Science.gov

Sample records for avian influenza infection

  1. Avian Influenza A Virus Infections in Humans

    MedlinePlus

    ... Research Making a Candidate Vaccine Virus Related Links Influenza Types Seasonal Avian Swine Variant Pandemic Other Get ... Submit What's this? Submit Button Past Newsletters Avian Influenza A Virus Infections in Humans Language: English Españ ...

  2. Avian Influenza

    MedlinePlus

    ... infectious viral disease of birds. Most avian influenza viruses do not infect humans; however some, such as ... often causing no apparent signs of illness. AI viruses can sometimes spread to domestic poultry and cause ...

  3. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    USGS Publications Warehouse

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    Background: Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are lacking. The ruddy turnstone (Arenaria interpres) is the shorebird species with the highest prevalence of influenza virus at Delaware Bay. Objectives: The primary objective of this study was to experimentally assess the patterns of influenza virus excretion, minimal infectious doses, and clinical outcome in ruddy turnstones. Methods: We experimentally challenged ruddy turnstones using a common LPAIV shorebird isolate, an LPAIV waterfowl isolate, or a highly pathogenic H5N1 avian influenza virus. Cloacal and oral swabs and sera were analyzed from each bird. Results: Most ruddy turnstones had pre-existing antibodies to avian influenza virus, and many were infected at the time of capture. The infectious doses for each challenge virus were similar (103·6–104·16 EID50), regardless of exposure history. All infected birds excreted similar amounts of virus and showed no clinical signs of disease or mortality. Influenza A-specific antibodies remained detectable for at least 2 months after inoculation. Conclusions: These results provide a reference for interpretation of surveillance data, modeling, and predicting the risks of avian influenza transmission and movement in these important hosts.

  4. Avian Influenza (Bird Flu)

    MedlinePlus

    ... this page: About CDC.gov . Avian Influenza H5 Viruses in the United States Updates and Publications Information ... Humans Examples of Human Infections with Avian Influenza Viruses Outbreaks Health Care and Laboratorian Guidance HPAI A ...

  5. Avian Influenza.

    PubMed

    Zeitlin, Gary Adam; Maslow, Melanie Jane

    2005-05-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate more than 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantining, and disinfection. To prepare for and prevent an increase in human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short-interfering RNAs and new vaccine strategies that use plasmid-based genetic systems, offer promise should a pandemic occur. PMID:15847721

  6. Avian influenza.

    PubMed

    Zeitlin, Gary A; Maslow, Melanie J

    2006-03-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004 alone, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate over 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantines, and disinfection. To prepare for and prevent increased human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short, interfering RNAs and new vaccine strategies that use plasmid-based genetic systems offer promise, should a pandemic occur. PMID:16566867

  7. Avian Influenza A Viruses: Evolution and Zoonotic Infection.

    PubMed

    Kim, Se Mi; Kim, Young-Il; Pascua, Philippe Noriel Q; Choi, Young Ki

    2016-08-01

    Although efficient human-to-human transmission of avian influenza virus has yet to be seen, in the past two decades avian-to-human transmission of influenza A viruses has been reported. Influenza A/H5N1, in particular, has repeatedly caused human infections associated with high mortality, and since 1998 the virus has evolved into many clades of variants with significant antigenic diversity. In 2013, three (A/H7N9, A/H6N1, and A/H10N8) novel avian influenza viruses (AIVs) breached the animal-human host species barrier in Asia. In humans, roughly 35% of A/H7N9-infected patients succumbed to the zoonotic infection, and two of three A/H10N8 human infections were also lethal; however, neither of these viruses cause influenza-like symptoms in poultry. While most of these cases were associated with direct contact with infected poultry, some involved sustained human-to-human transmission. Thus, these events elicited concern regarding potential AIV pandemics. This article reviews the human incursions associated with AIV variants and the potential role of pigs as an intermediate host that may hasten AIV evolution. In addition, we discuss the known influenza A virus virulence and transmission factors and their evaluation in animal models. With the growing number of human AIV infections, constant vigilance for the emergence of novel viruses is of utmost importance. In addition, careful characterization and pathobiological assessment of these novel variants will help to identify strains of particular concern for future pandemics. PMID:27486732

  8. Clinical review: Update of avian influenza A infections in humans

    PubMed Central

    Sandrock, Christian; Kelly, Terra

    2007-01-01

    Influenza A viruses have a wide host range for infection, from wild waterfowl to poultry to humans. Recently, the cross-species transmission of avian influenza A, particularly subtype H5N1, has highlighted the importance of the non-human subtypes and their incidence in the human population has increased over the past decade. During cross-species transmission, human disease can range from the asymptomatic to mild conjunctivitis to fulminant pneumonia and death. With these cases, however, the risk for genetic change and development of a novel virus increases, heightening the need for public health and hospital measures. This review discusses the epidemiology, host range, human disease, outcome, treatment, and prevention of cross-transmission of avian influenza A into humans. PMID:17419881

  9. Avian influenza virus infection risk in humans with chronic diseases.

    PubMed

    Zhong, Yaogang; Qin, Yannan; Yu, Hanjie; Yu, Jingmin; Wu, Haoxiang; Chen, Lin; Zhang, Peixin; Wang, Xiurong; Jia, Zhansheng; Guo, Yonghong; Zhang, Hua; Shan, Junjie; Wang, Yuxia; Xie, Hailong; Li, Xiaojie; Li, Zheng

    2015-01-01

    Saliva proteins may protect older people from influenza, however, it is often noted that hospitalizations and deaths after an influenza infection mainly occur in the elderly population living with chronic diseases, such as diabetes and cancer. Our objective was to investigate the expression level of the terminal α2-3- and α2-6-linked sialic acids in human saliva from type 2 diabetes mellitus (T2DM), liver disease and gastric cancer (GC) patients and assess the binding activity of these linked sialic acids against influenza A viruses (IAV). We observed that the expression level of the terminal α2-3-linked sialic acids of elderly individuals with T2DM and liver disease were down-regulated significantly, and the terminal α2-6 linked sialic acids were up-regulated slightly or had no significant alteration. However, in the saliva of patients with GC, neither sialic acid was significantly altered. These findings may reveal that elderly individuals with chronic diseases, such as diabetes and liver disease, might be more susceptible to the avian influenza virus due to the decreased expression of terminal α2-3-linked sialic acids in their saliva.

  10. Pathogenesis and pathobiology of avian influenza virus infection in birds.

    PubMed

    Pantin-Jackwood, M J; Swayne, D E

    2009-04-01

    Avian influenza (AI) viruses vary in their ability to produce infection, disease and death in different bird species. Based on the pathobiological effect in chickens, AI viruses (AIV) are categorised as low pathogenic (LPAIV) or highly pathogenic (HPAIV). Typically, LPAIV cause asymptomatic infections in wild aquatic birds, but when introduced into domesticated poultry, infections may be asymptomatic or produce clinical signs and lesions reflecting pathophysiological damage to the respiratory, digestive and reproductive systems. The HPAIV have primarily been seen in gallinaceous poultry, producing high morbidity and mortality, and systemic disease with necrosis and inflammation in multiple visceral organs, nervous and cardiovascular systems, and the integument. Although HPAIV have rarely infected domestic waterfowl or wild birds, the Eurasian-African H5N1 HPAIV have evolved over the past decade with the unique capacity to infect and cause disease in domestic ducks and wild birds, producing a range of syndromes including asymptomatic respiratory and digestive tract infections; systemic disease limited to two or three critical organs, usually the brain, heart and pancreas; and severe disseminated infection and death as seen in gallinaceous poultry. Although experimental studies using intranasal inoculation have produced infection in a variety of wild bird species, the inefficiency of contact transmission in some of them, for example, passerines and Columbiformes, suggests they are unlikely to be a reservoir for the viruses, while others such as some wild Anseriformes, can be severely affected and could serve as a dissemination host over intermediate distances.

  11. Serological survey of avian influenza virus infection in non-avian wildlife in Xinjiang, China.

    PubMed

    Wei, Yu-Rong; Yang, Xue-Yun; Li, Yuan-Guo; Wei, Jie; Ma, Wen-Ge; Ren, Zhi-Guang; Guo, Hui-Ling; Wang, Tie-Cheng; Mi, Xiao-Yun; Adili, Gulizhati; Miao, Shu-Kui; Shaha, Ayiqiaolifan; Gao, Yu-Wei; Huang, Jiong; Xia, Xian-Zhu

    2016-04-01

    We conducted a serological survey to detect antibodies against avian influenza virus (AIV) in Gazella subgutturosa, Canis lupus, Capreolus pygargus, Sus scrofa, Cervus elaphus, Capra ibex, Ovis ammon, Bos grunniens and Pseudois nayaur in Xinjiang, China. Two hundred forty-six sera collected from 2009 to 2013 were assayed for antibodies against H5, H7 and H9 AIVs using hemagglutination inhibition (HI) tests and a pan-influenza competitive ELISA. Across all tested wildlife species, 4.47 % harbored anti-AIV antibodies that were detected by the HI assay. The seroprevalence for each AIV subtype across all species evaluated was 0 % for H5 AIV, 0.81 % for H7 AIV, and 3.66 % for H9 AIV. H7-reactive antibodies were found in Canis lupus (9.09 %) and Ovis ammon (4.55 %). H9-reactive antibodies were found in Gazella subgutturosa (4.55 %), Canis lupus (27.27 %), Pseudois nayaur (23.08 %), and Ovis ammon (4.55 %). The pan-influenza competitive ELISA results closely corresponded to the cumulative prevalence of AIV exposure as measured by subtype-specific HI assays, suggesting that H7 and H9 AIV subtypes predominate in the wildlife species evaluated. These data provide evidence of prior infection with H7 and H9 AIVs in non-avian wildlife in Xinjiang, China.

  12. Serological survey of avian influenza virus infection in non-avian wildlife in Xinjiang, China.

    PubMed

    Wei, Yu-Rong; Yang, Xue-Yun; Li, Yuan-Guo; Wei, Jie; Ma, Wen-Ge; Ren, Zhi-Guang; Guo, Hui-Ling; Wang, Tie-Cheng; Mi, Xiao-Yun; Adili, Gulizhati; Miao, Shu-Kui; Shaha, Ayiqiaolifan; Gao, Yu-Wei; Huang, Jiong; Xia, Xian-Zhu

    2016-04-01

    We conducted a serological survey to detect antibodies against avian influenza virus (AIV) in Gazella subgutturosa, Canis lupus, Capreolus pygargus, Sus scrofa, Cervus elaphus, Capra ibex, Ovis ammon, Bos grunniens and Pseudois nayaur in Xinjiang, China. Two hundred forty-six sera collected from 2009 to 2013 were assayed for antibodies against H5, H7 and H9 AIVs using hemagglutination inhibition (HI) tests and a pan-influenza competitive ELISA. Across all tested wildlife species, 4.47 % harbored anti-AIV antibodies that were detected by the HI assay. The seroprevalence for each AIV subtype across all species evaluated was 0 % for H5 AIV, 0.81 % for H7 AIV, and 3.66 % for H9 AIV. H7-reactive antibodies were found in Canis lupus (9.09 %) and Ovis ammon (4.55 %). H9-reactive antibodies were found in Gazella subgutturosa (4.55 %), Canis lupus (27.27 %), Pseudois nayaur (23.08 %), and Ovis ammon (4.55 %). The pan-influenza competitive ELISA results closely corresponded to the cumulative prevalence of AIV exposure as measured by subtype-specific HI assays, suggesting that H7 and H9 AIV subtypes predominate in the wildlife species evaluated. These data provide evidence of prior infection with H7 and H9 AIVs in non-avian wildlife in Xinjiang, China. PMID:26733295

  13. Human Infection with Highly Pathogenic A(H7N7) Avian Influenza Virus, Italy, 2013

    PubMed Central

    Rossini, Giada; Facchini, Marzia; Vaccari, Gabriele; Di Trani, Livia; Di Martino, Angela; Gaibani, Paolo; Vocale, Caterina; Cattoli, Giovanni; Bennett, Michael; McCauley, John W.; Rezza, Giovanni; Moro, Maria Luisa; Rangoni, Roberto; Finarelli, Alba Carola; Landini, Maria Paola; Castrucci, Maria Rita; Donatelli, Isabella

    2014-01-01

    During an influenza A(H7N7) virus outbreak among poultry in Italy during August–September 2013, infection with a highly pathogenic A(H7N7) avian influenza virus was diagnosed for 3 poultry workers with conjunctivitis. Genetic analyses revealed that the viruses from the humans were closely related to those from chickens on affected farms. PMID:25271444

  14. Avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) is type A influenza, which is adapted to an avian host. Although avian influenza has been isolated from numerous avian species, the primary natural hosts for the virus are dabbling ducks, shorebirds, and gulls. The virus can be found world-wide in these species and in o...

  15. Highly Pathogenic Avian Influenza Virus Infection of Mallards with Homo- and Heterosubtypic Immunity Induced by Low Pathogenic Avian Influenza Viruses

    PubMed Central

    Fereidouni, Sasan R.; Starick, Elke; Beer, Martin; Wilking, Hendrik; Kalthoff, Donata; Grund, Christian; Häuslaigner, Rafaela; Breithaupt, Angele; Lange, Elke; Harder, Timm C.

    2009-01-01

    The potential role of wild birds as carriers of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 is still a matter of debate. Consecutive or simultaneous infections with different subtypes of influenza viruses of low pathogenicity (LPAIV) are very common in wild duck populations. To better understand the epidemiology and pathogenesis of HPAIV H5N1 infections in natural ecosystems, we investigated the influence of prior infection of mallards with homo- (H5N2) and heterosubtypic (H4N6) LPAIV on exposure to HPAIV H5N1. In mallards with homosubtypic immunity induced by LPAIV infection, clinical disease was absent and shedding of HPAIV from respiratory and intestinal tracts was grossly reduced compared to the heterosubtypic and control groups (mean GEC/100 µl at 3 dpi: 3.0×102 vs. 2.3×104 vs. 8.7×104; p<0.05). Heterosubtypic immunity induced by an H4N6 infection mediated a similar but less pronounced effect. We conclude that the epidemiology of HPAIV H5N1 in mallards and probably other aquatic wild bird species is massively influenced by interfering immunity induced by prior homo- and heterosubtypic LPAIV infections. PMID:19693268

  16. In ovo and in vitro susceptibility of American alligators (Alligator mississippiensis) to avian influenza virus infection.

    PubMed

    Temple, Bradley L; Finger, John W; Jones, Cheryl A; Gabbard, Jon D; Jelesijevic, Tomislav; Uhl, Elizabeth W; Hogan, Robert J; Glenn, Travis C; Tompkins, S Mark

    2015-01-01

    Avian influenza has emerged as one of the most ubiquitous viruses within our biosphere. Wild aquatic birds are believed to be the primary reservoir of all influenza viruses; however, the spillover of H5N1 highly pathogenic avian influenza (HPAI) and the recent swine-origin pandemic H1N1 viruses have sparked increased interest in identifying and understanding which and how many species can be infected. Moreover, novel influenza virus sequences were recently isolated from New World bats. Crocodilians have a slow rate of molecular evolution and are the sister group to birds; thus they are a logical reptilian group to explore susceptibility to influenza virus infection and they provide a link between birds and mammals. A primary American alligator (Alligator mississippiensis) cell line, and embryos, were infected with four, low pathogenic avian influenza (LPAI) strains to assess susceptibility to infection. Embryonated alligator eggs supported virus replication, as evidenced by the influenza virus M gene and infectious virus detected in allantoic fluid and by virus antigen staining in embryo tissues. Primary alligator cells were also inoculated with the LPAI viruses and showed susceptibility based upon antigen staining; however, the requirement for trypsin to support replication in cell culture limited replication. To assess influenza virus replication in culture, primary alligator cells were inoculated with H1N1 human influenza or H5N1 HPAI viruses that replicate independent of trypsin. Both viruses replicated efficiently in culture, even at the 30 C temperature preferred by the alligator cells. This research demonstrates the ability of wild-type influenza viruses to infect and replicate within two crocodilian substrates and suggests the need for further research to assess crocodilians as a species potentially susceptible to influenza virus infection.

  17. Evaluation of cytokine gene expression after avian influenza virus infection in avian cell lines and primary cell cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The innate immune responses elicited by avian influenza virus (AIV) infection has been studied by measuring cytokine gene expression by relative real time PCR (rRT-PCR) in vitro, using both cell lines and primary cell cultures. Continuous cell lines offer advantages over the use of primary cell cult...

  18. Highly pathogenic avian influenza.

    PubMed

    Swayne, D E; Suarez, D L

    2000-08-01

    Highly pathogenic (HP) avian influenza (AI) (HPAI) is an extremely contagious, multi-organ systemic disease of poultry leading to high mortality, and caused by some H5 and H7 subtypes of type A influenza virus, family Orthomyxoviridae. However, most AI virus strains are mildly pathogenic (MP) and produce either subclinical infections or respiratory and/or reproductive diseases in a variety of domestic and wild bird species. Highly pathogenic avian influenza is a List A disease of the Office International des Epizooties, while MPAI is neither a List A nor List B disease. Eighteen outbreaks of HPAI have been documented since the identification of AI virus as the cause of fowl plague in 1955. Mildly pathogenic avian influenza viruses are maintained in wild aquatic bird reservoirs, occasionally crossing over to domestic poultry and causing outbreaks of mild disease. Highly pathogenic avian influenza viruses do not have a recognised wild bird reservoir, but can occasionally be isolated from wild birds during outbreaks in domestic poultry. Highly pathogenic avian influenza viruses have been documented to arise from MPAI viruses through mutations in the haemagglutinin surface protein. Prevention of exposure to the virus and eradication are the accepted methods for dealing with HPAI. Control programmes, which imply allowing a low incidence of infection, are not an acceptable method for managing HPAI, but have been used during some outbreaks of MPAI. The components of a strategy to deal with MPAI or HPAI include surveillance and diagnosis, biosecurity, education, quarantine and depopulation. Vaccination has been used in some control and eradication programmes for AI.

  19. Genome Wide Host Gene Expression Analysis in Chicken Lungs Infected with Avian Influenza Viruses

    PubMed Central

    Gandhale, Pradeep N.; Kumar, Himanshu; Kulkarni, Diwakar D.

    2016-01-01

    The molecular pathogenesis of avian influenza infection varies greatly with individual bird species and virus strain. The molecular pathogenesis of the highly pathogenic avian influenza virus (HPAIV) or the low pathogenic avian influenza virus (LPAIV) infection in avian species remains poorly understood. Thus, global immune response of chickens infected with HPAI H5N1 (A/duck/India/02CA10/2011) and LPAI H9N2 (A/duck/India/249800/2010) viruses was studied using microarray to identify crucial host genetic components responsive to these infection. HPAI H5N1 virus induced excessive expression of type I IFNs (IFNA and IFNG), cytokines (IL1B, IL18, IL22, IL13, and IL12B), chemokines (CCL4, CCL19, CCL10, and CX3CL1) and IFN stimulated genes (OASL, MX1, RSAD2, IFITM5, IFIT5, GBP 1, and EIF2AK) in lung tissues. This dysregulation of host innate immune genes may be the critical determinant of the severity and the outcome of the influenza infection in chickens. In contrast, the expression levels of most of these genes was not induced in the lungs of LPAI H9N2 virus infected chickens. This study indicated the relationship between host immune genes and their roles in pathogenesis of HPAIV infection in chickens. PMID:27071061

  20. Serological Evidence of Human Infection with Avian Influenza A H7virus in Egyptian Poultry Growers

    PubMed Central

    Gomaa, Mokhtar R.; Kandeil, Ahmed; Kayed, Ahmed S.; Elabd, Mona A.; Zaki, Shaimaa A.; Abu Zeid, Dina; El Rifay, Amira S.; Mousa, Adel A.; Farag, Mohamed M.; McKenzie, Pamela P.; Webby, Richard J.; Ali, Mohamed A.; Kayali, Ghazi

    2016-01-01

    Avian influenza viruses circulate widely in birds, with occasional human infections. Poultry-exposed individuals are considered to be at high risk of infection with avian influenza viruses due to frequent exposure to poultry. Some avian H7 viruses have occasionally been found to infect humans. Seroprevalence of neutralizing antibodies against influenza A/H7N7 virus among poultry-exposed and unexposed individuals in Egypt were assessed during a three-years prospective cohort study. The seroprevalence of antibodies (titer, ≥80) among exposed individuals was 0%, 1.9%, and 2.1% annually while the seroprevalence among the control group remained 0% as measured by virus microneutralization assay. We then confirmed our results using western blot and immunofluorescence assays. Although human infection with H7 in Egypt has not been reported yet, our results suggested that Egyptian poultry growers are exposed to avian H7 viruses. These findings highlight the need for surveillance in the people exposed to poultry to monitor the risk of zoonotic transmission of avian influenza viruses. PMID:27258357

  1. Serological evidence of avian influenza virus and canine influenza virus infections among stray cats in live poultry markets, China.

    PubMed

    Zhou, Han; He, Shu-yi; Sun, Lingshuang; He, Huamei; Ji, Fangxiao; Sun, Yao; Jia, Kun; Ning, Zhangyong; Wang, Heng; Yuan, Liguo; Zhou, Pei; Zhang, Guihong; Li, Shoujun

    2015-02-25

    From January 2010 to January 2012, we collected sera samples from 700 stray cats living in close proximity to poultry farms or poultry markets in 4 provinces in China. A number of cats had evidence of avian and canine influenza virus infection: avian H9N2 [24 by HI ≥1:20 and 16 by microneutralization (MN) assay ≥1:80]; avian H5N1 (9 by HI ≥1:20 and 3 by MN assay ≥1:80) and canine H3N2 (32 by HI ≥1:20 and 18 by MN ≥1:80). Bivariate analyses revealed that cats sampled near live poultry markets and cats with influenza-like-illness were at increased risk of having elevated antibody titers by HI against avian H9N2, avian H5N1, or canine H3N2 viruses. Hence, cats may play a very important role in the ecology of novel influenza viruses and periodic epidemiological surveillance for novel influenza infections among stray cats could serve as an early warning system for human threats.

  2. Evidence for subclinical H5N1 avian influenza infections among Nigerian poultry workers.

    PubMed

    Okoye, John O; Eze, Didacus C; Krueger, Whitney S; Heil, Gary L; White, Sarah K; Merrill, Hunter R; Gray, Gregory C

    2014-12-01

    In recent years Nigeria has experienced sporadic incursions of highly pathogenic H5N1 avian influenza among poultry. In 2008, 316 poultry-exposed agricultural workers, and 54 age-group matched non-poultry exposed adults living in the Enugu or Ebonyi States of Nigeria were enrolled and then contacted monthly for 24 months to identify acute influenza-like-illnesses. Annual follow-up sera and questionnaire data were collected at 12 and 24 months. Participants reporting influenza-like illness completed additional questionnaires, and provided nasal and pharyngeal swabs and acute and convalescent sera. Swab and sera specimens were studied for evidence of influenza A virus infection. Sera were examined for elevated antibodies against 12 avian influenza viruses by microneutralization and 3 human viruses by hemagglutination inhibition. Four (3.2%) of the 124 acute influenza-like-illness investigations yielded molecular evidence of influenza, but virus could not be cultured. Serial serum samples from five poultry-exposed subjects had a ≥4-fold change in microneutralization titers against A/CK/Nigeria/07/1132123(H5N1), with three of those having titers ≥1:80 (maximum 1:1,280). Three of the five subjects (60%) reported a preceding influenza-like illness. Hemagglutination inhibition titers were ≥4-fold increases against one of the human viruses in 260 participants. While cross-reactivity from antibodies against other influenza viruses cannot be ruled out as a partial confounder, over the course of the 2-year follow-up, at least 3 of 316 (0.9%) poultry-exposed subjects had evidence for subclinical HPAI H5N1 infections. If these data represent true infections, it seems imperative to increase monitoring for avian influenza among Nigeria's poultry and poultry workers.

  3. Filter-feeding bivalves can remove avian influenza viruses from water and reduce infectivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) viruses are transmitted within wild aquatic bird populations through an indirect fecal-oral route involving fecal-contaminated water. In this study, the influence of filter-feeding bivalves, Corbicula fluminea, on the infectivity of AI virus in water was examined. A single cla...

  4. Avian Influenza (H7N9) Virus Infection in Chinese Tourist in Malaysia, 2014

    PubMed Central

    William, Timothy; Thevarajah, Bharathan; Lee, Shiu Fee; Suleiman, Maria; Jeffree, Mohamad Saffree; Menon, Jayaram; Saat, Zainah; Thayan, Ravindran; Tambyah, Paul Anantharajah

    2015-01-01

    Of the ≈400 cases of avian influenza (H7N9) diagnosed in China since 2003, the only travel-related cases have been in Hong Kong and Taiwan. Detection of a case in a Chinese tourist in Sabah, Malaysia, highlights the ease with which emerging viral respiratory infections can travel globally. PMID:25531078

  5. Structural basis for preferential avian receptor binding by the human-infecting H10N8 avian influenza virus.

    PubMed

    Wang, Min; Zhang, Wei; Qi, Jianxun; Wang, Fei; Zhou, Jianfang; Bi, Yuhai; Wu, Ying; Sun, Honglei; Liu, Jinhua; Huang, Chaobin; Li, Xiangdong; Yan, Jinghua; Shu, Yuelong; Shi, Yi; Gao, George F

    2015-01-01

    Since December 2013, at least three cases of human infections with H10N8 avian influenza virus have been reported in China, two of them being fatal. To investigate the epidemic potential of H10N8 viruses, we examined the receptor binding property of the first human isolate, A/Jiangxi-Donghu/346/2013 (JD-H10N8), and determined the structures of its haemagglutinin (HA) in complex with both avian and human receptor analogues. Our results suggest that JD-H10N8 preferentially binds the avian receptor and that residue R137-localized within the receptor-binding site of HA-plays a key role in this preferential binding. Compared with the H7N9 avian influenza viruses, JD-H10N8 did not exhibit the enhanced binding to human receptors observed with the prevalent H7N9 virus isolate Anhui-1, but resembled the receptor binding activity of the early-outbreak H7N9 isolate (Shanghai-1). We conclude that the H10N8 virus is a typical avian influenza virus.

  6. Cross reactive antibody and cytotoxic T lymphocytes from avian influenza H9N2 infected chickens against homologous and heterologous avian influenza isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunity against avian influenza (AI) is largely based on the induction of neutralizing antibodies produced against the hemagglutinin, although cytotoxic T lymphocytes (CTL’s) have been reported as critical for clearance of virus from infected cells. Antibody production against a particular virus ...

  7. Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections.

    PubMed

    Zou, Zhen; Yan, Yiwu; Shu, Yuelong; Gao, Rongbao; Sun, Yang; Li, Xiao; Ju, Xiangwu; Liang, Zhu; Liu, Qiang; Zhao, Yan; Guo, Feng; Bai, Tian; Han, Zongsheng; Zhu, Jindong; Zhou, Huandi; Huang, Fengming; Li, Chang; Lu, Huijun; Li, Ning; Li, Dangsheng; Jin, Ningyi; Penninger, Josef M; Jiang, Chengyu

    2014-05-06

    The potential for avian influenza H5N1 outbreaks has increased in recent years. Thus, it is paramount to develop novel strategies to alleviate death rates. Here we show that avian influenza A H5N1-infected patients exhibit markedly increased serum levels of angiotensin II. High serum levels of angiotensin II appear to be linked to the severity and lethality of infection, at least in some patients. In experimental mouse models, infection with highly pathogenic avian influenza A H5N1 virus results in downregulation of angiotensin-converting enzyme 2 (ACE2) expression in the lung and increased serum angiotensin II levels. Genetic inactivation of ACE2 causes severe lung injury in H5N1-challenged mice, confirming a role of ACE2 in H5N1-induced lung pathologies. Administration of recombinant human ACE2 ameliorates avian influenza H5N1 virus-induced lung injury in mice. Our data link H5N1 virus-induced acute lung failure to ACE2 and provide a potential treatment strategy to address future flu pandemics.

  8. Previous infection with a mesogenic strain of Newcastle disease virus affects infection with highly pathogenic avian influenza viruses in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide, but little is known on the interactions between these two viruses when infecting birds. In a previous study we found that infection of chickens with a mesogenic strain of...

  9. High doses of highly pathogenic avian influenza virus in chicken meat are required to infect ferrets

    PubMed Central

    2014-01-01

    High pathogenicity avian influenza viruses (HPAIV) have caused fatal infections in mammals through consumption of infected bird carcasses or meat, but scarce information exists on the dose of virus required and the diversity of HPAIV subtypes involved. Ferrets were exposed to different HPAIV (H5 and H7 subtypes) through consumption of infected chicken meat. The dose of virus needed to infect ferrets through consumption was much higher than via respiratory exposure and varied with the virus strain. In addition, H5N1 HPAIV produced higher titers in the meat of infected chickens and more easily infected ferrets than the H7N3 or H7N7 HPAIV. PMID:24894438

  10. Serological evidence for avian H9N2 influenza virus infections among Romanian agriculture workers.

    PubMed

    Coman, Alexandru; Maftei, Daniel N; Krueger, Whitney S; Heil, Gary L; Friary, John A; Chereches, Razvan M; Sirlincan, Emanuela; Bria, Paul; Dragnea, Claudiu; Kasler, Iosif; Gray, Gregory C

    2013-12-01

    In recent years, wild birds have introduced multiple highly pathogenic avian influenza (HPAI) H5N1 virus infections in Romanian poultry. In 2005 HPAI infections were widespread among domestic poultry and anecdotal reports suggested domestic pigs may also have been exposed. We sought to examine evidence for zoonotic influenza infections among Romanian agriculture workers. Between 2009 and 2010, 363 adult participants were enrolled in a cross-sectional, seroepidemiological study. Confined animal feeding operation (CAFO) swine workers in Tulcea and small, traditional backyard farmers in Cluj-Napoca were enrolled, as well as a non-animal exposed control group from Cluj-Napoca. Enrollment sera were examined for serological evidence of previous infection with 9 avian and 3 human influenza virus strains. Serologic assays showed no evidence of previous infection with 7 low pathogenic avian influenza viruses or with HPAI H5N1. However, 33 participants (9.1%) had elevated microneutralization antibody titers against avian-like A/Hong Kong/1073/1999(H9N2), 5 with titers ≥ 1:80 whom all reported exposure to poultry. Moderate poultry exposure was significantly associated with elevated titers after controlling for the subjects' age (adjusted OR = 3.6; 95% CI, 1.1-12.1). There was no evidence that previous infection with human H3N2 or H2N2 viruses were confounding the H9N2 seroreactivity. These data suggest that H9N2 virus may have circulated in Romanian poultry and occasionally infected man. PMID:23999337

  11. DIVA vaccination strategies for avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccination for both low pathogenic and highly pathogenic avian influenza is commonly used for countries that have been endemic for avian influenza influenza virus, but stamping out policies are common for countries that are normally free of the disease. Stamping out policies of euthanizing infecte...

  12. Avian influenza in Mexico.

    PubMed

    Villarreal, C

    2009-04-01

    The outbreak of highly pathogenic avian influenza (HPAI) H5N2 in Mexico in 1994 led to a clear increase in biosecurity measures and improvement of intensive poultry production systems. The control and eradication measures implemented were based on active surveillance, disease detection, depopulation of infected farms and prevention of possible contacts (identified by epidemiological investigations), improvement of biosecurity measures, and restriction of the movement of live birds, poultry products, by-products and infected material. In addition, Mexico introduced a massive vaccination programme, which resulted in the eradication of HPAI in a relatively short time in two affected areas that had a high density of commercial poultry.

  13. Spatial assessment of the potential risk of avian influenza A virus infection in three raptor species in Japan

    PubMed Central

    MORIGUCHI, Sachiko; ONUMA, Manabu; GOKA, Koichi

    2016-01-01

    Avian influenza A, a highly pathogenic avian influenza, is a lethal infection in certain species of wild birds, including some endangered species. Raptors are susceptible to avian influenza, and spatial risk assessment of such species may be valuable for conservation planning. We used the maximum entropy approach to generate potential distribution models of three raptor species from presence-only data for the mountain hawk-eagle Nisaetus nipalensis, northern goshawk Accipiter gentilis and peregrine falcon Falco peregrinus, surveyed during the winter from 1996 to 2001. These potential distribution maps for raptors were superimposed on avian influenza A risk maps of Japan, created from data on incidence of the virus in wild birds throughout Japan from October 2010 to March 2011. The avian influenza A risk map for the mountain hawk-eagle showed that most regions of Japan had a low risk for avian influenza A. In contrast, the maps for the northern goshawk and peregrine falcon showed that their high-risk areas were distributed on the plains along the Sea of Japan and Pacific coast. We recommend enhanced surveillance for each raptor species in high-risk areas and immediate establishment of inspection systems. At the same time, ecological risk assessments that determine factors, such as the composition of prey species, and differential sensitivity of avian influenza A virus between bird species should provide multifaceted insights into the total risk assessment of endangered species. PMID:26972333

  14. Avian influenza h6 viruses productively infect and cause illness in mice and ferrets.

    PubMed

    Gillim-Ross, Laura; Santos, Celia; Chen, Zhongying; Aspelund, Amy; Yang, Chin-Fen; Ye, Dan; Jin, Hong; Kemble, George; Subbarao, Kanta

    2008-11-01

    Influenza pandemic preparedness has focused on influenza virus H5 and H7 subtypes. However, it is not possible to predict with certainty which subtype of avian influenza virus will cause the next pandemic, and it is prudent to include other avian influenza virus subtypes in pandemic preparedness efforts. An H6 influenza virus was identified as a potential progenitor of the H5N1 viruses that emerged in Hong Kong in 1997. This virus continues to circulate in the bird population in Asia, and other H6 viruses are prevalent in birds in North America and Asia. The high rate of reassortment observed in influenza viruses and the prevalence of H6 viruses in birds suggest that this subtype may pose a pandemic risk. Very little is known about the replicative capacity, immunogenicity, and correlates of protective immunity for low-pathogenicity H6 influenza viruses in mammals. We evaluated the antigenic and genetic relatedness of 14 H6 influenza viruses and their abilities to replicate and induce a cross-reactive immune response in two animal models: mice and ferrets. The different H6 viruses replicated to different levels in the respiratory tracts of mice and ferrets, causing varied degrees of morbidity and mortality in these two models. H6 virus infection induced similar patterns of neutralizing antibody responses in mice and ferrets; however, species-specific differences in the cross-reactivity of the antibody responses were observed. Overall, cross-reactivity of neutralizing antibodies in H6 virus-infected mice did not correlate well with protection against heterologous wild-type H6 viruses. However, we have identified an H6 virus that induces protective immunity against viruses in the North American and Eurasian lineages.

  15. The global nature of avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus is a global virus which knows no geographic boundaries, has no political agenda, and can infect poultry irrespective of their agricultural or anthropocentric production systems. Avian influenza viruses or evidence of their infection have been detected in poultry and wild birds...

  16. Avian influenza A (H7N9) virus infection in humans: epidemiology, evolution, and pathogenesis.

    PubMed

    Husain, Matloob

    2014-12-01

    New human influenza A virus strains regularly emerge causing seasonal epidemics and occasional pandemics. Lately, several zoonotic avian influenza A strains have been reported to directly infect humans. In early 2013, a novel avian influenza A virus (H7N9) strain was discovered in China to cause severe respiratory disease in humans. Since then, over 450 human cases of H7N9 infection have been discovered and 165 of them have died. Multiple epidemiological, phylogenetic, in vivo, and in vitro studies have been done to determine the origin and pathogenesis of novel H7N9 strain. This article reviews the literature related to the epidemiology, evolution, and pathogenesis of the H7N9 strain since its discovery in February 2013 till August 2014. The data available so far indicate that H7N9 was originated by a two-step reassortment process in birds and transmitted to humans through direct contact with live-bird markets. H7N9 is a low-pathogenic avian virus and contains several molecular signatures for adaptation in mammals. The severity of the respiratory disease caused by novel H7N9 virus in humans can be partly attributed to the age, sex, and underlying medical conditions of the patients. A universal influenza vaccine is not available, though several strain-specific H7N9 candidate vaccine viruses have been developed. Further, novel H7N9 virus is resistant to antiviral drug amantadine and some H7N9 isolates have acquired the resistance to neuraminidase-inhibitors. Therefore, constant surveillance and prompt control measures combined with novel research approaches to develop alternative and effective anti-influenza strategies are needed to overcome influenza A virus.

  17. Human H7N9 avian influenza virus infection: a review and pandemic risk assessment

    PubMed Central

    Yiu Lai, Kang; Wing Yiu Ng, George; Fai Wong, Kit; Fan Ngai Hung, Ivan; Kam Fai Hong, Jeffrey; Fan Cheng, Fanny; Kwok Cheung Chan, John

    2013-01-01

    China is undergoing a recent outbreak of a novel H7N9 avian influenza virus (nH7N9) infection that has thus far involved 132 human patients, including 37 deaths. The nH7N9 virus is a reassortant virus originating from the H7N3, H7N9 and H9N2 avian influenza viruses. nH7N9 isolated from humans contains features related to adaptation to humans, including a Q226L mutation in the hemagglutinin cleavage site and E627K and D701N mutations in the PB2 protein. Live poultry markets provide an environment for the emergence, spread and maintenance of nH7N9 as well as for the selection of mutants that facilitate nH7N9 binding to and replication in the human upper respiratory tract. Innate immune suppression conferred by the internal genes of H9N2 may contribute to the virulence of nH7N9. The quail may serve as the intermediate host during the adaptation of avian influenza viruses from domestic waterfowl to gallinaceous poultry, such as chickens and related terrestrial-based species, due to the selection of viral mutants with a short neuraminidase stalk. Infections in chickens, common quails, red-legged partridges and turkeys may select for mutants with human receptor specificity. Infection in Ratitae species may lead to the selection of PB2-E627K and PB2-D701N mutants and the conversion of nH7N9 to a highly pathogenic avian influenza virus. PMID:26038484

  18. Avian influenza virus in pregnancy.

    PubMed

    Liu, Shelan; Sha, Jianping; Yu, Zhao; Hu, Yan; Chan, Ta-Chien; Wang, Xiaoxiao; Pan, Hao; Cheng, Wei; Mao, Shenghua; Zhang, Run Ju; Chen, Enfu

    2016-07-01

    The unprecedented epizootic of avian influenza viruses, such as H5N1, H5N6, H7N1 and H10N8, has continued to cause disease in humans in recent years. In 2013, another novel influenza A (H7N9) virus emerged in China, and 30% of those patients died. Pregnant women are particularly susceptible to avian influenza and are more likely to develop severe complications and to die, especially when infection occurs in the middle and late trimesters. Viremia is believed to occur infrequently, and thus vertical transmission induced by avian influenza appears to be rare. However, avian influenza increases the risk of adverse pregnancy outcomes, including spontaneous abortion, preterm birth and fatal distress. This review summarises 39 cases of pregnant women and their fetuses from different countries dating back to 1997, including 11, 15 and 13 infections with H7N9, H5N1 and the 2009 pandemic influenza (H1N1), respectively. We analysed the epidemic features, following the geographical, population and pregnancy trimester distributions; underlying diseases; exposure history; medical timelines; human-to-human transmission; pathogenicity and vertical transmission; antivirus treatments; maternal severity and mortality and pregnancy outcome. The common experiences reported in different countries and areas suggest that early identification and treatment are imperative. In the future, vigilant virologic and epidemiologic surveillance systems should be developed to monitor avian influenza viruses during pregnancy. Furthermore, extensive study on the immune mechanisms should be conducted, as this will guide safe, rational immunomodulatory treatment among this high-risk population. Most importantly, we should develop a universal avian influenza virus vaccine to prevent outbreaks of the different subtypes. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27187752

  19. Avian influenza

    MedlinePlus

    ... infections have occurred in both backyard and commercial poultry flocks. These recent HPAI H5 viruses have not ... flu virus is higher if: You work with poultry (such as farmers). You travel to countries where ...

  20. Prior infection of pigs with swine influenza viruses is a barrier to infection with avian influenza viruses.

    PubMed

    De Vleeschauwer, Annebel; Van Reeth, Kristien

    2010-12-15

    Although pigs are susceptible to avian influenza viruses (AIV) of different subtypes, the incidence of AIV infections in the field appears to be low. Swine H1N1, H3N2 and H1N2 influenza viruses (SIV) are enzootic worldwide and most pigs have antibodies to 1 or more SIV subtypes. This study aimed to examine whether infection-immunity to H1N1 or H3N2 SIV may (1) protect pigs against subsequent infections with AIV of various haemagglutinin and/or neuraminidase subtypes and/or (2) interfere with the serological diagnosis of AIV infection by haemagglutination inhibition (HI) or virus neutralization (VN) tests. Pigs were inoculated intranasally with an H1N1 or H3N2 SIV or left uninoculated. Four or 6 weeks later all pigs were challenged intranasally with 1 of 3 AIV subtypes (H4N6, H5N2 or H7N1). Fifteen out of 17 challenge control pigs shed the respective AIV for 4-6 days post-inoculation and 16 developed HI and VN antibodies. In contrast, 28 of the 29 SIV-immune pigs did not have detectable AIV shedding. Only 12 SIV-immune pigs developed HI antibodies to the AIV used for challenge and 14 had VN antibodies. Antibody titres to the AIV were low in both control and SIV-immune pigs. Our data show that prior infection of pigs with SIV is a barrier to infection with AIV of unrelated subtypes. Serological screening in regions where SIV is enzootic is only useful when the AIV strain for which the pigs need to be tested is known.

  1. Avian Influenza A (H7N9) Virus

    MedlinePlus

    ... this page: About CDC.gov . Avian Influenza H5 Viruses in the United States Updates and Publications Information ... Humans Examples of Human Infections with Avian Influenza Viruses Outbreaks Health Care and Laboratorian Guidance HPAI A ...

  2. Zoonotic infections with avian influenza A viruses and vaccine preparedness: a game of "mix and match"

    PubMed Central

    2014-01-01

    Various direct avian-to-human transmissions of influenza A virus subtypes upon exposure to infected poultry have been previously observed in the past decades. Although some of these strains caused lethal infections, the lack of sustained person-to-person transmission has been the major factor that prevented these viruses from causing new pandemics. In 2013, three (A/H7N9, A/H6N1, and A/H10N8) novel avian influenza viruses (AIVs) yet again breached the animal-human host species barrier in Asia. Notably, roughly 20% of the A/H7N9-infected patients succumbed to the zoonotic infection whereas two of three A/H10N8 human infections were also lethal. Thus, these events revived the concerns of potential pandemic threats by AIVs in the horizon. This article reviews the various human incursions with AIV variants and provides insight on how continued circulation of these viruses poses perpetual challenge to global public health. As the world anticipates for the next human pandemic, constant vigilance for newly emerging viruses in nature is highly encouraged. With the various numbers of AIVs demonstrating their capacity to breach the animal-human host interface and apparent limitations of current antivirals, there is a need to broaden the selection of pre-pandemic vaccine candidate viruses and development of novel alternative therapeutic strategies. PMID:25003087

  3. Subclinical Infection with Avian Influenza A H5N1 Virus in Cats

    PubMed Central

    Weikel, Joachim; Möstl, Karin; Revilla-Fernández, Sandra; Wodak, Eveline; Bagó, Zoltan; Vanek, Elisabeth; Benetka, Viviane; Hess, Michael; Thalhammer, Johann G.

    2007-01-01

    Avian influenza A virus subtype H5N1 was transmitted to domestic cats by close contact with infected birds. Virus-specific nucleic acids were detected in pharyngeal swabs from 3 of 40 randomly sampled cats from a group of 194 animals (day 8 after contact with an infected swan). All cats were transferred to a quarantine station and monitored for clinical signs, virus shedding, and antibody production until day 50. Despite unfamiliar handling, social distress and the presence of other viral and nonviral pathogens that caused illness and poor health and compromised the immune systems, none of the cats developed clinical signs of influenza. There was no evidence of horizontal transmission to other cats because only 2 cats developed antibodies against H5N1 virus. PMID:17479886

  4. Sustained live poultry market surveillance contributes to early warnings for human infection with avian influenza viruses

    PubMed Central

    Fang, Shisong; Bai, Tian; Yang, Lei; Wang, Xin; Peng, Bo; Liu, Hui; Geng, Yijie; Zhang, Renli; Ma, Hanwu; Zhu, Wenfei; Wang, Dayan; Cheng, Jinquan; Shu, Yuelong

    2016-01-01

    Sporadic human infections with the highly pathogenic avian influenza (HPAI) A (H5N6) virus have been reported in different provinces in China since April 2014. From June 2015 to January 2016, routine live poultry market (LPM) surveillance was conducted in Shenzhen, Guangdong Province. H5N6 viruses were not detected until November 2015. The H5N6 virus-positive rate increased markedly beginning in December 2015, and viruses were detected in LPMs in all districts of the city. Coincidently, two human cases with histories of poultry exposure developed symptoms and were diagnosed as H5N6-positive in Shenzhen during late December 2015 and early January 2016. Similar viruses were identified in environmental samples collected in the LPMs and the patients. In contrast to previously reported H5N6 viruses, viruses with six internal genes derived from the H9N2 or H7N9 viruses were detected in the present study. The increased H5N6 virus-positive rate in the LPMs and the subsequent human infections demonstrated that sustained LPM surveillance for avian influenza viruses provides an early warning for human infections. Interventions, such as LPM closures, should be immediately implemented to reduce the risk of human infection with the H5N6 virus when the virus is widely detected during LPM surveillance. PMID:27485495

  5. Sustained live poultry market surveillance contributes to early warnings for human infection with avian influenza viruses.

    PubMed

    Fang, Shisong; Bai, Tian; Yang, Lei; Wang, Xin; Peng, Bo; Liu, Hui; Geng, Yijie; Zhang, Renli; Ma, Hanwu; Zhu, Wenfei; Wang, Dayan; Cheng, Jinquan; Shu, Yuelong

    2016-01-01

    Sporadic human infections with the highly pathogenic avian influenza (HPAI) A (H5N6) virus have been reported in different provinces in China since April 2014. From June 2015 to January 2016, routine live poultry market (LPM) surveillance was conducted in Shenzhen, Guangdong Province. H5N6 viruses were not detected until November 2015. The H5N6 virus-positive rate increased markedly beginning in December 2015, and viruses were detected in LPMs in all districts of the city. Coincidently, two human cases with histories of poultry exposure developed symptoms and were diagnosed as H5N6-positive in Shenzhen during late December 2015 and early January 2016. Similar viruses were identified in environmental samples collected in the LPMs and the patients. In contrast to previously reported H5N6 viruses, viruses with six internal genes derived from the H9N2 or H7N9 viruses were detected in the present study. The increased H5N6 virus-positive rate in the LPMs and the subsequent human infections demonstrated that sustained LPM surveillance for avian influenza viruses provides an early warning for human infections. Interventions, such as LPM closures, should be immediately implemented to reduce the risk of human infection with the H5N6 virus when the virus is widely detected during LPM surveillance. PMID:27485495

  6. Experimental co-infection studies with avian influenza viruses and Newcastle Disease viruses in chickens, turkeys and domestic ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Co-infections of poultry with Newcastle Disease viruses (NDVs) and Avian Influenza viruses (AIVs) present a problem both from the clinical point of view and the diagnosis of these viruses. Little has been done to understand the interactions between these two viruses when infecting poultry. Exposur...

  7. Pigeons are resistant to experimental infection with H7N9 avian influenza virus.

    PubMed

    Liu, Yuehuan; Yang, Zhiyuan; Wang, Xiuqing; Chen, Jiming; Yao, Jiezhang; Song, Yanjun; Lin, Jian; Han, Chunhua; Duan, Huijuan; Zhao, Jicheng; Pan, Jie; Xie, Jia

    2015-10-01

    To determine the susceptibility of pigeons to the newly emerged avian influenza virus subtype H7N9, we experimentally infected three different types of pigeons (meat, town, and racing) with two different doses (2 × 10(4) or 2 × 10(5) EID50) of H7N9 avian influenza virus A/Chicken/China/2013 by either intranasal and intraocular inoculation (IN + IO) or intravenous injection (IV). In addition, the potential transmission of H7N9 to pigeons by direct close contact with experimentally infected pigeons and chickens was assessed. Results showed that none of the experimentally infected pigeons exhibited any clinical signs regardless of the infection route and dose. Of the 12 racing pigeons that were randomly selected and necropsied, none of them had any gross lesions. In agreement with this finding, virus was not isolated from all pigeons. No detectable H7-specific antibodies were found in any pigeon. In contrast, 11 of 31 chickens that were either directly infected with H7N9 by IN + IO inoculation or by contact with IN + IO-infected chickens had conjunctivitis. Virus was isolated from all 31 chickens and H7-specific antibodies were detected in these chickens. However, none of the IV-infected chickens or chickens in direct contact with IV-infected chickens had any clinical signs. No virus was isolated from these chickens and no H7-specific antibody was detected. Overall, we conclude that pigeons are less or not susceptible to the H7N9 virus at the doses used and are not likely to serve as a reservoir for the virus. However, the virus does cause conjunctivitis in chickens and can transmit to susceptible hosts by direct contact.

  8. Investigation of avian influenza infections in wild birds, poultry and humans in Eastern Dongting Lake, China.

    PubMed

    Shi, Jinghong; Gao, Lidong; Zhu, Yun; Chen, Tao; Liu, Yunzhi; Dong, Libo; Liu, Fuqiang; Yang, Hao; Cai, Yahui; Yu, Mingdong; Yao, Yi; Xu, Cuilin; Xiao, Xiangming; Shu, Yuelong

    2014-01-01

    We investigated avian influenza infections in wild birds, poultry, and humans at Eastern Dongting Lake, China. We analyzed 6,621 environmental samples, including fresh fecal and water samples, from wild birds and domestic ducks that were collected from the Eastern Dongting Lake area from November 2011 to April 2012. We also conducted two cross-sectional serological studies in November 2011 and April 2012, with 1,050 serum samples collected from people exposed to wild birds and/or domestic ducks. Environmental samples were tested for the presence of avian influenza virus (AIV) using quantitative PCR assays and virus isolation techniques. Hemagglutination inhibition assays were used to detect antibodies against AIV H5N1, and microneutralization assays were used to confirm these results. Among the environmental samples from wild birds and domestic ducks, AIV prevalence was 5.19 and 5.32%, respectively. We isolated 39 and 5 AIVs from the fecal samples of wild birds and domestic ducks, respectively. Our analysis indicated 12 subtypes of AIV were present, suggesting that wild birds in the Eastern Dongting Lake area carried a diverse array of AIVs with low pathogenicity. We were unable to detect any antibodies against AIV H5N1 in humans, suggesting that human infection with H5N1 was rare in this region.

  9. Chemoenzymatic synthesis of sialoglycopolypeptides as glycomimetics to block infection by avian and human influenza viruses.

    PubMed

    Ogata, Makoto; Hidari, Kazuya I P J; Murata, Takeomi; Shimada, Shizumi; Kozaki, Wataru; Park, Enoch Y; Suzuki, Takashi; Usui, Taichi

    2009-03-18

    We designed a series of gamma-polyglutamic acid (gamma-PGA)-based glycopolypeptides carrying long/short alpha2,3/6 sialylated glycans to act inhibitors of the influenza virus. As an alternative design, sialoglycopolypeptides carrying long-spacer linked glycans were engineered by replacement of the N-acetyllactosamine (LN) unit by an alkyl chain. The structure-activity relationship of the resulting sialoglycopolypeptides with different glycans in the array has been investigated by in vitro and in vivo infection experiments. The avian viruses specifically bound to glycopolypeptides carrying a short sialoglycan with higher affinity than to a long glycan. In contrast, human viruses, preferentially bound not only to long alpha2,3/6 sialylated glycan with LN repeats in the receptors, but also to more spacer-linked glycan in which the inner sugar has been replaced by a nonsugar structural unit such as a pentylamido group. Taken together, our results indicate that a spaced tandem/triplet pentylamido repeat is a good mimetic of a tandem/triplet LN repeat. Our strategy provides a facile way to design strong polymeric inhibitors of infection by avian and human influenza viruses.

  10. Avian Influenza A(H7N9) Virus Infection in 2 Travelers Returning from China to Canada, January 20151

    PubMed Central

    Chambers, Catharine; Gustafson, Reka; Purych, Dale B.; Tang, Patrick; Bastien, Nathalie; Krajden, Mel; Li, Yan

    2016-01-01

    In January 2015, British Columbia, Canada, reported avian influenza A(H7N9) virus infection in 2 travelers returning from China who sought outpatient care for typical influenza-like illness. There was no further spread, but serosurvey findings showed broad population susceptibility to H7N9 virus. Travel history and timely notification are critical to emerging pathogen detection and response. PMID:26689320

  11. Persistence of avian influenza virus (H5N1) in feathers detached from bodies of infected domestic ducks.

    PubMed

    Yamamoto, Yu; Nakamura, Kikuyasu; Yamada, Manabu; Mase, Masaji

    2010-08-01

    Asian lineage highly pathogenic avian influenza virus (H5N1) continues to cause mortality in poultry and wild bird populations at a panzootic scale. However, little is known about its persistence in contaminated tissues derived from infected birds. We investigated avian influenza virus (H5N1) persistence in feathers detached from bodies of infected ducks to evaluate their potential risk for environmental contamination. Four-week-old domestic ducks were inoculated with different clades of avian influenza virus (H5N1). Feathers, drinking water, and feces were collected on day 3 postinoculation and stored at 4 degrees C or 20 degrees C. Viral persistence in samples was investigated for 360 days by virus isolation and reverse transcription-PCR. Infectious viruses persisted for the longest period in feathers, compared with drinking water and feces, at both 4 degrees C and 20 degrees C. Viral infectivity persisted in the feathers for 160 days at 4 degrees C and for 15 days at 20 degrees C. Viral titers of 10(4.3) 50% egg infectious doses/ml or greater were detected for 120 days in feathers stored at 4 degrees C. Viral RNA in feathers was more stable than the infectivity. These results indicate that feathers detached from domestic ducks infected with highly pathogenic avian influenza virus (H5N1) can be a source of environmental contamination and may function as fomites with high viral loads in the environment.

  12. Characterization of cytokine expression induced by avian influenza virus infection with real-time RT-PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of how birds react to infection from avian influenza virus is critical to understanding disease pathogenesis and host response. The use of real-time (R), reverse-transcriptase (RT), PCR to measure innate immunity, including cytokine and interferon gene expression, has become a standard tec...

  13. Development of a reverse transcription loop-mediated isothermal amplification assay for the rapid diagnosis of avian influenza A (H7N9) virus infection.

    PubMed

    Nakauchi, Mina; Takayama, Ikuyo; Takahashi, Hitoshi; Tashiro, Masato; Kageyama, Tsutomu

    2014-08-01

    A genetic diagnosis system for detecting avian influenza A (H7N9) virus infection using reverse transcription-loop-mediated isothermal amplification (RT-LAMP) technology was developed. The RT-LAMP assay showed no cross-reactivity with seasonal influenza A (H3N2 and H1N1pdm09) or influenza B viruses circulating in humans or with avian influenza A (H5N1) viruses. The sensitivity of the RT-LAMP assay was 42.47 copies/reaction. Considering the high specificity and sensitivity of the assay for detecting the avian influenza A (H7N9) virus and that the reaction was completed within 30 min, the RT-LAMP assay developed in this study is a promising rapid diagnostic tool for avian influenza A (H7N9) virus infection.

  14. Successful treatment of avian-origin influenza A (H7N9) infection using convalescent plasma.

    PubMed

    Wu, Xiao-Xin; Gao, Hai-Nv; Wu, Hai-Bo; Peng, Xiu-Ming; Ou, Hui-Lin; Li, Lan-Juan

    2015-12-01

    In January 2015, there was an outbreak of avian-origin influenza A (H7N9) virus in Zhejiang Province, China. A 45-year-old man was admitted to the First Affiliated Hospital of Zhejiang University with a high fever that had lasted 7 days, chills, and a cough with yellow sputum. Laboratory testing confirmed infection with the H7N9 virus, likely obtained from contact with poultry at a local live poultry market. A large dense shadow was apparent in the patient's left lung at the time of admission. Treatment with oseltamivir (75mg twice daily) did not improve the patient's condition. The decision was made to try using convalescent plasma to treat the infection. Convalescent plasma was administered 3 days after the patient was admitted to the hospital and led to a marked improvement. To our knowledge, this is the first report of the successful use of convalescent plasma to treat a case of H7N9 infection in China. These results suggest that the combination of convalescent plasma and antiviral drugs may be effective for the treatment of avian-origin H7N9 infection.

  15. Successful treatment of avian-origin influenza A (H7N9) infection using convalescent plasma.

    PubMed

    Wu, Xiao-Xin; Gao, Hai-Nv; Wu, Hai-Bo; Peng, Xiu-Ming; Ou, Hui-Lin; Li, Lan-Juan

    2015-12-01

    In January 2015, there was an outbreak of avian-origin influenza A (H7N9) virus in Zhejiang Province, China. A 45-year-old man was admitted to the First Affiliated Hospital of Zhejiang University with a high fever that had lasted 7 days, chills, and a cough with yellow sputum. Laboratory testing confirmed infection with the H7N9 virus, likely obtained from contact with poultry at a local live poultry market. A large dense shadow was apparent in the patient's left lung at the time of admission. Treatment with oseltamivir (75mg twice daily) did not improve the patient's condition. The decision was made to try using convalescent plasma to treat the infection. Convalescent plasma was administered 3 days after the patient was admitted to the hospital and led to a marked improvement. To our knowledge, this is the first report of the successful use of convalescent plasma to treat a case of H7N9 infection in China. These results suggest that the combination of convalescent plasma and antiviral drugs may be effective for the treatment of avian-origin H7N9 infection. PMID:26482389

  16. Drugs to cure avian influenza infection – multiple ways to prevent cell death

    PubMed Central

    Yuan, S

    2013-01-01

    New treatments and new drugs for avian influenza virus (AIV) infection are developed continually, but there are still high mortality rates. The main reason may be that not all cell death pathways induced by AIV were blocked by the current therapies. In this review, drugs for AIV and associated acute respiratory distress syndrome (ARDS) are summarized. The roles of antioxidant (vitamin C) and multiple immunomodulators (such as Celecoxib, Mesalazine and Eritoran) are discussed. The clinical care of ARDS may result in ischemia reperfusion injury to poorly ventilated alveolar cells. Cyclosporin A should effectively inhibit this kind of damages and, therefore, may be the key drug for the survival of patients with virus-induced ARDS. Treatment with protease inhibitor Ulinastatin could also protect lysosome integrity after the infection. Through these analyses, a large drug combination is proposed, which may hypothetically greatly reduce the mortality rate. PMID:24091678

  17. Avian influenza: an agricultural perspective.

    PubMed

    Morgan, Andrea

    2006-11-01

    Recent outbreaks of infection with highly pathogenic H5N1 strains of avian influenza virus in poultry in Asia, Africa, Europe, and the Middle East have raised concern over the potential emergence of a pandemic strain that can easily infect humans and cause serious morbidity and mortality. To prevent and control a national outbreak, the US Department of Agriculture (USDA) conducts measures based on the ecology of avian influenza viruses. To prevent an outbreak in the United States, the USDA conducts surveillance of bird populations, restrictions on bird importation, educational outreach, and regulation of agricultural practices, in collaboration with local, state, and federal organizations. To manage an outbreak, the USDA has in place a well-established emergency management system for optimizing efforts. The USDA also collaborates with international organizations for disease prevention and control in other countries.

  18. Avian influenza control strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Control strategies for avian influenza in poultry vary depending on whether the goal is prevention, management, or eradication. Components used in control programs include: 1) education which includes communication, public awareness, and behavioral change, 2) changes to production and marketing sys...

  19. Putative Human and Avian Risk Factors for Avian Influenza Virus Infections in Backyard Poultry in Egypt

    PubMed Central

    Sheta, Basma M.; Fuller, Trevon L.; Larison, Brenda; Njabo, Kevin Y.; Ahmed, Ahmed Samy; Harrigan, Ryan; Chasar, Anthony; Aziz, Soad Abdel; Khidr, Abdel-Aziz A.; Elbokl, Mohamed M.; Habbak, Lotfy Z.; Smith, Thomas B.

    2014-01-01

    Highly pathogenic influenza A virus subtype H5N1 causes significant poultry mortality in the six countries where it is endemic and can also infect humans. Egypt has reported the third highest number of poultry outbreaks (n=1,084) globally. The objective of this cross-sectional study was to identify putative risk factors for H5N1 infections in backyard poultry in 16 villages in Damietta, El Gharbia, Fayoum, and Menofia governorates from 2010–2012. Cloacal and tracheal swabs and serum samples from domestic (n=1242)and wild birds (n=807) were tested for H5N1 via RT-PCR and hemagglutination inhibition, respectively. We measured poultry rearing practices with questionnaires (n=306 households) and contact rates among domestic and wild bird species with scan sampling. Domestic birds (chickens, ducks, and geese, n = 51) in three governorates tested positive for H5N1 by PCR or serology. A regression model identified a significant correlation between H5N1 in poultry and the practice of disposing of dead poultry and poultry feces in the garbage (F = 15.7, p< 0.0001). In addition, contact between domestic and wild birds was more frequent in villages where we detected H5N1 in backyard flocks (F= 29.5, p< 0.0001). PMID:24315038

  20. Putative human and avian risk factors for avian influenza virus infections in backyard poultry in Egypt.

    PubMed

    Sheta, Basma M; Fuller, Trevon L; Larison, Brenda; Njabo, Kevin Y; Ahmed, Ahmed Samy; Harrigan, Ryan; Chasar, Anthony; Abdel Aziz, Soad; Khidr, Abdel-Aziz A; Elbokl, Mohamed M; Habbak, Lotfy Z; Smith, Thomas B

    2014-01-10

    Highly pathogenic influenza A virus subtype H5N1 causes significant poultry mortality in the six countries where it is endemic and can also infect humans. Egypt has reported the third highest number of poultry outbreaks (n=1084) globally. The objective of this cross-sectional study was to identify putative risk factors for H5N1 infections in backyard poultry in 16 villages in Damietta, El Gharbia, Fayoum, and Menofia governorates from 2010-2012. Cloacal and tracheal swabs and serum samples from domestic (n=1242) and wild birds (n=807) were tested for H5N1 via RT-PCR and hemagglutination inhibition, respectively. We measured poultry rearing practices with questionnaires (n=306 households) and contact rates among domestic and wild bird species with scan sampling. Domestic birds (chickens, ducks, and geese, n=51) in three governorates tested positive for H5N1 by PCR or serology. A regression model identified a significant correlation between H5N1 in poultry and the practice of disposing of dead poultry and poultry feces in the garbage (F=15.7, p<0.0001). In addition, contact between domestic and wild birds was more frequent in villages where we detected H5N1 in backyard flocks (F=29.5, p<0.0001).

  1. Virus-neutralizing antibody response of mice to consecutive infection with human and avian influenza A viruses.

    PubMed

    Janulíková, J; Stropkovská, A; Bobišová, Z; Košík, I; Mucha, V; Kostolanský, F; Varečková, E

    2015-06-01

    In this work we simulated in a mouse model a naturally occurring situation of humans, who overcame an infection with epidemic strains of influenza A, and were subsequently exposed to avian influenza A viruses (IAV). The antibody response to avian IAV in mice previously infected with human IAV was analyzed. We used two avian IAV (A/Duck/Czechoslovakia/1956 (H4N6) and the attenuated virus rA/Viet Nam/1203-2004 (H5N1)) as well as two human IAV isolates (virus A/Mississippi/1/1985 (H3N2) of medium virulence and A/Puerto Rico/8/1934 (H1N1) of high virulence). Two repeated doses of IAV of H4 or of H5 virus elicited virus-specific neutralizing antibodies in mice. Exposure of animals previously infected with human IAV (of H3 or H1 subtype) to IAV of H4 subtype led to the production of antibodies neutralizing H4 virus in a level comparable with the level of antibodies against the human IAV used for primary infection. In contrast, no measurable levels of virus-neutralizing (VN) antibodies specific to H5 virus were detected in mice infected with H5 virus following a previous infection with human IAV. In both cases the secondary infection with avian IAV led to a significant increase of the titer of VN antibodies specific to the corresponding human virus used for primary infection. Moreover, cross-reactive HA2-specific antibodies were also induced by sequential infection. By virtue of these results we suggest that the differences in the ability of avian IAV to induce specific antibodies inhibiting virus replication after previous infection of mice with human viruses can have an impact on the interspecies transmission and spread of avian IAV in the human population.

  2. Virus-neutralizing antibody response of mice to consecutive infection with human and avian influenza A viruses.

    PubMed

    Janulíková, J; Stropkovská, A; Bobišová, Z; Košík, I; Mucha, V; Kostolanský, F; Varečková, E

    2015-06-01

    In this work we simulated in a mouse model a naturally occurring situation of humans, who overcame an infection with epidemic strains of influenza A, and were subsequently exposed to avian influenza A viruses (IAV). The antibody response to avian IAV in mice previously infected with human IAV was analyzed. We used two avian IAV (A/Duck/Czechoslovakia/1956 (H4N6) and the attenuated virus rA/Viet Nam/1203-2004 (H5N1)) as well as two human IAV isolates (virus A/Mississippi/1/1985 (H3N2) of medium virulence and A/Puerto Rico/8/1934 (H1N1) of high virulence). Two repeated doses of IAV of H4 or of H5 virus elicited virus-specific neutralizing antibodies in mice. Exposure of animals previously infected with human IAV (of H3 or H1 subtype) to IAV of H4 subtype led to the production of antibodies neutralizing H4 virus in a level comparable with the level of antibodies against the human IAV used for primary infection. In contrast, no measurable levels of virus-neutralizing (VN) antibodies specific to H5 virus were detected in mice infected with H5 virus following a previous infection with human IAV. In both cases the secondary infection with avian IAV led to a significant increase of the titer of VN antibodies specific to the corresponding human virus used for primary infection. Moreover, cross-reactive HA2-specific antibodies were also induced by sequential infection. By virtue of these results we suggest that the differences in the ability of avian IAV to induce specific antibodies inhibiting virus replication after previous infection of mice with human viruses can have an impact on the interspecies transmission and spread of avian IAV in the human population. PMID:26104333

  3. Infectivity and Transmissibility of Avian H9N2 Influenza Viruses in Pigs

    PubMed Central

    Wang, Jia; Wu, Maocai; Hong, Wenshan; Fan, Xiaohui; Chen, Rirong; Zheng, Zuoyi; Zeng, Yu; Huang, Ren; Zhang, Yu; Lam, Tommy Tsan-Yuk; Smith, David K.

    2016-01-01

    ABSTRACT The H9N2 influenza viruses that are enzootic in terrestrial poultry in China pose a persistent pandemic threat to humans. To investigate whether the continuous circulation and adaptation of these viruses in terrestrial poultry increased their infectivity to pigs, we conducted a serological survey in pig herds with H9N2 viruses selected from the aquatic avian gene pool (Y439 lineage) and the enzootic terrestrial poultry viruses (G1 and Y280 lineages). We also compared the infectivity and transmissibility of these viruses in pigs. It was found that more than 15% of the pigs sampled from 2010 to 2012 in southern China were seropositive to either G1 or Y280 lineage viruses, but none of the sera were positive to the H9 viruses from the Y439 lineage. Viruses of the G1 and Y280 lineages were able to infect experimental pigs, with detectable nasal shedding of the viruses and seroconversion, whereas viruses of the Y439 lineage did not cause a productive infection in pigs. Thus, adaptation and prevalence in terrestrial poultry could lead to interspecies transmission of H9N2 viruses from birds to pigs. Although H9N2 viruses do not appear to be continuously transmissible among pigs, repeated introductions of H9 viruses to pigs naturally increase the risk of generating mammalian-adapted or reassorted variants that are potentially infectious to humans. This study highlights the importance of monitoring the activity of H9N2 viruses in terrestrial poultry and pigs. IMPORTANCE H9N2 subtype of influenza viruses has repeatedly been introduced into mammalian hosts, including humans and pigs, so awareness of their activity and evolution is important for influenza pandemic preparedness. However, since H9N2 viruses usually cause mild or even asymptomatic infections in mammalian hosts, they may be overlooked in influenza surveillance. Here, we found that the H9N2 viruses established in terrestrial poultry had higher infectivity in pigs than those from aquatic birds, which

  4. Filter-feeding bivalves can remove avian influenza viruses from water and reduce infectivity

    PubMed Central

    Faust, Christina; Stallknecht, David; Swayne, David; Brown, Justin

    2009-01-01

    Avian influenza (AI) viruses are believed to be transmitted within wild aquatic bird populations through an indirect faecal–oral route involving contaminated water. This study examined the influence of filter-feeding bivalves, Corbicula fluminea, on the infectivity of AI virus in water. Clams were placed into individual flasks with distilled water inoculated 1:100 with a low pathogenic (LP) AI virus (A/Mallard/MN/190/99 (H3N8)). Viral titres in water with clams were significantly lower at 24 and 48 h post-inoculation compared to LPAI-infected water without clams. To determine whether clams affected the infectivity of AI viruses, 18 wood ducks (Aix sponsa) were divided into test groups and inoculated with a variety of treatments of clam supernatants, whole clams and water exposed to a high pathogenic (HP) AI (A/whooper swan/Mongolia/244/05 (H5N1)). None of the wood ducks inoculated with HPAI-infected water that was filtered by clams or that was inoculated with or fed tissue from these clams exhibited morbidity or mortality. All wood ducks exposed to either HPAI-infected water without clams or the original viral inoculum died. These results indicate that filter-feeding bivalves can remove and reduce the infectivity of AI viruses in water and demonstrate the need to examine biotic environmental factors that can influence AI virus transmission. PMID:19656788

  5. A structured avian influenza model with imperfect vaccination and vaccine-induced asymptomatic infection.

    PubMed

    Gulbudak, Hayriye; Martcheva, Maia

    2014-10-01

    We introduce a model of avian influenza in domestic birds with imperfect vaccination and age-since-vaccination structure. The model has four components: susceptible birds, vaccinated birds (stratified by vaccination age), asymptomatically infected birds, and infected birds. The model includes reduction in the probability of infection, decreasing severity of disease of vaccinated birds and vaccine waning. The basic reproduction number, [Formula: see text], is calculated. The disease-free equilibrium is found to be globally stable under certain conditions when [Formula: see text]. When [Formula: see text], existence of an endemic equilibrium is proved (with uniqueness for the ODE case and local stability under stricter conditions) and uniform persistence of the disease is established. The inclusion of reduction in susceptibility of vaccinated birds, reduction in infectiousness of asymptomatically infected birds and vaccine waning can have important implications for disease control. We analytically and numerically demonstrate that vaccination can paradoxically increase the total number of infected, resulting in the "silent spread" of the disease. We also study the effects of vaccine efficacy on disease prevalence and the minimum critical vaccination coverage, a threshold value for vaccination coverage to avoid an increase in total disease prevalence due to asymptomatic infection. PMID:25230802

  6. Avian Influenza in Birds

    MedlinePlus

    ... and even kill certain domesticated bird species including chickens, ducks, and turkeys. Infected birds can shed avian ... virus’ ability to cause disease and mortality in chickens in a laboratory setting [2.5 MB, 64 ...

  7. Fatal H5N6 Avian Influenza Virus Infection in a Domestic Cat and Wild Birds in China.

    PubMed

    Yu, Zhijun; Gao, Xiaolong; Wang, Tiecheng; Li, Yanbing; Li, Yongcheng; Xu, Yu; Chu, Dong; Sun, Heting; Wu, Changjiang; Li, Shengnan; Wang, Haijun; Li, Yuanguo; Xia, Zhiping; Lin, Weishi; Qian, Jun; Chen, Hualan; Xia, Xianzhu; Gao, Yuwei

    2015-01-01

    H5N6 avian influenza viruses (AIVs) may pose a potential human risk as suggested by the first documented naturally-acquired human H5N6 virus infection in 2014. Here, we report the first cases of fatal H5N6 avian influenza virus (AIV) infection in a domestic cat and wild birds. These cases followed human H5N6 infections in China and preceded an H5N6 outbreak in chickens. The extensive migration routes of wild birds may contribute to the geographic spread of H5N6 AIVs and pose a risk to humans and susceptible domesticated animals, and the H5N6 AIVs may spread from southern China to northern China by wild birds. Additional surveillance is required to better understand the threat of zoonotic transmission of AIVs.

