Science.gov

Sample records for avian escherichia coli

  1. Avian pathogenic Escherichia coli bind fibronectin and laminin.

    PubMed

    Ramírez, Rosa María; Almanza, Yolanda; González, Rafael; García, Santos; Heredia, Norma

    2009-04-01

    Avian colisepticemia frequently occurs after respiratory tract damage, the primary site for infection allows bacteria to encounter an exposed basement membrane, where laminin and fibronectin are important components. We investigated the ability of an isolate of avian pathogenic Escherichia coli to bind fibronectin and laminin. Using Far-western dot blot analysis, we demonstrated the ability of this microorganism to bind basement membrane proteins fibronectin and laminin. Results from an ELISA-based approach indicate that the binding to these membrane proteins was bacterial-dose dependent. Furthermore, two specific E. coli polypeptides, of 32 kDa and 130 kDa, reacted with laminin and fibronectin, respectively. Further evaluation of these potential bacterial adhesins may provide insights into the pathogenesis of colibacillosis.

  2. Chromosomal features of Escherichia coli serotype O2:K2, an avian pathogenic E. coli.

    PubMed

    Jørgensen, Steffen L; Kudirkiene, Egle; Li, Lili; Christensen, Jens P; Olsen, John E; Nolan, Lisa; Olsen, Rikke H

    2017-01-01

    Escherichia coli causing infection outside the gastrointestinal system are referred to as extra-intestinal pathogenic E. coli. Avian pathogenic E. coli is a subgroup of extra-intestinal pathogenic E. coli and infections due to avian pathogenic E. coli have major impact on poultry production economy and welfare worldwide. An almost defining characteristic of avian pathogenic E. coli is the carriage of plasmids, which may encode virulence factors and antibiotic resistance determinates. For the same reason, plasmids of avian pathogenic E. coli have been intensively studied. However, genes encoded by the chromosome may also be important for disease manifestation and antimicrobial resistance. For the E. coli strain APEC_O2 the plasmids have been sequenced and analyzed in several studies, and E. coli APEC_O2 may therefore serve as a reference strain in future studies. Here we describe the chromosomal features of E. coli APEC_O2. E. coli APEC_O2 is a sequence type ST135, has a chromosome of 4,908,820 bp (plasmid removed), comprising 4672 protein-coding genes, 110 RNA genes, and 156 pseudogenes, with an average G + C content of 50.69%. We identified 82 insertion sequences as well as 4672 protein coding sequences, 12 predicated genomic islands, three prophage-related sequences, and two clustered regularly interspaced short palindromic repeats regions on the chromosome, suggesting the possible occurrence of horizontal gene transfer in this strain. The wildtype strain of E. coli APEC_O2 is resistant towards multiple antimicrobials, however, no (complete) antibiotic resistance genes were present on the chromosome, but a number of genes associated with extra-intestinal disease were identified. Together, the information provided here on E. coli APEC_O2 will assist in future studies of avian pathogenic E. coli strains, in particular regarding strain of E. coli APEC_O2, and aid in the general understanding of the pathogenesis of avian pathogenic E. coli.

  3. Identification of diarrheagenic Escherichia coli strains from avian organic fertilizers.

    PubMed

    Puño-Sarmiento, Juan; Gazal, Luis Eduardo; Medeiros, Leonardo P; Nishio, Erick K; Kobayashi, Renata K T; Nakazato, Gerson

    2014-08-28

    The Brazilian poultry industry generates large amounts of organic waste, such as chicken litter, which is often used in agriculture. Among the bacteria present in organic fertilizer are members of the Enterobacteriaceae family. The objective of this study was to detect the presence of diarrheagenic Escherichia coli (DEC) strains in avian organic fertilizer, and assess the potential damage they can cause in humans due to antimicrobial resistance. The presence of DEC pathotypes and phylogenetic groups were detected by multiplex-PCR. Phenotypic assays, such as tests for adhesion, cytotoxicity activity, biofilm formation and especially antimicrobial susceptibility, were performed. Fifteen DEC strains from 64 E. coli were isolated. Among these, four strains were classified as enteropathogenic (EPEC; 6.2%), three strains as Shiga toxin-producing (STEC; 4.7%), 10 strains as enteroaggregative (EAEC; 12.5%), but two of these harbored the eaeA gene too. The low number of isolated strains was most likely due to the composting process, which reduces the number of microorganisms. These strains were able to adhere to HEp-2 and HeLa cells and produce Shiga-toxins and biofilms; in addition, some of the strains showed antimicrobial resistance, which indicates a risk of the transfer of resistance genes to human E. coli. These results showed that DEC strains isolated from avian organic fertilizers can cause human infections.

  4. Identification of Diarrheagenic Escherichia coli Strains from Avian Organic Fertilizers

    PubMed Central

    Puño-Sarmiento, Juan; Gazal, Luis Eduardo; Medeiros, Leonardo P.; Nishio, Erick K.; Kobayashi, Renata K. T.; Nakazato, Gerson

    2014-01-01

    The Brazilian poultry industry generates large amounts of organic waste, such as chicken litter, which is often used in agriculture. Among the bacteria present in organic fertilizer are members of the Enterobacteriaceae family. The objective of this study was to detect the presence of diarrheagenic Escherichia coli (DEC) strains in avian organic fertilizer, and assess the potential damage they can cause in humans due to antimicrobial resistance. The presence of DEC pathotypes and phylogenetic groups were detected by multiplex-PCR. Phenotypic assays, such as tests for adhesion, cytotoxicity activity, biofilm formation and especially antimicrobial susceptibility, were performed. Fifteen DEC strains from 64 E. coli were isolated. Among these, four strains were classified as enteropathogenic (EPEC; 6.2%), three strains as Shiga toxin-producing (STEC; 4.7%), 10 strains as enteroaggregative (EAEC; 12.5%), but two of these harbored the eaeA gene too. The low number of isolated strains was most likely due to the composting process, which reduces the number of microorganisms. These strains were able to adhere to HEp-2 and HeLa cells and produce Shiga-toxins and biofilms; in addition, some of the strains showed antimicrobial resistance, which indicates a risk of the transfer of resistance genes to human E. coli. These results showed that DEC strains isolated from avian organic fertilizers can cause human infections. PMID:25170683

  5. mcr-1 identified in Avian Pathogenic Escherichia coli (APEC)

    PubMed Central

    Lima Barbieri, Nicolle; Nielsen, Daniel W.; Wannemuehler, Yvonne; Cavender, Tia; Hussein, Ashraf; Yan, Shi-gan; Nolan, Lisa K.; Logue, Catherine M.

    2017-01-01

    Antimicrobial resistance associated with colistin has emerged as a significant concern worldwide threatening the use of one of the most important antimicrobials for treating human disease. Here, we examined a collection (n = 980) of Avian Pathogenic Escherichia coli (APEC) isolated from poultry with colibacillosis from the US and internationally for the presence of mcr-1 and mcr-2, genes known to encode colistin resistance. Included in the analysis was an additional set of avian fecal E. coli (AFEC) (n = 220) isolates from healthy birds for comparative analysis. The mcr-1 gene was detected in a total of 12 isolates recovered from diseased production birds from China and Egypt. No mcr genes were detected in the healthy fecal isolates. The full mcr-1 gene from positive isolates was sequenced using specifically designed primers and were compared with sequences currently described in NCBI. mcr-1 positive isolates were also assessed for phenotypic colistin resistance and extended spectrum beta lactam phenotypes and genotypes. This study has identified mcr-1 in APEC isolates dating back to at least 2010 and suggests that animal husbandry practices could result in a potential source of resistance to the human food chain in countries where application of colistin in animal health is practiced. PMID:28264015

  6. Construction and characterization of avian Escherichia coli cya crp mutants.

    PubMed

    Peighambari, S M; Gyles, C L

    1998-01-01

    We constructed delta cya delta crp mutants of two avian septicemic Escherichia coli strains and evaluated their attenuation in virulence. The P1 phage was used to transfer cya::Tn10 from an E. coli K-12 strain into virulent avian O78 and O2 E. coli isolates. Tetracycline-resistant transductants were plated on Bochner-Maloy Medium, and tetracycline-sensitive colonies were selected, then tested by polymerase chain reaction to confirm that they had deletions of the cya gene. Deletions of crp were created by the same technique in isolates with deletions in cya. The delta cya and delta cya delta crp derivatives had slower growth rates, smaller colonies, and impaired fermentation of carbohydrates compared with their wild parents, and they did not revert. Attenuation of the mutant strains was evaluated by subcutaneous (s.c.) inoculation of day-old chicks and by intratracheal (i.t.) inoculation of 9-day-old chicks previously inoculated intranasally with infectious bronchitis virus. For the wild O78 strain and its delta cya and delta cya delta crp derivatives, the percentages of chicks that died within 6 days of s.c. injection of approximately 5 x 10(7) organisms were 100, 60, and 0, respectively. The corresponding percentages for wild-type O2 and its delta cya and delta cya delta crp mutants were 100, 70, and 20 at a dose of approximately 2 x 10(5) organisms. Following i.t. inoculation, group scores based on pathologic and bacteriologic findings were 51%, 15%, and 9% for wild, delta cya, and delta crp O78 strains (inoculum approximately 2 x 10(7) organisms) and 98%, 31%, and 11%, respectively, for the corresponding O2 strains (inoculum approximately 4 x 10(6) organisms). This study demonstrated reduced virulence and stability of the double mutant, which may useful as a live attenuated vaccine against poultry colibacillosis.

  7. Characterization of monoclonal antibodies to avian Escherichia coli Iss.

    PubMed

    Lynne, Aaron M; Foley, Steven L; Nolan, Lisa K

    2006-09-01

    Colibacillosis accounts for annual multimillion dollar losses in the poultry industry, and control of this disease is hampered by limited understanding of the virulence mechanisms used by avian pathogenic Escherichia coli (APEC). Previous work in our laboratory has found that the presence of the increased serum survival gene (iss) is strongly associated with APEC but not commensal E. coli, making iss and the protein it encodes (Iss) candidate targets of colibacillosis-control procedures. Previously, we produced monoclonal antibodies (MAbs) against Iss to be used as a reagent in studies of APEC virulence and colibacillosis pathogenesis. Unfortunately, the utility of these MAbs was limited because these MAbs exhibited nonspecific binding. It was thought that the lack of specificity might be related to the fact that these MAbs were of the immunoglobulin M (IgM) isotype. In the present study, new MAbs were produced using a different immunization strategy in an effort to generate MAbs of a different isotype. Also, because Iss bears strong similarity to Bor, a lambda-derived protein that occurs commonly among E. coli, MAbs were assessed for their ability to distinguish Iss and Bor. For these studies, the bor gene from an APEC isolate was cloned into an expression vector. The fusion protein expressed from this construct was used to assess the potential of the anti-Iss MAbs produced in the past and present studies to distinguish Bor and Iss. The MAbs produced in this study were of the IgG1 isotype, which appeared to bind more specifically to Iss than previously generated antibodies in certain immunologic procedures. These results suggested that the MAbs generated in this study might prove superior to the previous MAbs as a reagent for study of APEC. However, both MAbs recognized recombinant Iss and Bor, suggesting that any results obtained using anti-Iss MAbs would need to be interpreted with this cross-reactivity in mind.

  8. Characterization of avian pathogenic Escherichia coli isolated in eastern China.

    PubMed

    Dou, Xinhong; Gong, Jiansen; Han, Xiangan; Xu, Ming; Shen, Haiyu; Zhang, Di; Zhuang, Linlin; Liu, Jiasheng; Zou, Jianmin

    2016-01-15

    In order to investigate the biological characteristics of avian pathogenic Escherichia coli (APEC) isolated in eastern China, a total of 243 isolates were isolated from diseased poultry on different farms during the period from 2007 to 2014. These isolates were characterized for serogroups (polymerase chain reaction and agglutination), the presence of virulence-associated genes (fimC, iss, ompA, fyuA, stx2f, iroC, iucD, hlyE, tsh, cvaC, irp2, and papC) and class I integrons (polymerase chain reaction), drug susceptibilities (disk diffusion method) and the biofilm-forming abilities (semi-quantitative method). The results showed that the most predominant serogroups were O78 (87 isolates, 35.8%) and O2 (35 isolates, 14.4%). Gene profiling found that fimC and ompA were frequently distributed among the isolates and that 77.4% of the isolates were positive for class 1 integrons. Overall, isolates displayed resistance to tetracycline (97.5%), nalidixic acid (82.3%), ampicillin (81.1%), sulphafurazole (80.7%), streptomycin (79.0%), trimethoprim (78.2%) and cotrimoxazole (78.2%). Multiple-drug resistance was exhibited in 80.3% of the isolates, and the presence of class 1 integrons is associated with multidrug resistance. Finally, 151 isolates had the ability to form biofilms in vitro, and drug resistance seemed relative to biofilm-forming abilities.

  9. papA gene of avian pathogenic Escherichia coli.

    PubMed

    Kariyawasam, Subhashinie; Nolan, Lisa K

    2011-12-01

    P fimbrial adhesins may be associated with the virulence of avian pathogenic Escherichia coli (APEC). However, most APECs are unable to express P fimbriae even when they are grown under conditions that favor P fimbrial expression. This failure can be explained by the complete absence of the pap operon or the presence of an incomplete pap operon in Pap-negative APEC strains. In the present study, we analyzed the pap operon, specifically the papA gene that encodes the major fimbrial shaft, to better understand the pap gene cluster at the genetic level. First, by PCR, we examined a collection of 500 APEC strains for the presence of 11 genes comprising the pap operon. Except for papA, all the other genes of the operon were present in 38% to 41.2% of APEC, whereas the papA was present only in 10.4% of the APEC tested. Using multiplex PCR to probe for allelic variants of papA, we sought to determine if the low prevalence of papA among APEC was related to genetic heterogeneity of the gene itself. It was determined that the papA of APEC always belongs to the F11 allelic variant. Finally, we sequenced the 'papA region' from two papA-negative strains, both of which contain all the other genes of the pap operon. Interestingly, both strains had an 11,104-bp contig interruptingpapA at the 281-bp position. This contig harbored a streptomycin resistance gene and a classic Tn10 transposon containing the genes that confer tetracycline resistance. However, we noted that the papA gene of every papA-negative APEC strain was not interrupted by an 11,104-bp contig. It is likely that transposons bearing antibiotic resistance genes have inserted within pap gene cluster of some APEC strains, and such genetic events may have been selected for by antibiotic use.

  10. [Avian Escherichia coli virulence factors associated with coli septicemia in broiler chickens].

    PubMed

    Ramirez Santoyo, R M; Moreno Sala, A; Almanza Marquez, Y

    2001-01-01

    In order to detect phenotypic characteristics associated with pathogenicity, 25 strains of Escherichia coli, isolated from clinical cases of colisepticemia in broiler chickens, were examined to determine the following properties: colicinogenicity, colicin V production, type 1 fimbriae, hemolysin expression and motility. Colicinogenicity occurred in 72% of the strains, 56% of all strains produced colicin V, 84% were positive for type 1 fimbriae and 80% were positive for motility. None of the strains had hemolytic activity; however, all of them, expressed at least one of the other characteristics studied. These results suggest that the diversity of phenotypes detected partially explain the multifactorial nature of avian colisepticemia.

  11. Molecular genetic differentiation of avian Escherichia coli by RAPD-PCR

    PubMed Central

    Salehi, Taghi Zahraei; Madani, Seyed Ahmad; Karimi, Vahid; Khazaeli, Fatemeh Arab

    2008-01-01

    Escherichia coli is one of the most important bacterial avian pathogens and a common inhabitant of the gastrointestinal tract of animals. Most pathogenic E. coli can not be differentiated biochemically or by classic microbiologic methods. Molecular typing methods, particularly PCR, facilitated epidemiological and ecological studies of bacteria. Here we describe the application of a random amplified polymorphic DNA- polymerase chain reaction (RAPD-PCR) for molecular genetic differentiation of E. coli isolates in Iran. In this study 58 E. coli isolates including 4 standard strains, 3 food originated isolates, 33 avian isolates, 8 isolates form diarrheic calves and 10 isolates from unweaned diarrheic lambs were analyzed by RAPD-PCR using primer 1247(5/-AAG AGC CCG T-3/). The RAPD analysis showed that these isolates could be grouped into 33 RAPD types and avian isolates were discriminated into 29 genotypes. It was shown that the primer could not differentiate E. coli isolated from lambs. Discriminatory index for entire isolates was 0.912 and for avian isolates was 0.990. We concluded that RAPD-PCR can be used as a method for molecular differentiation of E. coli isolates. PMID:24031252

  12. Infections with Avian Pathogenic and Fecal Escherichia coli Strains Display Similar Lung Histopathology and Macrophage Apoptosis

    PubMed Central

    Horn, Fabiana; Corrêa, André Mendes Ribeiro; Barbieri, Nicolle Lima; Glodde, Susanne; Weyrauch, Karl Dietrich; Kaspers, Bernd; Driemeier, David; Ewers, Christa; Wieler, Lothar H.

    2012-01-01

    The purpose of this study was to compare histopathological changes in the lungs of chickens infected with avian pathogenic (APEC) and avian fecal (Afecal) Escherichia coli strains, and to analyze how the interaction of the bacteria with avian macrophages relates to the outcome of the infection. Chickens were infected intratracheally with three APEC strains, MT78, IMT5155, and UEL17, and one non-pathogenic Afecal strain, IMT5104. The pathogenicity of the strains was assessed by isolating bacteria from lungs, kidneys, and spleens at 24 h post-infection (p.i.). Lungs were examined for histopathological changes at 12, 18, and 24 h p.i. Serial lung sections were stained with hematoxylin and eosin (HE), terminal deoxynucleotidyl dUTP nick end labeling (TUNEL) for detection of apoptotic cells, and an anti-O2 antibody for detection of MT78 and IMT5155. UEL17 and IMT5104 did not cause systemic infections and the extents of lung colonization were two orders of magnitude lower than for the septicemic strains MT78 and IMT5155, yet all four strains caused the same extent of inflammation in the lungs. The inflammation was localized; there were some congested areas next to unaffected areas. Only the inflamed regions became labeled with anti-O2 antibody. TUNEL labeling revealed the presence of apoptotic cells at 12 h p.i in the inflamed regions only, and before any necrotic foci could be seen. The TUNEL-positive cells were very likely dying heterophils, as evidenced by the purulent inflammation. Some of the dying cells observed in avian lungs in situ may also be macrophages, since all four avian E. coli induced caspase 3/7 activation in monolayers of HD11 avian macrophages. In summary, both pathogenic and non-pathogenic fecal strains of avian E. coli produce focal infections in the avian lung, and these are accompanied by inflammation and cell death in the infected areas. PMID:22848424

  13. [An avian strain of Escherichia coli with antigens common to the genus Salmonella].

    PubMed

    Terzolo, H R; Zoratti de Verona, A; d'Empaire, M; Furowicz, A J

    1977-01-01

    On a commercial poultry farm, a large percentage (9%) of clinically healthy fowls had positive reaction to the plate test, with commercial polyvalent pullorum antigens. We could not isolate Salmonella from the positive birds. An strain, of Escherichia coli Balcarce (E. coli B) was isolated from the feces of one of the birds. The isolate was identified biochemically and the antigenic study showed correlation with E. coli 044 and the somatic fraction 1, 2, 8, 14 and 23 of the Salmonella genus. The common antigens were studied by agglutination, absorption and crossed immunodiffusion tests, comparing the isolated strain and the different Salmonella serotypes. Four pullorum polyvalent commercial antigens reacted with sera containing somatic agglutinins 1, and with the E. coli B antiserum. These observations confirm the high antigenic correlation between the genus of the Enterobacteriaceae family. It is indicated that for the diagnosis of avian salmonelosis rather than using a single serological tests, the isolation and identification of the etiological agent is required.

  14. Avian lipocalin expression in chickens following Escherichia coli infection and inhibition of avian pathogenic Escherichia coli growth by Ex-FABP.

    PubMed

    Garénaux, Amélie; Houle, Sébastien; Folch, Benjamin; Dallaire, Geneviève; Truesdell, Mélanie; Lépine, François; Doucet, Nicolas; Dozois, Charles M

    2013-03-15

    Avian pathogenic Escherichia coli (APEC) causes respiratory disease and sepsis in poultry. To persist in its host, E. coli requires essential nutrients including iron. Since iron is limited in extra-intestinal tissues, E. coli produces siderophores, small molecules with high affinity for ferric iron, to sequester this essential nutrient. To counter bacterial siderophore systems, mammalian hosts secrete siderocalin (also called lipocalin 2 or NGAL), which binds ferric-siderophore complexes rendering them unavailable to bacteria. In humans and mice, siderocalin is known to play a role in primary defense against bacterial infections. In poultry, 4 proteins display homology to the human NGAL (CALβ, CALγ, Ggal-C8GC and Ex-FABP). The function and expression of the genes coding for these 4 proteins during infection by APEC is still unknown. Expression levels of these genes were determined by quantitative RT-PCR using RNA extracted from lungs, livers and spleens of healthy 3-week-old chickens and chickens infected with APEC. The gene coding for Ex-FABP was overexpressed in all organs tested. It was significantly more overexpressed in the lungs and liver than in the spleen (37.3 and 27.3 times versus 11.5 times, respectively). The genes coding for Calβ and Calγ were also found significantly overexpressed in the liver (27 and 8.2 times, respectively). To confirm the function of Ex-FABP as a siderocalin, the gene coding for this protein was cloned in an expression vector and the protein was purified. In vitro growth inhibition of E. coli strains by Ex-FABP was assayed in parallel with growth inhibition caused by human siderocalin. Purified Ex-FABP inhibited growth of E. coli K-12, which only produces the siderophore enterobactin. However, E. coli strains producing pathogen-associated siderophores including salmochelins (glucosylated enterobactin), aerobactin and yersiniabactin grew normally in the presence of Ex-FABP. These results indicate that Ex-FABP is an avian

  15. Clustered, regularly interspaced short palindromic repeat (CRISPR) diversity and virulence factor distribution in avian Escherichia coli.

    PubMed

    Fu, Qiang; Su, Zhixin; Cheng, Yuqiang; Wang, Zhaofei; Li, Shiyu; Wang, Heng'an; Sun, Jianhe; Yan, Yaxian

    In order to investigate the diverse characteristics of clustered, regularly interspaced short palindromic repeat (CRISPR) arrays and the distribution of virulence factor genes in avian Escherichia coli, 80 E. coli isolates obtained from chickens with avian pathogenic E. coli (APEC) or avian fecal commensal E. coli (AFEC) were identified. Using the multiplex polymerase chain reaction (PCR), five genes were subjected to phylogenetic typing and examined for CRISPR arrays to study genetic relatedness among the strains. The strains were further analyzed for CRISPR loci and virulence factor genes to determine a possible association between their CRISPR elements and their potential virulence. The strains were divided into five phylogenetic groups: A, B1, B2, D and E. It was confirmed that two types of CRISPR arrays, CRISPR1 and CRISPR2, which contain up to 246 distinct spacers, were amplified in most of the strains. Further classification of the isolates was achieved by sorting them into nine CRISPR clusters based on their spacer profiles, which indicates a candidate typing method for E. coli. Several significant differences in invasion-associated gene distribution were found between the APEC isolates and the AFEC isolates. Our results identified the distribution of 11 virulence genes and CRISPR diversity in 80 strains. It was demonstrated that, with the exception of iucD and aslA, there was no sharp demarcation in the gene distribution between the pathogenic (APEC) and commensal (AFEC) strains, while the total number of indicated CRISPR spacers may have a positive correlation with the potential pathogenicity of the E. coli isolates. Copyright © 2016. Published by Elsevier Masson SAS.

  16. EcoR phylogenetic analysis and virulence genotyping of avian pathogenic Escherichia coli strains and Escherichia coli isolates from commercial chicken carcasses in southern Brazil.

    PubMed

    Kobayashi, Renata K T; Aquino, Ivani; Ferreira, Ana Lívia da S; Vidotto, Marilda C

    2011-05-01

    Escherichia coli strains designated as avian pathogenic E. coli (APEC) are responsible for avian colibacillosis, an acute and largely systemic disease that promotes significant economic losses in poultry industry worldwide because of mortality increase, medication costs, and condemnation of carcasses. APEC is a subgroup of extraintestinal pathogenic E. coli pathotype, which includes uropathogenic E. coli, neonatal meningitis E. coli, and septicemic E. coli. We isolated E. coli from commercial chicken carcasses in a Brazilian community and compared by polymerase chain reaction-defined phylogenetic group (A, B1, B2, or D) with APEC strains isolated from sick chickens from different poultry farms. A substantial number of strains assigned to phylogenetic E. coli reference collection group B2, which is known to harbor potent extraintestinal human and animal E. coli pathogens, were identified as APEC (26.0%) in both commercial chicken carcasses and retail poultry meat (retail poultry E. coli [RPEC]) (21.25%). The majority of RPEC were classified as group A (35%), whereas the majority of APEC were groups B1 (30.8) and A (27.6%). APEC and RPEC presented the genes pentaplex, iutA, hly, iron, ompT, and iss, but with different virulence profiles. The similarity between APEC and RPEC indicates RPEC as potentially pathogenic strains and supports a possible zoonotic risk for humans.

  17. Taqman real-time PCR assays for rapid detection of avian pathogenic Escherichia coli isolates.

    PubMed

    Ikuta, Nilo; De Oliveira Solla Sobral, Fabiana; Lehmann, Fernanda Kieling Moreira; da Silveira, Proença Vinicius; de Carli, Silvia; Casanova, Yara Silva; Celmer, Álvaro José; Fonseca, André Salvador Kazantzi; Lunge, Vagner Ricardo

    2014-12-01

    Avian pathogenic Escherichia coli (APEC) isolates are currently differentiated from nonpathogenic strains by classical PCR of virulence genes. This study improves the detection of the five main virulence genes used for APEC detection with the development of duplex and single Taqman real-time PCR to these targets. Primers and probes targeted to ompT, hlyF, iroN, iutA, and iss genes were designed and used in the implementation of single (iss) and duplex (hlyF/ompT and iroN/iutA) Taqman PCR assays. All five virulence genes of E coli strains were successfully detected by classical and Taqman real-time (single and duplex) PCR. A panel of 111 E coli isolates, obtained from avian samples collected in different Brazilian regions between 2010 and 2011, were further tested by both assays. Complete agreement was observed in the detection of four genes, ompT, hlyF, iron, iutA, but not for iss. This issue was addressed by combining the forward primer of the classical PCR to the new iss reverse primer and probe, resulting in complete agreement for all five genes. In total, 61 (55%) Brazilian E. coli isolates were detected as APEC, and the remaining 50 (45%) as avian fecal E. coli (AFEC). In conclusion, classical and Taqman real-time PCR presented exactly the same analytical performance for the differentiation of APEC and AFEC isolates. The developed real-time Taqman PCR assays could be used for the detection and differentiation of APEC isolates.

  18. Molecular typing of avian pathogenic Escherichia coli colonies originating from outbreaks of E. coli peritonitis syndrome in chicken flocks.

    PubMed

    Landman, W J M; Buter, G J; Dijkman, R; van Eck, J H H

    2014-01-01

    Escherichia coli colonies isolated from the bone marrow of fresh dead hens of laying flocks with the E. coli peritonitis syndrome (EPS) were genotyped using pulsed-field gel electrophoresis (PFGE). Typing is important from an epidemiological point of view and also if the use of autogenous (auto)vaccines is considered. Birds with EPS originated from one house of each of three layer farms and one broiler breeder farm. Farms were considered as separate epidemiological units. In total, six flocks were examined including two successive flocks of one layer farm and the broiler breeder farm. E. coli colonies (one per bird) from nine to 16 hens of each flock were genotyped. The clonality of E. coli within birds was studied using five colonies of each of nine to 14 birds per flock. E. coli genotypes, which totalled 15, differed between farms and flocks except for two successive layer flocks that shared three genotypes. One to five genotypes were found per flock with one or two genotypes dominating each outbreak. Within hens, E. coli bacteria were always clonal. Colonies of the same PFGE type always had the same multilocus sequence type. However, four PFGE types shared sequence type 95. Neither PFGE types nor multilocus sequence types were unambiguously related to avian pathogenic E. coli from EPS. In cases where persistence of E. coli strains associated with EPS is found to occur frequently, routine genotyping to select strains for autovaccines should be considered.

  19. [Isolation of avian Escherichia coli and PCR detection of their F1 and HPI genes].

    PubMed

    Zhu, Shan-Yuan; Lu, Hui; Wang, Jian

    2007-10-01

    To further investigate into the prevalence of F1 fimbriae and high pathogenicity island (HPI) in avian Escherichia coli, a total of 69 bacteria isolates (29 from geese and 40 from chickens) were obtained from deceased poultry and characterized to be Escherichia coli by gram staining, culture characterizing and bio-chemical testing. Two sets of primers were designed or analyzed with DNAStar software based on the F1 and HPI sequences that deposited in GenBank and synthesized by Sangon Biological Engineering Technology and Service Co. Ltd. (Shanghai, P. R. China). All the primers were tested for their specificities by using reference E. coli strains, and it is confirmed that the PCR using primers F1-F and F1-R could identify F1+ E. coli, as well as the PCR using primers irp-F and irp-R could identify HPI+ E. coli. All the isolates were submitted to PCR detection, and the data shows 46 isolates (66.7%) were F1-positive, 10 isolates (14.5%) were F1+ HPI-positive and 2 isolates (20.0%) were HPI-positive. Furthermore analysis indicated that the prevalence of F1 and HPI have no different between the isolates from geese and chickens, and no different among the isolates from different tissue, such as liver, lung and duodenum. In addition, all the 69 E. coli isolates serological typed, and the results show that the isolates from geese were belonged to O26 (25.0%), O78 (12.5%), O18 (12.5%) and O117 (12.5%), while E coli from chickens were fell into O109 (37.5%), O24 (18.75%), O18 (12.5%), O139 (12.5%) and O78 (6.25%). Seven kinds of antibiotics were tested on 11 isolates, and it revealed that most isolates were sensitive to cefazolin, nitrofurantoin and gentamycin, while resistant to lincomycin, tetracycline and polymycin B.

  20. Prevalence of avian-pathogenic Escherichia coli strain O1 genomic islands among extraintestinal and commensal E. coli isolates.

    PubMed

    Johnson, Timothy J; Wannemuehler, Yvonne; Kariyawasam, Subhashinie; Johnson, James R; Logue, Catherine M; Nolan, Lisa K

    2012-06-01

    Escherichia coli strains that cause disease outside the intestine are known as extraintestinal pathogenic E. coli (ExPEC) and include pathogens of humans and animals. Previously, the genome of avian-pathogenic E. coli (APEC) O1:K1:H7 strain O1, from ST95, was sequenced and compared to those of several other E. coli strains, identifying 43 genomic islands. Here, the genomic islands of APEC O1 were compared to those of other sequenced E. coli strains, and the distribution of 81 genes belonging to 12 APEC O1 genomic islands among 828 human and avian ExPEC and commensal E. coli isolates was determined. Multiple islands were highly prevalent among isolates belonging to the O1 and O18 serogroups within phylogenetic group B2, which are implicated in human neonatal meningitis. Because of the extensive genomic similarities between APEC O1 and other human ExPEC strains belonging to the ST95 phylogenetic lineage, its ability to cause disease in a rat model of sepsis and meningitis was assessed. Unlike other ST95 lineage strains, APEC O1 was unable to cause bacteremia or meningitis in the neonatal rat model and was significantly less virulent than uropathogenic E. coli (UPEC) CFT073 in a mouse sepsis model, despite carrying multiple neonatal meningitis E. coli (NMEC) virulence factors and belonging to the ST95 phylogenetic lineage. These results suggest that host adaptation or genome modifications have occurred either in APEC O1 or in highly virulent ExPEC isolates, resulting in differences in pathogenicity. Overall, the genomic islands examined provide targets for further discrimination of the different ExPEC subpathotypes, serogroups, phylogenetic types, and sequence types.

  1. Physiology and pathogenicity of cpdB deleted mutant of avian pathogenic Escherichia coli.

    PubMed

    Liu, Huifang; Chen, Liping; Si, Wei; Wang, Chunlai; Zhu, Fangna; Li, Guangxing; Liu, Siguo

    2017-04-01

    Avian colibacillosis is one of the most common infectious diseases caused partially or entirely by avian pathogenic Escherichia coli (APEC) in birds. In addition to spontaneous infection, APEC can also cause secondary infections that result in greater severity of illness and greater losses to the poultry industry. In order to assess the role of 2', 3'-cyclic phosphodiesterase (cpdB) in APEC on disease physiology and pathogenicity, an avian pathogenic Escherichia coli-34 (APEC-34) cpdB mutant was obtained using the Red system. The cpdB mutant grew at a slower rate than the natural strain APEC-34. Scanning electron microscopy (SEM) indicated that the bacteria of the cpdB mutant were significantly longer than the bacteria observed in the natural strain (P<0.01), and that the width of the cpdB mutant was significantly smaller than its natural counterpart (P<0.01). In order to evaluate the role of cpdB in APEC in the colonization of internal organs (lung, liver and spleen) in poultry, seven-day-old SPF chicks were infected with 10(9)CFU/chick of the cpdB mutant or the natural strain. No colonizations of cpdB mutants were observed in the internal organs 10days following the infection, though numerous natural strains were observed at 20days following infection. Additionally, the relative expression of division protein ftsZ, outer membrane protein A ompA, ferric uptake regulator fur and tryptophanase tnaA genes in the mutant strain were all significantly lower than in the natural strain (P<0.05 or P<0.01). These results suggested that cpdB is involved in the long-term colonization of APEC in the internal organs of the test subjects. The deletion of the cpdB gene also significantly affected the APEC growth and morphology.

  2. Virulence factors and antimicrobial susceptibility profile of extraintestinal Escherichia coli isolated from an avian colisepticemia outbreak.

    PubMed

    Maciel, Jonas Fernandes; Matter, Letícia Beatriz; Trindade, Michele Martins; Camillo, Giovana; Lovato, Maristela; de Ávila Botton, Sônia; Castagna de Vargas, Agueda

    2017-02-01

    In this study an avian colisepticemia outbreak was investigated. Two isolates from a chicken with colisepticemia were characterized for antimicrobial susceptibility and virulence factors profile. For this purpose 7 antimicrobial and 29 genes (fimH, hrlA/hek, iha, papC, sfa/focCD, tsh, mat, tia, gimB, ibeA, chuA, fyuA, ireA, iroN, irp2, iucD, sitD. chr., sitD. ep., iss, neuC, ompA, traT, astA, hlyA, sat, vat, pic, malX, cvi/cva) were tested. The outbreak happened in a hick chicken breeding located in the northwestern region of Rio Grande do Sul state in South of Brazil and caused 28.3% (102 deads of a total of 360 chickens) of mortality rate. Escherichia coli isolates obtained from the avian spleen and liver belong to the same phylogenetic group A and present resistance to all antimicrobials tested (ampicillin, tetracycline, gentamicin, neomycin, sulfa + trimethoprim, enrofloxacin, and norfloxacin). Both isolates harbor virulence factors related to adhesion (fimH, papC, mat), invasion (tia), iron acquisition system (iroN) and serum resistance (iss, ompA, traT), showing that these groups are important for Avian Pathogenic E. coli (APEC). However, they present different virulence profiles for some genes, whereas liver-isolate carries more hrlA/hek (adhesin), gimB (invasin), sitD ep. (iron acquisition system), sat (toxin) and hylA (toxin) genes, the spleen-isolate harbors fyuA (iron acquisition system) gene. Here, we highlight a coinfection by different strains of APEC in the same animal with colisepticemia, the great antimicrobial resistance of these bacterial isolates and the genetic traits that modulate the virulence for high mortality rate of chickens for human consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Diagnostic Strategy for Identifying Avian Pathogenic Escherichia coli Based on Four Patterns of Virulence Genes

    PubMed Central

    Schaeffer, Brigitte; Brée, Annie; Mora, Azucena; Dahbi, Ghizlane; Biet, François; Oswald, Eric; Mainil, Jacques; Blanco, Jorge; Moulin-Schouleur, Maryvonne

    2012-01-01

    In order to improve the identification of avian pathogenic Escherichia coli (APEC) strains, an extensive characterization of 1,491 E. coli isolates was conducted, based on serotyping, virulence genotyping, and experimental pathogenicity for chickens. The isolates originated from lesions of avian colibacillosis (n = 1,307) or from the intestines of healthy animals (n = 184) from France, Spain, and Belgium. A subset (460 isolates) of this collection was defined according to their virulence for chicks. Six serogroups (O1, O2, O5, O8, O18, and O78) accounted for 56.5% of the APEC isolates and 22.5% of the nonpathogenic isolates. Thirteen virulence genes were more frequently present in APEC isolates than in nonpathogenic isolates but, individually, none of them could allow the identification of an isolate as an APEC strain. In order to take into account the diversity of APEC strains, a statistical analysis based on a tree-modeling method was therefore conducted on the sample of 460 pathogenic and nonpathogenic isolates. This resulted in the identification of four different associations of virulence genes that enables the identification of 70.2% of the pathogenic strains. Pathogenic strains were identified with an error margin of 4.3%. The reliability of the link between these four virulence patterns and pathogenicity for chickens was validated on a sample of 395 E. coli isolates from the collection. The genotyping method described here allowed the identification of more APEC isolates with greater reliability than the classical serotyping methods currently used in veterinary laboratories. PMID:22378905

  4. Expression of Immune-Related Genes of Ducks Infected with Avian Pathogenic Escherichia coli (APEC)

    PubMed Central

    Li, Rong; Li, Ning; Zhang, Jinzhou; Wang, Yao; Liu, Jiyuan; Cai, Yumei; Chai, Tongjie; Wei, Liangmeng

    2016-01-01

    Avian pathogenic Escherichia coli (APEC) can cause severe disease in ducks, characterized by perihepatitis, pericarditis, and airsacculitis. Although the studies of bacteria isolation and methods of detection have been reported, host immune responses to APEC infection remain unclear. In response, we systemically examined the expression of immune-related genes and bacteria distribution in APEC-infected ducks. Results demonstrated that APEC can quickly replicate in the liver, spleen, and brain, with the highest bacteria content at 2 days post infection. The expression of toll-like receptors (TLRs), avian β-defensins (AvBDs) and major histocompatibility complex (MHC) were tested in the liver, spleen, and brain of infected ducks. TLR2, TLR4, TLR5, and TLR15 showed different expression patterns, which indicated that they all responded to APEC infection. The expression of AvBD2 was upregulated in all tested tissues during the 3 days of testing, whereas the expression of AvBD4, AvBD5, AvBD7, and AvBD9 were downregulated, and though MHC-I was upregulated on all test days, MHC-II was dramatically downregulated. Overall, our results suggest that APEC can replicate in various tissues in a short time, and the activation of host immune responses begins at onset of infection. These findings thus clarify duck immune responses to APEC infection and offer insights into its pathogenesis. PMID:27199963

  5. Human and avian extraintestinal pathogenic Escherichia coli: infections, zoonotic risks, and antibiotic resistance trends.

    PubMed

    Mellata, Melha

    2013-11-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) constitutes ongoing health concerns for women, newborns, elderly, and immunocompromised individuals due to increased numbers of urinary tract infections (UTIs), newborn meningitis, abdominal sepsis, and septicemia. E. coli remains the leading cause of UTIs, with recent investigations reporting the emergence of E. coli as the predominant cause of nosocomial and neonatal sepsis infections. This shift from the traditional Gram-positive bacterial causes of nosocomial and neonatal sepsis infections could be attributed to the use of intrapartum chemoprophylaxis against Gram-positive bacteria and the appearance of antibiotic (ATB) resistance in E. coli. While ExPEC strains cause significant healthcare concerns, these bacteria also infect chickens and cause the poultry industry economic losses due to costs of containment, mortality, and disposal of carcasses. To circumvent ExPEC-related costs, ATBs are commonly used in the poultry industry to prevent/treat microbial infections and promote growth and performance. In an unfortunate linkage, chicken products are suspected to be a source of foodborne ExPEC infections and ATB resistance in humans. Therefore, the emergence of multidrug resistance (MDR) (resistance to three or more classes of antimicrobial agents) among avian E. coli has created major economic and health concerns, affecting both human healthcare and poultry industries. Increased numbers of immunocompromised individuals, including the elderly, coupled with MDR among ExPEC strains, will continue to challenge the treatment of ExPEC infections and likely lead to increased treatment costs. With ongoing complications due to emerging ATB resistance, novel treatment strategies are necessary to control ExPEC infections. Recognizing and treating the zoonotic risk posed by ExPEC would greatly enhance food safety and positively impact human health.

  6. Human and Avian Extraintestinal Pathogenic Escherichia coli: Infections, Zoonotic Risks, and Antibiotic Resistance Trends

    PubMed Central

    2013-01-01

    Abstract Extraintestinal pathogenic Escherichia coli (ExPEC) constitutes ongoing health concerns for women, newborns, elderly, and immunocompromised individuals due to increased numbers of urinary tract infections (UTIs), newborn meningitis, abdominal sepsis, and septicemia. E. coli remains the leading cause of UTIs, with recent investigations reporting the emergence of E. coli as the predominant cause of nosocomial and neonatal sepsis infections. This shift from the traditional Gram-positive bacterial causes of nosocomial and neonatal sepsis infections could be attributed to the use of intrapartum chemoprophylaxis against Gram-positive bacteria and the appearance of antibiotic (ATB) resistance in E. coli. While ExPEC strains cause significant healthcare concerns, these bacteria also infect chickens and cause the poultry industry economic losses due to costs of containment, mortality, and disposal of carcasses. To circumvent ExPEC-related costs, ATBs are commonly used in the poultry industry to prevent/treat microbial infections and promote growth and performance. In an unfortunate linkage, chicken products are suspected to be a source of foodborne ExPEC infections and ATB resistance in humans. Therefore, the emergence of multidrug resistance (MDR) (resistance to three or more classes of antimicrobial agents) among avian E. coli has created major economic and health concerns, affecting both human healthcare and poultry industries. Increased numbers of immunocompromised individuals, including the elderly, coupled with MDR among ExPEC strains, will continue to challenge the treatment of ExPEC infections and likely lead to increased treatment costs. With ongoing complications due to emerging ATB resistance, novel treatment strategies are necessary to control ExPEC infections. Recognizing and treating the zoonotic risk posed by ExPEC would greatly enhance food safety and positively impact human health. PMID:23962019

  7. Detection of virulence-associated genes in pathogenic and commensal avian Escherichia coli isolates.

    PubMed

    Paixão, A C; Ferreira, A C; Fontes, M; Themudo, P; Albuquerque, T; Soares, M C; Fevereiro, M; Martins, L; Corrêa de Sá, M I

    2016-07-01

    Poultry colibacillosis due to Avian Pathogenic Escherichia coli (APEC) is responsible for several extra-intestinal pathological conditions, leading to serious economic damage in poultry production. The most commonly associated pathologies are airsacculitis, colisepticemia, and cellulitis in broiler chickens, and salpingitis and peritonitis in broiler breeders. In this work a total of 66 strains isolated from dead broiler breeders affected with colibacillosis and 61 strains from healthy broilers were studied. Strains from broiler breeders were typified with serogroups O2, O18, and O78, which are mainly associated with disease. The serogroup O78 was the most prevalent (58%). All the strains were checked for the presence of 11 virulence genes: 1) arginine succinyltransferase A (astA); ii) E.coli hemeutilization protein A (chuA); iii) colicin V A/B (cvaA/B); iv) fimbriae mannose-binding type 1 (fimC); v) ferric yersiniabactin uptake A (fyuA); vi) iron-repressible high-molecular-weight proteins 2 (irp2); vii) increased serum survival (iss); viii) iron-uptake systems of E.coli D (iucD); ix) pielonefritis associated to pili C (papC); x) temperature sensitive haemaglutinin (tsh), and xi) vacuolating autotransporter toxin (vat), by Multiplex-PCR. The results showed that all genes are present in both commensal and pathogenic E. coli strains. The iron uptake-related genes and the serum survival gene were more prevalent among APEC. The adhesin genes, except tsh, and the toxin genes, except astA, were also more prevalent among APEC isolates. Except for astA and tsh, APEC strains harbored the majority of the virulence-associated genes studied and fimC was the most prevalent gene, detected in 96.97 and 88.52% of APEC and AFEC strains, respectively. Possession of more than one iron transport system seems to play an important role on APEC survival.

  8. Advances in vaccination against avian pathogenic Escherichia coli respiratory disease: potentials and limitations.

    PubMed

    Ghunaim, Haitham; Abu-Madi, Marwan Abdelhamid; Kariyawasam, Subhashinie

    2014-08-06

    Avian pathogenic Escherichia coli (APEC) is one of the most economically devastating pathogens affecting the poultry industry. This group of extra-intestinal E. coli causes a variety of clinical conditions including airsacculitis and cellulitis. The economic impact of APEC is mainly due to mortality, slower growth rates, and carcass downgrading. In commercial broiler operations, APEC infections are controlled indirectly by vaccination against other respiratory diseases and minimizing stress conditions, and directly by administration of antimicrobial agents to suppress the infection in already infected flocks. The fact that most APEC strains possess some common virulence factors suggests that an effective vaccine against APEC is a viable option. The most important virulence factors that have been investigated over the years include type I and P fimbriae, aerobactin iron-acquisition system, and serum resistance traits. Despite the potential for developing an efficacious vaccine to combat this economically important poultry disease, several obstacles hinder such efforts. Those obstacles include the cost, vaccine delivery method and timing of vaccination as the birds should be immune to APEC by 21 days of age. Herein, we review the various attempts to develop an effective vaccine against the respiratory form of APEC diseases in poultry. We also discuss in-depth the potentials and limitations of such vaccines. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Identification of Avian Pathogenic Escherichia coli Genes That Are Induced In Vivo during Infection in Chickens

    PubMed Central

    Lebeer, Sarah; Gwakisa, Paul Simon; Goddeeris, Bruno Maria

    2012-01-01

    Avian pathogenic Escherichia coli (APEC) is associated with extraintestinal infections in poultry causing a variety of diseases collectively known as colibacillosis. The host and bacterial factors influencing and/or responsible for carriage and systemic translocation of APEC inside the host are poorly understood. Identification of such factors could help in the understanding of its pathogenesis and in the subsequent development of control strategies. Recombination-based in vivo expression technology (RIVET) was used to identify APEC genes specifically expressed during infection in chickens. A total of 21 clones with in vivo-induced promoters were isolated from chicken livers and spleens, indicative of systemic infection. DNA sequencing of the cloned fragments revealed that 12 of the genes were conserved E. coli genes (metH, lysA, pntA, purL, serS, ybjE, ycdK [rutC], wcaJ, gspL, sdsR, ylbE, and yjiY), 6 of the genes were phage related/associated, and 3 genes were pathogen specific (tkt1, irp2, and eitD). These genes are involved in various cellular functions, such as metabolism, cell envelope and integrity, transport systems, and virulence. Others were phage related or have yet-unknown functions. PMID:22344666

  10. Molecular epidemiological survey on aminoglycoside antibiotics-resistant genotype and phenotype of avian Escherichia coli in North China.

    PubMed

    Zhang, T; Wang, C G; Jiang, G E; Lv, J C; Zhong, X H

    2012-10-01

    Monitoring drug resistance in Escherichia coli is important for prevention and treatment of colibacillosis. To choose effective drugs to prevent and control avian colibacillosis in North China, we investigated resistance of 205 E. coli isolates (from Beijing, Tianjin, inner Mongolia, Shanxi, and Hebei regions) to commonly used clinical aminoglycoside antibiotics using a drug susceptibility test. The results show that the isolates had varying degrees of resistance to kanamycin, gentamicin, streptomycin, amikacin, neomycin, and spectinomycin. Particularly, the resistance rates of the former 3 antibiotics exceeded 40%. To explore the reasons for wide drug resistance, aminoglycosides modifying enzymes (AME) genes, which are important in generation of aminoglycoside resistance, were detected by PCR. Of the isolates, 60.98% carried AME genes and 38.05% carried commensal multidrug resistance genes. Therefore, resistance of avian E. coli to aminoglycoside antibiotics is very serious in North China, perhaps due to the existence of resistance genes.

  11. Virulence gene profiles of avian pathogenic Escherichia coli isolated from chickens with colibacillosis in Bulawayo, Zimbabwe.

    PubMed

    Mbanga, Joshua; Nyararai, Yvonne O

    2015-04-07

    Colibacillosis, a disease caused by avian pathogenic Escherichia coli (APEC), is one of the main causes of economic losses in the poultry industry worldwide. This study was carried out in order to determine the APEC-associated virulence genes contained by E. coli isolates causing colibacillosis in chickens. A total of 45 E. coli isolates were obtained from the diagnostics and research branch of the Central Veterinary Laboratories, Bulawayo, Zimbabwe. These isolates were obtained from chickens with confirmed cases of colibacillosis after postmortem examination. The presence of the iutA, hlyF, ompT, frz, sitD, fimH, kpsM, sitA, sopB, uvrY, pstB and vat genes were investigated by multiplex polymerase chain reaction (PCR) assay. Of the 45 isolates, 93% were positive for the presence of at least one virulence gene. The three most prevalent virulence genes were iutA (80%), fimH (33.3%) and hlyF (24.4%). The kpsM, pstB and ompT genes had the lowest prevalence, having been detected in only 2.2% of the isolates. All 12 virulence genes studied were detected in the 45 APEC isolates. Virulence gene profiles were constructed for each APEC isolate from the multiplex data. The APEC isolates were profiled as 62.2% fitting profile A, 31.1% profile B and 6.7% profile C. None of the isolates had more than seven virulence genes. Virulence profiles of Zimbabwean APEC isolates are different from those previously reported. Zimbabwean APEC isolates appear to be less pathogenic and may rely on environmental factors and stress in hosts to establish infection.

  12. Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they?

    PubMed

    Ewers, Christa; Li, Ganwu; Wilking, Hendrik; Kiessling, Sabine; Alt, Katja; Antáo, Esther-Maria; Laturnus, Claudia; Diehl, Ines; Glodde, Susanne; Homeier, Timo; Böhnke, Ute; Steinrück, Hartmut; Philipp, Hans-C; Wieler, Lothar H

    2007-06-01

    Avian pathogenic Escherichia coli (APEC), uropathogenic E. coli (UPEC), and newborn meningitis-causing E. coli (NMEC) establish infections in extraintestinal habitats (extraintestinal pathogenic E. coli; ExPEC) of different hosts. As diversity, epidemiological sources, and evolutionary origins of ExPEC are so far only partially defined, we screened a collection of 526 strains of medical and veterinary origin of various O-types for assignment to E. coli reference collection (ECOR) group and virulence gene patterns. Results of ECOR typing confirmed that human ExPEC strains mostly belong to groups B2, followed by group D. Although a considerable portion of APEC strains did also fell into ECOR group B2 (35.1%), a higher amount (46.1%) belonged to group A, which has previously been described to also harbour strains with a high pathogenic potential for humans. The number of virulence-associated genes of single strains ranged from 5 to 26 among 33 genes tested and high numbers were rather related to K1-positive and ECOR B2 strains than to a certain pathotype. With a few exceptions (iha, afa/draB, sfa/foc, and hlyA), which were rarely present in APEC strains, most chromosomally located genes were widely distributed among all ExPEC strains irrespective of host and pathotype. However, prevalence of invasion genes (ibeA and gimB) and K1 capsule-encoding gene neuC indicated a closer relationship between APEC and NMEC strains. Genes associated with ColV plasmids (tsh, iss, and the episomal sit locus) were in general more prevalent in APEC than in UPEC and NMEC strains, indicating that APEC could be a source of ColV-located genes or complete plasmids for other ExPEC strains. Our data support the hypothesis that (a) poultry may be a vehicle or even a reservoir for human ExPEC strains, (b) APEC potentially serve as a reservoir of virulence-associated genes for UPEC and NMEC, (c) some ExPEC strains, although of different pathotypes, may share common ancestors, and (d) as a

  13. Thymus transcriptome reveals novel pathways in response to avian pathogenic Escherichia coli infection.

    PubMed

    Sun, H; Liu, P; Nolan, L K; Lamont, S J

    2016-12-01

    Avian pathogenic Escherichia coli (APEC) can cause significant morbidity in chickens. The thymus provides the essential environment for T cell development; however, the thymus transcriptome has not been examined for gene expression in response to APEC infection. An improved understanding of the host genomic response to APEC infection could inform future breeding programs for disease resistance and APEC control. We therefore analyzed the transcriptome of the thymus of birds challenged with APEC, contrasting susceptible and resistant phenotypes. Thousands of genes were differentially expressed in birds of the 5-day post infection (dpi) challenged-susceptible group vs. 5 dpi non-challenged, in 5 dpi challenged-susceptible vs. 5 dpi challenged-resistant birds, as well as in 5 dpi vs. one dpi challenged-susceptible birds. The Toll-like receptor signaling pathway was the major innate immune response for birds to respond to APEC infection. Moreover, lysosome and cell adhesion molecules pathways were common mechanisms for chicken response to APEC infection. The T-cell receptor signaling pathway, cell cycle, and p53 signaling pathways were significantly activated in resistant birds to resist APEC infection. These results provide a comprehensive assessment of global gene networks and biological functionalities of differentially expressed genes in the thymus under APEC infection. These findings provide novel insights into key molecular genetic mechanisms that differentiate host resistance from susceptibility in this primary lymphoid tissue, the thymus. © The Author 2016. Published by Oxford University Press on behalf of Poultry Science Association.

  14. TonB is essential for virulence in avian pathogenic Escherichia coli.

    PubMed

    Holden, Karen M; Browning, Glenn F; Noormohammadi, Amir H; Markham, Philip F; Marenda, Marc S

    2012-03-01

    Avian pathogenic Escherichia coli (APEC) strains have multiple iron-uptake systems that facilitate adaptation to iron-restricted environments and are believed to assist in colonisation of the host. These systems include several TonB-dependent transporters of ferri-siderophores encoded by the chromosome and the large virulence plasmid common to APECs. The tonB gene of the virulent APEC strain E956 was replaced with a selectable antibiotic resistance marker using Lambda Red recombinase mutagenesis. The phenotype of the ΔtonB E956 mutant was compared to the parent strain under various culture conditions and in chickens experimentally infected via the respiratory route. The mutant was resistant to streptonigrin, impaired in its ability to adapt to growth in iron-depleted medium and had greater tolerance of oxidative stress than the parental strain. The mutant was avirulent in chickens, did not affect the growth of chicks and colonisation was mostly limited to the trachea. This study has demonstrated that TonB is essential for virulence in APEC. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Thymus transcriptome reveals novel pathways in response to avian pathogenic Escherichia coli infection

    PubMed Central

    Sun, H.; Liu, P.; Nolan, L. K.; Lamont, S. J.

    2016-01-01

    Avian pathogenic Escherichia coli (APEC) can cause significant morbidity in chickens. The thymus provides the essential environment for T cell development; however, the thymus transcriptome has not been examined for gene expression in response to APEC infection. An improved understanding of the host genomic response to APEC infection could inform future breeding programs for disease resistance and APEC control. We therefore analyzed the transcriptome of the thymus of birds challenged with APEC, contrasting susceptible and resistant phenotypes. Thousands of genes were differentially expressed in birds of the 5-day post infection (dpi) challenged-susceptible group vs. 5 dpi non-challenged, in 5 dpi challenged-susceptible vs. 5 dpi challenged-resistant birds, as well as in 5 dpi vs. one dpi challenged-susceptible birds. The Toll-like receptor signaling pathway was the major innate immune response for birds to respond to APEC infection. Moreover, lysosome and cell adhesion molecules pathways were common mechanisms for chicken response to APEC infection. The T-cell receptor signaling pathway, cell cycle, and p53 signaling pathways were significantly activated in resistant birds to resist APEC infection. These results provide a comprehensive assessment of global gene networks and biological functionalities of differentially expressed genes in the thymus under APEC infection. These findings provide novel insights into key molecular genetic mechanisms that differentiate host resistance from susceptibility in this primary lymphoid tissue, the thymus. PMID:27466434

  16. Bioluminescent avian pathogenic Escherichia coli for monitoring colibacillosis in experimentally infected chickens.

    PubMed

    Oosterik, Leon H; Tuntufye, Huruma N; Tsonos, Jessica; Luyten, Tom; Noppen, Sam; Liekens, Sandra; Lavigne, Rob; Butaye, Patrick; Goddeeris, Bruno M

    2016-10-01

    Avian pathogenic Escherichia coli (APEC) are responsible for significant economic losses in the poultry industry. In this study, a model for investigating the pathogenesis of APEC infections was established. APEC strain CH2 (O78) was marked with the luciferase operon (luxCDABE) using a Tn7 transposon and tissues of experimentally infected chickens were analysed for a correlation between the bioluminescent signal and the number of bacteria. Transposition of the lux operon into the chromosome of the APEC isolate did not affect sensitivity to lytic bacteriophages and there was no effect on virulence in an intratracheal infection model in 1-day-old chicks, although results with a subcutaneous infection model were inconclusive. A correlation between the number of bacteria and the luminescent signal was found in liquid medium, as well as in homogenised heart, liver, spleen and lung of 4-week-old experimentally infected chickens. This study showed that lux could be used for identification of the infecting strain after experimental infection with APEC in poultry.

  17. Role of outer membrane protein T in pathogenicity of avian pathogenic Escherichia coli.

    PubMed

    Hejair, Hassan M A; Ma, Jiale; Zhu, Yingchu; Sun, Min; Dong, Wenyang; Zhang, Yue; Pan, Zihao; Zhang, Wei; Yao, Huochun

    2017-01-27

    An outer membrane protein T (OmpT) could play a vital role in the pathogenesis of the neonatal meningitis Escherichia coli (NMEC) in human and animals. However, whether ompT plays a role in avian pathogenic E. coli (APEC) infection remains unclear. In this study we evaluated the potential of ompT in APEC pathogenesis. An ompT gene was deleted from APEC mutant strain (TW-XM) was constructed and characterized. The inactivation of ompT reduced significantly the adherence and invasion capabilities of APEC to mouse brain microvascular endothelial cell (BMEC) bEnd.3 cells at the rates of 43.8% and 28.8% respectively, compared with the wild strain TW-XM. Further studies showed that deletion of ompT gene reduced the bacterial virulence with 15.2-fold in ducklings and 9.7-fold in mouse models based on the measurement of the LD50. Furthermore, experimental infection of animals revealed that, loss of ompT showed reduced APEC colonization and invasion capacity in brains, lungs and blood by 2-fold, 1.96-fold, and 1.7-fold, respectively, compared with the wild-type strain TW-XM. These virulence-related phenotypes were partially recoverable by genetic complementation. The results of the quantitative real-time reverse transcription-PCR (qRT-PCR) indicated that the loss of ompT significantly decreased the expression levels of ompA, fimC and tsh in the mutant strain ΔOmpT, when compared with TW-XM (p<0.01). Collectively, our data showed that inactivation of ompT decreased adhesion, invasion, colonization, proliferation capacities, possibly by reduced expression levels of ompA, fimC and tsh, which may justify that, ompT is implicated in APEC pathogenicity.

  18. Molecular characterization of multidrug-resistant avian pathogenic Escherichia coli isolated from septicemic broilers.

    PubMed

    Ahmed, Ashraf M; Shimamoto, Toshi; Shimamoto, Tadashi

    2013-12-01

    Avian pathogenic Escherichia coli (APEC) causes extensive mortality in poultry flocks, leading to extensive economic losses. To date, little information is available on the molecular basis of antimicrobial resistance in APEC in Africa. Therefore, the objective of this study was to characterize the virulence and antimicrobial resistance of multidrug-resistant APEC isolated from septicemic broilers in Egypt at the molecular level. Among 91 non-repetitive E. coli isolates, 73 (80.2%) carried three or more of the APEC virulence genes iroN, ompT, iss, iutA, and hlyF. All 73 APEC isolates showed multidrug resistance phenotypes, particularly against ampicillin, tetracycline, spectinomycin, streptomycin, kanamycin, and trimethoprim/sulfamethoxazole. PCR and DNA sequencing identified class 1 and class 2 integrons in 34 (46.6%) and seven (9.6%) isolates, respectively. The β-lactamase-encoding genes, bla(TEM-1), bla(TEM-104), bla(CMY-2), bla(OXA-30), bla(CTX-M-15), and bla(SHV-2); tetracycline resistance genes, tet(A), tet(B), tet(C), tet(D), and tet(E); the plasmid-mediated quinolone resistance genes, qnrA1, qnrB2, qnrS1, and aac(6')-Ib-cr, and florfenicol resistance gene, floR, were also identified in 69 (94.5%), 67 (91.8%), 47 (64.4%), and 13 (17.8%) isolates, respectively. To the best of our knowledge, this is the first report of molecular characterization of antimicrobial resistance in APEC strains from Africa.

  19. Effect of serogroup, surface material and disinfectant on biofilm formation by avian pathogenic Escherichia coli.

    PubMed

    Oosterik, Leon H; Tuntufye, Huruma N; Butaye, Patrick; Goddeeris, Bruno M

    2014-12-01

    Avian pathogenic Escherichia coli (APEC) are responsible for significant economic losses in the poultry industry and are difficult to eradicate. Biofilm formation by APEC has the potential to reduce the efficacy of cleaning and disinfection. In this study, biofilm formation on materials used in poultry facilities by APEC strains from laying hens was determined. APEC strains were analysed for an association between biofilm forming capacity and O serogroup. The abilities of two routinely used disinfectants, hydrogen peroxide (H2O2) and a quaternary ammonium compound (QAC), to kill adherent cells of two strong APEC biofilm producers (05/503 and 04/40) and a non-biofilm producer (05/293) on polystyrene (PS) and polyvinylchloride (PVC) surfaces were tested. Most APEC strains were moderate (PS) or strong biofilm producers (polypropylene, PP, and PVC). Strains in serogroup O2 more often belonged to the moderate (PS) or strong (PP and PVC) biofilm producers than to other groups, while most O78 strains were weak biofilm producers. O78 strains were stronger biofilm producers on stainless steel than on PP and PVC, while O2 strains were stronger biofilm producers on PP and PVC. A concentration of 1% H2O2 killed all adherent bacteria of strains 05/503 and 04/40 on PP and PVC, while 0.5% H2O2 killed all adherent bacteria of strain 05/293. QAC at a concentration of 0.01% killed all adherent cells of strains 05/503, 04/40 and 05/293 under equal conditions. In conclusion, biofilm formation by APEC was affected by serogroup and surface material, and inactivation of APEC was dependent on the disinfectant and surface material.

  20. Spleen transcriptome response to infection with avian pathogenic Escherichia coli in broiler chickens

    PubMed Central

    2011-01-01

    Background Avian pathogenic Escherichia coli (APEC) is detrimental to poultry health and its zoonotic potential is a food safety concern. Regulation of antimicrobials in food-production animals has put greater focus on enhancing host resistance to bacterial infections through genetics. To better define effective mechanism of host resistance, global gene expression in the spleen of chickens, harvested at two times post-infection (PI) with APEC, was measured using microarray technology, in a design that will enable investigation of effects of vaccination, challenge, and pathology level. Results There were 1,101 genes significantly differentially expressed between severely infected and non-infected groups on day 1 PI and 1,723 on day 5 PI. Very little difference was seen between mildly infected and non-infected groups on either time point. Between birds exhibiting mild and severe pathology, there were 2 significantly differentially expressed genes on day 1 PI and 799 on day 5 PI. Groups with greater pathology had more genes with increased expression than decreased expression levels. Several predominate immune pathways, Toll-like receptor, Jak-STAT, and cytokine signaling, were represented between challenged and non-challenged groups. Vaccination had, surprisingly, no detectible effect on gene expression, although it significantly protected the birds from observable gross lesions. Functional characterization of significantly expressed genes revealed unique gene ontology classifications during each time point, with many unique to a particular treatment or class contrast. Conclusions More severe pathology caused by APEC infection was associated with a high level of gene expression differences and increase in gene expression levels. Many of the significantly differentially expressed genes were unique to a particular treatment, pathology level or time point. The present study not only investigates the transcriptomic regulations of APEC infection, but also the degree of

  1. Extraintestinal Pathogenic Escherichia coli Strains of Avian and Human Origin: Link between Phylogenetic Relationships and Common Virulence Patterns▿

    PubMed Central

    Moulin-Schouleur, Maryvonne; Répérant, Maryline; Laurent, Sylvie; Brée, Annie; Mignon-Grasteau, Sandrine; Germon, Pierre; Rasschaert, Denis; Schouler, Catherine

    2007-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) strains of human and avian origin show similarities that suggest that the avian strains potentially have zoonotic properties. However, the phylogenetic relationships between avian and human ExPEC strains are poorly documented, so this possibility is difficult to assess. We used PCR-based phylotyping and multilocus sequence typing (MLST) to determine the phylogenetic relationships between 39 avian pathogenic E. coli (APEC) strains of serogroups O1, O2, O18, and O78 and 51 human ExPEC strains. We also compared the virulence genotype and pathogenicity for chickens of APEC strains and human ExPEC strains. Twenty-eight of the 30 APEC strains of serogroups O1, O2, and O18 were classified by MLST into the same subcluster (B2-1) of phylogenetic group B2, whereas the 9 APEC strains of serogroup O78 were in phylogenetic groups D (3 strains) and B1 (6 strains). Human ExPEC strains were closely related to APEC strains in each of these three subclusters. The 28 avian and 25 human strains belonging to phylogenetic subcluster B2-1 all expressed the K1 antigen and presented no significant differences concerning the presence of other virulence factors. Moreover, human strains of this phylogenetic subcluster were highly virulent for chicks, so no host specificity was identified. Thus, APEC strains of serotypes O1:K1, O2:K1, and O18:K1 belong to the same highly pathogenic clonal group as human E. coli strains of the same serotypes isolated from cases of neonatal meningitis, urinary tract infections, and septicemia. These APEC strains constitute a potential zoonotic risk. PMID:17652485

  2. Escherichia Coli

    ERIC Educational Resources Information Center

    Goodsell, David S.

    2009-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. I describe the scientific results that support a recent textbook illustration of an "Escherichia coli cell". The image magnifies a portion of the bacterium at one million times, showing the location and form of individual macromolecules. Results…

  3. Escherichia Coli

    ERIC Educational Resources Information Center

    Goodsell, David S.

    2009-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. I describe the scientific results that support a recent textbook illustration of an "Escherichia coli cell". The image magnifies a portion of the bacterium at one million times, showing the location and form of individual macromolecules. Results…

  4. Comparative Analysis of Phylogenetic Assignment of Human and Avian ExPEC and Fecal Commensal Escherichia coli Using the (Previous and Revised) Clermont Phylogenetic Typing Methods and its Impact on Avian Pathogenic Escherichia coli (APEC) Classification.

    PubMed

    Logue, Catherine M; Wannemuehler, Yvonne; Nicholson, Bryon A; Doetkott, Curt; Barbieri, Nicolle L; Nolan, Lisa K

    2017-01-01

    The Clermont scheme has been used for subtyping of Escherichia coli since it was initially described in early 2000. Since then, researchers have used the scheme to type and sub-type commensal E. coli and pathogenic E. coli, such as extraintestinal pathogenic E. coli (ExPEC), and compare their phylogenetic assignment by pathogenicity, serogroup, distribution among ExPEC of different host species and complement of virulence and resistance traits. Here, we compare assignments of human and avian ExPEC and commensal E. coli using the old and revised Clermont schemes to determine if the new scheme provides a refined snapshot of isolate classification. 1,996 E. coli from human hosts and poultry, including 84 human neonatal meningitis E. coli isolates, 88 human vaginal E. coli, 696 human uropathogenic E. coli, 197 healthy human fecal E. coli, 452 avian pathogenic E. coli (APEC), 200 retail poultry E. coli, 80 crop and gizzard E. coli from healthy poultry at slaughter and 199 fecal E. coli from healthy birds at slaughter. All isolates were subject to phylogenetic analysis using the Clermont et al. (2000, 2013) schemes and compared to determine the effect of the new classification on strain designation. Most of the isolates' strain designation remained where they were originally assigned. Greatest designation change occurred in APEC where 53.8% of isolates were reclassified; while classification rates among human strains ranged from 8 to 14%. However, some significant changes were observed for UPEC associated strains with significant (P < 0.05) designation changes observed from A to C and D to E or F phylogenetic types; a similar designation change was noted among NMEC for D to F designation change. Among the APEC significant designation changes were observed from A to C and D to E and F. These studies suggest that the new scheme provides a tighter and more meaningful definition of some ExPEC; while the new typing scheme has a significant impact on APEC classification. A

  5. Comparative Analysis of Phylogenetic Assignment of Human and Avian ExPEC and Fecal Commensal Escherichia coli Using the (Previous and Revised) Clermont Phylogenetic Typing Methods and its Impact on Avian Pathogenic Escherichia coli (APEC) Classification

    PubMed Central

    Logue, Catherine M.; Wannemuehler, Yvonne; Nicholson, Bryon A.; Doetkott, Curt; Barbieri, Nicolle L.; Nolan, Lisa K.

    2017-01-01

    The Clermont scheme has been used for subtyping of Escherichia coli since it was initially described in early 2000. Since then, researchers have used the scheme to type and sub-type commensal E. coli and pathogenic E. coli, such as extraintestinal pathogenic E. coli (ExPEC), and compare their phylogenetic assignment by pathogenicity, serogroup, distribution among ExPEC of different host species and complement of virulence and resistance traits. Here, we compare assignments of human and avian ExPEC and commensal E. coli using the old and revised Clermont schemes to determine if the new scheme provides a refined snapshot of isolate classification. 1,996 E. coli from human hosts and poultry, including 84 human neonatal meningitis E. coli isolates, 88 human vaginal E. coli, 696 human uropathogenic E. coli, 197 healthy human fecal E. coli, 452 avian pathogenic E. coli (APEC), 200 retail poultry E. coli, 80 crop and gizzard E. coli from healthy poultry at slaughter and 199 fecal E. coli from healthy birds at slaughter. All isolates were subject to phylogenetic analysis using the Clermont et al. (2000, 2013) schemes and compared to determine the effect of the new classification on strain designation. Most of the isolates’ strain designation remained where they were originally assigned. Greatest designation change occurred in APEC where 53.8% of isolates were reclassified; while classification rates among human strains ranged from 8 to 14%. However, some significant changes were observed for UPEC associated strains with significant (P < 0.05) designation changes observed from A to C and D to E or F phylogenetic types; a similar designation change was noted among NMEC for D to F designation change. Among the APEC significant designation changes were observed from A to C and D to E and F. These studies suggest that the new scheme provides a tighter and more meaningful definition of some ExPEC; while the new typing scheme has a significant impact on APEC classification. A

  6. High-virulence CMY-2- and CTX-M-2-producing avian pathogenic Escherichia coli strains isolated from commercial turkeys.

