Science.gov

Sample records for avian influenza outbreak

  1. Variable global strategies for avian influenza outbreak control and eradication

    USDA-ARS?s Scientific Manuscript database

    Since 1959, 40 epizootics of high pathogenicity avian influenza (HPAI) have occurred with 35 outbreaks using stamping-out programs exclusively, leading to rapid eradication, and five outbreaks having also used vaccination as a control tool. The majority of the recent outbreaks of H5N1 HPAI have occu...

  2. Avian influenza

    MedlinePlus

    Bird flu; H5N1; H5N2; H5N8; H7N9; Avian influenza A (HPAI) H5 ... The first avian influenza in humans was reported in Hong Kong in 1997. It was called avian influenza (H5N1). The outbreak was linked ...

  3. Avian Influenza in Birds

    MedlinePlus

    ... during outbreaks of highly pathogenic avian influenza the economic impact and trade restrictions from a highly pathogenic avian influenza outbreak the possibility that avian influenza A viruses could be transmitted to humans When H5 or H7 avian influenza outbreaks occur ...

  4. An avian outbreak associated with panzootic equine influenza in 1872: an early example of highly pathogenic avian influenza?

    PubMed

    Morens, David M; Taubenberger, Jeffery K

    2010-11-01

    An explosive fatal epizootic in poultry, prairie chickens, turkeys, ducks and geese, occurred over much of the populated United States between 15 November and 15 December 1872. To our knowledge the scientific literature contains no mention of the nationwide 1872 poultry outbreak. To understand avian influenza in a historical context. The epizootic progressed in temporal-geographic association with a well-reported panzootic of equine influenza that had begun in Canada during the last few days of September 1872. The 1872 avian epizootic was universally attributed at the time to equine influenza, a disease then of unknown etiology but widely believed to be caused by the same transmissible respiratory agent that caused human influenza. Another microbial agent could have caused the avian outbreak; however, its strong temporal and geographic association with the equine panzootic, and its clinical and epidemiologic features, are most consistent with highly pathogenic avian influenza. The avian epizootic could thus have been an early instance of highly pathogenic avian influenza. © 2010 Blackwell Publishing Ltd.

  5. Overview of H5N8 avian influenza virus outbreaks – SEPRL research activities

    USDA-ARS?s Scientific Manuscript database

    In 2014, outbreaks of highly pathogenic avian influenza (HPAI) H5N8 in poultry farms have been reported in Korea, Japan, China, Germany, United Kingdom, and the Netherlands. The first outbreak report of this virus was in domestic ducks in the Republic of Korea in January 2014. In Europe, the first...

  6. Global avian influenza outbreaks: Progress with vaccination and eradication efforts

    USDA-ARS?s Scientific Manuscript database

    Vaccination of poultry has been used for decades and is a common practice in integrated poultry production. However, the decision to use vaccination for protection against avian influenza (AI) is typically dependent on several factors including pathotype, type of birds and eradication strategies. Th...

  7. Avian Influenza.

    PubMed

    Zeitlin, Gary Adam; Maslow, Melanie Jane

    2005-05-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate more than 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantining, and disinfection. To prepare for and prevent an increase in human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short-interfering RNAs and new vaccine strategies that use plasmid-based genetic systems, offer promise should a pandemic occur.

  8. Avian influenza.

    PubMed

    Zeitlin, Gary A; Maslow, Melanie J

    2006-03-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004 alone, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate over 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantines, and disinfection. To prepare for and prevent increased human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short, interfering RNAs and new vaccine strategies that use plasmid-based genetic systems offer promise, should a pandemic occur.

  9. Avian influenza virus RNA in groundwater wells supplying poultry farms affected by the 2015 influenza outbreak

    USGS Publications Warehouse

    Borchardt, Mark A.; Spencer, Susan K.; Hubbard, Laura E.; Firnstahl, Aaron; Stokdyk, Joel; Kolpin, Dana W.

    2017-01-01

    about the potential for HPAI to contaminate groundwater. Our study objective was to evaluate the occurrence of HPAI in the groundwater supply wells on 13 outbreak-affected poultry farms in Iowa and Wisconsin. We sampled 20 wells, six waste-storage lagoons, and one pond. Three wells and one lagoon were positive for the matrix gene indicative of influenza A virus. Using a semi-nested qPCR assay specific to the H5 HPAI outbreak strain, one well was H5-positive, matching the outbreak virus hemagglutinin gene. Matrix gene-positive samples analyzed for avian influenza virus (AIV) by cell culture and embryonating egg culture were negative. Seven wells were positive by PCR for a poultry-specific parvovirus, thus providing corroborating evidence of virus transport pathways between poultry fecal wastes and groundwater. Our data suggest it is possible for AIV to be transported to groundwater, and during an outbreak, the potential for poultry farm wells to become contaminated with AIV should be considered.

  10. Highly pathogenic avian influenza (H5N1) outbreaks in wild birds and poultry, South Korea.

    PubMed

    Kim, Hye-Ryoung; Lee, Youn-Jeong; Park, Choi-Kyu; Oem, Jae-Ku; Lee, O-Soo; Kang, Hyun-Mi; Choi, Jun-Gu; Bae, You-Chan

    2012-03-01

    Highly pathogenic avian influenza (H5N1) among wild birds emerged simultaneously with outbreaks in domestic poultry in South Korea during November 2010-May 2011. Phylogenetic analysis showed that these viruses belonged to clade 2.3.2, as did viruses found in Mongolia, the People's Republic of China, and Russia in 2009 and 2010.

  11. Review of Avian Influenza Outbreaks in South Korea from 1996 to 2014.

    PubMed

    Mo, In-Pil; Bae, Yeon-Ji; Lee, Seung-Baek; Mo, Jong-Suk; Oh, Kwang-Hyun; Shin, Jeong-Hwa; Kang, Hyun-Mi; Lee, Youn-Jeong

    2016-05-01

    Since the first outbreak of low pathogenic avian influenza (LPAI) in 1996, outbreaks of LPAI have become more common in Korea, leading to the development of a nationwide mass vaccination program in 2007. In the case of highly pathogenic avian influenza (HPAI), four outbreaks took place in 2003-04, 2006-07, 2008, and 2010-11; a fifth outbreak began in 2014 and was ongoing at the time of this writing. The length of the four previous outbreaks varied, ranging from 42 days (2008) to 139 days (2010-11). The number of cases reported by farmers that were subsequently confirmed as HPAI also varied, from seven cases in 2006-07 to 53 in 2010-11. The number of farms affected by the outbreaks varied, from a low of 286 (2006-07) with depopulation of 6,473,000 birds, to a high of 1500 farms (2008) with depopulation of 10,200,000 birds. Government compensation for bird depopulation ranged from $253 million to $683 million in the five outbreaks. Despite the damage caused by the five HPAI outbreaks, efficient control strategies have yet to be established. Meanwhile, the situation in the field worsens. Analysis of the five HPAI outbreaks revealed horizontal farm-to-farm transmission as the main factor effecting major economic losses. However, horizontal transmission could not be efficiently prevented because of insufficient transparency within the poultry industry, especially within the duck industry, which is reluctant to report suspicious cases early. Moreover, the experiences and expertise garnered in previous outbreaks has yet to be effectively applied to the management of new outbreaks. Considering the magnitude of the economic damage caused by avian influenza and the increasing likelihood of its endemicity, careful and quantitative analysis of outbreaks and the establishment of control policies are urgently needed.

  12. Temperature Drops and the Onset of Severe Avian Influenza A H5N1 Virus Outbreaks

    PubMed Central

    Liu, Chung-Ming; Lin, Shu-Hua; Chen, Ying-Chen; Lin, Katherine Chun-Min; Wu, Tsung-Shu Joseph; King, Chwan-Chuen

    2007-01-01

    Global influenza surveillance is one of the most effective strategies for containing outbreaks and preparing for a possible pandemic influenza. Since the end of 2003, highly pathogenic avian influenza viruses (HPAI) H5N1 have caused many outbreaks in poultries and wild birds from East Asia and have spread to at least 48 countries. For such a fast and wide-spreading virulent pathogen, prediction based on changes of micro- and macro-environment has rarely been evaluated. In this study, we are developing a new climatic approach by investigating the conditions that occurred before the H5N1 avian influenza outbreaks for early predicting future HPAI outbreaks and preventing pandemic disasters. The results show a temperature drop shortly before these outbreaks in birds in each of the Eurasian regions stricken in 2005 and 2006. Dust storms, like those that struck near China's Lake Qinghai around May 4, 2005, exacerbated the spread of this HPAI H5N1 virus, causing the deaths of a record number of wild birds and triggering the subsequent spread of H5N1. Weather monitoring could play an important role in the early warning of outbreaks of this potentially dangerous virus. PMID:17297505

  13. Financial effects of the highly pathogenic avian influenza outbreaks on the Turkish broiler producers.

    PubMed

    Aral, Y; Yalcin, C; Cevger, Y; Sipahi, C; Sariozkan, S

    2010-05-01

    This research aimed at assessing the financial effects of the 2005 to 2006 highly pathogenic avian influenza outbreaks on Turkish broiler enterprises. The data were obtained from an interview survey carried out in 499 enterprises randomly selected from 14 provinces that accounted for 79% of the national broiler production. The research revealed that the contracted broiler producers lost on average 1.38 cycles of production and their management fee reduced by 14.7% in 8 mo after the outbreaks. As a result, the broiler production and the enterprise income declined by 34.8 and 44.3%, respectively. The bank loan of the producers rose by 161%. A total of 93% of the producers did not do any other supplementary work during the idle production period in spite of the fact that broiler production was the only business of 36% of them. Furthermore, more than half of the producers (56%) stated that they were considering expanding their business, but suspended this idea due to the outbreak. Approximately 87% of the producers increased the biosecurity measures after the outbreaks. The nationwide effects of the avian influenza outbreaks on the contracted broilers farms were estimated to be US$100.8 million (US$7,967/broiler house). The futures of the contracted broiler producers are fully dependent upon those of the integrated firms. Any negative effects on the latter appeared to be transferred directly to the former. However, the government neglected the integrated firms in the avian influenza compensation programs.

  14. Scale-Free Distribution of Avian Influenza Outbreaks

    NASA Astrophysics Data System (ADS)

    Small, Michael; Walker, David M.; Tse, Chi Kong

    2007-11-01

    Using global case data for the period from 25 November 2003 to 10 March 2007, we construct a network of plausible transmission pathways for the spread of avian influenza among domestic and wild birds. The network structure we obtain is complex and exhibits scale-free (although not necessarily small-world) properties. Communities within this network are connected with a distribution of links with infinite variance. Hence, the disease transmission model does not exhibit a threshold and so the infection will continue to propagate even with very low transmissibility. Consequentially, eradication with methods applicable to locally homogeneous populations is not possible. Any control measure needs to focus explicitly on the hubs within this network structure.

  15. Avian influenza virus RNA in groundwater wells supplying poultry farms affected by the 2015 influenza outbreak

    USDA-ARS?s Scientific Manuscript database

    Three poultry farms affected by the 2015 influenza outbreak had groundwater supplies test positive for the influenza matrix gene. One well was H5-positive, matching the outbreak virus HA gene. Virus transport to underlying aquifers was corroborated by finding poultry-specific parvovirus DNA in seven...

  16. Outbreak patterns of the novel avian influenza (H7N9)

    NASA Astrophysics Data System (ADS)

    Pan, Ya-Nan; Lou, Jing-Jing; Han, Xiao-Pu

    2014-05-01

    The attack of novel avian influenza (H7N9) in East China caused a serious health crisis and public panic. In this paper, we empirically analyze the onset patterns of human cases of the novel avian influenza and observe several spatial and temporal properties that are similar to other infectious diseases. More specifically, using the empirical analysis and modeling studies, we find that the spatio-temporal network that connects the cities with human cases along the order of outbreak timing emerges two-regime-power-law edge-length distribution, indicating the picture that several islands with higher and heterogeneous risk straggle in East China. The proposed method is applicable to the analysis of the spreading situation in the early stage of disease outbreak using quite limited dataset.

  17. An outbreak of highly pathogenic H5N1 avian influenza in Korea, 2008.

    PubMed

    Kim, Hye-Ryoung; Park, Choi-Kyu; Lee, Youn-Jeong; Woo, Gye-Hyeong; Lee, Kyoung-Ki; Oem, Jae-Ku; Kim, Seong-Hee; Jean, Young-Hwa; Bae, Yu-Chan; Yoon, Soon-Seek; Roh, In-Soon; Jeong, Ok-Mi; Kim, Ha-Young; Choi, Jeong-Soo; Byun, Jae-Won; Song, Yun-Kyung; Kwon, Jun-Hun; Joo, Yi-Seok

    2010-03-24

    In spite of intensive surveillance programs for the control of HPAI, an outbreak of highly pathogenic avian influenza (HPAI) H5N1 in Korea in April 2008 caused serious damage to poultry farms, as did previous outbreaks in 2003/2004 and 2006/2007. Six viruses were selected from the Korean 2008 isolates for genetic analysis, and all eight gene segments from each of the influenza viruses were sequenced. A phylogenetic analysis showed that all of the viruses were of the same virus type and that the hemagglutinin (HA) gene was clustered with that of clade 2.3.2 viruses. However, the internal and neuraminidase (NA) genes were closely related to those of the clade 2.3.4 viruses (recent human and bird isolates from Southeast Asia).

  18. Highly Pathogenic Avian Influenza H5N8 in Germany: Outbreak Investigations.

    PubMed

    Conraths, F J; Sauter-Louis, C; Globig, A; Dietze, K; Pannwitz, G; Albrecht, K; Höreth-Böntgen, D; Beer, M; Staubach, C; Homeier-Bachmann, T

    2016-02-01

    Epidemiological outbreak investigations were conducted in highly pathogenic avian influenza virus of the subtype H5N8 (HPAIV H5N8)-affected poultry holdings and a zoo to identify potential routes of entry of the pathogen via water, feedstuffs, animals, people, bedding material, other fomites (equipment, vehicles etc.) and the presence of wild birds near affected holdings. Indirect introduction of HPAIV H5N8 via material contaminated by infected wild bird seems the most reasonable explanation for the observed outbreak series in three commercial holdings in Mecklenburg-Western Pomerania and Lower Saxony, while direct contact to infected wild birds may have led to outbreaks in a zoo in Rostock and in two small free-range holdings in Anklam, Mecklenburg-Western Pomerania. © 2015 Blackwell Verlag GmbH.

  19. Comparative Analysis of Avian Influenza Virus Diversity in Poultry and Humans during a Highly Pathogenic Avian Influenza A (H7N7) Virus Outbreak ▿ †

    PubMed Central

    Jonges, Marcel; Bataille, Arnaud; Enserink, Remko; Meijer, Adam; Fouchier, Ron A. M.; Stegeman, Arjan; Koch, Guus; Koopmans, Marion

    2011-01-01

    Although increasing data have become available that link human adaptation with specific molecular changes in nonhuman influenza viruses, the molecular changes of these viruses during a large highly pathogenic avian influenza virus (HPAI) outbreak in poultry along with avian-to-human transmission have never been documented. By comprehensive virologic analysis of combined veterinary and human samples obtained during a large HPAI A (H7N7) outbreak in the Netherlands in 2003, we mapped the acquisition of human adaptation markers to identify the public health risk associated with an HPAI outbreak in poultry. Full-length hemagglutinin (HA), neuraminidase (NA), and PB2 sequencing of A (H7N7) viruses obtained from 45 human cases showed amino acid variations at different codons in HA (n=20), NA (n=23), and PB2 (n=23). Identification of the avian sources of human virus infections based on 232 farm sequences demonstrated that for each gene about 50% of the variation was already present in poultry. Polygenic accumulation and farm-to-farm spread of known virulence and human adaptation markers in A (H7N7) virus-infected poultry occurred prior to farm-to-human transmission. These include the independent emergence of HA A143T mutants, accumulation of four NA mutations, and farm-to-farm spread of virus variants harboring mammalian host determinants D701N and S714I in PB2. This implies that HPAI viruses with pandemic potential can emerge directly from poultry. Since the public health risk of an avian influenza virus outbreak in poultry can rapidly change, we recommend virologic monitoring for human adaptation markers among poultry as well as among humans during the course of an outbreak in poultry. PMID:21849451

  20. Temporal and spatial characteristics of highly pathogenic avian influenza outbreaks in China during 2004 to 2015.

    PubMed

    Liu, Mingyue; Lu, Qian; Zhang, Shuxia; Feng, Xiaolong; Hossain, Md Shakhawat

    2017-09-01

    Identifying the temporal and spatial characteristics of highly pathogenic avian influenza (HPAI) outbreaks is very important for developing effective and appropriate countermeasures against HPAI and promoting sustainable development in the poultry industry. This study aimed to analyze four aspects of the temporal and spatial characteristics of HPAI outbreaks in China, including the frequency of HPAI outbreaks, numbers of dead animals (died or culled), types of HPAI viruses, and species of infected animals. Temporal characteristics showed that the frequency of HPAI outbreaks decreased and then increased, with some years deviating from the main trend in 2004 to 2010 and 2011 to 2015, while the largest number of dead animals due to HPAI outbreaks was in 2005. During 2004 to 2015, HPAI H5N1 was the major type of HPAI virus, and chickens had the greatest risk of being infected with HPAI, followed by ducks and geese. The HPAI outbreaks had obvious seasonal effects clustered in January to February, June, and November. Spatial characteristics revealed that outbreaks were more frequent in Xinjiang, Hubei, and Guangdong but caused a larger number of dead animals in Liaoning and Shanxi. HPAI H5N1 appeared in 25 provinces, while HPAI H5N2 was mainly localized in Hebei and Jiangsu, and HPAI H5N6 occurred in Heilongjiang, Jiangsu, Hunan, and Guangdong. HPAI viruses were most frequently detected in chickens and wild birds in northern China, while the majority of HPAI infections were identified in chickens, ducks, and geese in southern China. Regionally, HPAI outbreaks were most frequent in the western region but resulted in larger number of animals dying or being culled in the eastern region. These findings could provide a new understanding of the distributional characteristics of HPAI outbreaks and offer prospects for better prevention and control strategies. © 2017 Poultry Science Association Inc.

  1. Surveillance for highly pathogenic avian influenza virus in wild birds during outbreaks in domestic poultry, Minnesota, 2015

    USGS Publications Warehouse

    Jennelle, Christopher S.; Carstensen, Michelle; Hildebrand, Erik C.; Cornicelli, Louis; Wolf, Paul C.; Grear, Daniel A.; Ip, Hon S.; VanDalen, Kaci K.; Minicucci, Larissa A.

    2016-01-01

    In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To clarify the role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9–June 4, 2015. HPAIV was isolated from a Cooper’s hawk but not from waterfowl.

  2. Surveillance for Highly Pathogenic Avian Influenza Virus in Wild Birds during Outbreaks in Domestic Poultry, Minnesota, 2015.

    PubMed

    Jennelle, Christopher S; Carstensen, Michelle; Hildebrand, Erik C; Cornicelli, Louis; Wolf, Paul; Grear, Daniel A; Ip, Hon S; Vandalen, Kaci K; Minicucci, Larissa A

    2016-07-01

    In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To understand the potential role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9-June 4, 2015. HPAIV was isolated from a Cooper's hawk but not from waterfowl fecal samples.

  3. Safe application of regionalization for trade in poultry and poultry products during highly pathogenic Avian Influenza outbreaks in USA

    USDA-ARS?s Scientific Manuscript database

    The 2014-15 H5Nx high pathogenicity avian influenza (HPAI) outbreak affected 211 commercial premises, 21 backyard flocks, 75 individual wild birds and four captive-reared raptors in 21 Western and upper Midwestern states, resulting in death or culling of over 49.7 million poultry in the stamping-out...

  4. High pathogenicity avian influenza outbreaks since 2008 except multi-continental panzootic of H5 Goose/Guangdong-lineage viruses

    USDA-ARS?s Scientific Manuscript database

    Since 2008, seven countries from five continents have experienced highly pathogenic avian influenza (HPAI) outbreaks in poultry due to viruses unrelated to H5 Goose/Guangdong lineage viruses. These have covered a range of virus subtypes and affected different production species from chickens to ost...

  5. Risk factors for cluster outbreaks of avian influenza A H5N1 infection, Indonesia.

    PubMed

    Aditama, Tjandra Y; Samaan, Gina; Kusriastuti, Rita; Purba, Wilfried H; Misriyah; Santoso, Hari; Bratasena, Arie; Maruf, Anas; Sariwati, Elvieda; Setiawaty, Vivi; Cook, Alex R; Clements, Mark S; Lokuge, Kamalini; Kelly, Paul M; Kandun, I Nyoman

    2011-12-01

    By 30 July 2009, Indonesia had reported 139 outbreaks of avian influenza (AI) H5N1 infection in humans. Risk factors for case clustering remain largely unknown. This study assesses risk factors for cluster outbreaks and for secondary case infection. The 113 sporadic and 26 cluster outbreaks were compared on household and individual level variables. Variables assessed include those never reported previously, including household size and genealogical relationships between cases and their contacts. Cluster outbreaks had larger households and more blood-related contacts, especially first-degree relatives, compared with sporadic case outbreaks. Risk factors for cluster outbreaks were the number of first-degree blood-relatives to the index case (adjusted odds ratio [aOR], 1.50; 95% confidence interval [CI]: 1.20-1.86) and index cases having direct exposure to sources of AI H5N1 virus (aOR, 3.20; 95% CI: 1.15-8.90). Risk factors for secondary case infection were being aged between 5 and 17 years (aOR, 8.32; 95% CI: 1.72-40.25), or 18 and 30 years (aOR, 6.04; 95% CI: 1.21-30.08), having direct exposure to sources of AI H5N1 virus (aOR, 3.48; 95% CI: 1.28-9.46), and being a first-degree relative to an index case (aOR, 11.0; 95% CI: 1.43-84.66). Siblings to index cases were 5 times more likely to become secondary cases (OR, 4.72; 95% CI: 1.67-13.35). The type of exposure and the genealogical relationship between index cases and their contacts impacts the risk of clustering. The study adds evidence that AI H5N1 infection is influenced by, and may even depend on, host genetic susceptibility.

  6. Epidemiology, Evolution, and Recent Outbreaks of Avian Influenza Virus in China

    PubMed Central

    Su, Shuo; Wong, Gary; Gray, Gregory C.; Gao, George F.

    2015-01-01

    Novel reassortants of H7N9, H10N8, and H5N6 avian influenza viruses (AIVs) are currently circulating in China's poultry flocks, occasionally infecting humans and other mammals. Combined with the sometimes enzootic H5N1 and H9N2 strains, this cauldron of genetically diverse AIVs pose significant risks to public health. Here, we review the epidemiology, evolution, and recent outbreaks of AIVs in China, discuss reasons behind the recent increase in the emergence of novel AIVs, and identify warning signs which may point to the emergence of a potentially virulent and highly transmissible AIV to humans. This review will be useful to authorities who consider options for the detection and control of AIV transmission in animals and humans, with the goal of preventing future epidemics and pandemics. PMID:26063419

  7. Deep sequencing of H7N8 avian influenza viruses from surveillance zone supports H7N8 high pathogenicity avian influenza was limited to a single outbreak farm in Indiana during 2016

    USDA-ARS?s Scientific Manuscript database

    In mid-January 2016, an outbreak of H7N8 high pathogenicity avian influenza (HPAI) virus in commercial turkeys occurred in Indiana. The outbreak was first detected by an increase in mortality followed by laboratory confirmation of H7N8 HPAI virus. Surveillance within the 10 km Control Zone detected...

  8. Global dynamic analysis of a H7N9 avian-human influenza model in an outbreak region.

    PubMed

    Chen, Yongxue; Wen, Yongxian

    2015-02-21

    In 2013 in China a new type of avian influenza virus, H7N9, began to infect humans and had aroused severe fatality in the infected humans. We know that the spread is from poultry to humans, and the H7N9 avian influenza is low pathogenic in the poultry world but highly pathogenic in the human world, but the transmission mechanism is unclear. Since it has no signs of human-to-human transmission and outbreaks are isolated in some cities in China, in order to investigate the transmission mechanism of human infection with H7N9 avian influenza, an eco-epidemiological model in an outbreak region is proposed and analyzed dynamically. Researches and reports show that gene mutation makes the new virus be capable of infecting humans, therefore the mutation factor is taken into account in the model. The global dynamic analysis is conducted, different thresholds are identified, persistence and global qualitative behaviors are obtained. The impact of H7N9 avian influenza on the people population is concerned. Finally, the numerical simulations are carried out to support the theoretical analysis and to investigate the disease control measures. It seems that we may take people׳s hygiene and prevention awareness factor as a significant policy to achieve the aim of both the disease control and the economic returns. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Chinese social media reaction to the MERS-CoV and avian influenza A(H7N9) outbreaks

    PubMed Central

    2013-01-01

    Background As internet and social media use have skyrocketed, epidemiologists have begun to use online data such as Google query data and Twitter trends to track the activity levels of influenza and other infectious diseases. In China, Weibo is an extremely popular microblogging site that is equivalent to Twitter. Capitalizing on the wealth of public opinion data contained in posts on Weibo, this study used Weibo as a measure of the Chinese people’s reactions to two different outbreaks: the 2012 Middle East Respiratory Syndrome Coronavirus (MERS-CoV) outbreak, and the 2013 outbreak of human infection of avian influenza A(H7N9) in China. Methods Keyword searches were performed in Weibo data collected by The University of Hong Kong’s Weiboscope project. Baseline values were determined for each keyword and reaction values per million posts in the days after outbreak information was released to the public. Results The results show that the Chinese people reacted significantly to both outbreaks online, where their social media reaction was two orders of magnitude stronger to the H7N9 influenza outbreak that happened in China than the MERS-CoV outbreak that was far away from China. Conclusions These results demonstrate that social media could be a useful measure of public awareness and reaction to disease outbreak information released by health authorities. PMID:24359669

  10. Outbreaks of highly pathogenic avian influenza in Europe: the risks associated with wild birds.

    PubMed

    Artois, M; Bicout, D; Doctrinal, D; Fouchier, R; Gavier-Widen, D; Globig, A; Hagemeijer, W; Mundkur, T; Munster, V; Olsen, B

    2009-04-01

    The infection of wild birds by highly pathogenic strains of avian influenza (Al) virus was virtually unknown--apart from one instance of the disease appearing in common terns in South Africa in 1961--before the Asian strain of highly pathogenic AI virus (AIV), H5N1, began to expand across the world. Outbreaks of clinical disease in Eurasia have resulted in visible mortality among populations of free-ranging wild birds in a multitude of species. The circulation pattern of influenza viruses in natural ecosystems results from a selection pressure towards strains which are indirectly transmitted by droppings from water birds and contaminated fomites, and which exhibit low pathogenicity. Some of these viruses, of the subtypes H5 or H7, can mutate into highly pathogenic strains after being introduced into domestic poultry farms. The maintenance of highly pathogenic AIV (HPAIV) H5N1 in several parts of the world exposes wild birds to infected poultry, resulting in long-distance virus transmission. There is great concern that these wild birds may, in turn, propagate these HPAIV or introduce them into domestic birds. Rigorous disease control and biosecurity measures to protect poultry farms are the only solution presently available to mitigate such a risk.

  11. Avian influenza in Poland.

    PubMed

    Smietanka, Krzysztof; Minta, Zenon

    2014-01-01

    Poland has experienced four episodes of avian influenza (AI) outbreaks over the past two decades. The first epidemic was caused by a low pathogenicity (LPAIV) H7N7 subtype and occurred in fattening and breeder turkeys in 1995. Two waves of H5N1 high pathogenicity avian influenza (HPAI) took place in 2006 and 2007. In spring 2006, 64 cases of the H5N1 virus were detected, mostly in mute swans. In December 2007, ten outbreaks of H5N1 HPAI were detected in commercial poultry (n = 9) and wild birds kept in captivity (n = 1). The outbreaks in 2006 and 2007 were caused by genetically similar but clearly distinguishable viruses of the 2.2 clade. In 2013, an H9N2 avian influenza virus was detected in 4 fattening turkey holdings. The virus was low pathogenic and a phylogenetic study has shown a close relatedness to the Eurasian lineage of AIV of the wild bird origin. Neither preventive nor prophylactic vaccinations have ever been used in poultry or other birds. Emergency vaccinations using autogenous vaccine were introduced only to control the H7N7 LPAI outbreaks in 1995. The baseline surveillance for AI in live migratory birds and poultry provides a valuable insight into the ecology of AIV at the wild and domestic bird interface. Passive surveillance is in place of early detection of HPAIV infection in dead or moribund birds.

  12. Surveillance for Highly Pathogenic Avian Influenza Virus in Wild Birds during Outbreaks in Domestic Poultry, Minnesota, 2015

    PubMed Central

    Carstensen, Michelle; Hildebrand, Erik C.; Cornicelli, Louis; Wolf, Paul; Grear, Daniel A.; Ip, Hon S.; Vandalen, Kaci K.; Minicucci, Larissa A.

    2016-01-01

    In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To understand the potential role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9–June 4, 2015. HPAIV was isolated from a Cooper’s hawk but not from waterfowl fecal samples. PMID:27064759

  13. Ecological Determinants of Highly Pathogenic Avian Influenza (H5N1) Outbreaks in Bangladesh

    PubMed Central

    Ahmed, Syed S. U.; Ersbøll, Annette K.; Biswas, Paritosh K.; Christensen, Jens P.; Hannan, Abu S. M. A.; Toft, Nils

    2012-01-01

    Background The agro-ecology and poultry husbandry of the south Asian and south-east Asian countries share common features, however, with noticeable differences. Hence, the ecological determinants associated with risk of highly pathogenic avian influenza (HPAI-H5N1) outbreaks are expected to differ between Bangladesh and e.g., Thailand and Vietnam. The primary aim of the current study was to establish ecological determinants associated with the risk of HPAI-H5N1 outbreaks at subdistrict level in Bangladesh. The secondary aim was to explore the performance of two different statistical modeling approaches for unmeasured spatially correlated variation. Methodology/Principal Findings An ecological study at subdistrict level in Bangladesh was performed with 138 subdistricts with HPAI-H5N1 outbreaks during 2007–2008, and 326 subdistricts with no outbreaks. The association between ecological determinants and HPAI-H5N1 outbreaks was examined using a generalized linear mixed model. Spatial clustering of the ecological data was modeled using 1) an intrinsic conditional autoregressive (ICAR) model at subdistrict level considering their first order neighbors, and 2) a multilevel (ML) model with subdistricts nested within districts. Ecological determinants significantly associated with risk of HPAI-H5N1 outbreaks at subdistrict level were migratory birds' staging areas, river network, household density, literacy rate, poultry density, live bird markets, and highway network. Predictive risk maps were derived based on the resulting models. The resulting models indicate that the ML model absorbed some of the covariate effect of the ICAR model because of the neighbor structure implied in the two different models. Conclusions/Significance The study identified a new set of ecological determinants related to river networks, migratory birds' staging areas and literacy rate in addition to already known risk factors, and clarified that the generalized concept of free grazing duck and

  14. Observations from a live bird market in Indonesia following a contained outbreak of avian influenza A (H5N1).

    PubMed

    Naysmith, Scott

    2014-01-01

    Live bird markets are considered high-risk environments facilitating viral transfer and replication of influenza A H5N1. In Indonesia, these markets have been the source for multiple human infections of H5N1 resulting in death, and thus have been the focus of government-led interventions. This paper examines the aftermath of an intervention in one market in Bali, Indonesia. It highlights the social and economic factors influencing the adoption of risk prevention behaviour and concludes by arguing for further qualitative research to understand why at-risk individuals fail to adopt biosecurity measures, even after recently experiencing an outbreak of avian influenza.

  15. Avian-human influenza epidemic model.

    PubMed

    Iwami, Shingo; Takeuchi, Yasuhiro; Liu, Xianning

    2007-05-01

    A mathematical model is proposed to interpret the spread of avian influenza from the bird world to the human world. Our mathematical model warns that two types of the outbreak of avian influenza may occur if the humans do not prevent the spread of avian influenza. Moreover, it suggests that we cannot feel relieved although the total infected humans are kept at low level. In order to prevent spread of avian influenza in the human world, we must take the measures not only for the birds infected with avian influenza to exterminate but also for the humans infected with mutant avian influenza to quarantine when mutant avian influenza has already occurred. In particular, the latter measure is shown to be important to stop the second pandemic of avian influenza.

  16. Avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Avian influenza virus (AIV) is type A influenza, which is adapted to an avian host. Although avian influenza has been isolated from numerous avian species, the primary natural hosts for the virus are dabbling ducks, shorebirds, and gulls. The virus can be found world-wide in these species and in o...

  17. Highlighting the complexities of a groundwater pilot study during an avian influenza outbreak: Methods, lessons learned, and select contaminant results.

    PubMed

    Hubbard, Laura E; Kolpin, Dana W; Fields, Chad L; Hladik, Michelle L; Iwanowicz, Luke R

    2017-10-01

    The highly pathogenic avian influenza (H5N2) outbreak in the Midwestern United States (US) in 2015 was historic due to the number of birds and poultry operations impacted and the corresponding economic loss to the poultry industry and was the largest animal health emergency in US history. The U.S. Geological Survey (USGS), with the assistance of several state and federal agencies, aided the response to the outbreak by developing a study to determine the extent of virus transport in the environment. The study goals were to: develop the appropriate sampling methods and protocols for measuring avian influenza virus (AIV) in groundwater, provide the first baseline data on AIV and outbreak- and poultry-related contaminant occurrence and movement into groundwater, and document climatological factors that may have affected both survival and transport of AIV to groundwater during the months of the 2015 outbreak. While site selection was expedient, there were often delays in sample response times due to both relationship building between agencies, groups, and producers and logistical time constraints. This study's design and sampling process highlights the unpredictable nature of disease outbreaks and the corresponding difficulty in environmental sampling of such events. The lessons learned, including field protocols and approaches, can be used to improve future research on AIV in the environment. Published by Elsevier Inc.

  18. Highlighting the complexities of a groundwater pilot study during an avian influenza outbreak: Methods, lessons learned, and select contaminant results

    USGS Publications Warehouse

    Hubbard, Laura E.; Kolpin, Dana W.; Fields, Chad L.; Hladik, Michelle; Iwanowicz, Luke

    2017-01-01

    The highly pathogenic avian influenza (H5N2) outbreak in the Midwestern United States (US) in 2015 was historic due to the number of birds and poultry operations impacted and the corresponding economic loss to the poultry industry and was the largest animal health emergency in US history. The U.S. Geological Survey (USGS), with the assistance of several state and federal agencies, aided the response to the outbreak by developing a study to determine the extent of virus transport in the environment. The study goals were to: develop the appropriate sampling methods and protocols for measuring avian influenza virus (AIV) in groundwater, provide the first baseline data on AIV and outbreak- and poultry-related contaminant occurrence and movement into groundwater, and document climatological factors that may have affected both survival and transport of AIV to groundwater during the months of the 2015 outbreak. While site selection was expedient, there were often delays in sample response times due to both relationship building between agencies, groups, and producers and logistical time constraints. This study's design and sampling process highlights the unpredictable nature of disease outbreaks and the corresponding difficulty in environmental sampling of such events. The lessons learned, including field protocols and approaches, can be used to improve future research on AIV in the environment.

  19. Assessment of farm-level biosecurity measures after an outbreak of avian influenza in the United Kingdom.

    PubMed

    Knight-Jones, T J D; Gibbens, J; Wooldridge, M; Stärk, K D C

    2011-02-01

    During Avian Influenza outbreaks in England, the 'AI Order' states that a poultry keeper may be required to keep domestic birds separate from wild birds. This study aimed to assess a) how effectively this was done and b) the negative impact this had for bird owners and animal welfare during the November 2007 Highly Pathogenic Avian Influenza (HPAI) outbreak in Suffolk, UK. A voluntary questionnaire was posted to holdings (n=296) that were within 10 km of an infected premises; these holdings were required to separate domestic and wild birds where possible. Holdings were identified during outbreak investigations conducted by the authorities. Holdings of all sizes were included. A sample of holdings received a follow-up visit or telephone call to validate the questionnaire (n=29). From the 38% of eligible holdings that responded, 13% (95% CI 7-22%) left their birds outdoors throughout the outbreak. If game birds were excluded, 9% (CI 4-17%) of holdings did not house their birds. Major cost and welfare problems were rare; however, there were exceptions. Enforced housing was often relaxed before a minor welfare problem deteriorated. Contact between wild and domestic birds was greatly reduced during the outbreak, resulting in a reduced probability of HPAI transmission via wild birds for most, but not all, holdings. © 2010 Blackwell Verlag GmbH.

  20. The role of rodents in avian influenza outbreaks in poultry farms: a review.

    PubMed

    Velkers, Francisca C; Blokhuis, Simon J; Veldhuis Kroeze, Edwin J B; Burt, Sara A

    2017-12-01

    Wild migratory birds are associated with global avian influenza virus (AIV) spread. Although direct contact with wild birds and contaminated fomites is unlikely in modern non-free range poultry farms applying biosecurity measures, AIV outbreaks still occur. This suggests involvement of other intermediate factors for virus transmission between wild birds and poultry. This review describes current evidence of the potential role of rodents in AIV transmission from wild birds to poultry and between poultry houses. Rodents can be abundant around poultry houses, share their habitat with waterfowl and can readily enter poultry houses. Survival of AIV from waterfowl in poultry house surroundings and on the coat of rodents suggests that rodents are likely to act as mechanical vector. AIVs can replicate in rodents without adaptation, resulting in high viral titres in lungs and nasal turbinates, virus presence in nasal washes and saliva, and transmission to naïve contact animals. Therefore, active AIV shedding by infected rodents may play a role in transmission to poultry. Further field and experimental studies are needed to provide evidence for a role of rodents in AIV epidemiology. Making poultry houses rodent-proof and the immediate surroundings unattractive for rodents are recommended as preventive measures against possible AIV introduction.

  1. Avian Influenza (Bird Flu)

    MedlinePlus

    ... Address What's this? Submit What's this? Submit Button Influenza Types Seasonal Avian Swine/Variant Pandemic Other Information on Avian Influenza Language: English (US) Español Recommend on Facebook ...

  2. [A(H5N1) and A(H7N9) avian influenza: the H7N9 avian influenza outbreak of 2013].

    PubMed

    Wang, Quan; Yao, Kai-Hu

    2013-06-01

    influenza virus can infect humans and cause disease. The clinical presentation of human infection is usually mild, but the infection caused by A(H5N1) avian influenza virus occurring initially in Hongkong in 1997 or the A(H7N9) virus isolated first at the beginning of this year in China is severe and characterized by high mortality. The mortality rate of adolescents and children caused by H5N1 avian influenza is lower than that of adults and the younger the child the lower the mortality rate. A few pediatric H7N9 avian influenza cases recovered soon after treatment. A child was determined to be a H7N9 avian influenza virus carrier. These findings suggested that the pediatric H7N9 avian influenza infection was mild. It is very important to start anti-virus treatment with oseltamivir as early as possible in cases of avian influenza infection is considered. Combined therapy, including respiratory and circulatory support and inhibiting immunological reaction, is emphasized in the treatment of severe cases.

  3. Tracking Socioeconomic Vulnerability Using Network Analysis: Insights from an Avian Influenza Outbreak in an Ostrich Production Network

    PubMed Central

    Moore, Christine; Cumming, Graeme S.; Slingsby, Jasper; Grewar, John

    2014-01-01

    Background The focus of management in many complex systems is shifting towards facilitation, adaptation, building resilience, and reducing vulnerability. Resilience management requires the development and application of general heuristics and methods for tracking changes in both resilience and vulnerability. We explored the emergence of vulnerability in the South African domestic ostrich industry, an animal production system which typically involves 3–4 movements of each bird during its lifetime. This system has experienced several disease outbreaks, and the aim of this study was to investigate whether these movements have contributed to the vulnerability of this system to large disease outbreaks. Methodology/Principal Findings The ostrich production system requires numerous movements of birds between different farm types associated with growth (i.e. Hatchery to juvenile rearing farm to adult rearing farm). We used 5 years of movement records between 2005 and 2011 prior to an outbreak of Highly Pathogenic Avian Influenza (H5N2). These data were analyzed using a network analysis in which the farms were represented as nodes and the movements of birds as links. We tested the hypothesis that increasing economic efficiency in the domestic ostrich industry in South Africa made the system more vulnerable to outbreak of Highly Pathogenic Avian Influenza (H5N2). Our results indicated that as time progressed, the network became increasingly vulnerable to pathogen outbreaks. The farms that became infected during the outbreak displayed network qualities, such as significantly higher connectivity and centrality, which predisposed them to be more vulnerable to disease outbreak. Conclusions/Significance Taken in the context of previous research, our results provide strong support for the application of network analysis to track vulnerability, while also providing useful practical implications for system monitoring and management. PMID:24498004

  4. Wind-Mediated Spread of Low-Pathogenic Avian Influenza Virus into the Environment during Outbreaks at Commercial Poultry Farms.

    PubMed

    Jonges, Marcel; van Leuken, Jeroen; Wouters, Inge; Koch, Guus; Meijer, Adam; Koopmans, Marion

    2015-01-01

    Avian influenza virus-infected poultry can release a large amount of virus-contaminated droppings that serve as sources of infection for susceptible birds. Much research so far has focused on virus spread within flocks. However, as fecal material or manure is a major constituent of airborne poultry dust, virus-contaminated particulate matter from infected flocks may be dispersed into the environment. We collected samples of suspended particulate matter, or the inhalable dust fraction, inside, upwind and downwind of buildings holding poultry infected with low-pathogenic avian influenza virus, and tested them for the presence of endotoxins and influenza virus to characterize the potential impact of airborne influenza virus transmission during outbreaks at commercial poultry farms. Influenza viruses were detected by RT-PCR in filter-rinse fluids collected up to 60 meters downwind from the barns, but virus isolation did not yield any isolates. Viral loads in the air samples were low and beyond the limit of RT-PCR quantification except for one in-barn measurement showing a virus concentration of 8.48 x 10(4) genome copies/m(3). Air samples taken outside poultry barns had endotoxin concentrations of ~50 EU/m(3) that declined with increasing distance from the barn. Atmospheric dispersion modeling of particulate matter, using location-specific meteorological data for the sampling days, demonstrated a positive correlation between endotoxin measurements and modeled particulate matter concentrations, with an R(2) varying from 0.59 to 0.88. Our data suggest that areas at high risk for human or animal exposure to airborne influenza viruses can be modeled during an outbreak to allow directed interventions following targeted surveillance.

  5. Different environmental drivers of highly pathogenic avian influenza H5N1 outbreaks in poultry and wild birds.

    PubMed

    Si, Yali; de Boer, Willem F; Gong, Peng

    2013-01-01

    A large number of highly pathogenic avian influenza (HPAI) H5N1 outbreaks in poultry and wild birds have been reported in Europe since 2005. Distinct spatial patterns in poultry and wild birds suggest that different environmental drivers and potentially different spread mechanisms are operating. However, previous studies found no difference between these two outbreak types when only the effect of physical environmental factors was analysed. The influence of physical and anthropogenic environmental variables and interactions between the two has only been investigated for wild bird outbreaks. We therefore tested the effect of these environmental factors on HPAI H5N1 outbreaks in poultry, and the potential spread mechanism, and discussed how these differ from those observed in wild birds. Logistic regression analyses were used to quantify the relationship between HPAI H5N1 outbreaks in poultry and environmental factors. Poultry outbreaks increased with an increasing human population density combined with close proximity to lakes or wetlands, increased temperatures and reduced precipitation during the cold season. A risk map was generated based on the identified key factors. In wild birds, outbreaks were strongly associated with an increased Normalized Difference Vegetation Index (NDVI) and lower elevation, though they were similarly affected by climatic conditions as poultry outbreaks. This is the first study that analyses the differences in environmental drivers and spread mechanisms between poultry and wild bird outbreaks. Outbreaks in poultry mostly occurred in areas where the location of farms or trade areas overlapped with habitats for wild birds, whereas outbreaks in wild birds were mainly found in areas where food and shelters are available. The different environmental drivers suggest that different spread mechanisms might be involved: HPAI H5N1 spread to poultry via both poultry and wild birds, whereas contact with wild birds alone seems to drive the outbreaks

  6. An outbreak of low pathogenic avian influenza in a mixed-species aviculture unit in Dubai in 2005.

    PubMed

    Kent, Jo; Bailey, Tom; Silvanose, Christu-Das; McKeown, Sean; Wernery, Ulrich; Kinne, Joerg; Manvell, Ruth

    2006-09-01

    This case describes an outbreak of low pathogenic hemagglutinin 9 neuraminidase 2 avian influenza virus (AIV) in two white-bellied bustards (Eupodotis senegalensis), one stone curlew (Burhinus oedicnemius), and a blacksmith plover (Antibyx armatus) in a private zoologic collection in Dubai, United Arab Emirates. The four birds showed signs of respiratory disease, and all died as a result of disease or euthanasia. Attention has been paid to the diagnostic process and common differential diagnosis for upper respiratory tract disease in bustards, curlews, and plovers. To the knowledge of the authors, AIV has not been previously described in these species.