  8. A human-infecting H10N8 influenza virus retains a strong preference for avian-type receptors.

    PubMed

    Zhang, Heng; de Vries, Robert P; Tzarum, Netanel; Zhu, Xueyong; Yu, Wenli; McBride, Ryan; Paulson, James C; Wilson, Ian A

    2015-03-11

    Recent avian-origin H10N8 influenza A viruses that have infected humans pose a potential pandemic threat. Alterations in the viral surface glycoprotein, hemagglutinin (HA), typically are required for influenza A viruses to cross the species barrier for adaptation to a new host, but whether H10N8 contains adaptations supporting human infection remains incompletely understood. We investigated whether H10N8 HA can bind human receptors. Sialoside glycan microarray analysis showed that the H10 HA retains a strong preference for avian receptor analogs and negligible binding to human receptor analogs. Crystal structures of H10 HA with avian and human receptor analogs revealed the basis for preferential recognition of avian-like receptors. Furthermore, introduction of mutations into the H10 receptor-binding site (RBS) known to convert other HA subtypes from avian to human receptor specificity failed to switch preference to human receptors. Collectively, these findings suggest that the current H10N8 human isolates are poorly adapted for efficient human-to-human transmission. PMID:25766296

  9. A human-infecting H10N8 influenza virus retains a strong preference for avian-type receptors

    PubMed Central

    Zhu, Xueyong; Yu, Wenli; McBride, Ryan; Paulson, James C.; Wilson, Ian A.

    2015-01-01

    SUMMARY Recent avian-origin H10N8 influenza A viruses that have infected humans pose a potential pandemic threat. Alterations in the viral surface glycoprotein, hemagglutinin (HA), typically allow influenza A viruses to cross the species barrier for adaptation to a new host, but whether H10N8 contains adaptations supporting human infection remains incompletely understood. We investigated whether the H10N8 HA can bind human receptors. Sialoside glycan microarray analysis showed that the H10 HA retains a strong preference for avian receptor analogs and negligible binding to human receptor analogs. Crystal structures of H10 HA with avian and human receptor analogs revealed the basis for preferential recognition of avian-like receptors. Furthermore, introduction of mutations into the H10 receptor-binding site (RBS) known to convert other HA subtypes from avian to human receptor specificity failed to switch the preference to human receptors. Collectively, these findings suggest the current H10N8 human isolates are poorly adapted for efficient human-to-human transmission. PMID:25766296

  10. A human-infecting H10N8 influenza virus retains a strong preference for avian-type receptors.

    PubMed

    Zhang, Heng; de Vries, Robert P; Tzarum, Netanel; Zhu, Xueyong; Yu, Wenli; McBride, Ryan; Paulson, James C; Wilson, Ian A

    2015-03-11

    Recent avian-origin H10N8 influenza A viruses that have infected humans pose a potential pandemic threat. Alterations in the viral surface glycoprotein, hemagglutinin (HA), typically are required for influenza A viruses to cross the species barrier for adaptation to a new host, but whether H10N8 contains adaptations supporting human infection remains incompletely understood. We investigated whether H10N8 HA can bind human receptors. Sialoside glycan microarray analysis showed that the H10 HA retains a strong preference for avian receptor analogs and negligible binding to human receptor analogs. Crystal structures of H10 HA with avian and human receptor analogs revealed the basis for preferential recognition of avian-like receptors. Furthermore, introduction of mutations into the H10 receptor-binding site (RBS) known to convert other HA subtypes from avian to human receptor specificity failed to switch preference to human receptors. Collectively, these findings suggest that the current H10N8 human isolates are poorly adapted for efficient human-to-human transmission.

  11. DIVA vaccination strategies for avian influenza virus.

    PubMed

    Suarez, David L

    2012-12-01

    Vaccination for both low pathogenicity avian influenza and highly pathogenic avian influenza is commonly used by countries that have become endemic for avian influenza virus, but stamping-out policies are still common for countries with recently introduced disease. Stamping-out policies of euthanatizing infected and at-risk flocks has been an effective control tool, but it comes at a high social and economic cost. Efforts to identify alternative ways to respond to outbreaks without widespread stamping out has become a goal for organizations like the World Organisation for Animal Health. A major issue with vaccination for avian influenza is trade considerations because countries that vaccinate are often considered to be endemic for the disease and they typically lose their export markets. Primarily as a tool to promote trade, the concept of DIVA (differentiate infected from vaccinated animals) has been considered for avian influenza, but the goal for trade is to differentiate vaccinated and not-infected from vaccinated and infected animals because trading partners are unwilling to accept infected birds. Several different strategies have been investigated for a DIVA strategy, but each has advantages and disadvantages. A review of current knowledge on the research and implementation of the DIVA strategy will be discussed with possible ways to implement this strategy in the field. The increased desire for a workable DIVA strategy may lead to one of these ideas moving from the experimental to the practical.

  12. Evidence of infection by H5N2 highly pathogenic avian influenza viruses in healthy wild waterfowl

    USGS Publications Warehouse

    Gaidet, N.; Cattoli, G.; Hammoumi, S.; Newman, S.H.; Hagemeijer, W.; Takekawa, J.Y.; Cappelle, J.; Dodman, T.; Joannis, T.; Gil, P.; Monne, I.; Fusaro, A.; Capua, I.; Manu, S.; Micheloni, P.; Ottosson, U.; Mshelbwala, J.H.; Lubroth, J.; Domenech, J.; Monicat, F.

    2008-01-01

    The potential existence of a wild bird reservoir for highly pathogenic avian influenza (HPAI) has been recently questioned by the spread and the persisting circulation of H5N1 HPAI viruses, responsible for concurrent outbreaks in migratory and domestic birds over Asia, Europe, and Africa. During a large-scale surveillance programme over Eastern Europe, the Middle East, and Africa, we detected avian influenza viruses of H5N2 subtype with a highly pathogenic (HP) viral genotype in healthy birds of two wild waterfowl species sampled in Nigeria. We monitored the survival and regional movements of one of the infected birds through satellite telemetry, providing a rare evidence of a non-lethal natural infection by an HP viral genotype in wild birds. Phylogenetic analysis of the H5N2 viruses revealed close genetic relationships with H5 viruses of low pathogenicity circulating in Eurasian wild and domestic ducks. In addition, genetic analysis did not reveal known gallinaceous poultry adaptive mutations, suggesting that the emergence of HP strains could have taken place in either wild or domestic ducks or in non-gallinaceous species. The presence of coexisting but genetically distinguishable avian influenza viruses with an HP viral genotype in two cohabiting species of wild waterfowl, with evidence of non-lethal infection at least in one species and without evidence of prior extensive circulation of the virus in domestic poultry, suggest that some strains with a potential high pathogenicity for poultry could be maintained in a community of wild waterfowl.

  13. Effect of Infection with a Mesogenic Strain of Newcastle Disease Virus on Infection with Highly Pathogenic Avian Influenza Virus in Chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known on the interactions between avian influenza virus (AIV) and Newcastle disease virus (NDV) when coinfecting the same poultry host. In a previous study we found that infection of chickens with a mesogenic strain of NDV (mNDV) can reduce highly pathogenic AIV (HPAIV) replication, clinic...

  14. Immunological Competence of Different Domestic Chicken Breeds Against Avian Influenza Infection.

    PubMed

    Blohm, Ulrike; Weigend, Steffen; Preisinger, Rudolf; Beer, Martin; Hoffmann, Donata

    2016-05-01

    To evaluate the effect of selection for high laying performance on the capacity to respond to an infection with avian influenza virus (AIV), four different chicken lines were tested: A white layer and a brown layer breed originating from a commercial breeding program, and a white layer and a brown layer line maintained as a conservation flock for decades without any selection. The different chicken breeds were infected with AIV of different pathotypes (low pathogenic to high pathogenic) to evaluate and compare their immunological competence. Morbidity and mortality rates, as well as viral shedding, were investigated as parameters of virus infection. Immune cells in blood samples collected after different time points following inoculation were identified. In general, the chickens of the two phylogenetically related brown layer lines (irrespective of the performance type) were more resistant to infection with the selected AIVs, reflected by a lower mortality rate (low virulent AIV) or a prolonged length of survival before succumbing to the disease (highly virulent AIV). Corresponding to these results, CD8-positive cell counts were reduced in both white layer lines. This observation was also confirmed in an in vivo allogenic transfer experiment, in which brown layers eliminated the transferred cells in a shorter time period. In conclusion, our results do not support the theory of reduced immunological competence of high-performance layer breeds, at least against AIV infection. Instead, brown layer strains had a faster CD8-positive immune cell response after viral or allogenic stimulus than the phylogenetically distant white layers, resulting in better resistance against AIV infection.

  15. Pathology of highly pathogenic avian influenza virus (H5N1) infection in Canada geese (Branta canadensis): preliminary studies.

    PubMed

    Neufeld, J L; Embury-Hyatt, C; Berhane, Y; Manning, L; Ganske, S; Pasick, J

    2009-09-01

    Susceptibility of Canada geese (Branta canadensis) to highly pathogenic avian influenza (HPAI) virus (H5N1) infection was studied by inoculating 10 naïve (antibody-negative) animals (5 adults and 5 juveniles) with A/chicken/Vietnam/14/05 (H5N1) virus. In the adults, 1 of 5 became infected, and 4 of 5 remained normal; in the juvenile group, 5 of 5 became infected. The pathology observed in the affected animals was similar to that reported in natural occurrences. Peripheral and parasympathetic nervous systems were examined and found infected, as well as cerebrospinal fluid-contacting neurons. In some locations with significant virus infection in cells, the expected inflammatory reaction was absent or very mild. Immunohistochemistry was used to locate influenza A virus nucleoprotein in brain, spinal cord, respiratory and digestive systems, pancreas, heart, and peripheral and parasympathetic nervous systems. Further studies are needed to explain age-related differences in susceptibility.

  16. The dynamics of avian influenza in Lesser Snow Geese: implications for annual and migratory infection patterns.

    PubMed

    Samuel, Michael D; Hall, Jeffrey S; Brown, Justin D; Goldberg, Diana R; Ip, Hon; Baranyuk, Vasily V

    2015-10-01

    Wild water birds are the natural reservoir for low-pathogenic avian influenza viruses (AIV). However, our ability to investigate the epizootiology of AIV in these migratory populations is challenging and, despite intensive worldwide surveillance, remains poorly understood. We conducted a cross-sectional, retrospective analysis in Pacific Flyway Lesser Snow Geese, Chen caerulescens, to investigate AIV serology and infection patterns. We collected nearly 3000 sera samples from Snow Geese at two breeding colonies in Russia and Canada during 1993-1996 and swab samples from >4000 birds at wintering and migration areas in the United States during 2006-2011. We found seroprevalence and annual seroconversion varied considerably among years. Seroconversion and infection rates also differed between Snow Goose breeding colonies and wintering areas, suggesting that AIV exposure in this gregarious waterfowl species is likely occurring during several phases (migration, wintering, and potentially breeding areas) of the annual cycle. We estimated AIV antibody persistence was longer (14 months) in female geese compared to males (6 months). This relatively long period of AIV antibody persistence suggests that subtype-specific serology may be an effective tool for detection of exposure to subtypes associated with highly pathogenic AIV. Our study provides further evidence of high seroprevalence in Arctic goose populations, and estimates of annual AIV seroconversion and antibody persistence for North American waterfowl. We suggest future AIV studies include serology to help elucidate the epizootiological dynamics of AIV in wild bird populations. PMID:26591451

  17. The dynamics of avian influenza in Lesser Snow Geese: implications for annual and migratory infection patterns.

    PubMed

    Samuel, Michael D; Hall, Jeffrey S; Brown, Justin D; Goldberg, Diana R; Ip, Hon; Baranyuk, Vasily V

    2015-10-01

    Wild water birds are the natural reservoir for low-pathogenic avian influenza viruses (AIV). However, our ability to investigate the epizootiology of AIV in these migratory populations is challenging and, despite intensive worldwide surveillance, remains poorly understood. We conducted a cross-sectional, retrospective analysis in Pacific Flyway Lesser Snow Geese, Chen caerulescens, to investigate AIV serology and infection patterns. We collected nearly 3000 sera samples from Snow Geese at two breeding colonies in Russia and Canada during 1993-1996 and swab samples from >4000 birds at wintering and migration areas in the United States during 2006-2011. We found seroprevalence and annual seroconversion varied considerably among years. Seroconversion and infection rates also differed between Snow Goose breeding colonies and wintering areas, suggesting that AIV exposure in this gregarious waterfowl species is likely occurring during several phases (migration, wintering, and potentially breeding areas) of the annual cycle. We estimated AIV antibody persistence was longer (14 months) in female geese compared to males (6 months). This relatively long period of AIV antibody persistence suggests that subtype-specific serology may be an effective tool for detection of exposure to subtypes associated with highly pathogenic AIV. Our study provides further evidence of high seroprevalence in Arctic goose populations, and estimates of annual AIV seroconversion and antibody persistence for North American waterfowl. We suggest future AIV studies include serology to help elucidate the epizootiological dynamics of AIV in wild bird populations.

  18. Predicting Avian Influenza Co-Infection with H5N1 and H9N2 in Northern Egypt

    PubMed Central

    Young, Sean G.; Carrel, Margaret; Malanson, George P.; Ali, Mohamed A.; Kayali, Ghazi

    2016-01-01

    Human outbreaks with avian influenza have been, so far, constrained by poor viral adaptation to non-avian hosts. This could be overcome via co-infection, whereby two strains share genetic material, allowing new hybrid strains to emerge. Identifying areas where co-infection is most likely can help target spaces for increased surveillance. Ecological niche modeling using remotely-sensed data can be used for this purpose. H5N1 and H9N2 influenza subtypes are endemic in Egyptian poultry. From 2006 to 2015, over 20,000 poultry and wild birds were tested at farms and live bird markets. Using ecological niche modeling we identified environmental, behavioral, and population characteristics of H5N1 and H9N2 niches within Egypt. Niches differed markedly by subtype. The subtype niches were combined to model co-infection potential with known occurrences used for validation. The distance to live bird markets was a strong predictor of co-infection. Using only single-subtype influenza outbreaks and publicly available ecological data, we identified areas of co-infection potential with high accuracy (area under the receiver operating characteristic (ROC) curve (AUC) 0.991). PMID:27608035

  19. Predicting Avian Influenza Co-Infection with H5N1 and H9N2 in Northern Egypt.

    PubMed

    Young, Sean G; Carrel, Margaret; Malanson, George P; Ali, Mohamed A; Kayali, Ghazi

    2016-01-01

    Human outbreaks with avian influenza have been, so far, constrained by poor viral adaptation to non-avian hosts. This could be overcome via co-infection, whereby two strains share genetic material, allowing new hybrid strains to emerge. Identifying areas where co-infection is most likely can help target spaces for increased surveillance. Ecological niche modeling using remotely-sensed data can be used for this purpose. H5N1 and H9N2 influenza subtypes are endemic in Egyptian poultry. From 2006 to 2015, over 20,000 poultry and wild birds were tested at farms and live bird markets. Using ecological niche modeling we identified environmental, behavioral, and population characteristics of H5N1 and H9N2 niches within Egypt. Niches differed markedly by subtype. The subtype niches were combined to model co-infection potential with known occurrences used for validation. The distance to live bird markets was a strong predictor of co-infection. Using only single-subtype influenza outbreaks and publicly available ecological data, we identified areas of co-infection potential with high accuracy (area under the receiver operating characteristic (ROC) curve (AUC) 0.991).

  20. Predicting Avian Influenza Co-Infection with H5N1 and H9N2 in Northern Egypt.

    PubMed

    Young, Sean G; Carrel, Margaret; Malanson, George P; Ali, Mohamed A; Kayali, Ghazi

    2016-01-01

    Human outbreaks with avian influenza have been, so far, constrained by poor viral adaptation to non-avian hosts. This could be overcome via co-infection, whereby two strains share genetic material, allowing new hybrid strains to emerge. Identifying areas where co-infection is most likely can help target spaces for increased surveillance. Ecological niche modeling using remotely-sensed data can be used for this purpose. H5N1 and H9N2 influenza subtypes are endemic in Egyptian poultry. From 2006 to 2015, over 20,000 poultry and wild birds were tested at farms and live bird markets. Using ecological niche modeling we identified environmental, behavioral, and population characteristics of H5N1 and H9N2 niches within Egypt. Niches differed markedly by subtype. The subtype niches were combined to model co-infection potential with known occurrences used for validation. The distance to live bird markets was a strong predictor of co-infection. Using only single-subtype influenza outbreaks and publicly available ecological data, we identified areas of co-infection potential with high accuracy (area under the receiver operating characteristic (ROC) curve (AUC) 0.991). PMID:27608035

  1. The global nature of avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) virus (AIV) is a global virus which knows no geographic boundaries, has no political agenda, and can infect poultry irrespective of their occupying ecosystem, agricultural production system, or other anthropocentric niches. AIVs or evidence of their infection have been detected...

  2. Variability in pathobiology of South Korean H5N1 high-pathogenicity avian influenza virus infection for 5 species of migratory waterfowl

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biological outcome of H5N1 high pathogenicity avian influenza (HPAI) virus infection in wild waterfowl is poorly understood. This study examined infectivity and pathobiology of A/chicken/Korea/IS/06 (H5N1) HPAI virus infection in Mute swans (Cygnus olor), Greylag geese (Anser anser), Ruddy Sheld...

  3. Avian influenza and pandemic influenza preparedness in Hong Kong.

    PubMed

    Lam, Ping Yan

    2008-06-01

    Avian influenza A H5N1 continues to be a major threat to global public health as it is a likely candidate for the next influenza pandemic. To protect public health and avert potential disruption to the economy, the Hong Kong Special Administrative Region Government has committed substantial effort in preparedness for avian and pandemic influenza. Public health infrastructures for emerging infectious diseases have been developed to enhance command, control and coordination of emergency response. Strategies against avian and pandemic influenza are formulated to reduce opportunities for human infection, detect pandemic influenza timely, and enhance emergency preparedness and response capacity. Key components of the pandemic response include strengthening disease surveillance systems, updating legislation on infectious disease prevention and control, enhancing traveller health measures, building surge capacity, maintaining adequate pharmaceutical stockpiles, and ensuring business continuity during crisis. Challenges from avian and pandemic influenza are not to be underestimated. Implementing quarantine and social distancing measures to contain or mitigate the spread of pandemic influenza is problematic in a highly urbanised city like Hong Kong as they involved complex operational and ethical issues. Sustaining effective risk communication campaigns during interpandemic times is another challenge. Being a member of the global village, Hong Kong is committed to contributing its share of efforts and collaborating with health authorities internationally in combating our common public health enemy.

  4. Experimental infection of mallard ducks with different subtype H5 and H7 highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza viruses (HPAIV’s) remain a threat to poultry worldwide. Avian influenza viruses, including HPAIV, are usually non-pathogenic for ducks and other wild aquatic birds, with the exception of some Asian lineage H5N1 HPAIVs which can cause severe disease in ducks. With ...

  5. Avian influenza virus and Newcastle disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) severely impact poultry egg production. Decreased egg yield and hatchability, as well as misshapen eggs, are often observed during infection with AIV and NDV, even with low-virulence strains or in vaccinated flocks. Data suggest that in...

  6. Experimental co-infections of domestic ducks with a virulent Newcastle disease virus and low or highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infections with Avian influenza viruses (AIV) of low and high pathogenicity (LP and HP), and Newcastle disease virus (NDV) are commonly reported in domestic ducks in parts of the world. However, it’s not clear if co-infections with these viruses affect the severity of the diseases they produce, the ...

  7. Influenza infection in wild raccoons

    USGS Publications Warehouse

    Hall, J.S.; Bentler, K.T.; Landolt, G.; Elmore, S.A.; Minnis, R.B.; Campbell, T.A.; Barras, S.C.; Root, J.J.; Pilon, J.; Pabilonia, K.; Driscoll, C.; Slate, D.; Sullivan, H.; McLean, R.G.

    2008-01-01

    Raccoons (Procyon lotor) are common, widely distributed animals that frequently come into contact with wild waterfowl, agricultural operations, and humans. Serosurveys showed that raccoons are exposed to avian influenza virus. We found antibodies to a variety of influenza virus subtypes (H10N7, H4N6, H4N2, H3, and H1) with wide geographic variation in seroprevalence. Experimental infection studies showed that raccoons become infected with avian and human influenza A viruses, shed and transmit virus to virus-free animals, and seroconvert. Analyses of cellular receptors showed that raccoons have avian and human type receptors with a similar distribution as found in human respiratory tracts. The potential exists for co-infection of multiple subtypes of influenza virus with genetic reassortment and creation of novel strains of influenza virus. Experimental and field data indicate that raccoons may play an important role in influenza disease ecology and pose risks to agriculture and human health.

  8. Host genetics determine susceptibility to avian influenza infection and transmission dynamics

    PubMed Central

    Ruiz-Hernandez, Raul; Mwangi, William; Peroval, Marylene; Sadeyen, Jean-Remy; Ascough, Stephanie; Balkissoon, Devanand; Staines, Karen; Boyd, Amy; McCauley, John; Smith, Adrian; Butter, Colin

    2016-01-01

    Host-genetic control of influenza virus infection has been the object of little attention. In this study we determined that two inbred lines of chicken differing in their genetic background , Lines 0 and C-B12, were respectively relatively resistant and susceptible to infection with the low pathogenicity influenza virus A/Turkey/England/647/77 as defined by substantial differences in viral shedding trajectories. Resistant birds, although infected, were unable to transmit virus to contact birds, as ultimately only the presence of a sustained cloacal shedding (and not oropharyngeal shedding) was critical for transmission. Restriction of within-bird transmission of virus occurred in the resistant line, with intra-nares or cloacal infection resulting in only local shedding and failing to transmit fully through the gastro-intestinal-pulmonary tract. Resistance to infection was independent of adaptive immune responses, including the expansion of specific IFNγ secreting cells or production of influenza-specific antibody. Genetic resistance to a novel H9N2 virus was less robust, though significant differences between host genotypes were still clearly evident. The existence of host-genetic determination of the outcome of influenza infection offers tools for the further dissection of this regulation and also for understanding the mechanisms of influenza transmission within and between birds. PMID:27279280

  9. Host genetics determine susceptibility to avian influenza infection and transmission dynamics.

    PubMed

    Ruiz-Hernandez, Raul; Mwangi, William; Peroval, Marylene; Sadeyen, Jean-Remy; Ascough, Stephanie; Balkissoon, Devanand; Staines, Karen; Boyd, Amy; McCauley, John; Smith, Adrian; Butter, Colin

    2016-01-01

    Host-genetic control of influenza virus infection has been the object of little attention. In this study we determined that two inbred lines of chicken differing in their genetic background , Lines 0 and C-B12, were respectively relatively resistant and susceptible to infection with the low pathogenicity influenza virus A/Turkey/England/647/77 as defined by substantial differences in viral shedding trajectories. Resistant birds, although infected, were unable to transmit virus to contact birds, as ultimately only the presence of a sustained cloacal shedding (and not oropharyngeal shedding) was critical for transmission. Restriction of within-bird transmission of virus occurred in the resistant line, with intra-nares or cloacal infection resulting in only local shedding and failing to transmit fully through the gastro-intestinal-pulmonary tract. Resistance to infection was independent of adaptive immune responses, including the expansion of specific IFNγ secreting cells or production of influenza-specific antibody. Genetic resistance to a novel H9N2 virus was less robust, though significant differences between host genotypes were still clearly evident. The existence of host-genetic determination of the outcome of influenza infection offers tools for the further dissection of this regulation and also for understanding the mechanisms of influenza transmission within and between birds.

  10. Host genetics determine susceptibility to avian influenza infection and transmission dynamics.

    PubMed

    Ruiz-Hernandez, Raul; Mwangi, William; Peroval, Marylene; Sadeyen, Jean-Remy; Ascough, Stephanie; Balkissoon, Devanand; Staines, Karen; Boyd, Amy; McCauley, John; Smith, Adrian; Butter, Colin

    2016-01-01

    Host-genetic control of influenza virus infection has been the object of little attention. In this study we determined that two inbred lines of chicken differing in their genetic background , Lines 0 and C-B12, were respectively relatively resistant and susceptible to infection with the low pathogenicity influenza virus A/Turkey/England/647/77 as defined by substantial differences in viral shedding trajectories. Resistant birds, although infected, were unable to transmit virus to contact birds, as ultimately only the presence of a sustained cloacal shedding (and not oropharyngeal shedding) was critical for transmission. Restriction of within-bird transmission of virus occurred in the resistant line, with intra-nares or cloacal infection resulting in only local shedding and failing to transmit fully through the gastro-intestinal-pulmonary tract. Resistance to infection was independent of adaptive immune responses, including the expansion of specific IFNγ secreting cells or production of influenza-specific antibody. Genetic resistance to a novel H9N2 virus was less robust, though significant differences between host genotypes were still clearly evident. The existence of host-genetic determination of the outcome of influenza infection offers tools for the further dissection of this regulation and also for understanding the mechanisms of influenza transmission within and between birds. PMID:27279280

  11. Human infection with an avian influenza A (H9N2) virus in the middle region of China.

    PubMed

    Huang, Yiwei; Li, Xiaodan; Zhang, Hong; Chen, Bozhong; Jiang, Yonglin; Yang, Lei; Zhu, Wenfei; Hu, Shixiong; Zhou, Siyu; Tang, Yunli; Xiang, Xingyu; Li, Fangcai; Li, Wenchao; Gao, Lidong

    2015-10-01

    During the epidemic period of the novel H7N9 viruses, an influenza A (H9N2) virus was isolated from a 7-year-old boy with influenza-like illness in Yongzhou city of Hunan province in November 2013. To identify the possible source of infection, environmental specimens collected from local live poultry markets epidemiologically linked to the human case in Yongzhou city were tested for influenza type A and its subtypes H5, H7, and H9 using real-time RT-PCR methods as well as virus isolation, and four other H9N2 viruses were isolated. The real-time RT-PCR results showed that the environment was highly contaminated with avian influenza H9 subtype viruses (18.0%). Sequencing analyses revealed that the virus isolated from the patient, which was highly similar (98.5-99.8%) to one of isolates from environment in complete genome sequences, was of avian origin. Based on phylogenetic and antigenic analyses, it belonged to genotype S and Y280 lineage. In addition, the virus exhibited high homology (95.7-99.5%) of all six internal gene lineages with the novel H7N9 and H10N8 viruses which caused epidemic and endemic in China. Meanwhile, it carried several mammalian adapted molecular residues including Q226L in HA protein, L13P in PB1 protein, K356R, S409N in PA protein, V15I in M1 protein, I28V, L55F in M2 protein, and E227K in NS protein. These findings reinforce the significance of continuous surveillance of H9N2 influenza viruses. PMID:25965534

  12. Human infection with an avian influenza A (H9N2) virus in the middle region of China.

    PubMed

    Huang, Yiwei; Li, Xiaodan; Zhang, Hong; Chen, Bozhong; Jiang, Yonglin; Yang, Lei; Zhu, Wenfei; Hu, Shixiong; Zhou, Siyu; Tang, Yunli; Xiang, Xingyu; Li, Fangcai; Li, Wenchao; Gao, Lidong

    2015-10-01

    During the epidemic period of the novel H7N9 viruses, an influenza A (H9N2) virus was isolated from a 7-year-old boy with influenza-like illness in Yongzhou city of Hunan province in November 2013. To identify the possible source of infection, environmental specimens collected from local live poultry markets epidemiologically linked to the human case in Yongzhou city were tested for influenza type A and its subtypes H5, H7, and H9 using real-time RT-PCR methods as well as virus isolation, and four other H9N2 viruses were isolated. The real-time RT-PCR results showed that the environment was highly contaminated with avian influenza H9 subtype viruses (18.0%). Sequencing analyses revealed that the virus isolated from the patient, which was highly similar (98.5-99.8%) to one of isolates from environment in complete genome sequences, was of avian origin. Based on phylogenetic and antigenic analyses, it belonged to genotype S and Y280 lineage. In addition, the virus exhibited high homology (95.7-99.5%) of all six internal gene lineages with the novel H7N9 and H10N8 viruses which caused epidemic and endemic in China. Meanwhile, it carried several mammalian adapted molecular residues including Q226L in HA protein, L13P in PB1 protein, K356R, S409N in PA protein, V15I in M1 protein, I28V, L55F in M2 protein, and E227K in NS protein. These findings reinforce the significance of continuous surveillance of H9N2 influenza viruses.

  13. Current situation on highly pathogenic avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza is one of the most important diseases affecting the poultry industry worldwide. Avian influenza viruses can cause a range of clinical disease in poultry. Viruses that cause severe disease and mortality are referred to as highly pathogenic avian influenza (HPAI) viruses. The Asian ...

  14. Characterization of cytokine expression induced by avian influenza virus infection with real-time RT-PCR.

    PubMed

    Kapczynski, Darrell R; Jiang, Hai Jun; Kogut, Michael H

    2014-01-01

    Knowledge of how birds react to infection from avian influenza virus is critical to understanding disease pathogenesis and host response. The use of real-time (R) RT-PCR to measure innate immunity, including cytokine and interferon gene expression, has become a standard technique employed by avian immunologists interested in examining these responses. This technique utilizes nucleotide primers and fluorescent reporter molecules to measure amplification of the gene of interest. The use of RRT-PCR negates the need for northern blot analysis or DNA sequencing. It is simple, specific and sensitive for the gene of interest. However, it is dependent on knowing the target sequence prior to testing so that the optimal primers can be designed. The recent publication of genomic sequences of Gallus gallus, Meleagris gallopavo, and Anas platyrhynchos species makes it possible to measure cytokine expression in chicken, turkey, and duck species, respectively. Although these tests do not measure functionally expressed protein, the lack of antibodies to identify and quantify avian cytokines from different avian species makes this technique critical to any characterization of innate immune responses through cytokine and interferon activation or repression. PMID:24899432

  15. First reported detection of a low pathogenicity avian influenza virus subtype H9 infection in domestic fowl in England.

    PubMed

    Parker, C D; Reid, S M; Ball, A; Cox, W J; Essen, S C; Hanna, A; Mahmood, S; Slomka, M J; Irvine, R M; Brown, I H

    2012-10-13

    In December 2010, infection with a H9N1 low pathogenicity avian influenza (LPAI) virus was detected in a broiler breeder flock in East Anglia. Disease suspicion was based on acute drops in egg production in two of four sheds on the premises, poor egg shell quality and evidence of diarrhoea. H9N1 LPAI virus infection was confirmed by real-time reverse transcription PCR. Sequencing revealed high nucleotide identity of 93.6 per cent and 97.9 per cent with contemporary North American H9 and Eurasian N1 genes, respectively. Attempted virus isolation in embryonated specific pathogen free (SPF) fowls' eggs was unsuccessful. Epidemiological investigations were conducted to identify the source of infection and any onward spread. These concluded that infection was restricted to the affected premises, and no contacts or movements of poultry, people or fomites could be attributed as the source of infection. However, the infection followed a period of extremely cold weather and snow which impacted on the biosecurity protocols on site, and also led to increased wild bird activity locally, including waterfowl and game birds around the farm buildings. Analysis of the N1 gene sequence suggested direct introduction from wild birds. Although H9 infection in poultry is not notifiable, H9N2 LPAI viruses have been associated with production and mortality episodes in poultry in many parts of Asia and the Middle East. In the present H9N1 outbreak, clinical signs were relatively mild in the poultry with no mortality, transient impact on egg production and no indication of zoonotic spread. However, this first reported detection of H9 LPAI virus in chickens in England was also the first H9 UK poultry case for 40 years, and vindicates the need for continued vigilance and surveillance of avian influenza viruses in poultry populations. PMID:22949546

  16. Estimating the Distribution of the Incubation Periods of Human Avian Influenza A(H7N9) Virus Infections.

    PubMed

    Virlogeux, Victor; Li, Ming; Tsang, Tim K; Feng, Luzhao; Fang, Vicky J; Jiang, Hui; Wu, Peng; Zheng, Jiandong; Lau, Eric H Y; Cao, Yu; Qin, Ying; Liao, Qiaohong; Yu, Hongjie; Cowling, Benjamin J

    2015-10-15

    A novel avian influenza virus, influenza A(H7N9), emerged in China in early 2013 and caused severe disease in humans, with infections occurring most frequently after recent exposure to live poultry. The distribution of A(H7N9) incubation periods is of interest to epidemiologists and public health officials, but estimation of the distribution is complicated by interval censoring of exposures. Imputation of the midpoint of intervals was used in some early studies, resulting in estimated mean incubation times of approximately 5 days. In this study, we estimated the incubation period distribution of human influenza A(H7N9) infections using exposure data available for 229 patients with laboratory-confirmed A(H7N9) infection from mainland China. A nonparametric model (Turnbull) and several parametric models accounting for the interval censoring in some exposures were fitted to the data. For the best-fitting parametric model (Weibull), the mean incubation period was 3.4 days (95% confidence interval: 3.0, 3.7) and the variance was 2.9 days; results were very similar for the nonparametric Turnbull estimate. Under the Weibull model, the 95th percentile of the incubation period distribution was 6.5 days (95% confidence interval: 5.9, 7.1). The midpoint approximation for interval-censored exposures led to overestimation of the mean incubation period. Public health observation of potentially exposed persons for 7 days after exposure would be appropriate.

  17. On avian influenza epidemic models with time delay.

    PubMed

    Liu, Sanhong; Ruan, Shigui; Zhang, Xinan

    2015-12-01

    After the outbreak of the first avian influenza A virus (H5N1) in Hong Kong in 1997, another avian influenza A virus (H7N9) crossed the species barrier in mainland China in 2013 and 2014 and caused more than 400 human cases with a death rate of nearly 40%. In this paper, we take account of the incubation periods of avian influenza A virus and construct a bird-to-human transmission model with different time delays in the avian and human populations combining the survival probability of the infective avian and human populations at the latent time. By analyzing the dynamical behavior of the model, we obtain a threshold value for the prevalence of avian influenza and investigate local and global asymptotical stability of equilibria of the system.

  18. The comparison of pathology in ferrets infected by H9N2 avian influenza viruses with different genomic features.

    PubMed

    Gao, Rongbao; Bai, Tian; Li, Xiaodan; Xiong, Ying; Huang, Yiwei; Pan, Ming; Zhang, Ye; Bo, Hong; Zou, Shumei; Shu, Yuelong

    2016-01-15

    H9N2 avian influenza virus circulates widely in poultry and has been responsible for sporadic human infections in several regions. Few studies have been conducted on the pathogenicity of H9N2 AIV isolates that have different genomic features. We compared the pathology induced by a novel reassortant H9N2 virus and two currently circulating H9N2 viruses that have different genomic features in ferrets. The results showed that the three viruses can induce infections with various amounts of viral shedding in ferrets. The novel H9N2 induced respiratory infection, but no pathological lesions were observed in lung tissues. The other two viruses induced mild to intermediate pathological lesions in lung tissues, although the clinical signs presented mildly in ferrets. The pathological lesions presented a diversity consistent with viral replication in ferrets. PMID:26638019

  19. Histopathological characterization and shedding dynamics of guineafowl (Numida meleagris) intravenously infected with a H6N2 low pathogenicity Avian Influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Guineafowl of different ages were inoculated intravenously with an H6N2 wild waterfowl-origin low-pathogenicity type A avian influenza virus (LPAI). No evidence of clinical disease was observed. The examined infected birds had atrophy of the spleen, thymus, and cloacal bursa when compared to the n...

  20. Experimental infection with low and high pathogenicity H7N3 Chilean avian influenza viruses in Chiloe Wigeon (Anas sibilatrix) and Cinnamon Teal (Anas cyanoptera)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2002, H5N1 high pathogenicity avian influenza (HPAI) viruses have been associated with natural, lethal infections in wild aquatic birds which have been reproduced experimentally. Some aquatic bird species have been suggested as potential transporters of H5N1 HPAI virus via migration. However, ...

  1. Experimental co-infection of chickens with lentogenic, mesogenic and velogenic strains of Newcastle disease viruses and highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two of the most economically important viruses affecting poultry worldwide. Co-infections of poultry with AIV and NDV are a problem from the clinical point of view and diagnosis of these viruses, but little is known on t...

  2. Previous infection with virulent strains of Newcastle disease virus reduces highly pathogenic avian influenza virus replication, disease, and mortality in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide, but little is known about the interaction between these two viruses when simultaneously co-infecting the same host, especially in areas of the world where both viruses are...

  3. Host antiviral defenses induced by a mesogenic strain of Newcastle disease virus prevents infection with a highly pathogenic avian influenza virus in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide. Co-infections of poultry with AIV and NDV are a problem from both the clinical point of view and the diagnosis of these viruses. To evaluate the dynamics of AIV-NDV co-i...

  4. Impact of vaccination on infection with Vietnam H5N1 high pathogenicity avian influenza virus in hens and the eggs they lay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza virus (HPAIV) infections in chickens produce a negative impact on egg production, and virus is deposited on surface and internal contents of eggs. Previously, vaccination maintained egg production and reduced egg contamination when challenged with a North American H...

  5. Impact of vaccination on infection with Vietnam H5N1 high pathogenicity avian influenza virus in hens and the eggs they lay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High pathogenicity avian influenza virus (HPAIV) infections in chickens decrease egg production and eggs that are laid contain HPAIV. Vaccination once or twice was examined as a way to protect chickens from Vietnamese H5N1 HPAIV. Eighty-three percent of hens without vaccination died within 3 days ...

  6. The history of avian influenza.

    PubMed

    Lupiani, Blanca; Reddy, Sanjay M

    2009-07-01

    The first description of avian influenza (AI) dates back to 1878 in northern Italy, when Perroncito [Perroncito E. Epizoozia tifoide nei gallinacei. Annali Accad Agri Torino 1878;21:87-126] described a contagious disease of poultry associated with high mortality. The disease, termed "fowl plague", was initially confused with the acute septicemic form of fowl cholera. However, in 1880, soon after its first description, Rivolta and Delprato [as reported by Stubs EL. Fowl pest, In: Biester HE, Devries L, editors. Diseases of poultry. 1st ed. Ames, IO: Iowa State College Press; 1943. p. 493-502] showed it to be different from fowl cholera, based on clinical and pathological properties, and called it Typhus exudatious gallinarum. In 1901, Centanni and Savunzzi [Centanni E, Savonuzzi E, La peste aviaria I & II, Communicazione fatta all'accademia delle scienze mediche e naturali de Ferrara, 1901] determined that fowl plague was caused by a filterable virus; however, it was not until 1955 that the classical fowl plague virus was shown to be a type A influenza virus based on the presence of type A influenza virus type-specific ribonucleoprotein [Schäfer W. Vergleichender sero-immunologische Untersuchungen über die Viren der Influenza und klassischen Geflügelpest. Z Naturf 1955;10b:81-91]. The term fowl plague was substituted by the more appropriate term highly pathogenic avian influenza (HPAI) at the First International Symposium on Avian Influenza [Proceedings of the First International Symposium on Avian Influenza. Beltsville, MD. 1981, Avian Dis 47 (Special Issue) 2003.] and will be used throughout this review when referring to any previously described fowl plague virus.

  7. An analysis of microbiota-targeted therapies in patients with avian influenza virus subtype H7N9 infection

    PubMed Central

    2014-01-01

    Background Selective prophylactic decontamination of the digestive tract is a strategy for the prevention of secondary nosocomial infection in patients with avian influenza virus subtype H7N9 infection. Our aim was to summarize the effectiveness of these therapies in re-establishing a stable and diverse microbial community, and reducing secondary infections. Methods Comprehensive therapies were dependent on the individual clinical situation of subjects, and were divided into antiviral treatment, microbiota-targeted therapies, including pro- or pre-biotics and antibiotic usage, and immunotherapy. Quantitative polymerase chain reaction and denaturing gradient gel electrophoresis (DGGE) were used for real-time monitoring of the predominant intestinal microbiome during treatment. Clinical information about secondary infection was confirmed by analyzing pathogens isolated from clinical specimens. Results Different antibiotics had similar effects on the gut microbiome, with a marked decrease and slow recovery of the Bifidobacterium population. Interestingly, most fecal microbial DGGE profiles showed the relative stability of communities under the continual suppression of the same antibiotics, and significant changes when new antibiotics were introduced. Moreover, we found no marked increase in C-reactive protein, and no cases of bacteremia or pneumonia, caused by probiotic use in the patients, which confirmed that the probiotics used in this study were safe for use in patients with H7N9 infection. Approximately 72% of those who subsequently suffered exogenous respiratory infection by Candida species or multidrug-resistant Acinetobacter baumannii and Klebsiella pneumoniae were older than 60 years. The combination of probiotics and prebiotics with antibiotics seemed to fail in these patients. Conclusions Elderly patients infected with the influenza A (H7N9) virus are considered a high-risk group for developing secondary bacterial infection. Microbiota restoration

  8. Inhibition of autophagy ameliorates acute lung injury caused by avian influenza A H5N1 infection.

    PubMed

    Sun, Yang; Li, Chenggang; Shu, Yuelong; Ju, Xiangwu; Zou, Zhen; Wang, Hongliang; Rao, Shuan; Guo, Feng; Liu, Haolin; Nan, Wenlong; Zhao, Yan; Yan, Yiwu; Tang, Jun; Zhao, Chen; Yang, Peng; Liu, Kangtai; Wang, Shunxin; Lu, Huijun; Li, Xiao; Tan, Lei; Gao, Rongbao; Song, Jingdong; Gao, Xiang; Tian, Xinlun; Qin, Yingzhi; Xu, Kai-Feng; Li, Dangsheng; Jin, Ningyi; Jiang, Chengyu

    2012-02-21

    The threat of a new influenza pandemic has existed since 1997, when the highly pathogenic H5N1 strain of avian influenza A virus infected humans in Hong Kong and spread across Asia, where it continued to infect poultry and people. The human mortality rate of H5N1 infection is about 60%, whereas that of seasonal H1N1 infection is less than 0.1%. The high mortality rate associated with H5N1 infection is predominantly a result of respiratory failure caused by acute lung injury; however, how viral infection contributes to this disease pathology is unclear. Here, we used electron microscopy to show the accumulation of autophagosomes in H5N1-infected lungs from a human cadaver and mice, as well as in infected A549 human epithelial lung cells. We also showed that H5N1, but not seasonal H1N1, induced autophagic cell death in alveolar epithelial cells through a pathway involving the kinase Akt, the tumor suppressor protein TSC2, and the mammalian target of rapamycin. Additionally, we suggest that the hemagglutinin protein of H5N1 may be responsible for stimulating autophagy. When applied prophylactically, reagents that blocked virus-induced autophagic signaling substantially increased the survival rate of mice and substantially ameliorated the acute lung injury and mortality caused by H5N1 infection. We conclude that the autophagic cell death of alveolar epithelial cells likely plays a crucial role in the high mortality rate of H5N1 infection, and we suggest that autophagy-blocking agents might be useful as prophylactics and therapeutics against infection of humans by the H5N1 virus. PMID:22355189

  9. Little evidence of avian or equine influenza virus infection among a cohort of Mongolian adults with animal exposures, 2010-2011.

    PubMed

    Khurelbaatar, Nyamdavaa; Krueger, Whitney S; Heil, Gary L; Darmaa, Badarchiin; Ulziimaa, Daramragchaa; Tserennorov, Damdindorj; Baterdene, Ariungerel; Anderson, Benjamin D; Gray, Gregory C

    2014-01-01

    Avian (AIV) and equine influenza virus (EIV) have been repeatedly shown to circulate among Mongolia's migrating birds or domestic horses. In 2009, 439 Mongolian adults, many with occupational exposure to animals, were enrolled in a prospective cohort study of zoonotic influenza transmission. Sera were drawn upon enrollment and again at 12 and 24 months. Participants were contacted monthly for 24 months and queried regarding episodes of acute influenza-like illnesses (ILI). Cohort members confirmed to have acute influenza A infections, permitted respiratory swab collections which were studied with rRT-PCR for influenza A. Serologic assays were performed against equine, avian, and human influenza viruses. Over the 2 yrs of follow-up, 100 ILI investigations in the cohort were conducted. Thirty-six ILI cases (36%) were identified as influenza A infections by rRT-PCR; none yielded evidence for AIV or EIV. Serological examination of 12 mo and 24 mo annual sera revealed 37 participants had detectable antibody titers (≥1∶10) against studied viruses during the course of study follow-up: 21 against A/Equine/Mongolia/01/2008(H3N8); 4 against an avian A/Teal/Hong Kong/w3129(H6N1), 11 against an avian-like A/Hong Kong/1073/1999(H9N2), and 1 against an avian A/Migrating duck/Hong Kong/MPD268/2007(H10N4) virus. However, all such titers were <1∶80 and none were statistically associated with avian or horse exposures. A number of subjects had evidence of seroconversion to zoonotic viruses, but the 4-fold titer changes were again not associated with avian or horse exposures. As elevated antibodies against seasonal influenza viruses were high during the study period, it seems likely that cross-reacting antibodies against seasonal human influenza viruses were a cause of the low-level seroreactivity against AIV or EIV. Despite the presence of AIV and EIV circulating among wild birds and horses in Mongolia, there was little evidence of AIV or EIV infection in this prospective study

  10. Human infection with a highly pathogenic avian influenza A (H5N6) virus in Yunnan province, China.

    PubMed

    Xu, Wen; Li, Hong; Jiang, Li

    2016-01-01

    Highly pathogenic avian influenza A H5N6 virus has caused four human infections in China. This study reports the preliminary findings of the first known human case of H5N6 in Yunnan province. The patient initially developed symptoms of sore throat and coughing on 27 January 2015. The disease rapidly progressed to severe pneumonia, multiple organ dysfunctions and acute respiratory distress syndrome and the patient died on 6 February. Virological analysis determined that the virus belonged to H5 clade 2.3.4.4 and it has obtained partial ability for mammalian adaptation and amantadine resistance. Environmental investigation found H5 in 63% of the samples including poultry faeces, tissues, cage surface swabs and sewage from local live poultry markets by real-time RT-PCR. These findings suggest that the expanding and enhancing of surveillance in both avian and humans are necessary to monitor the evolution of H5 influenza virus and to facilitate early detection of suspected cases. PMID:27030920

  11. Stochastic model of the potential spread of highly pathogenic avian influenza from an infected commercial broiler operation in Georgia.

    PubMed

    Dorea, F C; Vieira, A R; Hofacre, C; Waldrip, D; Cole, D J

    2010-03-01

    The potential spread of highly pathogenic avian influenza among commercial broiler farms in Georgia, U. S. A., was mathematically modeled. The dynamics of the spread within the first infected flock were estimated using an SEIR (susceptible-exposed-infectious-recovered) deterministic model, and predicted that grower detection of flock infection is most likely 5 days after virus introduction. Off-farm spread of virus was estimated stochastically for this period, predicting a mean range of exposed farms from 0-5, depending on the density of farms in the area. Modeled off-farm spread was most frequently associated with feed trucks (highest daily probability and number of farm visits) and with company personnel or hired help (highest level of bird contact).

  12. Corneal Opacity in Domestic Ducks Experimentally Infected With H5N1 Highly Pathogenic Avian Influenza Virus.

    PubMed

    Yamamoto, Y; Nakamura, K; Yamada, M; Mase, M

    2016-01-01

    Domestic ducks can be a key factor in the regional spread of H5N1 highly pathogenic avian influenza (HPAI) virus in Asia. The authors performed experimental infections to examine the relationship between corneal opacity and H5N1 HPAI virus infection in domestic ducks (Anas platyrhyncha var domestica). A total of 99 domestic ducks, including 3 control birds, were used in the study. In experiment 1, when domestic ducks were inoculated intranasally with 2 H5N1 HPAI viruses, corneal opacity appeared more frequently than neurologic signs and mortality. Corneal ulceration and exophthalmos were rare findings. Histopathologic examinations of the eyes of domestic ducks in experiment 2 revealed that corneal opacity was due to the loss of corneal endothelial cells and subsequent keratitis with edema. Influenza viral antigen was detected in corneal endothelial cells and some other ocular cells by immunohistochemistry. Results suggest that corneal opacity is a characteristic and frequent finding in domestic ducks infected with the H5N1 HPAI virus. Confirming this ocular change may improve the detection rate of infected domestic ducks in the field.

  13. ECOLOGICAL DETERMINANTS OF AVIAN INFLUENZA VIRUS, WEST NILE VIRUS, AND AVIAN PARAMYXOVIRUS INFECTION AND ANTIBODY STATUS IN BLUE-WINGED TEAL (ANAS DISCORS) IN THE CANADIAN PRAIRIES.

    PubMed

    Nallar, Rodolfo; Papp, Zsuzsanna; Leighton, Frederick A; Epp, Tasha; Pasick, John; Berhane, Yohannes; Lindsay, Robbin; Soos, Catherine

    2016-01-01

    The Canadian prairies are one of the most important breeding and staging areas for migratory waterfowl in North America. Hundreds of thousands of waterfowl of numerous species from multiple flyways converge in and disperse from this region annually; therefore this region may be a key area for potential intra- and interspecific spread of infectious pathogens among migratory waterfowl in the Americas. Using Blue-winged Teal (Anas discors, BWTE), which have the most extensive migratory range among waterfowl species, we investigated ecologic risk factors for infection and antibody status to avian influenza virus (AIV), West Nile virus (WNV), and avian paramyxovirus-1 (APMV-1) in the three prairie provinces (Alberta, Saskatchewan, and Manitoba) prior to fall migration. We used generalized linear models to examine infection or evidence of exposure in relation to host (age, sex, body condition, exposure to other infections), spatiotemporal (year, province), population-level (local population densities of BWTE, total waterfowl densities), and environmental (local pond densities) factors. The probability of AIV infection in BWTE was associated with host factors (e.g., age and antibody status), population-level factors (e.g., local BWTE population density), and year. An interaction between age and AIV antibody status showed that hatch year birds with antibodies to AIV were more likely to be infected, suggesting an antibody response to an active infection. Infection with AIV was positively associated with local BWTE density, supporting the hypothesis of density-dependent transmission. The presence of antibodies to WNV and APMV-1 was positively associated with age and varied among years. Furthermore, the probability of being WNV antibody positive was positively associated with pond density rather than host population density, likely because ponds provide suitable breeding habitat for mosquitoes, the primary vectors for transmission. Our findings highlight the importance of

  14. Highly (H5N1) and Low (H7N2) Pathogenic Avian Influenza Virus Infection in Falcons Via Nasochoanal Route and Ingestion of Experimentally Infected Prey

    PubMed Central

    Bertran, Kateri; Busquets, Núria; Abad, Francesc Xavier; García de la Fuente, Jorge; Solanes, David; Cordón, Iván; Costa, Taiana; Dolz, Roser; Majó, Natàlia

    2012-01-01

    An experimental infection with highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug) hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006) or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009), both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5–7 days post-infection (dpi) after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR), which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds of prey

  15. Highly (H5N1) and low (H7N2) pathogenic avian influenza virus infection in falcons via nasochoanal route and ingestion of experimentally infected prey.

    PubMed

    Bertran, Kateri; Busquets, Núria; Abad, Francesc Xavier; García de la Fuente, Jorge; Solanes, David; Cordón, Iván; Costa, Taiana; Dolz, Roser; Majó, Natàlia

    2012-01-01

    An experimental infection with highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug) hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006) or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009), both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5-7 days post-infection (dpi) after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR), which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds of prey and

  16. Avian influenza virus RNA extraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficient extraction and purification of viral RNA is critical for down-stream molecular applications whether it is the sensitive and specific detection of virus in clinical samples, virus gene cloning and expression, or quantification of avian influenza (AI) virus by molecular methods from expe...

  17. Pandemic Threat Posed by Avian Influenza A Viruses

    PubMed Central

    Horimoto, Taisuke; Kawaoka, Yoshihiro

    2001-01-01

    Influenza pandemics, defined as global outbreaks of the disease due to viruses with new antigenic subtypes, have exacted high death tolls from human populations. The last two pandemics were caused by hybrid viruses, or reassortants, that harbored a combination of avian and human viral genes. Avian influenza viruses are therefore key contributors to the emergence of human influenza pandemics. In 1997, an H5N1 influenza virus was directly transmitted from birds in live poultry markets in Hong Kong to humans. Eighteen people were infected in this outbreak, six of whom died. This avian virus exhibited high virulence in both avian and mammalian species, causing systemic infection in both chickens and mice. Subsequently, another avian virus with the H9N2 subtype was directly transmitted from birds to humans in Hong Kong. Interestingly, the genes encoding the internal proteins of the H9N2 virus are genetically highly related to those of the H5N1 virus, suggesting a unique property of these gene products. The identification of avian viruses in humans underscores the potential of these and similar strains to produce devastating influenza outbreaks in major population centers. Although highly pathogenic avian influenza viruses had been identified before the 1997 outbreak in Hong Kong, their devastating effects had been confined to poultry. With the Hong Kong outbreak, it became clear that the virulence potential of these viruses extended to humans. PMID:11148006

  18. Precision-cut intestinal slices as a culture system to analyze the infection of differentiated intestinal epithelial cells by avian influenza viruses.

    PubMed

    Punyadarsaniya, Darsaniya; Winter, Christine; Mork, Ann-Kathrin; Amiri, Mahdi; Naim, Hassan Y; Rautenschlein, Silke; Herrler, Georg

    2015-02-01

    Many viruses infect and replicate in their host via the intestinal tract, e.g. many picornaviruses, several coronaviruses and avian influenza viruses of waterfowl. To analyze infection of enterocytes is a challenging task as culture systems for differentiated intestinal epithelial cells are not readily available and often have a life span that is too short for infection studies. Precision-cut intestinal slices (PCIS) from chicken embryos were prepared and shown that the epithelial cells lining the lumen of the intestine are viable for up to 4 days. Using lectin staining, it was demonstrated that α2,3-linked sialic acids, the preferred receptor determinants of avian influenza viruses, are present on the apical side of the epithelial cells. Furthermore, the epithelial cells (at the tips) of the villi were shown to be susceptible to infection by an avian influenza virus of the H9N2 subtype. This culture system will be useful to analyze virus infection of intestinal epithelial cells and it should be applicable also to the intestine of other species.

  19. A Novel Vaccine Using Nanoparticle Platform to Present Immunogenic M2e against Avian Influenza Infection

    PubMed Central

    Babapoor, Sankhiros; Neef, Tobias; Mittelholzer, Christian; Girshick, Theodore; Garmendia, Antonio; Shang, Hongwei; Khan, Mazhar I.; Burkhard, Peter

    2011-01-01

    Using peptide nanoparticle technology, we have designed two novel vaccine constructs representing M2e in monomeric (Mono-M2e) and tetrameric (Tetra-M2e) forms. Groups of specific pathogen free (SPF) chickens were immunized intramuscularly with Mono-M2e or Tetra-M2e with and without an adjuvant. Two weeks after the second boost, chickens were challenged with 107.2 EID50 of H5N2 low pathogenicity avian influenza (LPAI) virus. M2e-specific antibody responses to each of the vaccine constructs were tested by ELISA. Vaccinated chickens exhibited increased M2e-specific IgG responses for each of the constructs as compared to a non-vaccinated group. However, the vaccine construct Tetra-M2e elicited a significantly higher antibody response when it was used with an adjuvant. On the other hand, virus neutralization assays indicated that immune protection is not by way of neutralizing antibodies. The level of protection was evaluated using quantitative real time PCR at 4, 6, and 8 days post-challenge with H5N2 LPAI by measuring virus shedding from trachea and cloaca. The Tetra-M2e with adjuvant offered statistically significant (P < 0.05) protection against subtype H5N2 LPAI by reduction of the AI virus shedding. The results suggest that the self-assembling polypeptide nanoparticle shows promise as a potential platform for a development of a vaccine against AI. PMID:23074652

  20. Infection Risk for Persons Exposed to Highly Pathogenic Avian Influenza A H5 Virus–Infected Birds, United States, December 2014–March 2015

    PubMed Central

    Nelson, Deborah I.; Deliberto, Thomas J.; Blanton, Lenee; Kniss, Krista; Levine, Min Z.; Trock, Susan C.; Finelli, Lyn; Jhung, Michael A.

    2015-01-01

    Newly emerged highly pathogenic avian influenza (HPAI) A H5 viruses have caused outbreaks among birds in the United States. These viruses differ genetically from HPAI H5 viruses that previously caused human illness, most notably in Asia and Africa. To assess the risk for animal-to-human HPAI H5 virus transmission in the United States, we determined the number of persons with self-reported exposure to infected birds, the number with an acute respiratory infection (ARI) during a 10-day postexposure period, and the number with ARI who tested positive for influenza by real-time reverse transcription PCR or serologic testing for each outbreak during December 15, 2014–March 31, 2015. During 60 outbreaks in 13 states, a total of 164 persons were exposed to infected birds. ARI developed in 5 of these persons within 10 days of exposure. H5 influenza virus infection was not identified in any persons with ARI, suggesting a low risk for animal-to-human HPAI H5 virus transmission. PMID:26583382

  1. Infection Risk for Persons Exposed to Highly Pathogenic Avian Influenza A H5 Virus-Infected Birds, United States, December 2014-March 2015.

    PubMed

    Arriola, Carmen S; Nelson, Deborah I; Deliberto, Thomas J; Blanton, Lenee; Kniss, Krista; Levine, Min Z; Trock, Susan C; Finelli, Lyn; Jhung, Michael A

    2015-12-01

    Newly emerged highly pathogenic avian influenza (HPAI) A H5 viruses have caused outbreaks among birds in the United States. These viruses differ genetically from HPAI H5 viruses that previously caused human illness, most notably in Asia and Africa. To assess the risk for animal-to-human HPAI H5 virus transmission in the United States, we determined the number of persons with self-reported exposure to infected birds, the number with an acute respiratory infection (ARI) during a 10-day postexposure period, and the number with ARI who tested positive for influenza by real-time reverse transcription PCR or serologic testing for each outbreak during December 15, 2014-March 31, 2015. During 60 outbreaks in 13 states, a total of 164 persons were exposed to infected birds. ARI developed in 5 of these persons within 10 days of exposure. H5 influenza virus infection was not identified in any persons with ARI, suggesting a low risk for animal-to-human HPAI H5 virus transmission.

  2. Infection Risk for Persons Exposed to Highly Pathogenic Avian Influenza A H5 Virus-Infected Birds, United States, December 2014-March 2015.

    PubMed

    Arriola, Carmen S; Nelson, Deborah I; Deliberto, Thomas J; Blanton, Lenee; Kniss, Krista; Levine, Min Z; Trock, Susan C; Finelli, Lyn; Jhung, Michael A

    2015-12-01

    Newly emerged highly pathogenic avian influenza (HPAI) A H5 viruses have caused outbreaks among birds in the United States. These viruses differ genetically from HPAI H5 viruses that previously caused human illness, most notably in Asia and Africa. To assess the risk for animal-to-human HPAI H5 virus transmission in the United States, we determined the number of persons with self-reported exposure to infected birds, the number with an acute respiratory infection (ARI) during a 10-day postexposure period, and the number with ARI who tested positive for influenza by real-time reverse transcription PCR or serologic testing for each outbreak during December 15, 2014-March 31, 2015. During 60 outbreaks in 13 states, a total of 164 persons were exposed to infected birds. ARI developed in 5 of these persons within 10 days of exposure. H5 influenza virus infection was not identified in any persons with ARI, suggesting a low risk for animal-to-human HPAI H5 virus transmission. PMID:26583382

  3. Ostrich ( Struthio camelus ) Infected with H5N8 Highly Pathogenic Avian Influenza Virus in South Korea in 2014.

    PubMed

    Kim, Hye-Ryoung; Kwon, Yong-Kuk; Lee, Youn-Jeong; Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Jung, Suk-Chan; Lee, Kyung-Hyun; Lee, Hyun-Kyoung; Baek, Kang-Hyun; Bae, You-Chan

    2016-06-01

    Highly pathogenic avian influenza (HPAI) virus of the H5N8 subtype was isolated from a young ostrich in South Korea in March 2014. Clinical signs characterized by anorexia, depression, and signs of nervousness were observed. The isolated A/ostrich/Korea/H829/2014 (H5N8) virus had a cleavage site motif containing multiple basic amino acids, typical of HPAI virus. The phylogenetic tree of the hemagglutinin gene of the H5 HPAI virus showed that this ostrich H5N8 virus belongs to clade 2.3.4.4 viruses together with H5N8 strains isolated from ducks and wild birds in South Korea in 2014. Pathologically, redness of pancreas, enlargement and hemorrhage of spleen, friability of brain, and hydropericardium were prominently found. Histologic legions were observed in pancreas, spleen, liver, lung, heart, and brain, and influenza A nucleoproteins were detected in the same organs by immunohistochemistry. Other ostriches farmed together in open camps were not infected with HPAI virus based on the serologic and virologic tests. The findings indicate that ostriches are susceptible to H5N8 HPAI virus, but this virus does not spread efficiently among ratites. PMID:27309301

  4. Sparse serological evidence of H5N1 avian influenza virus infections in domestic cats, northeastern China.

    PubMed

    Sun, Lingshuang; Zhou, Pei; He, Shuyi; Luo, Yongfeng; Jia, Kun; Fu, Cheng; Sun, Yao; He, Huamei; Tu, Liqing; Ning, Zhangyong; Yuan, Ziguo; Wang, Heng; Li, Shoujun; Yuan, Liguo

    2015-05-01

    Today the cross-species transmission of avian influenza viruses (AIV) are a great concern. A number of AIV strains are now enzootic among poultry, with H9N2 and highly pathogenic H5N1 AIV strains prevalent in China. H5N1 strains have been recognized to infect zoo and domestic feline species. In this serological study we sought to examine evidence that H5N1 strains have infected domestic cats in northeastern China. In 2013, we conducted a cross-sectional serological study of 916 healthy cats in Heilongjian, Jilin, and Liaonin Provinces. Sera were screened with a hemagglutinin inhibition (HI) assay and seropositive specimens (HI ≥ 1:20) were further evaluated with a microneutralization (MN) assay against a clade 2.3.2 H5N1 AIV, a H9N2 AIV, A (H1N1)pdm09, and a canine H3N2 virus. While ∼2% of cats had elevated HI assays against H5N1, no elevations were confirmed (MN ≥ 1:80). These data serve as baseline for future surveillance for AIV infections among domestic cats. Conducting such surveillance seems important for geographical areas recognized as endemic for AIVs. This is especially true for countries such as China where domestic cats and poultry are often in close contact.

  5. Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia.

    PubMed

    Gilbert, Marius; Golding, Nick; Zhou, Hang; Wint, G R William; Robinson, Timothy P; Tatem, Andrew J; Lai, Shengjie; Zhou, Sheng; Jiang, Hui; Guo, Danhuai; Huang, Zhi; Messina, Jane P; Xiao, Xiangming; Linard, Catherine; Van Boeckel, Thomas P; Martin, Vincent; Bhatt, Samir; Gething, Peter W; Farrar, Jeremy J; Hay, Simon I; Yu, Hongjie

    2014-06-17

    Two epidemic waves of an avian influenza A (H7N9) virus have so far affected China. Most human cases have been attributable to poultry exposure at live-poultry markets, where most positive isolates were sampled. The potential geographic extent of potential re-emerging epidemics is unknown, as are the factors associated with it. Using newly assembled data sets of the locations of 8,943 live-poultry markets in China and maps of environmental correlates, we develop a statistical model that accurately predicts the risk of H7N9 market infection across Asia. Local density of live-poultry markets is the most important predictor of H7N9 infection risk in markets, underscoring their key role in the spatial epidemiology of H7N9, alongside other poultry, land cover and anthropogenic predictor variables. Identification of areas in Asia with high suitability for H7N9 infection enhances our capacity to target biosurveillance and control, helping to restrict the spread of this important disease.

  6. Risk Distribution of Human Infections with Avian Influenza H7N9 and H5N1 virus in China

    PubMed Central

    Li, Xin-Lou; Yang, Yang; Sun, Ye; Chen, Wan-Jun; Sun, Ruo-Xi; Liu, Kun; Ma, Mai-Juan; Liang, Song; Yao, Hong-Wu; Gray, Gregory C.; Fang, Li-Qun; Cao, Wu-Chun

    2015-01-01

    It has been documented that the epidemiological characteristics of human infections with H7N9 differ significantly between H5N1. However, potential factors that may explain the different spatial distributions remain unexplored. We use boosted regression tree (BRT) models to explore the association of agro-ecological, environmental and meteorological variables with the occurrence of human cases of H7N9 and H5N1, and map the probabilities of occurrence of human cases. Live poultry markets, density of human, coverage of built-up land, relative humidity and precipitation were significant predictors for both. In addition, density of poultry, coverage of shrub and temperature played important roles for human H7N9 infection, whereas human H5N1 infection was associated with coverage of forest and water body. Based on the risks and distribution of ecological characteristics which may facilitate the circulation of the two viruses, we found Yangtze River Delta and Pearl River Delta, along with a few spots on the southeast coastline, to be the high risk areas for H7N9 and H5N1. Additional, H5N1 risk spots were identified in eastern Sichuan and southern Yunnan Provinces. Surveillance of the two viruses needs to be enhanced in these high risk areas to reduce the risk of future epidemics of avian influenza in China. PMID:26691585

  7. Risk Distribution of Human Infections with Avian Influenza H7N9 and H5N1 virus in China.

    PubMed

    Li, Xin-Lou; Yang, Yang; Sun, Ye; Chen, Wan-Jun; Sun, Ruo-Xi; Liu, Kun; Ma, Mai-Juan; Liang, Song; Yao, Hong-Wu; Gray, Gregory C; Fang, Li-Qun; Cao, Wu-Chun

    2015-01-01

    It has been documented that the epidemiological characteristics of human infections with H7N9 differ significantly between H5N1. However, potential factors that may explain the different spatial distributions remain unexplored. We use boosted regression tree (BRT) models to explore the association of agro-ecological, environmental and meteorological variables with the occurrence of human cases of H7N9 and H5N1, and map the probabilities of occurrence of human cases. Live poultry markets, density of human, coverage of built-up land, relative humidity and precipitation were significant predictors for both. In addition, density of poultry, coverage of shrub and temperature played important roles for human H7N9 infection, whereas human H5N1 infection was associated with coverage of forest and water body. Based on the risks and distribution of ecological characteristics which may facilitate the circulation of the two viruses, we found Yangtze River Delta and Pearl River Delta, along with a few spots on the southeast coastline, to be the high risk areas for H7N9 and H5N1. Additional, H5N1 risk spots were identified in eastern Sichuan and southern Yunnan Provinces. Surveillance of the two viruses needs to be enhanced in these high risk areas to reduce the risk of future epidemics of avian influenza in China. PMID:26691585

  8. Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia.

    PubMed

    Gilbert, Marius; Golding, Nick; Zhou, Hang; Wint, G R William; Robinson, Timothy P; Tatem, Andrew J; Lai, Shengjie; Zhou, Sheng; Jiang, Hui; Guo, Danhuai; Huang, Zhi; Messina, Jane P; Xiao, Xiangming; Linard, Catherine; Van Boeckel, Thomas P; Martin, Vincent; Bhatt, Samir; Gething, Peter W; Farrar, Jeremy J; Hay, Simon I; Yu, Hongjie

    2014-01-01

    Two epidemic waves of an avian influenza A (H7N9) virus have so far affected China. Most human cases have been attributable to poultry exposure at live-poultry markets, where most positive isolates were sampled. The potential geographic extent of potential re-emerging epidemics is unknown, as are the factors associated with it. Using newly assembled data sets of the locations of 8,943 live-poultry markets in China and maps of environmental correlates, we develop a statistical model that accurately predicts the risk of H7N9 market infection across Asia. Local density of live-poultry markets is the most important predictor of H7N9 infection risk in markets, underscoring their key role in the spatial epidemiology of H7N9, alongside other poultry, land cover and anthropogenic predictor variables. Identification of areas in Asia with high suitability for H7N9 infection enhances our capacity to target biosurveillance and control, helping to restrict the spread of this important disease. PMID:24937647

  9. Global and quantitative proteomic analysis of dogs infected by avian-like H3N2 canine influenza virus

    PubMed Central

    Su, Shuo; Tian, Jin; Hong, Malin; Zhou, Pei; Lu, Gang; Zhu, Huachen; Zhang, Guihong; Lai, Alexander; Li, Shoujun

    2015-01-01

    Canine influenza virus A (H3N2) is a newly emerged etiological agent for respiratory infections in dogs. The mechanism of interspecies transmission from avian to canine species and the development of diseases in this new host remain to be explored. To investigate this, we conducted a differential proteomics study in 2-month-old beagles inoculated intranasally with 106 TCID50 of A/canine/Guangdong/01/2006 (H3N2) virus. Lung sections excised at 12 h post-inoculation (hpi), 4 days, and 7 days post-inoculation (dpi) were processed for global and quantitative analysis of differentially expressed proteins. A total of 17,796 proteins were identified at different time points. About 1.6% was differentially expressed between normal and infected samples. Of these, 23, 27, and 136 polypeptides were up-regulated, and 14, 18, and 123 polypeptides were down-regulated, at 12 hpi, 4 dpi, and 7 dpi, respectively. Vann diagram analysis indicated that 17 proteins were up-regulated and one was down-regulated at all three time points. Selected proteins were validated by real-time PCR and by Western blot. Our results show that apoptosis and cytoskeleton-associated proteins expression was suppressed, whereas interferon-induced proteins plus other innate immunity proteins were induced after the infection. Understanding of the interactions between virus and the host will provide insights into the basis of interspecies transmission, adaptation, and virus pathogenicity. PMID:25883591

  10. Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia

    PubMed Central

    Gilbert, Marius; Golding, Nick; Zhou, Hang; Wint, G. R. William; Robinson, Timothy P.; Tatem, Andrew J.; Lai, Shengjie; Zhou, Sheng; Jiang, Hui; Guo, Danhuai; Huang, Zhi; Messina, Jane P.; Xiao, Xiangming; Linard, Catherine; Van Boeckel, Thomas P.; Martin, Vincent; Bhatt, Samir; Gething, Peter W.; Farrar, Jeremy J.; Hay, Simon I.; Yu, Hongjie

    2014-01-01

    Two epidemic waves of an avian influenza A (H7N9) virus have so far affected China. Most human cases have been attributable to poultry exposure at live-poultry markets, where most positive isolates were sampled. The potential geographic extent of potential re-emerging epidemics is unknown, as are the factors associated with it. Using newly assembled data sets of the locations of 8,943 live-poultry markets in China and maps of environmental correlates, we develop a statistical model that accurately predicts the risk of H7N9 market infection across Asia. Local density of live-poultry markets is the most important predictor of H7N9 infection risk in markets, underscoring their key role in the spatial epidemiology of H7N9, alongside other poultry, land cover and anthropogenic predictor variables. Identification of areas in Asia with high suitability for H7N9 infection enhances our capacity to target biosurveillance and control, helping to restrict the spread of this important disease. PMID:24937647

  11. Deterioration of eggshell quality in laying hens experimentally infected with H9N2 avian influenza virus.

    PubMed

    Qi, Xuefeng; Tan, Dan; Wu, Chengqi; Tang, Chao; Li, Tao; Han, Xueying; Wang, Jing; Liu, Caihong; Li, Ruiqiao; Wang, Jingyu

    2016-02-25

    This study aimed to determine the mechanism by which H9N2 avian influenza virus (AIV) affects eggshell quality. Thirty-week-old specific pathogen free egg-laying hens were inoculated with the chicken-origin H9N2 AIV strain (A/Chicken/shaanxi/01/2011) or with inoculating media without virus by combined intraocular and intranasal routes. The time course for the appearance of viral antigen and tissue lesions in the oviduct was coincident with the adverse changes in egg production in the infected hens. The viral loads of AIV have a close correlation with the changes in the uterus CaBP-D28k mRNA expression as well as the Ca concentrations in the eggshells in the infected hens from 1 to 7 days post inoculation (dpi). Ultrastructural examination of eggshells showed significantly decreased shell thickness in the infected hens from 1 to 5 dpi (P < 0.05). Furthermore, obvious changes in the structure of the external shell surface and shell membrane were detected in the infected hens from 1 to 5 dpi as compared with the control hens. In conclusion, this study confirmed that H9N2 AIV strain (A/Chicken/shaanxi/01/2011) infection is associated with severe lesions of the uterus and abnormal expression of CaBP-D28k mRNA in the uteri of the infected hens. The change of CaBP-D28k mRNA expression may contribute to the deterioration of the eggshell quality of the laying hens infected with AIV. It is noteworthy that the pathogenicity of H9N2 AIV strains may vary depending on the virus strain and host preference.

  12. 76 FR 24793 - Highly Pathogenic Avian Influenza

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... (76 FR 4046-4056, Docket No. APHIS-2006-0074) an interim rule that amended the regulations governing... Inspection Service 9 CFR Parts 93, 94, and 95 RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal... products from regions where any subtype of highly pathogenic avian influenza is considered to exist....

  13. Encephalitis in a stone marten (Martes foina) after natural infection with highly pathogenic avian influenza virus subtype H5N1.