    PubMed

    da Silva, Ketrin Cristina; Cunha, Marcos Paulo Vieira; Cerdeira, Louise; de Oliveira, Maria Gabriela Xavier; de Oliveira, Mirela Caroline Vilela; Gomes, Cleise Ribeiro; Lincopan, Nilton; Knöbl, Terezinha; Moreno, Andrea Micke

    2017-01-01

    This study reports the high-virulence phylogenetic backgrounds of CMY-2- and CTX-M-2-producing avian pathogenic Escherichia coli strains isolated from turkeys sent to slaughter and condemned by airsacculitis in Brazil. Among 300 air sac samples, seven E. coli strains produced plasmid-mediated CMY-2-type AmpC, of which three carried also the blaCTX-M-2 Extended Spectrum Beta-Lactamase encoding gene. Interestingly, the transfer of the blaCMY-2 gene was positive for three E. coli strains, being associated with the presence of IncI1 plasmids. The complete sequence of the representative pJB10 plasmid revealed that the blaCMY-2 gene was within a transposon-like element in the classical genetic environment consisting of tnpA-blaCMY-2-blc-sugE structure. This plasmid with 94-kb belonged to the sequence type (ST) 12 among IncI1 plasmids, which has been associated with the worldwide spread of blaCMY-2 among Salmonella enterica and E. coli. Furthermore, to the best of our knowledge, this is the first complete sequence of a CMY-2-encoding plasmid derived from an Escherichia coli isolated from food-producing animals in Latin America.

  7. Isolation of atypical enteropathogenic Escherichia coli and Shiga toxin 1 and 2f-producing Escherichia coli from avian species in India.

    PubMed

    Farooq, S; Hussain, I; Mir, M A; Bhat, M A; Wani, S A

    2009-06-01

    To study the prevalence and characterize atypical enteropathogenic Escherichia coli (EPEC) and Shiga toxin producing E. coli (STEC) in avian species in India. Two hundred and twelve faecal samples collected from 62 chickens, 50 ducks and 100 pigeons were investigated for the presence of stx(1), stx(2), eae and ehxA virulence genes by multiplex PCR. In all, 42 E. coli isolates (25 chicken, 2 duck and 15 pigeon) possessed at least one virulence gene. Out of these, nine (4.24%) isolates were STEC and 33 (15.56%) were EPEC. All isolates from duck and chicken were EPEC while among 15 pigeon isolates nine (60%) were STEC and six (40%) were EPEC. Among the STEC isolates four each carried stx(1) or stx(2) and one possessed both stx(1) and stx(2). Subtype analysis of stx revealed the presence of stx(2f) in four STEC isolates. None of the STEC isolates carried stx(1c), stx(2c), stx(2d) or stx(2e). Isolates carrying stx(2f) demonstrated vero cell toxicity. One each belonged to serogroup O17 and O78, while one was rough and the other untypeable. All EPEC isolates were atypical as they lacked bfpA. This appears to be the first report of detection of stx(2f) from India. The study established the presence of stx(1) and stx(2f) containing E. coli in pigeons and atypical EPEC in poultry in India. Pigeons might serve as vectors for transmission of STEC to environment and humans. Taking into account the close contact between fanciers and pigeons, these findings warrant a more critical appraisal of these zoonotic pathogens in pigeons and humans.

  8. Variants of astA gene among extra-intestinal Escherichia coli of human and avian origin.

    PubMed

    Maluta, Renato Pariz; Leite, Janaína Luisa; Rojas, Thaís Cabrera Galvão; Scaletsky, Isabel Cristina Affonso; Guastalli, Elisabete Aparecida Lopes; Ramos, Marcelo de Carvalho; Dias da Silveira, Wanderley

    2017-03-01

    Many Escherichia coli strains harbour astA, which is the gene encoding the enteroaggregative E. coli heat-stable enterotoxin (EAST1). This gene is embedded in a putative transposase (ORF1) and presents polymorphism in diarrheagenic strains. Although astA and orf1 are detected in extraintestinal strains, little is known about polymorphism and differential gene transcription in this pathotype. In the present work, extraintestinal E. coli from humans (ExPEC - Extraintestinal Pathogenic E. coli) and poultry (APEC - Avian Pathogenic E. coli) were assayed to verify the presence of astA/orf1 and possible polymorphisms in these genes. Three astA/orf1 patterns were detected via Sanger sequencing. Pattern 1 was novel and represented an astA pseudogene. Pattern 2 and pattern 3 presented distinct amino acids within the reading frame encoding astA and were identical to the sequences found in EAEC 17-2 and EAEC 042, respectively. Regarding the frame encoding ORF1, all mutations detected in the three patterns were neutral. The transcripts of astA/orf1 in vitro were underregulated in strains possessing the pattern 1 sequence. The results demonstrate that the same astA sequences may be detected in diarrheagenic and extra-intestinal E. coli. However, extraintestinal isolates may also present an astA pseudogene that has not been reported in diarrheagenic E. coli. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Relationship between the Tsh Autotransporter and Pathogenicity of Avian Escherichia coli and Localization and Analysis of the tsh Genetic Region

    PubMed Central

    Dozois, Charles M.; Dho-Moulin, Maryvonne; Brée, Annie; Fairbrother, John M.; Desautels, Clarisse; Curtiss, Roy

    2000-01-01

    The temperature-sensitive hemagglutinin Tsh is a member of the autotransporter group of proteins and was first identified in avian-pathogenic Escherichia coli (APEC) strain χ7122. The prevalence of tsh was investigated in 300 E. coli isolates of avian origin and characterized for virulence in a 1-day-old chick lethality test. Results indicate that among the tsh-positive APEC isolates, 90.6% belonged to the highest virulence class. Experimental inoculation of chickens with χ7122 and an isogenic tsh mutant demonstrated that Tsh may contribute to the development of lesions within the air sacs of birds but is not required for subsequent generalized infection manifesting as perihepatitis, pericarditis, and septicemia. Conjugation and hybridization experiments revealed that the tsh gene is located on a ColV-type plasmid in many of the APEC strains studied, including strain χ7122, near the colicin V genes in most of these strains. DNA sequences flanking the tsh gene of strain χ7122 include complete and partial insertion sequences and phage-related DNA sequences, some of which were also found on virulence plasmids and pathogenicity islands present in various E. coli pathotypes and other pathogenic members of the Enterobacteriaceae. These results demonstrate that the tsh gene is frequently located on the ColV virulence plasmid in APEC and suggest a possible role of Tsh in the pathogenicity of E. coli for chickens in the early stages of infection. PMID:10858231

  10. Autoinducer-2 of quorum sensing is involved in cell damage caused by avian pathogenic Escherichia coli.

    PubMed

    Cui, Zhen-Qiang; Wu, Zong-Mei; Fu, Yun-Xing; Xu, Dao-Xiu; Guo, Xun; Shen, Hai-Qing; Wei, Xu-Bin; Yi, Peng-Fei; Fu, Ben-Dong

    2016-10-01

    Avian pathogenic Escherichia coli (APEC) infections are responsible for great losses in the poultry industry. Quorum sensing (QS) acts as a global regulatory system that controls genes involved in bacterial pathogenesis, metabolism and protein biosynthesis. However, whether QS of APEC is related to cell damage has not been elucidated. In the present study, we explored the correlation between the damage of chicken type II pneumocytes induced by APEC and the autoinducer-2 (AI-2) activity of APEC. The results showed that when chicken type II pneumocytes were co-cultured with 10(8) CFU/ml of APEC-O78 for 6 h, the release of LDH reached the highest level (192.5 ± 13.4 U/L) (P < 0.01), and the percentages of dead cells followed the same trend in trypan blue exclusion assay. In addition, the AI-2 activity of cell-free culture fluid (CF) reached the maximum value after 6 h co-culture with 10(8) CFU/ml of APEC-O78. At the same time, the mRNA expressions of eight virulence genes (papC, fimA, fimC, hlyE, ompA, luxS, pfs, and qseA) of 10(8) CFU/ml APEC-O78 were significantly increased compared with those of 10(7) CFU/ml, and the mRNA expressions of four virulence genes (hlyE, tsh, iss, and luxS) of 10(8) CFU/ml APEC-O78 were higher than those of 10(9) CFU/ml (p < 0.05) after incubation for 6 h. These results suggested that AI-2-mediated QS is involved in the cell damage induced by APEC-O78, indicating AI-2 may be one new potential target for preventing chicken colibacillosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Prevalence of Avian Pathogenic Escherichia coli (APEC) Clone Harboring sfa Gene in Brazil

    PubMed Central

    Knöbl, Terezinha; Micke Moreno, Andrea; Paixão, Renata; Gomes, Tânia Aparecida Tardelli; Vieira, Mônica Aparecida Midolli; da Silva Leite, Domingos; Blanco, Jesus E.; Ferreira, Antônio José Piantino

    2012-01-01

    Escherichia coli sfa+ strains isolated from poultry were serotyped and characterized by polymerase chain reaction (PCR) and amplified fragment length polymorphism (AFLP). Isolates collected from 12 Brazilian poultry farms mostly belonged to serogroup O6, followed by serogroups O2, O8, O21, O46, O78, O88, O106, O111, and O143. Virulence genes associated were: iuc 90%, fim 86% neuS 60%, hly 34%, tsh 28%, crl/csg 26%, iss 26%, pap 18%, and 14% cnf. Strains from the same farm presented more than one genotypic pattern belonging to different profiles in AFLP. AFLP showed a clonal relation between Escherichia coli sfa+ serogroup O6. The virulence genes found in these strains reveal some similarity with extraintestinal E. coli (ExPEC), thus alerting for potential zoonotic risk. PMID:22666122

  12. Comparison of in vitro activities and pharmacokinetics/pharmacodynamics estimations of veterinary fluoroquinolones against avian pathogenic Escherichia coli isolates.

    PubMed

    Ozawa, Manao; Baba, Kotaro; Shimizu, Yasuhito; Asai, Tetsuo

    2010-12-01

    We analyzed in vitro activities and pharmacokinetics/pharmacodynamics (PK/PD) parameters of veterinary fluoroquinolones against avian pathogenic Escherichia coli (APEC) strains from cases of avian colibacillosis. The median of minimum inhibitory concentration (MIC(50)) values against APEC strains for enrofloxacin (ERFX) and danofloxacin (DNFX) were 0.25 μg/ml and for norfloxacin (NFLX) and ofloxacin (OFLX) were 0.5 μg/ml. The percentage of resistant strains for ERFX, DNFX, NFLX, and OFLX were 24.4%, 23.6%, 22.8%, and 23.6%, respectively. Scattergrams of the MICs of ERFX compared to DNFX, NFLX, and OFLX for 127 strains demonstrate a clear correlation between the MIC of ERFX and that of other fluoroquinolones. The differences in amino acid substitution in GyrA may play a role in the variation of MIC values for fluoroquinolones. The ratios of peak serum concentration to MIC (C(max):MIC) and ratios of area under the curve to MIC (AUC:MIC) were relatively high in ERFX and OFLX compared to other fluoroquinolones. These results indicate that although the in vitro activities of these fluoroquinolones against APEC isolates are slightly different, the PK/PD values vary with PK parameters. Therefore, we need to consider the PK/PD parameters in the choice of fluoroquinolones during treatment of avian colibacillosis.

  13. Pathology and Molecular Characterization of Escherichia Coli Associated With the Avian Salpingitis-Peritonitis Disease Syndrome.

    PubMed

    Heidemann Olsen, Rikke; Bisgaard, Magne; Christensen, Jens Peter; Kabell, Susanne; Christensen, Henrik

    2016-03-01

    Outbreaks of salpingitis and peritonitis cause major economic losses due to high mortality, reduced egg-production, and culling. The aim of the present study was to characterize, in detail, lesions associated with increased mortality in layers due to avianpathogenic Escherichia coli (APEC) and to investigate the population structure of the E. coli involved, which is important for selection of optimal treatment and prophylactic strategies. Among 322 layers received from eight farms with increased mortality due to E. coli, three lesion types were observed; sepsis-like lesions, chronic salpingitis and peritonitis, and chronic salpingitis and peritonitis associated with sepsis-like lesions. One hundred isolates of E. coli obtained in pure culture from the different lesion types were selected for genetic characterization. Six out of 10 submissions (two farms with two submissions) were considered clonal as defined by more than 85% of the typed isolates of E. coli belonging to the same sequence-type (ST). B2 was the most-prevalent phylogroup, including the clonal complex of ST95. The most-important virulence genes of E. coli were demonstrated from both clonal and nonclonal outbreaks, and major differences as to phylogeny and virulence genes were not observed between the lesion types. Cannibalism was more-often observed during polyclonal outbreaks. A new pathotype of APEC is suggested based upon lesions and route of infection, high similarity of virulence genes including plasmid-associated genes, and high frequency of ST95 and other isolates belonging to phylogroup B2. Compared to the best-known pathotypes of E. coli, this needs further investigations, including infection experiments to show if single virulence factors can be pointed out that are specific for the salpingitis-peritonitis pathotype and possibly not found in other pathotypes of E. coli.

  14. DNA methylome in spleen of avian pathogenic Escherichia coli-challenged broilers and integration with mRNA expression.

    PubMed

    Xu, Haiping; Zhu, Xuenong; Hu, Yongsheng; Li, Zhenhui; Zhang, Xiquan; Nie, Qinghua; Nolan, Lisa K; Lamont, Susan J

    2014-03-06

    Avian pathogenic Escherichia coli (APEC) are responsible for heavy economic losses in poultry industry. Here we investigate DNA methylome of spleen and identify functional DNA methylation changes related to host response to APEC among groups of non-challenged chickens (NC), challenged with mild (MD) and severe pathology (SV). DNA methylation was enriched in the gene bodies and repeats. Promoter and CGIs are hypomethylated. Integration analysis revealed 22, 87, and 9 genes exhibiting inversely changed DNA methylation and gene expression in NC vs. MD, NC vs. SV, and MD vs. SV, respectively. IL8, IL2RB, and IL1RAPL1 were included. Gene network analysis suggested that besides inflammatory response, other networks and pathways such as organismal injury and abnormalities, cell signaling and molecular transport, are probably related to host response to APEC infection. Moreover, methylation changes in cell cycle processes might contribute to the lesion phenotype differences between MD and SV.

  15. DNA methylome in spleen of avian pathogenic escherichia coli-challenged broilers and integration with mRNA expression

    PubMed Central

    Xu, Haiping; Zhu, Xuenong; Hu, Yongsheng; Li, Zhenhui; Zhang, Xiquan; Nie, Qinghua

    2014-01-01

    Avian pathogenic Escherichia coli (APEC) are responsible for heavy economic losses in poultry industry. Here we investigate DNA methylome of spleen and identify functional DNA methylation changes related to host response to APEC among groups of non-challenged chickens (NC), challenged with mild (MD) and severe pathology (SV). DNA methylation was enriched in the gene bodies and repeats. Promoter and CGIs are hypomethylated. Integration analysis revealed 22, 87, and 9 genes exhibiting inversely changed DNA methylation and gene expression in NC vs. MD, NC vs. SV, and MD vs. SV, respectively. IL8, IL2RB, and IL1RAPL1 were included. Gene network analysis suggested that besides inflammatory response, other networks and pathways such as organismal injury and abnormalities, cell signaling and molecular transport, are probably related to host response to APEC infection. Moreover, methylation changes in cell cycle processes might contribute to the lesion phenotype differences between MD and SV. PMID:24599154

  16. First Description of an Extended-Spectrum Cephalosporin- and Fluoroquinolone- Resistant Avian Pathogenic Escherichia coli Clone in Algeria.

    PubMed

    Meguenni, Nacima; Le Devendec, Laetitia; Jouy, Eric; Le Corvec, Maena; Bounar-Kechih, Saliha; Rabah Bakour, D; Kempf, Isabelle

    2015-03-01

    Eleven avian pathogenic Escherichia coli (APEC) strains isolated from 2006 to 2010 from different farms in Algeria and resistant to cephalosporins were studied. Their susceptibility to antimicrobials was determined by disk diffusion, and the genes responsible for resistance to critical antimicrobials were studied by PCR, sequencing, and conjugation. Their genetic profiles were compared by pulsed-field gel electrophoresis (PFGE). All strains were resistant to extended-spectrum cephalosporins, ciprofloxacin, tetracycline, trimethoprim-sulfamethoxazole, and neomycin and showed the same PFGE profile. For most of them, resistance was encoded by a nontransferable group 1 bla(CTX-M) gene, and multiple mutations were detected in the quinolone resistance-determining regions. The clonal dissemination of this resistant APEC is worrying for animal and public health.

  17. Occurrence of avian pathogenic Escherichia coli and antimicrobial-resistant E. coli in red-legged partridges (Alectoris rufa): sanitary concerns of farming.

    PubMed

    Díaz-Sánchez, Sandra; Sánchez, Sergio; Ewers, Christa; Höfle, Ursula

    2012-01-01

    Red-legged partridges (Alectoris rufa) are a significant part of the culture, diet and income for many people in central and southern Spain. Due to declining populations in the wild, intensive farming is common and 4 million juvenile partridges are released each autumn. Intensive management and high densities result in high prevalence of enteric disease and the use of antimicrobials as preventive measures on partridge farms and prior to restocking in the wild. We determined the occurrence of avian pathogenic Escherichia coli (APEC), and screened phenotypic resistance of E. coli against enrofloxacin, gentamicin and cefotaxim in farmed, restocked and wild partridges. Prevalence of APEC in farmed and restocked red-legged partridges was significantly higher than in natural populations. Phenotypic resistance against both gentamicin and enrofloxacin was significantly more frequent in farmed (75%) and restocked (43%) partridges than in wild partridges, while most E. coli isolated from natural populations were susceptible to all three antimicrobials tested (65%). This indicates that farmed and restocked partridges carry APEC that could be a reason for disease outbreaks on farms, and that E. coli carried by farmed and restocked partridges can acquire resistance to frequently used antimicrobials, thus being a concern for the environment, wild birds and consumers. Management in farms and restocking procedures may create a hazard not only for spreading APEC, but also as a potential source of resistant E. coli in the environment.

  18. Evaluation of the adhesive capacity of Escherichia coli isolates associated with avian cellulitis.

    PubMed

    Leclerc, Benoît; Fairbrother, John M; Boulianne, Martine; Messier, Serge

    2003-01-01

    It has been shown that Escherichia coli isolates from lesions of cellulitis belong to a limited number of clonal groups distinct from those of isolates found in the environment of these birds. In this study, different in vitro methods were used to evaluate adherence properties of E. coli isolates from cellulitis lesions and environments of high- and low-cellulitis prevalence broiler flocks. One hundred isolates were tested by hemagglutination. Adherence to frozen sections of chicken skin and binding to soluble fibronectin were examined for 40 of these 100 isolates by immunofluorescence and by immunocytofluorometry, respectively. Localization of bacterial adherence to skin tissues was confirmed by immunohistochemistry. It was demonstrated that O78:K80 isolates from cellulitis lesions adhered to skin sections to a much greater extent in deeper than in superficial tissue layers. A greater bacterial adherence following growth in TSB at 37 C was demonstrated for isolates from flocks with high prevalence of cellulitis than for isolates from flocks with low prevalence of cellulitis. MANOVA analysis results showed a significant difference between superficial and deep tissue layers only for one set of isolates from flocks with high prevalence of cellulitis. Hemagglutinating activity was variable among the O78:K80 isolates obtained from flocks with high prevalence of cellulitis. The results obtained for some O78:K80 isolates following growth in TSB suggest a role for type 1 fimbriae or F1 in adherence to skin sections. This was reinforced by the finding that adherence was inhibited by D-mannose. Poultry E. coli isolates that express F1 had no affinity for soluble fibronectin, although localization of the adherence in skin sections suggested a role for extracellular matrix components such as collagen and insoluble fibronectin.

  19. Clonal relationship between human and avian ciprofloxacin-resistant Escherichia coli isolates in North-Eastern Algeria.

    PubMed

    Agabou, A; Lezzar, N; Ouchenane, Z; Khemissi, S; Satta, D; Sotto, A; Lavigne, J-P; Pantel, A

    2016-02-01

    The objectives of this study were to determine rates, patterns, and mechanisms of antibiotic resistance, and to assess connections between chicken commensal, human commensal, and pathogenic ciprofloxacin-resistant Escherichia coli isolates. All E. coli isolates collected from chickens, their farmers, and patients in the Constantine region (North-east Algeria) were analyzed for bla and plasmid-mediated quinolone resistance (PMQR) gene contents, phylogroups, Rep-PCR profiles, and multilocus sequence types. A high prevalence of resistance to fluoroquinolones (51.4 % to ciprofloxacin) was recorded in avian isolates. Of these, 22.2 % carried the aac(6')-Ib-cr gene, whereas lower resistance levels to these antibiotics were recorded in chicken farmers' isolates. None of the commensal isolates harbored the qnr, qepA, or oqxAB genes. One human pathogenic isolate was ertapenem-resistant and harbored the bla OXA-48 gene, 84 showed an extended-spectrum β-lactamase phenotype, with bla CTX-M-15 gene prevalent in 87.2 % of them. Seventy isolates were resistant to fluoroquinolones, with aac(6')-Ib-cr present in 72.8 %, qnrB in 5.7 %, and qnrS in 10 %. Three Rep-PCR profiles were common to chicken commensal and human pathogenic isolates (phylogroups D and B1; ST21, ST48, and ST471 respectively); one was found in both chicken and chicken-farmer commensal strains (D; ST108), while another profile was identified in a chicken-farmer commensal strain and a human pathogenic one (B1; ST19). These findings suggest clonal and epidemiologic links between chicken and human ciprofloxacin-resistant E. coli isolates and the important role that poultry may play in the epidemiology of human E. coli infections in the Constantine region.

  20. DNA Sequence and Comparative Genomics of pAPEC-O2-R, an Avian Pathogenic Escherichia coli Transmissible R Plasmid

    PubMed Central

    Johnson, Timothy J.; Siek, Kylie E.; Johnson, Sara J.; Nolan, Lisa K.

    2005-01-01

    In this study, a 101-kb IncF plasmid from an avian pathogenic Escherichia coli (APEC) strain (APEC O2) was sequenced and analyzed, providing the first completed APEC plasmid sequence. This plasmid, pAPEC-O2-R, has functional transfer and antimicrobial resistance-encoding regions. The resistance-encoding region encodes resistance to eight groups of antimicrobial agents, including silver and other heavy metals, quaternary ammonium compounds, tetracycline, sulfonamides, aminoglycosides, trimethoprim, and beta-lactam antimicrobial agents. This region of the plasmid is unique among previously described IncF plasmids in that it possesses a class 1 integron that harbors three gene cassettes and a heavy metal resistance operon. This region spans 33 kb and is flanked by the RepFII plasmid replicon and an assortment of plasmid maintenance genes. pAPEC-O2-R also contains a 32-kb transfer region that is nearly identical to that found in the E. coli F plasmid, rendering it transferable by conjugation to plasmid-less strains of bacteria, including an APEC strain, a fecal E. coli strain from an apparently healthy bird, a Salmonella enterica serovar Typhimurium strain, and a uropathogenic E. coli strain from humans. Differences in the G+C contents of individual open reading frames suggest that various regions of pAPEC-O2-R had dissimilar origins. The presence of pAPEC-O2-R-like plasmids that encode resistance to multiple antimicrobial agents and that are readily transmissible from APEC to other bacteria suggests the possibility that such plasmids may serve as a reservoir of resistance genes for other bacteria of animal and human health significance. PMID:16251312

  1. ArcA Controls Metabolism, Chemotaxis, and Motility Contributing to the Pathogenicity of Avian Pathogenic Escherichia coli

    PubMed Central

    Jiang, Fengwei; An, Chunxia; Bao, Yinli; Zhao, Xuefeng; Jernigan, Robert L.; Lithio, Andrew; Nettleton, Dan; Li, Ling; Wurtele, Eve Syrkin; Nolan, Lisa K.; Lu, Chengping

    2015-01-01

    Avian pathogenic Escherichia coli (APEC) strains cause one of the three most significant infectious diseases in the poultry industry and are also potential food-borne pathogens threating human health. In this study, we showed that ArcA (aerobic respiratory control), a global regulator important for E. coli's adaptation from anaerobic to aerobic conditions and control of that bacterium's enzymatic defenses against reactive oxygen species (ROS), is involved in the virulence of APEC. Deletion of arcA significantly attenuates the virulence of APEC in the duck model. Transcriptome sequencing (RNA-Seq) analyses comparing the APEC wild type and the arcA mutant indicate that ArcA regulates the expression of 129 genes, including genes involved in citrate transport and metabolism, flagellum synthesis, and chemotaxis. Further investigations revealed that citCEFXG contributed to APEC's microaerobic growth at the lag and log phases when cultured in duck serum and that ArcA played a dual role in the control of citrate metabolism and transportation. In addition, deletion of flagellar genes motA and motB and chemotaxis gene cheA significantly attenuated the virulence of APEC, and ArcA was shown to directly regulate the expression of motA, motB, and cheA. The combined results indicate that ArcA controls metabolism, chemotaxis, and motility contributing to the pathogenicity of APEC. PMID:26099584

  2. Functional role of ompF and ompC porins in pathogenesis of avian pathogenic Escherichia coli.

    PubMed

    Hejair, Hassan M A; Zhu, Yingchu; Ma, Jiale; Zhang, Yue; Pan, Zihao; Zhang, Wei; Yao, Huochun

    2017-03-14

    Avian pathogenic Escherichia coli is an important pathogen causes systemic infections in avian species and large economic losses in poultry industry worldwide. The functional role of porins during the infection and their mechanisms of interaction with host tissues for adhesion to and invasion are poorly understood. However, whether porins play a role in infection remains unclear. In this study we evaluated the potential of ompF and ompC outer membrane porins in the pathogenesis of avian pathogenic E. coli (APEC) strain TW-XM. The ompF and ompC were deleted to generate a series of mutants. We found that, ΔompF and ΔompC reduced significantly the adherence by 41.3% and 46.1% and invasion capabilities of APEC to mouse brain microvascular endothelial cell (BMEC) bEnd.3 cells in vitro by 51.9% and 49.7% respectively, compared with the wild strain TW-XM. In vivo experiment based on the measurement of the LD50 have also shown that, ΔompF and ΔompC reduced the bacterial virulence by 9.8-fold, 12.3-fold in ducklings and 9-fold, 10.2-fold in mouse models. Animal infection experiments further revealed that, loss of ompF and ompC reduced TW-XM colonization and invasion capacity in brains, lungs and blood compared to wild-type strain TW-XM (P > 0.01). These virulence-related phenotypes were partially recoverable by genetic complementation. The results of the quantitative real-time reverse transcription-PCR (qRT-PCR) indicated that, the loss of ompF and ompC significantly decreased the expression levels of ompA, fimC and iBeA genes in the mutant strains, compared to wild-type strainTW-XM (P < 0.01). Collectively, our data demonstrate that inactivation of these two porins decreased adhesion, invasion, colonization, proliferation capacities, possibly by reduced expression levels of ompA, fimC and iBeA, which may indicate the involvement of ompF and ompC in APEC pathogenesis.

  3. Deep Sequencing-Based Transcriptome Analysis of Chicken Spleen in Response to Avian Pathogenic Escherichia coli (APEC) Infection

    PubMed Central

    Nie, Qinghua; Sandford, Erin E.; Zhang, Xiquan; Nolan, Lisa K.; Lamont, Susan J.

    2012-01-01

    Avian pathogenic Escherichia coli (APEC) leads to economic losses in poultry production and is also a threat to human health. The goal of this study was to characterize the chicken spleen transcriptome and to identify candidate genes for response and resistance to APEC infection using Solexa sequencing. We obtained 14422935, 14104324, and 14954692 Solexa read pairs for non-challenged (NC), challenged-mild pathology (MD), and challenged-severe pathology (SV), respectively. A total of 148197 contigs and 98461 unigenes were assembled, of which 134949 contigs and 91890 unigenes match the chicken genome. In total, 12272 annotated unigenes take part in biological processes (11664), cellular components (11927), and molecular functions (11963). Summing three specific contrasts, 13650 significantly differentially expressed unigenes were found in NC Vs. MD (6844), NC Vs. SV (7764), and MD Vs. SV (2320). Some unigenes (e.g. CD148, CD45 and LCK) were involved in crucial pathways, such as the T cell receptor (TCR) signaling pathway and microbial metabolism in diverse environments. This study facilitates understanding of the genetic architecture of the chicken spleen transcriptome, and has identified candidate genes for host response to APEC infection. PMID:22860004

  4. AutA and AutR, Two Novel Global Transcriptional Regulators, Facilitate Avian Pathogenic Escherichia coli Infection

    PubMed Central

    Zhuge, Xiangkai; Tang, Fang; Zhu, Hongfei; Mao, Xiang; Wang, Shaohui; Wu, Zongfu; Lu, Chengping; Dai, Jianjun; Fan, Hongjie

    2016-01-01

    Bacteria can change its lifestyle during inhabiting in host niches where they survive and replicate by rapidly altering gene expression pattern to accommodate the new environment. In this study, two novel regulators in avian pathogenic Escherichia coli (APEC) were identified and designated as AutA and AutR. RT-PCR and β-galactosidase assay results showed that AutA and AutR co-regulated the expression of adhesin UpaB in APEC strain DE205B. Electrophoretic mobility shift assay showed that AutA and AutR could directly bind the upaB promoter DNA. In vitro transcription assay indicated that AutA could activate the upaB transcription, while AutR inhibited the upaB transcription due to directly suppressing the activating effect of AutA on UpaB expression. Transcriptome analysis showed that AutA and AutR coherently affected the expression of hundreds of genes. Our study confirmed that AutA and AutR co-regulated the expression of DE205B K1 capsule and acid resistance systems in E. coli acid fitness island (AFI). Moreover, phenotypic heterogeneity in expression of K1 capsule and acid resistance systems in AFI during host–pathogen interaction was associated with the regulation of AutA and AutR. Collectively speaking, our studies presented that AutA and AutR are involved in APEC adaptive lifestyle change to facilitate its infection. PMID:27113849

  5. Association of iss and iucA, but not tsh, with plasmid-mediated virulence of avian pathogenic Escherichia coli.

    PubMed

    Tivendale, Kelly A; Allen, Joanne L; Ginns, Carol A; Crabb, Brendan S; Browning, Glenn F

    2004-11-01

    Avian pathogenic Escherichia coli (APEC) is an economically important respiratory pathogen of chickens worldwide. Factors previously associated with the virulence of APEC include adhesins, iron-scavenging mechanisms, the production of colicin V (ColV), serum resistance, and temperature-sensitive hemagglutination, but virulence has generally been assessed by parenteral inoculation, which does not replicate the normal respiratory route of infection. A large plasmid, pVM01, is essential for virulence in APEC strain E3 in chickens after aerosol exposure. Here we establish the size of pVM01 to be approximately 160 kb and show that the putative virulence genes iss (increased serum survival) and tsh (temperature-sensitive hemagglutinin) and the aerobactin operon are on the plasmid. These genes were not clustered on pVM01 but, rather, were each located in quite distinct regions. Examination of APEC strains with defined levels of respiratory pathogenicity after aerosol exposure showed that both the aerobactin operon and iss were associated with high levels of virulence in APEC but that the possession of either gene was sufficient for intermediate levels of virulence. In contrast, the presence of tsh was not necessary for high levels of virulence. Thus, both the aerobactin operon and iss are associated with virulence in APEC after exposure by the natural route of infection. The similarities between APEC and extraintestinal E. coli infection in other species suggests that they may be useful models for definition of the role of these virulence genes and of other novel virulence genes that may be located on their virulence plasmids.

  6. Characterization and functional analysis of AatB, a novel autotransporter adhesin and virulence factor of avian pathogenic Escherichia coli.

    PubMed

    Zhuge, Xiangkai; Wang, Shaohui; Fan, Hongjie; Pan, Zihao; Ren, Jianluan; Yi, Li; Meng, Qingmei; Yang, Xuqiu; Lu, Chengping; Dai, Jianjun

    2013-07-01

    Autotransporter (AT) proteins constitute a large family of extracellular proteins that contribute to bacterial virulence. A novel AT adhesin gene, aatB, was identified in avian pathogenic Escherichia coli (APEC) DE205B via genomic analyses. The open reading frame of aatB was 1,017 bp, encoding a putative 36.3-kDa protein which contained structural motifs characteristic for AT proteins: a signal peptide, a passenger domain, and a translocator domain. The predicted three-dimensional structure of AatB consisted of two distinct domains, the C-terminal β-barrel translocator domain and an N-terminal passenger domain. The prevalence analyses of aatB in APEC indicated that aatB was detected in 26.4% (72/273) of APEC strains and was strongly associated with phylogenetic groups D and B2. Quantitative real-time reverse transcription-PCR analyses revealed that AatB expression was increased during infection in vitro and in vivo. Moreover, AatB could elicit antibodies in infected ducks, suggesting that AatB is involved in APEC pathogenicity. Thus, APEC DE205B strains with a mutated aatB gene and mutated strains complemented with the aatB gene were constructed. Inactivation of aatB resulted in a reduced capacity to adhere to DF-1 cells, defective virulence capacity in vivo, and decreased colonization capacity in lung during systemic infection compared with the capacities of the wild-type strain. Furthermore, these capacities were restored in the complementation strains. These results indicated that AatB makes a significant contribution to APEC virulence through bacterial adherence to host tissues in vivo and in vitro. In addition, biofilm formation assays with strain AAEC189 expressing AatB indicated that AatB mediates biofilm formation.

  7. Molecular Cloning, Characterization, and Anti-avian Pathogenic Escherichia coli Innate Immune Response of the Cherry Valley Duck CIITA Gene.

    PubMed

    Li, Rong; Guo, Mengjiao; Lin, Jing; Chai, Tongjie; Wei, Liangmeng

    2017-01-01

    Class II major histocompatibility complex (MHC-II) transactivator (CIITA) is a member of the pattern recognition receptor in cytoplasm, which is involved in host innate immune responses. In this study, the full-length cDNA of Cherry Valley duck CIITA (duCIITA) was cloned from the spleen of healthy Cherry Valley ducks for the first time. The CDs of duCIITA have 3648 bp and encode 1215 amino acids. The homology analysis of CIITAs amino acid sequence showed that the duCIITA has the highest identity with the Anas platyrhynchos (94.9%), followed by Gallus gallus and Meleagris gallopavo. Quantitative real-time PCR analysis indicated that duCIITA mRNA has a broad expression level in healthy Cherry Valley duck tissues. It was highly expressed in the lung and cerebellum, and lowly expressed in the rectum and esophagus. After the avian pathogenic Escherichia coli (APEC) O1K1 infection, the ducks exhibited the typical clinical symptoms, and a severe fibrinous exudate in the heart and liver surface was observed. Meanwhile, a significant up-regulation of duCIITA was detected in the infected liver. The inflammatory cytokines IL-1β, IL-6, and IL-8 have a significant up-regulation in the infected liver, spleen and brain. In addition, knockdown of the duCIITA reduces antibacterial activity and inflammatory cytokine production of the duck embryo fibroblast cells. Our research is the first study of the cloning, tissue distribution, and antibacterial immune responses of duCIITA, and these findings imply that duCIITA was an important receptor, which was involved in the early stage of the antibacterial innate immune response to APEC O1K1 infection of Cherry Valley duck.

  8. Modulation of virulence genes by the two-component system PhoP-PhoQ in avian pathogenic Escherichia coli.

    PubMed

    Tu, Jian; Huang, Boyan; Zhang, Yu; Zhang, Yuxi; Xue, Ting; Li, Shaocan; Qi, Kezong

    2016-01-01

    Avian pathogenic Escherichia coli (APEC) infections are a very important problem in the poultry industry. PhoP-PhoQ is a two-component system that regulates virulence genes in APEC. In this study, we constructed strains that lacked the PhoP or PhoQ genes to assess regulation of APEC pathogenicity by the PhoP-PhoQ two-component system. The PhoP mutant strain AE18, PhoQ mutant strain AE19, and PhoP/PhoQ mutant strain AE20 were constructed by the Red homologous recombination method. Swim plates were used to evaluate the motility of the APEC strains, viable bacteria counting was used to assess adhesion and invasion of chick embryo fibroblasts, and Real-Time PCR was used to measure mRNA expression of virulence genes. We first confirmed that AE18, AE19, and AE20 were successfully constructed from the wild-type AE17 strain. AE18, AE19, and AE20 showed significant decreases in motility of 70.97%, 83.87%, and 37.1%, respectively, in comparison with AE17. Moreover, in comparison with AE17, AE18, AE19, and AE20 showed significant decreases of 63.11%, 65.42%, and 30.26%, respectively, in CEF cell adhesion, and significant decreases of 59.83%, 57.82%, and 37.90%, respectively, in CEF cell invasion. In comparison with AE17, transcript levels of sodA, polA, and iss were significantly decreased in AE18, while transcript levels of fimC and iss were significantly decreased in AE19. Our results demonstrate that deletion of PhoP or PhoQ inhibits invasion and adhesion of APEC to CEF cells and significantly reduces APEC virulence by regulating transcription of virulence genes.

  9. Novel MicroRNA Involved in Host Response to Avian Pathogenic Escherichia coli Identified by Deep Sequencing and Integration Analysis

    PubMed Central

    Jia, Xinzheng; Zhang, Xiquan; Nolan, Lisa K.

    2016-01-01

    ABSTRACT Avian pathogenic Escherichia coli (APEC) causes one of the most common bacterial diseases of poultry worldwide. Effective control methods are therefore desirable and will be facilitated by a better understanding of the host response to the pathogen. Currently, microRNAs (miRNAs) involved in host resistance to APEC are unknown. Here, we applied RNA sequencing to explore the changed miRNAs and deregulated genes in the spleen of three groups of broilers: nonchallenged (NC), APEC-challenged with mild pathology (CM), and APEC-challenged with severe pathology (CS). Twenty-seven differentially expressed miRNAs (fold change >1.5; P value <0.01) were identified, including 13 miRNAs between the NC and CM, 17 between the NC and CS, and 14 between the CM and CS groups. Through functional analysis of these miRNA targets, 12 immune-related biological processes were found to be significantly enriched. Based on combined analyses of differentially expressed miRNAs and mRNAs within each of the three groups, 43 miRNA-mRNA pairs displayed significantly negative correlations (r < −0.8). Notably, gga-miR-429 was greatly increased in the CS group compared to levels in both the CM and NC groups. In vitro, gga-miR-429 directly repressed luciferase reporter gene activity via binding to 3′ untranslated regions of TMEFF2, NTRK2, and SHISA2. Overexpression of gga-miR-429 in the HD11 macrophage cell line significantly inhibited TMEFF2 and SHISA2 expression, which are involved in the lipopolysaccharide-induced platelet-derived growth factor (PDGF) and Wnt signaling pathways. In summary, we provide the first report characterizing the miRNA changes during APEC infection, which may help to shed light on the roles of these recently identified genetic elements in the mechanisms of host resistance and susceptibility to APEC. PMID:27795362

  10. Susceptibility of avian pathogenic Escherichia coli from laying hens in Belgium to antibiotics and disinfectants and integron prevalence.

    PubMed

    Oosterik, Leon H; Peeters, Laura; Mutuku, Irene; Goddeeris, Bruno M; Butaye, Patrick

    2014-06-01

    Avian pathogenic Escherichia coli (APEC) causes huge annual losses in the poultry industry worldwide. Multiresistance against antibiotics of APEC strains is increasingly seen in broilers, although much is still unknown about strains from laying hens where use of antibiotics is limited. Disinfection can reduce the infection burden. However, little is known about the presence of resistance against these products. Ninety-seven APEC strains were isolated from Belgian laying hens. The resistance to different classes of antibiotics was determined as well as the minimum inhibitory concentrations (MIC; agar and broth dilution) and minimum bactericidal concentrations (MBC) of five disinfectants most often used in the poultry industry (formaldehyde, glutaraldehyde, glyoxal, hydrogen peroxide, and a quaternary ammonium compound). The presence of integrons was determined by PCR Resistance to ampicillin (35.1%), nalidixic acid (38.1%), sulfonamides (SULFA, 41.2%), and tetracycline (TET, 53.6%) was high but resistance to other tested antibiotics was low. Nevertheless, two extended spectrum beta-lactamase producers were found. The MIC of the disinfectants for the APEC strains showed a Gaussian distribution, indicating that there was no acquired resistance. MBCs were similar to MICs via the broth dilution method, showing the bactericidal effect of the disinfectants. Twenty-one strains (21.6%) were found positive for class 1 integrons and a positive association between integron presence and resistance to trimethoprim, SULFA, and TET was found. No association could be found between integron presence and phylogenetic group affiliation. Susceptibility of APEC strains from laying hens to antibiotics is, in general, very high. Phenotypic resistance to commonly used disinfectants could not be found, indicating that the current use of disinfectants in the laying hen industry did not select for resistance.

  11. Two Functional Type VI Secretion Systems in Avian Pathogenic Escherichia coli Are Involved in Different Pathogenic Pathways

    PubMed Central

    Ma, Jiale; Bao, Yinli; Sun, Min; Dong, Wenyang; Pan, Zihao; Zhang, Wei; Lu, Chengping

    2014-01-01

    Type VI secretion systems (T6SSs) are involved in the pathogenicity of several Gram-negative bacteria. The VgrG protein, a core component and effector of T6SS, has been demonstrated to perform diverse functions. The N-terminal domain of VgrG protein is a homologue of tail fiber protein gp27 of phage T4, which performs a receptor binding function and determines the host specificity. Based on sequence analysis, we found that two putative T6SS loci exist in the genome of the avian pathogenic Escherichia coli (APEC) strain TW-XM. To assess the contribution of these two T6SSs to TW-XM pathogenesis, the crucial clpV clusters of these two T6SS loci and their vgrG genes were deleted to generate a series of mutants. Consequently, T6SS1-associated mutants presented diminished adherence to and invasion of several host cell lines cultured in vitro, decreased pathogenicity in duck and mouse infection models in vivo, and decreased biofilm formation and bacterial competitive advantage. In contrast, T6SS2-associated mutants presented a significant decrease only in the adherence to and invasion of mouse brain microvascular endothelial cell (BMEC) line bEnd.3 and brain tissue of the duck infection model. These results suggested that T6SS1 was involved in the proliferation of APEC in systemic infection, whereas VgrG-T6SS2 was responsible only for cerebral infection. Further study demonstrated that VgrG-T6SS2 was able to bind to the surface of bEnd.3 cells, whereas it did not bind to DF-1 (chicken embryo fibroblast) cells, which further proved the interaction of VgrG-T6SS2 with the surface of BMECs. PMID:24980972

  12. Characterization and Functional Analysis of AatB, a Novel Autotransporter Adhesin and Virulence Factor of Avian Pathogenic Escherichia coli

    PubMed Central

    ZhuGe, Xiangkai; Wang, Shaohui; Fan, Hongjie; Pan, Zihao; Ren, Jianluan; Yi, Li; Meng, Qingmei; Yang, Xuqiu; Lu, Chengping

    2013-01-01

    Autotransporter (AT) proteins constitute a large family of extracellular proteins that contribute to bacterial virulence. A novel AT adhesin gene, aatB, was identified in avian pathogenic Escherichia coli (APEC) DE205B via genomic analyses. The open reading frame of aatB was 1,017 bp, encoding a putative 36.3-kDa protein which contained structural motifs characteristic for AT proteins: a signal peptide, a passenger domain, and a translocator domain. The predicted three-dimensional structure of AatB consisted of two distinct domains, the C-terminal β-barrel translocator domain and an N-terminal passenger domain. The prevalence analyses of aatB in APEC indicated that aatB was detected in 26.4% (72/273) of APEC strains and was strongly associated with phylogenetic groups D and B2. Quantitative real-time reverse transcription-PCR analyses revealed that AatB expression was increased during infection in vitro and in vivo. Moreover, AatB could elicit antibodies in infected ducks, suggesting that AatB is involved in APEC pathogenicity. Thus, APEC DE205B strains with a mutated aatB gene and mutated strains complemented with the aatB gene were constructed. Inactivation of aatB resulted in a reduced capacity to adhere to DF-1 cells, defective virulence capacity in vivo, and decreased colonization capacity in lung during systemic infection compared with the capacities of the wild-type strain. Furthermore, these capacities were restored in the complementation strains. These results indicated that AatB makes a significant contribution to APEC virulence through bacterial adherence to host tissues in vivo and in vitro. In addition, biofilm formation assays with strain AAEC189 expressing AatB indicated that AatB mediates biofilm formation. PMID:23630958

  13. Presence of pathogenicity islands and virulence genes of extraintestinal pathogenic Escherichia coli (ExPEC) in isolates from avian organic fertilizer.

    PubMed

    Gazal, Luís Eduardo S; Puño-Sarmiento, Juan J; Medeiros, Leonardo P; Cyoia, Paula S; da Silveira, Wanderlei D; Kobayashi, Renata K T; Nakazato, Gerson

    2015-12-01

    Poultry litter is commonly used as fertilizer in agriculture. However, this poultry litter must be processed prior to use, since poultry have a large number of pathogenic microorganisms. The aims of this study were to isolate and genotypically and phenotypically characterize Escherichia coli from avian organic fertilizer. Sixty-four E. coli isolates were identified from avian organic fertilizer and characterized for ExPEC virulence factors, pathogenicity islands, phylogenetic groups, antimicrobial resistance, biofilm formation, and adhesion to HEp-2 cells. Sixty-three isolates (98.4%) showed at least one virulence gene (fimH, ecpA, sitA, traT, iutA, iroN, hlyF, ompT and iss). The predominant phylogenetic groups were groups A (59.3%) and B1 (34.3%). The pathogenicity island CFT073II (51.5%) was the most prevalent among the isolates tested. Thirty-two isolates (50%) were resistant to at least one antimicrobial agent. Approximately 90% of isolates adhered to HEp-2 cells, and the predominant pattern was aggregative adherence (74.1%). In the biofilm assay, it was observed that 75% of isolates did not produce biofilm. These results lead us to conclude that some E. coli isolates from avian organic fertilizer could be pathogenic for humans.

  14. Diversity of Multi-Drug Resistant Avian Pathogenic Escherichia coli (APEC) Causing Outbreaks of Colibacillosis in Broilers during 2012 in Spain.

    PubMed

    Solà-Ginés, Marc; Cameron-Veas, Karla; Badiola, Ignacio; Dolz, Roser; Majó, Natalia; Dahbi, Ghizlane; Viso, Susana; Mora, Azucena; Blanco, Jorge; Piedra-Carrasco, Nuria; González-López, Juan José; Migura-Garcia, Lourdes

    2015-01-01

    Avian pathogenic Escherichia coli (APEC) are the major cause of colibacillosis in poultry production. In this study, a total of 22 E. coli isolated from colibacillosis field cases and 10 avian faecal E. coli (AFEC) were analysed. All strains were characterised phenotypically by susceptibility testing and molecular typing methods such as pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). The presence of 29 virulence genes associated to APEC and human extraintestinal pathogenic E. coli (ExPEC) was also evaluated. For cephalosporin resistant isolates, cephalosporin resistance genes, plasmid location and replicon typing was assessed. Avian isolates belonged to 26 O:H serotypes and 24 sequence types. Out of 22 APEC isolates, 91% contained the virulence genes predictors of APEC; iutA, hlyF, iss, iroN and ompT. Of all strains, 34% were considered ExPEC. PFGE analysis demonstrated a high degree of genetic polymorphism. All strains were multi-resistant, including those isolated from healthy animals. Eleven strains were resistant to cephalosporins; six contained blaCTX-M-14, two blaSHV-12, two blaCMY-2 and one blaSHV-2. Two strains harboured qnrA, and two qnrA together with aac(6')-Ib-cr. Additionally, the emergent clone O25b:H4-B2-ST131 was isolated from a healthy animal which harboured blaCMY-2 and qnrS genes. Cephalosporin resistant genes were mainly associated to the presence of IncK replicons. This study demonstrates a very diverse population of multi-drug resistant E. coli containing a high number of virulent genes. The E. coli population among broilers is a reservoir of resistance and virulence-associated genes that could be transmitted into the community through the food chain. More epidemiological studies are necessary to identify clonal groups and resistance mechanisms with potential relevance to public health.

  15. Diversity of Multi-Drug Resistant Avian Pathogenic Escherichia coli (APEC) Causing Outbreaks of Colibacillosis in Broilers during 2012 in Spain

    PubMed Central

    Solà-Ginés, Marc; Cameron-Veas, Karla; Badiola, Ignacio; Dolz, Roser; Majó, Natalia; Dahbi, Ghizlane; Viso, Susana; Mora, Azucena; Blanco, Jorge; Piedra-Carrasco, Nuria; González-López, Juan José; Migura-Garcia, Lourdes

    2015-01-01

    Avian pathogenic Escherichia coli (APEC) are the major cause of colibacillosis in poultry production. In this study, a total of 22 E. coli isolated from colibacillosis field cases and 10 avian faecal E. coli (AFEC) were analysed. All strains were characterised phenotypically by susceptibility testing and molecular typing methods such as pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). The presence of 29 virulence genes associated to APEC and human extraintestinal pathogenic E. coli (ExPEC) was also evaluated. For cephalosporin resistant isolates, cephalosporin resistance genes, plasmid location and replicon typing was assessed. Avian isolates belonged to 26 O:H serotypes and 24 sequence types. Out of 22 APEC isolates, 91% contained the virulence genes predictors of APEC; iutA, hlyF, iss, iroN and ompT. Of all strains, 34% were considered ExPEC. PFGE analysis demonstrated a high degree of genetic polymorphism. All strains were multi-resistant, including those isolated from healthy animals. Eleven strains were resistant to cephalosporins; six contained blaCTX-M-14, two blaSHV-12, two blaCMY-2 and one blaSHV-2. Two strains harboured qnrA, and two qnrA together with aac(6’)-Ib-cr. Additionally, the emergent clone O25b:H4-B2-ST131 was isolated from a healthy animal which harboured blaCMY-2 and qnrS genes. Cephalosporin resistant genes were mainly associated to the presence of IncK replicons. This study demonstrates a very diverse population of multi-drug resistant E. coli containing a high number of virulent genes. The E. coli population among broilers is a reservoir of resistance and virulence-associated genes that could be transmitted into the community through the food chain. More epidemiological studies are necessary to identify clonal groups and resistance mechanisms with potential relevance to public health. PMID:26600205

  16. A Novel Pathogenicity Island Integrated Adjacent to the thrW tRNA Gene of Avian Pathogenic Escherichia coli Encodes a Vacuolating Autotransporter Toxin

    PubMed Central

    Parreira, V. R.; Gyles, C. L.

    2003-01-01

    We report the complete nucleotide sequence and genetic organization of the Vat-encoding pathogenicity island (PAI) of avian pathogenic Escherichia coli strain Ec222. The 22,139-bp PAI is situated adjacent to the 3′ terminus of the thrW tRNA gene, has a G+C content of 41.2%, and includes a bacteriophage SfII integrase gene, mobile genetic elements, two open reading frames with products exhibiting sequence similarity to known proteins, and several other open reading frames of unknown function. The PAI encodes an autotransporter protein, Vat (vacuolating autotransporter toxin), which induces the formation of intracellular vacuoles resulting in cytotoxic effects similar to those caused by the VacA toxin from Helicobacter pylori. The predicted 148.3-kDa protein product possesses the three domains that are typical of serine protease autotransporters of Enterobacteriaceae: an N-terminal signal sequence of 55 amino acids, a 111.8-kDa passenger domain containing a modified serine protease site (ATSGSG), and a C-terminal outer membrane translocator of 30.5 kDa. Vat has 75% protein homology with the hemagglutinin Tsh, an autotransporter of avian pathogenic E. coli. A vat deletion mutant of Ec222 showed no virulence in respiratory and cellulitis infection models of disease in broiler chickens. We conclude that the newly described PAI and Vat may be involved in the pathogenicity of avian septicemic E. coli strain Ec222 and other avian pathogenic E. coli strains. PMID:12933851

  17. Evaluation of the prevalence and production of Escherichia coli common pilus among avian pathogenic E. coli and its role in virulence.

    PubMed

    Stacy, Alyssa K; Mitchell, Natalie M; Maddux, Jacob T; De la Cruz, Miguel A; Durán, Laura; Girón, Jorge A; Curtiss, Roy; Mellata, Melha

    2014-01-01

    Avian pathogenic Escherichia coli (APEC) strains cause systemic and localized infections in poultry, jointly termed colibacillosis. Avian colibacillosis is responsible for significant economic losses to the poultry industry due to disease treatment, decrease in growth rate and egg production, and mortality. APEC are also considered a potential zoonotic risk for humans. Fully elucidating the virulence and zoonotic potential of APEC is key for designing successful strategies against their infections and their transmission. Herein, we investigated the prevalence of a newly discovered E. coli common pilus (ECP) for the subunit protein of the ECP pilus (ecpA) and ECP expression amongst APEC strains as well as the role of ECP in virulence. A PCR-based ecpA survey of a collection of 167 APEC strains has shown that 76% (127/167) were ecpA+. An immunofluorescence assay using anti-EcpA antibodies, revealed that among the ecpA+ strains, 37.8% (48/127) expressed ECP when grown in DMEM +0.5% Mannose in contact with HeLa cells at 37°C and/or in biofilm at 28°C; 35.4% (17/48) expressed ECP in both conditions and 64.6% (31/48) expressed ECP in biofilm only. We determined that the ecp operon in the APEC strain χ7122 (ecpA+, ECP-) was not truncated; the failure to detect ECP in some strains possessing non-truncated ecp genes might be attributed to differential regulatory mechanisms between strains that respond to specific environmental signals. To evaluate the role of ECP in the virulence of APEC, we generated ecpA and/or ecpD-deficient mutants from the strain χ7503 (ecpA+, ECP+). Deletion of ecpA and/or ecpD abolished ECP synthesis and expression, and reduced biofilm formation and motility in vitro and virulence in vivo. All together our data show that ecpA is highly prevalent among APEC isolates and its expression could be differentially regulated in these strains, and that ECP plays a role in the virulence of APEC.

  18. Waterfowl abundance does not predict the dominant avian source of beach Escherichia coli.

    PubMed

    Hansen, Dennis L; Ishii, Satoshi; Sadowsky, Michael J; Hicks, Randall E

    2011-01-01

    The horizontal, fluorophore enhanced, rep-PCR (HFERP) DNA fingerprinting technique was used to identify potential sources of in water, nearshore sand, and sediment at two beaches in the Duluth-Superior Harbor, near Duluth, MN, and Superior, WI, during May, July, and September 2006. An animal or environmental source could be identified for 35, 29, and 30% of strains in water, sand, and sediments, respectively. Waterfowl, including Canada geese, ring-billed gulls, and mallard ducks, were the largest source of that could be identified in water (55-100%), sand (59-100%), and sediment (92-100%) at both beaches. Although ring-billed gulls were more abundant in this harbor, Canada geese were usually the dominant source of waterfowl found at these beaches. The percentage of identified from treated wastewater was always less than the percentage of originating from waterfowl. At both beaches, the percentage of in water contributed by treated wastewater was higher in May compared with July and September. The larger proportion of wastewater-derived seen in May probably reflected a smaller contribution of from geese when these birds were less abundant rather than an absolute increase in from treated wastewater. Microbial source analysis and bird census data both indicated that waterfowl were a major source of at beaches in the Duluth-Superior Harbor. These data also indicated it is risky to assume that the most abundant waterfowl species present in waterways will also be the largest source of avian-derived in water, nearshore sand, and sediments at beaches.

  19. Deletion of luxS further attenuates the virulence of the avian pathogenic Escherichia coli aroA mutant.

    PubMed

    Han, Xiangan; Bai, Hao; Tu, Jian; Yang, Lijun; Xu, Da; Wang, Shaohui; Qi, Kezong; Fan, Guobo; Zhang, Yuxi; Zuo, Jiakun; Tian, Mingxing; Ding, Chan; Yu, Shengqing

    2015-11-01

    In this study, an aroA-deletion avian pathogenic Escherichia coli (APEC) mutant (strain DE17ΔaroA) and aroA and luxS double deletion APEC mutant (strain DE17ΔluxSΔaroA) were constructed from the APEC DE17 strain. The results showed that as compared to DE17ΔaroA, the virulence of DE17ΔluxSΔaroA was further attenuated by 200- and 31.7-fold, respectively, in ducklings based on the 50% lethal dose. The adherence and invasion abilities of DE17ΔluxSΔaroA and DE17ΔaroA were reduced by 36.5%/42.5% and 25.8%/29.3%, respectively, as compared to the wild-type strain DE17 (p < 0.05 and 0.01, respectively). Furthermore, in vivo studies showed that the bacterial loads of DE17ΔluxSΔaroA were reduced by 8400- and 11,333-fold in the spleen and blood of infected birds, respectively, while those of DE17ΔaroA were reduced by 743- and 1000-fold, respectively, as compared to the wild-type strain DE17. Histopathological analysis showed both that the mutants were associated with reduced pathological changes in the liver, spleen, and kidney of ducklings, and changes in DE17ΔluxSΔaroA-infected ducklings were reduced to a greater degree than those infected with DE17ΔaroA. Real-time polymerase chain reaction analysis further demonstrated that the mRNA levels of virulence-related genes (i.e., tsh, ompA, vat, iucD, pfs, fyuA, and fimC) were significantly decreased in DE17ΔaroA, especially in DE17ΔluxSΔaroA, as compared to DE17 (p < 0.05). In addition, the deletion of aroA or the double deletion of aroA and luxS reduced bacterial motility. To evaluate the potential use of DE17ΔluxSΔaroA as a vaccine candidate, 50 7-day-old ducklings were divided randomly into five groups of ten each for the experiment. The results showed that the ducklings immunized with inactivated DE17, DE17ΔluxS, DE17ΔaroA, and DE17ΔluxSΔaroA were 70.0%, 70.0%, 70.0, and 80.0% protected, respectively, after challenge with strain APEC DE17. The results of this study suggest that the double deletion of

  20. Escherichia coli ghosts or live E. coli expressing the ferri-siderophore receptors FepA, FhuE, IroN and IutA do not protect broiler chickens against avian pathogenic E. coli (APEC).

    PubMed

    Tuntufye, Huruma Nelwike; Ons, Ellen; Pham, Anh Dao Nguyen; Luyten, Tom; Van Gerven, Nani; Bleyen, Nele; Goddeeris, Bruno Maria

    2012-10-12

    The aim of this study was to investigate if immunization with the ferri-siderophore receptors FepA, FhuE, IroN and IutA could protect chickens against avian pathogenic Escherichia coli (APEC) infection. The antigens were administered as recombinant proteins in the outer membrane (OM) of E. coli strain BL21 Star DE3. In a first immunization experiment, live E. coli expressing all 4 recombinant ferri-siderophore receptors (BL21(L)) were given intranasally. In a second immunization experiment, a mixture of E. coli ghosts containing recombinant FepA and IutA and ghosts containing recombinant FhuE and IroN was evaluated. For both experiments non-recombinant counterparts of the tentative vaccines were administered as placebo. At the time of challenge, the IgG antibody response for BL21(L) and a mixture of E. coli ghosts containing recombinant FepA and IutA and ghosts containing recombinant FhuE and IroN was significantly higher in all immunized groups as compared to the negative control groups (LB or PBS) confirming successful immunization. Although neither of the tentative vaccines could prevent lesions and mortality upon APEC infection, immunization with bacterial ghosts resulted in a decrease in mortality from 50% (PBS) to 31% (non-recombinant ghosts) or 20% (recombinant ghosts) and these differences were not found to be significant. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Occurrence of plasmid-mediated quinolone resistance and virulence genes in avian Escherichia coli isolates from Algeria.

    PubMed

    Laarem, Meradi; Barguigua, Abouddihaj; Nayme, Kaotar; Akila, Abdi; Zerouali, Khalid; El Mdaghri, Naima; Timinouni, Mohammed

    2017-02-28

    The emergence and spread of quinolone-resistant Escherichia coli in poultry products puts consumers at risk of exposure to the strains of E. coli that resist antibiotic treatment. The objective of this study was to define the prevalence and virulence potential of poultry-associated nalidixic acid (NAL)-resistant E. coli in the Annaba city, Algeria. In total, 33 samples of retail chicken meat were purchased from various butcher shops and examined for bacterial contamination with NAL-resistant E. coli. These isolates were subjected to antimicrobial susceptibility testing and were also investigated for the presence of plasmid-mediated quinolone resistance (PMQR) genes and virulence genes using conventional polymerase chain reaction (PCR) and DNA sequencing. Phylogenetic grouping of the NAL-resistant E. coli isolates was determined by the conventional multiplex PCR method. Twenty-nine (87.8%) products yielded NAL-resistant E. coli. Antibiograms revealed that 96.55% of NAL-resistant E. coli isolates were multidrug resistant (MDR). Resistance was most frequently observed against sulfamethoxazole-trimethoprim (96.6%), tetracycline (96.6%), ciprofloxacin (72%), and amoxicillin (65.5%). Group A was the most prevalent phylogenetic group, followed by groups D, B1, and B2. The PMQR determinants were detected in three isolates with qnrB72 and qnrS1 type identified. Four (13.8%) isolates carried one of the Shiga toxin E. coli-associated genes stx1, stx2, and ehxA alleles. The high prevalence of NAL-resistant E. coli isolated from retail chicken meat with detection of MDR E. coli harboring Shiga toxin genes in this study gives a warning signal for possible occurrence of foodborne infections with failure in antibiotic treatment.

  2. Complement resistance, as determined by viable count and flow cytometric methods, and its association with the presence of iss and the virulence of avian Escherichia coli.

    PubMed

    Nolan, Lisa K; Giddings, Catherine W; Horne, Shelley M; Doetkott, Curt; Gibbs, Penelope S; Wooley, Richard E; Foley, Steven L

    2002-01-01

    Previous work in our labs has shown that avian Escherichia coli virulence is correlated with resistance to complement. Also, our studies have revealed that the presence of the increased serum survival gene (iss), known to contribute to the complement resistance and virulence of mammalian E. coli, may predict the virulent nature of an avian E. coli isolate. This relationship warrants further research, but further clarification of the relationship among virulence, complement resistance, and iss sequences requires use of complement susceptibility assays. Such assays, unfortunately, are labor-intensive, expensive, and difficult to perform. In the present study, the results of two complement susceptibility assays for 20 E. coli isolates, 10 incriminated in avian colibacillosis and 10 from the intestinal tracts of apparently healthy birds, were compared in an attempt to determine if flow cytometric analysis was a reasonable alternative to a viable count assay. In addition, the virulence of these isolates for chick embryos was determined, and each isolate was examined for the presence of iss using amplification techniques. The flow cytometric method was found to be repeatable for most isolates, and its results showed moderate agreement with those obtained through viable counts. All intestinal isolates of healthy birds proved avirulent using the embryo lethality assay; however, not all isolates from sick birds were demonstrated to be virulent. Possible explanations of these results include that the methods originally used to isolate these organisms failed to detect the illness-inciting strains or that the virulence of these strains had declined following initial isolation. Additionally, we must consider the possibility that the embryo lethality assay of virulence used here might not be sensitive enough to detect differences between these two groups of isolates. Also, it should be noted that virulence assays, such as the one used here, fail to account for predisposing host

  3. Genome Sequence of Avian Escherichia coli Strain IHIT25637, an Extraintestinal Pathogenic E. coli Strain of ST131 Encoding Colistin Resistance Determinant MCR-1

    PubMed Central

    Göttig, Stephan; Bülte, Maria; Fiedler, Sophie; Tietgen, Manuela; Leidner, Ursula; Heydel, Carsten; Bauerfeind, Rolf; Semmler, Torsten

    2016-01-01

    Sequence type 131 (ST131) is one of the predominant Escherichia coli lineages among extraintestinal pathogenic E. coli (ExPEC) that causes a variety of diseases in humans and animals and frequently shows multidrug resistance. Here, we report the first genome sequence of an ST131-ExPEC strain from poultry carrying the plasmid-encoded colistin resistance gene mcr-1. PMID:27587807

  4. Inhibitory effects of α-cyperone on adherence and invasion of avian pathogenic Escherichia coli O78 to chicken type II pneumocytes.

    PubMed

    Zhang, Li-Yan; Lv, Shuang; Wu, Shuai-Cheng; Guo, Xun; Xia, Fang; Hu, Xi-Rou; Song, Zhou; Zhang, Cui; Qin, Qian-Qian; Fu, Ben-Dong; Yi, Peng-Fei; Shen, Hai-Qing; Wei, Xu-Bin

    2014-05-15

    Avian pathogenic Escherichia coli (APEC) are extra-intestinal pathogenic E. coli, and usually cause avian septicemia through breaching the blood-gas barrier. Type II pneumocytes play an important role of maintaining the function of the blood-gas barrier. However, the mechanism of APEC injuring type II pneumocytes remains unclear. α-cyperone can inhibit lung cell injury induced by Staphylococcus aureus. In order to explore whether α-cyperone regulates the adherence and invasion of APEC-O78 to chicken type II pneumocytes, we successfully cultured chicken type II pneumocytes. The results showed that α-cyperone significantly decreased the adherence of APEC-O78 to chicken type II pneumocytes. In addition, α-cyperone inhibited actin cytoskeleton polymerization induced by APEC-O78 through down regulating the expression of Nck-2, Cdc42 and Rac1. These results provide new evidence for the prevention of colibacillosis in chicken. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Overlapped sequence types (STs) and serogroups of avian pathogenic (APEC) and human extra-intestinal pathogenic (ExPEC) Escherichia coli isolated in Brazil.

    PubMed

    Maluta, Renato Pariz; Logue, Catherine Mary; Casas, Monique Ribeiro Tiba; Meng, Ting; Guastalli, Elisabete Aparecida Lopes; Rojas, Thaís Cabrera Galvão; Montelli, Augusto Cezar; Sadatsune, Teruê; de Carvalho Ramos, Marcelo; Nolan, Lisa Kay; da Silveira, Wanderley Dias

    2014-01-01

    Avian pathogenic Escherichia coli (APEC) strains belong to a category that is associated with colibacillosis, a serious illness in the poultry industry worldwide. Additionally, some APEC groups have recently been described as potential zoonotic agents. In this work, we compared APEC strains with extraintestinal pathogenic E. coli (ExPEC) strains isolated from clinical cases of humans with extra-intestinal diseases such as urinary tract infections (UTI) and bacteremia. PCR results showed that genes usually found in the ColV plasmid (tsh, iucA, iss, and hlyF) were associated with APEC strains while fyuA, irp-2, fepC sitDchrom, fimH, crl, csgA, afa, iha, sat, hlyA, hra, cnf1, kpsMTII, clpVSakai and malX were associated with human ExPEC. Both categories shared nine serogroups (O2, O6, O7, O8, O11, O19, O25, O73 and O153) and seven sequence types (ST10, ST88, ST93, ST117, ST131, ST155, ST359, ST648 and ST1011). Interestingly, ST95, which is associated with the zoonotic potential of APEC and is spread in avian E. coli of North America and Europe, was not detected among 76 APEC strains. When the strains were clustered based on the presence of virulence genes, most ExPEC strains (71.7%) were contained in one cluster while most APEC strains (63.2%) segregated to another. In general, the strains showed distinct genetic and fingerprint patterns, but avian and human strains of ST359, or ST23 clonal complex (CC), presented more than 70% of similarity by PFGE. The results demonstrate that some "zoonotic-related" STs (ST117, ST131, ST10CC, ST23CC) are present in Brazil. Also, the presence of moderate fingerprint similarities between ST359 E. coli of avian and human origin indicates that strains of this ST are candidates for having zoonotic potential.

  6. A carAB mutant of avian pathogenic Escherichia coli serogroup O2 is attenuated and effective as a live oral vaccine against colibacillosis in turkeys.

    PubMed Central

    Kwaga, J K; Allan, B J; van der Hurk, J V; Seida, H; Potter, A A

    1994-01-01

    Colibacillosis is a serious and economically important disease of the respiratory tract of chickens and turkeys. The serogroups of Escherichia coli commonly associated with colibacillosis in poultry are O1, O2, and O78. Although previous attempts to develop a vaccine have not been very successful, vaccination is still considered the most effective way of controlling the disease. Therefore, our laboratory has been involved in the development of an attenuated live vaccine that will be effective in the prevention of colibacillosis. The carAB operon coding for carbamoyl-phosphate synthetase, an essential enzyme in arginine and pyrimidine metabolism, was selected for study. Generalized transduction was used to transfer a Tn10-generated mutation from a laboratory strain to virulent avian field isolates of E. coli. Molecular techniques were used to determine the point of Tn10 insertion within the carAB operon. The insertion mutants were then cured of the tetracycline resistance gene of the transposon to select for antibiotic-sensitive and stable carAB mutants. The degree of attenuation obtained by the mutation was determined in day-old chickens. Typically, when 100-fold the 50% lethal dose (for the wild type) was given, no more than 50% mortality in the day-old chickens was observed. The deletion mutant of serotype O2 was also found to be avirulent in turkeys rendered susceptible to infection with hemorrhagic enteritis virus A. Turkey poults vaccinated orally at 4 weeks old with either the wild-type E. coli EC317 strain or its carAB mutant EC751 were completely protected from infection following challenge with the homologous wild-type strain. Our data indicate that carAB mutants of virulent avian strains of E. coli will be effective and safe as live oral vaccines for prevention of colibacillosis in poultry. Images PMID:8063392

  7. DNA microarray-mediated transcriptional profiling of avian pathogenic Escherichia coli O2 strain E058 during its infection of chicken.

    PubMed

    Gao, Qingqing; Xia, Le; Liu, Juanhua; Wang, Xiaobo; Gao, Song; Liu, Xiufan

    2016-11-01

    Avian pathogenic Escherichia coli (APEC) cause typical extraintestinal infections in poultry, including acute fatal septicemia, subacute pericarditis, and airsacculitis. These bacteria most often infect chickens, turkeys, ducks, and other avian species, and therefore pose a significant economic burden on the poultry industry worldwide. Few studies have analyzed the genome-wide transcriptional profile of APEC during infection in vivo. In this study, we examined the genome-wide transcriptional response of APEC O2 strain E058 in an in vivo chicken infection model to better understand the factors necessary for APEC colonization, growth, and survival in vivo. An Affymetrix multigenome DNA microarray, which contains most of the genomic open reading frames of E. coli K-12 strain MG1655, uropathogenic E. coli strain CFT073, and E. coli O157:H7 strain EDL 933, was used to profile the gene expression in APEC E058. We identified the in vivo transcriptional response of APEC E058 bacteria collected directly from the blood of infected chickens. Significant differences in expression levels were detected between the in vivo expression profile and the in vitro expression profile in LB medium. The genes highly expressed during infection were involved in metabolism, iron acquisition or transport, virulence, response to stress, and biological regulation. The reliability of the microarray data was confirmed by performing quantitative real-time PCR on 12 representative genes. Moreover, several significantly upregulated genes, including yjiY, sodA, phoB and spy, were selected to study their role in APEC pathogenesis. The data will help to better understand the mechanisms of APEC pathogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Diarrheagenic Escherichia coli

    PubMed Central

    Nataro, James P.; Kaper, James B.