  7. Investigation of outbreaks of highly pathogenic H5N1 avian influenza in waterfowl and wild birds in Hong Kong in late 2002.

    PubMed

    Ellis, Trevor M; Bousfield, R Barry; Bissett, Lucy A; Dyrting, Kitman C; Luk, Geraldine S M; Tsim, S T; Sturm-Ramirez, Katharine; Webster, Robert G; Guan, Yi; Malik Peiris, J S

    2004-10-01

    Outbreaks of highly pathogenic H5N1 avian influenza have occurred in Hong Kong in chickens and other gallinaceous poultry in 1997, 2001, twice in 2002 and 2003. High mortality rates were seen in gallinaceous birds but not in domestic or wild waterfowl or other wild birds until late 2002 when highly pathogenic H5N1 avian influenza occurred in waterfowl (geese, ducks and swans), captive Greater Flamingo (Phoenicopterus ruber) and other wild birds (Little Egret Egretta garzetta) at two waterfowl parks and from two dead wild Grey Heron (Ardea cinerea) and a Black-headed Gull (Larus ridibundus) in Hong Kong. H5N1 avian influenza virus was also isolated from a dead feral pigeon (Columba livia) and a dead tree sparrow (Passer montanus) during the second outbreak. The first waterfowl outbreak was controlled by immediate strict quarantine and depopulation 1 week before the second outbreak commenced. Control measures implemented for the second outbreak included strict isolation, culling, increased sanitation and vaccination. Outbreaks in gallinaceous birds occurred in some live poultry markets concurrently with the second waterfowl outbreak, and infection on a chicken farm was detected 1 week after the second waterfowl park outbreak was detected, on the same day the second grey heron case was detected. Subsequent virus surveillance showed the outbreaks had been contained.

  8. Avian influenza in Mexico.

    PubMed

    Villarreal, C

    2009-04-01

    The outbreak of highly pathogenic avian influenza (HPAI) H5N2 in Mexico in 1994 led to a clear increase in biosecurity measures and improvement of intensive poultry production systems. The control and eradication measures implemented were based on active surveillance, disease detection, depopulation of infected farms and prevention of possible contacts (identified by epidemiological investigations), improvement of biosecurity measures, and restriction of the movement of live birds, poultry products, by-products and infected material. In addition, Mexico introduced a massive vaccination programme, which resulted in the eradication of HPAI in a relatively short time in two affected areas that had a high density of commercial poultry.

  9. Blow Flies Were One of the Possible Candidates for Transmission of Highly Pathogenic H5N1 Avian Influenza Virus during the 2004 Outbreaks in Japan

    PubMed Central

    Sawabe, Kyoko; Hoshino, Keita; Isawa, Haruhiko; Sasaki, Toshinori; Kim, Kyeong Soon; Hayashi, Toshihiko; Tsuda, Yoshio; Kurahashi, Hiromu; Kobayashi, Mutsuo

    2011-01-01

    The 2003-2004 H5N1 highly pathogenic avian influenza (HPAI) outbreaks in Japan were the first such outbreaks in 79 years in Japan. Epidemic outbreaks have been occurring in Southeast Asia, with the most recent in 2010. Knowledge of the transmission route responsible for the HPAI outbreaks in these countries remains elusive. Our studies strongly suggested that field and laboratory studies focusing on mechanical transmission by blow flies should be considered to control H5N1 avian influenza outbreaks, in particular in epidemic areas, where there are high densities of different fly species throughout the year. In this paper, we review these field and laboratory entomological studies and discuss the possibility of blow flies transmitting H5N1 viruses. PMID:23074659

  10. Role of real-time RT-PCR platform technology in the diagnosis and management of notifiable avian influenza outbreaks: experiences in Great Britain.

    PubMed

    Slomka, M J; Irvine, R M; Pavlidis, T; Banks, J; Brown, I H

    2010-03-01

    Diagnosis and management of avian influenza outbreaks now include the use of validated real-time reverse transcription PCR (RRT-PCR) methods in many countries, including all member states of the European Union. Two outbreaks in poultry of notifiable avian influenza (H5 and H7 subtypes) that occurred in Great Britain during 2007 will serve as examples in which RRT-PCR demonstrated its value in 1) rapid diagnosis and confirmation of disease by sensitive and specific laboratory testing of samples derived from the index cases and 2) high-volume, rapid testing of surveillance samples. The two poultry outbreaks followed the incursion of a H7N2 low-pathogenicity notifiable avian influenza (LPNAI) virus (May-June 2007) and a Eurasian lineage H5N1 highly pathogenic notifiable avian influenza (HPNAI) virus (November 2007). Coupled with the use of high-throughput, robotic RNA extraction methods, a total of approximately 9300 and 20,300 field samples were tested by appropriate, validated RRT-PCR assays during the 4- and 5-wk duration of the H7N2 LPNAI and H5N1 HPNAI outbreaks, respectively. Fundamental features of the validated RRT-PCR assays used included their high degree of sensitivity, specificity, and rapidity, attributes that were invaluable in providing timely and accurate information for notifiable AI outbreak management.

  11. Avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Avian influenza virus (AIV) is type A influenza that is adapted to avian host species. Although the virus can be isolated from numerous avian species, the natural host reservoir species are dabbling ducks, shorebirds and gulls. Domestic poultry species (poultry being defined as birds that are rais...

  12. First outbreaks and phylogenetic analyses of avian influenza H9N2 viruses isolated from poultry flocks in Morocco.

    PubMed

    El Houadfi, Mohammed; Fellahi, Siham; Nassik, Saadia; Guérin, Jean-Luc; Ducatez, Mariette F

    2016-08-15

    H9N2 avian influenza viruses continue to spread in poultry and wild birds worldwide. Morocco just faced its first H9N2 influenza virus outbreaks early 2016 affecting different types of poultry production. After its introduction, the virus spread very rapidly throughout the country. Samples were collected from 11 chicken flocks with high morbidity and mortality rates. Four viruses were successfully isolated from broiler chickens and one from broiler breeders and fully sequenced. Phylogenetic and molecular markers analyses showed the Moroccan viruses belonged to the G1 lineage and likely originated from the Middle East. As known for H9N2 viruses, the Moroccanisolates possess several genetic markers that enhance virulence in poultry and transmission to humans. The present study demonstrated that under field conditions H9N2 could have a devastating effect on egg production and mortalities and highlighted a lack of surveillance data on the pathogen in the region.

  13. Supporting business continuity during a highly pathogenic avian influenza outbreak: a collaboration of industry, academia, and government.

    PubMed

    Hennessey, Morgan; Lee, Brendan; Goldsmith, Timothy; Halvorson, Dave; Hueston, William; McElroy, Kristina; Waters, Katherine

    2010-03-01

    Since 2006, a collaborative group of egg industry, state, federal, and academia representatives have worked to enhance preparedness in highly pathogenic avian influenza (HPAI) planning. The collaborative group has created a draft egg product movement protocol, which calls for realistic, science-based contingency plans, biosecurity assessments, commodity risk assessments, and real-time reverse transcriptase-PCR testing to support the continuity of egg operations while also preventing and eradicating an HPAI outbreak. The work done by this group serves as an example of how industry, government, and academia can work together to achieve better preparedness in the event of an animal health emergency. In addition, in the event of an HPAI outbreak in domestic poultry, U.S. consumers will be assured that their egg products come from healthy chickens.

  14. Influenza vaccines for avian species

    USDA-ARS?s Scientific Manuscript database

    Beginning in Southeast Asia, in 2003, a multi-national epizootic outbreak of H5N1 highly pathogenic avian influenza (HPAI) was identified in commercial poultry and wild bird species. This lineage, originally identified in Southern China in 1996 and then Hong Kong in 1997, caused severe morbidity an...

  15. Avian influenza: an agricultural perspective.

    PubMed

    Morgan, Andrea

    2006-11-01

    Recent outbreaks of infection with highly pathogenic H5N1 strains of avian influenza virus in poultry in Asia, Africa, Europe, and the Middle East have raised concern over the potential emergence of a pandemic strain that can easily infect humans and cause serious morbidity and mortality. To prevent and control a national outbreak, the US Department of Agriculture (USDA) conducts measures based on the ecology of avian influenza viruses. To prevent an outbreak in the United States, the USDA conducts surveillance of bird populations, restrictions on bird importation, educational outreach, and regulation of agricultural practices, in collaboration with local, state, and federal organizations. To manage an outbreak, the USDA has in place a well-established emergency management system for optimizing efforts. The USDA also collaborates with international organizations for disease prevention and control in other countries.

  16. Surveillance for Highly Pathogenic Avian Influenza in Wild Turkeys ( Meleagris gallopavo ) of Minnesota, USA during 2015 Outbreaks in Domestic Poultry.

    PubMed

    Jennelle, Christopher S; Carstensen, Michelle; Hildebrand, Erik C; Wolf, Paul C; Grear, Daniel A; Ip, Hon S; Cornicelli, Louis

    2017-07-01

    An outbreak of a novel reassortant of highly pathogenic avian influenza A (H5N2) virus (HPAIV) decimated domestic turkeys ( Meleagris gallopavo ) from March through mid-June, 2015 in the state of Minnesota, US. In response, as part of broader surveillance efforts in wild birds, we designed a pilot effort to sample and test hunter-harvested Wild Turkeys ( Meleagris gallopavo ) for HPAIV in Minnesota counties with known infected poultry facilities. We also collected opportunistic samples from dead Wild Turkeys or live Wild Turkeys showing neurologic signs (morbidity and mortality samples) reported by the public or state agency personnel. Cloacal and tracheal samples were collected from each bird and screened for avian influenza virus (AIV) RNA by real-time reverse transcription PCR. From 15 April to 28 May 2015, we sampled 84 hunter-harvested male Wild Turkeys in 11 Minnesota counties. From 7 April 2015 through 11 April 2016, we sampled an additional 23 Wild Turkeys in 17 Minnesota counties. We did not detect type A influenza or HPAIV from any samples, and concluded, at the 95% confidence level, that apparent shedding prevalence in male Wild Turkeys in central Minnesota was between 0% and 2.9% over the sampling period. The susceptibility of wild turkeys to HPAIV is unclear, but regular harvest seasons make this wild gallinaceous bird readily available for future AIV testing.

  17. H5N2 highly pathogenic avian influenza viruses from the US 2014-2015 outbreak have an unusually long pre-clinical period in turkeys

    USDA-ARS?s Scientific Manuscript database

    From December 2014 through June 2015, the US experienced the most costly highly pathogenic avian influenza (HPAI) outbreak to date. Most cases in commercial poultry were caused by an H5N2 strain which was a reassortant with 5 Eurasian lineage genes, including a clade 2.3.4.4 goose/Guangdong/1996 lin...

  18. The pathogenesis of H7N8 low and highly pathogenic avian influenza viruses from the United States 2016 outbreak in chickens, turkeys and mallards

    USDA-ARS?s Scientific Manuscript database

    In January 2016, a combined outbreak of highly pathogenic (HP) avian influenza virus (AIV) and low pathogenicity (LP) AIV occurred in commercial turkeys in the state of Indiana, United States. Genetically, the viruses were highly similar, belonged to the North American wild bird lineage, and had not...

  19. Avian influenza virus.

    PubMed

    Lee, Chang-Won; Saif, Yehia M

    2009-07-01

    Avian influenza viruses do not typically replicate efficiently in humans, indicating direct transmission of avian influenza virus to humans is unlikely. However, since 1997, several cases of human infections with different subtypes (H5N1, H7N7, and H9N2) of avian influenza viruses have been identified and raised the pandemic potential of avian influenza virus in humans. Although circumstantial evidence of human to human transmission exists, the novel avian-origin influenza viruses isolated from humans lack the ability to transmit efficiently from person-to-person. However, the on-going human infection with avian-origin H5N1 viruses increases the likelihood of the generation of human-adapted avian influenza virus with pandemic potential. Thus, a better understanding of the biological and genetic basis of host restriction of influenza viruses is a critical factor in determining whether the introduction of a novel influenza virus into the human population will result in a pandemic. In this article, we review current knowledge of type A influenza virus in which all avian influenza viruses are categorized.

  20. Avian Influenza A Virus Infections in Humans

    MedlinePlus

    ... Avian Swine/Variant Pandemic Other Avian Influenza A Virus Infections in Humans Language: English (US) Español ... with Avian Influenza A Viruses Avian Influenza A Virus Infections in Humans Although avian influenza A viruses ...

  1. REMOTE SENSING, ECOLOGICAL VARIABLES, AND WILD BIRD MIGRATION RELATED TO OUTBREAKS OF HIGHLY PATHOGENIC H5N1 AVIAN INFLUENZA1

    PubMed Central

    Xiao, Xiangming; Gilbert, Marius; Slingenbergh, Jan; Lei, Fumin; Boles, Stephen

    2008-01-01

    Outbreaks of highly pathogenic avian influenza (HPAI) H5N1 subtype have occurred in many countries across Asia, Europe, and Africa since 2003. Better understanding of the ecology and risk factors of HPAI is critical for surveillance, risk assessment, and public health policy. We introduce satellite remote sensing as one important tool, and highlight the potential of using satellite images to monitor dynamics of climate and landscapes that are related to wild bird migration and agriculture in the context of avian influenza transmission. PMID:28813587

  2. Avian influenza virus in pregnancy.

    PubMed

    Liu, Shelan; Sha, Jianping; Yu, Zhao; Hu, Yan; Chan, Ta-Chien; Wang, Xiaoxiao; Pan, Hao; Cheng, Wei; Mao, Shenghua; Zhang, Run Ju; Chen, Enfu

    2016-07-01

    The unprecedented epizootic of avian influenza viruses, such as H5N1, H5N6, H7N1 and H10N8, has continued to cause disease in humans in recent years. In 2013, another novel influenza A (H7N9) virus emerged in China, and 30% of those patients died. Pregnant women are particularly susceptible to avian influenza and are more likely to develop severe complications and to die, especially when infection occurs in the middle and late trimesters. Viremia is believed to occur infrequently, and thus vertical transmission induced by avian influenza appears to be rare. However, avian influenza increases the risk of adverse pregnancy outcomes, including spontaneous abortion, preterm birth and fatal distress. This review summarises 39 cases of pregnant women and their fetuses from different countries dating back to 1997, including 11, 15 and 13 infections with H7N9, H5N1 and the 2009 pandemic influenza (H1N1), respectively. We analysed the epidemic features, following the geographical, population and pregnancy trimester distributions; underlying diseases; exposure history; medical timelines; human-to-human transmission; pathogenicity and vertical transmission; antivirus treatments; maternal severity and mortality and pregnancy outcome. The common experiences reported in different countries and areas suggest that early identification and treatment are imperative. In the future, vigilant virologic and epidemiologic surveillance systems should be developed to monitor avian influenza viruses during pregnancy. Furthermore, extensive study on the immune mechanisms should be conducted, as this will guide safe, rational immunomodulatory treatment among this high-risk population. Most importantly, we should develop a universal avian influenza virus vaccine to prevent outbreaks of the different subtypes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Environmental Correlates of H5N2 Low Pathogenicity Avian Influenza Outbreak Heterogeneity in Domestic Poultry in Italy

    PubMed Central

    Mughini-Gras, Lapo; Bonfanti, Lebana; Mulatti, Paolo; Monne, Isabella; Guberti, Vittorio; Cordioli, Paolo; Marangon, Stefano

    2014-01-01

    Italy has experienced recurrent incursions of H5N2 avian influenza (AI) viruses in different geographical areas and varying sectors of the domestic poultry industry. Considering outbreak heterogeneity rather than treating all outbreaks of low pathogenicity AI (LPAI) viruses equally is important given their interactions with the environment and potential to spread, evolve and increase pathogenicity. This study aims at identifying potential environmental drivers of H5N2 LPAI outbreak occurrence in time, space and poultry populations. Thirty-four environmental variables were tested for association with the characteristics of 27 H5N2 LPAI outbreaks (i.e. time, place, flock type, number and species of birds affected) occurred among domestic poultry flocks in Italy in 2010–2012. This was done by applying a recently proposed analytical approach based on a combined non-metric multidimensional scaling, clustering and regression analysis. Results indicated that the pattern of (dis)similarities among the outbreaks entailed an underlying structure that may be the outcome of large-scale, environmental interactions in ecological dimension. Increased densities of poultry breeders, and increased land coverage by industrial, commercial and transport units were associated with increased heterogeneity in outbreak characteristics. In areas with high breeder densities and with many infrastructures, outbreaks affected mainly industrial turkey/layer flocks. Outbreaks affecting ornamental, commercial and rural multi-species flocks occurred mainly in lowly infrastructured areas of northern Italy. Outbreaks affecting rural layer flocks occurred mainly in areas with low breeder densities in south-central Italy. In savannah-like environments, outbreaks affected mainly commercial flocks of galliformes. Suggestive evidence that ecological ordination makes sense genetically was also provided, as virus strains showing high genetic similarity clustered into ecologically similar outbreaks

  4. North American Plan for Avian and Pandemic Influenza

    DTIC Science & Technology

    2007-08-01

    Canada, Mexico and the United States face a growing threat posed by the spread of avian influenza and the potential emergence of a human influenza...pandemic. The highly pathogenic (HPAI) H5N1 avian influenza virus, which re-emerged in Asia in late 2003, has already spread to Europe, the Middle East...to work together to combat an outbreak of avian influenza or an influenza pandemic in North America. The Plan complements national emergency

  5. Safe application of regionalization for trade in poultry and poultry products during highly pathogenic avian influenza outbreaks in the USA.

    PubMed

    Swayne, David E; Hill, Rick E; Clifford, John

    2017-04-01

    The 2014-2015 H5Nx high pathogenicity avian influenza (HPAI) outbreak affected 211 commercial premises, 21 backyard flocks, 75 individual wild birds and four captive-reared raptors in 21 Western and upper Midwestern states, resulting in death or culling of over 50.4 million poultry in the stamping-out programme that cost the US government $850 million. The outbreak had a negative $3.3 billion impact on the economy. Seventeen trading partners suspended imports of all US-origin poultry and poultry products while 38 trading partners regionalized the United States, and allowed trade in poultry and poultry products to continue from areas of the US not affected by HPAI. Disease response and control activities in addition to the use of comprehensive surveillance and regionalization (zoning) as prescribed by the OIE Terrestrial Animal Health Code are a scientifically valid and effective means to maintain safe trade in poultry and poultry products. This was further realized during the 2016 H7N8 HPAI outbreak in Dubois County, Indiana, with greater acceptance of regionalization and continuity in trade with a more limited cost of $30 million for eradication.

  6. Migration of Whooper Swans and Outbreaks of Highly Pathogenic Avian Influenza H5N1 Virus in Eastern Asia

    PubMed Central

    Newman, Scott H.; Iverson, Samuel A.; Takekawa, John Y.; Gilbert, Martin; Prosser, Diann J.; Batbayar, Nyambyar; Natsagdorj, Tseveenmyadag; Douglas, David C.

    2009-01-01

    Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003–2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds. PMID:19479053

  7. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in Eastern Asia

    USGS Publications Warehouse

    Newman, Scott H.; Iverson, Samuel A.; Takekawa, John Y.; Gilbert, Martin; Prosser, Diann J.; Batbayar, Nyambyar; Natsagdorj, Tseveenmyadag; Douglas, David C.

    2009-01-01

    Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003-2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds.

  8. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in eastern Asia.

    PubMed

    Newman, Scott H; Iverson, Samuel A; Takekawa, John Y; Gilbert, Martin; Prosser, Diann J; Batbayar, Nyambyar; Natsagdorj, Tseveenmyadag; Douglas, David C

    2009-05-28

    Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003-2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds.

  9. Risk factors and characteristics of H5N1 Highly Pathogenic Avian Influenza (HPAI) post-vaccination outbreaks.

    PubMed

    Henning, Joerg; Pfeiffer, Dirk U; Vu, Le Tri

    2009-01-01

    Highly pathogenic avian influenza (HPAI) virus H5N1 is now endemic in South-East Asia but HPAI control methods differ between countries. A widespread HPAI vaccination campaign that started at the end of 2005 in Viet Nam resulted in the cessation of poultry and human cases, but in 2006/2007 severe HPAI outbreaks re-emerged. In this study we investigated the pattern of this first post-vaccination epidemic in southern Viet Nam identifying a spatio-temporal cluster of outbreak occurrence and estimating spatially smoothed incidence rates of HPAI. Spatial risk factors associated with HPAI occurrence were identified. Medium-level poultry density resulted in an increased outbreak risk (Odds ratio (OR) = 5.4, 95% confidence interval (CI): 1.6-18.9) but also climate-vegetation factors played an important role: medium-level normalised difference vegetation indices during the rainy season from May to October were associated with higher risk of HPAI outbreaks (OR = 3.7, 95% CI: 1.7-8.1), probably because temporal flooding might have provided suitable conditions for the re-emergence of HPAI by expanding the virus distribution in the environment and by enlarging areas of possible contacts between domestic waterfowl and wild birds. On the other hand, several agricultural production factors, such as sweet potatoes yield, increased buffalo density, as well as increased electricity supply were associated with decreased risk of HPAI outbreaks. This illustrates that preventive control measures for HPAI should include a promotion of low-risk agricultural management practices as well as improvement of the infrastructure in village households. Improved HPAI vaccination efforts and coverage should focus on medium poultry density areas and on the pre-monsoon time period.

  10. [Is avian influenza a risk for humans?].

    PubMed

    Allwinn, R; Doerr, H W

    2005-04-15

    Avian influenza is an infectious disease of birds, caused by type A strains of the influenza virus. The disease, which was first identified in Italy more than 100 years ago, occurs worldwide. Avian influenza viruses are mainly distributed by migratory birds. Different mammals like swine, horse and finally humans are susceptible for avian influenza viruses. The high possibility of genomic changes like gene shift and drift is caused by the segmented RNA genome. During the avian flu outbreak in East Asia at the end of 2003 the virus also killed several humans in Vietnam and Thailand. That avian influenza could also infect humans has been known since 1997. The H5N1 flu outbreak seemed successfully controlled, but currently new cases in poultry and humans in Vietnam, Thailand, China and Indonesia are recognized. Also another avian influenza A strain type H9N2 was prevalent in chickens of local markets in Hong Kong. Because of the natural virus reservoir like wild and/ or domesticated ducks and others, actually there is little chance of eradicating avian influenza. Furthermore the virus could mutate and jump to humans with the threat of a global influenza pandemic.

  11. A PROPOSED TAXONOMY FOR CHARACTERIZATION AND ASSESSMENT OF AVIAN INFLUENZA OUTBREAKS

    PubMed Central

    Mohammed, Sule L.; Lehmann, Harold P.; Kim, George R.

    2009-01-01

    Purpose The speed and high potential impact of Avian Influenza’s (AI) on local bird populations, poultry economies and human health make timely and coordinated characterization, assessment and response to possible threats essential. To achieve effective collaboration, stakeholders (public health, medical, veterinary, and agricultural professionals) must be able to communicate and record findings, assessments, and actions in a standard fashion. We seek to discern a taxonomy of concepts and relationships that are important to the stakeholder community when sharing information about the characterization and assessment of an AI outbreak, according to a consistent and common perspective, interpretation, and level of detail. Methods To derive concepts relevant to AI characterization and assessment, we reviewed selected journal articles, reporting and laboratory forms, and public health Websites associated with AI case reporting. We mapped concepts to existing medical terminologies when possible, using the Unified Medical Language System MetaMap. Results From 54 distinct information sources, we extracted 1113 concepts, of which 533 mapped to 15 medical terminologies; 580 did not map to specific terminologies. Using a combination of semantic type-relationship matching and expert consensus, we constructed the proposed taxonomy, with linkages to existing terminologies where pragmatic. Conclusion The proposed taxonomy describes core knowledge, data and communication needs for the characterization and assessment of AI outbreaks in the context of existing medical terminologies across different domains. We also describe areas for further work. PMID:18805050

  12. Isolation and characterization of influenza A virus (subtype H5N1) that caused the first highly pathogenic avian influenza outbreak in chicken in Bhutan.

    PubMed

    Dubey, S C; Dahal, N; Nagarajan, S; Tosh, C; Murugkar, H V; Rinzin, K; Sharma, B; Jain, R; Katare, M; Patil, S; Khandia, R; Syed, Z; Tripathi, S; Behera, P; Kumar, M; Kulkarni, D D; Krishna, Lal

    2012-02-24

    We characterized Influenza A/H5N1 virus that caused the first outbreak of highly pathogenic avian influenza (HPAI) in chickens in Bhutan in 2010. The virus was highly virulent to chicken, killing them within two days of the experimental inoculation with an intravenous pathogenicity index (IVPI) of 2.88. For genetic and phylogenetic analyses, complete genome sequencing of 4 viral isolates was carried out. The isolates revealed multiple basic amino acids at their hemagglutinin (HA) cleavage site, similar to other "Qinghai-like" H5N1 isolates. The receptor-binding site of HA molecule contained avian-like amino acids ((222)Q and (224)G). The isolates also contained amino acid residue K at position 627 of the PB2 protein, and other markers in NS 1 and PB1 proteins, highlighting the risk to mammals. However, the isolates were sensitive to influenza drugs presently available in the market. The sequence analysis indicated that the Bhutan viruses shared 99.1-100% nucleotide homology in all the eight genes among themselves and 2010 chicken isolate from Bangladesh (A/chicken/Bangladesh/1151-11/2010) indicating common progenitor virus. The phylogenetic analysis indicated that the Bhutan isolates belonged to sub-clade 2.2.3 (EMA 3) and shared common progenitor virus with the 2010 Bangladesh virus. Based on the evidence of phylogeny and molecular markers, it could be concluded that the outbreaks in Bhutan and Bangladesh in 2010 were due to independent introductions of the virus probably through migratory birds. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Movements of Wild Ruddy Shelducks in the Central Asian Flyway and Their Spatial Relationship to Outbreaks of Highly Pathogenic Avian Influenza H5N1

    PubMed Central

    Takekawa, John Y.; Prosser, Diann J.; Collins, Bridget M.; Douglas, David C.; Perry, William M.; Yan, Baoping; Ze, Luo; Hou, Yuansheng; Lei, Fumin; Li, Tianxian; Li, Yongdong; Newman, Scott H.

    2013-01-01

    Highly pathogenic avian influenza H5N1 remains a serious concern for both poultry and human health. Wild waterfowl are considered to be the reservoir for low pathogenic avian influenza viruses; however, relatively little is known about their movement ecology in regions where HPAI H5N1 outbreaks regularly occur. We studied movements of the ruddy shelduck (Tadorna ferruginea), a wild migratory waterfowl species that was infected in the 2005 Qinghai Lake outbreak. We defined their migration with Brownian Bridge utilization distribution models and their breeding and wintering grounds with fixed kernel home ranges. We correlated their movements with HPAI H5N1 outbreaks, poultry density, land cover, and latitude in the Central Asian Flyway. Our Akaike Information Criterion analysis indicated that outbreaks were correlated with land cover, latitude, and poultry density. Although shelduck movements were included in the top two models, they were not a top parameter selected in AICc stepwise regression results. However, timing of outbreaks suggested that outbreaks in the flyway began during the winter in poultry with spillover to wild birds during the spring migration. Thus, studies of the movement ecology of wild birds in areas with persistent HPAI H5N1 outbreaks may contribute to understanding their role in transmission of this disease. PMID:24022072

  14. Movements of wild ruddy shelducks in the Central Asian Flyway and their spatial relationship to outbreaks of highly pathogenic avian influenza H5N1

    USGS Publications Warehouse

    Takekawa, John Y.; Prosser, Diann J.; Collins, Bridget M.; Douglas, David C.; Perry, William M.; Baoping, Yan; Luo, Ze; Hou, Yuansheng; Lei, Fumin; Li, Tianxian; Li, Yongdong; Newman, Scott H.

    2013-01-01

    Highly pathogenic avian influenza H5N1 remains a serious concern for both poultry and human health. Wild waterfowl are considered to be the reservoir for low pathogenic avian influenza viruses; however, relatively little is known about their movement ecology in regions where HPAI H5N1 outbreaks regularly occur. We studied movements of the ruddy shelduck (Tadorna ferruginea), a wild migratory waterfowl species that was infected in the 2005 Qinghai Lake outbreak. We defined their migration with Brownian Bridge utilization distribution models and their breeding and wintering grounds with fixed kernel home ranges. We correlated their movements with HPAI H5N1 outbreaks, poultry density, land cover, and latitude in the Central Asian Flyway. Our Akaike Information Criterion analysis indicated that outbreaks were correlated with land cover, latitude, and poultry density. Although shelduck movements were included in the top two models, they were not a top parameter selected in AICc stepwise regression results. However, timing of outbreaks suggested that outbreaks in the flyway began during the winter in poultry with spillover to wild birds during the spring migration. Thus, studies of the movement ecology of wild birds in areas with persistent HPAI H5N1 outbreaks may contribute to understanding their role in transmission of this disease.

  15. An evaluation of the use of short message service during an avian influenza outbreak on a poultry farm in Young.

    PubMed

    Stephenson, Lisa M; Biggs, Janice S; Sheppeard, Vicky; Oakman, Tracey L

    2016-06-30

    In 2013 an avian influenza outbreak occurred in a large poultry farm in Young (approximately 2 hours north-west of Canberra.) The responsible strain was H7N2, which is highly pathogenic and can affect humans. Daily surveillance was required for those individuals who were possibly exposed. This was conducted through the use of daily message through the short message service (SMS). A total of 55 people were identified as having had high risk exposure and requiring monitoring during the surveillance period from 16 to 25 October 2013. A SMS message was sent daily to each contact within 2 groups. (Group 1 were contacts who agreed to take Tamiflu prophylaxis, and Group 2 were contacts who were under surveillance but declined Tamiflu prophylaxis). The average daily response rate for SMS was 66% (median 75%) over a 9 day period. Of those who nominated to receive the daily SMS 98% confirmed they'd received the SMS and it reminded them to take their Tamiflu medication. The public health unit (PHU) team found the use of SMS to be less time consuming than conducting telephone follow-up interviews. The PHU team believed that the use of the technology decreased the likelihood of additional staff being required to assist in the outbreak. Utilising SMS was a new initiative for the PHU and staff found it overall easy to use. These findings confirm there can be significant benefits to using SMS during a large surveillance activity. The application of SMS during this outbreak was estimated at 2.5 times more cost effective that telephone follow-ups and would substantially reduce staffing costs further in the event of a very large outbreak.

  16. Etiology and pathology of epidemic outbreaks of avian influenza H5N1 infection in Egyptian chicken farms.

    PubMed

    Ali, A; Elmowalid, G; Abdel-Glil, M; Sharafeldin, T; Abdallah, F; Mansour, S; Nagy, A; Ahmed, B; Abdelmoneim, M

    2015-01-01

    Epidemic outbreaks of avian influenza (AI) virus H5N1 have been frequently reported in Egypt during the last nine years. Here we investigate the involvement of AI H5N1 in outbreaks of acute respiratory disease that occurred in several commercial chicken farms in Egypt in 2011, and we describe to the pathology caused by the virus in the course of the outbreak. Twenty-one chicken farms with history of acute respiratory symptoms and high mortalities were screened for AI H5N1. Virus identification was based on hemagglutination inhibition test, and PCR detection and sequencing of the hemagglutinin and neuraminidase genes. Virus distribution was determined by immunohistochemical staining of AI antigens in organs of infected birds. Standard H&E staining was performed for histological examination of affected organs. Eighty-one % of the examined birds, representing 100% of the screened farms, were positive for AI H5N1 virus. Phylogenetic analysis of the hemagglutinin and neuraminidase genes of the isolated virus reveals its affiliation to clade 2.2.1. Viral antigens were localized in the endothelial cells of the heart, liver, lungs and skin, where pathological lesions including congestion, hemorrhages, multifocal inflammation and necrosis were concurrently observed. According to the pattern of the viral antigen and lesion distribution in the visceral organs, we suggest cardiovascular and circulatory failures as the probable cause of death during these outbreaks. In conclusion, the present study further confirms the epidemic status of AI H5N1 virus in Egypt and reveals the highly pathogenic nature of the local isolates.

  17. Nonlinear dynamics of avian influenza epidemic models.

    PubMed

    Liu, Sanhong; Ruan, Shigui; Zhang, Xinan

    2017-01-01

    Avian influenza is a zoonotic disease caused by the transmission of the avian influenza A virus, such as H5N1 and H7N9, from birds to humans. The avian influenza A H5N1 virus has caused more than 500 human infections worldwide with nearly a 60% death rate since it was first reported in Hong Kong in 1997. The four outbreaks of the avian influenza A H7N9 in China from March 2013 to June 2016 have resulted in 580 human cases including 202 deaths with a death rate of nearly 35%. In this paper, we construct two avian influenza bird-to-human transmission models with different growth laws of the avian population, one with logistic growth and the other with Allee effect, and analyze their dynamical behavior. We obtain a threshold value for the prevalence of avian influenza and investigate the local or global asymptotical stability of each equilibrium of these systems by using linear analysis technique or combining Liapunov function method and LaSalle's invariance principle, respectively. Moreover, we give necessary and sufficient conditions for the occurrence of periodic solutions in the avian influenza system with Allee effect of the avian population. Numerical simulations are also presented to illustrate the theoretical results. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Avian influenza: an emerging pandemic threat.

    PubMed

    Jin, Xian Wen; Mossad, Sherif B

    2005-12-01

    While we are facing the threat of an emerging pandemic from the current avian flu outbreak in Asia, we have learned important traits of the virus responsible for the 1918 Spanish influenza pandemic that made it so deadly. By using stockpiled antiviral drugs effectively and developing an effective vaccine, we can be in a better position than ever to mitigate the global impact of an avian influenza pandemic.

  19. Avian flu to human influenza.

    PubMed

    Lewis, David B

    2006-01-01

    Influenza A viral infection causes substantial annual morbidity and mortality worldwide, particularly for infants, the elderly, and the immunocompromised. The virus mainly replicates in the respiratory tract and is spread by respiratory secretions. A growing concern is the recent identification of H5N1 strains of avian influenza A in Asia that were previously thought to infect only wild birds and poultry, but have now infected humans, cats, pigs, and other mammals, often with fatal results, in an ongoing outbreak. A human pandemic with H5N1 virus could potentially be catastrophic because most human populations have negligible antibody-mediated immunity to the H5 surface protein and this viral subtype is highly virulent. Whether an H5N1 influenza pandemic will occur is likely to hinge on whether the viral strains involved in the current outbreak acquire additional mutations that facilitate efficient human-to-human transfer of infection. Although there is no historical precedent for an H5N1 avian strain causing widespread human-to-human transmission, some type of influenza A pandemic is very likely in the near future. The possibility of an H5N1 influenza pandemic has highlighted the many current limitations of treatment with antiviral agents and of vaccine production and immunogenicity. Future vaccine strategies that may include more robust induction of T-cell responses, such as cytotoxic T lymphocytes, may provide better protection than is offered by current vaccines, which rely solely or mainly on antibody neutralization of infection.

  20. Avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Avian influenza (AI) is caused by type A influenza virus, a member of the Orthomyxoviridae family. AI viruses are serologically categorized into 16 hemagglutinin (H1-H16) and 9 neuraminidase (N1-N9) subtypes. All subtypes have been identified in birds. Infections by AI viruses have been reported in ...

  1. Avian Influenza/Pandemic Influenza Program

    DTIC Science & Technology

    2006-09-01

    Defense Global Emerging Infections Surveillance and Response System (DoD-GEIS) research related to avian influenza and pandemic influenza preparedness and...surveillance and efforts in support of research related to avian influenza /pandemic influenza. The results of these efforts will be coordinated with the

  2. Identifying spatio-temporal patterns of transboundary disease spread: examples using avian influenza H5N1 outbreaks

    PubMed Central

    Farnsworth, Matthew L.; Ward, Michael P.

    2009-01-01

    Characterizing spatio-temporal patterns among epidemics in which the mechanism of spread is uncertain is important for generating disease spread hypotheses, which may in turn inform disease control and prevention strategies. Using a dataset representing three phases of highly pathogenic avian influenza H5N1 outbreaks in village poultry in Romania, 2005–2006, spatio-temporal patterns were characterized. We first fit a set of hierarchical Bayesian models that quantified changes in the spatio-temporal relative risk for each of the 23 affected counties. We then modeled spatial synchrony in each of the three epidemic phases using non-parametric covariance functions and Thin Plate Spline regression models. We found clear differences in the spatio-temporal patterns among the epidemic phases (local versus regional correlated processes), which may indicate differing spread mechanisms (for example wild bird versus human-mediated). Elucidating these patterns allowed us to postulate that a shift in the primary mechanism of disease spread may have taken place between the second and third phases of this epidemic. Information generated by such analyses could assist affected countries in determining the most appropriate control programs to implement, and to allocate appropriate resources to preventing contact between domestic poultry and wild birds versus enforcing bans on poultry movements and quarantine. The methods used in this study could be applied in many different situations to analyze transboundary disease data in which only location and time of occurrence data are reported. PMID:19210952

  3. Stockpiling drugs for an avian influenza outbreak: examining the surge in oseltamivir prescriptions during heightened media coverage of the potential for a worldwide pandemic.

    PubMed

    Gasink, Leanne B; Linkin, Darren R; Fishman, Neil O; Bilker, Warren B; Weiner, Mark G; Lautenbach, Ebbing

    2009-04-01

    During fall 2005, personal stockpiling of oseltamivir for use during an outbreak of H5N1 influenza virus infection was widely reported. The present study aimed to identify indications for oseltamivir prescriptions to determine whether oseltamivir that was not intended for seasonal influenza was inappropriately consumed and to compare persons who were likely to have stockpiled oseltamivir and those who did not with respect to their knowledge, understanding, concerns, and expectations regarding avian influenza. Survey to evaluate usage patterns for oseltamivir and assess views about avian influenza. A total of 109 outpatients who received a prescription for oseltamivir between September 1, 2005, and December 31, 2005, and 825 matched control subjects. Of 109 prescriptions, 36 (33.0%) were prescribed for patients with appropriate indications. Sixty-eight (62.4%) of 109 patients identified as having received oseltamivir and 440 (53.3%) of 825 individuals identified as not having received it responded to the questionnaire. Only 2 prescription recipients whose oseltamivir was not intended for immediate consumption reported that they had consumed the oseltamivir. Persons who probably intended to stockpile oseltamivir were older and more often white than those unlikely to stockpile it. They also reported greater worry about avian influenza and more often expected avian influenza to spread to the United States than those unlikely to stockpile, but there were no significant differences in responses to other questionnaire items. A large proportion of the oseltamivir prescriptions written in fall 2005 were probably intended for personal stockpiling. Similarities in participants' responses to questionnaire items suggest that educational campaigns may not be an effective method to curtail stockpiling of antimicrobial medications during an infectious threat. Promoting appropriate prescribing practices among providers may be a better means by which to minimize personal stockpiling.

  4. Understanding the 2013 H7N9 avian influenza outbreak in poultry: field epidemiology and experimental pathogenesis studies

    USDA-ARS?s Scientific Manuscript database

    The influenza A (H7N9) virus is of avian origin and is responsible for infections in human in large urban areas of China in spring 2013. The original source of the virus from poultry farms is unknown but the live poultry market (LPM) system has served as an amplifier of the virus, especially in whol...

  5. Surveillance for highly pathogenic H5 avian influenza virus in synanthropic wildlife associated with poultry farms during an acute outbreak

    USDA-ARS?s Scientific Manuscript database

    In November 2014, a Eurasian strain H5N8 highly pathogenic avian influenza virus was detected in poultry in Canada. Introduced viruses were soon detected in the United States and within six months had spread to 21 states with more than 48 million poultry affected. In an effort to study potential mec...

  6. Outbreaks of highly pathogenic Eurasian H5N8 avian influenza in two commercial poultry flocks in California

    USDA-ARS?s Scientific Manuscript database

    In January 2015, a highly pathogenic Eurasian lineage H5N8 avian influenza (AI) virus was detected in a commercial meat turkey flock in Stanislaus County, California. Approximately 3 weeks later, a similar case was diagnosed in commercial chickens from a different company located in Kings County, C...

  7. Avian influenza control strategies

    USDA-ARS?s Scientific Manuscript database

    Control strategies for avian influenza in poultry vary depending on whether the goal is prevention, management, or eradication. Components used in control programs include: 1) education which includes communication, public awareness, and behavioral change, 2) changes to production and marketing sys...

  8. Avian influenza (fowl plague)

    USDA-ARS?s Scientific Manuscript database

    Avian influenza (AI) viruses infect domestic poultry and wild birds. In domestic poultry, AI viruses are typically of low pathogenicity (LP) causing subclinical infections, respiratory disease or drops in egg production. However, a few AI viruses cause severe systemic disease with high mortality; ...

  9. Deep sequencing of H7N8 avian influenza viruses from surveillance zone supports H7N8 high pathogenicity avian influenza was limited to a single outbreak farm in Indiana during 2016.

    PubMed

    Lee, Dong-Hun; Torchetti, Mia Kim; Killian, Mary Lea; Swayne, David E

    2017-07-01

    In mid-January 2016, an outbreak of H7N8 high-pathogenicity avian influenza virus (HPAIV) in commercial turkeys occurred in Indiana. Surveillance within the 10km control zone identified H7N8 low-pathogenicity avian influenza virus (LPAIV) in nine surrounding turkey flocks but no other HPAIV-affected premises. We sequenced four of the H7N8 HPAIV isolated from the single farm and nine LPAIV identified during control zone surveillance. Evaluation included phylogenetic network analysis indicating close relatedness across the HPAIV and LPAIV, and that the progenitor H7N8 LPAIV spread among the affected turkey farms in Indiana, followed by spontaneous mutation to HPAIV on a single premise through acquisition of three basic amino acids at the hemagglutinin cleavage site. Deep sequencing of the available viruses failed to identify subpopulations in either the HPAIV or LPAIV suggesting mutation to HPAIV likely occurred on a single farm and the HPAIV did not spread to epidemiologically linked LPAIV-affected farms. Published by Elsevier Inc.

  10. Highly pathogenic avian influenza A(H5N8) outbreaks: protection and management of exposed people in Europe, 2014/15 and 2016

    PubMed Central

    Adlhoch, Cornelia; Brown, Ian H.; Angelova, Svetla G.; Bálint, Ádám; Bouwstra, Ruth; Buda, Silke; Castrucci, Maria R.; Dabrera, Gavin; Dán, Ádám; Grund, Christian; Harder, Timm; van der Hoek, Wim; Krisztalovics, Katalin; Parry-Ford, Frances; Popescu, Rodica; Wallensten, Anders; Zdravkova, Anna; Zohari, Siamak; Tsolova, Svetla; Penttinen, Pasi

    2016-01-01

    Introduction of highly pathogenic avian influenza (HPAI) virus A(H5N8) into Europe prompted animal and human health experts to implement protective measures to prevent transmission to humans. We describe the situation in 2016 and list public health measures and recommendations in place. We summarise critical interfaces identified during the A(H5N1) and A(H5N8) outbreaks in 2014/15. Rapid exchange of information between the animal and human health sectors is critical for a timely, effective and efficient response. PMID:27983512

  11. Highly pathogenic avian influenza A(H5N8) outbreaks: protection and management of exposed people in Europe, 2014/15 and 2016.

    PubMed

    Adlhoch, Cornelia; Brown, Ian H; Angelova, Svetla G; Bálint, Ádám; Bouwstra, Ruth; Buda, Silke; Castrucci, Maria R; Dabrera, Gavin; Dán, Ádám; Grund, Christian; Harder, Timm; van der Hoek, Wim; Krisztalovics, Katalin; Parry-Ford, Frances; Popescu, Rodica; Wallensten, Anders; Zdravkova, Anna; Zohari, Siamak; Tsolova, Svetla; Penttinen, Pasi

    2016-12-08

    Introduction of highly pathogenic avian influenza (HPAI) virus A(H5N8) into Europe prompted animal and human health experts to implement protective measures to prevent transmission to humans. We describe the situation in 2016 and list public health measures and recommendations in place. We summarise critical interfaces identified during the A(H5N1) and A(H5N8) outbreaks in 2014/15. Rapid exchange of information between the animal and human health sectors is critical for a timely, effective and efficient response.

