle@nau.edu
2013-01-15
The environmental impact assessment (EIA) has been a tool for decision makers since the enactment of the National Environmental Policy Act (NEPA). Since that time, few analyses have been performed to verify the quality of information and content within EIAs. High quality information within assessments is vital in order for decision makers, stake holders, and the public to understand the potential impact of proposed actions on the ecosystem and wildlife species. Low quality information has been a major cause for litigation and economic loss. Since 1999, wind energy development has seen an exponential growth with unknown levels of impact onmore » wildlife species, in particular bird and bat species. The purpose of this article is to: (1) develop, validate, and apply a quantitative index to review avian/bat assessment quality for wind energy EIAs; and (2) assess the trends and status of avian/bat assessment quality in a sample of wind energy EIAs. This research presents the development and testing of the Avian and Bat Assessment Quality Index (ABAQI), a new approach to quantify information quality of ecological assessments within wind energy development EIAs in relation to avian and bat species based on review areas and factors derived from 23 state wind/wildlife siting guidance documents. The ABAQI was tested through a review of 49 publicly available EIA documents and validated by identifying high variation in avian and bat assessments quality for wind energy developments. Of all the reviewed EIAs, 66% failed to provide high levels of preconstruction avian and bat survey information, compared to recommended factors from state guidelines. This suggests the need for greater consistency from recommended guidelines by state, and mandatory compliance by EIA preparers to avoid possible habitat and species loss, wind energy development shut down, and future lawsuits. - Highlights: Black-Right-Pointing-Pointer We developed, validated, and applied a quantitative index to review avian/bat assessment quality for wind energy EIAs. Black-Right-Pointing-Pointer We assessed the trends and status of avian/bat assessment quality in a sample of wind energy EIAs. Black-Right-Pointing-Pointer Applied index to 49 EIA documents and identified high variation in assessment quality for wind energy developments. Black-Right-Pointing-Pointer For the reviewed EIAs, 66% provided inadequate preconstruction avian and bat survey information.« less
Improvements in powered air purifying respirator protection in an ABSL-3E facility
USDA-ARS?s Scientific Manuscript database
The study of and experimentation with zoonotic pathogens such as highly pathogenic avian influenza (HPAI) requires risk mitigation strategies including laboratory engineering controls and safety equipment, personal protective equipment (PPE), and proper practices and techniques. Incidences of potent...
9 CFR 93.106 - Quarantine requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Section 93.106 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF.... (2) Physical plant requirements. The facility shall comply with the following requirements: (i... mile from any concentration of avian species, such as, but not limited to, poultry processing plants...
Proceedings of National Avian-Wind Power Planning Meeting IV
DOE Office of Scientific and Technical Information (OSTI.GOV)
NWCC Avian Subcommittee
2001-05-01
OAK-B135 The purpose of the fourth meeting was to (1) share research and update research conducted on avian wind interactions (2) identify questions and issues related to the research results, (3) develop conclusions about some avian/wind power issues, and (4) identify questions and issues for future avian research.
Genome Modification Technologies and Their Applications in Avian Species.
Lee, Hong Jo; Kim, Young Min; Ono, Tamao; Han, Jae Yong
2017-10-26
The rapid development of genome modification technology has provided many great benefits in diverse areas of research and industry. Genome modification technologies have also been actively used in a variety of research areas and fields of industry in avian species. Transgenic technologies such as lentiviral systems and piggyBac transposition have been used to produce transgenic birds for diverse purposes. In recent years, newly developed programmable genome editing tools such as transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) have also been successfully adopted in avian systems with primordial germ cell (PGC)-mediated genome modification. These genome modification technologies are expected to be applied to practical uses beyond system development itself. The technologies could be used to enhance economic traits in poultry such as acquiring a disease resistance or producing functional proteins in eggs. Furthermore, novel avian models of human diseases or embryonic development could also be established for research purposes. In this review, we discuss diverse genome modification technologies used in avian species, and future applications of avian biotechnology.
Genome Modification Technologies and Their Applications in Avian Species
Lee, Hong Jo; Kim, Young Min; Ono, Tamao
2017-01-01
The rapid development of genome modification technology has provided many great benefits in diverse areas of research and industry. Genome modification technologies have also been actively used in a variety of research areas and fields of industry in avian species. Transgenic technologies such as lentiviral systems and piggyBac transposition have been used to produce transgenic birds for diverse purposes. In recent years, newly developed programmable genome editing tools such as transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) have also been successfully adopted in avian systems with primordial germ cell (PGC)-mediated genome modification. These genome modification technologies are expected to be applied to practical uses beyond system development itself. The technologies could be used to enhance economic traits in poultry such as acquiring a disease resistance or producing functional proteins in eggs. Furthermore, novel avian models of human diseases or embryonic development could also be established for research purposes. In this review, we discuss diverse genome modification technologies used in avian species, and future applications of avian biotechnology. PMID:29072628
[Oligonucleotide microarray for subtyping avian influenza virus].
Xueqing, Han; Xiangmei, Lin; Yihong, Hou; Shaoqiang, Wu; Jian, Liu; Lin, Mei; Guangle, Jia; Zexiao, Yang
2008-09-01
Avian influenza viruses are important human and animal respiratory pathogens and rapid diagnosis of novel emerging avian influenza viruses is vital for effective global influenza surveillance. We developed an oligonucleotide microarray-based method for subtyping all avian influenza virus (16 HA and 9 NA subtypes). In total 25 pairs of primers specific for different subtypes and 1 pair of universal primers were carefully designed based on the genomic sequences of influenza A viruses retrieved from GenBank database. Several multiplex RT-PCR methods were then developed, and the target cDNAs of 25 subtype viruses were amplified by RT-PCR or overlapping PCR for evaluating the microarray. Further 52 oligonucleotide probes specific for all 25 subtype viruses were designed according to published gene sequences of avian influenza viruses in amplified target cDNAs domains, and a microarray for subtyping influenza A virus was developed. Then its specificity and sensitivity were validated by using different subtype strains and 2653 samples from 49 different areas. The results showed that all the subtypes of influenza virus could be identified simultaneously on this microarray with high sensitivity, which could reach to 2.47 pfu/mL virus or 2.5 ng target DNA. Furthermore, there was no cross reaction with other avian respiratory virus. An oligonucleotide microarray-based strategy for detection of avian influenza viruses has been developed. Such a diagnostic microarray will be useful in discovering and identifying all subtypes of avian influenza virus.
Avians as a Model System of Vascular Development
Bressan, Michael; Mikawa, Takashi
2015-01-01
Summary For more then 2000 years philosophers and scientists have turned to the avian embryo with questions of how life begins (Aristotle; Needham, 1959). Then, as now, the unique accessibility of the embryo both in terms of acquisition of eggs from domesticated fowl, and ease at which the embryo can be visualized by simply opening the shell, have made avians an appealing and powerful model system for the study of development. Thus, as the field of embryology has evolved through observational, comparative, and experimental embryology, into its current iteration as the cellular and molecular biology of development, avians have remained a useful and practical system of study. PMID:25468608
Nakamura, Yoshiaki
2017-01-01
Primordial germ cells (PGCs) generate new individuals through differentiation, maturation and fertilization. This means that the manipulation of PGCs is directly linked to the manipulation of individuals, making PGCs attractive target cells in the animal biotechnology field. A unique biological property of avian PGCs is that they circulate temporarily in the vasculature during early development, and this allows us to access and manipulate avian germ lines. Following the development of a technique for transplantation, PGCs have become central to avian biotechnology, in contrast to the use of embryo manipulation and subsequent transfer to foster mothers, as in mammalian biotechnology. Today, avian PGC transplantation combined with recent advanced manipulation techniques, including cell purification, cryopreservation, depletion, and long-term culture in vitro, have enabled the establishment of genetically modified poultry lines and ex-situ conservation of poultry genetic resources. This chapter introduces the principles, history, and procedures of producing avian germline chimeras by transplantation of PGCs, and the current status of avian germline modification as well as germplasm cryopreservation. Other fundamental avian reproductive technologies are described, including artificial insemination and embryo culture, and perspectives of industrial applications in agriculture and pharmacy are considered, including poultry productivity improvement, egg modification, disease resistance impairment and poultry gene "pharming" as well as gene banking.
A research update for southeast poultry research laboratory
USDA-ARS?s Scientific Manuscript database
The Southeast Poultry Research Laboratory continues with their modernization plan. The 35% architectural drawings have been completed and the project is currently out for bid for the completion of the design and building of the new facility. Research activities in the Exotic and Emerging Avian Vir...
Chatziprodromidou, Ioanna P; Arvanitidou, Malamatenia; Guitian, Javier; Apostolou, Thomas; Vantarakis, George; Vantarakis, Apostolos
2018-01-25
We conducted a systematic review to investigate avian influenza outbreaks and to explore their distribution, upon avian influenza subtype, country, avian species and other relating details as no comprehensive epidemiological analysis of global avian influenza outbreaks from 2010 to 2016 exists. Data was collated from four databases (Scopus, Web of Science Core Correlation, PubMed and SpringerLink electronic journal) and a global electronic reporting system (ProMED mail), using PRISMA and ORION systematic approaches. One hundred seventy three avian influenza virus outbreaks were identified and included in this review, alongside 198 ProMED mail reports. Our research identified that the majority of the reported outbreaks occurred in 2016 (22.2%). These outbreaks were located in China (13.6%) and referred to commercial poultry farms (56.1%). The most common subtype reported in these outbreaks was H5N1 (38.2%), while almost 82.5% of the subtypes were highly pathogenic avian influenza viruses. There were differences noticed between ProMED mail and the scientific literature screened. Avian influenza virus has been proved to be able to contaminate all types of avian species, including commercial poultry farms, wild birds, backyard domestic animals, live poultry, game birds and mixed poultry. The study focused on wet markets, slaughterhouses, wild habitats, zoos and natural parks, in both developed and developing countries. The impact of avian influenza virus seems disproportionate and could potentially burden the already existing disparities in the public health domain. Therefore, a collaboration between all the involved health sectors is considered to be more than necessary.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-08
... and emergency preparedness grant programs that it administers. These programs provide grant funding to... effects of communication facilities construction or modification subject to review by the Federal... have or are likely to have a measurable negative effect on migratory bird populations. Avian mortality...
2017-01-01
Due to the increased frequency of interspecies transmission of avian influenza viruses, studies designed to identify the molecular determinants that could lead to an expansion of the host range have been increased. A variety of mouse-based mammalian-adaptation studies of avian influenza viruses have provided insight into the genetic alterations of various avian influenza subtypes that may contribute to the generation of a pandemic virus. To date, the studies have focused on avian influenza subtypes H5, H6, H7, H9, and H10 which have recently caused human infection. Although mice cannot fully reflect the course of human infection with avian influenza, these mouse studies can be a useful method for investigating potential mammalian adaptive markers against newly emerging avian influenza viruses. In addition, due to the lack of appropriate vaccines against the diverse emerging influenza viruses, the generation of mouse-adapted lethal variants could contribute to the development of effective vaccines or therapeutic agents. Within this review, we will summarize studies that have demonstrated adaptations of avian influenza viruses that result in an altered pathogenicity in mice which may suggest the potential application of mouse-lethal strains in the development of influenza vaccines and/or therapeutics in preclinical studies. PMID:28775972
Electron Micrographs of Quail Limb Bones formed in microgravity
NASA Technical Reports Server (NTRS)
2003-01-01
Electron micrographs of quail limb bones that formed under the influence of microgravity show decreased mineralization compared to bones formed in normal gravity. The letters B and C indicate bone and cartilage sides of the sample, respectively, with the arrows marking the junction between bone and cartilage cells. The asterisks indicate where mineralization begins. The bone that developed during spaceflight (top) shows less mineral compared to the control sample (bottom); the control sample clearly shows mineral deposits (dark spots) that are absent in the flight sample. Quail eggs are small and develop quickly, making them ideal for space experiments. In late 2001, the Avian Development Facility (ADF) made its first flight and carried eggs used in two investigations, development and function of the irner-ear balance system in normal and altered gravity environments, and skeletal development in embryonic quail.
A thymosin beta15-like peptide promotes intersegmental myotome extension in the chicken embryo.
Chankiewitz, Verena; Morosan-Puopolo, Gabriela; Yusuf, Faisal; Rudloff, Stefan; Pröls, Felicitas; Kleff, Veronika; Hofmann, Dietrich Kurt; Brand-Saberi, Beate
2014-03-01
Beta-thymosins constitute a group of small actin-sequestering peptides. These highly conserved peptides are involved in cytoskeleton dynamics and can influence different cell properties such as motility, substrate adhesion, shape and chemotaxis. As a marker for tumour metastasis, the mammalian thymosin beta15 is believed to have an important diagnostic relevance in cancer prognosis, although little is known about its physiological function. In order to study the role of thymosin beta15(avian) in embryogenesis, we cloned the chicken and quail orthologues of thymosin beta15 and used the chicken as a model for vertebrate development. Avian thymosin beta15, the first known non-mammalian thymosin beta15-like gene, encodes a peptide that possesses a cysteine at position one after the methionine which is a significant difference compared to its mammalian counterparts. Thymosin beta15(avian) expression starts at an early stage of development. The expression pattern changes rapidly with development and differs from that of the related thymosin beta4 gene. The most prominent expression domain is seen in developing muscles of limbs and trunk. Gain-of-function experiments revealed that thymosin beta15(avian) has a function in normal myotome development. Ectopic over-expression of thymosin beta15(avian) leads to premature elongation of myotome cells trespassing segment borders. We conclude that thymosin beta15(avian) has a still undescribed function in promoting myocyte elongation.
Kwon, Hyuk Moo; LeRoith, Tanya; Pudupakam, R S; Pierson, F William; Huang, Yao-Wei; Dryman, Barbara A; Meng, Xiang-Jin
2011-01-27
A genetically distinct strain of avian hepatitis E virus (avian HEV-VA strain) was isolated from a healthy chicken in Virginia, and thus it is important to characterize and compare its pathogenicity with the prototype strain (avian HEV-prototype) isolated from a diseased chicken. Here we first constructed an infectious clone of the avian HEV-VA strain. Capped RNA transcripts from the avian HEV-VA clone were replication-competent after transfection of LMH chicken liver cells. Chickens inoculated intrahepatically with RNA transcripts of avian HEV-VA clone developed active infection as evidenced by fecal virus shedding, viremia, and seroconversion. To characterize the pathogenicity, RNA transcripts of both avian HEV-VA and avian HEV-prototype clones were intrahepatically inoculated into the livers of chickens. Avian HEV RNA was detected in feces, serum and bile samples from 10/10 avian HEV-VA-inoculated and 9/9 avian HEV-prototype-inoculated chickens although seroconversion occurred only in some chickens during the experimental period. The histopathological lesion scores were lower for avian HEV-VA group than avian HEV-prototype group in the liver at 3 and 5 weeks post-inoculation (wpi) and in the spleen at 3 wpi, although the differences were not statistically significant. The liver/body weight ratio, indicative of liver enlargement, of both avian HEV-VA and avian HEV-prototype groups were significantly higher than that of the control group at 5 wpi. Overall, the avian HEV-VA strain still induces histological liver lesions even though it was isolated from a healthy chicken. The results also showed that intrahepatic inoculation of chickens with RNA transcripts of avian HEV infectious clone may serve as an alternative for live virus in animal pathogenicity studies. Copyright © 2010 Elsevier B.V. All rights reserved.
Sun, Yani; Du, Taofeng; Liu, Baoyuan; Syed, Shahid Faraz; Chen, Yiyang; Li, Huixia; Wang, Xinjie; Zhang, Gaiping; Zhou, En-Min; Zhao, Qin
2016-11-22
From 2014 to 2015 in China, many broiler breeder and layer hen flocks exhibited a decrease in egg production and some chickens developed hepatitis syndrome including hepatomegaly, hepatic necrosis and hemorrhage. Avian hepatitis E virus (HEV) and avian leucosis virus subgroup J (ALV-J) both cause decreasing in egg production, hepatomegaly and hepatic hemorrhage in broiler breeder and layer hens. In the study, the seroprevalence of avian HEV and ALV-J in these flocks emerging the disease from Shandong and Shaanxi provinces were investigated. A total of 1995 serum samples were collected from 14 flocks with hepatitis syndrome in Shandong and Shaanxi provinces, China. Antibodies against avian HEV and ALV-J in these serum samples were detected using iELISAs. The seroprevalence of anti-avian HEV antibodies (35.09%) was significantly higher than that of anti-ALV-J antibodies (2.16%) (p = 0.00). Moreover, the 43 serum samples positive for anti-ALV-J antibodies were all also positive for anti-avian HEV antibodies. In a comparison of both provinces, Shandong chickens exhibited a significantly higher seroprevalence of anti-avian HEV antibodies (42.16%) than Shaanxi chickens (26%) (p = 0.00). In addition, the detection of avian HEV RNA and ALV-J cDNA in the liver samples from the flocks of two provinces also showed the same results of the seroprevalence. In the present study, the results showed that avian HEV infection is widely prevalent and ALV-J infection is endemic in the flocks with hepatitis syndrome from Shandong and Shaanxi provinces of China. These results suggested that avian HEV infection may be the major cause of increased egg drop and hepatitis syndrome observed during the last 2 years in China. These results should be useful to guide development of prevention and control measures to control the diseases within chicken flocks in China.
Insufficient sampling to identify species affected by turbine collisions
Beston, Julie A.; Diffendorfer, James E.; Loss, Scott
2015-01-01
We compared the number of avian species detected and the sampling effort during fatality monitoring at 50 North American wind facilities. Facilities with short intervals between sampling events and high effort detected more species, but many facilities appeared undersampled. Species accumulation curves for 2 wind facilities studied for more than 1 year had yet to reach an asymptote. The monitoring effort that is typically invested is likely inadequate to identify all of the species killed by wind turbines. This may understate impacts for rare species of conservation concern that collide infrequently with turbines but suffer disproportionate consequences from those fatalities. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Insufficient Sampling to Identify Species Affected by Turbine Collisions
Beston, Julie A; Diffendorfer, Jay E; Loss, Scott
2015-01-01
We compared the number of avian species detected and the sampling effort during fatality monitoring at 50 North American wind facilities. Facilities with short intervals between sampling events and high effort detected more species, but many facilities appeared undersampled. Species accumulation curves for 2 wind facilities studied for more than 1 year had yet to reach an asymptote. The monitoring effort that is typically invested is likely inadequate to identify all of the species killed by wind turbines. This may understate impacts for rare species of conservation concern that collide infrequently with turbines but suffer disproportionate consequences from those fatalities. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. PMID:25914425
1990-12-01
Name Species Cover Mudflat Area Cocklebur Xanthium strumarium ង to ɝ Shepherd’s purse Capsella bursa pastoris Barnyard grass Echinochloa crusgalli...Lythrium salicaria Rice cutgrass Leersia oryzoides * Cocklebur Xanthium strumarium Love giais Era grostis hypnoides Bog rush Juncus sp. Aster Aster pilosus
Weber, David J; Rutala, William A; Fischer, William A; Kanamori, Hajime; Sickbert-Bennett, Emily E
2016-05-02
Over the past several decades, we have witnessed the emergence of many new infectious agents, some of which are major public threats. New and emerging infectious diseases which are both transmissible from patient-to-patient and virulent with a high mortality include novel coronaviruses (SARS-CoV, MERS-CV), hemorrhagic fever viruses (Lassa, Ebola), and highly pathogenic avian influenza A viruses, A(H5N1) and A(H7N9). All healthcare facilities need to have policies and plans in place for early identification of patients with a highly communicable diseases which are highly virulent, ability to immediately isolate such patients, and provide proper management (e.g., training and availability of personal protective equipment) to prevent transmission to healthcare personnel, other patients and visitors to the healthcare facility. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Avians as a model system of vascular development.
Bressan, Michael; Mikawa, Takashi
2015-01-01
For more than 2,000 years, philosophers and scientists have turned to the avian embryo with questions of how life begins (Aristotle and Peck Generations of Animals. Loeb Classics, vol. XIII. Harvard University Press, Cambridge, 1943; Needham, A history of embryology. Abelard-Schuman, New York, 1959). Then, as now, the unique accessibility of the embryo both in terms of acquisition of eggs from domesticated fowl and ease at which the embryo can be visualized by simply opening the shell has made avians an appealing and powerful model system for the study of development. Thus, as the field of embryology has evolved through observational, comparative, and experimental embryology into its current iteration as the cellular and molecular biology of development, avians have remained a useful and practical system of study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, Susan Savitt
Most conservation groups support the development of wind energy in the US as an alternative to fossil and nuclear-fueled power plants to meet growing demand for electrical energy. However, concerns have surfaced over the potential threat to birds, bats, and other wildlife from the construction and operation of wind turbine facilities. Co-sponsored by the American Bird Conservancy (ABC) and the American Wind Energy Association (AWEA), the Wind Energy and Birds/Bats Workshop was convened to examine current research on the impacts of wind energy development on avian and bat species and to discuss the most effective ways to mitigate such impacts.more » On 18-19 May 2004, 82 representatives from government, non-government organizations, private business, and academia met to (1) review the status of the wind industry and current project development practices, including pre-development risk assessment and post-construction monitoring; (2) learn what is known about direct, indirect (habitat), and cumulative impacts on birds and bats from existing wind projects; about relevant aspects of bat and bird migration ecology; about offshore wind development experience in Europe; and about preventing, minimizing, and mitigating avian and bat impacts; (3) review wind development guidelines developed by the USFWS and the Washington State Department of Fish and Wildlife; and (4) identify topics needing further research and to discuss what can be done to ensure that research is both credible and accessible. These Workshop Proceedings include detailed summaries of the presentations made and the discussions that followed.« less
Germline Modification and Engineering in Avian Species
Lee, Hong Jo; Lee, Hyung Chul; Han, Jae Yong
2015-01-01
Production of genome-edited animals using germline-competent cells and genetic modification tools has provided opportunities for investigation of biological mechanisms in various organisms. The recently reported programmed genome editing technology that can induce gene modification at a target locus in an efficient and precise manner facilitates establishment of animal models. In this regard, the demand for genome-edited avian species, which are some of the most suitable model animals due to their unique embryonic development, has also increased. Furthermore, germline chimera production through long-term culture of chicken primordial germ cells (PGCs) has facilitated research on production of genome-edited chickens. Thus, use of avian germline modification is promising for development of novel avian models for research of disease control and various biological mechanisms. Here, we discuss recent progress in genome modification technology in avian species and its applications and future strategies. PMID:26333275
A fossil brain from the Cretaceous of European Russia and avian sensory evolution.
Kurochkin, Evgeny N; Dyke, Gareth J; Saveliev, Sergei V; Pervushov, Evgeny M; Popov, Evgeny V
2007-06-22
Fossils preserving traces of soft anatomy are rare in the fossil record; even rarer is evidence bearing on the size and shape of sense organs that provide us with insights into mode of life. Here, we describe unique fossil preservation of an avian brain from the Volgograd region of European Russia. The brain of this Melovatka bird is similar in shape and morphology to those of known fossil ornithurines (the lineage that includes living birds), such as the marine diving birds Hesperornis and Enaliornis, but documents a new stage in avian sensory evolution: acute nocturnal vision coupled with well-developed hearing and smell, developed by the Late Cretaceous (ca 90Myr ago). This fossil also provides insights into previous 'bird-like' brain reconstructions for the most basal avian Archaeopteryx--reduction of olfactory lobes (sense of smell) and enlargement of the hindbrain (cerebellum) occurred subsequent to Archaeopteryx in avian evolution, closer to the ornithurine lineage that comprises living birds. The Melovatka bird also suggests that brain enlargement in early avians was not correlated with the evolution of powered flight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The United States Air Force (USAF) is investigating whether to install wind turbines to provide a supplemental source of electricity at Vandenberg Air Force Base (VAFB) near Lompoc, California. As part of that investigation, VAFB sought assistance from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to provide a preliminary characterization of the potential risk to wildlife resources (mainly birds and bats) from wind turbine installations. With wind power development expanding throughout North America and Europe, concerns have surfaced over the number of bird fatalities associated with wind turbines. Guidelines developed for the wind industry by the Nationalmore » Wind Coordinating Committee (NWCC) recommend assessing potential impacts to birds, bats, and other potentially sensitive resources before construction. The primary purpose of an assessment is to identify potential conflicts with sensitive resources, to assist developers with identifying their permitting needs, and to develop strategies to avoid impacts or to mitigate their effects. This report provides a preliminary (Phase I) biological assessment of potential impacts to birds and bats that might result from construction and operation of the proposed wind energy facilities on VAFB.« less
Avian fatalities at wind energy facilities in North America: A comparison of recent approaches
Johnson, Douglas H.; Loss, Scott R.; Smallwood, K. Shawn; Erickson, Wallace P.
2016-01-01
Three recent publications have estimated the number of birds killed each year by wind energy facilities at 2012 build-out levels in the United States. The 3 publications differ in scope, methodology, and resulting estimates. We compare and contrast characteristics of the approaches used in the publications. In addition, we describe decisions made in obtaining the estimates that were produced. Despite variation in the 3 approaches, resulting estimates were reasonably similar; about a quarter- to a half-million birds are killed per year by colliding with wind turbines.
Airborne Detection of H5N8 Highly Pathogenic Avian Influenza Virus Genome in Poultry Farms, France.
Scoizec, Axelle; Niqueux, Eric; Thomas, Rodolphe; Daniel, Patrick; Schmitz, Audrey; Le Bouquin, Sophie
2018-01-01
In southwestern France, during the winter of 2016-2017, the rapid spread of highly pathogenic avian influenza H5N8 outbreaks despite the implementation of routine control measures, raised the question about the potential role of airborne transmission in viral spread. As a first step to investigate the plausibility of that transmission, air samples were collected inside, outside and downwind from infected duck and chicken facilities. H5 avian influenza virus RNA was detected in all samples collected inside poultry houses, at external exhaust fans and at 5 m distance from poultry houses. For three of the five flocks studied, in the sample collected at 50-110 m distance, viral genomic RNA was detected. The measured viral air concentrations ranged between 4.3 and 6.4 log 10 RNA copies per m 3 , and their geometric mean decreased from external exhaust fans to the downwind measurement point. These findings are in accordance with the possibility of airborne transmission and question the procedures for outbreak depopulation.
Airborne Detection of H5N8 Highly Pathogenic Avian Influenza Virus Genome in Poultry Farms, France
Scoizec, Axelle; Niqueux, Eric; Thomas, Rodolphe; Daniel, Patrick; Schmitz, Audrey; Le Bouquin, Sophie
2018-01-01
In southwestern France, during the winter of 2016–2017, the rapid spread of highly pathogenic avian influenza H5N8 outbreaks despite the implementation of routine control measures, raised the question about the potential role of airborne transmission in viral spread. As a first step to investigate the plausibility of that transmission, air samples were collected inside, outside and downwind from infected duck and chicken facilities. H5 avian influenza virus RNA was detected in all samples collected inside poultry houses, at external exhaust fans and at 5 m distance from poultry houses. For three of the five flocks studied, in the sample collected at 50–110 m distance, viral genomic RNA was detected. The measured viral air concentrations ranged between 4.3 and 6.4 log10 RNA copies per m3, and their geometric mean decreased from external exhaust fans to the downwind measurement point. These findings are in accordance with the possibility of airborne transmission and question the procedures for outbreak depopulation. PMID:29487857
Production and Characterization of an Avian Ricin Antitoxin
1992-01-15
naturally -occurring plant and/or bacterial toxins as biological threat agents, effective antitoxins are needed for either piophylactic or causal...system, an avian antitoxin against the potent phytotoxin , ricin. will be developed and evaluated. The production of therapeutic antibodies in avian...Dynatech). PolyacrylmIde gel electrophoresis (PAGE): Acrylamide gels were prepared according to methods described by Laemmli ( Nature . 227. 1970) and
STS-108 Crew Interviews: Mark Kelly
NASA Technical Reports Server (NTRS)
2001-01-01
STS-108 Pilot Mark Kelly is seen during a prelaunch interview. He answers questions about the mission's goals and significance, explaining the meaning of 'utilization flight 1' (UF-1) as opposed to an 'assembly flight'. He gives details on the payload (Starshine Satellite, Avian Development Facility, and Rafaello Multipurpose Logistics Module (MPLM)), his role in the rendezvous, docking, and undocking of the Endeavour Orbiter to the International Space Station (ISS), how he will participate in the unloading and reloading of the MPLM, and the way in which the old and new resident crews of ISS will exchanged. Kelly ends with his thoughts on the short-term and long-term future of the International Space Station.
STS-108 Crew Interviews: Linda Godwin
NASA Technical Reports Server (NTRS)
2001-01-01
STS-108 Mission Specialist Linda Godwin is seen during a prelaunch interview. She answers questions about the mission's goals and significance, explaining the meaning of 'utilization flight 1' (UF-1) as opposed to an 'assembly flight'. She gives details on the payload (Starshine Satellite, Avian Development Facility, and Rafaello Multipurpose Logistics Module (MPLM)), her role in the rendezvous, docking, and undocking of the Endeavour Orbiter to the International Space Station (ISS), how she will participate in the unloading and reloading of the MPLM, and the way in which the old and new resident crews of ISS will exchanged. Godwin ends with her thoughts on the short-term and long-term future of the International Space Station.
STS-108 Crew Interviews: Dom Gorie
NASA Technical Reports Server (NTRS)
2001-01-01
STS-108 Commander Dom Gorie is seen during a prelaunch interview. He answers questions about the mission's goals and significance, explaining the meaning of 'utilization flight 1' (UF-1) as opposed to an 'assembly flight'. He gives details on the payload (Starshine Satellite, Avian Development Facility, and Rafaello Multipurpose Logistics Module (MPLM)), his role in the rendezvous, docking, and undocking of the Endeavour Orbiter to the International Space Station (ISS), how he will participate in the unloading and reloading of the MPLM, and the way in which the old and new resident crews of ISS will exchanged. Gorie ends with his thoughts on the short-term and long-term future of the International Space Station.
STS-108 Crew Interviews: Dan Tani
NASA Technical Reports Server (NTRS)
2001-01-01
STS-108 Mission Specialist Dan Tani is seen during a prelaunch interview. He answers questions about the mission's goals and significance, explaining the meaning of 'utilization flight 1' (UF-1) as opposed to an 'assembly flight'. He gives details on the payload (Starshine Satellite, Avian Development Facility, and Rafaello Multipurpose Logistics Module (MPLM)), his role in the rendezvous, docking, and undocking of the Endeavour Orbiter to the International Space Station (ISS), how he will participate in the unloading and reloading of the MPLM, and the way in which the old and new resident crews of ISS will exchanged. Tani ends with his thoughts on the short-term and long-term future of the International Space Station.
Experimental Infections of Wild Birds with West Nile Virus
Pérez-Ramírez, Elisa; Llorente, Francisco; Jiménez-Clavero, Miguel Ángel
2014-01-01
Avian models of West Nile virus (WNV) disease have become pivotal in the study of infection pathogenesis and transmission, despite the intrinsic constraints that represents this type of experimental research that needs to be conducted in biosecurity level 3 (BSL3) facilities. This review summarizes the main achievements of WNV experimental research carried out in wild birds, highlighting advantages and limitations of this model. Viral and host factors that determine the infection outcome are analyzed in detail, as well as recent discoveries about avian immunity, viral transmission, and persistence achieved through experimental research. Studies of laboratory infections in the natural host will help to understand variations in susceptibility and reservoir competence among bird species, as well as in the epidemiological patterns found in different affected areas. PMID:24531334
Stoute, Simone T; Cooper, George L; Bickford, Arthur A; Carnaccini, Silvia; Shivaprasad, H L; Sentíes-Cué, C Gabriel
2016-03-01
In February 2015, two Eurasian collared doves (Streptopelia decaocto) were submitted dead to the California Animal Health and Food Safety (CAHFS) Laboratory, Turlock branch, from a private aviary experiencing sudden, high mortality (4/9) in adult doves. In both doves, the gross and histologic lesions were indicative of acute, fatal septicemia. Grossly, there were numerous pale yellow foci, 1 to 2 mm in diameter, in the liver and spleen. Microscopically, these foci were composed of acute severe multifocal coagulative necrosis of hepatocytes and splenic pulp with infiltration of heterophils mixed with fibrin and dense colonies of gram-negative bacteria. Yersinia pseudotuberculosis was isolated from the lung, liver, spleen, heart, ovary, kidney, and trachea. The organism was susceptible to most antibiotics it was tested against, except erythromycin. Based on a retrospective study of necropsy submissions to CAHFS between 1990 and 2015, there were 77 avian case submissions of Y. pseudotuberculosis. There were 75/77 cases identified from a wide range of captive avian species from both zoo and private facilities and 2/77 cases from two backyard turkeys submitted from one premise. The largest number of cases originated from psittacine species (31/77). The lesions most commonly described were hepatitis (63/77), splenitis (49/77), pneumonia (30/77), nephritis (16/77), and enteritis (12/77). From 1990 to 2015, there was an average of three cases of avian pseudotuberculosis per year at CAHFS. Although there were no cases diagnosed in 1993 and 1994, in all other years, there were between one and eight cases of Y. pseudotuberculosis detected from avian diagnostic submissions.
Avian models in teratology and developmental toxicology.
Smith, Susan M; Flentke, George R; Garic, Ana
2012-01-01
The avian embryo is a long-standing model for developmental biology research. It also has proven utility for toxicology research both in ovo and in explant culture. Like mammals, avian embryos have an allantois and their developmental pathways are highly conserved with those of mammals, thus avian models have biomedical relevance. Fertile eggs are inexpensive and the embryo develops rapidly, allowing for high-throughput. The chick genome is sequenced and significant molecular resources are available for study, including the ability for genetic manipulation. The absence of a placenta permits the direct study of an agent's embryotoxic effects. Here, we present protocols for using avian embryos in toxicology research, including egg husbandry and hatch, toxicant delivery, and assessment of proliferation, apoptosis, and cardiac structure and function.
USDA-ARS?s Scientific Manuscript database
Chickens of Avian Disease and Oncology Laboratory (ADOL) line alv6, known to develop spontaneous avian leukosis virus (ALV)-like lymphomas at two years of age or older, were inoculated either in-ovo, or at 1 day of age with strain SB-1 of serotype 2 Marek’s disease virus (MDV). Inoculated and uninoc...
Ohad, Shoshanit; Ben-Dor, Shifra; Prilusky, Jaime; Kravitz, Valeria; Dassa, Bareket; Chalifa-Caspi, Vered; Kashi, Yechezkel; Rorman, Efrat
2016-01-01
The emerging microbial source tracking (MST) methodologies aim to identify fecal contamination originating from domestic and wild animals, and from humans. Avian MST is especially challenging, primarily because the Aves class includes both domesticated and wild species with highly diverse habitats and dietary characteristics. The quest for specific fecal bacterial MST markers can be difficult with respect to attaining sufficient assay sensitivity and specificity. The present study utilizes high throughput sequencing (HTS) to screen bacterial 16S rRNA genes from fecal samples collected from both domestic and wild avian species. Operational taxonomic unit (OTU) analysis was then performed, from which sequences were retained for downstream quantitative polymerase chain reaction (qPCR) marker development. Identification of unique avian host DNA sequences, absent in non-avian hosts, was then carried out using a dedicated database of bacterial 16S rRNA gene taken from the Ribosomal Database Project. Six qPCR assays were developed targeting the 16S rRNA gene of Lactobacillus, Gallibacterium, Firmicutes, Fusobacteriaceae, and other bacteria. Two assays (Av4143 and Av163) identified most of the avian fecal samples and demonstrated sensitivity values of 91 and 70%, respectively. The Av43 assay only identified droppings from battery hens and poultry, whereas each of the other three assays (Av24, Av13, and Av216) identified waterfowl species with lower sensitivities values. The development of an MST assay-panel, which includes both domestic and wild avian species, expands the currently known MST analysis capabilities for decoding fecal contamination.
Surveillance for Asian H5N1 avian influenza in the United States
Ip, Hon S.; Slota, Paul G.
2006-01-01
Increasing concern over the potential for migratory birds to introduce the Asian H5N1 strain of avian influenza to North America prompted the White House Policy Coordinating Committee for Pandemic Influenza Preparedness to request that the U.S. Departments of Agriculture (USDA) and Interior (DOI) develop a plan for the early detection of highly pathogenic avian influenza (HPAI) in the United States. To promote coordination among wildlife, agriculture, and human health agencies on HPAI surveillance efforts, the two Departments worked with representatives from the U.S. Department of Health and Human Services, the International Association of Fish and Wildlife Agencies, and the Alaska Department of Fish and Game to develop the U.S. Interagency Strategic Plan for Early Detection of Asian H5N1 Highly Pathogenic Avian Influenza in Wild Migratory Birds.
Chemical ions affect survival of avian cholera organisms in pondwater
Price, J.I.; Yandell, B.S.; Porter, W.P.
1992-01-01
Avian cholera (Pasteurella multocida) is a major disease of wild waterfowl, but its epizootiology remains little understood. Consequently, we examined whether chemical ions affected survival of avian cholera organisms in water collected from the Nebraska Rainwater Basin where avian cholera is enzootic. We tested the response of P. multocida to ammonium (NH4), calcium (Ca), magnesium (Mg), nitrate (NO3), and ortho-phosphate (PO4) ions individually and in combination using a fractional factorial design divided into 4 blocks. High concentrations of Ca and Mg, singly or in combination, increased survival of P. multocida organisms (P < 0.001). We developed a survival index to predict whether or not specific ponds could be "problem" or "nonproblem" avian cholera sites based on concentrations of these ions in the water.
2003-01-22
The Avian Development Facility (ADF) supports 36 eggs in two carousels, one of which rotates to provide a 1-g control for comparing to eggs grown in microgravity. The ADF was designed to incubate up to 36 Japanese quail eggs, 18 in microgravity and 18 in artificial gravity. The two sets of eggs were exposed to otherwise identical conditions, the first time this is been accomplished in space. Eggs are preserved at intervals to provide snapshots of their development for later analysis. Quails incubate in just 15 days, so they are an ideal species to be studied within the duration of space shuttle missions. Further, several investigators can use the same specimens to address different questions. The ADF originated in NASA's Shuttle Student Involvement program in the 1980s and was developed under the NASA Small Business Irnovation Research program. In late 2001, the ADF made its first flight and carried eggs used in two investigations.
Damas, Joana; O'Connor, Rebecca; Farré, Marta; Lenis, Vasileios Panagiotis E; Martell, Henry J; Mandawala, Anjali; Fowler, Katie; Joseph, Sunitha; Swain, Martin T; Griffin, Darren K; Larkin, Denis M
2017-05-01
Most recent initiatives to sequence and assemble new species' genomes de novo fail to achieve the ultimate endpoint to produce contigs, each representing one whole chromosome. Even the best-assembled genomes (using contemporary technologies) consist of subchromosomal-sized scaffolds. To circumvent this problem, we developed a novel approach that combines computational algorithms to merge scaffolds into chromosomal fragments, PCR-based scaffold verification, and physical mapping to chromosomes. Multigenome-alignment-guided probe selection led to the development of a set of universal avian BAC clones that permit rapid anchoring of multiple scaffolds to chromosomes on all avian genomes. As proof of principle, we assembled genomes of the pigeon ( Columbia livia ) and peregrine falcon ( Falco peregrinus ) to chromosome levels comparable, in continuity, to avian reference genomes. Both species are of interest for breeding, cultural, food, and/or environmental reasons. Pigeon has a typical avian karyotype (2n = 80), while falcon (2n = 50) is highly rearranged compared to the avian ancestor. By using chromosome breakpoint data, we established that avian interchromosomal breakpoints appear in the regions of low density of conserved noncoding elements (CNEs) and that the chromosomal fission sites are further limited to long CNE "deserts." This corresponds with fission being the rarest type of rearrangement in avian genome evolution. High-throughput multiple hybridization and rapid capture strategies using the current BAC set provide the basis for assembling numerous avian (and possibly other reptilian) species, while the overall strategy for scaffold assembly and mapping provides the basis for an approach that (provided metaphases can be generated) could be applied to any animal genome. © 2017 Damas et al.; Published by Cold Spring Harbor Laboratory Press.
O'Connor, Rebecca; Lenis, Vasileios Panagiotis E.; Martell, Henry J.; Mandawala, Anjali; Fowler, Katie; Joseph, Sunitha; Swain, Martin T.; Griffin, Darren K.; Larkin, Denis M.
2017-01-01
Most recent initiatives to sequence and assemble new species’ genomes de novo fail to achieve the ultimate endpoint to produce contigs, each representing one whole chromosome. Even the best-assembled genomes (using contemporary technologies) consist of subchromosomal-sized scaffolds. To circumvent this problem, we developed a novel approach that combines computational algorithms to merge scaffolds into chromosomal fragments, PCR-based scaffold verification, and physical mapping to chromosomes. Multigenome-alignment-guided probe selection led to the development of a set of universal avian BAC clones that permit rapid anchoring of multiple scaffolds to chromosomes on all avian genomes. As proof of principle, we assembled genomes of the pigeon (Columbia livia) and peregrine falcon (Falco peregrinus) to chromosome levels comparable, in continuity, to avian reference genomes. Both species are of interest for breeding, cultural, food, and/or environmental reasons. Pigeon has a typical avian karyotype (2n = 80), while falcon (2n = 50) is highly rearranged compared to the avian ancestor. By using chromosome breakpoint data, we established that avian interchromosomal breakpoints appear in the regions of low density of conserved noncoding elements (CNEs) and that the chromosomal fission sites are further limited to long CNE “deserts.” This corresponds with fission being the rarest type of rearrangement in avian genome evolution. High-throughput multiple hybridization and rapid capture strategies using the current BAC set provide the basis for assembling numerous avian (and possibly other reptilian) species, while the overall strategy for scaffold assembly and mapping provides the basis for an approach that (provided metaphases can be generated) could be applied to any animal genome. PMID:27903645
Gulf Coast Deep Water Port Facilities Study. Environmental Assessment.
1973-04-01
contributions of our consultants - Dr. George L. Clarke, Harvard Univer- sity; Dr. Bostwick H. Ketchum, Woods Hole Oceanographic Institution; and Dr...NATURE OF ADVERSE ENVIRONMENTAL EFFECTS A. TERMINAL CONSTRUCTION Rounsefell (1972) has recently reviewed the potential ecological effects of offshore...area for a variety of avian and mammalian forms, the effects of oil spills on these regions are particularly severe. The ecological chain of depen
Qi, Li; Pujanauski, Lindsey M; Davis, A Sally; Schwartzman, Louis M; Chertow, Daniel S; Baxter, David; Scherler, Kelsey; Hartshorn, Kevan L; Slemons, Richard D; Walters, Kathie-Anne; Kash, John C; Taubenberger, Jeffery K
2014-11-18
Zoonotic avian influenza virus infections may lead to epidemics or pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its H1 hemagglutinin was identified as a key mammalian virulence factor. A chimeric 1918 virus expressing a contemporary avian H1 hemagglutinin, however, displayed murine pathogenicity indistinguishable from that of the 1918 virus. Here, isogenic chimeric avian influenza viruses were constructed on an avian influenza virus backbone, differing only by hemagglutinin subtype expressed. Viruses expressing the avian H1, H6, H7, H10, and H15 subtypes were pathogenic in mice and cytopathic in normal human bronchial epithelial cells, in contrast to H2-, H3-, H5-, H9-, H11-, H13-, H14-, and H16-expressing viruses. Mouse pathogenicity was associated with pulmonary macrophage and neutrophil recruitment. These data suggest that avian influenza virus hemagglutinins H1, H6, H7, H10, and H15 contain inherent mammalian virulence factors and likely share a key virulence property of the 1918 virus. Consequently, zoonotic infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals. Influenza viruses from birds can cause outbreaks in humans and may contribute to the development of pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its main surface protein, an H1 subtype hemagglutinin, was identified as a key mammalian virulence factor. In a previous study, a 1918 virus expressing an avian H1 gene was as virulent in mice as the reconstructed 1918 virus. Here, a set of avian influenza viruses was constructed, differing only by hemagglutinin subtype. Viruses with the avian H1, H6, H7, H10, and H15 subtypes caused severe disease in mice and damaged human lung cells. Consequently, infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals, and therefore surveillance for human infections with these subtypes may be important in controlling future outbreaks. Copyright © 2014 Qi et al.
Investigation of Influenza Virus Polymerase Activity in Pig Cells
Moncorgé, Olivier; Long, Jason S.; Cauldwell, Anna V.; Zhou, Hongbo; Lycett, Samantha J.
2013-01-01
Reassortant influenza viruses with combinations of avian, human, and/or swine genomic segments have been detected frequently in pigs. As a consequence, pigs have been accused of being a “mixing vessel” for influenza viruses. This implies that pig cells support transcription and replication of avian influenza viruses, in contrast to human cells, in which most avian influenza virus polymerases display limited activity. Although influenza virus polymerase activity has been studied in human and avian cells for many years by use of a minigenome assay, similar investigations in pig cells have not been reported. We developed the first minigenome assay for pig cells and compared the activities of polymerases of avian or human influenza virus origin in pig, human, and avian cells. We also investigated in pig cells the consequences of some known mammalian host range determinants that enhance influenza virus polymerase activity in human cells, such as PB2 mutations E627K, D701N, G590S/Q591R, and T271A. The two typical avian influenza virus polymerases used in this study were poorly active in pig cells, similar to what is seen in human cells, and mutations that adapt the avian influenza virus polymerase for human cells also increased activity in pig cells. In contrast, a different pattern was observed in avian cells. Finally, highly pathogenic avian influenza virus H5N1 polymerase activity was tested because this subtype has been reported to replicate only poorly in pigs. H5N1 polymerase was active in swine cells, suggesting that other barriers restrict these viruses from becoming endemic in pigs. PMID:23077313
Coates, Peter S.; Casazza, Michael L.; Halstead, Brian J.; Fleskes, Joseph P.; Laughlin, James A.
2011-01-01
Radar systems designed to detect avian activity at airfields are useful in understanding factors that influence the risk of bird and aircraft collisions (bird strikes). We used an avian radar system to measure avian activity at Beale Air Force Base, California, USA, during 2008 and 2009. We conducted a 2-part analysis to examine relationships among avian activity, bird strikes, and meteorological and time-dependent factors. We found that avian activity around the airfield was greater at times when bird strikes occurred than on average using a permutation resampling technique. Second, we developed generalized linear mixed models of an avian activity index (AAI). Variation in AAI was first explained by seasons that were based on average migration dates of birds at the study area. We then modeled AAI by those seasons to further explain variation by meteorological factors and daily light levels within a 24-hour period. In general, avian activity increased with decreased temperature, wind, visibility, precipitation, and increased humidity and cloud cover. These effects differed by season. For example, during the spring bird migration period, most avian activity occurred before sunrise at twilight hours on clear days with low winds, whereas during fall migration, substantial activity occurred after sunrise, and birds generally were more active at lower temperatures. We report parameter estimates (i.e., constants and coefficients) averaged across models and a relatively simple calculation for safety officers and wildlife managers to predict AAI and the relative risk of bird strike based on time, date, and meteorological values. We validated model predictability and assessed model fit. These analyses will be useful for general inference of avian activity and risk assessment efforts. Further investigation and ongoing data collection will refine these inference models and improve our understanding of factors that influence avian activity, which is necessary to inform management decisions aimed at reducing risk of bird strikes.
Choi, Chang-Yong; Takekawa, John Y.; Xiong, Yue; Wikelski, Martin; Heine, George; Prosser, Diann J.; Newman, Scott H.; Edwards, John; Guo, Fusheng; Xiao, Xiangming
2016-01-01
Agro-ecological conditions associated with the spread and persistence of highly pathogenic avian influenza (HPAI) are not well understood, but the trade of live poultry is suspected to be a major pathway. Although market chains of live bird trade have been studied through indirect means including interviews and questionnaires, direct methods have not been used to identify movements of individual poultry. To bridge the knowledge gap on quantitative movement and transportation of poultry, we introduced a novel approach for applying telemetry to document domestic duck movements from source farms at Poyang Lake, China. We deployed recently developed transmitters that record Global Positioning System (GPS) locations and send them through the Groupe Spécial Mobile (GSM) cellular telephone system. For the first time, we were able to track individually marked ducks from 3 to 396 km from their origin to other farms, distribution facilities, or live bird markets. Our proof of concept test showed that the use of GPS-GSM transmitters may provide direct, quantitative information to document the movement of poultry and reveal their market chains. Our findings provide an initial indication of the complexity of source-market network connectivity and highlight the great potential for future telemetry studies in poultry network analyses.
Human‐Aided Movement of Viral Disease and the Archaeology of Avian Osteopetrosis
2017-01-01
Abstract The term avian osteopetrosis is used to describe alterations to the skeletal elements of several species of domestic bird, most typically the chicken, Gallus gallus domesticus (L. 1758). Such lesions are routinely identified in animal bones from archaeological sites due to their distinctive appearance, which is characterised by proliferative diaphyseal thickening. These lesions are relatively uncomplicated for specialists to differentially diagnose and are caused by a range of avian leucosis viruses in a series of subgroups. Only some avian leucosis viruses cause the development of such characteristic lesions in osteological tissue. Viraemia is necessary for the formation of skeletal pathology, and avian osteopetrosis lesions affect skeletal elements at different rates. Lesion expression differs by the age and sex of the infected individual, and environmental conditions have an impact on the prevalence of avian leucosis viruses in poultry flocks. These factors have implications for the ways in which diagnosed instances of avian osteopetrosis in archaeological assemblages are interpreted. By integrating veterinary research with archaeological evidence for the presence of avian leucosis viruses across Western Europe, this paper discusses the nature of these pathogens, outlines criteria for differential diagnosis, and offers a fresh perspective on the human‐aided movement of animal disease in the past through investigation of the incidence and geographic distribution of avian osteopetrosis lesions from the first century BC to the post‐medieval period. © 2017 The Authors International Journal of Osteoarchaeology Published by John Wiley & Sons Ltd. PMID:29104410
Blachere, Francoise M; Lindsley, William G; Weber, Angela M; Beezhold, Donald H; Thewlis, Robert E; Mead, Kenneth R; Noti, John D
2018-05-16
In December 2016, an outbreak of low pathogenicity avian influenza (LPAI) A(H7N2) occurred in cats at a New York City animal shelter and quickly spread to other shelters in New York and Pennsylvania. The A(H7N2) virus also spread to an attending veterinarian. In response, 500 cats were transferred from these shelters to a temporary quarantine facility for continued monitoring and treatment. The objectives of this study was to assess the occupational risk of A(H7N2) exposure among emergency response workers at the feline quarantine facility. Aerosol and surface samples were collected from inside and outside the isolation zones of the quarantine facility. Samples were screened for A(H7N2) by quantitative RT-PCR and analyzed in embryonated chicken eggs for infectious virus. H7N2 virus was detected by RT-PCR in 28 of 29 aerosol samples collected in the high-risk isolation (hot) zone with 70.9% on particles with aerodynamic diameters >4 μm, 27.7% in 1-4 μm, and 1.4% in <1 μm. Seventeen of 22 surface samples from the high-risk isolation zone were also H7N2-positive with an average M1 copy number of 1.3 x 10 3 . Passage of aerosol and surface samples in eggs confirmed that infectious virus was present throughout the high-risk zones in the quarantine facility. By measuring particle size, distribution, and infectivity, our study suggests that the A(H7N2) virus had the potential to spread by airborne transmission and/or direct contact with viral-laden fomites. These results warranted continued A(H7N2) surveillance and transmission-based precautions during the treatment and care of infected cats. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Development of reference antisera to enteric-origin avian viruses
USDA-ARS?s Scientific Manuscript database
Recent molecular surveys have revealed geographically distinct lineages of avian reovirus, rotavirus and astrovirus circulating in commercial poultry. To improve our understanding of enteric virus pathogenesis, specific immunological reagents are needed to detect viruses in histological samples. To ...
Poultry genetic resource conservation using primordial germ cells
NAKAMURA, Yoshiaki
2016-01-01
The majority of poultry genetic resources are maintained in situ in living populations. However, in situ conservation of poultry genetic resources always carries the risk of loss owing to pathogen outbreaks, genetic problems, breeding cessation, or natural disasters. Cryobanking of germplasm in birds has been limited to the use of semen, preventing conservation of the W chromosome and mitochondrial DNA. A further challenge is posed by the structure of avian eggs, which restricts the cryopreservation of ova and fertilized embryos, a technique widely used for mammalian species. By using a unique biological property and accessibility of avian primordial germ cells (PGCs), precursor cells for gametes, which temporally circulate in the vasculature during early development, an avian PGC transplantation technique has been established. To date, several techniques for PGC manipulation including purification, cryopreservation, depletion, and long-term culture have been developed in chickens. PGC transplantation combined with recent advanced PGC manipulation techniques have enabled ex situ conservation of poultry genetic resources in their complete form. Here, the updated technologies for avian PGC manipulation are introduced, and then the concept of a poultry PGC-bank is proposed by considering the biological properties of avian PGCs. PMID:27210834
Space Station Biological Research Project.
Johnson, C C; Wade, C E; Givens, J J
1997-06-01
To meet NASA's objective of using the unique aspects of the space environment to expand fundamental knowledge in the biological sciences, the Space Station Biological Research Project at Ames Research Center is developing, or providing oversight, for two major suites of hardware which will be installed on the International Space Station (ISS). The first, the Gravitational Biology Facility, consists of Habitats to support plants, rodents, cells, aquatic specimens, avian and reptilian eggs, and insects and the Habitat Holding Rack in which to house them at microgravity; the second, the Centrifuge Facility, consists of a 2.5 m diameter centrifuge that will provide acceleration levels between 0.01 g and 2.0 g and a Life Sciences Glovebox. These two facilities will support the conduct of experiments to: 1) investigate the effect of microgravity on living systems; 2) what level of gravity is required to maintain normal form and function, and 3) study the use of artificial gravity as a countermeasure to the deleterious effects of microgravity observed in the crew. Upon completion, the ISS will have three complementary laboratory modules provided by NASA, the European Space Agency and the Japanese space agency, NASDA. Use of all facilities in each of the modules will be available to investigators from participating space agencies. With the advent of the ISS, space-based gravitational biology research will transition from 10-16 day short-duration Space Shuttle flights to 90-day-or-longer ISS increments.
Space Station Biological Research Project
NASA Technical Reports Server (NTRS)
Johnson, C. C.; Wade, C. E.; Givens, J. J.
1997-01-01
To meet NASA's objective of using the unique aspects of the space environment to expand fundamental knowledge in the biological sciences, the Space Station Biological Research Project at Ames Research Center is developing, or providing oversight, for two major suites of hardware which will be installed on the International Space Station (ISS). The first, the Gravitational Biology Facility, consists of Habitats to support plants, rodents, cells, aquatic specimens, avian and reptilian eggs, and insects and the Habitat Holding Rack in which to house them at microgravity; the second, the Centrifuge Facility, consists of a 2.5 m diameter centrifuge that will provide acceleration levels between 0.01 g and 2.0 g and a Life Sciences Glovebox. These two facilities will support the conduct of experiments to: 1) investigate the effect of microgravity on living systems; 2) what level of gravity is required to maintain normal form and function, and 3) study the use of artificial gravity as a countermeasure to the deleterious effects of microgravity observed in the crew. Upon completion, the ISS will have three complementary laboratory modules provided by NASA, the European Space Agency and the Japanese space agency, NASDA. Use of all facilities in each of the modules will be available to investigators from participating space agencies. With the advent of the ISS, space-based gravitational biology research will transition from 10-16 day short-duration Space Shuttle flights to 90-day-or-longer ISS increments.
USDA-ARS?s Scientific Manuscript database
In the past, several techniques have been developed as diagnostic tools for the differential diagnosis of tumours produced by Marek’s disease virus (MDV) from those induced by avian leukosis virus (ALV) and reticuloendotheliosis virus (REV). However, most current techniques are unreliable using form...
Coquillettidia (Culicidae, Diptera) mosquitoes are natural vectors of avian malaria in Africa
2009-01-01
Background The mosquito vectors of Plasmodium spp. have largely been overlooked in studies of ecology and evolution of avian malaria and other vertebrates in wildlife. Methods Plasmodium DNA from wild-caught Coquillettidia spp. collected from lowland forests in Cameroon was isolated and sequenced using nested PCR. Female Coquillettidia aurites were also dissected and salivary glands were isolated and microscopically examined for the presence of sporozoites. Results In total, 33% (85/256) of mosquito pools tested positive for avian Plasmodium spp., harbouring at least eight distinct parasite lineages. Sporozoites of Plasmodium spp. were recorded in salivary glands of C. aurites supporting the PCR data that the parasites complete development in these mosquitoes. Results suggest C. aurites, Coquillettidia pseudoconopas and Coquillettidia metallica as new and important vectors of avian malaria in Africa. All parasite lineages recovered clustered with parasites formerly identified from several bird species and suggest the vectors capability of infecting birds from different families. Conclusion Identifying the major vectors of avian Plasmodium spp. will assist in understanding the epizootiology of avian malaria, including differences in this disease distribution between pristine and disturbed landscapes. PMID:19664282
Culturing of avian embryos for time-lapse imaging.
Rupp, Paul A; Rongish, Brenda J; Czirok, Andras; Little, Charles D
2003-02-01
Monitoring morphogenetic processes, at high resolution over time, has been a long-standing goal of many developmental cell biologists. It is critical to image cells in their natural environment whenever possible; however, imaging many warm-blooded vertebrates, especially mammals, is problematic. At early stages of development, birds are ideal for imaging, since the avian body plan is very similar to that of mammals. We have devised a culturing technique that allows for the acquisition of high-resolution differential interference contrast and epifluorescence images of developing avian embryos in a 4-D (3-D + time) system. The resulting information, from intact embryos, is derived from an area encompassing several millimeters, at micrometer resolution for up to 30 h.
Kreslake, Jennifer M; Wahyuningrum, Yunita; Iuliano, Angela D; Storms, Aaron D; Lafond, Kathryn E; Mangiri, Amalya; Praptiningsih, Catharina Y; Safi, Basil; Uyeki, Timothy M; Storey, J Douglas
2016-12-01
Indonesia has the highest human mortality from highly pathogenic avian influenza (HPAI) A (H5N1) virus infection in the world. A survey of households (N=2520) measured treatment sources and beliefs among symptomatic household members. A survey of physicians (N=554) in various types of health care facilities measured knowledge, assessment and testing behaviors, and perceived clinical capacity. Households reported confidence in health care system capacity but infrequently sought treatment for potential HPAI H5N1 signs/symptoms. More clinicians were confident in their knowledge of diagnosis and treatment than in the adequacy of related equipment and resources at their facilities. Physicians expressed awareness of the HPAI H5N1 suspect case definition, yet expressed only moderate knowledge in questioning symptomatic patients about exposures. Self-reported likelihood of testing for HPAI H5N1 virus was high after learning of certain exposures. Knowledge of antiviral treatment was moderate, but it was higher among clinicians in puskesmas. Physicians in private outpatient clinics, the most heavily used facilities, reported the lowest confidence in their diagnostic and treatment capabilities. Educational campaigns can encourage recall of possible poultry exposure when patients are experiencing signs/symptoms and can raise awareness of the effectiveness of antivirals to drive people to seek health care. Clinicians may benefit from training regarding exposure assessment and referral procedures, particularly in private clinics. (Disaster Med Public Health Preparedness. 2016;10:838-847).
Diagnostic monitoring by infrared imaging of avian embryos
NASA Astrophysics Data System (ADS)
Wurzbach, Richard N.
1998-03-01
For large scale chicken and turkey raising operations, automated 'candling' of eggs for monitoring embryonic development is effective and efficient. Candling is accomplished by the transmission of high intensity light such that it penetrates the translucent egg and gives indications of embryonic position and development. When monitoring the development of other species, however, mixed results are obtained with this technique. For instance, the Emu egg is virtually opaque to transmitted visible light, and thus cannot be candled by traditional means. During the development cycle all avian embryos, and for that mater all egg-laying creatures, exhibit changes in shell surface temperatures that indicate on-going development, or a lack of that development. Additionally, such hazards as bacterial or viral growth within the shell produce atypical thermal signatures. Analysis of the shell surface temperatures may be useful in monitoring the development of these embryos. Further applications of IR thermography in farming of avian species may make it an economically viable monitoring technique.
The avian cell line AGE1.CR.pIX characterized by metabolic flux analysis
2014-01-01
Background In human vaccine manufacturing some pathogens such as Modified Vaccinia Virus Ankara, measles, mumps virus as well as influenza viruses are still produced on primary material derived from embryonated chicken eggs. Processes depending on primary cell culture, however, are difficult to adapt to modern vaccine production. Therefore, we derived previously a continuous suspension cell line, AGE1.CR.pIX, from muscovy duck and established chemically-defined media for virus propagation. Results To better understand vaccine production processes, we developed a stoichiometric model of the central metabolism of AGE1.CR.pIX cells and applied flux variability and metabolic flux analysis. Results were compared to literature dealing with mammalian and insect cell culture metabolism focusing on the question whether cultured avian cells differ in metabolism. Qualitatively, the observed flux distribution of this avian cell line was similar to distributions found for mammalian cell lines (e.g. CHO, MDCK cells). In particular, glucose was catabolized inefficiently and glycolysis and TCA cycle seem to be only weakly connected. Conclusions A distinguishing feature of the avian cell line is that glutaminolysis plays only a minor role in energy generation and production of precursors, resulting in low extracellular ammonia concentrations. This metabolic flux study is the first for a continuous avian cell line. It provides a basis for further metabolic analyses to exploit the biotechnological potential of avian and vertebrate cell lines and to develop specific optimized cell culture processes, e.g. vaccine production processes. PMID:25077436
The avian cell line AGE1.CR.pIX characterized by metabolic flux analysis.