    PubMed

    Klopfleisch, R; Wolf, P U; Wolf, C; Harder, T; Starick, E; Niebuhr, M; Mettenleiter, T C; Teifke, J P

    2007-01-01

    Recent outbreaks of disease in different avian species, caused by the highly pathogenic avian influenza virus (HPAIV), have involved infection by subtype H5N1 of the virus. This virus has also crossed species barriers and infected felines and humans. Here, we report the natural infection of a stone marten (Martes foina) from an area with numerous confirmed cases of H5N1 HPAIV infection in wild birds. Histopathological examination of tissues from this animal revealed a diffuse nonsuppurative panencephalitis with perivascular cuffing, multifocal gliosis and neuronal necrosis. Additionally, focal necrosis of pancreatic acinar cells was observed. Immunohistochemically, lesions in these organs were associated with avian influenza virus antigen in neurons, glial cells and pancreatic acinar cells. Thus, the microscopical lesions and viral antigen distribution in this stone marten differs from that recently described for cats naturally and experimentally infected with the same virus subtype. This is the first report of natural infection of a mustelid with HPAIV H5N1.

  14. Avian Influenza A(H5N1) and A(H9N2) Seroprevalence and Risk Factors for Infection Among Egyptians: A Prospective, Controlled Seroepidemiological Study

    PubMed Central

    Gomaa, Mokhtar R.; Kayed, Ahmed S.; Elabd, Mona A.; Zeid, Dina Abu; Zaki, Shaimaa A.; El Rifay, Amira S.; Sherif, Lobna S.; McKenzie, Pamela P.; Webster, Robert G.; Webby, Richard J.; Ali, Mohamed A.; Kayali, Ghazi

    2015-01-01

    Background. A(H5N1) and A(H9N2) avian influenza viruses are enzootic in Egyptian poultry, and most A(H5N1) human cases since 2009 have occurred in Egypt. Our understanding of the epidemiology of avian viruses in humans remains limited. Questions about the frequency of infection, the proportion of infections that are mild or subclinical, and the case-fatality rate remain largely unanswered. Methods. We conducted a 3-year, prospective, controlled, seroepidemiological study that enrolled 750 poultry-exposed and 250 unexposed individuals in Egypt. Results. At baseline, the seroprevalence of anti-A(H5N1) antibodies (titer, ≥80) among exposed individuals was 2% significantly higher than that among the controls (0%). Having chronic lung disease was a significant risk factor for infection. Antibodies against A(H9N2) were not detected at baseline when A(H9N2) was not circulating in poultry. At follow-up, A(H9N2) was detected in poultry, and consequently, the seroprevalence among exposed humans was between 5.6% and 7.5%. Vaccination of poultry, older age, and exposure to ducks were risk factors for A(H9N2) infection. Conclusions. Results of this study indicate that the number of humans infected with avian influenza viruses is much larger than the number of reported confirmed cases. In an area where these viruses are enzootic in the poultry, human exposure to and infection with avian influenza becomes more common. PMID:25355942

  15. Host immune responses of ducks infected with H5N1 highly pathogenic avian influenza viruses of different pathogenicities.

    PubMed

    Wei, Liangmeng; Jiao, Peirong; Song, Yafen; Cao, Lan; Yuan, Runyu; Gong, Lang; Cui, Jin; Zhang, Shuo; Qi, Wenbao; Yang, Su; Liao, Ming

    2013-10-25

    Our previous studies have illustrated three strains of duck-origin H5N1 highly pathogenic avian influenza viruses (HPAIVs) had varying levels of pathogenicity in ducks (Sun et al., 2011). However, the host immune response of ducks infected with those of H5N1 HPAIVs was unclear. Here, we compared viral distribution and mRNA expression of immune-related genes in ducks following infection with the two HPAIV (A/Duck/Guangdong/212/2004, DK212 and A/Duck/Guangdong/383/2008, DK383). DK383 could replicate in the tested tissue of ducks (brain, spleen, lungs, cloacal bursa, kidney, and pancreas) more rapid and efficiently than DK212 at 1 and 2 days post-inoculation. Quantitative real-time PCR analysis showed that the expression levels of TLR3, IL-6, IL-8, and MHC class II in brains were higher than those of respective genes in lungs during the early stage of post infection. Furthermore, the expression levels of IL-6 and IL-8 in the brain of ducks following infection with DK383 were remarkably higher than those of ducks infected with DK212, respectively. Our results suggest that the shift in the H5N1 HPAIVs to increased virulence in ducks may be associated with efficient and rapid replication of the virus, accompanied by early destruction of host immune responses. These data are helpful to understand the underlying mechanism of the different outcome of H5N1 HPAIVs infection in ducks.

  16. Recombinant virus-like particles elicit protective immunity against avian influenza A(H7N9) virus infection in ferrets.

    PubMed

    Liu, Ye V; Massare, Michael J; Pearce, Melissa B; Sun, Xiangjie; Belser, Jessica A; Maines, Taronna R; Creager, Hannah M; Glenn, Gregory M; Pushko, Peter; Smith, Gale E; Tumpey, Terrence M

    2015-04-27

    In March 2013, diagnosis of the first reported case of human infection with a novel avian-origin influenza A(H7N9) virus occurred in eastern China. Most human cases have resulted in severe respiratory illness and, in some instances, death. Currently there are no licensed vaccines against H7N9 virus, which continues to cause sporadic human infections. Recombinant virus-like particles (VLPs) have been previously shown to be safe and effective vaccines for influenza. In this study, we evaluated the immunogenicity and protective efficacy of a H7N9 VLP vaccine in the ferret challenge model. Purified recombinant H7N9 VLPs morphologically resembled influenza virions and elicited high-titer serum hemagglutination inhibition (HI) and neutralizing antibodies specific for A/Anhui/1/2013 (H7N9) virus. H7N9 VLP-immunized ferrets subsequently challenged with homologous virus displayed reductions in fever, weight loss, and virus shedding compared to these parameters in unimmunized control ferrets. H7N9 VLP was also effective in protecting against lung and tracheal infection. The addition of either ISCOMATRIX or Matrix-M1 adjuvant improved immunogenicity and protection of the VLP vaccine against H7N9 virus. These results provide support for the development of a safe and effective human VLP vaccine with potent adjuvants against avian influenza H7N9 virus with pandemic potential. PMID:25772674

  17. Comprehensive analysis of antibody recognition in convalescent humans from highly pathogenic avian influenza H5N1 infection

    PubMed Central

    Zuo, Teng; Sun, Jianfeng; Wang, Guiqin; Jiang, Liwei; Zuo, Yanan; Li, Danyang; Shi, Xuanling; Liu, Xi; Fan, Shilong; Ren, Huanhuan; Hu, Hongxing; Sun, Lina; Zhou, Boping; Liang, Mifang; Zhou, Paul; Wang, Xinquan; Zhang, Linqi

    2015-01-01

    Understanding the mechanism of protective antibody recognition against highly pathogenic avian influenza A virus H5N1 in humans is critical for the development of effective therapies and vaccines. Here we report the crystal structure of three H5-specific human monoclonal antibodies bound to the globular head of hemagglutinin (HA) with distinct epitope specificities, neutralization potencies and breadth. A structural and functional analysis of these epitopes combined with those reported elsewhere identifies four major vulnerable sites on the globular head of H5N1 HA. Chimeric and vulnerable site-specific mutant pseudoviruses are generated to delineate broad neutralization specificities of convalescent sera from two individuals who recovered from the infection with H5N1 virus. Our results show that the four vulnerable sites on the globular head rather than the stem region are the major neutralizing targets, suggesting that during natural H5N1 infection neutralizing antibodies against the globular head work in concert to provide protective antibody-mediated immunity. PMID:26635249

  18. Understanding the ecological drivers of avian influenza virus infection in wildfowl: a continental-scale study across Africa

    PubMed Central

    Gaidet, N.; Caron, A.; Cappelle, J.; Cumming, G. S.; Balança, G.; Hammoumi, S.; Cattoli, G.; Abolnik, C.; Servan de Almeida, R.; Gil, P.; Fereidouni, S. R.; Grosbois, V.; Tran, A.; Mundava, J.; Fofana, B.; Ould El Mamy, A. B.; Ndlovu, M.; Mondain-Monval, J. Y.; Triplet, P.; Hagemeijer, W.; Karesh, W. B.; Newman, S. H.; Dodman, T.

    2012-01-01

    Despite considerable effort for surveillance of wild birds for avian influenza viruses (AIVs), empirical investigations of ecological drivers of AIV prevalence in wild birds are still scarce. Here we used a continental-scale dataset, collected in tropical wetlands of 15 African countries, to test the relative roles of a range of ecological factors on patterns of AIV prevalence in wildfowl. Seasonal and geographical variations in prevalence were positively related to the local density of the wildfowl community and to the wintering period of Eurasian migratory birds in Africa. The predominant influence of wildfowl density with no influence of climatic conditions suggests, in contrast to temperate regions, a predominant role for inter-individual transmission rather than transmission via long-lived virus persisting in the environment. Higher prevalences were found in Anas species than in non-Anas species even when we account for differences in their foraging behaviour (primarily dabbling or not) or their geographical origin (Eurasian or Afro-tropical), suggesting the existence of intrinsic differences between wildfowl taxonomic groups in receptivity to infection. Birds were found infected as often in oropharyngeal as in cloacal samples, but rarely for both types of sample concurrently, indicating that both respiratory and digestive tracts may be important for AIV replication. PMID:21920984

  19. Comprehensive analysis of antibody recognition in convalescent humans from highly pathogenic avian influenza H5N1 infection.

    PubMed

    Zuo, Teng; Sun, Jianfeng; Wang, Guiqin; Jiang, Liwei; Zuo, Yanan; Li, Danyang; Shi, Xuanling; Liu, Xi; Fan, Shilong; Ren, Huanhuan; Hu, Hongxing; Sun, Lina; Zhou, Boping; Liang, Mifang; Zhou, Paul; Wang, Xinquan; Zhang, Linqi

    2015-01-01

    Understanding the mechanism of protective antibody recognition against highly pathogenic avian influenza A virus H5N1 in humans is critical for the development of effective therapies and vaccines. Here we report the crystal structure of three H5-specific human monoclonal antibodies bound to the globular head of hemagglutinin (HA) with distinct epitope specificities, neutralization potencies and breadth. A structural and functional analysis of these epitopes combined with those reported elsewhere identifies four major vulnerable sites on the globular head of H5N1 HA. Chimeric and vulnerable site-specific mutant pseudoviruses are generated to delineate broad neutralization specificities of convalescent sera from two individuals who recovered from the infection with H5N1 virus. Our results show that the four vulnerable sites on the globular head rather than the stem region are the major neutralizing targets, suggesting that during natural H5N1 infection neutralizing antibodies against the globular head work in concert to provide protective antibody-mediated immunity.

  20. The dynamics of avian influenza in western Arctic snow geese: implications for annual and migratory infection patterns

    USGS Publications Warehouse

    Samuel, Michael D.; Hall, Jeffrey S.; Brown, Justin D.; Goldberg, Diana R.; Ip, Hon S.; Baranyuk, Vasily V.

    2015-01-01

    Wild water birds are the natural reservoir for low-pathogenic avian influenza viruses (AIV). However, our ability to investigate the epizootiology of AIV in these migratory populations is challenging, and despite intensive worldwide surveillance, remains poorly understood. We conducted a cross-sectional, retrospective analysis in Pacific Flyway lesser snow geese Chen caerulescens to investigate AIV serology and infection patterns. We collected nearly 3,000 sera samples from snow geese at 2 breeding colonies in Russia and Canada during 1993-1996 and swab samples from > 4,000 birds at wintering and migration areas in the United States during 2006-2011. We found seroprevalence and annual seroconversion varied considerably among years. Seroconversion and infection rates also differed between snow goose breeding colonies and wintering areas, suggesting that AIV exposure in this gregarious waterfowl species is likely occurring during several phases (migration, wintering and potentially breeding areas) of the annual cycle. We estimated AIV antibody persistence was longer (14 months) in female geese compared to males (6 months). This relatively long period of AIV antibody persistence suggests that subtype-specific serology may be an effective tool for detection of exposure to subtypes associated with highly-pathogenic AIV. Our study provides further evidence of high seroprevalence in Arctic goose populations, and estimates of annual AIV seroconversion and antibody persistence for North American waterfowl. We suggest future AIV studies include serology to help elucidate the epizootiological dynamics of AIV in wild bird populations.

  1. Comprehensive analysis of antibody recognition in convalescent humans from highly pathogenic avian influenza H5N1 infection.

    PubMed

    Zuo, Teng; Sun, Jianfeng; Wang, Guiqin; Jiang, Liwei; Zuo, Yanan; Li, Danyang; Shi, Xuanling; Liu, Xi; Fan, Shilong; Ren, Huanhuan; Hu, Hongxing; Sun, Lina; Zhou, Boping; Liang, Mifang; Zhou, Paul; Wang, Xinquan; Zhang, Linqi

    2015-01-01

    Understanding the mechanism of protective antibody recognition against highly pathogenic avian influenza A virus H5N1 in humans is critical for the development of effective therapies and vaccines. Here we report the crystal structure of three H5-specific human monoclonal antibodies bound to the globular head of hemagglutinin (HA) with distinct epitope specificities, neutralization potencies and breadth. A structural and functional analysis of these epitopes combined with those reported elsewhere identifies four major vulnerable sites on the globular head of H5N1 HA. Chimeric and vulnerable site-specific mutant pseudoviruses are generated to delineate broad neutralization specificities of convalescent sera from two individuals who recovered from the infection with H5N1 virus. Our results show that the four vulnerable sites on the globular head rather than the stem region are the major neutralizing targets, suggesting that during natural H5N1 infection neutralizing antibodies against the globular head work in concert to provide protective antibody-mediated immunity. PMID:26635249

  2. USGS highly pathogenic avian influenza research strategy

    USGS Publications Warehouse

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  3. USGS highly pathogenic avian influenza research strategy

    USGS Publications Warehouse

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-01-01

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  4. Associations of chicken Mx1 polymorphism with antiviral responses in avian influenza virus infected embryos and broilers.

    PubMed

    Wang, Y; Brahmakshatriya, V; Lupiani, B; Reddy, S; Okimoto, R; Li, X; Chiang, H; Zhou, H

    2012-12-01

    Avian influenza virus (AIV) is a major respiratory disease of poultry that causes catastrophic losses to the poultry industry. The Mx protein has been shown to confer antiviral responses to influenza viruses in mice. One nonsynonymous substitution (S631N) in the chicken Mx protein is reported to be associated with resistance to AIV infection in vitro. The previous studies suggested controversy over whether this substitution in the Mx protein plays an important antiviral role in AIV infection in the chicken. It would be intriguing to investigate if the substitution is associated with resistance to AIV infection both in ovo and in vivo in chickens. In this study, the embryos and young chicks were generated from the cross of Mx1 heterozygous (S631N) parents with an expected segregating ratio of 1:2:1 in the progeny. A PCR length polymorphism was developed to genotype the Mx1 gene from 119 embryos and 48 chickens. The embryonated chicken eggs were inoculated with 10(6) 50% embryo infectious dose (EID(50)) H5N9 AIV on d 13. Hemagglutinating units in allantoic fluid were determined at 48 h postinoculation. For the in vivo study, twenty-four 1-wk-old broilers were inoculated with 10(6) EID(50) H5N3, and virus titers in lungs were evaluated at d 4 postinoculation. This is the first report revealing no significant association between Mx1 genotypes and low pathogenesis AIV infection both in ovo and in vivo in the chicken. Total RNA samples were isolated from chicken lung tissues in the in vivo study, and the Mx1 mRNA expression assay among 3 genotypes also suggested that only heterozygote birds had significantly greater expression with AIV infection than noninfected birds. A recombination breakpoint within Mx1 gene was also first identified, which has laid a solid foundation for further understanding biological function of the Mx1 gene in chickens. The current study provides valuable information on the effect of the Mx1 gene on the genetic resistance to AIV in chickens, and

  5. Chlamydia psittaci infection increases mortality of avian influenza virus H9N2 by suppressing host immune response

    PubMed Central

    Chu, Jun; Zhang, Qiang; Zhang, Tianyuan; Han, Er; Zhao, Peng; Khan, Ahrar; He, Cheng; Wu, Yongzheng

    2016-01-01

    Avian influenza virus subtype H9N2 (H9N2) and Chlamydia psittaci (C. psittaci) are frequently isolated in chickens with respiratory disease. However, their roles in co-infection remain unclear. We tested the hypothesis that C. psittaci enhances H9N2 infection through suppression of host immunity. Thus, 10-day-old SPF chickens were inoculated intra-tracheally with a high or low virulence C. psittaci strain, and were simultaneously vaccinated against Newcastle disease virus (NDV). Significant decreases in body weight, NDV antibodies and immune organ indices occurred in birds with the virulent C. psittaci infection, while the ratio of CD4+/CD8+ T cells increased significantly compared to that of the lower virulence strain. A second group of birds were inoculated with C. psittaci and H9N2 simultaneously (C. psittaci+H9N2), C. psittaci 3 days prior to H9N2 (C. psittaci/H9N2), or 3 days after H9N2 (H9N2/C. psittaci), C. psittaci or H9N2 alone. Survival rates were 65%, 80% and 90% in the C. psittaci/H9N2, C. psittaci+H9N2 and H9N2/C. psittaci groups, respectively and respiratory clinical signs, lower expression of pro-inflammatory cytokines and higher pathogen loads were found in both C. psittaci/H9N2 and C. psittaci+H9N2 groups. Hence, virulent C. psittaci infection suppresses immune response by inhibiting humoral responses and altering Th1/Th2 balance, increasing mortality in H9N2 infected birds. PMID:27405059

  6. Planning and executing a vaccination campaign against avian influenza.

    PubMed

    Marangon, S; Cristalli, A; Busani, L

    2007-01-01

    Vaccination against avian influenza infection caused by H5 or H7 virus subtypes has been used on several occasions in recent years to control and in some cases eradicate the disease. In order to contain avian influenza infection effectively, immunization should be combined with a coordinated set of control and monitoring measures. The outcome of an immunization campaign depends on the territorial strategy; whereas the capacity of the veterinary services in developed countries permits enforcement of strategies aimed at eradicating avian influenza, many countries currently affected by highly pathogenic avian influenza (HPAI) H5N1 viruses have a limited veterinary infrastructure and a limited capacity to respond to such epidemics. In these countries, resources are still insufficient to conduct adequate surveillance for identification and reaction to avian influenza outbreaks when they occur. When properly applied in this scenario, immunization can reduce mortality and production losses. In the long term, immunization might also decrease the prevalence of infection to levels at which stamping-out and surveillance can be applied. Countries should adapt their immunization programmes to local conditions in order to guarantee their efficacy and sustainability. In the initial emergency phase, human resources can be mobilized, with reliance on personal responsibility and motivation, thus compensating for potential shortcomings in organization. A more appropriate allocation of resources must be pursued in the long term, remembering that biosecurity is the main component of an exit strategy and must always be improved.

  7. Avian biology, the human influence on global avian influenza transmission, and performing surveillance in wild birds.

    PubMed

    Gibbs, Samantha E J

    2010-06-01

    This paper takes a closer look at three interrelated areas of study: avian host biology, the role of human activities in virus transmission, and the surveillance activities centered on avian influenza in wild birds. There are few ecosystems in which birds are not found. Correspondingly, avian influenza viruses are equally global in distribution, relying on competent avian hosts. The immune systems, annual cycles, feeding behaviors, and migration patterns of these hosts influence the ecology of the disease. Decreased biodiversity has also been linked to heightened disease transmission in several disease systems, and it is evident that active destruction and modification of wetland environments for human use is impacting avian populations drastically. Legal and illegal trade in wild birds present a significant risk for introduction and maintenance of exotic diseases. After the emergence of HPAI H5N1 in Hong Kong in 1996 and the ensuing geographic spread of outbreaks after 2003, both infected countries and those at risk of introduction began intensifying avian influenza surveillance efforts. Several techniques for sampling wild birds for influenza viruses have been applied. Benefits, problems, and biases exist for each method. The wild bird avian influenza surveillance programs taking place across the continents are now scaling back due to the rise of other spending priorities; hopefully the lessons learned from this work will be preserved and will inform future research and disease outbreak response priorities.

  8. Highly pathogenic avian influenza viruses do not inhibit interferon synthesis in infected chickens but can override the interferon-induced antiviral state.

    PubMed

    Penski, Nicola; Härtle, Sonja; Rubbenstroth, Dennis; Krohmann, Carsten; Ruggli, Nicolas; Schusser, Benjamin; Pfann, Michael; Reuter, Antje; Gohrbandt, Sandra; Hundt, Jana; Veits, Jutta; Breithaupt, Angele; Kochs, Georg; Stech, Jürgen; Summerfield, Artur; Vahlenkamp, Thomas; Kaspers, Bernd; Staeheli, Peter

    2011-08-01

    From infection studies with cultured chicken cells and experimental mammalian hosts, it is well known that influenza viruses use the nonstructural protein 1 (NS1) to suppress the synthesis of interferon (IFN). However, our current knowledge regarding the in vivo role of virus-encoded NS1 in chickens is much more limited. Here, we report that highly pathogenic avian influenza viruses of subtypes H5N1 and H7N7 lacking fully functional NS1 genes were attenuated in 5-week-old chickens. Surprisingly, in diseased birds infected with NS1 mutants, the IFN levels were not higher than in diseased birds infected with wild-type virus, suggesting that NS1 cannot suppress IFN gene expression in at least one cell population of infected chickens that produces large amounts of the cytokine in vivo. To address the question of why influenza viruses are highly pathogenic in chickens although they strongly activate the innate immune system, we determined whether recombinant chicken alpha interferon (IFN-α) can inhibit the growth of highly pathogenic avian influenza viruses in cultured chicken cells and whether it can ameliorate virus-induced disease in 5-week-old birds. We found that IFN treatment failed to confer substantial protection against challenge with highly pathogenic viruses, although it was effective against viruses with low pathogenic potential. Taken together, our data demonstrate that preventing the synthesis of IFN is not the primary role of the viral NS1 protein during infection of chickens. Our results further suggest that virus-induced IFN does not contribute substantially to resistance of chickens against highly pathogenic influenza viruses.

  9. Avian influenza viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast to human H1N1 viruses

    PubMed Central

    Simon, Philippe F.; de La Vega, Marc-Antoine; Paradis, Éric; Mendoza, Emelissa; Coombs, Kevin M.; Kobasa, Darwyn; Beauchemin, Catherine A. A.

    2016-01-01

    Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain’s generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses. PMID:27080193

  10. Avian influenza viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast to human H1N1 viruses

    NASA Astrophysics Data System (ADS)

    Simon, Philippe F.; de La Vega, Marc-Antoine; Paradis, Éric; Mendoza, Emelissa; Coombs, Kevin M.; Kobasa, Darwyn; Beauchemin, Catherine A. A.

    2016-04-01

    Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain’s generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses.

  11. Experimental infection of SPF and Korean native chickens with highly pathogenic avian influenza virus (H5N8).

    PubMed

    Lee, Eun-Kyoung; Song, Byung-Min; Kang, Hyun-Mi; Woo, Sang-Hee; Heo, Gyeong-Beom; Jung, Suk Chan; Park, Yong Ho; Lee, Youn-Jeong; Kim, Jae-Hong

    2016-05-01

    In 2014, an H5N8 outbreak of highly pathogenic avian influenza (HPAI) occurred in South Korea. The H5N8 strain produced mild to moderate clinical signs and mortality rates in commercial chicken farms, especially Korean native chicken farms. To understand the differences between their pathogenicity in SPF chicken and Korean native chicken., we evaluated the mean bird lethal doses (BLD50) of the Korean representative H5N8 virus (A/broiler duck/Korea/Buan2/2014) The BLD50values of the H5N8 virus were 10(5.3)EID50 and 10(6.7)EID50 in SPF and Korean native chickens, respectively. In addition, the mean death time was much longer, and the viral titers in tissues of H5N8-infected chickens were significantly lower, in the Korean group than in the SPF group. These features of the H5N8 virus likely account for its mild-to-moderate pathogenicity in commercial chicken farms, especially Korean native chicken flocks, despite the fact that it is a highly pathogenic virus according to the OIE criteria. To improve current understanding and management of HPAI, pathogenic characterization of novel emerging viruses should be performed by natural route in major poultry species in each country.

  12. Global dynamics of avian influenza epidemic models with psychological effect.

    PubMed

    Liu, Sanhong; Pang, Liuyong; Ruan, Shigui; Zhang, Xinan

    2015-01-01

    Cross-sectional surveys conducted in Thailand and China after the outbreaks of the avian influenza A H5N1 and H7N9 viruses show a high degree of awareness of human avian influenza in both urban and rural populations, a higher level of proper hygienic practice among urban residents, and in particular a dramatically reduced number of visits to live markets in urban population after the influenza A H7N9 outbreak in China in 2013. In this paper, taking into account the psychological effect toward avian influenza in the human population, a bird-to-human transmission model in which the avian population exhibits saturation effect is constructed. The dynamical behavior of the model is studied by using the basic reproduction number. The results demonstrate that the saturation effect within avian population and the psychological effect in human population cannot change the stability of equilibria but can affect the number of infected humans if the disease is prevalent. Numerical simulations are given to support the theoretical results and sensitivity analyses of the basic reproduction number in terms of model parameters that are performed to seek for effective control measures for avian influenza.

  13. Experimentally Infected Domestic Ducks Show Efficient Transmission of Indonesian H5N1 Highly Pathogenic Avian Influenza Virus, but Lack Persistent Viral Shedding

    PubMed Central

    Wibawa, Hendra; Bingham, John; Nuradji, Harimurti; Lowther, Sue; Payne, Jean; Harper, Jenni; Junaidi, Akhmad; Middleton, Deborah; Meers, Joanne

    2014-01-01

    Ducks are important maintenance hosts for avian influenza, including H5N1 highly pathogenic avian influenza viruses. A previous study indicated that persistence of H5N1 viruses in ducks after the development of humoral immunity may drive viral evolution following immune selection. As H5N1 HPAI is endemic in Indonesia, this mechanism may be important in understanding H5N1 evolution in that region. To determine the capability of domestic ducks to maintain prolonged shedding of Indonesian clade 2.1 H5N1 virus, two groups of Pekin ducks were inoculated through the eyes, nostrils and oropharynx and viral shedding and transmission investigated. Inoculated ducks (n = 15), which were mostly asymptomatic, shed infectious virus from the oral route from 1 to 8 days post inoculation, and from the cloacal route from 2–8 dpi. Viral ribonucleic acid was detected from 1–15 days post inoculation from the oral route and 1–24 days post inoculation from the cloacal route (cycle threshold <40). Most ducks seroconverted in a range of serological tests by 15 days post inoculation. Virus was efficiently transmitted during acute infection (5 inoculation-infected to all 5 contact ducks). However, no evidence for transmission, as determined by seroconversion and viral shedding, was found between an inoculation-infected group (n = 10) and contact ducks (n = 9) when the two groups only had contact after 10 days post inoculation. Clinical disease was more frequent and more severe in contact-infected (2 of 5) than inoculation-infected ducks (1 of 15). We conclude that Indonesian clade 2.1 H5N1 highly pathogenic avian influenza virus does not persist in individual ducks after acute infection. PMID:24392085

  14. Experimentally infected domestic ducks show efficient transmission of Indonesian H5N1 highly pathogenic avian influenza virus, but lack persistent viral shedding.

    PubMed

    Wibawa, Hendra; Bingham, John; Nuradji, Harimurti; Lowther, Sue; Payne, Jean; Harper, Jenni; Junaidi, Akhmad; Middleton, Deborah; Meers, Joanne

    2014-01-01

    Ducks are important maintenance hosts for avian influenza, including H5N1 highly pathogenic avian influenza viruses. A previous study indicated that persistence of H5N1 viruses in ducks after the development of humoral immunity may drive viral evolution following immune selection. As H5N1 HPAI is endemic in Indonesia, this mechanism may be important in understanding H5N1 evolution in that region. To determine the capability of domestic ducks to maintain prolonged shedding of Indonesian clade 2.1 H5N1 virus, two groups of Pekin ducks were inoculated through the eyes, nostrils and oropharynx and viral shedding and transmission investigated. Inoculated ducks (n = 15), which were mostly asymptomatic, shed infectious virus from the oral route from 1 to 8 days post inoculation, and from the cloacal route from 2-8 dpi. Viral ribonucleic acid was detected from 1-15 days post inoculation from the oral route and 1-24 days post inoculation from the cloacal route (cycle threshold <40). Most ducks seroconverted in a range of serological tests by 15 days post inoculation. Virus was efficiently transmitted during acute infection (5 inoculation-infected to all 5 contact ducks). However, no evidence for transmission, as determined by seroconversion and viral shedding, was found between an inoculation-infected group (n = 10) and contact ducks (n = 9) when the two groups only had contact after 10 days post inoculation. Clinical disease was more frequent and more severe in contact-infected (2 of 5) than inoculation-infected ducks (1 of 15). We conclude that Indonesian clade 2.1 H5N1 highly pathogenic avian influenza virus does not persist in individual ducks after acute infection.

  15. Modelling the species jump: towards assessing the risk of human infection from novel avian influenzas.

    PubMed

    Hill, A A; Dewé, T; Kosmider, R; Von Dobschuetz, S; Munoz, O; Hanna, A; Fusaro, A; De Nardi, M; Howard, W; Stevens, K; Kelly, L; Havelaar, A; Stärk, K

    2015-09-01

    The scientific understanding of the driving factors behind zoonotic and pandemic influenzas is hampered by complex interactions between viruses, animal hosts and humans. This complexity makes identifying influenza viruses of high zoonotic or pandemic risk, before they emerge from animal populations, extremely difficult and uncertain. As a first step towards assessing zoonotic risk of influenza, we demonstrate a risk assessment framework to assess the relative likelihood of influenza A viruses, circulating in animal populations, making the species jump into humans. The intention is that such a risk assessment framework could assist decision-makers to compare multiple influenza viruses for zoonotic potential and hence to develop appropriate strain-specific control measures. It also provides a first step towards showing proof of principle for an eventual pandemic risk model. We show that the spatial and temporal epidemiology is as important in assessing the risk of an influenza A species jump as understanding the innate molecular capability of the virus. We also demonstrate data deficiencies that need to be addressed in order to consistently combine both epidemiological and molecular virology data into a risk assessment framework. PMID:26473042

  16. Lack of transmission of a human influenza virus with avian receptor specificity between ferrets is not due to decreased virus shedding but rather a lower infectivity in vivo.

    PubMed

    Roberts, Kim L; Shelton, Holly; Scull, Margaret; Pickles, Raymond; Barclay, Wendy S

    2011-08-01

    Influenza virus attaches to host cells by sialic acid (SA). Human influenza viruses show preferential affinity for α2,6-linked SA, whereas avian influenza viruses bind α2,3-linked SA. In this study, mutation of the haemagglutinin receptor-binding site of a human H3N2 influenza A virus to switch binding to α2,3-linked SA did not eliminate infection of ferrets but prevented transmission, even in a co-housed model. The mutant virus was shed from the noses of ferrets directly inoculated with virus in the same amounts and for the same length of time as wild-type virus. Mutant virus infection was localized to the same anatomical regions of the upper respiratory tract of directly inoculated animals. Interestingly, wild-type virus was more readily neutralized than the mutant virus in vitro by ferret nasal washes containing mucus. Moreover after inoculation of equal doses, the mutant virus grew poorly in ex vivo ferret nasal turbinate tissue compared with wild-type virus. The dose of mutant virus required to establish infection in the directly inoculated ferrets was 40-fold higher than for wild-type virus. It was concluded that minimum infectious dose is a predictor of virus transmissibility and it is suggested that, as virus passes from one host to another through stringent environmental conditions, viruses with a preference for α2,3-linked SA are unlikely to inoculate a new mammalian host in sufficient quantities to initiate a productive infection.

  17. Different routes of inoculation impact infectivity and pathogenesis of H5N1 high pathogenicity avian influenza virus infection in chickens and domestic ducks.

    PubMed

    Kwon, Y K; Swayne, D E

    2010-12-01

    The H5N1 type A influenza viruses classified as Qinghai-like virus (clade 2.2) are a unique lineage of type A influenza viruses with the capacity to produce significant disease and mortality in gallinaceous and anseriform birds, including domestic and wild ducks. The objective of this study was to determine the susceptibility and pathogenesis of chickens and domestic ducks to A/Whooper Swan/Mongolia/224/05 (H5N1) high pathogenicity avian influenza (HPAI) virus when administered through respiratory or alimentary routes of exposure. The chickens and ducks were more susceptible to the H5N1 HPAI virus, as evidenced by low infectious and lethal viral doses, when exposed by intranasal as compared to alimentary routes of inoculation (intragastric or oral-fed infected chicken meat). In the alimentary exposure pathogenesis study, pathologic changes included hemorrhage, necrosis, and inflammation in association with virus detection. These changes were generally observed in most of the visceral organs of chickens, between 2 and 4 days postinoculation (DPI), and are similar to lesions and virus localization seen in birds in natural cases or in experimental studies using the intranasal route. Alimentary exposure to the virus caused systemic infection in the ducks, characterized by moderate lymphocytic encephalitis, necrotized hepatitis, and pancreatitis with a corresponding demonstration of virus within the lesions. In both chickens and ducks with alimentary exposure, lesions, virus, or both were first demonstrated in the upper alimentary tract on 1 DPI, suggesting that the alimentary tract was the initial site affected upon consumption of infected meat or on gavage of virus in liquid medium. However, as demonstrated in the infectivity study in chickens, alimentary infection required higher exposure doses to produce infection as compared to intranasal exposure in chickens. These data suggest that upper respiratory exposure to H5N1 HPAI virus in birds is more likely to result in

  18. Minor differences in body condition and immune status between avian influenza virus-infected and noninfected mallards: a sign of coevolution?

    PubMed Central

    van Dijk, Jacintha G B; Fouchier, Ron A M; Klaassen, Marcel; Matson, Kevin D

    2015-01-01

    Wildlife pathogens can alter host fitness. Low pathogenic avian influenza virus (LPAIV) infection is thought to have negligible impacts on wild birds; however, effects of infection in free-living birds are largely unstudied. We investigated the extent to which LPAIV infection and shedding were associated with body condition and immune status in free-living mallards (Anas platyrhynchos), a partially migratory key LPAIV host species. We sampled mallards throughout the species' annual autumn LPAIV infection peak, and we classified individuals according to age, sex, and migratory strategy (based on stable hydrogen isotope analysis) when analyzing data on body mass and five indices of immune status. Body mass was similar for LPAIV-infected and noninfected birds. The degree of virus shedding from the cloaca and oropharynx was not associated with body mass. LPAIV infection and shedding were not associated with natural antibody (NAbs) and complement titers (first lines of defense against infections), concentrations of the acute phase protein haptoglobin (Hp), ratios of heterophils to lymphocytes (H:L ratio), and avian influenza virus (AIV)-specific antibody concentrations. NAbs titers were higher in LPAIV-infected males and local (i.e., short distance) migrants than in infected females and distant (i.e., long distance) migrants. Hp concentrations were higher in LPAIV-infected juveniles and females compared to infected adults and males. NAbs, complement, and Hp levels were lower in LPAIV-infected mallards in early autumn. Our study demonstrates weak associations between infection with and shedding of LPAIV and the body condition and immune status of free-living mallards. These results may support the role of mallards as asymptomatic carriers of LPAIV and raise questions about possible coevolution between virus and host. PMID:25691969

  19. Short-Term Heat Shock Affects Host–Virus Interaction in Mice Infected with Highly Pathogenic Avian Influenza Virus H5N1

    PubMed Central

    Xue, Jia; Fan, Xiaoxu; Yu, Jing; Zhang, Shouping; Xiao, Jin; Hu, Yanxin; Wang, Ming

    2016-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 is a highly contagious virus that can cause acute respiratory infections and high human fatality ratio due to excessive inflammatory response. Short-term heat shock, as a stressful condition, could induce the expression of heat shock proteins that function as molecular chaperones to protect cells against multiple stresses. However, the protective effect of short-term heat shock in influenza infection is far from being understood. In this study, mice were treated at 39°C for 4 h before being infected with HPAIV H5N1. Interestingly, short-term heat shock significantly increased the levels of HSP70 and pro-inflammatory cytokines IL-6, TNF-α, IFN-β, and IFN-γ in the lung tissues of mice. Following HPAIV H5N1 infection, short-term heat shock alleviated immunopathology and viral replication in lung tissue and repressed the weight loss and increased the survival rate of H5N1-infected mice. Our data reported that short-term heat shock provided beneficial anti-HPAIV H5N1 properties in mice model, which offers an alternative strategy for non-drug prevention for influenza infection. PMID:27379054

  20. Avian influenza: an emerging pandemic threat.

    PubMed

    Jin, Xian Wen; Mossad, Sherif B

    2005-12-01

    While we are facing the threat of an emerging pandemic from the current avian flu outbreak in Asia, we have learned important traits of the virus responsible for the 1918 Spanish influenza pandemic that made it so deadly. By using stockpiled antiviral drugs effectively and developing an effective vaccine, we can be in a better position than ever to mitigate the global impact of an avian influenza pandemic. PMID:16392727

  1. Duck MDA5 functions in innate immunity against H5N1 highly pathogenic avian influenza virus infections.

    PubMed

    Wei, Liangmeng; Cui, Jin; Song, Yafen; Zhang, Shuo; Han, Fei; Yuan, Runyu; Gong, Lang; Jiao, Peirong; Liao, Ming

    2014-01-01

    Melanoma differentiation-associated gene 5 (MDA5) is an important intracellular receptor that recognizes long molecules of viral double-stranded RNA in innate immunity. To understand the mechanism of duck MDA5-mediated innate immunity, we cloned the MDA5 cDNA from the Muscovy duck (Cairina moschata). Quantitative real-time PCR analysis indicates that duck MDA5 mRNA was constitutively expressed in all sampled tissues. A significant increase of MDA5 mRNA was detected in the brain, spleen and lungs of ducks after infection with an H5N1 highly pathogenic avian influenza virus (HPAIV). We investigated the role of the predicted functional domains of MDA5. The results indicate the caspase activation and recruitment domain (CARD) of duck MDA5 had a signal transmission function through IRF-7-dependent signaling pathway. Overexpression of the CARD strongly activated the chicken IFN-β promoter and upregulated the mRNA expression of antiviral molecules (such as OAS, PKR and Mx), proinflammatory cytokines (such as IL-2, IL-6, IFN-α and IFN-γ, but not IL-1β and IL-8) and retinoic acid-inducible gene I (RIG-I)-like receptors (RLR) (RIG-I and LGP2) without exogenous stimulation. We also demonstrate the NS1 of the H5N1 HPAIV inhibited the duck MDA5-mediated signaling pathway in vitro. These results suggest that duck MDA5 is an important receptor for inducing antiviral activity in the host immune response of ducks.

  2. Pathogenicity of Highly Pathogenic Avian Influenza Virus H5N1 in Naturally Infected Poultry in Egypt.

    PubMed

    Hagag, Ibrahim Thabet; Mansour, Shimaa M G; Zhang, Zerui; Ali, Ahmed A H; Ismaiel, El-Bakry M; Salama, Ali A; Cardona, Carol J; Collins, James; Xing, Zheng

    2015-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 has been endemic in Egypt since 2006, and there is increasing concern for its potential to become highly transmissible among humans. Infection by HPAIV H5N1 has been described in experimentally challenged birds. However, the pathogenicity of the H5N1 isolated in Egypt has never been reported in naturally infected chickens and ducks. Here we report a 2013 outbreak of HPAIV H5N1 in commercial poultry farms and backyards in Sharkia Province, Egypt. The main symptoms were ecchymosis on the shanks and feet, cyanosis of the comb and wattles, subcutaneous edema of the head and neck for chickens, and nervous signs (torticollis) for ducks. Within 48-72 hrs of the onset of illness, the average mortality rates were 22.8-30% and 28.5-40% in vaccinated chickens and non-vaccinated ducks, respectively. Tissue samples of chickens and ducks were collected for analyses with cross-section immunohistochemistry and real-time RT-PCR for specific viral RNA transcripts. While viral RNA was detected in nearly all tissues and sera collected, viral nucleoprotein was detected almost ubiquitously in all tissues, including testis. Interestingly, viral antigen was also observed in endothelial cells of most organs in chickens, and clearly detected in the trachea and brain in particular. Viral nucleoprotein was also detected in mononuclear cells of various organs, especially pulmonary tissue. We performed phylogenetic analyses and compared the genomic sequences of the hemagglutinin (HA) and nonstructural proteins (NS) among the isolated viruses, the HPAIV circulated in Egypt in the past and currently, and some available vaccine strains. Further analysis of deduced amino acids of both HA and NS1 revealed that our isolates carried molecular determinants of HPAIV, including the multibasic amino acids (PQGERRRK/KR*GLF) in the cleavage site in HA and glutamate at position 92 (D92E) in NS1. This is the first report of the pathogenicity of the HPAIVH5N

  3. Pathogenicity of Highly Pathogenic Avian Influenza Virus H5N1 in Naturally Infected Poultry in Egypt

    PubMed Central

    Hagag, Ibrahim Thabet; Mansour, Shimaa M. G.; Zhang, Zerui; Ali, Ahmed A. H.; Ismaiel, El-Bakry M.; Salama, Ali A.; Cardona, Carol J.; Collins, James; Xing, Zheng

    2015-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 has been endemic in Egypt since 2006, and there is increasing concern for its potential to become highly transmissible among humans. Infection by HPAIV H5N1 has been described in experimentally challenged birds. However, the pathogenicity of the H5N1 isolated in Egypt has never been reported in naturally infected chickens and ducks. Here we report a 2013 outbreak of HPAIV H5N1 in commercial poultry farms and backyards in Sharkia Province, Egypt. The main symptoms were ecchymosis on the shanks and feet, cyanosis of the comb and wattles, subcutaneous edema of the head and neck for chickens, and nervous signs (torticollis) for ducks. Within 48-72 hrs of the onset of illness, the average mortality rates were 22.8-30% and 28.5-40% in vaccinated chickens and non-vaccinated ducks, respectively. Tissue samples of chickens and ducks were collected for analyses with cross-section immunohistochemistry and real-time RT-PCR for specific viral RNA transcripts. While viral RNA was detected in nearly all tissues and sera collected, viral nucleoprotein was detected almost ubiquitously in all tissues, including testis. Interestingly, viral antigen was also observed in endothelial cells of most organs in chickens, and clearly detected in the trachea and brain in particular. Viral nucleoprotein was also detected in mononuclear cells of various organs, especially pulmonary tissue. We performed phylogenetic analyses and compared the genomic sequences of the hemagglutinin (HA) and nonstructural proteins (NS) among the isolated viruses, the HPAIV circulated in Egypt in the past and currently, and some available vaccine strains. Further analysis of deduced amino acids of both HA and NS1 revealed that our isolates carried molecular determinants of HPAIV, including the multibasic amino acids (PQGERRRK/KR*GLF) in the cleavage site in HA and glutamate at position 92 (D92E) in NS1. This is the first report of the pathogenicity of the HPAIVH5N

  4. Avian influenza: worldwide situation and effectiveness of current vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 63 countries during the past 18 years. The majority of the recent outbreaks of H5N2 HPAI have occurred in Indonesia, Egypt, Vietnam, and Bangladesh, in decreasi...

  5. Prevention and control of avian influenza in Asia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 62 countries during the past 15 years. For 2011-2012, 19 countries reported outbreaks of H5N1 in domestic poultry, wild birds or both. The majority of the outbr...

  6. Long-Term Effect of Serial Infections with H13 and H16 Low-Pathogenic Avian Influenza Viruses in Black-Headed Gulls

    PubMed Central

    Verhagen, Josanne H.; van Amerongen, Geert; van de Bildt, Marco; Majoor, Frank; Fouchier, Ron A. M.

    2015-01-01

    ABSTRACT Infections of domestic and wild birds with low-pathogenic avian influenza viruses (LPAIVs) have been associated with protective immunity to subsequent infection. However, the degree and duration of immunity in wild birds from previous LPAIV infection, by the same or a different subtype, are poorly understood. Therefore, we inoculated H13N2 (A/black-headed gull/Netherlands/7/2009) and H16N3 (A/black-headed gull/Netherlands/26/2009) LPAIVs into black-headed gulls (Chroicocephalus ridibundus), their natural host species, and measured the long-term immune response and protection against one or two reinfections over a period of >1 year. This is the typical interval between LPAIV epizootics in wild birds. Reinfection with the same virus resulted in progressively less virus excretion, with complete abrogation of virus excretion after two infections for H13 but not H16. However, reinfection with the other virus affected neither the level nor duration of virus excretion. Virus excretion by immunologically naive birds did not differ in total levels of excreted H13 or H16 virus between first- and second-year birds, but the duration of H13 excretion was shorter for second-year birds. Furthermore, serum antibody levels did not correlate with protection against LPAIV infection. LPAIV-infected gulls showed no clinical signs of disease. These results imply that the epidemiological cycles of H13 and H16 in black-headed gulls are relatively independent from each other and depend mainly on infection of first-year birds. IMPORTANCE Low-pathogenic avian influenza viruses (LPAIVs) circulate mainly in wild water birds but are occasionally transmitted to other species, including humans, where they cause subclinical to fatal disease. To date, the effect of LPAIV-specific immunity on the epidemiology of LPAIV in wild birds is poorly understood. In this study, we investigated the effect of H13 and H16 LPAIV infection in black-headed gulls on susceptibility and virus excretion of

  7. RNA-seq analysis revealed novel genes and signaling pathway associated with disease resistance to avian influenza virus infection in chickens.

    PubMed

    Wang, Y; Lupiani, B; Reddy, S M; Lamont, S J; Zhou, H

    2014-02-01

    Avian influenza virus (AIV) is a type A virus of the family Orthomyxoviridae. Avian influenza virus infection can cause significant economic losses to the poultry industry, and raises a great public health threat due to potential host jump from animals to humans. To develop more effective intervention strategies to prevent and control AIV infection in poultry, it is essential to elucidate molecular mechanisms of host response to AIV infection in chickens. The objective of this study was to identify genes and signal pathways associated with resistance to AIV infection in 2 genetically distinct highly inbred chicken lines (Fayoumi, relatively resistant to AIV infection, and Leghorn, susceptible to AIV infection). Three-week-old chickens were inoculated with 10(7) EID50 of low pathogenic H5N3 AIV, and lungs and trachea were harvested 4 d postinoculation. Four cDNA libraries (1 library each for infected and noninfected Leghorn, and infected and noninfected Fayoumi) were prepared from the lung samples and sequenced by Illumina Genome Analyzer II, which yielded a total of 116 million, 75-bp single-end reads. Gene expression levels of all annotated chicken genes were analyzed using CLC Genomics Workbench. DESeq was used to identify differentially expressed transcripts between infected and noninfected birds and between genetic lines (false discovery rate < 0.05 and fold-change > 2). Of the expressed transcripts in a total of 17,108 annotated chicken genes in Ensembl database, 82.44 and 81.40% were identified in Leghorn and Fayoumi birds, respectively. The bioinformatics analysis suggests that the hemoglobin family genes, the functional involvements for oxygen transportation and circulation, and cell adhesion molecule signaling pathway play significant roles in disease resistance to AIV infection in chickens. Further investigation of the roles of these candidate genes and signaling pathways in the regulation of host-AIV interaction can lead new directions for the

  8. Avian Influenza: a global threat needing a global solution.

    PubMed

    Koh, Gch; Wong, Ty; Cheong, Sk; Koh, Dsq

    2008-11-13

    There have been three influenza pandemics since the 1900s, of which the 1919-1919 flu pandemic had the highest mortality rates. The influenza virus infects both humans and birds, and mutates using two mechanisms: antigenic drift and antigenic shift. Currently, the H5N1 avian flu virus is limited to outbreaks among poultry and persons in direct contact to infected poultry, but the mortality rate among infected humans is high. Avian influenza (AI) is endemic in Asia as a result of unregulated poultry rearing in rural areas. Such birds often live in close proximity to humans and this increases the chance of genetic re-assortment between avian and human influenza viruses which may produce a mutant strain that is easily transmitted between humans. Once this happens, a global pandemic is likely. Unlike SARS, a person with influenza infection is contagious before the onset of case-defining symptoms which limits the effectiveness of case isolation as a control strategy. Researchers have shown that carefully orchestrated of public health measures could potentially limit the spread of an AI pandemic if implemented soon after the first cases appear. To successfully contain and control an AI pandemic, both national and global strategies are needed. National strategies include source surveillance and control, adequate stockpiles of anti-viral agents, timely production of flu vaccines and healthcare system readiness. Global strategies such as early integrated response, curbing the disease outbreak at source, utilization of global resources, continuing research and open communication are also critical.

  9. Human influenza is more effective than avian influenza at antiviral suppression in airway cells.

    PubMed

    Hsu, Alan Chen-Yu; Barr, Ian; Hansbro, Philip M; Wark, Peter A

    2011-06-01

    Airway epithelial cells are the initial site of infection with influenza viruses. The innate immune responses of airway epithelial cells to infection are important in limiting virus replication and spread. However, relatively little is known about the importance of this innate antiviral response to infection. Avian influenza viruses are a potential source of future pandemics; therefore, it is critical to examine the effectiveness of the host antiviral system to different influenza viruses. We used a human influenza (H3N2) and a low-pathogenic avian influenza (H11N9) to assess and compare the antiviral responses of Calu-3 cells. After infection, H3N2 replicated more effectively than the H11N9 in Calu-3 cells. This was not due to differential expression of sialic acid residues on Calu-3 cells, but was attributed to the interference of host antiviral responses by H3N2. H3N2 induced a delayed antiviral signaling and impaired type I and type III IFN induction compared with the H11N9. The gene encoding for nonstructural (NS) 1 protein was transfected into the bronchial epithelial cells (BECs), and the H3N2 NS1 induced a greater inhibition of antiviral responses compared with the H11N9 NS1. Although the low-pathogenic avian influenza virus was capable of infecting BECs, the human influenza virus replicated more effectively than avian influenza virus in BECs, and this was due to a differential ability of the two NS1 proteins to inhibit antiviral responses. This suggests that the subversion of human antiviral responses may be an important requirement for influenza viruses to adapt to the human host and cause disease.

  10. Serological evidence of H7, H5 and H9 avian influenza virus co-infection among herons in a city park in Jiangxi, China

    PubMed Central

    Wang, Guirong; Zhang, Tao; Li, Xiaowen; Jiang, Zhiben; Jiang, Qian; Chen, Quanjiao; Tu, Xiaobin; Chen, Ze; Chang, Jianyu; Li, Laixing; Xu, Bing

    2014-01-01

    Extensive surveillance of influenza A viruses in different avian species is critical for understanding its transmission. Here, a breeding colony of Little Egrets and Black-crowned Night Herons was monitored both serologically and virologically in a city park of Jiangxi in 2009. A portion of herons had antibodies against H7 (52%), H5 (55%) and H9 (6%) subtype avian influenza virus (AIV) in egg yolk samples, and 45% had antibodies against different AIV serotypes (H5, H7 or H9) simultaneously. Greater numbers of samples with anti-AIV H5N1 recombination-4 (Re-4, clade 7) antibodies were measured compared with those containing anti-H5N1 Re-1 (clade 0) and Re-5 (clade 2.3.4) antibodies. Eight strains of H5 and 9 strains of H9 were isolated from poultry of nearby markets. These results indicate wild birds are at risk from infection and co-infection with H7, H5, and H9 subtypes. Investigation of wild bird infection might provide an early warning sign of potential novel AIVs circulating in the nearby poultry industry and even in human society. PMID:25242001

  11. Serological evidence of H7, H5 and H9 avian influenza virus co-infection among herons in a city park in Jiangxi, China.

    PubMed

    Wang, Guirong; Zhang, Tao; Li, Xiaowen; Jiang, Zhiben; Jiang, Qian; Chen, Quanjiao; Tu, Xiaobin; Chen, Ze; Chang, Jianyu; Li, Laixing; Xu, Bing

    2014-09-22

    Extensive surveillance of influenza A viruses in different avian species is critical for understanding its transmission. Here, a breeding colony of Little Egrets and Black-crowned Night Herons was monitored both serologically and virologically in a city park of Jiangxi in 2009. A portion of herons had antibodies against H7 (52%), H5 (55%) and H9 (6%) subtype avian influenza virus (AIV) in egg yolk samples, and 45% had antibodies against different AIV serotypes (H5, H7 or H9) simultaneously. Greater numbers of samples with anti-AIV H5N1 recombination-4 (Re-4, clade 7) antibodies were measured compared with those containing anti-H5N1 Re-1 (clade 0) and Re-5 (clade 2.3.4) antibodies. Eight strains of H5 and 9 strains of H9 were isolated from poultry of nearby markets. These results indicate wild birds are at risk from infection and co-infection with H7, H5, and H9 subtypes. Investigation of wild bird infection might provide an early warning sign of potential novel AIVs circulating in the nearby poultry industry and even in human society.

  12. Prevention and Treatment of Avian Influenza A Viruses in People

    MedlinePlus

    ... Research Making a Candidate Vaccine Virus Related Links Influenza Types Seasonal Avian Swine Variant Pandemic Other Get ... Button Past Newsletters Prevention and Treatment of Avian Influenza A Viruses in People Language: English Español ...

  13. Avian influenza surveillance of wild birds

    USGS Publications Warehouse

    Slota, Paul

    2007-01-01

    The President's National Strategy for Pandemic Influenza directs federal agencies to expand the surveillance of United States domestic livestock and wildlife to ensure early warning of hightly pathogenic avian influenza (HPAI) in the U.S. The immediate concern is a potential introduction of HPAI H5N1 virus into the U.S. The presidential directive resulted in the U.S. Interagency Strategic Plan for Early Detection of H5N1 Highly Pathogenic Avian Influenza in Wild Migratory Birds (referred to as the Wild Bird Surveillance Plan or the Plan).

  14. Troop education and avian influenza surveillance in military barracks in Ghana, 2011

    PubMed Central

    2012-01-01

    Background Influenza A viruses that cause highly pathogenic avian influenza (HPAI) also infect humans. In many developing countries such as Ghana, poultry and humans live in close proximity in both the general and military populations, increasing risk for the spread of HPAI from birds to humans. Respiratory infections such as influenza are especially prone to rapid spread among military populations living in close quarters such as barracks making this a key population for targeted avian influenza surveillance and public health education. Method Twelve military barracks situated in the coastal, tropical rain forest and northern savannah belts of the country were visited and the troops and their families educated on pandemic avian influenza. Attendants at each site was obtained from the attendance sheet provided for registration. The seminars focused on zoonotic diseases, influenza surveillance, pathogenesis of avian influenza, prevention of emerging infections and biosecurity. To help direct public health policies, a questionnaire was used to collect information on animal populations and handling practices from 102 households in the military barracks. Cloacal and tracheal samples were taken from 680 domestic and domesticated wild birds and analysed for influenza A using molecular methods for virus detection. Results Of the 1028 participants that took part in the seminars, 668 (65%) showed good knowledge of pandemic avian influenza and the risks associated with its infection. Even though no evidence of the presence of avian influenza (AI) infection was found in the 680 domestic and wild birds sampled, biosecurity in the households surveyed was very poor. Conclusion Active surveillance revealed that there was no AI circulation in the military barracks in April 2011. Though participants demonstrated good knowledge of pandemic avian influenza, biosecurity practices were minimal. Sustained educational programs are needed to further strengthen avian influenza surveillance

  15. Control of avian influenza: philosophy and perspectives on behalf of migratory birds

    USGS Publications Warehouse

    Friend, Milton

    1992-01-01

    Aquatic birds are considered the primary reservoir for influenza A viruses (Nettles et al., 1987).  However, there is little concern about avian influenza among conservation agencies responsible for the welfare of those species.  IN contrast, the poultry industry has great concern about avian influenza and view aquatic birds as a source for infection of poultry flocks.  In some instances, differences in these perspectives created conflict between conservation agencies and the poultry industry.  I speak on behalf of migratory birds, but philosophy and perspectives offered are intended to be helpful to the poultry industry in their efforts to combat avian influenza.

  16. Demographic and Spatiotemporal Patterns of Avian Influenza Infection at the Continental Scale, and in Relation to Annual Life Cycle of a Migratory Host.

    PubMed

    Nallar, Rodolfo; Papp, Zsuzsanna; Epp, Tasha; Leighton, Frederick A; Swafford, Seth R; DeLiberto, Thomas J; Dusek, Robert J; Ip, Hon S; Hall, Jeffrey; Berhane, Yohannes; Gibbs, Samantha E J; Soos, Catherine

    2015-01-01

    Since the spread of highly pathogenic avian influenza (HPAI) H5N1 in the eastern hemisphere, numerous surveillance programs and studies have been undertaken to detect the occurrence, distribution, or spread of avian influenza viruses (AIV) in wild bird populations worldwide. To identify demographic determinants and spatiotemporal patterns of AIV infection in long distance migratory waterfowl in North America, we fitted generalized linear models with binominal distribution to analyze results from 13,574 blue-winged teal (Anas discors, BWTE) sampled in 2007 to 2010 year round during AIV surveillance programs in Canada and the United States. Our analyses revealed that during late summer staging (July-August) and fall migration (September-October), hatch year (HY) birds were more likely to be infected than after hatch year (AHY) birds, however there was no difference between age categories for the remainder of the year (winter, spring migration, and breeding period), likely due to maturing immune systems and newly acquired immunity of HY birds. Probability of infection increased non-linearly with latitude, and was highest in late summer prior to fall migration when densities of birds and the proportion of susceptible HY birds in the population are highest. Birds in the Central and Mississippi flyways were more likely to be infected compared to those in the Atlantic flyway. Seasonal cycles and spatial variation of AIV infection were largely driven by the dynamics of AIV infection in HY birds, which had more prominent cycles and spatial variation in infection compared to AHY birds. Our results demonstrate demographic as well as seasonal, latitudinal and flyway trends across Canada and the US, while illustrating the importance of migratory host life cycle and age in driving cyclical patterns of prevalence. PMID:26110538

  17. Demographic and spatiotemporal patterns of avian influenza infection at the continental scale, and in relation to annual life cycle of a migratory host

    USGS Publications Warehouse

    Nallar, Rodolfo; Papp, Zsuzsanna; Epp, Tasha; Leighton, Frederick A.; Swafford, Seth R.; DeLiberto, Thomas J.; Dusek, Robert J.; Ip, Hon S.; Hall, Jeffrey S.; Berhane, Yohannes; Gibbs, Samantha E.J.; Soos, Catherine

    2015-01-01

    Since the spread of highly pathogenic avian influenza (HPAI) H5N1 in the eastern hemisphere, numerous surveillance programs and studies have been undertaken to detect the occurrence, distribution, or spread of avian influenza viruses (AIV) in wild bird populations worldwide. To identify demographic determinants and spatiotemporal patterns of AIV infection in long distance migratory waterfowl in North America, we fitted generalized linear models with binominal distribution to analyze results from 13,574 blue-winged teal (Anas discors, BWTE) sampled in 2007 to 2010 year round during AIV surveillance programs in Canada and the United States. Our analyses revealed that during late summer staging (July-August) and fall migration (September-October), hatch year (HY) birds were more likely to be infected than after hatch year (AHY) birds, however there was no difference between age categories for the remainder of the year (winter, spring migration, and breeding period), likely due to maturing immune systems and newly acquired immunity of HY birds. Probability of infection increased non-linearly with latitude, and was highest in late summer prior to fall migration when densities of birds and the proportion of susceptible HY birds in the population are highest. Birds in the Central and Mississippi flyways were more likely to be infected compared to those in the Atlantic flyway. Seasonal cycles and spatial variation of AIV infection were largely driven by the dynamics of AIV infection in HY birds, which had more prominent cycles and spatial variation in infection compared to AHY birds. Our results demonstrate demographic as well as seasonal, latitudinal and flyway trends across Canada and the US, while illustrating the importance of migratory host life cycle and age in driving cyclical patterns of prevalence.

  18. Demographic and Spatiotemporal Patterns of Avian Influenza Infection at the Continental Scale, and in Relation to Annual Life Cycle of a Migratory Host.

    PubMed

    Nallar, Rodolfo; Papp, Zsuzsanna; Epp, Tasha; Leighton, Frederick A; Swafford, Seth R; DeLiberto, Thomas J; Dusek, Robert J; Ip, Hon S; Hall, Jeffrey; Berhane, Yohannes; Gibbs, Samantha E J; Soos, Catherine

    2015-01-01

    Since the spread of highly pathogenic avian influenza (HPAI) H5N1 in the eastern hemisphere, numerous surveillance programs and studies have been undertaken to detect the occurrence, distribution, or spread of avian influenza viruses (AIV) in wild bird populations worldwide. To identify demographic determinants and spatiotemporal patterns of AIV infection in long distance migratory waterfowl in North America, we fitted generalized linear models with binominal distribution to analyze results from 13,574 blue-winged teal (Anas discors, BWTE) sampled in 2007 to 2010 year round during AIV surveillance programs in Canada and the United States. Our analyses revealed that during late summer staging (July-August) and fall migration (September-October), hatch year (HY) birds were more likely to be infected than after hatch year (AHY) birds, however there was no difference between age categories for the remainder of the year (winter, spring migration, and breeding period), likely due to maturing immune systems and newly acquired immunity of HY birds. Probability of infection increased non-linearly with latitude, and was highest in late summer prior to fall migration when densities of birds and the proportion of susceptible HY birds in the population are highest. Birds in the Central and Mississippi flyways were more likely to be infected compared to those in the Atlantic flyway. Seasonal cycles and spatial variation of AIV infection were largely driven by the dynamics of AIV infection in HY birds, which had more prominent cycles and spatial variation in infection compared to AHY birds. Our results demonstrate demographic as well as seasonal, latitudinal and flyway trends across Canada and the US, while illustrating the importance of migratory host life cycle and age in driving cyclical patterns of prevalence.

  19. Quantification of bird-to-bird and bird-to-human infections during 2013 novel H7N9 avian influenza outbreak in China.

    PubMed

    Hsieh, Ying-Hen; Wu, Jianhong; Fang, Jian; Yang, Yong; Lou, Jie

    2014-01-01

    From February to May, 2013, 132 human avian influenza H7N9 cases were identified in China resulting in 37 deaths. We developed a novel, simple and effective compartmental modeling framework for transmissions among (wild and domestic) birds as well as from birds to human, to infer important epidemiological quantifiers, such as basic reproduction number for bird epidemic, bird-to-human infection rate and turning points of the epidemics, for the epidemic via human H7N9 case onset data and to acquire useful information regarding the bird-to-human transmission dynamics. Estimated basic reproduction number for infections among birds is 4.10 and the mean daily number of human infections per infected bird is 3.16*10-5 [3.08*10-5, 3.23*10-5]. The turning point of 2013 H7N9 epidemic is pinpointed at April 16 for bird infections and at April 9 for bird-to-human transmissions. Our result reveals very low level of bird-to-human infections, thus indicating minimal risk of widespread bird-to-human infections of H7N9 virus during the outbreak. Moreover, the turning point of the human epidemic, pinpointed at shortly after the implementation of full-scale control and intervention measures initiated in early April, further highlights the impact of timely actions on ending the outbreak. This is the first study where both the bird and human components of an avian influenza epidemic can be quantified using only the human case data.

  20. Influenza viruses and the evolution of avian influenza virus H5N1.

    PubMed

    Skeik, Nedaa; Jabr, Fadi I

    2008-05-01

    Although small in size and simple in structure, influenza viruses are sophisticated organisms with highly mutagenic genomes and wide antigenic diversity. They are species-specific organisms. Mutation and reassortment have resulted in newer viruses such as H5N1, with new resistance against anti-viral medications, and this might lead to the emergence of a fully transmissible strain, as occurred in the 1957 and 1968 pandemics. Influenza viruses are no longer just a cause of self-limited upper respiratory tract infections; the H5N1 avian influenza virus can cause severe human infection with a mortality rate exceeding 50%. The case death rate of H5N1 avian influenza infection is 20 times higher than that of the 1918 infection (50% versus 2.5%), which killed 675000 people in the USA and almost 40 million people worldwide. While the clock is still ticking towards what seems to be inevitable pandemic influenza, on April 17, 2007 the U.S. Food and Drug Administration (FDA) approved the first vaccine against the avian influenza virus H5N1 for humans at high risk. However, more research is needed to develop a more effective and affordable vaccine that can be given at lower doses.

  1. Avian Influenza A(H5N1) Virus in Egypt

    PubMed Central

    Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S.; Maatouq, Asmaa M.; Cai, Zhipeng; McKenzie, Pamela P.; Webby, Richard J.; El Refaey, Samir; Kandeel, Amr; Ali, Mohamed A.

    2016-01-01

    In Egypt, avian influenza A subtype H5N1 and H9N2 viruses are enzootic in poultry. The control plan devised by veterinary authorities in Egypt to prevent infections in poultry focused mainly on vaccination and ultimately failed. Recently, widespread H5N1 infections in poultry and a substantial increase in the number of human cases of H5N1 infection were observed. We summarize surveillance data from 2009 through 2014 and show that avian influenza viruses are established in poultry in Egypt and are continuously evolving genetically and antigenically. We also discuss the epidemiology of human infection with avian influenza in Egypt and describe how the true burden of disease is underestimated. We discuss the failures of relying on vaccinating poultry as the sole intervention tool. We conclude by highlighting the key components that need to be included in a new strategy to control avian influenza infections in poultry and humans in Egypt. PMID:26886164

  2. Avian Influenza A(H5N1) Virus in Egypt.

    PubMed

    Kayali, Ghazi; Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S; Maatouq, Asmaa M; Cai, Zhipeng; McKenzie, Pamela P; Webby, Richard J; El Refaey, Samir; Kandeel, Amr; Ali, Mohamed A

    2016-03-01

    In Egypt, avian influenza A subtype H5N1 and H9N2 viruses are enzootic in poultry. The control plan devised by veterinary authorities in Egypt to prevent infections in poultry focused mainly on vaccination and ultimately failed. Recently, widespread H5N1 infections in poultry and a substantial increase in the number of human cases of H5N1 infection were observed. We summarize surveillance data from 2009 through 2014 and show that avian influenza viruses are established in poultry in Egypt and are continuously evolving genetically and antigenically. We also discuss the epidemiology of human infection with avian influenza in Egypt and describe how the true burden of disease is underestimated. We discuss the failures of relying on vaccinating poultry as the sole intervention tool. We conclude by highlighting the key components that need to be included in a new strategy to control avian influenza infections in poultry and humans in Egypt.

  3. Determination of original infection source of H7N9 avian influenza by dynamical model.

    PubMed

    Zhang, Juan; Jin, Zhen; Sun, Gui-Quan; Sun, Xiang-Dong; Wang, You-Ming; Huang, Baoxu

    2014-01-01

    H7N9, a newly emerging virus in China, travels among poultry and human. Although H7N9 has not aroused massive outbreaks, recurrence in the second half of 2013 makes it essential to control the spread. It is believed that the most effective control measure is to locate the original infection source and cut off the source of infection from human. However, the original infection source and the internal transmission mechanism of the new virus are not totally clear. In order to determine the original infection source of H7N9, we establish a dynamical model with migratory bird, resident bird, domestic poultry and human population, and view migratory bird, resident bird, domestic poultry as original infection source respectively to fit the true dynamics during the 2013 pandemic. By comparing the date fitting results and corresponding Akaike Information Criterion (AIC) values, we conclude that migrant birds are most likely the original infection source. In addition, we obtain the basic reproduction number in poultry and carry out sensitivity analysis of some parameters. PMID:24786135

  4. Determination of Original Infection Source of H7N9 Avian Influenza by Dynamical Model

    NASA Astrophysics Data System (ADS)

    Zhang, Juan; Jin, Zhen; Sun, Gui-Quan; Sun, Xiang-Dong; Wang, You-Ming; Huang, Baoxu

    2014-05-01

    H7N9, a newly emerging virus in China, travels among poultry and human. Although H7N9 has not aroused massive outbreaks, recurrence in the second half of 2013 makes it essential to control the spread. It is believed that the most effective control measure is to locate the original infection source and cut off the source of infection from human. However, the original infection source and the internal transmission mechanism of the new virus are not totally clear. In order to determine the original infection source of H7N9, we establish a dynamical model with migratory bird, resident bird, domestic poultry and human population, and view migratory bird, resident bird, domestic poultry as original infection source respectively to fit the true dynamics during the 2013 pandemic. By comparing the date fitting results and corresponding Akaike Information Criterion (AIC) values, we conclude that migrant birds are most likely the original infection source. In addition, we obtain the basic reproduction number in poultry and carry out sensitivity analysis of some parameters.

  5. Experimental infection of bar-headed geese (Anser indicus) and ruddy shelducks (Tadorna ferruginea) with a clade 2.3.2 H5N1 highly pathogenic avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2005, clade 2.2 H5N1 highly pathogenic avian influenza (HPAI) viruses have caused infections and disease involving numerous species of wild waterfowl in Eurasia and Africa. However, outbreaks associated with clade 2.3.2 viruses have increased since 2009, and viruses within this clade have beco...

  6. Experimental co-infection of SPF chickens with low pathogenicity avian influenza virus (LPAIV) subtypes H9N2, H5N2 and H7N9, and infectious bronchitis virus (IBV)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) and infectious bronchitis virus (IBV) are two of the most important respiratory viruses affecting poultry worldwide, but little is known about the effect of co-infection of these two viruses in poultry. Low pathogenicity (LP) AIV can produce from mild to moderate upper r...

  7. Reduced experimental infectivity and transmissibility of intercontinental H5 (H5N8 and H5N2) compared to Eurasian H5N1 highly pathogenic avian influenza viruses for chickens, turkeys, and Japanese quail

    Technology Transfer Automated Retrieval System (TEKTRAN)

    H5N1 high pathogenicity avian influenza (HPAI) virus (HPAIV) emerged in 1996 in Guangdong China and has since spread to infect and cause deaths in wild birds, poultry and humans in over 63 countries in Asia, Europe and Africa; and more recently a reassortant H5N8 clade 2.3.4.4 HPAI virus has spread ...

  8. Transmission of H5N1 high pathogenicity avian influenza virus to Herring gulls (Larus argentatus) through intranasal inoculation of virus and ingestion of virus-infected chicken meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to evaluate the susceptibility of herring gulls (Larus argentatus) to H5N1 highly pathogenic avian influenza (HPAI) virus under natural routes of infection, we exposed gulls to two Asian lineage H5N1 HPAI viruses (A/whooper swan/Mongolia/244/05 and A/duck meat/Anyang/AVL-1/01) via intranasa...

  9. ACUTE PHASE IMMUNE GENE PROFILING OF SPLEEN AND PEYER’S PATCH IN NAÏVE AND VACCINATED CHICKENS FOLLOWING AVIAN INFLUENZA A (H5N1) VIRUS INFECTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we applied functional genomics tools to investigate the early immunological response of chickens to highly pathogenic (HP) avian influenza virus (AIV). Infection with HPAIV usually results in the rapid death of poultry. The aim of this study was to identify host immune genes which a...

  10. Case-control study of risk factors for human infection with avian influenza A(H7N9) virus in Shanghai, China, 2013.

    PubMed

    Li, J; Chen, J; Yang, G; Zheng, Y X; Mao, S H; Zhu, W P; Yu, X L; Gao, Y; Pan, Q C; Yuan, Z A

    2015-07-01

    The first human infection with avian influenza A(H7N9) virus was reported in Shanghai, China in March 2013. An additional 32 cases of human H7N9 infection were identified in the following months from March to April 2013 in Shanghai. Here we conducted a case-control study of the patients with H7N9 infection (n = 25) using controls matched by age, sex, and residence to determine risk factors for H7N9 infection. Our findings suggest that chronic disease and frequency of visiting a live poultry market (>10 times, or 1-9 times during the 2 weeks before illness onset) were likely to be significantly associated with H7N9 infection, with the odds ratios being 4.07 [95% confidence interval (CI) 1.32-12.56], 10.61 (95% CI 1.85-60.74), and 3.76 (95% CI 1.31-10.79), respectively. Effective strategies for live poultry market control should be reinforced and ongoing education of the public is warranted to promote behavioural changes that can help to eliminate direct or indirect contact with influenza A(H7N9) virus.

  11. Early apoptosis of porcine alveolar macrophages limits avian influenza virus replication and pro-inflammatory dysregulation.