    1998-01-01

    Escherichia coli is the predominant nonpathogenic facultative flora of the human intestine. Some E. coli strains, however, have developed the ability to cause disease of the gastrointestinal, urinary, or central nervous system in even the most robust human hosts. Diarrheagenic strains of E. coli can be divided into at least six different categories with corresponding distinct pathogenic schemes. Taken together, these organisms probably represent the most common cause of pediatric diarrhea worldwide. Several distinct clinical syndromes accompany infection with diarrheagenic E. coli categories, including traveler’s diarrhea (enterotoxigenic E. coli), hemorrhagic colitis and hemolytic-uremic syndrome (enterohemorrhagic E. coli), persistent diarrhea (enteroaggregative E. coli), and watery diarrhea of infants (enteropathogenic E. coli). This review discusses the current level of understanding of the pathogenesis of the diarrheagenic E. coli strains and describes how their pathogenic schemes underlie the clinical manifestations, diagnostic approach, and epidemiologic investigation of these important pathogens. PMID:9457432

  9. Pathogenic Escherichia coli

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli, a member of the Enterobacteriaceae family, is a part of the normal flora of the intestinal tract of humans and a variety of animals. E. coli strains are classified on the basis of antigenic differences in two surface components (serotyping), the somatic antigen (O) of the lipopoly...

  10. PATHOGENIC ESCHERICHIA COLI

    EPA Science Inventory

    Escherichia coli is a bacterial species which inhabits the gastrointestinal tract of man and warm-blooded animals. Because of the ubiquity of this bacterium in the intestinal flora, it serves as an important indicator organism of fecal contamination. E. coli, aside from serving a...

  11. DotU expression is highly induced during in vivo infection and responsible for virulence and Hcp1 secretion in avian pathogenic Escherichia coli

    PubMed Central

    Wang, Shaohui; Dai, Jianjun; Meng, Qingmei; Han, Xiangan; Han, Yue; Zhao, Yichao; Yang, Denghui; Ding, Chan; Yu, Shengqing

    2014-01-01

    Type VI secretion systems (T6SSs) contribute to pathogenicity in many pathogenic bacteria. Three distinguishable T6SS loci have been discovered in avian pathogenic Escherichia coli (APEC). The sequence of APEC T6SS2 locus is highly similar to the sequence of the newborn meningitis Escherichia coli (NMEC) RS218 T6SS locus, which might contribute to meningitis pathogenesis. However, little is known about the function of APEC T6SS2. We showed that the APEC T6SS2 component organelle trafficking protein (DotU) could elicit antibodies in infected ducks, suggesting that DotU might be involved in APEC pathogenicity. To investigate DotU in APEC pathogenesis, mutant and complemented strains were constructed and characterized. Inactivation of the APEC dotU gene attenuated virulence in ducks, diminished resistance to normal duck serum, and reduced survival in macrophage cells and ducks. Furthermore, deletion of the dotU gene abolished hemolysin-coregulated protein (Hcp) 1 secretion, leading to decreased interleukin (IL)-6 and IL-8 gene expression in HD-11 chicken macrophages. These functions were restored for the complementation strain. Our results demonstrated that DotU plays key roles in the APEC pathogenesis, Hcp1 secretion, and intracellular host response modulation. PMID:25426107

  12. Suppression subtractive hybridization identifies an autotransporter adhesin gene of E. coli IMT5155 specifically associated with avian pathogenic Escherichia coli (APEC).

    PubMed

    Dai, Jianjun; Wang, Shaohui; Guerlebeck, Doreen; Laturnus, Claudia; Guenther, Sebastian; Shi, Zhenyu; Lu, Chengping; Ewers, Christa

    2010-09-09

    Extraintestinal pathogenic E. coli (ExPEC) represent a phylogenetically diverse group of bacteria which are implicated in a large range of infections in humans and animals. Although subgroups of different ExPEC pathotypes, including uropathogenic, newborn meningitis causing, and avian pathogenic E. coli (APEC) share a number of virulence features, there still might be factors specifically contributing to the pathogenesis of a certain subset of strains or a distinct pathotype. Thus, we made use of suppression subtractive hybridization and compared APEC strain IMT5155 (O2:K1:H5; sequence type complex 95) with human uropathogenic E. coli strain CFT073 (O6:K2:H5; sequence type complex 73) to identify factors which may complete the currently existing model of APEC pathogenicity and further elucidate the position of this avian pathotype within the whole ExPEC group. Twenty-eight different genomic loci were identified, which are present in IMT5155 but not in CFT073. One of these loci contained a gene encoding a putative autotransporter adhesin. The open reading frame of the gene spans a 3,498 bp region leading to a putative 124-kDa adhesive protein. A specific antibody was raised against this protein and expression of the adhesin was shown under laboratory conditions. Adherence and adherence inhibition assays demonstrated a role for the corresponding protein in adhesion to DF-1 chicken fibroblasts. Sequence analyses revealed that the flanking regions of the chromosomally located gene contained sequences of mobile genetic elements, indicating a probable spread among different strains by horizontal gene transfer. In accordance with this hypothesis, the adhesin was found to be present not only in different phylogenetic groups of extraintestinal pathogenic but also of commensal E. coli strains, yielding a significant association with strains of avian origin. We identified a chromosomally located autotransporter gene in a highly virulent APEC strain which confers increased

  13. Detection of phenotypes, virulence genes and phylotypes of avian pathogenic and human diarrheagenic Escherichia coli in Egypt.

    PubMed

    Ramadan, Hazem; Awad, Amal; Ateya, Ahmed

    2016-06-30

    The purpose from this study was to determine phenotypes, intestinal virulence-associated genes, and phylotypic profiling of human diarrheagenic E. coli (DEC) and avian pathogenic E. coli (APEC). A total of 108 chicken visceral organs (liver, spleen, heart) from 36 diseased birds (three organs per each bird) and 78 human stool samples (50 diarrheic patients and 28 healthy persons) were randomly collected during the first half of 2015 in the district of Mansoura city, Egypt. Conventional culturing, serotyping, and molecular characterization of virulence genes and phylogroups were performed. Sixty-five (35%) biochemically identified E. coli isolates were detected from chicken visceral (29/108; 26.9%) and human stool samples (36/78; 46.2%). Serotypes O78, O2, and O1 were the most prevalent serotypes (62%) distinguished from APEC isolates, and only two similar serotypes (O119:H4 and O26:H11) were identified from both APEC and DEC isolates. By polymerase chain reaction (PCR), the respective percentages of 100 and 35 with eae and Shiga toxin genes were detected from APEC isolates while 50%, 27.8%, and 19.4% of human DEC isolates harbored eae, stx1, and stx2 genes, respectively. Phylogrouping revealed a significantly higher occurrence of pathogenic phylogroups (D and B2) in APEC (19/29; 65.5%) than in human DEC isolates (8/36; 22.2%). APEC isolates shared serotypes, virulence genes, and phylotypes with human DEC isolates, which is a subsequent potential public health concern. To the best of our knowledge, this is the first report in Egypt that determines virulence gene and phylogroup coexistence between APEC and DEC isolates.

  14. Escherichia coli biofilms

    PubMed Central

    Beloin, Christophe; Roux, Agnès; Ghigo, Jean-Marc

    2008-01-01

    Escherichia coli is a predominant species among facultative anaerobic bacteria of the gastrointestinal tract. Both its frequent community lifestyle and the availability of a wide array of genetic tools contributed to establish E. coli as a relevant model organism for the study of surface colonization. Several key factors, including different extracellular appendages, are implicated in E. coli surface colonization and their expression and activity are finely regulated, both in space and time, to ensure productive events leading to mature biofilm formation. This chapter will present known molecular mechanisms underlying biofilm development in both commensal and pathogenic E. coli. PMID:18453280

  15. Comparative analysis of the susceptibility to biocides and heavy metals of extended-spectrum β-lactamase-producing Escherichia coli isolates of human and avian origin, Germany.

    PubMed

    Deus, Daniela; Krischek, Carsten; Pfeifer, Yvonne; Sharifi, Ahmad Reza; Fiegen, Ulrike; Reich, Felix; Klein, Guenter; Kehrenberg, Corinna

    2017-02-08

    A total of 174 extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates collected from humans (n=140) and healthy broiler chickens (n = 34) was included in the study. The MIC values of alkyl diaminoethyl glycin hydrochloride, benzethonium chloride, benzalkonium chloride, chlorhexidine, acriflavine, copper sulfate, silver nitrate and zinc chloride were determined by the broth microdilution method. Significant differences in MIC distributions were found between human and avian isolates and between CTX-M-, SHV- and TEM-type ESBL E. coli for chlorhexidine, silver nitrate, zinc chloride and copper sulfate by statistical analysis. Isolates with reduced susceptibility were investigated for the presence and localization of tolerance-mediating genes by PCR analysis and Southern blotting. The genes emrE, mdfA, sugE(c), cueO, copA, zntA and zitB were commonly present in isolates with elevated MICs, while the genes qacE∆1, qacF, qacH, sugE(p), cusC and pcoA, were less prevalent. In several isolates, a plasmid localization of the genes qacE∆1, qacF, qacH and sugE(p) on large plasmids >20 kb was detected.

  16. Diarrheagenic Escherichia coli.

    PubMed

    Gomes, Tânia A T; Elias, Waldir P; Scaletsky, Isabel C A; Guth, Beatriz E C; Rodrigues, Juliana F; Piazza, Roxane M F; Ferreira, Luís C S; Martinez, Marina B

    2016-12-01

    Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  17. Occurrence of blaCTX-M-1, qnrB1 and virulence genes in avian ESBL-producing Escherichia coli isolates from Tunisia

    PubMed Central

    Kilani, Hajer; Abbassi, Mohamed Salah; Ferjani, Sana; Mansouri, Riadh; Sghaier, Senda; Ben Salem, Rakia; Jaouani, Imen; Douja, Gtari; Brahim, Sana; Hammami, Salah; Ben Chehida, Noureddine; Boubaker, Ilhem Boutiba-Ben

    2015-01-01

    Avian ESBL-producing Escherichia coli isolates have been increasingly reported worldwide. Animal to human dissemination, via food chain or direct contact, of these resistant bacteria has been reported. In Tunisia, little is known about avian ESBL- producing E. coli and further studies are needed. Seventeen ESBL-producing Escherichia coli isolates from poultry feces from two farms (Farm 1 and farm 2) in the North of Tunisia have been used in this study. Eleven of these isolates (from farm 1) have the same resistance profile to nalidixic acid, sulfonamides, streptomycin, tetracycline, and norfloxacine (intermediately resistant). Out of the six isolates recovered from farm 2, only one was co-resistant to tetracycline. All isolates, except one, harbored blaCTX-M-1 gene, and one strain co-harbored the blaTEM-1 gene. The genes tetA and tetB were carried, respectively, by 11 and 1 amongst the 12 tetracycline-resistant isolates. Sulfonamides resistance was encoded by sul1, sul2, and sul3 genes in 3, 17, and 5 isolates, respectively. The qnrB1 was detected in nine strains, one of which co-harbored qnrS1 gene. The search for the class 1 and 2 integrons by PCR showed that in farm 1, class 1 and 2 integrons were found in one and ten isolates, respectively. In farm 2, class 1 integron was found in only one isolate, class 2 was not detected. Only one gene cassette arrangement was demonstrated in the variable regions (VR) of the 10 int2-positive isolates: dfrA1- sat2-aadA1. The size of the VR of the class 1 integron was approximately 250 bp in one int1-positive isolate, whereas in the second isolate, no amplification was observed. All isolates of farm 1 belong to the phylogroup A (sub-group A0). However, different types of phylogroups in farm 2 were detected. Each of the phylogroups A1, B22, B23 was detected in one strain, while the D2 phylogroup was found in 3 isolates. The virulence genes iutA, fimH, and traT were detected in 3, 7, and 3 isolates, respectively. Two types of

  18. Use of lambda Red-mediated recombineering and Cre/lox for generation of markerless chromosomal deletions in avian pathogenic Escherichia coli.

    PubMed

    Tuntufye, Huruma N; Goddeeris, Bruno M

    2011-12-01

    Avian pathogenic Escherichia coli (APEC) are bacteria associated with extraintestinal diseases in poultry. A method to generate markerless deletions of APEC genome is described. Lambda Red recombination is used to introduce a LoxP cassette (loxP-rpsL-neo-loxP) containing the rpsL gene for streptomycin sensitivity and the neo gene for kanamycin/neomycin resistance into the APEC genome, with attendant deletion of a desired chromosomal gene. The loxP sites are incorporated into primers used to amplify the rpsL-neo marker during the construction of the LoxP cassette, making the method rapid and efficient. The cassette is specifically integrated into the fiu gene or intergenic region 2051-52, and the Cre/lox system is used to remove the marker, hence deletion of the drug-resistance genes. The results demonstrate that the Cre/lox system can successfully be used to generate markerless deletions in APEC, and rpsL counter-selection can be used to select the deletions so that one does not have to pick and test to find the desired product. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. Role of the lpxM lipid A biosynthesis pathway gene in pathogenicity of avian pathogenic Escherichia coli strain E058 in a chicken infection model.

    PubMed

    Xu, Huiqing; Ling, Jielu; Gao, Qingqing; He, Hongbo; Mu, Xiaohui; Yan, Zhen; Gao, Song; Liu, Xiufan

    2013-10-25

    Lipopolysaccharide (LPS) is a major surface component of avian pathogenic Escherichia coli (APEC), and is a possible virulence factor in avian infections caused by this organism. The contribution of the lpxM gene, which encodes a myristoyl transferase that catalyzes the final step in lipid A biosynthesis, to the pathogenicity of APEC has not previously been assessed. In this study, an isogenic lpxM mutant, E058ΔlpxM, was constructed in APEC O2 strain E058 and then characterized. Structural analysis of lipid A from the parental strain and derived mutant showed that E058ΔlpxM lacked one myristoyl (C14:0) on its lipid A molecules. No differences were observed between the mutant and wild-type in a series of tests including growth rate in different broths and ability to survive in specific-pathogen-free chicken serum. However, the mutant showed significantly reduced invasion and intracellular survival in the avian macrophage HD11 cell line (P<0.05). Nitric oxide production reduction (P<0.05) and cytokine gene expression downregulation (P<0.05 or P<0.01) also showed in HD11 treated with E058ΔlpxM-derived LPS compared with that in cells treated with E058-derived LPS at different times. Compared to the parental strain E058, E058ΔlpxM had a significant reduction in bacterial load in heart (P<0.01), liver (P<0.01), spleen (P<0.01), lung (P<0.05), and kidney (P<0.05) tissues. The histopathological lesions in visceral organs of birds challenged with the wild-type strain were more severe than in birds infected with the mutant. However, the E058ΔlpxM mutant showed a similar sensitivity pattern to the parental strain following exposure to several hydrophobic reagents. These results indicate that the lpxM gene is important for the pathogenicity and biological activity of APEC strain E058. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Recurrent Escherichia coli bacteremia.

    PubMed Central

    Maslow, J N; Mulligan, M E; Arbeit, R D

    1994-01-01

    Escherichia coli is the most common gram-negative organism associated with bacteremia. While recurrent E. coli urinary tract infections are well-described, recurrent E. coli bacteremia appears to be uncommon, with no episodes noted in multiple series of patients with gram-negative bacteremias. We report on 5 patients with recurrent bloodstream infections identified from a series of 163 patients with E. coli bacteremia. For each patient, the isolates from each episode were analyzed by pulsed-field gel electrophoresis (PFGE) and ribotyping and for the presence of E. coli virulence factors. For each of four patients, the index and recurrent episodes of bacteremia represented the same strain as defined by PFGE, and the strains were found to carry one or more virulence factors. The remaining patient, with two episodes of bloodstream infection separated by a 4-year interval, was infected with two isolates that did not carry any virulence factors and that were clonally related by ribotype analysis but differed by PFGE. All five patients had either a local host defense defect (three patients) or impaired systemic defenses (one patient) or both (one patient). Thus, recurrent E. coli bacteremia is likely to represent a multifactorial process that occurs in patients with impaired host defenses who are infected with virulent isolates. Images PMID:7910828

  1. Enterotoxigenic Escherichia coli

    PubMed Central

    Fleckenstein, James M; Munson, George M; Rasko, David A

    2013-01-01

    The enterotoxigenic Escherichia coli are a pervasive cause of serious diarrheal illness in developing countries. Presently, there is no vaccine to prevent these infections, and many features of the basic pathogenesis of these organisms remain poorly understood. Until very recently most pathogenesis studies had focused almost exclusively on a small subset of known “classical” virulence genes, namely fimbrial colonization factors and the heat-labile (LT) and heat stable (ST) enterotoxins. However, recent investigations of pathogen-host interactions reveal a surprisingly complex and intricately orchestrated engagement involving the interplay of classical and “novel” virulence genes, as well as participation of genes highly conserved in the E. coli species. These studies may inform further rational approaches to vaccine development for these important pathogens. PMID:23892244

  2. Comparison of virulence factors and expression of specific genes between uropathogenic Escherichia coli and avian pathogenic E. coli in a murine urinary tract infection model and a chicken challenge model.

    PubMed

    Zhao, Lixiang; Gao, Song; Huan, Haixia; Xu, Xiaojing; Zhu, Xiaoping; Yang, Weixia; Gao, Qingqing; Liu, Xiufan

    2009-05-01

    Avian pathogenic Escherichia coli (APEC) and uropathogenic E. coli (UPEC) establish infections in extraintestinal habitats of different hosts. As the diversity, epidemiological sources and evolutionary origins of extraintestinal pathogenic E. coli (ExPEC) are so far only partially defined, in the present study,100 APEC isolates and 202 UPEC isolates were compared by their content of virulence genes and phylogenetic groups. The two groups showed substantial overlap in terms of their serogroups, phylogenetic groups and virulence genotypes, including their possession of certain genes associated with large transmissible plasmids of APEC. In a chicken challenge model, both UPEC U17 and APEC E058 had similar LD(50), demonstrating that UPEC U17 had the potential to cause significant disease in poultry. To gain further information about the similarities between UPEC and APEC, the in vivo expression of 152 specific genes of UPEC U17 and APEC E058 in both a murine urinary tract infection (UTI) model and a chicken challenge model was compared with that of these strains grown statically to exponential phase in rich medium. It was found that in the same model (murine UTI or chicken challenge), various genes of UPEC U17 and APEC E058 showed a similar tendency of expression. Several iron-related genes were upregulated in the UTI model and/or chicken challenge model, indicating that iron acquisition is important for E. coli to survive in blood or the urinary tract. Based on these results, the potential for APEC to act as human UPEC or as a reservoir of virulence genes for UPEC should be considered. Further, this study compared the transcriptional profile of virulence genes among APEC and UPEC in vivo.

  3. Development of an allele-specific PCR assay for simultaneous sero-typing of avian pathogenic Escherichia coli predominant O1, O2, O18 and O78 strains.

    PubMed

    Wang, Shaohui; Meng, Qingmei; Dai, Jianjun; Han, Xiangan; Han, Yue; Ding, Chan; Liu, Haiwen; Yu, Shengqing

    2014-01-01

    Systemic infections by avian pathogenic Escherichia coli (APEC) are economically devastating to poultry industries worldwide. E. coli strains belonging to serotypes O1, O2, O18 and O78 are preferentially associated with avian colibacillosis. The rfb gene cluster controlling O antigen synthesis is usually various among different E. coli serotypes. In present study, the rfb gene clusters of E. coli serotypes O1, O2, O18 and O78 were characterized and compared. Based on the serotype-specific genes in rfb gene cluster, an allele-specific polymerase chain reaction (PCR) assay was developed. This PCR assay was highly specific and reliable for sero-typing of APEC O1, O2, O18 and O78 strains. The sensitivity of the assay was determined as 10 pg DNA or 10 colony forming units (CFUs) bacteria for serotypes O2 and O18 strains, and 500 pg DNA or 1,000 CFUs bacteria for serotypes O1 and O78 strains. Using this PCR system, APEC isolates and the infected tissue samples were categorized successfully. Furthermore, it was able to differentiate the serotypes for the samples with multi-agglutination in the traditional serum agglutination assay. Therefore, the allele-specific PCR is more simple, rapid and accurate assay for APEC diagnosis, epidemiologic study and vaccine development.

  4. ANIMAL ENTEROTOXIGENIC ESCHERICHIA COLI

    PubMed Central

    Dubreuil, J. Daniel; Isaacson, Richard E.; Schifferli, Dieter M.

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) is the most common cause of E. coli diarrhea in farm animals. ETEC are characterized by the ability to produce two types of virulence factors; adhesins that promote binding to specific enterocyte receptors for intestinal colonization and enterotoxins responsible for fluid secretion. The best-characterized adhesins are expressed in the context of fimbriae, such as the F4 (also designated K88), F5 (K99), F6 (987P), F17 and F18 fimbriae. Once established in the animal small intestine, ETEC produces enterotoxin(s) that lead to diarrhea. The enterotoxins belong to two major classes; heat-labile toxin that consist of one active and five binding subunits (LT), and heat-stable toxins that are small polypeptides (STa, STb, and EAST1). This chapter describes the disease and pathogenesis of animal ETEC, the corresponding virulence genes and protein products of these bacteria, their regulation and targets in animal hosts, as well as mechanisms of action. Furthermore, vaccines, inhibitors, probiotics and the identification of potential new targets identified by genomics are presented in the context of animal ETEC. PMID:27735786

  5. Aerobactin Synthesis Genes iucA and iucC Contribute to the Pathogenicity of Avian Pathogenic Escherichia coli O2 Strain E058

    PubMed Central

    Ling, Jielu; Pan, Haizhu; Gao, Qingqing; Xiong, Liping; Zhou, Yefei; Zhang, Debao; Gao, Song; Liu, Xiufan

    2013-01-01

    Aerobactin genes are known to be present in virulent strains and absent from avirulent strains, but contributions of iucC and iucA, which are involved in aerobactin synthesis, to the pathogenicity of avian pathogenic Escherichia coli (APEC) have not been clarified. In this study, effects of double mutants (iucA/iutA or iucC/iutA) compared to those of single mutants (iucA, iucC or iutA) of aerobactin genes on the virulence of APEC strain E058 were examined both in vitro (aerobactin production, ingestion into HD-11 cells, survival in chicken serum) and in vivo (competitive growth against parental strain, colonization and persistence). In competitive co-infection assays, compared to the E058 parental strain, the E058ΔiucA mutant was significantly reduced in the liver, kidney, spleen (all P<0.01), heart and lung (both P<0.001). The E058ΔiutA mutant also was significantly reduced in the liver, lung, kidney (all P<0.01), heart and spleen (both P<0.001). The E058ΔiucC mutant was significantly attenuated in the heart and kidney (both P<0.05) and showed a remarkable reduction in the liver, spleen and lung (P<0.01); meanwhile, both E058ΔiucAΔiutA and E058ΔiucCΔiutA double mutants were sharply reduced as well (P<0.001). In colonization and persistence assays, compared with E058, recovered colonies of E058ΔiucA were significantly reduced from the lung, liver, spleen and kidney (P<0.01) and significantly reduced in the heart (P<0.001). E058ΔiutA was significantly reduced from the heart, lung, liver, spleen and kidney (P<0.01). E058ΔiucC, E058ΔiucAΔiutA and E058ΔiucCΔiutA were significantly decreased in all organs tested (P<0.001). These results suggest that iutA, iucA and iucC play important roles in the pathogenicity of APEC E058. PMID:23460907

  6. Gravity sensing by Escherichia coli.

    PubMed

    Shimoshige, Hirokazu; Kobayashi, Hideki; Shimamura, Shigeru; Usami, Ron

    2010-01-01

    We investigated the growth and protein profile of Escherichia coli under various gravity strengths to determine the effects of hypergravity on biochemical reactions. E. coli grows at less than 7,500 g without inhibition. Hypergravity induced OmpW and Antigen 43. Changes in gravity strength altered the expression levels of these proteins. This suggests that hypergravity regulates gene expression in bacteria.

  7. The cytolethal distending toxin-IV cdt coding region in an avian pathogenic Escherichia coli (APEC) strain shows instability and irregular excision pattern.

    PubMed

    Tóth, István; Schneider, György

    2015-12-01

    Cytolethal distending toxins (CDT) represent an emerging toxin family, widely distributed among pathogenic bacteria. The cdtABC genes in E. coli are either part of the genome of prophages, plasmid or pathogenicity island. In order to investigate the stability and the transfer potential of cdt-IV genes cdtB gene was replaced by chloramphenicol (Cm) resistance encoding cat gene in the avian pathogenic E. coli (APEC) strain E250. After consecutive passages in non-selective medium at 37 °C 7.6% (219/2900) of the investigated colonies of E250::cat strain became Cm-sensitive (Cm(S)). To reveal deletion mechanism 177 Cm(S) colonies were investigated for presence of cdtA, cdtC and cdtC associated gene by PCR. One hundred and sixteen colonies of the Cm(S) colonies (65.5%) showed partial or complete deletion in the cdt-IV region. Progressive loss of the upstream genes of the cdt cluster in E250 compared to other CDT-IV producing APEC strains and the fact that all the potential deletion patterns were identified, suggests the presence of an unstable hitherto unknown genomic region. The failure of in vitro transfer of cdt genes into a porcine EPEC E. coli strain suggests that the deletion of cdt-IV flanking genes alone do not promote the spread of cdt-IV.

  8. Signature-Tagged Mutagenesis in a Chicken Infection Model Leads to the Identification of a Novel Avian Pathogenic Escherichia coli Fimbrial Adhesin

    PubMed Central

    Antão, Esther-Maria; Ewers, Christa; Gürlebeck, Doreen; Preisinger, Rudolf; Homeier, Timo; Li, Ganwu; Wieler, Lothar H.

    2009-01-01

    The extraintestinal pathogen, avian pathogenic E. coli (APEC), known to cause systemic infections in chickens, is responsible for large economic losses in the poultry industry worldwide. In order to identify genes involved in the early essential stages of pathogenesis, namely adhesion and colonization, Signature-tagged mutagenesis (STM) was applied to a previously established lung colonization model of infection by generating and screening a total of 1,800 mutants of an APEC strain IMT5155 (O2:K1:H5; Sequence type complex 95). The study led to the identification of new genes of interest, including two adhesins, one of which coded for a novel APEC fimbrial adhesin (Yqi) not described for its role in APEC pathogenesis to date. Its gene product has been temporarily designated ExPEC Adhesin I (EA/I) until the adhesin-specific receptor is identified. Deletion of the ExPEC adhesin I gene resulted in reduced colonization ability by APEC strain IMT5155 both in vitro and in vivo. Furthermore, complementation of the adhesin gene restored its ability to colonize epithelial cells in vitro. The ExPEC adhesin I protein was successfully expressed in vitro. Electron microscopy of an afimbriate strain E. coli AAEC189 over-expressed with the putative EA/I gene cluster revealed short fimbrial-like appendages protruding out of the bacterial outer membrane. We observed that this adhesin coding gene yqi is prevalent among extraintestinal pathogenic E. coli (ExPEC) isolates, including APEC (54.4%), uropathogenic E. coli (UPEC) (65.9%) and newborn meningitic E. coli (NMEC) (60.0%), and absent in all of the 153 intestinal pathogenic E. coli strains tested, thereby validating the designation of the adhesin as ExPEC Adhesin I. In addition, prevalence of EA/I was most frequently associated with the B2 group of the EcoR classification and ST95 complex of the multi locus sequence typing (MLST) scheme, with evidence of a positive selection within this highly pathogenic complex. This is the first

  9. The YfcO fimbriae gene enhances adherence and colonization abilities of avian pathogenic Escherichia coli in vivo and in vitro.

    PubMed

    Li, Yaxin; Wang, Haojin; Ren, Jianluan; Chen, Ling; Zhuge, Xiangkai; Hu, Lin; Li, Dezhi; Tang, Fang; Dai, Jianjun

    2016-11-01

    Chaperone-usher (CU) fimbriae, which are adhesive surface organelles found in many Gram-negative bacteria, mediate tissue tropism through the interaction of fimbrial adhesins with specific receptors expressed on the host cell surface. A CU fimbrial gene yfcO, was identified in avian pathogenic E. coli (APEC) strain DE205B via gene functional analysis. In this study, yfcO was found in 13.41% (11/82) of E. coli strains, including phylogenetic groups A, B1, B2 and D, with the highest percentage in group B2. The expression of yfcO in biofilm forming bacteria was significantly higher (P < 0.05) than that in the planktonic bacteria. A yfcO deletion mutant was constructed, and adherence to DF-1 chicken embryo fibroblast cells was analyzed in vitro. Compared to the wild-type (WT), adherence of the mutant to DF-1 cells was significantly decreased (P < 0.01). The mutant bacterial loads in the heart, brain and liver were significantly lower (P < 0.05) than those of the WT strain. Resistance of the mutant to acidic (acetic, pH 4.0, 20 min) and high osmolarity (2.5 M NaCl, 1 h) stress conditions decreased by 51.28% (P < 0.001) and 80.34% (P < 0.01), respectively. These results suggest that yfcO contributes to APEC virulence through bacterial adherence to host tissues.

  10. Studies on the Chick-lethal Toxin of Escherichia coli

    PubMed Central

    Truscott, R. B.

    1973-01-01

    A toxin which is lethal for two week old chicks has been recovered from strains of Escherichia coli O78:K80 of bovine and avian origin and from avian isolates of serogroups O2, O45 and O109. The toxin is heat-labile, antigenic, high in protein, inactivated by pronase, trypsin, amylase, and pancreatic lipase. The toxin may be precipitated by ammonium sulfate or TCA treatment from the supernatant obtained by repeated centrifugation of sonicated cells. Considerable purification has been obtained by column chromatography using Sepharose 6B. PMID:4270809

  11. The effects of upaB deletion and the double/triple deletion of upaB, aatA, and aatB genes on pathogenicity of avian pathogenic Escherichia coli.

    PubMed

    Zhu-Ge, Xiang-Kai; Pan, Zi-Hao; Tang, Fang; Mao, Xiang; Hu, Lin; Wang, Shao-Hui; Xu, Bin; Lu, Cheng-Ping; Fan, Hong-Jie; Dai, Jian-Jun

    2015-12-01

    Autotransporters (ATs) are associated with pathogenesis of Avian Pathogenic Escherichia coli (APEC). The molecular characterization of APEC ATs can provide insights about their relevance to APEC pathogenesis. Here, we characterized a conventional autotransporter UpaB in APEC DE205B genome. The upaB existed in 41.9 % of 236 APEC isolates and was predominantly associated with ECOR B2 and D. Our studies showed that UpaB mediates the DE205B adhesion in DF-1 cells, and enhances autoaggregation and biofilm formation of fimbria-negative E. coli AAEC189 (MG1655Δfim) in vitro. Deletion of upaB of DE205B attenuates the virulence in duck model and early colonization in the duck lungs during APEC systemic infection. Furthermore, double and triple deletion of upaB, aatA, and aatB genes cumulatively attenuated DE205B adhesion in DF-1 cells, accompanying with decreased 50 % lethal dose (LD50) in duck model and the early colonization in the duck lungs. However, DE205BΔupaB/ΔaatA/ΔaatB might "compensate" the influence of gene deletion by upregulating the expression of fimbrial adhesin genes yqiL, yadN, and vacuolating autotransporter vat during early colonization of APEC. Finally, we demonstrated that vaccination with recombinant UpaB, AatA, and AatB proteins conferred protection against colisepticemia caused by DE205B infection in duck model.

  12. Evolution of the iss gene in Escherichia coli.

    PubMed

    Johnson, Timothy J; Wannemuehler, Yvonne M; Nolan, Lisa K

    2008-04-01

    The increased serum survival gene iss has long been recognized for its role in extraintestinal pathogenic Escherichia coli (ExPEC) virulence. iss has been identified as a distinguishing trait of avian ExPEC but not of human ExPEC. This gene has been localized to large virulence plasmids and shares strong similarities with the bor gene from bacteriophage lambda. Here, we demonstrate that three alleles of iss occur among E. coli isolates that appear to have evolved from a common lambda bor precursor. In addition to the occurrence of iss on the ColV/BM virulence plasmids, at least two iss alleles occur within the E. coli chromosome. One of these alleles (designated type 3) was found to occur in the genomes of all currently sequenced ExPEC strains on a similar prophage element that also harbors the Sit iron and manganese transport system. When the prevalence of the three iss types was examined among 487 E. coli isolates, the iss type 3 gene was found to occur at a high frequency among ExPEC isolates, irrespective of the host source. The plasmid-borne iss allele (designated type 1) was highly prevalent among avian pathogenic E. coli and neonatal meningitis-associated E. coli isolates but not among uropathogenic E. coli isolates. This study demonstrates the evolution of iss in E. coli and provides an additional tool for discriminating among E. coli pathotypes through the differentiation of the three iss allele types and bor.

  13. The Plasmid of Escherichia coli Strain S88 (O45:K1:H7) That Causes Neonatal Meningitis Is Closely Related to Avian Pathogenic E. coli Plasmids and Is Associated with High-Level Bacteremia in a Neonatal Rat Meningitis Model▿

    PubMed Central

    Peigne, Chantal; Bidet, Philippe; Mahjoub-Messai, Farah; Plainvert, Céline; Barbe, Valérie; Médigue, Claudine; Frapy, Eric; Nassif, Xavier; Denamur, Erick; Bingen, Edouard; Bonacorsi, Stéphane

    2009-01-01

    A new Escherichia coli virulent clonal group, O45:K1, belonging to the highly virulent subgroup B21 was recently identified in France, where it accounts for one-third of E. coli neonatal meningitis cases. Here we describe the sequence, epidemiology and function of the large plasmid harbored by strain S88, which is representative of the O45:K1 clonal group. Plasmid pS88 is 133,853 bp long and contains 144 protein-coding genes. It harbors three different iron uptake systems (aerobactin, salmochelin, and the sitABCD genes) and other putative virulence genes (iss, etsABC, ompTP, and hlyF). The pS88 sequence is composed of several gene blocks homologous to avian pathogenic E. coli plasmids pAPEC-O2-ColV and pAPEC-O1-ColBM. PCR amplification of 11 open reading frames scattered throughout the plasmid was used to investigate the distribution of pS88 and showed that a pS88-like plasmid is present in other meningitis clonal groups such as O18:K1, O1:K1, and O83:K1. A pS88-like plasmid was also found in avian pathogenic strains and human urosepsis strains belonging to subgroup B21. A variant of S88 cured of its plasmid displayed a marked loss of virulence relative to the wild-type strain in a neonatal rat model, with bacteremia more than 2 log CFU/ml lower. The salmochelin siderophore, a known meningovirulence factor, could not alone explain the plasmid's contribution to virulence, as a salmochelin mutant displayed only a minor fall in bacteremia (0.9 log CFU/ml). Thus, pS88 is a major virulence determinant related to avian pathogenic plasmids that has spread not only through meningitis clonal groups but also human urosepsis and avian pathogenic strains. PMID:19307211

  14. Exonuclease IX of Escherichia coli.

    PubMed Central

    Shafritz, K M; Sandigursky, M; Franklin, W A

    1998-01-01

    The bacteria Escherichia coli contains several exonucleases acting on both double- and single-stranded DNA and in both a 5'-->3' and 3'-->5' direction. These enzymes are involved in replicative, repair and recombination functions. We have identified a new exonuclease found in E.coli, termed exonuclease IX, that acts preferentially on single-stranded DNA as a 3'-->5' exonuclease and also functions as a 3'-phosphodiesterase on DNA containing 3'-incised apurinic/apyrimidinic (AP) sites to remove the product trans -4-hydroxy-2-pentenal 5-phosphate. The enzyme showed essentially no activity as a deoxyribophosphodiesterase acting on 5'-incised AP sites. The activity was isolated as a glutathione S-transferase fusion protein from a sequence of the E.coli genome that was 60% identical to a 260 bp region of the small fragment of the DNA polymerase I gene. The protein has a molecular weight of 28 kDa and is free of AP endonuclease and phosphatase activities. Exonuclease IX is expressed in E.coli , as demonstrated by reverse transcription-PCR, and it may function in the DNA base excision repair and other pathways. PMID:9592142

  15. Robust growth of Escherichia coli.

    PubMed

    Wang, Ping; Robert, Lydia; Pelletier, James; Dang, Wei Lien; Taddei, Francois; Wright, Andrew; Jun, Suckjoon

    2010-06-22

    The quantitative study of the cell growth has led to many fundamental insights in our understanding of a wide range of subjects, from the cell cycle to senescence. Of particular importance is the growth rate, whose constancy represents a physiological steady state of an organism. Recent studies, however, suggest that the rate of elongation during exponential growth of bacterial cells decreases cumulatively with replicative age for both asymmetrically and symmetrically dividing organisms, implying that a "steady-state" population consists of individual cells that are never in a steady state of growth. To resolve this seeming paradoxical observation, we studied the long-term growth and division patterns of Escherichia coli cells by employing a microfluidic device designed to follow steady-state growth and division of a large number of cells at a defined reproductive age. Our analysis of approximately 10(5) individual cells reveals a remarkable stability of growth whereby the mother cell inherits the same pole for hundreds of generations. We further show that death of E. coli is not purely stochastic but is the result of accumulating damages. We conclude that E. coli, unlike all other aging model systems studied to date, has a robust mechanism of growth that is decoupled from cell death.

  16. In Vitro Exposure to Escherichia coli Decreases Ion Conductance in the Jejunal Epithelium of Broiler Chickens

    PubMed Central

    Awad, Wageha A.; Hess, Claudia; Khayal, Basel; Aschenbach, Jörg R.; Hess, Michael

    2014-01-01

    Escherichia coli (E. coli) infections are very widespread in poultry. However, little is known about the interaction between the intestinal epithelium and E. coli in chickens. Therefore, the effects of avian non-pathogenic and avian pathogenic Escherichia coli (APEC) on the intestinal function of broiler chickens were investigated by measuring the electrogenic ion transport across the isolated jejunal mucosa. In addition, the intestinal epithelial responses to cholera toxin, histamine and carbamoylcholine (carbachol) were evaluated following an E. coli exposure. Jejunal tissues from 5-week-old broilers were exposed to 6×108 CFU/mL of either avian non-pathogenic E. coli IMT11322 (Ont:H16) or avian pathogenic E. coli IMT4529 (O24:H4) in Ussing chambers and electrophysiological variables were monitored for 1 h. After incubation with E. coli for 1 h, either cholera toxin (1 mg/L), histamine (100 μM) or carbachol (100 μM) were added to the incubation medium. Both strains of avian E. coli (non-pathogenic and pathogenic) reduced epithelial ion conductance (Gt) and short-circuit current (Isc). The decrease in ion conductance after exposure to avian pathogenic E. coli was, at least, partly reversed by the histamine or carbachol treatment. Serosal histamine application produced no significant changes in the Isc in any tissues. Only the uninfected control tissues responded significantly to carbachol with an increase of Isc, while the response to carbachol was blunted to non-significant values in infected tissues. Together, these data may explain why chickens rarely respond to intestinal infections with overt secretory diarrhea. Instead, the immediate response to intestinal E. coli infections appears to be a tightening of the epithelial barrier. PMID:24637645

  17. In vitro exposure to Escherichia coli decreases ion conductance in the jejunal epithelium of broiler chickens.

    PubMed

    Awad, Wageha A; Hess, Claudia; Khayal, Basel; Aschenbach, Jörg R; Hess, Michael

    2014-01-01

    Escherichia coli (E. coli) infections are very widespread in poultry. However, little is known about the interaction between the intestinal epithelium and E. coli in chickens. Therefore, the effects of avian non-pathogenic and avian pathogenic Escherichia coli (APEC) on the intestinal function of broiler chickens were investigated by measuring the electrogenic ion transport across the isolated jejunal mucosa. In addition, the intestinal epithelial responses to cholera toxin, histamine and carbamoylcholine (carbachol) were evaluated following an E. coli exposure. Jejunal tissues from 5-week-old broilers were exposed to 6×10(8) CFU/mL of either avian non-pathogenic E. coli IMT11322 (Ont:H16) or avian pathogenic E. coli IMT4529 (O24:H4) in Ussing chambers and electrophysiological variables were monitored for 1 h. After incubation with E. coli for 1 h, either cholera toxin (1 mg/L), histamine (100 μM) or carbachol (100 μM) were added to the incubation medium. Both strains of avian E. coli (non-pathogenic and pathogenic) reduced epithelial ion conductance (Gt) and short-circuit current (Isc). The decrease in ion conductance after exposure to avian pathogenic E. coli was, at least, partly reversed by the histamine or carbachol treatment. Serosal histamine application produced no significant changes in the Isc in any tissues. Only the uninfected control tissues responded significantly to carbachol with an increase of Isc, while the response to carbachol was blunted to non-significant values in infected tissues. Together, these data may explain why chickens rarely respond to intestinal infections with overt secretory diarrhea. Instead, the immediate response to intestinal E. coli infections appears to be a tightening of the epithelial barrier.

  18. Peptidoglycan Hydrolases of Escherichia coli

    PubMed Central

    van Heijenoort, Jean

    2011-01-01

    Summary: The review summarizes the abundant information on the 35 identified peptidoglycan (PG) hydrolases of Escherichia coli classified into 12 distinct families, including mainly glycosidases, peptidases, and amidases. An attempt is also made to critically assess their functions in PG maturation, turnover, elongation, septation, and recycling as well as in cell autolysis. There is at least one hydrolytic activity for each bond linking PG components, and most hydrolase genes were identified. Few hydrolases appear to be individually essential. The crystal structures and reaction mechanisms of certain hydrolases having defined functions were investigated. However, our knowledge of the biochemical properties of most hydrolases still remains fragmentary, and that of their cellular functions remains elusive. Owing to redundancy, PG hydrolases far outnumber the enzymes of PG biosynthesis. The presence of the two sets of enzymes acting on the PG bonds raises the question of their functional correlations. It is difficult to understand why E. coli keeps such a large set of PG hydrolases. The subtle differences in substrate specificities between the isoenzymes of each family certainly reflect a variety of as-yet-unidentified physiological functions. Their study will be a far more difficult challenge than that of the steps of the PG biosynthesis pathway. PMID:22126997

  19. [Virulence mechanisms of enteropathogenic Escherichia coli].

    PubMed

    Farfán-García, Ana Elvira; Ariza-Rojas, Sandra Catherine; Vargas-Cárdenas, Fabiola Andrea; Vargas-Remolina, Lizeth Viviana

    2016-08-01

    Acute diarrheal disease (ADD) is a global public health problem, especially in developing countries and is one of the causes of mortality in children under five. ADD etiologic agents include viruses, bacteria and parasites in that order. Escherichia coli bacteria it is classified as a major diarrheagenic agent and transmitted by consuming contaminated water or undercooked foods. This review compiled updates on information virulence factors and pathogenic mechanisms involved in adhesion and colonization of seven pathotypes of E. coli called enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC), shigatoxigenic E. coli (STEC), enteroaggregative E. coli (EAEC) and diffusely-adherent E. coli (DAEC). A final pathotype, adherent-invasive E. coli (AIEC) associated with Crohn's disease was also reviewed. The diarrheagenic pathotypes of E. coli affect different population groups and knowledge of the molecular mechanisms involved in the interaction with the human is important to guide research towards the development of vaccines and new tools for diagnosis and control.

  20. Structure of Escherichia coli tryptophanase.

    PubMed

    Ku, Shao Yang; Yip, Patrick; Howell, P Lynne

    2006-07-01

    Pyridoxal 5'-phosphate (PLP) dependent tryptophanase has been isolated from Escherichia coli and its crystal structure has been determined. The structure shares the same fold with and has similar quaternary structure to Proteus vulgaris tryptophanase and tyrosine-phenol lyase, but is found in a closed conformation when compared with these two enzymes. The tryptophanase structure, solved in its apo form, does not have covalent PLP bound in the active site, but two sulfate ions. The sulfate ions occupy the phosphoryl-binding site of PLP and the binding site of the alpha-carboxyl of the natural substrate tryptophan. One of the sulfate ions makes extensive interactions with both the transferase and PLP-binding domains of the protein and appears to be responsible for holding the enzyme in its closed conformation. Based on the sulfate density and the structure of the P. vulgaris enzyme, PLP and the substrate tryptophan were modeled into the active site. The resulting model is consistent with the roles of Arg419 in orienting the substrate to PLP and acidifying the alpha-proton of the substrate for beta-elimination, Lys269 in the formation and decomposition of the PLP quinonoid intermediate, Arg230 in orienting the substrate-PLP intermediates in the optimal conformation for catalysis, and His463 and Tyr74 in determining substrate specificity and suggests that the closed conformation observed in the structure could be induced by substrate binding and that significant conformational changes occur during catalysis. A catalytic mechanism for tryptophanase is proposed. Since E. coli tryptophanase has resisted forming diffraction-quality crystals for many years, the molecular surface of tryptophanase has been analyzed in various crystal forms and it was rationalized that strong crystal contacts occur on the flat surface of the protein and that the size of crystal contact surface seems to correlate with the diffraction quality of the crystal.

  1. Structure of Escherichia Coli Tryptophanase

    SciTech Connect

    Ku,S.; Yip, P.; Howell, P.

    2006-01-01

    Pyridoxal 5'-phosphate (PLP) dependent tryptophanase has been isolated from Escherichia coli and its crystal structure has been determined. The structure shares the same fold with and has similar quaternary structure to Proteus vulgaris tryptophanase and tyrosine-phenol lyase, but is found in a closed conformation when compared with these two enzymes. The tryptophanase structure, solved in its apo form, does not have covalent PLP bound in the active site, but two sulfate ions. The sulfate ions occupy the phosphoryl-binding site of PLP and the binding site of the {alpha}-carboxyl of the natural substrate tryptophan. One of the sulfate ions makes extensive interactions with both the transferase and PLP-binding domains of the protein and appears to be responsible for holding the enzyme in its closed conformation. Based on the sulfate density and the structure of the P. vulgaris enzyme, PLP and the substrate tryptophan were modeled into the active site. The resulting model is consistent with the roles of Arg419 in orienting the substrate to PLP and acidifying the {alpha}-proton of the substrate for {beta}-elimination, Lys269 in the formation and decomposition of the PLP quinonoid intermediate, Arg230 in orienting the substrate-PLP intermediates in the optimal conformation for catalysis, and His463 and Tyr74 in determining substrate specificity and suggests that the closed conformation observed in the structure could be induced by substrate binding and that significant conformational changes occur during catalysis. A catalytic mechanism for tryptophanase is proposed. Since E. coli tryptophanase has resisted forming diffraction-quality crystals for many years, the molecular surface of tryptophanase has been analyzed in various crystal forms and it was rationalized that strong crystal contacts occur on the flat surface of the protein and that the size of crystal contact surface seems to correlate with the diffraction quality of the crystal.

  2. Succinate production in Escherichia coli

    PubMed Central

    Thakker, Chandresh; Martínez, Irene; San, Ka-Yiu; Bennett, George N.

    2012-01-01

    Succinate has been recognized as an important platform chemical that can be produced from biomass. While a number of organisms are capable of succinate production naturally, this review focuses on the engineering of Escherichia coli for production of the four-carbon dicarboxylic acid. Important features of a succinate production system are to achieve optimal balance of reducing equivalents generated by consumption of the feedstock, while maximizing the amount of carbon that is channeled to the product. Aerobic and anaerobic production strains have been developed and applied to production from glucose as well as other abundant carbon sources. Metabolic engineering methods and strain evolution have been used and supplemented by the recent application of systems biology and in silico modeling tools to construct optimal production strains. The metabolic capacity of the production strain, as well as the requirement for efficient recovery of succinate and the reliability of the performance under scale-up are important in the overall process. The costs of the overall biorefinery compatible process will determine the economical commercialization of succinate and its impact in larger chemical markets. PMID:21932253

  3. Biosynthesis of isoprenoids in Escherichia coli: stereochemistry of the reaction catalyzed by farnesyl diphosphate synthase.

    PubMed

    Leyes, A E; Baker, J A; Poulter, C D

    1999-10-07

    [formula: see text] Farnesyl diphosphate (FPP) synthase from Escherichia coli catalyzes the condensation of isopentenyl diphosphate (IPP) and geranyl diphosphate (GPP) with selective removal of the pro-R hydrogen at C2 of IPP, the same stereochemistry observed for the pig liver, yeast, and avian enzymes.

  4. Detection of Florfenicol Resistance Genes in Escherichia coli Isolated from Sick Chickens

    PubMed Central

    Keyes, Kathleen; Hudson, Charlene; Maurer, John J.; Thayer, Stephan; White, David G.; Lee, Margie D.

    2000-01-01

    Florfenicol is an antibiotic approved for veterinary use in cattle in the United States in 1996. Although this drug is not used in poultry, we have detected resistance to florfenicol in clinical isolates of avian Escherichia coli. Molecular typing demonstrated that the florfenicol resistance gene, flo, was independently acquired and is plasmid encoded. PMID:10639375

  5. Escherichia coli survival in waters: Temperature dependence

    EPA Science Inventory

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q10 mo...

  6. Strategies for Protein Overproduction in Escherichia coli.

    ERIC Educational Resources Information Center

    Mott, John E.

    1984-01-01

    Examines heterologous expression in Escherichia coli and the role of regulatory sequences which control gene expression at transcription resulting in abundant production of messenger RNA and regulatory sequences in mRNA which promote efficient translation. Also examines the role of E. coli cells in stabilizing mRNA and protein that is…

  7. Strategies for Protein Overproduction in Escherichia coli.

    ERIC Educational Resources Information Center

    Mott, John E.

    1984-01-01

    Examines heterologous expression in Escherichia coli and the role of regulatory sequences which control gene expression at transcription resulting in abundant production of messenger RNA and regulatory sequences in mRNA which promote efficient translation. Also examines the role of E. coli cells in stabilizing mRNA and protein that is…

  8. Escherichia coli survival in waters: Temperature dependence

    EPA Science Inventory

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q10 mo...

  9. Toxigenic Escherichia Coli and Childhood Diarrhea

    PubMed Central

    Mundell, Dave H.; Anselmo, Carl R.; Thrupp, Lauri D.; Wishnow, Rodney M.

    1976-01-01

    Stool specimens were examined from 40 children with diarrhea who were under three years of age to determine the incidence of enterotoxigenic Escherichia coli in endemic diarrhea. Heat-labile E. coli enterotoxin was assayed in the very sensitive and reproducible cultured adrenal tumor cell system. Toxigenic E. coli were isolated from only one stool specimen and in this case infection with Shigella dysenteriae was also present. None of the eight classic enteropathogenic E. coli isolates were positive in the adrenal assay. This study suggests that heat-labile enterotoxin-producing E. coli are not an important cause of endemic childhood diarrhea in Southern California. PMID:775792

  10. Virulence and antibiotic resistance of Escherichia coli isolated from rooks.

    PubMed

    Kmet, Vladimir; Drugdova, Zuzana; Kmetova, Marta; Stanko, Michal

    2013-01-01

    With regard to antibiotic resistance studies in various model animals in the urban environment, the presented study focused on the rook, many behavioural and ecological aspects of which are important from an epidemiological point of view. A total of 130 Escherichia coli strains isolated from rook faeces during a two-year period (2011-2012) were investigated for antibiotic resistance and virulence. Resistance to ampicillin (60%) and streptomycin (40%) were the most frequent, followed by resistance to fluoroquinolones (ciprofloxacin-22% and enrofloxacin-24%), tetracycline (18%), cotrimoxazol (17%) and florfenicol (14%). Ceftiofur resistance occured in 10.7% of strains and cefquinom resistance in 1.5% of strains. Twenty-five E.coli strains with a higher level of MICs of cephalosporins (over 2mg/L of ceftazidime and ceftriaxon) and fluoroquinolones were selected for detection of betalactamase genes (CTX-M, CMY), plasmid-mediated quinolone resistance qnrS, integrase 1, and for APEC (avian pathogenic E.coli) virulence factors (iutA, cvaC, iss, tsh, ibeA, papC, kpsII). Genes of CTX-M1, CMY-2, integrase 1, papC, cvaC, iutA were detected in one strain of E.coli, and qnrS, integrase 1, iss, cvaC, tsh were detected in another E.coli. DNA microarray revealed the absence of verotoxin and enterotoxin genes and pathogenicity islands. The results show that rooks can serve as a reservoir of antibiotic-resistant E. coli with avian pathogenic virulence factors for the human population, and potentially transmit such E.coli over long distances.

  11. 21 CFR 866.3255 - Escherichia coli serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Escherichia coli serological reagents. 866.3255... coli serological reagents. (a) Identification. Escherichia coli serological reagents are devices that consist of antigens and antisera used in serological tests to identify Escherichia coli from cultured...

  12. Clinical Implications of Enteroadherent Escherichia coli

    PubMed Central

    Arenas-Hernández, Margarita M.P.; Martínez-Laguna, Ygnacio; Torres, Alfredo G.

    2012-01-01

    Pathogenic Escherichia coli that colonize the small intestine primarily cause gastrointestinal illness in infants and travelers. The main categories of pathogenic E. coli that colonize the epithelial lining of the small intestine are enterotoxigenic E. coli enteropathogenic E. coli and enteroaggregative E. coli. These organisms accomplish their pathogenic process by a complex, coordinated multistage strategy, including non-intimate adherence mediated by various adhesins. These so called “enteroadherent E. coli ” categories subsequently produced toxins or effector proteins that are either secreted to the milieu or injected to the host cell. Finally, destruction of the intestinal microvilli results from the intimate adherence or the toxic effect exerted over the epithelia, resulting in water secretion and diarrhea. In this review, we summarize the current state of knowledge regarding these enteroadherent E. coli strains and the present clinical understanding of how these organisms colonize the human intestine and cause disease. PMID:22798032

  13. In-stream Escherichia coli Modeling

    NASA Astrophysics Data System (ADS)

    Pandey, P.; Soupir, M.

    2013-12-01

    Elevated levels of pathogenic bacteria indicators such as Escherichia coli (E. coli) in streams are a serious concern. Controlling E. coli levels in streams requires improving our existing understanding of fate and transport of E. coli at watershed scale. In-stream E. coli concentrations are potentially linked to non-point pollution sources (i.e., agricultural land). Water of a natural stream can receive E. coli by either through overland flow (via runoff from cropland) or resuspension from the streambed to the water column. Calculating in-stream total E. coli loads requires estimation of particle attached bacteria as well free floating E. coli transport. Currently water quality models commonly used for predicting E. coli levels in stream water have limited capability for predicting E. coli levels in the water column as well as in the streambed sediment. The challenges in calculating in-stream E. coli levels include difficulties in modeling the complex interactions between sediment particles and E. coli. Here we have developed a watershed scale model (integrated with Soil and Water Assessment Tool (SWAT)), which involves calculation of particle attached E. coli, to predict in-stream E. coli concentrations. The proposed model predicts E. coli levels in streambed bed sediment as well as in the water column. An extensive in-stream E. coli monitoring was carried out to verify the model predictions, and results indicate that the model performed well. The study proposed here will improve understanding on in-stream bacterial contamination, and help improving existing water quality models for predicting pathogenic bacteria levels in ambient water bodies.

  14. Native valve Escherichia coli endocarditis following urosepsis.

    PubMed

    Rangarajan, D; Ramakrishnan, S; Patro, K C; Devaraj, S; Krishnamurthy, V; Kothari, Y; Satyaki, N

    2013-05-01

    Gram-negative organisms are a rare cause of infective endocarditis. Escherichia coli, the most common cause of urinary tract infection and gram-negative septicemia involves endocardium rarely. In this case report, we describe infection of native mitral valve by E. coli following septicemia of urinary tract origin in a diabetic male; subsequently, he required prosthetic tissue valve replacement indicated by persistent sepsis and congestive cardiac failure.

  15. Extraintestinal pathogenic Escherichia coli: "the other bad E coli".

    PubMed

    Johnson, James R; Russo, Thomas A

    2002-03-01

    Extraintestinal pathogenic Escherichia coli (ExPEC), the specialized strains of E coli that cause most extraintestinal E coli infections, represent a major but little-appreciated health threat. Although the reasons for their evolution remain mysterious, by virtue of their numerous virulence traits ExPEC clearly possess a unique ability to cause disease outside the host intestinal tract. Broader appreciation of the existence and importance of ExPEC and better understandings of their distinctive virulence mechanisms, reservoirs, and transmission pathways may lead to effective preventive interventions against the morbid and costly infections ExPEC cause.

  16. Escherichia Coli--Key to Modern Genetics.

    ERIC Educational Resources Information Center

    Bregegere, Francois

    1982-01-01

    Mid-nineteenth century work by Mendel on plant hybrids and by Pasteur on fermentation gave birth by way of bacterial genetics to modern-day molecular biology. The bacterium Escherichia Coli has occupied a key position in genetic studies leading from early gene identification with DNA to current genetic engineering using recombinant DNA technology.…

  17. Detection of O antigens in Escherichia coli

    USDA-ARS?s Scientific Manuscript database

    Lipopolysaccharide on the surface of Escherichia coli constitute the O antigens, which are important virulence factors that are targets of both the innate and adaptive immune system and play a major role in host-pathogen interactions. O antigens that are responsible for antigenic specificity of the ...

  18. Widespread Antisense Transcription in Escherichia coli

    PubMed Central

    Dornenburg, James E.; DeVita, Anne M.; Palumbo, Michael J.; Wade, Joseph T.

    2010-01-01

    ABSTRACT The vast majority of annotated transcripts in bacteria are mRNAs. Here we identify ~1,000 antisense transcripts in the model bacterium Escherichia coli. We propose that these transcripts are generated by promiscuous transcription initiation within genes and that many of them regulate expression of the overlapping gene. PMID:20689751

  19. Escherichia Coli--Key to Modern Genetics.

    ERIC Educational Resources Information Center

    Bregegere, Francois

    1982-01-01

    Mid-nineteenth century work by Mendel on plant hybrids and by Pasteur on fermentation gave birth by way of bacterial genetics to modern-day molecular biology. The bacterium Escherichia Coli has occupied a key position in genetic studies leading from early gene identification with DNA to current genetic engineering using recombinant DNA technology.…

  20. Escherichia coli and Sudden Infant Death Syndrome

    PubMed Central

    Bettelheim, Karl A.; Goldwater, Paul N.

    2015-01-01

    This review examines the association of strains of Escherichia coli with sudden infant death syndrome (SIDS) and the possible role these bacteria play in this enigmatic condition. The review addresses evidence for E. coli in SIDS infants, potential sources of E. coli in the environment, colonization by commensal and pathogenic strains, the variety of currently accepted pathotypes, and how these pathotypes could compromise intestinal integrity and induce inflammation. Both intestinal and extraintestinal pathotypes are compared in relation to the apparent liability in which virulence traits can be gained or lost by strains of E. coli. The way in which E. coli infections fit with current views on infant sleeping position and other SIDS risk factors is highlighted. PMID:26191064

  1. Survival of pathogenic Escherichia coli on basil, lettuce, and spinach

    USDA-ARS?s Scientific Manuscript database

    The contamination of lettuce, spinach and basil with pathogenic E. coli has caused numerous illnesses over the past decade. E. coli O157:H7, E. coli O104:H4 and avian pathogenic E. coli (APECstx- and APECstx+) were inoculated on basil plants and in promix soiless substrate using drip and overhead ir...

  2. Polyphenol Extracts from Punica granatum and Terminalia chebula are anti-inflammatory and increase the survival rate of chickens challenged with Escherichia coli

    USDA-ARS?s Scientific Manuscript database

    Avian pathogenic Escherichia coli (APEC) causes avian colibacillosis, inflammation in multi-organs of chickens, and results in serious economic loss to the chicken industry. Polyphenolic compounds possess a wide range of physiological activities that may contribute to their beneficial effects again...

  3. Polyphenol extracts from Punica granatum and Terminalia chebula are anti-inflammatory and increase the survival rate of chickens challenged with Escherichia coli

    USDA-ARS?s Scientific Manuscript database

    Avian pathogenic Escherichia coli (APEC) causes avian colibacillosis, inflammation in multi-organs of chickens, and results in serious economic loss to the chicken industry. Polyphenolic compounds possess a wide range of physiological activities that may contribute to their beneficial effects again...

  4. Electrophoretic Mobilities of Escherichia coli O157:H7 and Wild-Type Escherichia coli Strains

    PubMed Central

    Lytle, Darren A.; Rice, Eugene W.; Johnson, Clifford H.; Fox, Kim R.

    1999-01-01

    The electrophoretic mobilities (EPMs) of a number of Escherichia coli O157:H7 and wild-type E. coli strains were measured. The effects of pH and ionic strength on the EPMs were investigated. The EPMs of E. coli O157:H7 strains differed from those of wild-type strains. As the suspension pH decreased, the EPMs of both types of strains increased. PMID:10388724

  5. Complete Sequence of pEC012, a Multidrug-Resistant IncI1 ST71 Plasmid Carrying bla CTX-M-65, rmtB, fosA3, floR, and oqxAB in an Avian Escherichia coli ST117 Strain.

    PubMed

    Pan, Yu-Shan; Zong, Zhi-Yong; Yuan, Li; Du, Xiang-Dang; Huang, Hui; Zhong, Xing-Hao; Hu, Gong-Zheng

    2016-01-01

    A 139,622-bp IncI1 ST71 conjugative plasmid pEC012 from an avian Escherichia coli D-ST117 strain was sequenced, which carried five IS26-bracketed resistance modules: IS26-fosA3-orf1-orf2-Δorf3-IS26, IS26-fip-ΔISEcp1-bla CTX-M-65-IS903D-iroN-IS26, IS26-ΔtnpR-bla TEM-1-rmtB-IS26, IS26-oqxAB-IS26, and IS26-floR-aac(3)-IV-IS26. The backbone of pEC012 was similar to that of several other IncI1 ST71 plasmids: pV408, pM105, and pC271, but these plasmids had different arrangements of multidrug resistance region. In addition, the novel ISEc57 element was identified, which is in the IS21 family. The stepwise emergence of multi-resistance regions demonstrated the accumulation of different resistance determinants through homologous recombination. To the best of our knowledge, this is the first study to identify a multidrug-resistant IncI1 ST71 plasmid carrying bla CTX-M-65, rmtB, fosA3, floR, and oqxAB in an avian E. coli ST117 strain.

  6. Complete Sequence of pEC012, a Multidrug-Resistant IncI1 ST71 Plasmid Carrying blaCTX-M-65, rmtB, fosA3, floR, and oqxAB in an Avian Escherichia coli ST117 Strain

    PubMed Central

    Pan, Yu-Shan; Zong, Zhi-Yong; Yuan, Li; Du, Xiang-Dang; Huang, Hui; Zhong, Xing-Hao; Hu, Gong-Zheng

    2016-01-01

    A 139,622-bp IncI1 ST71 conjugative plasmid pEC012 from an avian Escherichia coli D-ST117 strain was sequenced, which carried five IS26-bracketed resistance modules: IS26-fosA3-orf1-orf2-Δorf3-IS26, IS26-fip-ΔISEcp1-blaCTX-M-65-IS903D-iroN-IS26, IS26-ΔtnpR-blaTEM-1-rmtB-IS26, IS26-oqxAB-IS26, and IS26-floR-aac(3)-IV-IS26. The backbone of pEC012 was similar to that of several other IncI1 ST71 plasmids: pV408, pM105, and pC271, but these plasmids had different arrangements of multidrug resistance region. In addition, the novel ISEc57 element was identified, which is in the IS21 family. The stepwise emergence of multi-resistance regions demonstrated the accumulation of different resistance determinants through homologous recombination. To the best of our knowledge, this is the first study to identify a multidrug-resistant IncI1 ST71 plasmid carrying blaCTX-M-65, rmtB, fosA3, floR, and oqxAB in an avian E. coli ST117 strain. PMID:27486449

  7. Hydrogen production by recombinant Escherichia coli strains

    PubMed Central

    Maeda, Toshinari; Sanchez‐Torres, Viviana; Wood, Thomas K.

    2012-01-01

    Summary The production of hydrogen via microbial biotechnology is an active field of research. Given its ease of manipulation, the best‐studied bacterium Escherichia coli has become a workhorse for enhanced hydrogen production through metabolic engineering, heterologous gene expression, adaptive evolution, and protein engineering. Herein, the utility of E. coli strains to produce hydrogen, via native hydrogenases or heterologous ones, is reviewed. In addition, potential strategies for increasing hydrogen production are outlined and whole‐cell systems and cell‐free systems are compared. PMID:21895995

  8. Escherichia coli field contamination of pecan nuts.

    PubMed

    Marcus, K A; Amling, H J

    1973-09-01

    More pecan samples collected from grazed orchards were contaminated with Escherichia coli than were samples from nongrazed orchards. No differences in frequency of contamination between mechanically and manually harvested nuts occurred. Nutmeats from whole uncracked pecans that were soaked for 24 h in a lactose broth solution containing E. coli did not become contaminated. Twentyfour percent of the whole pecans soaked in water for 48 h to simulate standing in a rain puddle developed openings along shell suture lines which did not completely close when the nuts were redried.

  9. Uropathogenic Escherichia coli-Associated Exotoxins.

    PubMed

    Welch, Rodney A

    2016-06-01

    Escherichia coli are a common cause of infectious disease outside of the gastrointestinal tract. Several independently evolved E. coli clades are common causes of urinary tract and bloodstream infections. There is ample epidemiological and in vitro evidence that several different protein toxins common to many, but not all, of these strains are likely to aid the colonization and immune-evasion ability of these bacteria. This review discusses our current knowledge and areas of ignorance concerning the contribution of the hemolysin; cytotoxic-necrotizing factor-1; and the autotransporters, Sat, Pic, and Vat, to extraintestinal human disease.

  10. The evolution of the Escherichia coli phylogeny.

    PubMed

    Chaudhuri, Roy R; Henderson, Ian R

    2012-03-01

    Escherichia coli is familiar to biologists as a classical model system, ubiquitous in molecular biology laboratories around the world. Outside of the laboratory, E. coli strains exist as an almost universal component of the lower-gut flora of humans and animals. Although usually a commensal, E. coli has an alter ego as a pathogen, and is associated with diarrhoeal disease and extra-intestinal infections. The study of E. coli diversity predates the availability of molecular data, with strains initially distinguished by serotyping and metabolic profiling, and genomic diversity illustrated by DNA hybridisation. The quantitative study of E. coli diversity began with the application of multi-locus enzyme electrophoresis (MLEE), and has progressed with the accumulation of nucleotide sequence data, from single genes through multi-locus sequence typing (MLST) to whole genome sequencing. Phylogenetic methods have shed light on the processes of genomic evolution in this extraordinarily diverse species, and revealed the origins of pathogenic E. coli strains, including members of the phylogenetically indistinguishable "genus"Shigella. In May and June 2011, an outbreak of haemorrhagic uraemic syndrome in Germany was linked to a strain of enterohaemorrhagic E. coli (EHEC) O104:H4. Application of high-throughput sequencing technologies allowed the genome and origins of the outbreak strain to be characterised in real time as the outbreak was in progress.

  11. Antimicrobial resistance profiles of Escherichia coli from common European wild bird species.

    PubMed

    Guenther, Sebastian; Grobbel, Mirjam; Lübke-Becker, Antina; Goedecke, Andreas; Friedrich, Nicole D; Wieler, Lothar H; Ewers, Christa

    2010-07-29

    The emergence and spread of multiresistant bacteria in natural environments constitute a serious impact on animal and human health. To gain more insight into the role of wild birds as carriers and reservoir of multiresistant Escherichia coli we tested a broad spectrum of common European bird species for the occurrence of E. coli strains and their antimicrobial resistance by minimal inhibitory concentration testing and PCR analysis of several resistance genes. Nine of the 187 E. coli isolates (4.8%) exhibited multiresistant phenotypes including resistances against beta-lactams, aminoglycosides, fluoroquinolones, tetracyclines and sulfonamides. By comparing avian E. coli resistance frequencies with frequencies known for E. coli isolated from livestock and companion animals analogous profiles were identified. Multiresistant E. coli strains were isolated from synanthropic avian species as well as from birds of prey, waterfowl and passerines. By that, all these avian hosts are suggested to represent a considerable reservoir of resistant E. coli strains. Consequently wild birds might constitute a potential hazard to human and animal health by transmitting multiresistant strains to waterways and other environmental sources via their faecal deposits.

  12. Modulation of the innate immune-related genes expression in H9N2 avian influenza virus-infected chicken macrophage-like cells (HD11) in response to Escherichia coli LPS stimulation.

    PubMed

    Qi, Xuefeng; Liu, Caihong; Li, Ruiqiao; Zhang, Huizhu; Xu, Xingang; Wang, Jingyu

    2017-04-01

    Macrophages play important roles in mediating virus-induced innate immune responses and are thought to be involved in the pathogenesis of bacterial superinfections. The innate immune response initiated by both low pathogenicity AIV and bacterial superinfection in their avian host is not fully understood. We therefore determine the transcripts of innate immune-related genes following avian H9N2 AIV virus infection and E. coli LPS co-stimulation of avian macrophage-like cell line HD11 cells. More pronounced expression of pro-inflammatory cytokines (IL-6 and IL-1β) as well as the inflammatory chemokines (CXCLi1 and CXCLi2) was observed in virus infected plus LPS treated HD11 cells compared to H9N2 virus solely infected control. For two superinfection groups, the levels of genes examined in a prior H9N2 virus infection before secondary LPS treatment group were significantly higher as compared with simultaneous virus infection plus LPS stimulation group. Interestingly, similar high levels of IL-6 gene were observed between LPS sole stimulation group and two superinfection groups. Moreover, IL-10 and TGF-β3 mRNA levels in both superinfection groups were moderately upregulated compared to sole LPS stimulation group or virus alone infection group. Although TLR4 and MDA5 levels in virus alone infection group were significantly lower compared to that in both superinfection groups, TLR4 upregulation respond more rapid to virus sole infection compared to LPS plus virus superinfection. Collectively, innate immune-related genes respond more pronounced in LPS stimulation plus H9N2 virus infection HD11 cells compared to sole virus infection or LPS alone stimulation control cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Automatic tracking of Escherichia coli bacteria.

    PubMed

    Xie, Jun; Khan, Shahid; Shah, Mubarak

    2008-01-01

    In this paper, we present an automatic method for estimating the trajectories of Escherichia coli bacteria from in vivo phase-contrast microscopy videos. To address the low-contrast boundaries in cellular images, an adaptive kernel-based technique is applied to detect cells in sequence of frames. Then a novel matching gain measure is introduced to cope with the challenges such as dramatic changes of cells' appearance and serious overlapping and occlusion. For multiple cell tracking, an optimal matching strategy is proposed to improve the handling of cell collision and broken trajectories. The results of successful tracking of Escherichia coli from various phase-contrast sequences are reported and compared with manually-determined trajectories, as well as those obtained from existing tracking methods. The stability of the algorithm with different parameter values is also analyzed and discussed.

  14. ELECTRON MICROSCOPY OF PLASMOLYSIS IN ESCHERICHIA COLI.

    PubMed

    COTA-ROBLES, E H

    1963-03-01

    Cota-Robles, Eugene H. (University of California, Riverside). Electron microscopy of plasmolysis in Escherichia coli. J. Bacteriol. 85:499-503. 1963.-Escherichia coli cells plasmolyzed in 0.35 m sucrose reveal plasmolysis at one tip of a cell or in the center of dividing cells in which protoplast partition has been complete. Central plasmolysis reveals that protoplast separation can be completed before the invagination of the cell wall is complete. These studies support the concept that these cells divide by constriction. The strength of the union between cell wall and cytoplasm is not uniform around the entire cell. It is strongest along the sides of these rod-shaped cells and weakest at one tip of the single cell. Thus, a single cell generally forms one cup-shaped vacuole in which the cytoplasm has collapsed away from one tip of the cell.