  12. Influenza vaccines for avian species.

    PubMed

    Kapczynski, Darrell R; Swayne, David E

    2009-01-01

    Beginning in Southeast Asia in 2003, a multinational epizootic outbreak of H5N1 highly pathogenic avian influenza (HPAI) was identified in commercial poultry and wild bird species. This lineage, originally identified in Southern China in 1996 and then Hong Kong in 1997, caused severe morbidity and mortality in many bird species, was responsible for considerable economic losses via trade restrictions, and crossed species barriers (including its recovery from human cases). To date, these H5N1 HPAI viruses have been isolated in European, Middle Eastern, and African countries, and are considered endemic in many areas where regulatory control and different production sectors face substantial hurdles in controlling the spread of this disease. While control of avian influenza (AI) virus infections in wild bird populations may not be feasible at this point, control and eradiation of AI from commercial, semicommercial, zoo, pet, and village/backyard birds will be critical to preventing events that could lead to the emergence of epizootic influenza virus. Efficacious vaccines can help reduce disease, viral shedding, and transmission to susceptible cohorts. However, only when vaccines are used in a comprehensive program including biosecurity, education, culling, diagnostics and surveillance can control and eradication be considered achievable goals. In humans, protection against influenza is provided by vaccines that are chosen based on molecular, epidemiologic, and antigenic data. In poultry and other birds, AI vaccines are produced against a specific hemagglutinin subtype of AI, and use is decided by government and state agricultural authorities based on risk and economic considerations, including the potential for trade restrictions. In the current H5N1 HPAI epizootic, vaccines have been used in a variety of avian species as a part of an overall control program to aid in disease management and control.

  13. Control of Avian Influenza in Poultry

    PubMed Central

    Marangon, Stefano

    2006-01-01

    Avian influenza, listed by the World Organization for Animal Health (OIE), has become a disease of great importance for animal and human health. Several aspects of the disease lack scientific information, which has hampered the management of some recent crises. Millions of animals have died, and concern is growing over the loss of human lives and management of the pandemic potential. On the basis of data generated in recent outbreaks and in light of new OIE regulations and maintenance of animal welfare, we review the available control methods for avian influenza infections in poultry, from stamping out to prevention through emergency and prophylactic vaccination. PMID:17073078

  14. Avian influenza: a pandemic waiting in the wings?

    PubMed

    Hampson, Alan W

    2006-01-01

    Recent widespread outbreaks of avian influenza and, associated with these a growing number of human infections with a high mortality rate, have raised concerns that this might be the prelude to a severe pandemic of human influenza. As a background to these concerns the present article reviews influenza as a human disease, its origins and the involvement of other species, properties of the influenza viruses and the current status of influenza prevention and control.

  15. Pandemic Threat Posed by Avian Influenza A Viruses

    PubMed Central

    Horimoto, Taisuke; Kawaoka, Yoshihiro

    2001-01-01

    Influenza pandemics, defined as global outbreaks of the disease due to viruses with new antigenic subtypes, have exacted high death tolls from human populations. The last two pandemics were caused by hybrid viruses, or reassortants, that harbored a combination of avian and human viral genes. Avian influenza viruses are therefore key contributors to the emergence of human influenza pandemics. In 1997, an H5N1 influenza virus was directly transmitted from birds in live poultry markets in Hong Kong to humans. Eighteen people were infected in this outbreak, six of whom died. This avian virus exhibited high virulence in both avian and mammalian species, causing systemic infection in both chickens and mice. Subsequently, another avian virus with the H9N2 subtype was directly transmitted from birds to humans in Hong Kong. Interestingly, the genes encoding the internal proteins of the H9N2 virus are genetically highly related to those of the H5N1 virus, suggesting a unique property of these gene products. The identification of avian viruses in humans underscores the potential of these and similar strains to produce devastating influenza outbreaks in major population centers. Although highly pathogenic avian influenza viruses had been identified before the 1997 outbreak in Hong Kong, their devastating effects had been confined to poultry. With the Hong Kong outbreak, it became clear that the virulence potential of these viruses extended to humans. PMID:11148006

  16. Pandemic threat posed by avian influenza A viruses.

    PubMed

    Horimoto, T; Kawaoka, Y

    2001-01-01

    Influenza pandemics, defined as global outbreaks of the disease due to viruses with new antigenic subtypes, have exacted high death tolls from human populations. The last two pandemics were caused by hybrid viruses, or reassortants, that harbored a combination of avian and human viral genes. Avian influenza viruses are therefore key contributors to the emergence of human influenza pandemics. In 1997, an H5N1 influenza virus was directly transmitted from birds in live poultry markets in Hong Kong to humans. Eighteen people were infected in this outbreak, six of whom died. This avian virus exhibited high virulence in both avian and mammalian species, causing systemic infection in both chickens and mice. Subsequently, another avian virus with the H9N2 subtype was directly transmitted from birds to humans in Hong Kong. Interestingly, the genes encoding the internal proteins of the H9N2 virus are genetically highly related to those of the H5N1 virus, suggesting a unique property of these gene products. The identification of avian viruses in humans underscores the potential of these and similar strains to produce devastating influenza outbreaks in major population centers. Although highly pathogenic avian influenza viruses had been identified before the 1997 outbreak in Hong Kong, their devastating effects had been confined to poultry. With the Hong Kong outbreak, it became clear that the virulence potential of these viruses extended to humans.

  17. The genome sequence analysis of H5N1 avian influenza A virus isolated from the outbreak among poultry populations in Thailand.

    PubMed

    Viseshakul, Nareerat; Thanawongnuwech, Roongroje; Amonsin, Alongkorn; Suradhat, Sanipa; Payungporn, Sunchai; Keawchareon, Juthatip; Oraveerakul, Kanisak; Wongyanin, Piya; Plitkul, Sukanya; Theamboonlers, Apiradee; Poovorawan, Yong

    2004-10-25

    In this report, the genome of the Thai avian influenza virus A (H5N1); A/Chicken/Nakorn-Pathom/Thailand/CU-K2/04, isolated from the Thai avian influenza A (AI) epidemic during the early of 2004 was sequenced. Phylogenetic analyses were performed in comparison to AI viruses from Hong Kong 1997 outbreaks and other AI (H5N1) isolates reported during 2001-2004. Molecular characterization of the Thai AI (H5N1) HA gene revealed a common characteristic of a highly pathogenic AI (HPAI), a 20-codon deletion in the neuraminidase gene, a 5-codon deletion in the NS gene and polymorphisms of the M2 and PB2 genes. Moreover, the HA and NA genes of the Thai AI displayed high similarity to those of the AI viruses isolated from human cases during the same epidemic. Finally, our results demonstrated that the Thai AI emerged as a member of 2000's AI lineage with most of the genetic sequences closely related to the Influenza A/Duck/China/E319.2/03 (H5N1).

  18. Epidemiology of the avian influenza A (H7N9) outbreak in Zhejiang Province, China

    PubMed Central

    2014-01-01

    Background A novel influenza A virus infection was identified on March 31, 2013 in China and a total of 134 cases were identified in 12 provinces of China between March 25 and September 31, 2013. Of these, 46 cases occurred in Zhejiang Province and the number of patients is the largest in China. Methods Field investigations were conducted for each confirmed H7N9 case. A standardized questionnaire was used to collect information about demographics, exposure history, clinical signs and symptoms, timelines of medical visits and care after onset of illness, and close contacts. Descriptive statistics were used to analyze the epidemiological and clinical characteristics. Samples from the patients were collected and tested by real time reverse transcriptase-polymerase chain reaction and viral culture. Results A total of 46 laboratory confirmed cases of H7N9 influenza infection were identified in the Zhejiang province between March 31 and September 31, 2013 of which 29 were male and 17 were female. The median age of patients was 61.5 years and 76.09% of cases occurred in persons aged ≥50 years old. Unlike other province, 34.78% of cases in Zhejiang Province were rural residents. Among 11 deaths, 9 were male, 10 were older than 60 years old, and 10 had underlying diseases. 30 of 38 cases with available data had a recent history of poultry exposures and 8 cases had multi-exposure history. The estimated median incubation period was two days which was shorter than corresponding data in other provinces. All cases were hospitalized and the median time from illness onset to hospitalization was 5 days. Symptoms at the onset of the illness included fever, cough, expectoration, shivering, fatigue, muscular aches, nausea, vomiting. Only 4.91% contacts developed respiratory symptoms, but their samples were tested negative for H7N9 virus designating lack of human-to-human transmission of the virus. Conclusions All cases were sporadic and there was no evidence of an epidemiologic

  19. Composting for Avian Influenza Virus Elimination

    PubMed Central

    Emmoth, Eva; Albihn, Ann; Vinnerås, Björn; Ottoson, Jakob

    2012-01-01

    Effective sanitization is important in viral epizootic outbreaks to avoid further spread of the pathogen. This study examined thermal inactivation as a sanitizing treatment for manure inoculated with highly pathogenic avian influenza virus H7N1 and bacteriophages MS2 and ϕ6. Rapid inactivation of highly pathogenic avian influenza virus H7N1 was achieved at both mesophilic (35°C) and thermophilic (45 and 55°C) temperatures. Similar inactivation rates were observed for bacteriophage ϕ6, while bacteriophage MS2 proved too thermoresistant to be considered a valuable indicator organism for avian influenza virus during thermal treatments. Guidelines for treatment of litter in the event of emergency composting can be formulated based on the inactivation rates obtained in the study. PMID:22389376

  20. Risk of Human Infections With Highly Pathogenic H5N2 and Low Pathogenic H7N1 Avian Influenza Strains During Outbreaks in Ostriches in South Africa.

    PubMed

    Venter, Marietjie; Treurnicht, Florette K; Buys, Amelia; Tempia, Stefano; Samudzi, Rudo; McAnerney, Johanna; Jacobs, Charlene A; Thomas, Juno; Blumberg, Lucille

    2017-09-15

    Risk factors for human infection with highly pathogenic (HP) and low-pathogenic (LP) avian influenza (AI) H5N2 and H7N1 were investigated during outbreaks in ostriches in the Western Cape province, South Africa. Serum surveys were conducted for veterinarians, farmworkers, and laboratory and abattoir workers involved in 2 AI outbreaks in the Western Cape province: (1) controlling and culling of 42000 ostriches during (HPAI)H5N2 outbreaks in ostriches (2011) (n = 207); (2) movement control during (LPAI)H7N1 outbreaks in 2012 (n = 66). A third serosurvey was conducted on state veterinarians from across the country in 2012 tasked with disease control in general (n = 37). Antibodies to H5 and H7 were measured by means of hemagglutination inhibition and microneutralization assays, with microneutralization assay titers >40 considered positive. Two of 207 (1%) participants were seropositive for H5 and 4 of 207 (2%) for H7 in 2011, compared with 1 of 66 (1.5%) and 8 of 66 (13%) in 2012. Although individuals in all professions tested seropositive, abattoir workers (10 of 97; 10.3%) were significantly more at risk of influenza A(H7N1) infection (P = .001) than those in other professions (2 of 171;1.2%). Among state veterinarians, 4 of 37(11%) were seropositive for H7 and 1 of 37 (2.7%) for H5. Investigations of (LP)H7N1-associated fatalities in wild birds and quarantined exotic birds in Gauteng, AI outbreaks in poultry in KwaZulu-Natal, and ostriches in Western Cape province provide possible exposure events. (LPAI)H7N1 strains pose a greater infection-risk than (HPAI)H5N2 strains to persons involved in control of outbreaks in infected birds, with ostrich abattoir workers at highest risk.

  1. Avian influenza surveillance and diagnosis

    USDA-ARS?s Scientific Manuscript database

    Rapid detection and accurate identification of low (LPAI) and high pathogenicity avian influenza (HPAI) is critical to controlling infections and disease in poultry. Test selection and algorithms for the detection and diagnosis of avian influenza virus (AIV) in poultry may vary somewhat among differ...

  2. DIVA vaccination strategies for avian influenza virus.

    PubMed

    Suarez, David L

    2012-12-01

    Vaccination for both low pathogenicity avian influenza and highly pathogenic avian influenza is commonly used by countries that have become endemic for avian influenza virus, but stamping-out policies are still common for countries with recently introduced disease. Stamping-out policies of euthanatizing infected and at-risk flocks has been an effective control tool, but it comes at a high social and economic cost. Efforts to identify alternative ways to respond to outbreaks without widespread stamping out has become a goal for organizations like the World Organisation for Animal Health. A major issue with vaccination for avian influenza is trade considerations because countries that vaccinate are often considered to be endemic for the disease and they typically lose their export markets. Primarily as a tool to promote trade, the concept of DIVA (differentiate infected from vaccinated animals) has been considered for avian influenza, but the goal for trade is to differentiate vaccinated and not-infected from vaccinated and infected animals because trading partners are unwilling to accept infected birds. Several different strategies have been investigated for a DIVA strategy, but each has advantages and disadvantages. A review of current knowledge on the research and implementation of the DIVA strategy will be discussed with possible ways to implement this strategy in the field. The increased desire for a workable DIVA strategy may lead to one of these ideas moving from the experimental to the practical.

  3. H5N2 Highly Pathogenic Avian Influenza Viruses from the US 2014-2015 outbreak have an unusually long pre-clinical period in turkeys.

    PubMed

    Spackman, Erica; Pantin-Jackwood, Mary J; Kapczynski, Darrell R; Swayne, David E; Suarez, David L

    2016-11-22

    From December 2014 through June 2015, the US experienced the most costly highly pathogenic avian influenza (HPAI) outbreak to date. Most cases in commercial poultry were caused by an H5N2 strain which was a reassortant with 5 Eurasian lineage genes, including a clade 2.3.4.4 goose/Guangdong/1996 lineage hemagglutinin, and 3 genes from North American wild waterfowl low pathogenicity avian influenza viruses. The outbreak primarily affected turkeys and table-egg layer type chickens. Three isolates were selected for characterization in turkeys: the US index isolate from December 2014 (A/northern pintail/WA/40964/2014), and two poultry isolates from April 2015 (A/chicken/IA/13388/2015 and A/turkey/MN/12528/2015). Four week old broad-breasted white turkeys were inoculated with one of three doses (10(2), 10(4) or 10(6) 50% egg infectious doses [EID50] per bird) of each of the isolates to evaluate infectious dose and pathogenesis. The mean bird infectious dose of A/northern pintail/WA/40964/2014 and A/turkey/MN/12528/2015 was 10(5) EID50 per bird, but was 10(3) EID50 per bird for A/chicken/IA/13388/2015, suggesting the latter had greater adaptation to gallinaceous birds. All three isolates had unusually long mean death time of 5.3-5.9 days post challenge, and the primary clinical signs were severe lethargy and neurological signs which started no more than 24 h before death (the average pre-clinical period was 4 days). Infected turkeys also shed high levels of virus by both the oropharyngeal and cloacal routes. The unusually long mean death times, high levels of virus in feces, and increased adaptation of the later viruses may have contributed to the rapid spread of the virus during the peak of the outbreak.

  4. Avian influenza--a new challenge.

    PubMed

    Laranjeira, C A

    2006-01-01

    To present a wide-ranging review of the literature on avian influenza A (H5N1). The recent epidemics caused by the avian influenza A virus in Asia, have demonstrated the capacity of this agent to cause serious illness in humans. Most articles were obtained from the Medline database using the keywords "Influenza A virus", "avian flu", "epidemiology", "disease vectors" and "H5N1 infection" for the period between 1996 and 2006. We selected 25 original articles addressing the recent outbreaks of infection with the H5N1 subtype of avian influenza A in domesticated birds in Asia, which have resulted in significant economic losses and repercussions for public health, as well as some cases of human infection presenting high lethality. In most cases, infection has been associated with direct exposure to infected birds or contact with surfaces infected with bird excrement. However, cases of human-to-human transmission have been confirmed. Controlling outbreaks in domestic fowl and limiting contact between humans and infected birds must be the priorities in the management of this disease at the public health level. In addition, techniques and knowledge regarding the disease should be widely disseminated (Ref: 28).

  5. Surveillance for highly pathogenic H5 avian influenza virus in synanthropic wildlife associated with poultry farms during an acute outbreak

    PubMed Central

    Shriner, Susan A.; Root, J. Jeffrey; Lutman, Mark W.; Kloft, Jason M.; VanDalen, Kaci K.; Sullivan, Heather J.; White, Timothy S.; Milleson, Michael P.; Hairston, Jerry L.; Chandler, Shannon C.; Wolf, Paul C.; Turnage, Clinton T.; McCluskey, Brian J.; Vincent, Amy L.; Torchetti, Mia K.; Gidlewski, Thomas; DeLiberto, Thomas J.

    2016-01-01

    In November 2014, a Eurasian strain H5N8 highly pathogenic avian influenza virus was detected in poultry in Canada. Introduced viruses were soon detected in the United States and within six months had spread to 21 states with more than 48 million poultry affected. In an effort to study potential mechanisms of spread of the Eurasian H5 virus, the United States Department of Agriculture coordinated several epidemiologic investigations at poultry farms. As part of those efforts, we sampled synanthropic birds and mammals at five infected and five uninfected poultry farms in northwest Iowa for exposure to avian influenza viruses. Across all farms, we collected 2,627 samples from 648 individual birds and mammals. House mice were the most common mammal species captured while house sparrows, European starlings, rock pigeons, swallows, and American robins were the most commonly captured birds. A single European starling was positive for Eurasian H5 viral RNA and seropositive for antibodies reactive to the Eurasian H5 virus. Two American robins were also seropositive. No mammal species showed evidence of infection. These results indicate synanthropic species merit further scrutiny to better understand potential biosecurity risks. We propose a set of management practices aimed at reducing wildlife incursions. PMID:27812044

  6. On avian influenza epidemic models with time delay.

    PubMed

    Liu, Sanhong; Ruan, Shigui; Zhang, Xinan

    2015-12-01

    After the outbreak of the first avian influenza A virus (H5N1) in Hong Kong in 1997, another avian influenza A virus (H7N9) crossed the species barrier in mainland China in 2013 and 2014 and caused more than 400 human cases with a death rate of nearly 40%. In this paper, we take account of the incubation periods of avian influenza A virus and construct a bird-to-human transmission model with different time delays in the avian and human populations combining the survival probability of the infective avian and human populations at the latent time. By analyzing the dynamical behavior of the model, we obtain a threshold value for the prevalence of avian influenza and investigate local and global asymptotical stability of equilibria of the system.

  7. Risk factors of poultry outbreaks and human cases of H5N1 avian influenza virus infection in West Java Province, Indonesia.

    PubMed

    Yupiana, Yuni; de Vlas, Sake J; Adnan, Nana M; Richardus, Jan Hendrik

    2010-09-01

    The purpose of this study was to determine the association of potential risk factors to the spread and maintenance of the highly pathogenic avian influenza (HPAI) H5N1 virus in poultry and humans at the district level in West Java Province, Indonesia. The association of demography and environmental risk factors including poultry density, human density, road density, percentage of paddy field, and percentage of swamp, dyke and pond with both HPAI human cases and HPAI outbreaks in poultry were assessed using a descriptive epidemiological design. We also assessed the association of HPAI outbreaks in poultry with HPAI human cases. Poisson regression (generalized linear modeling and generalized estimating equations) was used to analyze the data corrected for over-dispersion. There were 794 HPAI outbreaks in poultry covering 24 of the 25 districts in our study during 2003-2008 and 34 HPAI human cases involving 12 districts during 2005-2008. We found that two risk factors--poultry density and road density--had a statistically significant correlation with the number of HPAI outbreaks in poultry. The number of poultry outbreaks had a negative association with poultry density (29% effect) and a positive association with road density (67% effect). The number of human cases was significantly associated with the number of poultry outbreaks (34% effect), but with none of the other risk factors considered. We conclude that the most effective way to prevent human HPAI cases is to intervene directly in the poultry sector. Our study further suggests that implementing preventive measures in backyard chicken farming and limiting transport of live poultry and their products are promising options to this end. Copyright © 2010 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. Pathological and Immunohistochemical Findings of Natural Highly Pathogenic Avian Influenza Infection in Tufted Ducks during 2010–2011 Outbreaks in Japan

    PubMed Central

    ABDO, Walied; HARIDY, Mohie; KATOU, Yuki; GOTO, Minami; MIZOGUCHI, Toshio; SAKODA, Yoshihiro; SAKAI, Hiroki; YANAI, Tokuma

    2014-01-01

    ABSTRACT In the winter of 2010–2011, an outbreak of highly pathogenic avian influenza virus (HPAIV) infection occurred in wild and domestic birds in Japan. Tufted ducks were found dead in an urban area of Toyota City, Koriyama, Fukushima Prefecture. Two tufted ducks were examined histopathologically, immunohistochemically and molecularly. Gross findings included marked dark-red clotted blood in the pectoral muscles and multifocal hemorrhages on the serous membranes. Microscopically, non-suppurative meningoencephalitis, multifocal to coalescing pancreatic necrosis and severe pulmonary congestion were observed. HPAIV antigen was detected in the malacic areas, neuronal, glial and ependymal cells, pulmonary capillary endothelial cells and epithelium of pulmonary bronchioles, necrotic pancreatic acini and degenerated cardiac myocytes. The HPAIV isolate was genetically classified into clade 2.3.2.1 group A. The broad distribution of virus antigen in brain and pulmonary tissues associated with HPAIV spontaneous infection in tufted ducks might be useful in understanding its pathogenesis in nature. PMID:24881650

  9. Low-pathogenic avian influenza viruses in wild house mice.

    PubMed

    Shriner, Susan A; VanDalen, Kaci K; Mooers, Nicole L; Ellis, Jeremy W; Sullivan, Heather J; Root, J Jeffrey; Pelzel, Angela M; Franklin, Alan B

    2012-01-01

    Avian influenza viruses are known to productively infect a number of mammal species, several of which are commonly found on or near poultry and gamebird farms. While control of rodent species is often used to limit avian influenza virus transmission within and among outbreak sites, few studies have investigated the potential role of these species in outbreak dynamics. We trapped and sampled synanthropic mammals on a gamebird farm in Idaho, USA that had recently experienced a low pathogenic avian influenza outbreak. Six of six house mice (Mus musculus) caught on the outbreak farm were presumptively positive for antibodies to type A influenza. Consequently, we experimentally infected groups of naïve wild-caught house mice with five different low pathogenic avian influenza viruses that included three viruses derived from wild birds and two viruses derived from chickens. Virus replication was efficient in house mice inoculated with viruses derived from wild birds and more moderate for chicken-derived viruses. Mean titers (EID(50) equivalents/mL) across all lung samples from seven days of sampling (three mice/day) ranged from 10(3.89) (H3N6) to 10(5.06) (H4N6) for the wild bird viruses and 10(2.08) (H6N2) to 10(2.85) (H4N8) for the chicken-derived viruses. Interestingly, multiple regression models indicated differential replication between sexes, with significantly (p<0.05) higher concentrations of avian influenza RNA found in females compared with males. Avian influenza viruses replicated efficiently in wild-caught house mice without adaptation, indicating mice may be a risk pathway for movement of avian influenza viruses on poultry and gamebird farms. Differential virus replication between males and females warrants further investigation to determine the generality of this result in avian influenza disease dynamics.

  10. Low-Pathogenic Avian Influenza Viruses in Wild House Mice

    PubMed Central

    Shriner, Susan A.; VanDalen, Kaci K.; Mooers, Nicole L.; Ellis, Jeremy W.; Sullivan, Heather J.; Root, J. Jeffrey; Pelzel, Angela M.; Franklin, Alan B.

    2012-01-01

    Background Avian influenza viruses are known to productively infect a number of mammal species, several of which are commonly found on or near poultry and gamebird farms. While control of rodent species is often used to limit avian influenza virus transmission within and among outbreak sites, few studies have investigated the potential role of these species in outbreak dynamics. Methodology/Principal Findings We trapped and sampled synanthropic mammals on a gamebird farm in Idaho, USA that had recently experienced a low pathogenic avian influenza outbreak. Six of six house mice (Mus musculus) caught on the outbreak farm were presumptively positive for antibodies to type A influenza. Consequently, we experimentally infected groups of naïve wild-caught house mice with five different low pathogenic avian influenza viruses that included three viruses derived from wild birds and two viruses derived from chickens. Virus replication was efficient in house mice inoculated with viruses derived from wild birds and more moderate for chicken-derived viruses. Mean titers (EID50 equivalents/mL) across all lung samples from seven days of sampling (three mice/day) ranged from 103.89 (H3N6) to 105.06 (H4N6) for the wild bird viruses and 102.08 (H6N2) to 102.85 (H4N8) for the chicken-derived viruses. Interestingly, multiple regression models indicated differential replication between sexes, with significantly (p<0.05) higher concentrations of avian influenza RNA found in females compared with males. Conclusions/Significance Avian influenza viruses replicated efficiently in wild-caught house mice without adaptation, indicating mice may be a risk pathway for movement of avian influenza viruses on poultry and gamebird farms. Differential virus replication between males and females warrants further investigation to determine the generality of this result in avian influenza disease dynamics. PMID:22720076

  11. Quantification of bird-to-bird and bird-to-human infections during 2013 novel H7N9 avian influenza outbreak in China.

    PubMed

    Hsieh, Ying-Hen; Wu, Jianhong; Fang, Jian; Yang, Yong; Lou, Jie

    2014-01-01

    From February to May, 2013, 132 human avian influenza H7N9 cases were identified in China resulting in 37 deaths. We developed a novel, simple and effective compartmental modeling framework for transmissions among (wild and domestic) birds as well as from birds to human, to infer important epidemiological quantifiers, such as basic reproduction number for bird epidemic, bird-to-human infection rate and turning points of the epidemics, for the epidemic via human H7N9 case onset data and to acquire useful information regarding the bird-to-human transmission dynamics. Estimated basic reproduction number for infections among birds is 4.10 and the mean daily number of human infections per infected bird is 3.16*10-5 [3.08*10-5, 3.23*10-5]. The turning point of 2013 H7N9 epidemic is pinpointed at April 16 for bird infections and at April 9 for bird-to-human transmissions. Our result reveals very low level of bird-to-human infections, thus indicating minimal risk of widespread bird-to-human infections of H7N9 virus during the outbreak. Moreover, the turning point of the human epidemic, pinpointed at shortly after the implementation of full-scale control and intervention measures initiated in early April, further highlights the impact of timely actions on ending the outbreak. This is the first study where both the bird and human components of an avian influenza epidemic can be quantified using only the human case data.

  12. Quantification of Bird-to-Bird and Bird-to-Human Infections during 2013 Novel H7N9 Avian Influenza Outbreak in China

    PubMed Central

    Hsieh, Ying-Hen; Wu, Jianhong; Fang, Jian; Yang, Yong; Lou, Jie

    2014-01-01

    From February to May, 2013, 132 human avian influenza H7N9 cases were identified in China resulting in 37 deaths. We developed a novel, simple and effective compartmental modeling framework for transmissions among (wild and domestic) birds as well as from birds to human, to infer important epidemiological quantifiers, such as basic reproduction number for bird epidemic, bird-to-human infection rate and turning points of the epidemics, for the epidemic via human H7N9 case onset data and to acquire useful information regarding the bird-to-human transmission dynamics. Estimated basic reproduction number for infections among birds is 4.10 and the mean daily number of human infections per infected bird is 3.16*10−5 [3.08*10−5, 3.23*10−5]. The turning point of 2013 H7N9 epidemic is pinpointed at April 16 for bird infections and at April 9 for bird-to-human transmissions. Our result reveals very low level of bird-to-human infections, thus indicating minimal risk of widespread bird-to-human infections of H7N9 virus during the outbreak. Moreover, the turning point of the human epidemic, pinpointed at shortly after the implementation of full-scale control and intervention measures initiated in early April, further highlights the impact of timely actions on ending the outbreak. This is the first study where both the bird and human components of an avian influenza epidemic can be quantified using only the human case data. PMID:25479054

  13. Leveraging social networking sites for disease surveillance and public sensing: the case of the 2013 avian influenza A(H7N9) outbreak in China

    PubMed Central

    Zhang, Emma Xuxiao; Yang, Yinping; Di Shang, Richard; Simons, Joseph John Pyne; Quek, Boon Kiat; Yin, Xiao Feng; See, Wanhan; Oh, Olivia Seen Huey; Nandar, Khine Sein Tun; Ling, Vivienne Ruo Yun; Chan, Pei Pei; Wang, Zhaoxia; Goh, Rick Siow Mong; James, Lyn

    2015-01-01

    We conducted in-depth analysis on the use of a popular Chinese social networking and microblogging site, Sina Weibo, to monitor an avian influenza A(H7N9) outbreak in China and to assess the value of social networking sites in the surveillance of disease outbreaks that occur overseas. Two data sets were employed for our analysis: a line listing of confirmed cases obtained from conventional public health information channels and case information from Weibo posts. Our findings showed that the level of activity on Weibo corresponded with the number of new cases reported. In addition, the reporting of new cases on Weibo was significantly faster than those of conventional reporting sites and non-local news media. A qualitative review of the functions of Weibo also revealed that Weibo enabled timely monitoring of other outbreak-relevant information, provided access to additional crowd-sourced epidemiological information and was leveraged by the local government as an interactive platform for risk communication and monitoring public sentiment on the policy response. Our analysis demonstrated the potential for social networking sites to be used by public health agencies to enhance traditional communicable disease surveillance systems for the global surveillance of overseas public health threats. Social networking sites also can be used by governments for calibration of response policies and measures and for risk communication. PMID:26306219

  14. Leveraging social networking sites for disease surveillance and public sensing: the case of the 2013 avian influenza A(H7N9) outbreak in China.

    PubMed

    Zhang, Emma Xuxiao; Yang, Yinping; Di Shang, Richard; Simons, Joseph John Pyne; Quek, Boon Kiat; Yin, Xiao Feng; See, Wanhan; Oh, Olivia Seen Huey; Nandar, Khine Sein Tun; Ling, Vivienne Ruo Yun; Chan, Pei Pei; Wang, Zhaoxia; Goh, Rick Siow Mong; James, Lyn; Tey, Jeannie Su Hui

    2015-01-01

    We conducted in-depth analysis on the use of a popular Chinese social networking and microblogging site, Sina Weibo, to monitor an avian influenza A(H7N9) outbreak in China and to assess the value of social networking sites in the surveillance of disease outbreaks that occur overseas. Two data sets were employed for our analysis: a line listing of confirmed cases obtained from conventional public health information channels and case information from Weibo posts. Our findings showed that the level of activity on Weibo corresponded with the number of new cases reported. In addition, the reporting of new cases on Weibo was significantly faster than those of conventional reporting sites and non-local news media. A qualitative review of the functions of Weibo also revealed that Weibo enabled timely monitoring of other outbreak-relevant information, provided access to additional crowd-sourced epidemiological information and was leveraged by the local government as an interactive platform for risk communication and monitoring public sentiment on the policy response. Our analysis demonstrated the potential for social networking sites to be used by public health agencies to enhance traditional communicable disease surveillance systems for the global surveillance of overseas public health threats. Social networking sites also can be used by governments for calibration of response policies and measures and for risk communication.

  15. Prevalence of avian influenza virus in wild birds before and after the HPAI H5N8 outbreak in 2014 in South Korea.

    PubMed

    Shin, Jeong-Hwa; Woo, Chanjin; Wang, Seung-Jun; Jeong, Jipseol; An, In-Jung; Hwang, Jong-Kyung; Jo, Seong-Deok; Yu, Seung Do; Choi, Kyunghee; Chung, Hyen-Mi; Suh, Jae-Hwa; Kim, Seol-Hee

    2015-07-01

    Since 2003, highly pathogenic avian influenza (HPAI) virus outbreaks have occurred five times in Korea, with four HPAI H5N1 outbreaks and one HPAI H5N8 outbreak. Migratory birds have been suggested to be the first source of HPAI in Korea. Here, we surveyed migratory wild birds for the presence of AI and compared regional AI prevalence in wild birds from September 2012 to April 2014 for birds having migratory pathways in South Korea. Finally, we investigated the prevalence of AI in migratory birds before and after HPAI H5N8 outbreaks. Overall, we captured 1617 migratory wild birds, while 18,817 feces samples and 74 dead birds were collected from major wild bird habitats. A total of 21 HPAI viruses were isolated from dead birds, and 86 low pathogenic AI (LPAI) viruses were isolated from captured birds and from feces samples. Spatiotemporal distribution analysis revealed that AI viruses were spread southward until December, but tended to shift north after January, consistent with the movement of migratory birds in South Korea. Furthermore, we found that LPAI virus prevalences within wild birds were notably higher in 2013-2014 than the previous prevalence during the northward migration season. The data from our study demonstrate the importance of the surveillance of AI in wild birds. Future studies including in-depth genetic analysis in combination with evaluation of the movement and ecology of migratory birds might help us to bridge the gaps in our knowledge and better explain, predict, and ultimately prevent future HPAI outbreaks.

  16. Changes in and shortcomings of control strategies, drug stockpiles, and vaccine development during outbreaks of avian influenza A H5N1, H1N1, and H7N9 among humans.

    PubMed

    Mei, Lin; Song, Peipei; Tang, Qi; Shan, Ke; Tobe, Ruoyan Gai; Selotlegeng, Lesego; Ali, Asghar Hammad; Cheng, Yangyang; Xu, Lingzhong

    2013-04-01

    The purpose of this review is to provide a reference for the future prevention and control of emerging infectious diseases by summarizing the control strategies, the status of drugs and vaccines, and shortcomings during three major outbreaks of avian influenza among humans (H5N1 in 2003, H1N1 in 2009, and H7N9 in 2013). Data on and documents regarding the three influenza outbreaks have been reviewed. Results indicated that the response to pandemic influenza outbreaks has improved markedly in terms of control strategies, stockpiles of antivirals, and vaccine development. These improvements also suggest advances in disease surveillance, transparency in reporting, and regional collaboration and cooperation. These trends also foreshadow better prospects for prevention and control of emerging infectious diseases. However, there are shortcomings since strategies failed to focus on high-risk groups, quantitative and measurable results (both direct and indirect) were unclear, and quantitative assessment is still lacking.

  17. Continued Circulation in China of Highly Pathogenic Avian Influenza Viruses Encoding the Hemagglutinin Gene Associated with the 1997 H5N1 Outbreak in Poultry and Humans

    PubMed Central

    Cauthen, Angela N.; Swayne, David E.; Schultz-Cherry, Stacey; Perdue, Michael L.; Suarez, David L.

    2000-01-01

    Since the outbreak in humans of an H5N1 avian influenza virus in Hong Kong in 1997, poultry entering the live-bird markets of Hong Kong have been closely monitored for infection with avian influenza. In March 1999, this monitoring system detected geese that were serologically positive for H5N1 avian influenza virus, but the birds were marketed before they could be sampled for virus. However, viral isolates were obtained by swabbing the cages that housed the geese. These samples, known collectively as A/Environment/Hong Kong/437/99 (A/Env/HK/437/99), contained four viral isolates, which were compared to the 1997 H5N1 Hong Kong isolates. Analysis of A/Env/HK/437/99 viruses revealed that the four isolates are nearly identical genetically and are most closely related to A/Goose/Guangdong/1/96. These isolates and the 1997 H5N1 Hong Kong viruses encode common hemagglutinin (H5) genes that have identical hemagglutinin cleavage sites. Thus, the pathogenicity of the A/Env/HK/437/99 viruses was compared in chickens and in mice to evaluate the potential for disease outbreaks in poultry and humans. The A/Env/HK/437/99 isolates were highly pathogenic in chickens but caused a longer mean death time and had altered cell tropism compared to A/Hong Kong/156/97 (A/HK/156/97). Like A/HK/156/97, the A/Env/HK/437/99 viruses replicated in mice and remained localized to the respiratory tract. However, the A/Env/HK/437/99 isolates caused only mild pathological lesions in these tissues and no clinical signs of disease or death. As a measure of the immune response to these viruses, transforming growth factor β levels were determined in the serum of infected mice and showed elevated levels for the A/Env/HK/437/99 viruses compared to the A/HK/156/97 viruses. This study is the first to characterize the A/Env/HK/437/99 viruses in both avian and mammalian species, evaluating the H5 gene from the 1997 Hong Kong H5N1 isolates in a different genetic background. Our findings reveal that at least

  18. Avian And Other Zoonotic Influenza

    MedlinePlus

    ... as avian influenza virus subtypes A(H5N1), A(H7N9), and A(H9N2) and swine influenza virus subtypes ... of human cases of A(H5N1) and A(H7N9) infection have been associated with direct or indirect ...

  19. Epidemiological and ornithological aspects of outbreaks of highly pathogenic avian influenza virus H5N1 of Asian lineage in wild birds in Germany, 2006 and 2007.

    PubMed

    Globig, A; Staubach, C; Beer, M; Köppen, U; Fiedler, W; Nieburg, M; Wilking, H; Starick, E; Teifke, J P; Werner, O; Unger, F; Grund, C; Wolf, C; Roost, H; Feldhusen, F; Conraths, F J; Mettenleiter, T C; Harder, T C

    2009-04-01

    In Germany, two distinct episodes of outbreaks of highly pathogenic avian influenza virus of subtype H5N1 (HPAIV H5N1) in wild birds occurred at the beginning of 2006, and in summer 2007. High local densities of wild bird populations apparently sparked clinically detectable outbreaks. However, these remained restricted in (i) number of birds, (ii) species found to be affected, (iii) time, and (iv) location despite the presence of several hundred thousands of susceptible wild birds and further stressors (food shortage, harsh weather conditions and moulting). Northern and southern subpopulations of several migratory anseriform species can be distinguished with respect to their preference for wintering grounds in Germany. This corroborates viral genetic data by Starick et al. (2008) demonstrating the introduction of two geographically restricted virus subpopulations of Qinghai-like lineage (cluster 2.2.A and 2.2.B) into northern and southern Germany, respectively, in 2006. The incursion of virus emerging in 2007, found to be distinct from the clusters detected in 2006 (Starick et al., 2008), may have been associated with moulting movements. Intensive past-outbreak investigations with negative results of live and dead wild birds and of terrestrial scavengers excluded continued circulation of virus on a larger scale. However, persistence of virus in small pockets of local wild bird populations could not be ruled out resiliently. 1.5% of investigated sera originating from cats sampled at the epicentres of the Ruegen 2006-outbreak contained H5-antibodies. Passive monitoring was found to be highly superior to live bird surveillance when aiming at the detection of HPAIV H5N1 in wild birds (P < 0.0001).

  20. Outbreak of H5N2 highly pathogenic avian Influenza A virus infection in two commercial layer facilities: lesions and viral antigen distribution.

    PubMed

    Arruda, Paulo H E; Stevenson, Gregory W; Killian, Mary L; Burrough, Eric R; Gauger, Phillip C; Harmon, Karen M; Magstadt, Drew R; Yoon, Kyoung-Jin; Zhang, Jianqiang; Madson, Darin M; Piñeyro, Pablo; Derscheid, Rachel J; Schwartz, Kent J; Cooper, Vickie L; Halbur, Patrick G; Main, Rodger G; Sato, Yuko; Arruda, Bailey L

    2016-09-01

    The largest outbreak of highly pathogenic avian Influenza A virus (HPAIV) infection in U.S. history began in December 2014 resulting in the euthanasia of millions of birds and collateral economic consequences to the U.S. poultry industry. We describe 2 cases of H5N2 HPAIV infection in laying hens in Iowa. Following a sharp increase in mortality with minimal clinical signs, 15 dead birds, from 2 unrelated farms, were submitted to the Iowa State University Veterinary Diagnostic Laboratory. Common lesions included diffuse edema and multifocal hemorrhage of the comb, catarrhal exudate in the oropharynx, and multifocal tracheal hemorrhage. Less common lesions included epicardial petechiae, splenic hemorrhage, and pancreatic necrosis. Influenza A virus nucleoprotein was detected by immunohistochemistry in multiple cell types including ependymal cells, the choroid plexus, neurons, respiratory epithelium and macrophages in the lung, cardiac myocytes, endothelial cells, necrotic foci in the spleen, Kupffer cells in the liver, and necrotic acinar cells in the pancreas. Real-time polymerase chain reaction and sequencing confirmed H5N2 HPAIV with molecular characteristics similar to other contemporary U.S. H5N2 HPAIVs in both cases. © 2016 The Author(s).

  1. The highly pathogenic avian influenza A (H7N7) virus epidemic in The Netherlands in 2003--lessons learned from the first five outbreaks.

    PubMed

    Elbers, A R W; Fabri, T H F; de Vries, T S; de Wit, J J; Pijpers, A; Koch, G

    2004-09-01

    Clinical signs and gross lesions observed in poultry submitted for postmortem examination (PME) from the first five infected poultry flocks preceding the detection of the primary outbreak of highly pathogenic avian influenza (HPAI) of subtype H7N7 during the 2003 epidemic in the Netherlands are described. The absence of HPAI from the Netherlands for more than 75 yr created a situation in which poultry farmers and veterinary practitioners did not think of AI in the differential diagnosis as a possible cause of the clinical problems seen. Increased and progressive mortality was not reported to the governmental authorities by farmers or veterinary practitioners. It took 4 days from the first entry of postmortem material to notify the governmental authorities of a strong suspicion of an AI outbreak on the basis of a positive immunofluoresence test result. The gross lesions observed at PME did not comply with the descriptions in literature, especially the lack of hemorrhagic changes in tissues, and the lack of edema and cyanosis in comb and wattles is noted. The following lessons are learned from this epidemic: a) in the future, increased and progressive mortality should be a signal to exclude AI as cause of disease problems on poultry farms; b) intensive contact between the veterinary practitioner in the field and the veterinarian executing PME is necessary to have all relevant data and developments at one's disposal to come to a conclusive diagnosis; c) in an anamnesis, reporting of high or increased mortality should be quantified in the future (number of dead birds in relation to the number of birds brought to the farm to start production, together with the timing within the production cycle), or else this mortality cannot be interpreted properly; d) if clinical findings such as high mortality indicate the possibility of HPAI, the pathologist should submit clinical samples to the reference laboratory, even if PME gives no specific indications for HPAI; e) the best

  2. Avian influenza virus infections in humans.

    PubMed

    Wong, Samson S Y; Yuen, Kwok-Yung

    2006-01-01

    Seroepidemiologic and virologic studies since 1889 suggested that human influenza pandemics were caused by H1, H2, and H3 subtypes of influenza A viruses. If not for the 1997 avian A/H5N1 outbreak in Hong Kong of China, subtype H2 is the likely candidate for the next pandemic. However, unlike previous poultry outbreaks of highly pathogenic avian influenza due to H5 that were controlled by depopulation with or without vaccination, the presently circulating A/H5N1 genotype Z virus has since been spreading from Southern China to other parts of the world. Migratory birds and, less likely, bird trafficking are believed to be globalizing the avian influenza A/H5N1 epidemic in poultry. More than 200 human cases of avian influenza virus infection due to A/H5, A/H7, and A/H9 subtypes mainly as a result of poultry-to-human transmission have been reported with a > 50% case fatality rate for A/H5N1 infections. A mutant or reassortant virus capable of efficient human-to-human transmission could trigger another influenza pandemic. The recent isolation of this virus in extrapulmonary sites of human diseases suggests that the high fatality of this infection may be more than just the result of a cytokine storm triggered by the pulmonary disease. The emergence of resistance to adamantanes (amantadine and rimantadine) and recently oseltamivir while H5N1 vaccines are still at the developmental stage of phase I clinical trial are causes for grave concern. Moreover, the to-be pandemic strain may have little cross immunogenicity to the presently tested vaccine strain. The relative importance and usefulness of airborne, droplet, or contact precautions in infection control are still uncertain. Laboratory-acquired avian influenza H7N7 has been reported, and the laboratory strains of human influenza H2N2 could also be the cause of another pandemic. The control of this impending disaster requires more research in addition to national and international preparedness at various levels. The

  3. Characterization of the 2012 Highly Pathogenic Avian Influenza H7N3 Virus Isolated from Poultry in an Outbreak in Mexico: Pathobiology and Vaccine Protection

    PubMed Central

    Pantin-Jackwood, Mary; Guzman, Sofia G.; Ricardez, Yadira; Spackman, Erica; Bertran, Kateri; Suarez, David L.; Swayne, David E.