    PubMed

    Chang, Pengxiang; Kuchipudi, Suresh V; Mellits, Kenneth H; Sebastian, Sujith; James, Joe; Liu, Jinhua; Shelton, Holly; Chang, Kin-Chow

    2015-01-01

    Pigs are evidently more resistant to avian than swine influenza A viruses, mediated in part through frontline epithelial cells and alveolar macrophages (AM). Although porcine AM (PAM) are crucial in influenza virus control, their mode of control is unclear. To gain insight into the possible role of PAM in the mediation of avian influenza virus resistance, we compared the host effects and replication of two avian (H2N3 and H6N1) and three mammalian (swine H1N1, human H1N1 and pandemic H1N1) influenza viruses in PAM. We found that PAM were readily susceptible to initial infection with all five avian and mammalian influenza viruses but only avian viruses caused early and extensive apoptosis (by 6 h of infection) resulting in reduced virus progeny and moderated pro-inflammation. Full length viral PB1-F2 present only in avian influenza viruses is a virulence factor that targets AM for mitochondrial-associated apoptotic cell death. With the use of reverse genetics on an avian H5N1 virus, we found that full length PB1-F2 contributed to increased apoptosis and pro-inflammation but not to reduced virus replication. Taken together, we propose that early apoptosis of PAM limits the spread of avian influenza viruses and that PB1-F2 could play a contributory role in the process. PMID:26642934

  12. Early apoptosis of porcine alveolar macrophages limits avian influenza virus replication and pro-inflammatory dysregulation

    PubMed Central

    Chang, Pengxiang; Kuchipudi, Suresh V.; Mellits, Kenneth H.; Sebastian, Sujith; James, Joe; Liu, Jinhua; Shelton, Holly; Chang, Kin-Chow

    2015-01-01

    Pigs are evidently more resistant to avian than swine influenza A viruses, mediated in part through frontline epithelial cells and alveolar macrophages (AM). Although porcine AM (PAM) are crucial in influenza virus control, their mode of control is unclear. To gain insight into the possible role of PAM in the mediation of avian influenza virus resistance, we compared the host effects and replication of two avian (H2N3 and H6N1) and three mammalian (swine H1N1, human H1N1 and pandemic H1N1) influenza viruses in PAM. We found that PAM were readily susceptible to initial infection with all five avian and mammalian influenza viruses but only avian viruses caused early and extensive apoptosis (by 6 h of infection) resulting in reduced virus progeny and moderated pro-inflammation. Full length viral PB1-F2 present only in avian influenza viruses is a virulence factor that targets AM for mitochondrial-associated apoptotic cell death. With the use of reverse genetics on an avian H5N1 virus, we found that full length PB1-F2 contributed to increased apoptosis and pro-inflammation but not to reduced virus replication. Taken together, we propose that early apoptosis of PAM limits the spread of avian influenza viruses and that PB1-F2 could play a contributory role in the process. PMID:26642934

  13. Persistence of Highly Pathogenic Avian Influenza Viruses in Natural Ecosystems

    PubMed Central

    Feare, Chris J.; Renaud, François; Thomas, Frédéric; Gauthier-Clerc, Michel

    2010-01-01

    Understanding of ecologic factors favoring emergence and maintenance of highly pathogenic avian influenza (HPAI) viruses is limited. Although low pathogenic avian influenza viruses persist and evolve in wild populations, HPAI viruses evolve in domestic birds and cause economically serious epizootics that only occasionally infect wild populations. We propose that evolutionary ecology considerations can explain this apparent paradox. Host structure and transmission possibilities differ considerably between wild and domestic birds and are likely to be major determinants of virulence. Because viral fitness is highly dependent on host survival and dispersal in nature, virulent forms are unlikely to persist in wild populations if they kill hosts quickly or affect predation risk or migratory performance. Interhost transmission in water has evolved in low pathogenic influenza viruses in wild waterfowl populations. However, oropharyngeal shedding and transmission by aerosols appear more efficient for HPAI viruses among domestic birds. PMID:20587174

  14. Avian influenza virus H9N2 seroprevalence and risk factors for infection in occupational poultry-exposed workers in Tai'an of China.

    PubMed

    Li, Song; Zhou, Yufa; Song, Wengang; Pang, Quanhai; Miao, Zengmin

    2016-08-01

    To determine risk factor for H9N2 avian influenza virus (AIV) infection, a serological surveillance among both occupational poultry-exposed (OPE) workers and general humans was carried out using both haemagglutination inhibition (HI) and microneutralization (MN) assays in Tai'an, China, between 2011 and 2013. At baseline, the positive rate of anti-H9 antibody (HI and MN titers ≥40) among OPE workers (51/600, 8.5%) was significantly higher than that among the general population (11/600, 1.8%). The result indicated that occupational exposure to chicken flocks was an important risk factor for H9N2 AIV infection. J. Med. Virol. 88:1453-1456, 2016. © 2016 Wiley Periodicals, Inc. PMID:26816053

  15. Emerging Infections of CNS: Avian Influenza A, Rift Valley Fever and Human Parecho Viruses

    PubMed Central

    Wiley, Clayton A.; Bhardwaj, Nitin; Ross, Ted M.; Bissel, Stephanie J.

    2015-01-01

    History is replete with emergent pandemic infections that have decimated the human population. Given the shear mass of humans that now crowd the earth, there is every reason to suspect history will repeat itself. We describe three RNA viruses that have recently emerged in the human population to mediate severe neurological disease. These new diseases are results of new mutations in the infectious agents or new exposure pathways to the agents or both. To appreciate their pathogenesis, we summarize the essential virology and immune response to each agent. Infection is described in the context of known host defenses. Once the viruses evade immune defenses and enter CNS cells, they rapidly co-opt host RNA processing to a cataclysmic extent. It is not clear why the brain is particularly susceptible to RNA viruses; but perhaps because of its tremendous dependence on RNA processing for physiological functioning, classical mechanisms of host defense (e.g. interferon disruption of viral replication) are diminished or not available. Effectiveness of immunity, immunization and pharmacological therapies is reviewed to contextualize the scope of the public health challenge. Unfortunately, vaccines that confer protection from systemic disease do not necessarily confer protection for the brain after exposure through unconventional routes. PMID:26276027

  16. Emerging Infections of CNS: Avian Influenza A Virus, Rift Valley Fever Virus and Human Parechovirus.

    PubMed

    Wiley, Clayton A; Bhardwaj, Nitin; Ross, Ted M; Bissel, Stephanie J

    2015-09-01

    History is replete with emergent pandemic infections that have decimated the human population. Given the shear mass of humans that now crowd the earth, there is every reason to suspect history will repeat itself. We describe three RNA viruses that have recently emerged in the human population to mediate severe neurological disease. These new diseases are results of new mutations in the infectious agents or new exposure pathways to the agents or both. To appreciate their pathogenesis, we summarize the essential virology and immune response to each agent. Infection is described in the context of known host defenses. Once the viruses evade immune defenses and enter central nervous system (CNS) cells, they rapidly co-opt host RNA processing to a cataclysmic extent. It is not clear why the brain is particularly susceptible to RNA viruses; but perhaps because of its tremendous dependence on RNA processing for physiological functioning, classical mechanisms of host defense (eg, interferon disruption of viral replication) are diminished or not available. Effectiveness of immunity, immunization and pharmacological therapies is reviewed to contextualize the scope of the public health challenge. Unfortunately, vaccines that confer protection from systemic disease do not necessarily confer protection for the brain after exposure through unconventional routes.

  17. A brief introduction to avian influenza virus.

    PubMed

    Spackman, Erica

    2014-01-01

    Avian influenza virus (AIV) causes a disease of high economic importance for poultry production worldwide. The earliest recorded cases of probable high-pathogenicity AIV in poultry were reported in Italy in the 1870s, and avian influenza has been recognized in domestic poultry through the modern era of poultry production. Approaches to control vary widely, but elimination of the disease in poultry is a common goal. The basics of AIV biology, clinical disease, molecular aspects, and AIV detection are briefly reviewed. PMID:24899420

  18. Persistence of highly pathogenic avian influenza virus (H7N1) in infected chickens: feather as a suitable sample for diagnosis.

    PubMed

    Busquets, Núria; Abad, F Xavier; Alba, Anna; Dolz, Roser; Allepuz, Alberto; Rivas, Raquel; Ramis, Antonio; Darji, Ayub; Majó, Natàlia

    2010-09-01

    Selection of an ideal sample is a vital element in early detection of influenza infection. Rapid identification of infectious individuals or animals is crucial not only for avian influenza virus (AIV) surveillance programmes, but also for treatment and containment strategies. This study used a combination of quantitative real-time RT-PCR with an internal positive control and a cell-titration system to examine the presence of virus in different samples during active experimental AIV infection and its persistence in the infected carcasses. Oropharyngeal/cloacal swabs as well as feather pulp and blood samples were collected from 15-day-old chicks infected with H7N1 highly pathogenic AIV (HPAIV) and the kinetics of virus shedding during active infection were evaluated. Additionally, several samples (muscle, skin, brain, feather pulp and oropharyngeal and cloacal swabs) were examined to assess the persistence of virus in the HPAIV-infected carcasses. Based on the results, feather pulp was found to be the best sample to detect and isolate HPAIV from infected chicks from 24 h after inoculation onwards. Kinetic studies on the persistence of virus in infected carcasses revealed that tissues such as muscle could potentially transmit infectious virus for 3 days post-mortem (p.m.), whilst other tissues such as skin, feather pulp and brain retained their infectivity for as long as 5-6 days p.m. at environmental temperature (22-23 degrees C). These results strongly favour feather as a useful sample for HPAIV diagnosis in infected chickens as well as in carcasses.

  19. Differences in the epidemiology and virology of mild, severe and fatal human infections with avian influenza A (H7N9) virus.

    PubMed

    Sha, Jianping; Chen, Xiaowen; Ren, Yajin; Chen, Haijun; Wu, Zuqun; Ying, Dong; Zhang, Zhiruo; Liu, Shelan

    2016-05-01

    A novel avian influenza A (H7N9) virus caused 5-10 % mild and 30.5 % fatal human infections as of December 10, 2015. In order to investigate the reason for the higher rate of fatal outcome of this infection, this study compared the molecular epidemiology and virology of avian influenza A (H7N9) viruses from mild (N = 14), severe (N = 50) and fatal (N = 35) cases, as well as from non-human hosts (N = 73). The epidemiological results showed that the average age of the people in the mild, severe and fatal groups was 27.6, 52 and 62 years old, respectively (p < 0.001). Males accounted for 42.9 % (6/14), 58.0 % (29/50), and 74.3 % (26/35) of cases in the mild, severe and fatal group respectively (p = 0.094). Median days from onset to start of antiviral treatment were 2, 5 and 7 days in the mild, severe and fatal group, respectively (p = 0.002). The median time from onset to discharge/death was 12, 40 and 19 days in the mild, severe and fatal group, respectively (p < 0.001). Analysis of whole genome sequences showed that PB2 (E627K), NA (R294K) and PA (V100A) mutations were markedly associated with an increased fatality rate, while HA (N276D) and PB2 (N559T) mutations were clearly related to mild cases. There were no differences in the genotypes, adaptation to mammalian hosts, and genetic identity between the three types of infection. In conclusion, advanced age and delayed confirmation of diagnosis and antiviral intervention were risk factors for death. Furthermore, PB2 (E627K), NA (R294K) and PA (V100A) mutations might contribute to a fatal outcome in human H7N9 infection. PMID:26887968

  20. Differences in the epidemiology and virology of mild, severe and fatal human infections with avian influenza A (H7N9) virus.

    PubMed

    Sha, Jianping; Chen, Xiaowen; Ren, Yajin; Chen, Haijun; Wu, Zuqun; Ying, Dong; Zhang, Zhiruo; Liu, Shelan

    2016-05-01

    A novel avian influenza A (H7N9) virus caused 5-10 % mild and 30.5 % fatal human infections as of December 10, 2015. In order to investigate the reason for the higher rate of fatal outcome of this infection, this study compared the molecular epidemiology and virology of avian influenza A (H7N9) viruses from mild (N = 14), severe (N = 50) and fatal (N = 35) cases, as well as from non-human hosts (N = 73). The epidemiological results showed that the average age of the people in the mild, severe and fatal groups was 27.6, 52 and 62 years old, respectively (p < 0.001). Males accounted for 42.9 % (6/14), 58.0 % (29/50), and 74.3 % (26/35) of cases in the mild, severe and fatal group respectively (p = 0.094). Median days from onset to start of antiviral treatment were 2, 5 and 7 days in the mild, severe and fatal group, respectively (p = 0.002). The median time from onset to discharge/death was 12, 40 and 19 days in the mild, severe and fatal group, respectively (p < 0.001). Analysis of whole genome sequences showed that PB2 (E627K), NA (R294K) and PA (V100A) mutations were markedly associated with an increased fatality rate, while HA (N276D) and PB2 (N559T) mutations were clearly related to mild cases. There were no differences in the genotypes, adaptation to mammalian hosts, and genetic identity between the three types of infection. In conclusion, advanced age and delayed confirmation of diagnosis and antiviral intervention were risk factors for death. Furthermore, PB2 (E627K), NA (R294K) and PA (V100A) mutations might contribute to a fatal outcome in human H7N9 infection.

  1. Preliminary Proteomic Analysis of A549 Cells Infected with Avian Influenza Virus H7N9 and Influenza A Virus H1N1

    PubMed Central

    Ding, Xiaoman; Lu, Jiahai; Yu, Ruoxi; Wang, Xin; Wang, Ting; Dong, Fangyuan; Peng, Bo; Wu, Weihua; Liu, Hui; Geng, Yijie; Zhang, Renli; Ma, Hanwu; Cheng, Jinquan; Yu, Muhua; Fang, Shisong

    2016-01-01

    A newly emerged H7N9 influenza virus poses high risk to human beings. However, the pathogenic mechanism of the virus remains unclear. The temporal response of primary human alveolar adenocarcinoma epithelial cells (A549) infected with H7N9 influenza virus and H1N1 influenza A virus (H1N1, pdm09) were evaluated using the proteomics approaches (2D-DIGE combined with MALDI-TOF-MS/MS) at 24, 48 and 72 hours post of the infection (hpi). There were 11, 12 and 33 proteins with significant different expressions (P<0.05) at 24, 48 and 72hpi, especially F-actin-capping protein subunit alpha-1 (CAPZA1), Ornithine aminotransferase (OAT), Poly(rC)-binding protein 1 (PCBP1), Eukaryotic translation initiation factor 5A-1 (EIF5A) and Platelet-activating factor acetylhydrolaseⅠb subunit beta (PAFAH1B2) were validated by western-blot analysis. The functional analysis revealed that the differential proteins in A549 cells involved in regulating cytopathic effect. Among them, the down-regulation of CAPZA1, OAT, PCBP1, EIF5A are related to the death of cells infected by H7N9 influenza virus. This is the first time show that the down-regulation of PAFAH1B2 is related to the later clinical symptoms of patients infected by H7N9 influenza virus. These findings may improve our understanding of pathogenic mechanism of H7N9 influenza virus in proteomics. PMID:27223893

  2. Preliminary Proteomic Analysis of A549 Cells Infected with Avian Influenza Virus H7N9 and Influenza A Virus H1N1.

    PubMed

    Ding, Xiaoman; Lu, Jiahai; Yu, Ruoxi; Wang, Xin; Wang, Ting; Dong, Fangyuan; Peng, Bo; Wu, Weihua; Liu, Hui; Geng, Yijie; Zhang, Renli; Ma, Hanwu; Cheng, Jinquan; Yu, Muhua; Fang, Shisong

    2016-01-01

    A newly emerged H7N9 influenza virus poses high risk to human beings. However, the pathogenic mechanism of the virus remains unclear. The temporal response of primary human alveolar adenocarcinoma epithelial cells (A549) infected with H7N9 influenza virus and H1N1 influenza A virus (H1N1, pdm09) were evaluated using the proteomics approaches (2D-DIGE combined with MALDI-TOF-MS/MS) at 24, 48 and 72 hours post of the infection (hpi). There were 11, 12 and 33 proteins with significant different expressions (P<0.05) at 24, 48 and 72hpi, especially F-actin-capping protein subunit alpha-1 (CAPZA1), Ornithine aminotransferase (OAT), Poly(rC)-binding protein 1 (PCBP1), Eukaryotic translation initiation factor 5A-1 (EIF5A) and Platelet-activating factor acetylhydrolaseⅠb subunit beta (PAFAH1B2) were validated by western-blot analysis. The functional analysis revealed that the differential proteins in A549 cells involved in regulating cytopathic effect. Among them, the down-regulation of CAPZA1, OAT, PCBP1, EIF5A are related to the death of cells infected by H7N9 influenza virus. This is the first time show that the down-regulation of PAFAH1B2 is related to the later clinical symptoms of patients infected by H7N9 influenza virus. These findings may improve our understanding of pathogenic mechanism of H7N9 influenza virus in proteomics. PMID:27223893

  3. Active surveillance for avian influenza virus, Egypt, 2010-2012.

    PubMed

    Kayali, Ghazi; Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S; Gomaa, Mokhtar M; Maatouq, Asmaa M; Shehata, Mahmoud M; Moatasim, Yassmin; Bagato, Ola; Cai, Zhipeng; Rubrum, Adam; Kutkat, Mohamed A; McKenzie, Pamela P; Webster, Robert G; Webby, Richard J; Ali, Mohamed A

    2014-04-01

    Continuous circulation of influenza A(H5N1) virus among poultry in Egypt has created an epicenter in which the viruses evolve into newer subclades and continue to cause disease in humans. To detect influenza viruses in Egypt, since 2009 we have actively surveyed various regions and poultry production sectors. From August 2010 through January 2013, >11,000 swab samples were collected; 10% were positive by matrix gene reverse transcription PCR. During this period, subtype H9N2 viruses emerged, cocirculated with subtype H5N1 viruses, and frequently co-infected the same avian host. Genetic and antigenic analyses of viruses revealed that influenza A(H5N1) clade 2.2.1 viruses are dominant and that all subtype H9N2 viruses are G1-like. Cocirculation of different subtypes poses concern for potential reassortment. Avian influenza continues to threaten public and animal health in Egypt, and continuous surveillance for avian influenza virus is needed.

  4. Post-exposure treatment with whole inactivated H5N1 avian influenza virus protects against lethal homologous virus infection in mice

    PubMed Central

    Hagan, Mable; Ranadheera, Charlene; Audet, Jonathan; Morin, Jocelyn; Leung, Anders; Kobasa, Darwyn

    2016-01-01

    Concerns with H5N1 influenza viruses include their prevalence in wild and domestic poultry, high mortality rate (~60%) in humans with some strains, lack of pre-existing immunity in humans, and the possibility that these viruses acquire mutations that enable efficient transmission between humans. H5 subtype viruses of Eurasian origin have recently appeared in wild and domestic bird populations in North America, and have led to the generation of new virus strains that are highly pathogenic in poultry. These new H5 HA containing viruses with their ability to evolve rapidly represent an unknown threat to humans in contact with infected poultry, and vaccination with an off-the-shelf vaccine may be impractical to provide protection to at-risk individuals. Instead, we have evaluated the efficacy of a formalin-inactivated vaccine, which could be derived directly from a circulating virus, to provide post-exposure protection. This strategy was evaluated using a prototypic highly pathogenic avian H5N1 strain, A/Vietnam/1203/2004, and demonstrated rapid induction of adaptive immune responses providing protection in a mammalian model of lethal infection. Additionally, this post-exposure vaccine was highly efficacious when administered 24 hours after exposure. This study offers a platform for developing effective post-exposure vaccines for treatment of highly virulent influenza infections. PMID:27405487

  5. Intracellular distribution of NS1 correlates with the infectivity and interferon antagonism of an avian influenza virus (H7N1).

    PubMed

    Keiner, Bjoern; Maenz, Benjamin; Wagner, Ralf; Cattoli, Giovanni; Capua, Ilaria; Klenk, Hans-Dieter

    2010-11-01

    Highly pathogenic avian influenza viruses of subtype H7N1 that emerged during an outbreak in 1999 and 2000 in Italy differ from their low-pathogenicity precursor viruses by changes in several genes, including three mutations in the NS1 protein. Two of them involve amino acid exchanges located within or closely adjacent to the nuclear export signal of NS1. The third mutation resulted in a new stop codon and thereby a C-terminal truncation of the NS1 protein of the highly pathogenic viruses. To find out whether these mutations contribute to the phenotypic differences between the highly pathogenic and low pathogenic viruses, we generated recombinants of the highly pathogenic A/ostrich/Italy/984/00 strain that contained the nuclear export signal and/or the extended C terminus of NS1 of a low pathogenic virus (A/chicken/Italy/1082/99). Using these recombinants we could demonstrate that replication rate and spread of infection in chicken fibroblast cultures, as well as infectivity for chicken embryos is reduced, whereas the mean death time for chicken embryos is increased, when the highly pathogenic virus acquires the NS1 motifs of the low pathogenic virus. Analysis of beta interferon transcription in chicken fibroblasts infected with the recombinants revealed that the mutations observed in the nuclear export signal of the highly pathogenic viruses were responsible for the enhanced interferon antagonism of these viruses. Cell fractionation and immunofluorescence studies in chicken fibroblasts showed that the nuclear export signal of the highly pathogenic viruses is responsible for cytoplasmic accumulation of NS1, whereas the C-terminal truncation promotes transport into the nucleoli. Comparative analysis in human A549 cells indicated that intracellular distribution of NS1 is host specific. Taken together, these observations support the concept that compartmentalization of NS1 within the cell contributes to the pathogenicity of avian influenza viruses.

  6. 77 FR 34783 - Highly Pathogenic Avian Influenza

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... avian influenza (HPAI). On January 24, 2011, we published in the Federal Register (76 FR 4046-4056... Register on May 3, 2011 (76 FR 24793, Docket No. APHIS-2006-0074), we reopened the comment period for an... publication of the interim rule establishing that pigeons (and other Columbiform species such as doves) have...

  7. Pathobiology of avian influenza in domestic ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domestic ducks are an important source of food and income in many parts of the world. The susceptibility of domestic ducks to avian influenza (AI) viruses varies depending on many factors, including the species and the age of the ducks, the virus strain, and management practices. Although wild wat...

  8. BirdFlu2009: Avian Influenza and Human Health. 9-10 September 2009, Oxford, UK.

    PubMed

    Temperton, Nigel

    2009-11-01

    The BirdFlu2009 meeting entitled Avian Influenza and Human Health, held in Oxford, included topics covering new developments in the control of seasonal, avian and swine influenza virus infection, with a focus on the human-animal interface. This conference report highlights selected presentations on sialidase therapy for influenza infection, the use of IVIgs to study antibody diversity and reactivity, detecting oseltamivir carboxylate in waste water, H5N1 infection in Egyptian children, preparedness for an influenza pandemic and an indirect sandwich ELISA to detect H5 avian influenza virus. Investigational drugs discussed include NEX-DAS-181 (NexBio Inc) and MVA-NP-M1 (The Edward Jenner Institute for Vaccine Research). PMID:19844852

  9. Local poultry biosecurity risks to highly pathogenic avian influenza in Kaduna State, Nigeria.

    PubMed

    Paul, Abdu A; Assam, Assam; Ndang, Tabe-Ntui L

    2013-01-01

    The study appraised local poultry biosecurity risks to highly pathogenic avian influenza by assessing farmers' knowledge, beliefs and poultry practices using a standard questionnaire. Farmers' knowledge on transmission and prevention was high but low on disease recognition. Radio was ineffective at informing Islamic educated farmers. Extensive knowledge on transmission and protection did not result in behavioural change as farmers engaged in risky practices of selling, eating or medicating infected poultry and not reporting poultry death. Islamic educated farmers do not believe highly pathogenic avian influenza is a serious and preventable disease. Women are more likely to self medicate when experiencing influenza-like illness. Audio-visual aids would improve avian influenza recognition while involvement of community leaders would enhance disease reporting. Outbreak of highly pathogenic avian influenza in local poultry in Nigeria would follow a similar pattern in Southeast Asia if the risk perception among farmers is not urgently articulated.

  10. Immune Repertoire Diversity Correlated with Mortality in Avian Influenza A (H7N9) Virus Infected Patients

    PubMed Central

    Hou, Dongni; Ying, Tianlei; Wang, Lili; Chen, Cuicui; Lu, Shuihua; Wang, Qin; Seeley, Eric; Xu, Jianqing; Xi, Xiuhong; Li, Tao; Liu, Jie; Tang, Xinjun; Zhang, Zhiyong; Zhou, Jian; Bai, Chunxue; Wang, Chunlin; Byrne-Steele, Miranda; Qu, Jieming; Han, Jian; Song, Yuanlin

    2016-01-01

    Specific changes in immune repertoires at genetic level responding to the lethal H7N9 virus are still poorly understood. We performed deep sequencing on the T and B cells from patients recently infected with H7N9 to explore the correlation between clinical outcomes and immune repertoire alterations. T and B cell repertoires display highly dynamic yet distinct clonotype alterations. During infection, T cell beta chain repertoire continues to contract while the diversity of immunoglobulin heavy chain repertoire recovers. Patient recovery is correlated to the diversity of T cell and B cell repertoires in different ways – higher B cell diversity and lower T cell diversity are found in survivors. The sequences clonally related to known antibodies with binding affinity to H7 hemagglutinin could be identified from survivors. These findings suggest that utilizing deep sequencing may improve prognostication during influenza infection and could help in development of antibody discovery methodologies for the treatment of virus infection. PMID:27669665

  11. Outbreak of H5N2 highly pathogenic avian Influenza A virus infection in two commercial layer facilities: lesions and viral antigen distribution.

    PubMed

    Arruda, Paulo H E; Stevenson, Gregory W; Killian, Mary L; Burrough, Eric R; Gauger, Phillip C; Harmon, Karen M; Magstadt, Drew R; Yoon, Kyoung-Jin; Zhang, Jianqiang; Madson, Darin M; Piñeyro, Pablo; Derscheid, Rachel J; Schwartz, Kent J; Cooper, Vickie L; Halbur, Patrick G; Main, Rodger G; Sato, Yuko; Arruda, Bailey L

    2016-09-01

    The largest outbreak of highly pathogenic avian Influenza A virus (HPAIV) infection in U.S. history began in December 2014 resulting in the euthanasia of millions of birds and collateral economic consequences to the U.S. poultry industry. We describe 2 cases of H5N2 HPAIV infection in laying hens in Iowa. Following a sharp increase in mortality with minimal clinical signs, 15 dead birds, from 2 unrelated farms, were submitted to the Iowa State University Veterinary Diagnostic Laboratory. Common lesions included diffuse edema and multifocal hemorrhage of the comb, catarrhal exudate in the oropharynx, and multifocal tracheal hemorrhage. Less common lesions included epicardial petechiae, splenic hemorrhage, and pancreatic necrosis. Influenza A virus nucleoprotein was detected by immunohistochemistry in multiple cell types including ependymal cells, the choroid plexus, neurons, respiratory epithelium and macrophages in the lung, cardiac myocytes, endothelial cells, necrotic foci in the spleen, Kupffer cells in the liver, and necrotic acinar cells in the pancreas. Real-time polymerase chain reaction and sequencing confirmed H5N2 HPAIV with molecular characteristics similar to other contemporary U.S. H5N2 HPAIVs in both cases. PMID:27423731

  12. The scientific rationale for the World Organisation for Animal Health standards and recommendations on avian influenza.

    PubMed

    Pasick, J; Kahn, S

    2014-12-01

    The World Organisation for Animal Health (OIE) prescribes standards for the diagnosis and control of avian influenza, as well as health measures for safe trade in birds and avian products, which are based on up-to-date scientific information and risk management principles, consistent with the role of the OIE as a reference standard-setting body for the World Trade Organization (WTO). These standards and recommendations continue to evolve, reflecting advances in technology and scientific understanding of this important zoonotic disease. The avian influenza viruses form part of the natural ecosystem by virtue of their ubiquitous presence in wild aquatic birds, a fact that human intervention cannot change. For the purposes of the Terrestrial Animal Health Code (Terrestrial Code), avian influenza is defined as an infection of poultry. However, the scope of the OIE standards and recommendations is not restricted to poultry, covering the diagnosis, early detection and management of avian influenza, including sanitary measures for trade in birds and avian products. The best way to manage avian influenza-associated risks to human and animal health is for countries to conduct surveillance using recommended methods, to report results in a consistent and transparent manner, and to applythe sanitary measures described in the Terrestrial Code. Surveillance for and timely reporting of avian influenza in accordance with OIE standards enable the distribution of relevant, up-to-date information to the global community.

  13. Large-Scale Avian Influenza Surveillance in Wild Birds throughout the United States

    PubMed Central

    Bevins, Sarah N.; Pedersen, Kerri; Lutman, Mark W.; Baroch, John A.; Schmit, Brandon S.; Kohler, Dennis; Gidlewski, Thomas; Nolte, Dale L.; Swafford, Seth R.; DeLiberto, Thomas J.

    2014-01-01

    Avian influenza is a viral disease that primarily infects wild and domestic birds, but it also can be transmitted to a variety of mammals. In 2006, the United States of America Departments of Agriculture and Interior designed a large-scale, interagency surveillance effort that sought to determine if highly pathogenic avian influenza viruses were present in wild bird populations within the United States of America. This program, combined with the Canadian and Mexican surveillance programs, represented the largest, coordinated wildlife disease surveillance program ever implemented. Here we analyze data from 197,885 samples that were collected from over 200 wild bird species. While the initial motivation for surveillance focused on highly pathogenic avian influenza, the scale of the data provided unprecedented information on the ecology of avian influenza viruses in the United States, avian influenza virus host associations, and avian influenza prevalence in wild birds over time. Ultimately, significant advances in our knowledge of avian influenza will depend on both large-scale surveillance efforts and on focused research studies. PMID:25116079

  14. Large-scale avian influenza surveillance in wild birds throughout the United States.

    PubMed

    Bevins, Sarah N; Pedersen, Kerri; Lutman, Mark W; Baroch, John A; Schmit, Brandon S; Kohler, Dennis; Gidlewski, Thomas; Nolte, Dale L; Swafford, Seth R; DeLiberto, Thomas J

    2014-01-01

    Avian influenza is a viral disease that primarily infects wild and domestic birds, but it also can be transmitted to a variety of mammals. In 2006, the United States of America Departments of Agriculture and Interior designed a large-scale, interagency surveillance effort that sought to determine if highly pathogenic avian influenza viruses were present in wild bird populations within the United States of America. This program, combined with the Canadian and Mexican surveillance programs, represented the largest, coordinated wildlife disease surveillance program ever implemented. Here we analyze data from 197,885 samples that were collected from over 200 wild bird species. While the initial motivation for surveillance focused on highly pathogenic avian influenza, the scale of the data provided unprecedented information on the ecology of avian influenza viruses in the United States, avian influenza virus host associations, and avian influenza prevalence in wild birds over time. Ultimately, significant advances in our knowledge of avian influenza will depend on both large-scale surveillance efforts and on focused research studies.

  15. Experimental co-infections of domestic ducks with a virulent Newcastle disease virus and low or highly pathogenic avian influenza viruses

    PubMed Central

    Pantin-Jackwood, Mary; Costa-Hurtado, Mar; Miller, Patti J.; Afonso, Claudio L.; Spackman, Erica; Kapczynski, Darrell; Shepherd, Eric; Smith, Diane; Swayne, David

    2015-01-01

    Infections with avian influenza viruses (AIV) of low and high pathogenicity (LP and HP) and Newcastle disease virus (NDV) are commonly reported in domestic ducks in many parts of the world. However, it’s not clear if co-infections with these viruses affect the severity of the diseases they produce, the amount of virus shed, and transmission of the viruses. In this study we infected domestic ducks with a virulent NDV virus (vNDV) and either a LPAIV or a HPAIV by giving the viruses individually, simultaneously, or sequentially two days apart. No clinical signs were observed in ducks infected or co-infected with vNDV and LPAIV, but co-infection decreased the number of ducks shedding vNDV and the amount of virus shed (P <0.01) at 4 days post inoculation (dpi). Co-infection didn’t affect the number of birds shedding LPAIV, but more LPAIV was shed at 2 dpi (P <0.0001) from ducks inoculated with only LPAIV compared to ducks co-infected with vNDV. Ducks that received the HPAIV with the vNDV simultaneously survived fewer days (P <0.05) compared to the ducks that received the vNDV two days before the HPAIV. Co-infection also reduced transmission of vNDV to naïve contact ducks housed with the inoculated ducks. In conclusion, domestic ducks can become co-infected with vNDV and LPAIV with no effect on clinical signs but with reduction of virus shedding and transmission. These findings indicate that infection with one virus can interfere with replication of another, modifying the pathogenesis and transmission of the viruses. PMID:25759292

  16. Experimental co-infections of domestic ducks with a virulent Newcastle disease virus and low or highly pathogenic avian influenza viruses.

    PubMed

    Pantin-Jackwood, Mary J; Costa-Hurtado, Mar; Miller, Patti J; Afonso, Claudio L; Spackman, Erica; Kapczynski, Darrell R; Shepherd, Eric; Smith, Diane; Swayne, David E

    2015-05-15

    Infections with avian influenza viruses (AIV) of low and high pathogenicity (LP and HP) and Newcastle disease virus (NDV) are commonly reported in domestic ducks in many parts of the world. However, it is not clear if co-infections with these viruses affect the severity of the diseases they produce, the amount of virus shed, and transmission of the viruses. In this study we infected domestic ducks with a virulent NDV virus (vNDV) and either a LPAIV or a HPAIV by giving the viruses individually, simultaneously, or sequentially two days apart. No clinical signs were observed in ducks infected or co-infected with vNDV and LPAIV, but co-infection decreased the number of ducks shedding vNDV and the amount of virus shed (P<0.01) at 4 days post inoculation (dpi). Co-infection did not affect the number of birds shedding LPAIV, but more LPAIV was shed at 2 dpi (P<0.0001) from ducks inoculated with only LPAIV compared to ducks co-infected with vNDV. Ducks that received the HPAIV with the vNDV simultaneously survived fewer days (P<0.05) compared to the ducks that received the vNDV two days before the HPAIV. Co-infection also reduced transmission of vNDV to naïve contact ducks housed with the inoculated ducks. In conclusion, domestic ducks can become co-infected with vNDV and LPAIV with no effect on clinical signs but with reduction of virus shedding and transmission. These findings indicate that infection with one virus can interfere with replication of another, modifying the pathogenesis and transmission of the viruses.

  17. Experimental infection of highly and low pathogenic avian influenza viruses to chickens, ducks, tree sparrows, jungle crows, and black rats for the evaluation of their roles in virus transmission.

    PubMed

    Hiono, Takahiro; Okamatsu, Masatoshi; Yamamoto, Naoki; Ogasawara, Kohei; Endo, Mayumi; Kuribayashi, Saya; Shichinohe, Shintaro; Motohashi, Yurie; Chu, Duc-Huy; Suzuki, Mizuho; Ichikawa, Takaya; Nishi, Tatsuya; Abe, Yuri; Matsuno, Keita; Tanaka, Kazuyuki; Tanigawa, Tsutomu; Kida, Hiroshi; Sakoda, Yoshihiro

    2016-01-01

    Highly pathogenic avian influenza viruses (HPAIVs) have spread in both poultry and wild birds. Determining transmission routes of these viruses during an outbreak is essential for the control of avian influenza. It has been widely postulated that migratory ducks play crucial roles in the widespread dissemination of HPAIVs in poultry by carrying viruses along with their migrations; however close contacts between wild migratory ducks and poultry are less likely in modern industrial poultry farming settings. Therefore, we conducted experimental infections of HPAIVs and low pathogenic avian influenza viruses (LPAIVs) to chickens, domestic ducks, tree sparrows, jungle crows, and black rats to evaluate their roles in virus transmission. The results showed that chickens, ducks, sparrows, and crows were highly susceptible to HPAIV infection. Significant titers of virus were recovered from the sparrows and crows infected with HPAIVs, which suggests that they potentially play roles of transmission of HPAIVs to poultry. In contrast, the growth of LPAIVs was limited in each of the animals tested compared with that of HPAIVs. The present results indicate that these common synanthropes play some roles in influenza virus transmission from wild birds to poultry.

  18. Experimental infection of highly and low pathogenic avian influenza viruses to chickens, ducks, tree sparrows, jungle crows, and black rats for the evaluation of their roles in virus transmission.

    PubMed

    Hiono, Takahiro; Okamatsu, Masatoshi; Yamamoto, Naoki; Ogasawara, Kohei; Endo, Mayumi; Kuribayashi, Saya; Shichinohe, Shintaro; Motohashi, Yurie; Chu, Duc-Huy; Suzuki, Mizuho; Ichikawa, Takaya; Nishi, Tatsuya; Abe, Yuri; Matsuno, Keita; Tanaka, Kazuyuki; Tanigawa, Tsutomu; Kida, Hiroshi; Sakoda, Yoshihiro

    2016-01-15

    Highly pathogenic avian influenza viruses (HPAIVs) have spread in both poultry and wild birds. Determining transmission routes of these viruses during an outbreak is essential for the control of avian influenza. It has been widely postulated that migratory ducks play crucial roles in the widespread dissemination of HPAIVs in poultry by carrying viruses along with their migrations; however close contacts between wild migratory ducks and poultry are less likely in modern industrial poultry farming settings. Therefore, we conducted experimental infections of HPAIVs and low pathogenic avian influenza viruses (LPAIVs) to chickens, domestic ducks, tree sparrows, jungle crows, and black rats to evaluate their roles in virus transmission. The results showed that chickens, ducks, sparrows, and crows were highly susceptible to HPAIV infection. Significant titers of virus were recovered from the sparrows and crows infected with HPAIVs, which suggests that they potentially play roles of transmission of HPAIVs to poultry. In contrast, the growth of LPAIVs was limited in each of the animals tested compared with that of HPAIVs. The present results indicate that these common synanthropes play some roles in influenza virus transmission from wild birds to poultry. PMID:26711036

  19. Study of infection with an Iranian field-isolated H9N2 avian influenza virus in vaccinated and unvaccinated Japanese quail.

    PubMed

    Ebrahimi, Seyyed Mahmoud; Ziapour, Soudeh; Tebianian, Majid; Dabaghian, Mehran; Mohammadi, Mashallah

    2011-06-01

    In the present study, we examined the mortality rate, egg production, and clinical signs of quail experimentally infected with a field isolate of A/Chicken/Iran/339/02 (H9N2) avian influenza virus obtained from an infected commercial layer farm with severe morbidity and mortality. A total of 120 quail at 14 days old were randomly divided into four groups of vaccinated (B and C) and unvaccinated (A and D) birds. Vaccination was done on days 20 and 32, and viral inoculation of birds in groups C and D was then carried out on day 43. For evaluation of viral transmission, at 24 hr postinoculation additional unvaccinated birds were placed in direct contact with challenged birds. All the birds were evaluated for clinical signs, egg production, antibody production, viral titration in lung homogenates, and viral transmission following inoculation. All unvaccinated-challenged birds were infected and showed clinical signs, whereas the infection rate along with clinical signs of vaccinated-challenged birds reached 30%-40%. Although vaccination induced high antibody titers, reduction in food and water consumption was evident in this vaccinated-challenged group compared with the unchallenged control group. These results could indicate that inactivated vaccine did not fully prevent the infection, although it was capable of protecting birds against clinical signs and significantly decreased viral titers in lungs after intranasal challenge.

  20. Detection of Evolutionarily Distinct Avian Influenza A Viruses in Antarctica

    PubMed Central

    Vijaykrishna, Dhanasekaran; Butler, Jeffrey; Baas, Chantal; Maurer-Stroh, Sebastian; Silva-de-la-Fuente, M. Carolina; Medina-Vogel, Gonzalo; Olsen, Bjorn; Kelso, Anne; Barr, Ian G.; González-Acuña, Daniel

    2014-01-01

    ABSTRACT Distinct lineages of avian influenza viruses (AIVs) are harbored by spatially segregated birds, yet significant surveillance gaps exist around the globe. Virtually nothing is known from the Antarctic. Using virus culture, molecular analysis, full genome sequencing, and serology of samples from Adélie penguins in Antarctica, we confirmed infection by H11N2 subtype AIVs. Their genetic segments were distinct from all known contemporary influenza viruses, including South American AIVs, suggesting spatial separation from other lineages. Only in the matrix and polymerase acidic gene phylogenies did the Antarctic sequences form a sister relationship to South American AIVs, whereas distant phylogenetic relationships were evident in all other gene segments. Interestingly, their neuraminidase genes formed a distant relationship to all avian and human influenza lineages, and the polymerase basic 1 and polymerase acidic formed a sister relationship to the equine H3N8 influenza virus lineage that emerged during 1963 and whose avian origins were previously unknown. We also estimated that each gene segment had diverged for 49 to 80 years from its most closely related sequences, highlighting a significant gap in our AIV knowledge in the region. We also show that the receptor binding properties of the H11N2 viruses are predominantly avian and that they were unable to replicate efficiently in experimentally inoculated ferrets, suggesting their continuous evolution in avian hosts. These findings add substantially to our understanding of both the ecology and the intra- and intercontinental movement of Antarctic AIVs and highlight the potential risk of an incursion of highly pathogenic AIVs into this fragile environment. PMID:24803521

  1. Virus interference between H7N2 low pathogenic avian influenza virus and lentogenic Newcastle disease virus in experimental co-infections in chickens and turkeys

    PubMed Central

    2014-01-01

    Low pathogenicity avian influenza virus (LPAIV) and lentogenic Newcastle disease virus (lNDV) are commonly reported causes of respiratory disease in poultry worldwide with similar clinical and pathobiological presentation. Co-infections do occur but are not easily detected, and the impact of co-infections on pathobiology is unknown. In this study chickens and turkeys were infected with a lNDV vaccine strain (LaSota) and a H7N2 LPAIV (A/turkey/VA/SEP-67/2002) simultaneously or sequentially three days apart. No clinical signs were observed in chickens co-infected with the lNDV and LPAIV or in chickens infected with the viruses individually. However, the pattern of virus shed was different with co-infected chickens, which excreted lower titers of lNDV and LPAIV at 2 and 3 days post inoculation (dpi) and higher titers at subsequent time points. All turkeys inoculated with the LPAIV, whether or not they were exposed to lNDV, presented mild clinical signs. Co-infection effects were more pronounced in turkeys than in chickens with reduction in the number of birds shedding virus and in virus titers, especially when LPAIV was followed by lNDV. In conclusion, co-infection of chickens or turkeys with lNDV and LPAIV affected the replication dynamics of these viruses but did not affect clinical signs. The effect on virus replication was different depending on the species and on the time of infection. These results suggest that infection with a heterologous virus may result in temporary competition for cell receptors or competent cells for replication, most likely interferon-mediated, which decreases with time. PMID:24393488

  2. No evidence of infection or exposure to Highly Pathogenic Avian Influenzas in peridomestic wildlife on an affected poultry facility

    USGS Publications Warehouse

    Grear, Daniel; Dusek, Robert J.; Walsh, Daniel P.; Hall, Jeffrey S.

    2016-01-01

    We evaluated the potential transmission of avian influenza viruses (AIV) in wildlife species in three settings in association with an outbreak at a poultry facility: 1) small birds and small mammals on a poultry facility that was affected with highly pathogenic AIV (HPAIV) in April 2015; 2) small birds and small mammals on a nearby poultry facility that was unaffected by HPAIV; and 3) small birds, small mammals, and waterfowl in a nearby natural area. We live-captured small birds and small mammals and collected samples from hunter-harvested waterfowl to test for active viral shedding and evidence of exposure (serum antibody) to AIV and the H5N2 HPAIV that affected the poultry facility. We detected no evidence of shedding or specific antibody to AIV in small mammals and small birds 5 mo after depopulation of the poultry. We detected viral shedding and exposure to AIV in waterfowl and estimated approximately 15% viral shedding and 60% antibody prevalence. In waterfowl, we did not detect shedding or exposure to the HPAIV that affected the poultry facility. We also conducted camera trapping around poultry carcass depopulation composting barns and found regular visitation by four species of medium-sized mammals. We provide preliminary data suggesting that peridomestic wildlife were not an important factor in the transmission of AIV during the poultry outbreak, nor did small birds and mammals in natural wetland settings show wide evidence of AIV shedding or exposure, despite the opportunity for exposure.

  3. Avian influenza in North America, 2009-2011.

    PubMed

    Pasick, John; Pedersen, Janice; Hernandez, Mario Solis

    2012-12-01

    All reports of avian influenza virus infections in poultry and isolations from wild bird species in Canada, the United States, and Mexico between 2009 and 2011 involved low pathogenic avian influenza. All three countries reported outbreaks of low pathogenic notifiable avian influenza in poultry during this period. The reports involved outbreaks of H5N2 among commercial turkeys in Canada in 2009 and 2010; outbreaks of H5N3 in turkeys in 2009, H5N2 in chickens in 2010, H7N3 in turkeys in 2011, and H7N9 in chickens, turkeys, geese, and guinea fowl in 2011 in the United States; and multiple outbreaks of H5N2 in chickens in Mexico in 2009, 2010, and 2011. Outbreaks of pandemic H1N1 infections in turkey breeder flocks were reported in Canada in 2009 and in the United States in 2010. Active surveillance of live bird markets in the United States led to the detection of H2, H3, H4, H5, H6, and H10 subtypes. Despite the fact that wild bird surveillance programs underwent contraction during this period in both Canada and the United States, H5 and H7 subtypes were still detected.

  4. Clinical features of avian influenza in Egyptian patients.

    PubMed

    Ashour, Maamoun Mohamad; Khatab, Adel Mahmoud; El-Folly, Runia Fouad; Amer, Wegdan Ahmad Fouad

    2012-08-01

    The clinical manifestations associated with H5N1 infection in humans range from asymptomatic infection to mild upper respiratory illness, severe pneumonia, and multiple organ failure. The ratio of symptomatic cases to asymptomatic cases is not known, because it is not possible to precisely define the number of asymptomatic cases. A total of 97 cases suffering from avian flu were suspected based on history taking, demographic data, clinical manifestations, laboratory and radiological investigations. The followings were done for all cases; complete blood picture (differential leucocytic count), coagulation profile, renal and liver function tests. H5N1 influenza virus was diagnosed thorough PCR technique. Changes in arterial blood gases and repeated chest X-rays were reported frequently. All patients were given specific antiviral therapy (oseltamivir). The study described the clinical picture and laboratory results of 81 confirmed avian influenza human cases in an Egyptian hospital (Abassia chest hospital), and reviewed the avian influenza current situation covering from March 2006 to June 2009 with very high pick in the first half of 2009. The significant apparent symptoms were fever as initial and main symptom (93.75%), followed by shortness of breathing (73%), cough (66.6%), muscle & joint pain (60%) and sore throat (40%).

  5. Avian Influenza Virus Infection of Immortalized Human Respiratory Epithelial Cells Depends upon a Delicate Balance between Hemagglutinin Acid Stability and Endosomal pH.

    PubMed

    Daidoji, Tomo; Watanabe, Yohei; Ibrahim, Madiha S; Yasugi, Mayo; Maruyama, Hisataka; Masuda, Taisuke; Arai, Fumihito; Ohba, Tomoyuki; Honda, Ayae; Ikuta, Kazuyoshi; Nakaya, Takaaki

    2015-04-24

    The highly pathogenic avian influenza (AI) virus, H5N1, is a serious threat to public health worldwide. Both the currently circulating H5N1 and previously circulating AI viruses recognize avian-type receptors; however, only the H5N1 is highly infectious and virulent in humans. The mechanism(s) underlying this difference in infectivity remains unclear. The aim of this study was to clarify the mechanisms responsible for the difference in infectivity between the current and previously circulating strains. Primary human small airway epithelial cells (SAECs) were transformed with the SV40 large T-antigen to establish a series of clones (SAEC-Ts). These clones were then used to test the infectivity of AI strains. Human SAEC-Ts could be broadly categorized into two different types based on their susceptibility (high or low) to the viruses. SAEC-T clones were poorly susceptible to previously circulating AI but were completely susceptible to the currently circulating H5N1. The hemagglutinin (HA) of the current H5N1 virus showed greater membrane fusion activity at higher pH levels than that of previous AI viruses, resulting in broader cell tropism. Moreover, the endosomal pH was lower in high susceptibility SAEC-T clones than that in low susceptibility SAEC-T clones. Taken together, the results of this study suggest that the infectivity of AI viruses, including H5N1, depends upon a delicate balance between the acid sensitivity of the viral HA and the pH within the endosomes of the target cell. Thus, one of the mechanisms underlying H5N1 pathogenesis in humans relies on its ability to fuse efficiently with the endosomes in human airway epithelial cells.

  6. Avian Influenza Virus Infection of Immortalized Human Respiratory Epithelial Cells Depends upon a Delicate Balance between Hemagglutinin Acid Stability and Endosomal pH.

    PubMed

    Daidoji, Tomo; Watanabe, Yohei; Ibrahim, Madiha S; Yasugi, Mayo; Maruyama, Hisataka; Masuda, Taisuke; Arai, Fumihito; Ohba, Tomoyuki; Honda, Ayae; Ikuta, Kazuyoshi; Nakaya, Takaaki

    2015-04-24

    The highly pathogenic avian influenza (AI) virus, H5N1, is a serious threat to public health worldwide. Both the currently circulating H5N1 and previously circulating AI viruses recognize avian-type receptors; however, only the H5N1 is highly infectious and virulent in humans. The mechanism(s) underlying this difference in infectivity remains unclear. The aim of this study was to clarify the mechanisms responsible for the difference in infectivity between the current and previously circulating strains. Primary human small airway epithelial cells (SAECs) were transformed with the SV40 large T-antigen to establish a series of clones (SAEC-Ts). These clones were then used to test the infectivity of AI strains. Human SAEC-Ts could be broadly categorized into two different types based on their susceptibility (high or low) to the viruses. SAEC-T clones were poorly susceptible to previously circulating AI but were completely susceptible to the currently circulating H5N1. The hemagglutinin (HA) of the current H5N1 virus showed greater membrane fusion activity at higher pH levels than that of previous AI viruses, resulting in broader cell tropism. Moreover, the endosomal pH was lower in high susceptibility SAEC-T clones than that in low susceptibility SAEC-T clones. Taken together, the results of this study suggest that the infectivity of AI viruses, including H5N1, depends upon a delicate balance between the acid sensitivity of the viral HA and the pH within the endosomes of the target cell. Thus, one of the mechanisms underlying H5N1 pathogenesis in humans relies on its ability to fuse efficiently with the endosomes in human airway epithelial cells. PMID:25673693

  7. Avian influenza virus and free-ranging wild birds

    USGS Publications Warehouse

    Dierauf, Leslie A.; Karesh, W.B.; Ip, Hon S.; Gilardi, K.V.; Fischer, John R.

    2006-01-01

    Recent media and news reports and other information implicate wild birds in the spread of highly pathogenic avian influenza in Asia and Eastern Europe. Although there is little information concerning highly pathogenic avian influenza viruses in wild birds, scientists have amassed a large amount of data on low-pathogenicity avian influenza viruses during decades of research with wild birds. This knowledge can provide sound guidance to veterinarians, public health professionals, the general public, government agencies, and other entities with concerns about avian influenza.

  8. Experimental infection of a North American raptor, American kestrel (Falco sparverius), with highly pathogenic avian influenza virus (H5N1)

    USGS Publications Warehouse

    Hall, J.S.; Ip, H.S.; Franson, J.C.; Meteyer, C.; Nashold, S.; Teslaa, J.L.; French, J.; Redig, P.; Brand, C.

    2009-01-01

    Several species of wild raptors have been found in Eurasia infected with highly pathogenic avian influenza virus (HPAIV) subtype H5N1. Should HPAIV (H5N1) reach North America in migratory birds, species of raptors are at risk not only from environmental exposure, but also from consuming infected birds and carcasses. In this study we used American kestrels as a representative species of a North American raptor to examine the effects of HPAIV (H5N1) infection in terms of dose response, viral shedding, pathology, and survival. Our data showed that kestrels are highly susceptible to HPAIV (H5N1). All birds typically died or were euthanized due to severe neurologic disease within 4-5 days of inoculation and shed significant amounts of virus both orally and cloacally, regardless of dose administered. The most consistent microscopic lesions were necrosis in the brain and pancreas. This is the first experimental study of HPAIV infection in a North American raptor and highlights the potential risks to birds of prey if HPAIV (H5N1) is introduced into North America.

  9. Characterization and evaluation of avian influenza NS1 mutant virus as a potential live and killed DIVA (differentiating between infected and vaccinated animals) vaccine for chickens.

    PubMed

    Brahmakshatriya, Vinayak R; Lupiani, Blanca; Reddy, Sanjay M

    2010-03-11

    Influenza virus encoded NS1 protein is considered a virulence factor due to its ability to block cellular interferon pathway. Several studies have shown the potential use of NS1 mutant viruses as vaccines to differentiate vaccinated from infected animals (DIVA), and the lack of antibodies against NS1 has been proposed as a DIVA marker. In the present study we characterized an NS1 mutant virus (H5N3/NS1/144), evaluated its potential use as a live vaccine candidate and its ability to revert to virulence. Within five back passages in chickens H5N3/NS1/144 reverted to wild-type phenotype, making H5N3/NS1/144 an unsafe live vaccine candidate. Alternatively, the killed form of H5N3/NS1/144 induced similar levels of protection as that of the wild-type H5N3 virus. We suggest the stability of candidate NS1 mutant avian influenza vaccines for chickens should be thoroughly tested, as NS1 mutant viruses have the ability to revert to virulence.

  10. Detection of evolutionarily distinct avian influenza a viruses in antarctica.

    PubMed

    Hurt, Aeron C; Vijaykrishna, Dhanasekaran; Butler, Jeffrey; Baas, Chantal; Maurer-Stroh, Sebastian; Silva-de-la-Fuente, M Carolina; Medina-Vogel, Gonzalo; Olsen, Bjorn; Kelso, Anne; Barr, Ian G; González-Acuña, Daniel

    2014-01-01

    ABSTRACT Distinct lineages of avian influenza viruses (AIVs) are harbored by spatially segregated birds, yet significant surveillance gaps exist around the globe. Virtually nothing is known from the Antarctic. Using virus culture, molecular analysis, full genome sequencing, and serology of samples from Adélie penguins in Antarctica, we confirmed infection by H11N2 subtype AIVs. Their genetic segments were distinct from all known contemporary influenza viruses, including South American AIVs, suggesting spatial separation from other lineages. Only in the matrix and polymerase acidic gene phylogenies did the Antarctic sequences form a sister relationship to South American AIVs, whereas distant phylogenetic relationships were evident in all other gene segments. Interestingly, their neuraminidase genes formed a distant relationship to all avian and human influenza lineages, and the polymerase basic 1 and polymerase acidic formed a sister relationship to the equine H3N8 influenza virus lineage that emerged during 1963 and whose avian origins were previously unknown. We also estimated that each gene segment had diverged for 49 to 80 years from its most closely related sequences, highlighting a significant gap in our AIV knowledge in the region. We also show that the receptor binding properties of the H11N2 viruses are predominantly avian and that they were unable to replicate efficiently in experimentally inoculated ferrets, suggesting their continuous evolution in avian hosts. These findings add substantially to our understanding of both the ecology and the intra- and intercontinental movement of Antarctic AIVs and highlight the potential risk of an incursion of highly pathogenic AIVs into this fragile environment. IMPORTANCE Avian influenza viruses (AIVs) are typically maintained and spread by migratory birds, resulting in the existence of distinctly different viruses around the world. However, AIVs have not previously been detected in Antarctica. In this study, we

  11. Detection of evolutionarily distinct avian influenza a viruses in antarctica.

    PubMed

    Hurt, Aeron C; Vijaykrishna, Dhanasekaran; Butler, Jeffrey; Baas, Chantal; Maurer-Stroh, Sebastian; Silva-de-la-Fuente, M Carolina; Medina-Vogel, Gonzalo; Olsen, Bjorn; Kelso, Anne; Barr, Ian G; González-Acuña, Daniel

    2014-01-01

    ABSTRACT Distinct lineages of avian influenza viruses (AIVs) are harbored by spatially segregated birds, yet significant surveillance gaps exist around the globe. Virtually nothing is known from the Antarctic. Using virus culture, molecular analysis, full genome sequencing, and serology of samples from Adélie penguins in Antarctica, we confirmed infection by H11N2 subtype AIVs. Their genetic segments were distinct from all known contemporary influenza viruses, including South American AIVs, suggesting spatial separation from other lineages. Only in the matrix and polymerase acidic gene phylogenies did the Antarctic sequences form a sister relationship to South American AIVs, whereas distant phylogenetic relationships were evident in all other gene segments. Interestingly, their neuraminidase genes formed a distant relationship to all avian and human influenza lineages, and the polymerase basic 1 and polymerase acidic formed a sister relationship to the equine H3N8 influenza virus lineage that emerged during 1963 and whose avian origins were previously unknown. We also estimated that each gene segment had diverged for 49 to 80 years from its most closely related sequences, highlighting a significant gap in our AIV knowledge in the region. We also show that the receptor binding properties of the H11N2 viruses are predominantly avian and that they were unable to replicate efficiently in experimentally inoculated ferrets, suggesting their continuous evolution in avian hosts. These findings add substantially to our understanding of both the ecology and the intra- and intercontinental movement of Antarctic AIVs and highlight the potential risk of an incursion of highly pathogenic AIVs into this fragile environment. IMPORTANCE Avian influenza viruses (AIVs) are typically maintained and spread by migratory birds, resulting in the existence of distinctly different viruses around the world. However, AIVs have not previously been detected in Antarctica. In this study, we

  12. Protective avian influenza in ovo vaccination with non-replicating human adenovirus vector

    PubMed Central

    Toro, Haroldo; Tang, De-chu C.; Suarez, David L.; Sylte, Matt J.; Pfeiffer, Jennifer; Van Kampen, Kent R.

    2009-01-01

    Protective immunity against avian influenza virus was elicited in chickens by single-dose in ovo vaccination with a non-replicating human adenovirus vector encoding an H5N9 avian influenza virus hemagglutinin. Vaccinated chickens were protected against both H5N1 (89% hemagglutinin homology; 68% protection) and H5N2 (94% hemagglutinin homology; 100% protection) highly pathogenic avian influenza virus challenges. Mass-administration of this bird flu vaccine can be streamlined with available robotic in ovo injectors. In addition, adenovirus-vectored vaccines can be produced rapidly and the safety margin of a non-replicating vector is superior to that of a replicating counterpart. Furthermore, this mode of vaccination is compatible with epidemiological surveys of natural avian influenza virus infections. PMID:17055126

  13. Quantitative Estimation of the Number of Contaminated Hatching Eggs Released from an Infected, Undetected Turkey Breeder Hen Flock During a Highly Pathogenic Avian Influenza Outbreak.

    PubMed

    Malladi, Sasidhar; Weaver, J Todd; Alexander, Catherine Y; Middleton, Jamie L; Goldsmith, Timothy J; Snider, Timothy; Tilley, Becky J; Gonder, Eric; Hermes, David R; Halvorson, David A

    2015-09-01

    The regulatory response to an outbreak of highly pathogenic avian influenza (HPAI) in the United States may involve quarantine and stop movement orders that have the potential to disrupt continuity of operations in the U.S. turkey industry--particularly in the event that an uninfected breeder flock is located within an HPAI Control Area. A group of government-academic-industry leaders developed an approach to minimize the unintended consequences associated with outbreak response, which incorporates HPAI control measures to be implemented prior to moving hatching eggs off of the farm. Quantitative simulation models were used to evaluate the movement of potentially contaminated hatching eggs from a breeder henhouse located in an HPAI Control Area, given that active surveillance testing, elevated biosecurity, and a 2-day on-farm holding period were employed. The risk analysis included scenarios of HPAI viruses differing in characteristics as well as scenarios in which infection resulted from artificial insemination. The mean model-predicted number of internally contaminated hatching eggs released per movement from an HPAI-infected turkey breeder henhouse ranged from 0 to 0.008 under the four scenarios evaluated. The results indicate a 95% chance of no internally contaminated eggs being present per movement from an infected house before detection. Sensitivity analysis indicates that these results are robust to variation in key transmission model parameters within the range of their estimates from available literature. Infectious birds at the time of egg collection are a potential pathway of external contamination for eggs stored and then moved off of the farm; the predicted number of such infectious birds was estimated to be low. To date, there has been no evidence of vertical transmission of HPAI virus or low pathogenic avian influenza virus to day-old poults from hatching eggs originating from infected breeders. The application of risk analysis methods was beneficial

  14. Quantitative Estimation of the Number of Contaminated Hatching Eggs Released from an Infected, Undetected Turkey Breeder Hen Flock During a Highly Pathogenic Avian Influenza Outbreak.

    PubMed

    Malladi, Sasidhar; Weaver, J Todd; Alexander, Catherine Y; Middleton, Jamie L; Goldsmith, Timothy J; Snider, Timothy; Tilley, Becky J; Gonder, Eric; Hermes, David R; Halvorson, David A

    2015-09-01

    The regulatory response to an outbreak of highly pathogenic avian influenza (HPAI) in the United States may involve quarantine and stop movement orders that have the potential to disrupt continuity of operations in the U.S. turkey industry--particularly in the event that an uninfected breeder flock is located within an HPAI Control Area. A group of government-academic-industry leaders developed an approach to minimize the unintended consequences associated with outbreak response, which incorporates HPAI control measures to be implemented prior to moving hatching eggs off of the farm. Quantitative simulation models were used to evaluate the movement of potentially contaminated hatching eggs from a breeder henhouse located in an HPAI Control Area, given that active surveillance testing, elevated biosecurity, and a 2-day on-farm holding period were employed. The risk analysis included scenarios of HPAI viruses differing in characteristics as well as scenarios in which infection resulted from artificial insemination. The mean model-predicted number of internally contaminated hatching eggs released per movement from an HPAI-infected turkey breeder henhouse ranged from 0 to 0.008 under the four scenarios evaluated. The results indicate a 95% chance of no internally contaminated eggs being present per movement from an infected house before detection. Sensitivity analysis indicates that these results are robust to variation in key transmission model parameters within the range of their estimates from available literature. Infectious birds at the time of egg collection are a potential pathway of external contamination for eggs stored and then moved off of the farm; the predicted number of such infectious birds was estimated to be low. To date, there has been no evidence of vertical transmission of HPAI virus or low pathogenic avian influenza virus to day-old poults from hatching eggs originating from infected breeders. The application of risk analysis methods was beneficial

  15. Histopathologic Characterization and Shedding Dynamics of Guineafowl (Numida meleagris) Intravenously Infected with a H6N2 Low Pathogenicity Avian Influenza Virus.

    PubMed

    Dimitrov, Kiril M; Zarkov, Ivan S; Dinev, Ivan; Goujgoulova, Gabriela V; Miller, Patti J; Suarez, David L

    2016-05-01

    Guineafowl of different ages were inoculated intravenously with a H6N2 wild waterfowl-origin low pathogenicity avian influenza virus (LPAIV). No clinical disease was observed. The infected birds had atrophy of the spleen, thymus, and cloacal bursa when compared with the noninfected control groups. The central and peripheral lymphoid tissues presented either lymphoproliferative or degenerative lesions that increased in intensity from 14 to 21 days postinoculation (DPI). Lymphoid depletion was present in the bursa, thymic lobes, and spleen T-dependent zone. In contrast, lymphoid proliferation was observed in liver, pancreas, and spleen B-dependent zone. Bronchus associated lymphoid tissue hyperplasia was observed in the lungs of the birds at 14 and 21 DPI. The virus was detected by virus isolation and reverse transcription PCR from both oropharyngeal and cloacal swabs with higher isolation rates from the latter. Most birds from the LPAIV inoculated groups shed virus up to 7 DPI. The virus was infrequently isolated from lung, kidney, liver, bursa, or spleen of infected birds until 14 DPI and from two samples (kidney and spleen, 1-yr-old birds) at 21 DPI. These data indicate that the wild bird-origin LPAIV used in this study caused pantropic infection in guineafowl when inoculated intravenously. PMID:27309068

  16. Replication of 2 subtypes of low-pathogenicity avian influenza virus of duck and gull origins in experimentally infected Mallard ducks.

    PubMed

    Daoust, P-Y; van de Bildt, M; van Riel, D; van Amerongen, G; Bestebroer, T; Vanderstichel, R; Fouchier, R A M; Kuiken, T

    2013-05-01

    Many subtypes of low-pathogenicity avian influenza (LPAI) virus circulate in wild bird reservoirs, but their prevalence may vary among species. We aimed to compare by real-time reverse-transcriptase polymerase chain reaction, virus isolation, histology, and immunohistochemistry the distribution and pathogenicity of 2 such subtypes of markedly different origins in Mallard ducks (Anas platyrhynchos): H2N3 isolated from a Mallard duck and H13N6 isolated from a Ring-billed Gull (Larus delawarensis). Following intratracheal and intraesophageal inoculation, neither virus caused detectable clinical signs, although H2N3 virus infection was associated with a significantly decreased body weight gain during the period of virus shedding. Both viruses replicated in the lungs and air sacs until approximately day 3 after inoculation and were associated with a locally extensive interstitial, exudative, and proliferative pneumonia. Subtype H2N3, but not subtype H13N6, went on to infect the epithelia of the intestinal mucosa and cloacal bursa, where it replicated without causing lesions until approximately day 5 after inoculation. Larger quantities of subtype H2N3 virus were detected in cloacal swabs than in pharyngeal swabs. The possible clinical significance of LPAI virus-associated pulmonary lesions and intestinal tract infection in ducks deserves further evaluation.

  17. Pathologic Changes in Wild Birds Infected with Highly Pathogenic Avian Influenza A(H5N8) Viruses, South Korea, 2014.

    PubMed

    Kim, Hye-Ryoung; Kwon, Yong-Kuk; Jang, Il; Lee, Youn-Jeong; Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Lee, Hee-Soo; Joo, Yi-Seok; Lee, Kyung-Hyun; Lee, Hyun-Kyoung; Baek, Kang-Hyun; Bae, You-Chan

    2015-05-01

    In January 2014, an outbreak of infection with highly pathogenic avian influenza (HPAI) A(H5N8) virus began on a duck farm in South Korea and spread to other poultry farms nearby. During this outbreak, many sick or dead wild birds were found around habitats frequented by migratory birds. To determine the causes of death, we examined 771 wild bird carcasses and identified HPAI A(H5N8) virus in 167. Gross and histologic lesions were observed in pancreas, lung, brain, and kidney of Baikal teals, bean geese, and whooper swans but not mallard ducks. Such lesions are consistent with lethal HPAI A(H5N8) virus infection. However, some HPAI-positive birds had died of gunshot wounds, peritonitis, or agrochemical poisoning rather than virus infection. These findings suggest that susceptibility to HPAI A(H5N8) virus varies among species of migratory birds and that asymptomatic migratory birds could be carriers of this virus.

  18. Pathologic Changes in Wild Birds Infected with Highly Pathogenic Avian Influenza A(H5N8) Viruses, South Korea, 2014

    PubMed Central

    Kim, Hye-Ryoung; Kwon, Yong-Kuk; Jang, Il; Lee, Youn-Jeong; Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Lee, Hee-Soo; Joo, Yi-Seok; Lee, Kyung-Hyun; Lee, Hyun-Kyoung; Baek, Kang-Hyun

    2015-01-01

    In January 2014, an outbreak of infection with highly pathogenic avian influenza (HPAI) A(H5N8) virus began on a duck farm in South Korea and spread to other poultry farms nearby. During this outbreak, many sick or dead wild birds were found around habitats frequented by migratory birds. To determine the causes of death, we examined 771 wild bird carcasses and identified HPAI A(H5N8) virus in 167. Gross and histologic lesions were observed in pancreas, lung, brain, and kidney of Baikal teals, bean geese, and whooper swans but not mallard ducks. Such lesions are consistent with lethal HPAI A(H5N8) virus infection. However, some HPAI-positive birds had died of gunshot wounds, peritonitis, or agrochemical poisoning rather than virus infection. These findings suggest that susceptibility to HPAI A(H5N8) virus varies among species of migratory birds and that asymptomatic migratory birds could be carriers of this virus. PMID:25897841

  19. A computationally optimized broadly reactive H5 hemagglutinin vaccine provides protection against homologous and heterologous H5N1 highly pathogenic avian influenza virus infection in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since its emergence in 1996 in China, H5N1 highly pathogenic avian influenza (HPAI) virus has continuously evolved into different genetic clades that have created challenges to maintaining antigenically relevant H5N1 vaccine seeds. Therefore, a universal (multi-hemagglutinin [HA] subtype) or more c...

  20. Cross reactive immunity derived from chickens infected with H9N2 low pathogenic avian influenza against homologous and heterosubtypic challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because vaccines for use in commercial poultry against avian influenza (AI) are mainly inactivated and delivered parenterally, our knowledge of protective immunity of poultry against AI is largely based on the induction of serum-neutralizing antibodies produced against a specific hemagglutinin (HA) ...

  1. Pandemic potential of avian influenza A (H7N9) viruses.

    PubMed

    Watanabe, Tokiko; Watanabe, Shinji; Maher, Eileen A; Neumann, Gabriele; Kawaoka, Yoshihiro

    2014-11-01

    Avian influenza viruses rarely infect humans, but the recently emerged avian H7N9 influenza viruses have caused sporadic infections in humans in China, resulting in 440 confirmed cases with 122 fatalities as of 16 May 2014. In addition, epidemiologic surveys suggest that there have been asymptomatic or mild human infections with H7N9 viruses. These viruses replicate efficiently in mammals, show limited transmissibility in ferrets and guinea pigs, and possess mammalian-adapting amino acid changes that likely contribute to their ability to infect mammals. In this review, we summarize the characteristic features of the novel H7N9 viruses and assess their pandemic potential.

  2. Emergence of fatal avian influenza in New England harbor seals

    USGS Publications Warehouse

    Anthony, S.J.; St. Leger, J. A.; Pugliares, K.; Ip, H.S.; Chan, J.M.; Carpenter, Z.W.; Navarrete-Macias, I.; Sanchez-Leon, M.; Saliki, J.T.; Pedersen, J.; Karesh, W.; Daszak, P.; Rabadan, R.; Rowles, T.; Lipkin, W.I.

    2012-01-01

    From September to December 2011, 162 New England harbor seals died in an outbreak of pneumonia. Sequence analysis of postmortem samples revealed the presence of an avian H3N8 influenza A virus, similar to a virus circulating in North American waterfowl since at least 2002 but with mutations that indicate recent adaption to mammalian hosts. These include a D701N mutation in the viral PB2 protein, previously reported in highly pathogenic H5N1 avian influenza viruses infecting people. Lectin staining and agglutination assays indicated the presence of the avian-preferred SAα-2,3 and mammalian SAα-2,6 receptors in seal respiratory tract, and the ability of the virus to agglutinate erythrocytes bearing either the SAα-2,3 or the SAα-2,6 receptor. The emergence of this A/harbor seal/Massachusetts/1/2011 virus may herald the appearance of an H3N8 influenza clade with potential for persistence and cross-species transmission.

  3. Avian Influenza Viruses, Inflammation, and CD8(+) T Cell Immunity.

    PubMed

    Wang, Zhongfang; Loh, Liyen; Kedzierski, Lukasz; Kedzierska, Katherine

    2016-01-01

    Avian influenza viruses (AIVs) circulate naturally in wild aquatic birds, infect domestic poultry, and are capable of causing sporadic bird-to-human transmissions. AIVs capable of infecting humans include a highly pathogenic AIV H5N1, first detected in humans in 1997, and a low pathogenic AIV H7N9, reported in humans in 2013. Both H5N1 and H7N9 cause severe influenza disease in humans, manifested by acute respiratory distress syndrome, multi-organ failure, and high mortality rates of 60% and 35%, respectively. Ongoing circulation of H5N1 and H7N9 viruses in wild birds and poultry, and their ability to infect humans emphasizes their epidemic and pandemic potential and poses a public health threat. It is, thus, imperative to understand the host immune responses to the AIVs so we can control severe influenza disease caused by H5N1 or H7N9 and rationally design new immunotherapies and vaccines. This review summarizes our current knowledge on AIV epidemiology, disease symptoms, inflammatory processes underlying the AIV infection in humans, and recent studies on universal pre-existing CD8(+) T cell immunity to AIVs. Immune responses driving the host recovery from AIV infection in patients hospitalized with severe influenza disease are also discussed.

  4. Avian Influenza Viruses, Inflammation, and CD8+ T Cell Immunity

    PubMed Central

    Wang, Zhongfang; Loh, Liyen; Kedzierski, Lukasz; Kedzierska, Katherine

    2016-01-01

    Avian influenza viruses (AIVs) circulate naturally in wild aquatic birds, infect domestic poultry, and are capable of causing sporadic bird-to-human transmissions. AIVs capable of infecting humans include a highly pathogenic AIV H5N1, first detected in humans in 1997, and a low pathogenic AIV H7N9, reported in humans in 2013. Both H5N1 and H7N9 cause severe influenza disease in humans, manifested by acute respiratory distress syndrome, multi-organ failure, and high mortality rates of 60% and 35%, respectively. Ongoing circulation of H5N1 and H7N9 viruses in wild birds and poultry, and their ability to infect humans emphasizes their epidemic and pandemic potential and poses a public health threat. It is, thus, imperative to understand the host immune responses to the AIVs so we can control severe influenza disease caused by H5N1 or H7N9 and rationally design new immunotherapies and vaccines. This review summarizes our current knowledge on AIV epidemiology, disease symptoms, inflammatory processes underlying the AIV infection in humans, and recent studies on universal pre-existing CD8+ T cell immunity to AIVs. Immune responses driving the host recovery from AIV infection in patients hospitalized with severe influenza disease are also discussed. PMID:26973644

  5. A duck enteritis virus-vectored bivalent live vaccine provides fast and complete protection against H5N1 avian influenza virus infection in ducks.