Lohr, Verena; Hädicke, Oliver; Genzel, Yvonne; Jordan, Ingo; Büntemeyer, Heino; Klamt, Steffen; Reichl, Udo
2014-07-30
In human vaccine manufacturing some pathogens such as Modified Vaccinia Virus Ankara, measles, mumps virus as well as influenza viruses are still produced on primary material derived from embryonated chicken eggs. Processes depending on primary cell culture, however, are difficult to adapt to modern vaccine production. Therefore, we derived previously a continuous suspension cell line, AGE1.CR.pIX, from muscovy duck and established chemically-defined media for virus propagation. To better understand vaccine production processes, we developed a stoichiometric model of the central metabolism of AGE1.CR.pIX cells and applied flux variability and metabolic flux analysis. Results were compared to literature dealing with mammalian and insect cell culture metabolism focusing on the question whether cultured avian cells differ in metabolism. Qualitatively, the observed flux distribution of this avian cell line was similar to distributions found for mammalian cell lines (e.g. CHO, MDCK cells). In particular, glucose was catabolized inefficiently and glycolysis and TCA cycle seem to be only weakly connected. A distinguishing feature of the avian cell line is that glutaminolysis plays only a minor role in energy generation and production of precursors, resulting in low extracellular ammonia concentrations. This metabolic flux study is the first for a continuous avian cell line. It provides a basis for further metabolic analyses to exploit the biotechnological potential of avian and vertebrate cell lines and to develop specific optimized cell culture processes, e.g. vaccine production processes.
A Method to Assess Flux Hazards at CSP Plants to Reduce Avian Mortality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Clifford K.; Wendelin, Timothy; Horstman, Luke
A method to evaluate avian flux hazards at concentrating solar power plants (CSP) has been developed. A heat-transfer model has been coupled to simulations of the irradiance in the airspace above a CSP plant to determine the feather temperature along prescribed bird flight paths. Probabilistic modeling results show that the irradiance and assumed feather properties (thickness, absorptance, heat capacity) have the most significant impact on the simulated feather temperature, which can increase rapidly (hundreds of degrees Celsius in seconds) depending on the parameter values. The avian flux hazard model is being combined with a plant performance model to identify alternativemore » heliostat standby aiming strategies that minimize both avian flux hazards and negative impacts on plant performance.« less
A method to assess flux hazards at CSP plants to reduce avian mortality
NASA Astrophysics Data System (ADS)
Ho, Clifford K.; Wendelin, Timothy; Horstman, Luke; Yellowhair, Julius
2017-06-01
A method to evaluate avian flux hazards at concentrating solar power plants (CSP) has been developed. A heat-transfer model has been coupled to simulations of the irradiance in the airspace above a CSP plant to determine the feather temperature along prescribed bird flight paths. Probabilistic modeling results show that the irradiance and assumed feather properties (thickness, absorptance, heat capacity) have the most significant impact on the simulated feather temperature, which can increase rapidly (hundreds of degrees Celsius in seconds) depending on the parameter values. The avian flux hazard model is being combined with a plant performance model to identify alternative heliostat standby aiming strategies that minimize both avian flux hazards and negative impacts on plant performance.
A comment on "Novel scavenger removal trials increase wind turbine-caused avian fatality estimates"
Huso, Manuela M.P.; Erickson, Wallace P.
2013-01-01
In a recent paper, Smallwood et al. (2010) conducted a study to compare their “novel” approach to conducting carcass removal trials with what they term the “conventional” approach and to evaluate the effects of the different methods on estimated avian fatality at a wind power facility in California. A quick glance at Table 3 that succinctly summarizes their results and provides estimated fatality rates and 80% confidence intervals calculated using the 2 methods reveals a surprising result. The confidence intervals of all of their estimates and most of the conventional estimates extend below 0. These results imply that wind turbines may have the capacity to create live birds. But a more likely interpretation is that a serious error occurred in the calculation of either the average fatality rate or its standard error or both. Further evaluation of their methods reveals that the scientific basis for concluding that “many estimates of scavenger removal rates prior to [their] study were likely biased low due to scavenger swamping” and “previously reported estimates of avian fatality rates … should be adjusted upwards” was not evident in their analysis and results. Their comparison to conventional approaches was not applicable, their statistical models were questionable, and the conclusions they drew were unsupported.
Development and characterization of chicken CD127-cpecific antibodies
USDA-ARS?s Scientific Manuscript database
Research in avian immunology has been significantly hampered by lack of effective immunological reagents in birds cross-reactive with mammalian orthologs and lack of sensitive assay for a long time. To better serve the avian immunology community, monoclonal and polyclonal antibodies specific for av...
Moore, M.K.; Cicnjak-Chubbs, L.; Gates, R.J.
1994-01-01
A selective enrichment procedure, using two new selective media, was developed to isolate Pasteurella multocida from wild birds and environmental samples. These media were developed by testing 15 selective agents with six isolates of P. multocida from wild avian origin and seven other bacteria representing genera frequently found in environmental and avian samples. The resulting media—Pasteurella multocida selective enrichment broth and Pasteurella multocida selective agar—consisted of a blood agar medium at pH 10 containing gentamicin, potassium tellurite, and amphotericin B. Media were tested to determine: 1) selectivity when attempting isolation from pond water and avian carcasses, 2) sensitivity for detection of low numbers of P. multocida from pure and mixed cultures, 3) host range specificity of the media, and 4) performance compared with standard blood agar. With the new selective enrichment procedure, P. multocida was isolated from inoculated (60 organisms/ml) pond water 84% of the time, whereas when standard blood agar was used, the recovery rate was 0%.
High-Yield Expression of M2e Peptide of Avian Influenza Virus H5N1 in Transgenic Duckweed Plants.
Firsov, Aleksey; Tarasenko, Irina; Mitiouchkina, Tatiana; Ismailova, Natalya; Shaloiko, Lyubov; Vainstein, Alexander; Dolgov, Sergey
2015-07-01
Avian influenza is a major viral disease in poultry. Antigenic variation of this virus hinders vaccine development. However, the extracellular domain of the virus-encoded M2 protein (peptide M2e) is nearly invariant in all influenza A strains, enabling the development of a broad-range vaccine against them. Antigen expression in transgenic plants is becoming a popular alternative to classical expression methods. Here we expressed M2e from avian influenza virus A/chicken/Kurgan/5/2005(H5N1) in nuclear-transformed duckweed plants for further development of avian influenza vaccine. The N-terminal fragment of M2, including M2e, was selected for expression. The M2e DNA sequence fused in-frame to the 5' end of β-glucuronidase was cloned into pBI121 under the control of CaMV 35S promoter. The resulting plasmid was successfully used for duckweed transformation, and western analysis with anti-β-glucuronidase and anti-M2e antibodies confirmed accumulation of the target protein (M130) in 17 independent transgenic lines. Quantitative ELISA of crude protein extracts from these lines showed M130-β-glucuronidase accumulation ranging from 0.09-0.97 mg/g FW (0.12-1.96 % of total soluble protein), equivalent to yields of up to 40 μg M2e/g plant FW. This relatively high yield holds promise for the development of a duckweed-based expression system to produce an edible vaccine against avian influenza.
Troop education and avian influenza surveillance in military barracks in Ghana, 2011.
Odoom, John Kofi; Bel-Nono, Samuel; Rodgers, David; Agbenohevi, Prince G; Dafeamekpor, Courage K; Sowa, Roland M L; Danso, Fenteng; Tettey, Reuben; Suu-Ire, Richard; Bonney, Joseph H K; Asante, Ivy A; Aboagye, James; Abana, Christopher Zaab-Yen; Frimpong, Joseph Asamoah; Kronmann, Karl C; Oyofo, Buhari A; Ampofo, William K
2012-11-08
Influenza A viruses that cause highly pathogenic avian influenza (HPAI) also infect humans. In many developing countries such as Ghana, poultry and humans live in close proximity in both the general and military populations, increasing risk for the spread of HPAI from birds to humans. Respiratory infections such as influenza are especially prone to rapid spread among military populations living in close quarters such as barracks making this a key population for targeted avian influenza surveillance and public health education. Twelve military barracks situated in the coastal, tropical rain forest and northern savannah belts of the country were visited and the troops and their families educated on pandemic avian influenza. Attendants at each site was obtained from the attendance sheet provided for registration. The seminars focused on zoonotic diseases, influenza surveillance, pathogenesis of avian influenza, prevention of emerging infections and biosecurity. To help direct public health policies, a questionnaire was used to collect information on animal populations and handling practices from 102 households in the military barracks. Cloacal and tracheal samples were taken from 680 domestic and domesticated wild birds and analysed for influenza A using molecular methods for virus detection. Of the 1028 participants that took part in the seminars, 668 (65%) showed good knowledge of pandemic avian influenza and the risks associated with its infection. Even though no evidence of the presence of avian influenza (AI) infection was found in the 680 domestic and wild birds sampled, biosecurity in the households surveyed was very poor. Active surveillance revealed that there was no AI circulation in the military barracks in April 2011. Though participants demonstrated good knowledge of pandemic avian influenza, biosecurity practices were minimal. Sustained educational programs are needed to further strengthen avian influenza surveillance and prevention in military barracks.
Selecting surrogate endpoints for estimating pesticide effects on avian reproductive success
A Markov chain nest productivity model (MCnest) has been developed for projecting the effects of a specific pesticide-use scenario on the annual reproductive success of avian species of concern. A critical element in MCnest is the use of surrogate endpoints, defined as measured ...
Vaccines and vaccination for avian influenza in poultry
USDA-ARS?s Scientific Manuscript database
Avian influenza (AI) vaccines have been developed and used to protect poultry and other birds in various countries of the world. Protection is principally mediated by an immune response to the subtype-specific hemagglutinin (HA) protein. AI vaccines prevent clinical signs of disease, death, egg pr...
Parametric Study of Wall Shear Stress in Idealized Avian Airways
NASA Astrophysics Data System (ADS)
Farnsworth, Michael S.; Riede, Tobias; Thomson, Scott L.
2017-11-01
Because wall shear stress (WSS) affects cell response, WSS patterns in avian respiratory airways may be related to the origin of the syrinx and corresponding voice-producing tissue structures (e.g., membranes or vocal folds) in birds. To explore possible linkages between WSS patterns and the locations of avian voice-producing structures, a computational model of flow through an idealized portion of the avian respiratory airway, including trachea and primary bronchi sections, has been developed. The flow is governed by the Navier-Stokes equations, with velocity boundary conditions derived from pressure-flow data in an adult zebra finch during quiet respiration. Geometric parameters such as tracheal/bronchial diameter and length, as well as bronchial branching angle, are parametrically varied based on data for different avian species. Simulation results predict elevated WSS in the vicinity of the tracheobronchial juncture, the location at which voice-producing tissues are found in avian species. In this presentation, the model will be described and spatial distributions of WSS during inspiration and expiration will be presented and compared for different geometric configurations and respiration rates and waveforms. Funding for this project from the Gordon and Betty Moore Foundation (Grant 4498) is gratefully acknowledged.
ERIC Educational Resources Information Center
Kim, Paul; Sorcar, Piya; Um, Sujung; Chung, Heedoo; Lee, Young Sung
2009-01-01
In order to provide empirical evidence on the role of a web-based avian influenza (AI) education program for mass communication and also ultimately help young children learn and develop healthy behaviors against AI and all types of influenza, an education program with two episodic variations (i.e. fear and humor) has been developed and examined…
Avian life history profiles for use in the Markov chain nest productivity model (MCnest)
The Markov Chain nest productivity model, or MCnest, quantitatively estimates the effects of pesticides or other toxic chemicals on annual reproductive success of avian species (Bennett and Etterson 2013, Etterson and Bennett 2013). The Basic Version of MCnest was developed as a...
A solid-phase extraction (SPE) method was developed using 8 M urea to desorb and extract organochlorine pesticides (OCs) and polychlorinated biphenyls (PCBs) from avian serum for analysis by capillary gas chromatography with electron capture detection (GC-ECD). The analytes were ...
A Qualitative Stakeholder Analysis of Avian Influenza Policy in Bangladesh.
Chattopadhyay, Kaushik; Fournié, Guillaume; Abul Kalam, Md; Biswas, Paritosh K; Hoque, Ahasanul; Debnath, Nitish C; Rahman, Mahmudur; Pfeiffer, Dirk U; Harper, David; Heymann, David L
2017-11-13
Avian influenza is a major animal and public health concern in Bangladesh. A decade after development and implementation of the first national avian influenza and human pandemic influenza preparedness and response plan in Bangladesh, a two-stage qualitative stakeholder analysis was performed in relation to the policy development process and the actual policy. This study specifically aimed to identify the future policy options to prevent and control avian influenza and other poultry-related zoonotic diseases in Bangladesh. It was recommended that the policy should be based on the One Health concept, be evidence-based, sustainable, reviewed and updated as necessary. The future policy environment that is suitable for developing and implementing these policies should take into account the following points: the need to formally engage multiple sectors, the need for clear and acceptable leadership, roles and responsibilities and the need for a common pool of resources and provision for transferring resources. Most of these recommendations are directed towards the Government of Bangladesh. However, other sectors, including research and poultry production stakeholders, also have a major role to play to inform policy making and actively participate in the multi-sectoral approach.
A mathematical model of avian influenza with half-saturated incidence.
Chong, Nyuk Sian; Tchuenche, Jean Michel; Smith, Robert J
2014-03-01
The widespread impact of avian influenza viruses not only poses risks to birds, but also to humans. The viruses spread from birds to humans and from human to human In addition, mutation in the primary strain will increase the infectiousness of avian influenza. We developed a mathematical model of avian influenza for both bird and human populations. The effect of half-saturated incidence on transmission dynamics of the disease is investigated. The half-saturation constants determine the levels at which birds and humans contract avian influenza. To prevent the spread of avian influenza, the associated half-saturation constants must be increased, especially the half-saturation constant H m for humans with mutant strain. The quantity H m plays an essential role in determining the basic reproduction number of this model. Furthermore, by decreasing the rate β m at which human-to-human mutant influenza is contracted, an outbreak can be controlled more effectively. To combat the outbreak, we propose both pharmaceutical (vaccination) and non-pharmaceutical (personal protection and isolation) control methods to reduce the transmission of avian influenza. Vaccination and personal protection will decrease β m, while isolation will increase H m. Numerical simulations demonstrate that all proposed control strategies will lead to disease eradication; however, if we only employ vaccination, it will require slightly longer to eradicate the disease than only applying non-pharmaceutical or a combination of pharmaceutical and non-pharmaceutical control methods. In conclusion, it is important to adopt a combination of control methods to fight an avian influenza outbreak.
Craig, Michael D; Stokes, Vicki L; Fontaine, Joseph B; Hardy, Giles E StJ; Grigg, Andrew H; Hobbs, Richard J
2015-10-01
State-and-transition models are increasingly used as a tool to inform management of post-disturbance succession and effective conservation of biodiversity in production landscapes. However, if they are to do this effectively, they need to represent faunal, as well as vegetation, succession. We assessed the congruence between vegetation and avian succession by sampling avian communities in each state of a state-and-transition model used to inform management of post-mining restoration in a production landscape in southwestern Australia. While avian communities differed significantly among states classified as on a desirable successional pathway, they did not differ between desirable and deviated states of the same post-mining age. Overall, we concluded there was poor congruence between vegetation and avian succession in this state-and-transition model. We identified four factors that likely contributed to this lack of congruence, which were that long-term monitoring of succession in restored mine pits was not used to update and improve models, states were not defined based on ecological processes and thresholds, states were not defined by criteria that were important in structuring the avian community, and states were not based on criteria that related to values in the reference community. We believe that consideration of these four factors in the development of state-and-transition models should improve their ability to accurately represent faunal, as well as vegetation, succession. Developing state-and-transition models that better incorporate patterns of faunal succession should improve the ability to manage post-disturbance succession across a range of ecosystems for biodiversity conservation.
Development of vaccines for poultry against H5 avian influenza based on turkey herpesvirus vector
USDA-ARS?s Scientific Manuscript database
Avian influenza (AI) remains a major threat to public health as well as to the poultry industry. AI vaccines are considered a suitable tool to support AI control programs in combination with other control measures such as good biosecurity and monitoring programs. We constructed recombinant turkey he...
SIMPLIFIED METHOD FOR EXTRACTING BOUND PESTICIDES FROM AVIAN SERUM
A simple solid-phase extraction (SPE) method was developed to extract organochlorine pesticides (OCs) and persistent organic pollutants (POPs) from avian serum. In this method, a 1-mL serum sample fortified with two levels of OCs or POPs was treated with 8M urea or 4M urea and 4...
A simplified method for extracting androgens from avian egg yolks
Kozlowski, C.P.; Bauman, J.E.; Hahn, D.C.
2009-01-01
Female birds deposit significant amounts of steroid hormones into the yolks of their eggs. Studies have demonstrated that these hormones, particularly androgens, affect nestling growth and development. In order to measure androgen concentrations in avian egg yolks, most authors follow the extraction methods outlined by Schwabl (1993. Proc. Nat. Acad. Sci. USA 90:11446-11450). We describe a simplified method for extracting androgens from avian egg yolks. Our method, which has been validated through recovery and linearity experiments, consists of a single ethanol precipitation that produces substantially higher recoveries than those reported by Schwabl.
Xu, Hai; Wang, Yi-Wei; Tang, Ying-Hua; Zheng, Qi-Sheng; Hou, Ji-Bo
2013-06-01
To construct a recombinant T7 phage expressing matrix protein 2 ectodomain (M2e) peptides of avian influenza A virus and test immunological and protective efficacy in the immunized SPF chickens. M2e gene sequence was obtained from Genbank and two copies of M2e gene were artificially synthesised, the M2e gene was then cloned into the T7 select 415-1b phage in the multiple cloning sites to construct the recombinant phage T7-M2e. The positive recombinant phage was identified by PCR and sequencing, and the expression of surface fusion protein was confirmed by SDS-PAGE and Western-blot. SPF chickens were subcutaneously injected with 1 X 10(10) pfu phage T7-M2e, sera samples were collected pre- and post-vaccination, and were tested for anti-M2e antibody by ELISA. The binding capacity of serum to virus was also examined by indirect immunofluorescence assay in virus- infected CEF. The immunized chickens were challenged with 200 EID50 of H9 type avian influenza virus and viral isolation rate was calculated to evaluate the immune protective efficacy. A recombinant T7 phage was obtained displaying M2e peptides of avian influenza A virus, and the fusion protein had favorable immunoreactivity. All chickens developed a certain amount of anti-M2e antibody which could specially bind to the viral particles. In addition, the protection efficacy of phage T7-M2e vaccine against H9 type avian influenza viruses was 4/5 (80%). These results indicate that the recombinant T7 phage displaying M2e peptides of avian influenza A virus has a great potential to be developed into a novel vaccine for the prevention of avian influenza infection.
An Estimate of Avian Mortality at Communication Towers in the United States and Canada
Longcore, Travis; Rich, Catherine; Mineau, Pierre; MacDonald, Beau; Bert, Daniel G.; Sullivan, Lauren M.; Mutrie, Erin; Gauthreaux, Sidney A.; Avery, Michael L.; Crawford, Robert L.; Manville, Albert M.; Travis, Emilie R.; Drake, David
2012-01-01
Avian mortality at communication towers in the continental United States and Canada is an issue of pressing conservation concern. Previous estimates of this mortality have been based on limited data and have not included Canada. We compiled a database of communication towers in the continental United States and Canada and estimated avian mortality by tower with a regression relating avian mortality to tower height. This equation was derived from 38 tower studies for which mortality data were available and corrected for sampling effort, search efficiency, and scavenging where appropriate. Although most studies document mortality at guyed towers with steady-burning lights, we accounted for lower mortality at towers without guy wires or steady-burning lights by adjusting estimates based on published studies. The resulting estimate of mortality at towers is 6.8 million birds per year in the United States and Canada. Bootstrapped subsampling indicated that the regression was robust to the choice of studies included and a comparison of multiple regression models showed that incorporating sampling, scavenging, and search efficiency adjustments improved model fit. Estimating total avian mortality is only a first step in developing an assessment of the biological significance of mortality at communication towers for individual species or groups of species. Nevertheless, our estimate can be used to evaluate this source of mortality, develop subsequent per-species mortality estimates, and motivate policy action. PMID:22558082
An estimate of avian mortality at communication towers in the United States and Canada.
Longcore, Travis; Rich, Catherine; Mineau, Pierre; MacDonald, Beau; Bert, Daniel G; Sullivan, Lauren M; Mutrie, Erin; Gauthreaux, Sidney A; Avery, Michael L; Crawford, Robert L; Manville, Albert M; Travis, Emilie R; Drake, David
2012-01-01
Avian mortality at communication towers in the continental United States and Canada is an issue of pressing conservation concern. Previous estimates of this mortality have been based on limited data and have not included Canada. We compiled a database of communication towers in the continental United States and Canada and estimated avian mortality by tower with a regression relating avian mortality to tower height. This equation was derived from 38 tower studies for which mortality data were available and corrected for sampling effort, search efficiency, and scavenging where appropriate. Although most studies document mortality at guyed towers with steady-burning lights, we accounted for lower mortality at towers without guy wires or steady-burning lights by adjusting estimates based on published studies. The resulting estimate of mortality at towers is 6.8 million birds per year in the United States and Canada. Bootstrapped subsampling indicated that the regression was robust to the choice of studies included and a comparison of multiple regression models showed that incorporating sampling, scavenging, and search efficiency adjustments improved model fit. Estimating total avian mortality is only a first step in developing an assessment of the biological significance of mortality at communication towers for individual species or groups of species. Nevertheless, our estimate can be used to evaluate this source of mortality, develop subsequent per-species mortality estimates, and motivate policy action.
Immunogenetics and resistance to avian malaria in Hawaiian honeycreepers (Drepanidinae)
Jarvi, Susan I.; Atkinson, Carter T.; Fleischer, Robert C.
2001-01-01
Although a number of factors have contributed to the decline and extinction of Hawai‘i’s endemic terrestrial avifauna, introduced avian malaria (Plasmodium relicturn) is probably the single most important factor preventing recovery of these birds in low-elevation habitats. Continued decline in numbers, fragmentation of populations, and extinction of species that are still relatively common will likely continue without new, aggressive approaches to managing avian disease. Methods of intervention in the disease cycle such as chemotherapy and vaccine development are not feasible because of efficient immune-evasion strategies evolved by the parasite, technical difficulties associated with treating wild avian populations, and increased risk of selection for more virulent strains of the parasite. We are investigating the natural evolution of disease resistance in some low-elevation native bird populations, particularly Hawai‘i ‘Amakihi (Hemignathus virens), to perfect genetic methods for identifying individuals with a greater immunological capacity to survive malarial infection. We are focusing on genetic analyses of the major histocompatibility complex, due to its critical role in both humoral and cell-mediated immune responses. In the parasite, we are evaluating conserved ribosomal genes as well as variable genes encoding cell-surface molecules as a first step in developing a better understanding of the complex interactions between malarial parasites and the avian immune system. A goal is to provide population managers with new criteria for maintaining long-term population stability for threatened species through the development of methods for evaluating and maintaining genetic diversity in small populations at loci important in immunological responsiveness to pathogens.
Jennelle, Christopher S; Carstensen, Michelle; Hildebrand, Erik C; Wolf, Paul C; Grear, Daniel A; Ip, Hon S; Cornicelli, Louis
2017-07-01
An outbreak of a novel reassortant of highly pathogenic avian influenza A (H5N2) virus (HPAIV) decimated domestic turkeys ( Meleagris gallopavo ) from March through mid-June, 2015 in the state of Minnesota, US. In response, as part of broader surveillance efforts in wild birds, we designed a pilot effort to sample and test hunter-harvested Wild Turkeys ( Meleagris gallopavo ) for HPAIV in Minnesota counties with known infected poultry facilities. We also collected opportunistic samples from dead Wild Turkeys or live Wild Turkeys showing neurologic signs (morbidity and mortality samples) reported by the public or state agency personnel. Cloacal and tracheal samples were collected from each bird and screened for avian influenza virus (AIV) RNA by real-time reverse transcription PCR. From 15 April to 28 May 2015, we sampled 84 hunter-harvested male Wild Turkeys in 11 Minnesota counties. From 7 April 2015 through 11 April 2016, we sampled an additional 23 Wild Turkeys in 17 Minnesota counties. We did not detect type A influenza or HPAIV from any samples, and concluded, at the 95% confidence level, that apparent shedding prevalence in male Wild Turkeys in central Minnesota was between 0% and 2.9% over the sampling period. The susceptibility of wild turkeys to HPAIV is unclear, but regular harvest seasons make this wild gallinaceous bird readily available for future AIV testing.
An in depth view of avian sleep.
Beckers, Gabriël J L; Rattenborg, Niels C
2015-03-01
Brain rhythms occurring during sleep are implicated in processing information acquired during wakefulness, but this phenomenon has almost exclusively been studied in mammals. In this review we discuss the potential value of utilizing birds to elucidate the functions and underlying mechanisms of such brain rhythms. Birds are of particular interest from a comparative perspective because even though neurons in the avian brain homologous to mammalian neocortical neurons are arranged in a nuclear, rather than a laminar manner, the avian brain generates mammalian-like sleep-states and associated brain rhythms. Nonetheless, until recently, this nuclear organization also posed technical challenges, as the standard surface EEG recording methods used to study the neocortex provide only a superficial view of the sleeping avian brain. The recent development of high-density multielectrode recording methods now provides access to sleep-related brain activity occurring deep in the avian brain. Finally, we discuss how intracerebral electrical imaging based on this technique can be used to elucidate the systems-level processing of hippocampal-dependent and imprinting memories in birds. Copyright © 2014 Elsevier Ltd. All rights reserved.
Valkiūnas, Gediminas; Mobley, Kristin; Iezhova, Tatjana A
2016-02-01
Blood parasites of the genus Hepatozoon (Apicomplexa, Hepatozoidae) infect all groups of terrestrial vertebrates, and particularly high prevalence and species diversity have been reported in reptiles and mammals. A few morphologically similar species, in which gamonts inhabit mononuclear leukocytes and red blood cells, have been described in birds. Here, we report a new Hepatozoon species, which was found in wild-caught secretary birds Sagittarius serpentarius, from Tanzania. Hepatozoon ellisgreineri n. sp. can be readily distinguished from all described species of avian Hepatozoon because its gamonts develop only in granulocytes, predominantly in heterophils, a unique characteristic among bird parasites of this genus. Additionally, this is the first reported avian apicomplexan blood parasite, which inhabits and matures in granulocytes. We describe H. ellisgreineri based on morphological characteristics of blood stages and their host cells. This finding broadens knowledge about host cells of avian Hepatozoon spp. and other avian apicomplexan blood parasites, contributing to the better understanding of the diversity of haematozoa. This is the first report of hepatozoonosis in endangered African birds of the Sagittariidae.
Graham, Jay P; Leibler, Jessica H; Price, Lance B; Otte, Joachim M; Pfeiffer, Dirk U; Tiensin, T; Silbergeld, Ellen K
2008-01-01
Understanding interactions between animals and humans is critical in preventing outbreaks of zoonotic disease. This is particularly important for avian influenza. Food animal production has been transformed since the 1918 influenza pandemic. Poultry and swine production have changed from small-scale methods to industrial-scale operations. There is substantial evidence of pathogen movement between and among these industrial facilities, release to the external environment, and exposure to farm workers, which challenges the assumption that modern poultry production is more biosecure and biocontained as compared with backyard or small holder operations in preventing introduction and release of pathogens. An analysis of data from the Thai government investigation in 2004 indicates that the odds of H5N1 outbreaks and infections were significantly higher in large-scale commercial poultry operations as compared with backyard flocks. These data suggest that successful strategies to prevent or mitigate the emergence of pandemic avian influenza must consider risk factors specific to modern industrialized food animal production.
Kashyap, Arun K; Steel, John; Oner, Ahmet F; Dillon, Michael A; Swale, Ryann E; Wall, Katherine M; Perry, Kimberly J; Faynboym, Aleksandr; Ilhan, Mahmut; Horowitz, Michael; Horowitz, Lawrence; Palese, Peter; Bhatt, Ramesh R; Lerner, Richard A
2008-04-22
The widespread incidence of H5N1 influenza viruses in bird populations poses risks to human health. Although the virus has not yet adapted for facile transmission between humans, it can cause severe disease and often death. Here we report the generation of combinatorial antibody libraries from the bone marrow of five survivors of the recent H5N1 avian influenza outbreak in Turkey. To date, these libraries have yielded >300 unique antibodies against H5N1 viral antigens. Among these antibodies, we have identified several broadly reactive neutralizing antibodies that could be used for passive immunization against H5N1 virus or as guides for vaccine design. The large number of antibodies obtained from these survivors provide a detailed immunochemical analysis of individual human solutions to virus neutralization in the setting of an actual virulent influenza outbreak. Remarkably, three of these antibodies neutralized both H1 and H5 subtype influenza viruses.
This manuscript describes a novel statistical analysis technique developed by the authors for use in combining survey data carried out under different field protocols. We apply the technique to 83 years of survey data on avian songbird populations in northern lower Michigan to de...
Low pathogenicity avian influenza viruses infect chicken layers by different routes of inoculation
USDA-ARS?s Scientific Manuscript database
In order to develop better control measures against avian influenza (AI) it’s necessary to understand how the virus transmits in poultry. In a previous study in which the infectivity and transmissibility of the pandemic H1N1influenza virus was examined in different poultry species, we found that no ...
USDA-ARS?s Scientific Manuscript database
Protective immunity against highly pathogenic avian influenza (HPAI) largely depends on the development of an antibody response against a subtype-specific lineage of challenge virus. In the poultry industry, inactivated AI vaccines are typically produced with indigenous AI isolates to provide the b...
Bertran, Kateri; Busquets, Núria; Abad, Francesc Xavier; García de la Fuente, Jorge; Solanes, David; Cordón, Iván; Costa, Taiana; Dolz, Roser; Majó, Natàlia
2012-01-01
An experimental infection with highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug) hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006) or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009), both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5-7 days post-infection (dpi) after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR), which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds of prey and humans at risk and, therefore, this practice should be closely monitored.
Bertran, Kateri; Busquets, Núria; Abad, Francesc Xavier; García de la Fuente, Jorge; Solanes, David; Cordón, Iván; Costa, Taiana; Dolz, Roser; Majó, Natàlia
2012-01-01
An experimental infection with highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug) hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006) or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009), both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5–7 days post-infection (dpi) after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR), which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds of prey and humans at risk and, therefore, this practice should be closely monitored. PMID:22427819
Palinauskas, Vaidas; Žiegytė, Rita; Ilgūnas, Mikas; Iezhova, Tatjana A; Bernotienė, Rasa; Bolshakov, Casimir; Valkiūnas, Gediminas
2015-01-01
For over 100 years studies on avian haemosporidian parasite species have relied on similarities in their morphology to establish a species concept. Some exceptional cases have also included information about the life cycle and sporogonic development. More than 50 avian Plasmodium spp. have now been described. However, PCR-based studies show a much broader diversity of haemosporidian parasites, indicating the possible existence of a diverse group of cryptic species. In the present study, using both similarity and phylogenetic species definition concepts, we believe that we report the first characterised cryptic speciation case of an avian Plasmodium parasite. We used sequence information on the mitochondrial cytochrome b gene and constructed phylogenies of identified Plasmodium spp. to define their position in the phylogenetic tree. After analysis of blood stages, the morphology of the parasite was shown to be identical to Plasmodium circumflexum. However, the geographic distribution of the new parasite, the phylogenetic information, as well as patterns of development of infection, indicate that this parasite differs from P. circumflexum. Plasmodium homocircumflexum n. sp. was described based on information about genetic differences from described lineages, phylogenetic position and biological characters. This parasite develops parasitemia in experimentally infected birds - the domestic canary Serinus canaria domestica, siskin Carduelis spinus and crossbill Loxia curvirostra. Anaemia caused by high parasitemia, as well as cerebral paralysis caused by exoerythrocytic stages in the brain, are the main reasons for mortality. Exoerythrocytic stages also form in other organs (heart, kidneys, liver, lungs, spleen, intestines and pectoral muscles). DNA amplification was unsuccessful from faecal samples of heavily infected birds. The sporogonic development initiates, but is abortive, at the oocyst stage in two common European mosquito species, Culex pipiens pipiens (forms pipiens and molestus) and Aedes vexans. Vectors of this Plasmodium sp. remain unknown. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Selecting surrogate endpoints for estimating pesticide effects on avian reproductive success.
Bennett, Richard S; Etterson, Matthew A
2013-10-01
A Markov chain nest productivity model (MCnest) has been developed for projecting the effects of a specific pesticide-use scenario on the annual reproductive success of avian species of concern. A critical element in MCnest is the use of surrogate endpoints, defined as measured endpoints from avian toxicity tests that represent specific types of effects possible in field populations at specific phases of a nesting attempt. In this article, we discuss the attributes of surrogate endpoints and provide guidance for selecting surrogates from existing avian laboratory tests as well as other possible sources. We also discuss some of the assumptions and uncertainties related to using surrogate endpoints to represent field effects. The process of explicitly considering how toxicity test results can be used to assess effects in the field helps identify uncertainties and data gaps that could be targeted in higher-tier risk assessments. © 2013 SETAC.
Surveillance of wild birds for avian influenza virus.
Hoye, Bethany J; Munster, Vincent J; Nishiura, Hiroshi; Klaassen, Marcel; Fouchier, Ron A M
2010-12-01
Recent demand for increased understanding of avian influenza virus in its natural hosts, together with the development of high-throughput diagnostics, has heralded a new era in wildlife disease surveillance. However, survey design, sampling, and interpretation in the context of host populations still present major challenges. We critically reviewed current surveillance to distill a series of considerations pertinent to avian influenza virus surveillance in wild birds, including consideration of what, when, where, and how many to sample in the context of survey objectives. Recognizing that wildlife disease surveillance is logistically and financially constrained, we discuss pragmatic alternatives for achieving probability-based sampling schemes that capture this host-pathogen system. We recommend hypothesis-driven surveillance through standardized, local surveys that are, in turn, strategically compiled over broad geographic areas. Rethinking the use of existing surveillance infrastructure can thereby greatly enhance our global understanding of avian influenza and other zoonotic diseases.
Ilgūnas, Mikas; Bukauskaitė, Dovilė; Palinauskas, Vaidas; Iezhova, Tatjana A; Dinhopl, Nora; Nedorost, Nora; Weissenbacher-Lang, Christiane; Weissenböck, Herbert; Valkiūnas, Gediminas
2016-05-04
Species of avian malaria parasites (Plasmodium) are widespread, but their virulence has been insufficiently investigated, particularly in wild birds. During avian malaria, several cycles of tissue merogony occur, and many Plasmodium spp. produce secondary exoerythrocytic meronts (phanerozoites), which are induced by merozoites developing in erythrocytic meronts. Phanerozoites markedly damage organs, but remain insufficiently investigated in the majority of described Plasmodium spp. Avian malaria parasite Plasmodium (Giovannolaia) homocircumflexum (lineage pCOLL4) is virulent and produces phanerozoites in domestic canaries Serinus canaria, but its pathogenicity in wild birds remains unknown. The aim of this study was to investigate the pathology caused by this infection in species of common European birds. One individual of Eurasian siskin Carduelis spinus, common crossbill Loxia curvirostra and common starling Sturnus vulgaris were exposed to P. homocircumflexum infection by intramuscular sub-inoculation of infected blood. The birds were maintained in captivity and parasitaemia was monitored until their death due to malaria. Brain, heart, lungs, liver, spleen, kidney, and a piece of breast muscle were examined using histology and chromogenic in situ hybridization (ISH) methods. All exposed birds developed malaria infection, survived the peak of parasitaemia, but suddenly died between 30 and 38 days post exposure when parasitaemia markedly decreased. Numerous phanerozoites were visible in histological sections of all organs and were particularly easily visualized after ISH processing. Blockage of brain capillaries with phanerozoites may have led to cerebral ischaemia, causing cerebral paralysis and is most likely the main reason of sudden death of all infected individuals. Inflammatory response was not visible around the brain, heart and muscle phanerozoites, and it was mild in parenchymal organs. The endothelial damage likely causes dysfunction and failure of parenchymal organs. Plasmodium homocircumflexum caused death of experimental passerine birds due to marked damage of organs by phanerozoites. Patterns of phanerozoites development and pathology were similar in all exposed birds. Mortality was reported when parasitaemia decreased or even turned into chronic stage, indicating that the light parasitaemia is not always indication of improved health during avian malaria. Application of traditional histological and ISH methods in parallel simplifies investigation of exoerythrocytic development and is recommended in avian malaria research.
Njabo, Kevin Y; Cornel, Anthony J.; Bonneaud, Camille; Toffelmier, Erin; Sehgal, R.N.M.; Valkiūnas, Gediminas; Russell, Andrew F.; Smith, Thomas B.
2010-01-01
Malaria parasites use vertebrate hosts for asexual multiplication and Culicidae mosquitoes for sexual and asexual development, yet the literature on avian malaria remains biased towards examining the asexual stages of the life cycle in birds. To fully understand parasite evolution and mechanism of malaria transmission, knowledge of all three components of the vector-host-parasite system is essential. Little is known about avian parasite-vector associations in African rainforests where numerous species of birds are infected with avian haemosporidians of the genera Plasmodium and Haemoproteus. Here we applied high resolution melt qPCR-based techniques and nested PCR to examine the occurrence and diversity of mitochondrial cytochrome b gene sequences of haemosporidian parasites in wild-caught mosquitoes sampled across 12 sites in Cameroon. In all, 3134 mosquitoes representing 27 species were screened. Mosquitoes belonging to four genera (Aedes, Coquillettidia, Culex, and Mansonia) were infected with twenty-two parasite lineages (18 Plasmodium spp. and 4 Haemoproteus spp.). Presence of Plasmodium sporozoites in salivary glands of Coquillettidia aurites further established these mosquitoes as likely vectors. Occurrence of parasite lineages differed significantly among genera, as well as their probability of being infected with malaria across species and sites. Approximately one-third of these lineages were previously detected in other avian host species from the region, indicating that vertebrate host sharing is a common feature and that avian Plasmodium spp. vector breadth does not always accompany vertebrate-host breadth. This study suggests extensive invertebrate host shifts in mosquito-parasite interactions and that avian Plasmodium species are most likely not tightly coevolved with vector species. PMID:21134011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, Vanessa R; Kilgo, John C
Abstract - Restoring longleaf pine (Pinus palustris Mill.) savanna is a goal of many southern land managers, and longleaf plantations may provide a mechanism for savanna restoration. However, the effects of silvicultural treatments used in the management of longleaf pine plantations on wildlife communities are relatively unknown. Beginning in 1994, we examined effects of longleaf pine restoration with plantation silviculture on avian and small mammal communities using four treatments in four 8- to 11- year-old plantations within the Savannah River Site in South Carolina. Treatments included prescribed burning every 3 to 5 years, plus: (1) no additional treatment (burn-only control);more » (2) precommercial thinning; (3) non-pine woody control with herbicides; and (4) combined thinning and woody control. We surveyed birds (1996-2003) using 50-m point counts and small mammals with removal trapping. Thinning and woody control alone had short-lived effects on avian communities, and the combination treatment increased avian parameters over the burn-only control in all years. Small mammal abundance showed similar trends as avian abundance for all three treatments when compared with the burn-only control, but only for 2 years post-treatment. Both avian and small mammal communities were temporarily enhanced by controlling woody vegetation with chemicals in addition to prescribed fire and thinning. Therefore, precommercial thinning in longleaf plantations, particularly when combined with woody control and prescribed fire, may benefit early-successional avian and small mammal communities by developing stand conditions more typical of natural longleaf stands maintained by periodic fire.« less
USDA-ARS?s Scientific Manuscript database
The 2014-2015 incursion of H5Nx clade 2.3.4.4 high pathogenicity avian influenza (HPAI) virus caused the largest animal health emergency in U.S. history and renewed interest in developing vaccines against these newly emergent viruses. Our previous research demonstrated several H5 vaccines with varyi...
Avian influenza: the political economy of disease control in Cambodia.
Ear, Sophal
2011-01-01
Abstract In the wake of avian flu outbreaks in 2004, Cambodia received $45 million in commitments from international donors to help combat the spread of animal and human influenza, particularly avian influenza (H5N1). How countries leverage foreign aid to address the specific needs of donors and the endemic needs of the nation is a complex and nuanced issue throughout the developing world. Cambodia is a particularly compelling study in pandemic preparedness and the management of avian influenza because of its multilayered network of competing local, national, and global needs, and because the level of aid in Cambodia represents approximately $2.65 million per human case-a disproportionately high number when compared with neighbors Vietnam and Indonesia. This paper examines how the Cambodian government has made use of animal and human influenza funds to protect (or fail to protect) its citizens and the global community. It asks how effective donor and government responses were to combating avian influenza in Cambodia, and what improvements could be made at the local and international level to help prepare for and respond to future outbreaks. Based on original interviews, a field survey of policy stakeholders, and detailed examination of Cambodia's health infrastructure and policies, the findings illustrate that while pandemic preparedness has shown improvements since 2004, new outbreaks and human fatalities accelerated in 2011, and more work needs to be done to align the specific goals of funders with the endemic needs of developing nations.
Samuel, M.D.; Shadduck, D.J.; Goldberg, Diana R.; Johnson, W.P.
2005-01-01
We collected samples from apparently healthy geese in the Playa Lakes Region (USA) during the winters of 2000a??01 and 2001a??02 to determine whether carriers of Pasteurella multocida, the bacterium that causes avian cholera, were present in wild populations. With the use of methods developed in laboratory challenge trials (Samuel et al., 2003a) and a serotype-specific polymerase chain reaction method for identification of P. multocida serotype 1, we found that a small proportion of 322 wild birds (<5%) were carriers of pathogenic P. multocida. On the basis of serology, an additional group of these birds (<10%) were survivors of recent avian cholera infection. Our results confirm the hypothesis that wild waterfowl are carriers of avian cholera and add support for the hypothesis that wild birds are a reservoir for this disease. In concert with other research, this work indicates that enzootic infection with avian cholera occurs in lesser snow goose (Chen caerulescens caerulescens) populations throughout their annual cycle. Although fewer Rossa??s geese (Chen rossii) were sampled, we also found these birds were carriers of P. multocida. Even in the absence of disease outbreaks, serologic evidence indicates that chronic disease transmission and recent infection are apparently occurring year-round in these highly gregarious birds and that a small portion of these populations are potential carriers with active infection.
WANG, Lih-Chiann; HUANG, Dean; CHEN, Hui-Wen
2016-01-01
The H6N1 avian influenza virus has circulated in Taiwan for more than 40 years. The sporadic activity of low pathogenic H5N2 virus has been noted since 2003, and highly pathogenic H5N2 avian influenza virus has been detected since 2008. Ressortant viruses between H6N1 and H5N2 viruses have become established and enzootic in chickens throughout Taiwan. Outbreaks caused by Novel highly pathogenic H5 avian influenza viruses whose HA genes were closely related to that of the H5N8 virus isolated from ducks in Korea in 2014 were isolated from outbreaks in Taiwan since early 2015. The avian influenza virus infection status is becoming much more complicated in chickens in Taiwan. This necessitates a rapid and simple approach to detect and differentiate the viruses that prevail. H6N1, H5N2 and novel H5 viruses were simultaneously subtyped and pathotyped in this study using reverse transcription loop-mediated isothermal amplification and microarray, with detection limits of 10°, 101 and 10° viral copy numbers, respectively. The microarray signals were read by the naked eye with no expensive equipment needed. The method developed in this study could greatly improve avian influenza virus surveillance efficiency. PMID:27086860
Baz, Mariana; Paskel, Myeisha; Matsuoka, Yumiko; Zengel, James; Cheng, Xing; Jin, Hong
2013-01-01
Since it is difficult to predict which influenza virus subtype will cause an influenza pandemic, it is important to prepare influenza virus vaccines against different subtypes and evaluate the safety and immunogenicity of candidate vaccines in preclinical and clinical studies prior to a pandemic. In addition to infecting humans, H3 influenza viruses commonly infect pigs, horses, and avian species. We selected 11 swine, equine, and avian H3 influenza viruses and evaluated their kinetics of replication and ability to induce a broadly cross-reactive antibody response in mice and ferrets. The swine and equine viruses replicated well in the upper respiratory tract of mice. With the exception of one avian virus that replicated poorly in the lower respiratory tract, all of the viruses replicated in mouse lungs. In ferrets, all of the viruses replicated well in the upper respiratory tract, but the equine viruses replicated poorly in the lungs. Extrapulmonary spread was not observed in either mice or ferrets. No single virus elicited antibodies that cross-reacted with viruses from all three animal sources. Avian and equine H3 viruses elicited broadly cross-reactive antibodies against heterologous viruses isolated from the same or other species, but the swine viruses did not. We selected an equine and an avian H3 influenza virus for further development as vaccines. PMID:23576512
Mitchell, M.S.; Rutzmoser, S.H.; Wigley, T.B.; Loehle, C.; Gerwin, J.A.; Keyser, P.D.; Lancia, R.A.; Perry, R.W.; Reynolds, C.J.; Thill, R.E.; Weih, R.; White, D.; Wood, P.B.
2006-01-01
Little is known about factors that structure biodiversity on landscape scales, yet current land management protocols, such as forest certification programs, place an increasing emphasis on managing for sustainable biodiversity at landscape scales. We used a replicated landscape study to evaluate relationships between forest structure and avian diversity at both stand and landscape-levels. We used data on bird communities collected under comparable sampling protocols on four managed forests located across the Southeastern US to develop logistic regression models describing relationships between habitat factors and the distribution of overall richness and richness of selected guilds. Landscape models generated for eight of nine guilds showed a strong relationship between richness and both availability and configuration of landscape features. Diversity of topographic features and heterogeneity of forest structure were primary determinants of avian species richness. Forest heterogeneity, in both age and forest type, were strongly and positively associated with overall avian richness and richness for most guilds. Road density was associated positively but weakly with avian richness. Landscape variables dominated all models generated, but no consistent patterns in metrics or scale were evident. Model fit was strong for neotropical migrants and relatively weak for short-distance migrants and resident species. Our models provide a tool that will allow managers to evaluate and demonstrate quantitatively how management practices affect avian diversity on landscapes.
Broberg, E; Pereyaslov, D; Struelens, M; Palm, D; Meijer, A; Ellis, J; Zambon, M; McCauley, J; Daniels, R
2015-01-01
Following human infections with novel avian influenza A(H7N9) viruses in China, the European Centre for Disease Prevention and Control, the World Health Organization (WHO) Regional Office for Europe and the European Reference Laboratory Network for Human Influenza (ERLI-Net) rapidly posted relevant information, including real-time RT-PCR protocols. An influenza RNA sequence-based computational assessment of detection capabilities for this virus was conducted in 32 national influenza reference laboratories in 29 countries, mostly WHO National Influenza Centres participating in the WHO Global Influenza Surveillance and Response System (GISRS). Twenty-seven countries considered their generic influenza A virus detection assay to be appropriate for the novel A(H7N9) viruses. Twenty-two countries reported having containment facilities suitable for its isolation and propagation. Laboratories in 27 countries had applied specific H7 real-time RT-PCR assays and 20 countries had N9 assays in place. Positive control virus RNA was provided by the WHO Collaborating Centre in London to 34 laboratories in 22 countries to allow evaluation of their assays. Performance of the generic influenza A virus detection and H7 and N9 subtyping assays was good in 24 laboratories in 19 countries. The survey showed that ERLI-Net laboratories had rapidly developed and verified good capability to detect the novel A(H7N9) influenza viruses. PMID:24507469
Rapid quantitation of neuraminidase inhibitor drug resistance in influenza virus quasispecies.
Lackenby, Angie; Democratis, Jane; Siqueira, Marilda M; Zambon, Maria C
2008-01-01
Emerging resistance of influenza viruses to neuraminidase inhibitors is a concern, both in surveillance of global circulating strains and in treatment of individual patients. Current methodologies to detect resistance rely on the use of cultured virus, thus taking time to complete or lacking the sensitivity to detect mutations in viral quasispecies. Methodology for rapid detection of clinically meaningful resistance is needed to assist individual patient management and to track the transmission of resistant viruses in the community. We have developed a pyrosequencing methodology to detect and quantitate influenza neuraminidase inhibitor resistance mutations in cultured virus and directly in clinical material. Our assays target polymorphisms associated with drug resistance in the neuraminidase genes of human influenza A H1N1 as well as human and avian H5N1 viruses. Quantitation can be achieved using viral RNA extracted directly from respiratory or tissue samples, thus eliminating the need for virus culture and allowing the assay of highly pathogenic viruses such as H5N1 without high containment laboratory facilities. Antiviral-resistant quasispecies are detected and quantitated accurately when present in the total virus population at levels as low as 10%. Pyrosequencing is a real-time assay; therefore, results can be obtained within a clinically relevant timeframe and provide information capable of informing individual patient or outbreak management. Pyrosequencing is ideally suited for early identification of emerging antiviral resistance in human and avian influenza infection and is a useful tool for laboratory surveillance and pandemic preparedness.
Cryptic Patterning of Avian Skin Confers a Developmental Facility for Loss of Neck Feathering
Mou, Chunyan; Pitel, Frederique; Gourichon, David; Vignoles, Florence; Tzika, Athanasia; Tato, Patricia; Yu, Le; Burt, Dave W.; Bed'hom, Bertrand; Tixier-Boichard, Michele; Painter, Kevin J.; Headon, Denis J.
2011-01-01
Vertebrate skin is characterized by its patterned array of appendages, whether feathers, hairs, or scales. In avian skin the distribution of feathers occurs on two distinct spatial levels. Grouping of feathers within discrete tracts, with bare skin lying between the tracts, is termed the macropattern, while the smaller scale periodic spacing between individual feathers is referred to as the micropattern. The degree of integration between the patterning mechanisms that operate on these two scales during development and the mechanisms underlying the remarkable evolvability of skin macropatterns are unknown. A striking example of macropattern variation is the convergent loss of neck feathering in multiple species, a trait associated with heat tolerance in both wild and domestic birds. In chicken, a mutation called Naked neck is characterized by a reduction of body feathering and completely bare neck. Here we perform genetic fine mapping of the causative region and identify a large insertion associated with the Naked neck trait. A strong candidate gene in the critical interval, BMP12/GDF7, displays markedly elevated expression in Naked neck embryonic skin due to a cis-regulatory effect of the causative mutation. BMP family members inhibit embryonic feather formation by acting in a reaction-diffusion mechanism, and we find that selective production of retinoic acid by neck skin potentiates BMP signaling, making neck skin more sensitive than body skin to suppression of feather development. This selective production of retinoic acid by neck skin constitutes a cryptic pattern as its effects on feathering are not revealed until gross BMP levels are altered. This developmental modularity of neck and body skin allows simple quantitative changes in BMP levels to produce a sparsely feathered or bare neck while maintaining robust feather patterning on the body. PMID:21423653
[Human and avian influenza due to the H5N1 virus].
Durand, Maurice-Paul
2007-01-01
Recent alerts about "avian influenza", more often referred to by veterinarians as "fowl plague" and by the public as "bird flu", and about its transmission to humans, have received extensive media coverage. Physicians need further information about this development. We begin by looking at several fundamental aspects of influenza virus structure and its various types and subtypes and then review the various avian and human influenza epidemics throughout history. A description follows of the current avian influenza, its history, its presence in migratory and domestic birds, and its clinical aspects. Transmission to humans is covered next: the facts, conditions, human cases, and consumption of poultry meat. Then we consider treatment: none in animal diseases, and very limited for human disease. Vaccination has previously been dealt with and will be barely touched upon here. Finally we will present the guidelines and measures taken both nationally and internationally. Our conclusion is intended to be relatively optimistic, stressing the species barrier and the multiplicity of pathogenic avian viruses recently encountered in humans. We insist on the need to contain the epizootic, if necessary by animal vaccination, to diminish the likelihood of human contamination.
Developmental imaging: the avian embryo hatches to the challenge.
Kulesa, Paul M; McKinney, Mary C; McLennan, Rebecca
2013-06-01
The avian embryo provides a multifaceted model to study developmental mechanisms because of its accessibility to microsurgery, fluorescence cell labeling, in vivo imaging, and molecular manipulation. Early two-dimensional planar growth of the avian embryo mimics human development and provides unique access to complex cell migration patterns using light microscopy. Later developmental events continue to permit access to both light and other imaging modalities, making the avian embryo an excellent model for developmental imaging. For example, significant insights into cell and tissue behaviors within the primitive streak, craniofacial region, and cardiovascular and peripheral nervous systems have come from avian embryo studies. In this review, we provide an update to recent advances in embryo and tissue slice culture and imaging, fluorescence cell labeling, and gene profiling. We focus on how technical advances in the chick and quail provide a clearer understanding of how embryonic cell dynamics are beautifully choreographed in space and time to sculpt cells into functioning structures. We summarize how these technical advances help us to better understand basic developmental mechanisms that may lead to clinical research into human birth defects and tissue repair. Copyright © 2013 Wiley Periodicals, Inc.
Pigeault, Romain; Vézilier, Julien; Cornet, Stéphane; Zélé, Flore; Nicot, Antoine; Perret, Philippe; Gandon, Sylvain; Rivero, Ana
2015-08-19
Avian malaria has historically played an important role as a model in the study of human malaria, being a stimulus for the development of medical parasitology. Avian malaria has recently come back to the research scene as a unique animal model to understand the ecology and evolution of the disease, both in the field and in the laboratory. Avian malaria is highly prevalent in birds and mosquitoes around the world and is amenable to laboratory experimentation at each stage of the parasite's life cycle. Here, we take stock of 5 years of experimental laboratory research carried out using Plasmodium relictum SGS1, the most prevalent avian malaria lineage in Europe, and its natural vector, the mosquito Culex pipiens. For this purpose, we compile and analyse data obtained in our laboratory in 14 different experiments. We provide statistical relationships between different infection-related parameters, including parasitaemia, gametocytaemia, host morbidity (anaemia) and transmission rates to mosquitoes. This analysis provides a wide-ranging picture of the within-host and between-host parameters that may bear on malaria transmission and epidemiology. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Krynitsky, A.J.; Stafford, C.J.; Wiemeyer, Stanley N.
1988-01-01
Dicofol in avian eggs was completely oxidized to dichlorobenzophenone (DCBP) when a hexane Soxhlet extraction procedure was used. This degradation did not occur with other avian tissues (muscle and liver). For this reason, a combined extraction-cleanup column chromatographic procedure, without added heat, was developed for the determination of dicofol in avian eggs. Homogenized subsamples of eggs were mixed with sodium sulfate, and the mixture was added as the top layer on a column prepacked with Florisil. The dicofol and other compounds of interest were then eluted with ethyl ether-hexane. The extracts, relatively free from lipids, were quantitated on a gas chromatograph equipped with a 63Ni electron-capture detector and a methyl silicone capillary column. Recoveries from chicken eggs, fortified with dicofol and other DDT-related compounds, averaged 96%. Analysis of eggs of eastern screech-owls, fed a meat diet containing 10 ppm technical Kelthane, showed that both dicofol and DCBP were present. Results were confirmed by gas chromatography/mass spectrometry. This method is rapid and reliable, involves a minimum of sample handling, and is well suited for high volume determination of dicofol in eggs and other avian tissues.
Primordial germ cell-mediated transgenesis and genome editing in birds.
Han, Jae Yong; Park, Young Hyun
2018-01-01
Transgenesis and genome editing in birds are based on a unique germline transmission system using primordial germ cells (PGCs), which is quite different from the mammalian transgenic and genome editing system. PGCs are progenitor cells of gametes that can deliver genetic information to the next generation. Since avian PGCs were first discovered in nineteenth century, there have been numerous efforts to reveal their origin, specification, and unique migration pattern, and to improve germline transmission efficiency. Recent advances in the isolation and in vitro culture of avian PGCs with genetic manipulation and genome editing tools enable the development of valuable avian models that were unavailable before. However, many challenges remain in the production of transgenic and genome-edited birds, including the precise control of germline transmission, introduction of exogenous genes, and genome editing in PGCs. Therefore, establishing reliable germline-competent PGCs and applying precise genome editing systems are critical current issues in the production of avian models. Here, we introduce a historical overview of avian PGCs and their application, including improved techniques and methodologies in the production of transgenic and genome-edited birds, and we discuss the future potential applications of transgenic and genome-edited birds to provide opportunities and benefits for humans.
2014-12-01
The aim of this study was to design and implement a seroprevalence map based on business intelligence for low pathogenicity notifiable avian influenza (LPNAI) in broilerchickens in Comunidad Valenciana (Spain). The software mapping tool developed for this study consisted of three main phases: data collection, data analysis and data representation. To obtain the serological data, the authors analysed 8,520 serum samples from broiler farms over three years. The data were represented on a map of Comunidad Valenciana, including geographical information of flock locations to facilitate disease monitoring. No clinical signs of LPNAI were reported in the studied flocks. The data from this study showed no evidence of contact with LPNAI in broiler flocks and the novel software mapping tool proved a valuable method for easily monitoring on the serological response to avian influenza information, including geographical information.
Chen, Chun-Chun; Winkler, Candace M; Pfenning, Andreas R; Jarvis, Erich D
2013-11-01
In our companion study (Jarvis et al. [2013] J Comp Neurol. doi: 10.1002/cne.23404) we used quantitative brain molecular profiling to discover that distinct subdivisions in the avian pallium above and below the ventricle and the associated mesopallium lamina have similar molecular profiles, leading to a hypothesis that they may form as continuous subdivisions around the lateral ventricle. To explore this hypothesis, here we profiled the expression of 16 genes at eight developmental stages. The genes included those that define brain subdivisions in the adult and some that are also involved in brain development. We found that phyletic hierarchical cluster and linear regression network analyses of gene expression profiles implicated single and mixed ancestry of these brain regions at early embryonic stages. Most gene expression-defined pallial subdivisions began as one ventral or dorsal domain that later formed specific folds around the lateral ventricle. Subsequently a clear ventricle boundary formed, partitioning them into dorsal and ventral pallial subdivisions surrounding the mesopallium lamina. These subdivisions each included two parts of the mesopallium, the nidopallium and hyperpallium, and the arcopallium and hippocampus, respectively. Each subdivision expression profile had a different temporal order of appearance, similar in timing to the order of analogous cell types of the mammalian cortex. Furthermore, like the mammalian pallium, expression in the ventral pallial subdivisions became distinct during prehatch development, whereas the dorsal portions did so during posthatch development. These findings support the continuum hypothesis of avian brain subdivision development around the ventricle and influence hypotheses on homologies of the avian pallium with other vertebrates. Copyright © 2013 Wiley Periodicals, Inc.
2013-01-01
aquatic plants and subsequent ecological consequences. The authors of this technical note have linked avian vacuolar myelinopathy (AVM), a disease...additional cyanobacteria sequences to determine designations for probe development, to advance understanding of the species’ phylogeny , and to lay...groundwork for its formal description. Phylogeny data confirm that the species is in section V, order Stigonematales. Phylogeny also infers that the
Veterinary Research Manpower Development for Defense
2007-09-01
Participatory Disease Surveillance Method for Detection of Highly Pathogenic Avian Influenza in Java, Indonesia Rebecca Steers Dr. Lindenmeyer Detection of...Transmission of Nipah Virus in Bangladesh Summary: My project aims to investigate the risk of zoonotic transmission of Nipah virus as a food-borne...Participatory Disease Surveillance Method for Detection of Highly Pathogenic Avian Influenza in Java, Indonesia Summary: Two epidemics of H5N1 Highly
Zhang, Rusheng; Chen, Tianmu; Ou, Xinhua; Liu, Ruchun; Yang, Yang; Ye, Wen; Chen, Jingfang; Yao, Dong; Sun, Biancheng; Zhang, Xixing; Zhou, Jianxiang; Sun, Yan; Chen, Faming; Wang, Shi-Ping
2016-06-01
A human infection with novel avian influenza A H5N6 virus emerged in Changsha city, China in February, 2014. This is the first detected human case among all human cases identified from 2014 to early 2016. We obtained and summarized clinical, epidemiological, and virological data from this patient. Complete genome of the virus was determined and compared to other avian influenza viruses via the construction of phylogenetic trees using the neighbor-joining approach. A girl aged five and half years developed fever and mild respiratory symptoms on Feb. 16, 2014 and visited hospital on Feb. 17. Throat swab specimens were obtained from the patient and a novel reassortant avian influenza A H5N6 virus was detected. All eight viral gene segments were of avian origin. The hemagglutinin (HA) and neuraminidase (NA) gene segments were closely related to A/duck/Sichuan/NCXN11/2014(H5N1) and A/chicken/Jiangxi/12782/2014(H10N6) viruses, respectively. The six internal genes were homologous to avian influenza A (H5N2) viruses isolated in duck from Jiangxi in China. This H5N6 virus has not gained genetic mutations necessary for human infection and was suggested to be sensitive to neuraminidase inhibitors, but resistant to adamantanes. Epidemiological investigation of the exposure history of the patient found that a live poultry market could be the source place of infection and the incubation period was 2-5days. This novel reassortant Avian influenza A(H5N6) virus could be low pathogenic in humans. The prevalence and genetic evolution of this virus should be closely monitored. Copyright © 2016 Elsevier B.V. All rights reserved.