    2013-01-01

    In June of 2012, an H7N3 highly pathogenic avian influenza (HPAI) virus was identified as the cause of a severe disease outbreak in commercial laying chicken farms in Mexico. The purpose of this study was to characterize the Mexican 2012 H7N3 HPAI virus (A/chicken/Jalisco/CPA1/2012) and determine the protection against the virus conferred by different H7 inactivated vaccines in chickens. Both adult and young chickens intranasally inoculated with the virus became infected and died at between 2 and 4 days postinoculation (p.i.). High virus titers and viral replication in many tissues were demonstrated at 2 days p.i. in infected birds. The virus from Jalisco, Mexico, had high sequence similarity of greater than 97% to the sequences of wild bird viruses from North America in all eight gene segments. The hemagglutinin gene of the virus contained a 24-nucleotide insert at the hemagglutinin cleavage site which had 100% sequence identity to chicken 28S rRNA, suggesting that the insert was the result of nonhomologous recombination with the host genome. For vaccine protection studies, both U.S. H7 low-pathogenic avian influenza (LPAI) viruses and a 2006 Mexican H7 LPAI virus were tested as antigens in experimental oil emulsion vaccines and injected into chickens 3 weeks prior to challenge. All H7 vaccines tested provided ≥90% protection against clinical disease after challenge and decreased the number of birds shedding virus and the titers of virus shed. This study demonstrates the pathological consequences of the infection of chickens with the 2012 Mexican lineage H7N3 HPAI virus and provides support for effective programs of vaccination against this virus in poultry. PMID:23760232

  4. Characterization of the 2012 highly pathogenic avian influenza H7N3 virus isolated from poultry in an outbreak in Mexico: pathobiology and vaccine protection.

    PubMed

    Kapczynski, Darrell R; Pantin-Jackwood, Mary; Guzman, Sofia G; Ricardez, Yadira; Spackman, Erica; Bertran, Kateri; Suarez, David L; Swayne, David E

    2013-08-01

    In June of 2012, an H7N3 highly pathogenic avian influenza (HPAI) virus was identified as the cause of a severe disease outbreak in commercial laying chicken farms in Mexico. The purpose of this study was to characterize the Mexican 2012 H7N3 HPAI virus (A/chicken/Jalisco/CPA1/2012) and determine the protection against the virus conferred by different H7 inactivated vaccines in chickens. Both adult and young chickens intranasally inoculated with the virus became infected and died at between 2 and 4 days postinoculation (p.i.). High virus titers and viral replication in many tissues were demonstrated at 2 days p.i. in infected birds. The virus from Jalisco, Mexico, had high sequence similarity of greater than 97% to the sequences of wild bird viruses from North America in all eight gene segments. The hemagglutinin gene of the virus contained a 24-nucleotide insert at the hemagglutinin cleavage site which had 100% sequence identity to chicken 28S rRNA, suggesting that the insert was the result of nonhomologous recombination with the host genome. For vaccine protection studies, both U.S. H7 low-pathogenic avian influenza (LPAI) viruses and a 2006 Mexican H7 LPAI virus were tested as antigens in experimental oil emulsion vaccines and injected into chickens 3 weeks prior to challenge. All H7 vaccines tested provided ≥90% protection against clinical disease after challenge and decreased the number of birds shedding virus and the titers of virus shed. This study demonstrates the pathological consequences of the infection of chickens with the 2012 Mexican lineage H7N3 HPAI virus and provides support for effective programs of vaccination against this virus in poultry.

  5. Phylodynamics of H5N1 Highly Pathogenic Avian Influenza in Europe, 2005–2010: Potential for Molecular Surveillance of New Outbreaks

    PubMed Central

    Alkhamis, Mohammad A.; Moore, Brian R.; Perez, Andres M.

    2015-01-01

    Previous Bayesian phylogeographic studies of H5N1 highly pathogenic avian influenza viruses (HPAIVs) explored the origin and spread of the epidemic from China into Russia, indicating that HPAIV circulated in Russia prior to its detection there in 2005. In this study, we extend this research to explore the evolution and spread of HPAIV within Europe during the 2005–2010 epidemic, using all available sequences of the hemagglutinin (HA) and neuraminidase (NA) gene regions that were collected in Europe and Russia during the outbreak. We use discrete-trait phylodynamic models within a Bayesian statistical framework to explore the evolution of HPAIV. Our results indicate that the genetic diversity and effective population size of HPAIV peaked between mid-2005 and early 2006, followed by drastic decline in 2007, which coincides with the end of the epidemic in Europe. Our results also suggest that domestic birds were the most likely source of the spread of the virus from Russia into Europe. Additionally, estimates of viral dispersal routes indicate that Russia, Romania, and Germany were key epicenters of these outbreaks. Our study quantifies the dynamics of a major European HPAIV pandemic and substantiates the ability of phylodynamic models to improve molecular surveillance of novel AIVs. PMID:26110587

  6. Impact of virus strain characteristics on early detection of highly pathogenic avian influenza infection in commercial table-egg layer flocks and implications for outbreak control.

    PubMed

    Weaver, J Todd; Malladi, Sasidhar; Goldsmith, Timothy J; Hueston, Will; Hennessey, Morgan; Lee, Brendan; Voss, Shauna; Funk, Janel; Der, Christina; Bjork, Kathe E; Clouse, Timothy L; Halvorson, David A

    2012-12-01

    Early detection of highly pathogenic avian influenza (HPAI) infection in commercial poultry flocks is a critical component of outbreak control. Reducing the time to detect HPAI infection can reduce the risk of disease transmission to other flocks. The timeliness of different types of detection triggers could be dependent on clinical signs that are first observed in a flock, signs that might vary due to HPAI virus strain characteristics. We developed a stochastic disease transmission model to evaluate how transmission characteristics of various HPAI strains might effect the relative importance of increased mortality, drop in egg production, or daily real-time reverse transcriptase (RRT)-PCR testing, toward detecting HPAI infection in a commercial table-egg layer flock. On average, daily RRT-PCR testing resulted in the shortest time to detection (from 3.5 to 6.1 days) depending on the HPAI virus strain and was less variable over a range of transmission parameters compared with other triggers evaluated. Our results indicate that a trigger to detect a drop in egg production would be useful for HPAI virus strains with long infectious periods (6-8 days) and including an egg-drop detection trigger in emergency response plans would lead to earlier and consistent reporting in some cases. We discuss implications for outbreak control and risk of HPAI spread attributed to different HPAI strain characteristics where an increase in mortality or a drop in egg production or both would be among the first clinical signs observed in an infected flock.

  7. Molecular characterization of highly pathogenic avian influenza H5N8 viruses isolated from Baikal teals found dead during a 2014 outbreak in Korea

    PubMed Central

    Kim, Seol-Hee; Hur, Moonsuk; Suh, Jae-Hwa; Woo, Chanjin; Wang, Seung-Jun; Park, Eung-Roh; Hwang, Jongkyung; An, In-Jung; Jo, Seong-Deok; Shin, Jeong-Hwa; Yu, Seung Do; Choi, Kyunghee; Lee, Dong-Hun

    2016-01-01

    Nineteen highly pathogenic avian influenza (HPAI) H5N8 viruses were isolated from wild birds in the Donglim reservoir in Gochang, Jeonbuk province, Korea, which was first reported to be an outbreak site on January 17, 2014. Most genes from the nineteen viruses shared high nucleotide sequence identities (i.e., 99.7% to 100%). Phylogenetic analysis showed that these viruses were reassortants of the HPAI H5 subtype and the H4N2 strain and that their hemagglutinin clade was 2.3.4.4, which originated from Eastern China. The hemagglutinin protein contained Q222 and G224 at the receptor-binding site. Although the neuraminidase protein contained I314V and the matrix 2 protein contained an S31N substitution, other mutations resulting in oseltamivir and amantadine resistance were not detected. No substitutions associated with increased virulence and enhanced transmission in mammals were detected in the polymerase basic protein 2 (627E and 701D). Non-structural-1 was 237 amino acids long and had an ESEV motif with additional RGNKMAD amino acids in the C terminal region. These viruses caused deaths in the Baikal teal, which was unusual, and outbreaks occurred at the same time in both poultry and wild birds. These data are helpful for epidemiological understanding of HPAI and the design of prevention strategies. PMID:26245355

  8. Evaluating the Impact of Environmental Temperature on Global Highly Pathogenic Avian Influenza (HPAI) H5N1 Outbreaks in Domestic Poultry

    PubMed Central

    Zhang, Zhijie; Chen, Dongmei; Chen, Yue; Wang, Bo; Hu, Yi; Gao, Jie; Sun, Liqian; Li, Rui; Xiong, Chenglong

    2014-01-01

    The emergence and spread of highly pathogenic avian influenza (HPAI) A virus subtype H5N1 in Asia, Europe and Africa has had an enormously socioeconomic impact and presents an important threat to human health because of its efficient animal-to-human transmission. Many factors contribute to the occurrence and transmission of HPAI H5N1 virus, but the role of environmental temperature remains poorly understood. Based on an approach of integrating a Bayesian Cox proportional hazards model and a Besag-York-Mollié (BYM) model, we examined the specific impact of environmental temperature on HPAI H5N1 outbreaks in domestic poultry around the globe during the period from 1 December 2003 to 31 December 2009. The results showed that higher environmental temperature was a significant risk factor for earlier occurrence of HPAI H5N1 outbreaks in domestic poultry, especially for a temperature of 25 °C. Its impact varied with epidemic waves (EWs), and the magnitude of the impact tended to increase over EWs. PMID:24950061

  9. Phylodynamics of H5N1 Highly Pathogenic Avian Influenza in Europe, 2005-2010: Potential for Molecular Surveillance of New Outbreaks.

    PubMed

    Alkhamis, Mohammad A; Moore, Brian R; Perez, Andres M

    2015-06-23

    Previous Bayesian phylogeographic studies of H5N1 highly pathogenic avian influenza viruses (HPAIVs) explored the origin and spread of the epidemic from China into Russia, indicating that HPAIV circulated in Russia prior to its detection there in 2005. In this study, we extend this research to explore the evolution and spread of HPAIV within Europe during the 2005-2010 epidemic, using all available sequences of the hemagglutinin (HA) and neuraminidase (NA) gene regions that were collected in Europe and Russia during the outbreak. We use discrete-trait phylodynamic models within a Bayesian statistical framework to explore the evolution of HPAIV. Our results indicate that the genetic diversity and effective population size of HPAIV peaked between mid-2005 and early 2006, followed by drastic decline in 2007, which coincides with the end of the epidemic in Europe. Our results also suggest that domestic birds were the most likely source of the spread of the virus from Russia into Europe. Additionally, estimates of viral dispersal routes indicate that Russia, Romania, and Germany were key epicenters of these outbreaks. Our study quantifies the dynamics of a major European HPAIV pandemic and substantiates the ability of phylodynamic models to improve molecular surveillance of novel AIVs.

  10. Epidemiological and Evolutionary Inference of the Transmission Network of the 2014 Highly Pathogenic Avian Influenza H5N2 Outbreak in British Columbia, Canada

    PubMed Central

    Xu, Wanhong; Berhane, Yohannes; Dubé, Caroline; Liang, Binhua; Pasick, John; VanDomselaar, Gary; Alexandersen, Soren

    2016-01-01

    The first North American outbreak of highly pathogenic avian influenza (HPAI) involving a virus of Eurasian A/goose/Guangdong/1/1996 (H5N1) lineage began in the Fraser Valley of British Columbia, Canada in late November 2014. A total of 11 commercial and 1 non-commercial (backyard) operations were infected before the outbreak was terminated. Control measures included movement restrictions that were placed on a total of 404 individual premises, 150 of which were located within a 3 km radius of an infected premise(s) (IP). A complete epidemiological investigation revealed that the source of this HPAI H5N2 virus for 4 of the commercial IPs and the single non-commercial IP likely involved indirect contact with wild birds. Three IPs were associated with the movement of birds or service providers and localized/environmental spread was suspected as the source of infection for the remaining 4 IPs. Viral phylogenies, as determined by Bayesian Inference and Maximum Likelihood methods, were used to validate the epidemiologically inferred transmission network. The phylogenetic clustering of concatenated viral genomes and the median-joining phylogenetic network of the viruses supported, for the most part, the transmission network that was inferred by the epidemiologic analysis. PMID:27489095

  11. Farm- and flock-level risk factors associated with Highly Pathogenic Avian Influenza outbreaks on small holder duck and chicken farms in the Mekong Delta of Viet Nam.

    PubMed

    Henning, Kate A; Henning, Joerg; Morton, John; Long, Ngo Thanh; Ha, Nguyen Truc; Meers, Joanne

    2009-10-01

    After 11 consecutive months of control, the Mekong Delta in Viet Nam experienced a wave of Highly Pathogenic Avian Influenza (HPAI) H5N1 outbreaks on small holder poultry farms from December 2006 to January 2007. We conducted a retrospective matched case-control study to investigate farm- and flock-level risk factors for outbreak occurrence during this period. Twenty-two case farms were selected from those where clinical signs consistent with HPAI H5N1 had been present and HPAI H5N1 had been confirmed with a positive real-time PCR test from samples obtained from affected birds. For every case farm enrolled, two control farms were selected matched on time of outbreak occurrence, farm location and species. Veterinarians conducted interviews with farmers, to collect information on household demographics, farm characteristics, husbandry practices, trading practices, poultry health, vaccination and biosecurity. Exact stratified logistic regression models were used to assess putative risk factors associated with a flock having or not having a HPAI outbreak. Nested analyses were also performed, restricted to subsets of farms using scavenging, confinement or supplementary feeding practices. Risk of an outbreak of HPAI H5N1 was increased in flocks that had received no vaccination (odds ratio (OR)=20.2; 95% confidence interval (CI): 1.0, +infinity) or only one vaccination (OR=85.2; 95% CI: 6.5, +infinity) of flocks compared to two vaccinations, and in flocks on farms that had family and friends visiting (OR=8.2; 95% CI: 1.0, +infinity) and geese present (OR=11.5; 95% CI: 1.1, +infinity). The subset analysis using only flocks that scavenged showed that sharing of scavenging areas with flocks from other farms was associated with increased risk of an outbreak (OR=10.9; 95% CI: 1.4, 492.9). We conclude that none or only one vaccination, visitors to farms, the presence of geese on farms and sharing of scavenging areas with ducks from other farms increase the risk of HPAI H5N1

  12. Avian Influenza A(H5N1) Virus Outbreak Investigation: Application of the FAO-OIE-WHO Four-way Linking Framework in Indonesia.

    PubMed

    Setiawaty, V; Dharmayanti, N L P I; Misriyah; Pawestri, H A; Azhar, M; Tallis, G; Schoonman, L; Samaan, G

    2015-08-01

    WHO, FAO and OIE developed a 'four-way linking' framework to enhance the cross-sectoral sharing of epidemiological and virological information in responding to zoonotic disease outbreaks. In Indonesia, outbreak response challenges include completeness of data shared between human and animal health authorities. The four-way linking framework (human health laboratory/epidemiology and animal health laboratory/epidemiology) was applied in the investigation of the 193 rd human case of avian influenza A(H5N1) virus infection. As recommended by the framework, outbreak investigation and risk assessment findings were shared. On 18 June 2013, a hospital in West Java Province reported a suspect H5N1 case in a 2-year-old male. The case was laboratory-confirmed that evening, and the information was immediately shared with the Ministry of Agriculture. The human health epidemiology/laboratory team investigated the outbreak and conducted an initial risk assessment on 19 June. The likelihood of secondary cases was deemed low as none of the case contacts were sick. By 3 July, no secondary cases associated with the outbreak were identified. The animal health epidemiology/laboratory investigation was conducted on 19-25 June and found that a live bird market visited by the case was positive for H5N1 virus. Once both human and market virus isolates were sequenced, a second risk assessment was conducted jointly by the human health and animal health epidemiology/laboratory teams. This assessment concluded that the likelihood of additional human cases associated with this outbreak was low but that future sporadic human infections could not be ruled out because of challenges in controlling H5N1 virus contamination in markets. Findings from the outbreak investigation and risk assessments were shared with stakeholders at both Ministries. The four-way linking framework clarified the type of data to be shared. Both human health and animal health teams made ample data available, and there was

  13. 77 FR 34783 - Highly Pathogenic Avian Influenza

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... Avian Influenza AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Interim rule... importation of bird and poultry products from regions where any subtype of highly pathogenic avian influenza... avian influenza (HPAI). On January 24, 2011, we published in the Federal Register (76 FR 4046-4056...

  14. 76 FR 24793 - Highly Pathogenic Avian Influenza

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... Inspection Service 9 CFR Parts 93, 94, and 95 RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal... products from regions where any subtype of highly pathogenic avian influenza is considered to exist. The... vaccinated for certain types of avian influenza, or that have moved through regions where any subtype of...

  15. Current situation on highly pathogenic avian influenza

    USDA-ARS?s Scientific Manuscript database

    Avian influenza is one of the most important diseases affecting the poultry industry worldwide. Avian influenza viruses can cause a range of clinical disease in poultry. Viruses that cause severe disease and mortality are referred to as highly pathogenic avian influenza (HPAI) viruses. The Asian ...

  16. Molecular epidemiological analysis of the transboundary transmission of 2003 highly pathogenic avian influenza H7N7 outbreaks between the Netherlands and Belgium.

    PubMed

    Van Borm, S; Jonges, M; Lambrecht, B; Koch, G; Houdart, P; van den Berg, T

    2014-02-01

    The 2003 outbreak of Highly pathogenic avian influenza (HPAI) A(H7N7) in the Netherlands, Belgium and Germany resulted in significant genetic diversification that proved informative for tracing transmission events. Building on previous investigations on the Dutch outbreak, we focused on the potential transnational transmissions between the Netherlands and Belgium. Although no clear epidemiological links could be identified from the tracing data, the transmission network based on concatenated HA-NA-PB2 sequences supports at least three independent introductions from the Netherlands to Belgium and suggests one possible introduction form Belgium back to the Netherlands. Two introductions in the Belgian province of Limburg occurred from nearby farms in the Dutch province of Limburg. One introduction resulted in three secondary infected farms, while a second introduction did not cause secondary infections. The third introduction into Belgium occurred in the north of the Antwerp province, very close to the national border, and originated from the North of the Dutch province Brabant (long distance transmission, >65 km). The virus spread to two additional Belgian farms, one of which may be the source of a secondarily infected farm in the Netherlands. One infected turkey farm in the province of Antwerp (Westmalle) was geographically close to the latter introduction, but genetically clustered with the first introduction event in the Limburg province. Epidemiological tracing data could neither confirm nor exclude whether this outbreak was a result from long distance contacts within Belgium or whether this farm presented a fourth independent transboundary introduction. These multiple transnational transmissions of HPAI in spite of reinforced biosecurity measures and trade restrictions illustrate the importance of international cooperation, legislation and standardization of tools to combat transboundary diseases. © 2012 Blackwell Verlag GmbH.

  17. H5 avian influenza virus pathotyping using oligonucleotide microarray.

    PubMed

    Wang, Lih-Chiann; Huang, Dean; Cheng, Ming-Chu; Lee, Shu-Hwae; Wang, Ching-Ho

    2015-08-01

    The H5 avian influenza virus subtype has huge impact on the poultry industry. Rapid diagnosis and accurate identification of the highly pathogenic avian influenza virus and low-pathogenicity avian influenza virus is essential, especially during H5 outbreaks and surveillance. To this end, a novel and rapid strategy for H5 virus molecular pathotyping is presented. The specific hemagglutinin gene of the H5 virus and the basic amino acid number of the motif at the hemagglutinin precursor protein cleavage site were detected using oligonucleotide microarray. Highly pathogenic and low-pathogenicity avian influenza viruses in Taiwan were differentiated using 13 microarray probes with the naked eye. The detection limit reached 3.4 viral RNA copies, 1000 times more sensitive than reverse transcription polymerase chain reaction. Thus, the oligonucleotide microarray would provide an alternative H5 pathogenicity determination using the naked eye for laboratories lacking facilities. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. H5N1 influenza viruses: outbreaks and biological properties

    PubMed Central

    Neumann, Gabriele; Chen, Hualan; Gao, George F; Shu, Yuelong; Kawaoka, Yoshihiro

    2010-01-01

    All known subtypes of influenza A viruses are maintained in wild waterfowl, the natural reservoir of these viruses. Influenza A viruses are isolated from a variety of animal species with varying morbidity and mortality rates. More importantly, influenza A viruses cause respiratory disease in humans with potentially fatal outcome. Local or global outbreaks in humans are typically characterized by excess hospitalizations and deaths. In 1997, highly pathogenic avian influenza viruses of the H5N1 subtype emerged in Hong Kong that transmitted to humans, resulting in the first documented cases of human death by avian influenza virus infection. A new outbreak started in July 2003 in poultry in Vietnam, Indonesia, and Thailand, and highly pathogenic avian H5N1 influenza viruses have since spread throughout Asia and into Europe and Africa. These viruses continue to infect humans with a high mortality rate and cause worldwide concern of a looming pandemic. Moreover, H5N1 virus outbreaks have had devastating effects on the poultry industries throughout Asia. Since H5N1 virus outbreaks appear to originate from Southern China, we here examine H5N1 influenza viruses in China, with an emphasis on their biological properties. PMID:19884910

  19. Highly Pathogenic Eurasian H5N8 Avian Influenza Outbreaks in Two Commercial Poultry Flocks in California.

    PubMed

    Stoute, Simone; Chin, Richard; Crossley, Beate; Gabriel Sentíes-Cué, C; Bickford, Arthur; Pantin-Jackwood, Mary; Breitmeyer, Richard; Jones, Annette; Carnaccini, Silvia; Shivaprasad, H L

    2016-09-01

    In January 2015, a highly pathogenic Eurasian lineage H5N8 avian influenza (AI) virus (AIV) was detected in a commercial meat turkey flock in Stanislaus County, CA. Approximately 3 wk later, a similar case was diagnosed in commercial brown layers from a different company located in Kings County, CA. Five 14-wk-old turkey hens were submitted to the California Animal Health and Food Safety Laboratory System (CAHFS), Turlock, and eleven 12-wk-old chickens were submitted to CAHFS, Tulare laboratory due to an acute increase in flock mortality. Gross lesions included enlarged and mottled pale spleens and pancreas in turkeys and chickens. Histologically, the major lesions observed in turkeys and chickens were splenitis, pancreatitis, encephalitis, and pneumonia. In both cases, diagnosis was based on real-time reverse transcriptase PCR (RRT-PCR), sequencing, and virus isolation from oropharyngeal and cloacal swabs. Confirmatory diagnosis and AIV characterization was done at the National Veterinary Services Laboratory, Ames, IA. The sequence of the AIV from both cases was 99% identical to an H5N8 AI virus (A/gyrfalcon/Washington/41088-6/2014) isolated from a captive gyrfalcon (Falco rusticolus) from Washington State in December 2014. Immunohistochemistry (IHC) performed on various tissues from both cases indicated a widespread AIV tissue distribution. Except for minor variations, the tissue distribution of the AI antigen was similar in the chickens and turkeys. There was positive IHC staining in the brain, spleen, pancreas, larynx, trachea, and lungs in both chickens and turkeys. Hearts, ovaries, and air sacs from the turkeys were also positive for the AI antigen. The liver sections from the chickens had occasional AI-positive staining in mononuclear cells, but the IHC on liver sections from the turkeys were negative. The bursa of Fabricius, small intestine, kidney, and skeletal muscle sections were negative for the AI antigen in both chickens and turkeys.

  20. The history of avian influenza.

    PubMed

    Lupiani, Blanca; Reddy, Sanjay M

    2009-07-01

    The first description of avian influenza (AI) dates back to 1878 in northern Italy, when Perroncito [Perroncito E. Epizoozia tifoide nei gallinacei. Annali Accad Agri Torino 1878;21:87-126] described a contagious disease of poultry associated with high mortality. The disease, termed "fowl plague", was initially confused with the acute septicemic form of fowl cholera. However, in 1880, soon after its first description, Rivolta and Delprato [as reported by Stubs EL. Fowl pest, In: Biester HE, Devries L, editors. Diseases of poultry. 1st ed. Ames, IO: Iowa State College Press; 1943. p. 493-502] showed it to be different from fowl cholera, based on clinical and pathological properties, and called it Typhus exudatious gallinarum. In 1901, Centanni and Savunzzi [Centanni E, Savonuzzi E, La peste aviaria I & II, Communicazione fatta all'accademia delle scienze mediche e naturali de Ferrara, 1901] determined that fowl plague was caused by a filterable virus; however, it was not until 1955 that the classical fowl plague virus was shown to be a type A influenza virus based on the presence of type A influenza virus type-specific ribonucleoprotein [Schäfer W. Vergleichender sero-immunologische Untersuchungen über die Viren der Influenza und klassischen Geflügelpest. Z Naturf 1955;10b:81-91]. The term fowl plague was substituted by the more appropriate term highly pathogenic avian influenza (HPAI) at the First International Symposium on Avian Influenza [Proceedings of the First International Symposium on Avian Influenza. Beltsville, MD. 1981, Avian Dis 47 (Special Issue) 2003.] and will be used throughout this review when referring to any previously described fowl plague virus.

  1. Avian biology, the human influence on global avian influenza transmission, and performing surveillance in wild birds.

    PubMed

    Gibbs, Samantha E J

    2010-06-01

    This paper takes a closer look at three interrelated areas of study: avian host biology, the role of human activities in virus transmission, and the surveillance activities centered on avian influenza in wild birds. There are few ecosystems in which birds are not found. Correspondingly, avian influenza viruses are equally global in distribution, relying on competent avian hosts. The immune systems, annual cycles, feeding behaviors, and migration patterns of these hosts influence the ecology of the disease. Decreased biodiversity has also been linked to heightened disease transmission in several disease systems, and it is evident that active destruction and modification of wetland environments for human use is impacting avian populations drastically. Legal and illegal trade in wild birds present a significant risk for introduction and maintenance of exotic diseases. After the emergence of HPAI H5N1 in Hong Kong in 1996 and the ensuing geographic spread of outbreaks after 2003, both infected countries and those at risk of introduction began intensifying avian influenza surveillance efforts. Several techniques for sampling wild birds for influenza viruses have been applied. Benefits, problems, and biases exist for each method. The wild bird avian influenza surveillance programs taking place across the continents are now scaling back due to the rise of other spending priorities; hopefully the lessons learned from this work will be preserved and will inform future research and disease outbreak response priorities.

  2. Identification and characterization of a highly pathogenic H5N1 avian influenza A virus during an outbreak in vaccinated chickens in Egypt.

    PubMed

    Amen, O; Vemula, S V; Zhao, J; Ibrahim, R; Hussein, A; Hewlett, I K; Moussa, S; Mittal, S K

    2015-12-02

    Highly pathogenic avian influenza A (HPAI) H5N1 viruses continue to be a major veterinary and public health problem in Egypt. Continued surveillance of these viruses is necessary to devise strategies to control the spread of the virus and to monitor its evolutionary patterns. This is a report of the identification of a variant strain of HPAI H5N1 virus during an outbreak in 2010 in vaccinated chicken flocks in a poultry farm in Assiut, Egypt. Vaccination of chickens with an oil-emulsified inactivated A/chicken/Mexico/232/94 (H5N2) vaccine induced high levels of hemagglutination inhibition (HI) antibody titers reaching up to 9 log2. However, all flocks irrespective of the number of vaccine doses and the resultant HI titer levels came down with severe influenza infections. The qRT-PCR and rapid antigen test confirmed the influenza virus to be from H5N1 subtype. Sequencing of the hemagglutinin (HA) gene fragment from ten independent samples demonstrated that a single H5N1 strain was involved. This strain belonged to clade 2.2.1 and had several mutations in the receptor-binding site of the HA protein, thereby producing a variant strain of HPAI H5N1 virus which was antigenically different from the parent clade 2.2.1 virus circulating in Egypt at that time. In order to define the variability in HPAI H5N1 viruses over time in Egypt, we sequenced another H5N1 virus that was causing infections in chickens in 2014. Phylogenetic analysis revealed that both viruses had further distanced from the parent virus circulating during 2010. This study highlights that the antigenic mutations in HPAI H5N1 viruses represent a definitive challenge for the development of an effective vaccine for poultry. Overall, the results emphasize the need for continued surveillance of H5N1 outbreaks and extensive characterization of virus isolates from vaccinated and non-vaccinated poultry populations to better understand genetic changes and their implications. Copyright © 2015 Elsevier B.V. All

  3. [Detection of local influenza outbreaks and role of virological diagnostics].

    PubMed

    Schweiger, B; Buda, S

    2013-01-01

    For many years, the Working Group on Influenza (AGI) has been the most important influenza surveillance system in Germany. An average sample of the population is covered by both syndromic and virological surveillance, which provides timely data regarding the onset and course of the influenza wave as well as its burden of disease. However, smaller influenza outbreaks cannot be detected by the AGI sentinel system. This is achieved by the information reported by the mandatory notification system (Protection Against Infection Act, IfSG), which serves as the second pillar of the national influenza surveillance. Approaches to recognize such outbreaks are based either on reported influenza virus detection and subsequent investigations by local health authorities or by notification of an accumulation of respiratory diseases or nosocomial infections and subsequent laboratory investigations. In this context, virological diagnostics plays an essential role. This has been true particularly for the early phase of the 2009 pandemic, but generally timely diagnostics is essential for the identification of outbreaks. Regarding potential future outbreaks, it is also important to keep an eye on animal influenza viruses that have repeatedly infected humans. This mainly concerns avian influenza viruses of the subtypes H5, H7, and H9 as well as porcine influenza viruses for which a specific PCR has been established at the National Influenza Reference Centre. An increased incidence of respiratory infections, both during and outside the season, should always encourage virological laboratory diagnostics to be performed as a prerequisite of further extensive investigations and an optimal outbreak management.

  4. Global dynamics of avian influenza epidemic models with psychological effect.

    PubMed

    Liu, Sanhong; Pang, Liuyong; Ruan, Shigui; Zhang, Xinan

    2015-01-01

    Cross-sectional surveys conducted in Thailand and China after the outbreaks of the avian influenza A H5N1 and H7N9 viruses show a high degree of awareness of human avian influenza in both urban and rural populations, a higher level of proper hygienic practice among urban residents, and in particular a dramatically reduced number of visits to live markets in urban population after the influenza A H7N9 outbreak in China in 2013. In this paper, taking into account the psychological effect toward avian influenza in the human population, a bird-to-human transmission model in which the avian population exhibits saturation effect is constructed. The dynamical behavior of the model is studied by using the basic reproduction number. The results demonstrate that the saturation effect within avian population and the psychological effect in human population cannot change the stability of equilibria but can affect the number of infected humans if the disease is prevalent. Numerical simulations are given to support the theoretical results and sensitivity analyses of the basic reproduction number in terms of model parameters that are performed to seek for effective control measures for avian influenza.

  5. The pathogenesis of H7N8 low and highly pathogenic avian influenza viruses from the United States 2016 outbreak in chickens, turkeys and mallards

    PubMed Central

    Pantin-Jackwood, Mary J.; Stephens, Christopher B.; Bertran, Kateri; Swayne, David E.

    2017-01-01

    In January 2016, a combined outbreak of highly pathogenic (HP) avian influenza virus (AIV) and low pathogenicity (LP) AIV occurred in commercial turkeys in the state of Indiana, United States. Genetically, the viruses were highly similar, belonged to the North American wild bird lineage, and had not been previously detected in poultry. In order to understand the pathobiology of the H7N8 LPAIV and HPAIV, infectivity, transmission and pathogenicity studies were conducted in chickens, turkeys, and mallards. Among the three species the lowest mean infectious dose for both the LP and HP phenotype was for turkeys, and also disease from the LPAIV was only observed with turkeys. Furthermore, although the HPAIV was lethal for both chickens and turkeys, clinical signs caused by the HPAIV isolate differed between the two species; neurological signs were only observed in turkeys. Mallards could be infected with and transmit both viruses to contacts, but neither caused clinical disease. Interestingly, with all three species, the mean infectious dose of the HP isolate was at least ten times lower than that of the LP isolate. This study corroborates the high susceptibility of turkeys to AIV as well as a pathobiology that is different from chickens. Further, this study demonstrates that mallards can be asymptomatically infected with HP and LP AIV from gallinaceous poultry and may not just be involved in transmitting AIV to them. PMID:28481948

  6. Perceptions on the risk communication strategy during the 2013 avian influenza A/H7N9 outbreak in humans in China: a focus group study.

    PubMed

    Li, Richun; Xie, Ruiqian; Yang, Chong; Frost, Melinda

    2016-01-01

    To identify the general public's perceptions of the overall risk communication strategy carried out by Chinese public health agencies during the first wave of avian influenza A(H7N9) outbreak in humans in 2013. Participants were recruited from communities in Beijing, Lanzhou and Hangzhou, China in May and June 2013 by convenience sampling. Demographics and other relevant information were collected using a self-administered questionnaire. Focus group interviews were conducted using a set of nine pre-developed questions and a tested moderator guide. The interviews were audio recorded and were transcribed verbatim. The constant comparative method was used to identify trends and themes. A total of nine focus group interviews, with 94 participants recruited from nine communities, were conducted. Most participants received H7N9 information via television and the Internet. Most the participants appreciated the transparency and timeliness of the information released by the government. They expressed a sense of trust in the recommended public health advice and followed most of them. The participants suggested that the government release more information about clinical treatment outcomes, have more specific health recommendations that are practical to their settings and expand the use of new media channels for risk communication. The public perceived the overall risk communication strategy by the Chinese public health agencies as effective, though the moderator had a governmental agency title that might have biased the results. There is a need to expand the use of social media for risk communication in the future.

  7. Host-specific exposure and fatal neurologic disease in wild raptors from highly pathogenic avian influenza virus H5N1 during the 2006 outbreak in Germany.

    PubMed

    van den Brand, Judith Ma; Krone, Oliver; Wolf, Peter U; van de Bildt, Marco W G; van Amerongen, Geert; Osterhaus, Albert D M E; Kuiken, Thijs

    2015-03-05

    Raptors may contract highly pathogenic avian influenza virus H5N1 by hunting or scavenging infected prey. However, natural H5N1 infection in raptors is rarely reported. Therefore, we tested raptors found dead during an H5N1 outbreak in wild waterbirds in Mecklenburg-Western Pomerania, Germany, in 2006 for H5N1-associated disease. We tested 624 raptors of nine species-common buzzard (385), Eurasian sparrowhawk (111), common kestrel (38), undetermined species of buzzard (36), white-tailed sea eagle (19), undetermined species of raptor (12), northern goshawk (10), peregrine falcon (6), red kite (3), rough-legged buzzard (3), and western marsh-harrier (1)-for H5N1 infection in tracheal or combined tracheal/cloacal swabs of all birds, and on major tissues of all white-tailed sea eagles. H5N1 infection was detected in two species: common buzzard (12 positive, 3.1%) and peregrine falcon (2 positive, 33.3%). In all necropsied birds (both peregrine falcons and the six freshest common buzzards), H5N1 was found most consistently and at the highest concentration in the brain, and the main H5N1-associated lesion was marked non-suppurative encephalitis. Other H5N1-associated lesions occurred in air sac, lung, oviduct, heart, pancreas, coelomic ganglion, and adrenal gland. Our results show that the main cause of death in H5N1-positive raptors was encephalitis. Our results imply that H5N1 outbreaks in wild waterbirds are more likely to lead to exposure to and mortality from H5N1 in raptors that hunt or scavenge medium-sized birds, such as common buzzards and peregrine falcons, than in raptors that hunt small birds and do not scavenge, such as Eurasian sparrowhawks and common kestrels.

  8. Lack of chicken adaptation of newly emergent Eurasian H5N8 and reassortant H5N2 high pathogenicity avian influenza viruses in the U.S. is consistent with restricted poultry outbreaks in the Pacific flyway during 2014-2015

    USDA-ARS?s Scientific Manuscript database

    In 2014-2015, the U.S. experienced an unprecedented outbreak of Eurasian clade 2.3.4.4 H5 highly pathogenic avian influenza (HPAI) virus, initially affecting mainly wild birds and few backyard and commercial poultry premises. To better model the outbreak, the pathogenesis and transmission dynamics o...

  9. Human Infection with Avian Influenza A(H7N9) Virus - China

    MedlinePlus

    ... operations Diseases Biorisk reduction Human infection with avian influenza A(H7N9) virus – China Disease outbreak news 18 ... of a laboratory-confirmed human infection with avian influenza A(H7N9) virus and on 12 January 2017, ...

  10. Phylogenetics and pathogenesis of early avian influenza viruses (H5N2), Nigeria

    USDA-ARS?s Scientific Manuscript database

    Prior to the first officially recognized outbreaks of highly pathogenic avian influenza (HPAI) in poultry in Nigeria, in February 2006, an effort based at the poultry diagnostic clinic of the University of Ibadan Veterinary Teaching Hospital, was underway to isolate avian influenza viruses from sick...

  11. Importance of Internet surveillance in public health emergency control and prevention: evidence from a digital epidemiologic study during avian influenza A H7N9 outbreaks.

    PubMed

    Gu, Hua; Chen, Bin; Zhu, Honghong; Jiang, Tao; Wang, Xinyi; Chen, Lei; Jiang, Zhenggang; Zheng, Dawei; Jiang, Jianmin

    2014-01-17

    Outbreaks of human infection with a new avian influenza A H7N9 virus occurred in China in the spring of 2013. Control and prevention of a new human infectious disease outbreak can be strongly affected by public reaction and social impact through the Internet and social media. This study aimed to investigate the potential roles of Internet surveillance in control and prevention of the human H7N9 outbreaks. Official data for the human H7N9 outbreaks were collected via the China National Health and Family Planning Committee website from March 31 to April 24, 2013. We obtained daily posted and forwarded number of blogs for the keyword "H7N9" from Sina microblog website and a daily Baidu Attention Index (BAI) from Baidu website, which reflected public attention to the outbreak. Rumors identified and confirmed by the authorities were collected from Baidu search engine. Both daily posted and forwarded number and BAI for keyword H7N9 increased quickly during the first 3 days of the outbreaks and remained at a high level for 5 days. The total daily posted and forwarded number for H7N9 on Sina microblog peaked at 850,000 on April 3, from zero blogs before March 31, increasing to 97,726 on April 1 and to 370,607 on April 2, and remaining above 500,000 from April 5-8 before declining to 208,524 on April 12. The total daily BAI showed a similar pattern of change to the total daily posted and forwarded number over time from March 31 to April 12. When the outbreak locations spread, especially into other areas of the same province/city and the capital, Beijing, daily posted and forwarded number and BAI increased again to a peak at 368,500 and 116,911, respectively. The median daily BAI during the studied 25 days was significantly higher among the 7 provinces/cities with reported human H7N9 cases than the 2 provinces without any cases (P<.001). So were the median daily posted and forwarded number and daily BAI in each province/city except Anhui province. We retrieved a total of 32

  12. Control strategies against avian influenza

    USDA-ARS?s Scientific Manuscript database

    Since 1959, 40 epizootics of high pathogenicity avian influenza (HPAI) have occurred (Figure 1). Thirty-five of these epizootic HPAI viruses were geographically-limited (mostly to single countries), involved farm-to-farm spread and were eradicated from poultry by stamping-out programs; i.e. the HPAI...

  13. Avian influenza virus RNA extraction

    USDA-ARS?s Scientific Manuscript database

    The efficient extraction and purification of viral RNA is critical for down-stream molecular applications whether it is the sensitive and specific detection of virus in clinical samples, virus gene cloning and expression, or quantification of avian influenza (AI) virus by molecular methods from expe...

  14. OFFLU Network on Avian Influenza

    PubMed Central

    2006-01-01

    OFFLU is the name of the network of avian influenza expertise inaugurated jointly in 2005 by the Food and Agriculture Organization of the United Nations and the World Organisation for Animal Health. Achievements and constraints to date and plans for the future are described. PMID:16965718

  15. Avian Influenza A (H7N9) Virus

    MedlinePlus

    ... Variant Pandemic Other Asian Lineage Avian Influenza A (H7N9) Virus Language: English (US) Español Recommend on ... Guidance Laboratorian Guidance H7N9 Images Additional Information Asian H7N9 Outbreak Characterization Asian H7N9 virus infections in poultry ...

  16. Prevention and control of avian influenza in Asia

    USDA-ARS?s Scientific Manuscript database

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 62 countries during the past 15 years. For 2011-2012, 19 countries reported outbreaks of H5N1 in domestic poultry, wild birds or both. The majority of the outbr...

  17. Avian Influenza Vaccination of Poultry and Passive Case Reporting, Egypt

    PubMed Central

    Grosbois, Vladimir; Jobre, Yilma; Saad, Ahmed; El Nabi, Amira Abd; Galal, Shereen; Kalifa, Mohamed; El Kader, Soheir Abd; Dauphin, Gwenaëlle; Roger, François; Lubroth, Juan; Peyre, Marisa

    2012-01-01

    We investigated the influence of a mass poultry vaccination campaign on passive surveillance of highly pathogenic avian influenza subtype (H5N1) outbreaks among poultry in Egypt. Passive reporting dropped during the campaign, although probability of infection remained unchanged. Future poultry vaccination campaigns should consider this negative impact on reporting for adapting surveillance strategies. PMID:23171740

  18. Avian influenza: worldwide situation and effectiveness of current vaccines

    USDA-ARS?s Scientific Manuscript database

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 63 countries during the past 18 years. The majority of the recent outbreaks of H5N2 HPAI have occurred in Indonesia, Egypt, Vietnam, and Bangladesh, in decreasi...

  19. Avian influenza: the political economy of disease control in Cambodia.

    PubMed

    Ear, Sophal

    2011-01-01

    Abstract In the wake of avian flu outbreaks in 2004, Cambodia received $45 million in commitments from international donors to help combat the spread of animal and human influenza, particularly avian influenza (H5N1). How countries leverage foreign aid to address the specific needs of donors and the endemic needs of the nation is a complex and nuanced issue throughout the developing world. Cambodia is a particularly compelling study in pandemic preparedness and the management of avian influenza because of its multilayered network of competing local, national, and global needs, and because the level of aid in Cambodia represents approximately $2.65 million per human case-a disproportionately high number when compared with neighbors Vietnam and Indonesia. This paper examines how the Cambodian government has made use of animal and human influenza funds to protect (or fail to protect) its citizens and the global community. It asks how effective donor and government responses were to combating avian influenza in Cambodia, and what improvements could be made at the local and international level to help prepare for and respond to future outbreaks. Based on original interviews, a field survey of policy stakeholders, and detailed examination of Cambodia's health infrastructure and policies, the findings illustrate that while pandemic preparedness has shown improvements since 2004, new outbreaks and human fatalities accelerated in 2011, and more work needs to be done to align the specific goals of funders with the endemic needs of developing nations.

  20. Avian influenza: virology, diagnosis and surveillance.

    PubMed

    El Zowalaty, Mohamed E; Bustin, Stephen A; Husseiny, Mohamed I; Ashour, Hossam M

    2013-09-01

    Avian influenza virus (AIV) is the causative agent of a zoonotic disease that affects populations worldwide with often devastating economic and health consequences. Most AIV subtypes cause little or no disease in waterfowl, but outbreaks in poultry can be associated with high mortality. Although transmission of AIV to humans occurs rarely and is strain dependent, the virus has the ability to mutate or reassort into a form that triggers a life-threatening infection. The constant emergence of new influenza strains makes it particularly challenging to predict the behavior, spread, virulence or potential for human-to-human transmission. Because it is difficult to anticipate which viral strain or what location will initiate the next pandemic, it is difficult to prepare for that event. However, rigorous implementation of biosecurity, vaccination and education programs can minimize the threat of AIV. Global surveillance programs help record and identify newly evolving and potentially pandemic strains harbored by the reservoir host.

  1. [Isolation and molecular characterization of the influenza virus A/H5N1 strains isolated during outbreak of avian influenza among birds in the European part of Russia in 2005: strain with ozeltamivir-resistance mutation was found].

    PubMed

    Iatsyshina, S B; Shestopalov, A M; Evseenko, V A; Astakhova, T S; Braslavskaia, S I; Ternovoí, V A; Kondrat'eva, T Iu; Alekseev, A Iu; Zolotykh, S I; Rassadkin, Iu N; Zaíkovskaia, A V; Durymanov, A G; Netesov, S V; Shipulin, G A

    2008-01-01

    Isolation and characterization of the influenza virus A/H5N1 strains, isolated from chicken in the Yandovka village (Tula Region) and from wild swan near the orifice of the Volga River that died during an outbreak of avian flu in autumn 2005, were carried out. Genetic and phylogenetic analyses were performed. The goals of the analysis were to determine possible geographical origin of the strain, genetic similarity of isolated strains to earlier sequenced isolates, epidemic potential, existence of pathogenicity markers, and resistance to antiviral drugs. It was shown that the isolated influenza virus belonged to highly pathogenic variants of China origin by a reassortment of viruses genotypes Z and V circulated in poultry and wild birds. A number of molecular markers of pathogenicity to gallinaceous birds and mammals were found out. Mutations in the hemagglutinin gene promoting potentially high rate of replication in humans as well as mutations causing the resistance to amantadine/rimantadine were not found. The strain isolated from wild swan had the mutation causing resistance to tamiflu/ozeltamivir.