    PubMed

    Liu, Jinxiong; Chen, Pucheng; Jiang, Yongping; Wu, Li; Zeng, Xianying; Tian, Guobin; Ge, Jinying; Kawaoka, Yoshihiro; Bu, Zhigao; Chen, Hualan

    2011-11-01

    Ducks play an important role in the maintenance of highly pathogenic H5N1 avian influenza viruses (AIVs) in nature, and the successful control of AIVs in ducks has important implications for the eradication of the disease in poultry and its prevention in humans. The inactivated influenza vaccine is expensive, labor-intensive, and usually needs 2 to 3 weeks to induce protective immunity in ducks. Live attenuated duck enteritis virus (DEV; a herpesvirus) vaccine is used routinely to control lethal DEV infections in many duck-producing areas. Here, we first established a system to generate the DEV vaccine strain by using the transfection of overlapping fosmid DNAs. Using this system, we constructed two recombinant viruses, rDEV-ul41HA and rDEV-us78HA, in which the hemagglutinin (HA) gene of the H5N1 virus A/duck/Anhui/1/06 was inserted and stably maintained within the ul41 gene or between the us7 and us8 genes of the DEV genome. Duck studies indicated that rDEV-us78HA had protective efficacy similar to that of the live DEV vaccine against lethal DEV challenge; importantly, a single dose of 10(6) PFU of rDEV-us78HA induced complete protection against a lethal H5N1 virus challenge in as little as 3 days postvaccination. The protective efficacy against both lethal DEV and H5N1 challenge provided by rDEV-ul41HA inoculation in ducks was slightly weaker than that provided by rDEV-us78HA. These results demonstrate, for the first time, that recombinant DEV is suitable for use as a bivalent live attenuated vaccine, providing rapid protection against both DEV and H5N1 virus infection in ducks.

  6. Lethal infection by a novel reassortant H5N1 avian influenza A virus in a zoo-housed tiger.

    PubMed

    He, Shang; Shi, Jianzhong; Qi, Xian; Huang, Guoqing; Chen, Hualan; Lu, Chengping

    2015-01-01

    In early 2013, a Bengal tiger (Panthera tigris) in a zoo died of respiratory distress. All specimens from the tiger were positive for HPAI H5N1, which were detected by real-time PCR, including nose swab, throat swab, tracheal swab, heart, liver, spleen, lung, kidney, aquae pericardii and cerebrospinal fluid. One stain of virus, A/Tiger/JS/1/2013, was isolated from the lung sample. Pathogenicity experiments showed that the isolate was able to replicate and cause death in mice. Phylogenetic analysis indicated that HA and NA of A/Tiger/JS/1/2013 clustered with A/duck/Vietnam/OIE-2202/2012 (H5N1), which belongs to clade 2.3.2.1. Interestingly, the gene segment PB2 shared 98% homology with A/wild duck/Korea/CSM-28/20/2010 (H4N6), which suggested that A/Tiger/JS/1/2013 is a novel reassortant H5N1 subtype virus. Immunohistochemical analysis also confirmed that the tiger was infected by this new reassortant HPAI H5N1 virus. Overall, our results showed that this Bengal tiger was infected by a novel reassortant H5N1, suggesting that the H5N1 virus can successfully cross species barriers from avian to mammal through reassortment.

  7. DC-SIGN mediates avian H5N1 influenza virus infection in cis and in trans

    SciTech Connect

    Wang, S.-F.; Huang, Jason C.; Lee, Y.-M.; Liu, S.-J.; Chan, Yu-Jiun; Chau, Y.-P.; Chong, P.; Chen, Y.-M.A.

    2008-09-05

    DC-SIGN, a C-type lectin receptor expressed in dendritic cells (DCs), has been identified as a receptor for human immunodeficiency virus type 1, hepatitis C virus, Ebola virus, cytomegalovirus, dengue virus, and the SARS coronavirus. We used H5N1 pseudotyped and reverse-genetics (RG) virus particles to study their ability to bind with DC-SIGN. Electronic microscopy and functional assay results indicate that pseudotyped viruses containing both HA and NA proteins express hemagglutination and are capable of infecting cells expressing {alpha}-2,3-linked sialic acid receptors. Results from a capture assay show that DC-SIGN-expressing cells (including B-THP-1/DC-SIGN and T-THP-1/DC-SIGN) and peripheral blood dendritic cells are capable of transferring H5N1 pseudotyped and RG virus particles to target cells; this action can be blocked by anti-DC-SIGN monoclonal antibodies. In summary, (a) DC-SIGN acts as a capture or attachment molecule for avian H5N1 virus, and (b) DC-SIGN mediates infections in cis and in trans.

  8. Lethal infection by a novel reassortant H5N1 avian influenza A virus in a zoo-housed tiger.

    PubMed

    He, Shang; Shi, Jianzhong; Qi, Xian; Huang, Guoqing; Chen, Hualan; Lu, Chengping

    2015-01-01

    In early 2013, a Bengal tiger (Panthera tigris) in a zoo died of respiratory distress. All specimens from the tiger were positive for HPAI H5N1, which were detected by real-time PCR, including nose swab, throat swab, tracheal swab, heart, liver, spleen, lung, kidney, aquae pericardii and cerebrospinal fluid. One stain of virus, A/Tiger/JS/1/2013, was isolated from the lung sample. Pathogenicity experiments showed that the isolate was able to replicate and cause death in mice. Phylogenetic analysis indicated that HA and NA of A/Tiger/JS/1/2013 clustered with A/duck/Vietnam/OIE-2202/2012 (H5N1), which belongs to clade 2.3.2.1. Interestingly, the gene segment PB2 shared 98% homology with A/wild duck/Korea/CSM-28/20/2010 (H4N6), which suggested that A/Tiger/JS/1/2013 is a novel reassortant H5N1 subtype virus. Immunohistochemical analysis also confirmed that the tiger was infected by this new reassortant HPAI H5N1 virus. Overall, our results showed that this Bengal tiger was infected by a novel reassortant H5N1, suggesting that the H5N1 virus can successfully cross species barriers from avian to mammal through reassortment. PMID:25461468

  9. Practical aspects of vaccination of poultry against avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although little has changed in vaccine technology for avian influenza virus (AIV) in the past 20 years, the approach to vaccination of poultry (chickens, turkeys and ducks) for avian influenza has evolved as highly pathogenic (HP) AIV has become endemic in several regions of the world. Vaccination f...

  10. Experimental vaccinations for avian influenza virus including DIVA approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) is a viral disease of poultry that remains an economic threat to commercial poultry throughout the world by negatively impacting animal health and trade. Strategies to control avian influenza (AI) virus are developed to prevent, manage or eradicate the virus from the country, re...

  11. Factors Associated with Highly Pathogenic Avian Influenza H5N2 Infection on Table-Egg Layer Farms in the Midwestern United States, 2015.

    PubMed

    Garber, Lindsey; Bjork, Kathe; Patyk, Kelly; Rawdon, Thomas; Antognoli, Maria; Delgado, Amy; Ahola, Sara; McCluskey, Brian

    2016-06-01

    A case-control study was conducted among commercial table-egg layer and pullet operations in Iowa and Nebraska, United States, to investigate potential risk factors for infection with highly pathogenic avian influenza (HPAI) H5N2. A questionnaire was developed and administered to 28 case farms and 31 control farms. Data were collected at the farm and barn levels, enabling two separate analyses to be performed-the first a farm-level comparison of case farms vs. control farms, and the second a barn-level comparison between case barns on case farms and control barns on control farms. Multivariable logistic regression models were fit using a forward-selection procedure. Key risk factors identified were farm location in an existing control zone, rendering and garbage trucks coming near barns, dead-bird disposal located near barns, and visits by a company service person. Variables associated with a decreased risk of infection included visitors changing clothing, cleaning and disinfecting a hard-surface barn entryway, and ceiling/eaves ventilation in barns. PMID:27309288

  12. Factors Associated with Highly Pathogenic Avian Influenza H5N2 Infection on Table-Egg Layer Farms in the Midwestern United States, 2015.

    PubMed

    Garber, Lindsey; Bjork, Kathe; Patyk, Kelly; Rawdon, Thomas; Antognoli, Maria; Delgado, Amy; Ahola, Sara; McCluskey, Brian

    2016-06-01

    A case-control study was conducted among commercial table-egg layer and pullet operations in Iowa and Nebraska, United States, to investigate potential risk factors for infection with highly pathogenic avian influenza (HPAI) H5N2. A questionnaire was developed and administered to 28 case farms and 31 control farms. Data were collected at the farm and barn levels, enabling two separate analyses to be performed-the first a farm-level comparison of case farms vs. control farms, and the second a barn-level comparison between case barns on case farms and control barns on control farms. Multivariable logistic regression models were fit using a forward-selection procedure. Key risk factors identified were farm location in an existing control zone, rendering and garbage trucks coming near barns, dead-bird disposal located near barns, and visits by a company service person. Variables associated with a decreased risk of infection included visitors changing clothing, cleaning and disinfecting a hard-surface barn entryway, and ceiling/eaves ventilation in barns.

  13. An infected chicken kidney cell co-culture ELISpot for enhanced detection of T cell responses to avian influenza and vaccination

    PubMed Central

    Ruiz-Hernandez, Raul; Peroval, Marylene; Boyd, Amy; Balkissoon, Devanand; Staines, Karen; Smith, Adrian; Butter, Colin

    2015-01-01

    A better understanding of the immune responses of chickens to the influenza virus is essential for the development of new strategies of vaccination and control. We have developed a method incorporating infected chicken kidney cells (CKC) in culture with splenocytes in an IFNγ ELISpot assay to enumerate ex vivo responses against influenza virus antigens. Splenocytes from birds challenged with influenza showed specific responses to the influenza virus, with responding cells being mainly CD8 positive. The utility of the assay was also demonstrated in the detection of an antigen specific enhancement of IFNγ producing cells from birds vaccinated with recombinant Fowlpox vectored influenza nucleoprotein and matrix protein. PMID:25450002

  14. Differences in the Epidemiology of Childhood Infections with Avian Influenza A H7N9 and H5N1 Viruses

    PubMed Central

    Chen, Xiaowen; Zhao, Na; Luo, Mengyun; Dong, Yuanyuan

    2016-01-01

    The difference between childhood infections with avian influenza viruses A(H5N1) and A(H7N9) remains an unresolved but critically important question. We compared the epidemiological characteristics of 244 H5N1 and 41 H7N9 childhood cases (<15 years old), as well as the childhood cluster cases of the two viruses. Our findings revealed a higher proportion of H5N1 than H7N9 childhood infections (31.1% vs. 6.4%, p = 0.000). However, the two groups did not differ significantly in age (median age: 5.0 vs. 5.5 y, p = 0.0651). The proportion of clustered cases was significantly greater among children infected with H5N1 than among children infected with H7N9 [46.7% (71/152) vs. 23.6% (13/55), p = 0.005], and most of the childhood cases were identified as secondary cases [46.4% (45/97) vs. 33.3% (10/30), p = 0.000]. Mild status accounted for 79.49% and 22.66%, severe status for 17.95% and 2.34%, and fatal cases for 2.56% and 75.00% of the H7N9 and H5N1 childhood infection cases (all p<0.05), respectively. The fatality rates for the total, index and secondary childhood cluster cases were 52.86% (37/70), 88.5% (23/26) and 33.33% (15/45), respectively, in the H5N1 group, whereas no fatal H7N9 childhood cluster cases were identified. In conclusion, lower severity and greater transmission were found in the H7N9 childhood cases than in the H5N1 childhood cases. PMID:27695069

  15. New USDA licensed avian influenza vaccine (rHVT-AI) for protection against H5 avian influenza and usage discussion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, a new avian influenza vaccine was licensed by USDA for use in the United States for protection of commercial poultry. The vaccine is a recombinant herpes virus of turkeys expressing the hemagglutinin gene of an H5 subtype avian influenza virus belonging to the 2.2 clade of the H5N1 highly ...

  16. USGS role and response to highly pathogenic avian influenza

    USGS Publications Warehouse

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  17. USGS role and response to highly pathogenic avian influenza

    USGS Publications Warehouse

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-01-01

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  18. Avian influenza: genetic evolution under vaccination pressure

    PubMed Central

    Escorcia, Magdalena; Vázquez, Lourdes; Méndez, Sara T; Rodríguez-Ropón, Andrea; Lucio, Eduardo; Nava, Gerardo M

    2008-01-01

    Antigenic drift of avian influenza viruses (AIVs) has been observed in chickens after extended vaccination program, similar to those observed with human influenza viruses. To evaluate the evolutionary properties of endemic AIV under high vaccination pressure (around 2 billion doses used in the last 12 years), we performed a pilot phylogenic analysis of the hemagglutinin (HA) gene of AIVs isolated from 1994 to 2006. This study demonstrates that Mexican low pathogenicity (LP) H5N2-AIVs are constantly undergoing genetic drifts. Recent AIV isolates (2002–2006) show significant molecular drifts when compared with the H5N2 vaccine-strain or other field isolates (1994–2000). This study also demonstrates that molecular drifts in the HA gene lineages follow a yearly trend, suggesting gradually cumulative sequence mutations. These findings might explain the increasing incidence of LP H5N2 AIV isolated from commercial avian farms. These findings support recent concerns about the challenge of AIV antigenic drift and influenza epidemics. PMID:18218105

  19. Apoptosis induction and release of inflammatory cytokines in the oviduct of egg-laying hens experimentally infected with H9N2 avian influenza virus.

    PubMed

    Wang, Jingyu; Tang, Chao; Wang, Qiuzhen; Li, Ruiqiao; Chen, Zhanli; Han, Xueying; Wang, Jing; Xu, Xingang

    2015-06-12

    The H9N2 subtype avian influenza virus (AIV) can cause serious damage to the reproductive tract of egg-laying hens, leading to severe egg-drop and poor egg shell quality. However, previous studies in relation to the oviductal-dysfunction resulted from this agent have not clearly been elucidated. In this study, apoptosis and pathologic changes in the oviducts of egg-laying hens caused by H9N2 AIV were evaluated. To understand the immune response in the pathogenic processes, 30-week old specific pathogen free (SPF) egg-laying hens inoculated with H9N2 subtype of AIV through combined intra-ocular and intra-nasal routes. H9N2 AIV infection resulted in oviductal lesions, triggered apoptosis and expression of immune related genes accompanied with infiltration of CD3(+)CD4(+) and CD3(+)CD8α(+) cells. Significant tissue damage and apoptosis were observed in the five oviductal parts (infundibulum, magnum, isthmus, uterus and vagina) at 5 days post-inoculation (dpi). Furthermore, immune-related genes, including chicken TLR3 (7, 21), MDA5, IL-2, IFN-β, CXCLi1, CXCLi2, XCL1, XCR1 and CCR5 showed variation in the egg-laying hens infected with H9N2 AIV. Notably, mRNA expression of IFN-α was suppressed during the infection. These results show distinct expression patterns of inflammatory cytokines and chemokines amongst segments of the oviduct. Differential gene expression of inflammatory cytokines and lymphocytes aggregation occurring in oviducts may initiate the infected tissue in response to virus replication which may eventually lead to excessive cellular apoptosis and tissue damage. PMID:25911114

  20. Infection studies with two highly pathogenic avian influenza strains (Vietnamese and Indonesian) in Pekin ducks (Anas platyrhynchos), with particular reference to clinical disease, tissue tropism and viral shedding.

    PubMed

    Bingham, John; Green, Diane J; Lowther, Sue; Klippel, Jessica; Burggraaf, Simon; Anderson, Danielle E; Wibawa, Hendra; Hoa, Dong Manh; Long, Ngo Thanh; Vu, Pham Phong; Middleton, Deborah J; Daniels, Peter W

    2009-08-01

    Pekin ducks were infected by the mucosal route (oral, nasal, ocular) with one of two strains of Eurasian lineage H5N1 highly pathogenic avian influenza virus: A/Muscovy duck/Vietnam/453/2004 and A/duck/Indramayu/BBVW/109/2006 (from Indonesia). Ducks were killed humanely on days 1, 2, 3, 5 and 7 after challenge, or whenever morbidity was severe enough to justify euthanasia. Morbidity was recorded by observation of clinical signs and cloacal temperatures; the disease was characterized by histopathology; tissue tropism was studied by immunohistochemistry and virus titration on tissue samples; and viral shedding patterns were determined by virus isolation and titration of oral and cloacal swabs. The Vietnamese strain caused severe morbidity with fever and depression; the Indonesian strain caused only transient fever. Both viruses had a predilection for a similar range of tissue types, but the quantity of tissue antigen and tissue virus titres were considerably higher with the Vietnamese strain. The Vietnamese strain caused severe myocarditis and skeletal myositis; both strains caused non-suppurative encephalitis and a range of other inflammatory reactions of varying severity. The principal epithelial tissue infected was that of the air sacs, but antigen was not abundant. Epithelium of the turbinates, trachea and bronchi had only rare infection with virus. Virus was shed from both the oral and cloacal routes; it was first detected 24 h after challenge and persisted until day 5 after challenge. The higher prevalence of virus from swabs from ducks infected with the Vietnamese strain indicates that this strain may be more adapted to ducks than the Indonesia strain.

  1. Apoptosis induction and release of inflammatory cytokines in the oviduct of egg-laying hens experimentally infected with H9N2 avian influenza virus.

    PubMed

    Wang, Jingyu; Tang, Chao; Wang, Qiuzhen; Li, Ruiqiao; Chen, Zhanli; Han, Xueying; Wang, Jing; Xu, Xingang

    2015-06-12

    The H9N2 subtype avian influenza virus (AIV) can cause serious damage to the reproductive tract of egg-laying hens, leading to severe egg-drop and poor egg shell quality. However, previous studies in relation to the oviductal-dysfunction resulted from this agent have not clearly been elucidated. In this study, apoptosis and pathologic changes in the oviducts of egg-laying hens caused by H9N2 AIV were evaluated. To understand the immune response in the pathogenic processes, 30-week old specific pathogen free (SPF) egg-laying hens inoculated with H9N2 subtype of AIV through combined intra-ocular and intra-nasal routes. H9N2 AIV infection resulted in oviductal lesions, triggered apoptosis and expression of immune related genes accompanied with infiltration of CD3(+)CD4(+) and CD3(+)CD8α(+) cells. Significant tissue damage and apoptosis were observed in the five oviductal parts (infundibulum, magnum, isthmus, uterus and vagina) at 5 days post-inoculation (dpi). Furthermore, immune-related genes, including chicken TLR3 (7, 21), MDA5, IL-2, IFN-β, CXCLi1, CXCLi2, XCL1, XCR1 and CCR5 showed variation in the egg-laying hens infected with H9N2 AIV. Notably, mRNA expression of IFN-α was suppressed during the infection. These results show distinct expression patterns of inflammatory cytokines and chemokines amongst segments of the oviduct. Differential gene expression of inflammatory cytokines and lymphocytes aggregation occurring in oviducts may initiate the infected tissue in response to virus replication which may eventually lead to excessive cellular apoptosis and tissue damage.

  2. Depressed Hypoxic and Hypercapnic Ventilatory Responses at Early Stage of Lethal Avian Influenza A Virus Infection in Mice

    PubMed Central

    Pollock, Zemmie; Harrod, Kevin S.; Xu, Fadi

    2016-01-01

    H5N1 virus infection results in ~60% mortality in patients primarily due to respiratory failure, but the underlying causes of mortality are unclear. The goal of this study is to reveal respiratory disorders occurring at the early stage of infection that may be responsible for subsequent respiratory failure and death. BALB/c mice were intranasally infected with one of two H5N1 virus strains: HK483 (lethal) or HK486 (non-lethal) virus. Pulmonary ventilation and the responses to hypoxia (HVR; 7% O2 for 3 min) and hypercapnia (HCVR; 7% CO2 for 5 min) were measured daily at 2 days prior and 1, 2, and 3 days postinfection (dpi) and compared to mortality typically by 8 dpi. At 1, 2, and 3 dpi, immunoreactivities (IR) of substance P (SP-IR) in the nodose ganglion or tyrosine hydroxylase (TH-IR) in the carotid body coupled with the nucleoprotein of influenza A (NP-IR) was examined in some mice, while arterial blood was collected in others. Our results showed that at 2 and 3 dpi: 1) both viral infections failed to alter body temperature and weight, V˙CO2, or induce viremia while producing similarly high lung viral titers; 2) HK483, but not HK486, virus induced tachypnea and depressed HVR and HCVR without changes in arterial blood pH and gases; and 3) only HK483 virus led to NP-IR in vagal SP-IR neurons, but not in the carotid body, and increased density of vagal SP-IR neurons. In addition, all HK483, rather than HK486, mice died at 6 to 8 dpi and the earlier death was correlated with more severe depression of HVR and HCVR. Our data suggest that tachypnea and depressed HVR/HCVR occur at the early stage of lethal H5N1 viral infection associated with viral replication and increased SP-IR density in vagal neurons, which may contribute to the respiratory failure and death. PMID:26808681

  3. A comparative evaluation of feathers, oropharyngeal swabs, and cloacal swabs for the detection of H5N1 highly pathogenic avian influenza virus infection in experimentally infected chickens and ducks.

    PubMed

    Nuradji, Harimurti; Bingham, John; Lowther, Sue; Wibawa, Hendra; Colling, Axel; Long, Ngo Thanh; Meers, Joanne

    2015-11-01

    Oropharyngeal and cloacal swabs have been widely used for the detection of H5N1 highly pathogenic avian Influenza A virus (HPAI virus) in birds. Previous studies have shown that the feather calamus is a site of H5N1 virus replication and therefore has potential for diagnosis of avian influenza. However, studies characterizing the value of feathers for this purpose are not available, to our knowledge; herein we present a study investigating feathers for detection of H5N1 virus. Ducks and chickens were experimentally infected with H5N1 HPAI virus belonging to 1 of 3 clades (Indonesian clades 2.1.1 and 2.1.3, Vietnamese clade 1). Different types of feathers and oropharyngeal and cloacal swab samples were compared by virus isolation. In chickens, virus was detected from all sample types: oral and cloacal swabs, and immature pectorosternal, flight, and tail feathers. During clinical disease, the viral titers were higher in feathers than swabs. In ducks, the proportion of virus-positive samples was variable depending on viral strain and time from challenge; cloacal swabs and mature pectorosternal feathers were clearly inferior to oral swabs and immature pectorosternal, tail, and flight feathers. In ducks infected with Indonesian strains, in which most birds did not develop clinical signs, all sampling methods gave intermittent positive results; 3-23% of immature pectorosternal feathers were positive during the acute infection period; oropharyngeal swabs had slightly higher positivity during early infection, while feathers performed better during late infection. Our results indicate that immature feathers are an alternative sample for the diagnosis of HPAI in chickens and ducks.

  4. Economic epidemiology of avian influenza on smallholder poultry farms☆

    PubMed Central

    Boni, Maciej F.; Galvani, Alison P.; Wickelgren, Abraham L.; Malani, Anup

    2013-01-01

    Highly pathogenic avian influenza (HPAI) is often controlled through culling of poultry. Compensating farmers for culled chickens or ducks facilitates effective culling and control of HPAI. However, ensuing price shifts can create incentives that alter the disease dynamics of HPAI. Farmers control certain aspects of the dynamics by setting a farm size, implementing infection control measures, and determining the age at which poultry are sent to market. Their decisions can be influenced by the market price of poultry which can, in turn, be set by policy makers during an HPAI outbreak. Here, we integrate these economic considerations into an epidemiological model in which epidemiological parameters are determined by an outside agent (the farmer) to maximize profit from poultry sales. Our model exhibits a diversity of behaviors which are sensitive to (i) the ability to identify infected poultry, (ii) the average price of infected poultry, (iii) the basic reproductive number of avian influenza, (iv) the effect of culling on the market price of poultry, (v) the effect of market price on farm size, and (vi) the effect of poultry density on disease transmission. We find that under certain market and epidemiological conditions, culling can increase farm size and the total number of HPAI infections. Our model helps to inform the optimization of public health outcomes that best weigh the balance between public health risk and beneficial economic outcomes for farmers. PMID:24161559

  5. Economic epidemiology of avian influenza on smallholder poultry farms.

    PubMed

    Boni, Maciej F; Galvani, Alison P; Wickelgren, Abraham L; Malani, Anup

    2013-12-01

    Highly pathogenic avian influenza (HPAI) is often controlled through culling of poultry. Compensating farmers for culled chickens or ducks facilitates effective culling and control of HPAI. However, ensuing price shifts can create incentives that alter the disease dynamics of HPAI. Farmers control certain aspects of the dynamics by setting a farm size, implementing infection control measures, and determining the age at which poultry are sent to market. Their decisions can be influenced by the market price of poultry which can, in turn, be set by policy makers during an HPAI outbreak. Here, we integrate these economic considerations into an epidemiological model in which epidemiological parameters are determined by an outside agent (the farmer) to maximize profit from poultry sales. Our model exhibits a diversity of behaviors which are sensitive to (i) the ability to identify infected poultry, (ii) the average price of infected poultry, (iii) the basic reproductive number of avian influenza, (iv) the effect of culling on the market price of poultry, (v) the effect of market price on farm size, and (vi) the effect of poultry density on disease transmission. We find that under certain market and epidemiological conditions, culling can increase farm size and the total number of HPAI infections. Our model helps to inform the optimization of public health outcomes that best weigh the balance between public health risk and beneficial economic outcomes for farmers.

  6. Human Influenza Virus Infections.

    PubMed

    Peteranderl, Christin; Herold, Susanne; Schmoldt, Carole

    2016-08-01

    Seasonal and pandemic influenza are the two faces of respiratory infections caused by influenza viruses in humans. As seasonal influenza occurs on an annual basis, the circulating virus strains are closely monitored and a yearly updated vaccination is provided, especially to identified risk populations. Nonetheless, influenza virus infection may result in pneumonia and acute respiratory failure, frequently complicated by bacterial coinfection. Pandemics are, in contrary, unexpected rare events related to the emergence of a reassorted human-pathogenic influenza A virus (IAV) strains that often causes increased morbidity and spreads extremely rapidly in the immunologically naive human population, with huge clinical and economic impact. Accordingly, particular efforts are made to advance our knowledge on the disease biology and pathology and recent studies have brought new insights into IAV adaptation mechanisms to the human host, as well as into the key players in disease pathogenesis on the host side. Current antiviral strategies are only efficient at the early stages of the disease and are challenged by the genomic instability of the virus, highlighting the need for novel antiviral therapies targeting the pulmonary host response to improve viral clearance, reduce the risk of bacterial coinfection, and prevent or attenuate acute lung injury. This review article summarizes our current knowledge on the molecular basis of influenza infection and disease progression, the key players in pathogenesis driving severe disease and progression to lung failure, as well as available and envisioned prevention and treatment strategies against influenza virus infection. PMID:27486731

  7. Human Influenza Virus Infections.

    PubMed

    Peteranderl, Christin; Herold, Susanne; Schmoldt, Carole

    2016-08-01

    Seasonal and pandemic influenza are the two faces of respiratory infections caused by influenza viruses in humans. As seasonal influenza occurs on an annual basis, the circulating virus strains are closely monitored and a yearly updated vaccination is provided, especially to identified risk populations. Nonetheless, influenza virus infection may result in pneumonia and acute respiratory failure, frequently complicated by bacterial coinfection. Pandemics are, in contrary, unexpected rare events related to the emergence of a reassorted human-pathogenic influenza A virus (IAV) strains that often causes increased morbidity and spreads extremely rapidly in the immunologically naive human population, with huge clinical and economic impact. Accordingly, particular efforts are made to advance our knowledge on the disease biology and pathology and recent studies have brought new insights into IAV adaptation mechanisms to the human host, as well as into the key players in disease pathogenesis on the host side. Current antiviral strategies are only efficient at the early stages of the disease and are challenged by the genomic instability of the virus, highlighting the need for novel antiviral therapies targeting the pulmonary host response to improve viral clearance, reduce the risk of bacterial coinfection, and prevent or attenuate acute lung injury. This review article summarizes our current knowledge on the molecular basis of influenza infection and disease progression, the key players in pathogenesis driving severe disease and progression to lung failure, as well as available and envisioned prevention and treatment strategies against influenza virus infection.

  8. The Detection of a Low Pathogenicity Avian Influenza Virus Subtype H9 Infection in a Turkey Breeder Flock in the United Kingdom.

    PubMed

    Reid, Scott M; Banks, Jill; Ceeraz, Vanessa; Seekings, Amanda; Howard, Wendy A; Puranik, Anita; Collins, Susan; Manvell, Ruth; Irvine, Richard M; Brown, Ian H

    2016-05-01

    In April 2013, an H9N2 low pathogenicity avian influenza (LPAI) virus was isolated in a turkey breeder farm in Eastern England comprising 4966 birds. Point-of-lay turkey breeding birds had been moved from a rearing site and within 5 days had shown rapid onset of clinical signs of dullness, coughing, and anorexia. Three houses were involved, two contained a total of 4727 turkey hens, and the third housed 239 male turkeys. Around 50% of the hens were affected, whereas the male turkeys demonstrated milder clinical signs. Bird morbidity rose from 10% to 90%, with an increase in mortality in both houses of turkey hens to 17 dead birds in one house and 27 birds in the second house by day 6. The birds were treated with an antibiotic but were not responsive. Postmortem investigation revealed air sacculitis but no infraorbital sinus swellings or sinusitis. Standard samples were collected, and influenza A was detected. H9 virus infection was confirmed in all three houses by detection and subtyping of hemagglutinating agents in embryonated specific-pathogen-free fowls' eggs, which were shown to be viruses of H9N2 subtype using neuraminidase inhibition tests and a suite of real-time reverse transcription PCR assays. LPAI virus pathotype was suggested by cleavage site sequencing, and an intravenous pathogenicity index of 0.00 confirmed that the virus was of low pathogenicity. Therefore, no official disease control measures were required, and despite the high morbidity, birds recovered and were kept in production. Neuraminidase sequence analysis revealed a deletion of 78 nucleotides in the stalk region, suggesting an adaptation of the virus to poultry. Hemagglutinin gene sequences of two of the isolates clustered with a group of H9 viruses containing other contemporary European H9 strains in the Y439/Korean-like group. The closest matches to the two isolates were A/turkey/Netherlands/11015452/11 (H9N2; 97.9-98% nucleotide identity) and A/mallard/Finland/Li13384/10 (H9N2; 97

  9. The Detection of a Low Pathogenicity Avian Influenza Virus Subtype H9 Infection in a Turkey Breeder Flock in the United Kingdom.

    PubMed

    Reid, Scott M; Banks, Jill; Ceeraz, Vanessa; Seekings, Amanda; Howard, Wendy A; Puranik, Anita; Collins, Susan; Manvell, Ruth; Irvine, Richard M; Brown, Ian H

    2016-05-01

    In April 2013, an H9N2 low pathogenicity avian influenza (LPAI) virus was isolated in a turkey breeder farm in Eastern England comprising 4966 birds. Point-of-lay turkey breeding birds had been moved from a rearing site and within 5 days had shown rapid onset of clinical signs of dullness, coughing, and anorexia. Three houses were involved, two contained a total of 4727 turkey hens, and the third housed 239 male turkeys. Around 50% of the hens were affected, whereas the male turkeys demonstrated milder clinical signs. Bird morbidity rose from 10% to 90%, with an increase in mortality in both houses of turkey hens to 17 dead birds in one house and 27 birds in the second house by day 6. The birds were treated with an antibiotic but were not responsive. Postmortem investigation revealed air sacculitis but no infraorbital sinus swellings or sinusitis. Standard samples were collected, and influenza A was detected. H9 virus infection was confirmed in all three houses by detection and subtyping of hemagglutinating agents in embryonated specific-pathogen-free fowls' eggs, which were shown to be viruses of H9N2 subtype using neuraminidase inhibition tests and a suite of real-time reverse transcription PCR assays. LPAI virus pathotype was suggested by cleavage site sequencing, and an intravenous pathogenicity index of 0.00 confirmed that the virus was of low pathogenicity. Therefore, no official disease control measures were required, and despite the high morbidity, birds recovered and were kept in production. Neuraminidase sequence analysis revealed a deletion of 78 nucleotides in the stalk region, suggesting an adaptation of the virus to poultry. Hemagglutinin gene sequences of two of the isolates clustered with a group of H9 viruses containing other contemporary European H9 strains in the Y439/Korean-like group. The closest matches to the two isolates were A/turkey/Netherlands/11015452/11 (H9N2; 97.9-98% nucleotide identity) and A/mallard/Finland/Li13384/10 (H9N2; 97

  10. Transmission and reassortment of avian influenza viruses at the Asian-North American interface

    USGS Publications Warehouse

    Ramey, Andrew M.; Pearce, John M.; Ely, Craig R.; Guy, Lisa M. Sheffield; Irons, David B.; Derksen, Dirk V.; Ip, Hon S.

    2010-01-01

    Twenty avian influenza viruses were isolated from seven wild migratory bird species sampled at St. Lawrence Island, Alaska. We tested predictions based on previous phylogenetic analyses of avian influenza viruses that support spatially dependent trans-hemispheric gene flow and frequent interspecies transmission at a location situated at the Asian–North American interface. Through the application of phylogenetic and genotypic approaches, our data support functional dilution by distance of trans-hemispheric reassortants and interspecific virus transmission. Our study confirms infection of divergent avian taxa with nearly identical avian influenza strains in the wild. Findings also suggest that H16N3 viruses may contain gene segments with unique phylogenetic positions and that further investigation of how host specificity may impact transmission of H13 and H16 viruses is warranted.

  11. Reduction of high pathogenicity avian influenza virus in eggs from chickens once or twice vaccinated with an oil-emulsified inactivated H5 avian influenza vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The negative impact of high pathogenicity avian influenza virus (HPAIV) infection on egg production and deposition of virus in eggs, as well as any protective effect of vaccination, is unknown. Individually housed non-vaccinated, sham-vaccinated and inactivated H5N9 vaccinated once or twice adult Wh...

  12. Global epidemiology of avian influenza A H5N1 virus infection in humans, 1997-2015: a systematic review of individual case data.

    PubMed

    Lai, Shengjie; Qin, Ying; Cowling, Benjamin J; Ren, Xiang; Wardrop, Nicola A; Gilbert, Marius; Tsang, Tim K; Wu, Peng; Feng, Luzhao; Jiang, Hui; Peng, Zhibin; Zheng, Jiandong; Liao, Qiaohong; Li, Sa; Horby, Peter W; Farrar, Jeremy J; Gao, George F; Tatem, Andrew J; Yu, Hongjie

    2016-07-01

    Avian influenza A H5N1 viruses have caused many, typically severe, human infections since the first human case was reported in 1997. However, no comprehensive epidemiological analysis of global human cases of H5N1 from 1997 to 2015 exists. Moreover, few studies have examined in detail the changing epidemiology of human H5N1 cases in Egypt, especially given the outbreaks since November, 2014, which have the highest number of cases ever reported worldwide in a similar period. Data on individual patients were collated from different sources using a systematic approach to describe the global epidemiology of 907 human H5N1 cases between May, 1997, and April, 2015. The number of affected countries rose between 2003 and 2008, with expansion from east and southeast Asia, then to west Asia and Africa. Most cases (67·2%) occurred from December to March, and the overall case-fatality risk was 483 (53·5%) of 903 cases which varied across geographical regions. Although the incidence in Egypt has increased dramatically since November, 2014, compared with the cases beforehand, there were no significant differences in the fatality risk, history of exposure to poultry, history of patient contact, and time from onset to hospital admission in the recent cases. PMID:27211899

  13. Susceptibility of avian species to North American H13 low pathogenic avian influenza viruses.

    PubMed

    Brown, Justin; Poulson, Rebecca; Carter, Deborah; Lebarbenchon, Camille; Pantin-Jackwood, Mary; Spackman, Erica; Shepherd, Eric; Killian, Mary; Stallknecht, David

    2012-12-01

    Gulls are widely recognized reservoirs for low pathogenic avian influenza (LPAI) viruses; however, the subtypes maintained in these populations and/or the transmission mechanisms involved are poorly understood. Although, a wide diversity of influenza viruses have been isolated from gulls, two hemagglutinin subtypes (H13 and H16) are rarely detected in other avian groups, and existing surveillance data suggests they are maintained almost exclusively within gull populations. In order to evaluate the host range of these gull-adapted influenza subtypes and to characterize viral infection in the gull host, we conducted a series of challenge experiments, with multiple North American strains of H13 LPAI virus in ring-billed gulls (Larus delawarensis), mallards (Anas platyrhynchos), chickens (Gallus domesticus), and turkeys (Meleagris gallopavo). The susceptibility to H13 LPAI viruses varied between species and viral strain. Gulls were highly susceptible to H13 LPAI virus infection and excreted virus via the oropharynx and cloaca for several days. The quantity and duration of shedding was similar between the two routes. Turkeys and ducks were resistant to infection with most strains of H13 LPAI virus, but low numbers of inoculated birds were infected after challenge with specific viral strains. Chickens were refractory to infection with all strains of H13 LPAI virus they were challenged with. The experimental results presented herein are consistent with existing surveillance data on H13 LPAI viruses in birds, and indicate that influenza viruses of the H13 subtype are strongly host-adapted to gulls, but rare spill-over into aberrant hosts (i.e., turkeys and ducks) can occur.

  14. Airborne transmission of H5N1 high pathogenicity avian influenza viruses during simulated home slaughter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most H5N1 human infections have occurred following exposure to H5N1 high pathogenicity avian influenza (HPAI) virus-infected poultry, especially when poultry are home slaughtered or slaughtered in live poultry markets. Previous studies have demonstrated that slaughter of clade 1 isolate A/Vietnam/1...

  15. Frequently Asked Questions on Human Infection Caused by the Avian Influenza A (H7N9) Virus

    MedlinePlus

    ... to eat meat/animal products, for example, poultry, eggs, and pork? Because influenza viruses are inactivated by ... not be eaten. 10. How can meat and eggs be safely prepared? Always keep raw meat and ...

  16. Disease Severity Is Associated with Differential Gene Expression at the Early and Late Phases of Infection in Nonhuman Primates Infected with Different H5N1 Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Muramoto, Yukiko; Shoemaker, Jason E.; Le, Mai Quynh; Itoh, Yasushi; Tamura, Daisuke; Sakai-Tagawa, Yuko; Imai, Hirotaka; Uraki, Ryuta; Takano, Ryo; Kawakami, Eiryo; Ito, Mutsumi; Okamoto, Kiyoko; Ishigaki, Hirohito; Mimuro, Hitomi; Sasakawa, Chihiro; Matsuoka, Yukiko; Noda, Takeshi; Fukuyama, Satoshi; Ogasawara, Kazumasa; Kitano, Hiroaki

    2014-01-01

    ABSTRACT Occasional transmission of highly pathogenic avian H5N1 influenza viruses to humans causes severe pneumonia with high mortality. To better understand the mechanisms via which H5N1 viruses induce severe disease in humans, we infected cynomolgus macaques with six different H5N1 strains isolated from human patients and compared their pathogenicity and the global host responses to the virus infection. Although all H5N1 viruses replicated in the respiratory tract, there was substantial heterogeneity in their replicative ability and in the disease severity induced, which ranged from asymptomatic to fatal. A comparison of global gene expression between severe and mild disease cases indicated that interferon-induced upregulation of genes related to innate immunity, apoptosis, and antigen processing/presentation in the early phase of infection was limited in severe disease cases, although interferon expression was upregulated in both severe and mild cases. Furthermore, coexpression analysis of microarray data, which reveals the dynamics of host responses during the infection, demonstrated that the limited expression of these genes early in infection led to a failure to suppress virus replication and to the hyperinduction of genes related to immunity, inflammation, coagulation, and homeostasis in the late phase of infection, resulting in a more severe disease. Our data suggest that the attenuated interferon-induced activation of innate immunity, apoptosis, and antigen presentation in the early phase of H5N1 virus infection leads to subsequent severe disease outcome. IMPORTANCE Highly pathogenic avian H5N1 influenza viruses sometimes transmit to humans and cause severe pneumonia with ca. 60% lethality. The continued circulation of these viruses poses a pandemic threat; however, their pathogenesis in mammals is not fully understood. We, therefore, investigated the pathogenicity of six H5N1 viruses and compared the host responses of cynomolgus macaques to the virus

  17. Influenza A(H5N8) Virus Similar to Strain in Korea Causing Highly Pathogenic Avian Influenza in Germany.

    PubMed

    Harder, Timm; Maurer-Stroh, Sebastian; Pohlmann, Anne; Starick, Elke; Höreth-Böntgen, Detlef; Albrecht, Karin; Pannwitz, Gunter; Teifke, Jens; Gunalan, Vithiagaran; Lee, Raphael T C; Sauter-Louis, Carola; Homeier, Timo; Staubach, Christoph; Wolf, Carola; Strebelow, Günter; Höper, Dirk; Grund, Christian; Conraths, Franz J; Mettenleiter, Thomas C; Beer, Martin

    2015-05-01

    Highly pathogenic avian influenza (H5N8) virus, like the recently described H5N8 strain from Korea, was detected in November 2014 in farmed turkeys and in a healthy common teal (Anas crecca) in northeastern Germany. Infected wild birds possibly introduced this virus. PMID:25897703

  18. Differences in pathogenicity, response to vaccination, and innate immune responses in different types of ducks infected with a virulent H5N1 highly pathogenic avian influenza virus from Vietnam

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild ducks are reservoirs of avian influenza viruses in nature, and usually don’t show signs of disease. However, some Asian lineage H5N1 highly pathogenic avian influenza (HPAI) viruses can cause disease and death in both wild and domestic ducks. The objective of this study was to compare the cli...

  19. Serological Surveillance of Wild Waterfowl in Northern Australia for Avian Influenza Virus Shows Variations in Prevalence and a Cyclical Periodicity of Infection.

    PubMed

    Curran, John M; Ellis, Trevor M; Robertson, Ian D

    2015-12-01

    The virological surveillance of 3582 wild waterfowl in northern Australia from 2004 to 2009 for avian influenza virus (AIV) found an apparent prevalence (AP) of 1% (31 of 2989 cloacal swabs; 95% CI: 0.71%-1.47%) using a Taqman Type A real-time reverse transcription polymerase chain reaction test and no viral isolations from 593 swabs tested by the embryonating chicken egg culture method. From serological testing using a nucleoprotein competitive enzyme-linked immunosorbent assay for AIV antibody, 1131 of 3645 sera had ≥ 40% inhibition, indicating an apparent seroprevalence of 31% (95% CI: 29.5%-32.6%). This value suggests that the low AP from virological testing does not reflect the dynamics of AIV infection in these populations. Spatiotemporal and species variations in seroprevalence were found at wetland sampling sites, with consistently higher values at Kununurra in Western Australia (AP  =  39%, 95% CI: 36.9%-41.4%) compared to other locations. At Kununurra, seroprevalence values had a two-year cyclical periodicity and suggest this location is a hotspot of AIV activity. From hemagglutination inhibition (HI) testing using multiple subtype antigens, the highest AP of HI reactions were to H6 and H5 subtypes. The phenomenon of cyclic periodicity in NP seroprevalence at Kununurra is hypothesized as being related to the prevalent H6 subtype that may have either become predominant or cycled back into a mostly AIV naïve flock. The inclusion of serological testing provided insight into the dynamics of AIV infection in wild birds such as species risk profiles and spatiotemporal patterns, important epidemiological information for a risk-based approach to surveillance.

  20. Human microRNA-24 modulates highly pathogenic avian-origin H5N1 influenza A virus infection in A549 cells by targeting secretory pathway furin.

    PubMed

    Loveday, Emma-Kate; Diederich, Sandra; Pasick, John; Jean, François

    2015-01-01

    A common critical cellular event that many human enveloped viruses share is the requirement for proteolytic cleavage of the viral glycoprotein by furin in the host secretory pathway. For example, the furin-dependent proteolytic activation of highly pathogenic (HP) influenza A (infA) H5 and H7 haemagglutinin precursor (HA0) subtypes is critical for yielding fusion-competent infectious virions. In this study, we hypothesized that viral hijacking of the furin pathway by HP infA viruses to permit cleavage of HA0 could represent a novel molecular mechanism controlling the dynamic production of fusion-competent infectious virus particles during the viral life cycle. We explored the biological role of a newly identified furin-directed human microRNA, miR-24, in this process as a potential post-transcriptional regulator of the furin-mediated activation of HA0 and production of fusion-competent virions in the host secretory pathway. We report that miR-24 and furin are differentially expressed in human A549 cells infected with HP avian-origin infA H5N1. Using miR-24 mimics, we demonstrated a robust decrease in both furin mRNA levels and intracellular furin activity in A549 cells. Importantly, pretreatment of A549 cells with miR-24 mimicked these results: a robust decrease of H5N1 infectious virions and a complete block of H5N1 virus spread that was not observed in A549 cells infected with low-pathogenicity swine-origin infA H1N1 virus. Our results suggest that viral-specific downregulation of furin-directed microRNAs such as miR-24 during the life cycle of HP infA viruses may represent a novel regulatory mechanism that governs furin-mediated proteolytic activation of HA0 glycoproteins and production of infectious virions.

  1. Avian influenza infection dynamics under variable climatic conditions, viral prevalence is rainfall driven in waterfowl from temperate, south-east Australia.

    PubMed

    Ferenczi, Marta; Beckmann, Christa; Warner, Simone; Loyn, Richard; O'Riley, Kim; Wang, Xinlong; Klaassen, Marcel

    2016-02-06

    Understanding Avian Influenza Virus (AIV) infection dynamics in wildlife is crucial because of possible virus spill over to livestock and humans. Studies from the northern hemisphere have suggested several ecological and environmental drivers of AIV prevalence in wild birds. To determine if the same drivers apply in the southern hemisphere, where more irregular environmental conditions prevail, we investigated AIV prevalence in ducks in relation to biotic and abiotic factors in south-eastern Australia. We sampled duck faeces for AIV and tested for an effect of bird numbers, rainfall anomaly, temperature anomaly and long-term ENSO (El-Niño Southern Oscillation) patterns on AIV prevalence. We demonstrate a positive long term effect of ENSO-related rainfall on AIV prevalence. We also found a more immediate response to rainfall where AIV prevalence was positively related to rainfall in the preceding 3-7 months. Additionally, for one duck species we found a positive relationship between their numbers and AIV prevalence, while prevalence was negatively or not affected by duck numbers in the remaining four species studied. In Australia largely non-seasonal rainfall patterns determine breeding opportunities and thereby influence bird numbers. Based on our findings we suggest that rainfall influences age structures within populations, producing an influx of immunologically naïve juveniles within the population, which may subsequently affect AIV infection dynamics. Our study suggests that drivers of AIV dynamics in the northern hemisphere do not have the same influence at our south-east Australian field site in the southern hemisphere due to more erratic climatological conditions.

  2. The impact of holding time on the likelihood of moving internally contaminated eggs from a highly pathogenic avian influenza infected but undetected commercial table-egg layer flock.

    PubMed

    Malladi, Sasidhar; Weaver, J Todd; Goldsmith, Timothy; Hueston, William; Voss, Shauna; Funk, Janel; Der, Christina; Bjork, Kathe E; Clouse, Timothy L; Hennessey, Morgan; Sampedro, Fernando; Lee, Brendan; Halvorson, David A

    2012-12-01

    Emergency response during a highly pathogenic avian influenza (HPAI) outbreak may involve quarantine and movement controls for poultry products such as eggs. However, such disease control measures may disrupt business continuity and impact food security, since egg production facilities often do not have sufficient capacity to store eggs for prolonged periods. We propose the incorporation of a holding time before egg movement in conjunction with targeted active surveillance as a novel approach to move eggs from flocks within a control area with a low likelihood of them being contaminated with HPAI virus. Holding time reduces the likelihood of HPAI-contaminated eggs being moved from a farm before HPAI infection is detected in the flock. We used a stochastic disease transmission model to estimate the HPAI disease prevalence, disease mortality, and fraction of internally contaminated eggs at various time points postinfection of a commercial table-egg layer flock. The transmission model results were then used in a simulation model of a targeted matrix gene real-time reverse transcriptase (RRT)-PCR testing based surveillance protocol to estimate the time to detection and the number of contaminated eggs moved under different holding times. Our simulation results indicate a significant reduction in the number of internally contaminated eggs moved from an HPAI-infected undetected flock with each additional day of holding time. Incorporation of a holding time and the use of targeted surveillance have been adopted by the U.S. Department of Agriculture in their Draft Secure Egg Supply Plan for movement of egg industry products during an HPAI outbreak.

  3. The impact of holding time on the likelihood of moving internally contaminated eggs from a highly pathogenic avian influenza infected but undetected commercial table-egg layer flock.

    PubMed

    Malladi, Sasidhar; Weaver, J Todd; Goldsmith, Timothy; Hueston, William; Voss, Shauna; Funk, Janel; Der, Christina; Bjork, Kathe E; Clouse, Timothy L; Hennessey, Morgan; Sampedro, Fernando; Lee, Brendan; Halvorson, David A

    2012-12-01

    Emergency response during a highly pathogenic avian influenza (HPAI) outbreak may involve quarantine and movement controls for poultry products such as eggs. However, such disease control measures may disrupt business continuity and impact food security, since egg production facilities often do not have sufficient capacity to store eggs for prolonged periods. We propose the incorporation of a holding time before egg movement in conjunction with targeted active surveillance as a novel approach to move eggs from flocks within a control area with a low likelihood of them being contaminated with HPAI virus. Holding time reduces the likelihood of HPAI-contaminated eggs being moved from a farm before HPAI infection is detected in the flock. We used a stochastic disease transmission model to estimate the HPAI disease prevalence, disease mortality, and fraction of internally contaminated eggs at various time points postinfection of a commercial table-egg layer flock. The transmission model results were then used in a simulation model of a targeted matrix gene real-time reverse transcriptase (RRT)-PCR testing based surveillance protocol to estimate the time to detection and the number of contaminated eggs moved under different holding times. Our simulation results indicate a significant reduction in the number of internally contaminated eggs moved from an HPAI-infected undetected flock with each additional day of holding time. Incorporation of a holding time and the use of targeted surveillance have been adopted by the U.S. Department of Agriculture in their Draft Secure Egg Supply Plan for movement of egg industry products during an HPAI outbreak. PMID:23402110

  4. Serological Surveillance of Wild Waterfowl in Northern Australia for Avian Influenza Virus Shows Variations in Prevalence and a Cyclical Periodicity of Infection.

    PubMed

    Curran, John M; Ellis, Trevor M; Robertson, Ian D

    2015-12-01

    The virological surveillance of 3582 wild waterfowl in northern Australia from 2004 to 2009 for avian influenza virus (AIV) found an apparent prevalence (AP) of 1% (31 of 2989 cloacal swabs; 95% CI: 0.71%-1.47%) using a Taqman Type A real-time reverse transcription polymerase chain reaction test and no viral isolations from 593 swabs tested by the embryonating chicken egg culture method. From serological testing using a nucleoprotein competitive enzyme-linked immunosorbent assay for AIV antibody, 1131 of 3645 sera had ≥ 40% inhibition, indicating an apparent seroprevalence of 31% (95% CI: 29.5%-32.6%). This value suggests that the low AP from virological testing does not reflect the dynamics of AIV infection in these populations. Spatiotemporal and species variations in seroprevalence were found at wetland sampling sites, with consistently higher values at Kununurra in Western Australia (AP  =  39%, 95% CI: 36.9%-41.4%) compared to other locations. At Kununurra, seroprevalence values had a two-year cyclical periodicity and suggest this location is a hotspot of AIV activity. From hemagglutination inhibition (HI) testing using multiple subtype antigens, the highest AP of HI reactions were to H6 and H5 subtypes. The phenomenon of cyclic periodicity in NP seroprevalence at Kununurra is hypothesized as being related to the prevalent H6 subtype that may have either become predominant or cycled back into a mostly AIV naïve flock. The inclusion of serological testing provided insight into the dynamics of AIV infection in wild birds such as species risk profiles and spatiotemporal patterns, important epidemiological information for a risk-based approach to surveillance. PMID:26629622

  5. Emergence of mammalian species-infectious and -pathogenic avian influenza H6N5 virus with no evidence of adaptation.

    PubMed

    Nam, Jeong-Hyun; Kim, Eun-Ha; Song, Daesub; Choi, Young Ki; Kim, Jeong-Ki; Poo, Haryoung

    2011-12-01

    The migratory waterfowl of the world are considered to be the natural reservoir of influenza A viruses. Of the 16 hemagglutinin subtypes of avian influenza viruses, the H6 subtype is commonly perpetuated in its natural hosts and is of concern due to its potential to be a precursor of highly pathogenic influenza viruses by reassortment. During routine influenza surveillance, we isolated an unconventional H6N5 subtype of avian influenza virus. Experimental infection of mice revealed that this isolate replicated efficiently in the lungs, subsequently spread systemically, and caused lethality. The isolate also productively infected ferrets, with direct evidence of contact transmission, but no disease or transmission was seen in pigs. Although the isolate possessed the conserved receptor-binding site sequences of avian influenza viruses, it exhibited relatively low replication efficiencies in ducks and chickens. Our genetic and molecular analyses of the isolate revealed that its PB1 sequence showed the highest evolutionary relationship to those of highly pathogenic H5N1 avian influenza viruses and that its PA protein had an isoleucine residue at position 97 (a representative virulence marker). Further studies will be required to examine why our isolate has the virologic characteristics of mammalian influenza viruses but the archetypal receptor binding profiles of avian influenza viruses, as well as to determine whether its potential virulence markers (PB1 analogous to those of H5N1 viruses or isoleucine residue at position 97 within PA) could render it highly pathogenic in mice. PMID:21994462

  6. Inactivation of various influenza strains to model avian influenza (Bird Flu) with various disinfectant chemistries.

    SciTech Connect

    Oberst, R. D.; Bieker, Jill Marie; Souza, Caroline Ann

    2005-12-01

    Due to the grave public health implications and economic impact possible with the emergence of the highly pathogenic avian influenza A isolate, H5N1, currently circulating in Asia we have evaluated the efficacy of various disinfectant chemistries against surrogate influenza A strains. Chemistries included in the tests were household bleach, ethanol, Virkon S{reg_sign}, and a modified version of the Sandia National Laboratories developed DF-200 (DF-200d, a diluted version of the standard DF-200 formulation). Validation efforts followed EPA guidelines for evaluating chemical disinfectants against viruses. The efficacy of the various chemistries was determined by infectivity, quantitative RNA, and qualitative protein assays. Additionally, organic challenges using combined poultry feces and litter material were included in the experiments to simulate environments in which decontamination and remediation will likely occur. In all assays, 10% bleach and Sandia DF-200d were the most efficacious treatments against two influenza A isolates (mammalian and avian) as they provided the most rapid and complete inactivation of influenza A viruses.

  7. When animal viruses attack: SARS and avian influenza.

    PubMed

    Lee, Paul J; Krilov, Leonard R

    2005-01-01

    SARS and avian influenza have many common features. They both arose in Asia and originated from animal viruses. They both have the potential to become pandemics because human beings lack antibodies to the animal-derived antigens present on the viral surface and rapid dissemination can occur from the relative ease and availability of high speed and far-reaching transportation methods. Pediatricians, in particular, should remain alert about the possibility of pandemic illnesses in their patients. Annual rates of influenza in children may be 1.5 to 3 times those in the adult population, and infection rates during a community epidemic may exceed 40% in preschool-aged children and 30% in school-aged children. Infected children also play a central role in disseminating influenza, as they are the major point of entry for the virus into the household, from which adults spread disease into the community. Of course, children younger than 24 months also are at high risk for complications from influenza. A 1999 Centers for Disease Control and Prevention projection of an influenza pandemic in the US paints a grim picture: 89,000 to 207,000 deaths, 314,000 to 734,000 hospitalizations, 18 million to 42 million outpatient visits, and 20 million to 47 million additional illnesses, at a cost to society of at least dollars 71.3 billion to dollars 166.5 billion. High-risk patients (15% of the population) would account for approximately 84% of all deaths. Although SARS has been kind to the pediatric population so far, there are no guarantees that future outbreaks would be as sparing. To aid readers in remaining up-to-date with SARS and avian influenza, some useful websites are listed in the Sidebar. Two masters of suspense, Alfred Hitchcock and Stephen King, may have been closer to the truth than they ever would have believed. Both birds and a super flu could bring about the end of civilization as we know it. But all is not lost--to paraphrase Thomas Jefferson, the price of health is

  8. Differences in the Epidemiology of Human Cases of Avian Influenza A(H7N9) and A(H5N1) Viruses Infection

    PubMed Central

    Qin, Ying; Horby, Peter W.; Tsang, Tim K.; Chen, Enfu; Gao, Lidong; Ou, Jianming; Nguyen, Tran Hien; Duong, Tran Nhu; Gasimov, Viktor; Feng, Luzhao; Wu, Peng; Jiang, Hui; Ren, Xiang; Peng, Zhibin; Li, Sa; Li, Ming; Zheng, Jiandong; Liu, Shelan; Hu, Shixiong; Hong, Rongtao; Farrar, Jeremy J.; Leung, Gabriel M.; Gao, George F.; Cowling, Benjamin J.; Yu, Hongjie

    2015-01-01

    Background. The pandemic potential of avian influenza viruses A(H5N1) and A(H7N9) remains an unresolved but critically important question. Methods. We compared the characteristics of sporadic and clustered cases of human H5N1 and H7N9 infection, estimated the relative risk of infection in blood-related contacts, and the reproduction number (R). Results. We assembled and analyzed data on 720 H5N1 cases and 460 H7N9 cases up to 2 November 2014. The severity and average age of sporadic/index cases of H7N9 was greater than secondary cases (71% requiring intensive care unit admission vs 33%, P = .007; median age 59 years vs 31, P < .001). We observed no significant differences in the age and severity between sporadic/index and secondary H5N1 cases. The upper limit of the 95% confidence interval (CI) for R was 0.12 for H5N1 and 0.27 for H7N9. A higher proportion of H5N1 infections occurred in clusters (20%) compared to H7N9 (8%). The relative risk of infection in blood-related contacts of cases compared to unrelated contacts was 8.96 for H5N1 (95% CI, 1.30, 61.86) and 0.80 for H7N9 (95% CI, .32, 1.97). Conclusions. The results are consistent with an ascertainment bias towards severe and older cases for sporadic H7N9 but not for H5N1. The lack of evidence for ascertainment bias in sporadic H5N1 cases, the more pronounced clustering of cases, and the higher risk of infection in blood-related contacts, support the hypothesis that susceptibility to H5N1 may be limited and familial. This analysis suggests the potential pandemic risk may be greater for H7N9 than H5N1. PMID:25940354

  9. Variation and infectivity neutralization in influenza

    PubMed Central

    Knossow, Marcel; Skehel, John J

    2006-01-01

    Worldwide epidemics of influenza are caused by viruses that normally infect other species, particularly waterfowl, and that contain haemagglutinin membrane glycoproteins (HAs) to which the human population has no immunity. Anti-HA immunoglobulins neutralize influenza virus infectivity. In this review we outline structural differences that distinguish the HAs of the 16 antigenic subtypes (H1–16) found in viruses from avian species. We also describe structural changes in HA required for the effective transfer to humans of viruses containing three of them, H1, H2 and H3, in the 1918 (Spanish), the 1957 (Asian) and the 1968 (Hong Kong) pandemics, respectively. In addition, we consider changes that may be required before the current avian H5 viruses could pass from human to human. PMID:16925526

  10. Thermal inactivation of avian influenza virus and Newcastle disease virus in a fat-free egg product

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) and Avian Paramyxovirus Type-1 (AMPV-1) viruses can survive on the carcasses, in organ tissue of infected birds, on fomites, and have the potential for egg transmission and egg product contamination. With the increase in global trade, there are concerns that egg products could ...

  11. Muscovy duck retinoic acid-induced gene I (MdRIG-I) functions in innate immunity against H9N2 avian influenza viruses (AIV) infections.

    PubMed

    Cheng, Yuqiang; Huang, Qingqing; Ji, Wenhui; Du, Bin; Fu, Qiang; An, Huiting; Li, Jing; Wang, Hengan; Yan, Yaxian; Ding, Chan; Sun, Jianhe

    2015-02-15

    Retinoic acid inducible gene I (RIG-I) is a cytosolic pattern recognition receptor that senses pathogen-associated molecular patterns (PAMPs). Muscovy duck (Cairina moschata) is a large duck different from other species of ducks, and is more susceptible to some microbial pathogens. In this study, the Muscovy duck RIG-I gene (MdRIG-I) was identified. Quantitative RT-PCR showed that MdRIG-I mRNA was widely expressed in different tissues, especially in those with mucosa. RIG-I null DF-1 cells transfected with DNA constructs encoding MdRIG-I or CARDs domain can activate IRF-3 and NF-κB to up-regulated activity of IFN-β promoter. The components of the signaling pathway downstream of RIG-I in mammalian cells including IRF-3, NF-κB, IFN-β and the IFN-stimulated genes Mx-1, PKR and MDA5 were significantly up-regulated in CARDs-overexpressing-DF-1 cells. Implicating RIG-I in the antiviral response to an infection in vivo, we found that RIG-I expression in brain, spleen, lung and bursa were up-regulated in ducks challenged with H9N2 avian influenza virus (AIV), whose six internal genes were closely related to the H7N9 and H10N8 AIV. In vitro, DF-1 cells transfected with MdRIG-I plasmid can respond significantly to H9N2 AIV, evident through enhancement of IFN-β promoter activity and decreased virus titer. Altogether, these results indicated that MdRIG-I is a novel member of RLR gene family, engaging in the early stage of antiviral innate immunity.

  12. Risk Reduction Modeling of High Pathogenicity Avian Influenza Virus Titers in Nonpasteurized Liquid Egg Obtained from Infected but Undetected Chicken Flocks.

    PubMed

    Weaver, J Todd; Malladi, Sasidhar; Spackman, Erica; Swayne, David E

    2015-11-01

    Control of highly pathogenic avian influenza (HPAI) outbreaks in poultry has traditionally involved the establishment of disease containment zones, where poultry products are only permitted to move from within a zone under permit. Nonpasteurized liquid egg (NPLE) is one such commodity for which movements may be permitted, considering inactivation of HPAI virus via pasteurization. Active surveillance testing at the flock level, using targeted matrix gene real-time reversed transcriptase-polymerase chain reaction testing (RRT-PCR) has been incorporated into HPAI emergency response plans as the primary on-farm diagnostic test procedure to detect HPAI in poultry and is considered to be a key risk mitigation measure. To inform decisions regarding the potential movement of NPLE to a pasteurization facility, average HPAI virus concentrations in NPLE produced from a HPAI virus infected, but undetected, commercial table-egg-layer flock were estimated for three HPAI virus strains using quantitative simulation models. Pasteurization under newly proposed international design standards (5 log10 reduction) is predicted to inactivate HPAI virus in NPLE to a very low concentration of less than 1 embryo infectious dose (EID)50 /mL, considering the predicted virus titers in NPLE from a table-egg flock under active surveillance. Dilution of HPAI virus from contaminated eggs in eggs from the same flock, and in a 40,000 lb tanker-truck load of NPLE containing eggs from disease-free flocks was also considered. Risk assessment can be useful in the evaluation of commodity-specific risk mitigation measures to facilitate safe trade in animal products from countries experiencing outbreaks of highly transmissible animal diseases.

  13. Pathogenicity of an H5N1 avian influenza virus isolated in Vietnam in 2012 and reliability of conjunctival samples for diagnosis of infection

    PubMed Central

    Bui, Vuong N.; Dao, Tung D.; Nguyen, Tham T. H.; Nguyen, Lien T.; Bui, Anh N.; Trinh, Dai Q.; Pham, Nga T.; Inui, Kenjiro; Runstadler, Jonathan; Ogawa, Haruko; Nguyen, Khong V.; Imai, Kunitoshi

    2013-01-01

    The continued spread of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 among poultry in Vietnam poses a potential threat to animals and public health. To evaluate the pathogenicity of a 2012 H5N1 HPAIV isolate and to assess the utility of conjunctival swabs for viral detection and isolation in surveillance, an experimental infection with HPAIV subtype H5N1 was carried out in domestic ducks. Ducks were infected with 107.2 TCID50 of A/duck/Vietnam/QB1207/2012 (H5N1), which was isolated from a moribund domestic duck. In the infected ducks, clinical signs of disease, including neurological disorder, were observed. Ducks started to die at 3 days-post-infection (dpi), and the study mortality reached 67%. Viruses were recovered from oropharyngeal and conjunctival swabs until 7 dpi and from cloacal swabs until 4 dpi. In the ducks that died or were sacrificed on 3, 5, or 6 dpi, viruses were recovered from lung, brain, heart, pancreas and intestine, among which the highest virus titers were in the lung, brain or heart. Results of virus titration were confirmed by real-time RT-PCR. Genetic and phylogenetic analysis of the HA gene revealed that the isolate belongs to clade 2.3.2.1 similarly to the H5N1 viruses isolated in Vietnam in 2012. The present study demonstrated that this recent HPAI H5N1 virus of clade 2.3.2.1 could replicate efficiently in the systemic organs, including the brain, and cause severe disease with neurological symptoms in domestic ducks. Therefore, this HPAI H5N1 virus seems to retain the neurotrophic feature and has further developed properties of shedding virus from the oropharynx and conjunctiva in addition to the cloaca, potentially posing a higher risk of virus spread through cross-contact and/or environmental transmission. Continued surveillance and diagnostic programs using conjuntcival swabs in the field would further verify the apparent reliability of conjunctival samples for the detection of AIV. PMID:24211664

  14. Impact of vaccination on infection with Vietnam H5N1 high pathogenicity avian influenza virus in hens and the eggs they lay.

    PubMed

    Bertran, Kateri; Moresco, Kira; Swayne, David E

    2015-03-10

    High pathogenicity avian influenza virus (HPAIV) infections in chickens negatively impact egg production and cause egg contamination. Previously, vaccination maintained egg production and reduced egg contamination when challenged with a North American H5N2 HPAIV. However, Asian H5N1 HPAIV infection has some characteristics of increased pathogenicity compared to other H5 HPAIV such as more rapid drop and complete cessation in egg production. Sham (vaccinated at 25 and 28 weeks of age), inactivated H5N1 Once (1X-H5-Vax; vaccinated at 28 weeks of age only) and inactivated H5N1 Twice (2X-H5-Vax; vaccinated at 25 and 28 weeks of age) vaccinated adult White Leghorn hens were challenged intranasally at 31 weeks of age with 6.1 log10 mean embryo infectious doses (EID50) of clade 2.3.2.1a H5N1 HPAIV (A/chicken/Vietnam/NCVD-675/2011) which was homologous to the inactivated vaccine. Sham-vaccinated layers experienced 100% mortality within 3 days post-challenge; laid soft and thin-shelled eggs; had recovery of virus from oral swabs and in 53% of the eggs from eggshell surface (35%), yolk (24%), and albumin (41%); and had very high titers of virus (average 7.91 log10 EID50/g) in all segments of the oviduct and ovary. By comparison, 1X- and 2X-H5-Vax challenged hens survived infection, laid similar number of eggs pre- and post-challenge, all eggs had normal egg shell quality, and had significantly fewer contaminated eggs with reduced virus quantity. The 2X-H5-Vax hens had significantly higher HI titers by the day of challenge (304 GMT) and at termination (512 GMT) than 1X-H5-Vax hens (45 GMT and 128 GMT). The current study demonstrated that AIV infections caused by clade 2.3.2.1a H5N1 variants can be effectively controlled by either double or single homologous vaccination. PMID:25657093

  15. Pathogenicity of an H5N1 avian influenza virus isolated in Vietnam in 2012 and reliability of conjunctival samples for diagnosis of infection.

    PubMed

    Bui, Vuong N; Dao, Tung D; Nguyen, Tham T H; Nguyen, Lien T; Bui, Anh N; Trinh, Dai Q; Pham, Nga T; Inui, Kenjiro; Runstadler, Jonathan; Ogawa, Haruko; Nguyen, Khong V; Imai, Kunitoshi

    2014-01-22

    The continued spread of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 among poultry in Vietnam poses a potential threat to animals and public health. To evaluate the pathogenicity of a 2012 H5N1 HPAIV isolate and to assess the utility of conjunctival swabs for viral detection and isolation in surveillance, an experimental infection with HPAIV subtype H5N1 was carried out in domestic ducks. Ducks were infected with 10(7.2) TCID50 of A/duck/Vietnam/QB1207/2012 (H5N1), which was isolated from a moribund domestic duck. In the infected ducks, clinical signs of disease, including neurological disorder, were observed. Ducks started to die at 3 days-post-infection (dpi), and the study mortality reached 67%. Viruses were recovered from oropharyngeal and conjunctival swabs until 7 dpi and from cloacal swabs until 4 dpi. In the ducks that died or were sacrificed on 3, 5, or 6 dpi, viruses were recovered from lung, brain, heart, pancreas and intestine, among which the highest virus titers were in the lung, brain or heart. Results of virus titration were confirmed by real-time RT-PCR. Genetic and phylogenetic analysis of the HA gene revealed that the isolate belongs to clade 2.3.2.1 similarly to the H5N1 viruses isolated in Vietnam in 2012. The present study demonstrated that this recent HPAI H5N1 virus of clade 2.3.2.1 could replicate efficiently in the systemic organs, including the brain, and cause severe disease with neurological symptoms in domestic ducks. Therefore, this HPAI H5N1 virus seems to retain the neurotrophic feature and has further developed properties of shedding virus from the oropharynx and conjunctiva in addition to the cloaca, potentially posing a higher risk of virus spread through cross-contact and/or environmental transmission. Continued surveillance and diagnostic programs using conjunctival swabs in the field would further verify the apparent reliability of conjunctival samples for the detection of AIV.

  16. Phylogenic analysis of reassorted avian influenza viruses isolated from Korean domestic ducks from 2005 to 2007.

    PubMed

    Kang, Sook Jung; Kim, Heui Man; Kim, Yun Hee; Hwang, Seon Do; Shin, Jin Soo; Ku, Keun Bon; Kim, Hyun Soo; Seo, Sang Heui

    2009-02-01

    Ducks have been regarded as animals that can perpetuate most avian influenza viruses since they generally do not show the clear clinical signs such as death and reduced body weight when they are infected. Here, we characterized two H3N2 and one H3N6 avian influenza viruses isolated from ducks on the local farms in Korea from 2005 to 2007. Genetic analysis of these viruses showed that most segments of isolates except NP genes belonged to Eurasian lineage. NP genes of two H3N2 isolates, A/Duck/Korea/S71/07, and A/Duck/Korea/S72/07 belonged to North American lineage. Our results suggest that the genetic reassortment among avian influenza viruses can occur in domestic ducks.

  17. Decay of Influenza a Viruses of Human and Avian Origin

    PubMed Central

    Mitchell, Chas. A.; Guerin, L. F.; Robillard, John

    1968-01-01

    The decay rate of six strains of Influenza virus Type A of human origin and eight strains of avian origin were examined in aerosol form under fixed conditions of temperature and humidity. Strains of avian origin were demonstrated to have greater resistance to decay of viability. PMID:4234786

  18. Avian Influenza spread and transmission dynamics

    USGS Publications Warehouse

    Bourouiba, Lydia; Gourley, Stephen A.; Liu, Rongsong; Takekawa, John Y.; Wu, Jianhong; Chen, Dongmei; Moulin, Bernard; Wu, Jianhong

    2015-01-01

    The spread of highly pathogenic avian influenza (HPAI) viruses of type A of subtype H5N1 has been a serious threat to global public health. Understanding the roles of various (migratory, wild, poultry) bird species in the transmission of these viruses is critical for designing and implementing effective control and intervention measures. Developing appropriate models and mathematical techniques to understand these roles and to evaluate the effectiveness of mitigation strategies have been a challenge. Recent development of the global health surveillance (especially satellite tracking and GIS techniques) and the mathematical theory of dynamical systems combined have gradually shown the promise of some cutting-edge methodologies and techniques in mathematical biology to meet this challenge.

  19. Bronchointerstitial pneumonia in guinea pigs following inoculation with H5N1 high pathogenicity avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) viruses have caused widespread disease of poultry in Asia, Africa and the Middle East, and sporadic human infections. The guinea pig model has been used to study human H3N2 and H1N1 influenza viruses, but knowledge is lacking on H5N1 HPAI virus inf...