  15. ELECTRON MICROSCOPY OF PLASMOLYSIS IN ESCHERICHIA COLI

    PubMed Central

    Cota-Robles, Eugene H.

    1963-01-01

    Cota-Robles, Eugene H. (University of California, Riverside). Electron microscopy of plasmolysis in Escherichia coli. J. Bacteriol. 85:499–503. 1963.—Escherichia coli cells plasmolyzed in 0.35 m sucrose reveal plasmolysis at one tip of a cell or in the center of dividing cells in which protoplast partition has been complete. Central plasmolysis reveals that protoplast separation can be completed before the invagination of the cell wall is complete. These studies support the concept that these cells divide by constriction. The strength of the union between cell wall and cytoplasm is not uniform around the entire cell. It is strongest along the sides of these rod-shaped cells and weakest at one tip of the single cell. Thus, a single cell generally forms one cup-shaped vacuole in which the cytoplasm has collapsed away from one tip of the cell. Images PMID:14042923

  16. Phage therapy: the Escherichia coli experience.

    PubMed

    Brüssow, Harald

    2005-07-01

    Phages have been proposed as natural antimicrobial agents to fight bacterial infections in humans, in animals or in crops of agricultural importance. Phages have also been discussed as hygiene measures in food production facilities and hospitals. These proposals have a long history, but are currently going through a kind of renaissance as documented by a spate of recent reviews. This review discusses the potential of phage therapy with a specific example, namely Escherichia coli.

  17. Virulence Factors and Clonal Relationships among Escherichia coli Strains Isolated from Broiler Chickens with Cellulitis

    PubMed Central

    de Brito, Benito Guimarães; Gaziri, Luiz Carlos J.; Vidotto, Marilda C.

    2003-01-01

    In this study, we compared Escherichia coli isolates from chickens with avian cellulitis with those from feces of healthy chickens. Cellulitis-derived strains presented phenotypic and genotypic characteristics of greater virulence than did the fecal isolates. Phylogenetic analysis by repetitive extragenic palindromic-PCR showed that, in agreement with their virulence characteristics, the cellulitis isolates form two clonal groups distinct from the fecal isolates. PMID:12819112

  18. Three Cases of Escherichia coli Meningitis in Chicks Imported to Japan.

    PubMed

    Kasuya, Kazufumi; Shimokubo, Natsumi; Kosuge, Chieko; Takayama, Kou; Yoshida, Eiji; Osaka, Hiroyuki

    2017-03-01

    Three outbreaks of colibacillosis have occurred in chicks during the quarantine period after importation to Japan. All three were derived from three different countries without epidemiologic relevance. Some birds from each infected flock were examined pathologically and bacteriologically. The characteristic histologic finding common to all three cases was severe bacterial meningitis in the central nervous system. Pericarditis, perihepatitis, and omphalitis with bacterial colonies were also observed. The bacterial colonies observed histologically were immunohistochemically positive for Escherichia coli antigens. Escherichia coli was isolated from the organ samples from each outbreak. At least two E. coli isolates were serotyped as O18 and O161, which differed from the popular serotypes in Japan. These results suggest that avian pathogenic E. coli of uncommon serotypes can be imported from outside countries by infected chicks. Colibacillosis should be included in the differential diagnosis when meningitis is histologically observed in chicks.

  19. Immune response to recombinant Escherichia coli Iss protein in poultry.

    PubMed

    Lynne, Aaron M; Foley, Steven L; Nolan, Lisa K

    2006-06-01

    Colibacillosis accounts for significant losses to the poultry industry, and control efforts are hampered by limited understanding of the mechanisms used by avian pathogenic Escherichia coli (APEC) to cause disease. We have found that the presence of the increased serum survival gene (iss) is strongly associated with APEC but not with commensal E. coli, making iss, and the protein it encodes (Iss), candidate targets of colibacillosis control procedures. To assess the potential of Iss to elicit a protective response in chickens against APEC challenge, Iss fusion proteins were produced and administered subcutaneously to four groups of 2-wk-old specific-pathogen-free leghorn chickens. At 4 wk postimmunization, birds were challenged with APEC from serogroups 02 and 078 via intramuscular injection. At 2 wk postchallenge, birds were necropsied, and lesions consistent with colibacillosis were scored. Also, sera were collected from the birds pre- and postimmunization, and antibody titers to Iss were determined. Immunized birds produced a humoral response to Iss, and they had significantly lower lesion scores than the unimmunized control birds following challenge with both APEC strains. Birds that received the smallest amount of immunogen had the lowest lesion scores. Although further study will be needed to confirm the value of Iss as an immunoprotective antigen, these preliminary data suggest that Iss may have the potential to elicit significant protection in birds against heterologous E. coli challenge.

  20. 77 FR 9888 - Shiga Toxin-Producing Escherichia coli

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... program for the six non-O157 STEC, as it already does for E. coli O157:H7. The Agency intended to begin... Food Safety and Inspection Service Shiga Toxin-Producing Escherichia coli in Certain Raw Beef Products... manufacturing trimmings for six non-O157 Shiga toxin-producing Escherichia coli (STEC) serogroups (O26, O45...

  1. Systems Metabolic Engineering of Escherichia coli.

    PubMed

    Choi, Kyeong Rok; Shin, Jae Ho; Cho, Jae Sung; Yang, Dongsoo; Lee, Sang Yup

    2017-03-01

    Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.

  2. Systems Metabolic Engineering of Escherichia coli.

    PubMed

    Choi, Kyeong Rok; Shin, Jae Ho; Cho, Jae Sung; Yang, Dongsoo; Lee, Sang Yup

    2016-05-01

    Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.

  3. Diversity of CRISPR loci in Escherichia coli.

    PubMed

    Díez-Villaseñor, C; Almendros, C; García-Martínez, J; Mojica, F J M

    2010-05-01

    CRISPR (clustered regularly interspaced short palindromic repeats) and CAS (CRISPR-associated sequence) proteins are constituents of a novel genetic barrier that limits horizontal gene transfer in prokaryotes by means of an uncharacterized mechanism. The fundamental discovery of small RNAs as the guides of the defence apparatus arose as a result of Escherichia coli studies. However, a survey of the system diversity in this species in order to further contribute to the understanding of the CRISPR mode of action has not yet been performed. Here we describe two CRISPR/CAS systems found in E. coli, following the analysis of 100 strains representative of the species' diversity. Our results substantiate different levels of activity between loci of both CRISPR types, as well as different target preferences and CRISPR relevances for particular groups of strains. Interestingly, the data suggest that the degeneration of one CRISPR/CAS system in E. coli ancestors could have been brought about by self-interference.

  4. Thymineless death in Escherichia coli: strain specificity.

    PubMed

    Cummings, D J; Mondale, L

    1967-06-01

    Thymineless death of various ultraviolet (UV)-sensitive strains of Escherichia coli B and K-12 was investigated. It was found that E. coli B, B(s-12), K-12 rec-21, and possibly K-12 Lon(-), all sensitive to UV, were also sensitive to thymine starvation. However, other UV-sensitive strains of E. coli were found to display the typical resistant-type kinetics of thymineless death. The correlation of these results with various other cellular processes suggested that the filament-forming ability of the bacteria might be involved in the mechanism of thymineless death. It was apparent from the present results that capacity for host-cell reactivation, recombination ability, thymine dimer excision, and probably induction of a defective prophage had little to do with determining sensitivity to thymine deprivation.

  5. Thymineless Death in Escherichia coli: Strain Specificity

    PubMed Central

    Cummings, Donald J.; Mondale, Lee

    1967-01-01

    Thymineless death of various ultraviolet (UV)-sensitive strains of Escherichia coli B and K-12 was investigated. It was found that E. coli B, Bs−12, K-12 rec-21, and possibly K-12 Lon−, all sensitive to UV, were also sensitive to thymine starvation. However, other UV-sensitive strains of E. coli were found to display the typical resistant-type kinetics of thymineless death. The correlation of these results with various other cellular processes suggested that the filament-forming ability of the bacteria might be involved in the mechanism of thymineless death. It was apparent from the present results that capacity for host-cell reactivation, recombination ability, thymine dimer excision, and probably induction of a defective prophage had little to do with determining sensitivity to thymine deprivation. Images PMID:5337772

  6. Interaction between Escherichia coli and lunar fines

    NASA Technical Reports Server (NTRS)

    Johansson, K. R.

    1983-01-01

    A sample of mature lunar fines (10084.151) was solubilized to a high degree (about 17 percent) by the chelating agent salicylic acid (0.01. M). The neutralized (pH adjusted to 7.0) leachate was found to inhibit the growth of Escherichia coli (ATCC 259922) in a minimial mineral salts glucose medium; however, the inhibition was somewhat less than that caused by neutralized salicylic acid alone. The presence of lunar fines in the minimal medium was highly stimulatory to growth of E. coli following an early inhibitory response. The bacterium survived less well in the lunar leachate than in distilled water, no doubt because of the salicylate. It was concluded that the sample of lunar soil tested has nutritional value to E. coli and that certain products of fermentation helped to solubilize the lunar soil.

  7. Escherichia coli O 27 in adult diarrhoea.

    PubMed Central

    Hobbs, B. C.; Rowe, B.; Kendall, M.; Turnbull, P. C.; Ghosh, A. C.

    1976-01-01

    Escherichia coli O 27 H 7 was found in 16 stool samples submitted during a Caribbean cruise (Cruise Z) by 29 patients reporting with diarrhoea. A retrospective search revealed E. coli O 27 H 7 in 11 of 20 and 2 of 14 stool cultures from patients on two previous cruises (Y and X respectively) and in a culture from fresh cream (Cruise Y). The repeated occurrence of E. coli O 27 H 7 in the absence of any other apparent cause suggested that this serotype may have been responsible for the diarrhoea. The results of pathogenicity tests suggested that this strain elaborated heat-stable (ST) enterotoxin. The possibility that food may have been the vector is discussed. PMID:794406

  8. Frequency-Dependent Escherichia coli Chemotaxis Behavior

    NASA Astrophysics Data System (ADS)

    Zhu, Xuejun; Si, Guangwei; Deng, Nianpei; Ouyang, Qi; Wu, Tailin; He, Zhuoran; Jiang, Lili; Luo, Chunxiong; Tu, Yuhai

    2012-03-01

    We study Escherichia coli chemotaxis behavior in environments with spatially and temporally varying attractant sources by developing a unique microfluidic system. Our measurements reveal a frequency-dependent chemotaxis behavior. At low frequency, the E. coli population oscillates in synchrony with the attractant. In contrast, in fast-changing environments, the population response becomes smaller and out of phase with the attractant waveform. These observations are inconsistent with the well-known Keller-Segel chemotaxis equation. A new continuum model is proposed to describe the population level behavior of E. coli chemotaxis based on the underlying pathway dynamics. With the inclusion of a finite adaptation time and an attractant consumption rate, our model successfully explains the microfluidic experiments at different stimulus frequencies.

  9. Production of curcuminoids in engineered Escherichia coli.

    PubMed

    Kim, Eun Ji; Cha, Mi Na; Kim, Bog-Gyu; Ahn, Joong-Hoon

    2017-03-09

    Curcumin, a hydrophobic polyphenol derived from the rhizome of the herb Curcuma longa, possesses diverse pharmacological properties including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic activity. Two curcuminoids (dicinnamoylmethane and bisdemethoxycurcumin) were synthesized from glucose in Escherichia coli. PAL (phenylalanine ammonia lyase) or TAL (tyrosine ammonia lyase), along with Os4CL (p-coumaroyl-CoA ligase) and CUS (curcumin synthase), were introduced in to E. coli, and each strain produced dicinnamoylmethane or bisdemethoxycurcumin, respectively. In order to increase the production of curcuminoids in E. coli, the shikimic acid biosynthesis pathway which increases the substrates for curcuminoid biosynthesis, was engineered. Using engineered strains, the production of bisdemethoxycurcumin increased from 0.32 to 4.63 mg/L, and that of dicinnamoylmethane from 1.24 mg/L and 6.95 mg/L.

  10. Prodigiosin - A Multifaceted Escherichia coli Antimicrobial Agent

    PubMed Central

    Zorec, Maša; Stopar, David

    2016-01-01

    Despite a considerable interest in prodigiosin, the mechanism of its antibacterial activity is still poorly understood. In this work, Escherichia coli cells were treated with prodigiosin to determine its antimicrobial effect on bacterial physiology. The effect of prodigiosin was concentration dependent. In prodigiosin treated cells above MIC value no significant DNA damage or cytoplasmic membrane disintegration was observed. The outer membrane, however, becomes leaky. Cells had severely decreased respiration activity. In prodigiosin treated cells protein and RNA synthesis were inhibited, cells were elongated but could not divide. Pre-treatment with prodigiosin improved E. coli survival rate in media containing ampicillin, kanamycin and erythromycin but not phleomycin. The results suggest that prodigiosin acts as a bacteriostatic agent in E. coli cells. If prodigiosin was diluted, cells resumed growth. The results indicate that prodigiosin has distinct mode of antibacterial action in different bacteria. PMID:27612193

  11. Adhesive threads of extraintestinal pathogenic Escherichia coli.

    PubMed

    Antão, Esther-Maria; Wieler, Lothar H; Ewers, Christa

    2009-12-10

    The ability to adhere to host surfaces is by far the most vital step in the successful colonization by microbial pathogens. Colonization begins with the attachment of the bacterium to receptors expressed by cells forming the lining of the mucosa. Long hair like extracellular appendages called fimbriae, produced by most Gram-negative pathogens, mediate specific attachment to the epithelial cell surface. Associated with the fimbriae is a protein called an adhesin, which directs high-affinity binding to specific cell surface components. In the last couple of years, an enormous amount of research has been undertaken that deals with understanding how bacterial pathogens adhere to host cells. E. coli in all probability is one of the best studied free-living organisms. A group of E. coli called Extraintestinal pathogenic E. coli (ExPEC) including both human and animal pathogens like Uropathogenic E. coli (UPEC), Newborn meningitic E. coli (NMEC) and Avian pathogenic E. coli (APEC), have been found to harbour many fimbriae including Type 1 fimbriae, P fimbriae, curli fibres, S fimbriae, F1C fimbriae, Dr fimbriae, afimbrial adhesins, temperature-sensitive haemagglutinin and many novel adhesin gene clusters that have not yet been characterized. Each of these adhesins is unique due to the recognition of an adhesin-specific receptor, though as a group these adhesins share common genomic organization. A newly identified putative adhesin temporarily termed ExPEC Adhesin I, encoded by gene yqi, has been recently found to play a significant role in the pathogenesis of APEC infection, thus making it an interesting candidate for future research. The aim of this review is to describe the role of ExPEC adhesins during extraintestinal infections known till date, and to suggest the idea of investigating their potential role in the colonization of the host gut which is said to be a reservoir for ExPEC.

  12. Inactivation of Escherichia coli by citral.

    PubMed

    Somolinos, M; García, D; Condón, S; Mackey, B; Pagán, R

    2010-06-01

    The aim was to evaluate (i) the resistance of Escherichia coli BJ4 to citral in a buffer system as a function of citral concentration, treatment medium pH, storage time and initial inoculum size, (ii) the role of the sigma factor RpoS on citral resistance of E. coli, (iii) the role of the cell envelope damage in the mechanism of microbial inactivation by citral and (iiii) possible synergistic effects of mild heat treatment and pulsed electric fields (PEF) treatment combined with citral. The initial inoculum size greatly affected the efficacy of citral against E. coli cells. Exposure to 200 microl l(-1) of citral at pH 4.0 for 24 h at 20 degrees C caused the inactivation of more than 5 log(10) cycles of cells starting at an inoculum size of 10(6) or 10(7) CFU ml(-1), whereas increasing the cell concentration to 10(9) CFU ml(-1) caused <1 log(10) cycle of inactivation. Escherichia coli showed higher resistance to citral at pH 4.0 than pH 7.0. The rpoS null mutant strain E. coli BJ4L1 was less resistant to citral than the wild-type strain. Occurrence of sublethal injury to both the cytoplasmic and outer membranes was demonstrated by adding sodium chloride or bile salts to the recovery media. The majority of sublethally injured cells by citral required energy and lipid synthesis for repair. A strongly synergistic lethal effect was shown by mild heat treatment combined with citral but the presence of citral during the application of a PEF treatment did not show any advantage. This work confirms that cell envelope damage is an important event in citral inactivation of bacteria, and it describes the key factors on the inactivation of E. coli cells by citral. Knowledge about the mechanism of microbial inactivation by citral helps establish successful combined preservation treatments.

  13. Cation Transport in Escherichia coli

    PubMed Central

    Schultz, Stanley G.; Solomon, A. K.

    1961-01-01

    Methods have been developed to study the intracellular Na and K concentrations in E. coli, strain K-12. These intracellular cation concentrations have been shown to be functions of the extracellular cation concentrations and the age of the bacterial culture. During the early logarithmic phase of growth, the intracellular K concentration greatly exceeds that of the external medium, whereas the intracellular Na concentration is lower than that of the growth medium. As the age of the culture increases, the intracellular K concentration falls and the intracellular Na concentration rises, changes which are related to the fall in the pH of the medium and to the accumulation of the products of bacterial metabolism. When stationary phase cells, which are rich in Na and poor in K, are resuspended in fresh growth medium, there is a rapid reaccumulation of K and extrusion of Na. These processes represent oppositely directed net ion movements against concentration gradients, and have been shown to be dependent upon the presence of an intact metabolic energy supply. PMID:13909521

  14. Cation Transport in Escherichia coli

    PubMed Central

    Schultz, Stanley G.; Epstein, Wolfgang; Solomon, A. K.

    1963-01-01

    The resuspension of K-poor, Na-rich stationary phase E. coli in fresh medium at pH 7.0 results in a rapid uptake of K and extrusion of Na by the cells. In all experiments net K uptake exceeded net Na extrusion. An investigation of the uptake of glucose, PO4, and Mg and the secretion of H by these cells indicates that the excess K uptake is not balanced by the simultaneous uptake of anions but must be accompanied by the extrusion of cations from the cell. The kinetics of net K uptake are consistent with the existence of two parallel influx processes. The first is rapid, of brief duration, and accounts for approximately 60 per cent of the total net K uptake. This process is a function of the extracellular K concentration, is inhibited in acid media, and appears to be a 1 for 1 exchange of extracellular K for intracellular H. The second influx process has a half-time of approximately 12 minutes, and is not affected by acid media. This process is a function of the intracellular Na concentration, is dependent upon the presence of K in the medium, and may be ascribed to a 1 for 1 exchange of extracellular K for intracellular Na. PMID:14080819

  15. Biodegradation of aromatic compounds by Escherichia coli.

    PubMed

    Díaz, E; Ferrández, A; Prieto, M A; García, J L

    2001-12-01

    Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications.

  16. Biodegradation of Aromatic Compounds by Escherichia coli

    PubMed Central

    Díaz, Eduardo; Ferrández, Abel; Prieto, María A.; García, José L.

    2001-01-01

    Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications. PMID:11729263

  17. Profiling of Escherichia coli Chromosome database.

    PubMed

    Yamazaki, Yukiko; Niki, Hironori; Kato, Jun-ichi

    2008-01-01

    The Profiling of Escherichia coli Chromosome (PEC) database (http://www.shigen.nig.ac.jp/ecoli/pec/) is designed to allow E. coli researchers to efficiently access information from functional genomics studies. The database contains two principal types of data: gene essentiality and a large collection of E. coli genetic research resources. The essentiality data are based on data compilation from published single-gene essentiality studies and on cell growth studies of large-deletion mutants. Using the circular and linear viewers for both whole genomes and the minimal genome, users can not only gain an overview of the genome structure but also retrieve information on contigs, gene products, mutants, deletions, and so forth. In particular, genome-wide exhaustive mutants are an essential resource for studying E. coli gene functions. Although the genomic database was constructed independently from the genetic resources database, users may seamlessly access both types of data. In addition to these data, the PEC database also provides a summary of homologous genes of other bacterial genomes and of protein structure information, with a comprehensive interface. The PEC is thus a convenient and useful platform for contemporary E. coli researchers.

  18. Current Interventions for Controlling Pathogenic Escherichia coli.

    PubMed

    Kim, Nam Hee; Cho, Tae Jin; Rhee, Min Suk

    2017-01-01

    This review examined scientific reports and articles published from 2007 to 2016 regarding the major environmental sources of pathogenic Escherichia coli and the routes by which they enter the human gastrointestinal tract. The literature describes novel techniques used to combat pathogenic E. coli transmitted to humans from livestock and agricultural products, food-contact surfaces in processing environments, and food products themselves. Although prevention before contamination is always the best "intervention," many studies aim to identify novel chemical, physical, and biological techniques that inactivate or eliminate pathogenic E. coli cells from breeding livestock, growing crops, and manufactured food products. Such intervention strategies target each stage of the food chain from the perspective of "Farm to Table food safety" and aim to manage major reservoirs of pathogenic E. coli throughout the entire process. Issues related to, and recent trends in, food production must address not only the safety of the food itself but also the safety of those who consume it. Thus, research aims to discover new "natural" antimicrobial agents and to develop "multiple hurdle technology" or other novel technologies that preserve food quality. In addition, this review examines the practical application of recent technologies from the perspective of product quality and safety. It provides comprehensive insight into intervention measures used to ensure food safety, specifically those aimed at pathogenic E. coli. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The 503nm pigment of Escherichia coli

    PubMed Central

    Kamitakahara, Joyce R.; Polglase, W. J.

    1970-01-01

    The yield of cell protein was one-third less for streptomycin-dependent Escherichia coli B than for the wild-type parent strain when both were grown aerobically on a medium with limiting glucose, but anaerobically the yield of protein was similar for both strains. The transient pigment absorbing at 503nm that is known to be present in E. coli and other organisms was not detectable in streptomycin-dependent mutants nor in a non-dependent (energy-deficient) revertant. When wild-type E. coli B was grown on limiting glucose–salts medium containing 2,4 dinitrophenol, the yield of cell protein was decreased and formation of the 503nm pigment was inhibited. Fumarase, aconitase and glucose 6-phosphate dehydrogenase were de-repressed in E. coli B cells grown with excess of glucose in a medium containing 2,4-dinitrophenol. In air-oxidized, wild-type E. coli B cells, the 503nm pigment appeared before reduced cytochromes when gluconate was the substrate but failed to appear when succinate was the substrate. The results provide evidence for a role of the 503nm pigment in aerobic energy metabolism, possibly as an electron acceptor from NADPH. PMID:4395501

  20. Complete Genome Sequences of Two Escherichia coli Phages, vB_EcoM_ ESCO5 and vB_EcoM_ESCO13, Which Are Related to phAPEC8

    PubMed Central

    Trotereau, Angélina; Gonnet, Mathieu; Viardot, Antoine; Lalmanach, Anne-Christine; Guabiraba, Rodrigo; Chanteloup, Nathalie Katy

    2017-01-01

    ABSTRACT We report here the complete genome sequences of two Myoviridae phages that infect various avian-pathogenic Escherichia coli strains and that are closely related to phage phAPEC8. PMID:28360172

  1. Intramammary challenge with Escherichia coli following immunization with a curli-producing Escherichia coli.

    PubMed

    Todhunter, D A; Smith, K L; Hogan, J S; Nelson, L

    1991-03-01

    Holstein and Jersey cattle were immunized with a curli-producing strain of Escherichia coli (pCRL65/A012) or a noncurli-producing strain (pUC18/HB101) to determine differences in resistance to establishment of experimental intramammary infection. Cows (n = 6 per group) were immunized at 14 d prior to drying off, 7 d of involution, and at calving with 3 x 10(10) E. coli in Freund's Incomplete Adjuvant. At 30 d of lactation, one mammary quarter of each cow was infused with a wild strain of E. coli (727). Escherichia coli 727 was isolated from a naturally occurring intramammary infection and produced curli. All challenged quarters became infected, and all cows developed acute clinical mastitis. Geometric mean duration of intramammary infections was 6 d for both immunization groups. All infections were spontaneously eliminated within 10 d. No differences occurred between immunization groups in blood selenium and glutathione peroxidase activity, plasma selenium, number of E. coli 727 isolated from secretion after challenge, rectal temperature and SCC response, clinical status of mammary quarters, or DMI. Reduction in milk production after challenge was greater for cows immunized with E. coli pCRL65/A012. Immunization of dairy cattle with a curli-producing strain of E. coli did not protect against experimental intramammary challenge during lactation.

  2. ELECTROPHORETIC MOBILITIES OF ESCHERICHIA COLI 0157:H7 AND WILD-TYPE ESCHERICHIA COLI STRAINS

    EPA Science Inventory

    The electrophoretic mobility (EPM) of a number of human-virulent and "wild-type" Escherichia coli strains in phosphate buffered water was measured. The impact of pH, ionic strength, cation type (valence) and concentration, and bacterial strain on the EPM was investigated. Resul...

  3. ELECTROPHORETIC MOBILITIES OF ESCHERICHIA COLI 0157:H7 AND WILD-TYPE ESCHERICHIA COLI STRAINS

    EPA Science Inventory

    The electrophoretic mobility (EPM) of a number of human-virulent and "wild-type" Escherichia coli strains in phosphate buffered water was measured. The impact of pH, ionic strength, cation type (valence) and concentration, and bacterial strain on the EPM was investigated. Resul...

  4. Virulence factors of uropathogenic Escherichia coli.

    PubMed

    Emody, L; Kerényi, M; Nagy, G

    2003-10-01

    Virulence factors of Escherichia coli are of two main types; those produced on the surface of the cell and those produced within the cell and then exported to the site of action. Those on the surface include different sorts of fimbriae that have a role in adhesion to the surface of host cells but may also have additional roles such as tissue invasion, biofilm formation or cytokine induction. The activities of cell wall components are discussed and several exported virulence factors are described that have anti host cell activities. Others virulence factors enable the bacteria to grow in an environment of iron restriction.

  5. Acid tolerance of enterohemorrhagic Escherichia coli.

    PubMed Central

    Benjamin, M M; Datta, A R

    1995-01-01

    Enterohemorrhagic Escherichia coli (EHEC) strains were tested for their ability to survive in acid pH at 37 degrees C. No loss of viability was observed in an O157:H7 EHEC strain (ATCC 43895) at pH levels of 3.0 and 2.5 for at least 5 h. The level of acid tolerance of most EHEC isolates was very high, similar to that of Shigella flexneri strains. The acid tolerance was dependent on the growth phase and pH of the growth medium. PMID:7747983

  6. Detection of Escherichia coli enterotoxins in stools.

    PubMed Central

    Merson, M H; Yolken, R H; Sack, R B; Froehlich, J L; Greenberg, H B; Huq, I; Black, R W

    1980-01-01

    We determined whether enterotoxigenic Escherichia coli diarrhea could be diagnosed by direct examination of stools for heat-labile (LT) and heat-stable (ST) enterotoxins. The Y-1 adrenal cell and an enzyme-linked immunosorbent assay (ELISA) detected LT in 85 and 93%, respectively, of stool specimens obtained from adults with acute diarrhea from whom an LT- and ST-producing organism had been isolated. Furthermore, the ELISA assay detected LT in 8 of 35 stool specimens from which no LT-producing E. coli had been isolated. The infant mouse assay was utilized to detect ST in these stool specimens and was found to be an insensitive method, showing positive results in only 36% of the specimens from which an ST-producing organism was isolated. Further studies are warranted to determine the diagnostic value of direct detection of LT in stools, especially by the ELISA method. PMID:6995331

  7. Production of recombinant avidin in Escherichia coli.

    PubMed

    Airenne, K J; Sarkkinen, P; Punnonen, E L; Kulomaa, M S

    1994-06-24

    A recombinant avidin (re-Avd), containing amino acids (aa) 1-123 of the native chicken egg-white Avd, was produced in Escherichia coli. When cells were grown at 37 degrees C production was over 1 microgram/ml, due to altering the codon preference of the first ten codons. The re-Avd was recovered as a soluble protein from cells grown at 25 or 30 degrees C, whereas at 37 degrees C it was mostly insoluble in inclusion bodies. Our results indicated that, despite the potentially harmful biotin-binding activity of Avd, it is possible to produce biologically active Avd in E. coli which then can easily be purified by affinity chromatography on a biotin column in a single step.

  8. Engineering ethanologenic Escherichia coli for levoglucosan utilization.

    PubMed

    Layton, Donovan S; Ajjarapu, Avanthi; Choi, Dong Won; Jarboe, Laura R

    2011-09-01

    Levoglucosan is a major product of biomass pyrolysis. While this pyrolyzed biomass, also known as bio-oil, contains sugars that are an attractive fermentation substrate, commonly-used biocatalysts, such as Escherichia coli, lack the ability to metabolize this anhydrosugar. It has previously been shown that recombinant expression of the levoglucosan kinase enzyme enables use of levoglucosan as carbon and energy source. Here, ethanologenic E. coli KO11 was engineered for levoglucosan utilization by recombinant expression of levoglucosan kinase from Lipomyces starkeyi. Our engineering strategy uses a codon-optimized gene that has been chromosomally integrated within the pyruvate to ethanol (PET) operon and does not require additional antibiotics or inducers. Not only does this engineered strain use levoglucosan as sole carbon source, but it also ferments levoglucosan to ethanol. This work demonstrates that existing biocatalysts can be easily modified for levoglucosan utilization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Designed phosphoprotein recognition in Escherichia coli.

    PubMed

    Sawyer, Nicholas; Gassaway, Brandon M; Haimovich, Adrian D; Isaacs, Farren J; Rinehart, Jesse; Regan, Lynne

    2014-11-21

    Protein phosphorylation is a central biological mechanism for cellular adaptation to environmental changes. Dysregulation of phosphorylation signaling is implicated in a wide variety of diseases. Thus, the ability to detect and quantify protein phosphorylation is highly desirable for both diagnostic and research applications. Here we present a general strategy for detecting phosphopeptide-protein interactions in Escherichia coli. We first redesign a model tetratricopeptide repeat (TPR) protein to recognize phosphoserine in a sequence-specific fashion and characterize the interaction with its target phosphopeptide in vitro. We then combine in vivo site-specific incorporation of phosphoserine with split mCherry assembly to observe the designed phosphopeptide-protein interaction specificity in E. coli. This in vivo strategy for detecting and characterizing phosphopeptide-protein interactions has numerous potential applications for the study of natural interactions and the design of novel ones.

  10. Engineering the Escherichia coli Fermentative Metabolism

    NASA Astrophysics Data System (ADS)

    Orencio-Trejo, M.; Utrilla, J.; Fernández-Sandoval, M. T.; Huerta-Beristain, G.; Gosset, G.; Martinez, A.

    Fermentative metabolism constitutes a fundamental cellular capacity for industrial biocatalysis. Escherichia coli is an important microorganism in the field of metabolic engineering for its well-known molecular characteristics and its rapid growth. It can adapt to different growth conditions and is able to grow in the presence or absence of oxygen. Through the use of metabolic pathway engineering and bioprocessing techniques, it is possible to explore the fundamental cellular properties and to exploit its capacity to be applied as industrial biocatalysts to produce a wide array of chemicals. The objective of this chapter is to review the metabolic engineering efforts carried out with E. coli by manipulating the central carbon metabolism and fermentative pathways to obtain strains that produce metabolites with high titers, such as ethanol, alanine, lactate and succinate.

  11. Escherichia coli growth under modeled reduced gravity

    NASA Technical Reports Server (NTRS)

    Baker, Paul W.; Meyer, Michelle L.; Leff, Laura G.

    2004-01-01

    Bacteria exhibit varying responses to modeled reduced gravity that can be simulated by clino-rotation. When Escherichia coli was subjected to different rotation speeds during clino-rotation, significant differences between modeled reduced gravity and normal gravity controls were observed only at higher speeds (30-50 rpm). There was no apparent affect of removing samples on the results obtained. When E. coli was grown in minimal medium (at 40 rpm), cell size was not affected by modeled reduced gravity and there were few differences in cell numbers. However, in higher nutrient conditions (i.e., dilute nutrient broth), total cell numbers were higher and cells were smaller under reduced gravity compared to normal gravity controls. Overall, the responses to modeled reduced gravity varied with nutrient conditions; larger surface to volume ratios may help compensate for the zone of nutrient depletion around the cells under modeled reduced gravity.

  12. Escherichia coli growth under modeled reduced gravity

    NASA Technical Reports Server (NTRS)

    Baker, Paul W.; Meyer, Michelle L.; Leff, Laura G.

    2004-01-01

    Bacteria exhibit varying responses to modeled reduced gravity that can be simulated by clino-rotation. When Escherichia coli was subjected to different rotation speeds during clino-rotation, significant differences between modeled reduced gravity and normal gravity controls were observed only at higher speeds (30-50 rpm). There was no apparent affect of removing samples on the results obtained. When E. coli was grown in minimal medium (at 40 rpm), cell size was not affected by modeled reduced gravity and there were few differences in cell numbers. However, in higher nutrient conditions (i.e., dilute nutrient broth), total cell numbers were higher and cells were smaller under reduced gravity compared to normal gravity controls. Overall, the responses to modeled reduced gravity varied with nutrient conditions; larger surface to volume ratios may help compensate for the zone of nutrient depletion around the cells under modeled reduced gravity.

  13. Transport proteins promoting Escherichia coli pathogenesis.

    PubMed

    Tang, Fengyi; Saier, Milton H

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies.

  14. Engineering Escherichia coli for methanol conversion.

    PubMed

    Müller, Jonas E N; Meyer, Fabian; Litsanov, Boris; Kiefer, Patrick; Potthoff, Eva; Heux, Stéphanie; Quax, Wim J; Wendisch, Volker F; Brautaset, Trygve; Portais, Jean-Charles; Vorholt, Julia A

    2015-03-01

    Methylotrophic bacteria utilize methanol and other reduced one-carbon compounds as their sole source of carbon and energy. For this purpose, these bacteria evolved a number of specialized enzymes and pathways. Here, we used a synthetic biology approach to select and introduce a set of "methylotrophy genes" into Escherichia coli based on in silico considerations and flux balance analysis to enable methanol dissimilation and assimilation. We determined that the most promising approach allowing the utilization of methanol was the implementation of NAD-dependent methanol dehydrogenase and the establishment of the ribulose monophosphate cycle by expressing the genes for hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloisomerase (Phi). To test for the best-performing enzymes in the heterologous host, a number of enzyme candidates from different donor organisms were selected and systematically analyzed for their in vitro and in vivo activities in E. coli. Among these, Mdh2, Hps and Phi originating from Bacillus methanolicus were found to be the most effective. Labeling experiments using (13)C methanol with E. coli producing these enzymes showed up to 40% incorporation of methanol into central metabolites. The presence of the endogenous glutathione-dependent formaldehyde oxidation pathway of E. coli did not adversely affect the methanol conversion rate. Taken together, the results of this study represent a major advancement towards establishing synthetic methylotrophs by gene transfer.

  15. Transport proteins promoting Escherichia coli pathogenesis

    PubMed Central

    Tang, Fengyi; Saier, Milton H.

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies. PMID:24747185

  16. Extracellular recombinant protein production from Escherichia coli.

    PubMed

    Ni, Ye; Chen, Rachel

    2009-11-01

    Escherichia coli is the most commonly used host for recombinant protein production and metabolic engineering. Extracellular production of enzymes and proteins is advantageous as it could greatly reduce the complexity of a bioprocess and improve product quality. Extracellular production of proteins is necessary for metabolic engineering applications in which substrates are polymers such as lignocelluloses or xenobiotics since adequate uptake of these substrates is often an issue. The dogma that E. coli secretes no protein has been challenged by the recognition of both its natural ability to secrete protein in common laboratory strains and increased ability to secrete proteins in engineered cells. The very existence of this review dedicated to extracellular production is a testimony for outstanding achievements made collectively by the community in this regard. Four strategies have emerged to engineer E. coli cells to secrete recombinant proteins. In some cases, impressive secretion levels, several grams per liter, were reached. This secretion level is on par with other eukaryotic expression systems. Amid the optimism, it is important to recognize that significant challenges remain, especially when considering the success cannot be predicted a priori and involves much trials and errors. This review provides an overview of recent developments in engineering E. coli for extracellular production of recombinant proteins and an analysis of pros and cons of each strategy.

  17. Engineering Escherichia coli to bind to cyanobacteria.

    PubMed

    Zhang, Zijian; Meng, Liuyi; Ni, Congjian; Yao, Lanqiu; Zhang, Fengyu; Jin, Yuji; Mu, Xuelang; Zhu, Shiyu; Lu, Xiaoyu; Liu, Shiyu; Yu, Congyu; Wang, Chenggong; Zheng, Pu; Wu, Jie; Kang, Li; Zhang, Haoqian M; Ouyang, Qi

    2017-03-01

    We engineered Escherichia coli cells to bind to cyanobacteria by heterologously producing and displaying lectins of the target cyanobacteria on their surface. To prove the efficacy of our approach, we tested this design on Microcystis aeruginosa with microvirin (Mvn), the lectin endogenously produced by this cyanobacterium. The coding sequence of Mvn was C-terminally fused to the ice nucleation protein NC (INPNC) gene and expressed in E. coli. Results showed that E. coli cells expressing the INPNC::Mvn fusion protein were able to bind to M. aeruginosa and the average number of E. coli cells bound to each cyanobacterial cell was enhanced 8-fold. Finally, a computational model was developed to simulate the binding reaction and help reconstruct the binding parameters. To our best knowledge, this is the first report on the binding of two organisms in liquid culture mediated by the surface display of lectins and it may serve as a novel approach to mediate microbial adhesion.

  18. Inactivation of Escherichia coli by ultrasonic irradiation.

    PubMed

    Furuta, M; Yamaguchi, M; Tsukamoto, T; Yim, B; Stavarache, C E; Hasiba, K; Maeda, Y

    2004-04-01

    Ultrasonic inactivation of Escherichia coli XL1-Blue has been investigated by high-intensity ultrasonic waves from horn type sonicator (27.5 kHz) utilizing the "squeeze-film effect". The amplitude of the vibration face contacting the sample solution was used as an indication of the ultrasonic power intensity. The inactivation of the E. coli cells by ultrasonic irradiation shows pseudo first-order behavior. The inactivation rate constant gradually increased with increasing amplitude of the vibration face and showed rapid increase above 3 microm (p-p). In contrast, the H2O2 formation was not observed below 3 microm (p-p), indicating that the ultrasonic shock wave might be more important than indirect effect of OH radicals formed by ultrasonic cavitation in this system. The optimal thickness of the squeeze film was determined as 2 mm for the E. coli inactivation. More than 99% of E. coli cells was inactivated within 180-s sonication at the amplitude of 3 microm (p-p) and 2 mm of the thickness of the squeeze film.

  19. Zoonotic potential of Escherichia coli isolates from retail chicken meat products and eggs.

    PubMed

    Mitchell, Natalie M; Johnson, James R; Johnston, Brian; Curtiss, Roy; Mellata, Melha

    2015-02-01

    Chicken products are suspected as a source of extraintestinal pathogenic Escherichia coli (ExPEC), which causes diseases in humans. The zoonotic risk to humans from chicken-source E. coli is not fully elucidated. To clarify the zoonotic risk posed by ExPEC in chicken products and to fill existing knowledge gaps regarding ExPEC zoonosis, we evaluated the prevalence of ExPEC on shell eggs and compared virulence-associated phenotypes between ExPEC and non-ExPEC isolates from both chicken meat and eggs. The prevalence of ExPEC among egg-source isolates was low, i.e., 5/108 (4.7%). Based on combined genotypic and phenotypic screening results, multiple human and avian pathotypes were represented among the chicken-source ExPEC isolates, including avian-pathogenic E. coli (APEC), uropathogenic E. coli (UPEC), neonatal meningitis E. coli (NMEC), and sepsis-associated E. coli (SEPEC), as well as an undefined ExPEC group, which included isolates with fewer virulence factors than the APEC, UPEC, and NMEC isolates. These findings document a substantial prevalence of human-pathogenic ExPEC-associated genes and phenotypes among E. coli isolates from retail chicken products and identify key virulence traits that could be used for screening. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Zoonotic Potential of Escherichia coli Isolates from Retail Chicken Meat Products and Eggs

    PubMed Central

    Mitchell, Natalie M.; Johnson, James R.; Johnston, Brian; Curtiss, Roy

    2014-01-01

    Chicken products are suspected as a source of extraintestinal pathogenic Escherichia coli (ExPEC), which causes diseases in humans. The zoonotic risk to humans from chicken-source E. coli is not fully elucidated. To clarify the zoonotic risk posed by ExPEC in chicken products and to fill existing knowledge gaps regarding ExPEC zoonosis, we evaluated the prevalence of ExPEC on shell eggs and compared virulence-associated phenotypes between ExPEC and non-ExPEC isolates from both chicken meat and eggs. The prevalence of ExPEC among egg-source isolates was low, i.e., 5/108 (4.7%). Based on combined genotypic and phenotypic screening results, multiple human and avian pathotypes were represented among the chicken-source ExPEC isolates, including avian-pathogenic E. coli (APEC), uropathogenic E. coli (UPEC), neonatal meningitis E. coli (NMEC), and sepsis-associated E. coli (SEPEC), as well as an undefined ExPEC group, which included isolates with fewer virulence factors than the APEC, UPEC, and NMEC isolates. These findings document a substantial prevalence of human-pathogenic ExPEC-associated genes and phenotypes among E. coli isolates from retail chicken products and identify key virulence traits that could be used for screening. PMID:25480753

  1. 21 CFR 866.3255 - Escherichia coli serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Escherichia coli serological reagents. 866.3255 Section 866.3255 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... antisera conjugated with a fluorescent dye used to identify Escherichia coli directly from...

  2. 21 CFR 866.3255 - Escherichia coli serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Escherichia coli serological reagents. 866.3255 Section 866.3255 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... antisera conjugated with a fluorescent dye used to identify Escherichia coli directly from...

  3. Susceptibilities of Escherichia coli and Staphylococcus aureus to Aloe barbadensis.

    PubMed

    Shilpakala, S R; Prathiba, J; Malathi, R

    2009-01-01

    The in vitro susceptibilities of Escherichia coli and Staphylococcus aureus were evaluated and the two organisms were susceptible to the inner gel of aloe barbadensis, though it was more effective against Staphylococcus aureus than Escherichia coli. The reduction for Aloe Vera (AV) needed to suppress the growth of the gram-positive bacterium was attributed to the structural differences between the two organisms.

  4. Effects of Toluene on Escherichia coli

    PubMed Central

    Jackson, Robert W.; DeMoss, J. A.

    1965-01-01

    Jackson, Robert W. (University of California, San Diego, La Jolla), and J. A. DeMoss. Effects of toluene on Escherichia coli. J. Bacteriol. 90:1420–1425. 1965.—When toluene is added at appropriate levels to exponentially growing cultures of Escherichia coli, a time-dependent loss of turbidity is observed which is concurrent with a loss of material to the medium and with unmasking of β-galactosidase. In addition, the galactoside permease system is totally destroyed. Electron micrographs confirm the indications that the cells are not being lysed by toluene, although the cytoplasm collapses to the interior of the cell. Included in the material lost from the cell after toluene treatment is 85% of the total ribonucleic acid (RNA), the principal source of which appears to be the ribosomes. The loss of RNA is temperature-dependent. Protein is also lost to the medium as a function of both temperature and available toluene. Up to 25% of the total protein is found in the medium, the precise amount depending on the level of toluene employed. Zone centrifugation studies of extracts from treated cells indicate that toluene elicits a rapid disaggregation of ribosomes that is terminated, at any stage, by disruption of the cells. The disaggregation is temperature-dependent and does not occur at 4 C. It appears to be distinct from the actual degradation of ribosomal RNA and is accompanied by an accumulation of small particles during the initial phases of treatment at 21 C. Toluene added to crude extracts of normal E. coli cells is unable to cause detectable ribosome destruction. Images PMID:5321488

  5. Comparison of 61 Sequenced Escherichia coli Genomes

    PubMed Central

    Lukjancenko, Oksana; Wassenaar, Trudy M.

    2010-01-01

    Escherichia coli is an important component of the biosphere and is an ideal model for studies of processes involved in bacterial genome evolution. Sixty-one publically available E. coli and Shigella spp. sequenced genomes are compared, using basic methods to produce phylogenetic and proteomics trees, and to identify the pan- and core genomes of this set of sequenced strains. A hierarchical clustering of variable genes allowed clear separation of the strains into clusters, including known pathotypes; clinically relevant serotypes can also be resolved in this way. In contrast, when in silico MLST was performed, many of the various strains appear jumbled and less well resolved. The predicted pan-genome comprises 15,741 gene families, and only 993 (6%) of the families are represented in every genome, comprising the core genome. The variable or ‘accessory’ genes thus make up more than 90% of the pan-genome and about 80% of a typical genome; some of these variable genes tend to be co-localized on genomic islands. The diversity within the species E. coli, and the overlap in gene content between this and related species, suggests a continuum rather than sharp species borders in this group of Enterobacteriaceae. PMID:20623278

  6. Role of Escherichia coli in Biofuel Production.

    PubMed

    Koppolu, Veerendra; Vasigala, Veneela Kr

    2016-01-01

    Increased energy consumption coupled with depleting petroleum reserves and increased greenhouse gas emissions have renewed our interest in generating fuels from renewable energy sources via microbial fermentation. Central to this problem is the choice of microorganism that catalyzes the production of fuels at high volumetric productivity and yield from cheap and abundantly available renewable energy sources. Microorganisms that are metabolically engineered to redirect renewable carbon sources into desired fuel products are contemplated as best choices to obtain high volumetric productivity and yield. Considering the availability of vast knowledge in genomic and metabolic fronts, Escherichia coli is regarded as a primary choice for the production of biofuels. Here, we reviewed the microbial production of liquid biofuels that have the potential to be used either alone or in combination with the present-day fuels. We specifically highlighted the metabolic engineering and synthetic biology approaches used to improve the production of biofuels from E. coli over the past few years. We also discussed the challenges that still exist for the biofuel production from E. coli and their possible solutions.

  7. Role of Escherichia coli in Biofuel Production

    PubMed Central

    Koppolu, Veerendra; Vasigala, Veneela KR

    2016-01-01

    Increased energy consumption coupled with depleting petroleum reserves and increased greenhouse gas emissions have renewed our interest in generating fuels from renewable energy sources via microbial fermentation. Central to this problem is the choice of microorganism that catalyzes the production of fuels at high volumetric productivity and yield from cheap and abundantly available renewable energy sources. Microorganisms that are metabolically engineered to redirect renewable carbon sources into desired fuel products are contemplated as best choices to obtain high volumetric productivity and yield. Considering the availability of vast knowledge in genomic and metabolic fronts, Escherichia coli is regarded as a primary choice for the production of biofuels. Here, we reviewed the microbial production of liquid biofuels that have the potential to be used either alone or in combination with the present-day fuels. We specifically highlighted the metabolic engineering and synthetic biology approaches used to improve the production of biofuels from E. coli over the past few years. We also discussed the challenges that still exist for the biofuel production from E. coli and their possible solutions. PMID:27441002

  8. Microbubble assisted polyhydroxybutyrate production in Escherichia coli.

    PubMed

    Inan, Kadriye; Sal, Fulya Ay; Rahman, Asif; Putman, Ryan J; Agblevor, Foster A; Miller, Charles D

    2016-07-09

    One of the potential limitations of large scale aerobic Escherichia coli fermentation is the need for increased dissolved oxygen for culture growth and bioproduct generation. As culture density increases the poor solubility of oxygen in water becomes one of the limiting factors for cell growth and product formation. A potential solution is to use a microbubble dispersion (MBD) generating device to reduce the diameter and increase the surface area of sparged bubbles in the fermentor. In this study, a recombinant E. coli strain was used to produce polyhydroxybutyrate (PHB) under conventional and MBD aerobic fermentation conditions. In conventional fermentation operating at 350 rpm and 0.8 vvm air flow rate, an OD600 of 6.21 and PHB yield of 23 % (dry cell basis) was achieved. MBD fermentation with similar bioreactor operating parameters produced an OD600 of 8.17 and PHB yield of 43 % PHB, which was nearly double that of the conventional fermentation. This study demonstrated that using a MBD generator can increase oxygen mass transfer into the aqueous phase, increasing E. coli growth and bioproduct generation.

  9. Regulation of alcohol fermentation by Escherichia coli

    SciTech Connect

    Clark, D.P.

    1989-01-01

    The purpose of this project is to elucidate the way in which the fermentative synthesis of ethanol is regulated in the facultative anaerobe Escherichia coli. We are also investigating the control of other genes required for fermentation and anaerobic growth. We have isolated both structural and regulatory mutations affecting the expression of alcohol dehydrogenase, the enzyme responsible for the final step in alcohol synthesis. Some of these regulatory mutations also affect other anaerobically induced genes. The adh gene has been cloned and sequenced. The ADH protein is one of the largest highly expressed proteins in E. coli and requires approximately 2700bp of DNA for its cloning sequence. We have also isolated mutations affecting the fermentative lactate dehydrogenase. In consequence it is now possible to construct E. coli strains defective in the production of any one or more of their normal fermentation products (i.e. formate, acetate, lactate, ethanol and succinate). The factors affecting the ratio of fermentation products are being investigated by in vivo NMR spectroscopy.

  10. Regulation of alcohol fermentation by Escherichia coli

    SciTech Connect

    Clark, D.P.

    1990-01-01

    The purpose of this project is to elucidate the way in which the synthesis of ethanol and related fermentation products are regulated in the facultative anaerobe Escherichia coli. We are also investigating the control of other genes required for anaerobic growth. We have isolated both structural and regulatory mutations affecting the expression of alcohol dehydrogenase, the enzyme responsible for the final step in alcohol synthesis. Some of these regulatory mutations also affect other anaerobically induced genes. The adh gene has been cloned and sequenced. The ADH protein is one of the largest highly expressed proteins in E. coli and requires approximately 2700bp of DNA for its coding sequence. We have also isolated mutations affecting the fermentative lactate dehydrogenase and have recently cloned the ldh gene. In consequence it is now possible to construct E. coli strains defective in the production of any one or more of their normal fermentation products (i.e. formate, acetate, lactate, ethanol and succinate). The factors affecting ratio of fermentation products are being investigated by in vivo NMR spectroscopy.

  11. Arabidopsis alternative oxidase sustains Escherichia coli respiration.

    PubMed Central

    Kumar, A M; Söll, D

    1992-01-01

    Glutamyl-tRNA reductase, encoded by the hemA gene, is the first enzyme in porphyrin biosynthesis in many organisms. Hemes, important porphyrin derivatives, are essential components of redox enzymes, such as cytochromes. Thus a hemA Escherichia coli strain (SASX41B) is deficient in cytochrome-mediated aerobic respiration. Upon complementation of this strain with an Arabidopsis thaliana cDNA library, we isolated a clone which permitted the SASX41B strain to grow aerobically. The clone encodes the gene for Arabidopsis alternative oxidase, whose deduced amino acid sequence was found to have 71% identity with that of the enzyme from the voodoo lily, Sauromatum guttatum. The Arabidopsis protein is expressed as a 31-kDa protein in E. coli and confers on this organism cyanide-resistant growth, which in turn is sensitive to salicylhydroxamate. This implies that a single polypeptide is sufficient for alternative oxidase activity. Based on these observations we propose that a cyanide-insensitive respiratory pathway operates in the transformed E. coli hemA strain. Introduction of this pathway now opens the way to genetic/molecular biological investigations of alternative oxidase and its cofactor. Images PMID:1438286

  12. Long term effects of Escherichia coli mastitis.

    PubMed

    Blum, Shlomo E; Heller, Elimelech D; Leitner, Gabriel

    2014-07-01

    Escherichia coli is one of the most frequently diagnosed causes of bovine mastitis, and is typically associated with acute, clinical mastitis. The objective of the present study was to evaluate the long term effects of intramammary infections by E. coli on milk yield and quality, especially milk coagulation. Twenty-four Israeli Holstein cows diagnosed with clinical mastitis due to intramammary infection by E. coli were used in this study. Mean lactation number, days in milk (DIM) and daily milk yield (DMY) at the time of infection was 3.3 ± 1.3, 131.7 days ± 78.6 and 45.7 L ± 8.4, respectively. DMY, milk constituents, somatic cells count (SCC), differential leukocytes count and coagulation parameters were subsequently assessed. Two patterns of inflammation were identified: 'short inflammation', characterized by <15% decrease in DMY and <30 days until return to normal (n = 5), and 'long inflammation', characterized by >15% decrease in DMY and >30 days to reach a new maximum DMY (n = 19). The estimated mean loss of marketable milk during the study was 200 L/cow for 'short inflammation' cases, and 1,500 L/cow for 'long inflammation' ones. Significant differences between 'short' and 'long inflammation' effects were found in almost all parameters studied. Long-term detrimental effects on milk quality were found regardless of clinical or bacteriological cure of affected glands.

  13. Molecular and phenotypic characterization of Escherichia coli isolated from broiler chicken flocks in Egypt.

    PubMed

    Hussein, Ashraf H M; Ghanem, Ibrahim A I; Eid, Amal A M; Ali, Mohamed A; Sherwood, Julie S; Li, Ganwu; Nolan, Lisa K; Logue, Catherine M

    2013-09-01

    Avian pathogenic Escherichia coli (APEC) infection is responsible for great economic losses to the poultry industry worldwide and there is increasing evidence of its zoonotic importance. In this study, 219 E. coli isolates from 84 poultry flocks in Egypt, including 153 APEC, 30 avian fecal E. coli (AFEC), and 36 environmental E. coli, were subjected to phylogenetic grouping and virulence genotyping. Additionally, 50 of these isolates (30 APEC from colisepticemia and 20 AFEC) were subjected to a more-extensive characterization which included serogrouping, antimicrobial susceptibility analysis, screening for seven intestinal E. coli virulence genes (stx1, stx2, eae, espP, KatP, hlyA, and fliCh7), multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and in vivo virulence testing. More than 90% of the total APEC examined possessed iroN, ompT, hlyF, iss, and iutA, indicating that Egyptian APECs, like their counterparts from the United States, harbor plasmid pathogenicity islands (PAIs). The majority of APEC and AFEC were of phylogenetic groups A, B1, and D. For the 50-isolate subgroup, more than 70% of APEC and 80% ofAFEC were multidrug resistant. Among the subgroup of APEC, MLST analysis identified 11 sequence types (ST) while seven STs were found among AFEC. Based on PFGE, the genetic relatedness of APEC and AFEC ranged from 50%-100% and clustered into four primary groups at 50% similarity. Two of the eight APEC strains tested in chickens were able to induce 25% mortality in 1-day-old chicks. APECs were distinguished from AFECs and environmental E. coli by their content of plasmid PAI genes, whereas APEC isolated from colisepticemia and AFEC were not distinguishable based on their antimicrobial resistance patterns, as both groups were multidrug resistant. Avian E. coli strains from broiler flocks in Egypt show similar sequence types to E. coli associated with human infection.

  14. Antimicrobial resistance of Escherichia coli isolates from broiler chickens and humans

    PubMed Central

    Miles, Tricia D; McLaughlin, Wayne; Brown, Paul D

    2006-01-01

    Background Antimicrobial usage is considered the most important factor promoting the emergence, selection and dissemination of antimicrobial-resistant microorganisms in both veterinary and human medicine. The aim of this study was to investigate the prevalence and genetic basis of tetracycline resistance in faecal Escherichia coli isolates from healthy broiler chickens and compare these data with isolates obtained from hospitalized patients in Jamaica. Results Eighty-two E. coli strains isolated from faecal samples of broiler chickens and urine and wound specimens of hospitalized patients were analyzed by agar disc diffusion to determine their susceptibility patterns to 11 antimicrobial agents. Tetracycline resistance determinants were investigated by plasmid profiling, transformations, and amplification of plasmid-borne resistance genes. Tetracycline resistance occurred at a frequency of 82.4% in avian isolates compared to 43.8% in human isolates. In addition, among avian isolates there was a trend towards higher resistance frequencies to kanamycin and nalidixic acid (p < 0.05), while a greater percentage of human isolates were resistant to chloramphenicol and gentamicin (p < 0.05). Multiple drug resistance was found in isolates from both sources and was usually associated with tetracycline resistance. Tetracycline-resistant isolates from both avian and human sources contained one or several plasmids, which were transmissible by transformation of chemically-competent E. coli. Tetracycline resistance was mediated by efflux genes tetB and/or tetD. Conclusion The present study highlights the prevalence of multiple drug resistant E. coli among healthy broiler chickens in Jamaica, possibly associated with expression of tetracycline resistance. While there did not appear to be a common source for multiple drug resistance in the strains from avian or human origin, the genes encoding resistance are similar. These results suggest that genes are disseminated in the

  15. WGS accurately predicts antimicrobial resistance in Escherichia coli

    USDA-ARS?s Scientific Manuscript database

    Objectives: To determine the effectiveness of whole-genome sequencing (WGS) in identifying resistance genotypes of multidrug-resistant Escherichia coli (E. coli) and whether these correlate with observed phenotypes. Methods: Seventy-six E. coli strains were isolated from farm cattle and measured f...

  16. Oxygen sensitivity of an Escherichia coli mutant.

    PubMed Central

    Adler, H; Mural, R; Suttle, B

    1992-01-01

    Genetic evidence indicates that Oxys-6, an oxygen-sensitive mutant of Escherichia coli AB1157, is defective in the region of the hemB locus. Oxys-6 is capable of growth under aerobic conditions only if cultures are initiated at low-inoculum levels. Aerobic liquid cultures are limited to a cell density of 10(7) cells per ml by the accumulation of a metabolically produced, low-molecular-weight, heat-stable material in complex organic media. Both Oxys-6 and AB1157 cells produce the material, but only aerobic cultures of the mutant are inhibited by it. The material is produced by both intact cells and cell extracts in complex media. This reaction also occurs when the amino acid L-lysine is substituted for complex media. Images PMID:1551829

  17. An overview of atypical enteropathogenic Escherichia coli.

    PubMed

    Hernandes, Rodrigo T; Elias, Waldir P; Vieira, Mônica A M; Gomes, Tânia A T

    2009-08-01

    The enteropathogenic Escherichia coli (EPEC) pathotype is currently divided into two groups, typical EPEC (tEPEC) and atypical EPEC (aEPEC). The property that distinguishes these two groups is the presence of the EPEC adherence factor plasmid, which is only found in tEPEC. aEPEC strains are emerging enteropathogens that have been detected worldwide. Herein, we review the serotypes, virulence properties, genetic relationships, epidemiology, reservoir and diagnosis of aEPEC, including those strains not belonging to the classical EPEC serogroups (nonclassical EPEC serogroups). The large variety of serotypes and genetic virulence properties of aEPEC strains from nonclassical EPEC serogroups makes it difficult to determine which strains are truly pathogenic.

  18. Mechanism of Escherichia coli Resistance to Pyrrhocoricin

    PubMed Central

    Narayanan, Shalini; Modak, Joyanta K.; Ryan, Catherine S.; Garcia-Bustos, Jose; Davies, John K.

    2014-01-01

    Due to their lack of toxicity to mammalian cells and good serum stability, proline-rich antimicrobial peptides (PR-AMPs) have been proposed as promising candidates for the treatment of infections caused by antimicrobial-resistant bacterial pathogens. It has been hypothesized that these peptides act on multiple targets within bacterial cells, and therefore the likelihood of the emergence of resistance was considered to be low. Here, we show that spontaneous Escherichia coli mutants resistant to pyrrhocoricin arise at a frequency of approximately 6 × 10−7. Multiple independently derived mutants all contained a deletion in a nonessential gene that encodes the putative peptide uptake permease SbmA. Sensitivity could be restored to the mutants by complementation with an intact copy of the sbmA gene. These findings question the viability of the development of insect PR-AMPs as antimicrobials. PMID:24590485

  19. Escherichia coli fliAZY operon.

    PubMed Central

    Mytelka, D S; Chamberlin, M J

    1996-01-01

    We have cloned the Escherichia coli fliAZY operon, which contains the fliA gene (the alternative sigma factor sigma F) and two novel genes, fliZ and fliY. Transcriptional mapping of this operon shows two start sites, one of which is preceded by a canonical E sigma F-dependent consensus and is dependent on sigma F for expression in vivo and in vitro. We have overexpressed and purified sigma F and demonstrated that it can direct core polymerase to E sigma F-dependent promoters. FliZ and FliY are not required for motility but may regulate sigma F activity, perhaps in response to a putative cell density signal that may be detected by FliY, a member of the bacterial extracellular solute-binding protein family 3. PMID:8550423

  20. Animal models of enteroaggregative Escherichia coli infection

    PubMed Central

    Philipson, Casandra W.; Bassaganya-Riera, Josep; Hontecillas, Raquel

    2013-01-01

    Enteroaggregative Escherichia coli (EAEC) has been acknowledged as an emerging cause of gastroenteritis worldwide for over two decades. Epidemiologists are revealing the role of EAEC in diarrheal outbreaks as a more common occurrence than ever suggested before. EAEC induced diarrhea is most commonly associated with travelers, children and immunocompromised individuals however its afflictions are not limited to any particular demographic. Many attributes have been discovered and characterized surrounding the capability of EAEC to provoke a potent pro-inflammatory immune response, however cellular and molecular mechanisms underlying initiation, progression and outcomes are largely unknown. This limited understanding can be attributed to heterogeneity in strains and the lack of adequate animal models. This review aims to summarize current knowledge about EAEC etiology, pathogenesis and clinical manifestation. Additionally, current animal models and their limitations will be discussed along with the value of applying systems-wide approaches such as computational modeling to study host-EAEC interactions. PMID:23680797

  1. Examination of the Source and Extended Virulence Genotypes of Escherichia coli Contaminating Retail Poultry Meat

    PubMed Central

    Johnson, Timothy J.; Logue, Catherine M.; Wannemuehler, Yvonne; Kariyawasam, Subhashinie; Doetkott, Curt; DebRoy, Chitrita; White, David G.

    2009-01-01

    Abstract Extraintestinal pathogenic Escherichia coli (ExPEC) are major players in human urinary tract infections, neonatal bacterial meningitis, and sepsis. Recently, it has been suggested that there might be a zoonotic component to these infections. To determine whether the E. coli contaminating retail poultry are possible extraintestinal pathogens, and to ascertain the source of these contaminants, they were assessed for their genetic similarities to E. coli incriminated in colibacillosis (avian pathogenic E. coli [APEC]), E. coli isolated from multiple locations of apparently healthy birds at slaughter, and human ExPEC. It was anticipated that the retail poultry isolates would most closely resemble avian fecal E. coli since only apparently healthy birds are slaughtered, and fecal contamination of carcasses is the presumed source of meat contamination. Surprisingly, this supposition proved incorrect, as the retail poultry isolates exhibited gene profiles more similar to APEC than to fecal isolates. These isolates contained a number of ExPEC-associated genes, including those associated with ColV virulence plasmids, and many belonged to the B2 phylogenetic group, known to be virulent in human hosts. Additionally, E. coli isolated from the crops and gizzards of apparently healthy birds at slaughter also contained a higher proportion of ExPEC-associated genes than did the avian fecal isolates examined. Such similarities suggest that the widely held beliefs about the sources of poultry contamination may need to be reassessed. Also, the presence of ExPEC-like clones on retail poultry meat means that we cannot yet rule out poultry as a source of ExPEC human disease. PMID:19580453

  2. The thermal impulse response of Escherichia coli

    PubMed Central

    Paster, Eli; Ryu, William S.

    2008-01-01

    Swimming Escherichia coli responds to changes in temperature by modifying its motor behavior. Previous studies using populations of cells have shown that E. coli accumulate in spatial thermal gradients, but these experiments did not cleanly separate thermal responses from chemotactic responses. Here we have isolated the thermal response by studying the behavior of single, tethered cells. The motor output of cells grown at 33°C was measured at constant temperature, from 10° to 40°C, and in response to small, impulsive increases in temperature, from 23° to 43°C. The thermal impulse response at temperatures < 31°C is similar to the chemotactic impulse response: Both follow a similar time course, share the same directionality, and show biphasic characteristics. At temperatures > 31°C, some cells show an inverted response, switching from warm- to cold-seeking behavior. The fraction of inverted responses increases nonlinearly with temperature, switching steeply at the preferred temperature of 37°C. PMID:18385380

  3. Characterization of enterotoxigenic bovine Escherichia coli.

    PubMed Central

    Sivaswamy, G; Gyles, C L

    1976-01-01

    Among 300 isolates of bovine Escherichia coli, 56 which had been found enterotoxigenic in calf gut loops were characterized on the basis of O and K antigens, colonial morphology and resistance to seven antimicrobial drugs. The 56 isolates enterotoxigenic in the calf were compared with the nonenterotoxigenic ones. Of the 56 enterotoxigenic E. coli the majority possessed the A type of K antigen and had OK groups, O9:K(PS274) or O101:K(RVC118). Fourteen of these isolates had the K99 antigen. None of 27 isolates found enterotoxigenic in the piglet but not in the calf possessed the K99 antigen or belonged to OK groups O9:K(PS274) or O101:K(RVC118). Comparison of the patterns of resistance to seven antimicrobial drugs showed that all enterotoxigenic and nonenterotoxigenic isolates were susceptible to nitrofurantoin and sulphachlorphyridiazine and that there was no significant difference in the patterns between the two groups. The majority of enterotoxigenic isolates were mucoid, whereas most of the nonenterotoxigenic isolates were nonmucoid. PMID:793694

  4. The crystal structure Escherichia coli Spy

    PubMed Central

    Kwon, Eunju; Kim, Dong Young; Gross, Carol A; Gross, John D; Kim, Kyeong Kyu

    2010-01-01

    Escherichia coli spheroplast protein y (EcSpy) is a small periplasmic protein that is homologous with CpxP, an inhibitor of the extracytoplasmic stress reponse. Stress conditions such as spheroplast formation induce the expression of Spy via the Cpx or the Bae two-component systems in E. coli, though the function of Spy is unknown. Here, we report the crystal structure of EcSpy, which reveals a long kinked hairpin-like structure of four α-helices that form an antiparallel dimer. The dimer contains a curved oval shape with a highly positively charged concave surface that may function as a ligand binding site. Sequence analysis reveals that Spy is highly conserved over the Enterobacteriaceae family. Notably, three conserved regions that contain identical residues and two LTxxQ motifs are placed at the horizontal end of the dimer structure, stablizing the overall fold. CpxP also contains the conserved sequence motifs and has a predicted secondary structure similar to Spy, suggesting that Spy and CpxP likely share the same fold. PMID:20799348

  5. The crystal structure Escherichia coli Spy.

    PubMed

    Kwon, Eunju; Kim, Dong Young; Gross, Carol A; Gross, John D; Kim, Kyeong Kyu

    2010-11-01

    Escherichia coli spheroplast protein y (EcSpy) is a small periplasmic protein that is homologous with CpxP, an inhibitor of the extracytoplasmic stress response. Stress conditions such as spheroplast formation induce the expression of Spy via the Cpx or the Bae two-component systems in E. coli, though the function of Spy is unknown. Here, we report the crystal structure of EcSpy, which reveals a long kinked hairpin-like structure of four α-helices that form an antiparallel dimer. The dimer contains a curved oval shape with a highly positively charged concave surface that may function as a ligand binding site. Sequence analysis reveals that Spy is highly conserved over the Enterobacteriaceae family. Notably, three conserved regions that contain identical residues and two LTxxQ motifs are placed at the horizontal end of the dimer structure, stabilizing the overall fold. CpxP also contains the conserved sequence motifs and has a predicted secondary structure similar to Spy, suggesting that Spy and CpxP likely share the same fold.

  6. Chemotaxis Toward Sugars in Escherichia coli

    PubMed Central

    Adler, Julius; Hazelbauer, Gerald L.; Dahl, M. M.

    1973-01-01

    Using a quantitative assay for measuring chemotaxis, we tested a variety of sugars and sugar derivatives for their ability to attract Escherichia coli bacteria. The most effective attractants, i.e., those that have thresholds near 10−5 M or below, are N-acetyl-d-glucosamine, 6-deoxy-d-glucose, d-fructose, d-fucose, 1-d-glycerol-β-d-galactoside, galactitol, d-galactose, d-glucosamine, d-glucose, α-d-glucose-1-phosphate, lactose, maltose, d-mannitol, d-mannose, methyl-β-d-galactoside, methyl-β-d-glucoside, d-ribose, d-sorbitol, and trehalose. Lactose, and probably d-glucose-1-phosphate, are attractive only after conversion to the free monosaccharide, while the other attractants do not require breakdown for taxis. Nine different chemoreceptors are involved in detecting these various attractants. They are called the N-acetyl-glucosamine, fructose, galactose, glucose, maltose, mannitol, ribose, sorbitol, and trehalose chemoreceptors; the specificity of each was studied. The chemoreceptors, with the exception of the one for d-glucose, are inducible. The galactose-binding protein serves as the recognition component of the galactose chemoreceptor. E. coli also has osmotically shockable binding activities for maltose and d-ribose, and these appear to serve as the recognition components for the corresponding chemoreceptors. PMID:4580570

  7. Expanding ester biosynthesis in Escherichia coli

    PubMed Central

    Rodriguez, Gabriel M; Tashiro, Yohei; Atsumi, Shota

    2015-01-01

    To expand the capabilities of whole-cell biocatalysis, we have engineered Escherichia coli to produce various esters. The alcohol O-acyltransferase (ATF) class of enzyme uses acyl-CoA units for ester formation. The release of free CoA upon esterification with an alcohol provides the free energy to facilitate ester formation. The diversity of CoA molecules found in nature in combination with various alcohol biosynthetic pathways allows for the biosynthesis of a multitude of esters. Small to medium volatile esters have extensive applications in the flavor, fragrance, cosmetic, solvent, paint and coating industries. The present work enables the production of these compounds by designing several ester pathways in E. coli. The engineered pathways generated acetate esters of ethyl, propyl, isobutyl, 2-methyl-1-butyl, 3-methyl-1-butyl and 2-phenylethyl alcohols. In particular, we achieved high-level production of isobutyl acetate from glucose (17.2 g l−1). This strategy was expanded to realize pathways for tetradecyl acetate and several isobutyrate esters. PMID:24609358

  8. [Enteroinvasive Escherichia coli. Pathogenesis and epidemiology].

    PubMed

    Prats, G; Llovet, T

    1995-03-01

    Enteroinvasive Escherichia coli (EIEC) is an intestinal pathogen causing enteritis, with a similar pathogenic mechanism to that of Shigella, which causes an epithelial invasion of the large bowel leading to inflammation and ulceration of the mucosa. The patients often develop the symptoms of bacillary dysentery. The EIEC strains are atypical in their biochemical reactions and may ferment lactose late or not at all, are lysine decarboxilase negative, and non motile. In addition, most EIEC strains express somatic antigens which are either strongly related or identical to Shigella antigens. EIEC invasion is mediated by a large plasmid (140 MDa) coding for the production of several outer membrane proteins involved in invasiveness. These strains have been isolated with some regularity in South America, the Extreme Orient, and Eastern Europe. In Spain the incidence of enteroinvasive E. coli is extraordinarily low (0.2%), the serogroup O124 being the most frequently isolated. EIEC enteritis has been associated to sporadic cases occurring in travellers. Occasional outbreaks related to ingestion of contaminated water or food and person to person have been reported.