  2. Avian influenza and human health.

    PubMed

    Capua, Ilaria; Alexander, Dennis J

    2002-07-01

    Natural infections with influenza A viruses have been reported in a variety of animal species including humans, pigs, horses, sea mammals, mustelids and birds. Occasionally devastating pandemics occur in humans. Although viruses of relatively few HA and NA subtype combinations have been isolated from mammalian species, all 15 HA subtypes and all 9 NA subtypes, in most combinations, have been isolated from birds. In the 20th century the sudden emergence of antigenically different strains transmissible in humans, termed antigenic shift, has occurred on four occasions, 1918 (H1N1), 1957 (H2N2), 1968 (H3N2) and 1977 (H1N1), each time resulting in a pandemic. Genetic analysis of the isolates demonstrated that 'new' strains most certainly emerged after reassortment of genes of viruses of avian and human origin in a permissive host. The leading theory is that the pig represents the 'mixing vessel' where this genetic reassortment may occur. In 1996, an H7N7 influenza virus of avian origin was isolated from a woman with a self-limiting conjunctivitis. During 1997 in Hong Kong, an H5N1 avian influenza virus was recognised as the cause of death of 6 of 18 infected patients. Genetic analysis revealed these human isolates of H5N1 subtype to be indistinguishable from a highly pathogenic avian influenza virus that was endemic in the local poultry population. More recently, in March 1999, two independent isolations of influenza virus subtype H9N2 were made from girls aged one to four who recovered from flu-like illnesses in Hong Kong. Subsequently, five isolations of H9N2 virus from humans on mainland China in August 1998 were reported. H9N2 viruses were known to be widespread in poultry in China and other Asian countries. In all these cases there was no evidence of human to human spread except with the H5N1 infections where there was evidence of very limited spread. This is in keeping with the finding that all these viruses possessed all eight genes of avian origin. It may well

  3. Perceptions on the risk communication strategy during the 2013 avian influenza A/H7N9 outbreak in humans in China: a focus group study

    PubMed Central

    Li, Richun; Xie, Ruiqian; Yang, Chong

    2016-01-01

    Objective To identify the general public’s perceptions of the overall risk communication strategy carried out by Chinese public health agencies during the first wave of avian influenza A(H7N9) outbreak in humans in 2013. Methods Participants were recruited from communities in Beijing, Lanzhou and Hangzhou, China in May and June 2013 by convenience sampling. Demographics and other relevant information were collected using a self-administered questionnaire. Focus group interviews were conducted using a set of nine pre-developed questions and a tested moderator guide. The interviews were audio recorded and were transcribed verbatim. The constant comparative method was used to identify trends and themes. Results A total of nine focus group interviews, with 94 participants recruited from nine communities, were conducted. Most participants received H7N9 information via television and the Internet. Most the participants appreciated the transparency and timeliness of the information released by the government. They expressed a sense of trust in the recommended public health advice and followed most of them. The participants suggested that the government release more information about clinical treatment outcomes, have more specific health recommendations that are practical to their settings and expand the use of new media channels for risk communication. Conclusion The public perceived the overall risk communication strategy by the Chinese public health agencies as effective, though the moderator had a governmental agency title that might have biased the results. There is a need to expand the use of social media for risk communication in the future. PMID:27757257

  4. Wild bird surveillance around outbreaks of highly pathogenic avian influenza A(H5N8) virus in the Netherlands, 2014, within the context of global flyways.

    PubMed

    Verhagen, J H; van der Jeugd, H P; Nolet, B A; Slaterus, R; Kharitonov, S P; de Vries, P P; Vuong, O; Majoor, F; Kuiken, T; Fouchier, R A

    2015-03-26

    Highly pathogenic avian influenza (HPAI) A(H5N8) viruses that emerged in poultry in east Asia since 2010 spread to Europe and North America by late 2014. Despite detections in migrating birds, the role of free-living wild birds in the global dispersal of H5N8 virus is unclear. Here, wild bird sampling activities in response to the H5N8 virus outbreaks in poultry in the Netherlands are summarised along with a review on ring recoveries. HPAI H5N8 virus was detected exclusively in two samples from ducks of the Eurasian wigeon species, among 4,018 birds sampled within a three months period from mid-November 2014. The H5N8 viruses isolated from wild birds in the Netherlands were genetically closely related to and had the same gene constellation as H5N8 viruses detected elsewhere in Europe, in Asia and in North America, suggesting a common origin. Ring recoveries of migratory duck species from which H5N8 viruses have been isolated overall provide evidence for indirect migratory connections between East Asia and Western Europe and between East Asia and North America. This study is useful for better understanding the role of wild birds in the global epidemiology of H5N8 viruses. The need for sampling large numbers of wild birds for the detection of H5N8 virus and H5N8-virus-specific antibodies in a variety of species globally is highlighted, with specific emphasis in north-eastern Europe, Russia and northern China.

  5. Climate change and avian influenza

    PubMed Central

    Slingenbergh, J.; Xiao, X.

    2009-01-01

    Summary This paper discusses impacts of climate change on the ecology of avian influenza viruses (AI viruses), which presumably co-evolved with migratory water birds, with virus also persisting outside the host in subarctic water bodies. Climate change would almost certainly alter bird migration, influence the AI virus transmission cycle and directly affect virus survival outside the host. The joint, net effects of these changes are rather unpredictable, but it is likely that AI virus circulation in water bird populations will continue with endless adaptation and evolution. In domestic poultry, too little is known about the direct effect of environmental factors on highly pathogenic avian influenza transmission and persistence to allow inference about the possible effect of climate change. However, possible indirect links through changes in the distribution of duck-crop farming are discussed. PMID:18819672

  6. Global avian influenza surveillance in wild birds: a strategy to capture viral diversity.

    PubMed

    Machalaba, Catherine C; Elwood, Sarah E; Forcella, Simona; Smith, Kristine M; Hamilton, Keith; Jebara, Karim B; Swayne, David E; Webby, Richard J; Mumford, Elizabeth; Mazet, Jonna A K; Gaidet, Nicolas; Daszak, Peter; Karesh, William B

    2015-04-01

    Wild birds play a major role in the evolution, maintenance, and spread of avian influenza viruses. However, surveillance for these viruses in wild birds is sporadic, geographically biased, and often limited to the last outbreak virus. To identify opportunities to optimize wild bird surveillance for understanding viral diversity, we reviewed responses to a World Organisation for Animal Health-administered survey, government reports to this organization, articles on Web of Knowledge, and the Influenza Research Database. At least 119 countries conducted avian influenza virus surveillance in wild birds during 2008-2013, but coordination and standardization was lacking among surveillance efforts, and most focused on limited subsets of influenza viruses. Given high financial and public health burdens of recent avian influenza outbreaks, we call for sustained, cost-effective investments in locations with high avian influenza diversity in wild birds and efforts to promote standardized sampling, testing, and reporting methods, including full-genome sequencing and sharing of isolates with the scientific community.

  7. An internet-based epidemiological investigation of the outbreak of H7N9 Avian influenza A in China since early 2013.

    PubMed

    Mao, Chen; Wu, Xin-Yin; Fu, Xiao-Hong; Di, Meng-Yang; Yu, Yuan-Yuan; Yuan, Jin-Qiu; Yang, Zu-Yao; Tang, Jin-Ling

    2014-09-25

    In early 2013, a new type of avian influenza, H7N9, emerged in China. It quickly became an issue of great public concern and a widely discussed topic on the Internet. A considerable volume of relevant information was made publicly available on the Internet through various sources. This study aimed to describe the outbreak of H7N9 in China based on data openly available on the Internet and to validate our investigation by comparing our findings with a well-conducted conventional field epidemiologic study. We searched publicly accessible Internet data on the H7N9 outbreak primarily from government and major mass media websites in China up to February 10, 2014. Two researchers independently extracted, compared, and confirmed the information of each confirmed H7N9 case using a self-designed data extraction form. We summarized the epidemiological and clinical characteristics of confirmed H7N9 cases and compared them with those from the field study. According to our data updated until February 10, 2014, 334 confirmed H7N9 cases were identified. The median age was 58 years and 67.0% (219/327) were males. Cases were reported in 15 regions in China. Five family clusters were found. Of the 16.8% (56/334) of the cases with relevant data, 69.6% (39/56) reported a history of exposure to animals. Of the 1751 persons with a close contact with a confirmed case, 0.6% (11/1751) of them developed respiratory symptoms during the 7-day surveillance period. In the 97.9% (327/334) of the cases with relevant data, 21.7% (71/327) died, 20.8% (68/327) were discharged from a hospital, and 57.5% (188/327) were of uncertain status. We compared our findings before February 10, 2014 and those before December 1, 2013 with those from the conventional field study, which had the latter cutoff date of ours in data collection. Our study showed most epidemiological and clinical characteristics were similar to those in the field study, except for case fatality (71/327, 21.7% for our data before February

  8. Forecasting seasonal outbreaks of influenza.

    PubMed

    Shaman, Jeffrey; Karspeck, Alicia

    2012-12-11

    Influenza recurs seasonally in temperate regions of the world; however, our ability to predict the timing, duration, and magnitude of local seasonal outbreaks of influenza remains limited. Here we develop a framework for initializing real-time forecasts of seasonal influenza outbreaks, using a data assimilation technique commonly applied in numerical weather prediction. The availability of real-time, web-based estimates of local influenza infection rates makes this type of quantitative forecasting possible. Retrospective ensemble forecasts are generated on a weekly basis following assimilation of these web-based estimates for the 2003-2008 influenza seasons in New York City. The findings indicate that real-time skillful predictions of peak timing can be made more than 7 wk in advance of the actual peak. In addition, confidence in those predictions can be inferred from the spread of the forecast ensemble. This work represents an initial step in the development of a statistically rigorous system for real-time forecast of seasonal influenza.

  9. Forecasting seasonal outbreaks of influenza

    PubMed Central

    Shaman, Jeffrey; Karspeck, Alicia

    2012-01-01

    Influenza recurs seasonally in temperate regions of the world; however, our ability to predict the timing, duration, and magnitude of local seasonal outbreaks of influenza remains limited. Here we develop a framework for initializing real-time forecasts of seasonal influenza outbreaks, using a data assimilation technique commonly applied in numerical weather prediction. The availability of real-time, web-based estimates of local influenza infection rates makes this type of quantitative forecasting possible. Retrospective ensemble forecasts are generated on a weekly basis following assimilation of these web-based estimates for the 2003–2008 influenza seasons in New York City. The findings indicate that real-time skillful predictions of peak timing can be made more than 7 wk in advance of the actual peak. In addition, confidence in those predictions can be inferred from the spread of the forecast ensemble. This work represents an initial step in the development of a statistically rigorous system for real-time forecast of seasonal influenza. PMID:23184969

  10. Universal Detection and Identification of Avian Influenza Virus by Use of Resequencing Microarrays

    DTIC Science & Technology

    2009-04-01

    Society for Microbiology. All Rights Reserved. Universal Detection and Identification of Avian Influenza Virus by Use of Resequencing Microarrays...been, and continue to emerge as, threats to human health. The recent outbreaks of highly pathogenic avian influenza virus in bird populations and the...appearance of some human infections have increased the concern of a possible new influenza pandemic, which highlights the need for broad-spectrum

  11. Recent developments in the diagnosis of avian influenza.

    PubMed

    Okamatsu, Masatoshi; Hiono, Takahiro; Kida, Hiroshi; Sakoda, Yoshihiro

    2016-09-01

    The diagnosis of influenza A virus infections in poultry or wild birds is difficult due to variations in the pathogenicity of the viruses in different avian hosts and also the antigenic and genetic diversity of the virus, particularly the recent H5 highly pathogenic avian influenza viruses. A classical standard laboratory technique is virus isolation prior to subtyping and pathotyping. This diagnostic technique is crucial for further virological analyses, particularly during an initial outbreak; however, delays in diagnosis have thwarted effective disease control in recent years. Recent developments in molecular biological techniques provide an accelerated diagnosis. Such technologies, which include real-time reverse transcriptase PCR, isothermal nucleic acid amplification, next-generation sequencing and immunochromatography, contribute to simpler and more rapid diagnosis. The advantages of each of these diagnostic techniques should be considered for effective control of avian influenza. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Avian influenza in North America, 2009-2011.

    PubMed

    Pasick, John; Pedersen, Janice; Hernandez, Mario Solis

    2012-12-01

    All reports of avian influenza virus infections in poultry and isolations from wild bird species in Canada, the United States, and Mexico between 2009 and 2011 involved low pathogenic avian influenza. All three countries reported outbreaks of low pathogenic notifiable avian influenza in poultry during this period. The reports involved outbreaks of H5N2 among commercial turkeys in Canada in 2009 and 2010; outbreaks of H5N3 in turkeys in 2009, H5N2 in chickens in 2010, H7N3 in turkeys in 2011, and H7N9 in chickens, turkeys, geese, and guinea fowl in 2011 in the United States; and multiple outbreaks of H5N2 in chickens in Mexico in 2009, 2010, and 2011. Outbreaks of pandemic H1N1 infections in turkey breeder flocks were reported in Canada in 2009 and in the United States in 2010. Active surveillance of live bird markets in the United States led to the detection of H2, H3, H4, H5, H6, and H10 subtypes. Despite the fact that wild bird surveillance programs underwent contraction during this period in both Canada and the United States, H5 and H7 subtypes were still detected.

  13. USGS highly pathogenic avian influenza research strategy

    USGS Publications Warehouse

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  14. Outbreaks of avian influenza A (H5N2), (H5N8), and (H5N1) among birds--United States, December 2014-January 2015.

    PubMed

    Jhung, Michael A; Nelson, Deborah I

    2015-02-06

    During December 15, 2014-January 16, 2015, the U.S. Department of Agriculture received 14 reports of birds infected with Asian-origin, highly pathogenic avian influenza A (HPAI) (H5N2), (H5N8), and (H5N1) viruses. These reports represent the first reported infections with these viruses in U.S. wild or domestic birds. Although these viruses are not known to have caused disease in humans, their appearance in North America might increase the likelihood of human infection in the United States. Human infection with other avian influenza viruses, such as HPAI (H5N1) and (H5N6) viruses and (H7N9) virus, has been associated with severe, sometimes fatal, disease, usually following contact with poultry.

  15. A brief introduction to avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Avian influenza virus (AIV) causes a disease of high economic importance for poultry production worldwide. The earliest recorded cases of probable high pathogenicity AIV in poultry were reported in Italy in the 1870’s and avian influenza been recognized in domestic poultry through the modern era of ...

  16. The global nature of avian influenza

    USDA-ARS?s Scientific Manuscript database

    Avian influenza virus is a global virus which knows no geographic boundaries, has no political agenda, and can infect poultry irrespective of their agricultural or anthropocentric production systems. Avian influenza viruses or evidence of their infection have been detected in poultry and wild birds...

  17. Phylogenetic analysis of highly pathogenic avian influenza A(H5N8) virus outbreak strains provides evidence for four separate introductions and one between-poultry farm transmission in the Netherlands, November 2014.

    PubMed

    Bouwstra, R J; Koch, G; Heutink, R; Harders, F; van der Spek, A; Elbers, A R; Bossers, A

    2015-07-02

    Phylogenetic analysis of highly pathogenic avian influenza A(H5N8) virus strains causing outbreaks in Dutch poultry farms in 2014 provides evidence for separate introduction of the virus in four outbreaks in farms located 16-112 km from each other and for between-farm transmission between the third and fourth outbreak in farms located 550 m from each other. In addition, the analysis showed that all European and two Japanese H5N8 virus strains are very closely related and seem to originate from a calculated common ancestor, which arose between July and September 2014. Our findings suggest that the Dutch outbreak virus strain 'Ter Aar' and the first German outbreak strain from 2014 shared a common ancestor. In addition, the data indicate that the Dutch outbreak viruses descended from an H5N8 virus that circulated around 2009 in Asia, possibly China, and subsequently spread to South Korea and Japan and finally also to Europe. Evolution of the virus seemed to follow a parallel track in Japan and Europe, which supports the hypothesis that H5N8 virus was exchanged between migratory wild waterfowl at their breeding grounds in Siberia and from there was carried by migrating waterfowl to Europe.

  18. Bird Flu (Avian Influenza)

    MedlinePlus

    ... how long. Recent exposure to possible sources of infection. Be sure to describe any international trips, especially to areas where bird flu ... you're traveling to Southeast Asia or to any region with bird flu outbreaks, ... and best ways to prevent infections of all kinds. Use an alcohol-based hand ...

  19. Protection of poultry against the 2012 Mexican H7N3 highly pathogenic avian influenza virus with inactivated H7 avian influenza vaccines

    USDA-ARS?s Scientific Manuscript database

    In June of 2012, an outbreak of highly pathogenic avian influenza (HPAI) H7N3 was reported poultry in Jalisco, Mexico. Since that time the virus has spread to the surrounding States of Guanajuato and Aguascalientes and new outbreaks continue to be reported. To date more than 25 million birds have di...

  20. Protective measures and H5N1-seroprevalence among personnel tasked with bird collection during an outbreak of avian influenza A/H5N1 in wild birds, Ruegen, Germany, 2006

    PubMed Central

    2009-01-01

    Background In Germany, the first outbreak of highly pathogenic avian influenza A/H5N1 occurred among wild birds on the island of Ruegen between February and April 2006. The aim of this study was to investigate the use of recommended protective measures and to measure H5N1-seroprevalence among personnel tasked with bird collection. Methods Inclusion criteria of our study were participation in collecting wild birds on Ruegen between February and March 2006. Study participants were asked to complete a questionnaire, and to provide blood samples. For evaluation of the use of protective measures, we developed a personal protective equipment (PPE)-score ranging between 0 and 9, where 9 corresponds to a consistent and complete use of PPE. Sera were tested by plaque neutralization (PN) and microneutralization (MN) assays. Reactive sera were reanalysed in the World Health Organization-Collaborating Centre (WHO-CC) using MN assay. Results Of the eligible personnel, consisting of firemen, government workers and veterinarians, 61% (97/154) participated in the study. Of those, 13% reported having always worn all PPE-devices during bird collection (PPE-score: 9). Adherence differed between firemen (mean PPE-score: 6.6) and government workers (mean PPE-score: 4.5; p = 0.006). The proportion of personnel always adherent to wearing PPE was lowest for masks (19%). Of the participants, 18% had received seasonal influenza vaccination prior to the outbreak. There were no reports of influenza-like illness. Five sera initially H5-reactive by PN assay were negative by WHO-CC confirmatory testing. Conclusion Gaps and variability in adherence demonstrate the risk of exposure to avian influenza under conditions of wild bird collection, and justify serological testing and regular training of task personnel. PMID:19835632

  1. Protective measures and H5N1-seroprevalence among personnel tasked with bird collection during an outbreak of avian influenza A/H5N1 in wild birds, Ruegen, Germany, 2006.

    PubMed

    Cai, Wei; Schweiger, Brunhilde; Buchholz, Udo; Buda, Silke; Littmann, Martina; Heusler, Jörg; Haas, Walter

    2009-10-18

    In Germany, the first outbreak of highly pathogenic avian influenza A/H5N1 occurred among wild birds on the island of Ruegen between February and April 2006. The aim of this study was to investigate the use of recommended protective measures and to measure H5N1-seroprevalence among personnel tasked with bird collection. Inclusion criteria of our study were participation in collecting wild birds on Ruegen between February and March 2006. Study participants were asked to complete a questionnaire, and to provide blood samples. For evaluation of the use of protective measures, we developed a personal protective equipment (PPE)-score ranging between 0 and 9, where 9 corresponds to a consistent and complete use of PPE. Sera were tested by plaque neutralization (PN) and microneutralization (MN) assays. Reactive sera were reanalyzed in the World Health Organization-Collaborating Centre (WHO-CC) using MN assay. Of the eligible personnel, consisting of firemen, government workers and veterinarians, 61% (97/154) participated in the study. Of those, 13% reported having always worn all PPE-devices during bird collection (PPE-score: 9). Adherence differed between firemen (mean PPE-score: 6.6) and government workers (mean PPE-score: 4.5; p = 0.006). The proportion of personnel always adherent to wearing PPE was lowest for masks (19%). Of the participants, 18% had received seasonal influenza vaccination prior to the outbreak. There were no reports of influenza-like illness. Five sera initially H5-reactive by PN assay were negative by WHO-CC confirmatory testing. Gaps and variability in adherence demonstrate the risk of exposure to avian influenza under conditions of wild bird collection, and justify serological testing and regular training of task personnel.

  2. [Epidemics of conjunctivitis caused by avian influenza virus and molecular basis for its ocular tropism].

    PubMed

    Yang, Chao; Jin, Ming

    2014-07-01

    Avian influenza virus (AIV) has caused several outbreaks in humans, leading to disasters to human beings. The outbreak of H7N9 avian influenza in China in 2003 re-attracted our close attention to this disease. More and more evidences demonstrated that eye is one of invasion portals of AIV, leading to conjunctivitis. The current studies showed that only subtypes H7 and H5 could cause severe systemic infections. Abundant distribution of α-2, 3 siliac acid receptor in conjunctiva and cornea as well as specific activiation of NF-κB signal transduction pathway by subtype H7 virus may contribute to the ocular tropism of the virus. These studies suggest that avian influenza conjunctivitis should be considered as a differential diagnosis during influenza epidemic seasons, and eyes should be well protected for disease control personnel when handling avian influenza epidemics. This review focused on AIV conjunctivitis and the molecular basis of ocular tropism.

  3. Outbreaks of highly pathogenic avian influenza H5N1 clade 2.3.2.1c in hunting falcons and kept wild birds in Dubai implicate intercontinental virus spread.

    PubMed

    Naguib, Mahmoud M; Kinne, Jörg; Chen, Honglin; Chan, Kwok-Hung; Joseph, Sunitha; Wong, Po-Chun; Woo, Patrick C Y; Wernery, Renate; Beer, Martin; Wernery, Ulrich; Harder, Timm C

    2015-11-01

    Highly pathogenic avian influenza viruses (HPAIVs) of subtype H5N1 have continued to perpetuate with divergent genetic variants in poultry within Asia since 2003. Further dissemination of Asian-derived H5 HPAIVs to Europe, Africa and, most recently, to the North American continent has occurred. We report an outbreak of HPAIV H5N1 among falcons kept for hunting and other wild bird species bred as falcon prey in Dubai, United Arab Emirates, during the autumn of 2014. The causative agent was identified as avian influenza virus subtype H5N1, clade 2.3.2.1c, by genetic and phylogenetic analyses. High mortality in infected birds was in accordance with systemic pathomorphological and histological alterations in affected falcons. Genetic analysis showed the HPAIV H5N1 of clade 2.3.2.1c is a reassortant in which the PB2 segment was derived from an Asian-origin H9N2 virus lineage. The Dubai H5N1 viruses were closely related to contemporary H5N1 HPAIVs from Nigeria, Burkina-Faso, Romania and Bulgaria. Median-joining network analysis of 2.3.2.1c viruses revealed that the Dubai outbreak was an episode of a westward spread of these viruses on a larger scale from unidentified Asian sources. The incursion into Dubai, possibly via infected captive hunting falcons returning from hunting trips to central Asian countries, preceded outbreaks in Nigeria and other West African countries. The alarmingly enhanced geographical mobility of clade 2.3.2.1.c and clade 2.3.4.4 viruses may represent another wave of transcontinental dissemination of Asian-origin HPAIV H5 viruses, such as the outbreak at Qinghai Lake caused by clade 2.2 (‘Qinghai’ lineage) in 2005.

  4. Experimental vaccines against potentially pandemic and highly pathogenic avian influenza viruses

    PubMed Central

    Mooney, Alaina J; Tompkins, S Mark

    2013-01-01

    Influenza A viruses continue to emerge and re-emerge, causing outbreaks, epidemics and occasionally pandemics. While the influenza vaccines licensed for public use are generally effective against seasonal influenza, issues arise with production, immunogenicity, and efficacy in the case of vaccines against pandemic and emerging influenza viruses, and highly pathogenic avian influenza virus in particular. Thus, there is need of improved influenza vaccines and vaccination strategies. This review discusses advances in alternative influenza vaccines, touching briefly on licensed vaccines and vaccine antigens; then reviewing recombinant subunit vaccines, virus-like particle vaccines and DNA vaccines, with the main focus on virus-vectored vaccine approaches. PMID:23440999

  5. International standards for the control of avian influenza.

    PubMed

    Pearson, J E

    2003-01-01

    The Office International des Epizooties (OIE) has developed international standards to reduce the risk of the spread of high-pathogenicity avian influenza though international trade. These standards include providing a definition of high-pathogenicity avian influenza (HPAI), procedures for prompt reporting of HPAI outbreaks, requirements that must be met for a country or zone to be defined as free of HPAI, requirements that should be met to import live birds and avian products into a HPAI-free country or zone, and the general provisions that countries should meet to reduce the risk of spread of HPAI through trade. The goal of these standards is to facilitate trade while minimizing the risk of the introduction of HPAI.

  6. Microarray analysis following infection with highly pathogenic avian influenza H5N1 virus in naive and vaccinated SPF chickens

    USDA-ARS?s Scientific Manuscript database

    Avian influenza (AI) is a viral disease of poultry that remains a constant threat to commercial poultry throughout the world. Within the last few years, outbreaks of highly pathogenic avian influenza (HPAI) H5N1 have originated in Southeast Asia and spread to several European, Middle Eastern, and A...

  7. A national survey of emergency nurses and avian influenza threat.

    PubMed

    Bell, Mary Ann; Dake, Joseph A; Price, James H; Jordan, Timothy R; Rega, Paul

    2014-05-01

    The purpose of this study was to determine the perceived likelihood of emergency nurses reporting to work during an avian influenza outbreak, to consider options if nurses decided not to report work, and to explore Protection Motivation Theory constructs as predictors of reporting to work. A descriptive, nonexperimental, cross-sectional survey of emergency nurses within the United States. A total of 332 nurses (46%) responded. Most emergency nurses (84%) reported they would report to work (1 in 6 would not). The likelihood of reporting to work differed by education level, nurses' avian influenza information sources, and nurses who had family living with them. Of the nurses who decided not to report to work, the majority were willing to provide health information (90%), administer vaccinations (82%), and triage (74%) neighbors/friends from home. One third of nurses had not attended a disaster-preparedness drill within the past year. Only 20% identified formal training while on the job as a source of avian influenza information. A third of emergency nurses would be worried about getting an avian influenza vaccination because of potential adverse effects. Protection Motivation Theory accounted for almost 40% of the variance of likelihood to report to work, with response costs being the largest predictor. Disaster drills, avian influenza job training, and vaccination education are necessary to prepare emergency nurses for an outbreak. The findings support emergency nurses' willingness to work from home if they are unable to report to work. This finding is new and may have implications for disaster planning, staffing, and ED operations. Copyright © 2014 Emergency Nurses Association. Published by Mosby, Inc. All rights reserved.

  8. Probable Tiger-to-Tiger Transmission of Avian Influenza H5N1

    PubMed Central

    Thanawongnuwech, Roongroje; Amonsin, Alongkorn; Tantilertcharoen, Rachod; Damrongwatanapokin, Sudarat; Theamboonlers, Apiradee; Payungporn, Sunchai; Nanthapornphiphat, Kamonchart; Ratanamungklanon, Somchuan; Tunak, Eakchai; Songserm, Thaweesak; Vivatthanavanich, Veravit; Lekdumrongsak, Thawat; Kesdangsakonwut, Sawang; Tunhikorn, Schwann

    2005-01-01

    During the second outbreak of avian influenza H5N1 in Thailand, probable horizontal transmission among tigers was demonstrated in the tiger zoo. Sequencing and phylogenetic analysis of those viruses showed no differences from the first isolate obtained in January 2004. This finding has implications for influenza virus epidemiology and pathogenicity in mammals. PMID:15890122

  9. Are live bird markets reservoirs of avian influenza?

    PubMed

    Cardona, C; Yee, K; Carpenter, T

    2009-04-01

    Live bird markets (LBM) are essential for marketing poultry in many developing countries, and they are a preferred place for many people to purchase poultry for consumption throughout the world. Live bird markets are typically urban and have a permanent structure in which birds can be housed until they are sold. Live bird markets bring together a mixture of bird species that meet the preferences of their customers and that are commonly produced by multiple suppliers. The mixture of species, the lack of all-in-all-out management, and multiple suppliers are all features that make LBM potential sources of avian influenza viruses (AIV), especially for their supply flocks. Live bird markets have been linked to many outbreaks of avian influenza internationally and in the United States. Avian influenza virus is endemic in many, but not all, LBM systems. For instance, AIV has not been isolated from the Southern California LBM system since December 2005, although the risk of new introductions remains. The California LBM system is much smaller than the New York system, handles fewer birds, and has fewer bird suppliers, which, combined with recent avian influenza prevention and control plans, have enabled it to be AIV free for nearly 3 yr.

  10. Clinical and Pathologic Characterization of an Outbreak of Highly Pathogenic Avian Influenza H7N8 in Commercial Turkeys in Southern Indiana.

    PubMed

    Burcham, Grant N; Ramos-Vara, José A; Murphy, Duane A

    2017-09-01

    Highly pathogenic avian influenza (HPAI) is a systemic lethal disease of poultry caused by several subtypes of influenza A virus and classified on the basis of serologic reactions to hemagglutinin and neuraminidase surface glycoproteins. In January 2016, a novel subtype of HPAI-H7N8-was diagnosed in a commercial turkey (Meleagris gallopavo) flock in southern Indiana. Clinical signs and history included increased mortality, dyspnea, head tremors, recumbency, and somnolent or unaware birds. Postmortem examination of six recently dead birds showed red-tinged mucous in the choana and trachea and marked pulmonary edema. Histologic lesions in the brain included severe, multifocal lymphohistiocytic meningoencephalitis with foci of malacia, neuronal necrosis, and neuronophagia. All anatomic locations of the brain were affected, although histologic changes in the cerebellum were considered mild. Other histologic lesions included pulmonary congestion and edema, splenic congestion and lymphoid depletion, fibrinoid necrosis of vessels within the spleen, and multifocal pancreatic acinar necrosis. Immunohistochemistry (IHC) was weakly positive for influenza A in the brain; IHC was negative in other tissues tested. The clinical and pathologic characteristics of this case matched previously published material concerning HPAI and add to instances of known or suspected mutation of a low pathogenic virus to a highly pathogenic virus.

  11. A Simulation-Based Evaluation of Premovement Active Surveillance Protocol Options for the Managed Movement of Turkeys to Slaughter During an Outbreak of Highly Pathogenic Avian Influenza in the United States.

    PubMed

    Todd Weaver, J; Malladi, Sasidhar; Bonney, Peter J; Patyk, Kelly A; Bergeron, Justin G; Middleton, Jamie L; Alexander, Catherine Y; Goldsmith, Timothy J; Halvorson, David A

    2016-05-01

    Risk management decisions associated with live poultry movement during a highly pathogenic avian influenza (HPAI) outbreak should be carefully considered. Live turkey movements may pose a risk for disease spread. On the other hand, interruptions in scheduled movements can disrupt business continuity. The Secure Turkey Supply (STS) Plan was developed through an industry-government-academic collaboration to address business continuity concerns that might arise during a HPAI outbreak. STS stakeholders proposed outbreak response measure options that were evaluated through risk assessment. The developed approach relies on 1) diagnostic testing of two pooled samples of swabs taken from dead turkeys immediately before movement via the influenza A matrix gene real-time reverse transcriptase polymerase chain reaction (rRT-PCR) test; 2) enhanced biosecurity measures in combination with a premovement isolation period (PMIP), restricting movement onto the premises for a few days before movement to slaughter; and 3) incorporation of a distance factor from known infected flocks such that exposure via local area spread is unlikely. Daily exposure likelihood estimates from spatial kernels from past HPAI outbreaks were coupled with simulation models of disease spread and active surveillance to evaluate active surveillance protocol options that differ with respect to the number of swabs per pooled sample and the timing of the tests in relation to movement. Simulation model results indicate that active surveillance testing, in combination with strict biosecurity, substantially increased HPAI virus detection probability. When distance from a known infected flock was considered, the overall combined likelihood of moving an infected, undetected turkey flock to slaughter was predicted to be lower at 3 and 5 km. The analysis of different active surveillance protocol options is designed to incorporate flexibility into HPAI emergency response plans.

  12. Avian influenza infections in birds--a moving target.

    PubMed

    Capua, Ilaria; Alexander, Dennis J

    2007-01-01

    Avian influenza (AI) is a complex infection of birds, of which the ecology and epidemiology have undergone substantial changes over the last decade. Avian influenza viruses infecting poultry can be divided into two groups. The very virulent viruses cause highly pathogenic avian influenza (HPAI), with flock mortality as high as 100%. These viruses have been restricted to subtypes H5 and H7, although not all H5 and H7 viruses cause HPAI. All other viruses cause a milder, primarily respiratory, disease (low pathogenic avian influenza, LPAI), unless exacerbated by other infections or environmental conditions. Until recently, HPAI viruses were rarely isolated from wild birds, but for LPAI viruses extremely high isolation rates have been recorded in surveillance studies, particularly in feral waterfowl. In recent years, there have been costly outbreaks of HPAI in poultry in Italy, the Netherlands and Canada and in each of these countries millions of birds were slaughtered to bring the outbreaks under control. However, these outbreaks tend to have been overshadowed by the H5N1 HPAI virus, initially isolated in China, that has now spread in poultry and/or wild birds throughout Asia and into Europe and Africa, resulting in the death or culling of hundreds of millions of poultry and posing a significant zoonosis threat. Since the 1990s, AI infections due to two subtypes, LPAI H9N2 and HPAI H5N1,have been widespread in poultry across large areas of the world, resulting in a modified eco-epidemiology and a zoonotic potential. An extraordinary effort is required to manage these epidemics from both the human and animal health perspectives.

  13. Avian influenza virus RNA extraction.

    PubMed

    Spackman, Erica; Lee, Scott A

    2014-01-01

    The efficient extraction and purification of viral RNA is critical for down-stream molecular applications whether it is the sensitive and specific detection of virus in clinical samples, virus gene cloning and expression, or quantification of avian influenza (AI) virus by molecular methods from experimentally infected birds. Samples can generally be divided into two types; enriched (e.g. virus stocks) and clinical. Clinical type samples, which may be tissues or swab material, are the most difficult to process due to the complex sample composition and possibly low virus titers. In this chapter two well established procedures for the isolation of AI virus RNA from common clinical specimen types and enriched virus stocks for further molecular applications will be presented.

  14. Comparison of pathogenicities of H7 avian influenza viruses via intranasal and conjunctival inoculation in cynomolgus macaques.

    PubMed

    Shichinohe, Shintaro; Itoh, Yasushi; Nakayama, Misako; Ozaki, Hiroichi; Soda, Kosuke; Ishigaki, Hirohito; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa

    2016-06-01

    The outbreak of H7N9 low pathogenic avian influenza viruses in China has attracted attention to H7 influenza virus infection in humans. Since we have shown that the pathogenicity of H1N1 and H5N1 influenza viruses in macaques was almost the same as that in humans, we compared the pathogenicities of H7 avian influenza viruses in cynomolgus macaques via intranasal and conjunctival inoculation, which mimics natural infection in humans. H7N9 virus, as well as H7N7 highly pathogenic avian influenza virus, showed more efficient replication and higher pathogenicity in macaques than did H7N1 and H7N3 highly pathogenic avian influenza viruses. These results are different from pathogenicity in chickens as reported previously. Therefore, our results obtained in macaques help to estimate the pathogenicity of H7 avian influenza viruses in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Avian influenza outbreak management: action at time of confirmation, depopulation and disposal methods; the 'Belgian experience' during the H7N7 highly pathogenic avian influenza epidemic in 2003.

    PubMed

    van den Berg, T; Houdart, P

    2008-01-01

    Eradication of H5 and H7 influenza in a positive flock will include mass depopulation of birds, containment and inactivation of the virus in the carcasses and litter, and decontamination of the facility. A quick response is desired in the event of a disease outbreak. Ideally, birds should be depopulated within 24 h after detecting the virus. Mass depopulation of birds must be performed in a humane manner while minimizing human health and biosecurity risks. In the framework of the European legislation, a number of methods are authorized for the killing of poultry for processing prior to marketing. However, during emergencies such as a disease outbreak, there are fewer options. The current most commonly used procedures for large-scale emergency depopulation of birds consist of exposing poultry to CO or CO(2) gas. Both gasses have been used in Belgium during the H7N7 crisis in 2003. The gassing procedures include whole house gassing, portable panel enclosures, cage cabinets, containers and polyethylene tent method. Whole house gassing requires sealing the house to prevent gas leakage and, using specialized equipment, introducing large volumes of gas evenly over the birds. All procedures are very labour intensive, create a biosecurity risk and require a large number of personnel. There are considerable region-to-region differences in emergency depopulation techniques and disposal of carcasses and infected material. Because of the differences in bird type and species, management, housing and stocking density, it is difficult to propose a depopulation technique that will be suitable for all circumstances. Safety of the human operators is an increasing concern with all H5 and H7 strains and in particular with the highly pathogenic H5N1 strain. Researchers and commercial poultry companies in the United States recently established that non-toxic water-based foam with a certain bubble size presents a practicable, effective and humane method for mass depopulation. Foam of the

  16. Antibody responses to avian influenza viruses in wild birds broaden with age

    PubMed Central

    Manvell, Ruth J.; Schulenburg, Bodo; Shell, Wendy; Wikramaratna, Paul S.; Perrins, Christopher; Sheldon, Ben C.; Brown, Ian H.; Pybus, Oliver G.

    2016-01-01

    For viruses such as avian influenza, immunity within a host population can drive the emergence of new strains by selecting for viruses with novel antigens that avoid immune recognition. The accumulation of acquired immunity with age is hypothesized to affect how influenza viruses emerge and spread in species of different lifespans. Despite its importance for understanding the behaviour of avian influenza viruses, little is known about age-related accumulation of immunity in the virus's primary reservoir, wild birds. To address this, we studied the age structure of immune responses to avian influenza virus in a wild swan population (Cygnus olor), before and after the population experienced an outbreak of highly pathogenic H5N1 avian influenza in 2008. We performed haemagglutination inhibition assays on sampled sera for five avian influenza strains and show that breadth of response accumulates with age. The observed age-related distribution of antibody responses to avian influenza strains may explain the age-dependent mortality observed during the highly pathogenic H5N1 outbreak. Age structures and species lifespan are probably important determinants of viral epidemiology and virulence in birds. PMID:28003449

  17. Antibody responses to avian influenza viruses in wild birds broaden with age.

    PubMed

    Hill, Sarah C; Manvell, Ruth J; Schulenburg, Bodo; Shell, Wendy; Wikramaratna, Paul S; Perrins, Christopher; Sheldon, Ben C; Brown, Ian H; Pybus, Oliver G

    2016-12-28

    For viruses such as avian influenza, immunity within a host population can drive the emergence of new strains by selecting for viruses with novel antigens that avoid immune recognition. The accumulation of acquired immunity with age is hypothesized to affect how influenza viruses emerge and spread in species of different lifespans. Despite its importance for understanding the behaviour of avian influenza viruses, little is known about age-related accumulation of immunity in the virus's primary reservoir, wild birds. To address this, we studied the age structure of immune responses to avian influenza virus in a wild swan population (Cygnus olor), before and after the population experienced an outbreak of highly pathogenic H5N1 avian influenza in 2008. We performed haemagglutination inhibition assays on sampled sera for five avian influenza strains and show that breadth of response accumulates with age. The observed age-related distribution of antibody responses to avian influenza strains may explain the age-dependent mortality observed during the highly pathogenic H5N1 outbreak. Age structures and species lifespan are probably important determinants of viral epidemiology and virulence in birds. © 2016 The Authors.

  18. Prevention and Treatment of Avian Influenza A Viruses in People

    MedlinePlus

    ... Address What's this? Submit What's this? Submit Button Influenza Types Seasonal Avian Swine/Variant Pandemic Other Prevention and Treatment of Avian Influenza A Viruses in People Language: English (US) Españ ...

  19. Avian influenza surveillance of wild birds

    USGS Publications Warehouse

    Slota, Paul

    2007-01-01

    The President's National Strategy for Pandemic Influenza directs federal agencies to expand the surveillance of United States domestic livestock and wildlife to ensure early warning of hightly pathogenic avian influenza (HPAI) in the U.S. The immediate concern is a potential introduction of HPAI H5N1 virus into the U.S. The presidential directive resulted in the U.S. Interagency Strategic Plan for Early Detection of H5N1 Highly Pathogenic Avian Influenza in Wild Migratory Birds (referred to as the Wild Bird Surveillance Plan or the Plan).

  20. Detection of Avian H7N9 Influenza A Viruses in the Yangtze Delta Region of China During Early H7N9 Outbreaks.

    PubMed

    Li, Yin; Huang, Xin-Mei; Zhao, Dong-Min; Liu, Yu-Zhuo; He, Kong-Wang; Liu, Yao-Xing; Chen, Chang-Hai; Long, Li-Ping; Xu, Yifei; Xie, Xing-Xing; Han, Kai-Kai; Liu, Xiao-Yan; Yang, Jing; Zhang, You-Fa; Fan, Feng; Webby, Richard; Wan, Xiu-Feng

    2016-05-01

    Since the first H7N9 human case in Shanghai, February 19, 2013, the emerging avian-origin H7N9 influenza A virus has become an epizootic virus in China, posing a potential pandemic threat to public health. From April 2 to April 28, 2013, some 422 oral-pharyngeal and cloacal swabs were collected from birds and environmental surfaces at five live poultry markets (LPMs) and 13 backyard poultry farms (BPFs) across three cities, Wuxi, Suzhou, and Nanjing, in the Yangtze Delta region. In total 22 isolates were recovered, and six were subtyped as H7N9, nine as H9N2, four as H7N9/H9N2, and three unsubtyped influenza A viruses. Genomic sequences showed that the HA and NA genes of the H7N9 viruses were similar to those of the H7N9 human isolates, as well as other avian-origin H7N9 isolates in the region, but the PB1, PA, NP, and MP genes of the sequenced viruses were more diverse. Among the four H7N9/H9N2 mixed infections, three were from LPM, whereas the other one was from the ducks at one BPF, which were H7N9 negative in serologic analyses. A survey of the bird trading records of the LPMs and BPFs indicates that trading was a likely route for virus transmission across these regions. Our results suggested that better biosecurity and more effective vaccination should be implemented in backyard farms, in addition to biosecurity management in LPMs.