  20. Pathogenesis and transmission of highly pathogenic avian influenza H5Nx in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction Influenza A viruses (IAV) periodically transmit between pigs, people, and birds. If two IAV strains infect the same host, genes can reassort to generate progeny virus with potential to be more infectious or avoid immunity. Pigs pose a risk for such reassortment. Highly pathogenic avian ...

  1. Cross reactive cellular immune responses in chickens previously exposed to low pathogenic avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) infection in poultry can result in high morbidity and mortality, and negatively affect international trade. Because most AI vaccines used for poultry are inactivated, our knowledge of immunity against AI is based largely on humoral immune responses. In fact, little is known abo...

  2. Novel Eurasian highly pathogenic avian influenza A H5 viruses in wild birds, Washington, USA, 2014.

    PubMed

    Ip, Hon S; Torchetti, Mia Kim; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara; Shearn-Bochsler, Valerie; Killian, Mary Lea; Pedersen, Janice C; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M

    2015-05-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.

  3. Global expansion of high pathogenicity avian influenza: implications on prevention and control programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 63 countries during the past 18 years. The majority of the recent outbreaks of H5N1 HPAI have occurred in Indonesia, Egypt, Vietnam, and Bangladesh, in decreas...

  4. Global expansion of high pathogenicity avian influenza: implications on prevention and control programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 63 countries during the past 18 years. The majority of the recent outbreaks of H5N1 HPAI have occurred in Indonesia, Egypt, Vietnam, and Bangladesh, in decreasi...

  5. Poultry vaccination directed evolution of H9N2 low pathogenicity avian influenza viruses in Korea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Significant economic losses in the poultry industries have resulted from H9N2 low pathogenic avian influenza virus infections across North Africa, the Middle East and Asia. The present study investigated the evolutionary dynamics of H9N2 viruses circulating in Korea from 1996 to 2012. Our analysis o...

  6. H9N2 low pathogenic avian influenza in Pakistan (2012-2015)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Significant economic losses from deaths and decreased egg production have resulted from H9N2 low pathogenic avian influenza virus (LPAIV) infections in poultry across North Africa, the Middle East and Asia. The H9N2 LPAIVs have been endemic in Pakistani poultry since 1996, but no new viruses have be...

  7. Adenovirus-based vaccines against avian-origin H5N1 influenza viruses.

    PubMed

    He, Biao; Zheng, Bo-jian; Wang, Qian; Du, Lanying; Jiang, Shibo; Lu, Lu

    2015-02-01

    Since 1997, human infection with avian H5N1, having about 60% mortality, has posed a threat to public health. In this review, we describe the epidemiology of H5N1 transmission, advantages and disadvantages of different influenza vaccine types, and characteristics of adenovirus, finally summarizing advances in adenovirus-based H5N1 systemic and mucosal vaccines.

  8. Novel Eurasian Highly Pathogenic Avian Influenza A H5 Viruses in Wild Birds, Washington, USA, 2014

    PubMed Central

    Ip, Hon S.; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G.; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara; Shearn-Bochsler, Valerie; Killian, Mary Lea; Pedersen, Janice C.; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M.

    2015-01-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues. PMID:25898265

  9. The avian-origin H3N2 canine influenza virus has limited replication in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A genetically and antigenically distinct H3N2 canine influenza of avian-origin was detected in March of 2015 in Chicago, Illinois. A subsequent outbreak was reported with over 1,000 dogs in the Midwest affected. The potential for canine-to-swine transmission was unknown. Experimental infection in pi...

  10. Effect of statin treatments on highly pathogenic avian influenza H5N1, seasonal and H1N1pdm09 virus infections in BALB/c mice

    PubMed Central

    Kumaki, Yohichi; Morrey, John D; Barnard, Dale L

    2013-01-01

    Statins are used to control elevated cholesterol or hypercholesterolemia, but have previously been reported to have antiviral properties. Aims To show efficacy of statins in various influenza virus mouse models. Materials & methods BALB/c mice were treated intraperitoneally or orally with several types of statins (simvastatin, lovastatin, mevastatin, pitavastatin, atorvastatin or rosuvastatin) at various concentrations before or after infection with either influenza A/Duck/ MN/1525/81 H5N1 virus, influenza A/Vietnam/1203/2004 H5N1 virus, influenza A/ Victoria/3/75 H3N2 virus, influenza A/NWS/33 H1N1 virus or influenza A/CA/04/09 H1N1pdm09 virus. Results The statins administered intraperitoneally or orally at any dose did not significantly enhance the total survivors relative to untreated controls. In addition, infected mice receiving any concentration of statin were not protected against weight loss due to the infection. None of the statins significantly increased the mean day of death relative to mice in the placebo treatment group. Furthermore, the statins had relatively few ameliorative effects on lung pathology or lung weights at day 3 and 6 after virus exposure, although mice treated with simvastatin did have improved lung function as measured by arterial saturated oxygen levels in one experiment. Conclusion Statins showed relatively little efficacy in any mouse model used by any parameter tested. PMID:23420457

  11. Ambient Influenza and Avian Influenza Virus during Dust Storm Days and Background Days

    PubMed Central

    Chen, Pei-Shih; Tsai, Feng Ta; Lin, Chien Kun; Yang, Chun-Yuh; Chan, Chang-Chuan; Young, Chea-Yuan; Lee, Chien-Hung

    2010-01-01

    Background The spread of influenza and highly pathogenic avian influenza (H5N1) presents a significant threat to human health. Avian influenza outbreaks in downwind areas of Asian dust storms (ADS) suggest that viruses might be transported by dust storms. Objectives We developed a technique to measure ambient influenza and avian influenza viruses. We then used this technique to measure concentrations of these viruses on ADS days and background days, and to assess the relationships between ambient influenza and avian influenza viruses, and air pollutants. Methods A high-volume air sampler was used in parallel with a filter cassette to evaluate spiked samples and unspiked samples. Then, air samples were monitored during ADS seasons using a filter cassette coupled with a real-time quantitative polymerase chain reaction (qPCR) assay. Air samples were monitored during ADS season (1 January to 31 May 2006). Results We successfully quantified ambient influenza virus using the filtration/real-time qPCR method during ADS days and background days. To our knowledge, this is the first report describing the concentration of influenza virus in ambient air. In both the spiked and unspiked samples, the concentration of influenza virus sampled using the filter cassette was higher than that using the high-volume sampler. The concentration of ambient influenza A virus was significantly higher during the ADS days than during the background days. Conclusions Our data imply the possibility of long-range transport of influenza virus. PMID:20435545

  12. Investigation of avian influenza virus in poultry and wild birds due to novel avian-origin influenza A(H10N8) in Nanchang City, China.

    PubMed

    Ni, Xiansheng; He, Fenglan; Hu, Maohong; Zhou, Xianfeng; Wang, Bin; Feng, Changhua; Wu, Yumei; Li, Youxing; Tu, Junling; Li, Hui; Liu, Mingbin; Chen, Haiying; Chen, Shengen

    2015-01-01

    Multiple reassortment events within poultry and wild birds had resulted in the establishment of another novel avian influenza A(H10N8) virus, and finally resulted in human death in Nanchang, China. However, there was a paucity of information on the prevalence of avian influenza virus in poultry and wild birds in Nanchang area. We investigated avian influenza virus in poultry and wild birds from live poultry markets, poultry countyards, delivery vehicles, and wild-bird habitats in Nanchang. We analyzed 1036 samples from wild birds and domestic poultry collected from December 2013 to February 2014. Original biological samples were tested for the presence of avian influenza virus using specific primer and probe sets of H5, H7, H9, H10 and N8 subtypes by real-time RT-PCR. In our analysis, the majority (97.98%) of positive samples were from live poultry markets. Among the poultry samples from chickens and ducks, AIV prevalence was 26.05 and 30.81%, respectively. Mixed infection of different HA subtypes was very common. Additionally, H10 subtypes coexistence with N8 was the most prevalent agent during the emergence of H10N8. This event illustrated a long-term surveillance was so helpful for pandemic preparedness and response.

  13. Freshwater clams as bioconcentrators of avian influenza virus in water.

    PubMed

    Huyvaert, Kathryn P; Carlson, Jenny S; Bentler, Kevin T; Cobble, Kacy R; Nolte, Dale L; Franklin, Alan B

    2012-10-01

    We report experimental evidence for bioconcentration of a low-pathogenicity avian influenza virus (H6N8) in the tissue of freshwater clams. Our results support the concept that freshwater clams may provide an effective tool for use in the early detection of influenza A viruses in aquatic environments. PMID:22925022

  14. Transmission of Avian Influenza A Viruses Between Animals and People

    MedlinePlus

    ... many different animals, including ducks, chickens, pigs, whales, horses, and seals. However, certain subtypes of influenza A ... pigs, and H7N7 and H3N8 virus infections of horses. Influenza A viruses that typically infect and transmit ...

  15. H7N9 avian influenza A virus and the perpetual challenge of potential human pandemicity.

    PubMed

    Morens, David M; Taubenberger, Jeffery K; Fauci, Anthony S

    2013-07-09

    ABSTRACT The ongoing H7N9 influenza epizootic in China once again presents us questions about the origin of pandemics and how to recognize them in early stages of development. Over the past ~135 years, H7 influenza viruses have neither caused pandemics nor been recognized as having undergone human adaptation. Yet several unusual properties of these viruses, including their poultry epizootic potential, mammalian adaptation, and atypical clinical syndromes in rarely infected humans, suggest that they may be different from other avian influenza viruses, thus questioning any assurance that the likelihood of human adaptation is low. At the same time, the H7N9 epizootic provides an opportunity to learn more about the mammalian/human adaptational capabilities of avian influenza viruses and challenges us to integrate virologic and public health research and surveillance at the animal-human interface.

  16. Hypothesis on the source, transmission and characteristics of infection of avian influenza A (H7N9) virus--based on analysis of field epidemiological investigation and gene sequence analysis.

    PubMed

    Ling, F; Chen, E; Liu, Q; Miao, Z; Gong, Z

    2015-02-01

    On 31 March 2013, the National Health and Family Planning Commission announced that human infections with influenza A (H7N9) virus had occurred in Shanghai and Anhui provinces, China. H7N9 cases were later detected in Jiangsu and Zhejiang provinces. It was estimated that the virus first spread northward along the route taken by migratory birds and then spread to neighbouring provinces with the sale of poultry. Epidemiological studies were carried out on samples from the external environment of infected cases, transmission routes, farmers markets and live poultry markets. Phylogenetic study of viral sequences from human and avian infections in Zhejiang showed that those from Shanghai and Jiangsu provinces along Taihu Lake were highly homologous with those from the external environment. This suggests that avian viruses carried by waterfowl combined with the virus carried by migratory birds, giving rise to avian influenza virus H7N9, which is highly pathogenic to humans. It is possible that the virus was transmitted by local wildfowl to domestic poultry and then to humans, or spread further by means of trading in wholesale poultry markets. As the weather has turned warm, and with measures adopted to terminate poultry trade and facilitate health communication, the epidemic in the first half of the year has been kept under control. However, the infection source in the triangular area around Taihu Lake still remains. The H7N9 epidemic will probably hit the area later in the year and next spring when the migratory birds return and may even spread to other areas. Great importance should therefore be attached to the wildfowl in Taihu Lake as the repository and disseminator of the virus: investigation and study of this population is essential.

  17. Within-host variation of avian influenza viruses

    PubMed Central

    Iqbal, Munir; Xiao, Hiaxia; Baillie, Greg; Warry, Andrew; Essen, Steve C.; Londt, Brandon; Brookes, Sharon M.; Brown, Ian H.; McCauley, John W.

    2009-01-01

    The emergence and spread of H5N1 avian influenza viruses from Asia through to Europe and Africa pose a significant animal disease problem and have raised concerns that the virus may pose a pandemic threat to humans. The epizootological factors that have influenced the wide distribution of the virus are complex, and the variety of viruses currently circulating reflects these factors. Sequence analysis of the virus genes sheds light on the H5N1 virus evolution during its emergence and spread, but the degree of virus variation at the level of an individual infected bird has been described in only a few studies. Here, we describe some results of a study in which turkeys, ducks and chickens were infected with either one of two H5N1 or one of three H7N1 viruses, and the degree of sequence variation within an individual infected avian host was examined. We developed ‘deep amplicon’ sequence analysis for this work, and the methods and results provide a background framework for application to disease outbreaks in the field. PMID:19687042

  18. A Complete Molecular Diagnostic Procedure for Applications in Surveillance and Subtyping of Avian Influenza Virus

    PubMed Central

    Tseng, Chun-Hsien; Tsai, Hsiang-Jung; Chang, Chung-Ming

    2014-01-01

    Introduction. The following complete molecular diagnostic procedure we developed, based on real-time quantitative PCR and traditional PCR, is effective for avian influenza surveillance, virus subtyping, and viral genome sequencing. Method. This study provides a specific and sensitive step-by-step procedure for efficient avian influenza identification of 16 hemagglutinin and 9 neuraminidase avian influenza subtypes. Result and Conclusion. This diagnostic procedure may prove exceedingly useful for virological and ecological advancements in global avian influenza research. PMID:25057497

  19. ["Emerging infectious diseases". Dengue-fever, West-Nile-fever, SARS, avian influenza, HIV].

    PubMed

    Haas, W; Krause, G; Marcus, U; Stark, K; Ammon, A; Burger, R

    2004-06-01

    Some emerging infectious diseases have recently become endemic in Germany. Others remain confined to specific regions in the world. Physicians notice them only when travelers after infection in endemic areas present themselves with symptoms. Several of these emerging infections will be explained. HIV is an example for an imported pathogen which has become endemic in Germany. SARS and avian influenza are zoonoses with the potential to spread from person to person. Avian influenza in humans provides a possibility for the reassortment of a potential new pandemic strain. Outbreaks of dengue fever in endemic areas are reflected in increased infections in travelers returning from these areas. Currently, West-Nile-virus infections are only imported into Germany. The timely implementation of diagnostic, therapeutic and infection control measures requires physicians to include these diseases in their differential diagnosis. To achieve this goal, good cooperation between physicians, laboratories and the public health service is essential.

  20. The use of nonhuman primates in research on seasonal, pandemic and avian influenza, 1893-2014.

    PubMed

    Davis, A Sally; Taubenberger, Jeffery K; Bray, Mike

    2015-05-01

    Attempts to reproduce the features of human influenza in laboratory animals date from the early 1890s, when Richard Pfeiffer inoculated apes with bacteria recovered from influenza patients and produced a mild respiratory illness. Numerous studies employing nonhuman primates (NHPs) were performed during the 1918 pandemic and the following decade. Most used bacterial preparations to infect animals, but some sought a filterable agent for the disease. Since the viral etiology of influenza was established in the early 1930s, studies in NHPs have been supplemented by a much larger number of experiments in mice, ferrets and human volunteers. However, the emergence of a novel swine-origin H1N1 influenza virus in 1976 and the highly pathogenic H5N1 avian influenza virus in 1997 stimulated an increase in NHP research, because these agents are difficult to study in naturally infected patients and cannot be administered to human volunteers. In this paper, we review the published literature on the use of NHPs in influenza research from 1893 through the end of 2014. The first section summarizes observational studies of naturally occurring influenza-like syndromes in wild and captive primates, including serologic investigations. The second provides a chronological account of experimental infections of NHPs, beginning with Pfeiffer's study and covering all published research on seasonal and pandemic influenza viruses, including vaccine and antiviral drug testing. The third section reviews experimental infections of NHPs with avian influenza viruses that have caused disease in humans since 1997. The paper concludes with suggestions for further studies to more clearly define and optimize the role of NHPs as experimental animals for influenza research. PMID:25746173

  1. The use of nonhuman primates in research on seasonal, pandemic and avian influenza, 1893–2014

    PubMed Central

    Davis, A. Sally; Taubenberger, Jeffery K.; Bray, Mike

    2015-01-01

    Attempts to reproduce the features of human influenza in laboratory animals date from the early 1890s, when Richard Pfeiffer inoculated apes with bacteria recovered from influenza patients and produced a mild respiratory illness. Numerous studies employing nonhuman primates (NHPs) were performed during the 1918 pandemic and the following decade. Most used bacterial preparations to infect animals, but some sought a filterable agent for the disease. Since the viral etiology of influenza was established in the early 1930s, studies in NHPs have been supplemented by a much larger number of experiments in mice, ferrets and human volunteers. However, the emergence of a novel swine-origin H1N1 influenza virus in 1976 and the highly pathogenic H5N1 avian influenza virus in 1997 stimulated an increase in NHP research, because these agents are difficult to study in naturally infected patients and cannot be administered to human volunteers. In this paper, we review the published literature on the use of NHPs in influenza research from 1893 through the end of 2014. The first section summarizes observational studies of naturally occurring influenza-like syndromes in wild and captive primates, including serologic investigations. The second provides a chronological account of experimental infections of NHPs, beginning with Pfeiffer’s study and covering all published research on seasonal and pandemic influenza viruses, including vaccine and antiviral drug testing. The third section reviews experimental infections of NHPs with avian influenza viruses that have caused disease in humans since 1997. The paper concludes with suggestions for further studies to more clearly define and optimize the role of NHPs as experimental animals for influenza research. PMID:25746173

  2. The use of nonhuman primates in research on seasonal, pandemic and avian influenza, 1893-2014.

    PubMed

    Davis, A Sally; Taubenberger, Jeffery K; Bray, Mike

    2015-05-01

    Attempts to reproduce the features of human influenza in laboratory animals date from the early 1890s, when Richard Pfeiffer inoculated apes with bacteria recovered from influenza patients and produced a mild respiratory illness. Numerous studies employing nonhuman primates (NHPs) were performed during the 1918 pandemic and the following decade. Most used bacterial preparations to infect animals, but some sought a filterable agent for the disease. Since the viral etiology of influenza was established in the early 1930s, studies in NHPs have been supplemented by a much larger number of experiments in mice, ferrets and human volunteers. However, the emergence of a novel swine-origin H1N1 influenza virus in 1976 and the highly pathogenic H5N1 avian influenza virus in 1997 stimulated an increase in NHP research, because these agents are difficult to study in naturally infected patients and cannot be administered to human volunteers. In this paper, we review the published literature on the use of NHPs in influenza research from 1893 through the end of 2014. The first section summarizes observational studies of naturally occurring influenza-like syndromes in wild and captive primates, including serologic investigations. The second provides a chronological account of experimental infections of NHPs, beginning with Pfeiffer's study and covering all published research on seasonal and pandemic influenza viruses, including vaccine and antiviral drug testing. The third section reviews experimental infections of NHPs with avian influenza viruses that have caused disease in humans since 1997. The paper concludes with suggestions for further studies to more clearly define and optimize the role of NHPs as experimental animals for influenza research.

  3. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of...

  4. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of...

  5. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of...

  6. Susceptibility of avian species to north american H13 low pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gulls are widely recognized reservoirs for low pathogenic avian influenza (LPAI) viruses; however, the subtypes maintained in these populations and/or the transmission mechanisms involved are poorly understood. Although, a wide diversity of influenza viruses have been isolated from gulls, two hemag...

  7. Comparative susceptibility of avian species to low pathogenic avian influenza viruses of the H13 subtype

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gulls are widely recognized reservoirs for low pathogenic avian influenza (LPAI) viruses; however, the subtypes maintained in these populations and/or the transmission mechanisms involved are poorly understood. Although, a wide diversity of influenza viruses have been isolated from gulls, two hemag...

  8. Intense circulation of A/H5N1 and other avian influenza viruses in Cambodian live-bird markets with serological evidence of sub-clinical human infections.

    PubMed

    Horm, Srey Viseth; Tarantola, Arnaud; Rith, Sareth; Ly, Sowath; Gambaretti, Juliette; Duong, Veasna; Y, Phalla; Sorn, San; Holl, Davun; Allal, Lotfi; Kalpravidh, Wantanee; Dussart, Philippe; Horwood, Paul F; Buchy, Philippe

    2016-01-01

    Surveillance for avian influenza viruses (AIVs) in poultry and environmental samples was conducted in four live-bird markets in Cambodia from January through November 2013. Through real-time RT-PCR testing, AIVs were detected in 45% of 1048 samples collected throughout the year. Detection rates ranged from 32% and 18% in duck and chicken swabs, respectively, to 75% in carcass wash water samples. Influenza A/H5N1 virus was detected in 79% of samples positive for influenza A virus and 35% of all samples collected. Sequence analysis of full-length haemagglutinin (HA) and neuraminidase (NA) genes from A/H5N1 viruses, and full-genome analysis of six representative isolates, revealed that the clade 1.1.2 reassortant virus associated with Cambodian human cases during 2013 was the only A/H5N1 virus detected during the year. However, multiplex reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of HA and NA genes revealed co-circulation of at least nine low pathogenic AIVs from HA1, HA2, HA3, HA4, HA6, HA7, HA9, HA10 and HA11 subtypes. Four repeated serological surveys were conducted throughout the year in a cohort of 125 poultry workers. Serological testing found an overall prevalence of 4.5% and 1.8% for antibodies to A/H5N1 and A/H9N2, respectively. Seroconversion rates of 3.7 and 0.9 cases per 1000 person-months participation were detected for A/H5N1 and A/H9N2, respectively. Peak AIV circulation was associated with the Lunar New Year festival. Knowledge of periods of increased circulation of avian influenza in markets should inform intervention measures such as market cleaning and closures to reduce risk of human infections and emergence of novel AIVs. PMID:27436362

  9. Scale-Free Distribution of Avian Influenza Outbreaks

    NASA Astrophysics Data System (ADS)

    Small, Michael; Walker, David M.; Tse, Chi Kong

    2007-11-01

    Using global case data for the period from 25 November 2003 to 10 March 2007, we construct a network of plausible transmission pathways for the spread of avian influenza among domestic and wild birds. The network structure we obtain is complex and exhibits scale-free (although not necessarily small-world) properties. Communities within this network are connected with a distribution of links with infinite variance. Hence, the disease transmission model does not exhibit a threshold and so the infection will continue to propagate even with very low transmissibility. Consequentially, eradication with methods applicable to locally homogeneous populations is not possible. Any control measure needs to focus explicitly on the hubs within this network structure.

  10. Characterization of a highly pathogenic avian influenza H5N1 virus isolated from an ostrich.

    PubMed

    Yang, Penghui; Dongmei; Wang, Cheng; Tang, Chong; Xing, Li; Luo, Deyan; Zhan, Zhongpeng; Duan, Yueqiang; Jia, Weihong; Peng, Daxin; Liu, Xiufan; Wang, Xiliang

    2010-06-11

    The continued spread of a highly pathogenic avian influenza (HPAI) H5N1 virus among poultry and wild birds has posed a potential threat to human public health. An influenza pandemic happens, when a new subtype that has not previously circulated in humans emerges. Almost all of the influenza pandemics in history have originated from avian influenza viruses (AIV). Birds are significant reservoirs of influenza viruses. In the present study, we performed a survey of avian influenza virus in ostriches and H5N1 virus (A/Ostrich/SuZhou/097/03, China097) was isolated. This H5N1 virus is highly pathogenic to both chickens and mice. It is also able to replicate in the lungs of, and to cause death in, BALB/c mice following intranasal administration. It forms plaques in chicken embryo fibroblast (CEF) cells in the absence of trypsin. The hemagglutinin (HA) gene of the virus is genetically similar to A/Goose/Guangdong/1/96(H5N1) and belongs to clade 0. The HA sequence contains multiple basic amino acids adjacent to the cleavage site, a motif associated with HPAI viruses. More importantly, the existence of H5N1 isolates in ostriches highlights the potential threat of wild bird infections to veterinary and public health. PMID:20497905

  11. The Irrationality of GOF Avian Influenza Virus Research

    PubMed Central

    Wain-Hobson, Simon

    2014-01-01

    The last two and a half years have witnessed a curious debate in virology characterized by a remarkable lack of discussion. It goes by the misleading epithet “gain of function” (GOF) influenza virus research, or simply GOF. As will be seen, there is nothing good to be gained. The controversial experiments confer aerosol transmission on avian influenza virus strains that can infect humans, but which are not naturally transmitted between humans. Some of the newer strains are clearly highly pathogenic for man. It will be shown here that the benefits of the work are erroneous and overstated while the risk of an accident is finite, if small. The consequence of any accident would be anywhere from a handful of infections to a catastrophic pandemic. There has been a single open international meeting in this period, which is surprising given that openness and discussion are essential to good science. Despite US and EU government funding, no risk–benefit analysis has been published, which again is surprising. This research can be duplicated readily in many labs and requires little high tech. It falls under the definition of DURC without the slightest shadow of a doubt and constitutes the most important challenge facing contemporary biology. PMID:25077136

  12. [Highly pathogenic avian influenza in poultry (fowl plague); implications for human health].

    PubMed

    Brugere-Picoux, Jeanne

    2005-11-01

    Since 1997, high-pathogenicity avian influenza (HPAI) virus infection in poultry "avian plague" has emerged as a potential threat to human health, with some fatal cases of bird-to-human transmission. These sporadic infections are caused by H7N7 and H5N1 viruses in Europe and Asia, respectively. The persistence of H5N1 viruses in poultry in several Asian countries, and their appearance in Europe, has raised concerns that the virus might mutate or recombine to create a human pandemic influenza A virus. Wild waterfowl are the natural reservoir of all influenza A viruses, and rarely develop the disease. Since 2002, some H5N1 HPAI viruses have become lethal for waterfowl, cats and humans, indicating an expanding host range. Transmission of H5N1 HPAI viruses from domestic poultry back to resistant domestic and wild ducks and to terrestrial birds (sparrows, pigeons, falcons, etc.) has increased the risk of geographic spread in Asia. These viruses spread through fecal contamination of the environment (particularly groundwater). Low-pathogenicity avian influenza (LPAI) viruses cause localized respiratory and gastrointestinal tract infection and, unlike HPAI viruses, are not detected in blood, muscle or eggs. Detection of HPAI viruses in meat, blood and internal organs of chickens and ducks raises public health concerns and underlines the need to thoroughly cook poultry and eggs consumed in Asia. The last case of HPA1 virus infection in France was notified in 1955.

  13. Serosurveillance study on transmission of H5N1 virus during a 2006 avian influenza epidemic.

    PubMed

    Ceyhan, M; Yildirim, I; Ferraris, O; Bouscambert-Duchamp, M; Frobert, E; Uyar, N; Tezer, H; Oner, A F; Buzgan, T; Torunoglu, M A; Ozkan, B; Yilmaz, R; Kurtoglu, M G; Laleli, Y; Badur, S; Lina, B

    2010-09-01

    In 2006 an outbreak of avian influenza A(H5N1) in Turkey caused 12 human infections, including four deaths. We conducted a serological survey to determine the extent of subclinical infection caused by the outbreak. Single serum samples were collected from five individuals with avian influenza whose nasopharyngeal swabs tested positive for H5 RNA by polymerase chain reaction, 28 family contacts of the cases, 95 poultry cullers, 75 individuals known to have had contact with diseased chickens and 81 individuals living in the region with no known contact with infected chickens and/or patients. Paired serum samples were collected from 97 healthcare workers. All sera were tested for the presence of neutralizing antibodies by enzyme-linked immunoassay, haemagglutination inhibition and microneutralization assays. Only one serum sample, from a parent of an avian influenza patient, tested positive for H5N1 by microneutralization assay. This survey shows that there was minimal subclinical H5N1 infection among contacts of human cases and infected poultry in Turkey in 2006. Further, the low rate of subclinical infection following contact with diseased poultry gave further support to the reported low infectivity of the virus.

  14. Different routes of inoculation impact infectivity and pathogenesis of H5N1 high pathogenicity avian influenza virus infection in chickens and domestic ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 type A influenza viruses classified as Qinghai-like virus (clade 2.2) are a unique lineage of type A influenza viruses with the capacity to produce significant disease and mortality in gallinaceous birds and water fowl including ducks. The objective of this study was to determine the suscep...

  15. Correlation between reported human infection with avian influenza A H7N9 virus and cyber user awareness: what can we learn from digital epidemiology?

    PubMed

    Xie, Tiansheng; Yang, Zongxing; Yang, Shigui; Wu, Nanping; Li, Lanjuan

    2014-05-01

    Data on the topic of novel avian influenza A (H7N9) were collected based on the web analysis tool 'Baidu Index', a major Chinese search engine. We found a positive correlation between the volume of H7N9-related 'cyber user awareness' and the epidemic situation during the H7N9 outbreak in China (r=0.98, p<0.01, cumulative; r=0.43, p=0.018, daily) except in the early stage; the ranks of H7N9-related topics changed at different epidemic stages. This study may improve our understanding of the role of web-based media in infectious disease surveillance in China.

  16. The avian and mammalian host range of highly pathogenic avian H5N1 influenza

    PubMed Central

    Kaplan, Bryan S.; Webby, Richard J.

    2013-01-01

    Highly pathogenic H5N1 influenza viruses have been isolated from a number of avian and mammalian species. Despite intensive control measures the number of human and animal cases continues to increase. A more complete understanding of susceptible species and of contributing environmental and molecular factors is crucial if we are to slow the rate of new cases. H5N1 is currently endemic in domestic poultry in only a handful of countries with sporadic and unpredictable spread to other countries. Close contact of terrestrial bird or mammalian species with infected poultry/waterfowl or their biological products is the major route for interspecies transmission. Intra-species transmission of H5N1 in mammals, including humans, has taken place on a limited scale though it remains to be seen if this will change; recent laboratory studies suggest that it is indeed possible. Here we review the avian and mammalian species that are naturally susceptible to H5N1 infection and the molecular factors associated with its expanded host range. PMID:24025480

  17. Live poultry market workers are susceptible to both avian and swine influenza viruses, Guangdong Province, China.

    PubMed

    Chen, Jidang; Ma, Jun; White, Sarah K; Cao, Zhenpeng; Zhen, Yun; He, Shuyi; Zhu, Wanjun; Ke, Changwen; Zhang, Yongbiao; Su, Shuo; Zhang, Guihong

    2015-12-31

    Guangdong Province is recognized for dense populations of humans, pigs, poultry and pets. In order to evaluate the threat of viral infection faced by those working with animals, a cross-sectional, sero-epidemiological study was conducted in Guangdong between December 2013 and January 2014. Individuals working with swine, at poultry farms, or live poultry markets (LPM), and veterinarians, and controls not exposed to animals were enrolled in this study and 11 (4 human, 3 swine, 3 avian, and 1 canine) influenza A viruses were used in hemagglutination inhibition (HI) assays (7 strains) and the cross-reactivity test (9 strains) in which 5 strains were used in both tests. Univariate analysis was performed to identify which variables were significantly associated with seropositivity. Odds ratios (OR) revealed that swine workers had a significantly higher risk of elevated antibodies against A/swine/Guangdong/L6/2009(H1N1), a classical swine virus, and A/swine/Guangdong/SS1/2012(H1N1), a Eurasian avian-like swine virus than non-exposed controls. Poultry farm workers were at a higher risk of infection with avian influenza H7N9 and H9N2. LPM workers were at a higher risk of infection with 3 subtypes of avian influenza, H5N1, H7N9, and H9N2. Interestingly, the OR also indicated that LPM workers were at risk of H1N1 swine influenza virus infection, perhaps due to the presence of pigs in the LPM. While partial confounding by cross-reactive antibodies against human viruses or vaccines cannot be ruled out, our data suggests that animal exposed people as are more likely to have antibodies against animal influenza viruses.

  18. Live poultry market workers are susceptible to both avian and swine influenza viruses, Guangdong Province, China.

    PubMed

    Chen, Jidang; Ma, Jun; White, Sarah K; Cao, Zhenpeng; Zhen, Yun; He, Shuyi; Zhu, Wanjun; Ke, Changwen; Zhang, Yongbiao; Su, Shuo; Zhang, Guihong

    2015-12-31

    Guangdong Province is recognized for dense populations of humans, pigs, poultry and pets. In order to evaluate the threat of viral infection faced by those working with animals, a cross-sectional, sero-epidemiological study was conducted in Guangdong between December 2013 and January 2014. Individuals working with swine, at poultry farms, or live poultry markets (LPM), and veterinarians, and controls not exposed to animals were enrolled in this study and 11 (4 human, 3 swine, 3 avian, and 1 canine) influenza A viruses were used in hemagglutination inhibition (HI) assays (7 strains) and the cross-reactivity test (9 strains) in which 5 strains were used in both tests. Univariate analysis was performed to identify which variables were significantly associated with seropositivity. Odds ratios (OR) revealed that swine workers had a significantly higher risk of elevated antibodies against A/swine/Guangdong/L6/2009(H1N1), a classical swine virus, and A/swine/Guangdong/SS1/2012(H1N1), a Eurasian avian-like swine virus than non-exposed controls. Poultry farm workers were at a higher risk of infection with avian influenza H7N9 and H9N2. LPM workers were at a higher risk of infection with 3 subtypes of avian influenza, H5N1, H7N9, and H9N2. Interestingly, the OR also indicated that LPM workers were at risk of H1N1 swine influenza virus infection, perhaps due to the presence of pigs in the LPM. While partial confounding by cross-reactive antibodies against human viruses or vaccines cannot be ruled out, our data suggests that animal exposed people as are more likely to have antibodies against animal influenza viruses. PMID:26476563

  19. China's heath care system and avian influenza preparedness.

    PubMed

    Kaufman, Joan A

    2008-02-15

    The severe acute respiratory syndrome crisis exposed serious deficiencies in China's public health system and willingness to report outbreaks of threats to public health. Consequently, China may be one of the weak links in global preparedness for avian influenza. China's rural health care system has been weakened by 20 years of privatization and fiscal decentralization. China plays a huge role in the global poultry industry, with a poultry population of 14 billion birds, 70%-80% of which are reared in backyard conditions. Although surveillance has been strengthened, obstacles to the timely reporting of disease outbreaks still exist. The weakened health care system prevents many sick people from seeking care at a health care facility, where reporting would originate. Inadequate compensation to farmers for culled birds leads to nonreporting, and local officials may be complicit if they suspect that reporting might lead to economic losses for their communities. At the local level, China's crisis-management ability and multisectoral coordination are weak. The poor quality of infection control in many rural facilities is a serious and well-documented problem. However, traditions of community political mobilization suggest that the potential for providing rural citizens with public health information is possible when mandated from the central government. Addressing these issues now and working on capacity issues, authority structures, accountability, and local reporting and control structures will benefit the control of a potential avian influenza outbreak, as well as inevitable outbreaks of other emerging infectious diseases in China's Pearl River Delta or in other densely populated locations of animal husbandry in China. PMID:18269328

  20. Avian influenza: the political economy of disease control in Cambodia.

    PubMed

    Ear, Sophal

    2011-01-01

    Abstract In the wake of avian flu outbreaks in 2004, Cambodia received $45 million in commitments from international donors to help combat the spread of animal and human influenza, particularly avian influenza (H5N1). How countries leverage foreign aid to address the specific needs of donors and the endemic needs of the nation is a complex and nuanced issue throughout the developing world. Cambodia is a particularly compelling study in pandemic preparedness and the management of avian influenza because of its multilayered network of competing local, national, and global needs, and because the level of aid in Cambodia represents approximately $2.65 million per human case-a disproportionately high number when compared with neighbors Vietnam and Indonesia. This paper examines how the Cambodian government has made use of animal and human influenza funds to protect (or fail to protect) its citizens and the global community. It asks how effective donor and government responses were to combating avian influenza in Cambodia, and what improvements could be made at the local and international level to help prepare for and respond to future outbreaks. Based on original interviews, a field survey of policy stakeholders, and detailed examination of Cambodia's health infrastructure and policies, the findings illustrate that while pandemic preparedness has shown improvements since 2004, new outbreaks and human fatalities accelerated in 2011, and more work needs to be done to align the specific goals of funders with the endemic needs of developing nations.

  1. Use of vaccination in avian influenza control and eradication.

    PubMed

    Marangon, S; Cecchinato, M; Capua, I

    2008-01-01

    Vaccination against avian influenza (AI) infections caused by viruses of the H5 and H7 subtypes has been used in several occasions in recent years with the general objective of controlling and in some cases eradicating the disease. To contain AI infections effectively, vaccination should only be used as part of a comprehensive control strategy that also includes biosecurity, quarantine, surveillance, education, and elimination of infected and at-risk poultry. Although properly used, potent AI vaccines can prevent disease and death, increase resistance to infection, reduce virus replication and shedding, and reduce viral transmission, they cannot completely prevent AI virus replication. A wide variety of vaccines against AI has been developed and tested in experimental conditions, but only inactivated whole AI virus vaccines and recombinant H5-AI vaccines have been licensed and widely used in various countries. AI vaccination programmes should be adapted to local conditions to guarantee efficacy and sustainability. In particular, vaccination programmes should be modulated in diverse situations according to the virus strain involved, the characteristics of the poultry producing sector, the capacity of the veterinary infrastructure, and the availability of adequate resources. Based on the eco-epidemiological situation in the affected region/area/compartment and the assessment of the risk of AI introduction, different vaccination strategies could be implemented to control AI: (i) routine vaccination performed in endemic areas; (ii) emergency vaccination in the face of an epidemic; and (iii) preventative vaccination carried out whenever a high risk of virus incursion is identified.

  2. Avian Influenza Virus (H5N1): a Threat to Human Health

    PubMed Central

    Peiris, J. S. Malik; de Jong, Menno D.; Guan, Yi

    2007-01-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes. Therefore, H5N1 virus has rightly received attention as a potential pandemic threat. However, it is noted that the pandemics of 1957 and 1968 did not arise from highly pathogenic influenza viruses, and the next pandemic may well arise from a low-pathogenicity virus. The rationale for particular concern about an H5N1 pandemic is not its inevitability but its potential severity. An H5N1 pandemic is an event of low probability but one of high human health impact and poses a predicament for public health. Here, we review the ecology and evolution of highly pathogenic avian influenza H5N1 viruses, assess the pandemic risk, and address aspects of human H5N1 disease in relation to its epidemiology, clinical presentation, pathogenesis, diagnosis, and management. PMID:17428885

  3. Cross reactive cytotoxic T lymphocytes from MHC-defined birds against homologous and heterologous avian influenza subtypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous reports have implicated a role of the major-histocompatibility complex (MHC) in genetic resistance of chickens to bacterial infection and viral diseases. However, little is known about the role of MHC in generating protective immunity following avian influenza (AI) infection. Because vacc...

  4. Identification of climate factors related to human infection with avian influenza A H7N9 and H5N1 viruses in China.

    PubMed

    Li, Jing; Rao, Yuhan; Sun, Qinglan; Wu, Xiaoxu; Jin, Jiao; Bi, Yuhai; Chen, Jin; Lei, Fumin; Liu, Qiyong; Duan, Ziyuan; Ma, Juncai; Gao, George F; Liu, Di; Liu, Wenjun

    2015-01-01

    Human influenza infections display a strongly seasonal pattern. However, whether H7N9 and H5N1 infections correlate with climate factors has not been examined. Here, we analyzed 350 cases of H7N9 infection and 47 cases of H5N1 infection. The spatial characteristics of these cases revealed that H5N1 infections mainly occurred in the South, Middle, and Northwest of China, while the occurrence of H7N9 was concentrated in coastal areas of East and South of China. Aside from spatial-temporal characteristics, the most adaptive meteorological conditions for the occurrence of human infections by these two viral subtypes were different. We found that H7N9 infections correlate with climate factors, especially temperature (TEM) and relative humidity (RHU), while H5N1 infections correlate with TEM and atmospheric pressure (PRS). Hence, we propose a risky window (TEM 4-14 °C and RHU 65-95%) for H7N9 infection and (TEM 2-22 °C and PRS 980-1025 kPa) for H5N1 infection. Our results represent the first step in determining the effects of climate factors on two different virus infections in China and provide warning guidelines for the future when provinces fall into the risky windows. These findings revealed integrated predictive meteorological factors rooted in statistic data that enable the establishment of preventive actions and precautionary measures against future outbreaks. PMID:26656876

  5. Identification of climate factors related to human infection with avian influenza A H7N9 and H5N1 viruses in China

    PubMed Central

    Li, Jing; Rao, Yuhan; Sun, Qinglan; Wu, Xiaoxu; Jin, Jiao; Bi, Yuhai; Chen, Jin; Lei, Fumin; Liu, Qiyong; Duan, Ziyuan; Ma, Juncai; Gao, George F.; Liu, Di; Liu, Wenjun

    2015-01-01

    Human influenza infections display a strongly seasonal pattern. However, whether H7N9 and H5N1 infections correlate with climate factors has not been examined. Here, we analyzed 350 cases of H7N9 infection and 47 cases of H5N1 infection. The spatial characteristics of these cases revealed that H5N1 infections mainly occurred in the South, Middle, and Northwest of China, while the occurrence of H7N9 was concentrated in coastal areas of East and South of China. Aside from spatial-temporal characteristics, the most adaptive meteorological conditions for the occurrence of human infections by these two viral subtypes were different. We found that H7N9 infections correlate with climate factors, especially temperature (TEM) and relative humidity (RHU), while H5N1 infections correlate with TEM and atmospheric pressure (PRS). Hence, we propose a risky window (TEM 4–14 °C and RHU 65–95%) for H7N9 infection and (TEM 2–22 °C and PRS 980-1025 kPa) for H5N1 infection. Our results represent the first step in determining the effects of climate factors on two different virus infections in China and provide warning guidelines for the future when provinces fall into the risky windows. These findings revealed integrated predictive meteorological factors rooted in statistic data that enable the establishment of preventive actions and precautionary measures against future outbreaks. PMID:26656876

  6. Living with avian FLU--Persistence of the H5N1 highly pathogenic avian influenza virus in Egypt.

    PubMed

    Njabo, Kevin Yana; Zanontian, Linda; Sheta, Basma N; Samy, Ahmed; Galal, Shereen; Schoenberg, Frederic Paik; Smith, Thomas B

    2016-05-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) continues to cause mortality in poultry and threaten human health at a panzootic scale in Egypt since it was reported in 2006. While the early focus has been in Asia, recent evidence suggests that Egypt is an emerging epicenter for the disease. Despite control measures, epizootic transmission of the disease continues. Here, we investigate the persistence of HPAIV across wild passerine birds and domestic poultry between 2009 and 2012 and the potential risk for continuous viral transmission in Egypt. We use a new weighted cross J-function to investigate the degree and spatial temporal nature of the clustering between sightings of infected birds of different types, and the risk of infection associated with direct contact with infected birds. While we found no infection in wild birds, outbreaks occurred year round between 2009 and 2012, with a positive interaction between chickens and ducks. The disease was more present in the years 2010 and 2011 coinciding with the political unrest in the country. Egypt thus continues to experience endemic outbreaks of avian influenza HPAIV in poultry and an increased potential risk of infection to other species including humans. With the current trends, the elimination of the HPAIV infection is highly unlikely without a complete revamp of current policies. The application of spatial statistics techniques to these types of data may help us to understand the characteristics of the disease and may subsequently allow practitioners to explore possible preventive solutions. PMID:27066713

  7. Living with avian FLU--Persistence of the H5N1 highly pathogenic avian influenza virus in Egypt.

    PubMed

    Njabo, Kevin Yana; Zanontian, Linda; Sheta, Basma N; Samy, Ahmed; Galal, Shereen; Schoenberg, Frederic Paik; Smith, Thomas B

    2016-05-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) continues to cause mortality in poultry and threaten human health at a panzootic scale in Egypt since it was reported in 2006. While the early focus has been in Asia, recent evidence suggests that Egypt is an emerging epicenter for the disease. Despite control measures, epizootic transmission of the disease continues. Here, we investigate the persistence of HPAIV across wild passerine birds and domestic poultry between 2009 and 2012 and the potential risk for continuous viral transmission in Egypt. We use a new weighted cross J-function to investigate the degree and spatial temporal nature of the clustering between sightings of infected birds of different types, and the risk of infection associated with direct contact with infected birds. While we found no infection in wild birds, outbreaks occurred year round between 2009 and 2012, with a positive interaction between chickens and ducks. The disease was more present in the years 2010 and 2011 coinciding with the political unrest in the country. Egypt thus continues to experience endemic outbreaks of avian influenza HPAIV in poultry and an increased potential risk of infection to other species including humans. With the current trends, the elimination of the HPAIV infection is highly unlikely without a complete revamp of current policies. The application of spatial statistics techniques to these types of data may help us to understand the characteristics of the disease and may subsequently allow practitioners to explore possible preventive solutions.

  8. Evaluation of Nobuto filter paper strips for the detection of avian influenza virus antibody in waterfowl

    USGS Publications Warehouse

    Dusek, Robert J.; Hall, Jeffrey S.; Nashold, Sean W.; TeSlaa, Joshua L.; Ip, Hon S.

    2011-01-01

    The utility of using Nobuto paper strips for the detection of avian influenza antibodies was examined in mallards (Anas platyrhynchos) experimentally infected with low pathogenic avian influenza viruses. Blood was collected 2 wk after infection and was preserved either as serum or whole blood absorbed onto Nobuto strips. Analysis of samples using a commercially available blocking enzyme-linked immunosorbent assay revealed comparable results (≥96% sensitivity for all methods) between sera stored at -30 C and the Nobuto strip preservation method even when the Nobuto strips were stored up to 3 mo at room temperature (RT). Significant differences were detected in the ratio of sample absorbance to negative control absorbance for Nobuto strips stored at RT compared with sera stored at -30 C, although these differences did not affect the ability of the test to reliably detect positive and negative samples. Nobuto strips are a convenient and sensitive alternative to the collection of serum samples when maintaining appropriate storage temperatures is difficult.

  9. Characterizing wild bird contact and seropositivity to highly pathogenic avian influenza A (H5N1) virus in Alaskan residents

    PubMed Central

    Reed, Carrie; Bruden, Dana; Byrd, Kathy K; Veguilla, Vic; Bruce, Michael; Hurlburt, Debby; Wang, David; Holiday, Crystal; Hancock, Kathy; Ortiz, Justin R; Klejka, Joe; Katz, Jacqueline M; Uyeki, Timothy M

    2014-01-01

    Background Highly pathogenic avian influenza A (HPAI) H5N1 viruses have infected poultry and wild birds on three continents with more than 600 reported human cases (59% mortality) since 2003. Wild aquatic birds are the natural reservoir for avian influenza A viruses, and migratory birds have been documented with HPAI H5N1 virus infection. Since 2005, clade 2.2 HPAI H5N1 viruses have spread from Asia to many countries. Objectives We conducted a cross-sectional seroepidemiological survey in Anchorage and western Alaska to identify possible behaviors associated with migratory bird exposure and measure seropositivity to HPAI H5N1. Methods We enrolled rural subsistence bird hunters and their families, urban sport hunters, wildlife biologists, and a comparison group without bird contact. We interviewed participants regarding their exposures to wild birds and collected blood to perform serologic testing for antibodies against a clade 2.2 HPAI H5N1 virus strain. Results Hunters and wildlife biologists reported exposures to wild migratory birds that may confer risk of infection with avian influenza A viruses, although none of the 916 participants had evidence of seropositivity to HPAI H5N1. Conclusions We characterized wild bird contact among Alaskans and behaviors that may influence risk of infection with avian influenza A viruses. Such knowledge can inform surveillance and risk communication surrounding HPAI H5N1 and other influenza viruses in a population with exposure to wild birds at a crossroads of intercontinental migratory flyways. PMID:24828535

  10. Rapidly Expanding Range of Highly Pathogenic Avian Influenza Viruses.

    PubMed

    Hall, Jeffrey S; Dusek, Robert J; Spackman, Erica

    2015-07-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus' propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  11. Rapidly Expanding Range of Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Dusek, Robert J.; Spackman, Erica

    2015-01-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus’ propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions. PMID:26079209

  12. Rapidly expanding range of highly pathogenic avian influenza viruses

    USGS Publications Warehouse

    Hall, Jeffrey S.; Dusek, Robert J.; Spackman, Erica

    2015-01-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus’ propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  13. Highly pathogenic avian influenza virus among wild birds in Mongolia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The central Asian country of Mongolia supports large populations of migratory water birds that migrate across much of Asia where highly pathogenic avian influenza (HPAI) virus subtype H5N1 is endemic. This, together with the near absence of domestic poultry, makes Mongolia an ideal location to unde...

  14. Highly pathogenic avian influenza challenge studies in waterfowl

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Waterfowl are the natural hosts of avian influenza (AI) virus. The majority of AI viruses are classified as low pathogenicity (LP) based on their virulence in chickens, which are the reference species for pathotype testing and can be any of the 16 hemagglutinin subtypes (H1-16). Circulation of H5 ...

  15. Rapidly expanding range of highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent introduction of highly pathogenic avian influenza virus (HPAIV) H5N8 into Europe and North America poses significant risks to poultry industries and wildlife populations and warrants continued and heightened vigilance. First discovered in South Korean poultry and wild birds in early 2014...

  16. A Review of the Antiviral Susceptibility of Human and Avian Influenza Viruses over the Last Decade

    PubMed Central

    Oh, Ding Yuan; Hurt, Aeron C.

    2014-01-01

    Antivirals play an important role in the prevention and treatment of influenza infections, particularly in high-risk or severely ill patients. Two classes of influenza antivirals have been available in many countries over the last decade (2004–2013), the adamantanes and the neuraminidase inhibitors (NAIs). During this period, widespread adamantane resistance has developed in circulating influenza viruses rendering these drugs useless, resulting in the reliance on the most widely available NAI, oseltamivir. However, the emergence of oseltamivir-resistant seasonal A(H1N1) viruses in 2008 demonstrated that NAI-resistant viruses could also emerge and spread globally in a similar manner to that seen for adamantane-resistant viruses. Previously, it was believed that NAI-resistant viruses had compromised replication and/or transmission. Fortunately, in 2013, the majority of circulating human influenza viruses remain sensitive to all of the NAIs, but significant work by our laboratory and others is now underway to understand what enables NAI-resistant viruses to retain the capacity to replicate and transmit. In this review, we describe how the susceptibility of circulating human and avian influenza viruses has changed over the last ten years and describe some research studies that aim to understand how NAI-resistant human and avian influenza viruses may emerge in the future. PMID:24800107

  17. Genetic variation of the hemagglutinin of avian influenza virus H9N2.

    PubMed

    Song, Xiao-feng; Han, Ping; Chen, Yi-Ping Phoebe

    2011-05-01

    Avian influenza virus H9N2 has become the dominant subtype of influenza which is endemic in poultry. The hemagglutinin, one of eight protein-coding genes, plays an important role during the early stage of infection. The adaptive evolution and the positively selected sites of the HA (the glycoprotein molecule) of H9N2 subtype viruses were investigated. Investigating 68 hemagglutinin H9N2 avian influenza virus isolates in China and phylogenetic analysis, it was necessary that these isolates were distributed geographically from 1994, and were all derived from the Eurasian lineage. H9N2 avian influenza virus isolates from domestic poultry in China were distinct phylogenetically from those isolated in Hong Kong, including viruses which had infected humans. Seven amino acid substitutions (2T, 3T, 14T, 165D, 197A, 233Q, 380R) were identified in the HA possibly due to positive selection pressure. Apart from the 380R site, the other positively selected sites detected were all located near the receptor-binding site of the HA1 strain. Based on epidemiological and phylogenetics analysis, the H9N2 epidemic in China was divided into three groups: the 1994-1997 group, the 1998-1999 group, and the 2000-2007 group. By investigating these three groups using the maximum likelihood estimation method, there were more positive selective sites in the 1994-1997 and 1998-1999 epidemic group than the 2000-2007 groups. This indicates that those detected selected sites are changed during different epidemic periods and the evolution of H9N2 is currently slow. The antigenic determinant or other key functional amino acid sites should be of concern because their adjacent sites have been under positive selection pressure. The results provide further evidence that the pathogenic changes in the H9N2 subtype are due mainly to re-assortment with other highly pathogenic avian influenza viruses.

  18. Influenza A virus infections in marine mammals and terrestrial carnivores.

    PubMed

    Harder, Timm C; Siebert, Ursula; Wohlsein, Peter; Vahlenkamp, Thomas

    2013-01-01

    Influenza A viruses (IAV), members of the Orthomyxoviridae, cover a wide host spectrum comprising a plethora of avian and, in comparison, a few mammalian species. The viral reservoir and gene pool are kept in metapopulations of aquatic wild birds. The mammalian-adapted IAVs originally arose by transspecies transmission from avian sources. In swine, horse and man, species-adapted IAV lineages circulate independently of the avian reservoir and cause predominantly respiratory disease of highly variable severity. Sporadic outbreaks of IAV infections associated with pneumonic clinical signs have repeatedly occurred in marine mammals (harbour seals [Phoca vitulina]) off the New England coast of the U.S.A. due to episodic transmission of avian IAV. However, no indigenous marine mammal IAV lineages are described. In contrast to marine mammals, avian- and equine-derived IAVs have formed stable circulating lineages in terrestrial carnivores: IAVs of subtype H3N2 and H3N8 are found in canine populations in South Korea, China, and the U.S.A. Experimental infections revealed that dogs and cats can be infected with an even wider range of avian IAVs. Cats, in particular, also proved susceptible to native infection with human pandemic H1N1 viruses and, according to serological data, may be vulnerable to infection with further human-adapted IAVs. Ferrets are susceptible to a variety of avian and mammalian IAVs and are an established animal model of human IAV infection. Thus, a potential role of pet cats, dogs and ferrets as mediators of avian-derived viruses to the human population does exist. A closer observation for influenza virus infections and transmissions at this animal-human interface is indicated. PMID:24511825

  19. Influenza A virus infections in marine mammals and terrestrial carnivores.

    PubMed

    Harder, Timm C; Siebert, Ursula; Wohlsein, Peter; Vahlenkamp, Thomas

    2013-01-01

    Influenza A viruses (IAV), members of the Orthomyxoviridae, cover a wide host spectrum comprising a plethora of avian and, in comparison, a few mammalian species. The viral reservoir and gene pool are kept in metapopulations of aquatic wild birds. The mammalian-adapted IAVs originally arose by transspecies transmission from avian sources. In swine, horse and man, species-adapted IAV lineages circulate independently of the avian reservoir and cause predominantly respiratory disease of highly variable severity. Sporadic outbreaks of IAV infections associated with pneumonic clinical signs have repeatedly occurred in marine mammals (harbour seals [Phoca vitulina]) off the New England coast of the U.S.A. due to episodic transmission of avian IAV. However, no indigenous marine mammal IAV lineages are described. In contrast to marine mammals, avian- and equine-derived IAVs have formed stable circulating lineages in terrestrial carnivores: IAVs of subtype H3N2 and H3N8 are found in canine populations in South Korea, China, and the U.S.A. Experimental infections revealed that dogs and cats can be infected with an even wider range of avian IAVs. Cats, in particular, also proved susceptible to native infection with human pandemic H1N1 viruses and, according to serological data, may be vulnerable to infection with further human-adapted IAVs. Ferrets are susceptible to a variety of avian and mammalian IAVs and are an established animal model of human IAV infection. Thus, a potential role of pet cats, dogs and ferrets as mediators of avian-derived viruses to the human population does exist. A closer observation for influenza virus infections and transmissions at this animal-human interface is indicated.

  20. Adaptation of avian influenza A (H6N1) virus from avian to human receptor-binding preference.

    PubMed

    Wang, Fei; Qi, Jianxun; Bi, Yuhai; Zhang, Wei; Wang, Min; Zhang, Baorong; Wang, Ming; Liu, Jinhua; Yan, Jinghua; Shi, Yi; Gao, George F

    2015-06-12

    The receptor-binding specificity of influenza A viruses is a major determinant for the host tropism of the virus, which enables interspecies transmission. In 2013, the first human case of infection with avian influenza A (H6N1) virus was reported in Taiwan. To gather evidence concerning the epidemic potential of H6 subtype viruses, we performed comprehensive analysis of receptor-binding properties of Taiwan-isolated H6 HAs from 1972 to 2013. We propose that the receptor-binding properties of Taiwan-isolated H6 HAs have undergone three major stages: initially avian receptor-binding preference, secondarily obtaining human receptor-binding capacity, and recently human receptor-binding preference, which has been confirmed by receptor-binding assessment of three representative virus isolates. Mutagenesis work revealed that E190V and G228S substitutions are important to acquire the human receptor-binding capacity, and the P186L substitution could reduce the binding to avian receptor. Further structural analysis revealed how the P186L substitution in the receptor-binding site of HA determines the receptor-binding preference change. We conclude that the human-infecting H6N1 evolved into a human receptor preference.

  1. The pandemic potential of avian influenza A(H7N9) virus: a review.

    PubMed

    Tanner, W D; Toth, D J A; Gundlapalli, A V

    2015-12-01

    In March 2013 the first cases of human avian influenza A(H7N9) were reported to the World Health Organization. Since that time, over 650 cases have been reported. Infections are associated with considerable morbidity and mortality, particularly within certain demographic groups. This rapid increase in cases over a brief time period is alarming and has raised concerns about the pandemic potential of the H7N9 virus. Three major factors influence the pandemic potential of an influenza virus: (1) its ability to cause human disease, (2) the immunity of the population to the virus, and (3) the transmission potential of the virus. This paper reviews what is currently known about each of these factors with respect to avian influenza A(H7N9). Currently, sustained human-to-human transmission of H7N9 has not been reported; however, population immunity to the virus is considered very low, and the virus has significant ability to cause human disease. Several statistical and geographical modelling studies have estimated and predicted the spread of the H7N9 virus in humans and avian species, and some have identified potential risk factors associated with disease transmission. Additionally, assessment tools have been developed to evaluate the pandemic potential of H7N9 and other influenza viruses. These tools could also hypothetically be used to monitor changes in the pandemic potential of a particular virus over time.

  2. Respiratory transmission of an avian H3N8 influenza virus isolated from a harbour seal

    PubMed Central

    Karlsson, Erik A.; Ip, Hon S.; Hall, Jeffrey S.; Yoon, Sun Woo; Johnson, Jordan; Beck, Melinda A.; Webby, Richard J.; Schultz-Cherry, Stacey

    2016-01-01

    The ongoing human H7N9 influenza infections highlight the threat of emerging avian influenza viruses. In 2011, an avian H3N8 influenza virus isolated from moribund New England harbour seals was shown to have naturally acquired mutations known to increase the transmissibility of highly pathogenic H5N1 influenza viruses. To elucidate the potential human health threat, here we evaluate a panel of avian H3N8 viruses and find that the harbour seal virus displays increased affinity for mammalian receptors, transmits via respiratory droplets in ferrets and replicates in human lung cells. Analysis of a panel of human sera for H3N8 neutralizing antibodies suggests that there is no population-wide immunity to these viruses. The prevalence of H3N8 viruses in birds and multiple mammalian species including recent isolations from pigs and evidence that it was a past human pandemic virus make the need for surveillance and risk analysis of these viruses of public health importance. PMID:25183346

  3. Respiratory transmission of an avian H3N8 influenza virus isolated from a harbour seal

    USGS Publications Warehouse

    Karlsson, Erik A.; Ip, Hon S.; Hall, Jeffrey S.; Yoon, Sun W.; Johnson, Jordan; Beck, Melinda A.; Webby, Richard J.; Schultz-Cherry, Stacey

    2014-01-01

    The ongoing human H7N9 influenza infections highlight the threat of emerging avian influenza viruses. In 2011, an avian H3N8 influenza virus isolated from moribund New England harbour seals was shown to have naturally acquired mutations known to increase the transmissibility of highly pathogenic H5N1 influenza viruses. To elucidate the potential human health threat, here we evaluate a panel of avian H3N8 viruses and find that the harbour seal virus displays increased affinity for mammalian receptors, transmits via respiratory droplets in ferrets and replicates in human lung cells. Analysis of a panel of human sera for H3N8 neutralizing antibodies suggests that there is no population-wide immunity to these viruses. The prevalence of H3N8 viruses in birds and multiple mammalian species including recent isolations from pigs and evidence that it was a past human pandemic virus make the need for surveillance and risk analysis of these viruses of public health importance.

  4. Avian influenza in North and South America, 2002-2005.

    PubMed

    Senne, Dennis A

    2007-03-01

    Between 2002 and 2005, three outbreaks of highly pathogenic avian influenza (HPAI) occurred in the Americas: one outbreak in Chile (H7N3) in 2002, one outbreak in the United States (H5N2) in 2004, and one outbreak in Canada (H7N3) in 2004. The outbreak in Chile was limited to a large broiler breeder operation and a nearby turkey flock and represented the first outbreak of HPAI in that country. The outbreak of HPAI in the United States occurred in Texas and was limited to one premise where chickens were raised for sale in nearby live-bird markets. The outbreak in Canada was the largest of the three HPAI outbreaks, involving 42 premises and approximately 17 million birds in the Fraser Valley, British Columbia. In each of the HPAI outbreaks, the disease was successfully eradicated by depopulation of infected farms. All other reports of infections in poultry and isolations from wild bird species pertained to low pathogenicity avian influenza (LPAI) viruses. Animal Health Officials in Canada reported subtypes H3, H5, and H6 in domestic poultry, and H3, H5, H11, and H13 from imported and/or wild bird species. An LPAI H5N2 virus continues to circulate in Mexico and the Central American countries of Guatemala and El Salvador. Each country reported isolations of H5N2 virus from poultry and the large-scale use of inactivated and recombinant H5 vaccines in their AI control programs. In Colombia, AI was reported for the first time when antibodies to H9N2 were detected in chickens by routine surveillance. Intensive surveillance activities in the United States detected AI virus or specific antibodies to 13 of the 16 hemagglutinin (H1-H13) and all nine neuraminidase subtypes in live-bird markets, small holder farms, and in commercial poultry from 29 states. The largest outbreak of LPAI in the United States occurred in 2002, when 197 farms were depopulated (4.7 million birds) to control an outbreak in Virginia and surrounding states. The outbreak was caused by an LPAI H7N2 virus

  5. Flying over an infected landscape: distribution of highly pathogenic avian influenza H5N1 risk in South Asia and satellite tracking of wild waterfowl

    USGS Publications Warehouse

    Gilbert, Marius; Newman, Scott H.; Takekawa, John Y.; Loth, Leo; Biradar, Chandrashekhar; Prosser, Diann J.; Balachandran, Sivananinthaperumal; Rao, Mandava Venkata Subba; Mundkur, Taej; Yan, Baoping; Xing, Zhi; Hou, Yuansheng; Batbayar, Nyambayar; Tseveenmayadag, Natsagdorj; Hogerwerf, Lenny; Slingenbergh, Jan; Xiao, Xiangming

    2010-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus persists in Asia, posing a threat to poultry, wild birds, and humans. Previous work in Southeast Asia demonstrated that HPAI H5N1 risk is related to domestic ducks and people. Other studies discussed the role of migratory birds in the long distance spread of HPAI H5N1. However, the interplay between local persistence and long-distance dispersal has never been studied. We expand previous geospatial risk analysis to include South and Southeast Asia, and integrate the analysis with migration data of satellite-tracked wild waterfowl along the Central Asia flyway. We find that the population of domestic duck is the main factor delineating areas at risk of HPAI H5N1 spread in domestic poultry in South Asia, and that other risk factors, such as human population and chicken density, are associated with HPAI H5N1 risk within those areas. We also find that satellite tracked birds (Ruddy Shelduck and two Bar-headed Geese) reveal a direct spatio-temporal link between the HPAI H5N1 hot-spots identified in India and Bangladesh through our risk model, and the wild bird outbreaks in May,June,July 2009 in China(Qinghai Lake), Mongolia, and Russia. This suggests that the continental-scale dynamics of HPAI H5N1 are structured as a number of persistence areas delineated by domestic ducks, connected by rare transmission through migratory waterfowl.

  6. Characterization of avian influenza viruses isolated from domestic ducks in Vietnam in 2009 and 2010.

    PubMed

    Nomura, Naoki; Sakoda, Yoshihiro; Endo, Mayumi; Yoshida, Hiromi; Yamamoto, Naoki; Okamatsu, Masatoshi; Sakurai, Kenji; Hoang, Nam Van; Nguyen, Long Van; Chu, Huy Duc; Tien, Tien Ngoc; Kida, Hiroshi

    2012-02-01

    In the surveillance of avian influenza in Vietnam, 26 H9N2, 1 H3N2, 1 H3N8, 7 H4N6, 3 H11N3, and 1 H11N9 viruses were isolated from tracheal and cloacal swab samples of 300 domestic ducks in April 2009, and 1 H9N6 virus from 300 bird samples in March 2010. Out of the 27 H9 virus isolates, the hemagglutinins of 18 strains were genetically classified as belonging to the sublineage G1, and the other nine belonged to the Korean sublineage. Phylogenetic analysis revealed that one of the 27 H9 viruses was a reassortant in which the PB2 gene belonged to the Korean sublineage and the other seven genes belonged to the G1 sublineage. Three representative H9N2 viruses were intranasally inoculated into ducks, chickens, pigs, and mice. On the basis of experimental infection studies, it was found that each of the three viruses readily infected pigs and replicated in their upper respiratory tracts, and they infected chickens with slight replication. Viruses were recovered from the lungs of mice inoculated with two of the three isolates. The present results reveal that H9 avian influenza viruses are prevailing and genetic reassortment occurs among domestic ducks in Vietnam. It is recommended that careful surveillance of swine influenza with H9 viruses should be performed to prepare for pandemic influenza.

  7. Coexistence of Avian Influenza Virus H10 and H9 Subtypes among Chickens in Live Poultry Markets during an Outbreak of Infection with a Novel H10N8 Virus in Humans in Nanchang, China.

    PubMed

    Hu, Maohong; Li, Xiaodan; Ni, Xiansheng; Wu, Jingwen; Gao, Rongbao; Xia, Wen; Wang, Dayan; He, Fenglan; Chen, Shengen; Liu, Yangqing; Guo, Shuangli; Li, Hui; Shu, Yuelong; Bethel, Jeffrey W; Liu, Mingbin; Moore, Justin B; Chen, Haiying

    2015-01-01

    Infection with the novel H10N8 virus in humans has raised concerns about its pandemic potential worldwide. We report the results of a cross-sectional study of avian influenza viruses (AIVs) in live poultry markets (LPMs) in Nanchang, China, after the first human case of H10N8 virus infection was reported in the city. A total of 201 specimens tested positive for AIVs among 618 samples collected from 24 LPMs in Nanchang from December 2013 to January 2014. We found that the LPMs were heavily contaminated by AIVs, with H9, H10, and H5 being the predominant subtypes and more than half of the LPMs providing samples that were positive for the H10 subtype. Moreover, the coexistence of different subtypes was common in LPMs. Of the 201 positive samples, 20.9% (42/201) had mixed infections with AIVs of different HA subtypes. Of the 42 mixed infections, 50% (21/42) showed the coexistence of the H9 and H10 subtypes, with or without H5, and were from chicken samples. This indicated that the H10N8 virus probably originated from segment reassortment of the H9 and H10 subtypes. PMID:25766608

  8. Circulating avian influenza viruses closely related to the 1918 virus have pandemic potential.

    PubMed

    Watanabe, Tokiko; Zhong, Gongxun; Russell, Colin A; Nakajima, Noriko; Hatta, Masato; Hanson, Anthony; McBride, Ryan; Burke, David F; Takahashi, Kenta; Fukuyama, Satoshi; Tomita, Yuriko; Maher, Eileen A; Watanabe, Shinji; Imai, Masaki; Neumann, Gabriele; Hasegawa, Hideki; Paulson, James C; Smith, Derek J; Kawaoka, Yoshihiro

    2014-06-11

    Wild birds harbor a large gene pool of influenza A viruses that have the potential to cause influenza pandemics. Foreseeing and understanding this potential is important for effective surveillance. Our phylogenetic and geographic analyses revealed the global prevalence of avian influenza virus genes whose proteins differ only a few amino acids from the 1918 pandemic influenza virus, suggesting that 1918-like pandemic viruses may emerge in the future. To assess this risk, we generated and characterized a virus composed of avian influenza viral segments with high homology to the 1918 virus. This virus exhibited pathogenicity in mice and ferrets higher than that in an authentic avian influenza virus. Further, acquisition of seven amino acid substitutions in the viral polymerases and the hemagglutinin surface glycoprotein conferred respiratory droplet transmission to the 1918-like avian virus in ferrets, demonstrating that contemporary avian influenza viruses with 1918 virus-like proteins may have pandemic potential. PMID:24922572

  9. Circulating avian influenza viruses closely related to the 1918 virus have pandemic potential

    PubMed Central

    Watanabe, Tokiko; Zhong, Gongxun; Russell, Colin A.; Nakajima, Noriko; Hatta, Masato; Hanson, Anthony; McBride, Ryan; Burke, David F.; Takahashi, Kenta; Fukuyama, Satoshi; Tomita, Yuriko; Maher, Eileen A.; Watanabe, Shinji; Imai, Masaki; Neumann, Gabriele; Hasegawa, Hideki; Paulson, James C.; Smith, Derek J.; Kawaoka, Yoshihiro

    2014-01-01

    Summary Wild birds harbor a large gene pool of influenza A viruses that have the potential to cause influenza pandemics. Foreseeing and understanding this potential is important for effective surveillance. Our phylogenetic and geographic analyses revealed the global prevalence of avian influenza virus genes whose proteins differ only a few amino acids from the 1918 pandemic influenza virus, suggesting that 1918-like pandemic viruses may emerge in the future. To assess this risk, we generated and characterized a virus composed of avian influenza viral segments with high homology to the 1918 virus. This virus exhibited higher pathogenicity in mice and ferrets than an authentic avian influenza virus. Further, acquisition of seven amino acid substitutions in the viral polymerases and the hemagglutinin surface glycoprotein conferred respiratory droplet transmission to the 1918-like avian virus in ferrets, demonstrating that contemporary avian influenza viruses with 1918 virus-like proteins may have pandemic potential. PMID:24922572

  10. Highly pathogenic avian influenza outbreak mitigated by seasonal low pathogenic strains: insights from dynamic modeling.

    PubMed

    Bourouiba, L; Teslya, A; Wu, J

    2011-02-21

    The spread of highly pathogenic avian influenza (HPAI) H5N1 remains a threat for both wild and domestic bird populations, while low pathogenic avian influenza (LPAI) strains have been reported to induce partial immunity to HPAI in poultry and some wild birds inoculated with both HPAI and LPAI strains. Here, based on the reported data and experiments, we develop a two-strain avian influenza model to examine the extent to which this partial immunity observed at the individual level can affect the outcome of the outbreaks among migratory birds in the wild at the population level during different seasons. We find a distinct mitigating effect of LPAI on the death toll induced by HPAI strain, and this effect is particularly important for populations previously exposed to and recovered from LPAI. We further investigate the effect of the dominant mode of transmission of an HPAI strain on the outcome of the epidemic. Four combinations of contact based direct transmission and indirect fecal-to-oral (or environmental) routes are examined. For a given infection peak of HPAI, indirect fecal-to-oral transmission of HPAI can lead to a higher death toll than that associated with direct transmission. The mitigating effect of LPAI can, in turn, be dependent on the route of infection of HPAI. PMID:21146544

  11. Novel Polymerase Gene Mutations for Human Adaptation in Clinical Isolates of Avian H5N1 Influenza Viruses

    PubMed Central

    Arai, Yasuha; Kawashita, Norihito; Daidoji, Tomo; Ibrahim, Madiha S.; El-Gendy, Emad M.; Takagi, Tatsuya; Takahashi, Kazuo; Suzuki, Yasuo; Ikuta, Kazuyoshi; Nakaya, Takaaki; Shioda, Tatsuo; Watanabe, Yohei

    2016-01-01

    A major determinant in the change of the avian influenza virus host range to humans is the E627K substitution in the PB2 polymerase protein. However, the polymerase activity of avian influenza viruses with a single PB2-E627K mutation is still lower than that of seasonal human influenza viruses, implying that avian viruses require polymerase mutations in addition to PB2-627K for human adaptation. Here, we used a database search of H5N1 clade 2.2.1 virus sequences with the PB2-627K mutation to identify other polymerase adaptation mutations that have been selected in infected patients. Several of the mutations identified acted cooperatively with PB2-627K to increase viral growth in human airway epithelial cells and mouse lungs. These mutations were in multiple domains of the polymerase complex other than the PB2-627 domain, highlighting a complicated avian-to-human adaptation pathway of avian influenza viruses. Thus, H5N1 viruses could rapidly acquire multiple polymerase mutations that function cooperatively with PB2-627K in infected patients for optimal human adaptation. PMID:27097026

  12. Novel Polymerase Gene Mutations for Human Adaptation in Clinical Isolates of Avian H5N1 Influenza Viruses.

    PubMed

    Arai, Yasuha; Kawashita, Norihito; Daidoji, Tomo; Ibrahim, Madiha S; El-Gendy, Emad M; Takagi, Tatsuya; Takahashi, Kazuo; Suzuki, Yasuo; Ikuta, Kazuyoshi; Nakaya, Takaaki; Shioda, Tatsuo; Watanabe, Yohei

    2016-04-01

    A major determinant in the change of the avian influenza virus host range to humans is the E627K substitution in the PB2 polymerase protein. However, the polymerase activity of avian influenza viruses with a single PB2-E627K mutation is still lower than that of seasonal human influenza viruses, implying that avian viruses require polymerase mutations in addition to PB2-627K for human adaptation. Here, we used a database search of H5N1 clade 2.2.1 virus sequences with the PB2-627K mutation to identify other polymerase adaptation mutations that have been selected in infected patients. Several of the mutations identified acted cooperatively with PB2-627K to increase viral growth in human airway epithelial cells and mouse lungs. These mutations were in multiple domains of the polymerase complex other than the PB2-627 domain, highlighting a complicated avian-to-human adaptation pathway of avian influenza viruses. Thus, H5N1 viruses could rapidly acquire multiple polymerase mutations that function cooperatively with PB2-627K in infected patients for optimal human adaptation.