Manning, Gillian E; Farmahin, Reza; Crump, Doug; Jones, Stephanie P; Klein, Jeff; Konstantinov, Alex; Potter, Dave; Kennedy, Sean W
2012-09-15
Birds differ in sensitivity to the embryotoxic effects of polychlorinated biphenyls (PCBs), which complicates environmental risk assessments for these chemicals. Recent research has shown that the identities of amino acid residues 324 and 380 in the avian aryl hydrocarbon receptor 1 (AHR1) ligand binding domain (LBD) are primarily responsible for differences in avian species sensitivity to selected dibenzo-p-dioxins and furans. A luciferase reporter gene (LRG) assay was developed in our laboratory to measure AHR1-mediated induction of a cytochrome P450 1A5 reporter gene in COS-7 cells transfected with different avian AHR1 constructs. In the present study, the LRG assay was used to measure the concentration-dependent effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and PCBs 126, 77, 105 and 118 on luciferase activity in COS-7 cells transfected with AHR1 constructs representative of 86 avian species in order to predict their sensitivity to PCB-induced embryolethality and the relative potency of PCBs in these species. The results of the LRG assay indicate that the identity of amino acid residues 324 and 380 in the AHR1 LBD are the major determinants of avian species sensitivity to PCBs. The relative potency of PCBs did not differ greatly among AHR1 constructs. Luciferase activity was significantly correlated with embryolethality data obtained from the literature (R(2)≥0.87, p<0.0001). Thus, the LRG assay in combination with the knowledge of a species' AHR1 LBD sequence can be used to predict PCB-induced embryolethality in potentially any avian species of interest without the use of lethal methods on a large number of individuals. Copyright © 2012 Elsevier Inc. All rights reserved.
Statistical analyses to support guidelines for marine avian sampling. Final report
Kinlan, Brian P.; Zipkin, Elise; O'Connell, Allan F.; Caldow, Chris
2012-01-01
Interest in development of offshore renewable energy facilities has led to a need for high-quality, statistically robust information on marine wildlife distributions. A practical approach is described to estimate the amount of sampling effort required to have sufficient statistical power to identify species-specific “hotspots” and “coldspots” of marine bird abundance and occurrence in an offshore environment divided into discrete spatial units (e.g., lease blocks), where “hotspots” and “coldspots” are defined relative to a reference (e.g., regional) mean abundance and/or occurrence probability for each species of interest. For example, a location with average abundance or occurrence that is three times larger the mean (3x effect size) could be defined as a “hotspot,” and a location that is three times smaller than the mean (1/3x effect size) as a “coldspot.” The choice of the effect size used to define hot and coldspots will generally depend on a combination of ecological and regulatory considerations. A method is also developed for testing the statistical significance of possible hotspots and coldspots. Both methods are illustrated with historical seabird survey data from the USGS Avian Compendium Database. Our approach consists of five main components: 1. A review of the primary scientific literature on statistical modeling of animal group size and avian count data to develop a candidate set of statistical distributions that have been used or may be useful to model seabird counts. 2. Statistical power curves for one-sample, one-tailed Monte Carlo significance tests of differences of observed small-sample means from a specified reference distribution. These curves show the power to detect "hotspots" or "coldspots" of occurrence and abundance at a range of effect sizes, given assumptions which we discuss. 3. A model selection procedure, based on maximum likelihood fits of models in the candidate set, to determine an appropriate statistical distribution to describe counts of a given species in a particular region and season. 4. Using a large database of historical at-sea seabird survey data, we applied this technique to identify appropriate statistical distributions for modeling a variety of species, allowing the distribution to vary by season. For each species and season, we used the selected distribution to calculate and map retrospective statistical power to detect hotspots and coldspots, and map pvalues from Monte Carlo significance tests of hotspots and coldspots, in discrete lease blocks designated by the U.S. Department of Interior, Bureau of Ocean Energy Management (BOEM). 5. Because our definition of hotspots and coldspots does not explicitly include variability over time, we examine the relationship between the temporal scale of sampling and the proportion of variance captured in time series of key environmental correlates of marine bird abundance, as well as available marine bird abundance time series, and use these analyses to develop recommendations for the temporal distribution of sampling to adequately represent both shortterm and long-term variability. We conclude by presenting a schematic “decision tree” showing how this power analysis approach would fit in a general framework for avian survey design, and discuss implications of model assumptions and results. We discuss avenues for future development of this work, and recommendations for practical implementation in the context of siting and wildlife assessment for offshore renewable energy development projects.
The threshold of a stochastic avian-human influenza epidemic model with psychological effect
NASA Astrophysics Data System (ADS)
Zhang, Fengrong; Zhang, Xinhong
2018-02-01
In this paper, a stochastic avian-human influenza epidemic model with psychological effect in human population and saturation effect within avian population is investigated. This model describes the transmission of avian influenza among avian population and human population in random environments. For stochastic avian-only system, persistence in the mean and extinction of the infected avian population are studied. For the avian-human influenza epidemic system, sufficient conditions for the existence of an ergodic stationary distribution are obtained. Furthermore, a threshold of this stochastic model which determines the outcome of the disease is obtained. Finally, numerical simulations are given to support the theoretical results.
Avian-specific real-time PCR assay for authenticity control in farm animal feeds and pet foods.
Pegels, Nicolette; González, Isabel; García, Teresa; Martín, Rosario
2014-01-01
A highly sensitive TaqMan real-time PCR assay targeting the mitochondrial 12S rRNA gene was developed for detection of an avian-specific DNA fragment (68bp) in farm animal and pet feeds. The specificity of the assay was verified against a wide representation of animal and plant species. Applicability assessment of the avian real-time PCR was conducted through representative analysis of two types of compound feeds: industrial farm animal feeds (n=60) subjected to extreme temperatures, and commercial dog and cat feeds (n=210). Results obtained demonstrated the suitability of the real-time PCR assay to detect the presence of low percentages of highly processed avian material in the feed samples analysed. Although quantification results were well reproducible under the experimental conditions tested, an accurate estimation of the target content in feeds is impossible in practice. Nevertheless, the method may be useful as an alternative tool for traceability purposes within the framework of feed control. Copyright © 2013 Elsevier Ltd. All rights reserved.
Avian flu school: a training approach to prepare for H5N1 highly pathogenic avian influenza.
Beltran-Alcrudo, Daniel; Bunn, David A; Sandrock, Christian E; Cardona, Carol J
2008-01-01
Since the reemergence of highly pathogenic avian influenza (H5N1 HPAI) in 2003, a panzootic that is historically unprecedented in the number of infected flocks, geographic spread, and economic consequences for agriculture has developed. The epidemic has affected a wide range of birds and mammals, including humans. The ineffective management of outbreaks, mainly due to a lack of knowledge among those involved in detection, prevention, and response, points to the need for training on H5N1 HPAI. The main challenges are the multidisciplinary approach required, the lack of experts, the need to train at all levels, and the diversity of outbreak scenarios. Avian Flu School addresses these challenges through a three-level train-the-trainer program intended to minimize the health and economic impacts of H5N1 HPAI by improving a community's ability to prevent and respond, while protecting themselves and others. The course teaches need-to-know facts using highly flexible, interactive, and relevant materials.
Martinot, A; Thomas, J; Thiermann, A; Dasgupta, N
2007-03-10
Avian influenza presents both challenges and opportunities to leaders around the world engaged in pandemic influenza preparedness planning. Most resource-poor countries will be unable to stockpile antivirals or have access to eventual human vaccines for pandemic flu. Preparedness plans, directed at controlling avian influenza at the source, enable countries simultaneously to promote national and global health, animal welfare and international development. Improving the veterinary infrastructure and capacity of resource-poor countries is one way to prevent potential pandemic flu deaths in resource-rich countries. In this article, Amanda Martinot, James Thomas, Alejandro Thiermann and Nabarun Dasgupta argue that national health leaders need to consider more comprehensive strategies that incorporate veterinary surveillance and improvements in veterinary infrastructure for the control of avian influenza epizootics as part of national pandemic preparedness planning. This, they argue, will require a shift in attitude, from thinking in terms of preparation for an inevitable pandemic to pre-emption of the potential pandemic through prevention measures in the animal population.
Conserved syntenic clusters of protein coding genes are missing in birds.
Lovell, Peter V; Wirthlin, Morgan; Wilhelm, Larry; Minx, Patrick; Lazar, Nathan H; Carbone, Lucia; Warren, Wesley C; Mello, Claudio V
2014-01-01
Birds are one of the most highly successful and diverse groups of vertebrates, having evolved a number of distinct characteristics, including feathers and wings, a sturdy lightweight skeleton and unique respiratory and urinary/excretion systems. However, the genetic basis of these traits is poorly understood. Using comparative genomics based on extensive searches of 60 avian genomes, we have found that birds lack approximately 274 protein coding genes that are present in the genomes of most vertebrate lineages and are for the most part organized in conserved syntenic clusters in non-avian sauropsids and in humans. These genes are located in regions associated with chromosomal rearrangements, and are largely present in crocodiles, suggesting that their loss occurred subsequent to the split of dinosaurs/birds from crocodilians. Many of these genes are associated with lethality in rodents, human genetic disorders, or biological functions targeting various tissues. Functional enrichment analysis combined with orthogroup analysis and paralog searches revealed enrichments that were shared by non-avian species, present only in birds, or shared between all species. Together these results provide a clearer definition of the genetic background of extant birds, extend the findings of previous studies on missing avian genes, and provide clues about molecular events that shaped avian evolution. They also have implications for fields that largely benefit from avian studies, including development, immune system, oncogenesis, and brain function and cognition. With regards to the missing genes, birds can be considered ‘natural knockouts’ that may become invaluable model organisms for several human diseases.
Nondomestic avian pediatric pathology.
St Leger, Judy
2012-05-01
This is a snapshot of avian neonatal pathology—not an exhaustive review. Through knowledge and recognition of the significant pathogenic challenges of avian neonates and the associated lesions, avian practitioners can improve their diagnostic and therapeutic success. An area of need for avian research is determining the specific pathogenesis of many conditions affecting avian neonates. By narrowing the specific etiologies, we can improve management and reduce neonatal concerns.
Zhou, Hong-sheng; Liu, Jing-hu; Wang, Xiu-quan; Guo, Jiang-hua; Song, Xiao-lin
2007-03-01
To describe the clinical manifestations and lung imaging characteristics of the human transmissible highly pathogenic H5N1 avian influenza. The clinical manifestations and lung imaging characteristics of human transmissible highly pathogenic H5N1 avian influenza in one patient were reviewed and analyzed. The patient had the clear history of occupational exposure. The fever and symptoms of influenza were prominent at onset and associated with the symptoms of the digestive tract. The laboratory findings comprised the significant decrease of the white blood cell count and the lymphocyte number and the impairment of the liver function and the myocardial enzymes. The disease progressed rapidly and multiple organs including lung, heart, liver and kidneys were involved. It was ineffective to administer anti-fungal, anti-virus and anti-inflammation medicines. It was in vain to use mechanical ventilation and pneumothorax intubation and closed drainage as well as the support therapy. In the X-ray film, the lesions progressed quickly and changed diversely with absorption and development at the same time. The nasal and throat swabs and the gargle specimen were detected with RT-PCR and real time PCR by Chinese Center for Disease Control and Prevention. The results showed that both the specific HA and NA genes of the avian influenza virus H5N1 subtype were positive and in the same time a strain of avian influenza virus A/jiangxi/1/2005H5N1) was separated and obtained from the nasal and throat swabs. The autopsy showed that diffuse injury of alveolus in lungs, DIC and multiple organ injury. The human transmissible highly pathogenic H5N1 avian influenza is a lethal disease. The disease progresses rapidly with the absorption and development at the same time in the lungs and unfortunately there are no effective therapeutic measures. The prevention of the contagious disease for the occupationally exposed population should be emphasized.
Houston, Derek D.; Azeem, Shahan; Lundy, Coady W.; Sato, Yuko; Guo, Baoqing; Blanchong, Julie A.; Gauger, Phillip C.; Marks, David R.
2017-01-01
Background Avian influenza virus (AIV) infections occur naturally in wild bird populations and can cross the wildlife-domestic animal interface, often with devastating impacts on commercial poultry. Migratory waterfowl and shorebirds are natural AIV reservoirs and can carry the virus along migratory pathways, often without exhibiting clinical signs. However, these species rarely inhabit poultry farms, so transmission into domestic birds likely occurs through other means. In many cases, human activities are thought to spread the virus into domestic populations. Consequently, biosecurity measures have been implemented to limit human-facilitated outbreaks. The 2015 avian influenza outbreak in the United States, which occurred among poultry operations with strict biosecurity controls, suggests that alternative routes of virus infiltration may exist, including bridge hosts: wild animals that transfer virus from areas of high waterfowl and shorebird densities. Methods Here, we examined small, wild birds (songbirds, woodpeckers, etc.) and mammals in Iowa, one of the regions hit hardest by the 2015 avian influenza epizootic, to determine whether these animals carry AIV. To assess whether influenza A virus was present in other species in Iowa during our sampling period, we also present results from surveillance of waterfowl by the Iowa Department of Natural Resources and Unites Stated Department of Agriculture. Results Capturing animals at wetlands and near poultry facilities, we swabbed 449 individuals, internally and externally, for the presence of influenza A virus and no samples tested positive by qPCR. Similarly, serology from 402 animals showed no antibodies against influenza A. Although several species were captured at both wetland and poultry sites, the overall community structure of wild species differed significantly between these types of sites. In contrast, 83 out of 527 sampled waterfowl tested positive for influenza A via qPCR. Discussion These results suggest that even though influenza A viruses were present on the Iowa landscape at the time of our sampling, small, wild birds and rodents were unlikely to be frequent bridge hosts. PMID:29255648
ERIC Educational Resources Information Center
Kline, Terence R.
2013-01-01
The intent of the project described was to apply the Nominal Group Technique (NGT) to achieve a consensus on Avian Influenza (AI) planning in Northeastern Ohio. Nominal Group Technique is a process first developed by Delbecq, Vande Ven, and Gustafsen (1975) to allow all participants to have an equal say in an open forum setting. A very diverse…
USDA-ARS?s Scientific Manuscript database
During December 2014-June 2015, the U.S. experienced a high pathogenicity avian influenza (HPAI) outbreak caused by clade 2.3.4.4 H5Nx Goose/Guangdong lineage viruses which was the worst HPAI event for the poultry industry. Three vaccines, developed based on updating existing registered vaccines or ...
Brian S. Cade; Barry R. Noon; Rick D. Scherer; John J. Keane
2017-01-01
Counts of avian fledglings, nestlings, or clutch size that are bounded below by zero and above by some small integer form a discrete random variable distribution that is not approximated well by conventional parametric count distributions such as the Poisson or negative binomial. We developed a logistic quantile regression model to provide estimates of the empirical...
Singh, Neetu; Pandey, Aseem; Mittal, Suresh K.
2010-01-01
The unprecedented global spread of highly pathogenic avian H5N1 influenza viruses within the past ten years and their extreme lethality to poultry and humans has underscored their potential to cause an influenza pandemic. Combating the threat of an impending H5N1 influenza pandemic will require a combination of pharmaceutical and nonpharmaceutical intervention strategies. The emergence of the H1N1 pandemic in 2009 emphasised the unpredictable nature of a pandemic influenza. Undoubtedly, vaccines offer the most viable means to combat a pandemic threat. Current egg-based influenza vaccine manufacturing strategies are unlikely to be able to cater to the huge, rapid global demand because of the anticipated scarcity of embryonated eggs in an avian influenza pandemic and other factors associated with the vaccine production process. Therefore, alternative, egg-independent vaccine manufacturing strategies should be evaluated to supplement the traditional egg-derived influenza vaccine manufacturing. Furthermore, evaluation of dose-sparing strategies that offer protection with a reduced antigen dose will be critical for pandemic influenza preparedness. Development of new antiviral therapeutics and other, nonpharmaceutical intervention strategies will further supplement pandemic preparedness. This review highlights the current status of egg-dependent and egg-independent strategies against an avian influenza pandemic. PMID:20426889
Schröer, Diana; Veits, Jutta; Grund, Christian; Dauber, Malte; Keil, Günther; Granzow, Harald; Mettenleiter, Thomas C; Römer-Oberdörfer, Angela
2009-06-01
A recombinant Newcastle disease virus (NDV) was engineered to express the hemagglutinin (HA) gene of avian influenza virus (AIV) subtype H7. The HA gene was inserted between the genes encoding NDV fusion and hemagglutinin-neuraminidase proteins. Within the H7 open reading frame, an NDV gene end-like sequence was eliminated by silent mutation. The expression of H7 protein was detected by western blot analysis and indirect immunofluorescence. The existence of H7 protein in the envelope of recombinant Newcastle disease virions was shown by immunoelectron microscopy. The protective efficacy of recombinant NDVH7m against virulent NDV, as well as against highly pathogenic avian influenza virus (HPAIV), was evaluated in specific-pathogen-free chickens. After a single immunization, all chickens developed NDV-specific, as well as AIV H7-specific, antibodies and were completely protected from clinical disease after infection with a lethal dose of virulent NDV or the homologous H7N1 HPAIV, while all control animals died within four days. Shedding of AIV challenge virus was strongly reduced compared to nonvaccinated control birds. Furthermore, the immunized birds developed antibodies against the AIV nucleoprotein after challenge infection. Thus, NDVH7m could be used as a marker vaccine against subtype H7 avian influenza.
Bao, Hongmei; Wang, Xiurong; Zhao, Yuhui; Sun, Xiaodong; Li, Yanbing; Xiong, Yongzhong; Chen, Hualan
2012-01-01
A rapid and sensitive reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the detection of the H7 avian influenza virus (H7 AIV) isotype was developed. The minimum detection limit of the RT-LAMP assay was 0.1-0.01 PFU per reaction for H7 AIV RNA, making this assay 100-fold more sensitive than the conventional RT-PCR method. This RT-LAMP assay also has the capacity to detect both high- and low-pathogenic H7 AIV strains. Using a pool of RNAs extracted from influenza viruses corresponding to all 15 HA subtypes (in addition to other avian pathogenic viruses), the RT-LAMP system was confirmed to amplify only H7 AIV RNA. Furthermore, specific pathogen free (SPF) chickens were infected artificially with H7 AIV, throat and cloacal swabs were collected, and viral shedding was examined using viral isolation, RT-PCR and RT-LAMP. Shedding was detected following viral isolation and RT-LAMP one day after infection, whereas viral detection using RT-PCR was effective only on day 3 post-infection. These results indicate that the RT-LAMP method could facilitate epidemiological surveillance and the rapid diagnosis of the avian influenza subtype H7. Copyright © 2011 Elsevier B.V. All rights reserved.
76 FR 24793 - Highly Pathogenic Avian Influenza
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-03
.... APHIS-2006-0074] RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal and Plant Health... any subtype of highly pathogenic avian influenza is considered to exist. The interim rule also imposed... avian influenza, or that have moved through regions where any subtype of highly pathogenic avian...
USDA-ARS?s Scientific Manuscript database
Avian influenza virus (AIV) is type A influenza, which is adapted to an avian host. Although avian influenza has been isolated from numerous avian species, the primary natural hosts for the virus are dabbling ducks, shorebirds, and gulls. The virus can be found world-wide in these species and in o...
Hong, Seong Cheol; Murale, Dhiraj P; Jang, Se-Young; Haque, Md Mamunul; Seo, Minah; Lee, Seok; Woo, Deok Ha; Kwon, Junghoon; Song, Chang-Seon; Kim, Yun Kyung; Lee, Jun-Seok
2018-06-22
Avian Influenza (AI) caused an annual epidemic outbreak that led to destroying tens of millions of poultry worldwide. Current gold standard AI diagnosis method is an embryonic egg-based hemagglutination assay followed by immunoblotting or PCR sequencing to confirm subtypes. It requires, however, specialized facilities to handle egg inoculation and incubation, and the subtyping methods relied on costly reagents. Here, we demonstrated the first differential sensing approach to distinguish AI subtypes using series of cell lines and fluorescent sensor. Susceptibility of AI virus differs depending on genetic backgrounds of host cells. Thus, we examined cells from different organ origin, and the infection patterns against a panel of cells were utilized for AI virus subtyping. To quantify AI infection, we designed a highly cell-permeable fluorescent superoxide sensor to visualize infection. Though many AI monitoring strategies relied on sophisticated antibody have been extensively studied, our differential sensing strategy successfully proved discriminations of AI subtypes and demonstrated as a useful primary screening platform to monitor a large number of samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Fan; Wu, Haibo; Liu, Fumin; Lu, Xiangyun; Peng, Xiuming; Wu, Nanping
2018-06-01
The H6 subtype avian influenza viruses (AIVs) possess the capacity for zoonotic transmission from avian species to humans. Establishment of a specific, rapid and sensitive method to screen H6 AIVs is necessary. Based on the conserved domain of the matrix and H6 AIV hemagglutinin genes, two TaqMan minor-groove-binder probes and multiplex real-time RT-PCR primers were designed in this study. The multiplex real-time RT-PCR assay developed in this study had high specificity and repeatability and a detection limit of 30 copies per reaction. This rapid diagnostic method will be useful for clinical detection and surveillance of H6 AIVs in China.
Clinical review: Update of avian influenza A infections in humans
Sandrock, Christian; Kelly, Terra
2007-01-01
Influenza A viruses have a wide host range for infection, from wild waterfowl to poultry to humans. Recently, the cross-species transmission of avian influenza A, particularly subtype H5N1, has highlighted the importance of the non-human subtypes and their incidence in the human population has increased over the past decade. During cross-species transmission, human disease can range from the asymptomatic to mild conjunctivitis to fulminant pneumonia and death. With these cases, however, the risk for genetic change and development of a novel virus increases, heightening the need for public health and hospital measures. This review discusses the epidemiology, host range, human disease, outcome, treatment, and prevention of cross-transmission of avian influenza A into humans. PMID:17419881
Temperature-influenced energetics model for migrating waterfowl
Aagaard, Kevin; Thogmartin, Wayne E.; Lonsdorg, Eric V.
2018-01-01
Climate and weather affect avian migration by influencing when and where birds fly, the energy costs and risks of flight, and the ability to sense cues necessary for proper navigation. We review the literature of the physiology of avian migration and the influence of climate, specifically temperature, on avian migration dynamics. We use waterfowl as a model guild because of the ready availability of empirical physiological data and their enormous economic value, but our discussion and expectations are broadly generalizable to migratory birds in general. We detail potential consequences of an increasingly warm climate on avian migration, including the possibility of the cessation of migration by some populations and species. Our intent is to lay the groundwork for including temperature effects on energetic gains and losses of migratory birds with the expected consequences of increasing temperatures into a predictive modeling framework. To this end, we provide a simulation of migration progression exclusively focused on the influence of temperature on the physiological determinants of migration. This simulation produced comparable results to empirically derived and observed values for different migratory factors (e.g., body fat content, flight range, departure date). By merging knowledge from the arenas of avian physiology and migratory theory we have identified a clear need for research and have developed hypotheses for a path forward.
Myers, T J; Schat, K A; Mockett, A P
1989-01-01
Immunoglobulin class-specific enzyme-linked immunosorbent assays were developed for detecting antibodies against avian rotavirus in serum, intestinal contents, and bile from experimentally infected specific-pathogen-free (SPF) chickens. Both indirect and antibody-capture (AbC) assays were developed based on monoclonal antibodies specific for chicken IgG, IgM, and IgA. Treatment of purified rotavirus with sodium thiocyanate before coating the plate improved the rotavirus-specific reading in the indirect assay. Use of Immunolon 2 plates facilitated attachment of monoclonal antibodies to the plate in the AbC assay. Addition of 5% powdered skim milk to the diluent buffer reduced nonspecific background readings. The indirect assay was superior for detecting rotavirus-specific IgG, whereas the AbC assay was better for detecting rotavirus-specific IgM and IgA. The presence of intestinal contents in the assay wells did not reduce the measurable titers of IgG, IgM, or IgA. These assays showed that SPF chickens produced systemic and mucosal antibodies against avian rotavirus.
Kuo, Shu-Ming; Chen, Chi-Jene; Chang, Shih-Cheng; Liu, Tzu-Jou; Chen, Yi-Hsiang; Huang, Sheng-Yu; Shih, Shin-Ru
2017-06-13
Avian influenza A viruses generally do not replicate efficiently in human cells, but substitution of glutamic acid (Glu, E) for lysine (Lys, K) at residue 627 of avian influenza virus polymerase basic protein 2 (PB2) can serve to overcome host restriction and facilitate human infectivity. Although PB2 residue 627 is regarded as a species-specific signature of influenza A viruses, host restriction factors associated with PB2 627 E have yet to be fully investigated. We conducted immunoprecipitation, followed by differential proteomic analysis, to identify proteins associating with PB2 627 K (human signature) and PB2 627 E (avian signature) of influenza A/WSN/1933(H1N1) virus, and the results indicated that Tu elongation factor, mitochondrial (TUFM), had a higher binding affinity for PB2 627 E than PB2 627 K in transfected human cells. Stronger binding of TUFM to avian-signature PB2 590 G/ 591 Q and PB2 627 E in the 2009 swine-origin pandemic H1N1 and 2013 avian-origin H7N9 influenza A viruses was similarly observed. Viruses carrying avian-signature PB2 627 E demonstrated increased replication in TUFM-deficient cells, but viral replication decreased in cells overexpressing TUFM. Interestingly, the presence of TUFM specifically inhibited the replication of PB2 627 E viruses, but not PB2 627 K viruses. In addition, enhanced levels of interaction between TUFM and PB2 627 E were noted in the mitochondrial fraction of infected cells. Furthermore, TUFM-dependent autophagy was reduced in TUFM-deficient cells infected with PB2 627 E virus; however, autophagy remained consistent in PB2 627 K virus-infected cells. The results suggest that TUFM acts as a host restriction factor that impedes avian-signature influenza A virus replication in human cells in a manner that correlates with autophagy. IMPORTANCE An understanding of the mechanisms that influenza A viruses utilize to shift host tropism and the identification of host restriction factors that can limit infection are both critical to the prevention and control of emerging viruses that cross species barriers to target new hosts. Using a proteomic approach, we revealed a novel role for TUFM as a host restriction factor that exerts an inhibitory effect on avian-signature PB2 627 E influenza virus propagation in human cells. We further found that increased TUFM-dependent autophagy correlates with the inhibitory effect on avian-signature influenza virus replication and may serve as a key intrinsic mechanism to restrict avian influenza virus infection in humans. These findings provide new insight regarding the TUFM mitochondrial protein and may have important implications for the development of novel antiviral strategies. Copyright © 2017 Kuo et al.
Influence of disease on population model of mid-continent mallards
Samuel, Michael D.
1992-01-01
On numerous occasions, waterfowl deaths caused by disease were highly visible to wildlife managers and to the general public. Thousands of birds died during duck plague, avian botulism and avian cholera outbreaks. Undoubtedly, some disease occurred in waterfowl populations throughout their evolution; however, knowledge of disease epizootiology primarily developed during the past 40-50 years (Wobeser 1981) for diseases that cause massive die-offs (e.g., avian cholera, avian botulism and duck plague). Other diseases, such as avian tuberculosis, aspergillosis, parasite infection and lead poisoning, also occur at chronic levels, but the data remain meager on many of these less spectacular causes of mortality and sublethal forms of disease. However, because chronic losses occur throughout the year, their cumulative effect, as well as the large die-offs, are a potential threat to waterfowl populations (Bellrose 1976, Wobeser 1981). Previous studies (Anderson 1975) demonstrated that 50 percent of the annual mortality in mallard (Anas platyrhynchos) populations is from nonhunting causes. In addition to disease, these causes include predation, accidental deaths, inclement weather and other factors (Stout and Cornwell 1976), which can be confounded by disease. Determination of mortality rates from diseases has been difficult because many biases and inconsistencies are associated with the available data. Assessment of disease prevalence and magnitude of losses is complicated by the spatial and temporal variability of many diseases, the logistic difficulty of studying highly mobile waterfowl populations, and the potentially confounding influences of predation and scavenging on detecting disease-related mortality;. Unless losses are so extensive that they direct attention to a particular area, mortality from disease is easily overlooked (see Zwank et al. 1985). Even when die-offs are evident, mortality from disease may be underestimated because sick waterfowl become debilitated, seek seclusion in dense cover and are removed by efficient predators or scavengers prior to human detection. Our objective was to evaluate the possible effects of three of the most common diseases (friend 1985), avian cholera, avian botulism and lead poisoning, on the population dynamics of mid-continental mallards. We used data from disease outbreaks to develop preliminary estimates of mortality rates and their temporal pattern. A computer model was used to integrate these mortality estimate with other mallard life history characteristics, evaluate the potential effects of these diseases on mallard demographics and assess the need for better information on the effects of disease on mallards.
Abdelwhab, E. M.; Hafez, Hafez M.
2012-01-01
Highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 causes a devastating disease in poultry but when it accidentally infects humans it can cause death. Therefore, decrease the incidence of H5N1 in humans needs to focus on prevention and control of poultry infections. Conventional control strategies in poultry based on surveillance, stamping out, movement restriction and enforcement of biosecurity measures did not prevent the virus spreading, particularly in developing countries. Several challenges limit efficiency of the vaccines to prevent outbreaks of HPAIV H5N1 in endemic countries. Alternative and complementary approaches to reduce the current burden of H5N1 epidemics in poultry should be encouraged. The use of antiviral chemotherapy and natural compounds, avian-cytokines, RNA interference, genetic breeding and/or development of transgenic poultry warrant further evaluation as integrated intervention strategies for control of HPAIV H5N1 in poultry. PMID:23202521
Strunk, Anneliese; Wilson, G Heather
2003-01-01
The field of avian cardiology is continually expanding. Although a great deal of the current knowledge base has been derived from poultry data, research and clinical reports involving companion avian species have been published. This article will present avian cardiovascular anatomy and physiology, history and physical examination considerations in the avian cardiac disease patient, specific diagnostic tools, cardiovascular disease processes, and current therapeutic modalities.
Rimi, Nadia Ali; Sultana, Rebeca; Ishtiak-Ahmed, Kazi; Rahman, Md Zahidur; Hasin, Marufa; Islam, M Saiful; Azziz-Baumgartner, Eduardo; Nahar, Nazmun; Gurley, Emily S; Luby, Stephen P
2016-08-24
The spread of the highly pathogenic avian influenza (HPAI) H5N1 virus among poultry and humans has raised global concerns and has motivated government and public health organizations to initiate interventions to prevent the transmission of HPAI. In Bangladesh, H5N1 became endemic in poultry and seven human H5N1 cases have been reported since 2007, including one fatality. This study piloted messages to increase awareness about avian influenza and its prevention in two rural communities, and explored change in villagers' awareness and behaviors attributable to the intervention. During 2009-10, a research team implemented the study in two rural villages in two districts of Bangladesh. The team used a focused ethnographic approach for data collection, including informal interviews and observations to provide detailed contextual information about community response to a newly emerging disease. They collected pre-intervention qualitative data for one month. Then another team disseminated preventive messages focused on safe slaughtering methods, through courtyard meetings and affixed posters in every household. After dissemination, the research team collected post-intervention data for one month. More villagers reported hearing about 'bird flu' after the intervention compared to before the intervention. After the intervention, villagers commonly recalled changes in the color of combs and shanks of poultry as signs of avian influenza, and perceived zoonotic transmission of avian influenza through direct contact and through inhalation. Consequently the villagers valued covering the nose and mouth while handling sick and dead poultry as a preventive measure. Nevertheless, the team did not observe noticeable change in villagers' behavior after the intervention. Villagers reported not following the recommended behaviors because of the perceived absence of avian influenza in their flocks, low risk of avian influenza, cost, inconvenience, personal discomfort, fear of being rebuked or ridiculed, and doubt about the necessity of the intervention. The villagers' awareness about avian influenza improved after the intervention, however, the intervention did not result in any measurable improvement in preventive behaviors. Low cost approaches that promote financial benefits and minimize personal discomfort should be developed and piloted.
NASA Astrophysics Data System (ADS)
Pereksta, D. M.
2016-02-01
The prospect of renewable energy development off the coasts of the United States has led to a scramble for data needs on potentially affected resources, particularly those related to avian species. The potential effects from renewable energy development to avian species are complex and varied including collision, displacement, barrier effects, and attraction. As the lead Federal agency for renewable energy development on the Federal outer continental shelf (OCS), the Bureau of Ocean Energy Management (BOEM) has initiated, in coordination with other agencies and partners, the collection and synthesizing of existing data, identification of data gaps, development and funding of studies to fill those gaps, and creation of products for assessing risk to birds from structures at sea. Through the Environmental Studies Program, BOEM collects a wide range of environmental information to provide an improved understanding of offshore ecosystems, a baseline for assessing cumulative effects, and the scientific basis for development of regulatory measures to mitigate adverse impacts. With broad-scale assessments of suitable areas for wind, wave, and tidal energy production offshore, the challenge has been to collect and compile information quickly and at as large a scale as possible. Assessing what we know, what we can predict, and how can we assess risk has led BOEM to develop and collaborate on a variety of studies including baseline data assessments, at-sea surveys, predictive modeling of seabird distribution and abundance, vulnerability and risk assessments, and technology testing for efficient ways to inventory birds on the OCS. These are being applied in both the Atlantic and Pacific, including the Main Hawaiian Islands, to provide for assessments of potential effects and data needs early in the planning process at regional and local scales with the goal of designing and implementing projects that will minimize effects to avian species to the greatest extent practicable.
Avian Influenza A Virus Infections in Humans
... label> Archived Flu Emails Influenza Types Seasonal Avian Swine Variant Pandemic Other Avian Influenza A Virus Infections ... label> Archived Flu Emails Influenza Types Seasonal Avian Swine Variant Pandemic Other Language: English (US) Español File ...
Kong, Byung-Whi; Foster, Linda K; Foster, Douglas N
2007-07-01
Until recently, there has not been a homologous avian cellular substrate which could continuously produce high titer avian metapneumovirus (AMPV); development of such a cell line should provide an excellent model system for studying AMPV infection. We have established a non-tumorigenic immortal turkey turbinate cell line (TT-1) to propagate sufficiently high AMPV titers. Currently, immortal TT-1 cells are growing continuously at 1.2-1.4 population doublings per day and are at passage 160. Kinetic analysis suggests that AMPV can infect and replicate more rapidly in TT-1 compared to Vero cells, although both cell types undergo apoptosis upon infection. The non-tumorigenic, reverse transcriptase negative TT-1 cell line can serve as an excellent homologous cellular substrate for virus propagation.
The stability of human, bovine and avian tuberculin purified protein derivative (PPD).
Maes, Mailis; Giménez, José Francisco; D'Alessandro, Adriana; De Waard, Jacobus H
2011-11-15
Guidelines recommend storing tuberculin purified protein derivative (PPD) refrigerated. However, especially in developing countries, maintaining the product refrigerated under field conditions can be difficult, limiting its use. Here we determine the effect of prolonged exposure to high temperatures on the potency of human, bovine and avian tuberculin PPD. Human, bovine and avian tuberculin PPD were stored for several weeks exposed to temperatures ranging from 37º to 100ºC. The potency was evaluated in vivo, in sensitized or naturally infected animals. Most test situations didn't affect the biological activity of the tuberculin PPDs and only very long and extreme incubations (several days at 100 °C) compromised the potency. Tuberculin PPD is very stable and can be stored or transported for long periods without refrigeration.
In vitro detection and quantification of botulinum neurotoxin type E activity in avian blood
Piazza, T.M.; Blehert, D.S.; Dunning, F.M.; Berlowski-Zier, B. M.; Zeytin, F.N.; Samuel, M.D.; Tucker, W.C.
2011-01-01
Botulinum neurotoxin serotype E (BoNT/E) outbreaks in the Great Lakes region cause large annual avian mortality events, with an estimated 17,000 bird deaths reported in 2007 alone. During an outbreak investigation, blood collected from bird carcasses is tested for the presence of BoNT/E using the mouse lethality assay. While sensitive, this method is labor-intensive and low throughput and can take up to 7 days to complete. We developed a rapid and sensitive in vitro assay, the BoTest Matrix E assay, that combines immunoprecipitation with high-affinity endopeptidase activity detection by F??rster resonance energy transfer (FRET) to rapidly quantify BoNT/E activity in avian blood with detection limits comparable to those of the mouse lethality assay. On the basis of the analysis of archived blood samples (n = 87) collected from bird carcasses during avian mortality investigations, BoTest Matrix E detected picomolar quantities of BoNT/E following a 2-h incubation and femtomolar quantities of BoNT/E following extended incubation (24 h) with 100% diagnostic specificity and 91% diagnostic sensitivity. ?? 2011, American Society for Microbiology.
In vitro detection and quantification of botulinum neurotoxin type E activity in avian blood
Piazza, Timothy M.; Blehert, David S.; Dunning, F. Mark; Berlowski-Zier, Brenda M.; Zeytin, Fusun N.; Samuel, Michael D.; Tucker, Ward C.
2011-01-01
Botulinum neurotoxin serotype E (BoNT/E) outbreaks in the Great Lakes region cause large annual avian mortality events, with an estimated 17,000 bird deaths reported in 2007 alone. During an outbreak investigation, blood collected from bird carcasses is tested for the presence of BoNT/E using the mouse lethality assay. While sensitive, this method is labor-intensive and low throughput and can take up to 7 days to complete. We developed a rapid and sensitive in vitro assay, the BoTest Matrix E assay, that combines immunoprecipitation with high-affinity endopeptidase activity detection by Förster resonance energy transfer (FRET) to rapidly quantify BoNT/E activity in avian blood with detection limits comparable to those of the mouse lethality assay. On the basis of the analysis of archived blood samples (n = 87) collected from bird carcasses during avian mortality investigations, BoTest Matrix E detected picomolar quantities of BoNT/E following a 2-h incubation and femtomolar quantities of BoNT/E following extended incubation (24 h) with 100% diagnostic specificity and 91% diagnostic sensitivity.
In Vitro Detection and Quantification of Botulinum Neurotoxin Type E Activity in Avian Blood▿
Piazza, Timothy M.; Blehert, David S.; Dunning, F. Mark; Berlowski-Zier, Brenda M.; Zeytin, Füsûn N.; Samuel, Michael D.; Tucker, Ward C.
2011-01-01
Botulinum neurotoxin serotype E (BoNT/E) outbreaks in the Great Lakes region cause large annual avian mortality events, with an estimated 17,000 bird deaths reported in 2007 alone. During an outbreak investigation, blood collected from bird carcasses is tested for the presence of BoNT/E using the mouse lethality assay. While sensitive, this method is labor-intensive and low throughput and can take up to 7 days to complete. We developed a rapid and sensitive in vitro assay, the BoTest Matrix E assay, that combines immunoprecipitation with high-affinity endopeptidase activity detection by Förster resonance energy transfer (FRET) to rapidly quantify BoNT/E activity in avian blood with detection limits comparable to those of the mouse lethality assay. On the basis of the analysis of archived blood samples (n = 87) collected from bird carcasses during avian mortality investigations, BoTest Matrix E detected picomolar quantities of BoNT/E following a 2-h incubation and femtomolar quantities of BoNT/E following extended incubation (24 h) with 100% diagnostic specificity and 91% diagnostic sensitivity. PMID:21908624
Porter, Chad K; Fitamaurice, Gina; Tribble, David R; Armstrong, Adam W; Mostafa, Manal; Riddle, Mark S
2013-12-01
Though no avian influenza vaccine currently exists, development efforts have increased. Given recent reports of suboptimal vaccination rates among US military personnel, we sought to assess factors associated with a willingness to receive a hypothetical avian influenza vaccine. A self-administered questionnaire was completed by US military personnel during mid-deployment to Iraq, Afghanistan, and surrounding regions. Respondents were predominately male (86.2%), Army (72.1%), and enlisted (86.3%) with a mean age of 29.6 y. The majority (77.1%) agreed to receive an avian influenza vaccine if available. Exploratory factor analysis (EFA) identified two factors, vaccine importance and disease risk, that best described the individual perceptions and both were associated with an increased willingness to receive the hypothetical vaccine (OR: 8.2 and 1.6, respectively). Importantly, after controlling for these factors differences in the willingness to receive this hypothetical vaccine were observed across gender and branch of service. These results indicated that targeted education on vaccine safety and efficacy as well as disease risk may modify vaccination patterns in this population.
Porter, Chad K; Fitamaurice, Gina; Tribble, David R; Armstrong, Adam W; Mostafa, Manal; Riddle, Mark S
2013-01-01
Though no avian influenza vaccine currently exists, development efforts have increased. Given recent reports of suboptimal vaccination rates among US military personnel, we sought to assess factors associated with a willingness to receive a hypothetical avian influenza vaccine. A self-administered questionnaire was completed by US military personnel during mid-deployment to Iraq, Afghanistan, and surrounding regions. Respondents were predominately male (86.2%), Army (72.1%), and enlisted (86.3%) with a mean age of 29.6 y. The majority (77.1%) agreed to receive an avian influenza vaccine if available. Exploratory factor analysis (EFA) identified two factors, vaccine importance and disease risk, that best described the individual perceptions and both were associated with an increased willingness to receive the hypothetical vaccine (OR: 8.2 and 1.6, respectively). Importantly, after controlling for these factors differences in the willingness to receive this hypothetical vaccine were observed across gender and branch of service. These results indicated that targeted education on vaccine safety and efficacy as well as disease risk may modify vaccination patterns in this population. PMID:23917256
Shale gas development effects on the songbird community in a central Appalachian forest
Farwell, Laura S.; Wood, Petra; Sheehan, James; George, Gregory A.
2016-01-01
In the last decade, unconventional drilling for natural gas from the Marcellus-Utica shale has increased exponentially in the central Appalachians. This heavily forested region contains important breeding habitat for many neotropical migratory songbirds, including several species of conservation concern. Our goal was to examine effects of unconventional gas development on forest habitat and breeding songbirds at a predominantly forested site from 2008 to 2015. Construction of gas well pads and infrastructure (e.g., roads, pipelines) contributed to an overall 4.5% loss in forest cover at the site, a 12.4% loss in core forest, and a 51.7% increase in forest edge density. We evaluated the relationship between land-cover metrics and species richness within three avian guilds: forest-interior, early-successional, and synanthropic, in addition to abundances of 21 focal species. Land-cover impacts were evaluated at two spatial extents: a point-level within 100-m and 500-m buffers of each avian survey station, and a landscape-level across the study area (4326 ha). Although we observed variability in species-specific responses, we found distinct trends in long-term response among the three avian guilds. Forest-interior guild richness declined at all points across the site and at points impacted within 100 m by shale gas but did not change at unimpacted points. Early-successional and synanthropic guild richness increased at all points and at impacted points. Our results suggest that shale gas development has the potential to fragment regional forests and alter avian communities, and that efforts to minimize new development in core forests will reduce negative impacts to forest dependent species.
Gallid herpesvirus 3 SB-1 strain as a recombinant viral vector for poultry vaccination.
Sadigh, Yashar; Powers, Claire; Spiro, Simon; Pedrera, Miriam; Broadbent, Andrew; Nair, Venugopal
2018-01-01
Live herpesvirus-vectored vaccines are widely used in veterinary medicine to protect against many infectious diseases. In poultry, three strains of herpesvirus vaccines are used against Marek's disease (MD). However, of these, only the herpesvirus of turkeys (HVT) has been successfully developed and used as a recombinant vaccine vector to induce protection against other avian viral diseases such as infectious bursal disease (IBD), Newcastle disease (ND) or avian influenza (AI). Although effective when administered individually, recombinant HVT vectors have limitations when combined in multivalent vaccines. Thus there is a need for developing additional viral vectors that could be combined with HVT in inducing protection against multiple avian diseases in multivalent vaccines. Gallid herpesvirus 3 (GaHV3) strain SB-1 is widely used by the poultry industry as bivalent vaccine in combination with HVT to exploit synergistic effects against MD. Here, we report the development and application of SB-1 as a vaccine vector to express the VP2 capsid antigen of IBD virus. A VP2 expression cassette was introduced into the SB-1 genome at three intergenic locations (UL3/UL4, UL10/UL11 and UL21/UL22) using recombineering methods on the full-length pSB-1 infectious clone of the virus. We show that the recombinant SB-1 vectors expressing VP2 induced neutralising antibody responses at levels comparable to that of commercial HVT-based VAXXITEK HVT+IBD vaccine. Birds vaccinated with the experimental recombinant SB-1 vaccine were protected against clinical disease after challenge with the very virulent UK661 IBDV isolate, demonstrating its value as an efficient viral vector for developing multivalent vaccines against avian diseases.
de Jong, Menno D; Hien, Tran Tinh
2006-01-01
Since their reemergence in 2003, highly pathogenic avian influenza A (H5N1) viruses have reached endemic levels among poultry in several southeast Asian countries and have caused a still increasing number of more than 100 reported human infections with high mortality. These developments have ignited global fears of an imminent influenza pandemic. The current knowledge of the virology, clinical spectrum, diagnosis and treatment of human influenza H5N1 virus infections is reviewed herein.
USDA-ARS?s Scientific Manuscript database
Avian astroviruses comprise a diverse group of viruses affecting many avian species and causing enteritis, hepatitis and nephritis. To date, six different astroviruses have been identified in avian species based on the species of origin and viral genome characteristics: two turkey-origin astroviru...
Avian Diagnostic and Therapeutic Antibodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, David Sherman
2012-12-31
A number of infectious agents have the potential of causing significant clinical symptomology and even death, but dispite this, the number of incidence remain below the level that supports producing a vaccine. Therapeutic antibodies provide a viable treatment option for many of these diseases. We proposed that antibodies derived from West Nile Virus (WNV) immunized geese would be able to treat WNV infection in mammals and potential humans. We demonstrated that WNV specific goose antibodies are indeed successful in treating WNV infection both prophylactically and therapeutically in a golden hamster model. We demonstrated that the goose derived antibodies are non-reactogenic,more » i.e. do not cause an inflammatory response with multiple exposures in mammals. We also developed both a specific pathogen free facility to house the geese during the antibody production phase and a patent-pending purification process to purify the antibodies to greater than 99% purity. Therefore, the success of these study will allow a cost effective rapidly producible therapeutic toward clinical testing with the necessary infrastructure and processes developed and in place.« less
Talbot, Darren A; Duchamp, Claude; Rey, Benjamin; Hanuise, Nicolas; Rouanet, Jean Louis; Sibille, Brigitte; Brand, Martin D
2004-07-01
Juvenile king penguins develop adaptive thermogenesis after repeated immersion in cold water. However, the mechanisms of such metabolic adaptation in birds are unknown, as they lack brown adipose tissue and uncoupling protein-1 (UCP1), which mediate adaptive non-shivering thermogenesis in mammals. We used three different groups of juvenile king penguins to investigate the mitochondrial basis of avian adaptive thermogenesis in vitro. Skeletal muscle mitochondria isolated from penguins that had never been immersed in cold water showed no superoxide-stimulated proton conductance, indicating no functional avian UCP. Skeletal muscle mitochondria from penguins that had been either experimentally immersed or naturally adapted to cold water did possess functional avian UCP, demonstrated by a superoxide-stimulated, GDP-inhibitable proton conductance across their inner membrane. This was associated with a markedly greater abundance of avian UCP mRNA. In the presence (but not the absence) of fatty acids, these mitochondria also showed a greater adenine nucleotide translocase-catalysed proton conductance than those from never-immersed penguins. This was due to an increase in the amount of adenine nucleotide translocase. Therefore, adaptive thermogenesis in juvenile king penguins is linked to two separate mechanisms of uncoupling of oxidative phosphorylation in skeletal muscle mitochondria: increased proton transport activity of avian UCP (dependent on superoxide and inhibited by GDP) and increased proton transport activity of the adenine nucleotide translocase (dependent on fatty acids and inhibited by carboxyatractylate).
Global alert to avian influenza virus infection: From H5N1 to H7N9
Poovorawan, Yong; Pyungporn, Sunchai; Prachayangprecha, Slinporn; Makkoch, Jarika
2013-01-01
Outbreak of a novel influenza virus is usually triggered by mutational change due to the process known as ‘antigenic shift’ or re-assortment process that allows animal-to-human or avian-to-human transmission. Birds are a natural reservoir for the influenza virus, and subtypes H5, H7, and H9 have all caused outbreaks of avian influenza in human populations. An especially notorious strain is the HPAI influenza virus H5N1, which has a mortality rate of approximately 60% and which has resulted in numerous hospitalizations, deaths, and significant economic loss. In March 2013, in Eastern China, there was an outbreak of the novel H7N9 influenza virus, which although less pathogenic in avian species, resulted in 131 confirmed cases and 36 deaths in humans over a two-month span. The rapid outbreak of this virus caused global concern but resulted in international cooperation to control the outbreak. Furthermore, cooperation led to valuable research-sharing including genome sequencing of the virus, the development of rapid and specific diagnosis, specimen sharing for future studies, and vaccine development. Although a H7N9 pandemic in the human population is possible due to its rapid transmissibility and extensive surveillance, the closure of the live-bird market will help mitigate the possibility of another H7N9 outbreak. In addition, further research into the source of the outbreak, pathogenicity of the virus, and the development of specific and sensitive detection assays will be essential for controlling and preparing for future H7N9 outbreaks. PMID:23916331
Growth Factors and Tension-Induced Skeletal Muscle Growth
NASA Technical Reports Server (NTRS)
Vandenburgh, Herman H.
1994-01-01
The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we have performed experiments to determine whether mechanical stimulation of cultured avian muscle cells alters their response to anabolic steroids or glucocorticoids. In static cultures, testosterone had no effect on muscle cell growth, but 5alpha-dihydrotestosterone and the synthetic steroid stanozolol increased cell growth by up to 18% and 30%, respectively, after a three day exposure. We completed development of a new IBM-based mechanical cell stimulator system to provide greater flexibility in operating and monitoring our experiments. Our previous long term studies on myofiber growth were designed around a perfusion system of our own design. We have recently changed to performing these studies using a modified CELLCO cartridge bioreactor system Z since it has been certified as the ground-based model for the Shuttle's Space Tissue Loss (STL) F= Cell Culture Module. The current goals of this aspect of the project are three fold: 1) to design a Z cell culture system for studying avian skeletal myofiber atrophy on the Shuttle and Space Station; 0 2) to expand the use of bioreactors to cells which do not grow in either suspension or attached to the hollow fibers; and 3) to combine the bioreactor system with our computerized mechanical cell stimulator to have a better in vitro model to study tension/gravity/stretch regulation of skeletal muscle size. Preliminary studies also reported on involved : (1) how release of tension can induce rapid atrophy of tissues cultured avian skeletal muscle cells, and (2) a mechanism to transfer and maintain avian skeletal muscle organoids in modified cartridges in the Space Tissue Loss Module.
Trebbien, Ramona; Bragstad, Karoline; Larsen, Lars Erik; Nielsen, Jens; Bøtner, Anette; Heegaard, Peter M H; Fomsgaard, Anders; Viuff, Birgitte; Hjulsager, Charlotte Kristiane
2013-09-18
The influenza A virus subtypes H1N1, H1N2 and H3N2 are the most prevalent subtypes in swine. In 2003, a reassorted H1N2 swine influenza virus (SIV) subtype appeared and became prevalent in Denmark. In the present study, the reassortant H1N2 subtype was characterised genetically and the infection dynamics compared to an "avian-like" H1N1 virus by an experimental infection study. Sequence analyses were performed of the H1N2 virus. Two groups of pigs were inoculated with the reassortant H1N2 virus and an "avian-like" H1N1 virus, respectively, followed by inoculation with the opposite subtype four weeks later. Measurements of HI antibodies and acute phase proteins were performed. Nasal virus excretion and virus load in lungs were determined by real-time RT-PCR. The phylogenetic analysis revealed that the reassorted H1N2 virus contained a European "avian-like" H1-gene and a European "swine-like" N2-gene, thus being genetically distinct from most H1N2 viruses circulating in Europe, but similar to viruses reported in 2009/2010 in Sweden and Italy. Sequence analyses of the internal genes revealed that the reassortment probably arose between circulating Danish "avian-like" H1N1 and H3N2 SIVs. Infected pigs developed cross-reactive antibodies, and increased levels of acute phase proteins after inoculations. Pigs inoculated with H1N2 exhibited nasal virus excretion for seven days, peaking day 1 after inoculation two days earlier than H1N1 infected pigs and at a six times higher level. The difference, however, was not statistically significant. Pigs euthanized on day 4 after inoculation, had a high virus load in all lung lobes. After the second inoculation, the nasal virus excretion was minimal. There were no clinical sign except elevated body temperature under the experimental conditions. The "avian-like" H1N2 subtype, which has been established in the Danish pig population at least since 2003, is a reassortant between circulating swine "avian-like" H1N1 and H3N2. The Danish H1N2 has an "avian-like" H1 and differs from most other reported H1N2 viruses in Europe and North America/Asia, which have H1-genes of human or "classical-swine" origin, respectively. The variant seems, however, also to be circulating in countries like Sweden and Italy. The infection dynamics of the reassorted "avian-like" H1N2 is similar to the older "avian-like" H1N1 subtype.
2013-01-01
Background The influenza A virus subtypes H1N1, H1N2 and H3N2 are the most prevalent subtypes in swine. In 2003, a reassorted H1N2 swine influenza virus (SIV) subtype appeared and became prevalent in Denmark. In the present study, the reassortant H1N2 subtype was characterised genetically and the infection dynamics compared to an “avian-like” H1N1 virus by an experimental infection study. Methods Sequence analyses were performed of the H1N2 virus. Two groups of pigs were inoculated with the reassortant H1N2 virus and an “avian-like” H1N1 virus, respectively, followed by inoculation with the opposite subtype four weeks later. Measurements of HI antibodies and acute phase proteins were performed. Nasal virus excretion and virus load in lungs were determined by real-time RT-PCR. Results The phylogenetic analysis revealed that the reassorted H1N2 virus contained a European “avian-like” H1-gene and a European “swine-like” N2-gene, thus being genetically distinct from most H1N2 viruses circulating in Europe, but similar to viruses reported in 2009/2010 in Sweden and Italy. Sequence analyses of the internal genes revealed that the reassortment probably arose between circulating Danish “avian-like” H1N1 and H3N2 SIVs. Infected pigs developed cross-reactive antibodies, and increased levels of acute phase proteins after inoculations. Pigs inoculated with H1N2 exhibited nasal virus excretion for seven days, peaking day 1 after inoculation two days earlier than H1N1 infected pigs and at a six times higher level. The difference, however, was not statistically significant. Pigs euthanized on day 4 after inoculation, had a high virus load in all lung lobes. After the second inoculation, the nasal virus excretion was minimal. There were no clinical sign except elevated body temperature under the experimental conditions. Conclusions The “avian-like” H1N2 subtype, which has been established in the Danish pig population at least since 2003, is a reassortant between circulating swine “avian-like” H1N1 and H3N2. The Danish H1N2 has an “avian-like” H1 and differs from most other reported H1N2 viruses in Europe and North America/Asia, which have H1-genes of human or “classical-swine” origin, respectively. The variant seems, however, also to be circulating in countries like Sweden and Italy. The infection dynamics of the reassorted “avian-like” H1N2 is similar to the older “avian-like” H1N1 subtype. PMID:24047399
USDA-ARS?s Scientific Manuscript database
Avian influenza virus is naturally found in wild birds, primarily waterfowl, but the virus may also be found in poultry. The virus in poultry is typically differentiated into two types, low pathogenic avian influenza and highly pathogenic avian influenza. In chickens the low pathogenic form typica...
Markov Chain Estimation of Avian Seasonal Fecundity
To explore the consequences of modeling decisions on inference about avian seasonal fecundity we generalize previous Markov chain (MC) models of avian nest success to formulate two different MC models of avian seasonal fecundity that represent two different ways to model renestin...
Nonlinear dynamics of avian influenza epidemic models.
Liu, Sanhong; Ruan, Shigui; Zhang, Xinan
2017-01-01
Avian influenza is a zoonotic disease caused by the transmission of the avian influenza A virus, such as H5N1 and H7N9, from birds to humans. The avian influenza A H5N1 virus has caused more than 500 human infections worldwide with nearly a 60% death rate since it was first reported in Hong Kong in 1997. The four outbreaks of the avian influenza A H7N9 in China from March 2013 to June 2016 have resulted in 580 human cases including 202 deaths with a death rate of nearly 35%. In this paper, we construct two avian influenza bird-to-human transmission models with different growth laws of the avian population, one with logistic growth and the other with Allee effect, and analyze their dynamical behavior. We obtain a threshold value for the prevalence of avian influenza and investigate the local or global asymptotical stability of each equilibrium of these systems by using linear analysis technique or combining Liapunov function method and LaSalle's invariance principle, respectively. Moreover, we give necessary and sufficient conditions for the occurrence of periodic solutions in the avian influenza system with Allee effect of the avian population. Numerical simulations are also presented to illustrate the theoretical results. Copyright © 2016 Elsevier Inc. All rights reserved.
Avian disease at the Salton Sea
Friend, M.
2002-01-01
A review of existing records and the scientific literature was conducted for occurrences of avian diseases affecting free-ranging avifauna within the Salton Sea ecosystem. The period for evaluation was 1907 through 1999. Records of the U.S. Department of Agriculture, Bureau of Biological Survey and the scientific literature were the data sources for the period of 1907a??1939. The narrative reports of the U.S. Fish and Wildlife Service's Sonny Bono National Wildlife Refuge Complex and the epizootic database of the U.S. Geological Survey's National Wildlife Health Center were the primary data sources for the remainder of the evaluation. The pattern of avian disease at the Salton Sea has changed greatly over time. Relative to past decades, there was a greater frequency of major outbreaks of avian disease at the Salton Sea during the 1990s than in previous decades, a greater variety of disease agents causing epizootics, and apparent chronic increases in the attrition of birds from disease. Avian mortality was high for about a decade beginning during the mid-1920s, diminished substantially by the 1940s and was at low to moderate levels until the 1990s when it reached the highest levels reported. Avian botulism (Clostridium botulinum type C) was the only major cause of avian disease until 1979 when the first major epizootic of avian cholera (Pasteurella multocidia) was documented. Waterfowl and shorebirds were the primary species affected by avian botulism. A broader spectrum of species have been killed by avian cholera but waterfowl have suffered the greatest losses. Avian cholera reappeared in 1983 and has joined avian botulism as a recurring cause of avian mortality. In 1989, avian salmonellosis (Salmonella typhimurium) was first diagnosed as a major cause of avian disease within the Salton Sea ecosystem and has since reappeared several times, primarily among cattle egrets (Bubulcus ibis). The largest loss from a single epizootic occurred in 1992, when an estimated 155thinsp000 birds, primarily eared grebes (Podiceps nigricollis), died from an undiagnosed cause. Reoccurrences of that unknown malady have continued to kill substantial numbers of eared grebes throughout the 1990s. The first major epizootic of type C avian botulism in fish-eating birds occurred in 1996 and killed large numbers of pelicans (Pelecanus occidentalis & P. erythrorhynchos). Avian botulism has remained as a major annual cause of disease in pelicans. In contrast, the chronic on-Sea occurrence of avian botulism in waterfowl and shorebirds of previous decades was seldom seen during the 1990s. Newcastle disease became the first viral disease to cause major bird losses at the Salton Sea when it appeared in the Mullet Island cormorant (Phalacrocorax auritus) breeding colony during 1997 and again during 1998.
Sayegh, Camil E.; Demaries, Sandra L.; Iacampo, Sandra; Ratcliffe, Michael J. H.
1999-01-01
Immunoglobulin gene rearrangement in avian B cell precursors generates surface Ig receptors of limited diversity. It has been proposed that specificities encoded by these receptors play a critical role in B lineage development by recognizing endogenous ligands within the bursa of Fabricius. To address this issue directly we have introduced a truncated surface IgM, lacking variable region domains, into developing B precursors by retroviral gene transfer in vivo. Cells expressing this truncated receptor lack endogenous surface IgM, and the low level of endogenous Ig rearrangements that have occurred within this population of cells has not been selected for having a productive reading frame. Such cells proliferate rapidly within bursal epithelial buds of normal morphology. In addition, despite reduced levels of endogenous light chain rearrangement, those light chain rearrangements that have occurred have undergone variable region diversification by gene conversion. Therefore, although surface expression of an Ig receptor is required for bursal colonization and the induction of gene conversion, the specificity encoded by the prediversified receptor is irrelevant and, consequently, there is no obligate ligand for V(D)J-encoded determinants of prediversified avian cell surface IgM receptor. PMID:10485907
Greenwold, Matthew J; Sawyer, Roger H
2013-09-01
The archosauria consist of two living groups, crocodilians, and birds. Here we compare the structure, expression, and phylogeny of the beta (β)-keratins in two crocodilian genomes and two avian genomes to gain a better understanding of the evolutionary origin of the feather β-keratins. Unlike squamates such as the green anole with 40 β-keratins in its genome, the chicken and zebra finch genomes have over 100 β-keratin genes in their genomes, while the American alligator has 20 β-keratin genes, and the saltwater crocodile has 21 β-keratin genes. The crocodilian β-keratins are similar to those of birds and these structural proteins have a central filament domain and N- and C-termini, which contribute to the matrix material between the twisted β-sheets, which form the 2-3 nm filament. Overall the expression of alligator β-keratin genes in the integument increases during development. Phylogenetic analysis demonstrates that a crocodilian β-keratin clade forms a monophyletic group with the avian scale and feather β-keratins, suggesting that avian scale and feather β-keratins along with a subset of crocodilian β-keratins evolved from a common ancestral gene/s. Overall, our analyses support the view that the epidermal appendages of basal archosaurs used a diverse array of β-keratins, which evolved into crocodilian and avian specific clades. In birds, the scale and feather subfamilies appear to have evolved independently in the avian lineage from a subset of archosaurian claw β-keratins. The expansion of the avian specific feather β-keratin genes accompanied the diversification of birds and the evolution of feathers. Copyright © 2013 Wiley Periodicals, Inc.