  1. Detection of avian H7N9 influenza A viruses at the Yangtze Delta Region of China during early H7N9 outbreaks

    PubMed Central

    Li, Yin; Huang, Xin-mei; Zhao, Dong-min; Liu, Yu-zhuo; He, Kong-wang; Liu, Yao-xing; Chen, Chang-hai; Long, Li-Ping; Xu, Yifei; Xie, Xing-xing; Han, Kai-kai; Liu, Xiao-yan; Yang, Jing; Zhang, You-Fa; Fan, Feng; Webby, Richard; Wan, Xiu-Feng

    2016-01-01

    SUMMARY Since the first H7N9 human case in Shanghai, February 19, 2013, the emerging avian-origin H7N9 influenza A virus has become an epizootic virus in China, posing a potential pandemic threat to public health. From April 2 to April 28, 2013, 422 oral-pharyngeal and cloacal swabs were collected from birds and environmental surfaces at five live poultry markets (LPMs) and 13 backyard poultry farms (BPFs) across three cities, Wuxi, Suzhou, and Nanjing, in the Yangtze Delta Region. A total of 22 isolates were recovered, and 6 were subtyped as H7N9, 9 as H9N2, 4 as H7N9/H9N2, and 3 un-subtyped influenza A viruses. Genomic sequences showed that the HA and NA genes of the H7N9 viruses were similar to those of the H7N9 human isolates as well as other avian origin H7N9 isolates in the region but the PB1, PA, NP, and MP genes of the sequenced viruses were, however, more diverse. Among the four H7N9/H9N2 mixed infections, three were from LPM whereas the other one from the ducks at one BPF, which were H7N9 negative in serological analyses. A survey of the bird trading records of the LPMs and BPFs indicates that trading was a likely route for virus transmission across these regions. Our results suggested that a better biosecurity and more effective vaccination should be implemented in backyard farms besides biosecurity management in LPMs. PMID:27309047

  2. A possible outbreak of swine influenza, 1892.

    PubMed

    Morens, David M; Taubenberger, Jeffery K

    2014-02-01

    Influenza A viruses are globally enzootic in swine populations. Swine influenza has been recognised only since 1918, but an anecdotal report suggests that a swine-influenza epizootic might have occurred in England in 1892, at the same time as an explosive epidemic (or pandemic recurrence) of human influenza. This outbreak suggests that the ecobiological association between human and swine influenza could extend to before 1918. By contrast with the recent documentation of swine influenza, influenza in horses has been well documented for hundreds of years, and was often linked temporally and geographically to epidemics of human influenza. Both decreased contact between people and horses, and the concomitant increase in swine production over the past century, might have altered the character and dynamics of influenza host-switch events between people and domestic mammals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A possible outbreak of swine influenza, 1892

    PubMed Central

    Morens, David M; Taubenberger, Jeffery K

    2014-01-01

    Influenza A viruses are globally enzootic in swine populations. Swine influenza has been recognised only since 1918, but an anecdotal report suggests that a swine-influenza epizootic might have occurred in England in 1892, at the same time as an explosive epidemic (or pandemic recurrence) of human influenza. This outbreak suggests that the ecobiological association between human and swine influenza could extend to before 1918. By contrast with the recent documentation of swine influenza, influenza in horses has been well documented for hundreds of years, and was often linked temporally and geographically to epidemics of human influenza. Both decreased contact between people and horses, and the concomitant increase in swine production over the past century, might have altered the character and dynamics of influenza host-switch events between people and domestic mammals. PMID:24290840

  4. Potency, efficacy, and antigenic mapping of H7 avian influenza virus vaccines against the 2012 H7N3 highly pathogenic avian influenza virus from Mexico

    USDA-ARS?s Scientific Manuscript database

    In the spring of 2012 an outbreak of H7N3 highly pathogenic (HP) avian influenza virus (AIV) occurred in poultry in Mexico. Vaccination was implemented as a control measure along with increased biosecurity and surveillance. At that time there was no commercially available H7 AIV vaccine in North Ame...

  5. Vaccine protection of turkeys against H5N1 highly pathogenic avian influenza virus with a recombinant HVT expressing the hemagglutinin gene of avian influenza

    USDA-ARS?s Scientific Manuscript database

    Outbreaks of H5 highly pathogenic avian influenza (HPAI) in commercial poultry are a constant threat to animal health and food supplies. While vaccination can enhance protection and reduce the spread of disease, there is considerable evidence that the level of immunity required for protection varies...

  6. A mathematical model of avian influenza with half-saturated incidence.

    PubMed

    Chong, Nyuk Sian; Tchuenche, Jean Michel; Smith, Robert J

    2014-03-01

    The widespread impact of avian influenza viruses not only poses risks to birds, but also to humans. The viruses spread from birds to humans and from human to human In addition, mutation in the primary strain will increase the infectiousness of avian influenza. We developed a mathematical model of avian influenza for both bird and human populations. The effect of half-saturated incidence on transmission dynamics of the disease is investigated. The half-saturation constants determine the levels at which birds and humans contract avian influenza. To prevent the spread of avian influenza, the associated half-saturation constants must be increased, especially the half-saturation constant H m for humans with mutant strain. The quantity H m plays an essential role in determining the basic reproduction number of this model. Furthermore, by decreasing the rate β m at which human-to-human mutant influenza is contracted, an outbreak can be controlled more effectively. To combat the outbreak, we propose both pharmaceutical (vaccination) and non-pharmaceutical (personal protection and isolation) control methods to reduce the transmission of avian influenza. Vaccination and personal protection will decrease β m, while isolation will increase H m. Numerical simulations demonstrate that all proposed control strategies will lead to disease eradication; however, if we only employ vaccination, it will require slightly longer to eradicate the disease than only applying non-pharmaceutical or a combination of pharmaceutical and non-pharmaceutical control methods. In conclusion, it is important to adopt a combination of control methods to fight an avian influenza outbreak.

  7. Hospital Viability during a Pandemic Influenza Outbreak

    DTIC Science & Technology

    2009-06-01

    provide protection from the next pandemic. 15. SUBJECT TERMS Hospital Security, Pandemic Influenza , Viability Checklist, 1918 Spanish Flu, 2003 SARS...pandemic influenza : 1918 Spanish Flu, 1957 Asian Flu, 1968 Hong Kong Flu, 2003 SARS epidemic, and 2005 Hurricane Katrina. Understanding the...emergency management events: 1918 , Spanish flu (H1N1); 2003, SARS outbreak; 2005, Hurricane Katrina, and the 2009, Swine flu (H1N1) outbreak, for the

  8. Role for migratory wild birds in the global spread of avian influenza H5N8

    USGS Publications Warehouse

    ,; Ip, Hon S.

    2016-01-01

    Avian influenza viruses affect both poultry production and public health. A subtype H5N8 (clade 2.3.4.4) virus, following an outbreak in poultry in South Korea in January 2014, rapidly spread worldwide in 2014–2015. Our analysis of H5N8 viral sequences, epidemiological investigations, waterfowl migration, and poultry trade showed that long-distance migratory birds can play a major role in the global spread of avian influenza viruses. Further, we found that the hemagglutinin of clade 2.3.4.4 virus was remarkably promiscuous, creating reassortants with multiple neuraminidase subtypes. Improving our understanding of the circumpolar circulation of avian influenza viruses in migratory waterfowl will help to provide early warning of threats from avian influenza to poultry, and potentially human, health.

  9. Role for migratory wild birds in the global spread of avian influenza H5N8.

    PubMed

    2016-10-14

    Avian influenza viruses affect both poultry production and public health. A subtype H5N8 (clade 2.3.4.4) virus, following an outbreak in poultry in South Korea in January 2014, rapidly spread worldwide in 2014-2015. Our analysis of H5N8 viral sequences, epidemiological investigations, waterfowl migration, and poultry trade showed that long-distance migratory birds can play a major role in the global spread of avian influenza viruses. Further, we found that the hemagglutinin of clade 2.3.4.4 virus was remarkably promiscuous, creating reassortants with multiple neuraminidase subtypes. Improving our understanding of the circumpolar circulation of avian influenza viruses in migratory waterfowl will help to provide early warning of threats from avian influenza to poultry, and potentially human, health.

  10. The continued pandemic threat posed by avian influenza viruses in Hong Kong.

    PubMed

    Hatta, Masato; Kawaoka, Yoshihiro

    2002-07-01

    In 1997, a highly pathogenic avian H5N1 influenza virus was transmitted directly from live commercial poultry to humans in Hong Kong. Of the 18 people infected, six died. The molecular basis for the high virulence of this virus in mice was found to involve an amino acid change in the PB2 protein. To eliminate the source of the pathogenic virus, all birds in the Hong Kong markets were slaughtered. In 1999, another avian influenza virus of H9N2 subtype was transmitted to two children in Hong Kong. In 2000-2002, H5N1 avian viruses reappeared in the poultry markets of Hong Kong, although they have not infected humans. Continued circulation of H5N1 and other avian viruses in Hong Kong raises the possibility of future human influenza outbreaks. Moreover, the acquisition of properties of human viruses by the avian viruses currently circulating in southeast China might result in a pandemic.

  11. Highly pathogenic avian influenza virus among wild birds in Mongolia.

    PubMed

    Gilbert, Martin; Jambal, Losolmaa; Karesh, William B; Fine, Amanda; Shiilegdamba, Enkhtuvshin; Dulam, Purevtseren; Sodnomdarjaa, Ruuragchaa; Ganzorig, Khuukhenbaatar; Batchuluun, Damdinjav; Tseveenmyadag, Natsagdorj; Bolortuya, Purevsuren; Cardona, Carol J; Leung, Connie Y H; Peiris, J S Malik; Spackman, Erica; Swayne, David E; Joly, Damien O

    2012-01-01

    Mongolia combines a near absence of domestic poultry, with an abundance of migratory waterbirds, to create an ideal location to study the epidemiology of highly pathogenic avian influenza virus (HPAIV) in a purely wild bird system. Here we present the findings of active and passive surveillance for HPAIV subtype H5N1 in Mongolia from 2005-2011, together with the results of five outbreak investigations. In total eight HPAIV outbreaks were confirmed in Mongolia during this period. Of these, one was detected during active surveillance employed by this project, three by active surveillance performed by Mongolian government agencies, and four through passive surveillance. A further three outbreaks were recorded in the neighbouring Tyva Republic of Russia on a lake that bisects the international border. No HPAIV was isolated (cultured) from 7,855 environmental fecal samples (primarily from ducks), or from 2,765 live, clinically healthy birds captured during active surveillance (primarily shelducks, geese and swans), while four HPAIVs were isolated from 141 clinically ill or dead birds located through active surveillance. Two low pathogenic avian influenza viruses (LPAIV) were cultured from ill or dead birds during active surveillance, while environmental feces and live healthy birds yielded 56 and 1 LPAIV respectively. All Mongolian outbreaks occurred in 2005 and 2006 (clade 2.2), or 2009 and 2010 (clade 2.3.2.1); all years in which spring HPAIV outbreaks were reported in Tibet and/or Qinghai provinces in China. The occurrence of outbreaks in areas deficient in domestic poultry is strong evidence that wild birds can carry HPAIV over at least moderate distances. However, failure to detect further outbreaks of clade 2.2 after June 2006, and clade 2.3.2.1 after June 2010 suggests that wild birds migrating to and from Mongolia may not be competent as indefinite reservoirs of HPAIV, or that HPAIV did not reach susceptible populations during our study.

  12. Highly Pathogenic Avian Influenza Virus among Wild Birds in Mongolia

    PubMed Central

    Gilbert, Martin; Jambal, Losolmaa; Karesh, William B.; Fine, Amanda; Shiilegdamba, Enkhtuvshin; Dulam, Purevtseren; Sodnomdarjaa, Ruuragchaa; Ganzorig, Khuukhenbaatar; Batchuluun, Damdinjav; Tseveenmyadag, Natsagdorj; Bolortuya, Purevsuren; Cardona, Carol J.; Leung, Connie Y. H.; Peiris, J. S. Malik; Spackman, Erica; Swayne, David E.; Joly, Damien O.

    2012-01-01

    Mongolia combines a near absence of domestic poultry, with an abundance of migratory waterbirds, to create an ideal location to study the epidemiology of highly pathogenic avian influenza virus (HPAIV) in a purely wild bird system. Here we present the findings of active and passive surveillance for HPAIV subtype H5N1 in Mongolia from 2005–2011, together with the results of five outbreak investigations. In total eight HPAIV outbreaks were confirmed in Mongolia during this period. Of these, one was detected during active surveillance employed by this project, three by active surveillance performed by Mongolian government agencies, and four through passive surveillance. A further three outbreaks were recorded in the neighbouring Tyva Republic of Russia on a lake that bisects the international border. No HPAIV was isolated (cultured) from 7,855 environmental fecal samples (primarily from ducks), or from 2,765 live, clinically healthy birds captured during active surveillance (primarily shelducks, geese and swans), while four HPAIVs were isolated from 141 clinically ill or dead birds located through active surveillance. Two low pathogenic avian influenza viruses (LPAIV) were cultured from ill or dead birds during active surveillance, while environmental feces and live healthy birds yielded 56 and 1 LPAIV respectively. All Mongolian outbreaks occurred in 2005 and 2006 (clade 2.2), or 2009 and 2010 (clade 2.3.2.1); all years in which spring HPAIV outbreaks were reported in Tibet and/or Qinghai provinces in China. The occurrence of outbreaks in areas deficient in domestic poultry is strong evidence that wild birds can carry HPAIV over at least moderate distances. However, failure to detect further outbreaks of clade 2.2 after June 2006, and clade 2.3.2.1 after June 2010 suggests that wild birds migrating to and from Mongolia may not be competent as indefinite reservoirs of HPAIV, or that HPAIV did not reach susceptible populations during our study. PMID:22984464

  13. Avian influenza viruses and human health.

    PubMed

    Alexander, D J

    2006-01-01

    Influenza A viruses cause natural infections of humans, some other mammals and birds. Few of the 16 haemagglutinin and nine neuraminidase subtype combinations have been isolated from mammals, but all subtypes have been isolated from birds. In the 20th century, there were four pandemics of influenza as a result of the emergence of antigenically different strains in humans: 1918 (H1N1), 1957 (H2N2), 1968 (H3N2) and 1977 (H1N1). Influenza A viruses contain eight distinct RNA genes and reassortment of these can occur in mixed infections with different viruses. The 1957 and 1968 pandemic viruses differed from the preceding viruses in humans by the substitution of genes that came from avian viruses, suggesting they arose by genetic reassortment of viruses of human and avian origin. Up to 1995, there had been only three reports of avian influenza viruses infecting humans, in 1959, 1977 and 1981 (all H7N7), but, since 1996, there have been regular reports of natural infections of humans with avian influenza viruses: in England in 1996 (H7N7), Hong Kong 1997 (H5N1), 1999 (H9N2), and 2003 (H5N1), in The Netherlands 2003 (H7N7), Canada 2004 (H7N3), Vietnam 2004 (H5N1) and Thailand 2004 (H5N1). The H5N1 virus is alarming because 51 (64 %) of the 80 people confirmed as infected since 1997 have died.

  14. Factors Associated with the Emergence of Highly Pathogenic Avian Influenza A (H5N1) Poultry Outbreaks in China: Evidence from an Epidemiological Investigation in Ningxia, 2012.

    PubMed

    Liu, H; Zhou, X; Zhao, Y; Zheng, D; Wang, J; Wang, X; Castellan, D; Huang, B; Wang, Z; Soares Magalhães, R J

    2015-10-30

    In April 2012, highly pathogenic avian influenza virus of the H5N1 subtype (HPAIV H5N1) emerged in poultry layers in Ningxia. A retrospective case-control study was conducted to identify possible risk factors associated with the emergence of H5N1 infection and describe and quantify the spatial variation in H5N1 infection. A multivariable logistic regression model was used to identify risk factors significantly associated with the presence of infection; residual spatial variation in H5N1 risk unaccounted by the factors included in the multivariable model was investigated using a semivariogram. Our results indicate that HPAIV H5N1-infected farms were three times more likely to improperly dispose farm waste [adjusted OR = 0.37; 95% CI: 0.12-0.82] and five times more likely to have had visitors in their farm within the past month [adjusted OR = 5.47; 95% CI: 1.97-15.64] compared to H5N1-non-infected farms. The variables included in the final multivariable model accounted only 20% for the spatial clustering of H5N1 infection. The average size of a H5N1 cluster was 660 m. Bio-exclusion practices should be strengthened on poultry farms to prevent further emergence of H5N1 infection. For future poultry depopulation, operations should consider H5N1 disease clusters to be as large as 700 m.

  15. Mortality and Pathology Associated with Highly Pathogenic Avian Influenza H5N1 Outbreaks in Commercial Poultry Production Systems in Nigeria

    PubMed Central

    Akanbi, Olatunde Babatunde; Taiwo, Victor Olusegun

    2014-01-01

    Commercial layer-type, pullet, cockerel, and broiler chicken flocks infected with highly pathogenic avian influenza (HPAI) H5N1 in Nigeria between 2006 and 2008 were investigated for morbidity, mortality, and pathology. Of the one hundred and fifty-three (153) farms confirmed with HPAI infection, one hundred and twenty-seven (127) were layer-type farms, nine (9) were pullet and broiler farms each, and eight (8) were cockerel rearing farms. This study revealed the morbidity and mortality of a total of 939,620 commercial layer chickens, 16,421 pullets, 3,109 cockerels, and 6,433 broilers. Mortality rates were 11.11% in commercial layers, 26.84% in pullets, 45.51% in cockerels, and 73.92% in broilers in a total of eighteen (18) states and the Federal Capital Territory, Abuja. A total of 316 carcasses were examined of which 248 were commercial layer, 25 were pullet, 14 were cockerel, and 29 were broiler. Main clinical and pathologic findings were observed in the nervous, circulatory, respiratory, integumentary, musculoskeletal, hemopoietic, gastrointestinal, and reproductive systems and, occasionally, lesions were generally nonspecific and multisystemic. Lesions occurred more frequently, severely, and in most of the carcasses examined, irrespective of chicken type. PMID:27379256

  16. Avian Schistosomes and Outbreaks of Cercarial Dermatitis

    PubMed Central

    Mikeš, Libor; Lichtenbergová, Lucie; Skála, Vladimír; Soldánová, Miroslava; Brant, Sara Vanessa

    2015-01-01

    SUMMARY Cercarial dermatitis (swimmer's itch) is a condition caused by infective larvae (cercariae) of a species-rich group of mammalian and avian schistosomes. Over the last decade, it has been reported in areas that previously had few or no cases of dermatitis and is thus considered an emerging disease. It is obvious that avian schistosomes are responsible for the majority of reported dermatitis outbreaks around the world, and thus they are the primary focus of this review. Although they infect humans, they do not mature and usually die in the skin. Experimental infections of avian schistosomes in mice show that in previously exposed hosts, there is a strong skin immune reaction that kills the schistosome. However, penetration of larvae into naive mice can result in temporary migration from the skin. This is of particular interest because the worms are able to migrate to different organs, for example, the lungs in the case of visceral schistosomes and the central nervous system in the case of nasal schistosomes. The risk of such migration and accompanying disorders needs to be clarified for humans and animals of interest (e.g., dogs). Herein we compiled the most comprehensive review of the diversity, immunology, and epidemiology of avian schistosomes causing cercarial dermatitis. PMID:25567226

  17. Efficacy of inactivated influenza vaccines for protection of poultry against the H7N9 low pathogenic avian influenza virus isolated in China during 2013

    USDA-ARS?s Scientific Manuscript database

    The recent outbreak in China of avian influenza (AI) H7N9 in birds and humans underscores the interspecies movement of these viruses. Interestingly, the genetic composition of these H7N9 viruses appears to be solely of avian origin and of low pathogenicity in birds. Although few isolations of these ...

  18. Emergence of fatal avian influenza in New England harbor seals

    USGS Publications Warehouse

    Anthony, S.J.; St. Leger, J. A.; Pugliares, K.; Ip, H.S.; Chan, J.M.; Carpenter, Z.W.; Navarrete-Macias, I.; Sanchez-Leon, M.; Saliki, J.T.; Pedersen, J.; Karesh, W.; Daszak, P.; Rabadan, R.; Rowles, T.; Lipkin, W.I.

    2012-01-01

    From September to December 2011, 162 New England harbor seals died in an outbreak of pneumonia. Sequence analysis of postmortem samples revealed the presence of an avian H3N8 influenza A virus, similar to a virus circulating in North American waterfowl since at least 2002 but with mutations that indicate recent adaption to mammalian hosts. These include a D701N mutation in the viral PB2 protein, previously reported in highly pathogenic H5N1 avian influenza viruses infecting people. Lectin staining and agglutination assays indicated the presence of the avian-preferred SAα-2,3 and mammalian SAα-2,6 receptors in seal respiratory tract, and the ability of the virus to agglutinate erythrocytes bearing either the SAα-2,3 or the SAα-2,6 receptor. The emergence of this A/harbor seal/Massachusetts/1/2011 virus may herald the appearance of an H3N8 influenza clade with potential for persistence and cross-species transmission.

  19. Emergence of Fatal Avian Influenza in New England Harbor Seals

    PubMed Central

    Anthony, S. J.; St. Leger, J. A.; Pugliares, K.; Ip, H. S.; Chan, J. M.; Carpenter, Z. W.; Navarrete-Macias, I.; Sanchez-Leon, M.; Saliki, J. T.; Pedersen, J.; Karesh, W.; Daszak, P.; Rabadan, R.; Rowles, T.; Lipkin, W. I.

    2012-01-01

    ABSTRACT From September to December 2011, 162 New England harbor seals died in an outbreak of pneumonia. Sequence analysis of postmortem samples revealed the presence of an avian H3N8 influenza A virus, similar to a virus circulating in North American waterfowl since at least 2002 but with mutations that indicate recent adaption to mammalian hosts. These include a D701N mutation in the viral PB2 protein, previously reported in highly pathogenic H5N1 avian influenza viruses infecting people. Lectin staining and agglutination assays indicated the presence of the avian-preferred SAα-2,3 and mammalian SAα-2,6 receptors in seal respiratory tract, and the ability of the virus to agglutinate erythrocytes bearing either the SAα-2,3 or the SAα-2,6 receptor. The emergence of this A/harbor seal/Massachusetts/1/2011 virus may herald the appearance of an H3N8 influenza clade with potential for persistence and cross-species transmission. PMID:22851656

  20. The Role of Environmental Transmission in Recurrent Avian Influenza Epidemics

    PubMed Central

    Breban, Romulus; Drake, John M.; Stallknecht, David E.; Rohani, Pejman

    2009-01-01

    Avian influenza virus (AIV) persists in North American wild waterfowl, exhibiting major outbreaks every 2–4 years. Attempts to explain the patterns of periodicity and persistence using simple direct transmission models are unsuccessful. Motivated by empirical evidence, we examine the contribution of an overlooked AIV transmission mode: environmental transmission. It is known that infectious birds shed large concentrations of virions in the environment, where virions may persist for a long time. We thus propose that, in addition to direct fecal/oral transmission, birds may become infected by ingesting virions that have long persisted in the environment. We design a new host–pathogen model that combines within-season transmission dynamics, between-season migration and reproduction, and environmental variation. Analysis of the model yields three major results. First, environmental transmission provides a persistence mechanism within small communities where epidemics cannot be sustained by direct transmission only (i.e., communities smaller than the critical community size). Second, environmental transmission offers a parsimonious explanation of the 2–4 year periodicity of avian influenza epidemics. Third, very low levels of environmental transmission (i.e., few cases per year) are sufficient for avian influenza to persist in populations where it would otherwise vanish. PMID:19360126

  1. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    PubMed Central

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2012-01-01

    Please cite this paper as: Hall et al. (2012) Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus. Influenza and Other Respiratory Viruses DOI: 10.1111/j.1750‐2659.2012.00358.x. Background  Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are lacking. The ruddy turnstone (Arenaria interpres) is the shorebird species with the highest prevalence of influenza virus at Delaware Bay. Objectives  The primary objective of this study was to experimentally assess the patterns of influenza virus excretion, minimal infectious doses, and clinical outcome in ruddy turnstones. Methods  We experimentally challenged ruddy turnstones using a common LPAIV shorebird isolate, an LPAIV waterfowl isolate, or a highly pathogenic H5N1 avian influenza virus. Cloacal and oral swabs and sera were analyzed from each bird. Results  Most ruddy turnstones had pre‐existing antibodies to avian influenza virus, and many were infected at the time of capture. The infectious doses for each challenge virus were similar (103·6–104·16 EID50), regardless of exposure history. All infected birds excreted similar amounts of virus and showed no clinical signs of disease or mortality. Influenza A‐specific antibodies remained detectable for at least 2 months after inoculation. Conclusions  These results provide a reference for interpretation of surveillance data, modeling, and predicting the risks of avian influenza transmission and movement in these important hosts. PMID:22498031

  2. Case Series of Turkey Farms from the H5N2 Highly Pathogenic Avian Influenza Outbreak in the United States During 2015.

    PubMed

    Dargatz, David; Beam, Andrea; Wainwright, Sherri; McCluskey, Brian

    2016-06-01

    Between December 2014 and June 2015, an outbreak of H5N2 HPAI caused the largest and most expensive agriculture emergency in U.S. Department of Agriculture-Animal and Plant Health Inspection Service history. The outbreak affected 21 states; 232 poultry farms (211 commercial and 21 backyard) were affected, and approximately 49.6 million birds were depopulated on poultry farms. The majority of affected farms were commercial turkey operations (n = 160). This report is a case series describing 104 H5N2 HPAI-affected turkey farms in Iowa, Minnesota, Missouri, North Dakota, South Dakota, and Wisconsin that had H5N2 HPAI virus detected between March 5 and June 1, 2015. The farm manager or farm personnel voluntarily completed an epidemiologic questionnaire administered by state and federal animal health officials. Equipment and vehicle sharing with other farms was common, particularly for feed trucks (77% of farms shared feed trucks with other farms), live haul loaders (90.4%), poult trailers (72.0%), and preloaders (80.7%). Many farms had water bodies in proximity to the farm, such as a pond (42.6%) or stream (21.8%). About one-third of farms (33.7%) reported seeing wild birds inside the turkey barns. Only 44.2% of farms reported that third-party biosecurity audits or assessments had been conducted. Because the newly introduced Asian H5N8 HPAI and two new HPAI viruses, H5N2 and H5N1, are now circulating in U.S. wild birds, primarily migratory waterfowl, a greater potential for reoccurrence exists with the spring and fall migratory seasons, representing higher risk periods for outbreaks of HPAI in commercial poultry farms in the future. Eliminating exposure to wild birds, especially waterfowl or environments contaminated by wild waterfowl, will reduce risk of reintroduction of H5N2 HPAI virus, and ensuring good on-farm biosecurity will help the poultry industry avoid introduction of influenza and lateral spread between farms.

  3. Viral vectors for avian influenza vaccines

    USDA-ARS?s Scientific Manuscript database

    Prior to 2003, vaccines against avian influenza (AI) had limited, individual country or regional use in poultry. In late 2003, H5N1 high pathogenicity (HP) AI spread from China to multiple Southeast Asian countries, and to Europe during 2005 and Africa during 2006, challenging governments and all p...

  4. 76 FR 4046 - Highly Pathogenic Avian Influenza

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... Animal and Plant Health Inspection Service 9 CFR Parts 93, 94, and 95 RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Interim rule and...-4356. SUPPLEMENTARY INFORMATION: Background The Animal and Plant Health Inspection Service...

  5. Avian influenza virus and Newcastle disease virus

    USDA-ARS?s Scientific Manuscript database

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) severely impact poultry egg production. Decreased egg yield and hatchability, as well as misshapen eggs, are often observed during infection with AIV and NDV, even with low-virulence strains or in vaccinated flocks. Data suggest that in...

  6. Avian influenza vaccines and vaccination for poultry

    USDA-ARS?s Scientific Manuscript database

    Vaccines against avian influenza (AI) have had more limited use in poultry than vaccines against other poultry diseases such as Newcastle disease (ND) and infectious bronchitis, and have been used more commonly in the developing world. Over the past 40 years, AI vaccines have been primarily based o...

  7. The global nature of avian influenza

    USDA-ARS?s Scientific Manuscript database

    Avian influenza (AI) virus (AIV) is a global virus which knows no geographic boundaries, has no political agenda, and can infect poultry irrespective of their occupying ecosystem, agricultural production system, or other anthropocentric niches. AIVs or evidence of their infection have been detected...

  8. Pathobiology of avian influenza in domestic ducks

    USDA-ARS?s Scientific Manuscript database

    Domestic ducks are an important source of food and income in many parts of the world. The susceptibility of domestic ducks to avian influenza (AI) viruses varies depending on many factors, including the species and the age of the ducks, the virus strain, and management practices. Although wild wat...

  9. A simple stochastic model with environmental transmission explains multi-year periodicity in outbreaks of avian flu.

    PubMed

    Wang, Rong-Hua; Jin, Zhen; Liu, Quan-Xing; van de Koppel, Johan; Alonso, David

    2012-01-01

    Avian influenza virus reveals persistent and recurrent outbreaks in North American wild waterfowl, and exhibits major outbreaks at 2-8 years intervals in duck populations. The standard susceptible-infected- recovered (SIR) framework, which includes seasonal migration and reproduction, but lacks environmental transmission, is unable to reproduce the multi-periodic patterns of avian influenza epidemics. In this paper, we argue that a fully stochastic theory based on environmental transmission provides a simple, plausible explanation for the phenomenon of multi-year periodic outbreaks of avian flu. Our theory predicts complex fluctuations with a dominant period of 2 to 8 years which essentially depends on the intensity of environmental transmission. A wavelet analysis of the observed data supports this prediction. Furthermore, using master equations and van Kampen system-size expansion techniques, we provide an analytical expression for the spectrum of stochastic fluctuations, revealing how the outbreak period varies with the environmental transmission.

  10. Genetic data provide evidence for wind-mediated transmission of highly pathogenic avian influenza.

    PubMed

    Ypma, Rolf J F; Jonges, Marcel; Bataille, Arnaud; Stegeman, Arjan; Koch, Guus; van Boven, Michiel; Koopmans, Marion; van Ballegooijen, W Marijn; Wallinga, Jacco

    2013-03-01

    Outbreaks of highly pathogenic avian influenza in poultry can cause severe economic damage and represent a public health threat. Development of efficient containment measures requires an understanding of how these influenza viruses are transmitted between farms. However, the actual mechanisms of interfarm transmission are largely unknown. Dispersal of infectious material by wind has been suggested, but never demonstrated, as a possible cause of transmission between farms. Here we provide statistical evidence that the direction of spread of avian influenza A(H7N7) is correlated with the direction of wind at date of infection. Using detailed genetic and epidemiological data, we found the direction of spread by reconstructing the transmission tree for a large outbreak in the Netherlands in 2003. We conservatively estimate the contribution of a possible wind-mediated mechanism to the total amount of spread during this outbreak to be around 18%.

  11. Avian influenza virus detection and quantitation by real-time RT-PCR

    USDA-ARS?s Scientific Manuscript database

    Real-time RT-PCR (rRT-PCR) has been used for avian influenza virus (AIV) detection since the early 2000’s for routine surveillance, during outbreaks and for research. Some of the advantages of rRT-PCR are: high sensitivity, high specificity, rapid time-to-result, scalability, cost, and its inherentl...

  12. Avian Influenza Biosecurity: Filling the Gaps with Non-Traditional Education

    ERIC Educational Resources Information Center

    Madsen, Jennifer; Tablante, Nathaniel

    2013-01-01

    Outbreaks of highly pathogenic avian influenza have become endemic, crippling trade and livelihood for many, and in rare cases, resulting in human fatalities. It is imperative that up-to-date education and training in accessible and interactive formats be available to key target audiences like poultry producers, backyard flock owners, and…

  13. Increased virulence in ducks of H5N1 highly pathogenic avian influenza viruses from Egypt

    USDA-ARS?s Scientific Manuscript database

    The pathogenicity of H5N1 highly pathogenic avian influenza (HPAI) viruses in domestic ducks has increased over time. These changes in virulence have been reported with viruses from countries with high population of domestic ducks. Since 2006, H5N1 HPAI outbreaks in Egypt have been occurring in po...

  14. Inactivation of avian influenza virus in chicken litter as a potential method to decontaminate poultry houses

    USDA-ARS?s Scientific Manuscript database

    Full cleaning and disinfection of a poultry house after an avian influenza virus (AIV) outbreak is expensive and labor intensive. An alternative to full house cleaning and disinfection is to inactivate the virus with high temperatures within the house. Litter in the house normally has a high virus...

  15. Can we improve vaccines and there use for preventing and controlling avian influenza?

    USDA-ARS?s Scientific Manuscript database

    There have been 32 epizootics of high pathogenicity avian influenza (HPAI) in birds since 1959. The largest has been the H5N1 HPAI panzootic that emerged in China during 1996 and has spread to infect poultry and/or wild birds in 62 countries during the past 17 years. The majority of the outbreaks oc...

  16. The global avian influenza situation and assessment of effective control methods

    USDA-ARS?s Scientific Manuscript database

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 62 countries during the past 15 years. For 2011-2012, 19 countries reported outbreaks of H5N1 in domestic poultry, wild birds or both. The majority of the outbr...

  17. The avian-origin H3N2 canine influenza virus has limited replication in swine

    USDA-ARS?s Scientific Manuscript database

    A genetically and antigenically distinct H3N2 canine influenza of avian-origin was detected in March of 2015 in Chicago, Illinois. A subsequent outbreak was reported with over 1,000 dogs in the Midwest affected. The potential for canine-to-swine transmission was unknown. Experimental infection in pi...

  18. Thermal inactivation of avian influenza virus in poultry litter as a method to decontaminate poultry houses

    USDA-ARS?s Scientific Manuscript database

    Removal of contaminated material from a poultry house during recovery from an avian influenza virus (AIV) outbreak is very costly and labor intensive. Because AIV is not environmentally stable heating poultry houses may provide a way to efficiently disinfect houses. The objective of this work was ...

  19. Periodic updating of avian influenza vaccines is necessary to maintain effectiveness in the field

    USDA-ARS?s Scientific Manuscript database

    The impact of avian influenza on poultry production is undeniable. Field outbreaks of H5N1 HPAI have occurred in vaccinated flocks from both failure of the vaccines (i.e. vaccine efficacy) and failure in administration or immune response of the target species (i.e. vaccination effectiveness). Antige...

  20. Avian Influenza Biosecurity: Filling the Gaps with Non-Traditional Education

    ERIC Educational Resources Information Center

    Madsen, Jennifer; Tablante, Nathaniel

    2013-01-01

    Outbreaks of highly pathogenic avian influenza have become endemic, crippling trade and livelihood for many, and in rare cases, resulting in human fatalities. It is imperative that up-to-date education and training in accessible and interactive formats be available to key target audiences like poultry producers, backyard flock owners, and…

  1. Global expansion of high pathogenicity avian influenza: implications on prevention and control programs

    USDA-ARS?s Scientific Manuscript database

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 63 countries during the past 18 years. The majority of the recent outbreaks of H5N1 HPAI have occurred in Indonesia, Egypt, Vietnam, and Bangladesh, in decreas...

  2. Knowledge of Avian Influenza (H5N1) among Poultry Workers, Hong Kong, China

    PubMed Central

    Kim, Jean H.; Cheuk, Ka Kin; Kwong, Ming Sum; Goggins, William B.; Cai, Yan Shan; Lee, Shui Shan; Griffiths, Sian

    2011-01-01

    In 2009, a cross-sectional survey of 360 poultry workers in Hong Kong, China, showed that workers had inadequate levels of avian influenza (H5N1) risk knowledge, preventive behavior, and outbreak preparedness. The main barriers to preventive practices were low perceived benefits and interference with work. Poultry workers require occupation-specific health promotion. PMID:22172127

  3. Update on H7N3 highly pathogenic avian influenza in Mexico

    USDA-ARS?s Scientific Manuscript database

    In June of 2012, an H7N3 highly pathogenic avian influenza (HPAI) virus was identified as the cause of a severe disease outbreak in commercial laying chicken farms in Jalisco, Mexico. This region is responsible for approximately 55% of the eggs produced in Mexico, and infection with this virus seve...

  4. H7 avian influenza virus vaccines protect chickens against challenge with antigenically diverse isolates

    USDA-ARS?s Scientific Manuscript database

    Vaccination has been a critical tool in the control of some avian influenza viruses (AIV) and has been used routinely in Pakistan to help control sporadic outbreaks of highly pathogenic (HP) H7 AIV since 1995. During that time, several AIV isolates were utilized as inactivated vaccines with varying...

  5. Global expansion of high pathogenicity avian influenza: implications on prevention and control programs

    USDA-ARS?s Scientific Manuscript database

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 63 countries during the past 18 years. The majority of the recent outbreaks of H5N1 HPAI have occurred in Indonesia, Egypt, Vietnam, and Bangladesh, in decreasi...

  6. Pandemic and Avian Influenza A Viruses in Humans: Epidemiology, Virology, Clinical Characteristics, and Treatment Strategy.

    PubMed

    Li, Hui; Cao, Bin

    2017-03-01

    The intermittent outbreak of pandemic influenza and emergence of novel avian influenza A virus is worldwide threat. Although most patients present with mild symptoms, some deteriorate to severe pneumonia and even death. Great progress in the understanding of the mechanism of disease pathogenesis and a series of vaccines has been promoted worldwide; however, incidence, morbidity, and mortality remains high. To step up vigilance and improve pandemic preparedness, this article elucidates the virology, epidemiology, pathogenesis, clinical characteristics, and treatment of human infections by influenza A viruses, with an emphasis on the influenza A(H1N1)pdm09, H5N1, and H7N9 subtypes.

  7. Use of avian influenza vaccination in Hong Kong.

    PubMed

    Ellis, T M; Sims, L D; Wong, H K H; Wong, C W; Dyrting, K C; Chow, K W; Leung, C; Peiris, J S M

    2006-01-01

    Outbreaks of H5N1 highly pathogenic avian influenza (HPAI) that occurred in Hong Kong up until February/March 2002 were controlled by stamping out. With endemic presence of the virus in the region and large daily importation of poultry to Hong Kong, the Administration considered that further risk management measures, in addition to improved biosecurity and enhanced surveillance, were necessary to prevent outbreaks. Vaccination using a killed H5N2 vaccine was evaluated over a 12-month period in the district with the last HPAI cases in the early 2002 outbreak. The vaccination trial showed that farmer-administered killed H5N2 vaccine produced suitable flock antibody responses; vaccinated birds were protected against H5N1 HPAI virus challenge and excreted significantly less H5N1 virus; and vaccination was able to control virus excretion in flocks during field outbreaks. Universal vaccination of local chicken farms was introduced in June 2003 and by the end of 2003 all chickens entering the live poultry markets in Hong Kong were vaccinated by killed H5N2 vaccine. In addition to vaccination, an enhanced biosecurity programme on farms and in live poultry markets and a comprehensive surveillance programme in poultry, wild birds, recreation park birds and pet birds were in place. Vaccination use and performance is closely monitored. This programme was successful in protecting local farms and live poultry markets from H5N1 outbreaks during the regional H5N1 outbreaks in 2004.

  8. Role of poultry in the H7N9 influenza outbreaks in China

    USDA-ARS?s Scientific Manuscript database

    The outbreaks of avian influenza A (H7N9) occurring in China in 2013 and 2014 have resulted in more than 370 human cases with a 30% fatality rate. Most of these infections are believed to result from exposure to infected poultry or contaminated environments as the viruses have been detected in avia...

  9. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    USGS Publications Warehouse

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    Background: Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are lacking. The ruddy turnstone (Arenaria interpres) is the shorebird species with the highest prevalence of influenza virus at Delaware Bay. Objectives: The primary objective of this study was to experimentally assess the patterns of influenza virus excretion, minimal infectious doses, and clinical outcome in ruddy turnstones. Methods: We experimentally challenged ruddy turnstones using a common LPAIV shorebird isolate, an LPAIV waterfowl isolate, or a highly pathogenic H5N1 avian influenza virus. Cloacal and oral swabs and sera were analyzed from each bird. Results: Most ruddy turnstones had pre-existing antibodies to avian influenza virus, and many were infected at the time of capture. The infectious doses for each challenge virus were similar (103·6–104·16 EID50), regardless of exposure history. All infected birds excreted similar amounts of virus and showed no clinical signs of disease or mortality. Influenza A-specific antibodies remained detectable for at least 2 months after inoculation. Conclusions: These results provide a reference for interpretation of surveillance data, modeling, and predicting the risks of avian influenza transmission and movement in these important hosts.

  10. Complete Genome Sequence of the First H5N1 Avian Influenza Virus Isolated from Chickens in Lebanon in 2016

    PubMed Central

    Ibrahim, Elias; Sirawan, Abeer; El-Bazzal, Bassel; El Hage, Jeanne; Abi Said, Mounir; Kandeil, Ahmed; Ali, Mohamed A.

    2016-01-01

    We generated the full genome of a highly pathogenic H5N1 avian influenza virus that caused an outbreak on a chicken farm in Lebnaon in April 2016. Analysis revealed that the virus belonged to clade 2.3.2.1c that recently caused outbreaks in West Africa and the United Arab Emirates. PMID:27795243

  11. Immunity to current H5 highly pathogenic avian influenza viruses: From vaccines to adaptive immunity in wild birds

    USDA-ARS?s Scientific Manuscript database

    Following the 2014-2015 outbreaks of H5N2 and H5N8 highly pathogenic avian influenza (HPAI) in the U.S., studies were performed to assess the immunity required for protection against future outbreaks should they occur. We assessed the ability of vaccines to induce protection of chickens and turkeys...

  12. Vaccine protection of poultry against H5 clade 2.3.4.4 highly pathogenic avian influenza

    USDA-ARS?s Scientific Manuscript database

    Following the 2014-2015 outbreaks of H5N2 and H5N8 (clade 2.3.4.4) highly pathogenic avian influenza (HPAI) in the U.S., studies were performed to identify vaccines with potential to be used as a control mechanism in the event of future outbreaks. We tested both inactivated and recombinant vaccine...

  13. Early responses of chicken lungs and spleens to infection with highly pathogenic avian influenza virus using microarray analysis

    USDA-ARS?s Scientific Manuscript database

    Within the last few years, outbreaks of highly pathogenic avian influenza (HPAI) have originated in Asia and spread through several Middle Eastern, African and European countries, resulting in one of the most serious animal disease incident in recent history. These outbreaks were characterized by t...

  14. Analysis of signs and pathology of H5N1-infected ducks from the 2010-2011 Korean highly pathogenic avian influenza outbreak suggests the influence of age and management practices on severity of disease.

    PubMed

    Rhyoo, Moon-Young; Lee, Kyung-Hyun; Moon, Oun-Kyung; Park, Woo-Hee; Bae, You-Chan; Jung, Ji-Youl; Yoon, Soon-Seek; Kim, Hye-Ryoung; Lee, Myoung-Heon; Lee, Eun-Joo; Ki, Mi-Ran; Jeong, Kyu-Shik

    2015-01-01

    We compared the clinical signs, histopathological lesions and distribution of viral antigens among infected young (meat-type) and older (breeder) ducks that were naturally infected with the highly pathogenic avian influenza (HPAI) virus during the 2010-2011 Korean outbreak. The meat-type ducks had a high mortality rate (30%) and showed severe neurological signs such as head tremors and paresis. In contrast, HPAI-infected breeder ducks had minimal clinical signs but a decreased egg production rate. The histopathological characteristics of infected meat-type ducks included necrotic lesions of heart and brain, which may have primarily contributed to the high mortality rate. In contrast, the breeder ducks only presented necrotic splenitis, and viral antigens were only detected in the trachea, lungs and spleen. Younger ducks had a high viral titre in the organs, high levels of viral shedding and a high mortality rate after experimental HPAI virus infection. Compared to the breeder ducks, the meat-type ducks were raised in smaller farms that had poor quarantine and breeding facilities. It is therefore possible that better biosecurity in the breeder farms could have reduced the infection dose and subsequently the severity of the disease. Thus, age and management may be the influencing factors for HPAI susceptibility in ducks.

  15. Global Avian Influenza Surveillance in Wild Birds: A Strategy to Capture Viral Diversity

    PubMed Central

    Machalaba, Catherine C.; Elwood, Sarah E.; Forcella, Simona; Smith, Kristine M.; Hamilton, Keith; Jebara, Karim B.; Swayne, David E.; Webby, Richard J.; Mumford, Elizabeth; Mazet, Jonna A.K.; Gaidet, Nicolas; Daszak, Peter

    2015-01-01

    Wild birds play a major role in the evolution, maintenance, and spread of avian influenza viruses. However, surveillance for these viruses in wild birds is sporadic, geographically biased, and often limited to the last outbreak virus. To identify opportunities to optimize wild bird surveillance for understanding viral diversity, we reviewed responses to a World Organisation for Animal Health–administered survey, government reports to this organization, articles on Web of Knowledge, and the Influenza Research Database. At least 119 countries conducted avian influenza virus surveillance in wild birds during 2008–2013, but coordination and standardization was lacking among surveillance efforts, and most focused on limited subsets of influenza viruses. Given high financial and public health burdens of recent avian influenza outbreaks, we call for sustained, cost-effective investments in locations with high avian influenza diversity in wild birds and efforts to promote standardized sampling, testing, and reporting methods, including full-genome sequencing and sharing of isolates with the scientific community. PMID:25811221

  16. Environmental role in influenza virus outbreaks.

    PubMed

    Sooryanarain, Harini; Elankumaran, Subbiah

    2015-01-01

    The environmental drivers of influenza outbreaks are largely unknown. Despite more than 50 years of research, there are conflicting lines of evidence on the role of the environment in influenza A virus (IAV) survival, stability, and transmissibility. With the increasing and looming threat of pandemic influenza, it is important to understand these factors for early intervention and long-term control strategies. The factors that dictate the severity and spread of influenza would include the virus, natural and acquired hosts, virus-host interactions, environmental persistence, virus stability and transmissibility, and anthropogenic interventions. Virus persistence in different environments is subject to minor variations in temperature, humidity, pH, salinity, air pollution, and solar radiations. Seasonality of influenza is largely dictated by temperature and humidity, with cool-dry conditions enhancing IAV survival and transmissibility in temperate climates in high latitudes, whereas humid-rainy conditions favor outbreaks in low latitudes, as seen in tropical and subtropical zones. In mid-latitudes, semiannual outbreaks result from alternating cool-dry and humid-rainy conditions. The mechanism of virus survival in the cool-dry or humid-rainy conditions is largely determined by the presence of salts and proteins in the respiratory droplets. Social determinants of heath, including health equity, vaccine acceptance, and age-related illness, may play a role in influenza occurrence and spread.