  13. Detection method for avian influenza viruses in water.

    PubMed

    Rönnqvist, Maria; Ziegler, Thedi; von Bonsdorff, Carl-Henrik; Maunula, Leena

    2012-03-01

    Recent events have shown that humans may become infected with some pathogenic avian influenza A viruses (AIV). Since soil and water, including lakes, rivers, and seashores, may be contaminated by AIV excreted by birds, effective methods are needed for monitoring water for emerging viruses. Combining water filtration with molecular methods such as PCR is a fast and effective way for detecting viruses. The objective of this study was to apply a convenient method for the detection of AIV in natural water samples. Distilled water and lake, river, and seawater were artificially contaminated with AIV (H5N3) and passed through a filter system. AIV was detected from filter membrane by real-time RT-PCR. The performance of Zetapor, SMWP, and Sartobind D5F membranes in recovering influenza viruses was first evaluated using contaminated distilled water. SWMP, which gave the highest virus recoveries, was then compared with a pre-filter combined GF/F filter membrane in a trial using natural water samples. In this study, the cellulose membrane SMWP was found to be practical for recovery of AIVs in water. Viral yields varied between 62.1 and 65.9% in distilled water and between 1 and 16.7% in natural water samples. The borosilicate glass membrane GF/F combined with pre-filter was also feasible in filtering natural water samples with viral yields from 1.98 to 7.33%. The methods described can be used for monitoring fresh and seawater samples for the presence of AIV and to determine the source of AIV transmission in an outbreak situation. PMID:23412765

  14. Detection method for avian influenza viruses in water.

    PubMed

    Rönnqvist, Maria; Ziegler, Thedi; von Bonsdorff, Carl-Henrik; Maunula, Leena

    2012-03-01

    Recent events have shown that humans may become infected with some pathogenic avian influenza A viruses (AIV). Since soil and water, including lakes, rivers, and seashores, may be contaminated by AIV excreted by birds, effective methods are needed for monitoring water for emerging viruses. Combining water filtration with molecular methods such as PCR is a fast and effective way for detecting viruses. The objective of this study was to apply a convenient method for the detection of AIV in natural water samples. Distilled water and lake, river, and seawater were artificially contaminated with AIV (H5N3) and passed through a filter system. AIV was detected from filter membrane by real-time RT-PCR. The performance of Zetapor, SMWP, and Sartobind D5F membranes in recovering influenza viruses was first evaluated using contaminated distilled water. SWMP, which gave the highest virus recoveries, was then compared with a pre-filter combined GF/F filter membrane in a trial using natural water samples. In this study, the cellulose membrane SMWP was found to be practical for recovery of AIVs in water. Viral yields varied between 62.1 and 65.9% in distilled water and between 1 and 16.7% in natural water samples. The borosilicate glass membrane GF/F combined with pre-filter was also feasible in filtering natural water samples with viral yields from 1.98 to 7.33%. The methods described can be used for monitoring fresh and seawater samples for the presence of AIV and to determine the source of AIV transmission in an outbreak situation.

  15. Success factors for avian influenza vaccine use in poultry and potential impact at the wild bird-agricultural interface

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty-two epizootics of high pathogenicity avian influenza (HPAI) have been reported in poultry and other birds since 1959. The ongoing H5N1 HPAI epizootic that began in 1996 has also spilled over to infect wild birds. Traditional stamping-out programs in poultry have resulted in eradication of mos...

  16. Mechanisms of transmission and spread of H5N1 high pathogenicity avian influenza virus in birds and mammals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Eurasian-African H5N1 high pathogenicity avian influenza (HPAI) virus has crossed multiple species barriers to infect poultry, captive and wild birds, carnivorous mammals and humans. The specific transmission mechanisms are unclear in most cases, but experimental studies and field data sug...

  17. Global dynamic analysis of a H7N9 avian-human influenza model in an outbreak region.

    PubMed

    Chen, Yongxue; Wen, Yongxian

    2015-02-21

    In 2013 in China a new type of avian influenza virus, H7N9, began to infect humans and had aroused severe fatality in the infected humans. We know that the spread is from poultry to humans, and the H7N9 avian influenza is low pathogenic in the poultry world but highly pathogenic in the human world, but the transmission mechanism is unclear. Since it has no signs of human-to-human transmission and outbreaks are isolated in some cities in China, in order to investigate the transmission mechanism of human infection with H7N9 avian influenza, an eco-epidemiological model in an outbreak region is proposed and analyzed dynamically. Researches and reports show that gene mutation makes the new virus be capable of infecting humans, therefore the mutation factor is taken into account in the model. The global dynamic analysis is conducted, different thresholds are identified, persistence and global qualitative behaviors are obtained. The impact of H7N9 avian influenza on the people population is concerned. Finally, the numerical simulations are carried out to support the theoretical analysis and to investigate the disease control measures. It seems that we may take people׳s hygiene and prevention awareness factor as a significant policy to achieve the aim of both the disease control and the economic returns.

  18. Surveillance for highly pathogenic avian influenza virus in wild birds during outbreaks in domestic poultry, Minnesota, 2015

    USGS Publications Warehouse

    Jennelle, Christopher S.; Carstensen, Michelle; Hildebrand, Erik C.; Cornicelli, Louis; Wolf, Paul C.; Grear, Daniel; Ip, Hon S.; VanDalen, Kaci K.; Minicucci, Larissa A.

    2016-01-01

    In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To clarify the role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9–June 4, 2015. HPAIV was isolated from a Cooper’s hawk but not from waterfowl.

  19. Evaluation of two commercial lateral flow devices (LFDs) used for flockside testing of H5N1 highly-pathogenic avian influenza infections in backyard gallinaceous poultry in Egypt.

    PubMed

    Soliman, Mohammed; Selim, Abdullah; Coward, Vivien J; Hassan, Mohammed K; Aly, Mona M; Banks, Jill; Slomka, Marek J

    2010-10-13

    Quickvue and Anigen lateral flow devices (LFDs) were evaluated for detection of H5N1 highly pathogenic avian influenza (HPAI) infections in Egyptian poultry. Sixty five chickens and two turkeys were sampled in eight flocks where H5N1 HPAI infection was suspected. Swabs (tracheal and cloacal) and feathers were collected from each bird for flockside testing by the two LFDs. The same clinical specimens were transported for laboratory testing by M gene RRT PCR where a positive result by this "gold standard" test for one or both swabs from a given bird indicated infection at the bird level, showing 57 birds (including 15 carcassess) to be truly AI infected. Among these 57, similar bird-level LFD testing of swabs showed 43 and 44 to be AI infected by Quickvue and Anigen LFDs, respectively. Nine birds were AI negative by M gene RRT PCR and both LFDs, and one was M gene RRT PCR negative but positive by both LFDs, suggesting one false positive LFD result. Sensitivities of the LFDs relative to M gene RRT PCR were 77.2% for Anigen and 75.4% for Quickvue tests, with 90.0% specificity for both. By including feathers with swabs for LFD testing, the number of LFD positives among 57 infected birds increased by four to 48 by Anigen and 47 by Quickvue, increasing the sensitivity of the LFDs to 84.2% and 82.5% for Anigen and Quickvue, respectively. Although LFD sensitivity cannot compare to the high sensitivity displayed by validated AI RRT PCRs, they may be utilised for flockside testing of birds infected with HPAI at the peak of viral shedding, when birds are displaying advanced clinical signs or sampled as fresh carcasses. Swabs are classic field specimens collected from outbreaks, but inclusion of feathers from birds infected with H5N1 HPAI increased LFD sensitivity. However, the LFD false positive observation emphasises the importance of returning samples for confirmatory laboratory testing.

  20. Electronic microarray assays for avian influenza and Newcastle disease virus.

    PubMed

    Lung, Oliver; Beeston, Anne; Ohene-Adjei, Samuel; Pasick, John; Hodko, Dalibor; Hughes, Kimberley Burton; Furukawa-Stoffer, Tara; Fisher, Mathew; Deregt, Dirk

    2012-11-01

    Microarrays are suitable for multiplexed detection and typing of pathogens. Avian influenza virus (AIV) is currently classified into 16 H (hemagglutinin) and 9 N (neuraminidase) subtypes, whereas Newcastle disease virus (NDV) strains differ in virulence and are broadly classified into high and low pathogenicity types. In this study, three assays for detection and typing of poultry viruses were developed on an automated microarray platform: a multiplex assay for simultaneous detection of AIV and detection and pathotyping of NDV, and two separate assays for differentiating all AIV H and N subtypes. The AIV-NDV multiplex assay detected all strains in a 63 virus panel, and accurately typed all high pathogenicity NDV strains tested. A limit of detection of 10(1)-10(3) TCID(50)/mL and 200-400 EID(50)/mL was obtained for NDV and AIV, respectively. The AIV typing assays accurately typed all 41 AIV strains and a limit of detection of 4-200 EID(50)/mL was obtained. Assay validation showed that the microarray assays were generally comparable to real-time RT-PCR. However, the AIV typing microarray assays detected more positive clinical samples than the AIV matrix real-time RT-PCR, and also provided information regarding the subtype. The AIV-NDV multiplex and AIV H typing microarray assays detected mixed infections and could be useful for detection and typing of AIV and NDV.

  1. Experience in control of avian influenza in Asia.

    PubMed

    Sims, L D

    2007-01-01

    Highly pathogenic H5N1 avian influenza viruses have been circulating in Asia for over ten years, providing considerable experience on which to base appropriate long-term strategies for their control. Experience in Hong Kong SAR demonstrates that existing production and marketing practices should be changed and a range of parallel measures used. It also shows the extent of surveillance required to ensure continuing freedom from infection. Certain high-risk practices should be changed or otherwise overcome in order to control and prevent disease, including intensive rearing of large numbers of poultry in premises without biosecurity commensurate with the level of risk for exposure; complex market chains involving many smallholders selling poultry through large numbers of transporters and middlemen in poorly regulated live poultry markets; and rearing of large numbers of ducks outdoors. These high-risk practices are compounded by weak veterinary services and poor reporting systems. In many parts of Asia, these methods of rearing and marketing are an integral way of life, support the poorest members of the community or cannot be changed quickly without severe socioeconomic consequences. The gains made so far will be ephemeral unless there is a shift from an emergency focus to one of consolidation in which these high-risk practices are identified and sustainable measures implemented to minimize the risks they pose, taking account of the socioeconomic effects of interventions. Vaccination will play a key role, as it currently does in China and Viet Nam.

  2. Protection and virus shedding of falcons vaccinated against highly pathogenic avian influenza A virus (H5N1).

    PubMed

    Lierz, Michael; Hafez, Hafez M; Klopfleisch, Robert; Lüschow, Dörte; Prusas, Christine; Teifke, Jens P; Rudolf, Miriam; Grund, Christian; Kalthoff, Donata; Mettenleiter, Thomas; Beer, Martin; Hardert, Timm

    2007-11-01

    Because fatal infections with highly pathogenic avian influenza A (HPAI) virus subtype H5N1 have been reported in birds of prey, we sought to determine detailed information about the birds' susceptibility and protection after vaccination. Ten falcons vaccinated with an inactivated influenza virus (H5N2) vaccine seroconverted. We then challenged 5 vaccinated and 5 nonvaccinated falcons with HPAI (H5N1). All vaccinated birds survived; all unvaccinated birds died within 5 days. For the nonvaccinated birds, histopathologic examination showed tissue degeneration and necrosis, immunohistochemical techniques showed influenza virus antigen in affected tissues, and these birds shed high levels of infectious virus from the oropharynx and cloaca. Vaccinated birds showed no influenza virus antigen in tissues and shed virus at lower titers from the oropharynx only. Vaccination could protect these valuable birds and, through reduced virus shedding, reduce risk for transmission to other avian species and humans.

  3. Sialic acid content in human saliva and anti-influenza activity against human and avian influenza viruses.

    PubMed

    Limsuwat, Nattavatchara; Suptawiwat, Ornpreya; Boonarkart, Chompunuch; Puthavathana, Pilaipan; Wiriyarat, Witthawat; Auewarakul, Prasert

    2016-03-01

    It was shown previously that human saliva has higher antiviral activity against human influenza viruses than against H5N1 highly pathogenic avian influenza viruses, and that the major anti-influenza activity was associated with sialic-acid-containing molecules. To further characterize the differential susceptibility to saliva among influenza viruses, seasonal influenza A and B virus, pandemic H1N1 virus, and 15 subtypes of avian influenza virus were tested for their susceptibility to human and chicken saliva. Human saliva showed higher hemagglutination inhibition (HI) and neutralization (NT) titers against seasonal influenza A virus and the pandemic H1N1 viruses than against influenza B virus and most avian influenza viruses, except for H9N2 and H12N9 avian influenza viruses, which showed high HI and NT titers. To understand the nature of sialic-acid-containing anti-influenza factors in human saliva, α2,3- and α2,6-linked sialic acid was measured in human saliva samples using a lectin binding and dot blot assay. α2,6-linked sialic acid was found to be more abundant than α2,3-linked sialic acid, and a seasonal H1N1 influenza virus bound more efficiently to human saliva than an H5N1 virus in a dot blot analysis. These data indicated that human saliva contains the sialic acid type corresponding to the binding preference of seasonal influenza viruses.

  4. Sialic acid content in human saliva and anti-influenza activity against human and avian influenza viruses.

    PubMed

    Limsuwat, Nattavatchara; Suptawiwat, Ornpreya; Boonarkart, Chompunuch; Puthavathana, Pilaipan; Wiriyarat, Witthawat; Auewarakul, Prasert

    2016-03-01

    It was shown previously that human saliva has higher antiviral activity against human influenza viruses than against H5N1 highly pathogenic avian influenza viruses, and that the major anti-influenza activity was associated with sialic-acid-containing molecules. To further characterize the differential susceptibility to saliva among influenza viruses, seasonal influenza A and B virus, pandemic H1N1 virus, and 15 subtypes of avian influenza virus were tested for their susceptibility to human and chicken saliva. Human saliva showed higher hemagglutination inhibition (HI) and neutralization (NT) titers against seasonal influenza A virus and the pandemic H1N1 viruses than against influenza B virus and most avian influenza viruses, except for H9N2 and H12N9 avian influenza viruses, which showed high HI and NT titers. To understand the nature of sialic-acid-containing anti-influenza factors in human saliva, α2,3- and α2,6-linked sialic acid was measured in human saliva samples using a lectin binding and dot blot assay. α2,6-linked sialic acid was found to be more abundant than α2,3-linked sialic acid, and a seasonal H1N1 influenza virus bound more efficiently to human saliva than an H5N1 virus in a dot blot analysis. These data indicated that human saliva contains the sialic acid type corresponding to the binding preference of seasonal influenza viruses. PMID:26671828

  5. Genetic diversity of avian influenza A (H10N8) virus in live poultry markets and its association with human infections in China.

    PubMed

    Liu, Mingbin; Li, Xiaodan; Yuan, Hui; Zhou, Jianfang; Wu, Jingwen; Bo, Hong; Xia, Wen; Xiong, Ying; Yang, Lei; Gao, Rongbao; Guo, Junfeng; Huang, Weijuan; Zhang, Ye; Zhao, Xiang; Zou, Xiaohui; Chen, Tao; Wang, Dayan; Li, Qun; Wang, ShiWen; Chen, Shengen; Hu, Maohong; Ni, Xiansheng; Gong, Tian; Shi, Yong; Li, Jianxiong; Zhou, Jun; Cai, Jun; Xiao, Zuke; Zhang, Wei; Sun, Jian; Li, Dexin; Wu, Guizhen; Feng, Zijian; Wang, Yu; Chen, Haiying; Shu, Yuelong

    2015-01-15

    Following the first human infection with the influenza A (H10N8) virus in Nanchang, China in December 2013, we identified two additional patients on January 19 and February 9, 2014. The epidemiologic, clinical, and virological data from the patients and the environmental specimen collected from 23 local live poultry markets (LPMs) were analyzed. The three H10N8 cases had a history of poultry exposure and presented with high fever (>38°C), rapidly progressive pneumonia and lymphopenia. Substantial high levels of cytokines and chemokines were observed. The sequences from an isolate (A/Environment/Jiangxi/03489/2013 [H10N8]) in an epidemiologically linked LPM showed highly identity with human H10N8 virus, evidencing LPM as the source of human infection. The HA and NA of human and environmental H10N8 isolates showed high identity (99.1-99.9%) while six genotypes with internal genes derived from H9N2, H7N3 and H7N9 subtype viruses were detected in environmental H10N8 isolates. The genotype of the virus causing human infection, Jiangxi/346, possessed a whole internal gene set of the A/Environment/Jiangxi/10618/2014(H9N2)-like virus. Thus, our findings support the notion that LPMs can act as both a gene pool for the generation of novel reassortants and a source for human infection, and intensive surveillance and management should therefore be conducted.

  6. Influenza A virus infections in land birds, People's Republic of China

    USGS Publications Warehouse

    Peterson, A.T.; Bush, S.E.; Spackman, Erica; Swayne, D.E.; Ip, H.S.

    2008-01-01

    Water birds are considered the reservoir for avian influenza viruses. We examined this assumption by sampling and real-time reverse transcription-PCR testing of 939 Asian land birds of 153 species. Influenza A infection was found, particularly among migratory species. Surveillance programs for monitoring spread of these viruses need to be redesigned.

  7. Efficient strategy for constructing duck enteritis virus-based live attenuated vaccine against homologous and heterologous H5N1 avian influenza virus and duck enteritis virus infection.

    PubMed

    Zou, Zhong; Hu, Yong; Liu, Zhigang; Zhong, Wei; Cao, Hangzhou; Chen, Huanchun; Jin, Meilin

    2015-04-16

    Duck is susceptible to many pathogens, such as duck hepatitis virus, duck enteritis virus (DEV), duck tembusu virus, H5N1 highly pathogenic avian influenza virus (HPAIV) in particular. With the significant role of duck in the evolution of H5N1 HPAIV, control and eradication of H5N1 HPAIV in duck through vaccine immunization is considered an effective method in minimizing the threat of a pandemic outbreak. Consequently, a practical strategy to construct a vaccine against these pathogens should be determined. In this study, the DEV was examined as a candidate vaccine vector to deliver the hemagglutinin (HA) gene of H5N1, and its potential as a polyvalent vaccine was evaluated. A modified mini-F vector was inserted into the gB and UL26 gene junction of the attenuated DEV vaccine strain C-KCE genome to generate an infectious bacterial artificial chromosome (BAC) of C-KCE (vBAC-C-KCE). The HA gene of A/duck/Hubei/xn/2007 (H5N1) was inserted into the C-KCE genome via the mating-assisted genetically integrated cloning (MAGIC) to generate the recombinant vector pBAC-C-KCE-HA. A bivalent vaccine C-KCE-HA was developed by eliminating the BAC backbone. Ducks immunized with C-KCE-HA induced both the cross-reactive antibodies and T cell response against H5. Moreover, C-KCE-HA-immunized ducks provided rapid and long-lasting protection against homologous and heterologous HPAIV H5N1 and DEV clinical signs, death, and primary viral replication. In conclusion, our BAC-C-KCE is a promising platform for developing a polyvalent live attenuated vaccine.

  8. Phylogenetic and pathogenic analysis of a novel H6N2 avian influenza virus isolated from a green peafowl in a wildlife park.

    PubMed

    Fan, Zhaobin; Ci, Yanpeng; Ma, Yixin; Liu, Liling; Ma, Jianzhang; Li, D Yanbing; Chen, Hualan

    2014-12-01

    H6 subtype avian influenza virus, which has been circulating among different species, causes considerable concern for both veterinary medicine and public health. We isolated a strain of H6N2 avian influenza virus from healthy green peafowl (Pavo muticus) in Qinghuangdao Wildlife Park in Hebei Province, China, in 2012. A phylogenetic analysis indicated that the isolated H6N2 strain had the same gene constellation as southern China strains, which were predominantly isolated from waterfowl distributed in Shantou, Guangxi, and Hunan in 2001-2010. The isolate showed no and low pathogenicity in chickens and ducks, respectively. However, it replicated efficiently in the lungs and turbinate of infected mice, resulting in thickened alveolar septa and moderate interstitial pneumonia. This finding raises concerns that the H6N2 subtype maybe evolve into a novel endemic avian influenza virus. Therefore, periodical surveillance of avian influenza viruses must be undertaken to monitor the advent of novel viruses.

  9. Phylogenetic and pathogenic analysis of a novel H6N2 avian influenza virus isolated from a green peafowl in a wildlife park.

    PubMed

    Fan, Zhaobin; Ci, Yanpeng; Ma, Yixin; Liu, Liling; Ma, Jianzhang; Li, D Yanbing; Chen, Hualan

    2014-12-01

    H6 subtype avian influenza virus, which has been circulating among different species, causes considerable concern for both veterinary medicine and public health. We isolated a strain of H6N2 avian influenza virus from healthy green peafowl (Pavo muticus) in Qinghuangdao Wildlife Park in Hebei Province, China, in 2012. A phylogenetic analysis indicated that the isolated H6N2 strain had the same gene constellation as southern China strains, which were predominantly isolated from waterfowl distributed in Shantou, Guangxi, and Hunan in 2001-2010. The isolate showed no and low pathogenicity in chickens and ducks, respectively. However, it replicated efficiently in the lungs and turbinate of infected mice, resulting in thickened alveolar septa and moderate interstitial pneumonia. This finding raises concerns that the H6N2 subtype maybe evolve into a novel endemic avian influenza virus. Therefore, periodical surveillance of avian influenza viruses must be undertaken to monitor the advent of novel viruses. PMID:25619010

  10. Cellular and humoral mediated immunity and distribution of viral antigen in chickens after infection with a low pathogenic avian influenza virus (H4N6) isolated from wild ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four-week-old commercial chickens were intranasally inoculated with an H4N6 low pathogenicity avian influenza virus (LPAIV) isolated from a duck in Ukraine. Cecum, spleen, lung, and trachea samples were collected from birds from 1 to 21 days post inoculation (dpi) and examined by immunohistochemica...

  11. ACUTE PHASE IMMUNE GENE PROFILING OF SPLEEN AND PEYER’S PATCH IN NAÏVE AND VACCINATED CHICKENS FOLLOWING AVIAN INFLUENZA A (H5N1) VIRUS INFECTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent advances in immunogenomic and proteomic tools are facilitating the characterization of complex host-pathogen immunobiology. In this study, we applied functional genomics tools to investigate the early immunological response of chickens to highly pathogenic (HP) avian influenza virus (AIV). ...

  12. Avian influenza vaccines against H5N1 'bird flu'.

    PubMed

    Li, Chengjun; Bu, Zhigao; Chen, Hualan

    2014-03-01

    H5N1 avian influenza viruses (AIVs) have spread widely to more than 60 countries spanning three continents. To control the disease, vaccination of poultry is implemented in many of the affected countries, especially in those where H5N1 viruses have become enzootic in poultry and wild birds. Recently, considerable progress has been made toward the development of novel avian influenza (AI) vaccines, especially recombinant virus vector vaccines and DNA vaccines. Here, we will discuss the recent advances in vaccine development and use against H5N1 AIV in poultry. Understanding the properties of the available, novel vaccines will allow for the establishment of rational vaccination protocols, which in turn will help the effective control and prevention of H5N1 AI.

  13. Antigenic Characterization of H3 Subtypes of Avian Influenza A Viruses from North America

    PubMed Central

    Bailey, Elizabeth; Long, Li-Ping; Zhao, Nan; Hall, Jeffrey S.; Baroch, John A.; Nolting, Jacqueline; Senter, Lucy; Cunningham, Frederick L.; Pharr, G. Todd; Hanson, Larry; Slemons, Richard; DeLiberto, Thomas J.; Wan, Xiu-Feng

    2016-01-01

    SUMMARY Besides humans, H3 subtypes of influenza A viruses (IAVs) can infect various animal hosts including avian, swine, equine, canine, and sea mammals. These H3 viruses are both antigenically and genetically diverse. Here we characterized the antigenic diversity of contemporary H3 avian IAVs recovered from migratory birds in North America. Hemagglutination inhibition (HI) assays were performed on 37 H3 isolates of avian IAVs recovered from 2007 to 2011 using generated reference chicken sera. These isolates were recovered from samples taken in the Atlantic, Mississippi, Central, and Pacific waterfowl migration flyways. Antisera to all the tested H3 isolates cross-reacted with each other, and, to a lesser extent, with those to H3 canine and H3 equine IAVs. Antigenic cartography showed that the largest antigenic distance among the 37 avian IAVs is about 4 units, and each unit corresponds to a 2log2 difference in the HI titer. However, none of the tested H3 IAVs cross-reacted with ferret sera derived from contemporary swine and human IAVs. Our results showed that the H3 avian IAVs we tested lacked significant antigenic diversity, and these viruses were antigenically different from those circulating in swine and human populations. This suggests that H3 avian IAVs in North American waterfowl are antigenically relatively stable. PMID:27309078

  14. Antigenic Characterization of H3 Subtypes of Avian Influenza A Viruses from North America.

    PubMed

    Bailey, Elizabeth; Long, Li-Ping; Zhao, Nan; Hall, Jeffrey S; Baroch, John A; Nolting, Jacqueline; Senter, Lucy; Cunningham, Frederick L; Pharr, G Todd; Hanson, Larry; Slemons, Richard; DeLiberto, Thomas J; Wan, Xiu-Feng

    2016-05-01

    Besides humans, H3 subtypes of influenza A viruses (IAVs) can infect various animal hosts, including avian, swine, equine, canine, and sea mammal species. These H3 viruses are both antigenically and genetically diverse. Here, we characterized the antigenic diversity of contemporary H3 avian IAVs recovered from migratory birds in North America. Hemagglutination inhibition (HI) assays were performed on 37 H3 isolates of avian IAVs recovered from 2007 to 2011 using generated reference chicken sera. These isolates were recovered from samples taken in the Atlantic, Mississippi, Central, and Pacific waterfowl migration flyways. Antisera to all the tested H3 isolates cross-reacted with each other and, to a lesser extent, with those to H3 canine and H3 equine IAVs. Antigenic cartography showed that the largest antigenic distance among the 37 avian IAVs is about four units, and each unit corresponds to a 2 log 2 difference in the HI titer. However, none of the tested H3 IAVs cross-reacted with ferret sera derived from contemporary swine and human IAVs. Our results showed that the H3 avian IAVs we tested lacked significant antigenic diversity, and these viruses were antigenically different from those circulating in swine and human populations. This suggests that H3 avian IAVs in North American waterfowl are antigenically relatively stable.

  15. Antigenic characterization of H3 subtypes of avian influenza A viruses from North America

    USGS Publications Warehouse

    Bailey, Elizabeth; Long, Li-Pong; Zhao, Nan; Hall, Jeffrey S.; Baroch, John A; Nolting, Jaqueline; Senter, Lucy; Cunningham, Frederick L; Pharr, G Todd; Hanson, Larry; Slemons, Richard; DeLiberto, Thomas J.; Wan, Xiu-Feng

    2016-01-01

    Besides humans, H3 subtypes of influenza A viruses (IAVs) can infect various animal hosts, including avian, swine, equine, canine, and sea mammal species. These H3 viruses are both antigenically and genetically diverse. Here, we characterized the antigenic diversity of contemporary H3 avian IAVs recovered from migratory birds in North America. Hemagglutination inhibition (HI) assays were performed on 37 H3 isolates of avian IAVs recovered from 2007 to 2011 using generated reference chicken sera. These isolates were recovered from samples taken in the Atlantic, Mississippi, Central, and Pacific waterfowl migration flyways. Antisera to all the tested H3 isolates cross-reacted with each other and, to a lesser extent, with those to H3 canine and H3 equine IAVs. Antigenic cartography showed that the largest antigenic distance among the 37 avian IAVs is about four units, and each unit corresponds to a 2 log 2 difference in the HI titer. However, none of the tested H3 IAVs cross-reacted with ferret sera derived from contemporary swine and human IAVs. Our results showed that the H3 avian IAVs we tested lacked significant antigenic diversity, and these viruses were antigenically different from those circulating in swine and human populations. This suggests that H3 avian IAVs in North American waterfowl are antigenically relatively stable.

  16. Antigenic Characterization of H3 Subtypes of Avian Influenza A Viruses from North America.

    PubMed

    Bailey, Elizabeth; Long, Li-Ping; Zhao, Nan; Hall, Jeffrey S; Baroch, John A; Nolting, Jacqueline; Senter, Lucy; Cunningham, Frederick L; Pharr, G Todd; Hanson, Larry; Slemons, Richard; DeLiberto, Thomas J; Wan, Xiu-Feng

    2016-05-01

    Besides humans, H3 subtypes of influenza A viruses (IAVs) can infect various animal hosts, including avian, swine, equine, canine, and sea mammal species. These H3 viruses are both antigenically and genetically diverse. Here, we characterized the antigenic diversity of contemporary H3 avian IAVs recovered from migratory birds in North America. Hemagglutination inhibition (HI) assays were performed on 37 H3 isolates of avian IAVs recovered from 2007 to 2011 using generated reference chicken sera. These isolates were recovered from samples taken in the Atlantic, Mississippi, Central, and Pacific waterfowl migration flyways. Antisera to all the tested H3 isolates cross-reacted with each other and, to a lesser extent, with those to H3 canine and H3 equine IAVs. Antigenic cartography showed that the largest antigenic distance among the 37 avian IAVs is about four units, and each unit corresponds to a 2 log 2 difference in the HI titer. However, none of the tested H3 IAVs cross-reacted with ferret sera derived from contemporary swine and human IAVs. Our results showed that the H3 avian IAVs we tested lacked significant antigenic diversity, and these viruses were antigenically different from those circulating in swine and human populations. This suggests that H3 avian IAVs in North American waterfowl are antigenically relatively stable. PMID:27309078

  17. Mapping the risk of avian influenza in wild birds in the US

    PubMed Central

    2010-01-01

    Background Avian influenza virus (AIV) is an important public health issue because pandemic influenza viruses in people have contained genes from viruses that infect birds. The H5 and H7 AIV subtypes have periodically mutated from low pathogenicity to high pathogenicity form. Analysis of the geographic distribution of AIV can identify areas where reassortment events might occur and how high pathogenicity influenza might travel if it enters wild bird populations in the US. Modelling the number of AIV cases is important because the rate of co-infection with multiple AIV subtypes increases with the number of cases and co-infection is the source of reassortment events that give rise to new strains of influenza, which occurred before the 1968 pandemic. Aquatic birds in the orders Anseriformes and Charadriiformes have been recognized as reservoirs of AIV since the 1970s. However, little is known about influenza prevalence in terrestrial birds in the order Passeriformes. Since passerines share the same habitat as poultry, they may be more effective transmitters of the disease to humans than aquatic birds. We analyze 152 passerine species including the American Robin (Turdus migratorius) and Swainson's Thrush (Catharus ustulatus). Methods We formulate a regression model to predict AIV cases throughout the US at the county scale as a function of 12 environmental variables, sampling effort, and proximity to other counties with influenza outbreaks. Our analysis did not distinguish between types of influenza, including low or highly pathogenic forms. Results Analysis of 13,046 cloacal samples collected from 225 bird species in 41 US states between 2005 and 2008 indicates that the average prevalence of influenza in passerines is greater than the prevalence in eight other avian orders. Our regression model identifies the Great Plains and the Pacific Northwest as high-risk areas for AIV. Highly significant predictors of AIV include the amount of harvested cropland and the first

  18. China makes an impressive breakthrough in avian influenza virus research - Discovering the "heart" of avian infl uenza virus.

    PubMed

    Li, Y G; Wu, J F; Li, X

    2009-02-01

    The successive appearance of strains of epizootic avian influenza A virus with the subtype H5N1 in China has attracted considerable concern from the public and Chinese authorities. According to the latest WHO estimates as of February 2, 2009, the number of H5N1 virus deaths in China totaled 25, second only to Indonesia and Viet Nam (http://www.who.int/csr/disease/avian_influenza/country/cases_table_2009_02_02/en/index.html). The H5N1 virus is highly contagious among birds and is fatal when transmitted to humans, though the means by which this occurs is still unknown. Owing to the possible variation of the H5N1 prototype virus, together with the fact that it has the propensity to exchange genes with influenza viruses from other species, humans have no natural immunity to the virus. Despite years of efforts, the exact pathogenesis of H5N1 transmission to humans is still not completely clear, nor is potential human-tohuman transmission as could lead to an epidemic or even worldwide pandemic (Enserink M. Science. 2009; 323:324). Unfortunately, current antiviral treatment and therapeutic measures cannot effectively overcome this virulent virus that causes highly pathogenic avian influenza (HPAI). Researchers from around the world are working to study the virology of influenza viruses, including their methods of infiltration, replication, and transcription, to elucidate the mechanisms of unremitting viral infection in terms of aspects such as the virus, host, and environment. These researchers are also working to identify potential molecular targets related to H5N1 for anti-influenza drug intervention. A recent H5N1-related study from China provides encouraging information. According to the People's Daily (Renmin Ribao), a newspaper out of Beijing, professor Liu Yingfang, academician Rao Zihe, and fellow researchers from more than 6 research centers, including the Institute of Biophysics Chinese Academy of Sciences, Nankai University, and Tsinghua University, have

  19. Detection prevalence of H5N1 avian influenza virus among stray cats in eastern China.

    PubMed

    Zhao, Fu-Rong; Zhou, Dong-Hui; Zhang, Yong-Guang; Shao, Jun-Jun; Lin, Tong; Li, Yang-Fan; Wei, Ping; Chang, Hui-Yun

    2015-08-01

    Since 1997, more and more cases of the infectious H5N1 avian influenza virus (AIV) in humans have been reported all over the world but the transmission of H5N1 avian influenza virus to stray cats has been little demonstrated. The objective of this pilot investigation was to determine the prevalence of H5N1 AIV antibodies in stray cats in eastern China where is the dominant enzootic H5N1 highly pathogenic avian influenza virus (HP AIV). A total of 1,020 nasal swab and 1,020 serum samples were collected and tested. Evidence of HPAI H5N1 virus antibodies was present in two of the 1,020 serum samples that were positive by HI assay and NT assay, respectively. The results imply little transmission and that the Clade 2.3.2 HPAIV H5N1 infections in poultry did not significantly affect the rural animal shelters or suburban environment in eastern China. In future studies, these results can be used as baseline seroepidemiological levels for H5N1 AIV among cats in China.

  20. PA-X is a virulence factor in avian H9N2 influenza virus.

    PubMed

    Gao, Huijie; Xu, Guanlong; Sun, Yipeng; Qi, Lu; Wang, Jinliang; Kong, Weili; Sun, Honglei; Pu, Juan; Chang, Kin-Chow; Liu, Jinhua

    2015-09-01

    H9N2 influenza viruses have been circulating worldwide in multiple avian species, and regularly infect pigs and humans. Recently, a novel protein, PA-X, produced from the PA gene by ribosomal frameshifting, was demonstrated to be an antivirulence factor in pandemic 2009 H1N1, highly pathogenic avian H5N1 and 1918 H1N1 viruses. However, a similar role of PA-X in the prevalent H9N2 avian influenza viruses has not been established. In this study, we compared the virulence and cytopathogenicity of H9N2 WT virus and H9N2 PA-X-deficient virus. Loss of PA-X in H9N2 virus reduced apoptosis and had a marginal effect on progeny virus output in human pulmonary adenocarcinoma (A549) cells. Without PA-X, PA was less able to suppress co-expressed GFP in human embryonic kidney 293T cells. Furthermore, absence of PA-X in H9N2 virus attenuated viral pathogenicity in mice, which showed no mortality, reduced progeny virus production, mild-to-normal lung histopathology, and dampened proinflammatory cytokine and chemokine response. Therefore, unlike previously reported H1N1 and H5N1 viruses, we show that PA-X protein in H9N2 virus is a pro-virulence factor in facilitating viral pathogenicity and that the pro- or antivirulence role of PA-X in influenza viruses is virus strain-dependent.

  1. Avian influenza: mini-review, European control measures and current situation in Asia.

    PubMed

    Steensels, M; Van Borm, S; Van den Berg, T P

    2006-01-01

    Avian influenza (AI) is a highly contagious disease for birds, which can easily take epidemic proportions when appropriate and efficacious measures are not taken immediately. Influenza viruses can vary in pathogenicity from low to medium or highly pathogenic. A low pathogenic strain can become highly pathogenic by introduction of new mutations (insertions, deletions or substitutions) in the cleavage site of the haemagglutinin during circulation in chickens. Up till now only H5 and H7 strains gave rise to highly pathogenic strains in this manner. At present the avian H5N1 influenza virus is endemic in Southeast Asia (47) and is expanding westward. In addition, its virulence is extremely higher than other HPAI, like H7N7. Moreover, the avian host range is expanding, as species previously considered resistant, now get infected and can contribute to the dissemination of the virus. In the context of H5N1, all movements (trade, high international mobility, migration and smuggling) can become high risk factors of spreading the disease. In most European countries eradication measures are applied when an outbreak occurs. But such measures have great economical and social implications, and are no longer generally accepted. The combination of prophylactic measures (vaccination and medicines), hygienic measures and surveillance could offer an acceptable alternative. PMID:16800241

  2. Detection prevalence of H5N1 avian influenza virus among stray cats in eastern China.

    PubMed

    Zhao, Fu-Rong; Zhou, Dong-Hui; Zhang, Yong-Guang; Shao, Jun-Jun; Lin, Tong; Li, Yang-Fan; Wei, Ping; Chang, Hui-Yun

    2015-08-01

    Since 1997, more and more cases of the infectious H5N1 avian influenza virus (AIV) in humans have been reported all over the world but the transmission of H5N1 avian influenza virus to stray cats has been little demonstrated. The objective of this pilot investigation was to determine the prevalence of H5N1 AIV antibodies in stray cats in eastern China where is the dominant enzootic H5N1 highly pathogenic avian influenza virus (HP AIV). A total of 1,020 nasal swab and 1,020 serum samples were collected and tested. Evidence of HPAI H5N1 virus antibodies was present in two of the 1,020 serum samples that were positive by HI assay and NT assay, respectively. The results imply little transmission and that the Clade 2.3.2 HPAIV H5N1 infections in poultry did not significantly affect the rural animal shelters or suburban environment in eastern China. In future studies, these results can be used as baseline seroepidemiological levels for H5N1 AIV among cats in China. PMID:25952001

  3. Identification of Epitopes for Neutralizing Antibodies Against H10N8 Avian Influenza Virus Hemagglutinin.

    PubMed

    Hu, Jin-Fang; Sun, Chun-Yun; Rao, Mu-Ding; Xie, Liang-Zhi

    2016-08-01

    Objective To develop neutralizing monoclonal antibodies (MAbs) against H10N8 avian influenza virus hemagglutinin and to identify the binding sites. Methods MAbs against hemagglutinin of H10N8 avian influenza virus were developed by genetic engineering. Neutralizing MAbs were screened by microneutralization assay,and then tested by enzyme-linked immunosorbent assay and Western blot to identity the binding sites.The homology modeling process was performed using Discovery Studio 3.5 software,while the binding epitopes were analyzed by BioEdit software. Results One MAb that could neutralize the H10N8 pseudovirus was obtained and characterized. Analysis about epitopes suggested that the antibody could bind to the HA1 region of hemagglutinin,while the epitopes on antigen were conserved in H10 subtypes.Conclusions One neutralizing antibody was obtained by this research.The MAb may potentially be further developed as a pre-clinical candidate to treat avian influenza H10N8 virus infection. PMID:27594152

  4. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .../H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of...

  5. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .../H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of...

  6. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .../H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of...

  7. The role of the legal and illegal trade of live birds and avian products in the spread of avian influenza.

    PubMed

    van den Berg, T

    2009-04-01

    The panzootic of the H5N1 strain of highly pathogenic avian influenza has become an international crisis. All parts of the world are now considered at risk due to trade globalisation, with the worldwide movement of animals, products and humans, and because of the possible spread of the virus through the migration of wild birds. The risk of introducing notifiable avian influenza (NAI) through trade depends on several factors, including the disease status of the exporting country and the type of products. The highest risk occurs in the trade of live birds. It is important to assess and manage these risks to ensure that global trade does not result in the dissemination of NAI. However, it is also important that the risk of infection is not used as an unjustified trade barrier. The role of the regulatory authorities is thus to facilitate the safe trade of animal products according to international guidelines. Nevertheless, the balance between acceptable risk and safe trade is difficult to achieve. Since the movements of poultry and birds are sometimes difficult to trace, the signature or 'identity card' of each isolated virus can be very informative. Indeed, sequencing the genes of H5N1 and other avian influenza viruses has assisted greatly in establishing links and highlighting differences between isolates from different countries and tracing the possible source of introduction. Recent examples from Asia, Europe and Africa, supported by H5N1 molecular fingerprinting, have demonstrated that the sources of introduction can be many and no route should be underestimated.

  8. The role of the legal and illegal trade of live birds and avian products in the spread of avian influenza.

    PubMed

    van den Berg, T

    2009-04-01

    The panzootic of the H5N1 strain of highly pathogenic avian influenza has become an international crisis. All parts of the world are now considered at risk due to trade globalisation, with the worldwide movement of animals, products and humans, and because of the possible spread of the virus through the migration of wild birds. The risk of introducing notifiable avian influenza (NAI) through trade depends on several factors, including the disease status of the exporting country and the type of products. The highest risk occurs in the trade of live birds. It is important to assess and manage these risks to ensure that global trade does not result in the dissemination of NAI. However, it is also important that the risk of infection is not used as an unjustified trade barrier. The role of the regulatory authorities is thus to facilitate the safe trade of animal products according to international guidelines. Nevertheless, the balance between acceptable risk and safe trade is difficult to achieve. Since the movements of poultry and birds are sometimes difficult to trace, the signature or 'identity card' of each isolated virus can be very informative. Indeed, sequencing the genes of H5N1 and other avian influenza viruses has assisted greatly in establishing links and highlighting differences between isolates from different countries and tracing the possible source of introduction. Recent examples from Asia, Europe and Africa, supported by H5N1 molecular fingerprinting, have demonstrated that the sources of introduction can be many and no route should be underestimated. PMID:19618621

  9. Unique Determinants of Neuraminidase Inhibitor Resistance among N3, N7, and N9 Avian Influenza Viruses

    PubMed Central

    Song, Min-Suk; Marathe, Bindumadhav M.; Kumar, Gyanendra; Wong, Sook-San; Rubrum, Adam; Zanin, Mark; Choi, Young-Ki; Webster, Robert G.; Govorkova, Elena A.

    2015-01-01

    ABSTRACT Human infections with avian influenza viruses are a serious public health concern. The neuraminidase (NA) inhibitors (NAIs) are the frontline anti-influenza drugs and are the major option for treatment of newly emerging influenza. Therefore, it is essential to identify the molecular markers of NAI resistance among specific NA subtypes of avian influenza viruses to help guide clinical management. NAI-resistant substitutions in NA subtypes other than N1 and N2 have been poorly studied. Here, we identified NA amino acid substitutions associated with NAI resistance among influenza viruses of N3, N7, and N9 subtypes which have been associated with zoonotic transmission. We applied random mutagenesis and generated recombinant influenza viruses carrying single or double NA substitution(s) with seven internal genes from A/Puerto Rico/8/1934 (H1N1) virus. In a fluorescence-based NA inhibition assay, we identified three categories of NA substitutions associated with reduced inhibition by NAIs (oseltamivir, zanamivir, and peramivir): (i) novel subtype-specific substitutions in or near the enzyme catalytic site (R152W, A246T, and D293N, N2 numbering), (ii) subtype-independent substitutions (E119G/V and/or D and R292K), and (iii) substitutions previously reported in other subtypes (Q136K, I222M, and E276D). Our data show that although some markers of resistance are present across NA subtypes, other subtype-specific markers can only be determined empirically. IMPORTANCE The number of humans infected with avian influenza viruses is increasing, raising concerns of the emergence of avian influenza viruses resistant to neuraminidase (NA) inhibitors (NAIs). Since most studies have focused on NAI-resistance in human influenza viruses, we investigated the molecular changes in NA that could confer NAI resistance in avian viruses grown in immortalized monolayer cells, especially those of the N3, N7, and N9 subtypes, which have caused human infections. We identified not only

  10. Cost-benefit analysis of avian influenza control in Nepal.

    PubMed

    Karki, S; Lupiani, B; Budke, C M; Karki, N P S; Rushton, J; Ivanek, R

    2015-12-01

    Numerous outbreaks of highly pathogenic avian influenza A strain H5N1 have occurred in Nepal since 2009 despite implementation of a national programme to control the disease through surveillance and culling of infected poultry flocks. The objective of the study was to use cost-benefit analysis to compare the current control programme (CCP) with the possible alternatives of: i) no intervention (i.e., absence of control measures [ACM]) and ii) vaccinating 60% of the national poultry flock twice a year. In terms of the benefit-cost ratio, findings indicate a return of US $1.94 for every dollar spent in the CCP compared with ACM. The net present value of the CCP versus ACM, i.e., the amount of money saved by implementing the CCP rather than ACM, is US $861,507 (the benefits of CCP [prevented losses which would have occurred under ACM] minus the cost of CCP). The vaccination programme yields a return of US $2.32 for every dollar spent when compared with the CCR The net present value of vaccination versus the CCP is approximately US $12 million. Sensitivity analysis indicated thatthe findings were robust to different rates of discounting, whereas results were sensitive to the assumed market loss and the number of birds affected in the outbreaks under the ACM and vaccination options. Overall, the findings of the study indicate that the CCP is economically superior to ACM, but that vaccination could give greater economic returns and may be a better control strategy. Future research should be directed towards evaluating the financial feasibility and social acceptability of the CCP and of vaccination, with an emphasis on evaluating market reaction to the presence of H5N1 infection in the country.

  11. Cost-benefit analysis of avian influenza control in Nepal.

    PubMed

    Karki, S; Lupiani, B; Budke, C M; Karki, N P S; Rushton, J; Ivanek, R

    2015-12-01

    Numerous outbreaks of highly pathogenic avian influenza A strain H5N1 have occurred in Nepal since 2009 despite implementation of a national programme to control the disease through surveillance and culling of infected poultry flocks. The objective of the study was to use cost-benefit analysis to compare the current control programme (CCP) with the possible alternatives of: i) no intervention (i.e., absence of control measures [ACM]) and ii) vaccinating 60% of the national poultry flock twice a year. In terms of the benefit-cost ratio, findings indicate a return of US $1.94 for every dollar spent in the CCP compared with ACM. The net present value of the CCP versus ACM, i.e., the amount of money saved by implementing the CCP rather than ACM, is US $861,507 (the benefits of CCP [prevented losses which would have occurred under ACM] minus the cost of CCP). The vaccination programme yields a return of US $2.32 for every dollar spent when compared with the CCR The net present value of vaccination versus the CCP is approximately US $12 million. Sensitivity analysis indicated thatthe findings were robust to different rates of discounting, whereas results were sensitive to the assumed market loss and the number of birds affected in the outbreaks under the ACM and vaccination options. Overall, the findings of the study indicate that the CCP is economically superior to ACM, but that vaccination could give greater economic returns and may be a better control strategy. Future research should be directed towards evaluating the financial feasibility and social acceptability of the CCP and of vaccination, with an emphasis on evaluating market reaction to the presence of H5N1 infection in the country. PMID:27044153

  12. Avian influenza A(H7N9) and (H5N1) infections among poultry and swine workers and the general population in Beijing, China, 2013–2015

    PubMed Central

    Yang, Peng; Ma, Chunna; Cui, Shujuan; Zhang, Daitao; Shi, Weixian; Pan, Yang; Sun, Ying; Lu, Guilan; Peng, Xiaomin; Zhao, Jiachen; Liu, Yimeng; Wang, Quanyi

    2016-01-01

    Although several studies have reported seroprevalences of antibody against avian influenza A(H7N9) virus among poultry workers in southern China, results have varied and data in northern China are scarce. To understand risks of H7N9 and H5N1 virus infections in northern China, a serological cohort study was conducted. Poultry workers, swine workers and the general population in Beijing, China, were evaluated through three surveys in November 2013, April 2014 and April 2015. The highest seroprevalence to H7N9 virus among poultry workers was recorded in the April 2014 and April 2015 surveys (0.4%), while that to H5N1 clade 2.3.4 or clade 2.3.2.1 virus was noted in the April 2014 survey (1.6% and 0.2%, respectively). The incidence of H7N9 virus infections among poultry workers (1.6/1000 person-months) was significantly lower than that of H5N1 clade 2.3.4 infections (3.8/1000 person-months) but higher than that of H5N1 clade 2.3.2.1 infections (0.3/1000 person-months). Compared with the general population, poultry workers were at higher risk of contracting H7N9 virus (IRR: 34.90; p < 0.001) or H5N1 clade 2.3.4 virus (IRR: 10.58; p < 0.001). Although risks of H7N9 and H5N1 virus infections remain low in Beijing, continued preventive measures are warranted for poultry workers. PMID:27670286

  13. ["Constanze": a trinational project on avian influenza in wild birds at Lake Constance].

    PubMed

    Brunhart, I; Baumer, A; Reist, M; Stärk, K; Griot, C

    2010-11-01

    When highly pathogenic avian influenza H5N1 (HPAI H5N1) arrived at Lake Constance in February 2006, little was known about its ecology and epidemiology in wild birds. In order to prevent virus transmission from wild birds to poultry, the adjacent countries initiated the tri-national, interdisciplinary research program «Constanze» to investigate avian influenza infections in water birds at Lake Constance. In collaboration with government agencies scientists examined the prevalence of AI virus in the region of Lake Constance for a period of 33 months, compared the effectiveness of different surveillance methods and analysed the migration behaviour of water birds. Although virus introduction from regions as far as the Ural Mountains seemed possible based on the migration behaviour of certain species, no influenza A viruses of the highly pathogenic subtype H5N1 (HPAIV) was found. However, influenza A viruses of different low pathogenic subtypes were isolated in 2.2 % of the sampled birds (swabs). Of the different surveillance methods utilised in the program the sampling of so called sentinel birds was particularly efficient.

  14. ["Constanze": a trinational project on avian influenza in wild birds at Lake Constance].

    PubMed

    Brunhart, I; Baumer, A; Reist, M; Stärk, K; Griot, C

    2010-11-01

    When highly pathogenic avian influenza H5N1 (HPAI H5N1) arrived at Lake Constance in February 2006, little was known about its ecology and epidemiology in wild birds. In order to prevent virus transmission from wild birds to poultry, the adjacent countries initiated the tri-national, interdisciplinary research program «Constanze» to investigate avian influenza infections in water birds at Lake Constance. In collaboration with government agencies scientists examined the prevalence of AI virus in the region of Lake Constance for a period of 33 months, compared the effectiveness of different surveillance methods and analysed the migration behaviour of water birds. Although virus introduction from regions as far as the Ural Mountains seemed possible based on the migration behaviour of certain species, no influenza A viruses of the highly pathogenic subtype H5N1 (HPAIV) was found. However, influenza A viruses of different low pathogenic subtypes were isolated in 2.2 % of the sampled birds (swabs). Of the different surveillance methods utilised in the program the sampling of so called sentinel birds was particularly efficient. PMID:21043024

  15. Interpreting the transmissibility of the avian influenza A(H7N9) infection from 2013 to 2015 in Zhejiang Province, China.

    PubMed

    Chong, K C; Wang, X; Liu, S; Cai, J; Su, X; Zee, B C; Tam, G; Wang, M H; Chen, E

    2016-06-01

    Three epidemic waves of human influenza A(H7N9) were documented in several different provinces in China between 2013 and 2015. With limited understanding of the potential for human-to-human transmission, it was difficult to implement control measures efficiently or to inform the public adequately about the application of interventions. In this study, the human-to-human transmission rate for the epidemics that occurred between 2013 and 2015 in Zhejiang Province, China, was analysed. The reproduction number (R), a key indicator of transmission intensity, was estimated by fitting the number of infections from poultry to humans and from humans to humans into a mathematical model. The posterior mean R for human-to-human transmission was estimated to be 0·27, with a 95% credible interval of 0·14-0·44 for the first wave, whereas the posterior mean Rs decreased to 0·15 in the second and third waves. Overall, these estimates indicate that a human H7N9 pandemic is unlikely to occur in Zhejiang. The reductions in the viral transmissibility and the number of poultry-transmitted infections after the first epidemic may be attributable to the various intervention measures taken, including changes in the extent of closures of live poultry markets. PMID:26645357

  16. Phylogenetics and pathogenesis of early avian influenza viruses (H5N2), Nigeria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prior to the first officially recognized outbreaks of highly pathogenic avian influenza (HPAI) in poultry in Nigeria, in February 2006, an effort based at the poultry diagnostic clinic of the University of Ibadan Veterinary Teaching Hospital, was underway to isolate avian influenza viruses from sick...

  17. Antigenic cartographic analysis of H7 avian influenza viruses with chicken serum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antigenic cartography is a relatively new method that can be used to evaluate the antigenic relatedness among avian influenza virus isolates. Evaluation of antigenic relationships among avian influenza viruses can be applied to vaccine design and to understanding the evolution of the virus. Initia...

  18. Dynamics of low and high pathogenic avian influenza in wild and domestic bird populations.

    PubMed

    Tuncer, Necibe; Torres, Juan; Martcheva, Maia; Barfield, Michael; Holt, Robert D

    2016-01-01

    This paper introduces a time-since-recovery structured, multi-strain, multi-population model of avian influenza. Influenza A viruses infect many species of wild and domestic birds and are classified into two groups based on their ability to cause disease: low pathogenic avian influenza (LPAI) and high pathogenic avian influenza (HPAI). Prior infection with LPAI provides partial immunity towards HPAI. The model introduced in this paper structures LPAI-recovered birds (wild and domestic) with time-since-recovery and includes cross-immunity towards HPAI that can fade with time. The model has a unique disease-free equilibrium (DFE), unique LPAI-only and HPAI-only equilibria and at least one coexistence equilibrium. We compute the reproduction numbers of LPAI ([Formula: see text]) and HPAI ([Formula: see text]) and show that the DFE is locally asymptotically stable when [Formula: see text] and [Formula: see text]. A unique LPAI-only (HPAI-only) equilibrium exists when [Formula: see text] ([Formula: see text]) and it is locally asymptotically stable if HPAI (LPAI) cannot invade the equilibrium, that is, if the invasion number [Formula: see text] ([Formula: see text]). We show using numerical simulations that the ODE version of the model, which is obtained by discarding the time-since-recovery structures (making cross-immunity constant), can exhibit oscillations, and also that the pathogens LPAI and HPAI can coexist with sustained oscillations in both populations. Through simulations, we show that even if both populations (wild and domestic) are sinks when alone, LPAI and HPAI can persist in both populations combined. Thus, reducing the reproduction numbers of LPAI and HPAI in each population to below unity is not enough to eradicate the disease. The pathogens can continue to coexist in both populations unless transmission between the populations is reduced. PMID:26667351

  19. Evaluation of Nobuto filter paper strips for the detection of avian influenza virus antibody in waterfowl

    USGS Publications Warehouse

    Dusek, R.J.; Hall, J.S.; Nashold, S.W.; Teslaa, J.L.; Ip, H.S.

    2011-01-01

    The utility of using Nobuto paper strips for the detection of avian influenza antibodies was examined in mallards (Anas platyrhynchos) experimentally infected with low pathogenic avian influenza viruses. Blood was collected 2 wk after infection and was preserved either as serum or whole blood absorbed onto Nobuto strips. Analysis of samples using a commercially available blocking enzyme-linked immunosorbent assay revealed comparable results (???96% sensitivity for all methods) between sera stored at -30 C and the Nobuto strip preservation method even when the Nobuto strips were stored up to 3 mo at room temperature (RT). Significant differences were detected in the ratio of sample absorbance to negative control absorbance for Nobuto strips stored at RT compared with sera stored at -30 C, although these differences did not affect the ability of the test to reliably detect positive and negative samples. Nobuto strips are a convenient and sensitive alternative to the collection of serum samples when maintaining appropriate storage temperatures is difficult. ?? 2011 American Association of Avian Pathologists.

  20. Newcastle disease virus detection and differentiation from avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Newcastle disease (ND) is a contagious and often fatal disease that affects over 250 bird species worldwide, and is caused by infection with virulent strains of avian paramyxovirus-1 (APMV-1) of the family Paramyxoviridae, genus Avulavirus. Infections of poultry with virulent strains of APMV-1 (New...

  1. A primary chicken tracheal cell culture system for the study of infection with avian respiratory viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major route of infection of avian influenza virus (AIV) and Newcastle disease virus (NDV) in chickens is through cells of the airway epithelium. Here we describe the development and optimization of conditions for culture of tracheal epithelial cells from chicken embryos as well as their use in st...

  2. The spread of avian influenza H5N1 virus; a pandemic threat to mankind.

    PubMed

    Chutinimitkul, Salin; Payungporn, Sunchai; Chieochansin, Thaweesak; Suwannakarn, Kamol; Theamboonlers, Apiradee; Poovorawan, Yong

    2006-09-01

    Influenza A H5N1 virus infection presents a major public health problem in Asian and Eurasian countries. The World Health organization has voiced their concerns about a potential pandemic with the imminent threat to humankind. In 1997, an outbreak of highly pathogenic H5N1 virus emerged and caused severe systemic disease among poultry and humans in Hong Kong. This article reviews the magnitude of the 2004-2006 outbreaks in various countries and highlights the highly pathogenic avian influenza (HPAI) subtype H5N1 virus as the cause of a major epidemic with potentially vast repercussions on economics, public health and society at large. Not only has this avian influenza (AI) virus infected poultry but has also proven highly pathogenic and fatal to mammalian species including humans and felines. The present review draws a comprehensive picture encompassing epidemiology, inter-species transmission and genetic characterization of this highly virulent virus. Moreover, laboratory diagnostic techniques, vaccination strategies and antiviral therapies aimed at outbreak control and management are also discussed.

  3. Proposed lead molecules against Hemagglutinin of avian influenza virus (H5N1)

    PubMed Central

    Nandi, Tannistha

    2008-01-01

    Human infection with avian influenza H5N1 is an emerging infectious disease characterized by respiratory symptoms and a high fatality rate. Hemagglutinin and neuraminidase are the two surface proteins responsible for infection by influenza virus. Till date, neuraminidase has been the major target for antiviral drugs. In the present study we chose hemagglutinin protein as it mediates the binding of the virus to target cells through sialic acid residues on the host cell-surface. Hemagglutinin of H5 avian influenza (PDB ID: 1JSN) was used as the receptor protein. Ligands were generated by structure-based de novo approach and virtual screening of ZINC database. A total of 11,104 conformers were generated and docked into the receptor binding site using ‘High Throughput Virtual Screening’. We proposed potential lead molecules against the receptor binding site of hemagglutinin based on the results obtained from in silico docking and hydrogen bond interaction between the ligand and the 1JSN protein molecule. We found sialic acid derivative 1 to be the lead molecules amongst the ligands generated by structure based de novo approach. However the molecules obtained from ZINC database were showing better docking scores as well as conserved hydrogen bond interactions. Thus we proposed ZINC00487720 and ZINC00046810 as potential lead molecules that could be used as an inhibitor to the receptor binding site of hemagglutinin. They could now be studied in vivo to validate the in silico results. PMID:18317572

  4. Global avian influenza surveillance in wild birds: a strategy to capture viral diversity.

    PubMed

    Machalaba, Catherine C; Elwood, Sarah E; Forcella, Simona; Smith, Kristine M; Hamilton, Keith; Jebara, Karim B; Swayne, David E; Webby, Richard J; Mumford, Elizabeth; Mazet, Jonna A K; Gaidet, Nicolas; Daszak, Peter; Karesh, William B

    2015-04-01

    Wild birds play a major role in the evolution, maintenance, and spread of avian influenza viruses. However, surveillance for these viruses in wild birds is sporadic, geographically biased, and often limited to the last outbreak virus. To identify opportunities to optimize wild bird surveillance for understanding viral diversity, we reviewed responses to a World Organisation for Animal Health-administered survey, government reports to this organization, articles on Web of Knowledge, and the Influenza Research Database. At least 119 countries conducted avian influenza virus surveillance in wild birds during 2008-2013, but coordination and standardization was lacking among surveillance efforts, and most focused on limited subsets of influenza viruses. Given high financial and public health burdens of recent avian influenza outbreaks, we call for sustained, cost-effective investments in locations with high avian influenza diversity in wild birds and efforts to promote standardized sampling, testing, and reporting methods, including full-genome sequencing and sharing of isolates with the scientific community.

  5. Contemporary Avian Influenza A Virus Subtype H1, H6, H7, H10, and H15 Hemagglutinin Genes Encode a Mammalian Virulence Factor Similar to the 1918 Pandemic Virus H1 Hemagglutinin

    PubMed Central

    Qi, Li; Pujanauski, Lindsey M.; Davis, A. Sally; Schwartzman, Louis M.; Chertow, Daniel S.; Baxter, David; Scherler, Kelsey; Hartshorn, Kevan L.; Slemons, Richard D.; Walters, Kathie-Anne; Kash, John C.

    2014-01-01

    ABSTRACT Zoonotic avian influenza virus infections may lead to epidemics or pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its H1 hemagglutinin was identified as a key mammalian virulence factor. A chimeric 1918 virus expressing a contemporary avian H1 hemagglutinin, however, displayed murine pathogenicity indistinguishable from that of the 1918 virus. Here, isogenic chimeric avian influenza viruses were constructed on an avian influenza virus backbone, differing only by hemagglutinin subtype expressed. Viruses expressing the avian H1, H6, H7, H10, and H15 subtypes were pathogenic in mice and cytopathic in normal human bronchial epithelial cells, in contrast to H2-, H3-, H5-, H9-, H11-, H13-, H14-, and H16-expressing viruses. Mouse pathogenicity was associated with pulmonary macrophage and neutrophil recruitment. These data suggest that avian influenza virus hemagglutinins H1, H6, H7, H10, and H15 contain inherent mammalian virulence factors and likely share a key virulence property of the 1918 virus. Consequently, zoonotic infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals. PMID:25406382

  6. Antibodies against avian-like A (H1N1) swine influenza virus among swine farm residents in eastern China.

    PubMed

    Yin, Xiuchen; Yin, Xin; Rao, Baizhong; Xie, Chunfang; Zhang, Pengchao; Qi, Xian; Wei, Ping; Liu, Huili

    2014-04-01

    In 2007, the avian-like H1N1 virus (A/swine/Zhejiang/1/07) was first isolated in pigs in China. Recently, it was reported that a 3-year-old boy was infected with avian-like A (H1N1) swine influenza virus (SIV) in Jiangsu Province, China. To investigate the prevalence of avian-like A (H1N1) SIV infection among swine farm residents in eastern China, an active influenza surveillance program was conducted on swine farms in this region from May 21, 2010 through April 22, 2012. A total of 1,162 participants were enrolled, including 1,136 persons from 48 pig farms, as well as 26 pig farm veterinarians. A total of 10.7% and 7.8% swine farm residents were positive for antibodies against avian-like A (H1N1) SIV by HI and NT assay, respectively, using 40 as the cut-off antibody titer. Meanwhile, all the serum samples collected from a control of healthy city residents were negative against avian-like A (H1N1) SIV. As the difference in numbers of antibody positive samples between the swine farm residents and health city residents controls was statistically significant (P = 0.002), these data suggest that occupational exposure to pigs may increase swine farm residents' and veterinarians' risk of avian-like A (H1N1) SIV infection in eastern China. This study provides the first data on avian-like A (H1N1) SIV infections in humans in China; the potential for avian-like A (H1N1) SIV entering the human population should also be taken into consideration.

  7. Highly Pathogenic Avian Influenza H5N8 Clade 2.3.4.4 Virus: Equivocal Pathogenicity and Implications for Surveillance Following Natural Infection in Breeder Ducks in the United Kingdom.

    PubMed

    Núñez, A; Brookes, S M; Reid, S M; Garcia-Rueda, C; Hicks, D J; Seekings, J M; Spencer, Y I; Brown, I H

    2016-02-01

    Since early 2014, several outbreaks involving novel reassortant highly pathogenic avian influenza (HPAI) A(H5N8) viruses have been detected in poultry and wild bird species in Asia, Europe and North America. These viruses have been detected in apparently healthy and dead wild migratory birds, as well as in domestic chickens, turkeys, geese and ducks. In this study, we describe the pathology of an outbreak of H5N8 HPAIV in breeder ducks in the UK. A holding with approximately 6000 breeder ducks, aged approximately 60 weeks, showed a gradual reduction in egg production and increased mortality over a 7-day period. Post-mortem examination revealed frequent fibrinous peritonitis, with severely haemorrhagic ovarian follicles and occasional splenic and pancreatic necrosis and high incidence of mycotic granulomas in the air sacs and lung. Low-to-moderate levels of HPAI H5N8 virus were detected mainly in respiratory and digestive tract, with minor involvement of other organs. Although histopathological examination confirmed the gross pathology findings, intralesional viral antigen detection by immunohistochemistry was not observed. Immunolabelled cells were rarely only present in inflamed air sacs and serosa, usually superficial to granulomatous inflammation. Abundant bacterial microcolonies were observed in haemorrhagic ovaries and oviduct. The limited viral tissue distribution and presence of inter-current fungal and bacterial infections suggest a minor role for HPAIV H5N8 in clinical disease in layer ducks. PMID:26519234

  8. Intranasal Immunization with Pressure Inactivated Avian Influenza Elicits Cellular and Humoral Responses in Mice

    PubMed Central

    Barroso, Shana P. C.; Nico, Dirlei; Nascimento, Danielle; Santos, Ana Clara V.; Couceiro, José Nelson S. S.; Bozza, Fernando A.; Ferreira, Ana M. A.; Ferreira, Davis F.; Palatnik-de-Sousa, Clarisa B.; Souza, Thiago Moreno L.; Gomes, Andre M. O.; Silva, Jerson L.; Oliveira, Andréa C.

    2015-01-01

    Influenza viruses pose a serious global health threat, particularly in light of newly emerging strains, such as the avian influenza H5N1 and H7N9 viruses. Vaccination remains the primary method for preventing acquiring influenza or for avoiding developing serious complications related to the disease. Vaccinations based on inactivated split virus vaccines or on chemically inactivated whole virus have some important drawbacks, including changes in the immunogenic properties of the virus. To induce a greater mucosal immune response, intranasally administered vaccines are highly desired as they not only prevent disease but can also block the infection at its primary site. To avoid these drawbacks, hydrostatic pressure has been used as a potential method for viral inactivation and vaccine production. In this study, we show that hydrostatic pressure inactivates the avian influenza A H3N8 virus, while still maintaining hemagglutinin and neuraminidase functionalities. Challenged vaccinated animals showed no disease signs (ruffled fur, lethargy, weight loss, and huddling). Similarly, these animals showed less Evans Blue dye leakage and lower cell counts in their bronchoalveolar lavage fluid compared with the challenged non-vaccinated group. We found that the whole inactivated particles were capable of generating a neutralizing antibody response in serum, and IgA was also found in nasal mucosa and feces. After the vaccination and challenge we observed Th1/Th2 cytokine secretion with a prevalence of IFN-γ. Our data indicate that the animals present a satisfactory immune response after vaccination and are protected against infection. Our results may pave the way for the development of a novel pressure-based vaccine against influenza virus. PMID:26056825

  9. Persistence of Avian Influenza Viruses in Lake Sediment, Duck Feces, and Duck Meat ▿ †

    PubMed Central

    Nazir, Jawad; Haumacher, Renate; Ike, Anthony C.; Marschang, Rachel E.

    2011-01-01

    The persistence of 3 low-pathogenicity avian influenza viruses (LPAIV) (H4N6, H5N1, and H6N8) and one human influenza virus (H1N1) as well as Newcastle disease virus (NDV) and enteric cytopathogenic bovine orphan (ECBO) virus was investigated in lake sediment, duck feces, and duck meat at 30, 20, 10, and 0°C using a germ carrier technique. Virus-loaded germ carriers were incubated in each substrate, and residual infectivity of the eluted virus was quantified on cell culture after regular intervals for a maximum of 24 weeks. Data were analyzed by a linear regression model to calculate T90 values (time required for 90% loss of virus infectivity) and estimated persistence of the viruses. In general, the persistence of all of the viruses was highest in lake sediment, followed by feces, and was the lowest in duck meat at all temperatures. For the avian influenza virus subtypes, T90 values in sediment ranged from 5 to 11, 13 to 18, 43 to 54, and 66 to 394 days at 30, 20, 10, and 0°C, respectively, which were 2 to 5 times higher than the T90 values of the viruses in the feces and meat. Although the individual viruses vary in tenacity, the survival time of influenza viruses was shorter than that of NDV and ECBO virus in all substrates. The results of this study suggest that lake sediment may act as a long-term source of influenza viruses in the aquatic habitat, while the viruses may remain infectious for extended periods of time in duck feces and meat at low temperatures, allowing persistence of the viruses in the environment over winter. PMID:21622783

  10. Susceptibility of human and avian influenza viruses to human and chicken saliva.

    PubMed

    Limsuwat, Nattavatchara; Suptawiwat, Ornpreya; Boonarkart, Chompunuch; Puthavathana, Pilaipan; Auewarakul, Prasert; Wiriyarat, Witthawat

    2014-05-01

    Oral cavity can be an entry site of influenza virus and saliva is known to contain innate soluble anti-influenza factors. Influenza strains were shown to vary in their susceptibility to those antiviral factors. Whether the susceptibility to the saliva antiviral factors plays any role in the host species specificity of influenza viruses is not known. In this study, the antiviral activity of human and chicken saliva against human and the H5N1 avian influenza viruses were investigated by hemagglutination inhibition (HI) and neutralization (NT) assays. In comparison to human influenza viruses, H5N1 isolates showed reduced susceptibility to human saliva as measured by HI and NT assays. Interestingly, an H5N1 isolate that bind to both α2,3- and α2,6-linked sialic acid showed much higher HI titers with human saliva, suggesting that the susceptibility profile was linked to the receptor-binding preference and the presence of α2,6-linked sialic in human saliva. On the other hand, the H5N1 isolates showed increased HI titers but reduced NT titers to chicken saliva as compared to human influenza isolates. The human salivary antiviral components were characterized by testing the sensitivity to heat, receptor destroying enzyme (RDE), CaCl₂/EDTA dependence, and inhibition by mannan, and shown to be α- and γ-inhibitors. These data suggest that the H5N1 HPAI influenza virus had distinctive susceptibility patterns to human and chicken saliva, which may play some roles in its infectivity and transmissibility in these hosts.

  11. A PREGNANT WOMAN WITH AVIAN INFLUENZA A (H7N9) VIRUS PNEUMONIA AND ARDS MANAGED WITH EXTRACORPOREAL MEMBRANE OXYGENATION.

    PubMed

    Wang, Guyi; Zhou, Yanyan; Gong, Subo; Dong, Haiyun; Wu, Guobao; Xiang, Xudong; Tang, Jianjun

    2015-05-01

    We report a case of H7N9 avian influenza pneumonia in a pregnant woman who developed acute respiratory distress syndrome (ARDS) managed with extracorporeal membrane oxygenation (ECMO). A 29-year-old, 27 week pregnant woman developed rapidly progressive pneumonia with bilateral infiltrates on chest x-ray and was confirmed to have influenza A (H7N9) infection. Her condition deteriorated and she developed ARDS which was managed with veno-venous extracorporeal membrane oxygenation (V-V ECMO) and treated with antimicrobials. Her clinical symptoms and oxygenation gradually improved and the ECMO was discontinued on the 19t day. Unfortunately, she suddenly died a few days later, due to a presumed pulmonary embolism. Based on our experience, ECMO may be useful to manage pneumonia due to H7N9 avian influenza and ARDS in pregnant women. PMID:26521517

  12. Mycoplasma gallisepticum modifies the pathogenesis of influenza A virus in the avian tracheal epithelium.

    PubMed

    Sid, Hicham; Hartmann, Sandra; Petersen, Henning; Ryll, Martin; Rautenschlein, Silke

    2016-05-01

    Multiple respiratory infections have a significant impact on health and economy. Pathogenesis of co-infecting viruses and bacteria and their interaction with mucosal surfaces are poorly characterized. In this study we established a co-infection model based on pre-incubation of tracheal organ cultures (TOC) with Mycoplasma (M.) gallisepticum and a subsequent infection with avian influenza virus (AIV). Mycoplasma gallisepticum modified the pathogenesis of AIV as demonstrated in TOC of two different avian species (chickens and turkeys). Co-infection promoted bacterial growth in tracheal epithelium. Depending on the interaction time of M. gallisepticum with the host cells, AIV replication was either promoted or suppressed. M. gallisepticum inhibited the antiviral gene expression and affected AIV attachment to the host cell by desialylation of α-2,3 linked sialic acids. Ultrastructural analysis of co-infected TOC suggests that both pathogens may attach to and possibly infect the same epithelial cell. The obtained results contribute to better understanding of the interaction dynamics between M. gallisepticum and AIV. They highlight the importance of the time interval between infections as well as the biological properties of the involved pathogens as influencing factors in the outcome of respiratory infections.