Deng, Yi-Mo; Su, Yvonne C. F.; Fourment, Mathieu; Iannello, Pina; Arzey, George G.; Hansbro, Philip M.; Arzey, K. Edla; Kirkland, Peter D.; Warner, Simone; O'Riley, Kim; Barr, Ian G.; Smith, Gavin J. D.
2013-01-01
Influenza A H10N7 virus with a hemagglutinin gene of North American origin was detected in Australian chickens and poultry abattoir workers in New South Wales, Australia, in 2010 and in chickens in Queensland, Australia, on a mixed chicken and domestic duck farm in 2012. We investigated their genomic origins by sequencing full and partial genomes of H10 viruses isolated from wild aquatic birds and poultry in Australia and analyzed them with all available avian influenza virus sequences from Oceania and representative viruses from North America and Eurasia. Our analysis showed that the H10N7 viruses isolated from poultry were similar to those that have been circulating since 2009 in Australian aquatic birds and that their initial transmission into Australia occurred during 2007 and 2008. The H10 viruses that appear to have developed endemicity in Australian wild aquatic birds were derived from several viruses circulating in waterfowl along various flyways. Their hemagglutinin gene was derived from aquatic birds in the western states of the United States, whereas the neuraminidase was closely related to that from viruses previously detected in waterfowl in Japan. The remaining genes were derived from Eurasian avian influenza virus lineages. Our analysis of virological data spanning 40 years in Oceania indicates that the long-term evolutionary dynamics of avian influenza viruses in Australia may be determined by climatic changes. The introduction and long-term persistence of avian influenza virus lineages were observed during periods with increased rainfall, whereas bottlenecks and extinction were observed during phases of widespread decreases in rainfall. These results extend our understanding of factors affecting the dynamics of avian influenza and provide important considerations for surveillance and disease control strategies. PMID:23864623
Thacker, Eileen; Janke, Bruce
2008-02-15
Influenza viruses are able to infect humans, swine, and avian species, and swine have long been considered a potential source of new influenza viruses that can infect humans. Swine have receptors to which both avian and mammalian influenza viruses bind, which increases the potential for viruses to exchange genetic sequences and produce new reassortant viruses in swine. A number of genetically diverse viruses are circulating in swine herds throughout the world and are a major cause of concern to the swine industry. Control of swine influenza is primarily through the vaccination of sows, to protect young pigs through maternally derived antibodies. However, influenza viruses continue to circulate in pigs after the decay of maternal antibodies, providing a continuing source of virus on a herd basis. Measures to control avian influenza in commercial poultry operations are dictated by the virulence of the virus. Detection of a highly pathogenic avian influenza (HPAI) virus results in immediate elimination of the flock. Low-pathogenic avian influenza viruses are controlled through vaccination, which is done primarily in turkey flocks. Maintenance of the current HPAI virus-free status of poultry in the United States is through constant surveillance of poultry flocks. Although current influenza vaccines for poultry and swine are inactivated and adjuvanted, ongoing research into the development of newer vaccines, such as DNA, live-virus, or vectored vaccines, is being done. Control of influenza virus infection in poultry and swine is critical to the reduction of potential cross-species adaptation and spread of influenza viruses, which will minimize the risk of animals being the source of the next pandemic.
USDA-ARS?s Scientific Manuscript database
Avian influenza virus (AIV) is type A influenza that is adapted to avian host species. Although the virus can be isolated from numerous avian species, the natural host reservoir species are dabbling ducks, shorebirds and gulls. Domestic poultry species (poultry being defined as birds that are rais...
Pathobiology of avian influenza virus infection in minor gallinaceous species: a review.
Bertran, Kateri; Dolz, Roser; Majó, Natàlia
2014-01-01
Susceptibility to avian influenza viruses (AIVs) can vary greatly among bird species. Chickens and turkeys are major avian species that, like ducks, have been extensively studied for avian influenza. To a lesser extent, minor avian species such as quail, partridges, and pheasants have also been investigated for avian influenza. Usually, such game fowl species are highly susceptible to highly pathogenic AIVs and may consistently spread both highly pathogenic AIVs and low-pathogenic AIVs. These findings, together with the fact that game birds are considered bridge species in the poultry-wildlife interface, highlight their interest from the transmission and biosecurity points of view. Here, the general pathobiological features of low-pathogenic AIV and highly pathogenic AIV infections in this group of avian species have been covered.
On avian influenza epidemic models with time delay.
Liu, Sanhong; Ruan, Shigui; Zhang, Xinan
2015-12-01
After the outbreak of the first avian influenza A virus (H5N1) in Hong Kong in 1997, another avian influenza A virus (H7N9) crossed the species barrier in mainland China in 2013 and 2014 and caused more than 400 human cases with a death rate of nearly 40%. In this paper, we take account of the incubation periods of avian influenza A virus and construct a bird-to-human transmission model with different time delays in the avian and human populations combining the survival probability of the infective avian and human populations at the latent time. By analyzing the dynamical behavior of the model, we obtain a threshold value for the prevalence of avian influenza and investigate local and global asymptotical stability of equilibria of the system.
Quantification of petroleum-type hydrocarbons in avian tissue
Gay, M.L.; Belisle, A.A.; Patton, J.F.
1980-01-01
Methods were developed for the analysis of 16 hydrocarbons in avian tissue. Mechanical extraction with pentane was followed by clean-up on Florisil and Silicar. Residues were determined by gas—liquid chromatography and gas—liquid, chromatography—mass spectrometry. The method was applied to the analysis of liver, kidney, fat, and brain tissue of mallard ducks (Anas platyrhynchos) fed a mixture of hydrocarbons. Measurable concentrations of all compounds analyzed were present in all tissues except brain. Highest concentrations were in fat.
Code of Federal Regulations, 2013 CFR
2013-01-01
.... 1, 2011 Antigen, except avian influenza and chlamydia psittaci antigens, any 2 mL $61.00 $62.00 $64.00 $65.00 $67.00 Avian antiserum except avian influenza antiserum, any 2 mL 48.00 49.00 51.00 52.00 53.00 Avian influenza antigen, any 2 mL 33.00 34.00 35.00 36.00 36.00 Avian influenza antiserum, any...
Code of Federal Regulations, 2012 CFR
2012-01-01
.... 1, 2011 Antigen, except avian influenza and chlamydia psittaci antigens, any 2 mL $61.00 $62.00 $64.00 $65.00 $67.00 Avian antiserum except avian influenza antiserum, any 2 mL 48.00 49.00 51.00 52.00 53.00 Avian influenza antigen, any 2 mL 33.00 34.00 35.00 36.00 36.00 Avian influenza antiserum, any...
Code of Federal Regulations, 2014 CFR
2014-01-01
.... 1, 2011 Antigen, except avian influenza and chlamydia psittaci antigens, any 2 mL $61.00 $62.00 $64.00 $65.00 $67.00 Avian antiserum except avian influenza antiserum, any 2 mL 48.00 49.00 51.00 52.00 53.00 Avian influenza antigen, any 2 mL 33.00 34.00 35.00 36.00 36.00 Avian influenza antiserum, any...
Billam, P; LeRoith, T; Pudupakam, R S; Pierson, F W; Duncan, R B; Meng, X J
2009-11-18
Avian hepatitis E virus (avian HEV) is the primary causative agent of Hepatitis-Splenomegaly (HS) syndrome in chickens. Recently, a genetically unique strain of avian HEV, designated avian HEV-VA, was recovered from healthy chickens in Virginia. The objective of this study was to experimentally compare the pathogenicity of the prototype strain recovered from a chicken with HS syndrome and the avian HEV-VA strain in specific-pathogen-free chickens. An infectious stock of the avian HEV-VA strain was first generated and its infectivity titer determined in chickens. For the comparative pathogenesis study, 54 chickens of 6-week-old were assigned to 3 groups of 18 chickens each. The group 1 chickens were each intravenously inoculated with 5x10(2.5) 50% chicken infectious dose of the prototype strain. The group 2 received the same dose of the avian HEV-VA strain, and the group 3 served as negative controls. Six chickens from each group were necropsied at 2, 3 and 4 weeks post-inoculation (wpi). Most chickens in both inoculated groups seroconverted by 3wpi, and the mean anti-avian HEV antibody titers were higher for the prototype strain group than the avian HEV-VA strain group. There was no significant difference in the patterns of viremia and fecal virus shedding. Blood analyte profiles did not differ between treatment groups except for serum creatine phosphokinase levels which were higher for prototype avian HEV group than avian HEV-VA group. The hepatic lesion score was higher for the prototype strain group than the other two groups. The results indicated that the avian HEV-VA strain is only slightly attenuated compared to the prototype strain, suggesting that the full spectrum of HS syndrome is likely associated with other co-factors.
Current situation on highly pathogenic avian influenza
USDA-ARS?s Scientific Manuscript database
Avian influenza is one of the most important diseases affecting the poultry industry worldwide. Avian influenza viruses can cause a range of clinical disease in poultry. Viruses that cause severe disease and mortality are referred to as highly pathogenic avian influenza (HPAI) viruses. The Asian ...
Docherty, Douglas E.; Franson, J. Christian; Brannian, Roger E.; Long, Renee R.; Radi, Craig A.; Krueger, David; Johnson, Robert F.
2012-01-01
In 1999, the U.S. Geological Survey (USGS) National Wildlife Health Center, Madison, Wisconsin, conducted a diagnostic investigation into a water bird mortality event involving intoxication with avian botulism type C and infection with avian chlamydiosis at the Benton Lake National Wildlife Refuge in Montana, USA. Of 24 carcasses necropsied, 11 had lesions consistent with avian chlamydiosis, including two that tested positive for infectious Chlamydophila psittaci, and 12 were positive for avian botulism type C. One bird tested positive for both avian botulism type C and C. psittaci. Of 61 apparently healthy water birds sampled and released, 13 had serologic evidence of C. psittaci infection and 7 were, at the time of capture, shedding infectious C. psittaci via the cloacal or oropharyngeal route. Since more routinely diagnosed disease conditions may mask avian chlamydiosis, these findings support the need for a comprehensive diagnostic investigation when determining the cause of a wildlife mortality event.
Surveillance and compartmentalisation as a tool to control avian influenza.
Zepeda, C
2006-01-01
Surveillance for avian influenza can have several objectives. Generally, these are to detect the presence of infection or to declare disease freedom. Claims for disease freedom can refer to an entire country, a zone within a country, or a compartment. Disease freedom cannot be demonstrated absolutely; however, through a multi-pronged approach employing different surveillance strategies, sufficient confidence in the absence of infection can be achieved. The recently developed OIE guidelines for surveillance for avian influenza offer different approaches to meet these goals. The guidelines are not intended to be prescriptive but rather offer options that countries may apply depending on their epidemiological situation. Compartmentalisation is a new concept that allows the recognition of populations of different health status based on management as opposed to geographic factors (regionalisation). A proposed approach for the application of this novel concept is presented.
Gabrion, C
1977-01-01
Comparative studies of the larval development of Hymenolepis stylosa Rudolphi, 1809 (Cestoda : Cyclophyllidea), a parasite of Corvid birds are undertaken from three insect species. The development in the beetle, Tenebrio molitor shows that the scolex differenciation occurs before the invagination of the metacestode in the cystic vesicle. The cercomer is long, narrow and flexuous. In the grasshopper, Lousta migratoria, the development is the same one but the scolex invaganation begins early. In another beetle, Dermestes frischi, the oncosphere is stopped in the gut-wall. The morphology and development of the cysticercoids of avian species of Hymenolepis, which have a well known life cycle, are similar. Studies on the structure of the larval stages of avian and mammal species of Hymenolepis seem necessary to find the relations between the different species of this genus.
76 FR 67017 - Notice to Manufacturers of Airport Avian Radar Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-28
... Avian Radar Systems AGENCY: Federal Aviation Administration (FAA), U.S. DOT. ACTION: Notice to Manufacturers of Airport Avian Radar Systems. SUMMARY: Projects funded under the Airport Improvement Program... Administration (FAA) is considering issuing waivers to foreign manufacturers of airport avian radar systems that...
9 CFR 113.325 - Avian Encephalomyelitis Vaccine.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Avian Encephalomyelitis Vaccine. 113... REQUIREMENTS Live Virus Vaccines § 113.325 Avian Encephalomyelitis Vaccine. Avian Encephalomyelitis Vaccine... vaccine production. All serials shall be prepared from the first through the fifth passage from the Master...
9 CFR 113.325 - Avian Encephalomyelitis Vaccine.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Avian Encephalomyelitis Vaccine. 113... REQUIREMENTS Live Virus Vaccines § 113.325 Avian Encephalomyelitis Vaccine. Avian Encephalomyelitis Vaccine... vaccine production. All serials shall be prepared from the first through the fifth passage from the Master...
9 CFR 113.208 - Avian Encephalomyelitis Vaccine, Killed Virus.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Avian Encephalomyelitis Vaccine... STANDARD REQUIREMENTS Killed Virus Vaccines § 113.208 Avian Encephalomyelitis Vaccine, Killed Virus. Avian Encephalomyelitis Vaccine (Killed Virus) shall be prepared from virus-bearing tissues or fluids obtained from...
9 CFR 113.208 - Avian Encephalomyelitis Vaccine, Killed Virus.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Avian Encephalomyelitis Vaccine... STANDARD REQUIREMENTS Killed Virus Vaccines § 113.208 Avian Encephalomyelitis Vaccine, Killed Virus. Avian Encephalomyelitis Vaccine (Killed Virus) shall be prepared from virus-bearing tissues or fluids obtained from...
9 CFR 113.325 - Avian Encephalomyelitis Vaccine.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Avian Encephalomyelitis Vaccine. 113... REQUIREMENTS Live Virus Vaccines § 113.325 Avian Encephalomyelitis Vaccine. Avian Encephalomyelitis Vaccine... vaccine production. All serials shall be prepared from the first through the fifth passage from the Master...
9 CFR 113.325 - Avian Encephalomyelitis Vaccine.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Avian Encephalomyelitis Vaccine. 113... REQUIREMENTS Live Virus Vaccines § 113.325 Avian Encephalomyelitis Vaccine. Avian Encephalomyelitis Vaccine... vaccine production. All serials shall be prepared from the first through the fifth passage from the Master...
Xing, Lida; Buckley, Lisa G.; McCrea, Richard T.; Lockley, Martin G.; Zhang, Jianping; Piñuela, Laura; Klein, Hendrik; Wang, Fengping
2015-01-01
Trace fossils provide the only records of Early Cretaceous birds from many parts of the world. The identification of traces from large avian track-makers is made difficult given their overall similarity in size and tridactyly in comparison with traces of small non-avian theropods. Reanalysis of Wupus agilis from the Early Cretaceous (Aptian-Albian) Jiaguan Formation, one of a small but growing number of known avian-pterosaur track assemblages, of southeast China determines that these are the traces of a large avian track-maker, analogous to extant herons. Wupus, originally identified as the trace of a small non-avian theropod track-maker, is therefore similar in both footprint and trackway characteristics to the Early Cretaceous (Albian) large avian trace Limiavipes curriei from western Canada, and Wupus is reassigned to the ichnofamily Limiavipedidae. The reanalysis of Wupus reveals that it and Limiavipes are distinct from similar traces of small to medium-sized non-avian theropods (Irenichnites, Columbosauripus, Magnoavipes) based on their relatively large footprint length to pace length ratio and higher mean footprint splay, and that Wupus shares enough characters with Limiavipes to be reassigned to the ichnofamily Limiavipedidae. The ability to discern traces of large avians from those of small non-avian theropods provides more data on the diversity of Early Cretaceous birds. This analysis reveals that, despite the current lack of body fossils, large wading birds were globally distributed in both Laurasia and Gondwana during the Early Cretaceous. PMID:25993285
Blanchong, Julie A.; Samuel, Michael D.; Goldberg, Diana R.; Shadduck, Daniel J.; Creekmore, L.H.
2006-01-01
Avian cholera is a significant infectious disease affecting waterfowl across North America and occurs worldwide among various avian species. Despite the importance of this disease, little is known about the factors that cause avian cholera outbreaks and what management strategies might be used to reduce disease mortality. Previous studies indicated that wetland water conditions may affect survival and transmission of Pasteurella multocida, the agent that causes avian cholera. These studies hypothesized that water conditions affect the likelihood that avian cholera outbreaks will occur in specific wetlands. To test these predictions, we collected data from avian cholera outbreak and non-outbreak (control) wetlands throughout North America (wintera??spring 1995a??1996 to 1998a??1999) to evaluate whether water conditions were associated with outbreaks. Conditional logistic regression analysis on paired outbreak and non-outbreak wetlands indicated no significant association between water conditions and the risk of avian cholera outbreaks. For wetlands where avian cholera outbreaks occurred, linear regression showed that increased eutrophic nutrient concentrations (Potassium [K], nitrate [NO3], phosphorus [P], and phosphate [PO3]) were positively related to the abundance of P. multocida recovered from water and sediment samples. Wetland protein concentration and an El Ni??o event were also associated with P. multocida abundance. Our results indicate that wetland water conditions are not strongly associated with the risk of avian cholera outbreaks; however, some variables may play a role in the abundance of P. multocida bacteria and might be important in reducing the severity of avian cholera outbreaks.
LaPointe, Dennis A; Goff, M Lee; Atkinson, Carter T
2010-04-01
More than half of the Hawaiian honeycreepers (Drepanidinae) known from historical records are now extinct. Introduced mosquito-borne disease, in particular the avian malaria Plasmodium relictum , has been incriminated as a leading cause of extinction during the 20th century and a major limiting factor in the recovery of remaining species populations. Today, most native Hawaiian bird species reach their highest densities and diversity in high elevation (>1,800 m above sea level) forests. We determined the thermal requirements for sporogonic development of P. relictum in the natural vector, Culex quinquefasciatus , and assessed the current distribution of native bird species in light of this information. Sporogonic development was completed at constant laboratory and mean field temperatures between 30 and 17 C, but development, prevalence, and intensity decreased significantly below 21 C. Using a degree-day (DD) model, we estimated a minimum threshold temperature of 12.97 C and a thermal requirement of 86.2 DD as necessary to complete development. Predicted (adiabatic lapse-rate) and observed summer threshold isotherm (13 C) correspond to the elevation of high forest refuges on the islands of Maui and Hawai'i. Our data support the hypothesis that avian malaria currently restricts the altitudinal distribution of Hawaiian honeycreeper populations and provide an ecological explanation for the absence of disease at high elevation.
Avian Metapneumovirus Subgroup C Infection in Chickens, China
Wei, Li; Zhu, Shanshan; Yan, Xv; Wang, Jing; Zhang, Chunyan; She, Ruiping; Hu, Fengjiao; Quan, Rong
2013-01-01
Avian metapneumovirus causes acute respiratory tract infection and reductions in egg production in various avian species. We isolated and characterized an increasingly prevalent avian metapneumovirus subgroup C strain from meat-type commercial chickens with severe respiratory signs in China. Culling of infected flocks could lead to economic consequences. PMID:23763901
77 FR 34783 - Highly Pathogenic Avian Influenza
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-12
... [Docket No. APHIS-2006-0074] RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal and Plant... regions where any subtype of highly pathogenic avian influenza (HPAI) is considered to exist. The interim... avian influenza (HPAI). On January 24, 2011, we published in the Federal Register (76 FR 4046-4056...
9 CFR 113.117 - Pasteurella Multocida Bacterin, Avian Isolate, Type 1.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Pasteurella Multocida Bacterin, Avian... STANDARD REQUIREMENTS Inactivated Bacterial Products § 113.117 Pasteurella Multocida Bacterin, Avian Isolate, Type 1. Pasteurella Multocida Bacterin, Avian Isolate, Type 1, shall be prepared from cultures of...
9 CFR 113.70 - Pasteurella Multocida Vaccine, Avian Isolate.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Pasteurella Multocida Vaccine, Avian... REQUIREMENTS Live Bacterial Vaccines § 113.70 Pasteurella Multocida Vaccine, Avian Isolate. Pasteurella Multocida Vaccine, Avian Isolate, shall be prepared as a desiccated live culture of an avirulent or modified...
9 CFR 113.70 - Pasteurella Multocida Vaccine, Avian Isolate.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Pasteurella Multocida Vaccine, Avian... REQUIREMENTS Live Bacterial Vaccines § 113.70 Pasteurella Multocida Vaccine, Avian Isolate. Pasteurella Multocida Vaccine, Avian Isolate, shall be prepared as a desiccated live culture of an avirulent or modified...
9 CFR 113.70 - Pasteurella Multocida Vaccine, Avian Isolate.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Pasteurella Multocida Vaccine, Avian... REQUIREMENTS Live Bacterial Vaccines § 113.70 Pasteurella Multocida Vaccine, Avian Isolate. Pasteurella Multocida Vaccine, Avian Isolate, shall be prepared as a desiccated live culture of an avirulent or modified...
9 CFR 113.70 - Pasteurella Multocida Vaccine, Avian Isolate.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Pasteurella Multocida Vaccine, Avian... REQUIREMENTS Live Bacterial Vaccines § 113.70 Pasteurella Multocida Vaccine, Avian Isolate. Pasteurella Multocida Vaccine, Avian Isolate, shall be prepared as a desiccated live culture of an avirulent or modified...
9 CFR 113.70 - Pasteurella Multocida Vaccine, Avian Isolate.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Pasteurella Multocida Vaccine, Avian... REQUIREMENTS Live Bacterial Vaccines § 113.70 Pasteurella Multocida Vaccine, Avian Isolate. Pasteurella Multocida Vaccine, Avian Isolate, shall be prepared as a desiccated live culture of an avirulent or modified...
Tewari, Rita; Rathore, Dharmendar; Crisanti, Andrea
2005-05-01
Avian and rodent malaria sporozoites selectively invade different vertebrate cell types, namely macrophages and hepatocytes, and develop in distantly related vector species. To investigate the role of the circumsporozoite (CS) protein in determining parasite survival in different vector species and vertebrate host cell types, we replaced the endogenous CS protein gene of the rodent malaria parasite Plasmodium berghei with that of the avian parasite P. gallinaceum and control rodent parasite P. yoelii. In anopheline mosquitoes, P. berghei parasites carrying P. gallinaceum and rodent parasite P. yoelii CS protein gene developed into oocysts and sporozoites. Plasmodium gallinaceum CS expressing transgenic sporozoites, although motile, failed to invade mosquito salivary glands and to infect mice, which suggests that motility alone is not sufficient for invasion. Notably, a percentage of infected Anopheles stephensi mosquitoes showed melanotic encapsulation of late stage oocysts. This was not observed in control infections or in A. gambiae infections. These findings shed new light on the role of the CS protein in the interaction of the parasite with both the mosquito vector and the rodent host.
Gas exchange in avian embryos and hatchlings.
Mortola, Jacopo P
2009-08-01
The avian egg has been proven to be an excellent model for the study of the physical principles and the physiological characteristics of embryonic gas exchange. In recent years, it has become a model for the studies of the prenatal development of pulmonary ventilation, its chemical control and its interaction with extra-pulmonary gas exchange. Differently from mammals, in birds the initiation of pulmonary ventilation and the transition from diffusive to convective gas exchange are gradual and slow-occurring events amenable to detailed investigations. The absence of the placenta and of the mother permits the study of the mechanisms of embryonic adaptation to prenatal perturbations in a way that would be impossible with mammalian preparations. First, this review summarises the general aspects of the natural history of the avian egg that are pertinent to embryonic metabolism, growth and gas exchange and the characteristics of the structures participating in gas exchange. Then, the review focuses on the embryonic development of pulmonary ventilation, its regulation in relation to the embryo's environment and metabolic state, the effects that acute or sustained changes in embryonic temperature or oxygenation can have on growth, metabolism and ventilatory control.
Sculpting the Immunological Response against Viral Disease: Statistical Mechanics and Network Theory
NASA Astrophysics Data System (ADS)
Zhou, Hao; Deem, Michael
2007-03-01
The twin challenges of immunodominance and heterologous immunity have hampered discovery of an effective vaccine against all four dengue viruses. Here we develop a generalized NK, or spin glass, theory of T cell original antigenic sin and immunodominance. The theory we develop predicts dengue vaccine clinical trial data well. From the insights that we gain by this theory, we propose two new ideas for design of epitope-based T cell vaccines against dengue. The H5N1 strain of avian influenza first appeared in Hong Kong in 1997. Since then, it has spread to at least eight other Asian countries, Romania, and Russia, and it is widely expected to enter the rest of Europe through migratory birds. Various countries around the world have started to create stockpiles of avian influenza vaccines. However, since the avian influenza is mutating, how many and which strains should be stockpiled? Here we use a combination of statistical physics and network theory to simulate the bird flu transmission and evolution. From the insights that we gain by the theory, we propose new strategies to improve the vaccine efficacy.
Heers, Ashley M.; Baier, David B.; Jackson, Brandon E.; Dial, Kenneth P.
2016-01-01
Some of the greatest transformations in vertebrate history involve developmental and evolutionary origins of avian flight. Flight is the most power-demanding mode of locomotion, and volant adult birds have many anatomical features that presumably help meet these demands. However, juvenile birds, like the first winged dinosaurs, lack many hallmarks of advanced flight capacity. Instead of large wings they have small “protowings”, and instead of robust, interlocking forelimb skeletons their limbs are more gracile and their joints less constrained. Such traits are often thought to preclude extinct theropods from powered flight, yet young birds with similarly rudimentary anatomies flap-run up slopes and even briefly fly, thereby challenging longstanding ideas on skeletal and feather function in the theropod-avian lineage. Though skeletons and feathers are the common link between extinct and extant theropods and figure prominently in discussions on flight performance (extant birds) and flight origins (extinct theropods), skeletal inter-workings are hidden from view and their functional relationship with aerodynamically active wings is not known. For the first time, we use X-ray Reconstruction of Moving Morphology to visualize skeletal movement in developing birds, and explore how development of the avian flight apparatus corresponds with ontogenetic trajectories in skeletal kinematics, aerodynamic performance, and the locomotor transition from pre-flight flapping behaviors to full flight capacity. Our findings reveal that developing chukars (Alectoris chukar) with rudimentary flight apparatuses acquire an “avian” flight stroke early in ontogeny, initially by using their wings and legs cooperatively and, as they acquire flight capacity, counteracting ontogenetic increases in aerodynamic output with greater skeletal channelization. In conjunction with previous work, juvenile birds thereby demonstrate that the initial function of developing wings is to enhance leg performance, and that aerodynamically active, flapping wings might better be viewed as adaptations or exaptations for enhancing leg performance. PMID:27100994
Avian Influenza H7N9/13 and H7N7/13: a Comparative Virulence Study in Chickens, Pigeons, and Ferrets
Kalthoff, Donata; Bogs, Jessica; Grund, Christian; Tauscher, Kerstin; Teifke, Jens P.; Starick, Elke; Harder, Timm
2014-01-01
ABSTRACT Human influenza cases caused by a novel avian H7N9 virus in China emphasize the zoonotic potential of that subtype. We compared the infectivity and pathogenicity of the novel H7N9 virus with those of a recent European avian H7N7 strain in chickens, pigeons, and ferrets. Neither virus induced signs of disease despite substantial replication in inoculated chickens and rapid transmission to contact chickens. Evidence of the replication of both viruses in pigeons, albeit at lower levels of RNA excretion, was also detected. No clear-cut differences between the two H7 isolates emerged regarding replication and antibody development in avian hosts. In ferrets, in contrast, greater replication of the avian H7N9 virus than of the H7N7 strain was observed with significant differences in viral presence, e.g., in nasal wash, lung, and cerebellum samples. Importantly, both viruses showed the potential to spread to the mammal brain. We conclude that efficient asymptomatic viral replication and shedding, as shown in chickens, facilitate the spread of H7 viruses that may harbor zoonotic potential. Biosafety measures are required for the handling of poultry infected with avian influenza viruses of the H7 subtype, independently of their pathogenicity for gallinaceous poultry. IMPORTANCE This study is important to the field since it provides data about the behavior of the novel H7N9 avian influenza virus in chickens, pigeons, and ferrets in comparison with that of a recent low-pathogenicity H7N7 strain isolated from poultry. We clearly show that chickens, but not pigeons, are highly permissive hosts of both H7 viruses, allowing high-titer replication and virus shedding without any relevant clinical signs. In the ferret model, the potential of both viruses to infect mammals could be demonstrated, including infection of the brain. However, the replication efficiency of the H7N9 virus in ferrets was higher than that of the H7N7 strain. In conclusion, valuable data for the risk analysis of low-pathogenicity avian influenza viruses of the H7 subtype are provided that could also be used for the risk assessment of zoonotic potentials and necessary biosafety measures. PMID:24899194
Comparative genomic data of the Avian Phylogenomics Project.
Zhang, Guojie; Li, Bo; Li, Cai; Gilbert, M Thomas P; Jarvis, Erich D; Wang, Jun
2014-01-01
The evolutionary relationships of modern birds are among the most challenging to understand in systematic biology and have been debated for centuries. To address this challenge, we assembled or collected the genomes of 48 avian species spanning most orders of birds, including all Neognathae and two of the five Palaeognathae orders, and used the genomes to construct a genome-scale avian phylogenetic tree and perform comparative genomics analyses (Jarvis et al. in press; Zhang et al. in press). Here we release assemblies and datasets associated with the comparative genome analyses, which include 38 newly sequenced avian genomes plus previously released or simultaneously released genomes of Chicken, Zebra finch, Turkey, Pigeon, Peregrine falcon, Duck, Budgerigar, Adelie penguin, Emperor penguin and the Medium Ground Finch. We hope that this resource will serve future efforts in phylogenomics and comparative genomics. The 38 bird genomes were sequenced using the Illumina HiSeq 2000 platform and assembled using a whole genome shotgun strategy. The 48 genomes were categorized into two groups according to the N50 scaffold size of the assemblies: a high depth group comprising 23 species sequenced at high coverage (>50X) with multiple insert size libraries resulting in N50 scaffold sizes greater than 1 Mb (except the White-throated Tinamou and Bald Eagle); and a low depth group comprising 25 species sequenced at a low coverage (~30X) with two insert size libraries resulting in an average N50 scaffold size of about 50 kb. Repetitive elements comprised 4%-22% of the bird genomes. The assembled scaffolds allowed the homology-based annotation of 13,000 ~ 17000 protein coding genes in each avian genome relative to chicken, zebra finch and human, as well as comparative and sequence conservation analyses. Here we release full genome assemblies of 38 newly sequenced avian species, link genome assembly downloads for the 7 of the remaining 10 species, and provide a guideline of genomic data that has been generated and used in our Avian Phylogenomics Project. To the best of our knowledge, the Avian Phylogenomics Project is the biggest vertebrate comparative genomics project to date. The genomic data presented here is expected to accelerate further analyses in many fields, including phylogenetics, comparative genomics, evolution, neurobiology, development biology, and other related areas.
Kalthoff, Donata; Bogs, Jessica; Grund, Christian; Tauscher, Kerstin; Teifke, Jens P; Starick, Elke; Harder, Timm; Beer, Martin
2014-08-01
Human influenza cases caused by a novel avian H7N9 virus in China emphasize the zoonotic potential of that subtype. We compared the infectivity and pathogenicity of the novel H7N9 virus with those of a recent European avian H7N7 strain in chickens, pigeons, and ferrets. Neither virus induced signs of disease despite substantial replication in inoculated chickens and rapid transmission to contact chickens. Evidence of the replication of both viruses in pigeons, albeit at lower levels of RNA excretion, was also detected. No clear-cut differences between the two H7 isolates emerged regarding replication and antibody development in avian hosts. In ferrets, in contrast, greater replication of the avian H7N9 virus than of the H7N7 strain was observed with significant differences in viral presence, e.g., in nasal wash, lung, and cerebellum samples. Importantly, both viruses showed the potential to spread to the mammal brain. We conclude that efficient asymptomatic viral replication and shedding, as shown in chickens, facilitate the spread of H7 viruses that may harbor zoonotic potential. Biosafety measures are required for the handling of poultry infected with avian influenza viruses of the H7 subtype, independently of their pathogenicity for gallinaceous poultry. This study is important to the field since it provides data about the behavior of the novel H7N9 avian influenza virus in chickens, pigeons, and ferrets in comparison with that of a recent low-pathogenicity H7N7 strain isolated from poultry. We clearly show that chickens, but not pigeons, are highly permissive hosts of both H7 viruses, allowing high-titer replication and virus shedding without any relevant clinical signs. In the ferret model, the potential of both viruses to infect mammals could be demonstrated, including infection of the brain. However, the replication efficiency of the H7N9 virus in ferrets was higher than that of the H7N7 strain. In conclusion, valuable data for the risk analysis of low-pathogenicity avian influenza viruses of the H7 subtype are provided that could also be used for the risk assessment of zoonotic potentials and necessary biosafety measures. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Avian influenza virus and free-ranging wild birds
Dierauf, Leslie A.; Karesh, W.B.; Ip, Hon S.; Gilardi, K.V.; Fischer, John R.
2006-01-01
Recent media and news reports and other information implicate wild birds in the spread of highly pathogenic avian influenza in Asia and Eastern Europe. Although there is little information concerning highly pathogenic avian influenza viruses in wild birds, scientists have amassed a large amount of data on low-pathogenicity avian influenza viruses during decades of research with wild birds. This knowledge can provide sound guidance to veterinarians, public health professionals, the general public, government agencies, and other entities with concerns about avian influenza.
Sims, Leslie D
2013-09-01
A range of measures has been recommended and used for the control and prevention of avian influenza. These measures are based on the assessment of local epidemiological situations, field observations and other scientific information. Other non-technical factors are (or in some cases should be) taken into account when developing and recommending control measures. The precise effects under field conditions of most individual interventions applied to control and prevent avian influenza have not been established or subjected to critical review, often because a number of measures are applied simultaneously without controls. In most cases, the combination of measures used results in control or elimination of the virus although there are some countries where this has not been the case. In others, especially those with low poultry density, it is not clear whether the link between the adoption of a set of measures and the subsequent control of the disease is causative. This article discusses the various measures recommended, with particular emphasis on stamping out and vaccination, examines how these measures assist in preventing zoonotic infections with avian influenza viruses and explores gaps in knowledge regarding their effectiveness. © 2013 Blackwell Publishing Ltd.
Griffin, Darren K; Robertson, Lindsay B; Tempest, Helen G; Vignal, Alain; Fillon, Valérie; Crooijmans, Richard PMA; Groenen, Martien AM; Deryusheva, Svetlana; Gaginskaya, Elena; Carré, Wilfrid; Waddington, David; Talbot, Richard; Völker, Martin; Masabanda, Julio S; Burt, Dave W
2008-01-01
Background Comparative genomics is a powerful means of establishing inter-specific relationships between gene function/location and allows insight into genomic rearrangements, conservation and evolutionary phylogeny. The availability of the complete sequence of the chicken genome has initiated the development of detailed genomic information in other birds including turkey, an agriculturally important species where mapping has hitherto focused on linkage with limited physical information. No molecular study has yet examined conservation of avian microchromosomes, nor differences in copy number variants (CNVs) between birds. Results We present a detailed comparative cytogenetic map between chicken and turkey based on reciprocal chromosome painting and mapping of 338 chicken BACs to turkey metaphases. Two inter-chromosomal changes (both involving centromeres) and three pericentric inversions have been identified between chicken and turkey; and array CGH identified 16 inter-specific CNVs. Conclusion This is the first study to combine the modalities of zoo-FISH and array CGH between different avian species. The first insight into the conservation of microchromosomes, the first comparative cytogenetic map of any bird and the first appraisal of CNVs between birds is provided. Results suggest that avian genomes have remained relatively stable during evolution compared to mammalian equivalents. PMID:18410676
Talbot, Darren A; Duchamp, Claude; Rey, Benjamin; Hanuise, Nicolas; Rouanet, Jean Louis; Sibille, Brigitte; Brand, Martin D
2004-01-01
Juvenile king penguins develop adaptive thermogenesis after repeated immersion in cold water. However, the mechanisms of such metabolic adaptation in birds are unknown, as they lack brown adipose tissue and uncoupling protein-1 (UCP1), which mediate adaptive non-shivering thermogenesis in mammals. We used three different groups of juvenile king penguins to investigate the mitochondrial basis of avian adaptive thermogenesis in vitro. Skeletal muscle mitochondria isolated from penguins that had never been immersed in cold water showed no superoxide-stimulated proton conductance, indicating no functional avian UCP. Skeletal muscle mitochondria from penguins that had been either experimentally immersed or naturally adapted to cold water did possess functional avian UCP, demonstrated by a superoxide-stimulated, GDP-inhibitable proton conductance across their inner membrane. This was associated with a markedly greater abundance of avian UCP mRNA. In the presence (but not the absence) of fatty acids, these mitochondria also showed a greater adenine nucleotide translocase-catalysed proton conductance than those from never-immersed penguins. This was due to an increase in the amount of adenine nucleotide translocase. Therefore, adaptive thermogenesis in juvenile king penguins is linked to two separate mechanisms of uncoupling of oxidative phosphorylation in skeletal muscle mitochondria: increased proton transport activity of avian UCP (dependent on superoxide and inhibited by GDP) and increased proton transport activity of the adenine nucleotide translocase (dependent on fatty acids and inhibited by carboxyatractylate). PMID:15146050
USDA-ARS?s Scientific Manuscript database
Avian influenza virus (AIV) induced proinflammatory cytokine expression is believed to contribute to the disease pathogenesis following infection. However, there is limited information on the avian immune response to infection with low pathogenic avian influenza virus (LPAIV). To gain a better under...
Wang, G; Ding, J; Hu, S; Yang, X
2012-10-01
Fragment of 759 bp DNA spanning the Matrix 1 (M1) gene of Avian Influenza Virus (AIV) was inserted into an expression vector pET28c to construct a recombinant plasmid pET28c-M1. The pET28c-M1 plasmid was transformed into the Escherichia coli BL21 (DE3) competent cell to produce a recombinant strain E. coli 21 (DE3). After being induced by Isopropyl-b-D-galactopyranoside (IPTG), E. coli 21 (DE3) expressed a 28-kDa fusion protein at a high level. This protein can bind anti-AIV (H5N1) positive serum by Western-blot analysis. After being denatured, renatured, and purified by Ni(2+)-column, the fusion protein was used as an antigen to develop Matrix 1 Enzyme-Linked Immunosorbent Assay (M1-ELISA) for detecting antibodies against AIV from chicken serum. We found that this indirect M1-ELISA was sensitive for differentiating antisera against AIV and antisera against other six kinds of avian viruses apart from AIV and this method is more sensitive than Hemagglutination Inhibition (HI) test. When compared with HI test and ELISA (IDEXX) in evaluating 581 serum samples from field vaccinated chickens, this assay showed 93.3% agreement ratio with the HI test, as well as 96.0% agreement ratio with ELISA (IDEXX). In a preliminary application, the assay successfully detected 19 AIVs from 51 nonvaccinated chicken lungs. It concludes that an indirect ELISA was successfully developed for detecting AIV. The assay is specific and sensitive. The application will greatly contribute to the long-term prevention and control of avian influenza in China. Copyright © 2011 Elsevier Ltd. All rights reserved.
Schoener, E R; Hunter, S; Howe, L
2017-07-01
Although wildlife rehabilitation and translocations are important tools in wildlife conservation in New Zealand, disease screening of birds has not been standardized. Additionally, the results of the screening programmes are often difficult to interpret due to missing disease data in resident or translocating avian populations. Molecular methods have become the most widespread method for diagnosing avian malaria (Plasmodium spp.) infections. However, these methods can be time-consuming, expensive and are less specific in diagnosing mixed infections. Thus, this study developed a new real-time PCR (qPCR) method that was able to detect and specifically identify infections of the three most common lineages of avian malaria in New Zealand (Plasmodium (Novyella) sp. SYAT05, Plasmodium elongatum GRW6 and Plasmodium spp. LINN1) as well as a less common, pathogenic Plasmodium relictum GRW4 lineage. The assay was also able to discern combinations of these parasites in the same sample and had a detection limit of five parasites per microlitre. Due to concerns relating to the presence of the potentially highly pathogenic P. relictum GRW4 lineage in avian populations, an additional confirmatory high resolution (HRM) qPCR was developed to distinguish between commonly identified P. elongatum GRW6 from P. relictum GRW4. The new qPCR assays were tested using tissue samples containing Plasmodium schizonts from three naturally infected dead birds resulting in the identified infection of P. elongatum GRW6. Thus, these rapid qPCR assays have shown to be cost-effective and rapid screening tools for the detection of Plasmodium infection in New Zealand native birds.
Carlson, Jenny S; Nelms, Brittany; Barker, Christopher M; Reisen, William K; Sehgal, Ravinder N M; Cornel, Anthony J
2018-05-29
Currently, there are very few studies of avian malaria that investigate relationships among the host-vector-parasite triad concomitantly. In the current study, we experimentally measured the vector competence of several Culex mosquitoes for a newly described avian malaria parasite, Plasmodium homopolare. Song sparrow (Melospiza melodia) blood infected with a low P. homopolare parasitemia was inoculated into a naïve domestic canary (Serinus canaria forma domestica). Within 5 to 10 days post infection (dpi), the canary unexpectedly developed a simultaneous high parasitemic infection of Plasmodium cathemerium (Pcat6) and a low parasitemic infection of P. homopolare, both of which were detected in blood smears. During this infection period, PCR detected Pcat6, but not P. homopolare in the canary. Between 10 and 60 dpi, Pcat6 blood stages were no longer visible and PCR no longer amplified Pcat6 parasite DNA from canary blood. However, P. homopolare blood stages remained visible, albeit still at very low parasitemias, and PCR was able to amplify P. homopolare DNA. This pattern of mixed Pcat6 and P. homopolare infection was repeated in three secondary infected canaries that were injected with blood from the first infected canary. Mosquitoes that blood-fed on the secondary infected canaries developed infections with Pcat6 as well as another P. cathemerium lineage (Pcat8); none developed PCR detectable P. homopolare infections. These observations suggest that the original P. homopolare-infected songbird also had two un-detectable P. cathemerium lineages/strains. The vector and host infectivity trials in this study demonstrated that current molecular assays may significantly underreport the extent of mixed avian malaria infections in vectors and hosts.
Qi, Li; Pujanauski, Lindsey M.; Davis, A. Sally; Schwartzman, Louis M.; Chertow, Daniel S.; Baxter, David; Scherler, Kelsey; Hartshorn, Kevan L.; Slemons, Richard D.; Walters, Kathie-Anne; Kash, John C.
2014-01-01
ABSTRACT Zoonotic avian influenza virus infections may lead to epidemics or pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its H1 hemagglutinin was identified as a key mammalian virulence factor. A chimeric 1918 virus expressing a contemporary avian H1 hemagglutinin, however, displayed murine pathogenicity indistinguishable from that of the 1918 virus. Here, isogenic chimeric avian influenza viruses were constructed on an avian influenza virus backbone, differing only by hemagglutinin subtype expressed. Viruses expressing the avian H1, H6, H7, H10, and H15 subtypes were pathogenic in mice and cytopathic in normal human bronchial epithelial cells, in contrast to H2-, H3-, H5-, H9-, H11-, H13-, H14-, and H16-expressing viruses. Mouse pathogenicity was associated with pulmonary macrophage and neutrophil recruitment. These data suggest that avian influenza virus hemagglutinins H1, H6, H7, H10, and H15 contain inherent mammalian virulence factors and likely share a key virulence property of the 1918 virus. Consequently, zoonotic infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals. PMID:25406382
Singh, Minerva; Friess, Daniel A; Vilela, Bruno; Alban, Jose Don T De; Monzon, Angelica Kristina V; Veridiano, Rizza Karen A; Tumaneng, Roven D
2017-01-01
This study maps distribution and spatial congruence between Above-Ground Biomass (AGB) and species richness of IUCN listed conservation-dependent and endemic avian fauna in Palawan, Philippines. Grey Level Co-Occurrence Texture Matrices (GLCMs) extracted from Landsat and ALOS-PALSAR were used in conjunction with local field data to model and map local-scale field AGB using the Random Forest algorithm (r = 0.92 and RMSE = 31.33 Mg·ha-1). A support vector regression (SVR) model was used to identify the factors influencing variation in avian species richness at a 1km scale. AGB is one of the most important determinants of avian species richness for the study area. Topographic factors and anthropogenic factors such as distance from the roads were also found to strongly influence avian species richness. Hotspots of high AGB and high species richness concentration were mapped using hotspot analysis and the overlaps between areas of high AGB and avian species richness was calculated. Results show that the overlaps between areas of high AGB with high IUCN red listed avian species richness and endemic avian species richness were fairly limited at 13% and 8% at the 1-km scale. The overlap between 1) low AGB and low IUCN richness, and 2) low AGB and low endemic avian species richness was higher at 36% and 12% respectively. The enhanced capacity to spatially map the correlation between AGB and avian species richness distribution will further assist the conservation and protection of forest areas and threatened avian species.
The Biological Flight Research Facility
NASA Technical Reports Server (NTRS)
Johnson, Catherine C.
1991-01-01
NASA Ames Research Center is building a research facility, the Biological Flight Research Facility (BFRF), to meet the needs of life scientists to study the long-term effects of variable gravity on living systems. The facility will be housed on Space Station Freedom and is anticipated to operate for the lifetime of the station, approximately 30 years. It will allow plant and animal biologists to study the role of gravity, or its absence, at varying gravity intensities for varying periods of time and with various organisms. The principal difference between current Spacelab missions and those on Space Station Freedom, other than length of mission, will be the capability to perform on-orbit science procedures and the capability to simulate earth gravity. Initially, the facility will house plants and rodents in habitats which can be maintained at microgravity or can be placed on a 2.5-m diam centrifuge. However, the facility is also being designed to accommodate future habitats for small primates, avian, and aquatic specimens. The centrifuge will provide 1 g for controls and will also be able to provide gravity from 0.01 to 2.0 g for threshold gravity studies as well as hypergravity studies. The BFRF will provide the means to conduct basic experiments to gain an understanding of the effects of microgravity on the structure and function of plants and animals, as well as investigate the role of gravity as a potential countermeasure for the physiological changes observed in microgravity.
Planning for avian flu disruptions on global operations: a DMAIC case study.
Kumar, Sameer
2012-01-01
The author aims to assess the spread of avian flu, its impact on businesses operating in the USA and overseas, and the measures required for corporate preparedness. Six Sigma DMAIC process is used to analyze avian flu's impact and how an epidemic could affect large US business operations worldwide. Wal-Mart and Dell Computers were chosen as one specializes in retail and the other manufacturing. The study identifies avian flu pandemic risks including failure modes on Wal-Mart and Dell Computers global operations. It reveals the factors that reinforce avian-flu pandemic's negative impact on company global supply chains. It also uncovers factors that balance avian-flu pandemic's impact on their global supply chains. Avian flu and its irregularity affect the research outcomes because its spread could fluctuate based on so many factors that could come into play. Further, the potential cost to manufacturers and other supply chain partners is relatively unknown. As a relatively new phenomenon, quantitative data were not available to determine immediate costs. In this decade, the avian influenza H5N1 virus has killed millions of poultry in Asia, Europe and Africa. This flu strain can infect and kill humans who come into contact with this virus. An avian influenza H5N1 outbreak could lead to a devastating effect on global food supply, business services and business operations. The study provides guidance on what global business operation managers can do to prepare for such events, as well as how avian flu progression to a pandemic can disrupt such operations. This study raises awareness about avian flu's impact on businesses and humans and also highlights the need to create contingency plans for corporate preparedness to avoid incurring losses.
Avian Influenza spread and transmission dynamics
Bourouiba, Lydia; Gourley, Stephen A.; Liu, Rongsong; Takekawa, John Y.; Wu, Jianhong; Chen, Dongmei; Moulin, Bernard; Wu, Jianhong
2015-01-01
The spread of highly pathogenic avian influenza (HPAI) viruses of type A of subtype H5N1 has been a serious threat to global public health. Understanding the roles of various (migratory, wild, poultry) bird species in the transmission of these viruses is critical for designing and implementing effective control and intervention measures. Developing appropriate models and mathematical techniques to understand these roles and to evaluate the effectiveness of mitigation strategies have been a challenge. Recent development of the global health surveillance (especially satellite tracking and GIS techniques) and the mathematical theory of dynamical systems combined have gradually shown the promise of some cutting-edge methodologies and techniques in mathematical biology to meet this challenge.
Meyer, Anne; Dinh, Tung Xuan; Nhu, Thu Van; Pham, Long Thanh; Newman, Scott; Nguyen, Thuy Thi Thanh; Pfeiffer, Dirk Udo; Vergne, Timothée
2017-01-01
Presence of ducks, and in particular of free-grazing ducks, has consistently been shown to be one of the most important risk factors for highly pathogenic avian influenza outbreaks which has compromised poultry production in South-East Asia since the early 2000s and continues to threaten public health, farmers' livelihood and food security. Although free-grazing duck production has been practised for decades in South-East Asia, there are few published studies describing this production system, which is suspected to play an important role in the maintenance of avian influenza viruses. This study aimed at describing quantitatively the long-distance free-grazing duck production system in South Vietnam, characterising the movement and contact patterns of the duck flocks, and identifying potential associations between farming practices, movement and contact patterns and the circulation of avian influenza viruses. We conducted interviews among stakeholders involved in the free-grazing duck production system (duck farmers, transporters and rice paddy owners) in combination with a virological cross-sectional survey in South Vietnam. Results show that both direct and indirect contacts between free-grazing duck flocks were frequent and diverse. The flocks were transported extensively across district and province boundaries, mainly by boat but also by truck or on foot. A third of the investigated flocks had a positive influenza A virology test, indicating current circulation of avian influenza viruses, but none were positive for H5 subtypes. The age and size of the flock as well as its location at the time of sampling were associated with the risk of influenza A circulation in the flocks. These findings should be considered when developing risk assessment models of influenza virus spread aimed at informing the development of improved biosecurity practices leading to enhanced animal health, sustainable animal production and reliable income for farmers.
Wilson, R.R.; Twedt, D.J.; Fredrickson, L.H.; King, S.L.; Kaminski, R.M.
2005-01-01
Reforestation of bottomland hardwood sites in the Mississippi Alluvial Valley has markedly increased in recent years, primarily due to financial incentive programs such as the Wetland Reserve Program, Partners for Wildlife Program, and state and private conservation programs. An avian conservation plan for the Mississippi Alluvial Valley proposes returning a substantial area of cropland to forested wetlands. Understanding how birds colonize reforested sites is important to assess the effectiveness of avian conservation. We evaluated establishment of woody species and assessed bird colonization on 89 reforested sites. These reforested sites were primarily planted with heavy-seeded oaks (Quercus spp.) and pecans (Carya illinoensis). Natural invasion of light-seeded species was expected to diversify these forests for wildlife and sustainable timber harvest. Planted tree species averaged 397 + 36 stems/ha-1, whereas naturally invading trees averaged 1675 + 241 stems/ha. However, naturally invading trees were shorter than planted trees and most natural invasion occurred <100 m from an existing forested edge. Even so, planted trees were relatively slow to develop vertical structure, especially when compared with tree species planted and managed for pulpwood production. Slow development of vertical structure resulted in grassland bird species, particularly dickcissel (Spiza americana) and red-winged blackbird (Agelaius phoeniceus), being the dominant avian colonizers for the first 7 years post-planting. High priority bird species (as defined by Partners in Flight), such as prothonotary warbler (Protonotaria citrea) and wood thrush (Hylocichla mustelina), were not frequently detected until stands were 15 years old. Canonical correspondence analysis revealed tree height had the greatest influence on the bird communities colonizing reforested sites. Because colonization by forest birds is dependent on tree height, we recommend inclusion of at least one fast-growing tree species (e.g., cottonwood [Populus deltoides], or sycamore [Platanus occidentalis]) in the planting stock to encourage rapid avian colonization.
Dinh, Tung Xuan; Nhu, Thu Van; Pham, Long Thanh; Newman, Scott; Nguyen, Thuy Thi Thanh; Pfeiffer, Dirk Udo; Vergne, Timothée
2017-01-01
Presence of ducks, and in particular of free-grazing ducks, has consistently been shown to be one of the most important risk factors for highly pathogenic avian influenza outbreaks which has compromised poultry production in South-East Asia since the early 2000s and continues to threaten public health, farmers’ livelihood and food security. Although free-grazing duck production has been practised for decades in South-East Asia, there are few published studies describing this production system, which is suspected to play an important role in the maintenance of avian influenza viruses. This study aimed at describing quantitatively the long-distance free-grazing duck production system in South Vietnam, characterising the movement and contact patterns of the duck flocks, and identifying potential associations between farming practices, movement and contact patterns and the circulation of avian influenza viruses. We conducted interviews among stakeholders involved in the free-grazing duck production system (duck farmers, transporters and rice paddy owners) in combination with a virological cross-sectional survey in South Vietnam. Results show that both direct and indirect contacts between free-grazing duck flocks were frequent and diverse. The flocks were transported extensively across district and province boundaries, mainly by boat but also by truck or on foot. A third of the investigated flocks had a positive influenza A virology test, indicating current circulation of avian influenza viruses, but none were positive for H5 subtypes. The age and size of the flock as well as its location at the time of sampling were associated with the risk of influenza A circulation in the flocks. These findings should be considered when developing risk assessment models of influenza virus spread aimed at informing the development of improved biosecurity practices leading to enhanced animal health, sustainable animal production and reliable income for farmers. PMID:28632789
Monitoring low density avian populations: An example using Mountain Plovers
Dreitz, V.J.; Lukacs, P.M.; Knopf, F.L.
2006-01-01
Declines in avian populations highlight a need for rigorous, broad-scale monitoring programs to document trends in avian populations that occur in low densities across expansive landscapes. Accounting for the spatial variation and variation in detection probability inherent to monitoring programs is thought to be effort-intensive and time-consuming. We determined the feasibility of the analytical method developed by Royle and Nichols (2003), which uses presence-absence (detection-non-detection) field data, to estimate abundance of Mountain Plovers (Charadrius montanus) per sampling unit in agricultural fields, grassland, and prairie dog habitat in eastern Colorado. Field methods were easy to implement and results suggest that the analytical method provides valuable insight into population patterning among habitats. Mountain Plover abundance was highest in prairie dog habitat, slightly lower in agricultural fields, and substantially lower in grassland. These results provided valuable insight to focus future research into Mountain Plover ecology and conservation. ?? The Cooper Ornithological Society 2006.
Low abundance of microsatellite repeats in the genome of the Brown-headed Cowbird (Molothrus ater)
Longmire, Jonathan L.; Hahn, D.C.; Roach, J.L.
1999-01-01
A cosmid library made from brown-headed cowbird (Molothrus ater) DNA was examined for representation of 17 distinct microsatellite motifs including all possible mono-, di-, and trinucleotide microsatellites, and the tetranucleotide repeat (GATA)n. The overall density of microsatellites within cowbird DNA was found to be one repeat per 89 kb and the frequency of the most abundant motif, (AGC)n, was once every 382 kb. The abundance of microsatellites within the cowbird genome is estimated to be reduced approximately 15-fold compared to humans. The reduced frequency of microsatellites seen in this study is consistent with previous observations indicating reduced numbers of microsatellites and other interspersed repeats in avian DNA. In addition to providing new information concerning the abundance of microsatellites within an avian genome, these results provide useful insights for selecting cloning strategies that might be used in the development of locus-specific microsatellite markers for avian studies.
Response of avian communities to herbicide-induced vegetation changes
Morrison, M.L.; Meslow, E.C.
1984-01-01
The relationships between avian communities and herbicide modification of vegetation were analyzed on early-growth clear-cuts in western Oregon that had received phenoxy herbicide treatment 1 or 4 years previously. For both 1 and 4 years post-spray, vegetation development was greater in the third height interval (> 3.0 m) on untreated sites. All measures of vegetative diversity on untreated sites exceeded those on treated sites. Overall density and diversity of birds were similar between treated and untreated sites. Several bird species altered their foraging behavior on treated sites, i.e., birds using deciduous trees increased use of shrubs on treated sites. The primary effect of herbicide application was a reduction in the complexity of vegetation, a condition due primarity to the removal of deciduous trees. Small patches of deciduous trees scattered in clear-cuts treated with phenoxy herbicides can maintain an avian community similar to that on untreated sites.
Pathophysiology of avian intestinal ion transport.
Nighot, Meghali; Nighot, Prashant
2018-06-01
The gut has great importance for the commercial success of poultry production. Numerous ion transporters, exchangers, and channels are present on both the apical and the basolateral membrane of intestinal epithelial cells, and their differential expression along the crypt-villus axis within the various intestinal segments ensures efficient intestinal absorption and effective barrier function. Recent studies have shown that intensive production systems, microbial exposure, and nutritional management significantly affect intestinal physiology and intestinal ion transport. Dysregulation of normal intestinal ion transport is manifested as diarrhoea, malabsorption, and intestinal inflammation resulting into poor production efficiency. This review discusses the basic mechanisms involved in avian intestinal ion transport and the impact of development during growth, nutritional and environmental alterations, and intestinal microbial infections on it. The effect of intestinal microbial infections on avian intestinal ion transport depends on factors such as host immunity, pathogen virulence, and the mucosal organisation of the particular intestinal segment.
A new real-time PCR protocol for detection of avian haemosporidians.
Bell, Jeffrey A; Weckstein, Jason D; Fecchio, Alan; Tkach, Vasyl V
2015-07-19
Birds possess the most diverse assemblage of haemosporidian parasites; including three genera, Plasmodium, Haemoproteus, and Leucocytozoon. Currently there are over 200 morphologically identified avian haemosporidian species, although true species richness is unknown due to great genetic diversity and insufficient sampling in highly diverse regions. Studies aimed at surveying haemosporidian diversity involve collecting and screening samples from hundreds to thousands of individuals. Currently, screening relies on microscopy and/or single or nested standard PCR. Although effective, these methods are time and resource consuming, and in the case of microscopy require substantial expertise. Here we report a newly developed real-time PCR protocol designed to quickly and reliably detect all three genera of avian haemosporidians in a single biochemical reaction. Using available DNA sequences from avian haemosporidians we designed primers R330F and R480RL, which flank a 182 base pair fragment of mitochondrial conserved rDNA. These primers were initially tested using real-time PCR on samples from Malawi, Africa, previously screened for avian haemosporidians using traditional nested PCR. Our real time protocol was further tested on 94 samples from the Cerrado biome of Brazil, previously screened using a single PCR assay for haemosporidian parasites. These samples were also amplified using modified nested PCR protocols, allowing for comparisons between the three different screening methods (single PCR, nested PCR, real-time PCR). The real-time PCR protocol successfully identified all three genera of avian haemosporidians from both single and mixed infections previously detected from Malawi. There was no significant difference between the three different screening protocols used for the 94 samples from the Brazilian Cerrado (χ(2) = 0.3429, df = 2, P = 0.842). After proving effective, the real-time protocol was used to screen 2113 Brazilian samples, identifying 693 positive samples. Our real-time PCR assay proved as effective as two widely used molecular screening techniques, single PCR and nested PCR. However, the real-time protocol has the distinct advantage of detecting all three genera in a single reaction, which significantly increases efficiency by greatly decreasing screening time and cost. Our real-time PCR protocol is therefore a valuable tool in the quickly expanding field of avian haemosporidian research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manning, Gillian E., E-mail: gmann017@uottawa.ca; Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3; Farmahin, Reza, E-mail: mfarm070@uottawa.ca
2012-09-15
Birds differ in sensitivity to the embryotoxic effects of polychlorinated biphenyls (PCBs), which complicates environmental risk assessments for these chemicals. Recent research has shown that the identities of amino acid residues 324 and 380 in the avian aryl hydrocarbon receptor 1 (AHR1) ligand binding domain (LBD) are primarily responsible for differences in avian species sensitivity to selected dibenzo-p-dioxins and furans. A luciferase reporter gene (LRG) assay was developed in our laboratory to measure AHR1-mediated induction of a cytochrome P450 1A5 reporter gene in COS-7 cells transfected with different avian AHR1 constructs. In the present study, the LRG assay was usedmore » to measure the concentration-dependent effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and PCBs 126, 77, 105 and 118 on luciferase activity in COS-7 cells transfected with AHR1 constructs representative of 86 avian species in order to predict their sensitivity to PCB-induced embryolethality and the relative potency of PCBs in these species. The results of the LRG assay indicate that the identity of amino acid residues 324 and 380 in the AHR1 LBD are the major determinants of avian species sensitivity to PCBs. The relative potency of PCBs did not differ greatly among AHR1 constructs. Luciferase activity was significantly correlated with embryolethality data obtained from the literature (R{sup 2} ≥ 0.87, p < 0.0001). Thus, the LRG assay in combination with the knowledge of a species' AHR1 LBD sequence can be used to predict PCB-induced embryolethality in potentially any avian species of interest without the use of lethal methods on a large number of individuals. -- Highlights: ► PCB embryolethality in birds can be predicted from a species' AHR1 genotype. ► The reporter gene assay is useful for predicting species sensitivity to PCBs. ► The relative potency of PCBs does not appear to differ between AHR1 genotypes. ► Contamination of PCB 105 and PCB 118 did not affect their relative potency values.« less
9 CFR 56.10 - Initial State response and containment plan.
Code of Federal Regulations, 2013 CFR
2013-01-01
.../H7 LOW PATHOGENIC AVIAN INFLUENZA § 56.10 Initial State response and containment plan. (a) In order... and education programs regarding avian influenza. (b) If a State is designated a U.S. Avian Influenza Monitored State, Layers under § 146.24(a) of this chapter or a U.S. Avian Influenza Monitored State, Turkeys...