  17. Surveillance and Analysis of Avian Influenza Viruses, Australia

    PubMed Central

    Warner, Simone; Tracey, John P.; Arzey, K. Edla; Selleck, Paul; O’Riley, Kim; Beckett, Emma L.; Bunn, Chris; Kirkland, Peter D.; Vijaykrishna, Dhanasekaran; Olsen, Bjorn; Hurt, Aeron C.

    2010-01-01

    We investigated carriage of avian influenza viruses by wild birds in Australia, 2005–2008, to assess the risks to poultry industries and human health. We collected 21,858 (7,357 cloacal, 14,501 fecal) samples and detected 300 viruses, representing a detection rate of ≈1.4%. Rates were highest in autumn (March–May) and differed substantially between bird types, areas, and years. We typed 107 avian influenza viruses and identified 19 H5, 8 H7, and 16 H9 (40% of typed viruses). All were of low pathogenicity. These viruses formed clearly different phylogenetic clades to lineages from Eurasia or North America, suggesting the potential existence of Australian lineages. H7 viruses were similar to highly pathogenic H7 strains that caused outbreaks in poultry in Australia. Several periods of increased detection rates (numbers or subtypes of viruses) were identified. This study demonstrates the need for ongoing surveillance to detect emerging pathogenic strains and facilitate prevention of outbreaks. PMID:21122219

  18. Surveillance and analysis of avian influenza viruses, Australia.

    PubMed

    Hansbro, Philip M; Warner, Simone; Tracey, John P; Arzey, K Edla; Selleck, Paul; O'Riley, Kim; Beckett, Emma L; Bunn, Chris; Kirkland, Peter D; Vijaykrishna, Dhanasekaran; Olsen, Bjorn; Hurt, Aeron C

    2010-12-01

    We investigated carriage of avian influenza viruses by wild birds in Australia, 2005-2008, to assess the risks to poultry industries and human health. We collected 21,858 (7,357 cloacal, 14,501 fecal) samples and detected 300 viruses, representing a detection rate of ≈1.4%. Rates were highest in autumn (March-May) and differed substantially between bird types, areas, and years. We typed 107 avian influenza viruses and identified 19 H5, 8 H7, and 16 H9 (40% of typed viruses). All were of low pathogenicity. These viruses formed clearly different phylogenetic clades to lineages from Eurasia or North America, suggesting the potential existence of Australian lineages. H7 viruses were similar to highly pathogenic H7 strains that caused outbreaks in poultry in Australia. Several periods of increased detection rates (numbers or subtypes of viruses) were identified. This study demonstrates the need for ongoing surveillance to detect emerging pathogenic strains and facilitate prevention of outbreaks.

  19. Epidemiological and Molecular Analysis of an Outbreak of Highly Pathogenic Avian Influenza H5N8 clade 2.3.4.4 in a German Zoo: Effective Disease Control with Minimal Culling.

    PubMed

    Globig, A; Starick, E; Homeier, T; Pohlmann, A; Grund, C; Wolf, P; Zimmermann, A; Wolf, C; Heim, D; Schlößer, H; Zander, S; Beer, M; Conraths, F J; Harder, T C

    2016-11-15

    Outbreaks of highly pathogenic avian influenza A virus (HPAIV) subtype H5N8, clade 2.3.4.4, were first reported in January 2014 from South Korea. These viruses spread rapidly to Europe and the North American continent during autumn 2014 and caused, in Germany, five outbreaks in poultry holdings until February 2015. In addition, birds kept in a zoo in north-eastern Germany were affected. Only a few individual white storks (Ciconia ciconia) showed clinical symptoms and eventually died in the course of the infection, although subsequent in-depth diagnostic investigations showed that other birds kept in the same compound of the white storks were acutely positive for or had undergone asymptomatic infection with HPAIV H5N8. An exception from culling all of the 500 remaining zoo birds was granted by the competent authority. Restriction measures included grouping the zoo birds into eight epidemiological units in which 60 birds of each unit tested repeatedly negative for H5N8. Epidemiological and phylogenetical investigations revealed that the most likely source of introduction was direct or indirect contact with infected wild birds as the white storks had access to a small pond frequented by wild mallards and other aquatic wild birds during a period of 10 days in December 2014. Median network analysis showed that the zoo bird viruses segregated into a distinct cluster of clade 2.3.4.4 with closest ties to H5N8 isolates obtained from mute swans (Cygnus olor) in Sweden in April 2015. This case demonstrates that alternatives to culling exist to rescue valuable avifaunistic collections after incursions of HPAIV. © 2016 Blackwell Verlag GmbH.

  20. Overview of avian influenza DIVA test strategies.

    PubMed

    Suarez, David L

    2005-12-01

    The use of vaccination in poultry to control avian influenza has been increasing in recent years. Vaccination has been primarily with killed whole virus-adjuvanted vaccines. Proper vaccination can reduce or prevent clinical signs, reduce virus shedding in infected birds, and increase the resistance to infection. Historically, one limitation of the killed vaccines is that vaccinated birds cannot be differentiated serologically from naturally infected birds using the commonly available diagnostic tests. Therefore, surveillance for avian influenza becomes much more difficult and often results in trade restrictions because of the inability to differentiate infected from vaccinated animals (DIVA). Several different DIVA strategies have been proposed for avian influenza to overcome this limitation. The most common is the use of unvaccinated sentinels. A second approach is the use of subunit vaccines targeted to the hemagglutinin protein that allows serologic surveillance to the internal proteins. A third strategy is to vaccinate with a homologous hemagglutinin to the circulating field strain, but a heterologous neuraminidase subtype. Serologic surveillance can then be performed for the homologous NA subtype as evidence of natural infection. The fourth strategy is to measure the serologic response to the nonstructural protein 1 (NS1). The NS1 protein is produced in large quantities in infected cells, but it is not packaged in the virion. Since killed vaccines for influenza are primarily made with whole virions, a differential antibody response can be seen between naturally infected and vaccinated animals. However, poultry vaccines are not highly purified, and they contain small amounts of the NS1 protein. Although vaccinated chickens will produce low levels of antibody to the NS1 protein, virus infected chickens will produce higher levels of NS1 antibody, and the two groups can be differentiated. All four DIVA strategies have advantages and disadvantages, and further

  1. One health: the Hong Kong experience with avian influenza.

    PubMed

    Sims, L D; Peiris, Malik

    2013-01-01

    The occurrence of avian influenza A(H5N1) in Hong Kong in 1997 led to the development of a "One-Health" approach to deal with emerging infectious diseases that has been applied to other emergent diseases such as SARS and the pandemic H1N1 2009. Evaluation of poultry marketing and production systems and investigations at the animal-human interface, led to defining the routes of human exposure to avian influenza and factors that allowed virus to multiply and persist. Active and systematic surveillance of apparently healthy as well as diseased poultry and wild birds provided evidence of ongoing virus evolution in the wider region. Epidemiological studies, supplemented with molecular epidemiology, helped to elucidate the role of the poultry marketing system and live poultry markets in the persistence of avian influenza viruses and provided evidence for the impact of interventions designed to interrupt virus transmission. Enhanced bio-security, active surveillance together with targeted and evidence-based interventions in the poultry production, and marketing system together with poultry vaccination has prevented further human H5N1 disease and minimized outbreaks of poultry disease in Hong Kong. Similar strategies have led to the understanding of the emergence of SARS and provided options for preventing the re-emergence of this disease. Surveillance of influenza in swine has provided insights into the emergence of the 2009 pandemic, to the reverse zoonosis of the pandemic virus from humans to swine and to the emergence of novel reassortant viruses within swine. "One Health" strategies are not "cost-free" and require sensitive implementation to optimize food-safety and food security, while safeguarding the economics of animal husbandry and the environment and remaining sensitive to cultural practices.

  2. Avian influenza virus and free-ranging wild birds

    USGS Publications Warehouse

    Dierauf, Leslie A.; Karesh, W.B.; Ip, Hon S.; Gilardi, K.V.; Fischer, John R.

    2006-01-01

    Recent media and news reports and other information implicate wild birds in the spread of highly pathogenic avian influenza in Asia and Eastern Europe. Although there is little information concerning highly pathogenic avian influenza viruses in wild birds, scientists have amassed a large amount of data on low-pathogenicity avian influenza viruses during decades of research with wild birds. This knowledge can provide sound guidance to veterinarians, public health professionals, the general public, government agencies, and other entities with concerns about avian influenza.

  3. An Avian Connection as a Catalyst to the 1918-1919 Influenza Pandemic.

    PubMed

    Hollenbeck, James E

    2005-01-01

    The 1918 Influenza pandemic was one of the most virulent strains of influenza in history. This strain quickly dispatched previously held theories on influenza. World War One introduced new environmental stresses and speed of dissemination logistics never experienced by humans. In light of new phylogenic evidence the cause of this influenza outbreak is now being considered to have linkage to the avian influenza. Animals act as reservoirs for this influenza virus and research indicates the influenza virus often originates in the intestines of aquatic wildfowl. The virus is shed into the environment, which in turns infects domestic poultry, which in turn infects mammalian hosts. These animals, usually pigs, act as a transformer or converters; creating a strain that can more readily infect humans. Therefore swine can be infected with both avian and human influenza A viruses and serve as a source for infection for a number of species as the incidents of direct infection from birds to humans have been rare. Increased human habitation near poultry and swine raising facilities pose greater influenza outbreak risk. It was this combination of environmental factors that may have contributed to the greatest pandemic of recent times, and, moreover, similar conditions exist throughout Southeast Asia today.

  4. Characterization of a new avian-like influenza A virus from horses in China.

    PubMed

    Guo, Y; Wang, M; Kawaoka, Y; Gorman, O; Ito, T; Saito, T; Webster, R G

    1992-05-01

    In March 1989 a severe outbreak of respiratory disease occurred in horses in the Jilin and Heilongjiang provinces of Northeast China that caused up to 20% mortality in some herds. An influenza virus of the H3N8 subtype was isolated from the infected animals and was antigenically and molecularly distinguishable from the equine 2 (H3N8) viruses currently circulating in the world. The reference strain A/Equine/Jilin/1/89 (H3N8) was most closely related to avian H3N8 influenza viruses. Sequence comparisons of the entire hemagglutinin (HA), nucleoprotein (NP), neuraminidase (NA), matrix (M), and NS genes along with partial sequences of the three polymerase (PB1, PB2, PA) genes suggest that six of the eight gene segments (PA, HA, NP, NA, M, NS) are closely related to avian influenza viruses. Since direct sequence analysis can only provide a crude measure of relationship, phylogenetic analysis was done on the sequence information. Phylogenetic analyses of the entire HA, NP, M, and NS genes and of partial sequences of PB1, PB2, and PA indicated that these genes are of recent avian origin. The NP gene segment is closely related to the gene segment found in the newly described H14 subtype isolated from ducks in the USSR. The A/Equine/Jilin/1/89 (H3N8) influenza virus failed to replicate in ducks, but did replicate and cause disease in mice on initial inoculation and on subsequent passaging caused 100% mortality. In ferrets, the virus caused severe influenza symptoms. A second outbreak of influenza in horses in Northeast China occurred in April 1990 in the Heilongjiang province with 48% morbidity and no mortality. The viruses isolated from this outbreak were antigenically indistinguishable from those in the 1989 outbreak and it is probable that the reduced mortality was due to the immune status of of the horses in the region. No influenza was detected in horses in Northern China in the spring, summer, or fall of 1991 and no influenza has been detected in horses in adjacent

  5. Surveillance of avian influenza virus type A in semi-scavenging ducks in Bangladesh.

    PubMed

    Khatun, Amina; Giasuddin, Mohammed; Islam, Kazi Mehetazul; Khanom, Sazeda; Samad, Mohammed Abdus; Islam, Mohammad Rafiqul; Noor, Monira; Bhuiyan, Jamal Uddin; Kim, Won-Il; Eo, Seong Kug; Rahman, Md Masudur

    2013-10-07

    Ducks are the natural reservoir of influenza A virus and the central host for highly pathogenic avian influenza (H5N1), while domestic ducks rearing in semi-scavenging system could serve as re-assortment vessels for re-emerging new subtypes of influenza viruses between birds to human. Avian influenza virus (AIV) surveillance in Bangladesh has been passive, relying on poultry farmers to report suspected outbreaks of highly pathogenic H5N1 influenza. Here, the results of an active surveillance effort focusing on the semi-scavenging ducks are presented. A total of 2100 cloacal swabs and 2100 sera were collected from semi-scavenging ducks from three wintering-sites of Bangladesh during three successive winter seasons, December through February in the years between 2009 and 2012. Virus isolation and identification were carried out from the cloacal swabs by virus propagation in embryonated hen eggs followed by amplification of viral RNA using Avian influenza virus (AIV) specific RT-PCR. The overall prevalence of avian influenza type A was 22.05% for swab samples and 39.76% ducks were sero-positive for avian influenza type A antibody. Extremely low sero-prevalence (0.09%) of AIV H5N1 was detected. Based on our surveillance results, we conclude that semi-scavenging ducks in Bangladesh might play important role in transmitting Avian Influenza virus (AIV) type A. However, the current risk of infection for humans from domestic ducks in Bangladesh is negligible. We believe that this relatively large dataset over three winters in Bangladesh might create a strong foundation for future studies of AIV prevalence, evolution, and ecology in wintering sites around the globe.

  6. Surveillance of avian influenza virus type A in semi-scavenging ducks in Bangladesh

    PubMed Central

    2013-01-01

    Background Ducks are the natural reservoir of influenza A virus and the central host for highly pathogenic avian influenza (H5N1), while domestic ducks rearing in semi-scavenging system could serve as re-assortment vessels for re-emerging new subtypes of influenza viruses between birds to human. Avian influenza virus (AIV) surveillance in Bangladesh has been passive, relying on poultry farmers to report suspected outbreaks of highly pathogenic H5N1 influenza. Here, the results of an active surveillance effort focusing on the semi-scavenging ducks are presented. Result A total of 2100 cloacal swabs and 2100 sera were collected from semi-scavenging ducks from three wintering-sites of Bangladesh during three successive winter seasons, December through February in the years between 2009 and 2012. Virus isolation and identification were carried out from the cloacal swabs by virus propagation in embryonated hen eggs followed by amplification of viral RNA using Avian influenza virus (AIV) specific RT-PCR. The overall prevalence of avian influenza type A was 22.05% for swab samples and 39.76% ducks were sero-positive for avian influenza type A antibody. Extremely low sero-prevalence (0.09%) of AIV H5N1 was detected. Conclusions Based on our surveillance results, we conclude that semi-scavenging ducks in Bangladesh might play important role in transmitting Avian Influenza virus (AIV) type A. However, the current risk of infection for humans from domestic ducks in Bangladesh is negligible. We believe that this relatively large dataset over three winters in Bangladesh might create a strong foundation for future studies of AIV prevalence, evolution, and ecology in wintering sites around the globe. PMID:24099526

  7. Origin of the European avian-like swine influenza viruses.

    PubMed

    Krumbholz, Andi; Lange, Jeannette; Sauerbrei, Andreas; Groth, Marco; Platzer, Matthias; Kanrai, Pumaree; Pleschka, Stephan; Scholtissek, Christoph; Büttner, Mathias; Dürrwald, Ralf; Zell, Roland

    2014-11-01

    The avian-like swine influenza viruses emerged in 1979 in Belgium and Germany. Thereafter, they spread through many European swine-producing countries, replaced the circulating classical swine H1N1 influenza viruses, and became endemic. Serological and subsequent molecular data indicated an avian source, but details remained obscure due to a lack of relevant avian influenza virus sequence data. Here, the origin of the European avian-like swine influenza viruses was analysed using a collection of 16 European swine H1N1 influenza viruses sampled in 1979-1981 in Germany, the Netherlands, Belgium, Italy and France, as well as several contemporaneous avian influenza viruses of various serotypes. The phylogenetic trees suggested a triple reassortant with a unique genotype constellation. Time-resolved maximum clade credibility trees indicated times to the most recent common ancestors of 34-46 years (before 2008) depending on the RNA segment and the method of tree inference. © 2014 The Authors.

  8. Inhibiting avian influenza virus shedding using a novel RNAi antiviral vector technology: proof of concept in an avian cell model.

    PubMed

    Linke, Lyndsey M; Wilusz, Jeffrey; Pabilonia, Kristy L; Fruehauf, Johannes; Magnuson, Roberta; Olea-Popelka, Francisco; Triantis, Joni; Landolt, Gabriele; Salman, Mo

    2016-03-01

    Influenza A viruses pose significant health and economic threats to humans and animals. Outbreaks of avian influenza virus (AIV) are a liability to the poultry industry and increase the risk for transmission to humans. There are limitations to using the AIV vaccine in poultry, creating barriers to controlling outbreaks and a need for alternative effective control measures. Application of RNA interference (RNAi) techniques hold potential; however, the delivery of RNAi-mediating agents is a well-known obstacle to harnessing its clinical application. We introduce a novel antiviral approach using bacterial vectors that target avian mucosal epithelial cells and deliver (small interfering RNA) siRNAs against two AIV genes, nucleoprotein (NP) and polymerase acidic protein (PA). Using a red fluorescent reporter, we first demonstrated vector delivery and intracellular expression in avian epithelial cells. Subsequently, we demonstrated significant reductions in AIV shedding when applying these anti-AIV vectors prophylactically. These antiviral vectors provided up to a 10,000-fold reduction in viral titers shed, demonstrating in vitro proof-of-concept for using these novel anti-AIV vectors to inhibit AIV shedding. Our results indicate this siRNA vector technology could represent a scalable and clinically applicable antiviral technology for avian and human influenza and a prototype for RNAi-based vectors against other viruses.

  9. An inhibitory activity in human cells restricts the function of an avian-like influenza virus polymerase.

    PubMed

    Mehle, Andrew; Doudna, Jennifer A

    2008-08-14

    Transmission of avian influenza virus into human populations has the potential to cause pandemic outbreaks. A major determinant of species tropism is the identity of amino acid 627 in the PB2 subunit of the heterotrimeric influenza polymerase; glutamic acid predominates in avian PB2, whereas lysine occupies this position in human isolates. We show that a dominant inhibitory activity in human cells potently and selectively restricts the function of polymerases containing an avian-like PB2 with glutamic acid at residue 627. Restricted polymerases fail to assemble into ribonucleoprotein complexes, resulting in decreased genome transcription, replication, and virus production without any significant effect on relative viral infectivity. Understanding the molecular basis of this species-specific restriction should provide strategies to prevent and treat avian influenza outbreaks in humans.

  10. Transmission of Eurasian avian H2 influenza virus to shorebirds in North America.

    PubMed

    Makarova, N V; Kaverin, N V; Krauss, S; Senne, D; Webster, R G

    1999-12-01

    Influenza A virus of the H2 subtype caused a serious pandemic in 1957 and may cause similar outbreaks in the future. To assess the evolution and the antigenic relationships of avian influenza H2 viruses, we sequenced the haemagglutinin (HA) genes of H2 isolates from shorebirds, ducks and poultry in North America and derived a phylogenetic tree to establish their interrelationships. This analysis confirmed the divergence of H2 HA into two geographical lineages, American and Eurasian. One group of viruses isolated from shorebirds in North America had HA belonging to the Eurasian lineage, indicating an interregional transmission of the H2 gene. Characterization of HA with a monoclonal antibody panel revealed that the antigenicity of the Delaware strains differed from the other avian strains analysed. The data emphasizes the importance of avian influenza surveillance.

  11. The live bird market system and low-pathogenic avian influenza prevention in southern California.

    PubMed

    Yee, Karen S; Carpenter, Tim E; Mize, Sarah; Cardona, Carol J

    2008-06-01

    Although live bird markets (LBMs) have been associated with outbreaks of avian influenza (AI), there are some LBM systems where AI outbreaks are extremely rare events. The California LBMs have not had any detected avian influenza viruses (AIVs) since December 2005. Responses to a detailed questionnaire on the practices and characteristics of the participants in the California low-pathogenic (LP) AI control program have been described to characterize possible reasons for the lack of AI outbreaks in LBMs. Compliance with an LPAI control program that contains active surveillance, prevention, and rapid response measures by those involved in the LBM system, rendering services to dispose of carcasses, no wholesalers, and few third-party bird deliveries was associated with the lack of LPAIV circulating in the Southern California LBM system.

  12. USGS role and response to highly pathogenic avian influenza

    USGS Publications Warehouse

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  13. When animal viruses attack: SARS and avian influenza.

    PubMed

    Lee, Paul J; Krilov, Leonard R

    2005-01-01

    SARS and avian influenza have many common features. They both arose in Asia and originated from animal viruses. They both have the potential to become pandemics because human beings lack antibodies to the animal-derived antigens present on the viral surface and rapid dissemination can occur from the relative ease and availability of high speed and far-reaching transportation methods. Pediatricians, in particular, should remain alert about the possibility of pandemic illnesses in their patients. Annual rates of influenza in children may be 1.5 to 3 times those in the adult population, and infection rates during a community epidemic may exceed 40% in preschool-aged children and 30% in school-aged children. Infected children also play a central role in disseminating influenza, as they are the major point of entry for the virus into the household, from which adults spread disease into the community. Of course, children younger than 24 months also are at high risk for complications from influenza. A 1999 Centers for Disease Control and Prevention projection of an influenza pandemic in the US paints a grim picture: 89,000 to 207,000 deaths, 314,000 to 734,000 hospitalizations, 18 million to 42 million outpatient visits, and 20 million to 47 million additional illnesses, at a cost to society of at least dollars 71.3 billion to dollars 166.5 billion. High-risk patients (15% of the population) would account for approximately 84% of all deaths. Although SARS has been kind to the pediatric population so far, there are no guarantees that future outbreaks would be as sparing. To aid readers in remaining up-to-date with SARS and avian influenza, some useful websites are listed in the Sidebar. Two masters of suspense, Alfred Hitchcock and Stephen King, may have been closer to the truth than they ever would have believed. Both birds and a super flu could bring about the end of civilization as we know it. But all is not lost--to paraphrase Thomas Jefferson, the price of health is

  14. Practical aspects of vaccination of poultry against avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Although little has changed in vaccine technology for avian influenza virus (AIV) in the past 20 years, the approach to vaccination of poultry (chickens, turkeys and ducks) for avian influenza has evolved as highly pathogenic (HP) AIV has become endemic in several regions of the world. Vaccination f...

  15. Migratory bird avian influenza sampling; Yukon Kuskokwim Delta, Alaska, 2015

    USGS Publications Warehouse

    Ramey, Andy M.

    2016-01-01

    Data set containing avian influenza sampling information for spring and summer waterbirds on the Yukon Kuskokwim Delta, 2015. Data contains sample ID, species common name, age and sex, collection data and location, and laboratory specific data used to identify presence and absence of avian influenza viruses.

  16. Avian influenza in Indonesia: Observations of disease detection in poultry

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza, subtype H5N1, also known as highly pathogenic notifiable avian influenza (HPNAI), has spread throughout Indonesia since 2003. As of June 2007 there have been a total of 100 documented human cases in Indonesia, 80 of which have been fatal. Although efforts have be...

  17. Avian Influenza Viruses in Water Birds, Africa1

    PubMed Central

    Dodman, Tim; Caron, Alexandre; Balança, Gilles; Desvaux, Stephanie; Goutard, Flavie; Cattoli, Giovanni; Lamarque, François; Hagemeijer, Ward; Monicat, François

    2007-01-01

    We report the first large-scale surveillance of avian influenza viruses in water birds conducted in Africa. This study shows evidence of avian influenza viruses in wild birds, both Eurasian and Afro-tropical species, in several major wetlands of Africa. PMID:17553284

  18. Experimental vaccinations for avian influenza virus including DIVA approaches

    USDA-ARS?s Scientific Manuscript database

    Avian influenza (AI) is a viral disease of poultry that remains an economic threat to commercial poultry throughout the world by negatively impacting animal health and trade. Strategies to control avian influenza (AI) virus are developed to prevent, manage or eradicate the virus from the country, re...

  19. Single PA mutation as a high yield determinant of avian influenza vaccines.

    PubMed

    Lee, Ilseob; Il Kim, Jin; Park, Sehee; Bae, Joon-Yong; Yoo, Kirim; Yun, Soo-Hyeon; Lee, Joo-Yeon; Kim, Kisoon; Kang, Chun; Park, Man-Seong

    2017-01-13

    Human infection with an avian influenza virus persists. To prepare for a potential outbreak of avian influenza, we constructed a candidate vaccine virus (CVV) containing hemagglutinin (HA) and neuraminidase (NA) genes of a H5N1 virus and evaluated its antigenic stability after serial passaging in embryonated chicken eggs. The passaged CVV harbored the four amino acid mutations (R136K in PB2; E31K in PA; A172T in HA; and R80Q in M2) without changing its antigenicity, compared with the parental CVV. Notably, the passaged CVV exhibited much greater replication property both in eggs and in Madin-Darby canine kidney and Vero cells. Of the four mutations, the PA E31K showed the greatest effect on the replication property of reverse genetically-rescued viruses. In a further luciferase reporter, mini-replicon assay, the PA mutation appeared to affect the replication property by increasing viral polymerase activity. When applied to different avian influenza CVVs (H7N9 and H9N2 subtypes), the PA E31K mutation resulted in the increases of viral replication in the Vero cell again. Taken all together, our results suggest the PA E31K mutation as a single, substantial growth determinant of avian influenza CVVs and for the establishment of a high-yield avian influenza vaccine backbone.

  20. Single PA mutation as a high yield determinant of avian influenza vaccines

    PubMed Central

    Lee, Ilseob; Il Kim, Jin; Park, Sehee; Bae, Joon-Yong; Yoo, Kirim; Yun, Soo-Hyeon; Lee, Joo-Yeon; Kim, Kisoon; Kang, Chun; Park, Man-Seong

    2017-01-01

    Human infection with an avian influenza virus persists. To prepare for a potential outbreak of avian influenza, we constructed a candidate vaccine virus (CVV) containing hemagglutinin (HA) and neuraminidase (NA) genes of a H5N1 virus and evaluated its antigenic stability after serial passaging in embryonated chicken eggs. The passaged CVV harbored the four amino acid mutations (R136K in PB2; E31K in PA; A172T in HA; and R80Q in M2) without changing its antigenicity, compared with the parental CVV. Notably, the passaged CVV exhibited much greater replication property both in eggs and in Madin-Darby canine kidney and Vero cells. Of the four mutations, the PA E31K showed the greatest effect on the replication property of reverse genetically-rescued viruses. In a further luciferase reporter, mini-replicon assay, the PA mutation appeared to affect the replication property by increasing viral polymerase activity. When applied to different avian influenza CVVs (H7N9 and H9N2 subtypes), the PA E31K mutation resulted in the increases of viral replication in the Vero cell again. Taken all together, our results suggest the PA E31K mutation as a single, substantial growth determinant of avian influenza CVVs and for the establishment of a high-yield avian influenza vaccine backbone. PMID:28084423

  1. Serologic and virologic surveillance of avian influenza in Nigeria, 2006-7.

    PubMed

    Joannis, T M; Meseko, C A; Oladokun, A T; Ularamu, H G; Egbuji, A N; Solomon, P; Nyam, D C; Gado, D A; Luka, P; Ogedengbe, M E; Yakubu, M B; Tyem, A D; Akinyede, O; Shittu, A I; Sulaiman, L K; Owolodun, O A; Olawuyi, A K; Obishakin, E T; Fasina, F O

    2008-10-16

    Since January 2006, H5N1 avian influenza has affected Nigeria's poultry population causing enormous loss of resources. The current circulating virus is a potential candidate for pandemic influenza which may severely affect the human and animal population worldwide especially in the resource-poor countries. In this study, we report on our field and laboratory surveillance efforts in Nigeria. A total of 1,821 tissue samples, 8,638 tracheal swabs, 7,976 cloacal swabs and 7,328 avian sera were analysed over a period of two years, with 312 positive results [corrected] We recovered 299 isolates of highly pathogenic avian influenza virus H5N1 mainly from the diagnostic samples of poultry kept in backyard, small scale and free range farms. This finding emphasised the role played by these farming systems in the dissemination of avian influenza in Nigeria and highlights the need for a continued surveillance in humans since human-animal interaction is a key feature in Africa. Furthermore, there is a need for the strengthening of border controls. Since October 2007, there has been no reported and confirmed outbreak of avian influenza in Nigeria.

  2. Avian influenza in birds and mammals.

    PubMed

    Cardona, Carol J; Xing, Zheng; Sandrock, Christian E; Davis, Cristina E

    2009-07-01

    The disease syndromes caused by avian influenza viruses are highly variable depending on the host species infected, its susceptibility and response to infection and the virulence of the infecting viral strain. Although avian influenza viruses have a broad host range in general, it is rare for an individual strain or subtype to infect more than one species. The H5N1 highly pathogenic avian influenza virus (HPAIV) lineages of viruses that descended from A/goose/Guandong/96 (H5N1 HPAIV) are unusual in the diversity of species they have infected worldwide. Although the species affected by H5N1 HPAI in the field and those that have been experimentally studied are diverse, their associated disease syndromes are remarkably similar across species. In some species, multi-organ failure and death are rapid and no signs of the disease are observed. Most prominently in this category are chickens and other avian species of the order Galliformes. In other species, neurologic signs develop resulting in the death of the host. This is what has been reported in domestic cats (Carnivora), geese (Anseriformes), ratites (Struthioniformes), pigeons inoculated with high doses (Columbiformes) and ducks infected with H5N1 HPAIV isolated since 2002 (Anseriformes). In some other species, the disease is more prolonged and although multi-organ failure and death are the eventual outcomes, the signs of disease are more extensive. Predominantly, these species include humans (Primates) and the laboratory models of human disease, the ferret (Carnivora), mouse (Rodentia) and cynamologous macaques (Primates). Finally, some species are more resistant to infection with H5N1 HPAIV and show few or no signs of disease. These species include pigeons in some studies (Columbiformes), ducks inoculated with pre-2002 isolates (Anseriformes), and pigs (Artiodactyla).

  3. Structural basis for preferential avian receptor binding by the human-infecting H10N8 avian influenza virus.

    PubMed

    Wang, Min; Zhang, Wei; Qi, Jianxun; Wang, Fei; Zhou, Jianfang; Bi, Yuhai; Wu, Ying; Sun, Honglei; Liu, Jinhua; Huang, Chaobin; Li, Xiangdong; Yan, Jinghua; Shu, Yuelong; Shi, Yi; Gao, George F

    2015-01-09

    Since December 2013, at least three cases of human infections with H10N8 avian influenza virus have been reported in China, two of them being fatal. To investigate the epidemic potential of H10N8 viruses, we examined the receptor binding property of the first human isolate, A/Jiangxi-Donghu/346/2013 (JD-H10N8), and determined the structures of its haemagglutinin (HA) in complex with both avian and human receptor analogues. Our results suggest that JD-H10N8 preferentially binds the avian receptor and that residue R137-localized within the receptor-binding site of HA-plays a key role in this preferential binding. Compared with the H7N9 avian influenza viruses, JD-H10N8 did not exhibit the enhanced binding to human receptors observed with the prevalent H7N9 virus isolate Anhui-1, but resembled the receptor binding activity of the early-outbreak H7N9 isolate (Shanghai-1). We conclude that the H10N8 virus is a typical avian influenza virus.

  4. China is closely monitoring an increase in infection with avian influenza A (H7N9) virus.

    PubMed

    Tang, Qi; Shao, Meiying; Xu, Lingzhong

    2017-03-22

    The fifth outbreak of human infection with avian influenza A (H7N9) virus has struck far and wide in China. The number of cases of infection with the avian influenza A (H7N9) suddenly increased in 2013-2014, but the number of cases reported this winter has exceeded the number reported in all previous seasons. Given this situation, the National Health and Family Planning Commission issued updated Chinese guidelines (2017 version) on diagnosis and treatment of infection with the avian influenza A (H7N9) virus on January 24, 2017. In addition, the Chinese Government closed many live poultry markets in urban and rural areas in a number of provinces and the Government has taken proactive measures to surveil, respond to, and prevent potential pandemics involving the avian influenza A (H7N9) virus.

  5. Multiple reassortment events among highly pathogenic avian influenza A(H5N1) viruses detected in Bangladesh.

    PubMed

    Gerloff, Nancy A; Khan, Salah Uddin; Balish, Amanda; Shanta, Ireen S; Simpson, Natosha; Berman, Lashondra; Haider, Najmul; Poh, Mee Kian; Islam, Ausraful; Gurley, Emily; Hasnat, Md Abdul; Dey, T; Shu, Bo; Emery, Shannon; Lindstrom, Stephen; Haque, Ainul; Klimov, Alexander; Villanueva, Julie; Rahman, Mahmudur; Azziz-Baumgartner, Eduardo; Ziaur Rahman, Md; Luby, Stephen P; Zeidner, Nord; Donis, Ruben O; Sturm-Ramirez, Katharine; Davis, C Todd

    2014-02-01

    In Bangladesh, little is known about the genomic composition and antigenicity of highly pathogenic avian influenza A(H5N1) viruses, their geographic distribution, temporal patterns, or gene flow within the avian host population. Forty highly pathogenic avian influenza A(H5N1) viruses isolated from humans and poultry in Bangladesh between 2008 and 2012 were analyzed by full genome sequencing and antigenic characterization. The analysis included viruses collected from avian hosts and environmental sampling in live bird markets, backyard poultry flocks, outbreak investigations in wild birds or poultry and from three human cases. Phylogenetic analysis indicated that the ancestors of these viruses reassorted (1) with other gene lineages of the same clade, (2) between different clades and (3) with low pathogenicity avian influenza A virus subtypes. Bayesian estimates of the time of most recent common ancestry, combined with geographic information, provided evidence of probable routes and timelines of virus spread into and out of Bangladesh.

  6. Where do avian influenza viruses meet in the Americas?

    PubMed

    Gonzalez-Reicheabc, Ana S; Perez, Daniel R

    2012-12-01

    Avian influenza virus (AIV) surveillance has been scarce in most countries of Latin America and the Caribbean. Historically, avian influenza surveillance efforts in Central and South America have been localized in places where outbreaks in poultry have occurred. Since the emergence of the H5N1 subtype in Asia, active surveillance in wild birds has increased in a number of Latin American countries, including Barbados, Guatemala, Argentina, Brazil, Mexico, and Peru. A broad diversity of virus subtypes has been detected; however, nucleotide sequence data are still limited in comparison to other regions of the world. Here we review the current knowledge of AIV in Latin America, including phylogenetic relationships among publicly available viral genomes. Overall AIV reports are sparse across the region and the cocirculation of two distinct genetic lineages is puzzling. Phylogenetic analysis reflects bias in time and location where sampling has been conducted. Increased surveillance is needed to address the major determinants for AIV ecology, evolution, and transmission in the region.

  7. Practical aspects of vaccination of poultry against avian influenza virus.

    PubMed

    Spackman, Erica; Pantin-Jackwood, Mary J

    2014-12-01

    Although little has changed in vaccine technology for avian influenza virus (AIV) in the past 20 years, the approach to vaccination of poultry (chickens, turkeys and ducks) for avian influenza has evolved as highly pathogenic AIV has become endemic in several regions of the world. Vaccination for low pathogenicity AIV is also becoming routine in regions where there is a high level of field challenge. In contrast, some countries will not use vaccination at all and some will only use it on an emergency basis during eradication efforts (i.e. stamping-out). There are pros and cons to each approach and, since every outbreak situation is different, no one method will work equally well in all situations. Numerous practical aspects must be considered when developing an AIV control program with vaccination as a component, such as: (1) the goals of vaccination must be defined; (2) the population to be vaccinated must be clearly identified; (3) there must be a plan to obtain and administer good quality vaccine in a timely manner and to achieve adequate coverage with the available resources; (4) risk factors for vaccine failure should be mitigated as much as possible; and, most importantly, (5) biosecurity must be maintained as much as possible, if not enhanced, during the vaccination period.

  8. Economic epidemiology of avian influenza on smallholder poultry farms.

    PubMed

    Boni, Maciej F; Galvani, Alison P; Wickelgren, Abraham L; Malani, Anup

    2013-12-01

    Highly pathogenic avian influenza (HPAI) is often controlled through culling of poultry. Compensating farmers for culled chickens or ducks facilitates effective culling and control of HPAI. However, ensuing price shifts can create incentives that alter the disease dynamics of HPAI. Farmers control certain aspects of the dynamics by setting a farm size, implementing infection control measures, and determining the age at which poultry are sent to market. Their decisions can be influenced by the market price of poultry which can, in turn, be set by policy makers during an HPAI outbreak. Here, we integrate these economic considerations into an epidemiological model in which epidemiological parameters are determined by an outside agent (the farmer) to maximize profit from poultry sales. Our model exhibits a diversity of behaviors which are sensitive to (i) the ability to identify infected poultry, (ii) the average price of infected poultry, (iii) the basic reproductive number of avian influenza, (iv) the effect of culling on the market price of poultry, (v) the effect of market price on farm size, and (vi) the effect of poultry density on disease transmission. We find that under certain market and epidemiological conditions, culling can increase farm size and the total number of HPAI infections. Our model helps to inform the optimization of public health outcomes that best weigh the balance between public health risk and beneficial economic outcomes for farmers. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Economic epidemiology of avian influenza on smallholder poultry farms☆

    PubMed Central

    Boni, Maciej F.; Galvani, Alison P.; Wickelgren, Abraham L.; Malani, Anup

    2013-01-01

    Highly pathogenic avian influenza (HPAI) is often controlled through culling of poultry. Compensating farmers for culled chickens or ducks facilitates effective culling and control of HPAI. However, ensuing price shifts can create incentives that alter the disease dynamics of HPAI. Farmers control certain aspects of the dynamics by setting a farm size, implementing infection control measures, and determining the age at which poultry are sent to market. Their decisions can be influenced by the market price of poultry which can, in turn, be set by policy makers during an HPAI outbreak. Here, we integrate these economic considerations into an epidemiological model in which epidemiological parameters are determined by an outside agent (the farmer) to maximize profit from poultry sales. Our model exhibits a diversity of behaviors which are sensitive to (i) the ability to identify infected poultry, (ii) the average price of infected poultry, (iii) the basic reproductive number of avian influenza, (iv) the effect of culling on the market price of poultry, (v) the effect of market price on farm size, and (vi) the effect of poultry density on disease transmission. We find that under certain market and epidemiological conditions, culling can increase farm size and the total number of HPAI infections. Our model helps to inform the optimization of public health outcomes that best weigh the balance between public health risk and beneficial economic outcomes for farmers. PMID:24161559

  10. Avian influenza: public health and food safety concerns.

    PubMed

    Chmielewski, Revis; Swayne, David E

    2011-01-01

    Avian influenza (AI) is a disease or asymptomatic infection caused by Influenzavirus A. AI viruses are species specific and rarely cross the species barrier. However, subtypes H5, H7, and H9 have caused sporadic infections in humans, mostly as a result of direct contact with infected birds. H5N1 high pathogenicity avian influenza (HPAI) virus causes a rapid onset of severe viral pneumonia and is highly fatal (60% mortality). Outbreaks of AI could have a severe economic and social impact on the poultry industry, trade, and public health. Surveillance data revealed that H5N1 HPAI has been detected in imported frozen duck meat from Asia, and on the surface and in contaminated eggs. However, there is no direct evidence that AI viruses can be transmitted to humans via the consumption of contaminated poultry products. Implementing management practices that incorporate biosecurity principles, personal hygiene, and cleaning and disinfection protocols, as well as cooking and processing standards, are effective means of controlling the spread of the AI viruses.

  11. New USDA licensed avian influenza vaccine (rHVT-AI) for protection against H5 avian influenza and usage discussion

    USDA-ARS?s Scientific Manuscript database

    Recently, a new avian influenza vaccine was licensed by USDA for use in the United States for protection of commercial poultry. The vaccine is a recombinant herpes virus of turkeys expressing the hemagglutinin gene of an H5 subtype avian influenza virus belonging to the 2.2 clade of the H5N1 highly ...

  12. Avian influenza: genetic evolution under vaccination pressure

    PubMed Central

    Escorcia, Magdalena; Vázquez, Lourdes; Méndez, Sara T; Rodríguez-Ropón, Andrea; Lucio, Eduardo; Nava, Gerardo M

    2008-01-01

    Antigenic drift of avian influenza viruses (AIVs) has been observed in chickens after extended vaccination program, similar to those observed with human influenza viruses. To evaluate the evolutionary properties of endemic AIV under high vaccination pressure (around 2 billion doses used in the last 12 years), we performed a pilot phylogenic analysis of the hemagglutinin (HA) gene of AIVs isolated from 1994 to 2006. This study demonstrates that Mexican low pathogenicity (LP) H5N2-AIVs are constantly undergoing genetic drifts. Recent AIV isolates (2002–2006) show significant molecular drifts when compared with the H5N2 vaccine-strain or other field isolates (1994–2000). This study also demonstrates that molecular drifts in the HA gene lineages follow a yearly trend, suggesting gradually cumulative sequence mutations. These findings might explain the increasing incidence of LP H5N2 AIV isolated from commercial avian farms. These findings support recent concerns about the challenge of AIV antigenic drift and influenza epidemics. PMID:18218105

  13. Ecology of avian influenza virus in birds.

    PubMed

    Causey, Douglas; Edwards, Scott V

    2008-02-15

    Avian influenza A virus (an orthomyxovirus) is a zoonotic pathogen with a natural reservoir entirely in birds. The influenza virus genome is an 8-segment single-stranded RNA with high potential for in situ recombination. Two segments code for the hemagglutinin (H) and neuraminidase (N) antigens used for host-cell entry. At present, 16 H and 9 N subtypes are known, for a total of 144 possible different influenza subtypes, each with potentially different host susceptibility. With >10,000 species of birds found in nearly every terrestrial and aquatic habitat, there are few places on earth where birds cannot be found. The avian immune system differs from that of humans in several important features, including asynchronous B and T lymphocyte systems and a polymorphic multigene immune complex, but little is known about the immunogenetics of pathogenic response. Postbreeding dispersal and migration and a naturally high degree of environmental vagility mean that wild birds have the potential to be vectors that transmit highly pathogenic variants great distances from the original sources of infection.

  14. Avian influenza: genetic evolution under vaccination pressure.

    PubMed

    Escorcia, Magdalena; Vázquez, Lourdes; Méndez, Sara T; Rodríguez-Ropón, Andrea; Lucio, Eduardo; Nava, Gerardo M

    2008-01-24

    Antigenic drift of avian influenza viruses (AIVs) has been observed in chickens after extended vaccination program, similar to those observed with human influenza viruses. To evaluate the evolutionary properties of endemic AIV under high vaccination pressure (around 2 billion doses used in the last 12 years), we performed a pilot phylogenic analysis of the hemagglutinin (HA) gene of AIVs isolated from 1994 to 2006. This study demonstrates that Mexican low pathogenicity (LP) H5N2-AIVs are constantly undergoing genetic drifts. Recent AIV isolates (2002-2006) show significant molecular drifts when compared with the H5N2 vaccine-strain or other field isolates (1994-2000). This study also demonstrates that molecular drifts in the HA gene lineages follow a yearly trend, suggesting gradually cumulative sequence mutations. These findings might explain the increasing incidence of LP H5N2 AIV isolated from commercial avian farms. These findings support recent concerns about the challenge of AIV antigenic drift and influenza epidemics.

  15. Avian influenza A H5N1 virus.

    PubMed

    Loeffelholz, Michael J

    2010-03-01

    Although influenza A viruses of avian origin have long been responsible for influenza pandemics, including the "Spanish flu" pandemic of 1918, human infections caused by avian subtypes of influenza A virus, most notably H5N1, have emerged since the 1990s (H5N1 in 1997; H9N2 in 1999; and H7N7 in 2003). The wide geographic distribution of influenza A H5N1 in avian species, and the number and severity of human infections are unprecedented. Together with the ongoing genetic evolution of this virus, these features make influenza A H5N1 a likely candidate for a future influenza pandemic. This article discusses the epidemiology, pathogenesis, and diagnosis of human infections caused by influenza A H5N1 virus.