  9. Isobutanol production from cellobiose in Escherichia coli.

    PubMed

    Desai, Shuchi H; Rabinovitch-Deere, Christine A; Tashiro, Yohei; Atsumi, Shota

    2014-04-01

    Converting lignocellulosics into biofuels remains a promising route for biofuel production. To facilitate strain development for specificity and productivity of cellulosic biofuel production, a user friendly Escherichia coli host was engineered to produce isobutanol, a drop-in biofuel candidate, from cellobiose. A beta-glucosidase was expressed extracellularly by either excretion into the media, or anchoring to the cell membrane. The excretion system allowed for E. coli to grow with cellobiose as a sole carbon source at rates comparable to those with glucose. The system was then combined with isobutanol production genes in three different configurations to determine whether gene arrangement affected isobutanol production. The most productive strain converted cellobiose to isobutanol in titers of 7.64 ± 0.19 g/L with a productivity of 0.16 g/L/h. These results demonstrate that efficient cellobiose degradation and isobutanol production can be achieved by a single organism, and provide insight for optimization of strains for future use in a consolidated bioprocessing system for renewable production of isobutanol.

  10. gltBDF operon of Escherichia coli.

    PubMed Central

    Castaño, I; Bastarrachea, F; Covarrubias, A A

    1988-01-01

    A 2.0-kilobase DNA fragment carrying antibiotic resistance markers was inserted into the gltB gene of Escherichia coli previously cloned in a multicopy plasmid. Replacement of the chromosomal gltB+ gene by the gltB225::omega mutation led to cells unable to synthesize glutamate synthase, utilize growth rate-limiting nitrogen sources, or derepress their glutamine synthetase. The existence of a gltBDF operon encoding the large (gltB) and small (gltD) subunits of glutamate synthase and a regulatory peptide (gltF) at 69 min of the E. coli linkage map was deduced from complementation analysis. A plasmid carrying the entire gltB+D+F+ operon complemented cells for all three of the mutant phenotypes associated with the polar gltB225::omega mutation in the chromosome. By contrast, plasmids carrying gltB+ only complemented cells for glutamate synthase activity. A major tricistronic mRNA molecule was detected from Northern (RNA blot) DNA-RNA hybridization experiments with DNA probes containing single genes of the operon. A 30,200-dalton polypeptide was identified as the gltF product, the lack of which was responsible for the inability of cells to use nitrogen-limiting sources associated with gltB225::omega. Images PMID:2448295

  11. RESISTANCE OF ESCHERICHIA COLI TO TETRACYCLINES.

    PubMed

    FRANKLIN, T J; GODFREY, A

    1965-01-01

    1. A strain of Escherichia coli highly resistant to chlortetracycline and partially cross-resistant to tetracycline has been isolated. 2. The nitro-reductase system of the resistant cells was inhibited to a smaller extent by chlortetracycline than was the corresponding enzyme of sensitive cells. 3. The incorporation of leucine in vitro into the ribosomal protein of cell-free preparations from sensitive and resistant cells was equally inhibited by chlortetracycline. 4. Resistant cells accumulated much less chlortetracycline and tetracycline than did sensitive cells when both were cultured in the presence of these drugs. 5. The uptake of tetracycline by both sensitive and resistant E. coli was dependent on the presence of glucose in the medium. 6. Fractionation of cells cultured in medium containing [(14)C]chlortetracycline indicated that the largest proportion of radioactivity in sensitive cells was in the fraction consisting mainly of cell-wall material. There was no concentration of radioactivity in any one fraction of the resistant cells. 7. No evidence could be obtained for a specific tetracycline-excretion system in the resistant cells. 8. The significance of these results in relation to current theories of the antibiotic action of and resistance to the tetracycline drugs is discussed.

  12. Tuning Escherichia coli for membrane protein overexpression.

    PubMed

    Wagner, Samuel; Klepsch, Mirjam M; Schlegel, Susan; Appel, Ansgar; Draheim, Roger; Tarry, Michael; Högbom, Martin; van Wijk, Klaas J; Slotboom, Dirk J; Persson, Jan O; de Gier, Jan-Willem

    2008-09-23

    A simple generic method for optimizing membrane protein overexpression in Escherichia coli is still lacking. We have studied the physiological response of the widely used "Walker strains" C41(DE3) and C43(DE3), which are derived from BL21(DE3), to membrane protein overexpression. For unknown reasons, overexpression of many membrane proteins in these strains is hardly toxic, often resulting in high overexpression yields. By using a combination of physiological, proteomic, and genetic techniques we have shown that mutations in the lacUV5 promoter governing expression of T7 RNA polymerase are key to the improved membrane protein overexpression characteristics of the Walker strains. Based on this observation, we have engineered a derivative strain of E. coli BL21(DE3), termed Lemo21(DE3), in which the activity of the T7 RNA polymerase can be precisely controlled by its natural inhibitor T7 lysozyme (T7Lys). Lemo21(DE3) is tunable for membrane protein overexpression and conveniently allows optimizing overexpression of any given membrane protein by using only a single strain rather than a multitude of different strains. The generality and simplicity of our approach make it ideal for high-throughput applications.

  13. Tuning Escherichia coli for membrane protein overexpression

    PubMed Central

    Wagner, Samuel; Klepsch, Mirjam M.; Schlegel, Susan; Appel, Ansgar; Draheim, Roger; Tarry, Michael; Högbom, Martin; van Wijk, Klaas J.; Slotboom, Dirk J.; Persson, Jan O.; de Gier, Jan-Willem

    2008-01-01

    A simple generic method for optimizing membrane protein overexpression in Escherichia coli is still lacking. We have studied the physiological response of the widely used “Walker strains” C41(DE3) and C43(DE3), which are derived from BL21(DE3), to membrane protein overexpression. For unknown reasons, overexpression of many membrane proteins in these strains is hardly toxic, often resulting in high overexpression yields. By using a combination of physiological, proteomic, and genetic techniques we have shown that mutations in the lacUV5 promoter governing expression of T7 RNA polymerase are key to the improved membrane protein overexpression characteristics of the Walker strains. Based on this observation, we have engineered a derivative strain of E. coli BL21(DE3), termed Lemo21(DE3), in which the activity of the T7 RNA polymerase can be precisely controlled by its natural inhibitor T7 lysozyme (T7Lys). Lemo21(DE3) is tunable for membrane protein overexpression and conveniently allows optimizing overexpression of any given membrane protein by using only a single strain rather than a multitude of different strains. The generality and simplicity of our approach make it ideal for high-throughput applications. PMID:18796603

  14. Nucleotide excision repair in Escherichia coli.

    PubMed Central

    Van Houten, B

    1990-01-01

    One of the best-studied DNA repair pathways is nucleotide excision repair, a process consisting of DNA damage recognition, incision, excision, repair resynthesis, and DNA ligation. Escherichia coli has served as a model organism for the study of this process. Recently, many of the proteins that mediate E. coli nucleotide excision have been purified to homogeneity; this had led to a molecular description of this repair pathway. One of the key repair enzymes of this pathway is the UvrABC nuclease complex. The individual subunits of this enzyme cooperate in a complex series of partial reactions to bind to and incise the DNA near a damaged nucleotide. The UvrABC complex displays a remarkable substrate diversity. Defining the structural features of DNA lesions that provide the specificity for damage recognition by the UvrABC complex is of great importance, since it represents a unique form of protein-DNA interaction. Using a number of in vitro assays, researchers have been able to elucidate the action mechanism of the UvrABC nuclease complex. Current research is devoted to understanding how these complex events are mediated within the living cell. PMID:2181258

  15. Expanding ester biosynthesis in Escherichia coli.

    PubMed

    Rodriguez, Gabriel M; Tashiro, Yohei; Atsumi, Shota

    2014-04-01

    To expand the capabilities of whole-cell biocatalysis, we have engineered Escherichia coli to produce various esters. The alcohol O-acyltransferase (ATF) class of enzyme uses acyl-CoA units for ester formation. The release of free CoA upon esterification with an alcohol provides the free energy to facilitate ester formation. The diversity of CoA molecules found in nature in combination with various alcohol biosynthetic pathways allows for the biosynthesis of a multitude of esters. Small to medium volatile esters have extensive applications in the flavor, fragrance, cosmetic, solvent, paint and coating industries. The present work enables the production of these compounds by designing several ester pathways in E. coli. The engineered pathways generated acetate esters of ethyl, propyl, isobutyl, 2-methyl-1-butyl, 3-methyl-1-butyl and 2-phenylethyl alcohols. In particular, we achieved high-level production of isobutyl acetate from glucose (17.2 g l(-1)). This strategy was expanded to realize pathways for tetradecyl acetate and several isobutyrate esters.

  16. Independence of replisomes in Escherichia coli chromosomalreplication

    SciTech Connect

    Breier, Adam M.; Weier, Heinz-Ulrich G.; Cozzarelli, Nicholas R.

    2005-03-13

    In Escherichia coli DNA replication is carried out by the coordinated action of the proteins within a replisome. After replication initiation, the two bidirectionally oriented replisomes from a single origin are colocalized into higher-order structures termed replication factories. The factory model postulated that the two replisomes are also functionally coupled. We tested this hypothesis by using DNA combing and whole-genome microarrays. Nascent DNA surrounding oriC in single, combed chromosomes showed instead that one replisome, usually the leftward one, was significantly ahead of the other 70% of the time. We next used microarrays to follow replication throughout the genome by measuring DNA copy number. We found in multiple E. coli strains that the replisomes are independent, with the leftward replisome ahead of the rightward one. The size of the bias was strain-specific, varying from 50 to 130 kb in the array results. When we artificially blocked one replisome, the other continued unabated, again demonstrating independence. We suggest an improved version of the factory model that retains the advantages of threading DNA through colocalized replisomes at about equal rates, but allows the cell flexibility to overcome obstacles encountered during elongation.

  17. Metabolism of Escherichia coli injured by copper.

    PubMed

    Domek, M J; Robbins, J E; Anderson, M E; McFeters, G A

    1987-01-01

    Escherichia coli injured by copper in carbonate buffer simulating the drinking water environment showed decreased oxygen utilization. Oxygraph measurements revealed that copper-injured bacteria had a rate of oxygen utilization that was less than 25% of that of control cells. Respirometry experiments measured rates over a longer period of time and showed similar trends. Nuclear magnetic resonance spectroscopy (13C nmr) and gas chromatography were used to identify differences in metabolism between healthy and injured populations of E. coli. The rate of glucose utilization by injured cells under anaerobic conditions was 64% of that of healthy cells. The rates of lactate and ethanol accumulation were 88 and 50% of the control, respectively. The 13C nmr studies of oxygenated cultures revealed differences in the accumulation of acetate and glutamine. Aerobic utilization of glucose and succinate by injured cells were 87 and 21% of the rate of the controls, respectively. Additional studies revealed injured cells had a decreased ability to reduce 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium chloride (INT) with a variety of carbohydrate substrates. Injured cells reduced greater quantities of INT than healthy cells when NADH was used as a substrate. A comparison of metabolic end products suggested that injured cells also had considerable differences in carbon flow compared with healthy cells.

  18. Biosynthesis of ethylene glycol in Escherichia coli.

    PubMed

    Liu, Huaiwei; Ramos, Kristine Rose M; Valdehuesa, Kris Niño G; Nisola, Grace M; Lee, Won-Keun; Chung, Wook-Jin

    2013-04-01

    Ethylene glycol (EG) is an important platform chemical with steadily expanding global demand. Its commercial production is currently limited to fossil resources; no biosynthesis route has been delineated. Herein, a biosynthesis route for EG production from D-xylose is reported. This route consists of four steps: D-xylose → D-xylonate → 2-dehydro-3-deoxy-D-pentonate → glycoaldehyde → EG. Respective enzymes, D-xylose dehydrogenase, D-xylonate dehydratase, 2-dehydro-3-deoxy-D-pentonate aldolase, and glycoaldehyde reductase, were assembled. The route was implemented in a metabolically engineered Escherichia coli, in which the D-xylose → D-xylulose reaction was prevented by disrupting the D-xylose isomerase gene. The most efficient construct produced 11.7 g L(-1) of EG from 40.0 g L(-1) of D-xylose. Glycolate is a carbon-competing by-product during EG production in E. coli; blockage of glycoaldehyde → glycolate reaction was also performed by disrupting the gene encoding aldehyde dehydrogenase, but from this approach, EG productivity was not improved but rather led to D-xylonate accumulation. To channel more carbon flux towards EG than the glycolate pathway, further systematic metabolic engineering and fermentation optimization studies are still required to improve EG productivity.

  19. Cyclomodulins in urosepsis strains of Escherichia coli.

    PubMed

    Dubois, Damien; Delmas, Julien; Cady, Anne; Robin, Frédéric; Sivignon, Adeline; Oswald, Eric; Bonnet, Richard

    2010-06-01

    Determinants of urosepsis in Escherichia coli remain incompletely defined. Cyclomodulins (CMs) are a growing functional family of toxins that hijack the eukaryotic cell cycle. Four cyclomodulin types are actually known in E. coli: cytotoxic necrotizing factors (CNFs), cycle-inhibiting factor (Cif), cytolethal distending toxins (CDTs), and the pks-encoded toxin. In the present study, the distribution of CM-encoding genes and the functionality of these toxins were investigated in 197 E. coli strains isolated from patients with community-acquired urosepsis (n = 146) and from uninfected subjects (n = 51). This distribution was analyzed in relation to the phylogenetic background, clinical origin, and antibiotic resistance of the strains. It emerged from this study that strains harboring the pks island and the cnf1 gene (i) were strongly associated with the B2 phylogroup (P, <0.001), (ii) frequently harbored both toxin-encoded genes in phylogroup B2 (33%), and (iii) were predictive of a urosepsis origin (P, <0.001 to 0.005). However, the prevalences of the pks island among phylogroup B2 strains, in contrast to those of the cnf1 gene, were not significantly different between fecal and urosepsis groups, suggesting that the pks island is more important for the colonization process and the cnf1 gene for virulence. pks- or cnf1-harboring strains were significantly associated with susceptibility to antibiotics (amoxicillin, cotrimoxazole, and quinolones [P, <0.001 to 0.043]). Otherwise, only 6% and 1% of all strains harbored the cdtB and cif genes, respectively, with no particular distribution by phylogenetic background, antimicrobial susceptibility, or clinical origin.

  20. The extracellular RNA complement of Escherichia coli.

    PubMed

    Ghosal, Anubrata; Upadhyaya, Bimal Babu; Fritz, Joëlle V; Heintz-Buschart, Anna; Desai, Mahesh S; Yusuf, Dilmurat; Huang, David; Baumuratov, Aidos; Wang, Kai; Galas, David; Wilmes, Paul

    2015-01-21

    The secretion of biomolecules into the extracellular milieu is a common and well-conserved phenomenon in biology. In bacteria, secreted biomolecules are not only involved in intra-species communication but they also play roles in inter-kingdom exchanges and pathogenicity. To date, released products, such as small molecules, DNA, peptides, and proteins, have been well studied in bacteria. However, the bacterial extracellular RNA complement has so far not been comprehensively characterized. Here, we have analyzed, using a combination of physical characterization and high-throughput sequencing, the extracellular RNA complement of both outer membrane vesicle (OMV)-associated and OMV-free RNA of the enteric Gram-negative model bacterium Escherichia coli K-12 substrain MG1655 and have compared it to its intracellular RNA complement. Our results demonstrate that a large part of the extracellular RNA complement is in the size range between 15 and 40 nucleotides and is derived from specific intracellular RNAs. Furthermore, RNA is associated with OMVs and the relative abundances of RNA biotypes in the intracellular, OMV and OMV-free fractions are distinct. Apart from rRNA fragments, a significant portion of the extracellular RNA complement is composed of specific cleavage products of functionally important structural noncoding RNAs, including tRNAs, 4.5S RNA, 6S RNA, and tmRNA. In addition, the extracellular RNA pool includes RNA biotypes from cryptic prophages, intergenic, and coding regions, of which some are so far uncharacterised, for example, transcripts mapping to the fimA-fimL and ves-spy intergenic regions. Our study provides the first detailed characterization of the extracellular RNA complement of the enteric model bacterium E. coli. Analogous to findings in eukaryotes, our results suggest the selective export of specific RNA biotypes by E. coli, which in turn indicates a potential role for extracellular bacterial RNAs in intercellular communication. © 2015 The

  1. The extracellular RNA complement of Escherichia coli

    PubMed Central

    Ghosal, Anubrata; Upadhyaya, Bimal Babu; Fritz, Joëlle V; Heintz-Buschart, Anna; Desai, Mahesh S; Yusuf, Dilmurat; Huang, David; Baumuratov, Aidos; Wang, Kai; Galas, David; Wilmes, Paul

    2015-01-01

    The secretion of biomolecules into the extracellular milieu is a common and well-conserved phenomenon in biology. In bacteria, secreted biomolecules are not only involved in intra-species communication but they also play roles in inter-kingdom exchanges and pathogenicity. To date, released products, such as small molecules, DNA, peptides, and proteins, have been well studied in bacteria. However, the bacterial extracellular RNA complement has so far not been comprehensively characterized. Here, we have analyzed, using a combination of physical characterization and high-throughput sequencing, the extracellular RNA complement of both outer membrane vesicle (OMV)-associated and OMV-free RNA of the enteric Gram-negative model bacterium Escherichia coli K-12 substrain MG1655 and have compared it to its intracellular RNA complement. Our results demonstrate that a large part of the extracellular RNA complement is in the size range between 15 and 40 nucleotides and is derived from specific intracellular RNAs. Furthermore, RNA is associated with OMVs and the relative abundances of RNA biotypes in the intracellular, OMV and OMV-free fractions are distinct. Apart from rRNA fragments, a significant portion of the extracellular RNA complement is composed of specific cleavage products of functionally important structural noncoding RNAs, including tRNAs, 4.5S RNA, 6S RNA, and tmRNA. In addition, the extracellular RNA pool includes RNA biotypes from cryptic prophages, intergenic, and coding regions, of which some are so far uncharacterised, for example, transcripts mapping to the fimA-fimL and ves-spy intergenic regions. Our study provides the first detailed characterization of the extracellular RNA complement of the enteric model bacterium E. coli. Analogous to findings in eukaryotes, our results suggest the selective export of specific RNA biotypes by E. coli, which in turn indicates a potential role for extracellular bacterial RNAs in intercellular communication. PMID:25611733

  2. Identification of pseudouridine methyltransferase in Escherichia coli

    PubMed Central

    Ero, Rya; Peil, Lauri; Liiv, Aivar; Remme, Jaanus

    2008-01-01

    In ribosomal RNA, modified nucleosides are found in functionally important regions, but their function is obscure. Stem–loop 69 of Escherichia coli 23S rRNA contains three modified nucleosides: pseudouridines at positions 1911 and 1917, and N3 methyl-pseudouridine (m3Ψ) at position 1915. The gene for pseudouridine methyltransferase was previously not known. We identified E. coli protein YbeA as the methyltransferase methylating Ψ1915 in 23S rRNA. The E. coli ybeA gene deletion strain lacks the N3 methylation at position 1915 of 23S rRNA as revealed by primer extension and nucleoside analysis by HPLC. Methylation at position 1915 is restored in the ybeA deletion strain when recombinant YbeA protein is expressed from a plasmid. In addition, we show that purified YbeA protein is able to methylate pseudouridine in vitro using 70S ribosomes but not 50S subunits from the ybeA deletion strain as substrate. Pseudouridine is the preferred substrate as revealed by the inability of YbeA to methylate uridine at position 1915. This shows that YbeA is acting at the final stage during ribosome assembly, probably during translation initiation. Hereby, we propose to rename the YbeA protein to RlmH according to uniform nomenclature of RNA methyltransferases. RlmH belongs to the SPOUT superfamily of methyltransferases. RlmH was found to be well conserved in bacteria, and the gene is present in plant and in several archaeal genomes. RlmH is the first pseudouridine specific methyltransferase identified so far and is likely to be the only one existing in bacteria, as m3Ψ1915 is the only methylated pseudouridine in bacteria described to date. PMID:18755836

  3. Identification of pseudouridine methyltransferase in Escherichia coli.

    PubMed

    Ero, Rya; Peil, Lauri; Liiv, Aivar; Remme, Jaanus

    2008-10-01

    In ribosomal RNA, modified nucleosides are found in functionally important regions, but their function is obscure. Stem-loop 69 of Escherichia coli 23S rRNA contains three modified nucleosides: pseudouridines at positions 1911 and 1917, and N3 methyl-pseudouridine (m(3)Psi) at position 1915. The gene for pseudouridine methyltransferase was previously not known. We identified E. coli protein YbeA as the methyltransferase methylating Psi1915 in 23S rRNA. The E. coli ybeA gene deletion strain lacks the N3 methylation at position 1915 of 23S rRNA as revealed by primer extension and nucleoside analysis by HPLC. Methylation at position 1915 is restored in the ybeA deletion strain when recombinant YbeA protein is expressed from a plasmid. In addition, we show that purified YbeA protein is able to methylate pseudouridine in vitro using 70S ribosomes but not 50S subunits from the ybeA deletion strain as substrate. Pseudouridine is the preferred substrate as revealed by the inability of YbeA to methylate uridine at position 1915. This shows that YbeA is acting at the final stage during ribosome assembly, probably during translation initiation. Hereby, we propose to rename the YbeA protein to RlmH according to uniform nomenclature of RNA methyltransferases. RlmH belongs to the SPOUT superfamily of methyltransferases. RlmH was found to be well conserved in bacteria, and the gene is present in plant and in several archaeal genomes. RlmH is the first pseudouridine specific methyltransferase identified so far and is likely to be the only one existing in bacteria, as m(3)Psi1915 is the only methylated pseudouridine in bacteria described to date.

  4. Detection of Iss and Bor on the surface of Escherichia coli.

    PubMed

    Lynne, A M; Skyberg, J A; Logue, C M; Nolan, L K

    2007-03-01

    To confirm the presence of Iss and Bor on the outer membrane of Escherichia coli using Western blots of outer membrane protein (OMP) preparations and fluorescence microscopy, and explore the use of fluorescence microscopy for the detection of avian pathogenic E. coli (APEC) and diagnosis of avian colibacillosis. Knockout mutants of iss and bor were created using a one-step recombination of target genes with PCR-generated antibiotic resistance cassettes. Anti-Iss monoclonal antibodies (Mabs) that cross-react with Bor protein were used to study the mutants relative to the wild-type organism. These Mabs were used as reagents to study OMP preparations of the mutants with Western blotting and intact E. coli cells with fluorescence microscopy. Iss and Bor were detected in Western blots of OMP preparations of the wild type. Also, Iss was detected on Deltabor mutants, and Bor was detected on Deltaiss mutants. Iss and Bor were also detected on the surface of the intact, wild-type cells and mutants using fluorescence microscopy. These results demonstrate that Bor and Iss are exposed on E. coli's outer membrane where they may be recognized by the host's immune system. To our knowledge, this is the first report confirming Iss' location in the outer membrane of an E. coli isolate. Such surface exposure has implications for the use of these Mabs for APEC detection and colibacillosis control.

  5. Escherichia coli survival in waters: temperature dependence.

    PubMed

    Blaustein, R A; Pachepsky, Y; Hill, R L; Shelton, D R; Whelan, G

    2013-02-01

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q₁₀ model. This suggestion was made 34 years ago based on 20 survival curves taken from published literature, but has not been revisited since then. The objective of this study was to re-evaluate the accuracy of the Q₁₀ equation, utilizing data accumulated since 1978. We assembled a database of 450 E. coli survival datasets from 70 peer-reviewed papers. We then focused on the 170 curves taken from experiments that were performed in the laboratory under dark conditions to exclude the effects of sunlight and other field factors that could cause additional variability in results. All datasets were tabulated dependencies "log concentration vs. time." There were three major patterns of inactivation: about half of the datasets had a section of fast log-linear inactivation followed by a section of slow log-linear inactivation; about a quarter of the datasets had a lag period followed by log-linear inactivation; and the remaining quarter were approximately linear throughout. First-order inactivation rate constants were calculated from the linear sections of all survival curves and the data grouped by water sources, including waters of agricultural origin, pristine water sources, groundwater and wells, lakes and reservoirs, rivers and streams, estuaries and seawater, and wastewater. Dependency of E. coli inactivation rates on temperature varied among the water sources. There was a significant difference in inactivation rate values at the reference temperature between rivers and agricultural waters, wastewaters and agricultural waters, rivers and lakes, and wastewater and lakes. At specific sites, the Q₁₀ equation was more accurate in rivers and coastal waters than in lakes making the value of

  6. Polymorphisms in the umuDC region of Escherichia species. [Escherichia coli; Escherichia alkalescens; Escherichia dispar; Escherichia aurescens

    SciTech Connect

    Sedgwick, S.G.; Robson, M.; Malik, F.

    1988-04-01

    The umuDC operon of Escherichia coli encodes mutagenic DNA repair. The umuDC regions of multiple isolates of E. coli, E. alkalescens, and E. dispar and a single stock of E. aurescens were mapped by nucleotide hybridization. umuDC is located at one end of a conserved tract of restriction endonuclease sites either 12.5 or 14 kilobase pairs long. Rearrangements, including possible deletions, were seen in the polymorphic DNA flanking the conserved tract. Restriction site polymorphisms were not found around the DNA repair gene recA or polA. The junctions of the conserved region contain direct repeats of nucleotide sequences resembling the termini of the Tn3 group of transposons. Possible mechanisms for the generation of these variants are discussed.

  7. Genome Sequence of Escherichia coli Tailed Phage Utah

    PubMed Central

    Leavitt, Justin C.; Heitkamp, Alexandra J.; Bhattacharjee, Ananda S.; Gilcrease, Eddie B.

    2017-01-01

    ABSTRACT Escherichia coli bacteriophage Utah is a member of the chi-like tailed phage cluster in the Siphoviridae family. We report here the complete 59,024-bp sequence of the genome of phage Utah. PMID:28360173

  8. TRIMETHOPRIM-SULFAMETHOXAZOLE RESISTANCE IN SEWAGE ISOLATES OF ESCHERICHIA COLI

    EPA Science Inventory

    Sewage samples from seven locations in the United States were analyzed for Escherichia coli isolates which were resistant to trimethoprim-sulfamethoxazole (SXT). The prevalence rate of SXT resistant organisms varied between the different geographical locales. The majority of th...

  9. TRIMETHOPRIM-SULFAMETHOXAZOLE RESISTANCE IN SEWAGE ISOLATES OF ESCHERICHIA COLI

    EPA Science Inventory

    Sewage samples from seven locations in the United States were analyzed for Escherichia coli isolates which were resistant to trimethoprim-sulfamethoxazole (SXT). The prevalence rate of SXT resistant organisms varied between the different geographical locales. The majority of th...

  10. Inhibition of Thiamine Transport by Chloroethylthiamine in Escherichia coli

    PubMed Central

    Iwashima, Akio; Nose, Yoshitsugu

    1972-01-01

    Chloroethylthiamine was found to inhibit an entrapment of thiamine as thiamine monophosphate by blocking thiamine monophosphokinase in the cytoplasm after thiamine was taken up by the cells of Escherichia coli. PMID:4565550

  11. Overexpression of vsr in Escherichia coli is mutagenic.

    PubMed

    Doiron, K M; Viau, S; Koutroumanis, M; Cupples, C G

    1996-07-01

    Overexpression of vsr in Escherichia coli stimulates transition and frameshift mutations. The pattern of mutations suggests that mutagenesis is due to saturation or inactivation of dam-directed mismatch repair.

  12. Shigella strains are not clones of Escherichia coli but sister species in the genus Escherichia.

    PubMed

    Zuo, Guanghong; Xu, Zhao; Hao, Bailin

    2013-02-01

    Shigella species and Escherichia coli are closely related organisms. Early phenotyping experiments and several recent molecular studies put Shigella within the species E. coli. However, the whole-genome-based, alignment-free and parameter-free CVTree approach shows convincingly that four established Shigella species, Shigella boydii, Shigella sonnei, Shigella felxneri and Shigella dysenteriae, are distinct from E. coli strains, and form sister species to E. coli within the genus Escherichia. In view of the overall success and high resolution power of the CVTree approach, this result should be taken seriously. We hope that the present report may promote further in-depth study of the Shigella-E. coli relationship.

  13. Infected hepatic Echinococcus cyst presenting as recurrent Escherichia coli empyema.

    PubMed

    Chang, R; Higgins, M; DiLisio, R; Hawasli, A; Camaro, L G; Khatib, R

    1993-03-01

    An 81-year-old man, previously a shepherd in Italy, presented with recurrent Escherichia coli empyema over an 8-month period. His empyema was caused by an infected, nonviable hepatic Echinococcus cyst that eroded the diaphragm and led to intermittent spillage and pleural seeding. This case demonstrates that when dealing with Escherichia coli empyema, a subdiaphragmatic source ought to be suspected, and among immigrants from areas with prevalent hydatid disease, infected hepatic Echinococcus cyst might rarely be the cause.

  14. ENERGY REQUIREMENT FOR THYMINELESS DEATH IN CELLS OF ESCHERICHIA COLI.

    PubMed

    FREIFELDER, D; MAALOE, O

    1964-10-01

    Freifelder, David (University of California, Berkeley), and Ole Maaløe. Energy requirement for thymineless death in cells of Escherichia coli. J. Bacteriol. 88:987-990. 1964.-Thymineless death in thymine-requiring Escherichia coli is arrested immediately and reversibly by nitrogenation if the bacterial population is growing in a medium containing a carbon source that can only be metabolized aerobically. The mechanism of death, therefore, involves a metabolic process.

  15. ENERGY REQUIREMENT FOR THYMINELESS DEATH IN CELLS OF ESCHERICHIA COLI

    PubMed Central

    Freifelder, David; Maaløe, Ole

    1964-01-01

    Freifelder, David (University of California, Berkeley), and Ole Maaløe. Energy requirement for thymineless death in cells of Escherichia coli. J. Bacteriol. 88:987–990. 1964.—Thymineless death in thymine-requiring Escherichia coli is arrested immediately and reversibly by nitrogenation if the bacterial population is growing in a medium containing a carbon source that can only be metabolized aerobically. The mechanism of death, therefore, involves a metabolic process. PMID:14219063

  16. Comparison and phylogenetic analysis of the ISS gene in two predominant avian pathogenic E. coli serogroups isolated from avian colibacillosis in Iran.

    PubMed

    Zahraei Salehi, Taghi; Derakhshandeh, Abdollah; Tadjbakhsh, Hasan; Karimi, Vahid

    2013-02-01

    The ISS (increased serum survival) gene and its protein product (ISS) of avian pathogenic Escherichia coli (APEC) are important characteristics of resistance to the complement system. The aims of this study were to clone, sequence and characterize sequence diversity of the ISS gene between two predominant serogroups in Iran and among those previously deposited in Genbank. The ISS gene of 309 bp from the APEC χ1390 strain was amplified by PCR, cloned and sequenced using pTZ57R/T vector. The ISS gene from the χ1390 strain has 100% identity among different serogroups of APEC in different geographical regions throughout the world. Phylogenetic analysis shows two different phylogenic groups among the different strains. Strong association of nucleotide sequences among different E. coli strains suggests that it may be a conserved gene and could be a suitable antigen to control and detect avian pathogenic E. coli, at least in our region. Currently, our group is working on the ISS protein as candidate vaccine in SPF poultry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. The Escherichia coli Peripheral Inner Membrane Proteome*

    PubMed Central

    Papanastasiou, Malvina; Orfanoudaki, Georgia; Koukaki, Marina; Kountourakis, Nikos; Sardis, Marios Frantzeskos; Aivaliotis, Michalis; Karamanou, Spyridoula; Economou, Anastassios

    2013-01-01

    Biological membranes are essential for cell viability. Their functional characteristics strongly depend on their protein content, which consists of transmembrane (integral) and peripherally associated membrane proteins. Both integral and peripheral inner membrane proteins mediate a plethora of biological processes. Whereas transmembrane proteins have characteristic hydrophobic stretches and can be predicted using bioinformatics approaches, peripheral inner membrane proteins are hydrophilic, exist in equilibria with soluble pools, and carry no discernible membrane targeting signals. We experimentally determined the cytoplasmic peripheral inner membrane proteome of the model organism Escherichia coli using a multidisciplinary approach. Initially, we extensively re-annotated the theoretical proteome regarding subcellular localization using literature searches, manual curation, and multi-combinatorial bioinformatics searches of the available databases. Next we used sequential biochemical fractionations coupled to direct identification of individual proteins and protein complexes using high resolution mass spectrometry. We determined that the proposed cytoplasmic peripheral inner membrane proteome occupies a previously unsuspected ∼19% of the basic E. coli BL21(DE3) proteome, and the detected peripheral inner membrane proteome occupies ∼25% of the estimated expressed proteome of this cell grown in LB medium to mid-log phase. This value might increase when fleeting interactions, not studied here, are taken into account. Several proteins previously regarded as exclusively cytoplasmic bind membranes avidly. Many of these proteins are organized in functional or/and structural oligomeric complexes that bind to the membrane with multiple interactions. Identified proteins cover the full spectrum of biological activities, and more than half of them are essential. Our data suggest that the cytoplasmic proteome displays remarkably dynamic and extensive communication with

  18. Microdiesel: Escherichia coli engineered for fuel production.

    PubMed

    Kalscheuer, Rainer; Stölting, Torsten; Steinbüchel, Alexander

    2006-09-01

    Biodiesel is an alternative energy source and a substitute for petroleum-based diesel fuel. It is produced from renewable biomass by transesterification of triacylglycerols from plant oils, yielding monoalkyl esters of long-chain fatty acids with short-chain alcohols such as fatty acid methyl esters and fatty acid ethyl esters (FAEEs). Despite numerous environmental benefits, a broader use of biodiesel is hampered by the extensive acreage required for sufficient production of oilseed crops. Therefore, processes are urgently needed to enable biodiesel production from more readily available bulk plant materials like sugars or cellulose. Toward this goal, the authors established biosynthesis of biodiesel-adequate FAEEs, referred to as Microdiesel, in metabolically engineered Escherichia coli. This was achieved by heterologous expression in E. coli of the Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase and the unspecific acyltransferase from Acinetobacter baylyi strain ADP1. By this approach, ethanol formation was combined with subsequent esterification of the ethanol with the acyl moieties of coenzyme A thioesters of fatty acids if the cells were cultivated under aerobic conditions in the presence of glucose and oleic acid. Ethyl oleate was the major constituent of these FAEEs, with minor amounts of ethyl palmitate and ethyl palmitoleate. FAEE concentrations of 1.28 g l(-1) and a FAEE content of the cells of 26 % of the cellular dry mass were achieved by fed-batch fermentation using renewable carbon sources. This novel approach might pave the way for industrial production of biodiesel equivalents from renewable resources by employing engineered micro-organisms, enabling a broader use of biodiesel-like fuels in the future.

  19. Annual Surveillance Summary: Escherichia coli (E. coli) Infections in the Military Health System (MHS), 2016

    DTIC Science & Technology

    2017-06-30

    women.5 Screening practices may also contribute to higher rates of E. coli infections among females of reproductive age, as the Infectious Disease...Annual Surveillance Summary: Escherichia coli (E. coli) Infections in the Military Health System (MHS...and prevalence among all beneficiaries seeking care within the Military Health System (MHS). This report describes demographics, clinical

  20. 21 CFR 866.3255 - Escherichia coli serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Escherichia coli serological reagents. 866.3255 Section 866.3255 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3255 Escherichia...

  1. 21 CFR 866.3255 - Escherichia coli serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Escherichia coli serological reagents. 866.3255 Section 866.3255 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3255 Escherichia...

  2. Biocontrol of Escherichia coli O157

    PubMed Central

    Boyacioglu, Olcay; Sharma, Manan; Sulakvelidze, Alexander; Goktepe, Ipek

    2013-01-01

    The effect of a bacteriophage cocktail (EcoShield™) that is specific against Escherichia coli O157:H7 was evaluated against a nalidixic acid-resistant enterohemorrhagic E. coli O157:H7 RM4407 (EHEC) strain on leafy greens stored under either (1) ambient air or (2) modified atmosphere (MA; 5% O2/35% CO2/60% N2). Pieces (~2 × 2 cm2) of leafy greens (lettuce and spinach) inoculated with 4.5 log CFU/cm2 EHEC were sprayed with EcoShield™ (6.5 log PFU/cm2). Samples were stored at 4 or 10°C for up to 15 d. On spinach, the level of EHEC declined by 2.38 and 2.49 log CFU/cm2 at 4 and 10°C, respectively, 30 min after phage application (p ≤ 0.05). EcoShield™ was also effective in reducing EHEC on the surface of green leaf lettuce stored at 4°C by 2.49 and 3.28 log units in 30 min and 2 h, respectively (p ≤ 0.05). At 4°C under atmospheric air, the phage cocktail significantly (p ≤ 0.05) lowered the EHEC counts in one day by 1.19, 3.21 and 3.25 log CFU/cm2 on spinach, green leaf and romaine lettuce, respectively compared with control (no bacteriophage) treatments. When stored under MA at 4°C, phages reduced (p ≤ 0.05) EHEC populations by 2.18, 3.50 and 3.13 log CFU/cm2, on spinach, green leaf and romaine lettuce. At 10°C, EHEC reductions under atmospheric air storage were 1.99, 3.90 and 3.99 log CFU/cm2 (p ≤ 0.05), while population reductions under MA were 3.08, 3.89 and 4.34 logs on spinach, green leaf and romaine lettuce, respectively, compared with controls (p ≤ 0.05). The results of this study showed that bacteriophages were effective in reducing the levels of E. coli O157:H7 on fresh leafy produce, and that the reduction was further improved when produce was stored under the MA conditions. PMID:23819107

  3. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    SciTech Connect

    Sheng, Fang; Yep, Alejandra; Feng, Lei; Preiss, Jack; Geiger, James H.

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of the enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.

  4. Endonuclease IV (nfo) mutant of Escherichia coli.

    PubMed Central

    Cunningham, R P; Saporito, S M; Spitzer, S G; Weiss, B

    1986-01-01

    A cloned gene, designated nfo, caused overproduction of an EDTA-resistant endonuclease specific for apurinic-apyrimidinic sites in DNA. The sedimentation coefficient of the enzyme was similar to that of endonuclease IV. An insertion mutation was constructed in vitro and transferred from a plasmid to the Escherichia coli chromosome. nfo mutants had an increased sensitivity to the alkylating agents methyl methanesulfonate and mitomycin C and to the oxidants tert-butyl hydroperoxide and bleomycin. The nfo mutation enhanced the killing of xth (exonuclease III) mutants by methyl methanesulfonate, H2O2, tert-butyl hydroperoxide, and gamma rays, and it enhanced their mutability by methyl methanesulfonate. It also increased the temperature sensitivity of an xth dut (dUTPase) mutant that is defective in the repair of uracil-containing DNA. These results are consistent with earlier findings that endonuclease IV and exonuclease III both cleave DNA 5' to an apurinic-apyrimidinic site and that exonuclease III is more active. However, nfo mutants were more sensitive to tert-butyl hydroperoxide and to bleomycin than were xth mutants, suggesting that endonuclease IV might recognize some lesions that exonuclease III does not. The mutants displayed no marked increase in sensitivity to 254-nm UV radiation, and the addition of an nth (endonuclease III) mutation to nfo or nfo xth mutants did not significantly increase their sensitivity to any of the agents tested. Images PMID:2430946

  5. Completion of DNA replication in Escherichia coli.

    PubMed

    Wendel, Brian M; Courcelle, Charmain T; Courcelle, Justin

    2014-11-18

    The mechanism by which cells recognize and complete replicated regions at their precise doubling point must be remarkably efficient, occurring thousands of times per cell division along the chromosomes of humans. However, this process remains poorly understood. Here we show that, in Escherichia coli, the completion of replication involves an enzymatic system that effectively counts pairs and limits cellular replication to its doubling point by allowing converging replication forks to transiently continue through the doubling point before the excess, over-replicated regions are incised, resected, and joined. Completion requires RecBCD and involves several proteins associated with repairing double-strand breaks including, ExoI, SbcDC, and RecG. However, unlike double-strand break repair, completion occurs independently of homologous recombination and RecA. In some bacterial viruses, the completion mechanism is specifically targeted for inactivation to allow over-replication to occur during lytic replication. The results suggest that a primary cause of genomic instabilities in many double-strand-break-repair mutants arises from an impaired ability to complete replication, independent from DNA damage.

  6. Shiga toxin-producing Escherichia coli

    PubMed Central

    Etcheverría, Analía Inés; Padola, Nora Lía

    2013-01-01

    Shiga toxin-producing Escherichia coli (STEC) cause hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS) in humans. Outbreaks are linked to bovine food sources. STEC O157:H7 has been responsible for the most severe outbreaks worldwide. However, non-O157 serotypes have emerged as important enteric pathogens in several countries. The main virulence factor of STEC is the production of Shiga toxins 1 and 2. Additional virulence markers are a plasmid-encoded enterohemolysin (ehxA), an autoagglutinating adhesin (Saa), a catalase-peroxidase (katP), an extracellular serine protease (espP), a zinc metalloprotease (stcE), a subtilase cytotoxin (subAB), among others. Other virulence factors are intimin and adhesins that had a roll in the adherence of STEC to bovine colon. This review focuses on the virulence traits of STEC and especially on those related to the adhesion to bovine colon. The known of the interaction between STEC and the bovine host is crucial to develop strategies to control cattle colonization. PMID:23624795

  7. The eclipse period of Escherichia coli

    PubMed Central

    von Freiesleben, Ulrik; Krekling, Martin A.; Hansen, Flemming G.; Løbner-Olesen, Anders

    2000-01-01

    The minimal time between successive initiations on the same origin (the eclipse) in Escherichia coli was determined to be ∼25–30 min. An inverse relationship was found between the length of the eclipse and the amount of Dam methyltransferase in the cell, indicating that the eclipse corresponds to the period of origin hemimethylation. The SeqA protein was absolutely required for the eclipse, and DnaA titration studies suggested that the SeqA protein prevented the binding of multiple DnaA molecules on oriC (initial complex formation). No correlation between the amount of SeqA and eclipse length was revealed, but increased SeqA levels affected chromosome partitioning and/or cell division. This was corroborated further by an aberrant nucleoid distribution in SeqA-deficient cells. We suggest that the SeqA protein’s role in maintaining the eclipse is tied to a function in chromosome organization. PMID:11080169

  8. Biochemistry of homologous recombination in Escherichia coli.

    PubMed Central

    Kowalczykowski, S C; Dixon, D A; Eggleston, A K; Lauder, S D; Rehrauer, W M

    1994-01-01

    Homologous recombination is a fundamental biological process. Biochemical understanding of this process is most advanced for Escherichia coli. At least 25 gene products are involved in promoting genetic exchange. At present, this includes the RecA, RecBCD (exonuclease V), RecE (exonuclease VIII), RecF, RecG, RecJ, RecN, RecOR, RecQ, RecT, RuvAB, RuvC, SbcCD, and SSB proteins, as well as DNA polymerase I, DNA gyrase, DNA topoisomerase I, DNA ligase, and DNA helicases. The activities displayed by these enzymes include homologous DNA pairing and strand exchange, helicase, branch migration, Holliday junction binding and cleavage, nuclease, ATPase, topoisomerase, DNA binding, ATP binding, polymerase, and ligase, and, collectively, they define biochemical events that are essential for efficient recombination. In addition to these needed proteins, a cis-acting recombination hot spot known as Chi (chi: 5'-GCTGGTGG-3') plays a crucial regulatory function. The biochemical steps that comprise homologous recombination can be formally divided into four parts: (i) processing of DNA molecules into suitable recombination substrates, (ii) homologous pairing of the DNA partners and the exchange of DNA strands, (iii) extension of the nascent DNA heteroduplex; and (iv) resolution of the resulting crossover structure. This review focuses on the biochemical mechanisms underlying these steps, with particular emphases on the activities of the proteins involved and on the integration of these activities into likely biochemical pathways for recombination. Images PMID:7968921

  9. Regulation of alcohol fermentation by Escherichia coli

    SciTech Connect

    Clark, D.P.

    1986-03-01

    The purpose of this project is to elucidate the way in which the fermentative synthesis of ethanol is regulated in the facultative anaerobe Escherichia coli. Focus is on the two final steps in alcohol synthesis, which are catalyzed by alcohol dehydrogenase and acetaldehyde CoA dehydrogenase. We have isolated a series of mutations affecting the expression of these enzymes. Some of these mutations are in the structural genes for these enzymes; others affect the regulation of the adh operon. We have recently cloned the genes coding for these enzymes and are now studying the effect of multiple copies of the adh gene on fermentative growth and its regulation. A recently invented technique, proton suicide has allowed the selection of a variety of novel mutants affecting fermentation which are presently being characterized. We have isolated a comprehensive collection of operon fusions in which the lacZ structural gene is fused to promoters that are inactive aerobically but active anaerobically. Although these genes (like adh) are only expressed under anaerobic conditions, the level of induction varies from two-fold to nearly 100-fold. The nitrogen source, medium pH, nature of the buffer, presence of alternative electron acceptors (e.g., nitrate), and other factors exert a great effect on the expression of many of these genes. In the near future we will investigate control mechanisms common to the adh operon and other anaerobically regulated genes.

  10. Regulation of Glutamine Transport in Escherichia coli.

    PubMed Central

    Willis, R C; Iwata, K K; Furlong, C E

    1975-01-01

    The formation of the high-affinity (Km equal to 0.2 muM) L-glutamine transport system of Escherichia coli strain 7 (Lin) appears to be subject to the same major control as the glutamine synthetase (EC 6.3.1.2) of this gram-negative organism. Culture of cells under nitrogen-limited conditions provides maximum derepression of both the glutamine synthetase and the glutamine transport system. Nutritional conditions providing a rich supply of ammonium salts or available sources of nitrogen, i.e., conditions which repress the formation of glutamine synthetase, provide three- and 20-fold repression, respectively, of the glutamine transport system. Culture of cells with glutamine supplements of 2 mM does not increase the repression of high-affinity glutamine transport system beyond the level observed in the absence of glutamine. A second kinetically distinct low-affinity component of glutamine. A second kinetically distinct low-affinity component of glutamine uptake is observed in cells cultured with a glutamine-depleted nutrient broth. This second component is associated with the appearance of glutaminase A (EC 3.5.1.2) and asparaginase I (EC 3.5.1.1), a periplasmic enzyme. Parallel changes were observed in the levels of the high-affinity glutamine transport system and the glutamine synthetase when cells were cultured with the carbon sources: glucose, glycerol, or succinate. PMID:238938

  11. ESCHERICHIA COLI Gene Induction by Alkylation Treatment

    PubMed Central

    Volkert, Michael R.; Nguyen, Dinh C.; Beard, K. Christopher

    1986-01-01

    Searches for alkylation-inducible (aid) genes of Escherichia coli have been conducted by screening random fusions of the Mu-dl(ApR lac) phage for fusions showing increased β-galactosidase activity after treatment with methylating agents, but not after treatments with UV-irradiation. In this report we describe gene fusions that are specifically induced by alkylation treatments. Nine new mutants are described, and their properties are compared with the five mutants described previously. The total of 14 fusion mutants map at five distinct genetic loci. They can be further subdivided on the basis of their induction by methyl methanesulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). alkA, aidB and aidD are induced by both agents and appear to be regulated by ada. Neither aidC nor aidI is regulated by ada. Moreover, since aidC is induced only by MNNG and aidI is induced only by MMS, these two genes are likely to be individually regulated. Thus, there appear to be at least three different regulatory mechanisms controlling aid genes. PMID:3080354

  12. Escherichia coli gene induction by alkylation treatment.

    PubMed

    Volkert, M R; Nguyen, D C; Beard, K C

    1986-01-01

    Searches for alkylation-inducible (aid) genes of Escherichia coli have been conducted by screening random fusions of the Mu-dl(ApR lac) phage for fusions showing increased beta-galactosidase activity after treatment with methylating agents, but not after treatments with UV-irradiation. In this report we describe gene fusions that are specifically induced by alkylation treatments. Nine new mutants are described, and their properties are compared with the five mutants described previously. The total of 14 fusion mutants map at five distinct genetic loci. They can be further subdivided on the basis of their induction by methyl methanesulfonate (MMS) and N-methyl-N' -nitro-N-nitrosoguanidine (MNNG). alkA, aidB and aidD are induced by both agents and appear to be regulated by ada. Neither aidC nor aidI is regulated by ada. Moreover, since aidC is induced only by MNNG and aidI is induced only by MMS, these two genes are likely to be individually regulated. Thus, there appear to be at least three different regulatory mechanisms controlling aid genes.

  13. Antimicrobial-resistant Invasive Escherichia coli, Spain

    PubMed Central

    Oteo, Jesús; Lázaro, Edurne; de Abajo, Francisco J.; Baquero, Fernando; Campos, José

    2005-01-01

    To address the public health problem of antimicrobial resistance, the European Union founded the European Antimicrobial Resistance Surveillance System. A network of 32 Spanish hospitals, serving ≈9.6 million persons, submitted antimicrobial-susceptibility data on 7,098 invasive Escherichia coli species (2001–2003). Resistance to ampicillin, cotrimoxazole, ciprofloxacin, gentamicin, and tobramycin was found at rates of 59.9%, 32.6%, 19.3%, 6.8%, and 5.3%, respectively. Resistance to multiple drugs increased from 13.8% in 2001 to 20.6% in 2003 (p <0.0001). Antimicrobial consumption data were obtained from the Spanish National Health System. In spite of decreased cephalosporin and β-lactam use, overall extended-spectrum β-lactamase production increased from 1.6% (2001) to 4.1% (2003) (p <0.0001), mainly due to the rising prevalence of cefotaximases. Resistance to ciprofloxacin significantly increased, mostly in community-onset infections, which coincided with a rise in community quinolone use. Cotrimoxazole resistance remained stable at ≈30%, even though its use was dramatically reduced. PMID:15829192

  14. Ribonuclease Sensitivity of Escherichia coli Ribosomes

    PubMed Central

    Santer, Melvin; Smith, Josephine R.

    1966-01-01

    Santer, Melvin (Haverford College, Haverford, Pa.), and Josephine R. Smith. Ribonuclease sensitivity of Escherichia coli ribosomes. J. Bacteriol. 92:1099–1110. 1966.—The ribonucleic acid (RNA) contained in 70S ribosomes and in 50S and 30S subunits was hydrolyzed by pancreatic ribonuclease. A 7% amount of the RNA was removed from the 70S particle; at 10−4m magnesium concentration, a maximum of 24 and 30% of the RNA in the 50S and the 30S fractions, respectively, was removed by ribonuclease. At the two lower magnesium ion concentrations, 50S ribosomes did not lose any protein, whereas 30S ribosomes lost protein as a result of ribonuclease treatment. A number of proteins were removed from the 30S particles by ribonuclease, and these proteins were antigenically related to proteins present in 50S ribosomes. The differential effect of ribonuclease on 50S and 30S ribosomes suggested that they have structural dissimilarities. Images PMID:5332866

  15. Genotoxicity of Graphene in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Sharma, Ananya

    Rapid advances in nanotechnology necessitate assessment of the safety of nanomaterials in the resulting products and applications. One key nanomaterial attracting much interest in many areas of science and technology is graphene. Graphene is a one atom thick carbon allotrope arranged in a two-dimensional honeycomb lattice. In addition to being extremely thin, graphene has several extraordinary physical properties such as its exceptional mechanical strength, thermal stability, and high electrical conductivity. Graphene itself is relatively chemically inert and therefore pristine graphene must undergo a process called functionalization, which is combination of chemical and physical treatments that change the properties of graphene, to make it chemically active. Functionalization of graphene is of crucial importance as the end application of graphene depends on proper functionalization. In the field of medicine, graphene is currently a nanomaterial of high interest for building biosensors, DNA transistors, and probes for cancer detection. Despite the promising applications of graphene in several areas of biomedicine, there have been only few studies in recent years that focus on evaluating cytotoxicity of graphene on cells, and almost no studies that investigate how graphene exposure affects cellular genetic material. Therefore, in this study we used a novel approach to evaluate the genotoxicity, i.e., the effects of graphene on DNA, using Escherichia coli as a prokaryotic model organism.

  16. The DNA exonucleases of Escherichia coli

    PubMed Central

    Lovett, Susan T.

    2014-01-01

    DNA exonucleases, enzymes that hydrolyze phosphodiester bonds in DNA from a free end, play important cellular roles in DNA repair, genetic recombination and mutation avoidance in all organisms. This article reviews the structure, biochemistry and biological functions of the 17 exonucleases currently identified in the bacterium Escherichia coli. These include the exonucleases associated with DNA polymerases I (polA), II (polB) and III (dnaQ/mutD), Exonucleases I (xonA/sbcB), III (xthA), IV, VII (xseAB), IX (xni/xgdG) and X (exoX), the RecBCD, RecJ, and RecE exonucleases, SbcCD endo/exonuclease, the DNA exonuclease activities of RNase T (rnt) and Endonuclease IV (nfo) and TatD. These enzymes are diverse in terms of substrate specificity and biochemical properties and have specialized biological roles. Most of these enzymes fall into structural families with characteristic sequence motifs, and members of many of these families can be found in all domains of life. PMID:26442508

  17. Enterotoxigenic Escherichia coli Multilocus Sequence Types in Guatemala and Mexico

    PubMed Central

    Klena, John; Rodas, Claudia; Bourgeois, August Louis; Torres, Olga; Svennerholm, Ann-Mari; Sjöling, Åsa

    2010-01-01

    The genetic backgrounds of 24 enterotoxigenic Escherichia coli (ETEC) strains from Mexico and Guatemala expressing heat-stable toxin (ST) and coli surface antigen 6 (CS6) were analyzed. US travelers to these countries and resident children in Guatemala were infected by ETEC strains of sequence type 398, expressing STp and carrying genetically identical CS6 sequences. PMID:20031063

  18. Characterization of enterohemorrhagic Escherichia coli on veal hides and carcasses

    USDA-ARS?s Scientific Manuscript database

    Enterohemorrhagic E. coli (EHEC) are Shiga toxin–producing Escherichia coli (STEC) associated with the most severe forms of foodborne illnesses. The United States Department of Agriculture (USDA) Food Safety Inspection Service (FSIS) has identified a higher percentage of non-O157 EHEC compared to E....

  19. Escherichia coli Pathotypes Occupy Distinct Niches in the Mouse Intestine

    PubMed Central

    Meador, Jessica P.; Caldwell, Matthew E.; Cohen, Paul S.

    2014-01-01

    Since the first step of the infection process is colonization of the host, it is important to understand how Escherichia coli pathogens successfully colonize the intestine. We previously showed that enterohemorrhagic O157:H7 strain E. coli EDL933 colonizes a niche in the streptomycin-treated mouse intestine that is distinct from that of human commensal strains, which explains how E. coli EDL933 overcomes colonization resistance imparted by some, but not all, commensal E. coli strains. Here we sought to determine if other E. coli pathogens use a similar strategy. We found that uropathogenic E. coli CFT073 and enteropathogenic E. coli E2348/69 occupy intestinal niches that are distinct from that of E. coli EDL933. In contrast, two enterohemorrhagic strains, E. coli EDL933 and E. coli Sakai, occupy the same niche, suggesting that strategies to prevent colonization by a given pathotype should be effective against other strains of the same pathotype. However, we found that a combination of commensal E. coli strains that can prevent colonization by E. coli EDL933 did not prevent colonization by E. coli CFT073 or E. coli E2348/69. Our results indicate that development of probiotics to target multiple E. coli pathotypes will be problematic, as the factors that govern niche occupation and hence stable colonization vary significantly among strains. PMID:24566621

  20. Draft Genome Sequence of Uropathogenic Escherichia coli Strain NB8

    PubMed Central

    Mi, Zu-huang; Wang, Chun-xin; Zhu, Jian-ming

    2016-01-01

    Escherichia coli NB8 is a clinical pyelonephritis isolate. Here, we report the draft genome sequence of uropathogenic E. coli NB8, which contains drug resistance genes encoding resistance to beta-lactams, aminoglycosides, quinolones, macrolides, colistin, sulfonamide-trimethoprim, and tetracycline. NB8 infects the kidney and bladder, making it an important tool for studying E. coli pathogenesis. PMID:27609920

  1. Multiplex polymerase chain reaction for identification of Escherichia coli, Escherichia albertii and Escherichia fergusonii.

    PubMed

    Lindsey, Rebecca L; Garcia-Toledo, L; Fasulo, D; Gladney, L M; Strockbine, N

    2017-09-01

    Escherichia coli, Escherichia albertii, and Escherichia fergusonii are closely related bacteria that can cause illness in humans, such as bacteremia, urinary tract infections and diarrhea. Current identification strategies for these three species vary in complexity and typically rely on the use of multiple phenotypic and genetic tests. To facilitate their rapid identification, we developed a multiplex PCR assay targeting conserved, species-specific genes. We used the Daydreamer™ (Pattern Genomics, USA) software platform to concurrently analyze whole genome sequence assemblies (WGS) from 150 Enterobacteriaceae genomes (107 E. coli, 5 Shigella spp., 21 E. albertii, 12 E. fergusonii and 5 other species) and design primers for the following species-specific regions: a 212bp region of the cyclic di-GMP regulator gene (cdgR, AW869_22935 from genome K-12 MG1655, CP014225) for E. coli/Shigella; a 393bp region of the DNA-binding transcriptional activator of cysteine biosynthesis gene (EAKF1_ch4033 from genome KF1, CP007025) for E. albertii; and a 575bp region of the palmitoleoyl-acyl carrier protein (ACP)-dependent acyltransferase (EFER_0790 from genome ATCC 35469, CU928158) for E. fergusonii. We incorporated the species-specific primers into a conventional multiplex PCR assay and assessed its performance with a collection of 97 Enterobacteriaceae strains. The assay was 100% sensitive and specific for detecting the expected species and offers a quick and accurate strategy for identifying E. coli, E. albertii, and E. fergusonii in either a single reaction or by in silico PCR with sequence assemblies. Published by Elsevier B.V.

  2. Soil solarization reduces Escherichia coli O157:H7 and total Escherichia coli on cattle feedlot pen surfaces

    USDA-ARS?s Scientific Manuscript database

    Feedlot pen soils are a source for transmission of Escherichia coli O157:H7, and therefore a target for preharvest strategies to reduce this pathogen in cattle. The objective of this study was to determine the ability of soil solarization to reduce E. coli O157:H7 in feedlot surface material (FSM)....

  3. Free RNA polymerase in Escherichia coli.

    PubMed

    Patrick, Michael; Dennis, Patrick P; Ehrenberg, Mans; Bremer, Hans

    2015-12-01

    The frequencies of transcription initiation of regulated and constitutive genes depend on the concentration of free RNA polymerase holoenzyme [Rf] near their promoters. Although RNA polymerase is largely confined to the nucleoid, it is difficult to determine absolute concentrations of [Rf] at particular locations within the nucleoid structure. However, relative concentrations of free RNA polymerase at different growth rates, [Rf]rel, can be estimated from the activities of constitutive promoters. Previous studies indicated that the rrnB P2 promoter is constitutive and that [Rf]rel in the vicinity of rrnB P2 increases with increasing growth rate. Recently it has become possible to directly visualize Rf in growing Escherichia coli cells. Here we examine some of the important issues relating to gene expression based on these new observations. We conclude that: (i) At a growth rate of 2 doublings/h, there are about 1000 free and 2350 non-specifically DNA-bound RNA polymerase molecules per average cell (12 and 28%, respectively, of 8400 total) which are in rapid equilibrium. (ii) The reversibility of the non-specific binding generates more than 1000 free RNA polymerase molecules every second in the immediate vicinity of the DNA. Of these, most rebind non-specifically to the DNA within a few ms; the frequency of non-specific binding is at least two orders of magnitude greater than specific binding and transcript initiation. (iii) At a given amount of RNA polymerase per cell, [Rf] and the density of non-specifically DNA-bound RNA polymerase molecules along the DNA both vary reciprocally with the amount of DNA in the cell. (iv) At 2 doublings/h an E. coli cell contains, on the average, about 1 non-specifically bound RNA polymerase per 9 kbp of DNA and 1 free RNA polymerase per 20 kbp of DNA. However some DNA regions (i.e. near active rRNA operons) may have significantly higher than average [Rf].

  4. Exudative cloacitis in the kakapo (Strigops habroptilus) potentially linked to Escherichia coli infection.

    PubMed

    White, D J; Hall, R J; Jakob-Hoff, R; Wang, J; Jackson, B; Tompkins, D M

    2015-05-01

    To investigate the initiating causes of cloacitis (inflammation of the cloaca) in kakapo (Strigops habroptilus). Metagenomics using unbiased RNA or DNA sequencing was applied to faecal material from an 11-year-old female kakapo with exudative cloacitis, and a pool of eight birds (male and female aged 1-20 years) with no current signs or history of the disease. Faecal material from the diseased bird was collected pre- and post-treatment. For RNA sequencing, extracted RNA/DNA was subject to DNase, and the remaining RNA reverse transcribed to cDNA and subject to multiple displacement amplification prior to sequencing. No significant alignment to any known avian virus sequence was obtained from any faecal samples. However significant BLAST alignments to five bacteriophages known to infect enterobacteria were obtained. Strong evidence was obtained for the presence of the bacteriophage Escherichia phage TL-2011b, a bacteriophage known to occur in Escherichia coli causing outbreaks of foodborne disease in humans, in the sample from the diseased bird, but not the non-diseased pool. Differences in E. coli community structure between the diseased bird and the non-diseased pool were also apparent. Escherichia coli infection of human origin is suggested as a possible cause of exudative cloacitis, although confirmatory work is required to test this hypothesis.

  5. The Melibiose Transporter of Escherichia coli

    PubMed Central

    Fuerst, Oliver; Lin, Yibin; Granell, Meritxell; Leblanc, Gérard; Padrós, Esteve; Lórenz-Fonfría, Víctor A.; Cladera, Josep

    2015-01-01

    We examine the role of Lys-377, the only charged residue in helix XI, on the functional mechanism of the Na+-sugar melibiose symporter from Escherichia coli. Intrinsic fluorescence, FRET, and Fourier transform infrared difference spectroscopy reveal that replacement of Lys-377 with either Cys, Val, Arg, or Asp disables both Na+ and melibiose binding. On the other hand, molecular dynamics simulations extending up to 200–330 ns reveal that Lys-377 (helix XI) interacts with the anionic side chains of two of the three putative ligands for cation binding (Asp-55 and Asp-59 in helix II). When Asp-59 is protonated during the simulations, Lys-377 preferentially interacts with Asp-55. Interestingly, when a Na+ ion is positioned in the Asp-55-Asp-59 environment, Asp-124 in helix IV (a residue essential for melibiose binding) reorients and approximates the Asp-55-Asp-59 pair, and all three acidic side chains act as Na+ ligands. Under these conditions, the side chain of Lys-377 interacts with the carboxylic moiety of these three Asp residues. These data highlight the crucial role of the Lys-377 residue in the spatial organization of the Na+ binding site. Finally, the analysis of the second-site revertants of K377C reveals that mutation of Ile-22 (in helix I) preserves Na+ binding, whereas that of melibiose is largely abolished according to spectroscopic measurements. This amino acid is located in the border of the sugar-binding site and might participate in sugar binding through apolar interactions. PMID:25971963

  6. Polyamine transport inEscherichia coli.

    PubMed

    Igarashi, K; Kashiwagi, K

    1996-03-01

    The polyamine content in cells is regulated by both polyamine biosynthesis and its transport. We recently obtained and characterized three clones of polyamine transport genes (pPT104, pPT79 and pPT71) inEscherichia coli. The system encoded by pPT104 was the spermidine-preferential uptake system and that encoded by pPT79 the putrescine-specific uptake system. Furthermore, these two systems were periplasmic transport systems consisting of four kinds of proteins: pPT104 clone encoded potA, -B,-C, and -D proteins and pPT79 clone encoded potF, -G, -H, and -I proteins, judging from the deduced amino acid sequences of the nucleotide sequences of these clones. PotD and -F proteins were periplasmic substrate binding proteins and potA and -G proteins membrane associated proteins having the nucleotide binding site. PotB and -C proteins, and potH and -I proteins were transmembrane proteins probably forming channels for spermidine and putrescine, respectively. Their amino acid sequences in the corresponding proteins were similar to each other. The functions of potA and -D proteins in the spermidine-preferential uptake system encoded by pPT104 clone were studied in detail through a combined biochemical and genetic approach. In contrast, the putrescine transport system encoded by pPT71 consisted of one membrane protein (potE protein) haveing twelve transmembrane segments, and was active in both the uptake and excretion of putrescine. The uptake was dependent on membrane potential, and the excretion was due to the exchange reaction between putrescine and ornithine.

  7. Novel Mechanism of Escherichia coli Porin Regulation

    PubMed Central

    Castillo-Keller, Maria; Vuong, Phu; Misra, Rajeev

    2006-01-01

    A novel mechanism of Escherichia coli porin regulation was discovered from multicopy suppressors that permitted growth of cells expressing a mutant OmpC protein in the absence of DegP. Analyses of two suppressors showed that both substantially lowered OmpC expression. Suppression activities were confined to a short DNA sequence, which we designated ipeX for inhibition of porin expression, and to DNA containing a 3′-truncated ompR gene. The major effect of ipeX on ompC expression was exerted posttranscriptionally, whereas the truncated OmpR protein reduced ompC transcription. ipeX was localized within an untranslated region of 247 base pairs between the stop codon of nmpC—a remnant porin gene from the cryptic phage qsr′ (DLP12) genome—and its predicted Rho-independent transcriptional terminator. Interestingly, another prophage, PA-2, which encodes a porin similar to NmpC, known as Lc, has sequences downstream from lc identical to that of ipeX. PA-2 lysogenization leads to Lc expression and OmpC inhibition. Our data show that the synthesis of the lc transcript, whose 3′ end contains the corresponding ipeX sequence, inhibits OmpC expression. Overexpression of ipeX RNA inhibited both OmpC and OmpF expression but not that of OmpA. ompC-phoA chimeric gene constructs revealed a 248-bp untranslated region of ompC required for ipeX-mediated inhibition. However, no sequence complementarity was found between ipeX and this region of ompC, indicating that inhibition may not involve simple base pairing between the two RNA molecules. The effect of ipeX on ompC, but not on ompF, was independent of the RNA chaperone Hfq. PMID:16385048

  8. Mutational Consequences of Ciprofloxacin in Escherichia coli.

    PubMed

    Song, Lisa Yun; Goff, Marisa; Davidian, Christina; Mao, Zhiyuan; London, Marisa; Lam, Karen; Yung, Madeline; Miller, Jeffrey H

    2016-10-01

    We examined the mutagenic specificity of the widely used antibiotic ciprofloxacin (CPR), which displays weak to moderate mutagenic activity in several bacteria and generates short in-frame deletions in rpoB in Staphylococcus aureus To determine the spectrum of mutations in a system where any gene knockout would result in a recovered mutant, including frameshifts and both short and long deletions, we examined CPR-induced mutations in the thymidylate synthase-encoding thyA gene. Here, any mutation resulting in loss of thymidylate synthase activity generates trimethoprim (Trm) resistance. We found that deletions and insertions in all three reading frames predominated in the spectrum. They tend to be short deletions and cluster in two regions, one being a GC-rich region with potential extensive secondary structures. We also exploited the well-characterized rpoB-Rif(r) system in Escherichia coli to determine that cells grown in the presence of sublethal doses of CPR not only induced short in-frame deletions in rpoB, but also generated base substitution mutations resulting from induction of the SOS system. Some of the specific point mutations prominent in the spectrum of a strain that overproduces the dinB-encoded Pol IV were also present after growth in CPR. However, these mutations disappeared in CPR-treated dinB mutants, whereas the deletions remained. Moreover, CPR-induced deletions also occurred in a strain lacking all three SOS-induced polymerases. We discuss the implications of these findings for the consequences of overuse of CPR and other antibiotics. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Captive and free-living urban pigeons (Columba livia) from Brazil as carriers of multidrug-resistant pathogenic Escherichia coli.

    PubMed

    Borges, Clarissa A; Maluta, Renato P; Beraldo, Lívia G; Cardozo, Marita V; Guastalli, Elisabete A L; Kariyawasam, Subhashinie; DebRoy, Chitrita; Ávila, Fernando A

    2017-01-01

    Thirty Escherichia coli isolates from captive and free-living pigeons in Brazil were characterised. Virulence-associated genes identified in pigeons included those which occur relatively frequently in avian pathogenic E. coli (APEC) from commercial poultry worldwide. Eleven of 30 E. coli isolates from pigeons, belonging mainly to B1 and B2 phylogenetic groups, had high or intermediate pathogenicity for 1-day-old chicks. The frequency of multi-drug resistant (MDR) E. coli in captive pigeons was relatively high and included one isolate positive for the extended-spectrum β-lactamase (ESBL) gene blaCTX-M-8. Pulsed field gel electrophoresis (PFGE) showed high heterogeneity among isolates. There is potential for pigeons to transmit antibiotic resistant pathogenic E. coli to other species through environmental contamination or direct contact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Serogroups of Escherichia coli from drinking water.

    PubMed

    Ramteke, P W; Tewari, Suman

    2007-07-01

    Fifty seven isolates of thermotolerant E. coli were recovered from 188 drinking water sources, 45 (78.9%) were typable of which 15 (26.3%) were pathogenic serotypes. Pathogenic serogroup obtained were 04 (Uropathogenic E. coli, UPEC), 025 (Enterotoxigenic E. coli, ETEC), 086 (Enteropathogenic E. coli, EPEC), 0103 (Shiga-toxin producing E. coli, STEC), 0157 (Shiga-toxin producing E. coli, STEC), 08 (Enterotoxigenic E. coli, ETEC) and 0113 (Shiga-toxin producing E. coli, STEC). All the pathogenic serotypes showed resistance to bacitracin and multiple heavy metal ions. Resistance to streptomycin and cotrimazole was detected in two strains whereas resistance to cephaloridine, polymixin-B and ampicillin was detected in one strain each. Transfer of resistances to drugs and metallic ions was observed in 9 out of 12 strains studied. Resistances to bacitracin were transferred in all nine strains. Among heavy metals resistance to As(3+) followed by Cr(6+) were transferred more frequently.

  11. Persistence and microbial source tracking of Escherichia coli at a swimming beach at Lake of the Ozarks State Park, Missouri

    USGS Publications Warehouse

    Wilson, Jordan L.; Schumacher, John G.; Burken, Joel G.