9 CFR 56.10 - Initial State response and containment plan.
Code of Federal Regulations, 2014 CFR
2014-01-01
.../H7 LOW PATHOGENIC AVIAN INFLUENZA § 56.10 Initial State response and containment plan. (a) In order... and education programs regarding avian influenza. (b) If a State is designated a U.S. Avian Influenza Monitored State, Layers under § 146.24(a) of this chapter or a U.S. Avian Influenza Monitored State, Turkeys...
9 CFR 56.10 - Initial State response and containment plan.
Code of Federal Regulations, 2012 CFR
2012-01-01
.../H7 LOW PATHOGENIC AVIAN INFLUENZA § 56.10 Initial State response and containment plan. (a) In order... and education programs regarding avian influenza. (b) If a State is designated a U.S. Avian Influenza Monitored State, Layers under § 146.24(a) of this chapter or a U.S. Avian Influenza Monitored State, Turkeys...
9 CFR 56.10 - Initial State response and containment plan.
Code of Federal Regulations, 2011 CFR
2011-01-01
.../H7 LOW PATHOGENIC AVIAN INFLUENZA § 56.10 Initial State response and containment plan. (a) In order... and education programs regarding avian influenza. (b) If a State is designated a U.S. Avian Influenza Monitored State, Layers under § 146.24(a) of this chapter or a U.S. Avian Influenza Monitored State, Turkeys...
9 CFR 56.10 - Initial State response and containment plan.
Code of Federal Regulations, 2010 CFR
2010-01-01
.../H7 LOW PATHOGENIC AVIAN INFLUENZA § 56.10 Initial State response and containment plan. (a) In order...) Public awareness and education programs regarding avian influenza. (b) If a State is designated a U.S. Avian Influenza Monitored State, Layers under § 146.24(a) of this chapter or a U.S. Avian Influenza...
Patrick D. Culbert; Volker C. Radeloff; Curtis H. Flather; Josef M. Kellndorfer; Chadwick D. Rittenhouse; Anna M. Pidgeon
2013-01-01
With limited resources for habitat conservation, the accurate identification of high-value avian habitat is crucial. Habitat structure affects avian biodiversity but is difficult to quantify over broad extents. Our goal was to identify which measures of vertical and horizontal habitat structure are most strongly related to patterns of avian biodiversity across the...
The prevention and control of avian influenza: the avian influenza coordinated agriculture project.
Cardona, C; Slemons, R; Perez, D
2009-04-01
The Avian Influenza Coordinated Agriculture Project (AICAP) entitled "Prevention and Control of Avian Influenza in the US" strives to be a significant point of reference for the poultry industry and the general public in matters related to the biology, risks associated with, and the methods used to prevent and control avian influenza. To this end, AICAP has been remarkably successful in generating research data, publications through an extensive network of university- and agency-based researchers, and extending findings to stakeholders. An overview of the highlights of AICAP research is presented.
Padilla, Luis R; Huyvaert, Kathryn P; Merkel, Jane; Miller, R Eric; Parker, Patricia G
2003-09-01
Venipuncture was performed on 50 adult, free-ranging waved albatrosses (Phoebastria irrorata) on Española, Galapagos Islands, Ecuador, to establish hematologic and plasma biochemistry reference ranges and to determine the prevalence of exposure to important domestic avian pathogens. Weights and plasma creatine phosphokinase activities differed significantly between males and females. Serum was tested for evidence of exposure to avian influenza, avian paramyxoviruses 1, 2, and 3, avian cholera, adenovirus groups 1 and 2, avian encephalomyelitis, Marek's disease, infectious bursal disease, and infectious bronchitis virus (Connecticut and Massachusetts strains). Of 44 birds, 29 (66%) seroreacted to adenovirus group 1, and four seroreacted to avian encephalomyelitis. Cloacal swabs were negative for Chlamydophila psittaci DNA.
Josset, Laurence; Zeng, Hui; Kelly, Sara M; Tumpey, Terrence M; Katze, Michael G
2014-02-04
A novel avian-origin H7N9 influenza A virus (IAV) emerged in China in 2013, causing mild to lethal human respiratory infections. H7N9 originated with multiple reassortment events between avian viruses and carries genetic markers of human adaptation. Determining whether H7N9 induces a host response closer to that with human or avian IAV is important in order to better characterize this emerging virus. Here we compared the human lung epithelial cell response to infection with A/Anhui/01/13 (H7N9) or highly pathogenic avian-origin H5N1, H7N7, or human seasonal H3N2 IAV. The transcriptomic response to H7N9 was highly specific to this strain but was more similar to the response to human H3N2 than to that to other avian IAVs. H7N9 and H3N2 both elicited responses related to eicosanoid signaling and chromatin modification, whereas H7N9 specifically induced genes regulating the cell cycle and transcription. Among avian IAVs, the response to H7N9 was closest to that elicited by H5N1 virus. Host responses common to H7N9 and the other avian viruses included the lack of induction of the antigen presentation pathway and reduced proinflammatory cytokine induction compared to that with H3N2. Repression of these responses could have an important impact on the immunogenicity and virulence of H7N9 in humans. Finally, using a genome-based drug repurposing approach, we identified several drugs predicted to regulate the host response to H7N9 that may act as potential antivirals, including several kinase inhibitors, as well as FDA-approved drugs, such as troglitazone and minocycline. Importantly, we validated that minocycline inhibited H7N9 replication in vitro, suggesting that our computational approach holds promise for identifying novel antivirals. Whether H7N9 will be the next pandemic influenza virus or will persist and sporadically infect humans from its avian reservoir, similar to H5N1, is not known yet. High-throughput profiling of the host response to infection allows rapid characterization of virus-host interactions and generates many hypotheses that will accelerate understanding and responsiveness to this potential threat. We show that the cellular response to H7N9 virus is closer to that induced by H3N2 than to that induced by H5N1, reflecting the potential of this new virus for adaptation to humans. Importantly, dissecting the host response to H7N9 may guide host-directed antiviral development.
Spencer, James Herbert
2013-04-01
The literature on development has focused on the concept of transition in understanding the emergent challenges facing poor but rapidly developing countries. Scholars have focused extensively on the health and urban transitions associated with this change and, in particular, its use for understanding emerging infectious diseases. However, few have developed explicit empirical measures to quantify the extent to which a transitions focus is useful for theory, policy, and practice. Using open source data on avian influenza in 2004 and 2005 and the Vietnam Census of Population and Housing, this paper introduces the Kuznets curve as a tool for empirically estimating transition and disease. Findings suggest that the Kuznets curve is a viable tool for empirically assessing the role of transitional dynamics in the emergence of new infectious diseases.
Identification of cell density signal molecule
Schwarz, Richard I.
1998-01-01
Disclosed herein is a novel proteinaceous cell density signal molecule (CDS) between 25 and 35 kD, which is secreted by fibroblastic primary avian tendon cells in culture, and causes the cells to self-regulate their proliferation and the expression of differentiated function. It effects an increase of procollagen production in avian tendon cell cultures of ten fold while proliferation rates are decreased. CDS, and the antibodies which recognize them, are important for the development of diagnostics and treatments for injuries and diseases involving connective tissues, particularly tendon. Also disclosed are methods of production and use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Ki Seok; Lee, Jiyeung; Ahn, So Shin
Development of effective vaccines against highly pathogenic avian influenza (HPAI) H5N1 viruses is a global public health priority. Considering the difficulty in predicting HPAI H5N1 pandemic strains, one strategy used in their design includes the development of formulations with the capacity of eliciting broad cross-protective immunity against multiple viral antigens. To this end we constructed a replication-defective recombinant adenovirus-based avian influenza virus vaccine (rAdv-AI) expressing the codon-optimized M2eX-HA-hCD40L and the M1-M2 fusion genes from HPAI H5N1 human isolate. Although there were no significant differences in the systemic immune responses observed between the intramuscular prime-intramuscular boost regimen (IM/IM) and the intranasalmore » prime-intramuscular boost regimen (IN/IM), IN/IM induced more potent CD8{sup +} T cell and antibody responses at mucosal sites than the IM/IM vaccination, resulting in more effective protection against lethal H5N2 avian influenza (AI) virus challenge. These findings suggest that the strategies used to induce multi-antigen-targeted mucosal immunity, such as IN/IM delivery of rAdv-AI, may be a promising approach for developing broad protective vaccines that may be more effective against the new HPAI pandemic strains.« less
Sedyaningsih, Endang R; Isfandari, Siti; Soendoro, Triono; Supari, Siti Fadilah
2008-06-01
As the country hardest hit by avian influenza, both in poultry and in human, Indonesia's decision to withhold samples of avian influenza virus A (H5N1) has fired up a global controversy. The objective of this paper is to describe the position taken by Indonesia in the events leading to the decision and in those conducted to resolve the situation. The sources for this paper are the Indonesian human influenza A(H5N1) case reports and study results, summaries, minutes and reports of national and international meetings of virus sharing, and other related Indonesian and WHO documents. The International Health Regulations 2005 have been applied in different ways based on different interpretations. While one party insists on the importance of free, non-conditional, virus sharing for risk assessment and risk response, Indonesia--as supported by most of the developing countries--stresses on the more basic principles such as sovereignty of a country over its biological materials, transparency of the global system, and equity between developed and developing nations. This event demonstrates the unresolved imbalance between the affluent high-tech countries and the poor agriculture-based countries. Regional, global and in-country meetings must continue to be conducted to find solutions acceptable to all.
Singh, Minerva; Friess, Daniel A.; Vilela, Bruno; Alban, Jose Don T. De; Monzon, Angelica Kristina V.; Veridiano, Rizza Karen A.; Tumaneng, Roven D.
2017-01-01
This study maps distribution and spatial congruence between Above-Ground Biomass (AGB) and species richness of IUCN listed conservation-dependent and endemic avian fauna in Palawan, Philippines. Grey Level Co-Occurrence Texture Matrices (GLCMs) extracted from Landsat and ALOS-PALSAR were used in conjunction with local field data to model and map local-scale field AGB using the Random Forest algorithm (r = 0.92 and RMSE = 31.33 Mg·ha-1). A support vector regression (SVR) model was used to identify the factors influencing variation in avian species richness at a 1km scale. AGB is one of the most important determinants of avian species richness for the study area. Topographic factors and anthropogenic factors such as distance from the roads were also found to strongly influence avian species richness. Hotspots of high AGB and high species richness concentration were mapped using hotspot analysis and the overlaps between areas of high AGB and avian species richness was calculated. Results show that the overlaps between areas of high AGB with high IUCN red listed avian species richness and endemic avian species richness were fairly limited at 13% and 8% at the 1-km scale. The overlap between 1) low AGB and low IUCN richness, and 2) low AGB and low endemic avian species richness was higher at 36% and 12% respectively. The enhanced capacity to spatially map the correlation between AGB and avian species richness distribution will further assist the conservation and protection of forest areas and threatened avian species. PMID:29206228
Molaei, Goudarz; Thomas, Michael C.; Muller, Tim; Medlock, Jan; Shepard, John J.; Armstrong, Philip M.; Andreadis, Theodore G.
2016-01-01
Background Eastern equine encephalitis (EEE) virus (Togaviridae, Alphavirus) is a highly pathogenic mosquito-borne zoonosis that is responsible for occasional outbreaks of severe disease in humans and equines, resulting in high mortality and neurological impairment in most survivors. In the past, human disease outbreaks in the northeastern U.S. have occurred intermittently with no apparent pattern; however, during the last decade we have witnessed recurring annual emergence where EEE virus activity had been historically rare, and expansion into northern New England where the virus had been previously unknown. In the northeastern U.S., EEE virus is maintained in an enzootic cycle involving the ornithophagic mosquito, Culiseta melanura, and wild passerine (perching) birds in freshwater hardwood swamps. However, the identity of key avian species that serve as principal virus reservoir and amplification hosts has not been established. The efficiency with which pathogen transmission occurs within an avian community is largely determined by the relative reservoir competence of each species and by ecological factors that influence contact rates between these avian hosts and mosquito vectors. Methodology and principle findings Contacts between vector mosquitoes and potential avian hosts may be directly quantified by analyzing the blood meal contents of field-collected specimens. We used PCR-based molecular methods and direct sequencing of the mitochondrial cytochrome b gene for profiling of blood meals in Cs. melanura, in an effort to quantify its feeding behavior on specific vertebrate hosts, and to infer epidemiologic implications in four historic EEE virus foci in the northeastern U.S. Avian point count surveys were conducted to determine spatiotemporal host community composition. Of 1,127 blood meals successfully identified to species level, >99% of blood meals were from 65 avian hosts in 27 families and 11 orders, and only seven were from mammalian hosts representing three species. We developed an empirically informed mathematical model for EEE virus transmission using Cs. melanura abundance and preferred and non-preferred avian hosts. To our knowledge this is the first mathematical model for EEE virus, a pathogen with many potential hosts, in the northeastern U.S. We measured strong feeding preferences for a number of avian species based on the proportion of mosquito blood meals identified from these bird species in relation to their observed frequencies. These included: American Robin, Tufted Titmouse, Common Grackle, Wood Thrush, Chipping Sparrow, Black-capped Chickadee, Northern Cardinal, and Warbling Vireo. We found that these bird species, most notably Wood Thrush, play a dominant role in supporting EEE virus amplification. It is also noteworthy that the competence of some of the aforementioned avian species for EEE virus has not been established. Our findings indicate that heterogeneity induced by mosquito host preference, is a key mediator of the epizootic transmission of vector-borne pathogens. Conclusion and significance Detailed knowledge of the vector-host interactions of mosquito populations in nature is essential for evaluating their vectorial capacity and for assessing the role of individual vertebrates as reservoir hosts involved in the maintenance and amplification of zoonotic agents of human diseases. Our study clarifies the host associations of Cs. melanura in four EEE virus foci in the northeastern U.S., identifies vector host preferences as the most important transmission parameter, and quantifies the contribution of preference-induced contact heterogeneity to enzootic transmission. Our study identifies Wood Thrush, American Robin and a few avian species that may serve as superspreaders of EEE virus. Our study elucidates spatiotemporal host species utilization by Cs. melanura in relation to avian host community. This research provides a basis to better understand the involvement of Cs. melanura and avian hosts in the transmission and ecology of EEE virus and the risk of human infection in virus foci. PMID:26751704
Molaei, Goudarz; Thomas, Michael C; Muller, Tim; Medlock, Jan; Shepard, John J; Armstrong, Philip M; Andreadis, Theodore G
2016-01-01
Eastern equine encephalitis (EEE) virus (Togaviridae, Alphavirus) is a highly pathogenic mosquito-borne zoonosis that is responsible for occasional outbreaks of severe disease in humans and equines, resulting in high mortality and neurological impairment in most survivors. In the past, human disease outbreaks in the northeastern U.S. have occurred intermittently with no apparent pattern; however, during the last decade we have witnessed recurring annual emergence where EEE virus activity had been historically rare, and expansion into northern New England where the virus had been previously unknown. In the northeastern U.S., EEE virus is maintained in an enzootic cycle involving the ornithophagic mosquito, Culiseta melanura, and wild passerine (perching) birds in freshwater hardwood swamps. However, the identity of key avian species that serve as principal virus reservoir and amplification hosts has not been established. The efficiency with which pathogen transmission occurs within an avian community is largely determined by the relative reservoir competence of each species and by ecological factors that influence contact rates between these avian hosts and mosquito vectors. Contacts between vector mosquitoes and potential avian hosts may be directly quantified by analyzing the blood meal contents of field-collected specimens. We used PCR-based molecular methods and direct sequencing of the mitochondrial cytochrome b gene for profiling of blood meals in Cs. melanura, in an effort to quantify its feeding behavior on specific vertebrate hosts, and to infer epidemiologic implications in four historic EEE virus foci in the northeastern U.S. Avian point count surveys were conducted to determine spatiotemporal host community composition. Of 1,127 blood meals successfully identified to species level, >99% of blood meals were from 65 avian hosts in 27 families and 11 orders, and only seven were from mammalian hosts representing three species. We developed an empirically informed mathematical model for EEE virus transmission using Cs. melanura abundance and preferred and non-preferred avian hosts. To our knowledge this is the first mathematical model for EEE virus, a pathogen with many potential hosts, in the northeastern U.S. We measured strong feeding preferences for a number of avian species based on the proportion of mosquito blood meals identified from these bird species in relation to their observed frequencies. These included: American Robin, Tufted Titmouse, Common Grackle, Wood Thrush, Chipping Sparrow, Black-capped Chickadee, Northern Cardinal, and Warbling Vireo. We found that these bird species, most notably Wood Thrush, play a dominant role in supporting EEE virus amplification. It is also noteworthy that the competence of some of the aforementioned avian species for EEE virus has not been established. Our findings indicate that heterogeneity induced by mosquito host preference, is a key mediator of the epizootic transmission of vector-borne pathogens. Detailed knowledge of the vector-host interactions of mosquito populations in nature is essential for evaluating their vectorial capacity and for assessing the role of individual vertebrates as reservoir hosts involved in the maintenance and amplification of zoonotic agents of human diseases. Our study clarifies the host associations of Cs. melanura in four EEE virus foci in the northeastern U.S., identifies vector host preferences as the most important transmission parameter, and quantifies the contribution of preference-induced contact heterogeneity to enzootic transmission. Our study identifies Wood Thrush, American Robin and a few avian species that may serve as superspreaders of EEE virus. Our study elucidates spatiotemporal host species utilization by Cs. melanura in relation to avian host community. This research provides a basis to better understand the involvement of Cs. melanura and avian hosts in the transmission and ecology of EEE virus and the risk of human infection in virus foci.
Pasick, J; Kahn, S
2014-12-01
The World Organisation for Animal Health (OIE) prescribes standards for the diagnosis and control of avian influenza, as well as health measures for safe trade in birds and avian products, which are based on up-to-date scientific information and risk management principles, consistent with the role of the OIE as a reference standard-setting body for the World Trade Organization (WTO). These standards and recommendations continue to evolve, reflecting advances in technology and scientific understanding of this important zoonotic disease. The avian influenza viruses form part of the natural ecosystem by virtue of their ubiquitous presence in wild aquatic birds, a fact that human intervention cannot change. For the purposes of the Terrestrial Animal Health Code (Terrestrial Code), avian influenza is defined as an infection of poultry. However, the scope of the OIE standards and recommendations is not restricted to poultry, covering the diagnosis, early detection and management of avian influenza, including sanitary measures for trade in birds and avian products. The best way to manage avian influenza-associated risks to human and animal health is for countries to conduct surveillance using recommended methods, to report results in a consistent and transparent manner, and to applythe sanitary measures described in the Terrestrial Code. Surveillance for and timely reporting of avian influenza in accordance with OIE standards enable the distribution of relevant, up-to-date information to the global community.
Charles E. Swift; Kerri T. Vierling; Andrew T. Hudak; Lee A. Vierling
2017-01-01
Ecologists have a long-term interest in understanding the relative influence of vegetation composition and vegetation structure on avian diversity. LiDAR remote sensing is useful in studying local patterns of avian diversity because it characterizes fine-scale vegetation structure across broad extents. We used LiDAR, aerial and satellite imagery, and avian field data...
USDA-ARS?s Scientific Manuscript database
Two hundred samples collected from Anseriformes, Charadriiformes, Gruiformes, and Galliformes were assayed using real-time reverse transcriptase polymerase chain reaction (RRT-PCR) for presence of avian influenza virus and avian paramyxovirus-1. Virus isolation using embryonating chicken eggs, embr...
ERIC Educational Resources Information Center
Springer, W. T.; And Others
1977-01-01
AAAP's Continuing Education Committee surveyed AAAP members in 1975 to determine the history and quality of their formal instruction in avian medicine, their opinion of the importance of avian medicine in veterinary medical education, and what effective methods could be used to stimulate interest in avian medicine. Results are reviewed. (LBH)
Avian malaria, ecological host traits and mosquito abundance in southeastern Amazonia.
Fecchio, Alan; Ellis, Vincenzo A; Bell, Jeffrey A; Andretti, Christian B; D'Horta, Fernando M; Silva, Allan M; Tkach, Vasyl V; Weckstein, Jason D
2017-07-01
Avian malaria is a vector transmitted disease caused by Plasmodium and recent studies suggest that variation in its prevalence across avian hosts is correlated with a variety of ecological traits. Here we examine the relationship between prevalence and diversity of Plasmodium lineages in southeastern Amazonia and: (1) host ecological traits (nest location, nest type, flocking behaviour and diet); (2) density and diversity of avian hosts; (3) abundance and diversity of mosquitoes; and (4) season. We used molecular methods to detect Plasmodium in blood samples from 675 individual birds of 120 species. Based on cytochrome b sequences, we recovered 89 lineages of Plasmodium from 136 infected individuals sampled across seven localities. Plasmodium prevalence was homogeneous over time (dry season and flooding season) and space, but heterogeneous among 51 avian host species. Variation in prevalence among bird species was not explained by avian ecological traits, density of avian hosts, or mosquito abundance. However, Plasmodium lineage diversity was positively correlated with mosquito abundance. Interestingly, our results suggest that avian host traits are less important determinants of Plasmodium prevalence and diversity in southeastern Amazonia than in other regions in which they have been investigated.
Reduced avian virulence and viremia of West Nile virus isolates from Mexico and Texas.
Brault, Aaron C; Langevin, Stanley A; Ramey, Wanichaya N; Fang, Ying; Beasley, David W C; Barker, Christopher M; Sanders, Todd A; Reisen, William K; Barrett, Alan D T; Bowen, Richard A
2011-10-01
A West Nile virus (WNV) isolate from Mexico (TM171-03) and BIRD1153, a unique genotype from Texas, have exhibited reduced murine neuroinvasive phenotypes. To determine if murine neuroinvasive capacity equates to avian virulence potential, American crow (Corvus brachyrhynchos) and house sparrows (Passer domesticus) were experimentally inoculated with representative murine neuroinvasive/non-neuroinvasive strains. In both avian species, a plaque variant from Mexico that was E-glycosylation competent produced higher viremias than an E-glycosylation-incompetent variant, indicating the potential importance of E-glycosylation for avian replication. The murine non-neuroinvasive BIRD1153 strain was significantly attenuated in American crows but not house sparrows when compared with the murine neuroinvasive Texas strain. Despite the loss of murine neuroinvasive properties of nonglycosylated variants from Mexico, our data indicate avian replication potential of these strains and that unique WNV virulence characteristics exist between murine and avian models. The implications of reduced avian replication of variants from Mexico for restricted WNV transmission in Latin America is discussed.
Reduced Avian Virulence and Viremia of West Nile Virus Isolates from Mexico and Texas
Brault, Aaron C.; Langevin, Stanley A.; Ramey, Wanichaya N.; Fang, Ying; Beasley, David W. C.; Barker, Christopher M.; Sanders, Todd A.; Reisen, William K.; Barrett, Alan D. T.; Bowen, Richard A.
2011-01-01
A West Nile virus (WNV) isolate from Mexico (TM171-03) and BIRD1153, a unique genotype from Texas, have exhibited reduced murine neuroinvasive phenotypes. To determine if murine neuroinvasive capacity equates to avian virulence potential, American crow (Corvus brachyrhynchos) and house sparrows (Passer domesticus) were experimentally inoculated with representative murine neuroinvasive/non-neuroinvasive strains. In both avian species, a plaque variant from Mexico that was E-glycosylation competent produced higher viremias than an E-glycosylation–incompetent variant, indicating the potential importance of E-glycosylation for avian replication. The murine non-neuroinvasive BIRD1153 strain was significantly attenuated in American crows but not house sparrows when compared with the murine neuroinvasive Texas strain. Despite the loss of murine neuroinvasive properties of nonglycosylated variants from Mexico, our data indicate avian replication potential of these strains and that unique WNV virulence characteristics exist between murine and avian models. The implications of reduced avian replication of variants from Mexico for restricted WNV transmission in Latin America is discussed. PMID:21976584
Evidence-Based Advances in Avian Medicine.
Summa, Noémie M; Guzman, David Sanchez-Migallon
2017-09-01
This article presents relevant advances in avian medicine and surgery over the past 5 years. New information has been published to improve clinical diagnosis in avian diseases. This article also describes new pharmacokinetic studies. Advances in the understanding and treatment of common avian disorders are presented in this article, as well. Although important progress has been made over the past years, there is still much research that needs to be done regarding the etiology, pathophysiology, diagnosis, and treatment of avian diseases and evidence-based information is still sparse in the literature. Copyright © 2017 Elsevier Inc. All rights reserved.
Patrick D. Culbert; Volker C. Radeloff; Veronique St-Louis; Curtis H. Flather; Chadwick D. Rittenhouse; Thomas P. Albright; Anna M. Pidgeon
2012-01-01
Avian biodiversity is threatened, and in order to prioritize limited conservation resources and conduct effective conservation planning a better understanding of avian species richness patterns is needed. The use of image texture measures, as a proxy for the spatial structure of land cover and vegetation, has proven useful in explaining patterns of avian abundance and...
de Geus, Eveline D; Tefsen, Boris; van Haarlem, Daphne A; van Eden, Willem; van Die, Irma; Vervelde, Lonneke
2013-12-01
To increase our understanding of the interaction between avian influenza virus and its chicken host, we identified receptors for putative avian influenza virus (AIV) glycan determinants on chicken dendritic cells. Chicken dendritic cells (DCs) were found to recognize glycan determinants containing terminal αGalNAc, Galα1-3Gal, GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ (chitotriose) and Galα1-2Gal. Infection of chicken dendritic cells with either low pathogenic (LP) or highly pathogenic (HP) AIV results in elevated mRNA expression of homologs of the mouse C-type lectins DEC205 and macrophage mannose receptor (MMR), whereas expression levels of the human dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) homolog remained unchanged. Following uptake and subsequent presentation of avian influenza virus by DCs, adaptive immunity, including humoral immune responses are induced. We have investigated the antibody responses against virus glycan epitopes after avian influenza virus infection. Using glycan micro-array analysis we showed that chicken contained antibodies that predominantly recognize terminal Galα1-3Gal-R, chitotriose and Fucα1-2Galβ1-4GlcNAc-R (H-type 2). After influenza-infection, glycan array analysis showed that both levels and repertoire of glycan-recognizing antibodies decreased. However, analysis of the sera by ELISA indicated that the levels of different isotypes of anti-glycan Abs against specific glycan antigens was increased after influenza-infection, suggesting that the presentation of the glycan antigens and iso-type of the Abs are critical parameters to take into account when measuring anti-glycan Abs. This novel approach in avian influenza research may contribute to the development of a broad spectrum vaccine and improves our mechanistic understanding of innate and adaptive responses to glycans. Copyright © 2013 Elsevier Ltd. All rights reserved.
2011-01-01
Mass in ovo vaccination with live attenuated viruses is widely used in the poultry industry to protect against various infectious diseases. The worldwide outbreaks of low pathogenic and highly pathogenic avian influenza highlight the pressing need for the development of similar mass vaccination strategies against avian influenza viruses. We have previously shown that a genetically modified live attenuated avian influenza virus (LAIV) was amenable for in ovo vaccination and provided optimal protection against H5 HPAI viruses. However, in ovo vaccination against other subtypes resulted in poor hatchability and, therefore, seemed impractical. In this study, we modified the H7 and H9 hemagglutinin (HA) proteins by substituting the amino acids at the cleavage site for those found in the H6 HA subtype. We found that with this modification, a single dose in ovo vaccination of 18-day old eggs provided complete protection against homologous challenge with low pathogenic virus in ≥70% of chickens at 2 or 6 weeks post-hatching. Further, inoculation of 19-day old egg embryos with 106 EID50 of LAIVs improved hatchability to ≥90% (equivalent to unvaccinated controls) with similar levels of protection. Our findings indicate that the strategy of modifying the HA cleavage site combined with the LAIV backbone could be used for in ovo vaccination against avian influenza. Importantly, with protection conferred as early as 2 weeks post-hatching, with this strategy birds would be protected prior to or at the time of delivery to a farm or commercial operation. PMID:21255403
The public health impact of avian influenza viruses.
Katz, J M; Veguilla, V; Belser, J A; Maines, T R; Van Hoeven, N; Pappas, C; Hancock, K; Tumpey, T M
2009-04-01
Influenza viruses with novel hemagglutinin and 1 or more accompanying genes derived from avian influenza viruses sporadically emerge in humans and have the potential to result in a pandemic if the virus causes disease and spreads efficiently in a population that lacks immunity to the novel hemagglutinin. Since 1997, multiple avian influenza virus subtypes have been transmitted directly from domestic poultry to humans and have caused a spectrum of human disease, from asymptomatic to severe and fatal. To assess the pandemic risk that avian influenza viruses pose, we have used multiple strategies to better understand the capacity of avian viruses to infect, cause disease, and transmit among mammals, including humans. Seroepidemiologic studies that evaluate the frequency and risk of human infection with avian influenza viruses in populations with exposure to domestic or wild birds can provide a better understanding of the pandemic potential of avian influenza subtypes. Investigations conducted in Hong Kong following the first H5N1 outbreak in humans in 1997 determined that exposure to poultry in live bird markets was a key risk factor for human disease. Among poultry workers, butchering and exposure to sick poultry were risk factors for antibody to H5 virus, which provided evidence for infection. A second risk assessment tool, the ferret, can be used to evaluate the level of virulence and potential for host-to-host transmission of avian influenza viruses in this naturally susceptible host. Avian viruses isolated from humans exhibit a level of virulence and transmissibility in ferrets that generally reflects that seen in humans. The ferret model thus provides a means to monitor emerging avian influenza viruses for pandemic risk, as well as to evaluate laboratory-generated reassortants and mutants to better understand the molecular basis of influenza virus transmissibility. Taken together, such studies provide valuable information with which we can assess the public health risk of avian influenza viruses.
Incubation temperature influences the behavioral traits of a young precocial bird.
Hope, Sydney F; Kennamer, Robert A; Moore, Ignacio T; Hopkins, William A
2018-05-27
The environment in which animals develop can have important consequences for their phenotype. In reptiles, incubation temperature is a critical aspect of the early developmental environment. Incubation temperature influences morphology, physiology, and behavior of non-avian reptiles, however, little is known about how incubation temperature influences offspring phenotype and behaviors important to avian survival. To investigate whether incubation temperature influences avian behaviors, we collected wood duck (Aix sponsa) eggs from the field and incubated them at three naturally occurring incubation temperatures (35.0, 35.8, and 37.0°C). We conducted multiple repeated behavioral trials on individual ducklings between 5 and 15 days post-hatch to assess activity, exploratory, and boldness behaviors, classified along a proactive-reactive continuum. We measured growth rates and circulating levels of baseline and stress-induced corticosterone levels to investigate possible physiological correlates of behavior. Ducklings incubated at the lowest temperature displayed more proactive behaviors than those incubated at the two higher temperatures. We also found that younger ducklings exhibited more proactive behavior than older ducklings and males exhibited more proactive behavior than females. Further, duckling behaviors were repeatable across time and contexts, indicative of a proactive-reactive continuum of behavioral tendencies. However, neither corticosterone levels nor growth rates were related to behavior. This provides some of the first evidence that incubation temperature, a critical parental effect, influences avian offspring behaviors that may be important for survival. Our results identify incubation temperature as a mechanism that contributes to the development of behavioral traits and, in part, explains how multiple behavioral types may be maintained within populations. © 2018 Wiley Periodicals, Inc.
Drugs against avian influenza a virus: design of novel sulfonate inhibitors of neuraminidase N1.
Udommaneethanakit, Thanyarat; Rungrotmongkol, Thanyada; Frecer, Vladimir; Seneci, Pierfausto; Miertus, Stanislav; Bren, Urban
2014-01-01
The outbreak of avian influenza A (H5N1) virus has raised a global concern for both the animal as well as human health. Besides vaccination, that may not achieve full protection in certain groups of patients, inhibiting neuraminidase or the transmembrane protein M2 represents the main measure of controlling the disease. Due to alarming emergence of influenza virus strains resistant to the currently available drugs, development of new neuraminidase N1 inhibitors is of utmost importance. The present paper provides an overview of the recent advances in the design of new antiviral drugs against avian influenza. It also reports findings in binding free energy calculations for nine neuraminidase N1 inhibitors (oseltamivir, zanamivir, and peramivir -carboxylate, -phosphonate, and -sulfonate) using the Linear Interaction Energy method. Molecular dynamics simulations of these inhibitors were performed in a free and two bound states - the so called open and closed conformations of neuraminidase N1. Obtained results successfully reproduce the experimental binding affinities of the already known neuraminidase N1 inhibitors, i.e. peramivir being a stronger binder than zanamivir that is in turn stronger binder than oseltamivir, or phosphonate inhibitors being stronger binders than their carboxylate analogues. In addition, the newly proposed sulfonate inhibitors are predicted to be the strongest binders - a fact to be confirmed by their chemical synthesis and a subsequent test of their biological activity. Finally, contributions of individual inhibitor moieties to the overall binding affinity are explicitly evaluated to assist further drug development towards inhibition of the H5N1 avian influenza A virus.
Ferrie, Gina M; Sky, Christy; Schutz, Paul J; Quinones, Glorieli; Breeding, Shawnlei; Plasse, Chelle; Leighty, Katherine A; Bettinger, Tammie L
2016-01-01
Incorporating technology with research is becoming increasingly important to enhance animal welfare in zoological settings. Video technology is used in the management of avian populations to facilitate efficient information collection on aspects of avian reproduction that are impractical or impossible to obtain through direct observation. Disney's Animal Kingdom(®) maintains a successful breeding colony of Northern carmine bee-eaters. This African species is a cavity nester, making their nesting behavior difficult to study and manage in an ex situ setting. After initial research focused on developing a suitable nesting environment, our goal was to continue developing methods to improve reproductive success and increase likelihood of chicks fledging. We installed infrared bullet cameras in five nest boxes and connected them to a digital video recording system, with data recorded continuously through the breeding season. We then scored and summarized nesting behaviors. Using remote video methods of observation provided much insight into the behavior of the birds in the colony's nest boxes. We observed aggression between birds during the egg-laying period, and therefore immediately removed all of the eggs for artificial incubation which completely eliminated egg breakage. We also used observations of adult feeding behavior to refine chick hand-rearing diet and practices. Although many video recording configurations have been summarized and evaluated in various reviews, we found success with the digital video recorder and infrared cameras described here. Applying emerging technologies to cavity nesting avian species is a necessary addition to improving management in and sustainability of zoo avian populations. © 2015 Wiley Periodicals, Inc.
Avian respiratory system disorders
Olsen, Glenn H.
1989-01-01
Diagnosing and treating respiratory diseases in avian species requires a basic knowledge about the anatomy and physiology of this system in birds. Differences between mammalian and avian respiratory system function, diagnosis, and treatment are highlighted.
Boosinger, T R; Winterfield, R W; Feldman, D S; Dhillon, A S
1982-01-01
An avian pox virus was isolated from Amazon parrots dying with severe diphtheritic oral, esophageal, and crop lesions. The virus was propagated on chorioallantoic membranes (CAM) of 10-day-old chicken embryos, and a homogenate of the infected CAM was rubbed vigorously onto the conjunctiva, oral mucosa, and defeathered follicles of two healthy Amazon parrots and three conures. All experimental birds developed cutaneous and ocular pox lesions, and one parrot developed oral pox lesions. Specific-pathogen-free chicks inoculated with the virus isolate developed skin lesions identical to those of the parrots. Chickens vaccinated with fowl and pigeon pox vaccines and inoculated with the psittacine isolate developed lesions typical of avian pox. Chickens vaccinated with the psittacine virus were susceptible to fowl and pigeon pox virus infection. This pox virus isolate may thus be regarded as a potential pathogen for chickens.
Species, gender, and identity: cracking petrels' sociochemical code.
Mardon, Jérôme; Saunders, Sandra M; Anderson, Marti J; Couchoux, Charline; Bonadonna, Francesco
2010-05-01
Avian chemosignaling remains relatively unexplored, but its potential importance in birds' social behaviors is becoming recognized. Procellariiform seabirds provide particularly appropriate models for investigating these topics as they possess a well-developed olfactory system and unequalled associated capabilities. We present here results from a detailed chemical examination of the uropygial secretions (the main source of avian exogenous chemicals) from 2 petrel species, Antarctic prions and blue petrels. Using gas chromatography-mass spectrometry techniques and recently developed multivariate tools, we demonstrate that the secretions contain critical socioecological information such as species, gender, and individual identity. Importantly, these chemosignals correlate with some of the birds' olfactory behaviors demonstrated in the field. The molecules found to be associated with social information were essentially large unsaturated compounds, suggesting that these may be precursors of, or correlates to the actual airborne signals. Although the species-specific chemosignal may be involved in interspecific competition at the breeding grounds, the role of the sexually specific chemosignal remains unclear. The existence of individually specific signals (i.e., chemical signatures) in these birds has important implications for processes such as individual recognition and genetically based mate choice already suspected for this group. Our results open promising avenues of research for the study of avian chemical communication.
Freed, Leonard A; Cann, Rebecca L
2013-11-01
With climate warming, malaria in humans and birds at upper elevations is an emerging infectious disease because development of the parasite in the mosquito vector and vector life history are both temperature dependent. An enhanced-mosquito-movement model from climate warming predicts increased transmission of malaria at upper elevation sites that are too cool for parasite development in the mosquito vector. We evaluate this model with avian malaria (Plasmodium relictum) at 1,900-m elevation on the Island of Hawaii, with air temperatures too low for sporogony in the vector (Culex quinquefasciatus). On a well-defined site over a 14-year period, 10 of 14 species of native and introduced birds became infected, several epizootics occurred, and the increase in prevalence was driven more by resident species than by mobile species that could have acquired their infections at lower elevations. Greater movement of infectious mosquitoes from lower elevations now permits avian malaria to spread at 1,900 m in Hawaii, in advance of climate warming at that elevation. The increase in malaria at upper elevations due to dispersal of infectious mosquitoes is a real alternative to temperature for the increased incidence of human malaria in tropical highlands.
Paul, Mathilde; Baritaux, Virginie; Wongnarkpet, Sirichai; Poolkhet, Chaithep; Thanapongtharm, Weerapong; Roger, François; Bonnet, Pascal; Ducrot, Christian
2013-04-01
In developing countries, smallholder poultry production contributes to food security and poverty alleviation in rural areas. However, traditional poultry marketing chains have been threatened by the epidemics caused by the Highly Pathogenic Avian Influenza (H5N1) virus. The article presents a value chain analysis conducted on the traditional poultry marketing chain in the rural province of Phitsanulok, Thailand. The analysis is based on quantitative data collected on 470 backyard chicken farms, and on qualitative data collected on 28 poultry collectors, slaughterhouses and market retailers, using semi-structured interviews. The article examines the organization of poultry marketing chains in time and space, and shows how this may contribute to the spread of Highly Pathogenic Avian Influenza H5N1 in the small-scale poultry sector. The article also discusses the practices and strategies developed by value chain actors facing poultry mortality, with their economic and social determinants. More broadly, this study also illustrates how value chain analysis can contribute to a better understanding of the complex mechanisms associated with the spread of epidemics in rural communities. Copyright © 2013 Elsevier B.V. All rights reserved.
Species difference in ANP32A underlies influenza A virus polymerase host restriction
Long, Jason S.; Giotis, Efstathios S.; Moncorgé, Olivier; Frise, Rebecca; Mistry, Bhakti; James, Joe; Morisson, Mireille; Iqbal, Munir; Vignal, Alain; Skinner, Michael A.; Barclay, Wendy S.
2015-01-01
Influenza pandemics occur unpredictably when zoonotic influenza viruses with novel antigenicity acquire the ability to transmit amongst humans 1. Incompatibilities between avian virus components and the human host limit host range breaches. Barriers include receptor preference, virion stability and poor activity of the avian virus RNA-dependent RNA polymerase in human cells 2. Mutants of the heterotrimeric viral polymerase components, particularly PB2 protein, are selected during mammalian adaptation, but their mode of action is unknown 3–6. We show that a species-specific difference in host protein ANP32A accounts for the suboptimal function of avian virus polymerase in mammalian cells. Avian ANP32A possesses an additional 33 amino acids between the LRR and LCAR domains. In mammalian cells, avian ANP32A rescued the suboptimal function of avian virus polymerase to levels similar to mammalian adapted polymerase. Deletion of the avian-specific sequence from chicken ANP32A abrogated this activity whereas its insertion into human ANP32A, or closely related ANP32B, supported avian virus polymerase function. Substitutions, such as PB2 E627K, rapidly selected upon infection of humans with avian H5N1 or H7N9 influenza viruses, adapt the viral polymerase for the shorter mammalian ANP32A. Thus ANP32A represents an essential host partner co-opted to support influenza virus replication and is a candidate host target for novel antivirals. PMID:26738596
Wille, Michelle; McBurney, Scott; Robertson, Gregory J; Wilhelm, Sabina I; Blehert, David S; Soos, Catherine; Dunphy, Ron; Whitney, Hugh
2016-10-01
Avian cholera, caused by the bacterium Pasteurella multocida , is an endemic disease globally, often causing annual epizootics in North American wild bird populations with thousands of mortalities. From December 2006 to March 2007, an avian cholera outbreak caused mortality in marine birds off the coast of Atlantic Canada, largely centered 300-400 km off the coast of the island of Newfoundland. Scavenging gulls ( Larus spp.) were the primary species detected; however, mortality was also identified in Black-legged Kittiwakes ( Rissa tridactyla ) and one Common Raven ( Corvus corax ), a nonmarine species. The most common gross necropsy findings in the birds with confirmed avian cholera were acute fibrinous and necrotizing lesions affecting the spleen, air sacs, and pericardium, and nonspecific hepatomegaly and splenomegaly. The etiologic agent, P. multocida serotype 1, was recovered from 77 of 136 carcasses examined, and confirmed or probable avian cholera was diagnosed in 85 cases. Mortality observed in scavenging gull species was disproportionately high relative to their abundance, particularly when compared to nonscavenging species. The presence of feather shafts in the ventricular lumen of the majority of larid carcasses diagnosed with avian cholera suggests scavenging of birds that died from avian cholera as a major mode of transmission. This documentation of an outbreak of avian cholera in a North American pelagic environment affecting primarily scavenging gulls indicates that offshore marine environments may be a component of avian cholera dynamics.
Wille, Michelle; McBurney, Scott; Robertson, Gregory J.; Wilhelm, Sabine; Blehert, David; Soos, Catherine; Dunphy, Ron; Whitney, Hugh
2016-01-01
Avian cholera, caused by the bacterium Pasteurella multocida, is an endemic disease globally, often causing annual epizootics in North American wild bird populations with thousands of mortalities. From December 2006 to March 2007, an avian cholera outbreak caused mortality in marine birds off the coast of Atlantic Canada, largely centered 300–400 km off the coast of the island of Newfoundland. Scavenging gulls (Larus spp.) were the primary species detected; however, mortality was also identified in Black-legged Kittiwakes (Rissa tridactyla) and one Common Raven (Corvus corax), a nonmarine species. The most common gross necropsy findings in the birds with confirmed avian cholera were acute fibrinous and necrotizing lesions affecting the spleen, air sacs, and pericardium, and nonspecific hepatomegaly and splenomegaly. The etiologic agent, P. multocida serotype 1, was recovered from 77 of 136 carcasses examined, and confirmed or probable avian cholera was diagnosed in 85 cases. Mortality observed in scavenging gull species was disproportionately high relative to their abundance, particularly when compared to nonscavenging species. The presence of feather shafts in the ventricular lumen of the majority of larid carcasses diagnosed with avian cholera suggests scavenging of birds that died from avian cholera as a major mode of transmission. This documentation of an outbreak of avian cholera in a North American pelagic environment affecting primarily scavenging gulls indicates that offshore marine environments may be a component of avian cholera dynamics.
Avian influenza outbreak in Turkey through health personnel's views: a qualitative study
Sarikaya, Ozlem; Erbaydar, Tugrul
2007-01-01
Background Avian influenza threatens public health worldwide because it is usually associated with severe illness and, consequently, a higher risk of death. During the first months of 2006, Turkey experienced its first human avian influenza epidemic. A total of 21 human cases were identified, 12 of which were confirmed by the National Institute for Medical Research. Nine of the cases, including the four fatal ones, were from the Dogubeyazit-Van region. This study aims to evaluate the efforts at the avian influenza outbreak control in the Van-Dogubeyazit region in 2006 through the experiences of health personnel. Methods We conducted in-depth interviews with seventeen key informants who took active roles during the avian influenza outbreak in East Turkey during the first months of 2006. We gathered information about the initial responses, the progress and management of the outbreak control, and the reactions of the health professionals and the public. The findings of the study are reported according to the topics that appeared through thematic analysis of the interview transcripts. Results Following the first suspected avian influenza cases, a Van Crisis Coordination Committee was formed as the coordinating and decision-making body and played an important role in the appropriate timing of decisions. The health and agriculture services could not be well coordinated owing to the lack of integrated planning in preparation for outbreak and of integrated surveillance programs. Traditional poultry practice together with the low socio-economic status of the people and the lack of health care access in the region seemed to be a major risk for animal to animal and animal to human transmission. The strengths and weaknesses of the present health system – primary health care services, national surveillance and notification systems, human resource and management – affected the inter organizational coordination during the outbreak. Open communication between the government and the public played an important part in overcoming difficulties. Conclusion Although there were problems during the avian influenza outbreak in Turkey, the rapid responses of the central and regional health authorities and the performance of the health workers were the key points in controlling the epidemic. The lessons from this outbreak should provide an opportunity for integrating the preparation plans of the health and agricultural organizations, and for revising the surveillance system and enhancing the role of the primary health care services in controlling epidemic disease. Developing successful strategies based on knowledge and experience may play a valuable role in delaying an avian influenza pandemic. PMID:18005404
O’Connor, Jingmai K.; Chiappe, Luis M.; Chuong, Cheng-ming; Bottjer, David J.; You, Hailu
2013-01-01
At least two lineages of Mesozoic birds are known to have possessed a distinct feather morphotype for which there is no neornithine (modern) equivalent. The early stepwise evolution of apparently modern feathers occurred within Maniraptora, basal to the avian transition, with asymmetrical pennaceous feathers suited for flight present in the most basal recognized avian, Archaeopteryx lithographica. The number of extinct primitive feather morphotypes recognized among non-avian dinosaurs continues to increase with new discoveries; some of these resemble feathers present in basal birds. As a result, feathers between phylogenetically widely separated taxa have been described as homologous. Here we examine the extinct feather morphotypes recognized within Aves and compare these structures with those found in non-avian dinosaurs. We conclude that the “rachis dominated” tail feathers of Confuciusornis sanctus and some enantiornithines are not equivalent to the “proximally ribbon-like” pennaceous feathers of the juvenile oviraptorosaur Similicaudipteryx yixianensis. Close morphological analysis of these unusual rectrices in basal birds supports the interpretation that they are modified pennaceous feathers. Because this feather morphotype is not seen in living birds, we build on current understanding of modern feather molecular morphogenesis to suggest a hypothetical molecular developmental model for the formation of the rachis dominated feathers of extinct basal birds. PMID:24003379
Evolution of bird genomes-a transposon's-eye view.
Kapusta, Aurélie; Suh, Alexander
2017-02-01
Birds, the most species-rich monophyletic group of land vertebrates, have been subject to some of the most intense sequencing efforts to date, making them an ideal case study for recent developments in genomics research. Here, we review how our understanding of bird genomes has changed with the recent sequencing of more than 75 species from all major avian taxa. We illuminate avian genome evolution from a previously neglected perspective: their repetitive genomic parasites, transposable elements (TEs) and endogenous viral elements (EVEs). We show that (1) birds are unique among vertebrates in terms of their genome organization; (2) information about the diversity of avian TEs and EVEs is changing rapidly; (3) flying birds have smaller genomes yet more TEs than flightless birds; (4) current second-generation genome assemblies fail to capture the variation in avian chromosome number and genome size determined with cytogenetics; (5) the genomic microcosm of bird-TE "arms races" has yet to be explored; and (6) upcoming third-generation genome assemblies suggest that birds exhibit stability in gene-rich regions and instability in TE-rich regions. We emphasize that integration of cytogenetics and single-molecule technologies with repeat-resolved genome assemblies is essential for understanding the evolution of (bird) genomes. © 2016 New York Academy of Sciences.
Pan, Zhiming; Zhang, Xiaoming; Geng, Shizhong; Fang, Qiang; You, Meng; Zhang, Lei; Jiao, Xinan; Liu, Xiufan
2010-04-01
H5N1 highly pathogenic avian influenza virus (HPAIV) has posed a great threat not only for the poultry industry but also for human health. However, an effective vaccine to provide a full spectrum of protection is lacking in the poultry field. In the current study, a novel prime-boost vaccination strategy against H5N1 HPAIV was developed: chickens were first orally immunized with a hemagglutinin (HA) DNA vaccine delivered by attenuated Salmonella enterica serovar Typhimurium, and boosting with a killed vaccine followed. Chickens in the combined vaccination group but not in single vaccination and control groups were completely protected against disease following H5N1 HPAIV intranasal challenge, with no clinical signs and virus shedding. Chickens in the prime-boost group also generated significantly higher serum hemagglutination inhibition (HI) titers and intestinal mucosal IgA titers against avian influenza virus (AIV) and higher host immune cellular responses than those from other groups before challenge. These results demonstrated that the prime-boost vaccination strategy provides an effective way to prevent and control H5N1 highly pathogenic avian influenza virus.
Verhagen, Josanne H.; Lexmond, Pascal; Vuong, Oanh; Schutten, Martin; Guldemeester, Judith; Osterhaus, Albert D. M. E.; Elbers, Armin R. W.; Slaterus, Roy; Hornman, Menno; Koch, Guus; Fouchier, Ron A. M.
2017-01-01
Avian influenza viruses from wild birds can cause outbreaks in poultry, and occasionally infect humans upon exposure to infected poultry. Identification and characterization of viral reservoirs and transmission routes is important to develop strategies that prevent infection of poultry, and subsequently virus transmission between poultry holdings and to humans. Based on spatial, temporal and phylogenetic analyses of data generated as part of intense and large-scale influenza surveillance programs in wild birds and poultry in the Netherlands from 2006 to 2011, we demonstrate that LPAIV subtype distribution differed between wild birds and poultry, suggestive of host-range restrictions. LPAIV isolated from Dutch poultry were genetically most closely related to LPAIV isolated from wild birds in the Netherlands or occasionally elsewhere in Western Europe. However, a relatively long time interval was observed between the isolations of related viruses from wild birds and poultry. Spatial analyses provided evidence for mallards (Anas platyrhynchos) being more abundant near primary infected poultry farms. Detailed year-round investigation of virus prevalence and wild bird species distribution and behavior near poultry farms should be used to improve risk assessment in relation to avian influenza virus introduction and retarget avian influenza surveillance programs. PMID:28278281
Verhagen, Josanne H; Lexmond, Pascal; Vuong, Oanh; Schutten, Martin; Guldemeester, Judith; Osterhaus, Albert D M E; Elbers, Armin R W; Slaterus, Roy; Hornman, Menno; Koch, Guus; Fouchier, Ron A M
2017-01-01
Avian influenza viruses from wild birds can cause outbreaks in poultry, and occasionally infect humans upon exposure to infected poultry. Identification and characterization of viral reservoirs and transmission routes is important to develop strategies that prevent infection of poultry, and subsequently virus transmission between poultry holdings and to humans. Based on spatial, temporal and phylogenetic analyses of data generated as part of intense and large-scale influenza surveillance programs in wild birds and poultry in the Netherlands from 2006 to 2011, we demonstrate that LPAIV subtype distribution differed between wild birds and poultry, suggestive of host-range restrictions. LPAIV isolated from Dutch poultry were genetically most closely related to LPAIV isolated from wild birds in the Netherlands or occasionally elsewhere in Western Europe. However, a relatively long time interval was observed between the isolations of related viruses from wild birds and poultry. Spatial analyses provided evidence for mallards (Anas platyrhynchos) being more abundant near primary infected poultry farms. Detailed year-round investigation of virus prevalence and wild bird species distribution and behavior near poultry farms should be used to improve risk assessment in relation to avian influenza virus introduction and retarget avian influenza surveillance programs.
Water and sediment characteristics associated with avian botulism outbreaks in wetlands
Rocke, Tonie E.; Samuel, Michael D.
1999-01-01
Avian botulism kills thousands of waterbirds annually throughout North America, but management efforts to reduce its effects have been hindered because environmental conditions that promote outbreaks are poorly understood. We measured sediment and water variables in 32 pairs of wetlands with and without a current outbreak of avian botulism. Wetlands with botulism outbreaks had greater percent organic matter (POM) in the sediment (P = 0.088) and lower redox potential in the water (P = 0.096) than paired control wetlands. We also found that pH, redox potential, temperature, and salinity measured just above the sediment-water interface were associated (P ≤ 0.05) with the risk of botulism outbreaks in wetlands, but relations were complex, involving nonlinear and multivariate associations. Regression models indicated that the risk of botulism outbreaks increased when water pH was between 7.5 and 9.0, redox potential was negative, and water temperature was >20°C. Risk declined when redox potential increased (>100), water temperature decreased (10-15°C), pH was 9.0, or salinity was low (<2.0 ppt). Our predictive models could allow managers to assess potential effects of wetland management practices on the risk of botulism outbreaks and to develop and evaluate alternative management strategies to reduce losses from avian botulism.
Eriksson, Per; Mourkas, Evangelos; González-Acuna, Daniel; Olsen, Björn; Ellström, Patrik
2017-01-01
ABSTRACT Introduction: Advances in the development of nucleic acid-based methods have dramatically facilitated studies of host–microbial interactions. Fecal DNA analysis can provide information about the host’s microbiota and gastrointestinal pathogen burden. Numerous studies have been conducted in mammals, yet birds are less well studied. Avian fecal DNA extraction has proved challenging, partly due to the mixture of fecal and urinary excretions and the deficiency of optimized protocols. This study presents an evaluation of the performance in avian fecal DNA extraction of six commercial kits from different bird species, focusing on penguins. Material and methods: Six DNA extraction kits were first tested according to the manufacturers’ instructions using mallard feces. The kit giving the highest DNA yield was selected for further optimization and evaluation using Antarctic bird feces. Results: Penguin feces constitute a challenging sample type: most of the DNA extraction kits failed to yield acceptable amounts of DNA. The QIAamp cador Pathogen kit (Qiagen) performed the best in the initial investigation. Further optimization of the protocol resulted in good yields of high-quality DNA from seven bird species of different avian orders. Conclusion: This study presents an optimized approach to DNA extraction from challenging avian fecal samples. PMID:29152162
Human health implications of avian influenza viruses and paramyxoviruses.
Capua, I; Alexander, D J
2004-01-01
Among avian influenza viruses and avian paramyxoviruses are the aetiological agents of two of the most devastating diseases of the animal kingdom: (i). the highly pathogenic form of avian influenza, caused by some viruses of the H5 and H7 subtypes, and (ii). Newcastle disease, caused by virulent strains of APMV type 1. Mortality rates due to these agents can exceed 50% in naïve bird populations, and, for some strains of AI, nearly 100%. These viruses may also be responsible for clinical conditions in humans. The virus responsible for Newcastle disease has been known to cause conjunctivitis in humans since the 1940s. The conjunctivitis is self-limiting and does not have any permanent consequences. Until 1997, reports of human infection with avian influenza viruses were sporadic and frequently associated with conjunctivitis. Recently, however, avian influenza virus infections have been associated with fatalities in human beings. These casualties have highlighted the potential risk that this type of infection poses to public health. In particular, the pathogenetic mechanisms of highly pathogenic avian influenza viruses in birds and the possibility of reassortment between avian and human viruses in the human host represent serious threats to human health. For this reason, any suspected case should be investigated thoroughly.
Multi-species patterns of avian cholera mortality in Nebraska's rainwater basin
Blanchong, Julie A.; Samuel, M.D.; Mack, G.
2006-01-01
Nebraska's Rainwater Basin (RWB) is a key spring migration area for millions of waterfowl and other avian species. Avian cholera has been endemic in the RWB since the 1970s and in some years tens of thousands of waterfowl have died from the disease. We evaluated patterns of avian cholera mortality in waterfowl species using the RWB during the last quarter of the 20th century. Mortality patterns changed between the years before (1976 - 1988) and coincident with (1989 - 1999) the dramatic increases in lesser snow goose abundance and mortality. Lesser snow geese (Chen caerulescens caerulescens) have commonly been associated with mortality events in the RWB and are known to carry virulent strains of Pasteurella multocida, the agent causing avian cholera. Lesser snow geese appeared to be the species most affected by avian cholera during 1989 - 1999; however, mortality in several other waterfowl species was positively correlated with lesser snow goose mortality. Coincident with increased lesser snow goose mortality, spring avian cholera outbreaks were detected earlier and ended earlier compared to 1976 - 1988. Dense concentrations of lesser snow geese may facilitate intraspecific disease transmission through bird-to-bird contact and wetland contamination. Rates of interspecific avian cholera transmission within the waterfowl community, however, are difficult to determine.
Oehler, David A; Novak, Ben J; Schmid, Susan C; Huth, Ken J; Totha, Aniko I; Audhya, Tapan
2018-01-01
From 2015 to 2016 we determined the husbandry protocols involved in the captive rearing of the Band-tailed Pigeon (BTPI), Patagioenas fascinate albilinea, for use as a tool in the future management of like extant and extinct avian taxa. Current and historical ex-situ conservation management of BTPIs and the closely related Passenger Pigeon, Ectopistes migratorius, is limited in scope and required further examination. Focus on the BTPI within zoos and private aviculture facilities is currently lacking. New pressures on the wild populations and future examination of the parameters involved in the possible restoration of the Passenger Pigeon may rely on a complete understanding of these conservation management techniques. Here we report on the establishment of a colony of BTPIs, at the Wildlife Conservation Society (WCS), and detail the progress attained. A confiscated group of BTPIs was presented to WCS and allowed us to set up the colony, document the husbandry involved, and monitor neonatal development and the factors that influence that development. The information has provided a better understanding of the BTPI and has implications for the future conservation management of this and like species. © 2017 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
Avian paramyxovirus infections have been reported for chickens and turkeys in association with respiratory disease or drops in egg production. This book chapter provides general information on etiology, clinical signs, lesions, diagnosis, prevention and control of avian paramyxoviruses except Newcas...
Carcass Management During Avian Influenza Outbreaks
This page on Avian Influenza (AI) describes carcass management during Avian Flu outbreaks, including who oversees carcass management, how they're managed, environmental concerns from carcass management, and disinfection. The page also describes what AI is.
Antibody responses to avian influenza viruses in wild birds broaden with age
Manvell, Ruth J.; Schulenburg, Bodo; Shell, Wendy; Wikramaratna, Paul S.; Perrins, Christopher; Sheldon, Ben C.; Brown, Ian H.; Pybus, Oliver G.
2016-01-01
For viruses such as avian influenza, immunity within a host population can drive the emergence of new strains by selecting for viruses with novel antigens that avoid immune recognition. The accumulation of acquired immunity with age is hypothesized to affect how influenza viruses emerge and spread in species of different lifespans. Despite its importance for understanding the behaviour of avian influenza viruses, little is known about age-related accumulation of immunity in the virus's primary reservoir, wild birds. To address this, we studied the age structure of immune responses to avian influenza virus in a wild swan population (Cygnus olor), before and after the population experienced an outbreak of highly pathogenic H5N1 avian influenza in 2008. We performed haemagglutination inhibition assays on sampled sera for five avian influenza strains and show that breadth of response accumulates with age. The observed age-related distribution of antibody responses to avian influenza strains may explain the age-dependent mortality observed during the highly pathogenic H5N1 outbreak. Age structures and species lifespan are probably important determinants of viral epidemiology and virulence in birds. PMID:28003449
Avian-like breathing mechanics in maniraptoran dinosaurs
Codd, Jonathan R; Manning, Phillip L; Norell, Mark A; Perry, Steven F
2007-01-01
In 1868 Thomas Huxley first proposed that dinosaurs were the direct ancestors of birds and subsequent analyses have identified a suite of ‘avian’ characteristics in theropod dinosaurs. Ossified uncinate processes are found in most species of extant birds and also occur in extinct non-avian maniraptoran dinosaurs. Their presence in these dinosaurs represents another morphological character linking them to Aves, and further supports the presence of an avian-like air-sac respiratory system in theropod dinosaurs, prior to the evolution of flight. Here we report a phylogenetic analysis of the presence of uncinate processes in Aves and non-avian maniraptoran dinosaurs indicating that these were homologous structures. Furthermore, recent work on Canada geese has demonstrated that uncinate processes are integral to the mechanics of avian ventilation, facilitating both inspiration and expiration. In extant birds, uncinate processes function to increase the mechanical advantage for movements of the ribs and sternum during respiration. Our study presents a mechanism whereby uncinate processes, in conjunction with lateral and ventral movements of the sternum and gastral basket, affected avian-like breathing mechanics in extinct non-avian maniraptoran dinosaurs. PMID:17986432
Ecology and conservation biology of avian malaria.