  13. Modelling the Innate Immune Response against Avian Influenza Virus in Chicken

    PubMed Central

    Hagenaars, T. J.; Fischer, E. A. J.; Jansen, C. A.; Rebel, J. M. J.; Spekreijse, D.; Vervelde, L.; Backer, J. A.; de Jong, M. C. M.; Koets, A. P.

    2016-01-01

    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load, interferon-α, -β and -γ, lung (i.e. pulmonary) cells and Natural Killer cells. We use recent results from experimentally infected chickens to validate some of the model predictions. The model includes an initial exponential increase of the viral load, which we show to be consistent with experimental data. Using this exponential growth model we show that the duration until a given viral load is reached in experiments with different inoculation doses is consistent with a model assuming a linear relationship between initial viral load and inoculation dose. Subsequent to the exponential-growth phase, the model results show a decline in viral load caused by both target-cell limitation as well as the innate immune response. The model results suggest that the temporal viral load pattern in the lungs displayed in experimental data cannot be explained by target-cell limitation alone. For biologically plausible parameter values the model is able to qualitatively match to data on viral load in chicken lungs up until approximately 4 days post infection. Comparison of model predictions with data on CD107-mediated degranulation of Natural Killer cells yields some discrepancy also for earlier days post infection. PMID:27328069

  14. Novel reassortant highly pathogenic avian influenza (H5N5) viruses in domestic ducks, China.

    PubMed

    Gu, Min; Liu, Wenbo; Cao, Yongzhong; Peng, Daxin; Wang, Xiaobo; Wan, Hongquan; Zhao, Guo; Xu, Quangang; Zhang, Wei; Song, Qingqing; Li, Yanfang; Liu, Xiufan

    2011-06-01

    In China, domestic ducks and wild birds often share the same water, in which influenza viruses replicate preferentially. Isolation of 2 novel reassortant highly pathogenic avian influenza (H5N5) viruses from apparently healthy domestic ducks highlights the role of these ducks as reassortment vessels. Such new subtypes of influenza viruses may pose a pandemic threat.

  15. Crystal structure of an avian influenza polymerase PA[subscript N] reveals an endonuclease active site

    SciTech Connect

    Yuan, Puwei; Bartlam, Mark; Lou, Zhiyong; Chen, Shoudeng; Zhou, Jie; He, Xiaojing; Lv, Zongyang; Ge, Ruowen; Li, Xuemei; Deng, Tao; Fodor, Ervin; Rao, Zihe; Liu, Yingfang

    2009-11-10

    The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 angstrom (A) crystal structure of the N-terminal 197 residues of PA, termed PA(N), from an avian influenza H5N1 virus. The PA(N) structure has an alpha/beta architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DX(N)(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PA(N) provide further evidence that PA(N) holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PA(N) holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PA(N) is an important target for the design of new anti-influenza therapeutics.

  16. Towards multiscale modeling of influenza infection

    PubMed Central

    Murillo, Lisa N.; Murillo, Michael S.; Perelson, Alan S.

    2013-01-01

    Aided by recent advances in computational power, algorithms, and higher fidelity data, increasingly detailed theoretical models of infection with influenza A virus are being developed. We review single scale models as they describe influenza infection from intracellular to global scales, and, in particular, we consider those models that capture details specific to influenza and can be used to link different scales. We discuss the few multiscale models of influenza infection that have been developed in this emerging field. In addition to discussing modeling approaches, we also survey biological data on influenza infection and transmission that is relevant for constructing influenza infection models. We envision that, in the future, multiscale models that capitalize on technical advances in experimental biology and high performance computing could be used to describe the large spatial scale epidemiology of influenza infection, evolution of the virus, and transmission between hosts more accurately. PMID:23608630

  17. Immunosuppression During Influenza Virus Infection

    PubMed Central

    Kantzler, G. B.; Lauteria, S. F.; Cusumano, C. L.; Lee, J. D.; Ganguly, R.; Waldman, R. H.

    1974-01-01

    The effects of a live attenuated influenza vaccine and subsequent challenge with virulent influenza virus on the delayed hypersensitivity skin test, and the in vitro response of lymphocytes were evaluated. Volunteers were skin tested before and after administration of vaccine or placebo and challenge with PPD (a purified protein derivative of Mycobacterium tuberculosis), candida, mumps, and trichophytin, and their lymphocytes were tested for [3H]thymidine uptake in response to phytohemagglutin. Of eight volunteers who showed evidence of viral replication after administration of the attenuated vaccine, four had a significant diminution in their skin test response, whereas 8 of 13 volunteers infected with virulent influenza virus showed a diminution. Of the 21 volunteers who were infected with either attenuated or virulent influenza virus, 12 showed suppression of their phytohemagglutin response. None of the volunteers who were given placebo vaccine, or who showed no evidence for viral replication after immunization or challenge, had a suppression of their skin test or phytohemagglutin responses. Although most of the infected volunteers demonstrated suppression of their T-cell function, there was no evidence of a similar suppression of B-cell function. PMID:16558116

  18. The East Jakarta Project: surveillance for highly pathogenic avian influenza A(H5N1) and seasonal influenza viruses in patients seeking care for respiratory disease, Jakarta, Indonesia, October 2011-September 2012.

    PubMed

    Storms, A D; Kusriastuti, R; Misriyah, S; Praptiningsih, C Y; Amalya, M; Lafond, K E; Samaan, G; Triada, R; Iuliano, A D; Ester, M; Sidjabat, R; Chittenden, K; Vogel, R; Widdowson, M A; Mahoney, F; Uyeki, T M

    2015-12-01

    Indonesia has reported the most human infections with highly pathogenic avian influenza (HPAI) A(H5N1) virus worldwide. We implemented enhanced surveillance in four outpatient clinics and six hospitals for HPAI H5N1 and seasonal influenza viruses in East Jakarta district to assess the public health impact of influenza in Indonesia. Epidemiological and clinical data were collected from outpatients with influenza-like illness (ILI) and hospitalized patients with severe acute respiratory infection (SARI); respiratory specimens were obtained for influenza testing by real-time reverse transcription-polymerase chain reaction. During October 2011-September 2012, 1131/3278 specimens from ILI cases (34·5%) and 276/1787 specimens from SARI cases (15·4%) tested positive for seasonal influenza viruses. The prevalence of influenza virus infections was highest during December-May and the proportion testing positive was 76% for ILI and 36% for SARI during their respective weeks of peak activity. No HPAI H5N1 virus infections were identified, including hundreds of ILI and SARI patients with recent poultry exposures, whereas seasonal influenza was an important contributor to acute respiratory disease in East Jakarta. Overall, 668 (47%) of influenza viruses were influenza B, 384 (27%) were A(H1N1)pdm09, and 359 (25%) were H3. While additional data over multiple years are needed, our findings suggest that seasonal influenza prevention efforts, including influenza vaccination, should target the months preceding the rainy season.

  19. Emergence of avian H1N1 influenza viruses in pigs in China.

    PubMed

    Guan, Y; Shortridge, K F; Krauss, S; Li, P H; Kawaoka, Y; Webster, R G

    1996-11-01

    Avian influenza A viruses from Asia are recognized as the source of genes that reassorted with human viral genes to generate the Asian/57 (H2N2) and Hong Kong/68 (H3N2) pandemic strains earlier in this century. Here we report the genetic analysis of avian influenza A H1N1 viruses recently isolated from pigs in southern China, a host suspected to generate new pandemic strains through gene reassortment events. Each of the eight gene segments was of avian origin. Phylogenetic analysis indicates that these genes form an Asian sublineage of the Eurasian avian lineage, suggesting that these viruses are an independent introduction into pigs in Asia. The presence of avian influenza viruses in pigs in China places them in an optimal position for transmission to humans and may serve as an early warning of the emergence of the next human influenza virus pandemic.

  20. FAO-OIE-WHO Joint Technical Consultation on Avian Influenza at the Human-Animal Interface.

    PubMed

    Anderson, Tara; Capua, Ilaria; Dauphin, Gwenaëlle; Donis, Ruben; Fouchier, Ron; Mumford, Elizabeth; Peiris, Malik; Swayne, David; Thiermann, Alex

    2010-05-01

    For the past 10 years, animal health experts and human health experts have been gaining experience in the technical aspects of avian influenza in mostly separate fora. More recently, in 2006, in a meeting of the small WHO Working Group on Influenza Research at the Human Animal Interface (Meeting report available from: http://www.who.int/csr/resources/publications/influenza/WHO_CDS_EPR_GIP_2006_3/en/index.html) in Geneva allowed influenza experts from the animal and public health sectors to discuss together the most recent avian influenza research. Ad hoc bilateral discussions on specific technical issues as well as formal meetings such as the Technical Meeting on HPAI and Human H5N1 Infection (Rome, June, 2007; information available from: http://www.fao.org/avianflu/en/conferences/june2007/index.html) have increasingly brought the sectors together and broadened the understanding of the topics of concern to each sector. The sectors have also recently come together at the broad global level, and have developed a joint strategy document for working together on zoonotic diseases (Joint strategy available from: ftp://ftp.fao.org/docrep/fao/011/ajl37e/ajl37e00.pdf). The 2008 FAO-OIE-WHO Joint Technical Consultation on Avian Influenza at the Human Animal Interface described here was the first opportunity for a large group of influenza experts from the animal and public health sectors to gather and discuss purely technical topics of joint interest that exist at the human-animal interface. During the consultation, three influenza-specific sessions aimed to (1) identify virological characteristics of avian influenza viruses (AIVs) important for zoonotic and pandemic disease, (2) evaluate the factors affecting evolution and emergence of a pandemic influenza strain and identify existing monitoring systems, and (3) identify modes of transmission and exposure sources for human zoonotic influenza infection (including discussion of specific exposure risks by affected countries). A

  1. Characterization of Avian Influenza and Newcastle Disease Viruses from Poultry in Libya.

    PubMed

    Kammon, Abdulwahab; Heidari, Alireza; Dayhum, Abdunaser; Eldaghayes, Ibrahim; Sharif, Monier; Monne, Isabela; Cattoli, Giovanni; Asheg, Abdulatif; Farhat, Milad; Kraim, Elforjani

    2015-09-01

    On March 2013, the Libyan poultry industry faced severe outbreaks due to mixed infections of APMV-1 (Newcastle disease) and low pathogenic avian influenza (AI) of the H9N2 subtype which were causing high mortality and great economic losses. APMV-1 and H9N2 were isolated and characterized. Genetic sequencing of the APMV-1/chicken/Libya/13VIR/ 7225-1/2013 isolate revealed the presence of a velogenic APMV-1 belonging to lineage 5 (GRRRQKR*F Lin.5) or genotype VII in class II, according to the nomenclature in use. Three AI viruses of the H9N2 subtype, namely A/avian/Libya/13VIR7225-2/2013, A/avian/Libya/13VIR7225-3/2013, and A/avian/Libya/13VIR7225-5/2013, were isolated and found to belong to the G1 lineage. Analysis of amino acid sequences showed that the analyzed H9N2 viruses contained the amino acid Leu at position 226 (H3 numbering) at the receptor binding site of the HA, responsible for human virus-like receptor specificity. On March 2014, an outbreak of highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was diagnosed in a backyard poultry farm in an eastern region of Libya. The H5N1 isolate (A/chicken/Libya/14VIR2749-16/2014) was detected by real time RT-PCR (rRT-PCR). Genetic characterization of the HA gene revealed that the identified subtype was highly pathogenic, belonged to the 2.2.1 lineage, and clustered with recent Egyptian viruses. This study revealed the presence of a velogenic APMV-1 genotype and of two influenza subtypes, namely HPAI H5N1 and H9N2, which are of major interest for public and animal health. Considering these findings, more investigations must be undertaken to establish and implement adequate influenza surveillance programs; this would allow better study of the epidemiology of APMV-1 genotype VII in Libya and evaluation of the current vaccination strategies. PMID:26478162

  2. Characterization of Avian Influenza and Newcastle Disease Viruses from Poultry in Libya.

    PubMed

    Kammon, Abdulwahab; Heidari, Alireza; Dayhum, Abdunaser; Eldaghayes, Ibrahim; Sharif, Monier; Monne, Isabela; Cattoli, Giovanni; Asheg, Abdulatif; Farhat, Milad; Kraim, Elforjani

    2015-09-01

    On March 2013, the Libyan poultry industry faced severe outbreaks due to mixed infections of APMV-1 (Newcastle disease) and low pathogenic avian influenza (AI) of the H9N2 subtype which were causing high mortality and great economic losses. APMV-1 and H9N2 were isolated and characterized. Genetic sequencing of the APMV-1/chicken/Libya/13VIR/ 7225-1/2013 isolate revealed the presence of a velogenic APMV-1 belonging to lineage 5 (GRRRQKR*F Lin.5) or genotype VII in class II, according to the nomenclature in use. Three AI viruses of the H9N2 subtype, namely A/avian/Libya/13VIR7225-2/2013, A/avian/Libya/13VIR7225-3/2013, and A/avian/Libya/13VIR7225-5/2013, were isolated and found to belong to the G1 lineage. Analysis of amino acid sequences showed that the analyzed H9N2 viruses contained the amino acid Leu at position 226 (H3 numbering) at the receptor binding site of the HA, responsible for human virus-like receptor specificity. On March 2014, an outbreak of highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was diagnosed in a backyard poultry farm in an eastern region of Libya. The H5N1 isolate (A/chicken/Libya/14VIR2749-16/2014) was detected by real time RT-PCR (rRT-PCR). Genetic characterization of the HA gene revealed that the identified subtype was highly pathogenic, belonged to the 2.2.1 lineage, and clustered with recent Egyptian viruses. This study revealed the presence of a velogenic APMV-1 genotype and of two influenza subtypes, namely HPAI H5N1 and H9N2, which are of major interest for public and animal health. Considering these findings, more investigations must be undertaken to establish and implement adequate influenza surveillance programs; this would allow better study of the epidemiology of APMV-1 genotype VII in Libya and evaluation of the current vaccination strategies.

  3. In-silico search of virus-specific host microRNAs regulating avian influenza virus NS1 expression.

    PubMed

    Asaf, V N Muhasin; Kumar, Amod; Raut, Ashwin Ashok; Bhatia, Sandeep; Mishra, Anamika

    2015-06-01

    Avian influenza is a highly contagious viral infection caused by avian influenza virus type A of the family Orthomyxoviridae primarily affecting the avian species. The non-structural protein 1 (NS1) encoded by the NS1 gene of the virus is critical in establishing the infection. NS1 protein acts to suppress the virus-induced host interferon response and also inhibit Protein kinase R activation thereby helping the virus to establish the infection. MicroRNAs (miRNA) are small regulatory endogenous non-coding RNAs of ~22 nucleotides in length located within introns of coding and non-coding genes, exons of non-coding genes or inter-genic regions. miRNAs can target the gene at various sites and effectively reduce or shut down its expression. In this study, set of differentially expressed chicken miRNA identified by deep sequencing H5N1 infected and SPF chicken lung were computationally analyzed, to identify targets in the NS1 gene. 300 differentially expressed miRNAs were then analyzed individually for target sites in gi|147667147|gb|EF362422.1| influenza A virus (A/chicken/India/NIV33487/06(H5N1)) segment 8, complete sequence using RNAhybrid 2.2. The analysis yielded gga-miR-1658* as the potential miRNA which is targeting the NS1 gene of H5N1 genome.

  4. Practical aspects of vaccination of poultry against avian influenza virus.

    PubMed

    Spackman, Erica; Pantin-Jackwood, Mary J

    2014-12-01

    Although little has changed in vaccine technology for avian influenza virus (AIV) in the past 20 years, the approach to vaccination of poultry (chickens, turkeys and ducks) for avian influenza has evolved as highly pathogenic AIV has become endemic in several regions of the world. Vaccination for low pathogenicity AIV is also becoming routine in regions where there is a high level of field challenge. In contrast, some countries will not use vaccination at all and some will only use it on an emergency basis during eradication efforts (i.e. stamping-out). There are pros and cons to each approach and, since every outbreak situation is different, no one method will work equally well in all situations. Numerous practical aspects must be considered when developing an AIV control program with vaccination as a component, such as: (1) the goals of vaccination must be defined; (2) the population to be vaccinated must be clearly identified; (3) there must be a plan to obtain and administer good quality vaccine in a timely manner and to achieve adequate coverage with the available resources; (4) risk factors for vaccine failure should be mitigated as much as possible; and, most importantly, (5) biosecurity must be maintained as much as possible, if not enhanced, during the vaccination period.

  5. Surveillance and Analysis of Avian Influenza Viruses, Australia

    PubMed Central

    Warner, Simone; Tracey, John P.; Arzey, K. Edla; Selleck, Paul; O’Riley, Kim; Beckett, Emma L.; Bunn, Chris; Kirkland, Peter D.; Vijaykrishna, Dhanasekaran; Olsen, Bjorn; Hurt, Aeron C.

    2010-01-01

    We investigated carriage of avian influenza viruses by wild birds in Australia, 2005–2008, to assess the risks to poultry industries and human health. We collected 21,858 (7,357 cloacal, 14,501 fecal) samples and detected 300 viruses, representing a detection rate of ≈1.4%. Rates were highest in autumn (March–May) and differed substantially between bird types, areas, and years. We typed 107 avian influenza viruses and identified 19 H5, 8 H7, and 16 H9 (40% of typed viruses). All were of low pathogenicity. These viruses formed clearly different phylogenetic clades to lineages from Eurasia or North America, suggesting the potential existence of Australian lineages. H7 viruses were similar to highly pathogenic H7 strains that caused outbreaks in poultry in Australia. Several periods of increased detection rates (numbers or subtypes of viruses) were identified. This study demonstrates the need for ongoing surveillance to detect emerging pathogenic strains and facilitate prevention of outbreaks. PMID:21122219

  6. Immunochromatographic strip assay development for avian influenza antibody detection.

    PubMed

    Cheng, Yu-Ling; Wang, Lih-Chiann; Wang, Ching-Ho

    2015-11-01

    To detect antibody on pen-side is a rapid way to know the avian influenza (AI) infectious status in a chicken flock. The purpose of this study was to develop an immunochromatographic strip (ICS) assay to detect the antibody against the AI virus (AIV) for field applications. The ICS was constructed by fixing an AIV strain A/chicken/Taiwan/2838V/2000 (H6N1) onto a nitrocellulose membrane as the antigen at the test line and goat anti-rabbit IgG antibody at the control line. The colloidal gold conjugated with rabbit anti-chicken IgG was used as the tracer. The present ICS was used to detect antibodies against avian influenza virus in 326 chicken serum samples from the field. Compared with HI, this ICS could detect antibodies against H5 and H6 AIVs. The hemagglutination inhibition (HI) test was used as the standard to evaluate the ICS accuracy. The results showed that the sensitivity and specificity of this ICS reached 95.2% (159/167) and 94.3% (150/159), respectively. The Kappa value of the HI and ICS was 0.896 (P < 0.001). In conclusion, this ICS could be used as a rapid test to detect antibodies against AIVs in the field. PMID:26753244

  7. Surveillance for Highly Pathogenic Avian Influenza Virus in Wild Birds during Outbreaks in Domestic Poultry, Minnesota, 2015

    PubMed Central

    Carstensen, Michelle; Hildebrand, Erik C.; Cornicelli, Louis; Wolf, Paul; Grear, Daniel A.; Ip, Hon S.; Vandalen, Kaci K.; Minicucci, Larissa A.

    2016-01-01

    In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To understand the potential role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9–June 4, 2015. HPAIV was isolated from a Cooper’s hawk but not from waterfowl fecal samples. PMID:27064759

  8. Observations from a live bird market in Indonesia following a contained outbreak of avian influenza A (H5N1).

    PubMed

    Naysmith, Scott

    2014-01-01

    Live bird markets are considered high-risk environments facilitating viral transfer and replication of influenza A H5N1. In Indonesia, these markets have been the source for multiple human infections of H5N1 resulting in death, and thus have been the focus of government-led interventions. This paper examines the aftermath of an intervention in one market in Bali, Indonesia. It highlights the social and economic factors influencing the adoption of risk prevention behaviour and concludes by arguing for further qualitative research to understand why at-risk individuals fail to adopt biosecurity measures, even after recently experiencing an outbreak of avian influenza.

  9. Rapid production of a H₉ N₂ influenza vaccine from MDCK cells for protecting chicken against influenza virus infection.

    PubMed

    Ren, Zhenghua; Lu, Zhongzheng; Wang, Lei; Huo, Zeren; Cui, Jianhua; Zheng, Tingting; Dai, Qing; Chen, Cuiling; Qin, Mengying; Chen, Meihua; Yang, Rirong

    2015-04-01

    H9N2 subtype avian influenza viruses are widespread in domestic poultry, and vaccination remains the most effective way to protect the chicken population from avian influenza pandemics. Currently, egg-based H9N2 influenza vaccine production has several disadvantages and mammalian MDCK cells are being investigated as candidates for influenza vaccine production. However, little research has been conducted on low pathogenic avian influenza viruses (LPAIV) such as H9N2 replicating in mammalian cells using microcarrier beads in a bioreactor. In this study, we present a systematic analysis of a safe H9N2 influenza vaccine derived from MDCK cells for protecting chickens against influenza virus infection. In 2008, we isolated two novel H9N2 influenza viruses from chickens raised in southern China, and these H9N2 viruses were adapted to MDCK cells. The H9N2 virus was produced in MDCK cells in a scalable bioreactor, purified, inactivated, and investigated for use as a vaccine. The MDCK-derived H9N2 vaccine was able to induce high titers of neutralizing antibodies in chickens of different ages. Histopathological examination, direct immunofluorescence, HI assay, CD4(+)/CD8(+) ratio test, and cytokine evaluation indicated that the MDCK-derived H9N2 vaccine evoked a rapid and effective immune response to protect chickens from influenza infection. High titers of H9N2-specific antibodies were maintained in chickens for 5 months, and the MDCK-derived H9N2 vaccine had no effects on chicken growth. The use of MDCK cells in bioreactors for LPAIV vaccine production is an attractive option to prevent outbreaks of LPAIV in poultry.

  10. Sero-prevalence of avian influenza in animals and human in Egypt.

    PubMed

    El-Sayed, A; Prince, A; Fawzy, A; Nadra-Elwgoud; Abdou, M I; Omar, L; Fayed, A; Salem, M

    2013-06-01

    In opposite to most countries, avian influenza virus H5N1 became endemic in Egypt. Since, its first emerge in 2006 in Egypt, the virus could infect different species of birds and animals and even human. Beside the great economic losses to the local poultry industry in Egypt, the virus infected 166 confirmed human cases, 59 cases ended fatally. In the present study, the persistence of the avian influenza in the Egyptian environment was studied. For this purpose, serum samples were collected from human, cattle, buffaloes, sheep, goat, horses, donkeys, swine, sewage rats, stray dogs and stray cats. The sera were collected from Cairo and the surrounding governorates to be examined for the presence of anti-H5N1 antibodies by Haemagglutination Inhibition Test (HI) and ELISA test. Clear differences in the seroprevalence were noticed among different species and also between the results obtained by both techniques indicating the difference in test accuracy. The present data indicate wide spread of the H5N1 virus in the Egyptian environment.

  11. Quantifying Transmission of Highly Pathogenic and Low Pathogenicity H7N1 Avian Influenza in Turkeys

    PubMed Central

    Saenz, Roberto A.; Essen, Steve C.; Brookes, Sharon M.; Iqbal, Munir; Wood, James L. N.; Grenfell, Bryan T.; McCauley, John W.; Brown, Ian H.; Gog, Julia R.

    2012-01-01

    Outbreaks of avian influenza in poultry can be devastating, yet many of the basic epidemiological parameters have not been accurately characterised. In 1999–2000 in Northern Italy, outbreaks of H7N1 low pathogenicity avian influenza virus (LPAI) were followed by the emergence of H7N1 highly pathogenic avian influenza virus (HPAI). This study investigates the transmission dynamics in turkeys of representative HPAI and LPAI H7N1 virus strains from this outbreak in an experimental setting, allowing direct comparison of the two strains. The fitted transmission rates for the two strains are similar: 2.04 (1.5–2.7) per day for HPAI, 2.01 (1.6–2.5) per day for LPAI. However, the mean infectious period is far shorter for HPAI (1.47 (1.3–1.7) days) than for LPAI (7.65 (7.0–8.3) days), due to the rapid death of infected turkeys. Hence the basic reproductive ratio, is significantly lower for HPAI (3.01 (2.2–4.0)) than for LPAI (15.3 (11.8–19.7)). The comparison of transmission rates and are critically important in relation to understanding how HPAI might emerge from LPAI. Two competing hypotheses for how transmission rates vary with population size are tested by fitting competing models to experiments with differing numbers of turkeys. A model with frequency-dependent transmission gives a significantly better fit to experimental data than density-dependent transmission. This has important implications for extrapolating experimental results from relatively small numbers of birds to the commercial poultry flock size, and for how control, including vaccination, might scale with flock size. PMID:23028760

  12. Description of an outbreak of highly pathogenic avian influenza in domestic ostriches (Struthio camelus) in South Africa in 2011.

    PubMed

    van Helden, L S; Sinclair, M; Koen, P; Grewar, J D

    2016-06-01

    In 2011, the commercial ostrich production industry of South Africa experienced an outbreak of highly pathogenic avian influenza (HPAI), subtype H5N2. Surveillance using antibody and antigen detection revealed 42 infected farms with a between-farm prevalence in the affected area of 16%. The outbreak was controlled using depopulation of infected farms, resulting in the direct loss of 10% of the country's domestic ostrich population. Various factors in the ostrich production system were observed that could have contributed to the spread of the virus between farms, including the large number of legal movements of ostriches between farms, access of wild birds to ostrich camps and delays in depopulation of infected farms. Negative effects on the ostrich industry and the local economy of the ostrich-producing area were observed as a result of the outbreak and the disease control measures applied. Prevention and control measures applied as a result of avian influenza in South Africa were informed by this large outbreak and the insights into epidemiology of avian influenza in ostriches that it provided, resulting in stricter biosecurity measures required on every registered ostrich farm in the country. PMID:27237385

  13. Pathogenicity and vaccine efficacy of different clades of Asian H5N1 avian influenza A viruses in domestic ducks.

    PubMed

    Kim, Jeong-Ki; Seiler, Patrick; Forrest, Heather L; Khalenkov, Alexey M; Franks, John; Kumar, Mahesh; Karesh, William B; Gilbert, Martin; Sodnomdarjaa, R; Douangngeun, Bounlom; Govorkova, Elena A; Webster, Robert G

    2008-11-01

    Waterfowl represent the natural reservoir of all subtypes of influenza A viruses, including H5N1. Ducks are especially considered major contributors to the spread of H5N1 influenza A viruses because they exhibit diversity in morbidity and mortality. Therefore, as a preventive strategy against endemic as well as pandemic influenza, it is important to reduce the spread of H5N1 influenza A viruses in duck populations. Here, we describe the pathogenicity of dominant clades (clades 1 and 2) of H5N1 influenza A viruses circulating in birds in Asia. Four representatives of dominant clades of the viruses cause symptomatic infection but lead to different profiles of lethality in domestic ducks. We also demonstrate the efficacy, cross-protectiveness, and immunogenicity of three different inactivated oil emulsion whole-virus H5 influenza vaccines (derived by implementing reverse genetics) to the viruses in domestic ducks. A single dose of the vaccines containing 1 mug of hemagglutinin protein provides complete protection against a lethal A/Duck/Laos/25/06 (H5N1) influenza virus challenge, with no evidence of morbidity, mortality, or shedding of the challenge virus. Moreover, two of the three vaccines achieved complete cross-clade or cross-subclade protection against the heterologous avian influenza virus challenge. Interestingly, the vaccines induce low or undetectable titers of hemagglutination inhibition (HI), cross-HI, and/or virus neutralization antibodies. The mechanism of complete protection in the absence of detectable antibody responses remains an open question.

  14. Pathogenesis of novel reassortant avian influenza virus A (H5N8) Isolates in the ferret.

    PubMed

    Kim, Heui Man; Kim, Chi-Kyeong; Lee, Nam-Joo; Chu, Hyuk; Kang, Chun; Kim, Kisoon; Lee, Joo-Yeon

    2015-07-01

    Outbreaks of avian influenza virus H5N8 first occurred in 2014, and spread to poultry farms in Korea. Although there was no report of human infection by this subtype, it has the potential to threaten human public health. Therefore, we evaluated the pathogenesis of H5N8 viruses in ferrets. Two representative Korean H5N8 strains did not induce mortality and significant respiratory signs after an intranasal challenge in ferrets. However, ferrets intratracheally infected with A/broiler duck/Korea/Buan2/2014 virus showed dose-dependent mortality. Although the Korean H5N8 strains were classified as the HPAI virus, possessing multiple basic amino acids in the cleavage site of the hemagglutinin sequence, they did not produce pathogenesis in ferrets challenged intranasally, similar to the natural infection route. These results could be useful for public health by providing the pathogenic characterization of H5N8 viruses. PMID:25776760

  15. Avian Metapneumovirus Subgroup C Infection in Chickens, China

    PubMed Central

    Wei, Li; Zhu, Shanshan; Yan, Xv; Wang, Jing; Zhang, Chunyan; She, Ruiping; Hu, Fengjiao; Quan, Rong

    2013-01-01

    Avian metapneumovirus causes acute respiratory tract infection and reductions in egg production in various avian species. We isolated and characterized an increasingly prevalent avian metapneumovirus subgroup C strain from meat-type commercial chickens with severe respiratory signs in China. Culling of infected flocks could lead to economic consequences. PMID:23763901

  16. Generation and Characterization of Monoclonal Antibodies Specific to Avian Influenza H5N1 Hemagglutinin Protein.

    PubMed

    Malik, Ankita; Mallajosyula, V Vamsee Aditya; Mishra, Nripendra Nath; Varadarajan, Raghavan; Gupta, Satish Kumar

    2015-12-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus has in the past breached the species barrier from infected domestic poultry to humans in close contact. Although human-to-human transmission has previously not been reported, HPAI H5N1 virus has pandemic potential owing to gain of function mutation(s) and/or genetic reassortment with human influenza A viruses. Monoclonal antibodies (MAbs) have been used for diagnosis as well as specific therapeutic candidates in several disease conditions including viral infections in humans. In this study, we describe the preliminary characterization of four murine MAbs developed against recombinant hemagglutinin (rHA) protein of avian H5N1 A/turkey/Turkey/1/2005 virus that are either highly specific or broadly reactive against HA from other H5N1 subtype viruses, such as A/Hong Kong/213/03, A/Common magpie/Hong Kong/2256/2006, and A/Barheaded goose/Quinghai/14/2008. The antibody binding is specific to H5N1 HAs, as none of the antibodies bound H1N1, H2N2, H3N2, or B/Brisbane/60/2008 HAs. Out of the four MAbs, one of them (MA-7) also reacted weakly with the rHA protein of H7N9 A/Anhui/1/2013. All four MAbs bound H5 HA (A/turkey/Turkey/1/2005) with high affinity with an equilibrium dissociation constant (KD) ranging between 0.05 and 10.30 nM. One of the MAbs (MA-1) also showed hemagglutination inhibition activity (HI titer; 31.25 μg/mL) against the homologous A/turkey/Turkey/1/2005 H5N1 virus. These antibodies may be useful in developing diagnostic tools for detection of influenza H5N1 virus infection. PMID:26683184

  17. Epitope Mapping of Avian Influenza M2e Protein: Different Species Recognise Various Epitopes

    PubMed Central

    Hasan, Noor Haliza; Ignjatovic, Jagoda; Tarigan, Simson; Peaston, Anne; Hemmatzadeh, Farhid

    2016-01-01

    A common approach for developing diagnostic tests for influenza virus detection is the use of mouse or rabbit monoclonal and/or polyclonal antibodies against a target antigen of the virus. However, comparative mapping of the target antigen using antibodies from different animal sources has not been evaluated before. This is important because identification of antigenic determinants of the target antigen in different species plays a central role to ensure the efficiency of a diagnostic test, such as competitive ELISA or immunohistochemistry-based tests. Interest in the matrix 2 ectodomain (M2e) protein of avian influenza virus (AIV) as a candidate for a universal vaccine and also as a marker for detection of virus infection in vaccinated animals (DIVA) is the rationale for the selection of this protein for comparative mapping evaluation. This study aimed to map the epitopes of the M2e protein of avian influenza virus H5N1 using chicken, mouse and rabbit monoclonal or monospecific antibodies. Our findings revealed that rabbit antibodies (rAbs) recognized epitope 6EVETPTRN13 of the M2e, located at the N-terminal of the protein, while mouse (mAb) and chicken antibodies (cAbs) recognized epitope 10PTRNEWECK18, located at the centre region of the protein. The findings highlighted the difference between the M2e antigenic determinants recognized by different species that emphasized the importance of comparative mapping of antibody reactivity from different animals to the same antigen, especially in the case of multi-host infectious agents such as influenza. The findings are of importance for antigenic mapping, as well as diagnostic test and vaccine development. PMID:27362795

  18. Highly pathogenic avian influenza viruses and generation of novel reassortants,United States, 2014–2015

    USGS Publications Warehouse

    Dong-Hun Lee,; Justin Bahl,; Mia Kim Torchetti,; Mary Lea Killian,; Ip, Hon S.; David E Swayne,

    2016-01-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses.

  19. The new World Organisation for Animal Health standards on avian influenza and international trade.

    PubMed

    Thiermann, Alex B

    2007-03-01

    In 2002, the World Organisation for Animal Health began a review of the chapter on avian influenza by convening a group of experts to revise the most recent scientific literature. The group drafted the initial text that would provide the necessary recommendations on avian influenza control and prevention measures. The main objectives of this draft were to provide clear notification criteria, as well as commodity-specific, risk-based mitigating measures, that would provide safety when trading and encourage transparent reporting.

  20. Highly Pathogenic Avian Influenza Viruses and Generation of Novel Reassortants, United States, 2014–2015

    PubMed Central

    Lee, Dong-Hun; Bahl, Justin; Torchetti, Mia Kim; Killian, Mary Lea; Ip, Hon S.; DeLiberto, Thomas J.

    2016-01-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses. PMID:27314845

  1. Highly Pathogenic Avian Influenza Viruses and Generation of Novel Reassortants, United States, 2014-2015.

    PubMed

    Lee, Dong-Hun; Bahl, Justin; Torchetti, Mia Kim; Killian, Mary Lea; Ip, Hon S; DeLiberto, Thomas J; Swayne, David E

    2016-07-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses. PMID:27314845

  2. Assessment of Antiviral Properties of Peramivir against H7N9 Avian Influenza Virus in an Experimental Mouse Model

    PubMed Central

    Farooqui, Amber; Huang, Linxi; Wu, Suwu; Cai, Yingmu; Su, Min; Lin, Pengzhou; Chen, Weihong; Fang, Xibin; Zhang, Li; Liu, Yisu; Zeng, Tiansheng; Paquette, Stephane G.; Khan, Adnan; Kelvin, Alyson A.

    2015-01-01

    The H7N9 influenza virus causes a severe form of disease in humans. Neuraminidase inhibitors, including oral oseltamivir and injectable peramivir, are the first choices of antiviral treatment for such cases; however, the clinical efficacy of these drugs is questionable. Animal experimental models are essential for understanding the viral replication kinetics under the selective pressure of antiviral agents. This study demonstrates the antiviral activity of peramivir in a mouse model of H7N9 avian influenza virus infection. The data show that repeated administration of peramivir at 30 mg/kg of body weight successfully eradicated the virus from the respiratory tract and extrapulmonary tissues during the acute response, prevented clinical signs of the disease, including neuropathy, and eventually protected mice against lethal H7N9 influenza virus infection. Early treatment with peramivir was found to be associated with better disease outcomes. PMID:26369969

  3. Analysis of the influenza virus gene pool of avian species from southern China.

    PubMed

    Lin, Y P; Shu, L L; Wright, S; Bean, W J; Sharp, G B; Shortridge, K F; Webster, R G

    1994-02-01

    Although Southern China has been considered the epicenter of human influenza pandemics, little is known about the genetic composition of influenza viruses in lower mammals or birds in that region. To provide information on the molecular epidemiology of these viruses, we used dot blot hybridization and phylogenetic methods to study the internal genes (PB1, PB2, PA, NP, M, and NS) of 106 avian influenza A viruses isolated from a total of 11,798 domestic ducks, chickens, and geese raised in Southern China including Hong Kong. All 636 genes examined were characteristic of avian influenza viruses; no human or swine influenza genes were detected. Thus, influenza virus reassortants do not appear to be maintained in the domesticated birds of Southeast Asia, eliminating opportunities for further gene reassortment. Phylogenetic analysis showed that the internal genes of these viruses belong to the Eurasian avian lineage, supporting geographical separation of the major avian lineages. The PB1 genes were most similar to A/Singapore/57 (H2N2) and Hong Kong (H3N2) viral genes, supporting an avian origin for the recent human H2N2 and H3N2 pandemic strains. The majority of internal genes from avian influenza viruses in Southern China belong to the Eurasian lineage and are similar to viruses that have recently been transmitted to humans, swine, and horses. This study provides evidence that the transmission of avian influenza viruses and their genes to other species is unidirectional and that the transmission of mammalian influenza virus strains to domestic poultry is probably not a factor in the generation of new pandemic strains.

  4. Low-pathogenicity avian influenza (LPAI) in Italy (2000-01): epidemiology and control.

    PubMed

    Marangon, S; Bortolotti, L; Capua, I; Bettio, M; Dalla Pozza, M

    2003-01-01

    In 1999-2000, Italy was affected by the most severe avian influenza (AI) epidemic that has ever occurred in Europe. The epidemic was caused by a type A influenza virus of the H7N1 subtype, which originated from the mutation of a low-pathogenicity (LP) AI virus of the same subtype. From August to November 2000, 4 months after the eradication of the highly pathogenic (HP) AI virus, the LPAI strain re-emerged and infected 55 poultry farms mainly located in the southern area of Verona province (Veneto region). To supplement disease control measures already in force, an emergency vaccination program against the disease was implemented in the area. Vaccination was carried out using an inactivated heterologous vaccine (A/chicken/Pakistan/1995-H7N3). In order to establish whether LPAI infection was circulating in the area, regular serological testing of sentinel birds in vaccinated flocks and a discriminatory test able to distinguish the different types of antineuraminidase antibodies (anti-N1 and anti-N3) were performed. Shortly after the beginning of the vaccination campaign (December 2000 to March 2001), the H7N1 LPAI virus emerged again, infecting 23 farms. Among these, only one vaccinated flock was affected, and infection did not spread further to other vaccinated farms. The data reported in the present paper indicate that the combination of biosecurity measures, official control, and vaccination can be considered successful for the control of LPAI infections in densely populated poultry areas.

  5. Visualizing influenza virus infection in living mice

    PubMed Central

    Pan, Weiqi; Dong, Zhenyuan; Li, Feng; Meng, Weixu; Feng, Liqiang; Niu, Xuefeng; Li, Chufang; Luo, Qinfang; Li, Zhengfeng; Sun, Caijun; Chen, Ling

    2013-01-01

    Preventing and treating influenza virus infection remain a challenge because of incomplete understanding of the host–pathogen interactions, limited therapeutics and lack of a universal vaccine. So far, methods for monitoring the course of infection with influenza virus in real time in living animals are lacking. Here we report the visualization of influenza viral infection in living mice using an engineered replication-competent influenza A virus carrying luciferase reporter gene. After intranasal inoculation, bioluminescence can be detected in the chest and nasopharyngeal passage of living mice. The intensity of bioluminescence in the chest correlates with the dosage of infection and the viral load in the lung. Bioluminescence in the chest of infected mice diminishes on antiviral treatment. This work provides a novel approach that enables real-time study of influenza virus infection and effects of antiviral therapeutics in living animals. PMID:24022374

  6. Wind-Mediated Spread of Low-Pathogenic Avian Influenza Virus into the Environment during Outbreaks at Commercial Poultry Farms

    PubMed Central

    Jonges, Marcel; van Leuken, Jeroen; Wouters, Inge; Koch, Guus; Meijer, Adam; Koopmans, Marion

    2015-01-01

    Avian influenza virus-infected poultry can release a large amount of virus-contaminated droppings that serve as sources of infection for susceptible birds. Much research so far has focused on virus spread within flocks. However, as fecal material or manure is a major constituent of airborne poultry dust, virus-contaminated particulate matter from infected flocks may be dispersed into the environment. We collected samples of suspended particulate matter, or the inhalable dust fraction, inside, upwind and downwind of buildings holding poultry infected with low-pathogenic avian influenza virus, and tested them for the presence of endotoxins and influenza virus to characterize the potential impact of airborne influenza virus transmission during outbreaks at commercial poultry farms. Influenza viruses were detected by RT-PCR in filter-rinse fluids collected up to 60 meters downwind from the barns, but virus isolation did not yield any isolates. Viral loads in the air samples were low and beyond the limit of RT-PCR quantification except for one in-barn measurement showing a virus concentration of 8.48x104 genome copies/m3. Air samples taken outside poultry barns had endotoxin concentrations of ~50 EU/m3 that declined with increasing distance from the barn. Atmospheric dispersion modeling of particulate matter, using location-specific meteorological data for the sampling days, demonstrated a positive correlation between endotoxin measurements and modeled particulate matter concentrations, with an R2 varying from 0.59 to 0.88. Our data suggest that areas at high risk for human or animal exposure to airborne influenza viruses can be modeled during an outbreak to allow directed interventions following targeted surveillance. PMID:25946115

  7. Wind-Mediated Spread of Low-Pathogenic Avian Influenza Virus into the Environment during Outbreaks at Commercial Poultry Farms.

    PubMed

    Jonges, Marcel; van Leuken, Jeroen; Wouters, Inge; Koch, Guus; Meijer, Adam; Koopmans, Marion

    2015-01-01

    Avian influenza virus-infected poultry can release a large amount of virus-contaminated droppings that serve as sources of infection for susceptible birds. Much research so far has focused on virus spread within flocks. However, as fecal material or manure is a major constituent of airborne poultry dust, virus-contaminated particulate matter from infected flocks may be dispersed into the environment. We collected samples of suspended particulate matter, or the inhalable dust fraction, inside, upwind and downwind of buildings holding poultry infected with low-pathogenic avian influenza virus, and tested them for the presence of endotoxins and influenza virus to characterize the potential impact of airborne influenza virus transmission during outbreaks at commercial poultry farms. Influenza viruses were detected by RT-PCR in filter-rinse fluids collected up to 60 meters downwind from the barns, but virus isolation did not yield any isolates. Viral loads in the air samples were low and beyond the limit of RT-PCR quantification except for one in-barn measurement showing a virus concentration of 8.48 x 10(4) genome copies/m(3). Air samples taken outside poultry barns had endotoxin concentrations of ~50 EU/m(3) that declined with increasing distance from the barn. Atmospheric dispersion modeling of particulate matter, using location-specific meteorological data for the sampling days, demonstrated a positive correlation between endotoxin measurements and modeled particulate matter concentrations, with an R(2) varying from 0.59 to 0.88. Our data suggest that areas at high risk for human or animal exposure to airborne influenza viruses can be modeled during an outbreak to allow directed interventions following targeted surveillance.

  8. Avian influenza surveillance in wild birds in the European Union in 2006

    PubMed Central

    Hesterberg, Uta; Harris, Kate; Stroud, David; Guberti, Vittorio; Busani, Luca; Pittman, Maria; Piazza, Valentina; Cook, Alasdair; Brown, Ian

    2009-01-01

    Abstract Background  Infections of wild birds with highly pathogenic avian influenza (AI) subtype H5N1 virus were reported for the first time in the European Union in 2006. Objectives  To capture epidemiological information on H5N1 HPAI in wild bird populations through large‐scale surveillance and extensive data collection. Methods  Records were analysed at bird level to explore the epidemiology of AI with regard to species of wild birds involved, timing and location of infections as well as the applicability of different surveillance types for the detection of infections. Results  In total, 120,706 records of birds were sent to the Community Reference Laboratory for analysis. Incidents of H5N1 HPAI in wild birds were detected in 14 EU Member States during 2006. All of these incidents occurred between February and May, with the exception of two single cases during the summer months in Germany and Spain. Conclusions  For the detection of H5N1 HPAI virus, passive surveillance of dead or diseased birds appeared the most effective approach, whilst active surveillance offered better detection of low pathogenic avian influenza (LPAI) viruses. No carrier species for H5N1 HPAI virus could be identified and almost all birds infected with H5N1 HPAI virus were either dead or showed clinical signs. A very large number of Mallards (Anas platyrhynchos) were tested in 2006 and while a high proportion of LPAI infections were found in this species, H5N1 HPAI virus was rarely identified in these birds. Orders of species that appeared to be very clinically susceptible to H5N1 HPAI virus were swans, diving ducks, mergansers and grebes, supporting experimental evidence. Surveillance results indicate that H5N1 HPAI virus did not establish itself successfully in the EU wild bird population in 2006. PMID:19453436

  9. A generic model of contagious disease and its application to human-to-human transmission of avian influenza.

    SciTech Connect

    Hirsch, Gary B.

    2007-03-01

    Modeling contagious diseases has taken on greater importance over the past several years as diseases such as SARS and avian influenza have raised concern about worldwide pandemics. Most models developed to consider projected outbreaks have been specific to a single disease. This paper describes a generic System Dynamics contagious disease model and its application to human-to-human transmission of a mutant version of avian influenza. The model offers the option of calculating rates of new infections over time based either on a fixed ''reproductive number'' that is traditional in contagious disease models or on contact rates for different sub-populations and likelihood of transmission per contact. The paper reports on results with various types of interventions. These results suggest the potential importance of contact tracing, limited quarantine, and targeted vaccination strategies as methods for controlling outbreaks, especially when vaccine supplies may initially be limited and the efficacy of anti-viral drugs uncertain.

  10. Influenza Virus Infection of Marine Mammals.

    PubMed

    Fereidouni, Sasan; Munoz, Olga; Von Dobschuetz, Sophie; De Nardi, Marco

    2016-03-01

    Interspecies transmission may play a key role in the evolution and ecology of influenza A viruses. The importance of marine mammals as hosts or carriers of potential zoonotic pathogens such as highly pathogenic H5 and H7 influenza viruses is not well understood. The fact that influenza viruses are some of the few zoonotic pathogens known to have caused infection in marine mammals, evidence for direct transmission of influenza A virus H7N7 subtype from seals to man, transmission of pandemic H1N1 influenza viruses to seals and also limited evidence for long-term persistence of influenza B viruses in seal populations without significant genetic change, makes monitoring of influenza viruses in marine mammal populations worth being performed. In addition, such monitoring studies could be a great tool to better understand the ecology of influenza viruses in nature. PMID:25231137

  11. Inactivation of avian influenza virus using common detergents and chemicals.

    PubMed

    Lombardi, M E; Ladman, B S; Alphin, R L; Benson, E R

    2008-03-01

    Six disinfectant chemicals were tested individually for effectiveness against low pathogenic avian influenza virus (LPAIV) A/H7N2/Chick/MinhMa/04. The tested agents included acetic acid (C2H4O2), citric acid (C6H8O7), calcium hypochlorite (Ca(ClO)2), sodium hypochlorite (NaOCl), a powdered laundry detergent with peroxygen (bleach), and a commercially available iodine/acid disinfectant. Four of the six chemicals, including acetic acid (5%), citric acid (1% and 3%), calcium hypochlorite (750 ppm), and sodium hypochlorite (750 ppm) effectively inactivated LPAIV on hard and nonporous surfaces. The conventional laundry detergent was tested at multiple concentrations and found to be suitable for inactivating LPAIV on hard and nonporous surfaces at 6 g/L. Only citric acid and commercially available iodine/acid disinfectant were found to be effective at inactivating LPAIV on both porous and nonporous surfaces.

  12. Serological Survey for Avian Influenza in Turkeys in Three States of Southwest Nigeria.

    PubMed

    Oluwayelu, Daniel Oladimeji; Aiki-Raji, Comfort Oluladun; Adigun, Oladunni Taiwo; Olofintuyi, Opeyemi Kazeem; Adebiyi, Adebowale Idris

    2015-01-01

    Since the first outbreak of avian influenza (AI) in Nigeria in 2006, there has been continuous monitoring of the disease in chickens with little attention given to turkeys. As part of on-going surveillance for AI in southwest Nigeria, we used a competitive ELISA to detect anti-AI virus antibodies in 520 turkey sera obtained from poultry farms in Oyo, Osun, and Ondo states while haemagglutination inhibiting antibodies against low pathogenic AI viruses (LPAIVs) were detected using H3N8 and H5N2 subtype-specific antigens. The overall seroprevalence obtained by ELISA was 4.4% (23/520). Of the 23 ELISA-positive samples, 18 were positive for anti-AIV H3N8 antibodies only and four were positive for both anti-AIV H3N8 and H5N2 antibodies indicating a mixed infection, while five were negative for antibodies to either of the two AIV subtypes. Considering that turkeys have been implicated as a mixing vessel for generating influenza virus reassortants of human and avian origin, the detection of antibodies to LPAIV H3N8 and H5N2 in these turkeys is of public health concern. We advocate further studies to determine the potential role of turkeys in the zoonotic transmission of AIVs in Nigeria. Additionally, the practice of rearing turkeys with chickens should be discouraged. PMID:26664747

  13. Serological Survey for Avian Influenza in Turkeys in Three States of Southwest Nigeria

    PubMed Central

    Oluwayelu, Daniel Oladimeji; Aiki-Raji, Comfort Oluladun; Adigun, Oladunni Taiwo; Olofintuyi, Opeyemi Kazeem; Adebiyi, Adebowale Idris

    2015-01-01

    Since the first outbreak of avian influenza (AI) in Nigeria in 2006, there has been continuous monitoring of the disease in chickens with little attention given to turkeys. As part of on-going surveillance for AI in southwest Nigeria, we used a competitive ELISA to detect anti-AI virus antibodies in 520 turkey sera obtained from poultry farms in Oyo, Osun, and Ondo states while haemagglutination inhibiting antibodies against low pathogenic AI viruses (LPAIVs) were detected using H3N8 and H5N2 subtype-specific antigens. The overall seroprevalence obtained by ELISA was 4.4% (23/520). Of the 23 ELISA-positive samples, 18 were positive for anti-AIV H3N8 antibodies only and four were positive for both anti-AIV H3N8 and H5N2 antibodies indicating a mixed infection, while five were negative for antibodies to either of the two AIV subtypes. Considering that turkeys have been implicated as a mixing vessel for generating influenza virus reassortants of human and avian origin, the detection of antibodies to LPAIV H3N8 and H5N2 in these turkeys is of public health concern. We advocate further studies to determine the potential role of turkeys in the zoonotic transmission of AIVs in Nigeria. Additionally, the practice of rearing turkeys with chickens should be discouraged. PMID:26664747

  14. Isolation of avian influenza virus (H9N2) from emu in China

    PubMed Central

    2006-01-01

    This is the first reported isolation of avian influenza virus (AIV) from emu in China. An outbreak of AIV infection occurred at an emu farm that housed 40 four-month-old birds. Various degrees of haemorrhage were discovered in the tissues of affected emus. Cell degeneration and necrosis were observed microscopically. Electron microscopy revealed round or oval virions with a diameter of 80 nm to 120 nm, surrounded by an envelope with spikes. The virus was classified as low pathogenic AIV (LPAIV), according to OIE standards. It was named A/Emu/HeNen/14/2004(H9N2)(Emu/HN/2004). The HA gene (1683bp) was amplified by RT-PCR and it was compared with other animal H9N2 AIV sequences in GenBank, the US National Institutes of Health genetic sequence database. The results suggested that Emu/HN/2004 may have come from an avian influenza virus (H9N2) from Southern China. PMID:21851680

  15. Changes in adaptation of H5N2 highly pathogenic avian influenza H5 clade 2.3.4.4 viruses in chickens and mallards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    H5N2 highly pathogenic avian influenza (HPAI) viruses caused a severe poultry outbreak in the United States (U.S.) during 2015. In order to examine changes in adaptation of this viral lineage, the infectivity, transmission and pathogenesis of poultry H5N2 viruses was investigated in chickens and mal...

  16. Impact of route of exposure and challenge dose on the pathogenesis of H7N9 low pathogenicity avian influenza virus in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    H7N9 influenza A first caused human infections, often with severe disease, in early 2013 in China. Virus genetics, histories of patient exposures to poultry, and previous experimental studies all point to the source of the virus being a domestic avian species, such as chickens. In order to better ...

  17. A single substitution in amino acid 184 of the NP protein alters the replication and pathogenicity of H5N1 avian influenza viruses in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously we found that exchanging the NP genes of recombinant avian influenza viruses (AIVs) affected viral replication and altered host gene expression and mean death times in chickens infected with these viruses. Five amino acids at positions 22, 184, 400, 406, and 423 were different between th...

  18. Highly Pathogenic Avian Influenza Virus among Wild Birds in Mongolia

    PubMed Central

    Gilbert, Martin; Jambal, Losolmaa; Karesh, William B.; Fine, Amanda; Shiilegdamba, Enkhtuvshin; Dulam, Purevtseren; Sodnomdarjaa, Ruuragchaa; Ganzorig, Khuukhenbaatar; Batchuluun, Damdinjav; Tseveenmyadag, Natsagdorj; Bolortuya, Purevsuren; Cardona, Carol J.; Leung, Connie Y. H.; Peiris, J. S. Malik; Spackman, Erica; Swayne, David E.; Joly, Damien O.

    2012-01-01

    Mongolia combines a near absence of domestic poultry, with an abundance of migratory waterbirds, to create an ideal location to study the epidemiology of highly pathogenic avian influenza virus (HPAIV) in a purely wild bird system. Here we present the findings of active and passive surveillance for HPAIV subtype H5N1 in Mongolia from 2005–2011, together with the results of five outbreak investigations. In total eight HPAIV outbreaks were confirmed in Mongolia during this period. Of these, one was detected during active surveillance employed by this project, three by active surveillance performed by Mongolian government agencies, and four through passive surveillance. A further three outbreaks were recorded in the neighbouring Tyva Republic of Russia on a lake that bisects the international border. No HPAIV was isolated (cultured) from 7,855 environmental fecal samples (primarily from ducks), or from 2,765 live, clinically healthy birds captured during active surveillance (primarily shelducks, geese and swans), while four HPAIVs were isolated from 141 clinically ill or dead birds located through active surveillance. Two low pathogenic avian influenza viruses (LPAIV) were cultured from ill or dead birds during active surveillance, while environmental feces and live healthy birds yielded 56 and 1 LPAIV respectively. All Mongolian outbreaks occurred in 2005 and 2006 (clade 2.2), or 2009 and 2010 (clade 2.3.2.1); all years in which spring HPAIV outbreaks were reported in Tibet and/or Qinghai provinces in China. The occurrence of outbreaks in areas deficient in domestic poultry is strong evidence that wild birds can carry HPAIV over at least moderate distances. However, failure to detect further outbreaks of clade 2.2 after June 2006, and clade 2.3.2.1 after June 2010 suggests that wild birds migrating to and from Mongolia may not be competent as indefinite reservoirs of HPAIV, or that HPAIV did not reach susceptible populations during our study. PMID:22984464

  19. Control strategies for highly pathogenic avian influenza: a global perspective.

    PubMed

    Lubroth, J

    2007-01-01

    Comprehensive programmes for the prevention, detection and control of highly pathogenic avian influenza (HPAI) require a national dimension and relevant national legislation in which veterinary services can conduct surveillance, competent diagnosis and rapid response. Avian influenza was controlled and prevented by vaccination long before the current H5N1 crisis. The use of vaccine cannot be separated from other essential elements of a vaccination campaign, which include education in poultry production practices, such as hygiene, all in-all out production concepts, separation of species, biosecurity (bio-exclusion to keep the disease out and biocontainment to keep the disease from spreading once suspected or detected), competence in giving the vaccine and the role of vaccination teams, post-vaccination monitoring to ensure efficacy and to detect the circulation of wild-type virus, surveillance and buffer zones in outbreak areas, and performance indicators to determine when vaccination can cease. Reporting of disease can be improved through well-structured, adequately financed veterinary services and also by fair compensation for producers who suffer financial loss. A rapid response to suspected cases of HPAI should be ensured in simulation exercises involving various sectors of the food production and marketing chain, policy-makers, official veterinary structures and other government personnel. As for other transboundary animal diseases, national approaches must be part of a regional strategy and regional networks for cooperation and information sharing, which in turn reflect global policies and international standards, such as the quality of vaccines, reporting obligations, humane interventions, cleaning and disinfection methods, restocking times, monitoring and safe trade.

  20. Novel Avian Influenza A (H7N9) Virus Induces Impaired Interferon Responses in Human Dendritic Cells

    PubMed Central

    Arilahti, Veera; Mäkelä, Sanna M.; Tynell, Janne; Julkunen, Ilkka; Österlund, Pamela

    2014-01-01

    In March 2013 a new avian influenza A(H7N9) virus emerged in China and infected humans with a case fatality rate of over 30%. Like the highly pathogenic H5N1 virus, H7N9 virus is causing severe respiratory distress syndrome in most patients. Based on genetic analysis this avian influenza A virus shows to some extent adaptation to mammalian host. In the present study, we analyzed the activation of innate immune responses by this novel H7N9 influenza A virus and compared these responses to those induced by the avian H5N1 and seasonal H3N2 viruses in human monocyte-derived dendritic cells (moDCs). We observed that in H7N9 virus-infected cells, interferon (IFN) responses were weak although the virus replicated as well as the H5N1 and H3N2 viruses in moDCs. H7N9 virus-induced expression of pro-inflammatory cytokines remained at a significantly lower level as compared to H5N1 virus-induced “cytokine storm” seen in human moDCs. However, the H7N9 virus was extremely sensitive to the antiviral effects of IFN-α and IFN-β in pretreated cells. Our data indicates that different highly pathogenic avian viruses may show considerable differences in their ability to induce host antiviral responses in human primary cell models such as moDCs. The unexpected appearance of the novel H7N9 virus clearly emphasizes the importance of the global influenza surveillance system. It is, however, equally important to systematically characterize in normal human cells the replication capacity of the new viruses and their ability to induce and respond to natural antiviral substances such as IFNs. PMID:24804732

  1. Review: molecular evolution and the feasibility of an avian influenza virus becoming a pandemic strain--a conceptual shift.

    PubMed

    Shoham, Dany

    2006-10-01

    During recent years, a conceptual shift took place with respect to the genetic dynamics of influenza A viruses. In difference of the widely accepted approach that avian viral strains have the capacity to infect man only after undergoing genetic reassortment within pigs, it is now contended that direct transfection of man by intact avian-harbored viral genotypes is an actual, recurrent move, which may bring bout the generation of a new pandemic strain. This cardinal conceptual shift has been propelled by the appearance in 1997 of the zoonotic avian influenza H5N1 virus--a virulent, not yet contagious strain for humans--and ostensibly followed a genuine, unprecedented path within the evolutionary paradigm of Influenza A virus. This paper suggests that direct avian-human genetic interface is a pristine fundamental within the natural history of this protean pathogen, points at earlier as well as corroborative findings leading to such postulation, and regards the course of the H5N1 virus (and alike), as a readily detectable and traceable one, presently, rather then a novel development It further examines the general feasibility of various components of that interface at large, such that give rise--whether gradually or abruptly--to pandemic genotypes, in terms of infectivity, pathogenicity and contagiousness. Within that context, the anticipated involvement of certain human-adapted antigenic subtypes is referred to, extrapolatively. Connectedly, the significance of natural ice as plausible regenerator of influenza A viruses, and its possible contribution to the emergence and reemergence of pandemic strains are accentuated. PMID:16972025

  2. Limited evidence of trans-hemispheric movement of avian influenza viruses among contemporary North American shorebird isolates

    USGS Publications Warehouse

    Pearce, John M.; Ramey, Andrew M.; Ip, Hon S.; Gill, Robert E.

    2010-01-01

    Migratory routes of gulls, terns, and shorebirds (Charadriiformes) are known to cross hemispheric boundaries and intersect with outbreak areas of highly pathogenic avian influenza (HPAI). Prior assessments of low pathogenic avian influenza (LPAI) among species of this taxonomic order found some evidence for trans-hemispheric movement of virus genes. To specifically clarify the role of shorebird species in the trans-hemispheric movement of influenza viruses, assess the temporal variation of Eurasian lineages observed previously among North American shorebirds, and evaluate the necessity for continued sampling of these birds for HPAI in North America, we conducted a phylogenetic analysis of >700 contemporary sequences isolated between 2000 and 2008. Evidence for trans-hemispheric reassortment among North American shorebird LPAI gene segments was lower (0.88%) than previous assessments and occurred only among eastern North American isolates. Furthermore, half of the reassortment events occurred in just two isolates. Unique phylogenetic placement of these samples suggests secondary infection and or involvement of other migratory species, such as gulls. Eurasian lineages observed in North American shorebirds before 2000 were not detected among contemporary samples, suggesting temporal variation of LPAI lineages. Results suggest that additional bird migration ecology and virus phylogenetics research is needed to determine the exact mechanisms by which shorebirds in eastern North America become infected with LPAI that contain Eurasian lineage genes. Because of the low prevalence of avian influenza in non-eastern North America sites, thousands more shorebirds will need to be sampled to sufficiently examine genetic diversity and trans-hemispheric exchange of LPAI viruses in these areas. Alternatively, other avian taxa with higher virus prevalence could serve as surrogates to shorebirds for optimizing regional surveillance programs for HPAI through the LPAI phylogenetic

  3. Modeling highly pathogenic avian influenza transmission in wild birds and poultry in West Bengal, India

    PubMed Central

    Pandit, Pranav S.; Bunn, David A.; Pande, Satish A.; Aly, Sharif S.

    2013-01-01

    Wild birds are suspected to have played a role in highly pathogenic avian influenza (HPAI) H5N1 outbreaks in West Bengal. Cluster analysis showed that H5N1 was introduced in West Bengal at least 3 times between 2008 and 2010. We simulated the introduction of H5N1 by wild birds and their contact with poultry through a stochastic continuous-time mathematical model. Results showed that reducing contact between wild birds and domestic poultry, and increasing the culling rate of infected domestic poultry communities will reduce the probability of outbreaks. Poultry communities that shared habitat with wild birds or those indistricts with previous outbreaks were more likely to suffer an outbreak. These results indicate that wild birds can introduce HPAI to domestic poultry and that limiting their contact at shared habitats together with swift culling of infected domestic poultry can greatly reduce the likelihood of HPAI outbreaks. PMID:23846233

  4. A mathematical model of avian influenza with half-saturated incidence.

    PubMed

    Chong, Nyuk Sian; Tchuenche, Jean Michel; Smith, Robert J

    2014-03-01

    The widespread impact of avian influenza viruses not only poses risks to birds, but also to humans. The viruses spread from birds to humans and from human to human In addition, mutation in the primary strain will increase the infectiousness of avian influenza. We developed a mathematical model of avian influenza for both bird and human populations. The effect of half-saturated incidence on transmission dynamics of the disease is investigated. The half-saturation constants determine the levels at which birds and humans contract avian influenza. To prevent the spread of avian influenza, the associated half-saturation constants must be increased, especially the half-saturation constant H m for humans with mutant strain. The quantity H m plays an essential role in determining the basic reproduction number of this model. Furthermore, by decreasing the rate β m at which human-to-human mutant influenza is contracted, an outbreak can be controlled more effectively. To combat the outbreak, we propose both pharmaceutical (vaccination) and non-pharmaceutical (personal protection and isolation) control methods to reduce the transmission of avian influenza. Vaccination and personal protection will decrease β m, while isolation will increase H m. Numerical simulations demonstrate that all proposed control strategies will lead to disease eradication; however, if we only employ vaccination, it will require slightly longer to eradicate the disease than only applying non-pharmaceutical or a combination of pharmaceutical and non-pharmaceutical control methods. In conclusion, it is important to adopt a combination of control methods to fight an avian influenza outbreak.

  5. A mathematical model of avian influenza with half-saturated incidence.

    PubMed

    Chong, Nyuk Sian; Tchuenche, Jean Michel; Smith, Robert J

    2014-03-01

    The widespread impact of avian influenza viruses not only poses risks to birds, but also to humans. The viruses spread from birds to humans and from human to human In addition, mutation in the primary strain will increase the infectiousness of avian influenza. We developed a mathematical model of avian influenza for both bird and human populations. The effect of half-saturated incidence on transmission dynamics of the disease is investigated. The half-saturation constants determine the levels at which birds and humans contract avian influenza. To prevent the spread of avian influenza, the associated half-saturation constants must be increased, especially the half-saturation constant H m for humans with mutant strain. The quantity H m plays an essential role in determining the basic reproduction number of this model. Furthermore, by decreasing the rate β m at which human-to-human mutant influenza is contracted, an outbreak can be controlled more effectively. To combat the outbreak, we propose both pharmaceutical (vaccination) and non-pharmaceutical (personal protection and isolation) control methods to reduce the transmission of avian influenza. Vaccination and personal protection will decrease β m, while isolation will increase H m. Numerical simulations demonstrate that all proposed control strategies will lead to disease eradication; however, if we only employ vaccination, it will require slightly longer to eradicate the disease than only applying non-pharmaceutical or a combination of pharmaceutical and non-pharmaceutical control methods. In conclusion, it is important to adopt a combination of control methods to fight an avian influenza outbreak. PMID:23733366

  6. Avian influenza virus isolation, propagation, and titration in embryonated chicken eggs.

    PubMed

    Spackman, Erica; Killian, Mary Lea

    2014-01-01

    Avian influenza virus and some mammalian influenza A viruses are usually isolated, propagated, and titrated in embryonated chicken eggs (ECE). Most any sample type can be accommodated for culture with appropriate processing. Isolation may also be accomplished in cell culture particularly if mammalian lineage isolates are suspected, for example, swine influenza in turkey specimens. Culture is highly sensitive, but is not specific for influenza A, which may be an advantage because a sample may be screened for several agents at once. Once an agent is isolated in culture, the presence of influenza viruses is confirmed with any of several assays. The methods for propagating virus isolates in ECE are described.

  7. Common Avian Infection Plagued the Tyrant Dinosaurs

    PubMed Central

    Wolff, Ewan D. S.; Salisbury, Steven W.; Horner, John R.; Varricchio, David J.

    2009-01-01

    Background Tyrannosaurus rex and other tyrannosaurid fossils often display multiple, smooth-edged full-thickness erosive lesions on the mandible, either unilaterally or bilaterally. The cause of these lesions in the Tyrannosaurus rex specimen FMNH PR2081 (known informally by the name ‘Sue’) has previously been attributed to actinomycosis, a bacterial bone infection, or bite wounds from other tyrannosaurids. Methodology/Principal Findings We conducted an extensive survey of tyrannosaurid specimens and identified ten individuals with full-thickness erosive lesions. These lesions were described, measured and photographed for comparison with one another. We also conducted an extensive survey of related archosaurs for similar lesions. We show here that these lesions are consistent with those caused by an avian parasitic infection called trichomonosis, which causes similar abnormalities on the mandible of modern birds, in particular raptors. Conclusions/Significance This finding represents the first evidence for the ancient evolutionary origin of an avian transmissible disease in non-avian theropod dinosaurs. It also provides a valuable insight into the palaeobiology of these now extinct animals. Based on the frequency with which these lesions occur, we hypothesize that tyrannosaurids were commonly infected by a Trichomonas gallinae-like protozoan. For tyrannosaurid populations, the only non-avian dinosaur group that show trichomonosis-type lesions, it is likely that the disease became endemic and spread as a result of antagonistic intraspecific behavior, consumption of prey infected by a Trichomonas gallinae-like protozoan and possibly even cannibalism. The severity of trichomonosis-related lesions in specimens such as Tyrannosaurus rex FMNH PR2081 and Tyrannosaurus rex MOR 980, strongly suggests that these animals died as a direct result of this disease, mostly likely through starvation. PMID:19789646

  8. Generation and protective efficacy of a cold-adapted attenuated avian H9N2 influenza vaccine.

    PubMed

    Wei, Yandi; Qi, Lu; Gao, Huijie; Sun, Honglei; Pu, Juan; Sun, Yipeng; Liu, Jinhua

    2016-01-01

    To prevent H9N2 avian influenza virus infection in chickens, a long-term vaccination program using inactivated vaccines has been implemented in China. However, the protective efficacy of inactivated vaccines against antigenic drift variants is limited, and H9N2 influenza virus continues to circulate in vaccinated chicken flocks in China. Therefore, developing a cross-reactive vaccine to control the impact of H9N2 influenza in the poultry industry remains a high priority. In the present study, we developed a live cold-adapted H9N2 influenza vaccine candidate (SD/01/10-ca) by serial passages in embryonated eggs at successively lower temperatures. A total of 13 amino acid mutations occurred during the cold-adaptation of this H9N2 virus. The candidate was safe in chickens and induced robust hemagglutination-inhibition antibody responses and influenza virus-specific CD4(+) and CD8(+) T cell immune responses in chickens immunized intranasally. Importantly, the candidate could confer protection of chickens from homologous and heterogenous H9N2 viruses. These results demonstrated that the cold-adapted attenuated H9N2 virus would be selected as a vaccine to control the infection of prevalent H9N2 influenza viruses in chickens. PMID:27457755

  9. Generation and protective efficacy of a cold-adapted attenuated avian H9N2 influenza vaccine

    PubMed Central

    Wei, Yandi; Qi, Lu; Gao, Huijie; Sun, Honglei; Pu, Juan; Sun, Yipeng; Liu, Jinhua

    2016-01-01

    To prevent H9N2 avian influenza virus infection in chickens, a long-term vaccination program using inactivated vaccines has been implemented in China. However, the protective efficacy of inactivated vaccines against antigenic drift variants is limited, and H9N2 influenza virus continues to circulate in vaccinated chicken flocks in China. Therefore, developing a cross-reactive vaccine to control the impact of H9N2 influenza in the poultry industry remains a high priority. In the present study, we developed a live cold-adapted H9N2 influenza vaccine candidate (SD/01/10-ca) by serial passages in embryonated eggs at successively lower temperatures. A total of 13 amino acid mutations occurred during the cold-adaptation of this H9N2 virus. The candidate was safe in chickens and induced robust hemagglutination-inhibition antibody responses and influenza virus–specific CD4+ and CD8+ T cell immune responses in chickens immunized intranasally. Importantly, the candidate could confer protection of chickens from homologous and heterogenous H9N2 viruses. These results demonstrated that the cold-adapted attenuated H9N2 virus would be selected as a vaccine to control the infection of prevalent H9N2 influenza viruses in chickens. PMID:27457755

  10. Cross-Species Infectivity of H3N8 Influenza Virus in an Experimental Infection in Swine

    PubMed Central

    Solórzano, Alicia; Foni, Emanuela; Córdoba, Lorena; Baratelli, Massimiliano; Razzuoli, Elisabetta; Bilato, Dania; Martín del Burgo, María Ángeles; Perlin, David S.; Martínez, Jorge; Martínez-Orellana, Pamela; Fraile, Lorenzo; Chiapponi, Chiara; Amadori, Massimo; del Real, Gustavo

    2015-01-01

    ABSTRACT Avian influenza A viruses have gained increasing attention due to their ability to cross the species barrier and cause severe disease in humans and other mammal species as pigs. H3 and particularly H3N8 viruses, are highly adaptive since they are found in multiple avian and mammal hosts. H3N8 viruses have not been isolated yet from humans; however, a recent report showed that equine influenza A viruses (IAVs) can be isolated from pigs, although an established infection has not been observed thus far in this host. To gain insight into the possibility of H3N8 avian IAVs to cross the species barrier into pigs, in vitro experiments and an experimental infection in pigs with four H3N8 viruses from different origins (equine, canine, avian, and seal) were performed. As a positive control, an H3N2 swine influenza virus A was used. Although equine and canine viruses hardly replicated in the respiratory systems of pigs, avian and seal viru