    2016-01-01

    The Missouri Department of Natural Resources (MDNR) has closed or posted advisories at public beaches at Lake of the Ozarks State Park in Missouri because of Escherichia coli (E. coli) concentration exceedances in recent years. Spatial and temporal patterns of E. coliconcentrations, microbial source tracking, novel sampling techniques, and beach-use patterns were studied during the 2012 recreational season to identify possible sources, origins, and occurrence of E. coli contamination at Grand Glaize Beach (GGB). Results indicate an important source of E. coli contamination at GGB was E. coli released into the water column by bathers resuspending avian-contaminated sediments, especially during high-use days early in the recreational season. Escherichia coli concentrations in water, sediment, and resuspended sediment samples all decreased throughout the recreational season likely because of decreasing lake levels resulting in sampling locations receding away from the initial spring shoreline as well as natural decay and physical transport out of the cove. Weekly MDNR beach monitoring, based solely on E. coli concentrations, at GGB during this study inaccurately predicted E. coli exceedances, especially on weekends and holidays. Interestingly, E. coli of human origin were measured at concentrations indicative of raw sewage in runoff from an excavation of a nearby abandoned septic tank that had not been used for nearly two years.

  12. Control of Acid Resistance in Escherichia coli

    PubMed Central

    Castanie-Cornet, Marie-Pierre; Penfound, Thomas A.; Smith, Dean; Elliott, John F.; Foster, John W.

    1999-01-01

    Acid resistance (AR) in Escherichia coli is defined as the ability to withstand an acid challenge of pH 2.5 or less and is a trait generally restricted to stationary-phase cells. Earlier reports described three AR systems in E. coli. In the present study, the genetics and control of these three systems have been more clearly defined. Expression of the first AR system (designated the oxidative or glucose-repressed AR system) was previously shown to require the alternative sigma factor RpoS. Consistent with glucose repression, this system also proved to be dependent in many situations on the cyclic AMP receptor protein. The second AR system required the addition of arginine during pH 2.5 acid challenge, the structural gene for arginine decarboxylase (adiA), and the regulator cysB, confirming earlier reports. The third AR system required glutamate for protection at pH 2.5, one of two genes encoding glutamate decarboxylase (gadA or gadB), and the gene encoding the putative glutamate:γ-aminobutyric acid antiporter (gadC). Only one of the two glutamate decarboxylases was needed for protection at pH 2.5. However, survival at pH 2 required both glutamate decarboxylase isozymes. Stationary phase and acid pH regulation of the gad genes proved separable. Stationary-phase induction of gadA and gadB required the alternative sigma factor ςS encoded by rpoS. However, acid induction of these enzymes, which was demonstrated to occur in exponential- and stationary-phase cells, proved to be ςS independent. Neither gad gene required the presence of volatile fatty acids for induction. The data also indicate that AR via the amino acid decarboxylase systems requires more than an inducible decarboxylase and antiporter. Another surprising finding was that the ςS-dependent oxidative system, originally thought to be acid induced, actually proved to be induced following entry into stationary phase regardless of the pH. However, an inhibitor produced at pH 8 somehow interferes with the

  13. Environmental Escherichia coli: Ecology and public health implications - A review

    USGS Publications Warehouse

    Jang, Jeonghwan; Hur, Hor-Gil; Sadowsky, Michael J.; Byappanahalli, Muruleedhara; Yan, Tao; Ishii, Satoshi

    2017-01-01

    Escherichia coli is classified as a rod-shaped, Gram-negative bacterium in the family Enterobacteriaceae. The bacterium mainly inhabits the lower intestinal tract of warm-blooded animals, including humans, and is often discharged into the environment through feces or wastewater effluent. The presence of E. coli in environmental waters has long been considered as an indicator of recent fecal pollution. However, numerous recent studies have reported that some specific strains of E. coli can survive for long periods of time, and potentially reproduce, in extra-intestinal environments. This indicates that E. coli can be integrated into indigenous microbial communities in the environment. This naturalization phenomenon calls into question the reliability of E. coli as a fecal indicator bacterium (FIB). Recently, many studies reported that E. coli populations in the environment are affected by ambient environmental conditions affecting their long-term survival. Large-scale studies of population genetics provide the diversity and complexity of E. coli strains in various environments, affected by multiple environmental factors. This review examines the current knowledge on the ecology of E. coli strains in various environments in regards to its role as a FIB and as a naturalized member of indigenous microbial communities. Special emphasis is given on the growth of pathogenic E. coli in the environment, and the population genetics of environmental members of the genus Escherichia. The impact of environmental E. coli on water quality and public health is also discussed.

  14. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development.

    PubMed

    Yang, Shih-Chun; Lin, Chih-Hung; Aljuffali, Ibrahim A; Fang, Jia-You

    2017-08-01

    Food contamination by pathogenic microorganisms has been a serious public health problem and a cause of huge economic losses worldwide. Foodborne pathogenic Escherichia coli (E. coli) contamination, such as that with E. coli O157 and O104, is very common, even in developed countries. Bacterial contamination may occur during any of the steps in the farm-to-table continuum from environmental, animal, or human sources and cause foodborne illness. To understand the causes of the foodborne outbreaks by E. coli and food-contamination prevention measures, we collected and investigated the past 10 years' worldwide reports of foodborne E. coli contamination cases. In the first half of this review article, we introduce the infection and symptoms of five major foodborne diarrheagenic E. coli pathotypes: enteropathogenic E. coli (EPEC), Shiga toxin-producing E. coli/enterohemorrhagic E. coli (STEC/EHEC), Shigella/enteroinvasive E. coli (EIEC), enteroaggregative E. coli (EAEC), and enterotoxigenic E. coli (ETEC). In the second half of this review article, we introduce the foodborne outbreak cases caused by E. coli in natural foods and food products. Finally, we discuss current developments that can be applied to control and prevent bacterial food contamination.

  15. A Survey for Escherichia coli Virulence Factors in Asymptomatic Free-Ranging Parrots

    PubMed Central

    Becker Saidenberg, André; Robaldo Guedes, Neiva Maria; Fernandes Seixas, Gláucia Helena; da Costa Allgayer, Mariangela; Pacífico de Assis, Erica; Fabio Silveira, Luis; Anne Melville, Priscilla; Benites, Nilson Roberti

    2012-01-01

    Parrots in captivity are frequently affected by Escherichia coli (E. coli) infections. The objective of this study was to collect information on the carrier state for E. coli pathotypes in asymptomatic free-ranging parrots. Cloacal swabs were collected from nestlings of Hyacinth, Lear's macaws and Blue-fronted Amazon parrots and tested by polymerase chain reaction (PCR) for virulence factors commonly found in enteropathogenic, avian pathogenic, and uropathogenic E. coli strains. In total, 44 samples were cultured and E. coli isolates were yielded, from which DNA was extracted and processed by PCR. Genes commonly found in APEC isolates from Blue-fronted Amazon parrots and Hyacinth macaws were expressed in 14 of these 44 samples. One atypical EPEC isolate was obtained from a sample from Lear's macaw. The most commonly found gene was the increased serum survival (iss) gene. This is the first report, that describes such pathotypes in asymptomatic free-living parrots. The findings of this study suggest the presence of a stable host/parasite relationship at the time of the sampling brings a new understanding to the role that E. coli plays in captive and wild parrots. Such information can be used to improve husbandry protocols as well as help conservation efforts of free-living populations. PMID:23738135

  16. A Survey for Escherichia coli Virulence Factors in Asymptomatic Free-Ranging Parrots.

    PubMed

    Becker Saidenberg, André; Robaldo Guedes, Neiva Maria; Fernandes Seixas, Gláucia Helena; da Costa Allgayer, Mariangela; Pacífico de Assis, Erica; Fabio Silveira, Luis; Anne Melville, Priscilla; Benites, Nilson Roberti

    2012-01-01

    Parrots in captivity are frequently affected by Escherichia coli (E. coli) infections. The objective of this study was to collect information on the carrier state for E. coli pathotypes in asymptomatic free-ranging parrots. Cloacal swabs were collected from nestlings of Hyacinth, Lear's macaws and Blue-fronted Amazon parrots and tested by polymerase chain reaction (PCR) for virulence factors commonly found in enteropathogenic, avian pathogenic, and uropathogenic E. coli strains. In total, 44 samples were cultured and E. coli isolates were yielded, from which DNA was extracted and processed by PCR. Genes commonly found in APEC isolates from Blue-fronted Amazon parrots and Hyacinth macaws were expressed in 14 of these 44 samples. One atypical EPEC isolate was obtained from a sample from Lear's macaw. The most commonly found gene was the increased serum survival (iss) gene. This is the first report, that describes such pathotypes in asymptomatic free-living parrots. The findings of this study suggest the presence of a stable host/parasite relationship at the time of the sampling brings a new understanding to the role that E. coli plays in captive and wild parrots. Such information can be used to improve husbandry protocols as well as help conservation efforts of free-living populations.

  17. Investigation of ’Escherichia coli’ Enterotoxins

    DTIC Science & Technology

    1978-05-01

    E . coli diarrheal disease in man and domestic animals. Fundamentally, the design of the vaccine is based on the well- documented ability of cholera antitoxin to neutralize both cholera and heat- labile E . coli enterotoxins and on the ability of certain E . coli antigens to enhance the immune response to cholera toxoid and possibly whole-cell Cholera Vaccine, as

  18. Haemolytic–uraemic syndrome with bacteraemia caused by a new hybrid Escherichia coli pathotype

    PubMed Central

    Mariani-Kurkdjian, P; Lemaître, C; Bidet, P; Perez, D; Boggini, L; Kwon, T; Bonacorsi, S

    2014-01-01

    We describe a new atypical Shiga-toxin-producing Escherichia coli (STEC) responsible for a severe episode of haemolytic–uraemic syndrome in an adult with a relapse associated with bacteraemia. This STECs train of serotype O80:H2 harboured stx2c and stx2d gene subtypes, the rare eae ξ variant and a ColV plasmid with a conserved virulence plasmidic region involved in virulence of human and avian extraintestinal pathogenic E. coli. This atypical hybrid pathotype, which represents a new threat, is a further demonstration that STEC may be a recipient for extraintestinal virulence factors and raises again the question of antibiotic therapy during STEC infection. PMID:25356358

  19. Rapid Sterilization of Escherichia coli by Solution Plasma Process

    NASA Astrophysics Data System (ADS)

    Andreeva, Nina; Ishizaki, Takahiro; Baroch, Pavel; Saito, Nagahiro

    2012-12-01

    Solution plasma (SP), which is a discharge in the liquid phase, has the potential for rapid sterilization of water without chemical agents. The discharge showed a strong sterilization performance against Escherichia coli bacteria. The decimal value (D value) of the reduction time for E. coli by this system with an electrode distance of 1.0 mm was estimated to be approximately 1.0 min. Our discharge system in the liquid phase caused no physical damage to the E. coli and only a small increase in the temperature of the aqueous solution. The UV light generated by the discharge was an important factor in the sterilization of E. coli.

  20. Human Meningitis-Associated Escherichia coli

    PubMed Central

    KIM, KWANG SIK

    2016-01-01

    E. coli is the most common Gram-negative bacillary organism causing meningitis and E. coli meningitis continues to be an important cause of mortality and morbidity throughout the world. Our incomplete knowledge of its pathogenesis contributes to such mortality and morbidity. Recent reports of E. coli strains producing CTX-M-type or TEM-type extended-spectrum β-lactamases create a challenge. Studies using in vitro and in vivo models of the blood-brain barrier have shown that E. coli meningitis follows a high-degree of bacteremia and invasion of the blood-brain barrier. E. coli invasion of the blood-brain barrier, the essentials step in the development of E. coli meningitis, requires specific microbial and host factors as well as microbe- and host-specific signaling molecules. Blockade of such microbial and host factors contributing to E. coli invasion of the blood-brain barrier is shown to be efficient in preventing E. coli penetration into the brain. The basis for requiring a high-degree of bacteremia for E. coli penetration of the blood-brain barrier, however, remains unclear. Continued investigation on the microbial and host factors contributing to a high-degree of bacteremia and E. coli invasion of the blood-brain barrier is likely to identify new targets for prevention and therapy of E. coli meningitis. PMID:27223820

  1. [Frequency, risk factors and vaginal colonization due to Escherichia coli].

    PubMed

    González Pedraza Avilés, Alberto; Sánchez Hernández, Gabriela; Ponce Rosas, Raúl Efrén

    2004-02-01

    Recent studies associate Escherichia coli with symptomatic infections at vaginal level, mainly associated to changes in the normal flora taken place by a series of factors characteristic of the host. To recognize their colonization frequency and these factors, it becomes important due to their association with perinatal complications, besides considering this colonization like the critical step preceding urinary tract infection. To determine the frequency of colonization of Escherichia coli in 519 female patients, the role of the bacterium in the vaginal ecology likes probable cause of clinical manifestations and to recognize the associate's factors of risk with its vaginal colonization. 519 women were studied: 350 symptomatic and 169 asymptomatic. Vaginal swab specimens were inoculated onto the routine mediums. Associations of Escherichia coli with various risk factors were examined by using odds ratios (ORs) and 95% confidence intervals, and statistical significance was assessed by the Chi statistic or Fischer's exact test. Overall Escherichia coli was isolated from 95 (18.3%) of the women. Factors that were significantly associated with vaginal carriage of E. coli were the age extreme groups, the climacteric, and the bad genital habits. The highest frequency of vaginal colonization for Escherichia coli was presented in the population groups where there is hormonal deficiency, mainly of estrogens of the type estradiol. The vaginal colonization for E. coli doesn't associate to sexual behavior. Although E. coli doesn't produce defined symptoms at vaginal level, the relatively low carriage rate indicates that this organism should not be considered as part of the normal indigenous vaginal flora and that it should take into account due to the perinatal complication it is associated.

  2. The Biology of the Escherichia coli Extracellular Matrix

    PubMed Central

    Hufnagel, David A.; DePas, William H.; Chapman, Matthew R.

    2015-01-01

    Chapter Summary Escherichia coli (E. coli) is one of the world’s best-characterized organisms, as it has been extensively studied for over a century. However, most of this work has focused on E. coli grown under laboratory conditions that do not faithfully simulate its natural environments. Therefore, the historical perspectives on E. coli physiology and life cycle are somewhat skewed toward experimental systems that feature E. coli growing logarithmically in a test tube. Typically a commensal bacterium, E. coli resides in the lower intestines of a slew of animals. Outside of the lower intestine, E. coli can adapt and survive in a very different set of environmental conditions. Biofilm formation allows E. coli to survive, and even thrive, in environments that do not support the growth of planktonic populations. E. coli can form biofilms virtually everywhere; in the bladder during a urinary tract infection, on in-dwelling medical devices, and outside of the host on plants and in the soil. The E. coli extracellular matrix, primarily composed of the protein polymer named curli and the polysaccharide cellulose, promotes adherence to organic and inorganic surfaces, and resistance to desiccation, the host immune system and other antimicrobials. The pathways that govern E. coli biofilm formation, cellulose production, and curli biogenesis will be discussed in this book chapter, which concludes with insights into the future of E. coli biofilm research and potential therapies. PMID:26185090

  3. Infection by verocytotoxin-producing Escherichia coli.

    PubMed Central

    Karmali, M A

    1989-01-01

    Verocytotoxin (VT)-producing Escherichia coli (VTEC) are a newly recognized group of enteric pathogens which are increasingly being recognized as common causes of diarrhea in some geographic settings. Outbreak studies indicate that most patients with VTEC infection develop mild uncomplicated diarrhea. However, a significant risk of two serious and potentially life-threatening complications, hemorrhagic colitis and the hemolytic uremic syndrome, makes VTEC infection a public health problem of serious concern. The main reservoirs of VTEC appear to be the intestinal tracts of animals, and foods of animal (especially bovine) origin are probably the principal sources for human infection. The term VT refers to a family of subunit exotoxins with high biological activity. Individual VTEC strains elaborate one or both of at least two serologically distinct, bacteriophage-mediated VTs (VT1 and VT2) which are closely related to Shiga toxin and are thus also referred to as Shiga-like toxins. The holotoxins bind to cells, via their B subunits, to a specific receptor which is probably the glycolipid, globotriosyl ceramide (Gb3). Binding is followed by internalization of the A subunit, which, after it is proteolytically nicked and reduced to the A1 fragment, inhibits protein synthesis in mammalian cells by inactivating 60S ribosomal subunits through selective structural modification of 28S ribosomal ribonucleic acid. The mechanism of VTEC diarrhea is still controversial, and the relative roles of locally acting VT and "attaching and effacing adherence" of VTEC to the mucosa have yet to be resolved. There is increasing evidence that hemolytic uremic syndrome and possibly hemorrhagic colitis result from the systemic action of VT on vascular endothelial cells. The role of antitoxic immunity in preventing the systemic complications of VTEC infection is being explored. Antibiotics appear to be contraindicated in the treatment of VTEC infection. The most common VTEC serotype associated

  4. Intestinal Colonization by Enterotoxigenic Escherichia coli.

    DTIC Science & Technology

    1980-09-01

    E . coli is mediated by specific types of pili. These pili are antigenic and can be used in diagnosing enterotoxigenic E . coli infections. They are also good protective antigens. When pregnant dams are vaccinated parenterally or orally with pili on live piliated bacteria, they secrete antibodies against the pili in their milk. Neonates suckling dams so vaccinated are passively protected against fatal challenge by enterotoxigenic E . coli . Pili are also good candidate protective antigens for the development of vaccines to protect by

  5. Transcription of foreign DNA in Escherichia coli.

    PubMed

    Warren, René L; Freeman, John D; Levesque, Roger C; Smailus, Duane E; Flibotte, Stephane; Holt, Robert A

    2008-11-01

    Propagation of heterologous DNA in E. coli host cells is central to molecular biology. DNA constructs are often engineered for expression of recombinant protein in E. coli, but the extent of incidental transcription arising from natural regulatory sequences in cloned DNA remains underexplored. Here, we have used programmable microarrays and RT-PCR to measure, comprehensively, the transcription of H. influenzae, P. aeruginosa, and human DNA propagating in E. coli as bacterial artificial chromosomes. We find evidence that at least half of all H. influenzae genes are transcribed in E. coli. Highly transcribed genes are principally involved in energy metabolism, and their proximal promoter regions are significantly enriched with E. coli sigma(70) (also known as RpoD) binding sites. H. influenzae genes acquired from an ancient bacteriophage Mu insertion are also highly transcribed. Compared with H. influenzae, a smaller proportion of P. aeruginosa genes are transcribed in E. coli, and in E. coli there is punctuated transcription of human DNA. The presence of foreign DNA in E. coli disturbs the host transcriptional profile, with expression of the E. coli phage shock protein operon and the flagellar gene cluster being particularly strongly up-regulated. While cross-species transcriptional activation is expected to be enabling for horizontal gene transfer in bacteria, incidental expression of toxic genes can be problematic for DNA cloning. Ongoing characterization of cross-expression will help inform the design of biosynthetic gene clusters and synthetic microbial genomes.

  6. [Expression of Photobacterium leiognathi bioluminescence system genes in Escherichia coli].

    PubMed

    Ptitsyn, L R; Fatova, M A; Stepanov, A I

    1990-02-01

    Expression of Photobacterium leiognathi bioluminescence genes under the control of lac, tac, tet promoters in Escherichia coli cells has been studied. The position of the genes for aliphatic aldehyde biosynthesis and for the synthesis of luciferase subunits was identified. The plasmid pBRPL1 has been constructed containing the system of bioluminescence genes devoid of promoter following the polylinker DNA fragment. The plasmid can be used for selection of promoter containing DNA sequences as well as for studying the promoters regulation in process of Escherichia coli cells growth.

  7. Recurrent Hemolytic and Uremic Syndrome Induced by Escherichia Coli

    PubMed Central

    Commereuc, Morgane; Weill, Francois-Xavier; Loukiadis, Estelle; Gouali, Malika; Gleizal, Audrey; Kormann, Raphaël; Ridel, Christophe; Frémeaux-Bacchi, Véronique; Rondeau, Eric; Hertig, Alexandre

    2016-01-01

    Abstract A widespread belief is that typical hemolytic and uremic syndrome (HUS) does not recur. We report the case of a patient infected twice with raw milk taken from his own cow and containing a Shiga toxin–producing Escherichia coli O174:H21 that induced recurrent HUS causing severe renal and cerebral disorders. A genomic comparison of the human and bovine Shiga toxin–producing Escherichia coli O174:H21 isolates revealed that they were identical. Typical HUS may recur. Since milk from this animal was occasionally distributed locally, thereby posing a serious threat for the whole village, this particular cow was destroyed. PMID:26735524

  8. Diarrheagenic Escherichia coli in Children from Costa Rica

    PubMed Central

    Pérez, Cristian; Gómez-Duarte, Oscar G.; Arias, María L.

    2010-01-01

    More than 5,000 diarrheal cases per year receive medical care at the National Children's Hospital of Costa Rica, and nearly 5% of them require hospitalization. A total of 173 Escherichia coli strains isolated from children with diarrhea were characterized at the molecular, serologic, and phenotypic level. Multiplex and duplex polymerase chain reactions were used to detect the six categories of diarrheagenic E. coli. Thirty percent (n = 52) of the strains were positive, indicating a high prevalence among the pediatric population. Enteropathogenic E. coli and enteroinvasive E. coli pathotypes were the most prevalent (21% and 19%, respectively). Pathogenic strains were distributed among the four E. coli phylogenetic groups A, B1, B2, and D, with groups A and B1 the most commonly found. This study used molecular typing to evaluate the prevalence of diarrheagenic E. coli reported in Costa Rica and demonstrated the importance of these pathotypes in the pediatric population. PMID:20682870

  9. Genes and proteins of Escherichia coli K-12.

    PubMed

    Riley, M

    1998-01-01

    GenProtEC is a database of Escherichia coli genes and their gene products, classified by type of function and physiological role and with citations to the literature for each. Also present are data on sequence similarities among E.coli proteins, representing groups of paralogous genes, with PAM values, percent identity of amino acids, length of alignment and percent aligned. GenProtEC can be accessed at the URL http://www.mbl.edu/html/ecoli.html

  10. Large Surface Blebs on Escherichia coli Heated to Inactivating Temperatures

    PubMed Central

    Scheie, Paul; Ehrenspeck, Susan

    1973-01-01

    Large surface blebs were observed with phase-contrast optics on Escherichia coli B/r and Bs-1 heated to temperatures at which colony-forming ability was lost. Characterization of such blebs was consistent with the view that they were formed by a physical process and were bounded by the outer membrane of the cell. A hypothesis for thermal inactivation of E. coli is presented that places membrane damage near the primary lethal event. Images PMID:4196258

  11. Expression of staphylococcal enterotoxin C1 in Escherichia coli.

    PubMed Central

    Bohach, G A; Schlievert, P M

    1987-01-01

    The structural gene encoding staphylococcal enterotoxin C1 was cloned into Escherichia coli and localized on a 1.5-kilobase HindIII-ClaI DNA fragment by subcloning. The toxin was partially purified from E. coli clones and shown to be immunologically identical to enterotoxin C1 from Staphylococcus aureus. The cloned toxin also had the same molecular weight (26,000) and charge heterogeneity as staphylococcus-derived enterotoxin. Toxins from both sources were equally biologically active. Images PMID:3542834

  12. Wild birds and urban pigeons as reservoirs for diarrheagenic Escherichia coli with zoonotic potential.

    PubMed

    Borges, Clarissa A; Cardozo, Marita V; Beraldo, Livia G; Oliveira, Elisabete S; Maluta, Renato P; Barboza, Kaline B; Werther, Karin; Ávila, Fernando A

    2017-03-09

    In order to describe the role of wild birds and pigeons in the transmission of shiga toxigenic Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) to humans and other animals, samples were collected from cloacae and oropharynx of free-living wild birds and free-living pigeons. Two STEC (0.8%) and five EPEC strains (2.0%) were isolated from wild birds and four EPEC strains (2.0%) were recovered from pigeons. Serogroups, sequence types (STs) and virulence genes, such as saa, iha, lpfA O113, ehxA, espA, nleB and nleE, detected in this study had already been implicated in human and animal diseases. Multidrug resistance (MDR) was found in 25.0% of the pigeon strains and in 57.0% of the wild bird strains; the wild birds also yielded one isolate carrying extended-spectrum β-lactamases (ESBLs) gene bla CTX-M-8. The high variability shown by PFGE demonstrates that there are no prevalent E. coli clones from these avian hosts. Wild birds and pigeons could act as carriers of multidrug-resistant STEC and EPEC and therefore may constitute a considerable hazard to human and animal health by transmission of these strains to the environment.

  13. Multidrug-resistant Escherichia coli in Asia: epidemiology and management.

    PubMed

    Sidjabat, Hanna E; Paterson, David L

    2015-05-01

    Escherichia coli has become multiresistant by way of production of a variety of β-lactamases. The prevalence of CTX-M-producing E. coli has reached 60-79% in certain parts of Asia. The acquisition of CTX-M plasmids by E. coli sequence type 131, a successful clone of E. coli, has caused further dissemination of CTX-M-producing E. coli. The prevalence of carbapenemase-producing E. coli, especially Klebsiella pneumoniae carbapenemase, and New Delhi metallo-β-lactamase (NDM)-producing E. coli has been increasing in Asia. K. pneumoniae carbapenemase and NDM have now been found in E. coli sequence type 131. The occurrence of NDM-producing E. coli is a major concern particularly in the Indian subcontinent, but now elsewhere in Asia as well. There are multiple reasons why antibiotic resistance in E. coli in Asia has reached such extreme levels. Approaches beyond antibiotic therapy, such as prevention of antibiotic resistance by antibiotic stewardship and protecting natural microbiome, are strategies to avoid further spread of antibiotic resistance.

  14. Heat-stable Escherichia coli enterotoxin production in vivo.

    PubMed Central

    Whipp, S C; Moon, H W; Lyon, N C

    1975-01-01

    Hysterectomy-derived, colostrum-deprived piglets were infected with enterotoxigenic Escherichia coli on day 4 of life. Samples of feces and intestinal contents were collected and tested in infant mice for enterotoxic activity. Positive enterotoxic responses were observed in mice given filtrates of feces and intestinal contents from piglets infected withe enterotoxigenic E. coli known to produce heat-stable enterotoxin but not heat-liabile enterotoxin in vitro. It is concluded that heat-stable enterotoxigenic E. coli induce diarrhea by production of heat-stable enterotoxin in vivo. PMID:1097335

  15. An integrated database to support research on Escherichia coli

    SciTech Connect

    Baehr, A.; Dunham, G.; Matsuda, Hideo; Michaels, G.; Taylor, R.; Overbeek, R.; Rudd, K.E.; Ginsburg, A.; Joerg, D.; Kazic, T.; Hagstrom, R.; Zawada, D.; Smith, C.; Yoshida, Kaoru

    1992-01-01

    We have used logic programming to design and implement a prototype database of genomic information for the model bacterial organism Escherichia coli. This report presents the fundamental database primitives that can be used to access and manipulate data relating to the E. coli genome. The present system, combined with a tutorial manual, provides immediate access to the integrated knowledge base for E. coli chromosome data. It also serves as the foundation for development of more user-friendly interfaces that have the same retrieval power and high-level tools to analyze complex chromosome organization.

  16. The quantitative and condition-dependent Escherichia coli proteome

    PubMed Central

    Schmidt, Alexander; Kochanowski, Karl; Vedelaar, Silke; Ahrné, Erik; Volkmer, Benjamin; Callipo, Luciano; Knoops, Kèvin; Bauer, Manuel; Aebersold, Ruedi; Heinemann, Matthias

    2016-01-01

    Measuring precise concentrations of proteins can provide insights into biological processes. Here, we use efficient protein extraction and sample fractionation and state-of-the-art quantitative mass spectrometry techniques to generate a comprehensive, condition-dependent protein abundance map of Escherichia coli. We measure cellular protein concentrations for 55% of predicted E. coli genes (>2300 proteins) under 22 different experimental conditions and identify methylation and N-terminal protein acetylations previously not known to be prevalent in bacteria. We uncover system-wide proteome allocation, expression regulation, and post-translational adaptations. These data provide a valuable resource for the systems biology and broader E. coli research communities. PMID:26641532

  17. YeeO from Escherichia coli exports flavins.

    PubMed

    McAnulty, Michael J; Wood, Thomas K

    2014-01-01

    Multidrug and toxic compound extrusion (MATE) proteins help maintain cellular homeostasis by secreting metabolic wastes. Flavins may occur as cellular waste products, with their production and secretion providing potential benefit for industrial applications related to biofuel cells. Here we find that MATE protein YeeO from Escherichia coli exports both flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Significant amounts of flavins were trapped intracellularly when YeeO was produced indicating transport limits secretion of flavins. Wild-type E. coli secreted 3 flavins (riboflavin, FMN, and FAD), so E. coli likely produces additional flavin transporters.

  18. YeeO from Escherichia coli exports flavins

    PubMed Central

    McAnulty, Michael J; Wood, Thomas K

    2014-01-01

    Multidrug and toxic compound extrusion (MATE) proteins help maintain cellular homeostasis by secreting metabolic wastes. Flavins may occur as cellular waste products, with their production and secretion providing potential benefit for industrial applications related to biofuel cells. Here we find that MATE protein YeeO from Escherichia coli exports both flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Significant amounts of flavins were trapped intracellularly when YeeO was produced indicating transport limits secretion of flavins. Wild-type E. coli secreted 3 flavins (riboflavin, FMN, and FAD), so E. coli likely produces additional flavin transporters. PMID:25482085

  19. Reassessing Escherichia coli as a cell factory for biofuel production.

    PubMed

    Wang, Chonglong; Pfleger, Brian F; Kim, Seon-Won

    2017-03-11

    Via metabolic engineering, industrial microorganisms have the potential to convert renewable substrates into a wide range of biofuels that can address energy security and environmental challenges associated with current fossil fuels. The user-friendly bacterium, Escherichia coli, remains one of the most frequently used hosts for demonstrating production of biofuel candidates including alcohol-, fatty acid- and terpenoid-based biofuels. In this review, we summarize the metabolic pathways for synthesis of these biofuels and assess enabling technologies that assist in regulating biofuel synthesis pathways and rapidly assembling novel E. coli strains. These advances maintain E. coli's position as a prominent host for developing cell factories for biofuel production.

  20. Enteropathogenic Escherichia coli Serotypes and Endemic Diarrhea in Infants

    PubMed Central

    Toledo, M. Regina F.; Alvariza, M. do Carmo B.; Murahovschi, Jayme; Ramos, Sonia R. T. S.; Trabulsi, Luiz R.

    1983-01-01

    Enteropathogenic Escherichia coli serotypes were searched for in feces of 550 children with endemic diarrhea and in 129 controls, in São Paulo, in 1978 and 1979; serotypes O111ab:H−, O111ab:H2, and O119:H6 were significantly associated with diarrhea in children 0 to 5 months old and were the most frequent agents of diarrhea in this age group as compared with enterotoxigenic and enteroinvasive E. coli, Salmonella sp., Shigella sp., and Yersinia enterocolitica. It is concluded that various enteropathogenic E. coli serotypes may be agents of endemic infantile diarrhea. PMID:6339384

  1. Sources of Escherichia coli in a Coastal Subtropical Environment

    PubMed Central

    Solo-Gabriele, Helena M.; Wolfert, Melinda A.; Desmarais, Timothy R.; Palmer, Carol J.

    2000-01-01

    Sources of Escherichia coli in a coastal waterway located in Ft. Lauderdale, Fla., were evaluated. The study consisted of an extensive program of field measurements designed to capture spatial and temporal variations in E. coli concentrations as well as experiments conducted under laboratory-controlled conditions. E. coli from environmental samples was enumerated by using a defined substrate technology (Colilert-18). Field sampling tasks included sampling the length of the North Fork to identify the river reach contributing high E. coli levels, autosampler experiments at two locations, and spatially intense sampling efforts at hot spots. Laboratory experiments were designed to simulate tidal conditions within the riverbank soils. The results showed that E. coli entered the river in a large pulse during storm conditions. After the storm, E. coli levels returned to baseline levels and varied in a cyclical pattern which correlated with tidal cycles. The highest concentrations were observed during high tide, whereas the lowest were observed at low tide. This peculiar pattern of E. coli concentrations between storm events was caused by the growth of E. coli within riverbank soils which were subsequently washed in during high tide. Laboratory analysis of soil collected from the riverbanks showed increases of several orders of magnitude in soil E. coli concentrations. The ability of E. coli to multiply in the soil was found to be a function of soil moisture content, presumably due to the ability of E. coli to outcompete predators in relatively dry soil. The importance of soil moisture in regulating the multiplication of E. coli was found to be critical in tidally influenced areas due to periodic wetting and drying of soils in contact with water bodies. Given the potential for growth in such systems, E. coli concentrations can be artificially elevated above that expected from fecal impacts alone. Such results challenge the use of E. coli as a suitable indicator of water

  2. The contribution of systemic Escherichia coli infection to the early mortalities of commercial broiler chickens.

    PubMed

    Kemmett, K; Williams, N J; Chaloner, G; Humphrey, S; Wigley, P; Humphrey, T

    2014-01-01

    Avian pathogenic Escherichia coli (APEC) are a substantial burden to the global poultry industry. APEC cause a syndromic poultry infection known as colibacillosis, which has been previously associated with broiler chickens over 2 weeks old. We recently reported that the intestinal tract of 1-day-old broilers harbours a rich reservoir of potentially pathogenic E. coli. Prior infections of the reproductive tract of breeders, egg hygiene and transportation all contribute to early colonization of the neonatal gut. Up to one-half of all flock deaths occur in the first week of production, but few data are available describing the contribution of E. coli. In the present study, all dead birds collected on the first daily welfare walk 48 and 72 h after chick placement underwent post-mortem examination. Diseased tissues were selectively cultured for E. coli and isolates subsequently virulotyped using 10 APEC virulence-associated genes (VAGs): astA, iss, irp2, iucD, papC, tsh, vat, cvi, sitA and ibeA. Approximately 70% of birds displayed signs of colibacillosis. Thirty distinct virulence profiles were identified among 157 E. coli. Isolates carried between zero and seven VAGs; ∼ 30% of E. coli isolates carried five to seven VAGs, with 12.7% sharing the same VAG profile (astA, iss, irp2, iucD, tsh, cvi and sitA). Overall, this study demonstrates the significant contribution of E. coli infections to early broiler mortalities. The identification of a diverse E. coli population is unsurprising based on our previous findings. This work emphasizes the need for an effective vaccination programme and provides preliminary data for vaccine production.

  3. Structure of Water in Escherichia Coli B

    DTIC Science & Technology

    structure broadening of the NMR water spectrum. Using bacteria grown in the special chemically defined medium, we showed that the water in E. coli B was highly ordered and was very different from ’free’ water and from polywater .

  4. Slugs: Potential Novel Vectors of Escherichia coli O157

    PubMed Central

    Sproston, Emma L.; Macrae, M.; Ogden, Iain D.; Wilson, Michael J.; Strachan, Norval J. C.

    2006-01-01

    Field and laboratory studies were performed to determine whether slugs could act as novel vectors for pathogen (e.g., Escherichia coli O157) transfer from animal feces to salad vegetables. Escherichia coli O157 was isolated from 0.21% of field slugs from an Aberdeenshire sheep farm. These isolates carried the verocytotoxin genes (vt1 and vt2) and the attaching and effacing gene (eae), suggesting that they are potentially pathogenic to humans. Strain typing using multilocus variable number tandem repeats analysis showed that slug and sheep isolates were indistinguishable. Laboratory experiments using an E. coli mutant resistant to nalidixic acid showed that the ubiquitous slug species Deroceras reticulatum could carry viable E. coli on its external surface for up to 14 days. Slugs that had been fed E. coli shed viable bacteria in their feces with numbers showing a short but statistically significant linear log decline. Further, it was found that E. coli persisted for up to 3 weeks in excreted slug feces, and hence, we conclude that slugs have the potential to act as novel vectors of E. coli O157. PMID:16391036

  5. 76 FR 58157 - Shiga Toxin-Producing Escherichia coli

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... infections.\\1\\ \\1\\ U.S. Centers for Disease Control and Prevention. 2005. Shiga toxin-producing Escherichia coli (STEC). National Notifiable Diseases Surveillance System (NNDSS), 2005 Case Definition. http://www...) 1422-1429. \\6\\ Centers for Disease Control and Prevention. Bacterial Foodborne and Diarrheal Disease...

  6. Sequencing of Escherichia coli that cause persistent and transient Mastitis

    USDA-ARS?s Scientific Manuscript database

    The genomes of two strains of Escherichia coli that cause bovine mastitis were sequenced. These strains are known to be associated with persistent and transient mastitis: strain ECA-B causes a transient infection, and ECC-M leads to a persistent infection....

  7. Genome Sequence of Enterotoxigenic Escherichia coli Strain FMU073332

    PubMed Central

    Saldaña-Ahuactzi, Zeus; Cruz-Córdova, Ariadnna; Rodea, Gerardo E.; Porta, Helena; Navarro-Ocaña, Armando; Eslava-Campos, Carlos

    2017-01-01

    ABSTRACT   Enterotoxigenic Escherichia coli (ETEC) is an important cause of bacterial diarrheal illness, affecting practically every population worldwide, and was estimated to cause 120,800 deaths in 2010. Here, we report the genome sequence of ETEC strain FMU073332, isolated from a 25-month-old girl from Tlaltizapán, Morelos, México. PMID:28232434

  8. Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation.

    EPA Science Inventory

    Titanium dioxide in the anatase crystalline form was used as a photocatalyst to generate hydroxyl radicals in a flowthrough water reactor. Experiments were performed on pure cultures of Escherichia coli in dechlorinated tap water and a surface water sample to evaluate the disinfe...

  9. Escherichia coli as other Enterobacteriaceae: food poisoning and health effects

    USDA-ARS?s Scientific Manuscript database

    Many Escherichia coli strains are harmless, and they are an important commensal in the intestinal microflora; however, pathogenic strains also exist. The pathogenic strains can be divided into diarrhea-inducing strains and strains that reside in the intestines but only cause disease in bodily sites...

  10. Stringent control of FLP recombinase in Escherichia coli.

    PubMed

    Bowden, Steven D; Palani, Nagendra P; Libourel, Igor G L

    2017-02-01

    Site specific recombinases are invaluable tools in molecular biology, and are emerging as powerful recorders of cellular events in synthetic biology. We have developed a stringently controlled FLP recombinase system in Escherichia coli using an arabinose inducible promoter combined with a weak ribosome binding site.

  11. Enteroinvasive Escherichia coli severe dysentery complicated by rotavirus gastroenteritis.

    PubMed

    Pacheco-Gil, Leova; Ochoa, Theresa J; Flores-Romo, Leopoldo; DuPont, Herbert L; Estrada-Garcia, Teresa

    2006-11-01

    Enteroinvasive Escherichia coli (EIEC) is an important agent of pediatric diarrhea and dysentery in developing countries. We report a life-threatening severe dysentery case due to EIEC in a malnourished 4-month-old male, native Indian infant co-infected with rotavirus. The severe gastrointestinal bleeding anemia and hypovolemic shock was successfully treated with IV blood transfusions, rehydration and antibiotic therapy.

  12. Division Planes Alternate in Spherical Cells of Escherichia coli

    PubMed Central

    Begg, K. J.; Donachie, W. D.

    1998-01-01

    In the spherical cells of Escherichia coli rodA mutants, division is initiated at a single point, from which a furrow extends progressively around the cell. Using “giant” rodA ftsA cells, we confirmed that each new division furrow is initiated at the midpoint of the previous division plane and runs perpendicular to it. PMID:9573213

  13. More than a locomotive organelle: flagella in Escherichia coli.

    PubMed

    Zhou, Mingxu; Yang, Yang; Chen, Panlin; Hu, Huijie; Hardwidge, Philip R; Zhu, Guoqiang

    2015-11-01

    The flagellum is a locomotive organelle that allows bacteria to respond to chemical gradients. This review summarizes the current knowledge regarding Escherichia coli flagellin variants and the role of flagella in bacterial functions other than motility, including the relationship between flagella and bacterial virulence.

  14. Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation.

    EPA Science Inventory

    Titanium dioxide in the anatase crystalline form was used as a photocatalyst to generate hydroxyl radicals in a flowthrough water reactor. Experiments were performed on pure cultures of Escherichia coli in dechlorinated tap water and a surface water sample to evaluate the disinfe...

  15. TRIMETHOPRIM-SULFAMETHOXAZOLE RESISTANCE IN SEWAGE ISOLATES OF ESCHERICHIA COLI

    EPA Science Inventory

    The increase in resistance rates to trimehtoprim-sulfamethoxazole (TMP/SMX) in isolates of Escherichia coli has become a matter of increasing concern. This has been particularly true in reference to community acquired urinary tract infections (UTI). This study utilized sewage i...

  16. Effect of phytoplankton on Escherichia coli survival in laboratory microcosms

    USDA-ARS?s Scientific Manuscript database

    Fecal contamination of water sources is an important water quality issue for agricultural irrigation ponds. Escherichia coli is a common microbial indicator used to evaluate recreational and irrigation water quality. Nuisance algae commonly grow in low- or no-flow irrigation water source The objecti...

  17. New types of Escherichia coli recombination-deficient mutants.

    PubMed

    Freifelder, D

    1976-11-01

    A set of Escherichia coli mutants deficient in intramolecular recombination and different from those previously found is described. All have temperature-sensitive lethal mutations. The mutants have been characterized with respect to the following properties: the Pap phenotype, deoxyribonucleic acid synthesis, sensitivity to ultraviolet light, ability to support the growth of phage lambda, filament formation, and mutation frequency.

  18. New types of Escherichia coli recombination-deficient mutants.

    PubMed Central

    Freifelder, D

    1976-01-01

    A set of Escherichia coli mutants deficient in intramolecular recombination and different from those previously found is described. All have temperature-sensitive lethal mutations. The mutants have been characterized with respect to the following properties: the Pap phenotype, deoxyribonucleic acid synthesis, sensitivity to ultraviolet light, ability to support the growth of phage lambda, filament formation, and mutation frequency. PMID:789362

  19. Escherichia coli growth studied by dual-parameter flow cytophotometry.

    PubMed Central

    Steen, H B; Boye, E

    1981-01-01

    The growth of Escherichia coli cells has been analyzed for the first time by dual-parameter flow cytophotometry, in which the deoxyribonucleic acid and protein contents of single bacteria have been measured simultaneously with an accuracy of a few percent and at a rate of 3,000 cells/s. PMID:7007339

  20. TRIMETHOPRIM-SULFAMETHOXAZOLE RESISTANCE IN SEWAGE ISOLATES OF ESCHERICHIA COLI

    EPA Science Inventory

    The increase in resistance rates to trimehtoprim-sulfamethoxazole (TMP/SMX) in isolates of Escherichia coli has become a matter of increasing concern. This has been particularly true in reference to community acquired urinary tract infections (UTI). This study utilized sewage i...

  1. Escherichia coli and other Enterobacteriaceae: Food poisoning and health effects

    USDA-ARS?s Scientific Manuscript database

    The family Enterobactericeae consists of rod-shaped, Gram-negative, facultatively anaerobic, non-spore forming bacteria and also includes the food-borne pathogens, Cronobacter spp., Escherichia coli, Salmonella enterica, Shigella spp., and Yersinia spp. Illness caused by these pathogens is acquired...

  2. Isolation of an Lc-specific Escherichia coli bacteriophage.

    PubMed Central

    Fralick, J A; Diedrich, D L; Casey-Wood, S

    1990-01-01

    We isolated an OmpF-specific bacteriophage whose host range mutant, SQ108h2, requires the presence of the Lc porin for its attachment and which can be used to screen or select for Lc-defective mutants among Escherichia coli K-12 strains lysogenic for the PA-2 converting phage. Images FIG. 1 PMID:1689719

  3. Plasmolysis of Escherichia coli B-r with sucrose.

    PubMed

    Scheie, P O

    1969-05-01

    Escherichia coli B/r cells were plasmolyzed in sucrose solutions and observed under phase contrast. The prevalence of plasmolysis under various conditions was noted, and the degree of plasmolysis was categorized as slight, extensive, or severe. The presence of ions reduced the prevalence of plasmolysis. Survival curves showed that extensive plasmolysis was not lethal to colony-forming ability.

  4. Naturally Occurring Extended-Spectrum Cephalosporinases in Escherichia coli

    PubMed Central

    Mammeri, Hedi; Poirel, Laurent; Fortineau, Nicolas; Nordmann, Patrice

    2006-01-01

    Genetic and functional characterization of the cephalosporinases produced by 65 clonally unrelated clinical Escherichia coli isolates revealed genetic diversity of the ampC genes and showed that Gln287, Cys287, Pro296, Leu298, and Phe350 substitutions were involved in extension of the hydrolysis spectrum to include ceftazidime and cefepime. PMID:16801449

  5. armA and aminoglycoside resistance in Escherichia coli.

    PubMed

    González-Zorn, Bruno; Teshager, Tirushet; Casas, María; Porrero, María C; Moreno, Miguel A; Courvalin, Patrice; Domínguez, Lucas

    2005-06-01

    We report armA in an Escherichia coli pig isolate from Spain. The resistance gene was borne by self-transferable IncN plasmid pMUR050. Molecular analysis of the plasmid and of the armA locus confirmed the spread of this resistance determinant.

  6. armA and Aminoglycoside Resistance in Escherichia coli

    PubMed Central

    González-Zorn, Bruno; Teshager, Tirushet; Casas, María; Porrero, María C.; Courvalin, Patrice; Domínguez, Lucas

    2005-01-01

    We report armA in an Escherichia coli pig isolate from Spain. The resistance gene was borne by self-transferable IncN plasmid pMUR050. Molecular analysis of the plasmid and of the armA locus confirmed the spread of this resistance determinant. PMID:15963296

  7. Norfloxacin resistance in a clinical isolate of Escherichia coli.

    PubMed Central

    Aoyama, H; Sato, K; Kato, T; Hirai, K; Mitsuhashi, S

    1987-01-01

    Analysis of DNA gyrase supercoiling and of norfloxacin uptake in Escherichia coli GN14176, a moderately norfloxacin-resistant clinical isolate, indicated that resistance was associated with both an altered drug target and a reduction in drug uptake. Images PMID:2829712

  8. Enterotoxigenic Escherichia coli and Vibrio cholerae diarrhea, Bangladesh, 2004.

    PubMed

    Qadri, Firdausi; Khan, Ashraful I; Faruque, Abu Syed G; Begum, Yasmin Ara; Chowdhury, Fahima; Nair, Gopinath B; Salam, Mohammed A; Sack, David A; Svennerholm, Ann-Mari

    2005-07-01

    Flooding in Dhaka in July 2004 caused epidemics of diarrhea. Enterotoxigenic Escherichia coli (ETEC) was almost as prevalent as Vibrio cholerae O1 in diarrheal stools. ETEC that produced heat-stable enterotoxin alone was most prevalent, and 78% of strains had colonization factors. Like V. cholerae O1, ETEC can cause epidemic diarrhea.

  9. Plasmolysis of Escherichia coli B/r with Sucrose

    PubMed Central

    Scheie, Paul O.

    1969-01-01

    Escherichia coli B/r cells were plasmolyzed in sucrose solutions and observed under phase contrast. The prevalence of plasmolysis under various conditions was noted, and the degree of plasmolysis was categorized as slight, extensive, or severe. The presence of ions reduced the prevalence of plasmolysis. Survival curves showed that extensive plasmolysis was not lethal to colony-forming ability. PMID:4891252

  10. Multidrug-Resistant Escherichia coli in Bovine Animals, Europe

    PubMed Central

    Brennan, Evan; Martins, Marta; McCusker, Matthew P.; Wang, Juan; Alves, Bruno Martins; Hurley, Daniel; El Garch, Farid; Woehrlé, Frédérique; Miossec, Christine; McGrath, Leisha; Srikumar, Shabarinath; Wall, Patrick

    2016-01-01

    Of 150 Escherichia coli strains we cultured from specimens taken from cattle in Europe, 3 had elevated MICs against colistin. We assessed all 3 strains for the presence of the plasmid-mediated mcr-1 gene and identified 1 isolate as mcr-1–positive and co-resistant to β-lactam, florfenicol, and fluoroquinolone antimicrobial compounds. PMID:27533105

  11. rRNA transcription rate in Escherichia coli.

    PubMed Central

    Gotta, S L; Miller, O L; French, S L

    1991-01-01

    The rate of in vivo transcription elongation for Escherichia coli rRNA operons was determined by electron microscopy following addition of rifampin to log-phase cultures. Direct observation of RNA polymerase positions along rRNA operons 30, 40, and 70 s after inhibition of transcription initiation yielded a transcription elongation rate of 42 nucleotides per s. Images FIG. 1 PMID:1717439

  12. Immunologic Control of Diarrheal Disease Due to Enterotoxigenic Escherichia coli

    DTIC Science & Technology

    1984-01-01

    Classical Enteropathogenic (Serotyped) Escherichia coli Strains of Proven Pathogenicity. Infect. Immun. 38:798-801, 1982. 8. Levine, M.M. Vacunas Contra...Microbiol., 18:808-815, 1983. 8 15. Levine, M.M., Lanata, C. Progresos en Vacunas Contra Diarrea Bacteriana. Adelantos Microbiol. Enferm. Inf., 2:67-117

  13. EcoCyc: Encyclopedia of Escherichia coli genes and metabolism.

    PubMed

    Karp, P D; Riley, M; Paley, S M; Pellegrini-Toole, A; Krummenacker, M

    1998-01-01

    The encyclopedia of Escherichia coli genes and metabolism (EcoCyc) is a database that combines information about the genome and the intermediary metabolism of E.coli. The database describes 3030 genes of E.coli , 695 enzymes encoded by a subset of these genes, 595 metabolic reactions that occur in E.coli, and the organization of these reactions into 123 metabolic pathways. The EcoCyc graphical user interface allows scientists to query and explore the EcoCyc database using visualization tools such as genomic-map browsers and automatic layouts of metabolic pathways. EcoCyc can be thought of as an electronic review article because of its copious references to the primary literature, and as a (qualitative) computational model of E.coli metabolism. EcoCyc is available at URL http://ecocyc.PangeaSystems.com/ecocyc/

  14. Phylogenetic Group Determination of Escherichia coli Isolated from Animals Samples

    PubMed Central

    Morcatti Coura, Fernanda; Diniz, Soraia de Araújo; Silva, Marcos Xavier; Mussi, Jamili Maria Suhet; Barbosa, Silvia Minharro; Lage, Andrey Pereira; Heinemann, Marcos Bryan

    2015-01-01

    This study analyzes the occurrence and distribution of phylogenetic groups of 391 strains of Escherichia coli isolated from poultry, cattle, and water buffalo. The frequency of the phylogroups was A = 19%, B1 = 57%, B2 = 2.3%, C = 4.6%, D = 2.8%, E = 11%, and F = 3.3%. Phylogroups A (P < 0.001) and F (P = 0.018) were associated with E. coli strains isolated from poultry, phylogroups B1 (P < 0.001) and E (P = 0.002) were associated with E. coli isolated from cattle, and phylogroups B2 (P = 0.003) and D (P = 0.017) were associated with E. coli isolated from water buffalo. This report demonstrated that some phylogroups are associated with the host analyzed and the results provide knowledge of the phylogenetic composition of E. coli from domestic animals. PMID:26421310

  15. Glycerol elicits energy taxis of Escherichia coli and Salmonella typhimurium.

    PubMed

    Zhulin, I B; Rowsell, E H; Johnson, M S; Taylor, B L

    1997-05-01

    Escherichia coli and Salmonella typhimurium show positive chemotaxis to glycerol, a chemical previously reported to be a repellent for E. coli. The threshold of the attractant response in both species was 10(-6) M glycerol. Glycerol chemotaxis was energy dependent and coincident with an increase in membrane potential. Metabolism of glycerol was required for chemotaxis, and when lactate was present to maintain energy production in the absence of glycerol, the increases in membrane potential and chemotactic response upon addition of glycerol were abolished. Methylation of a chemotaxis receptor was not required for positive glycerol chemotaxis in E. coli or S. typhimurium but is involved in the negative chemotaxis of E. coli to high concentrations of glycerol. We propose that positive chemotaxis to glycerol in E. coli and S. typhimurium is an example of energy taxis mediated via a signal transduction pathway that responds to changes in the cellular energy level.

  16. Using zebra mussels to monitor Escherichia coli in environmental waters.

    PubMed

    Selegean, J P; Kusserow, R; Patel, R; Heidtke, T M; Ram, J L

    2001-01-01

    Use of the zebra mussel (Dreissena polymorpha) as an indicator of previously elevated bacteria concentrations in a watershed was examined. The ability of the zebra mussel to accumulate and purge Escherichia coli over several days was investigated in both laboratory and field experiments. In laboratory experiments, periodic enumeration of E. coli in mussels that had been exposed to a dilute solution of raw sewage demonstrated that (i) maximum concentrations of E. coli are reached within a few hours of exposure to sewage, (ii) the tissue concentration attained is higher than the concentration in the ambient water, and (iii) the E. coli concentrations take several days to return to preexposure concentrations when mussels are subsequently placed in sterile water. In field experiments conducted in southeast Michigan in the Clinton River watershed, brief increases in E. coli concentrations in the water were accompanied by increases in mussel concentrations of E. coli that lasted 2 or 3 d. The ability of mussels to retain and to concentrate E. coli made it possible to detect E. coli in the environment under conditions that conventional monitoring may often miss. Sampling caged mussels in a river and its tributaries may enable watershed managers to reduce the sampling frequency normally required to identify critical E. coli sources, thereby providing a more cost-effective river monitoring strategy for bacterial contamination.

  17. Cytotoxic Escherichia coli strains encoding colibactin colonize laboratory mice.

    PubMed

    García, Alexis; Mannion, Anthony; Feng, Yan; Madden, Carolyn M; Bakthavatchalu, Vasudevan; Shen, Zeli; Ge, Zhongming; Fox, James G

    2016-12-01

    Escherichia coli strains have not been fully characterized in laboratory mice and are not currently excluded from mouse colonies. Colibactin (Clb), a cytotoxin, has been associated with inflammation and cancer in humans and animals. We performed bacterial cultures utilizing rectal swab, fecal, and extra intestinal samples from clinically unaffected or affected laboratory mice. Fifty-one E. coli were isolated from 45 laboratory mice, identified biochemically, and selected isolates were serotyped. The 16S rRNA gene was amplified and sequenced for specific isolates, PCR used for clbA and clbQ gene amplification, and phylogenetic group identification was performed on all 51 E. coli strains. Clb genes were sequenced and selected E. coli isolates were characterized using a HeLa cell cytotoxicity assay. Forty-five of the 51 E. coli isolates (88%) encoded clbA and clbQ and belonged to phylogenetic group B2. Mouse E. coli serotypes included: O2:H6, O-:H-, OM:H+, and O22:H-. Clb-encoding O2: H6 mouse E. coli isolates were cytotoxic in vitro. A Clb-encoding E. coli was isolated from a clinically affected genetically modified mouse with cystic endometrial hyperplasia. Our findings suggest that Clb-encoding E. coli colonize laboratory mice and may induce clinical and subclinical diseases that may impact experimental mouse models.

  18. Cellulitis lesions in broiler chickens are induced by Escherichia coli Vacuolating Factor (ECVF).

    PubMed

    Quel, N G; Aragão, A Z B; Salvadori, M R; Farias, A S; Joazeiro, P P; Santos, L M B; Sá, L R M; Ferreira, A J P; Yano, T

    2013-03-23

    Escherichia coli Vacuolating Factor (ECVF) is a heat-labile, vacuolating cytotoxin produced by avian pathogenic E. coli (APEC) isolated from avian cellulitis lesions. In this report, we intend to demonstrate that purified ECVF induces the inflammatory process of cellulitis. Our group is the first to demonstrate the effect of ECVF in a histological analysis by in situ inoculation of broiler chickens with purified ECVF. The animals were inoculated with the APEC AC53 and with purified ECVF subcutaneously on their ventral surface (in the sternum region). The histological analysis showed different grades of an acute inflammatory response in the epidermis, dermis and panniculus. An increase in mRNA expression of the proinflammatory cytokine TNF-α was also demonstrated in the inflamed tissue. When ECVF was systemically administered, increased levels of TNF-α and IL-10 were observed in the serum. These results suggest that ECVF plays a key role in the inflammatory process associated with cellulitis that is mainly mediated by TNF-α. In addition, this inflammation can be downregulated by the anti-inflammatory cytokine IL-10.

  19. EFFECT OF DIHYDROSTREPTOMYCIN ON TETRAZOLIUM DYE REDUCTION IN ESCHERICHIA COLI

    PubMed Central

    Bragg, P. D.; Polglase, W. J.

    1963-01-01

    Bragg, P. D. (University of British Columbia, Vancouver, British Columbia, Canada) and W. J. Polglase. Effect of dihydrostreptomycin on tetrazolium dye reduction in Escherichia coli. J. Bacteriol. 85:795–800. 1963.—Sonic-disrupted extracts of Escherichia coli, grown without added antibiotic (sensitive and resistant), contained (in supernatant of fraction centrifuged at 100,000 × g) a dihydrostreptomycin-inhibitable, succinate-triphenyltetrazolium chloride (TTC) reductase activity. The succinate-TTC reductase activities of extracts of E. coli grown in the presence of dihydrostreptomycin (resistant and dependent) were relatively low and were not inhibited by the antibiotic. At a moderate magnesium concentration, the degree of inhibition by dihydrostreptomycin of succinate-TTC reductase activity was sufficiently marked to indicate an important site of action of the antibiotic. Magnesium, putrescine, and spermidine antagonized the action of dihydrostreptomycin in the succinate-TTC reductase system. PMID:14044945

  20. EFFECT OF DIHYDROSTREPTOMYCIN ON TETRAZOLIUM DYE REDUCTION IN ESCHERICHIA COLI.

    PubMed

    BRAGG, P D; POLGLASE, W J

    1963-04-01

    Bragg, P. D. (University of British Columbia, Vancouver, British Columbia, Canada) and W. J. Polglase. Effect of dihydrostreptomycin on tetrazolium dye reduction in Escherichia coli. J. Bacteriol. 85:795-800. 1963.-Sonic-disrupted extracts of Escherichia coli, grown without added antibiotic (sensitive and resistant), contained (in supernatant of fraction centrifuged at 100,000 x g) a dihydrostreptomycin-inhibitable, succinate-triphenyltetrazolium chloride (TTC) reductase activity. The succinate-TTC reductase activities of extracts of E. coli grown in the presence of dihydrostreptomycin (resistant and dependent) were relatively low and were not inhibited by the antibiotic. At a moderate magnesium concentration, the degree of inhibition by dihydrostreptomycin of succinate-TTC reductase activity was sufficiently marked to indicate an important site of action of the antibiotic. Magnesium, putrescine, and spermidine antagonized the action of dihydrostreptomycin in the succinate-TTC reductase system.

  1. Polyerositis and Arthritis Due to Escherichia coli in Gnotobiotic Pigs

    PubMed Central

    Waxler, G. L.; Britt, A. L.

    1972-01-01

    Forty gnotobiotic pigs from six litters were exposed orally to Escherichia coli 083:K·:NM at 69 to 148 hours of age, while 17 pigs from the same litters served as unexposed controls. Clinical signs of infection included fever, anorexia, diarrhea, lameness, and reluctance to move. Eighty-four percent of the exposed pigs in four litters died, while only 13% in two litters died. Gross and microscopic lesions included serofibrinous to fibrinopurulent polyserositis in 96% of the exposed pigs in four litters and 33% of the exposed pigs in two litters. A few pigs had gross and/or microscopic lesions of arthritis. Escherichia coli was routinely isolated from the serous and synovial cavities of infected pigs. Anti-hog cholera serum administered orally as a colostrum substitute gave partial protection against E. coli infection. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 6.Fig. 7.Fig. 8. PMID:4261837

  2. Lytic bacteriophages reduce Escherichia coli O157

    PubMed Central

    Ferguson, Sean; Roberts, Cheryl; Handy, Eric; Sharma, Manan

    2013-01-01

    The role of lytic bacteriophages in preventing cross contamination of produce has not been evaluated. A cocktail of three lytic phages specific for E. coli O157:H7 (EcoShield™) or a control (phosphate buffered saline, PBS) was applied to lettuce by either; (1) immersion of lettuce in 500 ml of EcoShield™ 8.3 log PFU/ml or 9.8 log PFU/ml for up to 2 min before inoculation with E. coli O157:H7; (2) spray-application of EcoShield™ (9.3 log PFU/ml) to lettuce after inoculation with E. coli O157:H7 (4.10 CFU/cm2) following exposure to 50 μg/ml chlorine for 30 sec. After immersion studies, lettuce was spot-inoculated with E. coli O157:H7 (2.38 CFU/cm2). Phage-treated, inoculated lettuce pieces were stored at 4°C for and analyzed for E. coli O157:H7 populations for up to 7 d. Immersion of lettuce in 9.8 log PFU/ml EcoShield™ for 2 min significantly (p < 0.05) reduced E. coli O157:H7 populations after 24 h when stored at 4°C compared with controls. Immersion of lettuce in suspensions containing high concentrations of EcoShield™ (9.8 log PFU/ml) resulted in the deposition of high concentrations (7.8 log log PFU/cm2) of bacteriophages on the surface of fresh cut lettuce, potentially contributing to the efficacy of the lytic phages on lettuce. Spraying phages on to inoculated fresh cut lettuce after being washed in hypochlorite solution was significantly more effective in reducing E. coli O157:H7 populations (2.22 log CFU/cm2) on day 0 compared with control treatments (4.10 log CFU/cm2). Both immersion and spray treatments provided protection from E. coli O157:H7 contamination on lettuce, but spray application of lytic bacteriophages to lettuce was more effective in immediately reducing E. coli O157:H7 populations fresh cut lettuce. PMID:23819106

  3. Experimental Escherichia coli O157:H7 carriage in calves.

    PubMed Central

    Brown, C A; Harmon, B G; Zhao, T; Doyle, M P

    1997-01-01

    Nine weaned calves (6 to 8 weeks of age) were given 10(10) CFU of a five-strain mixture of enterohemorrhagic Escherichia coli O157:H7 by oral-gastric intubation. After an initial brief period of pyrexia in three calves and transient mild diarrhea in five calves, calves were clinically normal throughout the 13- to 27-day study. The population of E. coli O157:H7 in the faces decreased dramatically in all calves during the first 2 weeks after inoculation. Thereafter, small populations of E. coli O157:H7 persisted in all calves, where they were detected intermittently in the feces and rumen contents. While withholding food increased fecal shedding of E. coli O157:H7 by 1 to 2 log10/g in three of four calves previously shedding small populations of E. coli O157:H7, the effect of fasting on fecal shedding of E. coli O157:H7 was variable in calves shedding larger populations. At necropsy, E. coli O157:H7 was not isolated from sites outside the alimentary tract. E. coli O157:H7 was isolated from the forestomach or colon of all calves at necropsy. Greater numbers of E. coli O157:H7 were present in the gastrointestinal contents than in the corresponding mucosal sections, and there was no histologic or immunohistochemical evidence of E. coli O157:H7 adhering to the mucosa. In conclusion, under these experimental conditions, E. coli O157:H7 is not pathogenic in weaned calves, and while it does not appear to colonize mucosal surfaces for extended periods, E. coli O157:H7 persists in the contents of the rumen and colon as a source for fecal shedding. PMID:8979335

  4. Silver Resistance Genes Are Overrepresented among Escherichia coli Isolates with CTX-M Production

    PubMed Central

    Edquist, Petra; Sandegren, Linus; Adler, Marlen; Tängdén, Thomas; Drobni, Mirva; Olsen, Björn; Melhus, Åsa

    2014-01-01

    Members of the Enterobacteriaceae with extended-spectrum beta-lactamases (ESBLs) of the CTX-M type have disseminated rapidly in recent years and have become a threat to public health. In parallel with the CTX-M type expansion, the consumption and widespread use of silver-containing products has increased. To determine the carriage rates of silver resistance genes in different Escherichia coli populations, the presence of three silver resistance genes (silE, silP, and silS) and genes encoding CTX-M-, TEM-, and SHV-type enzymes were explored in E. coli isolates of human (n = 105) and avian (n = 111) origin. The antibiotic profiles were also determined. Isolates harboring CTX-M genes were further characterized, and phenotypic silver resistance was examined. The silE gene was present in 13 of the isolates. All of them were of human origin. Eleven of these isolates harbored ESBLs of the CTX-M type (P = 0.007), and eight of them were typed as CTX-M-15 and three as CTX-M-14. None of the silE-positive isolates was related to the O25b-ST131 clone, but 10 out of 13 belonged to the ST10 or ST58 complexes. Phenotypic silver resistance (silver nitrate MIC > 512 mg/liter) was observed after silver exposure in 12 of them, and a concomitant reduced susceptibility to piperacillin-tazobactam developed in three. In conclusion, 12% of the human E. coli isolates but none of the avian isolates harbored silver resistance genes. This indicates another route for or level of silver exposure for humans than that caused by common environmental contamination. Since silE-positive isolates were significantly more often found in CTX-M-positive isolates, it is possible that silver may exert a selective pressure on CTX-M-producing E. coli isolates. PMID:25128339

  5. Silver resistance genes are overrepresented among Escherichia coli isolates with CTX-M production.

    PubMed

    Sütterlin, Susanne; Edquist, Petra; Sandegren, Linus; Adler, Marlen; Tängdén, Thomas; Drobni, Mirva; Olsen, Björn; Melhus, Asa

    2014-11-01

    Members of the Enterobacteriaceae with extended-spectrum beta-lactamases (ESBLs) of the CTX-M type have disseminated rapidly in recent years and have become a threat to public health. In parallel with the CTX-M type expansion, the consumption and widespread use of silver-containing products has increased. To determine the carriage rates of silver resistance genes in different Escherichia coli populations, the presence of three silver resistance genes (silE, silP, and silS) and genes encoding CTX-M-, TEM-, and SHV-type enzymes were explored in E. coli isolates of human (n = 105) and avian (n = 111) origin. The antibiotic profiles were also determined. Isolates harboring CTX-M genes were further characterized, and phenotypic silver resistance was examined. The silE gene was present in 13 of the isolates. All of them were of human origin. Eleven of these isolates harbored ESBLs of the CTX-M type (P = 0.007), and eight of them were typed as CTX-M-15 and three as CTX-M-14. None of the silE-positive isolates was related to the O25b-ST131 clone, but 10 out of 13 belonged to the ST10 or ST58 complexes. Phenotypic silver resistance (silver nitrate MIC > 512 mg/liter) was observed after silver exposure in 12 of them, and a concomitant reduced susceptibility to piperacillin-tazobactam developed in three. In conclusion, 12% of the human E. coli isolates but none of the avian isolates harbored silver resistance genes. This indicates another route for or level of silver exposure for humans than that caused by common environmental contamination. Since silE-positive isolates were significantly more often found in CTX-M-positive isolates, it is possible that silver may exert a selective pressure on CTX-M-producing E. coli isolates.

  6. Travelers' diarrhea and toxigenic Escherichia coli.

    PubMed

    Gorbach, S L; Kean, B H; Evans, D G; Evans, D J; Bessudo, D

    1975-05-01

    In a group of 133 United States students studied for 18 days after arriving in Mexico, diarrhea developed in 38 (29 per cent). Diarrhea rarely began before the fourth day, and the mean onset was 13 days after arrival. Symptoms lasted an average of 3.4 days but persisted in 21 per cent of sick students. Heat-labile enterotoxin-producing Escheria coli was found in the stools of 72 per cent of sick and 15 per cent of healthy students. None had heat-labile Esch. coli when they entered Mexico. The incubation period was short, generally 24 to 48 hours, and the carrier state was five days or less in 82 per cent of students surveyed. Entamoeba histolytica was found in 6 per cent of cases of diarrhea, but not salmonella, shigella or penetrating Esch. coli. These studies suggest that approximately 70 per cent of travelers' diarrhea in Mexico is associated with heat-labile toxigenic strains of Esch. coli.

  7. Genomic Comparative Study of Bovine Mastitis Escherichia coli

    PubMed Central

    Kempf, Florent; Slugocki, Cindy; Blum, Shlomo E.; Leitner, Gabriel; Germon, Pierre

    2016-01-01

    Escherichia coli, one of the main causative agents of bovine mastitis, is responsible for significant losses on dairy farms. In order to better understand the pathogenicity of E. coli mastitis, an accurate characterization of E. coli strains isolated from mastitis cases is required. By using phylogenetic analyses and whole genome comparison of 5 currently available mastitis E. coli genome sequences, we searched for genotypic traits specific for mastitis isolates. Our data confirm that there is a bias in the distribution of mastitis isolates in the different phylogenetic groups of the E. coli species, with the majority of strains belonging to phylogenetic groups A and B1. An interesting feature is that clustering of strains based on their accessory genome is very similar to that obtained using the core genome. This finding illustrates the fact that phenotypic properties of strains from different phylogroups are likely to be different. As a consequence, it is possible that different strategies could be used by mastitis isolates of different phylogroups to trigger mastitis. Our results indicate that mastitis E. coli isolates analyzed in this study carry very few of the virulence genes described in other pathogenic E. coli strains. A more detailed analysis of the presence/absence of genes involved in LPS synthesis, iron acquisition and type 6 secretion systems did not uncover specific properties of mastitis isolates. Altogether, these results indicate that mastitis E. coli isolates are rather characterized by a lack of bona fide currently described virulence genes. PMID:26809117

  8. Abundance of culturable versus viable Escherichia coli in freshwater.

    PubMed

    Servais, Pierre; Prats, Josué; Passerat, Julien; Garcia-Armisen, Tamara

    2009-07-01

    Approved methods traditionally used for Escherichia coli enumeration in waters are culture-based. However, these methods can underestimate the E. coli abundance in aquatic systems because they do not take into account cells that remain viable but have lost the ability to grow in or on culture media. We investigated, in freshwater samples, the abundance of (i) culturable E. coli, enumerated by the most probable number microplate method and (ii) viable E. coli, estimated using a procedure called DVC-FISH, which couples fluorescent in situ hybridization (FISH) and a viability testing technique (direct viable count (DVC)). The ratio of culturable to viable E. coli was close to 1 in highly contaminated waters (samples with a high concentration of culturable E. coli), but decreased drastically for weakly contaminated samples. This indicates a large fraction of viable but nonculturable (VBNC) E. coli in the latter samples. Microcosm experiments showed that some environmental factors, such as nutrient scarcity and solar irradiation, could lead to the presence of a high proportion of VBNC E. coli.