Lapointe, Dennis A; Atkinson, Carter T; Samuel, Michael D
2012-02-01
Avian malaria is a worldwide mosquito-borne disease caused by Plasmodium parasites. These parasites occur in many avian species but primarily affect passerine birds that have not evolved with the parasite. Host pathogenicity, fitness, and population impacts are poorly understood. In contrast to continental species, introduced avian malaria poses a substantial threat to naive birds on Hawaii, the Galapagos, and other archipelagoes. In Hawaii, transmission is maintained by susceptible native birds, competence and abundance of mosquitoes, and a disease reservoir of chronically infected native birds. Although vector habitat and avian communities determine the geographic distribution of disease, climate drives transmission patterns ranging from continuous high infection in warm lowland forests, seasonal infection in midelevation forests, and disease-free refugia in cool high-elevation forests. Global warming is expected to increase the occurrence, distribution, and intensity of avian malaria across this elevational gradient and threaten high-elevation refugia, which is the key to survival of many susceptible Hawaiian birds. Increased temperatures may have already increased global avian malaria prevalence and contributed to an emergence of disease in New Zealand. © 2012 New York Academy of Sciences.
Ecology and conservation biology of avian malaria
LaPointe, Dennis A.; Atkinson, Carter T.; Samuel, Michael D.
2012-01-01
Avian malaria is a worldwide mosquito-borne disease caused by Plasmodium parasites. These parasites occur in many avian species but primarily affect passerine birds that have not evolved with the parasite. Host pathogenicity, fitness, and population impacts are poorly understood. In contrast to continental species, introduced avian malaria poses a substantial threat to naive birds on Hawaii, the Galapagos, and other archipelagoes. In Hawaii, transmission is maintained by susceptible native birds, competence and abundance of mosquitoes, and a disease reservoir of chronically infected native birds. Although vector habitat and avian communities determine the geographic distribution of disease, climate drives transmission patterns ranging from continuous high infection in warm lowland forests, seasonal infection in midelevation forests, and disease-free refugia in cool high-elevation forests. Global warming is expected to increase the occurrence, distribution, and intensity of avian malaria across this elevational gradient and threaten high-elevation refugia, which is the key to survival of many susceptible Hawaiian birds. Increased temperatures may have already increased global avian malaria prevalence and contributed to an emergence of disease in New Zealand.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-25
...] Authorization of Emergency Use of an In Vitro Diagnostic for Detection of the Novel Avian Influenza A(H7N9... Authorization) for an in vitro diagnostic device for detection of the novel avian influenza A(H7N9) virus. FDA... security of U.S. citizens living abroad that involves the novel avian influenza A(H7N9) virus. On the basis...
Novel Reassortant Clade 2.3.4.4 Avian Influenza A(H5N8) Virus in Wild Aquatic Birds, Russia, 2016.
Lee, Dong-Hun; Sharshov, Kirill; Swayne, David E; Kurskaya, Olga; Sobolev, Ivan; Kabilov, Marsel; Alekseev, Alexander; Irza, Victor; Shestopalov, Alexander
2017-02-01
The emergence of novel avian influenza viruses in migratory birds is of concern because of the potential for virus dissemination during fall migration. We report the identification of novel highly pathogenic avian influenza viruses of subtype H5N8, clade 2.3.4.4, and their reassortment with other avian influenza viruses in waterfowl and shorebirds of Siberia.
Circulating avian influenza viruses closely related to the 1918 virus have pandemic potential
Watanabe, Tokiko; Zhong, Gongxun; Russell, Colin A.; Nakajima, Noriko; Hatta, Masato; Hanson, Anthony; McBride, Ryan; Burke, David F.; Takahashi, Kenta; Fukuyama, Satoshi; Tomita, Yuriko; Maher, Eileen A.; Watanabe, Shinji; Imai, Masaki; Neumann, Gabriele; Hasegawa, Hideki; Paulson, James C.; Smith, Derek J.; Kawaoka, Yoshihiro
2014-01-01
Summary Wild birds harbor a large gene pool of influenza A viruses that have the potential to cause influenza pandemics. Foreseeing and understanding this potential is important for effective surveillance. Our phylogenetic and geographic analyses revealed the global prevalence of avian influenza virus genes whose proteins differ only a few amino acids from the 1918 pandemic influenza virus, suggesting that 1918-like pandemic viruses may emerge in the future. To assess this risk, we generated and characterized a virus composed of avian influenza viral segments with high homology to the 1918 virus. This virus exhibited higher pathogenicity in mice and ferrets than an authentic avian influenza virus. Further, acquisition of seven amino acid substitutions in the viral polymerases and the hemagglutinin surface glycoprotein conferred respiratory droplet transmission to the 1918-like avian virus in ferrets, demonstrating that contemporary avian influenza viruses with 1918 virus-like proteins may have pandemic potential. PMID:24922572
Engineering H5N1 avian influenza viruses to study human adaptation
Morens, David M.; Subbarao, Kanta; Taubenberger, Jeffery K.
2013-01-01
Two studies of H5N1 avian influenza viruses that had been genetically engineered to render them transmissible between ferrets have proved highly controversial. Divergent opinions exist about the importance of these studies of influenza transmission and about potential ‘dual use’ research implications. No consensus has developed yet about how to balance these concerns. After not recommending immediate full publication of earlier, less complete versions of the studies, the United States National Science Advisory Board for Biosecurity subsequently recommended full publication of more complete manuscripts; however, controversy about this and similar research remains. PMID:22722191
Identification of cell density signal molecule
Schwarz, R.I.
1998-04-21
Disclosed herein is a novel proteinaceous cell density signal molecule (CDS) between 25 and 35 kD, which is secreted by fibroblastic primary avian tendon cells in culture, and causes the cells to self-regulate their proliferation and the expression of differentiated function. It effects an increase of procollagen production in avian tendon cell cultures of ten fold while proliferation rates are decreased. CDS, and the antibodies which recognize them, are important for the development of diagnostics and treatments for injuries and diseases involving connective tissues, particularly tendon. Also disclosed are methods of production and use. 2 figs.
Identifying avian sources of faecal contamination using sterol analysis.
Devane, Megan L; Wood, David; Chappell, Andrew; Robson, Beth; Webster-Brown, Jenny; Gilpin, Brent J
2015-10-01
Discrimination of the source of faecal pollution in water bodies is an important step in the assessment and mitigation of public health risk. One tool for faecal source tracking is the analysis of faecal sterols which are present in faeces of animals in a range of distinctive ratios. Published ratios are able to discriminate between human and herbivore mammal faecal inputs but are of less value for identifying pollution from wildfowl, which can be a common cause of elevated bacterial indicators in rivers and streams. In this study, the sterol profiles of 50 avian-derived faecal specimens (seagulls, ducks and chickens) were examined alongside those of 57 ruminant faeces and previously published sterol profiles of human wastewater, chicken effluent and animal meatwork effluent. Two novel sterol ratios were identified as specific to avian faecal scats, which, when incorporated into a decision tree with human and herbivore mammal indicative ratios, were able to identify sterols from avian-polluted waterways. For samples where the sterol profile was not consistent with herbivore mammal or human pollution, avian pollution is indicated when the ratio of 24-ethylcholestanol/(24-ethylcholestanol + 24-ethylcoprostanol + 24-ethylepicoprostanol) is ≥0.4 (avian ratio 1) and the ratio of cholestanol/(cholestanol + coprostanol + epicoprostanol) is ≥0.5 (avian ratio 2). When avian pollution is indicated, further confirmation by targeted PCR specific markers can be employed if greater confidence in the pollution source is required. A 66% concordance between sterol ratios and current avian PCR markers was achieved when 56 water samples from polluted waterways were analysed.
The Biological Flight Research Facility
NASA Technical Reports Server (NTRS)
Johnson, Catherine C.
1993-01-01
NASA Ames Research Center (ARC) is building a research facility, the Biological Flight Research Facility (BFRF), to meet the needs of life scientists to study the long-term effects of variable gravity on living systems. The facility will be housed on Space Station Freedom and is anticipated to operate for the lifetime of the station, approximately thirty years. It will allow plant and animal biologists to study the role of gravity, or its absence, at varying gravity intensities for varying periods of time and with various organisms. The principal difference between current Spacelab missions and those on Space Station Freedom, other than length of mission, will be the capability to perform on-orbit science procedures and the capability to simulate earth gravity. Initially the facility will house plants and rodents in habitats which can be maintained at microgravity or can be placed on a 2.5 meter diameter centrifuge. However, the facility is also being designed to accommodate future habitats for small primates, avian, and aquatic specimens. The centrifuge will provide 1 g for controls and will also be able to provide gravity from 0.01 to 2.0 g for threshold gravity studies as well as hypergravity studies. Included in the facility are a service unit for providing clean chambers for the specimens and a glovebox for manipulating the plant and animal specimens and for performing experimental protocols. The BFRF will provide the means to conduct basic experiments to gain an understanding of the effects of microgravity on the structure and function of plants and animals, as well as investigate the role of gravity as a potential countermeasure for the physiological changes observed in microgravity.
NASA Technical Reports Server (NTRS)
Liu, Tianshu; Kuykendoll, K.; Rhew, R.; Jones, S.
2004-01-01
This paper describes the avian wing geometry (Seagull, Merganser, Teal and Owl) extracted from non-contact surface measurements using a three-dimensional laser scanner. The geometric quantities, including the camber line and thickness distribution of airfoil, wing planform, chord distribution, and twist distribution, are given in convenient analytical expressions. Thus, the avian wing surfaces can be generated and the wing kinematics can be simulated. The aerodynamic characteristics of avian airfoils in steady inviscid flows are briefly discussed. The avian wing kinematics is recovered from videos of three level-flying birds (Crane, Seagull and Goose) based on a two-jointed arm model. A flapping seagull wing in the 3D physical space is re-constructed from the extracted wing geometry and kinematics.
Guigueno, Mélanie F; Fernie, Kim J
2017-04-01
Flame retardants (FRs) are a diverse group of chemicals, many of which persist in the environment and bioaccumulate in biota. Although some FRs have been withdrawn from manufacturing and commerce (e.g., legacy FRs), many continue to be detected in the environment; moreover, their replacements and/or other novel FRs are also detected in biota. Here, we review and summarize the literature on the toxic effects of various FRs on birds. Birds integrate chemical information (exposure, effects) across space and time, making them ideal sentinels of environmental contamination. Following an adverse outcome pathway (AOP) approach, we synthesized information on 8 of the most commonly reported endpoints in avian FR toxicity research: molecular measures, thyroid-related measures, steroids, retinol, brain anatomy, behaviour, growth and development, and reproduction. We then identified which of these endpoints appear more/most sensitive to FR exposure, as determined by the frequency of significant effects across avian studies. The avian thyroid system, largely characterized by inconsistent changes in circulating thyroid hormones that were the only measure in many such studies, appears to be moderately sensitive to FR exposure relative to the other endpoints; circulating thyroid hormones, after reproductive measures, being the most frequently examined endpoint. A more comprehensive examination with concurrent measurements of multiple thyroid endpoints (e.g., thyroid gland, deiodinase enzymes) is recommended for future studies to more fully understand potential avian thyroid toxicity of FRs. More research is required to determine the effects of various FRs on avian retinol concentrations, inconsistently sensitive across species, and to concurrently assess multiple steroid hormones. Behaviour related to courtship and reproduction was the most sensitive of all selected endpoints, with significant effects recorded in every study. Among domesticated species (Galliformes), raptors (Accipitriformes and Falconiformes), songbirds (Passeriformes), and other species of birds (e.g. gulls), raptors seem to be the most sensitive to FR exposure across these measurements. We recommend that future avian research connect biochemical disruptions and changes in the brain to ecologically relevant endpoints, such as behaviour and reproduction. Moreover, connecting in vivo endpoints with molecular endpoints for non-domesticated avian species is also highly important, and essential to linking FR exposure with reduced fitness and population-level effects. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Studies on the serological relationships between avian pox, sheep pox, goat pox and vaccinia viruses
Uppal, P. K.; Nilakantan, P. R.
1970-01-01
By using neutralization, complement fixation and immunogel-diffusion tests, it has been demonstrated that cross-reactions occur between various avian pox viruses and between sheep pox and goat pox viruses. No such reactions were demonstrated between avian pox viruses and vaccinia virus or between avian pox and sheep pox and goat pox viruses. Furthermore, no serological relationship was demonstrable between vaccinia virus and sheep pox and goat pox viruses. PMID:4989854
Pandemic Threat Posed by Avian Influenza A Viruses
Horimoto, Taisuke; Kawaoka, Yoshihiro
2001-01-01
Influenza pandemics, defined as global outbreaks of the disease due to viruses with new antigenic subtypes, have exacted high death tolls from human populations. The last two pandemics were caused by hybrid viruses, or reassortants, that harbored a combination of avian and human viral genes. Avian influenza viruses are therefore key contributors to the emergence of human influenza pandemics. In 1997, an H5N1 influenza virus was directly transmitted from birds in live poultry markets in Hong Kong to humans. Eighteen people were infected in this outbreak, six of whom died. This avian virus exhibited high virulence in both avian and mammalian species, causing systemic infection in both chickens and mice. Subsequently, another avian virus with the H9N2 subtype was directly transmitted from birds to humans in Hong Kong. Interestingly, the genes encoding the internal proteins of the H9N2 virus are genetically highly related to those of the H5N1 virus, suggesting a unique property of these gene products. The identification of avian viruses in humans underscores the potential of these and similar strains to produce devastating influenza outbreaks in major population centers. Although highly pathogenic avian influenza viruses had been identified before the 1997 outbreak in Hong Kong, their devastating effects had been confined to poultry. With the Hong Kong outbreak, it became clear that the virulence potential of these viruses extended to humans. PMID:11148006
Avian influenza viruses (AIVs) H9N2 are in the course of reassorting into novel AIVs.
Chang, Hui-Ping; Peng, Li; Chen, Liang; Jiang, Lu-Fang; Zhang, Zhi-Jie; Xiong, Cheng-Long; Zhao, Gen-Ming; Chen, Yue; Jiang, Qing-Wu
2018-05-01
In 2013, two episodes of influenza emerged in China and caused worldwide concern. A new H7N9 avian influenza virus (AIV) first appeared in China on February 19, 2013. By August 31, 2013, the virus had spread to ten provinces and two metropolitan cities. Of 134 patients with H7N9 influenza, 45 died. From then on, epidemics emerged sporadically in China and resulted in several victims. On November 30, 2013, a 73-year-old woman presented with an influenza-like illness. She developed multiple organ failure and died 9 d after the onset of disease. A novel reassortant AIV, H10N8, was isolated from a tracheal aspirate specimen that was obtained from the patient 7 d after onset. This case was the first human case of influenza A subtype H10N8. On 4 February, 2014, another death due to H10N8 avian influenza was reported in Jiangxi Province, China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirsch, Gary B.
2007-03-01
Modeling contagious diseases has taken on greater importance over the past several years as diseases such as SARS and avian influenza have raised concern about worldwide pandemics. Most models developed to consider projected outbreaks have been specific to a single disease. This paper describes a generic System Dynamics contagious disease model and its application to human-to-human transmission of a mutant version of avian influenza. The model offers the option of calculating rates of new infections over time based either on a fixed ''reproductive number'' that is traditional in contagious disease models or on contact rates for different sub-populations and likelihoodmore » of transmission per contact. The paper reports on results with various types of interventions. These results suggest the potential importance of contact tracing, limited quarantine, and targeted vaccination strategies as methods for controlling outbreaks, especially when vaccine supplies may initially be limited and the efficacy of anti-viral drugs uncertain.« less
Human infection with a highly pathogenic avian influenza A (H5N6) virus in Yunnan province, China.
Xu, Wen; Li, Hong; Jiang, Li
2016-01-01
Highly pathogenic avian influenza A H5N6 virus has caused four human infections in China. This study reports the preliminary findings of the first known human case of H5N6 in Yunnan province. The patient initially developed symptoms of sore throat and coughing on 27 January 2015. The disease rapidly progressed to severe pneumonia, multiple organ dysfunctions and acute respiratory distress syndrome and the patient died on 6 February. Virological analysis determined that the virus belonged to H5 clade 2.3.4.4 and it has obtained partial ability for mammalian adaptation and amantadine resistance. Environmental investigation found H5 in 63% of the samples including poultry faeces, tissues, cage surface swabs and sewage from local live poultry markets by real-time RT-PCR. These findings suggest that the expanding and enhancing of surveillance in both avian and humans are necessary to monitor the evolution of H5 influenza virus and to facilitate early detection of suspected cases.
Melancon, M.J.; Bengston, David A.; Henshel, Diane S.
1996-01-01
As in mammals and fish, birds respond to many environmental contaminants with induction of hepatic cytochromes P450. In order to monitor cytchromes P450 in specific avian species, for assessing the status of that species or the habitat it utilizes, it is necessary to have background information on the appropriate assay conditions and the responsiveness of cytochrome P450 induction in that species. Assay of four monooxygenases which give resorufin as product using a fluorescence microwell plate scanner has proven to be an effective approach. Information is provided on the incubation conditions and baseline activity for twenty avian species at ages ranging from pipping embryo to adult. Induction responsiveness is presented for sixteen of them. This information can serve as a guide for those who wish to utilize cytochrome P450 as a biomarker for contaminant exposure and effect to aid in selection of appropriate species, age, and monooxygenase assay(s).
Avian influenza surveillance and diagnosis
USDA-ARS?s Scientific Manuscript database
Rapid detection and accurate identification of low (LPAI) and high pathogenicity avian influenza (HPAI) is critical to controlling infections and disease in poultry. Test selection and algorithms for the detection and diagnosis of avian influenza virus (AIV) in poultry may vary somewhat among differ...
Bishop, P J; Graham, D F; Lamas, L P; Hutchinson, J R; Rubenson, J; Hancock, J A; Wilson, R S; Hocknull, S A; Barrett, R S; Lloyd, D G; Clemente, C J
2018-01-01
How extinct, non-avian theropod dinosaurs moved is a subject of considerable interest and controversy. A better understanding of non-avian theropod locomotion can be achieved by better understanding terrestrial locomotor biomechanics in their modern descendants, birds. Despite much research on the subject, avian terrestrial locomotion remains little explored in regards to how kinematic and kinetic factors vary together with speed and body size. Here, terrestrial locomotion was investigated in twelve species of ground-dwelling bird, spanning a 1,780-fold range in body mass, across almost their entire speed range. Particular attention was devoted to the ground reaction force (GRF), the force that the feet exert upon the ground. Comparable data for the only other extant obligate, striding biped, humans, were also collected and studied. In birds, all kinematic and kinetic parameters examined changed continuously with increasing speed, while in humans all but one of those same parameters changed abruptly at the walk-run transition. This result supports previous studies that show birds to have a highly continuous locomotor repertoire compared to humans, where discrete 'walking' and 'running' gaits are not easily distinguished based on kinematic patterns alone. The influences of speed and body size on kinematic and kinetic factors in birds are developed into a set of predictive relationships that may be applied to extinct, non-avian theropods. The resulting predictive model is able to explain 79-93% of the observed variation in kinematics and 69-83% of the observed variation in GRFs, and also performs well in extrapolation tests. However, this study also found that the location of the whole-body centre of mass may exert an important influence on the nature of the GRF, and hence some caution is warranted, in lieu of further investigation.
Avian visual behavior and the organization of the telencephalon.
Shimizu, Toru; Patton, Tadd B; Husband, Scott A
2010-01-01
Birds have excellent visual abilities that are comparable or superior to those of primates, but how the bird brain solves complex visual problems is poorly understood. More specifically, we lack knowledge about how such superb abilities are used in nature and how the brain, especially the telencephalon, is organized to process visual information. Here we review the results of several studies that examine the organization of the avian telencephalon and the relevance of visual abilities to avian social and reproductive behavior. Video playback and photographic stimuli show that birds can detect and evaluate subtle differences in local facial features of potential mates in a fashion similar to that of primates. These techniques have also revealed that birds do not attend well to global configural changes in the face, suggesting a fundamental difference between birds and primates in face perception. The telencephalon plays a major role in the visual and visuo-cognitive abilities of birds and primates, and anatomical data suggest that these animals may share similar organizational characteristics in the visual telencephalon. As is true in the primate cerebral cortex, different visual features are processed separately in the avian telencephalon where separate channels are organized in the anterior-posterior axis roughly parallel to the major laminae. Furthermore, the efferent projections from the primary visual telencephalon form an extensive column-like continuum involving the dorsolateral pallium and the lateral basal ganglia. Such a column-like organization may exist not only for vision, but for other sensory modalities and even for a continuum that links sensory and limbic areas of the avian brain. Behavioral and neural studies must be integrated in order to understand how birds have developed their amazing visual systems through 150 million years of evolution. 2010 S. Karger AG, Basel.
Avian Visual Behavior and the Organization of the Telencephalon
Shimizu, Toru; Patton, Tadd B.; Husband, Scott A.
2010-01-01
Birds have excellent visual abilities that are comparable or superior to those of primates, but how the bird brain solves complex visual problems is poorly understood. More specifically, we lack knowledge about how such superb abilities are used in nature and how the brain, especially the telencephalon, is organized to process visual information. Here we review the results of several studies that examine the organization of the avian telencephalon and the relevance of visual abilities to avian social and reproductive behavior. Video playback and photographic stimuli show that birds can detect and evaluate subtle differences in local facial features of potential mates in a fashion similar to that of primates. These techniques have also revealed that birds do not attend well to global configural changes in the face, suggesting a fundamental difference between birds and primates in face perception. The telencephalon plays a major role in the visual and visuo-cognitive abilities of birds and primates, and anatomical data suggest that these animals may share similar organizational characteristics in the visual telencephalon. As is true in the primate cerebral cortex, different visual features are processed separately in the avian telencephalon where separate channels are organized in the anterior-posterior axis roughly parallel to the major laminae. Furthermore, the efferent projections from the primary visual telencephalon form an extensive column-like continuum involving the dorsolateral pallium and the lateral basal ganglia. Such a column-like organization may exist not only for vision, but for other sensory modalities and even for a continuum that links sensory and limbic areas of the avian brain. Behavioral and neural studies must be integrated in order to understand how birds have developed their amazing visual systems through 150 million years of evolution. PMID:20733296
Avian demographic responses to drought and fire: a community-level perspective.
Saracco, James F; Fettig, Stephen M; San Miguel, George L; Mehlman, David W; Albert, Steven K
2018-05-22
Drought stress is an important consideration for wildlife in arid and semiarid regions under climate change. Drought can impact plant and animal populations directly, through effects on their physiology, as well as indirectly through effects on vegetation productivity and resource availability, and by creating conditions conducive to secondary disturbance, such as wildfire. We implemented a novel approach to understanding community-level demographic responses of birds and their habitats to these stressors in the context of climate change at 14 study sites in the Four Corners region of the southwestern United States. A large wildfire affecting three of the sites provided a natural experiment for also examining fire effects on vegetation and the bird community. We assessed (1) trends in drought and end-of-century (2071-2100) predicted average drought conditions under mid-range and high greenhouse gas concentration trajectory scenarios; (2) effects of drought and fire on habitat (vegetation greenness); and (3) effects of drought and fire on community-level avian productivity and adult apparent survival rates. Drought has increased and is expected to increase further at our study sites under climate change. Under spring drought conditions, vegetation greenness and avian productivity declined, while summer drought appeared to negatively affect adult apparent survival rates. Response to fire was mixed; in the year of the fire, avian productivity declined, but was higher than normal for several years post-fire. Our results highlight important links between environmental stressors and avian vital rates that will likely affect population trajectories in this region under climate change. We suggest that the use and continued development of community-level demographic models will provide useful tool for leveraging sparse species-level data to provide multi-species inferences and inform conservation. © 2018 by the Ecological Society of America.
Pan, Ming; Gao, Rongbao; Lv, Qiang; Huang, Shunhe; Zhou, Zhonghui; Yang, Lei; Li, Xiaodan; Zhao, Xiang; Zou, Xiaohui; Tong, Wenbin; Mao, Suling; Zou, Shumei; Bo, Hong; Zhu, Xiaoping; Liu, Lei; Yuan, Heng; Zhang, Minghong; Wang, Daqing; Li, Zumao; Zhao, Wei; Ma, Maoli; Li, Yaqiang; Li, Tianshu; Yang, Huiping; Xu, Jianan; Zhou, Lijun; Zhou, Xingyu; Tang, Wei; Song, Ying; Chen, Tao; Bai, Tian; Zhou, Jianfang; Wang, Dayan; Wu, Guizhen; Li, Dexin; Feng, Zijian; Gao, George F; Wang, Yu; He, Shusen; Shu, Yuelong
2016-01-01
Severe infection with avian influenza A (H5N6) virus in humans was identified first in 2014 in China. Before that, it was unknown or unclear if the disease or the pathogen affected people. This study illustrates the virological and clinical findings of a fatal H5N6 virus infection in a human patient. We obtained and analyzed the clinical, epidemiological, and virological data from the patient. Reverse transcription polymerase chain reaction (RT-PCR), viral culture, and sequencing were conducted for determination of the causative pathogen. The patient, who presented with fever, severe pneumonia, leucopenia, and lymphopenia, developed septic shock and acute respiratory distress syndrome (ARDS), and died on day 10 after illness onset. A novel reassortant avian-origin influenza A (H5N6) virus was isolated from the throat swab or trachea aspirate of the patient. The virus was reassorted with the HA gene of clade 2.3.4.4 H5, the internal genes of clade 2.3.2.1 H5, and the NA gene of the H6N6 avian virus. The cleavage site of the HA gene contained multiple basic amino acids, indicating that the novel H5N6 virus was highly pathogenic in chicken. A novel, highly pathogenic avian influenza H5N6 virus with a backbone of H5N1 virus acquired from the NA gene from the H6N6 virus has been identified. It caused human infection resulting in severe respiratory disease. Copyright © 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
The physiology of lipid storage and use in reptiles.
Price, Edwin R
2017-08-01
Lipid metabolism is central to understanding whole-animal energetics. Reptiles store most excess energy in lipid form, mobilise those lipids when needed to meet energetic demands, and invest lipids in eggs to provide the primary source of energy to developing embryos. Here, I review the mechanisms by which non-avian reptiles store, transport, and use lipids. Many aspects of lipid absorption, transport, and storage appear to be similar to birds, including the hepatic synthesis of lipids from glucose substrates, the transport of triglycerides in lipoproteins, and the storage of lipids in adipose tissue, although adipose tissue in non-avian reptiles is usually concentrated in abdominal fat bodies or the tail. Seasonal changes in fat stores suggest that lipid storage is primarily for reproduction in most species, rather than for maintenance during aphagic periods. The effects of fasting on plasma lipid metabolites can differ from mammals and birds due to the ability of non-avian reptiles to reduce their metabolism drastically during extended fasts. The effect of fasting on levels of plasma ketones is species specific: β-hydroxybutyrate concentration may rise or fall during fasting. I also describe the process by which the bulk of lipids are deposited into oocytes during vitellogenesis. Although this process is sometimes ascribed to vitellogenin-based transport in reptiles, the majority of lipid deposition occurs via triglycerides packaged in very-low-density lipoproteins (VLDLs), based on physiological, histological, biochemical, comparative, and genomic evidence. I also discuss the evidence for non-avian reptiles using 'yolk-targeted' VLDLs during vitellogenesis. The major physiological states - feeding, fasting, and vitellogenesis - have different effects on plasma lipid metabolites, and I discuss the possibilities and potential problems of using plasma metabolites to diagnose feeding condition in non-avian reptiles. © 2016 Cambridge Philosophical Society.
Avian influenza in birds and mammals.
Cardona, Carol J; Xing, Zheng; Sandrock, Christian E; Davis, Cristina E
2009-07-01
The disease syndromes caused by avian influenza viruses are highly variable depending on the host species infected, its susceptibility and response to infection and the virulence of the infecting viral strain. Although avian influenza viruses have a broad host range in general, it is rare for an individual strain or subtype to infect more than one species. The H5N1 highly pathogenic avian influenza virus (HPAIV) lineages of viruses that descended from A/goose/Guandong/96 (H5N1 HPAIV) are unusual in the diversity of species they have infected worldwide. Although the species affected by H5N1 HPAI in the field and those that have been experimentally studied are diverse, their associated disease syndromes are remarkably similar across species. In some species, multi-organ failure and death are rapid and no signs of the disease are observed. Most prominently in this category are chickens and other avian species of the order Galliformes. In other species, neurologic signs develop resulting in the death of the host. This is what has been reported in domestic cats (Carnivora), geese (Anseriformes), ratites (Struthioniformes), pigeons inoculated with high doses (Columbiformes) and ducks infected with H5N1 HPAIV isolated since 2002 (Anseriformes). In some other species, the disease is more prolonged and although multi-organ failure and death are the eventual outcomes, the signs of disease are more extensive. Predominantly, these species include humans (Primates) and the laboratory models of human disease, the ferret (Carnivora), mouse (Rodentia) and cynamologous macaques (Primates). Finally, some species are more resistant to infection with H5N1 HPAIV and show few or no signs of disease. These species include pigeons in some studies (Columbiformes), ducks inoculated with pre-2002 isolates (Anseriformes), and pigs (Artiodactyla).
The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yiteng; Kais, Sabre; Berman, Gennady Petrovich
2015-02-02
We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on 1) the hyperfine interaction involving electron spins and neighboring nuclear spins and 2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence ofmore » product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects of noise. We believe that the quantum avian compass can play an important role in avian navigation and can also provide the foundation for a new generation of sensitive and selective magnetic-sensing nano-devices.« less
Global dynamics of avian influenza epidemic models with psychological effect.
Liu, Sanhong; Pang, Liuyong; Ruan, Shigui; Zhang, Xinan
2015-01-01
Cross-sectional surveys conducted in Thailand and China after the outbreaks of the avian influenza A H5N1 and H7N9 viruses show a high degree of awareness of human avian influenza in both urban and rural populations, a higher level of proper hygienic practice among urban residents, and in particular a dramatically reduced number of visits to live markets in urban population after the influenza A H7N9 outbreak in China in 2013. In this paper, taking into account the psychological effect toward avian influenza in the human population, a bird-to-human transmission model in which the avian population exhibits saturation effect is constructed. The dynamical behavior of the model is studied by using the basic reproduction number. The results demonstrate that the saturation effect within avian population and the psychological effect in human population cannot change the stability of equilibria but can affect the number of infected humans if the disease is prevalent. Numerical simulations are given to support the theoretical results and sensitivity analyses of the basic reproduction number in terms of model parameters that are performed to seek for effective control measures for avian influenza.
Harris, M. Camille; Pearce, John M.; Prosser, Diann J.; White, C. LeAnn; Miles, A. Keith; Sleeman, Jonathan M.; Brand, Christopher J.; Cronin, James P.; De La Cruz, Susan; Densmore, Christine L.; Doyle, Thomas W.; Dusek, Robert J.; Fleskes, Joseph P.; Flint, Paul L.; Guala, Gerald F.; Hall, Jeffrey S.; Hubbard, Laura E.; Hunt, Randall J.; Ip, Hon S.; Katz, Rachel A.; Laurent, Kevin W.; Miller, Mark P.; Munn, Mark D.; Ramey, Andy M.; Richards, Kevin D.; Russell, Robin E.; Stokdyk, Joel P.; Takekawa, John Y.; Walsh, Daniel P.
2016-08-18
IntroductionThrough the Science Strategy for Highly Pathogenic Avian Influenza (HPAI) in Wildlife and the Environment, the USGS will assess avian influenza (AI) dynamics in an ecological context to inform decisions made by resource managers and policymakers from the local to national level. Through collection of unbiased scientific information on the ecology of AI viruses and wildlife hosts in a changing world, the U.S. Geological Survey (USGS) will enhance the development of AI forecasting tools and ensure this information is integrated with a quality decision process for managing HPAI.The overall goal of this USGS Science Strategy for HPAI in Wildlife and the Environment goes beyond documenting the occurrence and distribution of AI viruses in wild birds. The USGS aims to understand the epidemiological processes and environmental factors that influence HPAI distribution and describe the mechanisms of transmission between wild birds and poultry. USGS scientists developed a conceptual model describing the process linking HPAI dispersal in wild waterfowl to the outbreaks in poultry. This strategy focuses on five long-term science goals, which include:Science Goal 1—Augment the National HPAI Surveillance Plan;Science Goal 2—Determine mechanisms of HPAI disease spread in wildlife and the environment;Science Goal 3—Characterize HPAI viruses circulating in wildlife;Science Goal 4—Understand implications of avian ecology on HPAI spread; andScience Goal 5—Develop HPAI forecasting and decision-making tools.These goals will help define and describe the processes outlined in the conceptual model with the ultimate goal of facilitating biosecurity and minimizing transfer of diseases across the wildlife-poultry interface. The first four science goals are focused on scientific discovery and the fifth goal is application-based. Decision analyses in the fifth goal will guide prioritization of proposed actions in the first four goals.
A serotype-specific polymerase chain reaction for identification of Pasteurella multocida serotype 1
Rocke, T.E.; Smith, S.R.; Miyamoto, A.; Shadduck, D.J.
2002-01-01
A serotype-specific polymerase chain reaction (PCR) assay was developed for detection and identification of Pasteurella multocida serotype 1, the causative agent of avian cholera in wild waterfowl. Arbitrarily primed PCR was used to detect DNA fragments that distinguish serotype 1 from the other 15 serotypes of P. multocida (with the exception of serotype 14). Oligonucleotide primers were constructed from these sequences, and a PCR assay was optimized and evaluated. PCR reactions consistently resulted in amplification products with reference strains 1 and 14 and all other serotype 1 strains tested, with cell numbers as low as 2.3 cells/ml. No amplification products were produced with other P. multocida serotypes or any other bacterial species tested. To compare the sensitivity and further test the specificity of this PCR assay with traditional culturing and serotyping techniques, tissue samples from 84 Pekin ducks inoculated with field strains of P. multocida and 54 wild lesser snow geese collected during an avian cholera outbreak were provided by other investigators working on avian cholera. PCR was as sensitive (58/64) as routine isolation (52/64) in detecting and identifying P. multocida serotype 1 from the livers of inoculated Pekins that became sick or died from avian cholera. No product was amplified from tissues of 20 other Pekin ducks that received serotypes other than type 1 (serotype 3, 12 × 3, or 10) or 12 control birds. Of the 54 snow geese necropsied and tested for P. multocida, our PCR detected and identified the bacteria from 44 compared with 45 by direct isolation. The serotype-specific PCR we developed was much faster and less labor intensive than traditional culturing and serotyping procedures and could result in diagnosis of serotype 1 pasteurellosis within 24 hr of specimen submission.
Real-time in vivo uric acid biosensor system for biophysical monitoring of birds.
Gumus, A; Lee, S; Karlsson, K; Gabrielson, R; Winkler, D W; Erickson, D
2014-02-21
Research on birds has long played an important role in ecological investigations, as birds are relatively easily observed, and their high metabolic rates and diurnal habits make them quite evidently responsive to changes in their environments. A mechanistic understanding of such avian responses requires a better understanding of how variation in physiological state conditions avian behavior and integrates the effects of recent environmental changes. There is a great need for sensor systems that will allow free-flying birds to interact with their environment and make unconstrained decisions about their spatial location at the same time that their physiological state is being monitored in real time. We have developed a miniature needle-based enzymatic sensor system suitable for continuous real-time amperometric monitoring of uric acid levels in unconstrained live birds. The sensor system was constructed with Pt/Ir wire and Ag/AgCl paste. Uricase enzyme was immobilized on a 0.7 mm sensing cavity of Nafion/cellulose inner membrane to minimize the influences of background interferents. The sensor response was linear from 0.05 to 0.6 mM uric acid, which spans the normal physiological range for most avian species. We developed a two-electrode potentiostat system that drives the biosensor, reads the output current, and wirelessly transmits the data. In addition to extensive characterization of the sensor and system, we also demonstrate autonomous operation of the system by collecting in vivo extracellular uric acid measurements on a domestic chicken. The results confirm our needle-type sensor system's potential for real-time monitoring of birds' physiological state. Successful application of the sensor in migratory birds could open up a new era of studying both the physiological preparation for migration and the consequences of sustained avian flight.
Avian influenza A (H7N9) virus infection in humans: epidemiology, evolution, and pathogenesis.
Husain, Matloob
2014-12-01
New human influenza A virus strains regularly emerge causing seasonal epidemics and occasional pandemics. Lately, several zoonotic avian influenza A strains have been reported to directly infect humans. In early 2013, a novel avian influenza A virus (H7N9) strain was discovered in China to cause severe respiratory disease in humans. Since then, over 450 human cases of H7N9 infection have been discovered and 165 of them have died. Multiple epidemiological, phylogenetic, in vivo, and in vitro studies have been done to determine the origin and pathogenesis of novel H7N9 strain. This article reviews the literature related to the epidemiology, evolution, and pathogenesis of the H7N9 strain since its discovery in February 2013 till August 2014. The data available so far indicate that H7N9 was originated by a two-step reassortment process in birds and transmitted to humans through direct contact with live-bird markets. H7N9 is a low-pathogenic avian virus and contains several molecular signatures for adaptation in mammals. The severity of the respiratory disease caused by novel H7N9 virus in humans can be partly attributed to the age, sex, and underlying medical conditions of the patients. A universal influenza vaccine is not available, though several strain-specific H7N9 candidate vaccine viruses have been developed. Further, novel H7N9 virus is resistant to antiviral drug amantadine and some H7N9 isolates have acquired the resistance to neuraminidase-inhibitors. Therefore, constant surveillance and prompt control measures combined with novel research approaches to develop alternative and effective anti-influenza strategies are needed to overcome influenza A virus. Copyright © 2014 Elsevier B.V. All rights reserved.
Fasina, F O; Njage, P M K; Ali, A M M; Yilma, J M; Bwala, D G; Rivas, A L; Stegeman, A J
2016-02-01
Avian influenza virus (H5N1) is a rapidly disseminating infection that affects poultry and, potentially, humans. Because the avian virus has already adapted to several mammalian species, decreasing the rate of avian-mammalian contacts is critical to diminish the chances of a total adaptation of H5N1 to humans. To prevent the pandemic such adaptation could facilitate, a biology-specific disease surveillance model is needed, which should also consider geographical and socio-cultural factors. Here, we conceptualized a surveillance model meant to capture H5N1-related biological and cultural aspects, which included food processing, trade and cooking-related practices, as well as incentives (or disincentives) for desirable behaviours. This proof of concept was tested with data collected from 378 Egyptian and Nigerian sites (local [backyard] producers/live bird markets/village abattoirs/commercial abattoirs and veterinary agencies). Findings revealed numerous opportunities for pathogens to disseminate, as well as lack of incentives to adopt preventive measures, and factors that promoted epidemic dissemination. Supporting such observations, the estimated risk for H5N1-related human mortality was higher than previously reported. The need for multidimensional disease surveillance models, which may detect risks at higher levels than models that only measure one factor or outcome, was supported. To develop efficient surveillance systems, interactions should be captured, which include but exceed biological factors. This low-cost and easily implementable model, if conducted over time, may identify focal instances where tailored policies may diminish both endemicity and the total adaptation of H5N1 to the human species. © 2015 Blackwell Verlag GmbH.
Bulls, Bears, and Birds: Preparing the Financial Industry for an Avian Influenza Pandemic.
Maldin, Beth; Inglesby, Thomas V; Nuzzo, Jennifer B; Lien, Onora; Gronvall, Gigi Kwik; Toner, Eric; O'Toole, Tara
2005-01-01
Bulls, Bears, and Birds: Preparing the Financial Industry for an Avian Influenza Pandemic was a half day symposium on avian influenza for senior leaders and decision makers from the financial sector with responsibility for business continuity, health, and security. The event brought together experts and leaders from the medical, public health, business continuity, and financial communities to appraise financial industry leaders on the threat of avian influenza and to offer suggestions regarding what the financial industry could do to prepare and respond.
Barker, F. Keith; Oyler-McCance, Sara; Tomback, Diana F.
2015-01-01
Next generation sequencing methods allow rapid, economical accumulation of data that have many applications, even at relatively low levels of genome coverage. However, the utility of shotgun sequencing data sets for specific goals may vary depending on the biological nature of the samples sequenced. We show that the ability to assemble mitogenomes from three avian samples of two different tissue types varies widely. In particular, data with coverage typical of microsatellite development efforts (∼1×) from DNA extracted from avian blood failed to cover even 50% of the mitogenome, relative to at least 500-fold coverage from muscle-derived data. Researchers should consider possible applications of their data and select the tissue source for their work accordingly. Practitioners analyzing low-coverage shotgun sequencing data (including for microsatellite locus development) should consider the potential benefits of mitogenome assembly, including internal barcode verification of species identity, mitochondrial primer development, and phylogenetics.
Deforestation does not affect the prevalence of a common trypanosome in African birds.
Valkiūnas, Gediminas; Iezhova, Tatjana A; Sehgal, Ravinder N M
2016-10-01
In spite of numerous reports of avian Trypanosoma spp. in birds throughout the world, patterns of the distribution and prevalence of these blood parasites remains insufficiently understood. It is clear that spatial heterogeneity influences parameters of parasite distributions in natural populations, but data regarding avian trypanosomes are scarce. Using microscopy and molecular diagnostic methods, we analysed the variation of prevalence of avian Trypanosoma parasites in two widespread African bird species, the yellow-whiskered greenbul Andropadus latirostris and the olive sunbird Cyanomitra olivacea. In all, 353 birds were captured in pristine forests and agroforest sites in Cameroon and Ghana. Overall, the prevalence of avian trypanosomes was 51.3%. Five morphospecies were reported (Trypanosoma everetti, T. anguiformis, T. avium, T. naviformis, T. ontarioensis). Trypanosoma everetti predominated, representing 98% of all Trypanosoma spp. reports, and it was present in both avian hosts. The prevalence of T. everetti was significantly less in the yellow-whiskered greenbul (19%) than olive sunbird (83%), and the same pattern of prevalence was reported in these avian hosts at different study sites. We found no interaction between sites and the prevalence of T. everetti. For both avian hosts, the prevalence did not differ significantly between pristine forests and agroforests. This indicates the same pattern of transmission at sites with different levels of deforestation and suggests that spatial heterogeneity related to deforestation does not affect the prevalence of avian Trypanosoma infections. It is likely that host-related factors, but not environmental conditions favour or reduce these parasite infections in forests of sub-Saharan Africa. Microscopic and PCR-based diagnostics showed the same sensitivity in diagnostics of T. everetti. We discuss the implications of these findings for the epidemiology of avian trypanosomiasis in natural populations. Copyright © 2016 Elsevier B.V. All rights reserved.
Distinct Host Tropism Protein Signatures to Identify Possible Zoonotic Influenza A Viruses.
Eng, Christine L P; Tong, Joo Chuan; Tan, Tin Wee
2016-01-01
Zoonotic influenza A viruses constantly pose a health threat to humans as novel strains occasionally emerge from the avian population to cause human infections. Many past epidemic as well as pandemic strains have originated from avian species. While most viruses are restricted to their primary hosts, zoonotic strains can sometimes arise from mutations or reassortment, leading them to acquire the capability to escape host species barrier and successfully infect a new host. Phylogenetic analyses and genetic markers are useful in tracing the origins of zoonotic infections, but there are still no effective means to identify high risk strains prior to an outbreak. Here we show that distinct host tropism protein signatures can be used to identify possible zoonotic strains in avian species which have the potential to cause human infections. We have discovered that influenza A viruses can now be classified into avian, human, or zoonotic strains based on their host tropism protein signatures. Analysis of all influenza A viruses with complete proteome using the host tropism prediction system, based on machine learning classifications of avian and human viral proteins has uncovered distinct signatures of zoonotic strains as mosaics of avian and human viral proteins. This is in contrast with typical avian or human strains where they show mostly avian or human viral proteins in their signatures respectively. Moreover, we have found that zoonotic strains from the same influenza outbreaks carry similar host tropism protein signatures characteristic of a common ancestry. Our results demonstrate that the distinct host tropism protein signature in zoonotic strains may prove useful in influenza surveillance to rapidly identify potential high risk strains circulating in avian species, which may grant us the foresight in anticipating an impending influenza outbreak.
Evaluation of Cytology for Diagnosing Avian Pox in Wild Turkeys ( Meleagris gallopavo).
Hydock, Kira; Brown, Holly; Nemeth, Nicole; Poulson, Rebecca; Casalena, Mary Jo; Johnson, Joshua B; Brown, Justin
2018-03-01
Avian pox virus is a common cause of proliferative skin disease in wild turkeys ( Meleagris gallopavo); however, other etiologies may produce grossly indistinguishable lesions. Common methods for diagnosing avian pox include histopathology, virus isolation, and PCR. While these methods are sufficient in most cases, each has their limitations. Cytology is a cost-effective and rapid approach that may be useful when traditional diagnostics are not feasible. The objective of this study was to evaluate the performance of cytology relative to histopathology and PCR for avian pox diagnosis in wild turkeys. Fifty wild turkeys were submitted for necropsy due to nodular skin lesions on unfeathered skin of the head. Of these, five had similar skin lesions on the unfeathered legs and 26 had plaques on the mucosa of the oropharynx or esophagus. Representative skin, oropharyngeal, and esophageal lesions from all birds were examined with cytology and histopathology. Skin lesions on the head of each bird were also tested for avian pox virus via PCR. Histopathology and PCR were equally sensitive in diagnosing avian pox from skin lesions on the head. There were no significant differences between cytologic and histopathologic diagnosis of avian pox from skin lesions on the head (sensitivity = 97.4%, specificity = 100.0%), legs (sensitivity = 75.0%, specificity = 100.0%), or from lesions in the oropharynx and esophagus (sensitivity of 62.5%). Similarly, there were no significant differences between PCR and cytology for diagnosis of pox viral skin lesions of the head. Relative to PCR detection of avian pox virus, cytology had a sensitivity of 90.0% and a specificity of 90.0%. These results suggest that cytology is a useful tool for diagnosis of avian pox in wild turkeys.
Low-Pathogenic Avian Influenza Viruses in Wild House Mice
Shriner, Susan A.; VanDalen, Kaci K.; Mooers, Nicole L.; Ellis, Jeremy W.; Sullivan, Heather J.; Root, J. Jeffrey; Pelzel, Angela M.; Franklin, Alan B.
2012-01-01
Background Avian influenza viruses are known to productively infect a number of mammal species, several of which are commonly found on or near poultry and gamebird farms. While control of rodent species is often used to limit avian influenza virus transmission within and among outbreak sites, few studies have investigated the potential role of these species in outbreak dynamics. Methodology/Principal Findings We trapped and sampled synanthropic mammals on a gamebird farm in Idaho, USA that had recently experienced a low pathogenic avian influenza outbreak. Six of six house mice (Mus musculus) caught on the outbreak farm were presumptively positive for antibodies to type A influenza. Consequently, we experimentally infected groups of naïve wild-caught house mice with five different low pathogenic avian influenza viruses that included three viruses derived from wild birds and two viruses derived from chickens. Virus replication was efficient in house mice inoculated with viruses derived from wild birds and more moderate for chicken-derived viruses. Mean titers (EID50 equivalents/mL) across all lung samples from seven days of sampling (three mice/day) ranged from 103.89 (H3N6) to 105.06 (H4N6) for the wild bird viruses and 102.08 (H6N2) to 102.85 (H4N8) for the chicken-derived viruses. Interestingly, multiple regression models indicated differential replication between sexes, with significantly (p<0.05) higher concentrations of avian influenza RNA found in females compared with males. Conclusions/Significance Avian influenza viruses replicated efficiently in wild-caught house mice without adaptation, indicating mice may be a risk pathway for movement of avian influenza viruses on poultry and gamebird farms. Differential virus replication between males and females warrants further investigation to determine the generality of this result in avian influenza disease dynamics. PMID:22720076
Comparative genomics reveals insights into avian genome evolution and adaptation
Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M.; Lee, Chul; Storz, Jay F.; Antunes, Agostinho; Greenwold, Matthew J.; Meredith, Robert W.; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R.; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T.; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V.; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S.; Gatesy, John; Hoffmann, Federico G.; Opazo, Juan C.; Håstad, Olle; Sawyer, Roger H.; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W.; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F.; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A.; Green, Richard E.; O’Brien, Stephen J.; Griffin, Darren; Johnson, Warren E.; Haussler, David; Ryder, Oliver A.; Willerslev, Eske; Graves, Gary R.; Alström, Per; Fjeldså, Jon; Mindell, David P.; Edwards, Scott V.; Braun, Edward L.; Rahbek, Carsten; Burt, David W.; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D.; Gilbert, M. Thomas P.; Wang, Jun
2015-01-01
Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712
TIM Appendix D summarizes avian census studies from pesticide registrant submissions and literature. The purpose of this review is to identify avian species that are representative of those that commonly visit agricultural fields.
Avian and human influenza virus compatible sialic acid receptors in little brown bats.
Chothe, Shubhada K; Bhushan, Gitanjali; Nissly, Ruth H; Yeh, Yin-Ting; Brown, Justin; Turner, Gregory; Fisher, Jenny; Sewall, Brent J; Reeder, DeeAnn M; Terrones, Mauricio; Jayarao, Bhushan M; Kuchipudi, Suresh V
2017-04-06
Influenza A viruses (IAVs) continue to threaten animal and human health globally. Bats are asymptomatic reservoirs for many zoonotic viruses. Recent reports of two novel IAVs in fruit bats and serological evidence of avian influenza virus (AIV) H9 infection in frugivorous bats raise questions about the role of bats in IAV epidemiology. IAVs bind to sialic acid (SA) receptors on host cells, and it is widely believed that hosts expressing both SA α2,3-Gal and SA α2,6-Gal receptors could facilitate genetic reassortment of avian and human IAVs. We found abundant co-expression of both avian (SA α2,3-Gal) and human (SA α2,6-Gal) type SA receptors in little brown bats (LBBs) that were compatible with avian and human IAV binding. This first ever study of IAV receptors in a bat species suggest that LBBs, a widely-distributed bat species in North America, could potentially be co-infected with avian and human IAVs, facilitating the emergence of zoonotic strains.
Khare, Shashi; Agarwal, Ramesh; Singh, Ranjana; Lal, Shiv
2006-07-01
The current outbreak of H5N 1 avian influenza affecting an unprecedented number of countries is a cause of concern worldwide. As on 26th June, 2006 outbreaks in poultry or wild birds have been reported from 54 countries. In India the first outbreak of avian influenza virus Awas reported in Navapur district in Maharashtra in February 2006 followed by detection of H5N1 in a neighbouring district of Gujarat. No case of human infection has yet been reported in India. Avian influenza virus belongs to influenza type A which is a part of family orthomyxoviridae. Transmission occurs by direct or indirect contact. Clinical symptoms on human is of typical influenza like. Laboratory investigations involves a number of tests confirming diagnosis of avian influenza. The treatment includes general supportive and antiviral therapy with oseltamivir. Prevention and control strategies can held to minimise the public health risk to highly pathogenic avian influenza. There are some dos and don'ts for the community which should be strictly followed.
Brand, Christopher J.
2009-01-01
Executive Summary: This Surveillance Plan (Plan) describes plans for conducting surveillance of wild birds in the United States and its Territories and Freely-Associated States to provide for early detection of the introduction of the H5N1 Highly Pathogenic Avian Influenza (HPAI) subtype of the influenza A virus by migratory birds during the 2009 surveillance year, spanning the period of April 1, 2009 - March 31, 2010. The Plan represents a continuation of surveillance efforts begun in 2006 under the Interagency Strategic Plan for the Early Detection of H5N1 Highly Pathogenic Avian Influenza in Wild Migratory Birds (U.S. Department of Agriculture and U.S. Department of the Interior, 2006). The Plan sets forth sampling plans by: region, target species or species groups to be sampled, locations of sampling, sample sizes, and sampling approaches and methods. This Plan will be reviewed annually and modified as appropriate for subsequent surveillance years based on evaluation of information from previous years of surveillance, changing patterns and threats of H5N1 HPAI, and changes in funding availability for avian influenza surveillance. Specific sampling strategies will be developed accordingly within each of six regions, defined here as Alaska, Hawaiian/Pacific Islands, Lower Pacific Flyway (Washington, Oregon, California, Idaho, Nevada, Arizona), Central Flyway, Mississippi Flyway, and Atlantic Flyway.
AvianBuffer: An interactive tool for characterising and managing wildlife fear responses.
Guay, Patrick-Jean; van Dongen, Wouter F D; Robinson, Randall W; Blumstein, Daniel T; Weston, Michael A
2016-11-01
The characterisation and management of deleterious processes affecting wildlife are ideally based on sound scientific information. However, relevant information is often absent, or difficult to access or contextualise for specific management purposes. We describe 'AvianBuffer', an interactive online tool enabling the estimation of distances at which Australian birds respond fearfully to humans. Users can input species assemblages and determine a 'separation distance' above which the assemblage is predicted to not flee humans. They can also nominate the diversity they wish to minimise disturbance to, or a specific separation distance to obtain an estimate of the diversity that will remain undisturbed. The dataset is based upon flight-initiation distances (FIDs) from 251 Australian bird species (n = 9190 FIDs) and a range of human-associated stimuli. The tool will be of interest to a wide audience including conservation managers, pest managers, policy makers, land-use planners, education and public outreach officers, animal welfare proponents and wildlife ecologists. We discuss possible applications of the data, including the construction of buffers, development of codes of conduct, environmental impact assessments and public outreach. This tool will help balance the growing need for biodiversity conservation in areas where humans can experience nature. The online resource will be expanded in future iterations to include an international database of FIDs of both avian and non-avian species.
Avian magnetic compass can be tuned to anomalously low magnetic intensities.
Winklhofer, Michael; Dylda, Evelyn; Thalau, Peter; Wiltschko, Wolfgang; Wiltschko, Roswitha
2013-07-22
The avian magnetic compass works in a fairly narrow functional window around the intensity of the local geomagnetic field, but adjusts to intensities outside this range when birds experience these new intensities for a certain time. In the past, the geomagnetic field has often been much weaker than at present. To find out whether birds can obtain directional information from a weak magnetic field, we studied spontaneous orientation preferences of migratory robins in a 4 µT field (i.e. a field of less than 10 per cent of the local intensity of 47 µT). Birds can adjust to this low intensity: they turned out to be disoriented under 4 µT after a pre-exposure time of 8 h to 4 µT, but were able to orient in this field after a total exposure time of 17 h. This demonstrates a considerable plasticity of the avian magnetic compass. Orientation in the 4 µT field was not affected by local anaesthesia of the upper beak, but was disrupted by a radiofrequency magnetic field of 1.315 MHz, 480 nT, suggesting that a radical-pair mechanism still provides the directional information in the low magnetic field. This is in agreement with the idea that the avian magnetic compass may have developed already in the Mesozoic in the common ancestor of modern birds.
Avian magnetic compass can be tuned to anomalously low magnetic intensities
Winklhofer, Michael; Dylda, Evelyn; Thalau, Peter; Wiltschko, Wolfgang; Wiltschko, Roswitha
2013-01-01
The avian magnetic compass works in a fairly narrow functional window around the intensity of the local geomagnetic field, but adjusts to intensities outside this range when birds experience these new intensities for a certain time. In the past, the geomagnetic field has often been much weaker than at present. To find out whether birds can obtain directional information from a weak magnetic field, we studied spontaneous orientation preferences of migratory robins in a 4 µT field (i.e. a field of less than 10 per cent of the local intensity of 47 µT). Birds can adjust to this low intensity: they turned out to be disoriented under 4 µT after a pre-exposure time of 8 h to 4 µT, but were able to orient in this field after a total exposure time of 17 h. This demonstrates a considerable plasticity of the avian magnetic compass. Orientation in the 4 µT field was not affected by local anaesthesia of the upper beak, but was disrupted by a radiofrequency magnetic field of 1.315 MHz, 480 nT, suggesting that a radical-pair mechanism still provides the directional information in the low magnetic field. This is in agreement with the idea that the avian magnetic compass may have developed already in the Mesozoic in the common ancestor of modern birds. PMID:23720547
A comparative analysis of microbial profile of Guinea fowl and chicken using metagenomic approach
Bhogoju, Sarayu; Wang, Xiaofei; Darris, Carl; Kilonzo-Nthenge, Agnes
2018-01-01
Probiotics are live microbial feed supplements that promote growth and health to the host by minimizing non-essential and pathogenic microorganisms in the host’s gastrointestinal tract (GIT). The campaign to minimize excessive use of antibiotics in poultry production has necessitated development of probiotics with broad application in multiple poultry species. Design of such probiotics requires understanding of the diversity or similarity in microbial profiles among avian species of economic importance. Therefore, the objective of this research was to establish and compare the microbial profiles of the GIT of Guinea fowl and chicken and to establish the microbial diversity or similarity between the two avian species. A metagenomic approach consisting of the amplification and sequence analysis of the hypervariable regions V1-V9 of the 16S rRNA gene was used to identify the GIT microbes. Collectively, we detected more than 150 microbial families. The total number of microbial species detected in the chicken GIT was higher than that found in the Guinea Fowl GIT. Our studies also revealed phylogenetic diversity among the microbial species found in chicken and guinea fowl. The phylum Firmicutes was most abundant in both avian species whereas Phylum Actinobacteria was most abundant in chickens than Guinea fowls. The diversity of the microbial profiles found in broiler chickens and Guinea fowls suggest that the design of effective avian probiotics would require species specificity. PMID:29494648
Suspension culture process for H9N2 avian influenza virus (strain Re-2).
Wang, Honglin; Guo, Suying; Li, Zhenguang; Xu, Xiaoqin; Shao, Zexiang; Song, Guicai
2017-10-01
H9N2 avian influenza virus has caused huge economic loss for the Chinese poultry industry since it was first identified. Vaccination is frequently used as a control method for the disease. Meanwhile suspension culture has become an important tool for the development of influenza vaccines. To optimize the suspension culture conditions for the avian influenza H9N2 virus (Re-2 strain) in Madin-Darby Canine Kidney (MDCK) cells, we studied the culture conditions for cell growth and proliferation parameters for H9N2 virus replication. MDCK cells were successfully cultured in suspension, from a small scale to industrial levels of production, with passage time and initial cell density being optimized. The influence of pH on the culture process in the reactor has been discussed and the process parameters for industrial production were explored via amplification of the 650L reactor. Subsequently, we cultivated cells at high cell density and harvested high amounts of virus, reaching 10log2 (1:1024). Furthermore an animal experiment was conducted to detect antibody. Compared to the chicken embryo virus vaccine, virus cultured from MDCK suspension cells can produce a higher amount of antibodies. The suspension culture process is simple and cost efficient, thus providing a solid foundation for the realization of large-scale avian influenza vaccine production.
Lamuka, Peter O; Njeruh, Francis M; Gitao, George C; Matofari, Joseph; Bowen, Richard; Abey, Khalif A
2018-06-01
A cross-sectional study was conducted among 308 lactating camels selected from 15 herds from three different camel milk clusters in Isiolo County, Kenya, to determine prevalence of bovine and avian tuberculosis using Single Comparative Intradermal Tuberculin Skin test. Seventy-five (75) questionnaires were administered to pastoralists/herders, and focus group discussions were conducted among 3-5 pastoralists/herders selected from each camel herd to collect information on camel husbandry and health management practices and knowledge on tuberculosis in livestock and wildlife. An overall prevalence of bovine and avian reactors was 3.57 and 18.18%, respectively, with bovine and avian reactors for different clusters being 2.38, 3.82, and 4.48% and 25, 17.2, and 11.94%, respectively. There was significant difference (p < 0.05) in prevalence of bovine and avian reactors between different clusters. There was a negative correction (r = -0.1399) between herd size and bovine reactors, while there was a positive correlation (r = 0.0445) between herd size and avian reactors. The respondents indicated that camel herds are exposed to several risk factors like close contact with other herds or livestock or wildlife during grazing and at watering points. Pastoralists have poor knowledge on mode of infection and transmission of bovine or avian tuberculosis. The high prevalence of bovine and avian reactors and pastoralists' poor knowledge on mode of transmission signify potential risk to public health.