  9. Estimation of Escherichia coli in raw ground beef.

    PubMed Central

    Stiles, M E; Ng, L K

    1980-01-01

    This study was undertaken to establish and evaluate more rapid methods of estimating Escherichia coli in ground beef than the standard most probable number (MPN) technique. Direct inoculation of and modifications to EC medium gave unreliable estimates of the presumptive E. coli count. Solid media incubated at an elevated temperature were compared to the MPN technique. Anderson and Baird-Parker's tryptone bile agar (TBA) method and prepoured plates of Endo, Levine eosin methylene blue (EMB), and violet red bile (VRBA) agars incubated at 44 degree C gave equivalent counts to the standard MPN method. Anderson and Baird-Parker TBA was the most selective solid medium for E. coli estimation, but all selective media incubated at elevated temperature reduced apparent E. coli counts by as much as 50%. Indole-producing and lactose-fermenting Enterobacteriaceae, capable of growth at elevated temperature, were tested for their growth on TBA, EMB, and VRBA at elevated temperature. TBA was selective for E. coli biotype I compared to other Enterobacteriaceae that predominate in meats. VRBA and EMB incubated at elevated temperature were not as selective as TBA, but differences in colonies could be observed between typical E. coli colonies and other Enterobacteriaceae on these media. Therefore, VRBA incubated at elevated temperature is proposed as a quality assurance screening test for presumptive E. coli in ground meat. Resuscitation techniques and prepoured plates with VRBA increased recovery levels of presumptive E. coli, but, under the conditions of this study, not to levels that represented a significant practical difference. PMID:7008695

  10. Genomic Comparative Study of Bovine Mastitis Escherichia coli.

    PubMed

    Kempf, Florent; Slugocki, Cindy; Blum, Shlomo E; Leitner, Gabriel; Germon, Pierre

    2016-01-01

    Escherichia coli, one of the main causative agents of bovine mastitis, is responsible for significant losses on dairy farms. In order to better understand the pathogenicity of E. coli mastitis, an accurate characterization of E. coli strains isolated from mastitis cases is required. By using phylogenetic analyses and whole genome comparison of 5 currently available mastitis E. coli genome sequences, we searched for genotypic traits specific for mastitis isolates. Our data confirm that there is a bias in the distribution of mastitis isolates in the different phylogenetic groups of the E. coli species, with the majority of strains belonging to phylogenetic groups A and B1. An interesting feature is that clustering of strains based on their accessory genome is very similar to that obtained using the core genome. This finding illustrates the fact that phenotypic properties of strains from different phylogroups are likely to be different. As a consequence, it is possible that different strategies could be used by mastitis isolates of different phylogroups to trigger mastitis. Our results indicate that mastitis E. coli isolates analyzed in this study carry very few of the virulence genes described in other pathogenic E. coli strains. A more detailed analysis of the presence/absence of genes involved in LPS synthesis, iron acquisition and type 6 secretion systems did not uncover specific properties of mastitis isolates. Altogether, these results indicate that mastitis E. coli isolates are rather characterized by a lack of bona fide currently described virulence genes.

  11. [Acute diarrheal disease caused by enteropathogenic Escherichia coli in Colombia].

    PubMed

    Gómez-Duarte, Oscar G

    2014-10-01

    Intestinal Escherichia coli pathogens are leading causes of acute diarrheal disease in children less than 5 years in Latin America, Africa and Asia and a leading cause of death in children living in poorest communities in Africa and South East Asia. Studies on the role of E. coli pathogens in childhood diarrhea in Colombia and other countries in Latin America are limited due to the lack of detection assays in clinical laboratories at the main urban medical centers. Recent studies report that enterotoxigenic E. coli is the most common E. coli pathogens associated with diarrhea in children less than 5 years of age. Other E. coli pathotypes have been detected in children with diarrhea including enteropathogenic, enteroaggregative, shiga-toxin producing and diffusely adherent E. coli. It was also found that meat and vegetables at retail stores are contaminated with Shiga-toxin producing E. coli and enteroaggregative E. coli, suggesting that food products are involved in transmission and infection of the susceptible host. More studies are necessary to evaluate the mechanisms of transmission, the impact on the epidemiology of diarrheal disease, and management strategies and prevention of these pathogens affecting the pediatric population in Colombia.

  12. Yeast DNA sequences initiating gene expression in Escherichia coli.

    PubMed

    Lewin, Astrid; Tran, Thi Tuyen; Jacob, Daniela; Mayer, Martin; Freytag, Barbara; Appel, Bernd

    2004-01-01

    DNA transfer between pro- and eukaryotes occurs either during natural horizontal gene transfer or as a result of the employment of gene technology. We analysed the capacity of DNA sequences from a eukaryotic donor organism (Saccharomyces cerevisiae) to serve as promoter region in a prokaryotic recipient (Escherichia coli) by creating fusions between promoterless luxAB genes from Vibrio harveyi and random DNA sequences from S. cerevisiae and measuring the luminescence of transformed E. coli. Fifty-four out of 100 randomly analysed S. cerevisiae DNA sequences caused considerable gene expression in E. coli. Determination of transcription start sites within six selected yeast sequences in E. coli confirmed the existence of bacterial -10 and -35 consensus sequences at appropriate distances upstream from transcription initiation sites. Our results demonstrate that the probability of transcription of transferred eukaryotic DNA in bacteria is extremely high and does not require the insertion of the transferred DNA behind a promoter of the recipient genome.

  13. Proton-linked D-xylose transport in Escherichia coli.

    PubMed Central

    Lam, V M; Daruwalla, K R; Henderson, P J; Jones-Mortimer, M C

    1980-01-01

    The addition of xylose to energy-depleted cells of Escherichia coli elicited an alkaline pH change which failed to appear in the presence of uncoupling agents. Accumulation of [14C]xylose by energy-replete cells was also inhibited by uncoupling agents, but not by fluoride or arsenate. Subcellular vesicles of E. coli accumulated [14C]xylose provided that ascorbate plus phenazine methosulfate were present for respiration, and this accumulation was inhibited by uncoupling agents or valinomycin. Therefore, the transport of xylose into E. coli appears to be energized by a proton-motive force, rather than by a phosphotransferase or directly energized mechanism. Its specificity for xylose as inducer and substrate and the genetic location of a xylose-H+ transport-negative mutation near mtl showed that the xylose-H+ system is distinct from other proton-linked sugar transport systems of E. coli. PMID:6995439

  14. Escherichia coli control in a surface flow treatment wetland.

    PubMed

    MacIntyre, M E; Warner, B G; Slawson, R M

    2006-06-01

    A field experiment showed that numbers of Escherichia coli declined significantly when floating Lemna spp. plants were removed to create open water areas in a typical newly constructed surface flow treatment wetland in southern Ontario. It is suggested that E. coli declined immediately after Lemna removal because the Lemna was shading the water column from penetration by natural UV radiation, it was providing favourable attachment sites for the E. coli, and it was not allowing effective free exchange of oxygen from surface winds to the water column to maintain high enough dissolved oxygen supplies for predator zooplankton populations. Operators of wetland systems must have the specialized skills required to recognize the cause and the appropriate maintenance requirements to maintain efficient operation of such unconventional systems should E. coli numbers increase during the course of operation.

  15. Biosynthesis of Two Flavones, Apigenin and Genkwanin, in Escherichia coli.

    PubMed

    Lee, Hyejin; Kim, Bong Gyu; Kim, Mihyang; Ahn, Joong-Hoon

    2015-09-01

    The flavonoid apigenin and its O-methyl derivative, genkwanin, have various biological activities and can be sourced from some vegetables and fruits. Microorganisms are an alternative for the synthesis of flavonoids. Here, to synthesize genkwanin from tyrosine, we first synthesized apigenin from p-coumaric acid using four genes (4CL, CHS, CHI, and FNS) in Escherichia coli. After optimization of different combinations of constructs, the yield of apigenin was increased from 13 mg/l to 30 mg/l. By introducing two additional genes (TAL and POMT7) into an apigenin-producing E. coli strain, we were able to synthesize 7-O-methyl apigenin (genkwanin) from tyrosine. In addition, the tyrosine content in E. coli was modulated by overexpressing aroG and tyrA. The engineered E. coli strain synthesized approximately 41 mg/l genkwanin.

  16. Escherichia coli early-onset sepsis: trends over two decades.

    PubMed

    Mendoza-Palomar, Natalia; Balasch-Carulla, Milena; González-Di Lauro, Sabina; Céspedes, Maria Concepció; Andreu, Antònia; Frick, Marie Antoinette; Linde, Maria Ángeles; Soler-Palacin, Pere

    2017-08-02

    Escherichia coli early-onset sepsis (EOS) is an important cause of mortality and morbidity in neonates, especially in preterm and very low birth weight (VLBW) newborns. The aim of our study was to evaluate potential changes in the clinical and microbiological characteristics of E. coli EOS in our setting. Epidemiological, clinical, and microbiological data from all neonates with proven E. coli EOS from January 1994 to December 2014 were retrospectively collected in a single tertiary care hospital in Barcelona (Spain). Seventy-eight E. coli EOS cases were analyzed. A slight increase in the incidence of E. coli EOS was observed during the study period. VLBW newborns remained the group with higher incidence (10.4 cases per 1000 live births) and mortality (35.3%). Systematic use of PCR increased E. coli EOS diagnosis, mainly in the term newborn group. There was an increase in resistant E. coli strains causing EOS, with especially high resistance to ampicillin and gentamicin (92.8 and 28.6%, respectively). Nonetheless, resistant strains were not associated with poorer clinical outcomes. There is an urgent need to reconsider the empirical therapy used in neonatal EOS, particularly in VLBW newborns. What is Known: • E. coli early-onset sepsis (EOS) and E. coli resistant strains have been described as overall stable but increasing in VLBW neonates (< 1.500 g) in previous studies. What is New: • Our study shows an increasing incidence of E. coli EOS in all age groups, overruling group B Streptoccocus for the last 10 years. E. coli resistant strains also increased equally in all age groups, with high resistance rates to our first line antibiotics (ampicillin and gentamicin). • Empiric antibiotic therapy of EOS, mainly in VLBW newborns, should be adapted to this new scenario.

  17. Compilation of DNA sequences of Escherichia coli

    PubMed Central

    Kröger, Manfred

    1989-01-01

    We have compiled the DNA sequence data for E.coli K12 available from the GENBANK and EMBO databases and over a period of several years independently from the literature. We have introduced all available genetic map data and have arranged the sequences accordingly. As far as possible the overlaps are deleted and a total of 940,449 individual bp is found to be determined till the beginning of 1989. This corresponds to a total of 19.92% of the entire E.coli chromosome consisting of about 4,720 kbp. This number may actually be higher by some extra 2% derived from the sequence of lysogenic bacteriophage lambda and the various insertion sequences. This compilation may be available in machine readable form from one of the international databanks in some future. PMID:2654890

  18. Comparison of multilocus sequence analysis and virulence genotyping of Escherichia coli from live birds, retail poultry meat, and human extraintestinal infection.

    PubMed

    Danzeisen, Jessica L; Wannemuehler, Yvonne; Nolan, Lisa K; Johnson, Timothy J

    2013-03-01

    To examine the correlations between virulence genotyping and multilocus sequence analysis of Escherichia coli from poultry and humans, 88 isolates were examined. The isolates were selected from a population of over 1000 based on their assignment to nine different virulence genotyping clusters. Clustering based on multilocus sequence analysis mostly correlated with virulence genotyping, although multilocus sequence analysis demonstrated higher discriminatory ability and greater reliability related to inferred phylogenetic relationships. No distinct patterns in host source were observed using inferred phylogeny through multilocus sequence analysis, indicating that human, avian, and retail meat isolates are diverse, and some belong to multiple shared clonal complexes. Clonal complexes with host source overlap included ST95 and ST23 and additional novel groups, underscoring the diversity of avian pathogenic E. coli and the potential importance of these novel groups as avian and zoonotic pathogens.

  19. Resistance and virulence factors of Escherichia coli isolated from chicken.

    PubMed

    Pavlickova, Silvie; Dolezalova, Magda; Holko, Ivan

    2015-01-01

    Chicken meat has become an important part of the human diet and besides contamination by pathogenic Escherichia coli there is a risk of antibiotic resistance spreading via the food chain. The purpose of this study was to examine the prevalence of resistance against eight antibiotics and the presence of 14 virulence factors among 75 Escherichia coli strains isolated from chicken meat in the Czech Republic after classification into phylogenetic groups by the multiplex PCR method. More than half of strains belonged to A phylogroup, next frequently represented was B1 phylogroup, which suggests the commensal strains. The other strains were classified into phylogroups B2 and D, which had more virulence factors. Almost half of all E. coli strains were resistant to at least one of eight-tested antibiotics. A multidrug resistance was observed in 13% of strains. The most prevalent virulence genes were iucD, iss and tsh. None of genes encoding toxins was detected. Most of E. coli strains isolated from chicken meat can be considered as nonpathogenic on the basis of analysis of virulence factors, antibiotic resistance and phylogroups assignment. It can provide a useful tool for prediction of a potential risk from food contaminated by E. coli.

  20. Diversity of Escherichia coli strains involved in vertebral osteomyelitis and arthritis in broilers in Brazil.

    PubMed

    Braga, Juliana Fortes Vilarinho; Chanteloup, Nathalie Katy; Trotereau, Angélina; Baucheron, Sylvie; Guabiraba, Rodrigo; Ecco, Roselene; Schouler, Catherine

    2016-07-14

    Locomotor disorders and infections by Escherichia coli represent major concerns to the poultry industry worldwide. Avian pathogenic E. coli (APEC) is associated with extraintestinal infections leading to respiratory or systemic disease known as colibacillosis. The most common lesions seen in cases of colibacillosis are perihepatitis, airsacculitis, pericarditis, peritonitis/salpingitis and arthritis. These diseases are responsible for significant economic losses in the poultry industry worldwide. E. coli has been recently isolated from vertebral osteomyelitis cases in Brazil and there are no data on molecular and phenotypic characteristics of E. coli strains isolated from lesions in the locomotor system of broilers. This raised the question whether specific E. coli strains could be responsible for bone lesions in broilers. The aim of this study was to assess these characteristics of E. coli strains isolated from broilers presenting vertebral osteomyelitis and arthritis in Brazil. Fifteen E. coli strains from bone lesions were submitted to APEC diagnosis and setting of ECOR phylogenic group, O serogroup, flagella type, virulence genes content, genetic patterns by Pulsed Field Gel Electrophoresis (PFGE) and Multilocus Sequence Typing (MLST). In addition, bacterial isolates were further characterized through a lethality test, serum resistance test and antibiotic resistance profile. E. coli strains harbored different genetic pattern as assessed by PFGE, regardless of flock origin and lesion site. The strains belonged to seven sequence types (STs) previously described (ST117, ST101, ST131, ST 371 and ST3107) or newly described in this study (ST5766 and ST5856). ECOR group D (66.7 %) was the most frequently detected. The strains belonged to diverse serogroups (O88, O25, O12, and O45), some of worldwide importance. The antibiotic resistance profile confirmed strains' diversity and revealed a high proportion of multidrug-resistant strains (73 %), mainly to quinolones and

  1. Escherichia coli as a model active colloid: A practical introduction.

    PubMed

    Schwarz-Linek, Jana; Arlt, Jochen; Jepson, Alys; Dawson, Angela; Vissers, Teun; Miroli, Dario; Pilizota, Teuta; Martinez, Vincent A; Poon, Wilson C K

    2016-01-01

    The flagellated bacterium Escherichia coli is increasingly used experimentally as a self-propelled swimmer. To obtain meaningful, quantitative results that are comparable between different laboratories, reproducible protocols are needed to control, 'tune' and monitor the swimming behaviour of these motile cells. We critically review the knowledge needed to do so, explain methods for characterising the colloidal and motile properties of E. coli cells, and propose a protocol for keeping them swimming at constant speed at finite bulk concentrations. In the process of establishing this protocol, we use motility as a high-throughput probe of aspects of cellular physiology via the coupling between swimming speed and the proton motive force.

  2. PROPERTIES OF A BACTERIOPHAGE DERIVED FROM ESCHERICHIA COLI K235

    PubMed Central

    Jesaitis, Margeris A.; Hutton, John J.

    1963-01-01

    A temperate bacteriophage was isolated from the colicinogenic strain of Escherichia coli K235 and characterized. This phage, termed PK, is related to P2 virus morphologically, serologically, and, possibly, genetically and it bears no relationship to the T-even phages. It was also demonstrated that PK virus and colicine K differ both in their host range and in their immunological specificity, and that PK prophage does not induce the colicinogenesis in its host bacterium. It was concluded that the formation of colicine K. and PK phage in E. coli K235 are controlled by different genetic determinants. PMID:14029160

  3. Genes and proteins of Escherichia coli (GenProtEc).

    PubMed

    Riley, M; Space, D B

    1996-01-01

    GenProtEc is a database of Escherichia coli genes and their gene products, classified by type of function and physiological role and with citations to the literature for each. Also present are data on sequence similarities among E.coli proteins with PAM values, percent identity of amino acids, length of alignment and percent aligned. The database is available as a PKZip file by ftp from mbl.edu/pub/ecoli.exe. The program runs under MS-DOS on IMB-compatible machines. GenProtEc can also be accessed through the World Wide Web at URL http://mbl.edu/html/ecoli.html.

  4. Genes and proteins of Escherichia coli (GenProtEc).

    PubMed Central

    Riley, M; Space, D B

    1996-01-01

    GenProtEc is a database of Escherichia coli genes and their gene products, classified by type of function and physiological role and with citations to the literature for each. Also present are data on sequence similarities among E.coli proteins with PAM values, percent identity of amino acids, length of alignment and percent aligned. The database is available as a PKZip file by ftp from mbl.edu/pub/ecoli.exe. The program runs under MS-DOS on IMB-compatible machines. GenProtEc can also be accessed through the World Wide Web at URL http://mbl.edu/html/ecoli.html. PMID:8594596

  5. Functional role of bdm during flagella biogenesis in Escherichia coli.

    PubMed

    Kim, Ji-Sun; Kim, Yu Jin; Seo, Sojin; Seong, Maeng-Je; Lee, Kangseok

    2015-03-01

    The biofilm-dependent modulation gene (bdm) has recently been shown to play a role in osmotic-induced formation of biofilm in Escherichia coli. In this study, we demonstrated that deletion of bdm results in down-regulation of flagella biosynthesis genes and, consequently, a defect in E. coli motility. In addition, we employed atomic force microscopy to confirm the absence of flagella-like structures on the surface of bdm-null cells. These findings indicate that bdm plays a key role in regulatory pathway for the formation of flagella.

  6. Nitric oxide donor-mediated killing of bioluminescent Escherichia coli.

    PubMed Central

    Virta, M; Karp, M; Vuorinen, P

    1994-01-01

    The antimicrobial activities of two nitric oxide-releasing compounds against Escherichia coli were investigated by using recombinant E. coli cloned with a luciferase gene from Pyrophorus plagiophthalamus. Since luciferase uses intracellular ATP to generate visible light which can be measured from living cells in real time, we wanted to compare the extent to which cell viability parallels light emission. Results from luminescence measurements and CFU counts were in good agreement, and the decrease in light emission was shown to provide a rapid and more sensitive indication of cytotoxicity. PMID:7695261

  7. Bacterial self-defence: how Escherichia coli evades serum killing.

    PubMed

    Miajlovic, Helen; Smith, Stephen G

    2014-05-01

    The ability to survive the bactericidal action of serum is advantageous to extraintestinal pathogenic Escherichia coli that gain access to the bloodstream. Evasion of the innate defences present in serum, including complement and antimicrobial peptides, involves multiple factors. Serum resistance mechanisms utilized by E. coli include the production of protective extracellular polysaccharide capsules and expression of factors that inhibit or interfere with the complement cascade. Recent studies have also highlighted the importance of structural integrity of the cell envelope in serum survival. These survival strategies are outlined in this review with particular attention to novel findings and recent insights into well-established resistance mechanisms.

  8. Accelerated glycerol fermentation in Escherichia coli using methanogenic formate consumption.

    PubMed

    Richter, Katrin; Gescher, Johannes

    2014-06-01

    Escherichia coli can ferment glycerol anaerobically only under very defined restrictive conditions. Hence, it was the aim of this study to overcome this limitation via a co-cultivation approach. Anaerobic glycerol fermentation by a pure E. coli culture was compared to a co-culture that also contained the formate-oxidizing methanogen Methanobacterium formicicum. Co-cultivation of the two strains led to a more than 11-fold increased glycerol consumption. Furthermore, it supported a constantly neutral pH and a shift from ethanol to succinate production. Moreover, M. formicicum was analyzed for its ability to grow on different standard media and a surprising versatility could be demonstrated.

  9. Recombinant protein expression in Escherichia coli: advances and challenges

    PubMed Central

    Rosano, Germán L.; Ceccarelli, Eduardo A.

    2014-01-01

    Escherichia coli is one of the organisms of choice for the production of recombinant proteins. Its use as a cell factory is well-established and it has become the most popular expression platform. For this reason, there are many molecular tools and protocols at hand for the high-level production of heterologous proteins, such as a vast catalog of expression plasmids, a great number of engineered strains and many cultivation strategies. We review the different approaches for the synthesis of recombinant proteins in E. coli and discuss recent progress in this ever-growing field. PMID:24860555

  10. Ribitol and D-arabitol catabolism in Escherichia coli.

    PubMed Central

    Scangos, G A; Reiner, A M

    1978-01-01

    In Escherichia coli C, the catabolism of the pentitols ribitol and D-arabitol proceeds through separate, inducible operons, each consisting of a dehydrogenase and a kinase. The ribitol operon is induced in response to ribulose, and the D-arabitol operon is induced in response to D-arabitol. Each operon is under negative control. The genes of the ribitol and D-arabitol operons are very closely linked and lie in a mirror image arrangement, rtlB-rtlA-rtlC-atlC-atlA-atlB, between metG and his on the E. coli chromosome. PMID:350825

  11. Further studies of Escherichia coli in babies after normal delivery

    PubMed Central

    Bettelheim, K. A.; Teoh-Chan, Ching Haan; Chandler, Mary E.; O'Farrell, Sheila M.; Rahamin, Layla; Shaw, Elizabeth J.; Shooter, R. A.

    1974-01-01

    Previous work showed that on the basis of O serotyping alone of Escherichia coli, the majority of babies acquired the same O serotype as was found in the stools of their respective mothers. Further characterization of the E. coli by H serotyping, determination of their antibiotic resistance and ability to ferment six carbohydrates showed that in the majority of cases the previous results were confirmed. In a minority of cases this further testing showed that the strains were not identical. In some instances a number of strains isolated from the same pair showed different combinations of the markers used. PMID:4608224

  12. Metabolic engineering of Escherichia coli for 1-butanol production.

    PubMed

    Atsumi, Shota; Cann, Anthony F; Connor, Michael R; Shen, Claire R; Smith, Kevin M; Brynildsen, Mark P; Chou, Katherine J Y; Hanai, Taizo; Liao, James C

    2008-11-01

    Compared to ethanol, butanol offers many advantages as a substitute for gasoline because of higher energy content and higher hydrophobicity. Typically, 1-butanol is produced by Clostridium in a mixed-product fermentation. To facilitate strain improvement for specificity and productivity, we engineered a synthetic pathway in Escherichia coli and demonstrated the production of 1-butanol from this non-native user-friendly host. Alternative genes and competing pathway deletions were evaluated for 1-butanol production. Results show promise for using E. coli for 1-butanol production.

  13. Inducible repair of oxidative DNA damage in Escherichia coli.

    PubMed

    Demple, B; Halbrook, J

    Hydrogen peroxide is lethal to many cell types, including the bacterium Escherichia coli. Peroxides yield transient radical species that can damage DNA and cause mutations. Such partially reduced oxygen species are occasionally released during cellular respiration and are generated by lethal and mutagenic ionizing radiation. Because cells live in an environment where the threat of oxidative DNA damage is continual, cellular mechanisms may have evolved to avoid and repair this damage. Enzymes are known which evidently perform these functions. We report here that resistance to hydrogen peroxide toxicity can be induced in E. coli, that this novel induction is specific and occurs, in part, at the level of DNA repair.

  14. Sedimentation and gravitational instability of Escherichia coli Suspension

    NASA Astrophysics Data System (ADS)

    Douarche, Carine; Salin, Dominique; Collaboration between Laboratory FAST; LPS Collaboration

    2016-11-01

    The successive run and tumble of Escherichia coli bacteria provides an active matter suspension of rod-like particles with a large swimming diffusion. As opposed to inactive elongated particles, this diffusion prevents clustering and instability in the gravity field. We measure the time dependent E . coli concentration profile during their sedimentation. After some hours, due to the dioxygen consumption, a motile / non-motile front forms leading to a Rayleigh-Taylor type gravitational instability. Analyzing both sedimentation and instability in the framework of active particle suspensions, we can measure the relevant bacteria hydrodynamic characteristics such as its single particle sedimentation velocity and its hindrance volume.

  15. [Drug resistance of Escherichia coli strains isolated from poultry].

    PubMed

    Giurov, B; Korudzhiĭski, N; Bineva, I

    1981-01-01

    Studied was the sensitivity of a total of 143 strains of Escherichia coli, isolated from young birds and broilers died from coli septicaemia, to antibiotics and chemotherapeutics. The following descending order was established: gentamycin, carbenicillin, ampicillin, furazolidon, borgal, kanamycin, strep tomycin, chloramphenicol, neomycin sulphathiazole, and tetracycline. Markers of resistance were established with all strains with regard to the therapeutic agents in current and prospective use in industrial poultry farming. It is stated that a preliminary antibiogram is indispensable in order to obtain dependable results in the treatment of animals affected with colibacteriosis. An alternative is to apply directly those drugs to which the strains have shown highest sensitivity.

  16. Advances in molecular serotyping and subtyping of Escherichia coli

    DOE PAGES

    Fratamico, Pina M.; DebRoy, Chitrita; Liu, Yanhong; ...

    2016-05-03

    Escherichia coli plays an important role as a member of the gut microbiota; however, pathogenic strains also exist, including various diarrheagenic E. coli pathotypes and extraintestinal pathogenic E. coli that cause illness outside of the GI-tract. E. coli have traditionally been serotyped using antisera against the ca. 186 O-antigens and 53 H-flagellar antigens. Phenotypic methods, including bacteriophage typing and O- and H- serotyping for differentiating and characterizing E. coli have been used for many years; however, these methods are generally time consuming and not always accurate. Advances in next generation sequencing technologies have made it possible to develop genetic-based subtypingmore » and molecular serotyping methods for E. coli, which are more discriminatory compared to phenotypic typing methods. Furthermore, whole genome sequencing (WGS) of E. coli is replacing established subtyping methods such as pulsedfield gel electrophoresis, providing a major advancement in the ability to investigate food-borne disease outbreaks and for trace-back to sources. Furthermore, a variety of sequence analysis tools and bioinformatic pipelines are being developed to analyze the vast amount of data generated by WGS and to obtain specific information such as O- and H-group determination and the presence of virulence genes and other genetic markers.« less

  17. Inactivation of Escherichia coli using atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Kuwahata, Hiroshi; Yamaguchi, Takeshi; Ohyama, Ryu-ichiro; Ito, Atsushi

    2015-01-01

    An atmospheric-pressure argon (Ar) plasma jet was applied to the inactivation of Escherichia coli. The Ar plasma jet was generated at a frequency of 10 kHz, an applied voltage of 10 kV, and an Ar gas flow rate of 10 L/min at atmospheric pressure. E. coli cells seeded on an agar medium in a Petri dish were inactivated by Ar plasma jet irradiation for 1 s. Scanning electron microscopy (SEM) revealed that E. coli cells were killed because their cell wall and membrane were disrupted. To determine the causes of the disruption of the cell wall and membrane of E. coli, we performed the following experiments: the measurement of the surface temperature of an agar medium using a thermograph, the analysis of an emission spectrum of a plasma jet obtained using a multichannel spectrometer, and the determination of the distribution of the concentration of hydrogen peroxide (H2O2) generated on an agar medium by plasma jet irradiation using semiquantitative test strips. Moreover, H2O2 solutions of different concentrations were dropped onto an agar medium seeded with E. coli cells to examine the contribution of H2O2 to the death of E. coli. The results of these experiments showed that the cell wall and membrane of E. coli were disrupted by electrons in the plasma jet, as well as by electroneutral excited nitrogen molecules (N2) and hydroxyl (OH) radicals in the periphery of the plasma jet.

  18. Gentamicin resistance among Escherichia coli strains isolated in neonatal sepsis.

    PubMed

    Hasvold, J; Bradford, L; Nelson, C; Harrison, C; Attar, M; Stillwell, T

    2013-01-01

    Neonatal sepsis is a significant cause of morbidity and mortality among term and preterm infants. Ampicillin and gentamicin are standard empiric therapy for early onset sepsis. Four cases of neonatal sepsis secondary to Escherichia coli (E. coli) found to be gentamicin resistant occurred within a five week period in one neonatal intensive care unit (NICU). To determine whether these cases could be tied to a single vector of transmission, and to more broadly evaluate the incidence of gentamicin resistant strains of E. coli in the neonatal population at our institution compared to other centers, we reviewed the charts of the four neonates (Infants A through D) and their mothers. The E. coli isolates were sent for Pulse Field Gel Electrophoresis (PFGE) to evaluate for genetic similarity between strains. We also reviewed all positive E. coli cultures from one NICU over a two year period. Infants A and B had genetically indistinguishable strains which matched that of urine and placental cultures of Infant B's mother. Infant C had a genetically distinct organism. Infant D, the identical twin of Infant C, did not have typing performed. Review of all cultures positive for E. coli at our institution showed a 12.9 percent incidence of gentamicin-resistance. A review of other studies showed that rates of resistance vary considerably by institution. We conclude that gentamicin-resistant E. coli is a relatively uncommon cause of neonatal sepsis, but should remain a consideration in patients who deteriorate despite initiation of empiric antibiotics.

  19. Enterobacterial detection and Escherichia coli antimicrobial resistance in parrots seized from the illegal wildlife trade.

    PubMed

    Hidasi, Hilari Wanderley; Hidasi Neto, José; Moraes, Dunya Mara Cardoso; Linhares, Guido Fontgallad Coelho; Jayme, Valéria de Sá; Andrade, Maria Auxiliadora

    2013-03-01

    Enteric bacteria are considered important potential pathogens in avian clinical medicine, causing either primary or opportunistic infections. The aim of this study was to evaluate the frequency of enterobacteria in the intestinal microbiota of psittacine birds and to determine the antimicrobial susceptibility of the Escherichia coli isolates cultured. Fecal samples were collected from 300 parrots captured from the illegal wildlife trade in Goiás, Brazil and were processed using conventional bacteriological procedures. A total of 508 isolates were obtained from 300 fecal samples: 172 E. coli (33.9% of isolates; 57.3% of individuals); 153 Enterobacter spp. (30.1% of isolates; 51.0% of individuals); 89 Klebsiella spp. (17.7% of isolates; 29.7% of individuals); 59 Citrobacter spp. (11.6% of isolates; 19.7% of individuals), 21 Proteus vulgaris (4.2% of isolates; 7.0% of individuals), 5 Providencia alcalifaciens (0.98% of isolates; 1.67% of individuals), 5 Serratia sp. (0.98% of isolates; 1.67% of individuals), 3 Hafnia aivei (0.59% of isolates; 1.00% of individuals), and 1 Salmonella sp. (0.20% of isolates; 0.33% of individuals). Escherichia coli isolates were subsequently tested for susceptibility to the following antibiotics: amoxicillin (70.93% of the isolates were resistant), ampicillin (75.58%), ciprofloxacin (23.25%), chloramphenicol (33.14%), doxycycline (64.53%), enrofloxacin (41.28%), tetracycline (69.19%), and sulfonamide (71.51%). Multi-resistance to three and four groups of antibiotics occurred in 40 samples (23.25%) and 4 samples (2.32%), respectively. These results demonstrate that illegally traded birds are carriers of potentially pathogenic bacteria, including E. coli strains with antimicrobial resistance.

  20. No evidence for a bovine mastitis Escherichia coli pathotype.

    PubMed

    Leimbach, Andreas; Poehlein, Anja; Vollmers, John; Görlich, Dennis; Daniel, Rolf; Dobrindt, Ulrich

    2017-05-08

    Escherichia coli bovine mastitis is a disease of significant economic importance in the dairy industry. Molecular characterization of mastitis-associated E. coli (MAEC) did not result in the identification of common traits. Nevertheless, a mammary pathogenic E. coli (MPEC) pathotype has been proposed suggesting virulence traits that differentiate MAEC from commensal E. coli. The present study was designed to investigate the MPEC pathotype hypothesis by comparing the genomes of MAEC and commensal bovine E. coli. We sequenced the genomes of eight E. coli isolated from bovine mastitis cases and six fecal commensal isolates from udder-healthy cows. We analyzed the phylogenetic history of bovine E. coli genomes by supplementing this strain panel with eleven bovine-associated E. coli from public databases. The majority of the isolates originate from phylogroups A and B1, but neither MAEC nor commensal strains could be unambiguously distinguished by phylogenetic lineage. The gene content of both MAEC and commensal strains is highly diverse and dominated by their phylogenetic background. Although individual strains carry some typical E. coli virulence-associated genes, no traits important for pathogenicity could be specifically attributed to MAEC. Instead, both commensal strains and MAEC have very few gene families enriched in either pathotype. Only the aerobactin siderophore gene cluster was enriched in commensal E. coli within our strain panel. This is the first characterization of a phylogenetically diverse strain panel including several MAEC and commensal isolates. With our comparative genomics approach we could not confirm previous studies that argue for a positive selection of specific traits enabling MAEC to elicit bovine mastitis. Instead, MAEC are facultative and opportunistic pathogens recruited from the highly diverse bovine gastrointestinal microbiota. Virulence-associated genes implicated in mastitis are a by-product of commensalism with the primary function

  1. EFFECT OF VISIBLE RANGE ELECTROMAGNETIC RADIATIONS ON ESCHERICHIA COLI.

    PubMed

    Azeemi, Samina T Yousuf; Shaukat, Saleem Farooq; Azeemi, Khawaja Shamsuddin; Khan, Idrees; Mahmood, Khalid; Naz, Farah

    2017-01-01

    Escherichia coli is the agent responsible for a range of clinical diseases. With emerging antimicrobial resistance, other treatment options including solar/photo-therapy are becoming increasingly common. Visible Range Radiation Therapy/Colour Therapy is an emerging technique in the field of energy/vibrational medicine that uses visible spectrum of Electromagnetic Radiations to cure different diseases. In this study, our goal was to understand the effect of Visible Range Electromagnetic Radiations on E. coli (in vitro) and therefore find out the most appropriate visible range radiation for the treatment of diseases caused by E. coli. A total of 6 non-repetitive E. coli isolates were obtained from urine samples obtained from hospitalized patients with UTI. Single colony of E. coli was inoculated in 3 ml of Lysogeny Broth (LB) and 40 μl of this E. coli suspension was poured into each of the plastic tubes which were then irradiated with six different wavelengths in the visible region (Table. 1) after 18 hours with one acting as a control. The Optical Densities of these irradiated samples were then measured. Furthermore, scanning electron microscopy (TEFCAN ZEGA3) was carried out. The analysis of the microscopic and SEM images of irradiated E. coli samples with six different visible range radiations is representative of The fact that E. coli responded differently to every applied radiation in the visible region and the most profound inhibitory effects were that of 538nm Visible Range Radiation (Green) which proved to be bactericidal and 590nm Visible Range Radiation (yellow) which was bacteriostatic. The enhanced growth of E. coli with varying degrees was clearly observed in 610nm (orange), 644nm (red), 464nm (Purple) and 453nm (blue). It can be concluded that 538nm (Green) and 590nm (Yellow) can effectively be used for treating E. coli borne diseases.

  2. Formation of nonculturable Escherichia coli in drinking water.

    PubMed

    Bjergbaek, L A; Roslev, P

    2005-01-01

    To examine whether incubation of Escherichia coli in nondisinfected drinking water result in development of cells that are not detectable using standard procedures but maintain a potential for metabolic activity and cell division. Survival and detectability of four different E. coli strains were studied using drinking water microcosms and samples from contaminated drinking water wells. Recovery of E. coli was compared using different cultivation-dependent methods, fluorescence in situ hybridization (FISH) using specific oligonucleotide probes, direct viable counts (DVC), and by enumeration of gfp-tagged E. coli (green fluorescent protein, GFP). Two levels of stress responses were observed after incubation of E. coli in nondisinfected drinking water: (i) the presence of cells that were not detected using standard cultivation methods but could be cultivated after gentle resuscitation on nonselective nutrient-rich media, and (ii) the presence of cells that responded to nutrient addition but could only be detected by cultivation-independent methods (DVC, FISH and GFP). Collectively, the experiments demonstrated that incubation for 20-60 days in nondisinfected drinking water resulted in detection of only 0.7-5% of the initial E. coli population using standard cultivation methods, whereas 1-20% could be resuscitated to a culturable state, and 17-49% could be clearly detected using cultivation-independent methods. Resuscitation of stressed E. coli on nonselective nutrient-rich media increased cell counts in drinking water using both traditional (CFU), and cultivation-independent methods (DVC, FISH and GFP). The cultivation-independent methods resulted in detection of 10-20 times more E. coli than the traditional methods. The results indicate that a subpopulation of substrate-responsive but apparent nonculturable E. coli may develop in drinking water during long-term starvation survival. The existence of substrate-responsive but nonculturable cells should be considered

  3. Biosynthesis of phosphatidyl glycerophosphate in Escherichia coli.

    PubMed

    Chang, Y Y; Kennedy, E P

    1967-09-01

    An enzyme (L-glycerol 3-phosphate: CMP phosphatidyltransferase) catalyzing the synthesis of phosphatidyl glycerophosphate from CDP-diglyceride and L-glycerol 3-phosphate has been rendered soluble by treatment of the particulate, membrane-containing fraction of E. coli with Triton X-100 and has been partially purified. The enzyme, devoid of phosphatidyl glycerophosphatase activity, is specific for L-glycerol 3-phosphate and is completely dependent upon added Mg(++) or Mn(++) for activity. It has high affinity for CDP-diglyceride and can be used for the assay of this nucleotide. Other properties of the enzyme are also described.

  4. Specific mistranslation in hisT mutants of Escherichia coli.

    PubMed

    Parker, J

    1982-01-01

    Certain strains of Escherichia coli mistranslate at very high frequencies when starved for asparagine or histidine. This mistranslation is the result of misreading events on the ribosome. The introduction of a hisT mutation into such a strain decreases the frequency of mistranslation during histidine starvation but not during asparagine starvation. The most likely explanation is that the replacement of the pseudouridine residue in the anticodon loop of glutamine specific transfer ribonucleic acid by uridine in hisT mutants leads to an increase in fidelity of transfer ribonucleic acid function. The hisT gene in Escherichia coli has also been more accurately mapped, giving the gene order purF-hisT-aroC-fadL-dsdA.

  5. Mechanobiology of Antimicrobial Resistant Escherichia coli and Listeria innocua.

    PubMed

    Tajkarimi, Mehrdad; Harrison, Scott H; Hung, Albert M; Graves, Joseph L

    2016-01-01

    A majority of antibiotic-resistant bacterial infections in the United States are associated with biofilms. Nanoscale biophysical measures are increasingly revealing that adhesive and viscoelastic properties of bacteria play essential roles across multiple stages of biofilm development. Atomic Force Microscopy (AFM) applied to strains with variation in antimicrobial resistance enables new opportunities for investigating the function of adhesive forces (stickiness) in biofilm formation. AFM force spectroscopy analysis of a field strain of Listeria innocua and the strain Escherichia coli K-12 MG1655 revealed differing adhesive forces between antimicrobial resistant and nonresistant strains. Significant increases in stickiness were found at the nanonewton level for strains of Listeria innocua and Escherichia coli in association with benzalkonium chloride and silver nanoparticle resistance respectively. This advancement in the usage of AFM provides for a fast and reliable avenue for analyzing antimicrobial resistant cells and the molecular dynamics of biofilm formation as a protective mechanism.

  6. LYSIS OF ESCHERICHIA COLI BY SULFHYDRYL-BINDING REAGENTS

    PubMed Central

    Schaechter, M.; Santomassino, Katherine A.

    1962-01-01

    Schaechter, M. (College of Medicine, University of Florida, Gainesville) and K. Santomassino. Lysis of Escherichia coli by sulfhydryl-binding reagents. J. Bacteriol. 84:318–325. 1962—Washed suspensions of gram-negative rods were lysed by low concentrations of some sulfhydryl-binding and oxidizing reagents, but not by reducing agents. Some kinetic aspects of this phenomenon were studied with p-chloromercuribenzoate and Escherichia coli B/r. Structures resulting from the action of this reagent consisted of impure cell walls. These could be purified by treatment with trypsin. Cell walls prepared mechanically and cell membranes obtained by lysing protoplasts were not overtly affected by this chemical. Images PMID:14497913

  7. Enterotoxigenic Escherichia coli infection in captive black-footed ferrets.

    PubMed

    Bradley, G A; Orr, K; Reggiardo, C; Glock, R D

    2001-07-01

    Enterotoxigenic Escherichia coli with genes for heat stabile toxins Sta and STb was isolated from the gastrointestinal tract and multiple visceral organs of three adult and three juvenile black-footed ferrets (Mustela nigripes) that died in a captive breeding colony between 24 May 1998 and 2 July 1998. Similar isolates were obtained from rectal swabs of one adult and one juvenile that were clinically ill. All were fed a diet composed of mink chow, raw rabbit meat, beef liver powder, blood meal and lard. Escherichia coli of the same toxin genotype was isolated from the mixed ration. Clinical signs included sudden death, dehydration, anorexia and diarrhea. Necropsy lesions included acute enteritis with large numbers of rod shaped bacteria microscopically visible on intestinal villi.

  8. Growth and Division of Filamentous Forms of Escherichia coli.

    PubMed

    Adler, H I; Hardigree, A A

    1965-07-01

    Adler, Howard I. (Oak Ridge National Laboratory, Oak Ridge, Tenn.), and Alice A. Hardigree. Growth and division of filamentous forms of Escherichia coli. J. Bacteriol. 90:223-226. 1965.-Cells of certain mutant strains of Escherichia coli grow into long multinucleate filaments after exposure to radiation. Deoxyribonucleic acid, ribonucleic acid, and protein synthesis proceed, but cytokinesis does not occur. Cytokinesis (cross-septation) can be initiated by exposure of the filaments to pantoyl lactone or a temperature of 42 C. If growing filaments are treated with mitomycin C, nuclear division does not occur, and nuclear material is confined to the central region of the filament. Cytokinesis cannot be induced in mitomycin C-treated filaments by pantoyl lactone or treatment at 42 C.

  9. TRYPTOPHANASE-TRYPTOPHAN SYNTHETASE SYSTEMS IN ESCHERICHIA COLI III.

    PubMed Central

    Freundlich, Martin; Lichstein, Herman C.

    1962-01-01

    Freundlich, Martin (University of Minnesota, Minneapolis) and Herman C. Lichstein. Tryptophanase-tryptophan synthetase systems in Escherichia coli. III. Requirements for enzyme synthesis. J. Bacteriol. 84:996–1006. 1962.—The requirements for the formation of tryptophanase and tryptophan synthetase in Escherichia coli during repression release were studied. The kinetics of the formation of tryptophan synthetase differed in the two strains examined; this was attributed to differences in the endogenous level of tryptophan in the bacterial cells. The formation of both enzymes was inhibited by chloramphenicol, and by the absence of arginine in an arginine-requiring mutant. These results are indicative of a requirement for protein synthesis for enzyme formation. Requirements for nucleic acid synthesis were examined by use of a uracil- and thymine-requiring mutant, and with purine and pyrimidine analogues. The results obtained suggest that some type of ribonucleic acid synthesis was necessary for the formation of tryptophanase and tryptophan synthetase. PMID:13959620

  10. Mechanobiology of Antimicrobial Resistant Escherichia coli and Listeria innocua

    PubMed Central

    Tajkarimi, Mehrdad; Harrison, Scott H.; Hung, Albert M.; Graves, Joseph L.

    2016-01-01

    A majority of antibiotic-resistant bacterial infections in the United States are associated with biofilms. Nanoscale biophysical measures are increasingly revealing that adhesive and viscoelastic properties of bacteria play essential roles across multiple stages of biofilm development. Atomic Force Microscopy (AFM) applied to strains with variation in antimicrobial resistance enables new opportunities for investigating the function of adhesive forces (stickiness) in biofilm formation. AFM force spectroscopy analysis of a field strain of Listeria innocua and the strain Escherichia coli K-12 MG1655 revealed differing adhesive forces between antimicrobial resistant and nonresistant strains. Significant increases in stickiness were found at the nanonewton level for strains of Listeria innocua and Escherichia coli in association with benzalkonium chloride and silver nanoparticle resistance respectively. This advancement in the usage of AFM provides for a fast and reliable avenue for analyzing antimicrobial resistant cells and the molecular dynamics of biofilm formation as a protective mechanism. PMID:26914334

  11. Thiolases of Escherichia coli: purification and chain length specificities.

    PubMed Central

    Feigenbaum, J; Schulz, H

    1975-01-01

    The presence of only one thiolase (EC 2.3.1.9) in wild-type Escherichia coli induced for enzymes of beta oxidation was demonstrated. A different thiolase was shown to be present in a mutant constitutive for the enzymes of butyrate degradation. The two thiolases were purified to near homogeneity by a simple two-step procedure and were found to be associated with different proteins as shown by gel electrophoresis. The thiolase isolated from induced wild-type Escherichia coli cell was active on beta-ketoacyl-coenzyme A derivatives containing 4 to 16 carbons, but exhibited optimal activity with medium-chain substrates. In contrast, the thiolase isolated from the constitutive mutant was shown to be specific for acetoacetyl-coenzyme A. PMID:236278

  12. Shear alters motility of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Molaei, Mehdi; Jalali, Maryam; Sheng, Jian

    2013-11-01

    Understanding of locomotion of microorganisms in shear flows drew a wide range of interests in microbial related topics such as biological process including pathogenic infection and biophysical interactions like biofilm formation on engineering surfaces. We employed microfluidics and digital holography microscopy to study motility of E. coli in shear flows. We controlled the shear flow in three different shear rates: 0.28 s-1, 2.8 s-1, and 28 s-1 in a straight channel with the depth of 200 μm. Magnified holograms, recorded at 15 fps with a CCD camera over more than 20 minutes, are analyzed to obtain 3D swimming trajectories and subsequently used to extract shear responses of E.coli. Thousands of 3-D bacterial trajectories are tracked. The change of bacteria swimming characteristics including swimming velocity, reorientation, and dispersion coefficient are computed directly for individual trajectory and ensemble averaged over thousands of realizations. The results show that shear suppresses the bacterial dispersions in bulk but promote dispersions near the surface contrary to those in quiescent flow condition. Ongoing analyses are focusing to quantify effect of shear rates on tumbling frequency and reorientation of cell body, and its implication in locating the hydrodynamic mechanisms for shear enhanced angular scattering. NIH, NSF, GoMRI.

  13. Positive regulation of the Escherichia coli glycine cleavage enzyme system.

    PubMed Central

    Wilson, R L; Steiert, P S; Stauffer, G V

    1993-01-01

    A new mutation in Escherichia coli, designated gcvA1, that results in noninducible expression of both gcv and a gcvT-lacZ gene fusion was isolated. A plasmid carrying the wild-type gcvA gene complemented the mutation and restored glycine-inducible gcv and gcvT-lacZ gene expression. These results suggest that gcvA encodes a positive-acting regulatory protein that acts in trans to increase expression of gcv. PMID:8423160

  14. Lipophilic chelator inhibition of electron transport in Escherichia coli.

    PubMed Central

    Crane, R T; Sun, I L; Crane, F L

    1975-01-01

    The lipophilic chelator bathophenanthroline inhibits electron transport in membranes from Escherichia coli. The less lipophilic 1,10-phenanthroline, bathophenanthroline sulfonate, and alpha,alpha-dipyridyl have little effect. Reduced nicotinamide adenine dinucleotide oxidase is more sensitive to bathophenanthroline inhibition than lactate oxidase activity. Evidence for two sites of inhibition comes from the fact that both reduced nicotinamide adenine dinucleotide menadione reductase and duroquinol oxidase activities are inhibited. Addition of uncouplers of phosphorylation before bathophenanthroline protects against inhibition. PMID:1092663

  15. Genome Sequence of Enterotoxigenic Escherichia coli Strain FMU073332.

    PubMed

    Saldaña-Ahuactzi, Zeus; Cruz-Córdova, Ariadnna; Rodea, Gerardo E; Porta, Helena; Navarro-Ocaña, Armando; Eslava-Campos, Carlos; Cevallos, Miguel A; Xicohtencatl-Cortes, Juan

    2017-02-23

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of bacterial diarrheal illness, affecting practically every population worldwide, and was estimated to cause 120,800 deaths in 2010. Here, we report the genome sequence of ETEC strain FMU073332, isolated from a 25-month-old girl from Tlaltizapán, Morelos, México. Copyright © 2017 Saldaña-Ahuactzi et al.

  16. Spurious hydrogen sulfide production by Providencia and Escherichia coli species.

    PubMed Central

    Treleaven, B E; Diallo, A A; Renshaw, E C

    1980-01-01

    Hydrogen sulfide production was noted in two Escherichia coli strands and one Provaidenica alcalifaciens (Proteus inconstans A) strain isolated from clinical stool specimens durin the summer of 1979. An investigation into this phenomenon revealed the predence of Eubacterium lentum, an anaerobe, growing in synergism with the Enterobacteriaceae and producing H2s. The implications of this association are discssed with reference to clinical microbiology laboratory practice. PMID:7000823

  17. Current perspectivesin pathogenesis and antimicrobial resistance of enteroaggregative Escherichia coli.

    PubMed

    Kong, Haishen; Hong, Xiaoping; Li, Xuefen

    2015-08-01

    Enteroaggregative Escherichia coli (EAEC) is an emerging pathogen that causes acute and persistent diarrhea in children and adults. While the pathogenic mechanisms of EAEC intestinal colonization have been uncovered (including bacterial adhesion, enterotoxin and cytotoxin secretion, and stimulation of mucosal inflammation), those of severe extraintestinal infections remain largely unknown. The recent emergence of multidrug resistant EAEC represents an alarming public health threat and clinical challenge, and research on the molecular mechanisms of resistance is urgently needed.

  18. Automated recombinant protein expression screening in Escherichia coli.

    PubMed

    Busso, Didier; Stierlé, Matthieu; Thierry, Jean-Claude; Moras, Dino

    2008-01-01

    To fit the requirements of structural genomics programs, new as well as classical methods have been adapted to automation. This chapter describes the automated procedure developed within the Structural Biology and Genomics Platform, Strasbourg for performing recombinant protein expression screening in Escherichia coli. The procedure consists of parallel competent cells transformation, cell plating, and liquid culture inoculation, implemented for up to 96 samples at a time.

  19. Antibacterial efficacy of silver nanoparticles against Escherichia coli

    NASA Astrophysics Data System (ADS)

    Pattabi, Rani M.; Thilipan, G. Arun Kumar; Bhat, Vinayachandra; Sridhar, K. R.; Pattabi, Manjunatha

    2013-02-01

    Silver nanoparticles (AgNPs) synthesized by subjecting an aqueous solution of AgNO3 and polyvinyl alcohol to irradiation from an UV lamp has been studied for its antibacterial potential against Gram-negative bacteria (Escherichia coli). The diameter of the zone of inhibition is found to depend on both the irradiation time and the nanoparticle concentration. As the synthesis method adopted uses no toxic reagents, these particles may serve as promising candidates in the search for better antibacterial agents.

  20. Polymorphous crystallization and diffraction of threonine deaminase from Escherichia coli.

    PubMed

    Gallagher, D T; Eisenstein, E; Fisher, K E; Zondlo, J; Chinchilla, D; Yu, H D; Dill, J; Winborne, E; Ducote, K; Xiao, G; Gilliland, G L

    1998-05-01

    The biosynthetic threonine deaminase from Escherichia coli, an allosteric tetramer with key regulatory functions, has been crystallized in several crystal forms. Two distinct forms, both belonging to either space group P3121 or P3221, with different sized asymmetric units that both contain a tetramer, grow under identical conditions. Diffraction data sets to 2.8 A resolution (native) and 2. 9 A resolution (isomorphous uranyl derivative) have been collected from a third crystal form in space group I222.

  1. Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation.

    PubMed Central

    Ireland, J C; Klostermann, P; Rice, E W; Clark, R M

    1993-01-01

    Titanium dioxide in the anatase crystalline form was used as a photocatalyst to generate hydroxyl radicals in a flowthrough water reactor. Experiments were performed on pure cultures of Escherichia coli in dechlorinated tap water and a surface water sample to evaluate the disinfection capabilities of the reactor. In water devoid of significant amounts of inorganic-radical scavengers, rapid cell death was observed with both pure cultures and members of the indigenous flora in a natural water sample. PMID:8390819

  2. Effects of Acridine Orange on the Growth of Escherichia coli

    PubMed Central

    Southwick, Frederick S.; Carr, Howard S.; Carden, George A.; D'Alisa, Rose M.; Rosenkranz, Herbert S.

    1972-01-01

    Exposure of Escherichia coli to critical acridine orange (AO) concentrations did not result in loss of viability. However, the deoxyribonucleic acid (DNA) of cells exposed to such agents was rapidly degraded and repolymerized. On the other hand, a bacterium deficient in DNA repair (pol A1−, lacking DNA polymerase) was sensitive to the action of AO. The DNA of such cells was also degraded but it was not repaired. PMID:4553001

  3. Escherichia coli adherence to HEp-2 cells with prefixed cells.

    PubMed Central

    Zepeda-Lopez, H M; Gonzalez-Lugo, G M

    1995-01-01

    We describe a new method which uses cold absolute methanol-prefixed cells for adherence of enteropathogenic Escherichia coli to HEp-2 cells. We found that a method using bacteria grown in Penassay broth to 10(6) to 10(7) CFU/ml and incubated with prefixed cells for 3 h at 37 degrees C, showed 100% sensitivity and specificity against a method using live cells. PMID:7615770

  4. Electric field induced bacterial flocculation of Enteroaggregative Escherichia coli 042

    SciTech Connect

    Kumar, Aloke; Mortensen, Ninell P; Mukherjee, Partha P; Retterer, Scott T; Doktycz, Mitchel John

    2011-01-01

    A response of the aggregation dynamics of enteroaggregative Escherichia coli under low magnitude steady and oscillating electric fields is presented. The presence of uniform electric fields hampered microbial adhesion and biofilm formation on a transverse glass surface, but instead promoted the formation of flocs. Extremely heterogeneous distribution of live and dead cells was observed among the flocs. Moreover, floc formation was largely observed to be independent of the frequency of alternating electric fields.

  5. Role for the female in bacterial conjugation in Escherichia coli.

    PubMed

    Freifelder, D

    1967-08-01

    Hfr and F' Lac male strains of Escherichia coli were mated with purine-requiring females which had been starved for purine. These females formed mating pairs with the males. However, a mating in the absence of purine markedly reduced the yield of recombinants. Transfer of F' Lac or of lambda prophage also occurred infrequently. It was concluded that deoxyribonucleic acid transfer from male to female requires some, as yet unknown, function of the female.

  6. Role for the Female in Bacterial Conjugation in Escherichia coli

    PubMed Central

    Freifelder, David

    1967-01-01

    Hfr and F′ Lac male strains of Escherichia coli were mated with purine-requiring females which had been starved for purine. These females formed mating pairs with the males. However, a mating in the absence of purine markedly reduced the yield of recombinants. Transfer of F′ Lac or of λ prophage also occurred infrequently. It was concluded that deoxyribonucleic acid transfer from male to female requires some, as yet unknown, function of the female. PMID:5341864

  7. Division pattern of a round mutant of Escherichia coli.

    PubMed Central

    Cooper, S

    1997-01-01

    A round mutant of Escherichia coli, when grown in Methocel medium, forms chains of cells and does not form tetrads. This implies that successive division planes of the round mutant are parallel rather than perpendicular. These results differ from a previous proposal that division planes in this round mutant are perpendicular to the prior division plane (W. D. Donachie, S. Addinall, and K. Begg, Bioessays 17:569-576, 1995). PMID:9287016

  8. Some factors affecting cyclopropane acid formation in Escherichia coli

    PubMed Central

    Knivett, V. A.; Cullen, Julia

    1965-01-01

    1. The fatty acid composition of the extractable lipids of Escherichia coli varied with growth conditions. 2. The principal fatty acids were palmitic acid, hexadecenoic acid, octadecenoic acid and the cyclopropane acids, methylenehexadecanoic acid and methyleneoctadecanoic acid. 3. Cyclopropane acid formation from monoenoic acids was increased by acid media, poor oxygen supply, or high growth temperature. 4. Cyclopropane acid formation was decreased by alkaline media, well oxygenated conditions, the presence of citrate, or lack of Mg2+. PMID:5324304

  9. Evidence of Pathogenic Subgroups among Atypical Enteropathogenic Escherichia coli Strains▿

    PubMed Central

    Scaletsky, Isabel C. A.; Aranda, Katia R. S.; Souza, Tamara B.; Silva, Neusa P.; Morais, Mauro B.

    2009-01-01

    We describe the characterization of 126 atypical enteropathogenic Escherichia coli (aEPEC) isolates from 1,749 Brazilian children. Classic aEPEC strains were more frequently found in children with diarrhea than in controls (P < 0.001), showing their importance as acute diarrhea agents in our country. Only aEPEC strains carrying either the ehxA or paa gene were significantly associated with diarrhea. PMID:19759223

  10. Characterization of Aspergillus oryzae aspartyl aminopeptidase expressed in Escherichia coli.

    PubMed

    Watanabe, Jun; Tanaka, Hisaki; Akagawa, Takumi; Mogi, Yoshinobu; Yamazaki, Tatsuo

    2007-10-01

    To characterize aspartyl aminopeptidase from Aspergillus oryzae, the recombinant enzyme was expressed in Escherichia coli. The enzyme cleaves N-terminal acidic amino acids. About 30% activity was retained in 20% NaCl. Digestion of defatted soybean by the enzyme resulted in an increase in the glutamic acid content, suggesting that the enzyme is potentially responsible for the release of glutamic acid in soy sauce mash.

  11. Two Forms of d-Glycerate Kinase in Escherichia coli

    PubMed Central

    Ornston, M. K.; Ornston, L. N.

    1969-01-01

    Escherichia coli K-12 synthesizes two chromatographically distinct forms of glycerate kinase which differ both in their thermolability and in the dependence of their activity upon pH. One enzymatic form, GK I, is found in cells grown with glycerate, glucarate, or glycolate. Of these compounds, glycolate is the only carbon source that elicits the synthesis of the second enzymatic form, GK II. PMID:4887503

  12. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation.

    PubMed

    Laverty, Garry; Gorman, Sean P; Gilmore, Brendan F

    2014-07-18

    Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation.

  13. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    PubMed Central

    Laverty, Garry; Gorman, Sean P.; Gilmore, Brendan F.

    2014-01-01

    Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation. PMID:25438014

  14. Escherichia coli and urinary tract infections: the role of poultry-meat.

    PubMed

    Manges, A R

    2016-02-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) is the most common cause of community-acquired and hospital-acquired extraintestinal infections. The hypothesis that human ExPEC may have a food animal reservoir has been a topic of investigation by multiple groups around the world. Experimental studies showing the shared pathogenic potential of human ExPEC and avian pathogenic E. coli suggest that these extraintestinal E. coli may be derived from the same bacterial lineages or share common evolutionary roots. The consistent observation of specific human ExPEC lineages in poultry or poultry products, and rarely in other meat commodities, supports the hypothesis that there may be a poultry reservoir for human ExPEC. The time lag between human ExPEC acquisition (in the intestine) and infection is the fundamental challenge facing studies attempting to attribute ExPEC transmission to poultry or other environmental sources. Even whole genome sequencing efforts to address attribution will struggle with defining meaningful genetic relationships outside of a discrete food-borne outbreak setting. However, if even a fraction of all human ExPEC infections, especially antimicrobial-resistant ExPEC infections, is attributable to the introduction of multidrug-resistant ExPEC lineages through contaminated food product(s), the relevance to public health, food animal production and food safety will be significant. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  15. Antimicrobial resistance of Escherichia coli isolated from chickens with colibacillosis in and around Harare, Zimbabwe.

    PubMed

    Saidi, Bamusi; Mafirakureva, Prettimore; Mbanga, Joshua

    2013-03-01

    Colibacillosis, a disease caused by avian pathogenic Escherichia coli (APEC), can lead to great economic losses in the poultry industry. The aim of this study was to determine the prevalence of antibiotic resistance and antibiotic resistance patterns in APEC in Zimbabwe. From 503 chickens diagnosed with colibacillosis, 103 E. coli isolates were obtained. Isolation and identification of E. coli were carried out using microscopy and biochemical tests. The disc diffusion method was used to determine antibiotic susceptibility of the isolates to 8 commercial antibiotics. Many isolates exhibited resistance to more than one antibiotic. Antibiogram profiles indicated maximum resistance to tetracycline (100%), bacitracin (100%), and cloxacillin (100%) and a high prevalence of resistance to ampicillin (94.1%). However; there were high prevalences of sensitivity to ciprofloxacin (100%) and gentamycin (97.1%). The isolates showed moderate rates of sensitivity to chloramphenicol and neomycin. All isolates in this study showed multidrug resistance because they were all resistant to 3 or more antibiotics. Seven multidrug resistance patterns were observed. The most common pattern (resistance to ampicillin, bacitracin, cloxacillin, and tetracycline) was exhibited by 30 isolates. Our findings show that there is emerging drug resistance in APEC associated with colibacillosis in Zimbabwe. The observed high level of multidrug resistance could hamper the treatment of colibacillosis in Zimbabwe.

  16. Thymineless Death in Escherichia coli: Inactivation and Recovery

    PubMed Central

    Cummings, Donald J.; Kusy, Alvin R.

    1969-01-01

    The effects of chloramphenicol (CAP) on the progress of thymineless death (TLD), nalidixic acid (NA) inactivation, ultraviolet (UV) irradiation, and mitomycin C (MC) inactivation were studied in Escherichia coli B, Bs−1, Bs−3, Bs−12, and B/r. This was done before, during, and after inactivation. During the progress of inactivation, it was found that at 10 to 20 μg of CAP per ml, up to 50% of the UV-sensitive bacteria survived TLD and about 10% survived NA. In E. coli B/r, at these concentrations of CAP, about 10 to 15% of the cells survived TLD and about 20 to 25% survived NA. Concentrations of CAP greater than 25 μg/ml actually increased the sensitivity of E. coli B, Bs−1, Bs−3, and Bs−12 to inactivation by either TLD or NA; at 150 μg of CAP per ml, the sensitivity of E. coli B/r to inactivation also increased. When E. coli B cells were incubated in CAP prior to inactivation, the longer the preincubation the longer onset of TLD was delayed; NA inactivation was also affected in that the rate of inactivation after CAP incubation was greatly decreased. Preincubation of E. coli B/r with CAP had much less effect on the progress of inactivation. After thymineless death, incubation in CAP plus thymine led to a rapid and almost complete recovery of E. coli B and Bs−12. Lesser recoveries were observed after inactivation due to UV, NA, or MC inactivation. E. coli Bs−1 and B/r did not recover viability after any mode of inactivation, and E. coli Bs−3 and Bs−12 recovered from UV to about 20% of the initial titer. It was suggested that protein synthesis, in particular proteins involved in deoxyribonucleic synthesis, was a determining factor in these inactivating and recovery events. PMID:4897115

  17. Antibiofilm effect of trans-cinnamaldehyde on uropathogenic Escherichia coli.

    PubMed

    Amalaradjou, Mary Anne Roshni; Narayanan, Amoolya; Baskaran, Sangeetha Ananda; Venkitanarayanan, Kumar

    2010-07-01

    Urinary tract infections are the most common hospital acquired infections in humans, caused primarily by uropathogenic Escherichia coli. Indwelling urinary catheters for bladder drainage in humans become encrusted with uropathogenic E. coli biofilms that are resistant to common antibiotics, resulting in chronic infections. We studied the efficacy of the cinnamon ingredient trans-cinnamaldehyde (Sigma) for preventing uropathogenic E. coli biofilm. We also determined the efficacy of trans-cinnamaldehyde as an ingredient in catheter lock solution to inactivate preformed uropathogenic E. coli biofilm. Polystyrene plates and urinary catheters inoculated with uropathogenic E. coli (5 to 6.0 log cfu) were treated with trans-cinnamaldehyde (0%, 0.1%, 0.25% or 0.5%) at 37C. Catheters with uropathogenic E. coli biofilm were also treated with lock solution containing trans-cinnamaldehyde (0%, 1%, 1.25% or 1.5%). Uropathogenic E. coli biofilm on control and trans-cinnamaldehyde treated plates and catheters was determined on incubation days 0, 1, 3 and 5. Trans-cinnamaldehyde potential cytotoxity, if any, was determined in HTB-4 bladder epithelial cells (ATCC). At all concentrations trans-cinnamaldehyde effectively prevented uropathogenic E. coli biofilm on plates and catheters. As a constituent in catheter lock solution, it inactivated uropathogenic E. coli biofilm on catheters. Trans-cinnamaldehyde produced no cytotoxic effects on human bladder epithelial cells at the tested concentrations. Results suggest that trans-cinnamaldehyde may be applied as a catheter surface coating or as an ingredient in catheter lock solution to prevent urinary tract infection in humans. Copyright (c) 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Prevalence of Escherichia coli in apple cider manufactured in Connecticut.

    PubMed

    Dingman, D W

    1999-06-01

    Cider samples obtained from 11 cider mills operating in Connecticut during the 1997 to 1998 production season were tested for the presence of Escherichia coli. Cider production began in mid August and continued through March, with peak production in September and October. Of 314 cider samples tested, 11 (4%) were found to contain E. coli. Of the 11 mills, 6 (55%) tested positive for E. coli in the cider at least once during the production year. E. coli was first observed in cider samples produced in mid to late October and was not detected in samples made after January. A trend was observed for cider to decrease in acidity and increase in Brix (soluble sugars) throughout the production season. No correlation between pH and soluble sugars of cider and the presence of E. coli was detected. Eight mills used both dropped apples and tree-picked apples, whereas three mills used tree-picked apples only. The use of dropped apples in cider production began 5 weeks before the first detection of E. coli in cider. E. coli was isolated from cider samples produced using dropped apples and from samples produced using only tree-picked apples. No direct correlation between the use of dropped apples or tree-picked apples and the presence of E. coli in the cider was observed. An association between the time of apple harvest and the appearance of E. coli in cider was noted. For mills providing adequate records, all contaminated cider was produced from apples harvested between mid October and mid November.

  19. Survival of Escherichia coli on strawberries grown under greenhouse conditions.

    PubMed

    Shaw, Angela Laury; Svoboda, Amanda; Jie, Beatrice; Nonnecke, Gail; Mendonca, Aubrey

    2015-04-01

    Strawberries are soft fruit that are not recommended to have a post-harvest wash due to quality concerns. Escherichia coli O157:H7 has been linked to outbreaks with strawberries but little is known about the survival of E. coli during the growth cycle of strawberries. The survival of E. coli on strawberry plants during growing under greenhouses conditions was evaluated. Soil, leaves, and strawberries (if present) were artificially contaminated with an E. coli surrogate either at the time of planting, first runner removal (4 wk), second runner removal (8 wk), or one week prior to harvest. At harvest E. coli was recovered from the leaves, soil, and strawberries regardless of the contamination time. Time of contamination influenced (P < 0.05) numbers of viable E. coli on the plant. The highest survival of E. coli (P < 0.0001) was detected in soil that was contaminated at planting (4.27 log10 CFU g soil(-1)), whereas, the survival of E. coli was maximal at later contamination times (8 wk and 1 wk prior to harvest) for the leaves (4.40 and 4.68 log10 CFU g leaves(-1)) and strawberries (3.37 and 3.53 log10 CFU strawberry(-1)). Cross contamination from leaves to fruit was observed during this study, with the presence of E. coli on strawberries which had not been present at the time of contamination. These results indicate that good agricultural best practices to avoid contamination are necessary to minimize the risk of contamination of these popular fruit with enteric pathogens. Practices should include soil testing prior to harvest and avoiding contamination of the leaves. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Fluorogenic assays for immediate confirmation of Escherichia coli.

    PubMed Central

    Feng, P C; Hartman, P A

    1982-01-01

    Rapid assays for Escherichia coli were developed by using the compound 4-methylumbelliferone glucuronide (MUG), which is hydrolyzed by glucuronidase to yield a fluorogenic product. The production of glucuronidase was limited to strains of E. coli and some Salmonella and Shigella strains in the family Enterobacteriaceae. For immediate confirmation of the presence of E. coli in most-probable-number tubes, MUG was incorporated into lauryl tryptose broth at a final concentration of 100 micrograms/ml. Results of both the presumptive test (gas production) and the confirmed test (fluorescence) for E. coli were obtained from a variety of food, water, and milk samples after incubation for only 24 h at 35 degrees C. Approximately 90% of the tubes showing both gas production and fluorescence contained fecal coliforms (they were positive in EC broth incubated at 45 degrees C). Few false-positive reactions were observed. The lauryl tryptose broth-MUG-most-probable-number assay was superior to violet red bile agar for the detection of heat- and chlorine-injured E. coli cells. Anaerogenic strains produced positive reactions, and small numbers of E. coli could be detected in the presence of large numbers of competing bacteria. The fluorogenic assay was sensitive and rapid; the presence of one viable cell was detected within 20 h. E. coli colonies could be distinguished from other coliforms on membrane filters and plates of violet red bile agar if MUG was incorporated into the culture media. A rapid confirmatory test for E. coli that is amenable to automation was developed by using microtitration plates filled with a nonselective medium containing MUG. Pure or mixed cultures containing E. coli produced fluorescence within 4 h (most strains) to 24 h (a few weakly positive strains). Images PMID:7049088

  1. Steady-State Chemotaxis in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Kafri, Yariv; da Silveira, Rava Azeredo

    2008-06-01

    The bacterium E. coli maneuvers itself to regions with high chemoattractant concentrations by performing two stereotypical moves: “runs,” in which it moves in near-straight lines, and “tumbles,” in which it does not advance but changes direction randomly. The duration of each move is stochastic and depends upon the chemoattractant concentration experienced in the recent past. We relate this stochastic behavior to the steady-state density of a bacterium population, and we derive the latter as a function of chemoattractant concentration. In contrast to earlier treatments, here we account for the effects of temporal correlations and variable tumbling durations. A range of behaviors is obtained that depends subtly upon several aspects of the system—memory, correlation, and tumbling stochasticity, in particular.

  2. Preparation of Soluble Proteins from Escherichia coli

    PubMed Central

    Wingfield, Paul T.

    2014-01-01

    Purification of human IL-1β is used in this unit as an example of the preparation of soluble proteins from E. coli. Bacteria containing IL-1β are lysed, and IL-1 β in the resulting supernatant is purified by anion-exchange chromatography, salt precipitation and cation-exchange chromatography, and then concentrated. Finally, the IL-1 β protein is applied to a gel-filtration column to separate it from remaining higher- and lower-molecular-weight contaminants, the purified protein is stored frozen or is lyophilized. The purification protocol described is typical for a protein that is expressed in fairly high abundance (i.e., >5% total protein) and accumulates in a soluble state. Also, the purification procedure serves as an example of how use classical protein purifications methods which may also be used in conjunction with the affinity-based methods now more commonly used. PMID:25367009

  3. Genetic transformation in Escherichia coli K12.

    PubMed

    Cosloy, S D; Oishi, M

    1973-01-01

    An auxotrophic strain of E. coli K12 treated with CaCl(2) was transformed for several markers at a frequency of up to 10(-6) per recipient cell by a DNA preparation isolated from a prototrophic strain. The transforming activity of the DNA preparation was eliminated by treatment with DNase, heat, or sonication, whereas RNase or Pronase treatment had little effect. Two closely linked genetic markers (leu and ara) showed a high degree of cotransformation linkage when high molecular weight DNA was used, but the linkage was almost completely eliminated when sheared, smaller molecular weight DNA was used. There is genetic evidence that the transformation is a result of the replacement of the preexisting genetic marker on the chromosome by that of the donor DNA.