MORIGUCHI, Sachiko; ONUMA, Manabu; GOKA, Koichi
2016-01-01
Avian influenza A, a highly pathogenic avian influenza, is a lethal infection in certain species of wild birds, including some endangered species. Raptors are susceptible to avian influenza, and spatial risk assessment of such species may be valuable for conservation planning. We used the maximum entropy approach to generate potential distribution models of three raptor species from presence-only data for the mountain hawk-eagle Nisaetus nipalensis, northern goshawk Accipiter gentilis and peregrine falcon Falco peregrinus, surveyed during the winter from 1996 to 2001. These potential distribution maps for raptors were superimposed on avian influenza A risk maps of Japan, created from data on incidence of the virus in wild birds throughout Japan from October 2010 to March 2011. The avian influenza A risk map for the mountain hawk-eagle showed that most regions of Japan had a low risk for avian influenza A. In contrast, the maps for the northern goshawk and peregrine falcon showed that their high-risk areas were distributed on the plains along the Sea of Japan and Pacific coast. We recommend enhanced surveillance for each raptor species in high-risk areas and immediate establishment of inspection systems. At the same time, ecological risk assessments that determine factors, such as the composition of prey species, and differential sensitivity of avian influenza A virus between bird species should provide multifaceted insights into the total risk assessment of endangered species. PMID:26972333
Dececchi, T Alexander; Larsson, Hans C E
2011-01-01
The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding.
NASA Astrophysics Data System (ADS)
Shaw, W. J.
2013-12-01
Offshore renewable energy represents a significant but essentially untapped electricity resource for the U.S. Offshore wind energy is attractive for a number of reasons, including the feasibility of using much larger and more efficient wind turbines than is possible on land. In many offshore regions near large population centers, the diurnal maximum in wind energy production is also closely matched to the diurnal maximum in electricity demand, easing the balancing of generation and load. Currently, however, the cost of offshore wind energy is not competitive with other energy sources, including terrestrial wind. Two significant contributing reasons for this are the cost of offshore wind resource assessment and fundamental gaps in knowledge of the behavior of winds and turbulence in the layer of the atmosphere spanned by the sweep of the turbine rotor. Resource assessment, a necessary step in securing financing for a wind project, is conventionally carried out on land using meteorological towers erected for a year or more. Comparable towers offshore are an order of magnitude more expensive to install. New technologies that promise to reduce these costs, such as Doppler lidars mounted on buoys, are being developed, but these need to be validated in the environment in which they will be used. There is currently no facility in the U.S. that can carry out such validations offshore. Research needs include evaluation and improvement of hub-height wind forecasts from regional forecast models in the marine boundary layer, understanding of turbulence characteristics that affect turbine loads and wind plant efficiency, and development of accurate representations of sea surface roughness and atmospheric thermodynamic stability on hub height winds. In response to these needs for validation and research, the U.S. Department of Energy is developing the Reference Facility for Offshore Renewable Energy (RFORE). The RFORE will feature a meteorological tower with wind, temperature, humidity, and turbulence sensors at nominally eight levels to a maximum measurement height of at least 100 m. In addition, remote sensing systems for atmospheric dynamic and thermodynamic profiles, sea state measurements including wave spectra, and subsurface measurements of current, temperature, and salinity profiles will be measured. Eventually, measurements from the platform are anticipated to include monitoring of marine and avian life as well as bats. All data collected at the RFORE will be archived and made available to all interested users. The RFORE is currently planned to be built on the structure of the Chesapeake Light Tower, approximately 25 km east of Virginia Beach, Virginia. This development is an active collaboration among U.S. DOE headquarters staff, the National Renewable Energy Laboratory (NREL), and Pacific Northwest National Laboratory (PNNL). NREL will design, construct, and operate the facility. PNNL will develop the research agenda, including the data archive. This presentation emphasizes the measurement capabilities of the facility in the context of research applications, user access to the data through the archive, and plans for user engagement and research management of the facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Wallace P.
2002-12-01
Primarily due to concerns generated from observed raptor mortality at the Altamont Pass (CA) wind plant, one of the first commercial electricity generating wind plants in the U.S., new proposed wind projects both within and outside of California have received a great deal of scrutiny and environmental review. A large amount of baseline and operational monitoring data have been collected at proposed and existing U.S. wind plants. The primary use of the avian baseline data collected at wind developments has been to estimate the overall project impacts (e.g., very low, low, moderate, and high relative mortality) on birds, especially raptorsmore » and sensitive species (e.g., state and federally listed species). In a few cases, these data have also been used for guiding placement of turbines within a project boundary. This new information has strengthened our ability to accurately predict and mitigate impacts from new projects. This report should assist various stakeholders in the interpretation and use of this large information source in evaluating new projects. This report also suggests that the level of baseline data (e.g., avian use data) required to adequately assess expected impacts of some projects may be reduced. This report provides an evaluation of the ability to predict direct impacts on avian resources (primarily raptors and waterfowl/waterbirds) using less than an entire year of baseline avian use data (one season, two seasons, etc.). This evaluation is important because pre-construction wildlife surveys can be one of the most time-consuming aspects of permitting wind power projects. For baseline data, this study focuses primarily on standardized avian use data usually collected using point count survey methodology and raptor nest survey data. In addition to avian use and raptor nest survey data, other baseline data is usually collected at a proposed project to further quantify potential impacts. These surveys often include vegetation mapping and state or federal sensitive-status wildlife and plant surveys if there is a likelihood of these species occurring in the vicinity of the project area. This report does not address these types of surveys, however, it is assumed in this document that those surveys are conducted when appropriate to help further quantify potential impacts. The amount and extent of ecological baseline data to collect at a wind project should be determined on a case-by-case basis. The decision should use information gained from this report, recent information from new projects (e.g., Stateline OR/WA), existing project site data from agencies and other knowledgeable groups/individuals, public scoping, and results of vegetation and habitat mapping. Other factors that should also be considered include the likelihood of the presence of sensitive species at the site and expected impacts to those species, project size and project layout.« less
Production of adenovirus vectors and their use as a delivery system for influenza vaccines
Vemula, Sai V.; Mittal, Suresh K.
2010-01-01
IMPORTANCE OF THE FIELD With the emergence of highly pathogenic avian influenza H5N1 viruses that have crossed species barriers and are responsible for lethal infections in humans in many countries, there is an urgent need for the development of effective vaccines which can be produced in large quantities at a short notice and confer broad protection against these H5N1 variants. In order to meet the potential global vaccine demand in a pandemic scenario, new vaccine-production strategies must be explored in addition to the currently used egg-based technology for seasonal influenza. AREAS COVERED IN THIS REVIEW Adenovirus (Ad) based influenza vaccines represent an attractive alternative/supplement to the currently licensed egg-based influenza vaccines. Ad-based vaccines are relatively inexpensive to manufacture, and their production process does not require either chicken eggs or labor intensive and time-consuming processes necessitating enhanced biosafety facilities. Most importantly, in a pandemic situation, this vaccine strategy could offer a stockpiling option to reduce the response time before a strain-matched vaccine could be developed. WHAT THE READER WILL GAIN This review discusses Ad-vector technology and the current progress in the development of Ad-based influenza vaccines. TAKE HOME MESSAGE Ad vector-based influenza vaccines for pandemic preparedness are under development to meet the global vaccine demand. PMID:20822477
Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines
Kim, Shin-Hee; Samal, Siba K.
2016-01-01
Viral vaccine vectors have shown to be effective in inducing a robust immune response against the vaccine antigen. Newcastle disease virus (NDV), an avian paramyxovirus, is a promising vaccine vector against human and veterinary pathogens. Avirulent NDV strains LaSota and B1 have long track records of safety and efficacy. Therefore, use of these strains as vaccine vectors is highly safe in avian and non-avian species. NDV replicates efficiently in the respiratory track of the host and induces strong local and systemic immune responses against the foreign antigen. As a vaccine vector, NDV can accommodate foreign sequences with a good degree of stability and as a RNA virus, there is limited possibility for recombination with host cell DNA. Using NDV as a vaccine vector in humans offers several advantages over other viral vaccine vectors. NDV is safe in humans due to host range restriction and there is no pre-existing antibody to NDV in the human population. NDV is antigenically distinct from common human pathogens. NDV replicates to high titer in a cell line acceptable for human vaccine development. Therefore, NDV is an attractive vaccine vector for human pathogens for which vaccines are currently not available. NDV is also an attractive vaccine vector for animal pathogens. PMID:27384578
Veselka, Walter; Anderson, James T; Kordek, Walter S
2010-05-01
Considerable resources are being used to develop and implement bioassessment methods for wetlands to ensure that "biological integrity" is maintained under the United States Clean Water Act. Previous research has demonstrated that avian composition is susceptible to human impairments at multiple spatial scales. Using a site-specific disturbance gradient, we built avian wetland indices of biological integrity (AW-IBI) specific to two wetland classification schemes, one based on vegetative structure and the other based on the wetland's position in the landscape and sources of water. The resulting class-specific AW-IBI was comprised of one to four metrics that varied in their sensitivity to the disturbance gradient. Some of these metrics were specific to only one of the classification schemes, whereas others could discriminate varying levels of disturbance regardless of classification scheme. Overall, all of the derived biological indices specific to the vegetative structure-based classes of wetlands had a significant relation with the disturbance gradient; however, the biological index derived for floodplain wetlands exhibited a more consistent response to a local disturbance gradient. We suspect that the consistency of this response is due to the inherent nature of the connectivity of available habitat in floodplain wetlands.
Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines.
Kim, Shin-Hee; Samal, Siba K
2016-07-04
Viral vaccine vectors have shown to be effective in inducing a robust immune response against the vaccine antigen. Newcastle disease virus (NDV), an avian paramyxovirus, is a promising vaccine vector against human and veterinary pathogens. Avirulent NDV strains LaSota and B1 have long track records of safety and efficacy. Therefore, use of these strains as vaccine vectors is highly safe in avian and non-avian species. NDV replicates efficiently in the respiratory track of the host and induces strong local and systemic immune responses against the foreign antigen. As a vaccine vector, NDV can accommodate foreign sequences with a good degree of stability and as a RNA virus, there is limited possibility for recombination with host cell DNA. Using NDV as a vaccine vector in humans offers several advantages over other viral vaccine vectors. NDV is safe in humans due to host range restriction and there is no pre-existing antibody to NDV in the human population. NDV is antigenically distinct from common human pathogens. NDV replicates to high titer in a cell line acceptable for human vaccine development. Therefore, NDV is an attractive vaccine vector for human pathogens for which vaccines are currently not available. NDV is also an attractive vaccine vector for animal pathogens.
A simple vitrification method for cryobanking avian testicular tissue
USDA-ARS?s Scientific Manuscript database
Cryopreservation of testicular tissue is a promising method of preserving male reproductive potential for avian species. This study was conducted to assess whether a vitrification method can be used to preserve avian testicular tissue, using the Japanese quail (Coturnix japonica) as a model. A sim...
Measurement of airborne influenza virus during hen slaughtering in an ABSL-3E bioBUBBLE®
USDA-ARS?s Scientific Manuscript database
Several avian viral diseases, including avian influenza, Newcastle disease, infectious bronchitis or laryngotracheitis, are transmitted via respiratory droplets or by contact with contaminated fomites. Using high pathogenicity avian influenza (HPAI) virus as a model, the objective of the present st...
Newcastle disease and other avian paramyxoviruses
USDA-ARS?s Scientific Manuscript database
Newcastle disease virus (NDV) is a form of avian paramyxovirus type 1 (APMV-1) that is highly virulent for chickens and turkeys. There are currently 13 recognized serotypes of avian paramyxovirus, but APMV-1, including NDV, is the most important for poultry Newcastle disease (ND) is considered to be...
Manabe, Toshie; Thuy, Pham Thi Phuong; Can, Vu Van; Takasaki, Jin; Huyen, Dinh Thi Thanh; Chau, Nguyen Thi My; Shimbo, Takuro; Ha, Bui Thi Thu; Izumi, Shinyu; Hanh, Tran Thuy; Chau, Ngo Quy; Kudo, Koichiro
2011-01-01
Background Early initiation of treatment is essential for treatment of avian influenza A/H5N1 viral infection in humans, as the disease can lead to rapid development of severe pneumonia which can result in death. Contact with infected poultry is known to be a significant risk factor for contraction of H5N1 infection. However, handling and encountering poultry are a part of most peoples' daily lives, especially in rural communities in Vietnam where epidemic outbreaks among poultry have been continuously reported. Enhancing proper knowledge relating to H5N1 and to the importance of early initiation of treatment are crucial. The aim of this study was to develop an effective educational program to enhance awareness of H5N1 and motivate people to access to health care earlier when H5N1 infection is suspected or likely. Methodology and Principal Findings A study was conducted in two agricultural communities (intervention and control groups) in the Ninh Binh province in Vietnam, where epidemic outbreaks of avian influenza have recently occurred in birds. A unique educational intervention was developed and provided to the intervention group, and no intervention was provided to the control group. A knowledge, attitude and practice (KAP) survey was conducted in both groups with a face-to-face interview by trained local healthcare workers at time points before and after the educational intervention. KAP scores were compared between the different time points and between the groups. How educational intervention influenced awareness relating to H5N1 and accessibility of healthcare in the population was analyzed. The study indicated an increased awareness of H5N1 and increased reliance on local health care workers. Conclusions The novel educational program which was developed for this study impacted awareness of H5N1, and resulted in more people seeking early access to healthcare, and also resulted in earlier medical intervention for patients with H5N1 avian influenza infection in Vietnam. PMID:21887303
Genetic Modification of Oncolytic Newcastle Disease Virus for Cancer Therapy.
Cheng, Xing; Wang, Weijia; Xu, Qi; Harper, James; Carroll, Danielle; Galinski, Mark S; Suzich, JoAnn; Jin, Hong
2016-06-01
Clinical development of a mesogenic strain of Newcastle disease virus (NDV) as an oncolytic agent for cancer therapy has been hampered by its select agent status due to its pathogenicity in avian species. Using reverse genetics, we have generated a lead candidate oncolytic NDV based on the mesogenic NDV-73T strain that is no longer classified as a select agent for clinical development. This recombinant NDV has a modification at the fusion protein (F) cleavage site to reduce the efficiency of F protein cleavage and an insertion of a 198-nucleotide sequence into the HN-L intergenic region, resulting in reduced viral gene expression and replication in avian cells but not in mammalian cells. In mammalian cells, except for viral polymerase (L) gene expression, viral gene expression is not negatively impacted or increased by the HN-L intergenic insertion. Furthermore, the virus can be engineered to express a foreign gene while still retaining the ability to grow to high titers in cell culture. The recombinant NDV selectively replicates in and kills tumor cells and is able to drive potent tumor growth inhibition following intratumoral or intravenous administration in a mouse tumor model. The candidate is well positioned for clinical development as an oncolytic virus. Avian paramyxovirus type 1, NDV, has been an attractive oncolytic agent for cancer virotherapy. However, this virus can cause epidemic disease in poultry, and concerns about the potential environmental and economic impact of an NDV outbreak have precluded its clinical development. Here we describe generation and characterization of a highly potent oncolytic NDV variant that is unlikely to cause Newcastle disease in its avian host, representing an essential step toward moving NDV forward as an oncolytic agent. Several attenuation mechanisms have been genetically engineered into the recombinant NDV that reduce chicken pathogenicity to a level that is acceptable worldwide without impacting viral production in cell culture. The selective tumor replication of this recombinant NDV, both in vitro and in vivo, along with efficient tumor cell killing makes it an attractive oncolytic virus candidate that may provide clinical benefit to patients. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Capua, Ilaria; Alexander, Dennis
2010-03-01
The ongoing animal and human health crises caused by influenza viruses of H5N1 subtype have focused the attention of international organizations and donors on the need for improved veterinary infrastructure in developing countries and the need for improved communication between the human and animal health sectors. The circulation and re-emergence of high-pathogenicity avian influenza viruses of H5N1 subtype are still major concerns because of potential effects on human health, on the profitability of poultry industries, and on the livelihood of the rural environment. Significant improvements toward the management of these outbreaks have occurred worldwide, including new legislative tools, intervention strategies, and investments in capacity building in both developed and developing countries. This has led to a greater understanding of certain aspects of this infection and of its pandemic potential, although we are still far from certainties and from resolving the situation. Given that genetic analysis of the viruses causing human pandemics since the beginning of the 20th century have indicated that at least the hemagglutinin gene was donated from an avian progenitor virus, it would seem reasonable to exploit the information we have from an animal health perspective to support public health policies. Possibly the biggest challenge we have is to find novel ways to maximize the use of the information that is generated as a result of the improved networking and diagnostic capacities. In the era of globalization, emerging and re-emerging diseases of public health relevance are a concern to developing and developed countries and are a real threat because of the interdependence of the global economy. Communication and analysis systems currently available should be tailored to meet global health priorities, and used to develop and constantly improve novel systems for the exploitation of information to generate knowledge. Another fundamental task the veterinary community needs to deliver on is that of bringing relevant information to international discussion tables at which international control and prevention are presented and optimized. The veterinary community has knowledge and areas of expertise that should undoubtedly be part of strategic decisions and are essential to manage the human and animal health implications of avian influenza infections.
Development of teeth in chick embryos after mouse neural crest transplantations.
Mitsiadis, Thimios A; Chéraud, Yvonnick; Sharpe, Paul; Fontaine-Pérus, Josiane
2003-05-27
Teeth were lost in birds 70-80 million years ago. Current thinking holds that it is the avian cranial neural crest-derived mesenchyme that has lost odontogenic capacity, whereas the oral epithelium retains the signaling properties required to induce odontogenesis. To investigate the odontogenic capacity of ectomesenchyme, we have used neural tube transplantations from mice to chick embryos to replace the chick neural crest cell populations with mouse neural crest cells. The mouse/chick chimeras obtained show evidence of tooth formation showing that avian oral epithelium is able to induce a nonavian developmental program in mouse neural crest-derived mesenchymal cells.
Charman, H P; Gilden, R V; Oroszlan, S
1979-01-01
Reticuloendotheliosis virus (REV) p30 shares cross-reactive determinants and a common NH2-terminal tripeptide with mammalian type C viral p30's. An interspecies competition radioimmunoassay was developed, using iodinated REV p30 and a broadly reactive antiserum to mammalian virus p30's. The avian leukosis-sarcoma viruses and mammalian non-type C retroviruses did not compete in this assay. Previous data indicating that the REV group is not represented completely in normal avian cell DNA lead us to speculate that this may be the first example of interclass transmission, albeit in the remote past, among the Retroviridae. PMID:87519
Oncolytic Activity of Avian Influenza Virus in Human Pancreatic Ductal Adenocarcinoma Cell Lines
Pizzuto, Matteo S.; Silic-Benussi, Micol; Pavone, Silvia; Ciminale, Vincenzo; Capua, Ilaria
2014-01-01
ABSTRACT Pancreatic ductal adenocarcinoma (PDA) is the most lethal form of human cancer, with dismal survival rates due to late-stage diagnoses and a lack of efficacious therapies. Building on the observation that avian influenza A viruses (IAVs) have a tropism for the pancreas in vivo, the present study was aimed at testing the efficacy of IAVs as oncolytic agents for killing human PDA cell lines. Receptor characterization confirmed that human PDA cell lines express the alpha-2,3- and the alpha-2,6-linked glycan receptor for avian and human IAVs, respectively. PDA cell lines were sensitive to infection by human and avian IAV isolates, which is consistent with this finding. Growth kinetic experiments showed preferential virus replication in PDA cells over that in a nontransformed pancreatic ductal cell line. Finally, at early time points posttreatment, infection with IAVs caused higher levels of apoptosis in PDA cells than gemcitabine and cisplatin, which are the cornerstone of current therapies for PDA. In the BxPC-3 PDA cell line, apoptosis resulted from the engagement of the intrinsic mitochondrial pathway. Importantly, IAVs did not induce apoptosis in nontransformed pancreatic ductal HPDE6 cells. Using a model based on the growth of a PDA cell line as a xenograft in SCID mice, we also show that a slightly pathogenic avian IAV significantly inhibited tumor growth following intratumoral injection. Taken together, these results are the first to suggest that IAVs may hold promise as future agents of oncolytic virotherapy against pancreatic ductal adenocarcinomas. IMPORTANCE Despite intensive studies aimed at designing new therapeutic approaches, PDA still retains the most dismal prognosis among human cancers. In the present study, we provide the first evidence indicating that avian IAVs of low pathogenicity display a tropism for human PDA cells, resulting in viral RNA replication and a potent induction of apoptosis in vitro and antitumor effects in vivo. These results suggest that slightly pathogenic IAVs may prove to be effective for oncolytic virotherapy of PDA and provide grounds for further studies to develop specific and targeted viruses, with the aim of testing their efficacy in clinical contexts. PMID:24899201
Dumont, Maïtena; Tafforeau, Paul; Bertin, Thomas; Bhullar, Bhart-Anjan; Field, Daniel; Schulp, Anne; Strilisky, Brandon; Thivichon-Prince, Béatrice; Viriot, Laurent; Louchart, Antoine
2016-09-23
The dentitions of extinct organisms can provide pivotal information regarding their phylogenetic position, as well as paleobiology, diet, development, and growth. Extant birds are edentulous (toothless), but their closest relatives among stem birds, the Cretaceous Hesperornithiformes and Ichthyornithiformes, retained teeth. Despite their significant phylogenetic position immediately outside the avian crown group, the dentitions of these taxa have never been studied in detail. To obtain new insight into the biology of these 'last' toothed birds, we use cutting-edge visualisation techniques to describe their dentitions at unprecedented levels of detail, in particular propagation phase contrast x-ray synchrotron microtomography at high-resolution. Among other characteristics of tooth shape, growth, attachment, implantation, replacement, and dental tissue microstructures, revealed by these analyses, we find that tooth morphology and ornamentation differ greatly between the Hesperornithiformes and Ichthyornithiformes. We also highlight the first Old World, and youngest record of the major Mesozoic clade Ichthyornithiformes. Both taxa exhibit extremely thin and simple enamel. The extension rate of Hesperornis tooth dentine appears relatively high compared to non-avian dinosaurs. Root attachment is found for the first time to be fully thecodont via gomphosis in both taxa, but in Hesperornis secondary evolution led to teeth implantation in a groove, at least locally without a periodontal ligament. Dental replacement is shown to be lingual via a resorption pit in the root, in both taxa. Our results allow comparison with other archosaurs and also mammals, with implications regarding dental character evolution across amniotes. Some dental features of the 'last' toothed birds can be interpreted as functional adaptations related to diet and mode of predation, while others appear to be products of their peculiar phylogenetic heritage. The autapomorphic Hesperornis groove might have favoured firmer root attachment. These observations highlight complexity in the evolutionary history of tooth reduction in the avian lineage and also clarify alleged avian dental characteristics in the frame of a long-standing debate on bird origins. Finally, new hypotheses emerge that will possibly be tested by further analyses of avian teeth, for instance regarding dental replacement rates, or simplification and thinning of enamel throughout the course of early avian evolution.
USDA-ARS?s Scientific Manuscript database
Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis, is a non-segmented negative-sense RNA virus belonging to the family of Paramyxoviridae, the subfamily Pneumovirinae, and the genus Metapneumovirus. aMPV is the causative agent of respiratory tract infection and ...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
... Avian Influenza-Marek's Disease Vaccine, H5 Subtype, Serotype 3, Live Marek's Disease Vector AGENCY...-Marek's Disease Vaccine, H5 Subtype, Serotype 3, Live Marek's Disease Vector. The environmental... product: Requester: Biomune Company. Product: Avian Influenza-Marek's Disease Vaccine, H5 Subtype...
MANAGING AVIAN FLU, CARCASS MANAGEMENT & BIOSOLIDS
The avian influenza virus is discussed with emphasis on the impact to poultry and possible movement of the highly pathogenic H5N 1 virus to humans. A review is made of the worldwide effects to date of the avian influenza viruses; methods for the viruses to enter recreational wate...
Avian Influenza: A growing threat to Africa
USDA-ARS?s Scientific Manuscript database
The H9N2 low pathogenic avian influenza (LPAI) is probably the most widespread avian influenza subtype in poultry around the world being endemic in a large part of Asia, the Middle East, Northern Africa, and in Germany. Currently, there is no standardized clade system to describe the antigenic vari...
Highly pathogenic avian influenza A(H7N9) virus, Tennessee, USA, March 2017
USDA-ARS?s Scientific Manuscript database
In March 2017, highly pathogenic avian influenza A(H7N9) was detected at 2 poultry farms in Tennessee, USA. Surveillance data and genetic analyses indicated multiple introductions of low pathogenicity avian influenza virus before mutation to high pathogenicity and interfarm transmission. Poultry sur...
Practical aspects of vaccination of poultry against avian influenza virus
USDA-ARS?s Scientific Manuscript database
Although little has changed in vaccine technology for avian influenza virus (AIV) in the past 20 years, the approach to vaccination of poultry (chickens, turkeys and ducks) for avian influenza has evolved as highly pathogenic (HP) AIV has become endemic in several regions of the world. Vaccination f...
The Markov chain nest productivity model, or MCnest, is a set of algorithms for integrating the results of avian toxicity tests with reproductive life-history data to project the relative magnitude of chemical effects on avian reproduction. The mathematical foundation of MCnest i...
Comparative genomics reveals insights into avian genome evolution and adaptation.
Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M; Lee, Chul; Storz, Jay F; Antunes, Agostinho; Greenwold, Matthew J; Meredith, Robert W; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S; Gatesy, John; Hoffmann, Federico G; Opazo, Juan C; Håstad, Olle; Sawyer, Roger H; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A; Green, Richard E; O'Brien, Stephen J; Griffin, Darren; Johnson, Warren E; Haussler, David; Ryder, Oliver A; Willerslev, Eske; Graves, Gary R; Alström, Per; Fjeldså, Jon; Mindell, David P; Edwards, Scott V; Braun, Edward L; Rahbek, Carsten; Burt, David W; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D; Gilbert, M Thomas P; Wang, Jun
2014-12-12
Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. Copyright © 2014, American Association for the Advancement of Science.
Transmission and reassortment of avian influenza viruses at the Asian-North American interface
Ramey, Andrew M.; Pearce, John M.; Ely, Craig R.; Guy, Lisa M. Sheffield; Irons, David B.; Derksen, Dirk V.; Ip, Hon S.
2010-01-01
Twenty avian influenza viruses were isolated from seven wild migratory bird species sampled at St. Lawrence Island, Alaska. We tested predictions based on previous phylogenetic analyses of avian influenza viruses that support spatially dependent trans-hemispheric gene flow and frequent interspecies transmission at a location situated at the Asian–North American interface. Through the application of phylogenetic and genotypic approaches, our data support functional dilution by distance of trans-hemispheric reassortants and interspecific virus transmission. Our study confirms infection of divergent avian taxa with nearly identical avian influenza strains in the wild. Findings also suggest that H16N3 viruses may contain gene segments with unique phylogenetic positions and that further investigation of how host specificity may impact transmission of H13 and H16 viruses is warranted.
Primary structure of the hemoglobin alpha-chain of rose-ringed parakeet (Psittacula krameri).
Islam, A; Beg, O U; Persson, B; Zaidi, Z H; Jörnvall, H
1988-10-01
The structure of the hemoglobin alpha-chain of Rose-ringed Parakeet was determined by sequence degradations of the intact subunit, the CNBr fragments, and peptides obtained by digestion with staphylococcal Glu-specific protease and trypsin. Using this analysis, the complete alpha-chain structure of 21 avian species is known, permitting comparisons of the protein structure and of avian relationships. The structure exhibits differences from previously established avian alpha-chains at a total of 61 positions, five of which have residues unique to those of the parakeet (Ser-12, Gly-65, Ser-67, Ala-121, and Leu-134). The analysis defines hemoglobin variation within an additional avian order (Psittaciformes), demonstrates distant patterns for evaluation of relationships within other avian orders, and lends support to taxonomic conclusions from molecular data.
ISSUES IN DEVELOPING A TWO-GENERATION AVIAN TOXICITY TEST WITH JAPANESE QUAIL
As a subgroup of the OECD Expert Group on Assessment of Endocrine Disrupting Effects in Birds, we reviewed unresolved methodological issures important for the development of a two-generation toxicity test, discussed advantages and disadvantages of alternative approaches, and prop...
Martin, Thomas E.; Arriero, Elena; Majewska, Ania
2011-01-01
Long embryonic periods are assumed to reflect slower intrinsic development that are thought to trade off to allow enhanced physiological systems, such as immune function. Yet, the relatively rare studies of this trade-off in avian offspring have not found the expected trade-off. Theory and tests have not taken into account the strong extrinsic effects of temperature on embryonic periods of birds. Here, we show that length of the embryonic period did not explain variation in two measures of immune function when temperature was ignored, based on studies of 34 Passerine species in tropical Venezuela (23 species) and north temperate Arizona (11 species). Variation in immune function was explained when embryonic periods were corrected for average embryonic temperature, in order to better estimate intrinsic rates of development. Immune function of offspring trades off with intrinsic rates of embryonic development once the extrinsic effects of embryonic temperatures are taken into account.
Ahmed, W; Harwood, V J; Nguyen, K; Young, S; Hamilton, K; Toze, S
2016-01-01
Avian fecal droppings may negatively impact environmental water quality due to the presence of high concentrations of fecal indicator bacteria (FIB) and zoonotic pathogens. This study was aimed at evaluating the performance characteristics and utility of a Helicobacter spp. associated GFD marker by screening 265 fecal and wastewater samples from a range of avian and non-avian host groups from two continents (Brisbane, Australia and Florida, USA). The host-prevalence and -specificity of this marker among fecal and wastewater samples tested from Brisbane were 0.58 and 0.94 (maximum value of 1.00). These values for the Florida fecal samples were 0.30 (host-prevalence) and 1.00 (host-specificity). The concentrations of the GFD markers in avian and non-avian fecal nucleic acid samples were measured at a test concentration of 10 ng of nucleic acid at Brisbane and Florida laboratories using the quantitative PCR (qPCR) assay. The mean concentrations of the GFD marker in avian fecal nucleic acid samples (5.2 × 10(3) gene copies) were two orders of magnitude higher than non-avian fecal nucleic acid samples (8.6 × 10(1) gene copies). The utility of this marker was evaluated by testing water samples from the Brisbane River, Brisbane and a freshwater creek in Florida. Among the 18 water samples tested from the Brisbane River, 83% (n = 18) were positive for the GFD marker, and the concentrations ranged from 6.0 × 10(1)-3.2 × 10(2) gene copies per 100 mL water. In all, 92% (n = 25) water samples from the freshwater creek in Florida were also positive for the GFD marker with concentrations ranging from 2.8 × 10(1)-1.3 × 10(4) gene copies per 100 mL water. Based on the results, it can be concluded that the GFD marker is highly specific to avian host groups, and could be used as a reliable marker to detect the presence and amount of avian fecal pollution in environmental waters. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Housing development erodes avian community structure in U.S. protected areas
Eric M. Wood; Anna M. Pidgeon; Volker C. Radeloff; David Helmers; Patrick D. Culbert; Nicholas S. Keuler; Curtis H. Flather
2014-01-01
Protected areas are a cornerstone for biodiversity conservation, but they also provide amenities that attract housing development on inholdings and adjacent private lands. We explored how this development affects biodiversity within and near protected areas among six ecological regions throughout the United States. We quantified the effect of housing density within, at...
Low diversity, activity, and density of transposable elements in five avian genomes.
Gao, Bo; Wang, Saisai; Wang, Yali; Shen, Dan; Xue, Songlei; Chen, Cai; Cui, Hengmi; Song, Chengyi
2017-07-01
In this study, we conducted the activity, diversity, and density analysis of transposable elements (TEs) across five avian genomes (budgerigar, chicken, turkey, medium ground finch, and zebra finch) to explore the potential reason of small genome sizes of birds. We found that these avian genomes exhibited low density of TEs by about 10% of genome coverages and low diversity of TEs with the TE landscapes dominated by CR1 and ERV elements, and contrasting proliferation dynamics both between TE types and between species were observed across the five avian genomes. Phylogenetic analysis revealed that CR1 clade was more diverse in the family structure compared with R2 clade in birds; avian ERVs were classified into four clades (alpha, beta, gamma, and ERV-L) and belonged to three classes of ERV with an uneven distributed in these lineages. The activities of DNA and SINE TEs were very low in the evolution history of avian genomes; most LINEs and LTRs were ancient copies with a substantial decrease of activity in recent, with only LTRs and LINEs in chicken and zebra finch exhibiting weak activity in very recent, and very few TEs were intact; however, the recent activity may be underestimated due to the sequencing/assembly technologies in some species. Overall, this study demonstrates low diversity, activity, and density of TEs in the five avian species; highlights the differences of TEs in these lineages; and suggests that the current and recent activity of TEs in avian genomes is very limited, which may be one of the reasons of small genome sizes in birds.
Dececchi, T. Alexander; Larsson, Hans C. E.
2011-01-01
The origin of avian flight is a classic macroevolutionary transition with research spanning over a century. Two competing models explaining this locomotory transition have been discussed for decades: ground up versus trees down. Although it is impossible to directly test either of these theories, it is possible to test one of the requirements for the trees-down model, that of an arboreal paravian. We test for arboreality in non-avian theropods and early birds with comparisons to extant avian, mammalian, and reptilian scansors and climbers using a comprehensive set of morphological characters. Non-avian theropods, including the small, feathered deinonychosaurs, and Archaeopteryx, consistently and significantly cluster with fully terrestrial extant mammals and ground-based birds, such as ratites. Basal birds, more advanced than Archaeopteryx, cluster with extant perching ground-foraging birds. Evolutionary trends immediately prior to the origin of birds indicate skeletal adaptations opposite that expected for arboreal climbers. Results reject an arboreal capacity for the avian stem lineage, thus lending no support for the trees-down model. Support for a fully terrestrial ecology and origin of the avian flight stroke has broad implications for the origin of powered flight for this clade. A terrestrial origin for the avian flight stroke challenges the need for an intermediate gliding phase, presents the best resolved series of the evolution of vertebrate powered flight, and may differ fundamentally from the origin of bat and pterosaur flight, whose antecedents have been postulated to have been arboreal and gliding. PMID:21857918
Slater, Tessa; Eckerle, Isabella; Chang, Kin-Chow
2018-04-10
With the recent discovery of novel H17N10 and H18N11 influenza viral RNA in bats and report on high frequency of avian H9 seroconversion in a species of free ranging bats, an important issue to address is the extent bats are susceptible to conventional avian and human influenza A viruses. To this end, three bat species (Eidolon helvum, Carollia perspicillata and Tadarida brasiliensis) of lung epithelial cells were separately infected with two avian and two human influenza viruses to determine their relative host innate immune resistance to infection. All three species of bat cells were more resistant than positive control Madin-Darby canine kidney (MDCK) cells to all four influenza viruses. TB1-Lu cells lacked sialic acid α2,6-Gal receptors and were most resistant among the three bat species. Interestingly, avian viruses were relatively more replication permissive in all three bat species of cells than with the use of human viruses which suggest that bats could potentially play a role in the ecology of avian influenza viruses. Chemical inhibition of the JAK-STAT pathway in bat cells had no effect on virus production suggesting that type I interferon signalling is not a major factor in resisting influenza virus infection. Although all three species of bat cells are relatively more resistant to influenza virus infection than control MDCK cells, they are more permissive to avian than human viruses which suggest that bats could have a contributory role in the ecology of avian influenza viruses.
West Nile and St. Louis encephalitis viral genetic determinants of avian host competence
Maharaj, Payal D.; Bosco-Lauth, Angela M.; Langevin, Stanley A.; Anishchenko, Michael; Bowen, Richard A.; Reisen, William K.
2018-01-01
West Nile virus (WNV) and St. Louis encephalitis (SLEV) virus are enzootically maintained in North America in cycles involving the same mosquito vectors and similar avian hosts. However, these viruses exhibit dissimilar viremia and virulence phenotypes in birds: WNV is associated with high magnitude viremias that can result in mortality in certain species such as American crows (AMCRs, Corvus brachyrhynchos) whereas SLEV infection yields lower viremias that have not been associated with avian mortality. Cross-neutralization of these viruses in avian sera has been proposed to explain the reduced circulation of SLEV since the introduction of WNV in North America; however, in 2015, both viruses were the etiologic agents of concurrent human encephalitis outbreaks in Arizona, indicating the need to re-evaluate host factors and cross-neutralization responses as factors potentially affecting viral co-circulation. Reciprocal chimeric WNV and SLEV viruses were constructed by interchanging the pre-membrane (prM)-envelope (E) genes, and viruses subsequently generated were utilized herein for the inoculation of three different avian species: house sparrows (HOSPs; Passer domesticus), house finches (Haemorhous mexicanus) and AMCRs. Cross-protective immunity between parental and chimeric viruses were also assessed in HOSPs. Results indicated that the prM-E genes did not modulate avian replication or virulence differences between WNV and SLEV in any of the three avian species. However, WNV-prME proteins did dictate cross-protective immunity between these antigenically heterologous viruses. Our data provides further evidence of the important role that the WNV / SLEV viral non-structural genetic elements play in viral replication, avian host competence and virulence. PMID:29447156
Watanabe, K P; Kawai, Y K; Nakayama, S M M; Ikenaka, Y; Mizukawa, H; Takaesu, N; Ito, M; Ikushiro, S-I; Sakaki, T; Ishizuka, M
2015-04-01
Large interspecies differences in avian xenobiotic metabolism have been revealed by microsome-based studies, but specific enzyme isoforms in different bird species have not yet been compared. We have previously shown that CYP2C23 genes are the most induced CYP isoforms in chicken liver. In this study, we collected partial CYP2C23a gene sequences from eight avian species (ostrich, blue-eared pheasant, snowy owl, great-horned owl, Chilean flamingo, peregrin falcon, Humboldt penguin, and black-crowned night heron) selected to cover the whole avian lineage: Paleognathae, Galloanserae, and Neoaves. Genetic analysis showed that CYP2C23 genes of Galloanserae species (chicken and blue-eared pheasant) had unique characteristics. We found some duplicated genes (CYP2C23a and CYP2C23b) and two missing amino acid residues in Galloanserae compared to the other two lineages. The genes have lower homology than in other avian lineages, which suggests Galloanserae-specific rapid evolutionary changes. These genetic features suggested that the Galloanserae are not the most representative avian species, considering that the Neoaves comprise more than 95% of birds. Moreover, we succeeded in synthesizing an antipeptide polyclonal antibody against the region of CYP2C23 protein conserved in avians. However, comparative quantitation of CYP2C23 proteins in livers from six species showed that expression levels of these proteins differed no more than fourfold. Further study is needed to clarify the function of avian CYP2C23 proteins. © 2014 John Wiley & Sons Ltd.
WILDLIFE TOXICITY REFERENCE VALUES FOR POLYNUCLEAR AROMATIC HYDROCARBONS AND DDT
The presentation will provide an overview of the procedures used in deriving mammalian and avian wildlife toxicity reference values to be used in development of ecological soil screening levels (Eco-SSLs).
Avian nestling predation by endangered Mount Graham red squirrel
Claire A. Zugmeyer; John L. Koprowski
2007-01-01
Studies using artificial nests or remote cameras have documented avian predation by red squirrels (Tamiasciurus hudsonicus). Although several direct observations of avian predation events are known in the northern range of the red squirrel distribution, no accounts have been reported in the southern portion. We observed predation upon a hermit thrush...
H9N2 low pathogenic avian influenza: Should we be afraid?
USDA-ARS?s Scientific Manuscript database
The H9N2 low pathogenic avian influenza (LPAI) is probably the most widespread avian influenza subtype in poultry around the world being endemic in a large part of Asia, the Middle East, Northern Africa, and in Germany. Currently, there is no standardized clade system to describe the antigenic vari...
9 CFR 93.201 - General prohibitions; exceptions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the United States if the poultry have been vaccinated for the H5 or H7 subtype of avian influenza. 2... been in any region where highly pathogenic avian influenza exists, which are subject to the provisions... region where highly pathogenic avian influenza exists may only be imported through the port of Los...
9 CFR 93.201 - General prohibitions; exceptions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the United States if the poultry have been vaccinated for the H5 or H7 subtype of avian influenza. 2... been in any region where highly pathogenic avian influenza exists, which are subject to the provisions... region where highly pathogenic avian influenza exists may only be imported through the port of Los...
9 CFR 145.63 - Terminology and classification; flocks and products.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Official State Agency and approved by the Service in lieu of annual blood testing. (b) U.S. Avian Influenza... program for the prevention and control of avian influenza. It is intended to determine the presence of avian influenza in all ostrich, emu, rhea, and cassowary breeding flocks through routine serological...
9 CFR 93.201 - General prohibitions; exceptions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the United States if the poultry have been vaccinated for the H5 or H7 subtype of avian influenza. 2... been in any region where highly pathogenic avian influenza exists, which are subject to the provisions... region where highly pathogenic avian influenza exists may only be imported through the port of Los...
Code of Federal Regulations, 2014 CFR
2014-01-01
... DISEASE, HIGHLY PATHOGENIC AVIAN INFLUENZA, AFRICAN SWINE FEVER, CLASSICAL SWINE FEVER, SWINE VESICULAR... in § 94.6(a) as free of Newcastle disease and highly pathogenic avian influenza at the time the... free of Newcastle disease and highly pathogenic avian influenza at a federally inspected slaughter...
9 CFR 145.63 - Terminology and classification; flocks and products.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Official State Agency and approved by the Service in lieu of annual blood testing. (b) U.S. Avian Influenza... program for the prevention and control of avian influenza. It is intended to determine the presence of avian influenza in all ostrich, emu, rhea, and cassowary breeding flocks through routine serological...
Studying the pathogenicity of avian influenza viruses in different avian species
USDA-ARS?s Scientific Manuscript database
Avian influenza (AI) viruses are significant pathogens of domestic poultry worldwide. Wild aquatic birds are the primordial reservoirs of AI viruses, which are classified as low pathogenic (LP) and can be any of the 16 hemagglutinin subtypes (H1-16). Circulation of H5 or H7 subtype LPAI viruses in...
9 CFR 145.63 - Terminology and classification; flocks and products.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Official State Agency and approved by the Service in lieu of annual blood testing. (b) U.S. Avian Influenza... program for the prevention and control of avian influenza. It is intended to determine the presence of avian influenza in all ostrich, emu, rhea, and cassowary breeding flocks through routine serological...
Current situation of avian influenza with emphasis on pathobiology, epidemiology and control
USDA-ARS?s Scientific Manuscript database
Avian influenza is one of the most important diseases affecting the poultry industry around the world. Avian Influenza virus (AIV) has a broad host range in birds and mammals, although the natural reservoir is considered to be in wild birds where it typically causes an asymptomatic to mild infectio...
9 CFR 113.326 - Avian Pox Vaccine.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Avian Pox Vaccine. 113.326 Section 113... Vaccines § 113.326 Avian Pox Vaccine. Fowl Pox Vaccine and Pigeon Pox Vaccine shall be prepared from virus... this section shall be used for preparing the production seed virus for vaccine production. All serials...
9 CFR 113.326 - Avian Pox Vaccine.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Avian Pox Vaccine. 113.326 Section 113... Vaccines § 113.326 Avian Pox Vaccine. Fowl Pox Vaccine and Pigeon Pox Vaccine shall be prepared from virus... this section shall be used for preparing the production seed virus for vaccine production. All serials...
9 CFR 113.326 - Avian Pox Vaccine.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Avian Pox Vaccine. 113.326 Section 113... Vaccines § 113.326 Avian Pox Vaccine. Fowl Pox Vaccine and Pigeon Pox Vaccine shall be prepared from virus... this section shall be used for preparing the production seed virus for vaccine production. All serials...
9 CFR 113.326 - Avian Pox Vaccine.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Avian Pox Vaccine. 113.326 Section 113... Vaccines § 113.326 Avian Pox Vaccine. Fowl Pox Vaccine and Pigeon Pox Vaccine shall be prepared from virus... this section shall be used for preparing the production seed virus for vaccine production. All serials...
9 CFR 113.326 - Avian Pox Vaccine.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Avian Pox Vaccine. 113.326 Section 113... Vaccines § 113.326 Avian Pox Vaccine. Fowl Pox Vaccine and Pigeon Pox Vaccine shall be prepared from virus... this section shall be used for preparing the production seed virus for vaccine production. All serials...
Susceptibility of swine to H5 and H7 low pathogenic avian influenza viruses
USDA-ARS?s Scientific Manuscript database
The ability of pigs to become infected with low pathogenic avian influenza (LPAI) viruses from an avian reservoir, and then generate mammalian adaptable influenza A viruses (IAVs) is difficult to determine. Yet, it is an important link to understanding any relationship between LPAI virus ecology and...
Serological Evidence of Human Infection with Avian Influenza A H7virus in Egyptian Poultry Growers.
Gomaa, Mokhtar R; Kandeil, Ahmed; Kayed, Ahmed S; Elabd, Mona A; Zaki, Shaimaa A; Abu Zeid, Dina; El Rifay, Amira S; Mousa, Adel A; Farag, Mohamed M; McKenzie, Pamela P; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi
2016-01-01
Avian influenza viruses circulate widely in birds, with occasional human infections. Poultry-exposed individuals are considered to be at high risk of infection with avian influenza viruses due to frequent exposure to poultry. Some avian H7 viruses have occasionally been found to infect humans. Seroprevalence of neutralizing antibodies against influenza A/H7N7 virus among poultry-exposed and unexposed individuals in Egypt were assessed during a three-years prospective cohort study. The seroprevalence of antibodies (titer, ≥80) among exposed individuals was 0%, 1.9%, and 2.1% annually while the seroprevalence among the control group remained 0% as measured by virus microneutralization assay. We then confirmed our results using western blot and immunofluorescence assays. Although human infection with H7 in Egypt has not been reported yet, our results suggested that Egyptian poultry growers are exposed to avian H7 viruses. These findings highlight the need for surveillance in the people exposed to poultry to monitor the risk of zoonotic transmission of avian influenza viruses.
A human-infecting H10N8 influenza virus retains a strong preference for avian-type receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Heng; de Vries, Robert P.; Tzarum, Netanel
Recent avian-origin H10N8 influenza A viruses that have infected humans pose a potential pandemic threat. Alterations in the viral surface glycoprotein, hemagglutinin (HA), typically are required for influenza A viruses to cross the species barrier for adaptation to a new host, but whether H10N8 contains adaptations supporting human infection remains incompletely understood. In this paper, we investigated whether H10N8 HA can bind human receptors. Sialoside glycan microarray analysis showed that the H10 HA retains a strong preference for avian receptor analogs and negligible binding to human receptor analogs. Crystal structures of H10 HA with avian and human receptor analogs revealedmore » the basis for preferential recognition of avian-like receptors. Furthermore, introduction of mutations into the H10 receptor-binding site (RBS) known to convert other HA subtypes from avian to human receptor specificity failed to switch preference to human receptors. In conclusion, collectively these findings suggest that the current H10N8 human isolates are poorly adapted for efficient human-to-human transmission.« less
Gholami-Ahangaran, Majid; Zia-Jahromi, Noosha; Namjoo, Abdolrasul
2014-02-01
In recent years, some outbreaks of skin lesions suspected to be avian pox were observed in the backyard poultry in different parts of western areas in Iran. Consequently, 328 backyard poultries with suspected signs of avian pox virus infection were sampled. All birds showed nodular lesions on unfeathered head skin and/or fibronecrotic lesions on mucus membrane of the oral cavity and upper respiratory tract. For histopathological analysis, the sections of tissue samples from cutaneous lesions of examined birds were stained with H&E method. For PCR, after DNA extraction a 578-bp fragment of avian pox virus from 4b core protein gene was amplified. Results showed 217 and 265 out of 328 (66.1 and 80.7%, respectively) samples were positive for avian pox virus on histopathological and PCR examination, respectively. In this study, the samples that had intracytoplasmic inclusion bodies on pathologic examination were PCR positive. This study revealed that PCR is a valuable tool for identification of an avian pox virus and that the frequency of pox infection in backyard poultry in western areas of Iran is high.
A human-infecting H10N8 influenza virus retains a strong preference for avian-type receptors
Zhang, Heng; de Vries, Robert P.; Tzarum, Netanel; ...
2015-03-11
Recent avian-origin H10N8 influenza A viruses that have infected humans pose a potential pandemic threat. Alterations in the viral surface glycoprotein, hemagglutinin (HA), typically are required for influenza A viruses to cross the species barrier for adaptation to a new host, but whether H10N8 contains adaptations supporting human infection remains incompletely understood. In this paper, we investigated whether H10N8 HA can bind human receptors. Sialoside glycan microarray analysis showed that the H10 HA retains a strong preference for avian receptor analogs and negligible binding to human receptor analogs. Crystal structures of H10 HA with avian and human receptor analogs revealedmore » the basis for preferential recognition of avian-like receptors. Furthermore, introduction of mutations into the H10 receptor-binding site (RBS) known to convert other HA subtypes from avian to human receptor specificity failed to switch preference to human receptors. In conclusion, collectively these findings suggest that the current H10N8 human isolates are poorly adapted for efficient human-to-human transmission.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ocana-Macchi, Manuela; Ricklin, Meret E.; Python, Sylvie
2012-05-25
The 2009 influenza A virus (IAV) pandemic resulted from reassortment of avian, human and swine strains probably in pigs. To elucidate the role of viral genes in host adaptation regarding innate immune responses, we focussed on the effect of genes from an avian H5N1 and a porcine H1N1 IAV on infectivity and activation of porcine GM-CSF-induced dendritic cells (DC). The highest interferon type I responses were achieved by the porcine virus reassortant containing the avian polymerase gene PB2. This finding was not due to differential tropism since all viruses infected DC equally. All viruses equally induced MHC class II, butmore » porcine H1N1 expressing the avian viral PB2 induced more prominent nuclear NF-{kappa}B translocation compared to its parent IAV. The enhanced activation of DC may be detrimental or beneficial. An over-stimulation of innate responses could result in either pronounced tissue damage or increased resistance against IAV reassortants carrying avian PB2.« less
Detection of cell mediated immune response to avian influenza viruses
USDA-ARS?s Scientific Manuscript database
In birds, lymphomyeloid tissues develop from epithelial (Bursa of Fabricus or thymus) or mesenchymal tissue which are populated by heamatopoietic stem cells. These stem cells develop directly into immunologically competent B (bursa) and T (thymus) cells. Cell-mediated immunity (CMI) is a part of the...
Role for migratory wild birds in the global spread of avian influenza H5N8
,; Ip, Hon S.
2016-01-01
Avian influenza viruses affect both poultry production and public health. A subtype H5N8 (clade 2.3.4.4) virus, following an outbreak in poultry in South Korea in January 2014, rapidly spread worldwide in 2014–2015. Our analysis of H5N8 viral sequences, epidemiological investigations, waterfowl migration, and poultry trade showed that long-distance migratory birds can play a major role in the global spread of avian influenza viruses. Further, we found that the hemagglutinin of clade 2.3.4.4 virus was remarkably promiscuous, creating reassortants with multiple neuraminidase subtypes. Improving our understanding of the circumpolar circulation of avian influenza viruses in migratory waterfowl will help to provide early warning of threats from avian influenza to poultry, and potentially human, health.
Are wetlands the reservoir for avian cholera?
Samuel, M.D.; Shadduck, D.J.; Goldberg, Diana R.
2004-01-01
Wetlands have long been suspected to be an important reservoir for Pasteurella multocida and therefore the likely source of avian cholera outbreaks. During the fall of 1995a??98 we collected sediment and water samples from 44 wetlands where avian cholera epizootics occurred the previous winter or spring. We attempted to isolate P. multocida in sediment and surface water samples from 10 locations distributed throughout each wetland. We were not able to isolate P. multocida from any of the 440 water and 440 sediment samples collected from these wetlands. In contrast, during other investigations of avian cholera we isolated P. multocida from 20 of 44 wetlands, including 7% of the water and 4.5% of the sediment samples collected during or shortly following epizootic events. Our results indicate that wetlands are an unlikely reservoir for the bacteria that causes avian cholera.
Transmission and reassortment of avian influenza viruses at the Asian-North American interface.
Ramey, Andrew M; Pearce, John M; Ely, Craig R; Guy, Lisa M Sheffield; Irons, David B; Derksen, Dirk V; Ip, Hon S
2010-10-25
Twenty avian influenza viruses were isolated from seven wild migratory bird species sampled at St. Lawrence Island, Alaska. We tested predictions based on previous phylogenetic analyses of avian influenza viruses that support spatially dependent trans-hemispheric gene flow and frequent interspecies transmission at a location situated at the Asian-North American interface. Through the application of phylogenetic and genotypic approaches, our data support functional dilution by distance of trans-hemispheric reassortants and interspecific virus transmission. Our study confirms infection of divergent avian taxa with nearly identical avian influenza strains in the wild. Findings also suggest that H16N3 viruses may contain gene segments with unique phylogenetic positions and that further investigation of how host specificity may impact transmission of H13 and H16 viruses is warranted. Copyright © 2010. Published by Elsevier Inc.
Lin, Jian; Xia, Jing; Zhang, Tian; Zhang, Keyun; Yang, Qian
2018-05-10
The antigen-presenting ability of dendritic cells (DCs) plays an important and irreplaceable role in recognising and clearing viruses. Antiviral responses must rapidly defend against infection while minimising inflammatory damage, but the mechanisms that regulate the magnitude of response within an infected cell are not well understood. MicroRNAs (microRNAs), small non-coding RNAs, can regulate mouse or avian DCs to inhibit the infection and replication of avian influenza virus (AIV). Here, we performed a global analysis to understand how avian DCs respond to H9N2 AIV and provide a potential mechanism to explain how avian microRNAs can defend against H9N2 AIV replication. First, we found that both active and inactive H9N2 AIV enhanced the ability of DCs to present antigens and activate T lymphocytes. Next, total microarray analyses suggested that H9N2 AIV stimulation involved protein localisation, nucleotide binding, leucocyte transendothelial migration and MAPK signalling. Moreover, we constructed 551 transcription factor (TF)-miRNA-mRNA loops based on the above analyses. Furthermore, we found that the haemagglutinin (HA) fragment, neither H5N1-HA or H9N2-HA, could not activate DCs, while truncated HA greatly increased the immune function of DCs by activating ERK and STAT3 signalling pathways. Lastly, our results not only suggested that gga-miR1644 targets muscleblind-like protein 2 (MBNL2) to enhance the ability of avian DCs to inhibit virus replication, but also suggested that gga-miR6675 targets the nuclear localisation sequence of polymerase basic protein 1 (PB1) to trigger the silencing of PB1 genes, resulting in the inhibition of H9N2 AIV replication. Altogether, our innovative study will shed new light on the role of avian microRNAs in evoking avian DCs and inhibiting virus replication.
Chu, D-H; Stevenson, M A; Nguyen, L V; Isoda, N; Firestone, S M; Nguyen, T N; Nguyen, L T; Matsuno, K; Okamatsu, M; Kida, H; Sakoda, Y
2017-12-01
In Vietnam, live bird markets are found in most populated centres, providing the means by which fresh poultry can be purchased by consumers for immediate consumption. Live bird markets are aggregation points for large numbers of poultry, and therefore, it is common for a range of avian influenza viruses to be mixed within live bird markets as a result of different poultry types and species being brought together from different geographical locations. We conducted a cross-sectional study in seven live bird markets in four districts of Thua Thien Hue Province in August and December, 2014. The aims of this study were to (i) document the prevalence of avian influenza in live bird markets (as measured by virus isolation); and (ii) quantify individual bird-, seller- and market-level characteristics that rendered poultry more likely to be positive for avian influenza virus at the time of sale. A questionnaire soliciting details of knowledge, attitude and avian influenza practices was administered to poultry sellers in study markets. At the same time, swabs and faecal samples were collected from individual poultry and submitted for isolation of avian influenza virus. The final data set comprised samples from 1,629 birds from 83 sellers in the seven live bird markets. A total of 113 birds were positive for virus isolation; a prevalence of 6.9 (95% CI 5.8-8.3) avian influenza virus-positive birds per 100 birds submitted for sale. After adjusting for clustering at the market and individual seller levels, none of the explanatory variables solicited in the questionnaire were significantly associated with avian influenza virus isolation positivity. The proportions of variance at the individual market, seller and individual bird levels were 6%, 48% and 46%, respectively. We conclude that the emphasis of avian influenza control efforts in Vietnam should be at the individual seller level as opposed to the market level. © 2017 Blackwell Verlag GmbH.
Bird mortality associated with wind turbines at the Buffalo Ridge wind resource area, Minnesota
Osborn, R.G.; Higgins, K.F.; Usgaard, R.E.; Dieter, C.D.; Neiger, R.D.
2000-01-01
Recent technological advances have made wind power a viable source of alternative energy production and the number of windplant facilities has increased in the United States. Construction was completed on a 73 turbine, 25 megawatt windplant on Buffalo Ridge near Lake Benton, Minnesota in Spring 1994. The number of birds killed at existing windplants in California caused concern about the potential impacts of the Buffalo Ridge facility on the avian community. From April 1994 through Dec. 1995 we searched the Buffalo Ridge windplant site for dead birds. Additionally, we evaluated search efficiency, predator scavenging rates and rate of carcass decomposition. During 20 mo of monitoring we found 12 dead birds. Collisions with wind turbines were suspected for 8 of the 12 birds. During observer efficiency trials searchers found 78.8% of carcasses. Scavengers removed 39.5% of carcasses during scavenging trials. All carcasses remained recognizable during 7 d decomposition trials. After correction for biases we estimated that approximately 36 ?? 12 birds (<1 dead bird per turbine) were killed at the Buffalo Ridge windplant in 1 y. Although windplants do not appear to be more detrimental to birds than other man-made structures, proper facility sitting is an important first consideration in order to avoid unnecessary fatalities.
Emerging and reemerging diseases of avian wildlife
Pello, Susan J.; Olsen, Glenn H.
2013-01-01
Of the many important avian wildlife diseases, aspergillosis, West Nile virus, avipoxvirus, Wellfleet Bay virus, avian influenza, and inclusion body disease of cranes are covered in this article. Wellfleet Bay virus, first identified in 2010, is considered an emerging disease. Avian influenza and West Nile virus have recently been in the public eye because of their zoonotic potential and links to wildlife. Several diseases labeled as reemerging are included because of recent outbreaks or, more importantly, recent research in areas such as genomics, which shed light on the mechanisms whereby these adaptable, persistent pathogens continue to spread and thrive.
Shiraishi, Rikiya; Nishiguchi, Akiko; Tsukamoto, Kenji; Muramatsu, Masatake
2012-09-01
We evaluated the utility of 5 commercial enzyme-linked immunosorbent assay (ELISA) kits for detecting antibodies to avian influenza viruses. The sensitivities and specificities of the ELISA kits were compared with those of the agar gel precipitation (AGP) and hemagglutination-inhibition (HI) tests. The results suggest that some ELISA kits might not be suitable for monitoring during the early stages of avian influenza virus infections. Therefore, ELISA kits should only be used in conjunction with a profound knowledge about monitoring of avian influenza.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oberst, R. D.; Bieker, Jill Marie; Souza, Caroline Ann
2005-12-01
Due to the grave public health implications and economic impact possible with the emergence of the highly pathogenic avian influenza A isolate, H5N1, currently circulating in Asia we have evaluated the efficacy of various disinfectant chemistries against surrogate influenza A strains. Chemistries included in the tests were household bleach, ethanol, Virkon S{reg_sign}, and a modified version of the Sandia National Laboratories developed DF-200 (DF-200d, a diluted version of the standard DF-200 formulation). Validation efforts followed EPA guidelines for evaluating chemical disinfectants against viruses. The efficacy of the various chemistries was determined by infectivity, quantitative RNA, and qualitative protein assays. Additionally,more » organic challenges using combined poultry feces and litter material were included in the experiments to simulate environments in which decontamination and remediation will likely occur. In all assays, 10% bleach and Sandia DF-200d were the most efficacious treatments against two influenza A isolates (mammalian and avian) as they provided the most rapid and complete inactivation of influenza A viruses.« less
Forelimb posture in dinosaurs and the evolution of the avian flapping flight-stroke.
Nudds, Robert L; Dyke, Gareth J
2009-04-01
Ontogenetic and behavioral studies using birds currently do not document the early evolution of flight because birds (including juveniles) used in such studies employ forelimb oscillation frequencies over 10 Hz, forelimb stroke-angles in excess of 130 degrees , and possess uniquely avian flight musculatures. Living birds are an advanced morphological stage in the development of flapping flight. To gain insight into the early stages of flight evolution (i.e., prebird), in the absence of a living analogue, a new approach using Strouhal number was used. Strouhal number is a nondimensional number that describes the relationship between wing-stroke amplitude (A), wing-beat frequency (f), and flight speed (U). Calculations indicated that even moderate wing movements are enough to generate rudimentary thrust and that a propulsive flapping flight-stroke could have evolved via gradual incremental changes in wing movement and wing morphology. More fundamental to the origin of the avian flapping flight-stroke is the question of how a symmetrical forelimb posture-required for gliding and flapping flight-evolved from an alternating forelimb motion, evident in all extant bipeds when running except birds.
Guan, Wenda; Wu, Nicholas C; Lee, Horace H Y; Li, Yimin; Jiang, Wenxin; Shen, Lihan; Wu, Douglas C; Chen, Rongchang; Zhong, Nanshan; Wilson, Ian A; Peiris, Malik; Yang, Zifeng; Mok, Chris K P
2018-05-28
Avian influenza A (H7N9) viruses emerged in China in 2013 and caused zoonotic disease associated with a case-fatality ratio of over 30%. Transcriptional profiles in peripheral blood reflect host responses and can help to elucidate disease pathogenesis. We correlated serial blood transcriptomic profiles of patients with avian influenza A (H7N9) virus infection and determined the biological significances from the analysis. We found that specific gene expression profiles in the blood were strongly correlated with the PaO2/FiO2 ratio and viral load in the lower respiratory tract (LRT). Cell cycle and leukocyte-related immunity were activated at the acute stage of the infection while T cell functions and various metabolic processes were associated with the recovery phase of the illness. A transition from systemic innate to adaptive immunity was found. We developed a novel approach for transcriptomic analysis to identify key host responses that were strongly correlated with specific clinical and virologic parameters in patients with H7N9 infection.
Livers provide a reliable matrix for real-time PCR confirmation of avian botulism.
Le Maréchal, Caroline; Ballan, Valentine; Rouxel, Sandra; Bayon-Auboyer, Marie-Hélène; Baudouard, Marie-Agnès; Morvan, Hervé; Houard, Emmanuelle; Poëzevara, Typhaine; Souillard, Rozenn; Woudstra, Cédric; Le Bouquin, Sophie; Fach, Patrick; Chemaly, Marianne
2016-04-01
Diagnosis of avian botulism is based on clinical symptoms, which are indicative but not specific. Laboratory investigations are therefore required to confirm clinical suspicions and establish a definitive diagnosis. Real-time PCR methods have recently been developed for the detection of Clostridium botulinum group III producing type C, D, C/D or D/C toxins. However, no study has been conducted to determine which types of matrices should be analyzed for laboratory confirmation using this approach. This study reports on the comparison of different matrices (pooled intestinal contents, livers, spleens and cloacal swabs) for PCR detection of C. botulinum. Between 2013 and 2015, 63 avian botulism suspicions were tested and 37 were confirmed as botulism. Analysis of livers using real-time PCR after enrichment led to the confirmation of 97% of the botulism outbreaks. Using the same method, spleens led to the confirmation of 90% of botulism outbreaks, cloacal swabs of 93% and pooled intestinal contents of 46%. Liver appears to be the most reliable type of matrix for laboratory confirmation using real-time PCR analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Antigenic characterization of H3 subtypes of avian influenza A viruses from North America
Bailey, Elizabeth; Long, Li-Pong; Zhao, Nan; Hall, Jeffrey S.; Baroch, John A; Nolting, Jaqueline; Senter, Lucy; Cunningham, Frederick L; Pharr, G Todd; Hanson, Larry; Slemons, Richard; DeLiberto, Thomas J.; Wan, Xiu-Feng
2016-01-01
Besides humans, H3 subtypes of influenza A viruses (IAVs) can infect various animal hosts, including avian, swine, equine, canine, and sea mammal species. These H3 viruses are both antigenically and genetically diverse. Here, we characterized the antigenic diversity of contemporary H3 avian IAVs recovered from migratory birds in North America. Hemagglutination inhibition (HI) assays were performed on 37 H3 isolates of avian IAVs recovered from 2007 to 2011 using generated reference chicken sera. These isolates were recovered from samples taken in the Atlantic, Mississippi, Central, and Pacific waterfowl migration flyways. Antisera to all the tested H3 isolates cross-reacted with each other and, to a lesser extent, with those to H3 canine and H3 equine IAVs. Antigenic cartography showed that the largest antigenic distance among the 37 avian IAVs is about four units, and each unit corresponds to a 2 log 2 difference in the HI titer. However, none of the tested H3 IAVs cross-reacted with ferret sera derived from contemporary swine and human IAVs. Our results showed that the H3 avian IAVs we tested lacked significant antigenic diversity, and these viruses were antigenically different from those circulating in swine and human populations. This suggests that H3 avian IAVs in North American waterfowl are antigenically relatively stable.
Characterizing the avian gut microbiota: membership, driving influences, and potential function.
Waite, David W; Taylor, Michael W
2014-01-01
Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbor diverse communities of microorganisms within their guts, which collectively fulfill important roles in providing the host with nutrition and protection from pathogens. Although many studies have investigated the role of particular microbes in the guts of avian species, there has been no attempt to unify the results of previous, sequence-based studies to examine the factors that shape the avian gut microbiota as a whole. In this study, we present the first meta-analysis of the avian gut microbiota, using 16S rRNA gene sequences obtained from a range of publicly available clone-library and amplicon pyrosequencing data. We investigate community membership and structure, as well as probe the roles of some of the key biological factors that influence the gut microbiota of other vertebrates, such as host phylogeny, location within the gut, diet, and association with humans. Our results indicate that, across avian studies, the microbiota demonstrates a similar phylum-level composition to that of mammals. Host bird species is the most important factor in determining community composition, although sampling site, diet, and captivity status also contribute. These analyses provide a first integrated look at the composition of the avian microbiota, and serve as a foundation for future studies in this area.
Evolution of olfaction in non-avian theropod dinosaurs and birds
Zelenitsky, Darla K.; Therrien, François; Ridgely, Ryan C.; McGee, Amanda R.; Witmer, Lawrence M.
2011-01-01
Little is known about the olfactory capabilities of extinct basal (non-neornithine) birds or the evolutionary changes in olfaction that occurred from non-avian theropods through modern birds. Although modern birds are known to have diverse olfactory capabilities, olfaction is generally considered to have declined during avian evolution as visual and vestibular sensory enhancements occurred in association with flight. To test the hypothesis that olfaction diminished through avian evolution, we assessed relative olfactory bulb size, here used as a neuroanatomical proxy for olfactory capabilities, in 157 species of non-avian theropods, fossil birds and living birds. We show that relative olfactory bulb size increased during non-avian maniraptoriform evolution, remained stable across the non-avian theropod/bird transition, and increased during basal bird and early neornithine evolution. From early neornithines through a major part of neornithine evolution, the relative size of the olfactory bulbs remained stable before decreasing in derived neoavian clades. Our results show that, rather than decreasing, the importance of olfaction actually increased during early bird evolution, representing a previously unrecognized sensory enhancement. The relatively larger olfactory bulbs of earliest neornithines, compared with those of basal birds, may have endowed neornithines with improved olfaction for more effective foraging or navigation skills, which in turn may have been a factor allowing them to survive the end-Cretaceous mass extinction. PMID:21490022
Antigenic Characterization of H3 Subtypes of Avian Influenza A Viruses from North America.
Bailey, Elizabeth; Long, Li-Ping; Zhao, Nan; Hall, Jeffrey S; Baroch, John A; Nolting, Jacqueline; Senter, Lucy; Cunningham, Frederick L; Pharr, G Todd; Hanson, Larry; Slemons, Richard; DeLiberto, Thomas J; Wan, Xiu-Feng
2016-05-01
Besides humans, H3 subtypes of influenza A viruses (IAVs) can infect various animal hosts, including avian, swine, equine, canine, and sea mammal species. These H3 viruses are both antigenically and genetically diverse. Here, we characterized the antigenic diversity of contemporary H3 avian IAVs recovered from migratory birds in North America. Hemagglutination inhibition (HI) assays were performed on 37 H3 isolates of avian IAVs recovered from 2007 to 2011 using generated reference chicken sera. These isolates were recovered from samples taken in the Atlantic, Mississippi, Central, and Pacific waterfowl migration flyways. Antisera to all the tested H3 isolates cross-reacted with each other and, to a lesser extent, with those to H3 canine and H3 equine IAVs. Antigenic cartography showed that the largest antigenic distance among the 37 avian IAVs is about four units, and each unit corresponds to a 2 log 2 difference in the HI titer. However, none of the tested H3 IAVs cross-reacted with ferret sera derived from contemporary swine and human IAVs. Our results showed that the H3 avian IAVs we tested lacked significant antigenic diversity, and these viruses were antigenically different from those circulating in swine and human populations. This suggests that H3 avian IAVs in North American waterfowl are antigenically relatively stable.
Avian Antimicrobial Host Defense Peptides: From Biology to Therapeutic Applications
Zhang, Guolong; Sunkara, Lakshmi T.
2014-01-01
Host defense peptides (HDPs) are an important first line of defense with antimicrobial and immunomoduatory properties. Because they act on the microbial membranes or host immune cells, HDPs pose a low risk of triggering microbial resistance and therefore, are being actively investigated as a novel class of antimicrobials and vaccine adjuvants. Cathelicidins and β-defensins are two major families of HDPs in avian species. More than a dozen HDPs exist in birds, with the genes in each HDP family clustered in a single chromosomal segment, apparently as a result of gene duplication and diversification. In contrast to their mammalian counterparts that adopt various spatial conformations, mature avian cathelicidins are mostly α-helical. Avian β-defensins, on the other hand, adopt triple-stranded β-sheet structures similar to their mammalian relatives. Besides classical β-defensins, a group of avian-specific β-defensin-related peptides, namely ovodefensins, exist with a different six-cysteine motif. Like their mammalian counterparts, avian cathelicidins and defensins are derived from either myeloid or epithelial origin expressed in a majority of tissues with broad-spectrum antibacterial and immune regulatory activities. Structure-function relationship studies with several avian HDPs have led to identification of the peptide analogs with potential for use as antimicrobials and vaccine adjuvants. Dietary modulation of endogenous HDP synthesis has also emerged as a promising alternative approach to disease control and prevention in chickens. PMID:24583933
Characterizing the avian gut microbiota: membership, driving influences, and potential function
Waite, David W.; Taylor, Michael W.
2014-01-01
Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbor diverse communities of microorganisms within their guts, which collectively fulfill important roles in providing the host with nutrition and protection from pathogens. Although many studies have investigated the role of particular microbes in the guts of avian species, there has been no attempt to unify the results of previous, sequence-based studies to examine the factors that shape the avian gut microbiota as a whole. In this study, we present the first meta-analysis of the avian gut microbiota, using 16S rRNA gene sequences obtained from a range of publicly available clone-library and amplicon pyrosequencing data. We investigate community membership and structure, as well as probe the roles of some of the key biological factors that influence the gut microbiota of other vertebrates, such as host phylogeny, location within the gut, diet, and association with humans. Our results indicate that, across avian studies, the microbiota demonstrates a similar phylum-level composition to that of mammals. Host bird species is the most important factor in determining community composition, although sampling site, diet, and captivity status also contribute. These analyses provide a first integrated look at the composition of the avian microbiota, and serve as a foundation for future studies in this area. PMID:24904538
Tsai, Feng-Jen; Tseng, Eva; Chan, Chang-Chuan; Tamashiro, Hiko; Motamed, Sandrine; Rougemont, André C
2013-03-25
This study aims to evaluate the length of time elapsed between reports of the same incidents related to avian flu and H1N1 outbreaks published by the WHO and ProMED-mail, the two major global health surveillance systems, before and after the amendment of the International Health Regulations in 2005 (IHR 2005) and to explore the association between country transparency and this timeliness gap. We recorded the initial release dates of each report related to avian flu or H1N1 listed on the WHO Disease Outbreak News site and the matching outbreak report from ProMED-mail, a non-governmental program for monitoring emerging diseases, from 2003 to the end of June 2009. The timeliness gap was calculated as the difference in days between the report release dates of the matching outbreaks in the WHO and ProMED-mail systems. Civil liberties scores were collected as indicators of the transparency of each country. The Human Development Index and data indicating the density of physicians and nurses were collected to reflect countries' development and health workforce statuses. Then, logistic regression was performed to determine the correlation between the timeliness gap and civil liberties, human development, and health workforce status, controlling for year. The reporting timeliness gap for avian flu and H1N1 outbreaks significantly decreased after 2003. On average, reports were posted 4.09 (SD = 7.99) days earlier by ProMED-mail than by the WHO. Countries with partly free (OR = 5.77) and free civil liberties scores (OR = 10.57) had significantly higher likelihoods of longer timeliness gaps than non-free countries. Similarly, countries with very high human development status had significantly higher likelihoods of longer timeliness gaps than countries with middle or low human development status (OR = 5.30). However, no association between the timeliness gap and health workforce density was found. The study found that the adoption of IHR 2005, which contributed to countries' awareness of the importance of timely reporting, had a significant impact in improving the reporting timeliness gap. In addition, the greater the civil liberties in a country (e.g., importance of freedom of the media), the longer the timeliness gap.
USDA-ARS?s Scientific Manuscript database
Virulent viruses of the panzootic Avian avulavirus 1 (AAvV-1) of sub-genotype VIIi were repeatedly isolated (2011–2016) from commercial chickens and from multiple non-poultry avian species in Pakistan. These findings provide evidence for the existence of epidemiological links between Newcastle disea...
76 FR 65935 - National Poultry Improvement Plan and Auxiliary Provisions; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
..., we amended the regulations for the control of H5/H7 low pathogenic avian influenza to simplify the... that are infected with or exposed to the H5 or H7 subtypes of low pathogenic avian influenza. In Sec... Subjects in 9 CFR Part 56 Animal diseases, Indemnity payments, Low pathogenic avian influenza, Poultry...
9 CFR 93.205 - Certificate for live poultry and hatching eggs.
Code of Federal Regulations, 2014 CFR
2014-01-01
... been vaccinated with a vaccine for the H5 or H7 subtype of avian influenza. The certificate shall also... region where any form of highly pathogenic avian influenza exists, and that, as far as it has been possible to determine, no case of highly pathogenic avian influenza or Newcastle disease occurred on the...
USDA-ARS?s Scientific Manuscript database
Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis virus, is the causative agent of turkey rhinotracheitis, and is associated with swollen head syndrome in chickens. Since its discovery in the 1970s, aMPV has been recognized as an economically important pathogen ...
Risk perceptions for avian influenza virus infection among poultry workers, China.
Yu, Qi; Liu, Linqing; Pu, Juan; Zhao, Jingyi; Sun, Yipeng; Shen, Guangnian; Wei, Haitao; Zhu, Junjie; Zheng, Ruifeng; Xiong, Dongyan; Liu, Xiaodong; Liu, Jinhua
2013-02-01
To determine risk for avian influenza virus infection, we conducted serologic surveillance for H5 and H9 subtypes among poultry workers in Beijing, China, 2009-2010, and assessed workers' understanding of avian influenza. We found that poultry workers had considerable risk for infection with H9 subtypes. Increasing their knowledge could prevent future infections.
Global spread and control of avian influenza
USDA-ARS?s Scientific Manuscript database
H5 and H7 high pathogenicity avian influenza (HPAI) viruses emerge from the mutation of H5 and H7 low pathogenicity avian influenza viruses (LPAI) after circulation in terrestrial poultry for a few weeks to years. There have been 42 distinct HPAI epizootics since 1959. The largest being the H5N1 A/G...
USDA-ARS?s Scientific Manuscript database
Immunity against avian influenza (AI) is largely based on the induction of neutralizing antibodies produced against the hemagglutinin, although cytotoxic T lymphocytes (CTL’s) have been reported as critical for clearance of virus from infected cells. Antibody production against a particular virus ...
Enhanced virulence of clade 2.3.2.1 highly pathogenic avian influenza A(H5N1) viruses in ferrets
USDA-ARS?s Scientific Manuscript database
Sporadic avian to human transmission of highly pathogenic avian influenza (HPAI) A (H5N1) viruses necessitates the analysis of currently circulating and evolving clades to assess their potential risk. Following the spread and sustained circulation of clade 2 viruses across multiple continents, num...
Rhyoo, Moon-Young; Lee, Kyung-Hyun; Moon, Oun-Kyung; Park, Woo-Hee; Bae, You-Chan; Jung, Ji-Youl; Yoon, Soon-Seek; Kim, Hye-Ryoung; Lee, Myoung-Heon; Lee, Eun-Joo; Ki, Mi-Ran; Jeong, Kyu-Shik
2015-01-01
We compared the clinical signs, histopathological lesions and distribution of viral antigens among infected young (meat-type) and older (breeder) ducks that were naturally infected with the highly pathogenic avian influenza (HPAI) virus during the 2010-2011 Korean outbreak. The meat-type ducks had a high mortality rate (30%) and showed severe neurological signs such as head tremors and paresis. In contrast, HPAI-infected breeder ducks had minimal clinical signs but a decreased egg production rate. The histopathological characteristics of infected meat-type ducks included necrotic lesions of heart and brain, which may have primarily contributed to the high mortality rate. In contrast, the breeder ducks only presented necrotic splenitis, and viral antigens were only detected in the trachea, lungs and spleen. Younger ducks had a high viral titre in the organs, high levels of viral shedding and a high mortality rate after experimental HPAI virus infection. Compared to the breeder ducks, the meat-type ducks were raised in smaller farms that had poor quarantine and breeding facilities. It is therefore possible that better biosecurity in the breeder farms could have reduced the infection dose and subsequently the severity of the disease. Thus, age and management may be the influencing factors for HPAI susceptibility in ducks.
Bohls, Ryan L; Linares, Jose A; Gross, Shannon L; Ferro, Pam J; Silvy, Nova J; Collisson, Ellen W
2006-08-01
Reticuloendotheliosis virus infection, which typically causes systemic lymphomas and high mortality in the endangered Attwater's prairie chicken, has been described as a major obstacle in repopulation efforts of captive breeding facilities in Texas. Although antigenic relationships among reticuloendotheliosis virus (REV) strains have been previously determined, phylogenetic relationships have not been reported. The pol and env of REV proviral DNA from prairie chickens (PC-R92 and PC-2404), from poxvirus lesions in domestic chickens, the prototype poultry derived REV-A and chick syncytial virus (CSV), and duck derived spleen necrosis virus (SNV) were PCR amplified and sequenced. The 5032bp, that included the pol and most of env genes, of the PC-R92 and REV-A were 98% identical, and nucleotide sequence identities of smaller regions within the pol and env from REV strains examined ranged from 95 to 99% and 93 to 99%, respectively. The putative amino acid sequences were 97-99% identical in the polymerase and 90-98% in the envelope. Phylogenetic analyses of the nucleotide and amino acid sequences indicated the closest relationship among the recent fowl pox-associated chicken isolates, the prairie chicken isolates and the prototype CSV while only the SNV appeared to be distinctly divergent. While the origin of the naturally occurring viruses is not known, the avian poxvirus may be a critical component of transmission of these ubiquitous oncogenic viruses.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
USDA-ARS?s Scientific Manuscript database
Serotonin (5-HT) acts as a neurogenic compound in the developing brain; however serotonin altering drugs such as SSRIs are often prescribed to pregnant and lactating mothers. Early agonism of 5-HT receptors could alter the development of serotonergic circuitry, altering neurotransmission and behavio...
Okumura, Hiroki
2017-01-01
An ovulated egg of vertebrates is surrounded by unique extracellular matrix, the egg coat or zona pellucida, playing important roles in fertilization and early development. The vertebrate egg coat is composed of two to six zona pellucida (ZP) glycoproteins that are characterized by the evolutionarily conserved ZP-domain module and classified into six subfamilies based on phylogenetic analyses. Interestingly, investigations of biochemical and functional features of the ZP glycoproteins show that the roles of each ZP-glycoprotein family member in the egg-coat formation and the egg-sperm interactions seemingly vary across vertebrates. This might be one reason why comprehensive understandings of the molecular basis of either architecture or physiological functions of egg coat still remain elusive despite more than 3 decades of intensive investigations. In this chapter, an overview of avian egg focusing on the oogenesis are provided in the first section, and unique features of avian egg coat, i.e., perivitelline layer, including the morphology, biogenesis pathway, and physiological functions are discussed mainly on chicken and quail in terms of the characteristics of ZP glycoproteins in the following sections. In addition, these features of avian egg coat are compared to mammalian zona pellucida, from the viewpoint that the structural and functional varieties of ZP glycoproteins might be associated with the evolutionary adaptation to their reproductive strategies. By comparing the egg coat of birds and mammals whose reproductive strategies are largely different, new insights into the molecular mechanisms of vertebrate egg-sperm interactions might be provided.
The pandemic potential of avian influenza A(H7N9) virus: a review.
Tanner, W D; Toth, D J A; Gundlapalli, A V
2015-12-01
In March 2013 the first cases of human avian influenza A(H7N9) were reported to the World Health Organization. Since that time, over 650 cases have been reported. Infections are associated with considerable morbidity and mortality, particularly within certain demographic groups. This rapid increase in cases over a brief time period is alarming and has raised concerns about the pandemic potential of the H7N9 virus. Three major factors influence the pandemic potential of an influenza virus: (1) its ability to cause human disease, (2) the immunity of the population to the virus, and (3) the transmission potential of the virus. This paper reviews what is currently known about each of these factors with respect to avian influenza A(H7N9). Currently, sustained human-to-human transmission of H7N9 has not been reported; however, population immunity to the virus is considered very low, and the virus has significant ability to cause human disease. Several statistical and geographical modelling studies have estimated and predicted the spread of the H7N9 virus in humans and avian species, and some have identified potential risk factors associated with disease transmission. Additionally, assessment tools have been developed to evaluate the pandemic potential of H7N9 and other influenza viruses. These tools could also hypothetically be used to monitor changes in the pandemic potential of a particular virus over time.
Chicken IgY Fc expressed by Eimeria mitis enhances the immunogenicity of E. mitis.
Qin, Mei; Tang, Xinming; Yin, Guangwen; Liu, Xianyong; Suo, Jingxia; Tao, Geru; Ei-Ashram, Saeed; Li, Yuan; Suo, Xun
2016-03-21
Eimeria species are obligate intracellular apicomplexan parasites, causing great economic losses in the poultry industry. Currently wild-and attenuated- type anticoccidial vaccines are used to control coccidiosis. However, their use in fast growing broilers is limited by vaccination side effects caused by medium and/or low immunogenic Eimeria spp. There is, therefore, a need for a vaccine with high immunogenicity for broilers. The avian yolk sac IgY Fc is the avian counterpart of the mammalian IgG Fc, which enhances immunogenicity of Fc-fusion proteins. Here, we developed a stable transgenic Eimeria mitis expressing IgY Fc (Emi.chFc) and investigated whether the avian IgY Fc fragment enhances the immunogenicity of E. mitis. Two-week-old broilers were immunized with either Emi.chFc or wild type Eimeria and challenged with wild type E. mitis to analyze the protective properties of transgenic Emi.chFc. Chickens immunized with Emi.chFc had significantly lower oocyst output, in comparison with PBS, mock control (transgenic E. mitis expressing HA1 from H9N2 avian influenza virus) and wildtype E. mitis immunized groups after challenge, indicating that IgY Fc enhanced the immunogenicity of E. mitis. Our findings suggest that IgY Fc-expressing Eimeria may be a better coccidiosis vaccine, and transgenic Eimeria expressing Fc-fused exogenous antigens may be used as a novel vaccine-delivery vehicle against a wide variety of pathogens.
Adaptive evolution during the establishment of European avian-like H1N1 influenza A virus in swine.
Joseph, Udayan; Vijaykrishna, Dhanasekaran; Smith, Gavin J D; Su, Yvonne C F
2018-04-01
An H1N1 subtype influenza A virus with all eight gene segments derived from wild birds (including mallards), ducks and chickens, caused severe disease outbreaks in swine populations in Europe beginning in 1979 and successfully adapted to form the European avian-like swine (EA-swine) influenza lineage. Genes of the EA-swine lineage that are clearly segregated from its closest avian relatives continue to circulate in swine populations globally and represent a unique opportunity to study the adaptive process of an avian-to-mammalian cross-species transmission. Here, we used a relaxed molecular clock model to test whether the EA-swine virus originated through the introduction of a single avian ancestor as an entire genome, followed by an analysis of host-specific selection pressures among different gene segments. Our data indicated independent introduction of gene segments via transmission of avian viruses into swine followed by reassortment events that occurred at least 1-4 years prior to the EA-swine outbreak. All EA-swine gene segments exhibit greater selection pressure than avian viruses, reflecting both adaptive pressures and relaxed selective constraints that are associated with host switching. Notably, we identified key amino acid mutations in the viral surface proteins (H1 and N1) that play a role in adaptation to new hosts. Following the establishment of EA-swine lineage, we observed an increased frequency of intrasubtype reassortment of segments compared to the earlier strains that has been associated with adaptive amino acid replacements, disease severity and vaccine escape. Taken together, our study provides key insights into the adaptive changes in viral genomes following the transmission of avian influenza viruses to swine and the early establishment of the EA-swine lineage.
Avian cholera in Nebraska's Rainwater Basin
Windingstad, R.M.; Hurt, J.J.; Trout, A.K.; Cary, J.
1984-01-01
The first report of avian cholera in North America occurred in northwestern Texas in winter 1944 (Quortrup et al. 1946). In 1975, mortality from avian cholera occurred for the first time in waterfowl in the Rainwater Basin of Nebraska when an estimated 25,000 birds died (Zinkl et al. 1977). Avian cholera has continued to cause mortality in wild birds in specific areas of the Basin each spring since. Losses of waterfowl from avian cholera continue to be much greater in some of the wetlands in the western part of the Basin than in the east. Several wetlands in the west have consistently higher mortality and are most often the wetlands where initial mortality is noticed each spring (Figure 1). The establishment of this disease in Nebraska is of considerable concern because of the importance of the Rainwater Basin as a spring staging area for waterfowl migrating to their breeding grounds. The wetlands in this area are on a major migration route used by an estimated 5 to 9 million ducks and several hundred thousand geese. A large portion of the western mid-continental greater white-fronted goose (Anser albifrons) population stage in the Basin each spring. Occasionally, whooping cranes (Grus americana) use these wetlands during migration, and lesser sandhill cranes (Grus canadensis) staging on the nearby Platte River sometimes use wetlands where avian cholera occurs (Anonymous 1981). Our objectives were to determine whether certain water quality variables in the Rainwater Basin differed between areas of high and low avian cholera incidence. These results would then be used for laboratory studies involving the survivability of Pasteurella multocida, the causative bacterium of avian cholera. Those studies will be reported elsewhere.
Lee, Eun-Kyoung; Kang, Hyun-Mi; Kim, Kwang-Il; Choi, Jun-Gu; To, Thanh Long; Nguyen, Tho Dang; Song, Byung-Min; Jeong, Jipseol; Choi, Kang-Seuk; Kim, Ji-Ye; Lee, Hee-Soo; Lee, Youn-Jeong; Kim, Jae-Hong
2015-04-01
In spite of highly pathogenic avian influenza H5N1 vaccination campaigns for domestic poultry, H5N1 viruses continue to circulate in Vietnam. To estimate the prevalence of avian influenza virus in Vietnam, surveillance was conducted between November 2011 and February 2013. Genetic analysis of 312 highly pathogenic avian influenza H5 viruses isolated from poultry in Vietnam was conducted and possible genetic relationships with strains from neighboring countries were investigated. As previously reported, phylogenetic analysis of the avian influenza virus revealed two H5N1 HPAI clades that were circulating in Vietnam. Clade 1.1, related to Cambodian strains, was predominant in the southern provinces, while clade 2.3.2.1 viruses were predominant in the northern and central provinces. Sequence analysis revealed evidence of active genetic evolution. In the gene constellation of clade 2.3.2.1, genotypes A, B, and B(II) existed during the 2011/2012 winter season. In June 2012, new genotype C emerged by reassortment between genotype A and genotype B(II), and this genotype was predominant in 2013 in the northern and central provinces. Interestingly, enzootic Vietnamese clade 2.3.2.1C H5 virus subsequently reassorted with N2, which originated from wild birds, to generate H5N2 highly pathogenic avian influenza, which was isolated from duck in the northeast region. This investigation indicated that H5N1 outbreaks persist in Vietnam and cause genetic reassortment with circulating viruses. It is necessary to strengthen active influenza surveillance to eradicate highly pathogenic avian influenza viruses and sever the link between highly pathogenic avian influenza and other circulating influenza viruses. © 2015 Poultry Science Association Inc.
Fukui, Daisuke; Nakamura, Makiko; Yamaguchi, Tsuyoshi; Takenaka, Makiko; Murakami, Mami; Yanai, Tokuma; Fukushi, Hideto; Yanagida, Kazumi; Bando, Gen; Matsuno, Keita; Nagano, Masashi; Tsubota, Toshio
2016-04-28
In 2006-10, an epizootic of emerging avian pox occurred in Carrion Crows ( Corvus corone ) and Large-billed Crows ( Corvus macrorhynchos ), leading to mortality of juvenile crows in Hokkaido, the northernmost island of Japan. We diagnosed 27 crows with proliferative skin lesions (19 carcasses and eight biopsied cases [one in zoo captivity]) as avian pox clinically, histopathologically by detection of Avipoxvirus-specific 4b core protein (P4b) gene, and epidemiologically. The fatal cases demonstrated intensively severe infection and aggressive lesions with secondary bacterial infection. Since the first identification of avian pox in Sapporo, Japan, in 2006, the frequency of mortality events has increased, peaking in 2007-08. Mortalities have subsequently occurred in other areas, suggesting disease expansion. In Sapporo, prevalence of avian pox evaluated by field censuses during 2007-12 was 17.6% (6.6-27.2%), peaked during 2007-08 and 2008-09, and then decreased. All diseased crows were juveniles, except for one adult. The number of crows assembling in the winter roosts had been stable for >10 yr; however, it declined in 2007-08, decreased by about 50% in 2008-09, and recovered to the previous level in 2009-10, correlated with the avian pox outbreak. Thus, avian pox probably contributed to the unusual crow population decline. All P4b sequences detected in six specimens in Sapporo were identical and different from any previously reported sequences. The sequence detected in the zoo-kept crow was distinct from any reported clades, and interspecies transmission was suspected. This report demonstrates an emerging novel avian pox in the Japanese avifauna and in global populations of Carrion Crows and Large-billed Crows. Longitudinal monitoring is needed to evaluate its impact on the crow population.
Evidence of infection with H4 and H11 avian influenza viruses among Lebanese chicken growers.
Kayali, Ghazi; Barbour, Elie; Dbaibo, Ghassan; Tabet, Carelle; Saade, Maya; Shaib, Houssam A; Debeauchamp, Jennifer; Webby, Richard J
2011-01-01
Human infections with H5, H7, and H9 avian influenza viruses are well documented. Exposure to poultry is the most important risk factor for humans becoming infected with these viruses. Data on human infection with other low pathogenicity avian influenza viruses is sparse but suggests that such infections may occur. Lebanon is a Mediterranean country lying under two major migratory birds flyways and is home to many wild and domestic bird species. Previous reports from this country demonstrated that low pathogenicity avian influenza viruses are in circulation but highly pathogenic H5N1 viruses were not reported. In order to study the extent of human infection with avian influenza viruses in Lebanon, we carried out a seroprevalence cross-sectional study into which 200 poultry-exposed individuals and 50 non-exposed controls were enrolled. We obtained their sera and tested it for the presence of antibodies against avian influenza viruses types H4 through H16 and used a questionnaire to collect exposure data. Our microneutralization assay results suggested that backyard poultry growers may have been previously infected with H4 and H11 avian influenza viruses. We confirmed these results by using a horse red blood cells hemagglutination inhibition assay. Our data also showed that farmers with antibodies against each virus type clustered in a small geographic area suggesting that unrecognized outbreaks among birds may have led to these human infections. In conclusion, this study suggests that occupational exposure to chicken is a risk factor for infection with avian influenza especially among backyard growers and that H4 and H11 influenza viruses may possess the ability to cross the species barrier to infect humans.
Isolation and genetic characterization of H5N2 influenza viruses from pigs in Korea.
Lee, Jun Han; Pascua, Philippe Noriel Q; Song, Min-Suk; Baek, Yun Hee; Kim, Chul-Joong; Choi, Hwan-Woon; Sung, Moon-Hee; Webby, Richard J; Webster, Robert G; Poo, Haryoung; Choi, Young Ki
2009-05-01
Due to dual susceptibility to both human and avian influenza A viruses, pigs are believed to be effective intermediate hosts for the spread and production of new viruses with pandemic potential. In early 2008, two swine H5N2 viruses were isolated from our routine swine surveillance in Korea. The sequencing and phylogenetic analysis of surface proteins revealed that the Sw/Korea/C12/08 and Sw/Korea/C13/08 viruses were derived from avian influenza viruses of the Eurasian lineage. However, although the Sw/Korea/C12/08 isolate is an entirely avian-like virus, the Sw/Korea/C13/08 isolate is an avian-swine-like reassortant with the PB2, PA, NP, and M genes coming from a 2006 Korean swine H3N1-like virus. The molecular characterization of the two viruses indicated an absence of significant mutations that could be associated with virulence or binding affinity. However, animal experiments showed that the reassortant Sw/Korea/C13/08 virus was more adapted and was more readily transmitted than the purely avian-like virus in a swine experimental model but not in ferrets. Furthermore, seroprevalence in swine sera from 2006 to 2008 suggested that avian H5 viruses have been infecting swine since 2006. Although there are no known potential clinical implications of the avian-swine reassortant virus for pathogenicity in pigs or other species, including humans, at present, the efficient transmissibility of the swine-adapted H5N2 virus could facilitate virus spread and could be a potential model for pandemic, highly pathogenic avian influenza (e.g., H5N1 and H7N7) virus outbreaks or a pandemic strain itself.
Preferential recognition of avian-like receptors in human influenza A H7N9 viruses.
Xu, Rui; de Vries, Robert P; Zhu, Xueyong; Nycholat, Corwin M; McBride, Ryan; Yu, Wenli; Paulson, James C; Wilson, Ian A
2013-12-06
The 2013 outbreak of avian-origin H7N9 influenza in eastern China has raised concerns about its ability to transmit in the human population. The hemagglutinin glycoprotein of most human H7N9 viruses carries Leu(226), a residue linked to adaptation of H2N2 and H3N2 pandemic viruses to human receptors. However, glycan array analysis of the H7 hemagglutinin reveals negligible binding to humanlike α2-6-linked receptors and strong preference for a subset of avian-like α2-3-linked glycans recognized by all avian H7 viruses. Crystal structures of H7N9 hemagglutinin and six hemagglutinin-glycan complexes have elucidated the structural basis for preferential recognition of avian-like receptors. These findings suggest that the current human H7N9 viruses are poorly adapted for efficient human-to-human transmission.
Avian Models for Human Cognitive Neuroscience: A Proposal.
Clayton, Nicola S; Emery, Nathan J
2015-06-17
Research on avian cognitive neuroscience over the past two decades has revealed the avian brain to be a better model for understanding human cognition than previously thought, despite differences in the neuroarchitecture of avian and mammalian brains. The brain, behavior, and cognition of songbirds have provided an excellent model of human cognition in one domain, namely learning human language and the production of speech. There are other important behavioral candidates of avian cognition, however, notably the capacity of corvids to remember the past and plan for the future, as well as their ability to think about another's perspective, and physical reasoning. We review this work and assess the evidence that the corvid brain can support such a cognitive architecture. We propose potential applications of these behavioral paradigms for cognitive neuroscience, including recent work on single-cell recordings and neuroimaging in corvids. Finally, we discuss their impact on understanding human developmental cognition. Copyright © 2015 Elsevier Inc. All rights reserved.
Dinosaur Reproduction and Parenting
NASA Astrophysics Data System (ADS)
Horner, John R.
Non-avian dinosaur reproductive and parenting behaviors were mostly similar to those of extant archosaurs. Non-avian dinosaurs were probably sexually dimorphic and some may have engaged in hierarchical rituals. Non-avian coelurosaurs (e.g. Troodontidae, Oviraptorosauria) had two active oviducts, each of which produced single eggs on a daily or greater time scale. The eggs of non-coelurosaurian dinosaurs (e.g. Ornithischia, Sauropoda) were incubated in soils, whereas the eggs of non-avian coelurosaurs (e.g. Troodon, Oviraptor) were incubated with a combination of soil and direct parental contact. Parental attention to the young was variable, ranging from protection from predators to possible parental feeding of nest-bound hatchlings. Semi-altricial hadrosaur hatchlings exited their respective nests near the time of their first linear doubling. Some reproductive behaviors, once thought exclusive to Aves, arose first in non-avian dinosaurs. The success of the Dinosauria may be related to reproductive strategies.
Role for migratory wild birds in the global spread of avian influenza H5N8.
2016-10-14
Avian influenza viruses affect both poultry production and public health. A subtype H5N8 (clade 2.3.4.4) virus, following an outbreak in poultry in South Korea in January 2014, rapidly spread worldwide in 2014-2015. Our analysis of H5N8 viral sequences, epidemiological investigations, waterfowl migration, and poultry trade showed that long-distance migratory birds can play a major role in the global spread of avian influenza viruses. Further, we found that the hemagglutinin of clade 2.3.4.4 virus was remarkably promiscuous, creating reassortants with multiple neuraminidase subtypes. Improving our understanding of the circumpolar circulation of avian influenza viruses in migratory waterfowl will help to provide early warning of threats from avian influenza to poultry, and potentially human, health. Copyright © 2016, American Association for the Advancement of Science.
Isolation strategy of a two-strain avian influenza model using optimal control
NASA Astrophysics Data System (ADS)
Mardlijah, Ariani, Tika Desi; Asfihani, Tahiyatul
2017-08-01
Avian influenza has killed many victims of both birds and humans. Most cases of avian influenza infection in humans have resulted transmission from poultry to humans. To prevent or minimize the patients of avian influenza can be done by pharmaceutical and non-pharmaceutical measures such as the use of masks, isolation, etc. We will be analyzed two strains of avian influenza models that focus on treatment of symptoms with insulation, then investigate the stability of the equilibrium point by using Routh-Hurwitz criteria. We also used optimal control to reduce the number of humans infected by making the isolation level as the control then proceeds optimal control will be simulated. The completion of optimal control used in this study is the Pontryagin Minimum Principle and for simulation we are using Runge Kutta method. The results obtained showed that the application of two control is more optimal compared to apply one control only.
Avian pox in Magellanic Penguins (Spheniscus magellanicus).
Kane, Olivia J; Uhart, Marcela M; Rago, Virginia; Pereda, Ariel J; Smith, Jeffrey R; Van Buren, Amy; Clark, J Alan; Boersma, P Dee
2012-07-01
Avian pox is an enveloped double-stranded DNA virus that is mechanically transmitted via arthropod vectors or mucosal membrane contact with infectious particles or birds. Magellanic Penguins (Spheniscus magellanicus) from two colonies (Punta Tombo and Cabo Dos Bahías) in Argentina showed sporadic, nonepidemic signs of avian pox during five and two of 29 breeding seasons (1982-2010), respectively. In Magellanic Penguins, avian pox expresses externally as wart-like lesions around the beak, flippers, cloaca, feet, and eyes. Fleas (Parapsyllus longicornis) are the most likely arthropod vectors at these colonies. Three chicks with cutaneous pox-like lesions were positive for Avipoxvirus and revealed phylogenetic proximity with an Avipoxvirus found in Black-browed Albatross (Thalassarche melanophrys) from the Falkland Islands in 1987. This proximity suggests a long-term circulation of seabird Avipoxviruses in the southwest Atlantic. Avian pox outbreaks in these colonies primarily affected chicks, often resulted in death, and were not associated with handling, rainfall, or temperature.
China is closely monitoring an increase in infection with avian influenza A (H7N9) virus.
Tang, Qi; Shao, Meiying; Xu, Lingzhong
2017-03-22
The fifth outbreak of human infection with avian influenza A (H7N9) virus has struck far and wide in China. The number of cases of infection with the avian influenza A (H7N9) suddenly increased in 2013-2014, but the number of cases reported this winter has exceeded the number reported in all previous seasons. Given this situation, the National Health and Family Planning Commission issued updated Chinese guidelines (2017 version) on diagnosis and treatment of infection with the avian influenza A (H7N9) virus on January 24, 2017. In addition, the Chinese Government closed many live poultry markets in urban and rural areas in a number of provinces and the Government has taken proactive measures to surveil, respond to, and prevent potential pandemics involving the avian influenza A (H7N9) virus.
Ecology and diagnosis of introduced avian malaria in Hawaiian forest birds
Atkinson, Carter T.
2005-01-01
Avian malaria is a disease caused by species of protozoan parasites (Plasmodium) that infect birds. Related species commonly infect reptiles, birds and mammals in tropical and temperate regions of the world. Transmitted by mosquitoes, the parasites spend part of their lives in the red blood cells of birds (Figure 1). Avian malaria is common in continental areas, but is absent from the most isolated island archipelagos where mosquitoes do not naturally occur. More than 40 different species of avian Plasmodium have been described, but only one, P. relictum, has been introduced to the Hawaiian Islands. Because they evolved without natural exposure to avian malaria, native Hawaiian honeycreepers are extremely susceptible to this disease. Malaria currently limits the geographic distribution of native species, has population level impacts on survivorship, and is limiting the recovery of threatened and endangered species of forest birds.
Development, differentiation and manipulation of chicken germ cells.
Nakamura, Yoshiaki; Kagami, Hiroshi; Tagami, Takahiro
2013-01-01
Germ cells are the only cell type capable of transmitting genetic information to the next generation. During development, they are set aside from all somatic cells of the embryo. In many species, germ cells form at the fringe of the embryo proper and then traverse through several developing somatic tissues on their migration to the emerging gonads. Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. Unlike other species, in avian embryos, PGCs use blood circulation for transport to the future gonadal region. This unique accessibility of avian PGCs during early development provides an opportunity to collect and transplant PGCs. The recent development of methods for production of germline chimeras by transfer of PGCs, and long-term cultivation methods of chicken PGCs without losing their germline transmission ability have provided important breakthroughs for the preservation of germplasm , for the production of transgenic birds and study the germ cell system. This review will describe the development, migration, differentiation and manipulation of germ cells, and discuss the prospects that germ cell technologies offer for agriculture, biotechnology and academic research. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.
Vaccine-induced canine distemper in European mink, Mustela lutreola.
Sutherland-Smith, M R; Rideout, B A; Mikolon, A B; Appel, M J; Morris, P J; Shima, A L; Janssen, D J
1997-09-01
This report describes vaccine-induced canine distemper virus (CDV) infection in four European mink (Mustela lutreola) induced by the administration of a multivalent, avian-origin vaccine. Clinical signs consisting of seizures, ataxia, facial twitching, oculonasal discharge, hyperkeratosis of footpads, and anorexia developed 16-20 days postvaccination. Conjunctival smears from one animal were positive for CDV antigen by direct fluorescent antibody testing, confirming the clinical diagnosis. The four mink died 16-26 days postvaccination. Gross and microscopic lesions that were diagnostic for CDV infection included interstitial pneumonia, lymphoid depletion, nonsuppurative encephalitis, and dermatitis. Vaccine-strain virus was isolated from tissues of three animals. Cases of vaccine-induced distemper in mustelids using avian-origin vaccine have seldom been reported.
Vitkova, O N; Kapustina, T P; Mikhailova, V V; Safonov, G A; Vlasova, N N; Belousova, R V
2015-01-01
The goal of this work was to demonstrate the results of the development of the enzyme-linked immunosorbent tests with chemiluminescence detection and colorimetric detection of specific viral antigens and antibodies for identifying the avian influenza and the Newcastle disease viruses: high sensitivity and specificity of the immuno- chemiluminescence assay, which are 10-50 times higher than those of the ELISA colorimetric method. The high effectiveness of the results and the automation of the process of laboratory testing (using a luminometer) allow these methods to be recommended for including in primary screening tests for these infectious diseases.
Potential directions for chicken immunology research.
Stewart, Cameron R; Keyburn, Anthony L; Deffrasnes, Celine; Tompkins, S Mark
2013-11-01
The importance of poultry, particularly chicken, as a food source continues to increase globally. Moreover, zoonotic infectious diseases such as avian influenza virus not only continue to impact poultry production, but also pose an increasing threat to public health. This review discusses the importance of poultry in both agricultural and public health arenas. Recent developments in avian immunology are described, with an emphasis on host-pathogen interactions and noting differences from mammalian systems. Next generation technologies including functional genomics and targeted gene disruption (e.g. zinc finger nucleases and meganucleases) are discussed as new approaches for not only understanding immune responses in poultry, but also as novel disease intervention strategies. Copyright © 2013. Published by Elsevier Ltd.
The use of pseudotypes to study viruses, virus sero-epidemiology and vaccination.
Bentley, Emma M; Mather, Stuart T; Temperton, Nigel J
2015-06-12
The globalization of the world's economies, accompanied by increasing international travel, changing climates, altered human behaviour and demographics is leading to the emergence of different viral diseases, many of which are highly pathogenic and hence are considered of great public and animal health importance. To undertake basic research and therapeutic development, many of these viruses require handling by highly trained staff in BSL-3/4 facilities not readily available to the majority of the global R&D community. In order to circumvent the enhanced biosafety requirement, the development of non-pathogenic, replication-defective pseudotyped viruses is an effective and established solution to permit the study of many aspects of virus biology in a low containment biosafety level (BSL)-1/2 laboratory. Under the spectre of the unfolding Ebola crisis, this timely conference (the second to be organised by the Viral Pseudotype Unit, www.viralpseudotypeunit.info*) discusses the recent advances in pseudotype technology and how it is revolutionizing the study of important human and animal pathogens (human and avian influenza viruses, rabies/lyssaviruses, HIV, Marburg and Ebola viruses). Key topics addressed in this conference include the exploitation of pseudotypes for serology and serosurveillance, immunogenicity testing of current and next-generation vaccines and new pseudotype assay formats (multiplexing, kit development). The first pseudotype-focused Euroscicon conference organised by the Viral Pseudotype Unit was recently reviewed [1]. Copyright © 2015. Published by Elsevier Ltd.. All rights reserved.
Influenza viruses production: Evaluation of a novel avian cell line DuckCelt®-T17.
Petiot, Emma; Proust, Anaïs; Traversier, Aurélien; Durous, Laurent; Dappozze, Frédéric; Gras, Marianne; Guillard, Chantal; Balloul, Jean-Marc; Rosa-Calatrava, Manuel
2018-05-24
The influenza vaccine manufacturing industry is looking for production cell lines that are easily scalable, highly permissive to multiple viruses, and more effective in term of viral productivity. One critical characteristic of such cell lines is their ability to grow in suspension, in serum free conditions and at high cell densities. Influenza virus causing severe epidemics both in human and animals is an important threat to world healthcare. The repetitive apparition of influenza pandemic outbreaks in the last 20years explains that manufacturing sector is still looking for more effective production processes to replace/supplement embryonated egg-based process. Cell-based production strategy, with a focus on avian cell lines, is one of the promising solutions. Three avian cell lines, namely duck EB66®cells (Valneva), duck AGE.CR® cells (Probiogen) and quail QOR/2E11 cells (Baxter), are now competing with traditional mammalian cell platforms (Vero and MDCK cells) used for influenza vaccine productions and are currently at advance stage of commercial development for the manufacture of influenza vaccines. The DuckCelt®-T17 cell line presented in this work is a novel avian cell line developed by Transgene. This cell line was generated from primary embryo duck cells with the constitutive expression of the duck telomerase reverse transcriptase (dTERT). The DuckCelt®-T17 cells were able to grow in batch suspension cultures and serum-free conditions up to 6.5×10 6 cell/ml and were easily scaled from 10ml up to 3l bioreactor. In the present study, DuckCelt®-T17 cell line was tested for its abilities to produce various human, avian and porcine influenza strains. Most of the viral strains were produced at significant infectious titers (>5.8 log TCID50/ml) with optimization of the infection conditions. Human strains H1N1 and H3N2, as well as all the avian strains tested (H5N2, H7N1, H3N8, H11N9, H12N5) were the most efficiently produced with highest titre reached of 9.05 log TCID50/ml for A/Panama/2007/99 influenza H3N2. Porcine strains were also greatly rescued with titres from 4 to 7 log TCID50/ml depending of the subtypes. Interestingly, viral kinetics showed maximal titers reached at 24h post-infection for most of the strains, allowing early harvest time (Time Of Harvest: TOH). The B strains present specific production kinetics with a delay of 24h before reaching the maximal viral particle release. Process optimization on H1N1 2009 human pandemic strain allowed identifying best operating conditions for production (MOI, trypsin concentration, cell density at infection) allowing improving the production level by 2 log. Our results suggest that the DuckCelt®-T17 cell line is a very promising platform for industrial production of influenza viruses and particularly for avian viral strains. Copyright © 2017 Elsevier Ltd. All rights reserved.
Revised Nomenclature for Avian Telencephalon and Some Related Brainstem Nuclei
REINER, ANTON; PERKEL, DAVID J.; BRUCE, LAURA L.; BUTLER, ANN B.; CSILLAG, ANDRÁS; KUENZEL, WAYNE; MEDINA, LORETA; PAXINOS, GEORGE; SHIMIZU, TORU; STRIEDTER, GEORG; WILD, MARTIN; BALL, GREGORY F.; DURAND, SARAH; GÜTÜRKÜN, ONUR; LEE, DIANE W.; MELLO, CLAUDIO V.; POWERS, ALICE; WHITE, STEPHANIE A.; HOUGH, GERALD; KUBIKOVA, LUBICA; SMULDERS, TOM V.; WADA, KAZUHIRO; DUGAS-FORD, JENNIFER; HUSBAND, SCOTT; YAMAMOTO, KEIKO; YU, JING; SIANG, CONNIE; JARVIS, ERICH D.
2008-01-01
The standard nomenclature that has been used for many telencephalic and related brainstem structures in birds is based on flawed assumptions of homology to mammals. In particular, the outdated terminology implies that most of the avian telencephalon is a hypertrophied basal ganglia, when it is now clear that most of the avian telencephalon is neurochemically, hodologically, and functionally comparable to the mammalian neocortex, claustrum, and pallial amygdala (all of which derive from the pallial sector of the developing telencephalon). Recognizing that this promotes misunderstanding of the functional organization of avian brains and their evolutionary relationship to mammalian brains, avian brain specialists began discussions to rectify this problem, culminating in the Avian Brain Nomenclature Forum held at Duke University in July 2002, which approved a new terminology for avian telencephalon and some allied brainstem cell groups. Details of this new terminology are presented here, as is a rationale for each name change and evidence for any homologies implied by the new names. Revisions for the brainstem focused on vocal control, catecholaminergic, cholinergic, and basal ganglia-related nuclei. For example, the Forum recognized that the hypoglossal nucleus had been incorrectly identified as the nucleus intermedius in the Karten and Hodos (1967) pigeon brain atlas, and what was identified as the hypoglossal nucleus in that atlas should instead be called the supraspinal nucleus. The locus ceruleus of this and other avian atlases was noted to consist of a caudal noradrenergic part homologous to the mammalian locus coeruleus and a rostral region corresponding to the mammalian A8 dopaminergic cell group. The midbrain dopaminergic cell group in birds known as the nucleus tegmenti pedunculopontinus pars compacta was recognized as homologous to the mammalian substantia nigra pars compacta and was renamed accordingly; a group of γ-aminobutyric acid (GABA)ergic neurons at the lateral edge of this region was identified as homologous to the mammalian substantia nigra pars reticulata and was also renamed accordingly. A field of cholinergic neurons in the rostral avian hindbrain was named the nucleus pedunculopontinus tegmenti, whereas the anterior nucleus of the ansa lenticularis in the avian diencephalon was renamed the subthalamic nucleus, both for their evident mammalian homologues. For the basal (i.e., subpallial) telencephalon, the actual parts of the basal ganglia were given names reflecting their now evident homologues. For example, the lobus parolfactorius and paleostriatum augmentatum were acknowledged to make up the dorsal subdivision of the striatal part of the basal ganglia and were renamed as the medial and lateral striatum. The paleostriatum primitivum was recognized as homologous to the mammalian globus pallidus and renamed as such. Additionally, the rostroventral part of what was called the lobus parolfactorius was acknowledged as comparable to the mammalian nucleus accumbens, which, together with the olfactory tubercle, was noted to be part of the ventral striatum in birds. A ventral pallidum, a basal cholinergic cell group, and medial and lateral bed nuclei of the stria terminalis were also recognized. The dorsal (i.e., pallial) telencephalic regions that had been erroneously named to reflect presumed homology to striatal parts of mammalian basal ganglia were renamed as part of the pallium, using prefixes that retain most established abbreviations, to maintain continuity with the outdated nomenclature. We concluded, however, that one-to-one (i.e., discrete) homologies with mammals are still uncertain for most of the telencephalic pallium in birds and thus the new pallial terminology is largely devoid of assumptions of one-to-one homologies with mammals. The sectors of the hyperstriatum composing the Wulst (i.e., the hyperstriatum accessorium intermedium, and dorsale), the hyperstriatum ventrale, the neostriatum, and the archistriatum have been renamed (respectively) the hyperpallium (hypertrophied pallium), the mesopallium (middle pallium), the nidopallium (nest pallium), and the arcopallium (arched pallium). The posterior part of the archistriatum has been renamed the posterior pallial amygdala, the nucleus taeniae recognized as part of the avian amygdala, and a region inferior to the posterior paleostriatum primitivum included as a subpallial part of the avian amygdala. The names of some of the laminae and fiber tracts were also changed to reflect current understanding of the location of pallial and subpallial sectors of the avian telencephalon. Notably, the lamina medularis dorsalis has been renamed the pallial-subpallial lamina. We urge all to use this new terminology, because we believe it will promote better communication among neuroscientists. PMID:15116397
Hubbard, Laura E; Kolpin, Dana W; Fields, Chad L; Hladik, Michelle L; Iwanowicz, Luke R
2017-10-01
The highly pathogenic avian influenza (H5N2) outbreak in the Midwestern United States (US) in 2015 was historic due to the number of birds and poultry operations impacted and the corresponding economic loss to the poultry industry and was the largest animal health emergency in US history. The U.S. Geological Survey (USGS), with the assistance of several state and federal agencies, aided the response to the outbreak by developing a study to determine the extent of virus transport in the environment. The study goals were to: develop the appropriate sampling methods and protocols for measuring avian influenza virus (AIV) in groundwater, provide the first baseline data on AIV and outbreak- and poultry-related contaminant occurrence and movement into groundwater, and document climatological factors that may have affected both survival and transport of AIV to groundwater during the months of the 2015 outbreak. While site selection was expedient, there were often delays in sample response times due to both relationship building between agencies, groups, and producers and logistical time constraints. This study's design and sampling process highlights the unpredictable nature of disease outbreaks and the corresponding difficulty in environmental sampling of such events. The lessons learned, including field protocols and approaches, can be used to improve future research on AIV in the environment. Published by Elsevier Inc.
Hubbard, Laura E.; Kolpin, Dana W.; Fields, Chad L.; Hladik, Michelle L.; Iwanowicz, Luke R.
2017-01-01
The highly pathogenic avian influenza (H5N2) outbreak in the Midwestern United States (US) in 2015 was historic due to the number of birds and poultry operations impacted and the corresponding economic loss to the poultry industry and was the largest animal health emergency in US history. The U.S. Geological Survey (USGS), with the assistance of several state and federal agencies, aided the response to the outbreak by developing a study to determine the extent of virus transport in the environment. The study goals were to: develop the appropriate sampling methods and protocols for measuring avian influenza virus (AIV) in groundwater, provide the first baseline data on AIV and outbreak- and poultry-related contaminant occurrence and movement into groundwater, and document climatological factors that may have affected both survival and transport of AIV to groundwater during the months of the 2015 outbreak. While site selection was expedient, there were often delays in sample response times due to both relationship building between agencies, groups, and producers and logistical time constraints. This study's design and sampling process highlights the unpredictable nature of disease outbreaks and the corresponding difficulty in environmental sampling of such events. The lessons learned, including field protocols and approaches, can be used to improve future research on AIV in the environment.
Shin, Sangsu; Song, Yan; Ahn, Jinsoo; Kim, Eunsoo; Chen, Paula; Yang, Shujin; Suh, Yeunsu; Lee, Kichoon
2015-11-15
Myostatin (MSTN) is a key negative regulator of muscle growth and development, and an increase of muscle mass is achieved by inhibiting MSTN signaling. In the current study, five alternative splicing isoforms of MSTN mRNAs in avian species were identified in various tissues. Among these five, three truncated forms of myostatin, MSTN-B, -C, and -E created premature stop codons and produced partial MSTN prodomains encoded from exon 1. MSTN-B is the second dominant isoform following full-length MSTN-A, and their expression was dynamically regulated during muscle development of chicken, turkey, and quail in vivo and in vitro. To clarify the function of MSTN-B, two stable cell lines of quail myoblasts (QM7) were generated to overexpress MSTN-A or MSTN-B. Interestingly, MSTN-B promoted both cell proliferation and differentiation similar to the function of the MSTN prodomain to counteract the negative role of MSTN on myogenesis. The coimmunoprecipitation assay revealed that MSTN-B binds to MSTN-A and reduces the generation of mature MSTN. Furthermore, the current study demonstrated that the partial prodomain encoded from exon 1 is critical for binding of MSTN-B to MSTN-A. Altogether, these data imply that alternative splicing isoforms of MSTN could negatively regulate pro-myostatin processing in muscle cells and prevent MSTN-mediated inhibition of myogenesis in avian species. Copyright © 2015 the American Physiological Society.
Christensen, Jette; El Allaki, Farouk; Vallières, André
2014-05-01
Scenario tree models with temporal discounting have been applied in four continents to support claims of freedom from animal disease. Recently, a second (new) model was developed for the same population and disease. This is a natural development because surveillance is a dynamic process that needs to adapt to changing circumstances - the difficulty is the justification for, documentation of, presentation of and the acceptance of the changes. Our objective was to propose a systematic approach to present changes to an existing scenario tree model for freedom from disease. We used the example of how we adapted the deterministic Canadian Notifiable Avian Influenza scenario tree model published in 2011 to a stochastic scenario tree model where the definition of sub-populations and the estimation of probability of introduction of the pathogen were modified. We found that the standardized approach by Vanderstichel et al. (2013) with modifications provided a systematic approach to make and present changes to an existing scenario tree model. We believe that the new 2013 CanNAISS scenario tree model is a better model than the 2011 model because the 2013 model included more surveillance data. In particular, the new data on Notifiable Avian Influenza in Canada from the last 5 years were used to improve input parameters and model structure. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Characterization of avian T-cell receptor γ genes
Six, Adrien; Rast, Jonathan P.; McCormack, Wayne T.; Dunon, Dominique; Courtois, David; Li, Yue; Chen, Chen-lo H.; Cooper, Max D.
1996-01-01
In birds and mammals T cells develop along two discrete pathways characterized by expression of either the αβ or the γδ T-cell antigen receptors (TCRs). To gain further insight into the evolutionary significance of the γδ T-cell lineage, the present studies sought to define the chicken TCRγ locus. A splenic cDNA library was screened with two polymerase chain reaction products obtained from genomic DNA using primers for highly conserved regions of TCR and immunoglobulin genes. This strategy yielded cDNA clones with characteristics of mammalian TCR γ chains, including canonical residues considered important for proper folding and stability. Northern blot analysis with the TCRγ cDNA probe revealed 1.9-kb transcripts in the thymus, spleen, and a γδ T-cell line, but not in B or αβ T-cell lines. Three multimember Vγ subfamilies, three Jγ gene segments, and a single constant region Cγ gene were identified in the avian TCRγ locus. Members of each of the three Vγ subfamilies were found to undergo rearrangement in parallel during the first wave of thymocyte development. TCRγ repertoire diversification was initiated on embryonic day 10 by an apparently random pattern of V-Jγ recombination, nuclease activity, and P- and N-nucleotide additions to generate a diverse repertoire of avian TCRγ genes early in ontogeny. PMID:8986811
Inheritance and Establishment of Gut Microbiota in Chickens
Ding, Jinmei; Dai, Ronghua; Yang, Lingyu; He, Chuan; Xu, Ke; Liu, Shuyun; Zhao, Wenjing; Xiao, Lu; Luo, Lingxiao; Zhang, Yan; Meng, He
2017-01-01
In mammals, the microbiota can be transmitted from the placenta, uterus, and vagina of the mother to the infant. Unlike mammals, development of the avian embryo is a process isolated from the mother and thus in the avian embryo the gut microbial developmental process remains elusive. To explore the establishment and inheritance of the gut microbiome in the avian embryo, we used the chicken as the model organism to investigate the gut microbial composition in embryos, chicks, and maternal hens. We observed: (1) 28 phyla and 162 genera of microbes in embryos where the dominated genus was Halomonas (79%). (2) 65 genera were core microbiota in all stages with 42% and 62% gut microbial genera of embryo were found in maternal hen and chick, respectively. There was a moderate correlation (0.40) between the embryo and maternal, and 0.52 between the embryo and chick at the family level. (3) Gut microbes that are involved in substance metabolism, infectious disease, and environmental adaptation are enriched in embryos, chicks, and maternal hens, respectively. (4) 94% genera of gut microbial composition were similar among three different chicken breeds which were maintained under similar conditions. Our findings provide evidence to support the hypothesis that part of the microbial colonizers harbored in early embryos were inherited from maternal hens, and the gut microbial abundance and diversity were influenced by environmental factors and host genetic variation during development. PMID:29067020
USDA-ARS?s Scientific Manuscript database
Outbreaks of H5 highly pathogenic avian influenza (HPAI) in commercial poultry are a constant threat to animal health and food supplies. While vaccination can enhance protection and reduce the spread of disease, there is considerable evidence that the level of immunity required for protection varies...
USDA-ARS?s Scientific Manuscript database
Avian paramyxovirus serotype 1 (APMV-1) viruses are globally distributed, infect wild, peridomestic, and domestic birds, and sometimes lead to outbreaks of disease. Thus, the maintenance, evolution, and spread of APMV-1 viruses are relevant to avian health. In this study we sequenced the fusion gen...
Avian research in the U.S. Forest Service
Beatrice Van Horne
2005-01-01
Avian research in the Federal Government is in a crisis. Yes, there is a strong interest in avian research, as evidenced by the size and level of interest in this conference. But political parties increasingly see wildlife research as expendable. At the same time, the reaction to environment-friendly legislation of the 1970s and 1980s has been strong from both sides....