  4. Natural inactivation of Escherichia coli in anaerobic and reduced groundwater.

    PubMed

    Lisle, J T

    2016-06-01

    Inactivation rates of Escherichia coli in groundwater have most often been determined in aerobic and oxidized systems. This study examined E. coli inactivation rates in anaerobic and extremely reduced groundwater systems that have been identified as recharge zones. Groundwater from six artesian wells was diverted to above-ground, flow-through mesocosms that contained laboratory grown E. coli in diffusion chambers. All groundwater was anaerobic and extremely reduced (ORP < -300 mV). Cells were plated onto mTEC agar during 21-day incubation periods. All data fit a bi-phasic inactivation model, with >95% of the E. coli population being inactivated <11·0 h (mean k = 0·488 ±0·188 h(-1) ). The groundwater geochemical conditions enhanced the inactivation of E. coli to rates approx. 21-fold greater than previously published inactivation rate in groundwater (mean k = 0·023 ± 0·030 h(-1) ). Also, mTEC agar inhibits E. coli growth following exposure to anaerobic and reduced groundwater. Aquifer recharge zones with geochemical characteristics observed in this study complement above-ground engineered processes (e.g. filtration, disinfection), while increasing the overall indicator micro-organism log-reduction rate of a facility. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  5. Escherichia coli sequence type 131: epidemiology and challenges in treatment.

    PubMed

    Qureshi, Zubair A; Doi, Yohei

    2014-05-01

    Escherichia coli ST131 has emerged as a global epidemic, multidrug-resistant clone of E. coli causing extra-intestinal infections. It is now highly prevalent among fluoroquinolone-resistant and CTX-M ESBL-producing E. coli isolates worldwide. Humans are likely the primary reservoir of ST131. Factors associated with its acquisition include residence in long-term care facilities and recent receipt of antimicrobial agents. E. coli ST131 causes a wide array of infections ranging from cystitis to life-threatening sepsis. Fluoroquinolones and trimethoprim-sulfamethoxazole are no longer adequate options for empiric therapy when E. coli ST131 is suspected from risk factors and local epidemiology. Expanded-spectrum cephalosporins, piperacillin-tazobactam and carbapenems are options to treat serious non-ESBL-producing E. coli ST131 infections, while carbapenems are indicated for ESBL-producing infections. There is a growing interest in reevaluating oral agents including fosfomycin and pivmecillinam for less serious infections such as uncomplicated cystitis.

  6. Ecological and genetic determinants of plasmid distribution in Escherichia coli.

    PubMed

    Medaney, Frances; Ellis, Richard J; Raymond, Ben

    2016-11-01

    Bacterial plasmids are important carriers of virulence and antibiotic resistance genes. Nevertheless, little is known of the determinants of plasmid distribution in bacterial populations. Here the factors affecting the diversity and distribution of the large plasmids of Escherichia coli were explored in cattle grazing on semi-natural grassland, a set of populations with low frequencies of antibiotic resistance genes. Critically, the population genetic structure of bacterial hosts was chararacterized. This revealed structured E. coli populations with high diversity between sites and individuals but low diversity within cattle hosts. Plasmid profiles, however, varied considerably within the same E. coli genotype. Both ecological and genetic factors affected plasmid distribution: plasmid profiles were affected by site, E. coli diversity, E. coli genotype and the presence of other large plasmids. Notably 3/26 E. coli serotypes accounted for half the observed plasmid-free isolates indicating that within species variation can substantially affect carriage of the major conjugative plasmids. The observed population structure suggest that most of the opportunities for within species plasmid transfer occur between different individuals of the same genotype and support recent experimental work indicating that plasmid-host coevolution, and epistatic interactions on fitness costs are likely to be important in determining occupancy. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Measuring Escherichia coli Gene Expression during Human Urinary Tract Infections

    PubMed Central

    Mobley, Harry L. T.

    2016-01-01

    Extraintestinal Escherichia coli (E. coli) evolved by acquisition of pathogenicity islands, phage, plasmids, and DNA segments by horizontal gene transfer. Strains are heterogeneous but virulent uropathogenic isolates more often have specific fimbriae, toxins, and iron receptors than commensal strains. One may ask whether it is the virulence factors alone that are required to establish infection. While these virulence factors clearly contribute strongly to pathogenesis, bacteria must survive by metabolizing nutrients available to them. By constructing mutants in all major metabolic pathways and co-challenging mice transurethrally with each mutant and the wild type strain, we identified which major metabolic pathways are required to infect the urinary tract. We must also ask what else is E. coli doing in vivo? To answer this question, we examined the transcriptome of E. coli CFT073 in the murine model of urinary tract infection (UTI) as well as for E. coli strains collected and analyzed directly from the urine of patients attending either a urology clinic or a university health clinic for symptoms of UTI. Using microarrays and RNA-seq, we measured in vivo gene expression for these uropathogenic E. coli strains, identifying genes upregulated during murine and human UTI. Our findings allow us to propose a new definition of bacterial virulence. PMID:26784237

  8. Interaction of Escherichia coli and Soil Particles in Runoff

    PubMed Central

    Muirhead, Richard William; Collins, Robert Peter; Bremer, Philip James

    2006-01-01

    A laboratory-scale model system was developed to investigate the transport mechanisms involved in the horizontal movement of bacteria in overland flow across saturated soils. A suspension of Escherichia coli and bromide tracer was added to the model system, and the bromide concentration and number of attached and unattached E. coli cells in the overland flow were measured over time. Analysis of the breakthrough curves indicated that the E. coli and bromide were transported together, presumably by the same mechanism. This implied that the E. coli was transported by advection with the flowing water. Overland-flow transport of E. coli could be significantly reduced if the cells were preattached to large soil particles (>45 μm). However, when unattached cells were inoculated into the system, the E. coli appeared to attach predominantly to small particles (<2 μm) and hence remained unattenuated during transport. These results imply that in runoff generated by saturation-excess conditions, bacteria are rapidly transported across the surface and have little opportunity to interact with the soil matrix. PMID:16672484

  9. Biochemical characteristic of biofilm of uropathogenic Escherichia coli Dr(+) strains.

    PubMed

    Zalewska-Piątek, Beata; Wilkanowicz, Sabina; Bruździak, Piotr; Piątek, Rafał; Kur, Józef

    2013-07-19

    Urinary tract infections caused by Escherichia coli are very common health problem in the developed countries. The virulence of the uropathogenic E. coli Dr(+) IH11128 is determined by Dr fimbriae, which are homopolymeric structures composed of DraE subunits with the DraD protein capping the fiber. In this study, we have analyzed the structural and biochemical properties of biofilms developed by E. coli strains expressing Dr fimbriae with or without the DraD tip subunit and the surface-exposed DraD protein. We have also demonstrated that these E. coli strains form biofilms on an abiotic surface in a nutrient-dependent fashion. We present evidence that Dr fimbriae are necessary during the first stage of bacterial interaction with the abiotic surface. In addition, we reveal that the DraD alone is also sufficient for the initial surface attachment at an even higher level than Dr fimbriae and that chloramphenicol is able to reduce the normal attachment of the analyzed E. coli. The action of chloramphenicol also shows that protein synthesis is required for the early events of biofilm formation. Additionally, we have identified reduced exopolysaccharide coverage in E. coli that express only Dr fimbrial polyadhesins at the cell surface with or without the DraD capping subunit. Copyright © 2013 Elsevier GmbH. All rights reserved.

  10. Characterization of Shiga toxigenic Escherichia coli isolated from foods.

    PubMed

    Martínez, Aida Juliana; Bossio, Carolina Paba; Durango, Adriana Coral; Vanegas, Maria Consuelo

    2007-12-01

    The aim of this study was to characterize Shiga toxigenic Escherichia coli (STEC) by PCR using strains isolated from ham, beef, and cattle in Colombia. A total of 189 E. coli strains were tested for the presence of the uidA, stx1, and stx2 genes, and identification was confirmed by the automated PCR BAX system for E. coli O157:H7. Genes encoding Shiga-like toxins (stx) were found in eight (6.06%) of 132 strains previously isolated from minced beef; four (50%) of these strains yielded amplification products for both toxin genes (stx1 and stx2), and four (50%) yielded products only for the stx2 toxin. None of the strains analyzed were positive by PCR for the presence of the single base-pair mutation in the uidA gene from E. coli O157:H7; these results were confirmed by the BAX system analysis. A multiplex PCR assay was standardized for the three genes. Results from this study confirmed previous data about the low prevalence of E. coli O157:H7 and Shiga-like toxins in Colombia and is the first known report of the prevalence of non-O157 enterohemorrhagic E. coli in this country.

  11. Escherichia coli, cattle and the propagation of disease.

    PubMed

    Stein, Richard A; Katz, David E

    2017-03-01

    Several early models describing host-pathogen interaction have assumed that each individual host has approximately the same likelihood of becoming infected or of infecting others. More recently, a concept that has been increasingly emphasized in many studies is that for many infectious diseases, transmission is not homogeneous but highly skewed at the level of populations. In what became known as the '20/80 rule', about 20% of the hosts in a population were found to contribute to about 80% of the transmission potential. These heterogeneities have been described for the interaction between many microorganisms and their human or animal hosts. Several epidemiological studies have reported transmission heterogeneities for Escherichia coli by cattle, a phenomenon with far-reaching agricultural, medical and public health implications. Focusing on E. coli as a case study, this paper will describe super-spreading and super-shedding by cattle, review the main factors that shape these transmission heterogeneities and examine the interface with human health. Escherichia coli super-shedding and super-spreading by cattle are shaped by microorganism-specific, cattle-specific and environmental factors. Understanding the factors that shape heterogeneities in E. coli dispersion by cattle and the implications for human health represent key components that are critical for targeted infection control initiatives. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. [Escherichia coli, a pathogen under fire from the news].

    PubMed

    Cohen, R; Raymond, J; Gendrel, D; Bingen, E

    2012-11-01

    Escherichia coli is both a gastrointestinal tract commensal and a major pathogen. In recent years, E. coli is under fire from the news due to a better understanding of pathogenic factors, outbreaks of infections caused by enterohaemorrhagic strains, and last but not least, the worrying development of antibiotic resistance. Due to the absence of new compounds active against these strains, producing extended-spectrum ß-lactamases (ESBL) and frequently multiresistant to other antibiotics, their emergence will pose therapeutic problems for practitioners of all pediatric specialties. The gold standard treatment for severe infections due to ESBL-E. coli family is the penem class. The frequent use of penems promotes the emergence of strains resistant to carbapenems. Sparing carbapenems should be a clear objective for non life-threatening infections.

  13. Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli

    PubMed Central

    Laganenka, Leanid; Colin, Remy; Sourjik, Victor

    2016-01-01

    Bacteria communicate by producing and sensing extracellular signal molecules called autoinducers. Such intercellular signalling, known as quorum sensing, allows bacteria to coordinate and synchronize behavioural responses at high cell densities. Autoinducer 2 (AI-2) is the only known quorum-sensing molecule produced by Escherichia coli but its physiological role remains elusive, although it is known to regulate biofilm formation and virulence in other bacterial species. Here we show that chemotaxis towards self-produced AI-2 can mediate collective behaviour—autoaggregation—of E. coli. Autoaggregation requires motility and is strongly enhanced by chemotaxis to AI-2 at physiological cell densities. These effects are observed regardless whether cell–cell interactions under particular growth conditions are mediated by the major E. coli adhesin (antigen 43) or by curli fibres. Furthermore, AI-2-dependent autoaggregation enhances bacterial stress resistance and promotes biofilm formation. PMID:27687245

  14. Engineering Escherichia coli K12 MG1655 to use starch.

    PubMed

    Rosales-Colunga, Luis Manuel; Martínez-Antonio, Agustino

    2014-05-21

    To attain a sustainable bioeconomy, fuel, or valuable product, production must use biomass as substrate. Starch is one of the most abundant biomass resources and is present as waste or as a food and agroindustry by-product. Unfortunately, Escherichia coli, one of the most widely used microorganisms in biotechnological processes, cannot use starch as a carbon source. We engineered an E. coli strain capable of using starch as a substrate. The genetic design employed the native capability of the bacterium to use maltodextrins as a carbon source plus expression and secretion of its endogenous α-amylase, AmyA, in an adapted background. Biomass production improved using 35% dissolved oxygen and pH 7.2 in a controlled bioreactor. The engineered E. coli strain can use starch from the milieu and open the possibility of optimize the process to use agroindustrial wastes to produce biofuels and other valuable chemicals.

  15. Quantitative method for enumeration of enterotoxigenic Escherichia coli.

    PubMed Central

    Calderon, R L; Levin, M A

    1981-01-01

    A rapid method was developed to quantify toxigenic Escherichia coli, using a membrane filter procedure. After filtration of samples, the membrane filter was first incubated on a medium selective for E. coli (24 h, 44 degrees C) and then transferred to tryptic soy agar (3%; 6 h, 37 degrees C). To assay for labile toxin-producing colonies, the filter was then transferred to a monolayer of Y-1 cells, the E. coli colonies were marked on the bottom of the petri dish, and the filter was removed after 15 min. The monolayer was observed for a positive rounding effect after a 15- to 24-h incubation. The method has an upper limit of detecting 30 toxigenic colonies per plate and can detect as few as one toxigenic colony per plate. A preliminary screening for these enterotoxigenic strains in polluted waters and known positive fecal samples was performed, and positive results were obtained with fecal samples only. PMID:7007415

  16. Mechanisms of the radioprotective effect of cysteamine in Escherichia coli

    SciTech Connect

    Korystov, Yu.N.; Vexler, F.B.

    1988-06-01

    The values of the oxygen effect (m) and the maximal protective effect of cysteamine (DMF*) were estimated for four Escherichia coli strains: AB1157 (wild type), AB1886 (uvrA), AB2463 (recA), and p3478 (polA). A correlation made between DMF* and m as well as the kinetics of the increase of DMF with oxygen depletion showed that the protective effect of cysteamine is realized by three mechanisms: (i) anoxia achieved by oxygen reduction, with the DMF varying from 2.2 to 4.2 for different E. coli strains (this protection is the major contribution to the entire mechanism); (ii) lowering of the indirect radiation effect; i.e., for 50 mM cysteamine DMF does not exceed 1.1; and (iii) increase of the efficiency of enzymatic repair. The latter effect of cysteamine is registered only with the wild-type E. coli, the DMF being not less than 1.4.

  17. Functions of the gene products of Escherichia coli.

    PubMed Central

    Riley, M

    1993-01-01

    A list of currently identified gene products of Escherichia coli is given, together with a bibliography that provides pointers to the literature on each gene product. A scheme to categorize cellular functions is used to classify the gene products of E. coli so far identified. A count shows that the numbers of genes concerned with small-molecule metabolism are on the same order as the numbers concerned with macromolecule biosynthesis and degradation. One large category is the category of tRNAs and their synthetases. Another is the category of transport elements. The categories of cell structure and cellular processes other than metabolism are smaller. Other subjects discussed are the occurrence in the E. coli genome of redundant pairs and groups of genes of identical or closely similar function, as well as variation in the degree of density of genetic information in different parts of the genome. PMID:7508076

  18. Lipid domains and mechanical plasticity of Escherichia coli lipid monolayers.

    PubMed

    López-Montero, Iván; Arriaga, Laura R; Rivas, Germán; Vélez, Marisela; Monroy, Francisco

    2010-01-01

    Lipid monolayers can be laterally dilated under the action of the barriers in a Langmuir trough thus allowing for measurements of their mechanical response. We study the stress response of Escherichia coli polar lipid extract and POPC against oscillatory deformations stressed up to a 20% of the initial area. For E. coli monolayers a nonlinear regime described by a series of Fourier harmonics of the excitation mode is found beyond a critical strain (u(C) approximately 1%). In contrast, the mechanical response of POPC monolayers is found linear upon much larger deformations. For E. coli monolayers the stress-strain plot reflects stress softening (plastic-like) behaviour whilst POPC behaves as a linear elastic body. No viscous delay with respect to the applied strain is detected in both systems, as expected for high fluid materials. The presence of phase coexistence domains as lipid reservoirs to facilitate lateral diffusion is claimed as a plausible mechanism underlying the observed mechanical plasticity.

  19. Inhibition of Injured Escherichia coli by Several Selective Agents 1

    PubMed Central

    Scheusner, D. L.; Busta, F. F.; Speck, M. L.

    1971-01-01

    A population of Escherichia coli ML30 cells was exposed to a quaternary ammonium compound, and injury to the cells was measured by a comparison of counts on Trypticase Soy Agar and Violet Red Bile Agar. Substantial injury could not be detected with a minimal medium. The ingredients of Violet Red Bile Agar were tested against damaged cells. The bile salts mixture alone in the medium prevented as many injured cells from growing as did any combination of the selective agents and inhibited as many injured bacteria as were inhibited by Violet Red Bile Agar itself. These dyes and salts were similarly assayed in minimal agar, and comparable results were obtained. Individual bile salts and other potential selective agents were added to the minimal medium, and the media were tested for inhibition of injured E. coli. Sodium deoxycholate was the bile salt most inhibitory to damaged E. coli cells. PMID:4924998

  20. Engineering Escherichia coli K12 MG1655 to use starch

    PubMed Central

    2014-01-01

    Background To attain a sustainable bioeconomy, fuel, or valuable product, production must use biomass as substrate. Starch is one of the most abundant biomass resources and is present as waste or as a food and agroindustry by-product. Unfortunately, Escherichia coli, one of the most widely used microorganisms in biotechnological processes, cannot use starch as a carbon source. Results We engineered an E. coli strain capable of using starch as a substrate. The genetic design employed the native capability of the bacterium to use maltodextrins as a carbon source plus expression and secretion of its endogenous α-amylase, AmyA, in an adapted background. Biomass production improved using 35% dissolved oxygen and pH 7.2 in a controlled bioreactor. Conclusion The engineered E. coli strain can use starch from the milieu and open the possibility of optimize the process to use agroindustrial wastes to produce biofuels and other valuable chemicals. PMID:24886307

  1. Incidence of Escherichia coli in Black Walnut Meats

    PubMed Central

    Meyer, Melvin T.; Vaughn, Reese H.

    1969-01-01

    Examination of commercially shelled black walnut meats showed inconsistent numbers of total aerobic bacteria, coliforms, and Escherichia coli; variation occurred among different meat sizes and within each meat size. The incidence of E. coli on meats of commercially hulled black walnuts depended on the physical condition of the nuts. Apparently tightly sealed ones contained only a few or none, whereas those with visibly separated sutures and spoiled meats yielded the most. This contamination was in part correlated to a hulling operation. Large numbers of E. coli on the husk of the walnuts contaminated the hulling water, subsequently also contaminating the meats by way of separated sutures. Chlorination of the hulling wash water was ineffective. Attempts were made to decontaminate the walnut meats without subsequent deleterious changes in flavor or texture. A treatment in coconut oil at 100 C followed by removal of excess surface oil by centrifugation was best. PMID:4905608

  2. Clonal spread in Eastern Asia of ciprofloxacin-resistant Escherichia coli serogroup O25 strains, and associated virulence factors.

    PubMed

    Uchida, Yujiro; Mochimaru, Tomomi; Morokuma, Yuiko; Kiyosuke, Makiko; Fujise, Masako; Eto, Fujiko; Eriguchi, Yoshihiro; Nagasaki, Yoji; Shimono, Nobuyuki; Kang, Dongchon

    2010-05-01

    A significant problem in the field of infectious diseases is the increase in fluoroquinolone (FQ)-resistant Escherichia coli. Although mutation of strains and clonal dissemination are supposed to be the cause of this increase, little is known about the prevalence of this organism. We investigated 219 FQ-resistant E. coli strains in Japan and nine Asian countries by serotyping and genotyping. Seventy-one strains (32.4%) were serogroup O25, which was prevalent in South Korea, China and Japan, especially in the southwest part of Japan. Aerobactin, a virulence factor in uropathogenic and avian pathogenic E. coli, was associated with the presence of FQ-resistant O25 strains of E. coli. Seven of the seventy-one FQ-resistant E. coli O25 had extended-spectrum beta-lactamase genes (six CTX-M-14 and one SHV-12), however, we were unable to find any E. coli O25-ST131 clone that produced CTX-M-15, which was previously reported to have emerged across continents. These data demonstrate that a clonal group of FQ-resistant and virulent E. coli recently became prevalent at least in East Asia and suggest that this might become a public health problem because the strains may acquire resistance to other antimicrobial agents.

  3. Comparative Genomic Analysis Shows That Avian Pathogenic Escherichia coli Isolate IMT5155 (O2:K1:H5; ST Complex 95, ST140) Shares Close Relationship with ST95 APEC O1:K1 and Human ExPEC O18:K1 Strains

    PubMed Central

    Pan, Zihao; Hu, Lin; Wang, Shaohui; Wang, Haojin; Leung, Frederick C.; Dai, Jianjun; Fan, Hongjie

    2014-01-01

    Avian pathogenic E. coli and human extraintestinal pathogenic E. coli serotypes O1, O2 and O18 strains isolated from different hosts are generally located in phylogroup B2 and ST complex 95, and they share similar genetic characteristics and pathogenicity, with no or minimal host specificity. They are popular objects for the study of ExPEC genetic characteristics and pathogenesis in recent years. Here, we investigated the evolution and genetic blueprint of APEC pathotype by performing phylogenetic and comparative genome analysis of avian pathogenic E. coli strain IMT5155 (O2:K1:H5; ST complex 95, ST140) with other E. coli pathotypes. Phylogeny analyses indicated that IMT5155 has closest evolutionary relationship with APEC O1, IHE3034, and UTI89. Comparative genomic analysis showed that IMT5155 and APEC O1 shared significant genetic overlap/similarities with human ExPEC dominant O18:K1 strains (IHE3034 and UTI89). Furthermore, the unique PAI I5155 (GI-12) was identified and found to be conserved in APEC O2 serotype isolates. GI-7 and GI-16 encoding two typical T6SSs in IMT5155 might be useful markers for the identification of ExPEC dominant serotypes (O1, O2, and O18) strains. IMT5155 contained a ColV plasmid p1ColV5155, which defined the APEC pathotype. The distribution analysis of 10 sequenced ExPEC pan-genome virulence factors among 47 sequenced E. coli strains provided meaningful information for B2 APEC/ExPEC-specific virulence factors, including several adhesins, invasins, toxins, iron acquisition systems, and so on. The pathogenicity tests of IMT5155 and other APEC O1:K1 and O2:K1 serotypes strains (isolated in China) through four animal models showed that they were highly virulent for avian colisepticemia and able to cause septicemia and meningitis in neonatal rats, suggesting zoonotic potential of these APEC O1:K1 and O2:K1 isolates. PMID:25397580

  4. Inhibition of Escherichia coli in cultivated cattle manure.

    PubMed

    Weinberg, Z G; Szakacs, G; Chen, Y; Pinto, R; Bernstein, S; Konya, B; Sela Saldinger, S

    2014-05-01

    A common practice on Israeli dairy barns comprises daily cultivation of the manure. Cultivation is a mechanical process used to break up and till the manure bedding and it results in a drier and aerated bedding and cleaner cows, which consequently reduces the incidence of mastitis. Cultivation was associated with a shorter survival of Escherichia coli in cultivated manure as compared with noncultivated manure. The objective of the current study was to elucidate the mechanism responsible for the shorter survival duration of E. coli in the cultivated manure. We hypothesized that microorganisms that are antagonistic to E. coli, developing in the cultivated manure, are responsible for this phenomenon. A cow manure derived E. coli strain expressing the green fluorescence protein and antibiotic resistance markers was used to inoculate cow manure in 1.5-L jars. Manure treatments included cultivated and noncultivated manure. Half the jars of each cultivation treatment were autoclave sterilized at 121°C for 1 h on 3 successive days to eliminate from the manure antagonistic microorganisms. Each cultivation-sterilization treatment was performed in triplicate jars. Following sterilization, E. coli numbers in the cultivated and noncultivated manure were comparable, while in the nonsterilized manure the numbers were lower in the cultivated compared with the noncultivated manure. Several fungi isolated from the cultivated manure samples displayed inhibition effect on the tagged E. coli. Antagonistic fungi were also isolated from large-scale cultivated manure samples collected on several dairy farms in Israel. These findings support the notion that manure cultivation might facilitate the development of microorganisms that are antagonistic to E. coli, thus contributing to the general hygiene of the cattle. Identifying the mechanisms by which the antagonistic fungi affect the survival of E. coli in manure could be exploited for improvement of the animal health and for limiting the

  5. Protective effects of indigenous Escherichia coli against a pathogenic E. coli challenge strain in pigs.

    PubMed

    Vahjen, W; Cuisiniere, T; Zentek, J

    2017-10-03

    To investigate the inhibitory effect of indigenous enterobacteria on pathogenic Escherichia coli, a challenge trial with postweaning pigs was conducted. A pathogenic E. coli strain was administered to all animals and their health was closely monitored thereafter. Faecal samples were taken from three healthy and three diarrhoeic animals. Samples were cultivated on MacConkey agar and isolates were subcultured. A soft agar overlay assay was used to determine the inhibitory activity of the isolates. A total of 1,173 enterobacterial isolates were screened for their ability to inhibit the E. coli challenge strain. Colony forming units of enterobacteria on MacConkey agar were not different between healthy and diarrhoeic animals in the original samples. Furthermore, numbers of isolates per animal were also not significantly different between healthy (482 isolates) and diarrhoeic animals (691 isolates). A total of 43 isolates (3.7%) with inhibitory activity against the pathogenic E. coli challenge strain were detected. All inhibitory isolates were identified as E. coli via MALDI-TOF. The isolates belonged to the phylotypes A, C and E. Many isolates (67.4%) were commensal E. coli without relevant porcine pathogenic factors, but toxin- and fimbrial genes (stx2e, fae, estIb, elt1a, fas, fan) were detected in 14 inhibitory isolates. Healthy animals showed significantly (P=0.003) more inhibitory isolates (36 of 482 isolates; 7.5%) than diseased animals (7 of 691 isolates; 1.0%). There were no significant correlations regarding phylotype or pathogenic factors between healthy and diseased animals. This study has shown that a small proportion of indigenous E. coli is able to inhibit in vitro growth of a pathogenic E. coli strain in pigs. Furthermore, healthy animals possess significantly more inhibitory E. coli strains than diarrhoeic animals. The inhibition of pathogenic E. coli by specific indigenous E. coli strains may be an underlying principle for the containment of pathogenic

  6. Effect of tannins on the in viro growth of Escherichia coli O157:H7 and in vivo growth of generic Escherichia coli excreted from steers

    USDA-ARS?s Scientific Manuscript database

    The effect of commercially available chestnut and mimosa tannins in vitro (experiment 1) or in vivo (experiment 2) on the growth or recovery of Escherichia coli O157:H7 or generic fecal E. coli was evaluated. In experiment 1, the mean growth rate of E. coli O157:H7, determined via the measurement o...

  7. Evaluation of Escherichia coli isolates from healthy chickens to determine their potential risk to poultry and human health.

    PubMed

    Stromberg, Zachary R; Johnson, James R; Fairbrother, John M; Kilbourne, Jacquelyn; Van Goor, Angelica; Curtiss, Roy; Mellata, Melha

    2017-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) strains are important pathogens that cause diverse diseases in humans and poultry. Some E. coli isolates from chicken feces contain ExPEC-associated virulence genes, so appear potentially pathogenic; they conceivably could be transmitted to humans through handling and/or consumption of contaminated meat. However, the actual extraintestinal virulence potential of chicken-source fecal E. coli is poorly understood. Here, we assessed whether fecal E. coli isolates from healthy production chickens could cause diseases in a chicken model of avian colibacillosis and three rodent models of ExPEC-associated human infections. From 304 E. coli isolates from chicken fecal samples, 175 E. coli isolates were screened by PCR for virulence genes associated with human-source ExPEC or avian pathogenic E. coli (APEC), an ExPEC subset that causes extraintestinal infections in poultry. Selected isolates genetically identified as ExPEC and non-ExPEC isolates were assessed in vitro for virulence-associated phenotypes, and in vivo for disease-causing ability in animal models of colibacillosis, sepsis, meningitis, and urinary tract infection. Among the study isolates, 13% (40/304) were identified as ExPEC; the majority of these were classified as APEC and uropathogenic E. coli, but none as neonatal meningitis E. coli. Multiple chicken-source fecal ExPEC isolates resembled avian and human clinical ExPEC isolates in causing one or more ExPEC-associated illnesses in experimental animal infection models. Additionally, some isolates that were classified as non-ExPEC were able to cause ExPEC-associated illnesses in animal models, and thus future studies are needed to elucidate their mechanisms of virulence. These findings show that E. coli isolates from chicken feces contain ExPEC-associated genes, exhibit ExPEC-associated in vitro phenotypes, and can cause ExPEC-associated infections in animal models, and thus may pose a health threat to

  8. Evaluation of Escherichia coli isolates from healthy chickens to determine their potential risk to poultry and human health

    PubMed Central

    Johnson, James R.; Fairbrother, John M.; Kilbourne, Jacquelyn; Van Goor, Angelica; Curtiss, Roy; Mellata, Melha

    2017-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) strains are important pathogens that cause diverse diseases in humans and poultry. Some E. coli isolates from chicken feces contain ExPEC-associated virulence genes, so appear potentially pathogenic; they conceivably could be transmitted to humans through handling and/or consumption of contaminated meat. However, the actual extraintestinal virulence potential of chicken-source fecal E. coli is poorly understood. Here, we assessed whether fecal E. coli isolates from healthy production chickens could cause diseases in a chicken model of avian colibacillosis and three rodent models of ExPEC-associated human infections. From 304 E. coli isolates from chicken fecal samples, 175 E. coli isolates were screened by PCR for virulence genes associated with human-source ExPEC or avian pathogenic E. coli (APEC), an ExPEC subset that causes extraintestinal infections in poultry. Selected isolates genetically identified as ExPEC and non-ExPEC isolates were assessed in vitro for virulence-associated phenotypes, and in vivo for disease-causing ability in animal models of colibacillosis, sepsis, meningitis, and urinary tract infection. Among the study isolates, 13% (40/304) were identified as ExPEC; the majority of these were classified as APEC and uropathogenic E. coli, but none as neonatal meningitis E. coli. Multiple chicken-source fecal ExPEC isolates resembled avian and human clinical ExPEC isolates in causing one or more ExPEC-associated illnesses in experimental animal infection models. Additionally, some isolates that were classified as non-ExPEC were able to cause ExPEC-associated illnesses in animal models, and thus future studies are needed to elucidate their mechanisms of virulence. These findings show that E. coli isolates from chicken feces contain ExPEC-associated genes, exhibit ExPEC-associated in vitro phenotypes, and can cause ExPEC-associated infections in animal models, and thus may pose a health threat to

  9. Effective medicinal plants against enterohaemorrhagic Escherichia coli O157:H7.

    PubMed

    Voravuthikunchai, Supayang; Lortheeranuwat, Amornrat; Jeeju, Wanpen; Sririrak, Trechada; Phongpaichit, Souwalak; Supawita, Thanomjit

    2004-09-01

    The stimulating effect of subinhibitory concentrations of antibiotics on the production of verocytotoxin (VT) by enterohaemorrhagic Escherichia coli (EHEC) O157:H7 has been claimed. The purpose of this study was to find an alternative, but bioactive medicine for the treatment of this organism. Fifty-eight preparations of aqueous and ethanolic extracts of 38 medicinal plant species commonly used in Thailand to cure gastrointestinal infections were tested for their antibacterial activity against different strains of Escherichia coli, including 6 strains of Escherichia coli O157:H7, Escherichia coli O26:H11, Escherichia coli O111:NM, Escherichia coli O22; 5 strains of Escherichia coli isolated from bovine; and Escherichia coli ATCC 25922. Inhibition of growth was primarily tested by the paper disc agar diffusion method. Among the medicinal plants tested, only 8 species (21.05%) exhibited antimicrobial activity against Escherichia coli O157:H7. Acacia catechu, Holarrhena antidysenterica, Peltophorum pterocarpum, Psidium guajava, Punica granatum, Quercus infectoria, Uncaria gambir, and Walsura robusta demonstrated antibacterial activity with inhibition zones ranging from 7 to 17 mm. The greatest inhibition zone against Escherichia coli O157:H7 (RIMD 05091083) was produced from the ethanolic extract of Quercus infectoria. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined by the agar microdilution method and agar dilution method in petri dishes with millipore filter. Both aqueous and ethanolic extracts of Quercus infectoria and aqueous extract of Punica granatum were highly effective against Escherichia coli O157:H7 with the best MIC and MBC values of 0.09, 0.78, and 0.19, 0.39 mg/ml, respectively. These plant species may provide alternative but bioactive medicines for the treatment of Escherichia coli O157:H7 infection.

  10. Soil solarization reduces Escherichia coli O157:H7 and total Escherichia coli on cattle feedlot pen surfaces.

    PubMed

    Berry, Elaine D; Wells, James E

    2012-01-01

    Feedlot pen soil is a source for transmission of Escherichia coli O157:H7, and therefore a target for preharvest strategies to reduce this pathogen in cattle. The objective of this study was to determine the ability of soil solarization to reduce E. coli O157:H7 in feedlot surface material (FSM). A feedlot pen was identified in which naturally occurring E. coli O157:H7 was prevalent and evenly distributed in the FSM. Forty plots 3 by 3 m were randomly assigned such that five plots of each of the solarization times of 0, 1, 2, 3, 4, 6, 8, and 10 weeks were examined. Temperature loggers were placed 7.5 cm below the surface of each plot, and plots to be solarized were covered with clear 6-mil polyethylene. At each sampling time, five FSM samples were collected from each of five solarized and five unsolarized plots. E. coli concentrations and E. coli O157:H7 presence by immunomagnetic separation and plating were determined for each FSM sample. Initial percentages of E. coli O157:H7-positive samples in control and solarized FSM were 84 and 80%, respectively, and did not differ (P > 0.05). E. coli O157:H7 was no longer detectable by 8 weeks of solarization, but was still detected in unsolarized FSM at 10 weeks. The average initial concentration of E. coli in FSM was 5.56 log CFU/g and did not differ between treatments (P > 0.05). There was a 2.0-log decrease of E. coli after 1 week of solarization, and a >3.0-log reduction of E. coli by week 6 of solarization (P, 0.05). E. coli levels remained unchanged in unsolarized FSM (P > 0.05). Daily peak FSM temperatures were on average 8.7°C higher for solarized FSM compared with unsolarized FSM, and reached temperatures as high as 57°C. Because soil solarization reduces E. coli O157:H7, this technique may be useful for reduction of persistence and transmission of this pathogen in cattle production, in addition to remediation of E. coli O157:H7-contaminated soil used to grow food crops.

  11. 77 FR 26725 - Changes to FSIS Traceback, Recall Procedures for Escherichia coli O157:H7 Positive Raw Beef...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... Food Safety and Inspection Service Changes to FSIS Traceback, Recall Procedures for Escherichia coli... find raw ground beef presumptive positive for Escherichia coli (E. coli) O157:H7. This methodology will... Escherichia coli O157:H7'' and requested comments on these documents. FSIS also held a public meeting...

  12. Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance

    PubMed Central

    Vega, Nicole M.; Allison, Kyle R.; Samuels, Amanda N.; Klempner, Mark S.; Collins, James J.

    2013-01-01

    Bacterial communication plays an important role in many population-based phenotypes and interspecies interactions, including those in host environments. These interspecies interactions may prove critical to some infectious diseases, and it follows that communication between pathogenic bacteria and commensal bacteria is a subject of growing interest. Recent studies have shown that Escherichia coli uses the signaling molecule indole to increase antibiotic tolerance throughout its population. Here, we show that the intestinal pathogen Salmonella typhimurium increases its antibiotic tolerance in response to indole, even though S. typhimurium does not natively produce indole. Increased antibiotic tolerance can be induced in S. typhimurium by both exogenous indole added to clonal S. typhimurium populations and indole produced by E. coli in mixed-microbial communities. Our data show that indole-induced tolerance in S. typhimurium is mediated primarily by the oxidative stress response and, to a lesser extent, by the phage shock response, which were previously shown to mediate indole-induced tolerance in E. coli. Further, we find that indole signaling by E. coli induces S. typhimurium antibiotic tolerance in a Caenorhabditis elegans model for gastrointestinal infection. These results suggest that the intestinal pathogen S. typhimurium can intercept indole signaling from the commensal bacterium E. coli to enhance its antibiotic tolerance in the host intestine. PMID:23946425

  13. Pulsed-Plasma Disinfection of Water Containing Escherichia coli

    NASA Astrophysics Data System (ADS)

    Satoh, Kohki; MacGregor, Scott J.; Anderson, John G.; Woolsey, Gerry A.; Fouracre, R. Anthony

    2007-03-01

    The disinfection of water containing the microorganism, Escherichia coli (E. coli) by exposure to a pulsed-discharge plasma generated above the water using a multineedle electrode (plasma-exposure treatment), and by sparging the off-gas of the pulsed plasma into the water (off-gas-sparging treatment), is performed in the ambient gases of air, oxygen, and nitrogen. For the off-gas-sparging treatment, bactericidal action is observed only when oxygen is used as the ambient gas, and ozone is found to generate the bactericidal action. For the plasma-exposure treatment, the density of E. coli bacteria decreases exponentially with plasma-exposure time for all the ambient gases. It may be concluded that the main contributors to E. coli inactivation are particle species produced by the pulsed plasma. For the ambient gases of air and nitrogen, the influence of acidification of the water in the system, as a result of pulsed-plasma exposure, may also contribute to the decay of E. coli density.

  14. Recent Advances in Understanding Enteric Pathogenic Escherichia coli

    PubMed Central

    Croxen, Matthew A.; Law, Robyn J.; Scholz, Roland; Keeney, Kristie M.; Wlodarska, Marta

    2013-01-01

    SUMMARY Although Escherichia coli can be an innocuous resident of the gastrointestinal tract, it also has the pathogenic capacity to cause significant diarrheal and extraintestinal diseases. Pathogenic variants of E. coli (pathovars or pathotypes) cause much morbidity and mortality worldwide. Consequently, pathogenic E. coli is widely studied in humans, animals, food, and the environment. While there are many common features that these pathotypes employ to colonize the intestinal mucosa and cause disease, the course, onset, and complications vary significantly. Outbreaks are common in developed and developing countries, and they sometimes have fatal consequences. Many of these pathotypes are a major public health concern as they have low infectious doses and are transmitted through ubiquitous mediums, including food and water. The seriousness of pathogenic E. coli is exemplified by dedicated national and international surveillance programs that monitor and track outbreaks; unfortunately, this surveillance is often lacking in developing countries. While not all pathotypes carry the same public health profile, they all carry an enormous potential to cause disease and continue to present challenges to human health. This comprehensive review highlights recent advances in our understanding of the intestinal pathotypes of E. coli. PMID:24092857

  15. Selective detection of Escherichia coli DNA using fluorescent carbon spindles.

    PubMed

    Roy, Anurag; Chatterjee, Sabyasachi; Pramanik, Srikrishna; Devi, Parukuttyamma Sujatha; Suresh Kumar, Gopinatha

    2016-04-28

    We investigate the interaction of hydrophilic blue emitting carbon spindles with various deoxyribonucleic acids (DNA) having different base pair compositions, such as Herring testes (HT), calf thymus (CT), Escherichia coli (EC) and Micrococcus lysodeikticus (ML) DNA, to understand the mode of interaction. Interestingly, the fluorescent carbon spindles selectively interacted with E. coli DNA resulting in enhanced fluorescence of the former. Interaction of the same carbon with other DNAs exhibited insignificant changes in fluorescence. In addition, in the presence of EC DNA, the D band in the Raman spectrum attributed to the defect state completely disappeared, resulting in enhanced crystallinity. Microscopy images confirmed the wrapping of DNA on the carbon spindles leading to the assembly of spindles in the form of flowers. Dissociation of double-stranded DNA occurred upon interaction with carbon spindles, resulting in selective E. coli DNA interaction. The carbon spindles also exhibited a similar fluorescence enhancement upon treating with E. coli bacteria. These results confirm the possibility of E. coli detection in water and other liquid foods using such fluorescent carbon.

  16. Unusual "flesh-eating" strains of Escherichia coli.

    PubMed

    Shaked, Hila; Samra, Zmira; Paul, Michal; Madar-Shapiro, Liora; Cohen, Jonathan; Pitlik, Silvio; Bishara, Jihad

    2012-12-01

    Monomicrobial necrotizing fasciitis (type II) is typically caused by group A streptococcus alone or in combination with Staphylococcus aureus. Escherichia coli has been isolated from polymicrobial or Fournier's gangrene but has rarely been reported in monomicrobial necrotizing fasciitis. We describe the clinical characteristics and outcomes of seven cases of monomicrobial E. coli necrotizing fasciitis and/or severe soft tissue infection diagnosed at a single institution during an 18-month period. Four isolates from three patients and two isolates from two patients with type I polymicrobial severe soft tissue infection (controls) were assayed by the randomly amplified polymorphic DNA (RAPD) analysis for fingerprinting and PCR amplification of primers in order to detect cytotoxic necrotizing factor 1 and 2 (cnf1 and cnf2) genes. All patients had some type of immune suppression. The limb was the most commonly involved organ. In all cases, E. coli was isolated as a monomicrobial pathogen from blood, fascia, or both. All patients died during hospitalization, three within the first 48 h. The RAPD amplification assay showed a high degree of genetic diversity among the "flesh-eating" strains and controls. The cnf1 toxin gene was identified in two out of three cases, but not in the controls. cnf2 was not detected in any of the patients. E. coli may be responsible for life-threatening necrotizing fasciitis. Further research is needed to reveal relevant risk factors, reservoirs, and modes of transmission of cnf1 E. coli.

  17. Nonthermal atmospheric argon plasma jet effects on Escherichia coli biomacromolecules.

    PubMed

    Hosseinzadeh Colagar, Abasalt; Memariani, Hamed; Sohbatzadeh, Farshad; Valinataj Omran, Azadeh

    2013-12-01

    Nonthermal atmospheric plasma jet, a promising technology based on ionized gas at low temperatures, can be applied for disinfection of contaminated surfaces. In this study, Escherichia coli cells and their macromolecules were exposed to the nonthermal atmospheric argon plasma jet for different time durations. Total protein, genomic DNA, and malondialdehyde (MDA) levels of E. coli were assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining; agarose gel electrophoresis; and measurement of absorbance at 534 nm, respectively. After exposure, the spectroscopic results of liquid samples indicated that the survival reduction of E. coli can reach to 100 % in an exposure time of 600 s. Moreover, inactivation zones of E. coli, DNA degradation, and MDA levels were significantly increased. Additionally, banding patterns of total protein were changed and amino acid concentrations increased following ninhydrin test. The experimental results suggest that the nonthermal plasma could serve as an effective instrument for both sterilizing E. coli and degrading macromolecules from the surface of the objects being sterilized.

  18. Paper-based ELISA to rapidly detect Escherichia coli.

    PubMed

    Shih, Cheng-Min; Chang, Chia-Ling; Hsu, Min-Yen; Lin, Jyun-Yu; Kuan, Chen-Meng; Wang, Hsi-Kai; Huang, Chun-Te; Chung, Mu-Chi; Huang, Kui-Chou; Hsu, Cheng-En; Wang, Chun-Yuan; Shen, Ying-Cheng; Cheng, Chao-Min

    2015-12-01

    Escherichia coli is a generic indicator of fecal contamination, and certain serotypes cause food- and water-borne illness such as O157:H7. In the clinic, detection of bacteriuria, which is often due to E. coli, is critical before certain surgical procedures or in cases of nosocomial infection to prevent further adverse events such as postoperative infection or sepsis. In low- and middle-income countries, where insufficient equipment and facilities preclude modern methods of detection, a simple, low-cost diagnostic device to detect E. coli in water and in the clinic will have significant impact. We have developed a simple paper-based colorimetric platform to detect E. coli contamination in 5h. On this platform, the mean color intensity for samples with 10(5)cells/mL is 0.118±0.002 (n=4), and 0.0145±0.003 (P<0.01⁎⁎) for uncontaminated samples. This technique is less time-consuming, easier to perform, and less expensive than conventional methods. Thus, paper-based ELISA is an innovative point-of-care diagnostic tool to rapidly detect E. coli, and possibly other pathogens when customized as appropriate, especially in areas that lack advanced clinical equipment.

  19. Fumarate-Mediated Persistence of Escherichia coli against Antibiotics

    PubMed Central

    Kim, Jun-Seob; Cho, Da-Hyeong; Heo, Paul; Jung, Suk-Chae; Park, Myungseo; Oh, Eun-Joong; Sung, Jaeyun; Kim, Pan-Jun; Lee, Suk-Chan; Lee, Dae-Hee; Lee, Sarah; Lee, Choong Hwan; Shin, Dongwoo

    2016-01-01

    Bacterial persisters are a small fraction of quiescent cells that survive in the presence of lethal concentrations of antibiotics. They can regrow to give rise to a new population that has the same vulnerability to the antibiotics as did the parental population. Although formation of bacterial persisters in the presence of various antibiotics has been documented, the molecular mechanisms by which these persisters tolerate the antibiotics are still controversial. We found that amplification of the fumarate reductase operon (FRD) in Escherichia coli led to a higher frequency of persister formation. The persister frequency of E. coli was increased when the cells contained elevated levels of intracellular fumarate. Genetic perturbations of the electron transport chain (ETC), a metabolite supplementation assay, and even the toxin-antitoxin-related hipA7 mutation indicated that surplus fumarate markedly elevated the E. coli persister frequency. An E. coli strain lacking succinate dehydrogenase (SDH), thereby showing a lower intracellular fumarate concentration, was killed ∼1,000-fold more effectively than the wild-type strain in the stationary phase. It appears that SDH and FRD represent a paired system that gives rise to and maintains E. coli persisters by producing and utilizing fumarate, respectively. PMID:26810657

  20. The Escherichia coli Proteome: Past, Present, and Future Prospects†

    PubMed Central

    Han, Mee-Jung; Lee, Sang Yup

    2006-01-01

    Proteomics has emerged as an indispensable methodology for large-scale protein analysis in functional genomics. The Escherichia coli proteome has been extensively studied and is well defined in terms of biochemical, biological, and biotechnological data. Even before the entire E. coli proteome was fully elucidated, the largest available data set had been integrated to decipher regulatory circuits and metabolic pathways, providing valuable insights into global cellular physiology and the development of metabolic and cellular engineering strategies. With the recent advent of advanced proteomic technologies, the E. coli proteome has been used for the validation of new technologies and methodologies such as sample prefractionation, protein enrichment, two-dimensional gel electrophoresis, protein detection, mass spectrometry (MS), combinatorial assays with n-dimensional chromatographies and MS, and image analysis software. These important technologies will not only provide a great amount of additional information on the E. coli proteome but also synergistically contribute to other proteomic studies. Here, we review the past development and current status of E. coli proteome research in terms of its biological, biotechnological, and methodological significance and suggest future prospects. PMID:16760308

  1. The Genetic Basis of Escherichia coli Pathoadaptation to Macrophages

    PubMed Central

    Miskinyte, Migla; Sousa, Ana; Ramiro, Ricardo S.; de Sousa, Jorge A. Moura; Kotlinowski, Jerzy; Caramalho, Iris; Magalhães, Sara; Soares, Miguel P.; Gordo, Isabel

    2013-01-01

    Antagonistic interactions are likely important driving forces of the evolutionary process underlying bacterial genome complexity and diversity. We hypothesized that the ability of evolved bacteria to escape specific components of host innate immunity, such as phagocytosis and killing by macrophages (MΦ), is a critical trait relevant in the acquisition of bacterial virulence. Here, we used a combination of experimental evolution, phenotypic characterization, genome sequencing and mathematical modeling to address how fast, and through how many adaptive steps, a commensal Escherichia coli (E. coli) acquire this virulence trait. We show that when maintained in vitro under the selective pressure of host MΦ commensal E. coli can evolve, in less than 500 generations, virulent clones that escape phagocytosis and MΦ killing in vitro, while increasing their pathogenicity in vivo, as assessed in mice. This pathoadaptive process is driven by a mechanism involving the insertion of a single transposable element into the promoter region of the E. coli yrfF gene. Moreover, transposition of the IS186 element into the promoter of Lon gene, encoding an ATP-dependent serine protease, is likely to accelerate this pathoadaptive process. Competition between clones carrying distinct beneficial mutations dominates the dynamics of the pathoadaptive process, as suggested from a mathematical model, which reproduces the observed experimental dynamics of E. coli evolution towards virulence. In conclusion, we reveal a molecular mechanism explaining how a specific component of host innate immunity can modulate microbial evolution towards pathogenicity. PMID:24348252

  2. Antibiotic Resistance in Urinary Isolates of Escherichia coli

    PubMed Central

    Abduzaimovic, Amila; Aljicevic, Mufida; Rebic, Velma; Vranic, Sabina Mahmutovic; Abduzaimovic, Kadrija; Sestic, Sabina

    2016-01-01

    Objectives: The aim of this study was to examine the presence of antimicrobial resistance / susceptibility strains of Escherichia coli in inpatients and outpatients. Materials and methods: It is a retrospective study carried out at the Department of Microbiology, Parasitology and Virology Faculty of Medicine, University of Sarajevo. In cooperation with the Microbiological laboratory of the Cantonal Hospital Zenica and the Microbiological laboratory of the General Hospital Tesanj, 3863 urine samples were processed in the period from March 1st to March 31st 2016. Results: Our study showed that E. coli had the highest antimicrobial resistance to trimethoprim / sulfamethoxazole (38.61%), followed by amoxicillin / clavulanic acid (19.62%), ciprofloxacin (9.49%), gentamicin (8.86%), cephalexin (8.23%), nitrofurantoin (8.23%), cefuroxime (7.52%), ceftazidime (6.33%), cefuroxime (89.87%), amikacin (4.43%). Conclusions: The isolated strains of E. coli showed the highest resistance to trimethoprim / sulfamethoxazole and amoxicillin / clavulanic acid. The isolated strains of E. coli showed the greatest susceptibility to amikacin and ceftazidime. Gender distribution of positive E. coli isolates showed statistically significant differences in favor of females. PMID:28144190

  3. Antibiotic Resistance of Escherichia coli Serotypes from Cochin Estuary

    PubMed Central

    Sukumaran, Divya P.; Durairaj, Srinivasan; Abdulla, Mohamed Hatha

    2012-01-01

    This study aimed at detecting the prevalence of antibiotic-resistant serotypes of Escherichia coli in Cochin estuary, India. E. coli strains were isolated during the period January 2010–December 2011 from five different stations set at Cochin estuary. Water samples from five different stations in Cochin estuary were collected on a monthly basis for a period of two years. Isolates were serotyped, antibiogram-phenotyped for twelve antimicrobial agents, and genotyped by polymerase chain reaction for uid gene that codes for β-D-glucuronidase. These E. coli strains from Cochin estuary were tested against twelve antibiotics to determine the prevalence of multiple antibiotic resistance among them. The results revealed that more than 53.33% of the isolates were multiple antibiotic resistant. Thirteen isolates showed resistance to sulphonamides and two of them contained the sul 1 gene. Class 1 integrons were detected in two E. coli strains which were resistant to more than seven antibiotics. In the present study, O serotyping, antibiotic sensitivity, and polymerase chain reaction were employed with the purpose of establishing the present distribution of multiple antibiotic-resistant serotypes, associated with E. coli isolated from different parts of Cochin estuary. PMID:23008708

  4. Escherichia coli exports cyclic AMP via TolC.

    PubMed

    Hantke, Klaus; Winkler, Karin; Schultz, Joachim E

    2011-03-01

    In Escherichia coli more than 180 genes are regulated by the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex. However, more than 90% of cAMP that is made by intracellular adenylyl cyclases is found in the culture medium. How is cAMP exported from E. coli? In a tolC mutant, 0.03 mM IPTG (isopropyl-β-d-thiogalactopyranoside) was sufficient to induce β-galactosidase compared to 0.1 mM IPTG in the parent strain. In a cya mutant unable to produce cAMP about 1 mM extracellular cAMP was required to induce β-galactosidase, whereas in a cya tolC mutant 0.1 mM cAMP was sufficient. When cAMP in E. coli cya was generated intracellularly by a recombinant, weakly active adenylyl cyclase from Corynebacterium glutamicum, the critical level of cAMP necessary for induction of maltose degradation was only achieved in a tolC mutant and not in the parent strain. Deletion of a putative cAMP phosphodiesterase of E. coli, CpdA, resulted in a slightly similar, yet more diffuse phenotype. The data demonstrate that export of cAMP via TolC is a most efficient way of E. coli to lower high concentrations of cAMP in the cell and maintain its sensitivity in changing metabolic environments.

  5. Effects of Escherichia coli hemolysin on endothelial cell function.

    PubMed Central

    Suttorp, N; Flöer, B; Schnittler, H; Seeger, W; Bhakdi, S

    1990-01-01

    Escherichia coli hemolysin is considered an important virulence factor in extraintestinal E. coli infections. The present study demonstrates that cultured pulmonary artery endothelial cells are susceptible to attack by low concentrations of E. coli hemolysin (greater than or equal to 0.05 hemolytic units/ml; greater than or equal to 5 ng/ml). Sublytic amounts of hemolysin increased the permeability of endothelial cell monolayers in a time- and dose-dependent manner. The hydraulic conductivity increased approximately 30-fold and the reflection coefficient for large molecules dropped from 0.71 to less than 0.05, indicating a toxin-induced loss of endothelial barrier function. The alterations of endothelial monolayer permeability were accompanied by cell retraction and interendothelial gap formation. In addition, E. coli hemolysin stimulated prostacyclin synthesis in endothelial cells. This effect was strictly dependent on the presence of extracellular Ca2+ but not of Mg2+. An enhanced passive influx of 45Ca2+ and 3H-sucrose but not of tritiated inulin and dextran was noted in toxin-treated cells, indicating that small transmembrane pores comparable to those detected in rabbit erythrocytes had been generated in endothelial cell membranes. These pores may act as nonphysiologic Ca2+ gates, thereby initiating different Ca2+-dependent cellular processes. We conclude that endothelial cells are highly susceptible to E. coli hemolysin and that two major endothelial cell functions are altered by very low concentrations of hemolysin. Images PMID:2121650

  6. Escherichia coli β-Lactamases: What Really Matters

    PubMed Central

    Bajaj, Priyanka; Singh, Nambram S.; Virdi, Jugsharan S.

    2016-01-01

    Escherichia coli strains belonging to diverse pathotypes have increasingly been recognized as a major public health concern. The β-lactam antibiotics have been used successfully to treat infections caused by pathogenic E. coli. However, currently, the utility of β-lactams is being challenged severely by a large number of hydrolytic enzymes – the β-lactamases expressed by bacteria. The menace is further compounded by the highly flexible genome of E. coli, and propensity of resistance dissemination through horizontal gene transfer and clonal spread. Successful management of infections caused by such resistant strains requires an understanding of the diversity of β-lactamases, their unambiguous detection, and molecular mechanisms underlying their expression and spread with regard to the most relevant information about individual bacterial species. Thus, this review comprises first such effort in this direction for E. coli, a bacterial species known to be associated with production of diverse classes of β-lactamases. The review also highlights the role of commensal E. coli as a potential but under-estimated reservoir of β-lactamases-encoding genes. PMID:27065978

  7. Escherichia coli ST131, an Intriguing Clonal Group

    PubMed Central

    Bertrand, Xavier; Madec, Jean-Yves

    2014-01-01

    SUMMARY In 2008, a previously unknown Escherichia coli clonal group, sequence type 131 (ST131), was identified on three continents. Today, ST131 is the predominant E. coli lineage among extraintestinal pathogenic E. coli (ExPEC) isolates worldwide. Retrospective studies have suggested that it may originally have risen to prominence as early as 2003. Unlike other classical group B2 ExPEC isolates, ST131 isolates are commonly reported to produce extended-spectrum β-lactamases, such as CTX-M-15, and almost all are resistant to fluoroquinolones. Moreover, ST131 E. coli isolates are considered to be truly pathogenic, due to the spectrum of infections they cause in both community and hospital settings and the large number of virulence-associated genes they contain. ST131 isolates therefore seem to contradict the widely held view that high levels of antimicrobial resistance are necessarily associated with a fitness cost leading to a decrease in pathogenesis. Six years after the first description of E. coli ST131, this review outlines the principal traits of ST131 clonal group isolates, based on the growing body of published data, and highlights what is currently known and what we need to find out to provide public health authorities with better information to help combat ST131. PMID:24982321

  8. EFFECT OF LYSERGIC ACID DIETHYLAMIDE ON Escherichia coli, STRAIN B/r(lambda).

    DTIC Science & Technology

    LYSERGIC ACIDS , *ESCHERICHIA COLI), GROWTH(PHYSIOLOGY), CHROMOSOMES, DAMAGE, DOSAGE, PURINE ALKALOIDS, ULTRAVIOLET RADIATION, DEOXYRIBONUCLEIC ACIDS , INHIBITION, HALLUCINOGENS, CHEMICAL WARFARE AGENTS, BIOASSAY

  9. Diarrhea, bacteremia and multiorgan dysfunction due to an extraintestinal pathogenic Escherichia coli strain with enteropathogenic E. coli genes.

    PubMed

    Kessler, Robert; Nisa, Shahista; Hazen, Tracy H; Horneman, Amy; Amoroso, Anthony; Rasko, David A; Donnenberg, Michael S

    2015-11-01

    A 55-year-old man with well-controlled HIV had severe diarrhea for 3 weeks and developed multiorgan dysfunction and bacteremia due to Escherichia coli. The genome of the patient's isolate had features characteristic of extraintestinal pathogenic E. coli and genes distantly related to those defining enteropathogenic E. coli.

  10. Role of enteroaggregative Escherichia coli virulence factors in uropathogenesis.

    PubMed

    Boll, Erik J; Struve, Carsten; Boisen, Nadia; Olesen, Bente; Stahlhut, Steen G; Krogfelt, Karen A

    2013-04-01

    A multiresistant clonal Escherichia coli O78:H10 strain qualifying molecularly as enteroaggregative Escherichia coli (EAEC) was recently shown to be the cause of a community-acquired outbreak of urinary tract infection (UTI) in greater Copenhagen, Denmark, in 1991. This marks the first time EAEC has been associated with an extraintestinal disease outbreak. Importantly, the outbreak isolates were recovered from the urine of patients with symptomatic UTI, strongly implying urovirulence. Here, we sought to determine the uropathogenic properties of the Copenhagen outbreak strain and whether these properties are conferred by the EAEC-specific virulence factors. We demonstrated that through expression of aggregative adherence fimbriae, the principal adhesins of EAEC, the outbreak strain exhibited pronouncedly increased adherence to human bladder epithelial cells compared to prototype uropathogenic strains. Moreover, the strain was able to produce distinct biofilms on abiotic surfaces, including urethral catheters. These findings suggest that EAEC-specific virulence factors increase uropathogenicity and may have played a significant role in the ability of the strain to cause a community-acquired outbreak of UTI. Thus, inclusion of EAEC-specific virulence factors is warranted in future detection and characterization of uropathogenic E. coli.

  11. Metabolic engineering of Escherichia coli for the production of cinnamaldehyde.

    PubMed

    Bang, Hyun Bae; Lee, Yoon Hyeok; Kim, Sun Chang; Sung, Chang Keun; Jeong, Ki Jun

    2016-01-19

    Plant parasitic nematodes are harmful to agricultural crops and plants, and may cause severe yield losses. Cinnamaldehyde, a volatile, yellow liquid commonly used as a flavoring or food additive, is increasingly becoming a popular natural nematicide because of its high nematicidal activity and, there is a high demand for the development of a biological platform to produce cinnamaldehyde. We engineered Escherichia coli as an eco-friendly biological platform for the production of cinnamaldehyde. In E. coli, cinnamaldehyde can be synthesized from intracellular L-phenylalanine, which requires the activities of three enzymes: phenylalanine-ammonia lyase (PAL), 4-coumarate:CoA ligase (4CL), and cinnamoyl-CoA reductase (CCR). For the efficient production of cinnamaldehyde in E. coli, we first examined the activities of enzymes from different sources and a gene expression system for the selected enzymes was constructed. Next, the metabolic pathway for L-phenylalanine biosynthesis was engineered to increase the intracellular pool of L-phenylalanine, which is a main precursor of cinnamaldehyde. Finally, we tried to produce cinnamaldehyde with the engineered E. coli. According to this result, cinnamaldehyde production as high as 75 mg/L could be achieved, which was about 35-fold higher compared with that in the parental E. coli W3110 harboring a plasmid for cinnamaldehyde biosynthesis. We also confirmed that cinnamaldehyde produced by our engineered E. coli had a nematicidal activity similar to the activity of commercial cinnamaldehyde by nematicidal assays against Bursaphelenchus xylophilus. As a potential natural pesticide, cinnamaldehyde was successfully produced in E. coli by construction of the biosynthesis pathway and, its production titer was also significantly increased by engineering the metabolic pathway of L-phenylalanine.

  12. Persistence of Escherichia coli in batch and continuous vermicomposting systems.

    PubMed

    Hénault-Ethier, Louise; Martin, Vincent J J; Gélinas, Yves

    2016-10-01

    Vermicomposting is a biooxidation process in which epigeicearthworms act in synergy with microbial populations to degrade organic matter. Vermicomposting does not go through a thermophilic stage as required by North American legislations for pathogen eradication. We examined the survival of a Green Fluorescent Protein (GFP) labeled Escherichia coli MG1655 as a model for the survival of pathogenic bacteria in both small-scale batch and medium-scale continuously-operated systems to discern the influence of the earthworm Eisenia fetida, nutrient content and the indigenous vermicompost microbial community on pathogen abundance. In batch systems, the microbial community had the greatest influence on the rapid decline of E. coli populations, and the effect of earthworms was only visible in microbially-impoverishedvermicomposts. No significant earthworm density-dependent relationship was observed on E. coli survival under continuous operation. E. coli numbers decreased below the US EPA compost sanitation guidelines of 10(3)Colony Forming Units (CFU)/g (dry weight) within 18-21days for both the small-scale batch and medium-scale continuous systems, but it took up to 51days without earthworms and with an impoverished microbial community to reach the legal limit. Nutrient replenishment (i.e. organic carbon) provided by continuous feed input did not appear to extend E. coli survival. In fact, longer survival of E. coli was noticed in treatments where less total and labile sugars were available, suggesting that sugars may support potentially antagonist bacteria in the vermicompost. Total N, pH and humidity did not appear to affect E. coli survival. Several opportunistic human pathogens may be found in vermicompost, and their populations are likely kept in check by antagonists. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Reduction of verotoxigenic Escherichia coli in production of fermented sausages.

    PubMed

    Holck, Askild L; Axelsson, Lars; Rode, Tone Mari; Høy, Martin; Måge, Ingrid; Alvseike, Ole; L'abée-Lund, Trine M; Omer, Mohamed K; Granum, Per Einar; Heir, Even

    2011-11-01

    After a number of foodborne outbreaks of verotoxigenic Escherichia coli involving fermented sausages, some countries have imposed regulations on sausage production. For example, the US Food Safety and Inspection Service requires a 5 log(10) reduction of E. coli in fermented products. Such regulations have led to a number of studies on the inactivation of E. coli in fermented sausages by changing processing and post-processing conditions. Several factors influence the survival of E. coli such as pre-treatment of the meat, amount of NaCl, nitrite and lactic acid, water activity, pH, choice of starter cultures and addition of antimicrobial compounds. Also process variables like fermentation temperature and storage time play important roles. Though a large variety of different production processes of sausages exist, generally the reduction of E. coli caused by production is in the range 1-2 log(10). In many cases this may not be enough to ensure microbial food safety. By optimising ingredients and process parameters it is possible to increase E. coli reduction to some extent, but in some cases still other post process treatments may be required. Such treatments may be storage at ambient temperatures, specific heat treatments, high pressure processing or irradiation. HACCP analyses have identified the quality of the raw materials, low temperature in the batter when preparing the sausages and a rapid pH drop during fermentation as critical control points in sausage production. This review summarises the literature on the reduction verotoxigenic E. coli in production of fermented sausages.

  14. Genotyping and virulence factors assessment of bovine mastitis Escherichia coli.

    PubMed

    Blum, Shlomo E; Leitner, Gabriel

    2013-05-03

    Escherichia coli is a major agent of bovine mastitis worldwide. However, specific E. coli virulence factors associated to pathogenicity during intra-mammary infections are yet unknown and this pathotype remains uncharacterized. The objectives of the present work were to assess the presence of a wide range of known virulence factors in a large set of E. coli strains isolated from bovine mastitis (mastitis set) and to study the genotypic distribution of strains in the mastitis set in comparison to a set of strains isolated from cows' environment in dairy farms (environmental set). Virulence factors were assessed by DNA hybridization microarray. The three most prevalent virulence factors found in the mastitis set were lpfA (long polar fimbriae), iss (increased serum resistance) and astA (enteroaggregative E. coli heat-stable enterotoxin 1). None, however, characterized the majority of these strains. Genotyping was assessed by ECOR phylogenetic grouping, multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Strains in the mastitis and environmental sets were differentially distributed into ECOR phylogenetic groups; groups A and B1 being the most prevalent ones. Multiple MLST strain types were found in the two sets of strains, but only a few were common to both, and diversity was higher in the environmental set. A variety of PFGE patterns were found in the mastitis and environmental sets. Two clusters comprising mostly highly similar mastitis strains were identified. The results confirm that mastitis E. coli strains mostly lack known E. coli virulence factors. In addition, it is shown that the genotypic diversity of mastitis strains does not reflect the diversity found in the environmental E. coli population.

  15. Distribution of core oligosaccharide types in lipopolysaccharides from Escherichia coli.

    PubMed

    Amor, K; Heinrichs, D E; Frirdich, E; Ziebell, K; Johnson, R P; Whitfield, C

    2000-03-01

    In the lipopolysaccharides of Escherichia coli there are five distinct core oligosaccharide (core OS) structures, designated K-12 and R1 to R4. The objective of this work was to determine the prevalences of these core OS types within the species. Unique sequences in the waa (core OS biosynthesis) gene operon were used to develop a PCR-based system that facilitated unequivocal determination of the core OS types in isolates of E. coli. This system was applied to the 72 isolates in the E. coli ECOR collection, a compilation of isolates that is considered to be broadly representative of the genetic diversity of the species. Fifty (69. 4%) of the ECOR isolates contained the R1 core OS, 8 (11.1%) were representatives of R2, 8 (11.1%) were R3, 2 (2.8%) were R4, and only 4 (5.6%) were K-12. R1 is the only core OS type found in all four major phylogenetic groups (A, B1, B2, and D) in the ECOR collection. Virulent extraintestinal pathogenic E. coli isolates tend to be closely related to group B2 and, to a lesser extent, group D isolates. All of the ECOR representatives from the B2 and D groups had the R1 core OS. In contrast, commensal E. coli isolates are more closely related to group A, which contains isolates representing each of the five core OS structures. R3 was the only core OS type found in 38 verotoxigenic E. coli (VTEC) isolates from humans and cattle belonging to the common enterohemorrhagic E. coli serogroups O157, O111, and O26. Although isolates from other VTEC serogroups showed more core OS diversity, the R3 type (83.1% of all VTEC isolates) was still predominant. When non-VTEC commensal isolates from cattle were analyzed, it was found that most possessed the R1 core OS type.

  16. Diarrhea, Urosepsis and Hemolytic Uremic Syndrome Caused by the Same Heteropathogenic Escherichia coli Strain.

    PubMed

    Ang, C Wim; Bouts, Antonia H M; Rossen, John W A; Van der Kuip, Martijn; Van Heerde, Marc; Bökenkamp, Arend

    2016-09-01

    We describe an 8-month-old girl with diarrhea, urosepsis and hemolytic uremic syndrome caused by Escherichia coli. Typing of cultured E. coli strains from urine and blood revealed the presence of virulence factors from multiple pathotypes of E. coli. This case exemplifies the genome plasticity of E. coli and the resulting heteropathogenic strains.

  17. Genome Sequence of the Enterohemorrhagic Escherichia coli Bacteriophage UFV-AREG1

    PubMed Central

    Batalha, Laís Silva; Albino, Luiz Augusto A.; Boggione, Delaine Meireles Gouveia; Gontijo, Marco Tulio Pardini; Bazzolli, Denise M. Soares; Mendonca, Regina C. Santos

    2016-01-01

    Here, we present the genome sequence of the Escherichia coli bacteriophage UFV-AREG1. This phage was isolated from cowshed wastewater and showed specificity for enterohemorrhagic E. coli O157:H7 (ATCC 43895), E. coli 0111 (CDC O11ab) and E. coli (ATCC 23229). PMID:27738021

  18. Genome Sequence of the Enterohemorrhagic Escherichia coli Bacteriophage UFV-AREG1.

    PubMed

    Lopez, Maryoris E Soto; Batalha, Laís Silva; Vidigal, Pedro Marcus Pereira; Albino, Luiz Augusto A; Boggione, Delaine Meireles Gouveia; Gontijo, Marco Tulio Pardini; Bazzolli, Denise M Soares; Mendonca, Regina C Santos

    2016-10-13

    Here, we present the genome sequence of the Escherichia coli bacteriophage UFV-AREG1. This phage was isolated from cowshed wastewater and showed specificity for enterohemorrhagic E. coli O157:H7 (ATCC 43895), E. coli 0111 (CDC O11ab) and E. coli (ATCC 23229). Copyright © 2016 Lopez et al.

  19. 76 FR 72331 - Shiga Toxin-Producing Escherichia coli in Certain Raw Beef Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ...) Escherichia coli (E. coli). The document also requested comments regarding the Agency's implementation plans... manufacturing trim and other raw ground beef components, to ensure control of both E. coli O157:H7 and six other serogroups of STEC E. coli (O26, O45, O103, O111, O121, and O145). FSIS has determined that they, as well as...

  20. Multiplex PCR for Diagnosis of Enteric Infections Associated with Diarrheagenic Escherichia coli

    PubMed Central

    Vidal, Roberto; Vidal, Maricel; Lagos, Rossana; Levine, Myron; Prado, Valeria

    2004-01-01

    A multiplex PCR for detection of three categories of diarrheagenic Escherichia coli was developed. With this method, enterohemorrhagic E. coli, enteropathogenic E. coli, and enterotoxigenic E. coli were identified in fecal samples from patients with hemorrhagic colitis, watery diarrhea, or hemolytic-uremic syndrome and from food-borne outbreaks. PMID:15071051