  16. Prevention and control of avian influenza in Singapore.

    PubMed

    Leong, Hon Keong; Goh, Cheryl S; Chew, Siang Thai; Lim, Chee Wee; Lin, Yueh Nuo; Chang, Siow Foong; Yap, Him Hoo; Chua, Sin Bin

    2008-06-01

    The highly pathogenic avian influenza (HPAI) H5N1 virus was first detected in 1996 in Guangdong, China. Since 2003, H5N1 outbreaks have been reported in parts of Asia, Europe, the Middle East, and Africa. It is currently entrenched among poultry in parts of Asia and poses a major challenge to animal and human health. Singapore is free from HPAI. Given Singapore's need to import food, the Agri-Food and Veterinary Authority (AVA) has adopted a pro-active risk management system to prevent the introduction of HPAI. AVA's approach maybe described as a multi-layered control strategy for the prevention and control of HPAI. The strategy includes control measures at source, border control measures, local control measures and emergency preparedness.

  17. Highly Pathogenic Avian Influenza H5N1, Thailand, 2004

    PubMed Central

    Chaitaweesub, Prasit; Songserm, Thaweesak; Chaisingh, Arunee; Hoonsuwan, Wirongrong; Buranathai, Chantanee; Parakamawongsa, Tippawon; Premashthira, Sith; Amonsin, Alongkorn; Gilbert, Marius; Nielen, Mirjam; Stegeman, Arjan

    2005-01-01

    In January 2004, highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first confirmed in poultry and humans in Thailand. Control measures, e.g., culling poultry flocks, restricting poultry movement, and improving hygiene, were implemented. Poultry populations in 1,417 villages in 60 of 76 provinces were affected in 2004. A total of 83% of infected flocks confirmed by laboratories were backyard chickens (56%) or ducks (27%). Outbreaks were concentrated in the Central, the southern part of the Northern, and Eastern Regions of Thailand, which are wetlands, water reservoirs, and dense poultry areas. More than 62 million birds were either killed by HPAI viruses or culled. H5N1 virus from poultry caused 17 human cases and 12 deaths in Thailand; a number of domestic cats, captive tigers, and leopards also died of the H5N1 virus. In 2005, the epidemic is ongoing in Thailand. PMID:16318716

  18. Free-grazing ducks and highly pathogenic avian influenza, Thailand.

    PubMed

    Gilbert, Marius; Chaitaweesub, Prasit; Parakamawongsa, Tippawon; Premashthira, Sith; Tiensin, Thanawat; Kalpravidh, Wantanee; Wagner, Hans; Slingenbergh, Jan

    2006-02-01

    Thailand has recently had 3 epidemic waves of highly pathogenic avian influenza (HPAI); virus was again detected in July 2005. Risk factors need to be identified to better understand disease ecology and assist HPAI surveillance and detection. This study analyzed the spatial distribution of HPAI outbreaks in relation to poultry, land use, and other anthropogenic variables from the start of the second epidemic wave (July 2004-May 2005). Results demonstrate a strong association between H5N1 virus in Thailand and abundance of free-grazing ducks and, to a lesser extent, native chickens, cocks, wetlands, and humans. Wetlands used for double-crop rice production, where free-grazing duck feed year round in rice paddies, appear to be a critical factor in HPAI persistence and spread. This finding could be important for other duck-producing regions in eastern and southeastern Asian countries affected by HPAI.

  19. Free-grazing Ducks and Highly Pathogenic Avian Influenza, Thailand

    PubMed Central

    Chaitaweesub, Prasit; Parakamawongsa, Tippawon; Premashthira, Sith; Tiensin, Thanawat; Kalpravidh, Wantanee; Wagner, Hans; Slingenbergh, Jan

    2006-01-01

    Thailand has recently had 3 epidemic waves of highly pathogenic avian influenza (HPAI); virus was again detected in July 2005. Risk factors need to be identified to better understand disease ecology and assist HPAI surveillance and detection. This study analyzed the spatial distribution of HPAI outbreaks in relation to poultry, land use, and other anthropogenic variables from the start of the second epidemic wave (July 2004–May 2005). Results demonstrate a strong association between H5N1 virus in Thailand and abundance of free-grazing ducks and, to a lesser extent, native chickens, cocks, wetlands, and humans. Wetlands used for double-crop rice production, where free-grazing duck feed year round in rice paddies, appear to be a critical factor in HPAI persistence and spread. This finding could be important for other duck-producing regions in eastern and southeastern Asian countries affected by HPAI. PMID:16494747

  20. Avian influenza vaccination in Egypt: Limitations of the current strategy.

    PubMed

    Peyre, Marisa; Samaha, Hamid; Makonnen, Yilma Jobre; Saad, Ahmed; Abd-Elnabi, Amira; Galal, Saber; Ettel, Toni; Dauphin, Gwenaelle; Lubroth, Juan; Roger, François; Domenech, Joseph

    2009-12-09

    Vaccination of domestic poultry against avian influenza (AI) has been used on a large-scale in South East Asia since 2003 and in Egypt since 2006 to fight H5N1 highly-pathogenic avian influenza (HPAI) epidemics. The decision to use mass vaccination against HPAI in Egypt was taken as an emergency measure based on positive impact of such control measures in Vietnam and the People's Republic of China. However, three years on, the impact on disease control of AI vaccination in Egypt has been very limited. Despite the continuous vaccination of poultry against HPAI, poultry outbreaks and human cases are reported regularly. A recent assessment study highlighted substantial weaknesses in the current immunisation programme and its lack of positive impact on the spread of infection or the maintenance of public health safety. The shortcomings of the vaccination strategy may be attributed in part to a lack of sufficient support in terms of funding and communication, the absence of an efficient monitoring system, and inadequate training of field technicians. The difficulties of blanket vaccinations in semi-commercial farms and household poultry sectors are well known, however, improvements in the industrial sector should be possible though better government controls and greater collaboration with the private sector. AI vaccination should be regarded as just one control tool within a broader disease control program integrating surveillance, outbreak investigation, disease management systems, and the rigorous implementation of bio-security measures. If incorrectly implemented, AI vaccination has a limited impact as a disease control measure. Moreover, without strict bio-security precautions undertaken during its application, farm visits to vaccinate poultry could facilitate the spread of the virus and therefore become a risk factor with important implications on the maintenance of the virus and potential risk for human exposure.

  1. Healthcare Information Systems to Assess Influenza Outbreaks

    PubMed Central

    Figar, S.; Aliperti, V.; Salazar, E.; Otero, C.; Schpilberg, M.; Taliercio, V.; Otero, P.; de Quirós, F. González Bernaldo

    2011-01-01

    Objective To determine whether a private HIS could have detected the influenza epidemic outbreaks earlier through changes in morbidity and mortality patterns. Methods Data Source included a health information system (HIS) from an academic tertiary health care center integrating administrative and clinical applications. It used a local interface terminology server which provides support through data autocoding of clinical documentation. Specific data subsets were created to compare the burden of influenza during the epidemiological week (EW) 21 to 26 for years 2007 to 2009 among 150,000 Health Maintenance Organization members in Argentina. The threshold for identifying an epidemic was considered met when the weekly influenza-like illness (ILI) rate exceeded 200 per 100,000 visits. Case fatality rates and mortality rates of severe acute respiratory infection (SARI) from 2007 to 2009 were retrospectively compared. Case fatality rates and mortality rates for A/H1N1 influenza 2009 also were estimated. Results The HIS detected the outbreak in EW 23 while the government Ministry of Health (MoH) gave a national epidemic alert during EW 25. The number of visits for ILI increased more than fourfold when comparing 2009 to the period 2007-2008. The SARI mortality rate in 2009 was higher than in 2008 (RR 2.8; 95%CI 1.18-6.63) and similar to that of 2007 (RR 1.05; 95%CI 0.56-1.49). 2009 was the first year with mortalities younger than 65 years attributable to SARI. The estimated A/H1N1 case fatality rate for SARI was 6.2% (95%CI 2.5 to 15.5) and A/H1N1 mortality rate was 6 per 100,000 (95%CI 0 to 11.6). Conclusion Our HIS detected the outbreak two weeks before than the MoH gave a national alert. The information system was useful in assessing morbidity and mortality during the 2009 influenza epidemic H1N1 outbreak suggesting that with a private-public integration a more real-time outbreak and disease surveillance system could be implemented. PMID:23616861

  2. Mineralized State of the Avian Influenza Virus in the Environment.

    PubMed

    Zhou, Hangyu; Wang, Guangchuan; Wang, Xiaoyu; Song, Zhiyong; Tang, Ruikang

    2017-10-09

    Although the circulation of avian influenza viruses in humans is limited, they can be transmitted from Aves (birds) to humans, representing a great challenge. Herein, we suggest that influenza viruses from Aves might exist in a mineralized state owing to the high calcium concentrations in the avian intestine. Using two typical influenza viruses as examples, we demonstrate that these viruses can self-mineralize in simulated avian intestinal fluid, resulting in egg-like virus-mineral structured composites. The mineralized viruses are more robust, with enhanced infectivity and thermostability. More importantly, the mineral exterior of mineralized viruses can alter their cell internalization, expanding the possible tropisms. The discovery of a mineralized state of influenza viruses highlights the integration of nanomaterials and viruses in the environment, which provides a new understanding of avian influenza infection and its control. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Bovine and human-derived passive immunization could help slow a future avian influenza pandemic.

    PubMed

    Alisky, Joseph

    2009-01-01

    An epidemic of human transmitted avian influenza could have casualties on a scale seen in the great Spanish influenza pandemic of 1918. This paper proposes that should such occur before effective vaccines and antiviral drugs are available, the outbreak could be significantly slowed by consumption of raw milk produced by herds of pathogen-free lactating cows intranasally inoculated with heat-sterilized sputa pooled from avian influenza patients, supplemented by parenteral serum immune globulin from the same cows. Efficiency of bovine antibody production could be enhanced using cholera toxin subunit b, and milk production could be rapidly accelerated using recombinant bovine somatotropin hormone. In this way, it would be possible to quickly create and distribute large quantities of milk-based and serum-based passive immune globulin active against the strains of avian influenza present in a particular geographic area and gain time for production of human convalescent plasma and other public health measures. This novel approach might also have utility for other serious respiratory infectious diseases, including non-avian influenza, SARS, hantavirus, respiratory syncytial virus, antibiotic-resistant Streptococcus pneumoniae and pneumonia-causing Staphylococcus aureus.

  4. Avian influenza in Australia: a summary of 5 years of wild bird surveillance.

    PubMed

    Grillo, V L; Arzey, K E; Hansbro, P M; Hurt, A C; Warner, S; Bergfeld, J; Burgess, G W; Cookson, B; Dickason, C J; Ferenczi, M; Hollingsworth, T; Hoque, Mda; Jackson, R B; Klaassen, M; Kirkland, P D; Kung, N Y; Lisovski, S; O'Dea, M A; O'Riley, K; Roshier, D; Skerratt, L F; Tracey, J P; Wang, X; Woods, R; Post, L

    2015-11-01

    Avian influenza viruses (AIVs) are found worldwide in numerous bird species, causing significant disease in gallinaceous poultry and occasionally other species. Surveillance of wild bird reservoirs provides an opportunity to add to the understanding of the epidemiology of AIVs. This study examined key findings from the National Avian Influenza Wild Bird Surveillance Program over a 5-year period (July 2007-June 2012), the main source of information on AIVs circulating in Australia. The overall proportion of birds that tested positive for influenza A via PCR was 1.9 ± 0.1%, with evidence of widespread exposure of Australian wild birds to most low pathogenic avian influenza (LPAI) subtypes (H1-13, H16). LPAI H5 subtypes were found to be dominant and widespread during this 5-year period. Given Australia's isolation, both geographically and ecologically, it is important for Australia not to assume that the epidemiology of AIV from other geographic regions applies here. Despite all previous highly pathogenic avian influenza outbreaks in Australian poultry being attributed to H7 subtypes, widespread detection of H5 subtypes in wild birds may represent an ongoing risk to the Australian poultry industry. © 2015 Australian Veterinary Association.

  5. Dynamic patterns of avian and human influenza in east and southeast Asia.

    PubMed

    Park, Andrew W; Glass, Kathryn

    2007-08-01

    The seasonal patterns of human influenza in temperate regions have been well documented; however, much less attention has been paid to patterns of infection in the tropical and subtropical areas of east and southeast Asia. During the period 1997-2006, this region experienced several outbreaks of highly pathogenic avian influenza A (H5N1) in hosts including wild and domestic poultry, human beings, and other mammals. H5N1 is thought to be a likely source of a pandemic strain of human influenza. Incidence of both human influenza and avian influenza in human beings shows evidence of seasonality throughout east and southeast Asia, although the seasonal patterns in tropical and subtropical areas are not as simple or as pronounced as those in temperate regions around the world. The possibility of a human being becoming co-infected with both human and avian strains of influenza is not restricted to a short season, although the risks do appear to be greatest during the winter months.

  6. Impact of avian influenza on U.S. poultry trade relations-2002: H5 or H7 low pathogenic avian influenza.

    PubMed

    Hall, Cheryl

    2004-10-01

    Avian influenza (AI) viruses are Type A influenza viruses of the Orthomyxoviridae family. There are 15 subtypes of the virus widespread in migratory waterfowl throughout the world. It has become increasingly evident that some low pathogenic avian influenza (LPAI) H5 or H7 viruses have the capacity to mutate into the more virulent strains that cause extensive economic losses and high mortality. Recent AI disease outbreaks in several countries have increased attention and concern over low pathogenic H5 and H7 AI viruses. This heightened international concern increases the risk of unnecessary trade bans. For the US poultry industry, avian influenza continues to be a challenge to the flow of trade. On one hand, there is the increased focus of world attention on the H5 and H7 low pathogenic AI virus and the possibility of mutation. On the other hand, there are the factors contributing to our finding of infected flocks. Among these, perhaps the most important is the ever-present reservoir of virus in the migratory waterfowl population. With the discovery of exposed flocks comes the threat of trade bans.

  7. Predicting the Lay Preventive Strategies in Response to Avian Influenza from Perceptions of the Threat

    PubMed Central

    Raude, Jocelyn; Setbon, Michel

    2011-01-01

    Background The identification of patterns of behaviors that lay people would engage in to protect themselves from the risk of infection in the case of avian influenza outbreak, as well as the lay perceptions of the threat that underlie these risk reduction strategies. Methodology/Principal Findings A population-based survey (N = 1003) was conducted in 2008 to understand and describe how the French public might respond to a possible outbreak. Factor analyses highlighted three main categories of risk reduction strategies consisting of food quality assurance, food avoidance, and animal avoidance. In combination with the fear of contracting avian influenza, mental representations associated with the manifestation and/or transmission of the disease were found to significantly and systematically shape the behavioral responses to the perceived threat. Conclusions/Significance This survey provides insight into the nature and predictors of the protective patterns that might be expected from the general public during a novel domestic outbreak of avian influenza. PMID:21949799

  8. Persistence of Pasteurella multocida in wetlands following avian cholera outbreaks

    USGS Publications Warehouse

    Blanchong, Julie A.; Samuel, M.D.; Goldberg, D.R.; Shadduck, D.J.; Lehr, M.A.

    2006-01-01

    Avian cholera, caused by Pasteurella multocida, affects waterbirds across North America and occurs worldwide among various avian species. Once an epizootic begins, contamination of the wetland environment likely facilitates the transmission of P. multocida to susceptible birds. To evaluate the ability of P. multocida serotype-1, the most common serotype associated with avian cholera in waterfowl in western and central North America, to persist in wetlands and to identify environmental factors associated with its persistence, we collected water and sediment samples from 23 wetlands during winters and springs of 1996a??99. These samples were collected during avian cholera outbreaks and for up to 13 wk following initial sampling. We recovered P. multocida from six wetlands that were sampled following the initial outbreaks, but no P. multocida was isolated later than 7 wk after the initial outbreak sampling. We found no significant relationship between the probability of recovery of P. multocida during resampling and the abundance of the bacterium recovered during initial sampling, the substrate from which isolates were collected, isolate virulence, or water quality conditions previously suggested to be related to the abundance or survival of P. multocida. Our results indicate that wetlands are unlikely to serve as a long-term reservoir for P. multocida because the bacterium does not persist in wetlands for long time periods following avian cholera outbreaks.

  9. The transmissibility of highly pathogenic avian influenza in commercial poultry in industrialised countries.

    PubMed

    Garske, Tini; Clarke, Paul; Ghani, Azra C

    2007-04-04

    With the increased occurrence of outbreaks of H5N1 worldwide there is concern that the virus could enter commercial poultry farms with severe economic consequences. We analyse data from four recent outbreaks of highly pathogenic avian influenza (HPAI) in commercial poultry to estimate the farm-to-farm reproductive number for HPAI. The reproductive number is a key measure of the transmissibility of HPAI at the farm level because it can be used to evaluate the effectiveness of the control measures. In these outbreaks the mean farm-to-farm reproductive number prior to controls ranged from 1.1 to 2.4, with the maximum farm-based reproductive number in the range 2.2 to 3.2. Enhanced bio-security, movement restrictions and prompt isolation of the infected farms in all four outbreaks substantially reduced the reproductive number, but it remained close to the threshold value 1 necessary to ensure the disease will be eradicated. Our results show that depending on the particular situation in which an outbreak of avian influenza occurs, current controls might not be enough to eradicate the disease, and therefore a close monitoring of the outbreak is required. The method we used for estimating the reproductive number is straightforward to implement and can be used in real-time. It therefore can be a useful tool to inform policy decisions.

  10. Evaluation of primer and probe mismatches in sensitivity of select RRT-PCR tests for avian influenza

    USDA-ARS?s Scientific Manuscript database

    The recent outbreak of pH1N1 in animals highlighted an imperfection of the matrix real-time reverse transcriptase-polymerase chain reaction (RRT-PCR) that has become the primary screening test for avian and swine influenza viruses. Four mismatches in one primer resulted in an important loss of sens...

  11. Highly Pathogenic Avian Influenza H5N1 Clade 2.3.2.1c Virus in Lebanon, 2016.

    PubMed

    El Romeh, Ali; Zecchin, Bianca; Fusaro, Alice; Ibrahim, Elias; El Bazzal, Bassel; El Hage, Jeanne; Milani, Adelaide; Zamperin, Gianpiero; Monne, Isabella

    2017-06-01

    We report the phylogenetic analysis of the first outbreak of H5N1 highly pathogenic avian influenza virus detected in Lebanon from poultry in April 2016. Our whole-genome sequencing analysis revealed that the Lebanese H5N1 virus belongs to genetic clade 2.3.2.1c and clusters with viruses from Europe and West Africa.

  12. Efficacy of commercial vaccines in chickens and ducks against H5N1 highly pathogenic avian influenza viruses from Vietnam

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic (HP) H5N1 avian influenza (AI) viruses continue to circulate in Asia and have spread to other regions of the world. Though attempts at eradication of the viruses during various outbreaks have been successful for short periods of time, new strains of H5N1 viruses continue to emerge...

  13. (Highly pathogenic) avian influenza as a zoonotic agent.

    PubMed

    Kalthoff, Donata; Globig, Anja; Beer, Martin

    2010-01-27

    Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence by mutation after transmission and adaptation to susceptible gallinaceous poultry. Those so-called highly pathogenic avian influenza viruses (HPAIV) then cause mass die-offs in susceptible birds and lead to tremendous economical losses when poultry is affected. Besides a number of avian influenza virus subtypes that have sporadically infected mammals, the HPAIV H5N1 Asia shows strong zoonotic characteristics and it was transmitted from birds to different mammalian species including humans. Theoretically, pandemic viruses might derive directly from avian influenza viruses or arise after genetic reassortment between viruses of avian and mammalian origin. So far, HPAIV H5N1 already meets two conditions for a pandemic virus: as a new subtype it has been hitherto unseen in the human population and it has infected at least 438 people, and caused severe illness and high lethality in 262 humans to date (August 2009). The acquisition of efficient human-to-human transmission would complete the emergence of a new pandemic virus. Therefore, fighting H5N1 at its source is the prerequisite to reduce pandemic risks posed by this virus. Other influenza viruses regarded as pandemic candidates derive from subtypes H2, H7, and H9 all of which have infected humans in the past. Here, we will give a comprehensive overview on avian influenza viruses in concern to their zoonotic potential.

  14. Modeling highly pathogenic avian influenza transmission in wild birds and poultry in West Bengal, India.

    PubMed

    Pandit, Pranav S; Bunn, David A; Pande, Satish A; Aly, Sharif S

    2013-01-01

    Wild birds are suspected to have played a role in highly pathogenic avian influenza (HPAI) H5N1 outbreaks in West Bengal. Cluster analysis showed that H5N1 was introduced in West Bengal at least 3 times between 2008 and 2010. We simulated the introduction of H5N1 by wild birds and their contact with poultry through a stochastic continuous-time mathematical model. Results showed that reducing contact between wild birds and domestic poultry, and increasing the culling rate of infected domestic poultry communities will reduce the probability of outbreaks. Poultry communities that shared habitat with wild birds or those indistricts with previous outbreaks were more likely to suffer an outbreak. These results indicate that wild birds can introduce HPAI to domestic poultry and that limiting their contact at shared habitats together with swift culling of infected domestic poultry can greatly reduce the likelihood of HPAI outbreaks.

  15. Modeling highly pathogenic avian influenza transmission in wild birds and poultry in West Bengal, India

    PubMed Central

    Pandit, Pranav S.; Bunn, David A.; Pande, Satish A.; Aly, Sharif S.

    2013-01-01

    Wild birds are suspected to have played a role in highly pathogenic avian influenza (HPAI) H5N1 outbreaks in West Bengal. Cluster analysis showed that H5N1 was introduced in West Bengal at least 3 times between 2008 and 2010. We simulated the introduction of H5N1 by wild birds and their contact with poultry through a stochastic continuous-time mathematical model. Results showed that reducing contact between wild birds and domestic poultry, and increasing the culling rate of infected domestic poultry communities will reduce the probability of outbreaks. Poultry communities that shared habitat with wild birds or those indistricts with previous outbreaks were more likely to suffer an outbreak. These results indicate that wild birds can introduce HPAI to domestic poultry and that limiting their contact at shared habitats together with swift culling of infected domestic poultry can greatly reduce the likelihood of HPAI outbreaks. PMID:23846233

  16. Global concern regarding the fifth case of human infection with avian influenza A (H7N9) virus in China.

    PubMed

    Shen, Yinzhong; Lu, Hongzhou

    2017-02-28

    Since the first case of human infection with the avian influenza A (H7N9) virus was identified in 2013, five seasonal outbreaks have occurred in China. The fifth outbreak started earlier than usual. A sudden increase in cases of human infection with the avian influenza A (H7N9) virus has been reported in China since September 2016, and the number of cases reported this season is exceeding that reported in previous seasons. This increase in the number of new cases of H7N9 infection has caused domestic and international concern. This paper summarizes the current prevalence of H7N9 in China and it also discusses measures that China has taken to control those outbreaks. This paper also describes steps China must take in the future. This paper can serve as a reference for prevention and control of H7N9 outbreaks around the world.

  17. Complete Genome Sequence of Influenza Virus H9N2 Associated with a Fatal Outbreak among Chickens in Dubai.

    PubMed

    Lau, Siu-Ying; Joseph, Sunitha; Chan, Kwok-Hung; Chen, Honglin; Patteril, Nissy Annie Gerogy; Elizabeth, Shyna K; Muhammed, Rubeena; Baskar, Vijay; Lau, Susanna K P; Kinne, Joerg; Wernery, Ulrich; Woo, Patrick C Y

    2016-08-18

    We report the complete genome sequence of influenza virus H9N2 associated with a fatal outbreak among chickens in Dubai. All segments are clustered with avian H9N2 viruses circulating in the Middle East but distinct from those in southeast Asia. It is not a reassortant virus or transmitted from other regions.

  18. Genetic evolution of H5 highly pathogenic avian influenza virus in domestic poultry in Vietnam between 2011 and 2013.

    PubMed

    Lee, Eun-Kyoung; Kang, Hyun-Mi; Kim, Kwang-Il; Choi, Jun-Gu; To, Thanh Long; Nguyen, Tho Dang; Song, Byung-Min; Jeong, Jipseol; Choi, Kang-Seuk; Kim, Ji-Ye; Lee, Hee-Soo; Lee, Youn-Jeong; Kim, Jae-Hong

    2015-04-01

    In spite of highly pathogenic avian influenza H5N1 vaccination campaigns for domestic poultry, H5N1 viruses continue to circulate in Vietnam. To estimate the prevalence of avian influenza virus in Vietnam, surveillance was conducted between November 2011 and February 2013. Genetic analysis of 312 highly pathogenic avian influenza H5 viruses isolated from poultry in Vietnam was conducted and possible genetic relationships with strains from neighboring countries were investigated. As previously reported, phylogenetic analysis of the avian influenza virus revealed two H5N1 HPAI clades that were circulating in Vietnam. Clade 1.1, related to Cambodian strains, was predominant in the southern provinces, while clade 2.3.2.1 viruses were predominant in the northern and central provinces. Sequence analysis revealed evidence of active genetic evolution. In the gene constellation of clade 2.3.2.1, genotypes A, B, and B(II) existed during the 2011/2012 winter season. In June 2012, new genotype C emerged by reassortment between genotype A and genotype B(II), and this genotype was predominant in 2013 in the northern and central provinces. Interestingly, enzootic Vietnamese clade 2.3.2.1C H5 virus subsequently reassorted with N2, which originated from wild birds, to generate H5N2 highly pathogenic avian influenza, which was isolated from duck in the northeast region. This investigation indicated that H5N1 outbreaks persist in Vietnam and cause genetic reassortment with circulating viruses. It is necessary to strengthen active influenza surveillance to eradicate highly pathogenic avian influenza viruses and sever the link between highly pathogenic avian influenza and other circulating influenza viruses.

  19. Preferential recognition of avian-like receptors in human influenza A H7N9 viruses.

    PubMed

    Xu, Rui; de Vries, Robert P; Zhu, Xueyong; Nycholat, Corwin M; McBride, Ryan; Yu, Wenli; Paulson, James C; Wilson, Ian A

    2013-12-06

    The 2013 outbreak of avian-origin H7N9 influenza in eastern China has raised concerns about its ability to transmit in the human population. The hemagglutinin glycoprotein of most human H7N9 viruses carries Leu(226), a residue linked to adaptation of H2N2 and H3N2 pandemic viruses to human receptors. However, glycan array analysis of the H7 hemagglutinin reveals negligible binding to humanlike α2-6-linked receptors and strong preference for a subset of avian-like α2-3-linked glycans recognized by all avian H7 viruses. Crystal structures of H7N9 hemagglutinin and six hemagglutinin-glycan complexes have elucidated the structural basis for preferential recognition of avian-like receptors. These findings suggest that the current human H7N9 viruses are poorly adapted for efficient human-to-human transmission.

  20. Reassortant Avian Influenza A(H5N1) Viruses with H9N2-PB1 Gene in Poultry, Bangladesh

    PubMed Central

    Yamage, Mat; Dauphin, Gwenaëlle; Claes, Filip; Ahmed, Garba; Giasuddin, Mohammed; Salviato, Annalisa; Ormelli, Silvia; Bonfante, Francesco; Schivo, Alessia; Cattoli, Giovanni

    2013-01-01

    Bangladesh has reported a high number of outbreaks of highly pathogenic avian influenza (HPAI) (H5N1) in poultry. We identified a natural reassortant HPAI (H5N1) virus containing a H9N2-PB1 gene in poultry in Bangladesh. Our findings highlight the risks for prolonged co-circulation of avian influenza viruses and the need to monitor their evolution. PMID:24047513

  1. Age is not a determinant factor in susceptibility of broilers to H5N2 clade 2.3.4.4 high pathogenicity avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    In 2014–2015, the US experienced an unprecedented outbreak of H5 clade 2.3.4.4 highly pathogenic avian influenza (HPAI) virus. The H5N2 HPAI virus outbreak in the Midwest in 2015 affected commercial turkey and layer farms, but not broiler farms. To assess any potential genetic resistance of broilers...

  2. Avian Influenza in Wild Birds, Central Coast of Peru

    PubMed Central

    Blazes, David L.; Icochea, Eliana; Gonzalez, Rosa I.; Kochel, Tadeusz; Tinoco, Yeny; Sovero, Merly M.; Lindstrom, Stephen; Shu, Bo; Klimov, Alexander; Gonzalez, Armando E.; Montgomery, Joel M.

    2009-01-01

    To determine genotypes of avian influenza virus circulating among wild birds in South America, we collected and tested environmental fecal samples from birds along the coast of Peru, June 2006–December 2007. The 9 isolates recovered represented 4 low-pathogenicity avian influenza strains: subtypes H3N8, H4N5, H10N9, and H13N2. PMID:19523296

  3. Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections.

    PubMed

    Zou, Zhen; Yan, Yiwu; Shu, Yuelong; Gao, Rongbao; Sun, Yang; Li, Xiao; Ju, Xiangwu; Liang, Zhu; Liu, Qiang; Zhao, Yan; Guo, Feng; Bai, Tian; Han, Zongsheng; Zhu, Jindong; Zhou, Huandi; Huang, Fengming; Li, Chang; Lu, Huijun; Li, Ning; Li, Dangsheng; Jin, Ningyi; Penninger, Josef M; Jiang, Chengyu

    2014-05-06

    The potential for avian influenza H5N1 outbreaks has increased in recent years. Thus, it is paramount to develop novel strategies to alleviate death rates. Here we show that avian influenza A H5N1-infected patients exhibit markedly increased serum levels of angiotensin II. High serum levels of angiotensin II appear to be linked to the severity and lethality of infection, at least in some patients. In experimental mouse models, infection with highly pathogenic avian influenza A H5N1 virus results in downregulation of angiotensin-converting enzyme 2 (ACE2) expression in the lung and increased serum angiotensin II levels. Genetic inactivation of ACE2 causes severe lung injury in H5N1-challenged mice, confirming a role of ACE2 in H5N1-induced lung pathologies. Administration of recombinant human ACE2 ameliorates avian influenza H5N1 virus-induced lung injury in mice. Our data link H5N1 virus-induced acute lung failure to ACE2 and provide a potential treatment strategy to address future flu pandemics.

  4. Competition between low and high pathogenicity avian influenza in a two-patch system.

    PubMed

    Saucedo, Omar; Martcheva, M

    2017-06-01

    Over the last decade, the epidemiology of avian influenza has undergone a significant transformation. Not only have we seen an increase in the number of outbreaks of the deadly strain known as highly pathogenic avian influenza (HPAI), but the number of birds infected, and the cost of control has risen drastically. Live poultry markets play a huge role in the bird to bird transmission of avian influenza. We develop a two patch model to determine the competition between low pathogenic avian influenza (LPAI) and HPAI strains when migration is present. We define the two patches as live poultry markets in which the patches are connected through migration. We use a system of differential equations to analyze the existence-stability of the LPAI and HPAI equilibria and established results for the critical threshold R0. We observed that in general migration in both directions increases the abundance of poultry infected with the HPAI strain. Migration promotes the coexistence in Patch 2 while in Patch 1 the region of coexistence fluctuates when migration is active between both patches. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Avian Influenza Risk Surveillance in North America with Online Media.

    PubMed

    Robertson, Colin; Yee, Lauren

    2016-01-01

    The use of Internet-based sources of information for health surveillance applications has increased in recent years, as a greater share of social and media activity happens through online channels. The potential surveillance value in online sources of information about emergent health events include early warning, situational awareness, risk perception and evaluation of health messaging among others. The challenge in harnessing these sources of data is the vast number of potential sources to monitor and developing the tools to translate dynamic unstructured content into actionable information. In this paper we investigated the use of one social media outlet, Twitter, for surveillance of avian influenza risk in North America. We collected AI-related messages over a five-month period and compared these to official surveillance records of AI outbreaks. A fully automated data extraction and analysis pipeline was developed to acquire, structure, and analyze social media messages in an online context. Two methods of outbreak detection; a static threshold and a cumulative-sum dynamic threshold; based on a time series model of normal activity were evaluated for their ability to discern important time periods of AI-related messaging and media activity. Our findings show that peaks in activity were related to real-world events, with outbreaks in Nigeria, France and the USA receiving the most attention while those in China were less evident in the social media data. Topic models found themes related to specific AI events for the dynamic threshold method, while many for the static method were ambiguous. Further analyses of these data might focus on quantifying the bias in coverage and relation between outbreak characteristics and detectability in social media data. Finally, while the analyses here focused on broad themes and trends, there is likely additional value in developing methods for identifying low-frequency messages, operationalizing this methodology into a

  6. Avian Influenza spread and transmission dynamics

    USGS Publications Warehouse

    Bourouiba, Lydia; Gourley, Stephen A.; Liu, Rongsong; Takekawa, John Y.; Wu, Jianhong; Chen, Dongmei; Moulin, Bernard; Wu, Jianhong

    2015-01-01

    The spread of highly pathogenic avian influenza (HPAI) viruses of type A of subtype H5N1 has been a serious threat to global public health. Understanding the roles of various (migratory, wild, poultry) bird species in the transmission of these viruses is critical for designing and implementing effective control and intervention measures. Developing appropriate models and mathematical techniques to understand these roles and to evaluate the effectiveness of mitigation strategies have been a challenge. Recent development of the global health surveillance (especially satellite tracking and GIS techniques) and the mathematical theory of dynamical systems combined have gradually shown the promise of some cutting-edge methodologies and techniques in mathematical biology to meet this challenge.

  7. Global alert to avian influenza virus infection: From H5N1 to H7N9

    PubMed Central

    Poovorawan, Yong; Pyungporn, Sunchai; Prachayangprecha, Slinporn; Makkoch, Jarika

    2013-01-01

    Outbreak of a novel influenza virus is usually triggered by mutational change due to the process known as ‘antigenic shift’ or re-assortment process that allows animal-to-human or avian-to-human transmission. Birds are a natural reservoir for the influenza virus, and subtypes H5, H7, and H9 have all caused outbreaks of avian influenza in human populations. An especially notorious strain is the HPAI influenza virus H5N1, which has a mortality rate of approximately 60% and which has resulted in numerous hospitalizations, deaths, and significant economic loss. In March 2013, in Eastern China, there was an outbreak of the novel H7N9 influenza virus, which although less pathogenic in avian species, resulted in 131 confirmed cases and 36 deaths in humans over a two-month span. The rapid outbreak of this virus caused global concern but resulted in international cooperation to control the outbreak. Furthermore, cooperation led to valuable research-sharing including genome sequencing of the virus, the development of rapid and specific diagnosis, specimen sharing for future studies, and vaccine development. Although a H7N9 pandemic in the human population is possible due to its rapid transmissibility and extensive surveillance, the closure of the live-bird market will help mitigate the possibility of another H7N9 outbreak. In addition, further research into the source of the outbreak, pathogenicity of the virus, and the development of specific and sensitive detection assays will be essential for controlling and preparing for future H7N9 outbreaks. PMID:23916331

  8. Global alert to avian influenza virus infection: from H5N1 to H7N9.

    PubMed

    Poovorawan, Yong; Pyungporn, Sunchai; Prachayangprecha, Slinporn; Makkoch, Jarika

    2013-07-01

    Outbreak of a novel influenza virus is usually triggered by mutational change due to the process known as 'antigenic shift' or re-assortment process that allows animal-to-human or avian-to-human transmission. Birds are a natural reservoir for the influenza virus, and subtypes H5, H7, and H9 have all caused outbreaks of avian influenza in human populations. An especially notorious strain is the HPAI influenza virus H5N1, which has a mortality rate of approximately 60% and which has resulted in numerous hospitalizations, deaths, and significant economic loss. In March 2013, in Eastern China, there was an outbreak of the novel H7N9 influenza virus, which although less pathogenic in avian species, resulted in 131 confirmed cases and 36 deaths in humans over a two-month span. The rapid outbreak of this virus caused global concern but resulted in international cooperation to control the outbreak. Furthermore, cooperation led to valuable research-sharing including genome sequencing of the virus, the development of rapid and specific diagnosis, specimen sharing for future studies, and vaccine development. Although a H7N9 pandemic in the human population is possible due to its rapid transmissibility and extensive surveillance, the closure of the live-bird market will help mitigate the possibility of another H7N9 outbreak. In addition, further research into the source of the outbreak, pathogenicity of the virus, and the development of specific and sensitive detection assays will be essential for controlling and preparing for future H7N9 outbreaks.

  9. Control strategies for highly pathogenic avian influenza: a global perspective.

    PubMed

    Lubroth, J

    2007-01-01

    Comprehensive programmes for the prevention, detection and control of highly pathogenic avian influenza (HPAI) require a national dimension and relevant national legislation in which veterinary services can conduct surveillance, competent diagnosis and rapid response. Avian influenza was controlled and prevented by vaccination long before the current H5N1 crisis. The use of vaccine cannot be separated from other essential elements of a vaccination campaign, which include education in poultry production practices, such as hygiene, all in-all out production concepts, separation of species, biosecurity (bio-exclusion to keep the disease out and biocontainment to keep the disease from spreading once suspected or detected), competence in giving the vaccine and the role of vaccination teams, post-vaccination monitoring to ensure efficacy and to detect the circulation of wild-type virus, surveillance and buffer zones in outbreak areas, and performance indicators to determine when vaccination can cease. Reporting of disease can be improved through well-structured, adequately financed veterinary services and also by fair compensation for producers who suffer financial loss. A rapid response to suspected cases of HPAI should be ensured in simulation exercises involving various sectors of the food production and marketing chain, policy-makers, official veterinary structures and other government personnel. As for other transboundary animal diseases, national approaches must be part of a regional strategy and regional networks for cooperation and information sharing, which in turn reflect global policies and international standards, such as the quality of vaccines, reporting obligations, humane interventions, cleaning and disinfection methods, restocking times, monitoring and safe trade.

  10. Application of Species Distribution Modeling for Avian Influenza surveillance in the United States considering the North America Migratory Flyways

    PubMed Central

    Belkhiria, Jaber; Alkhamis, Moh A.; Martínez-López, Beatriz

    2016-01-01

    Highly Pathogenic Avian Influenza (HPAI) has recently (2014–2015) re-emerged in the United States (US) causing the largest outbreak in US history with 232 outbreaks and an estimated economic impact of $950 million. This study proposes to use suitability maps for Low Pathogenic Avian Influenza (LPAI) to identify areas at high risk for HPAI outbreaks. LPAI suitability maps were based on wild bird demographics, LPAI surveillance, and poultry density in combination with environmental, climatic, and socio-economic risk factors. Species distribution modeling was used to produce high-resolution (cell size: 500m x 500m) maps for Avian Influenza (AI) suitability in each of the four North American migratory flyways (NAMF). Results reveal that AI suitability is heterogeneously distributed throughout the US with higher suitability in specific zones of the Midwest and coastal areas. The resultant suitability maps adequately predicted most of the HPAI outbreak areas during the 2014–2015 epidemic in the US (i.e. 89% of HPAI outbreaks were located in areas identified as highly suitable for LPAI). Results are potentially useful for poultry producers and stakeholders in designing risk-based surveillance, outreach and intervention strategies to better prevent and control future HPAI outbreaks in the US. PMID:27624404

  11. Application of Species Distribution Modeling for Avian Influenza surveillance in the United States considering the North America Migratory Flyways

    NASA Astrophysics Data System (ADS)

    Belkhiria, Jaber; Alkhamis, Moh A.; Martínez-López, Beatriz

    2016-09-01

    Highly Pathogenic Avian Influenza (HPAI) has recently (2014-2015) re-emerged in the United States (US) causing the largest outbreak in US history with 232 outbreaks and an estimated economic impact of $950 million. This study proposes to use suitability maps for Low Pathogenic Avian Influenza (LPAI) to identify areas at high risk for HPAI outbreaks. LPAI suitability maps were based on wild bird demographics, LPAI surveillance, and poultry density in combination with environmental, climatic, and socio-economic risk factors. Species distribution modeling was used to produce high-resolution (cell size: 500m x 500m) maps for Avian Influenza (AI) suitability in each of the four North American migratory flyways (NAMF). Results reveal that AI suitability is heterogeneously distributed throughout the US with higher suitability in specific zones of the Midwest and coastal areas. The resultant suitability maps adequately predicted most of the HPAI outbreak areas during the 2014-2015 epidemic in the US (i.e. 89% of HPAI outbreaks were located in areas identified as highly suitable for LPAI). Results are potentially useful for poultry producers and stakeholders in designing risk-based surveillance, outreach and intervention strategies to better prevent and control future HPAI outbreaks in the US.

  12. Avian influenza virus risk assessment in falconry

    PubMed Central

    2011-01-01

    Background There is a continuing threat of human infections with avian influenza viruses (AIV). In this regard falconers might be a potential risk group because they have close contact to their hunting birds (raptors such as falcons and hawks) as well as their avian prey such as gulls and ducks. Both (hunting birds and prey birds) seem to be highly susceptible to some AIV strains, especially H5N1. We therefore conducted a field study to investigate AIV infections in falconers, their falconry birds as well as prey birds. Findings During 2 hunting seasons (2006/2007 and 2007/2008) falconers took tracheal and cloacal swabs from 1080 prey birds that were captured by their falconry birds (n = 54) in Germany. AIV-RNA of subtypes H6, H9, or H13 was detected in swabs of 4.1% of gulls (n = 74) and 3.8% of ducks (n = 53) using RT-PCR. The remaining 953 sampled prey birds and all falconry birds were negative. Blood samples of the falconry birds tested negative for AIV specific antibodies. Serum samples from all 43 falconers reacted positive in influenza A virus-specific ELISA, but remained negative using microneutralisation test against subtypes H5 and H7 and haemagglutination inhibition test against subtypes H6, H9 and H13. Conclusion Although we were able to detect AIV-RNA in samples from prey birds, the corresponding falconry birds and falconers did not become infected. Currently falconers do not seem to carry a high risk for getting infected with AIV through handling their falconry birds and their prey. PMID:21513552

  13. Prevalence of avian influenza and host ecology.

    PubMed

    Garamszegi, László Zsolt; Møller, Anders Pape

    2007-08-22

    Waterfowl and shorebirds are common reservoirs of the low pathogenic subtypes of avian influenza (LPAI), which are easily transmitted to poultry and become highly pathogenic. As the risk of virus transmission depends on the prevalence of LPAI in host-reservoir systems, there is an urgent need for understanding how host ecology, life history and behaviour can affect virus prevalence in the wild. To test for the most important ecological correlates of LPAI virus prevalence at the interspecific level, we applied a comparative analysis by using quantitative data on 30 bird species. We controlled for similarity among species due to common descent, differences in study effort and for covariance among ecological variables. We found that LPAI prevalence is a species-specific attribute and is a consequence of virus susceptibility, as it was negatively associated with the relative size of the bursa of Fabricius, an estimate of juvenile immune function. Species that migrate long distances have elevated prevalence of LPAI independent of phylogeny and other confounding factors. There was also a positive interspecific relationship between the frequency of surface feeding and virus prevalence, but this was sensitive to phylogenetic relatedness of species. Feeding in marine habitats is apparently associated with lower virus prevalence, but the effect of water salinity is likely to be indirect and affected by phylogeny. Our results imply that virus transmission via surface waters and frequent intra- and interspecific contacts during long migration are the major risk factors of avian influenza in the wild. However, the link between exploitation of surface waters and LPAI prevalence appears to be weaker than previously thought. This is the first interspecific study that provides statistical evidence that host ecology, immunity and phylogeny have important consequence for virus prevalence.

  14. An avian-only Filippov model incorporating culling of both susceptible and infected birds in combating avian influenza.

    PubMed

    Chong, Nyuk Sian; Dionne, Benoit; Smith, Robert

    2016-09-01

    Depopulation of birds has always been an effective method not only to control the transmission of avian influenza in bird populations but also to eliminate influenza viruses. We introduce a Filippov avian-only model with culling of susceptible and/or infected birds. For each susceptible threshold level [Formula: see text], we derive the phase portrait for the dynamical system as we vary the infected threshold level [Formula: see text], focusing on the existence of endemic states; the endemic states are represented by real equilibria, pseudoequilibria and pseudo-attractors. We show generically that all solutions of this model will approach one of the endemic states. Our results suggest that the spread of avian influenza in bird populations is tolerable if the trajectories converge to the equilibrium point that lies in the region below the threshold level [Formula: see text] or if they converge to one of the pseudoequilibria or a pseudo-attractor on the surface of discontinuity. However, we have to cull birds whenever the solution of this model converges to an equilibrium point that lies in the region above the threshold level [Formula: see text] in order to control the outbreak. Hence a good threshold policy is required to combat bird flu successfully and to prevent overkilling birds.

  15. [Highly pathogenic avian influenza and wild birds].

    PubMed

    Ito, Toshihiro

    2009-06-01

    Highly pathogenic avian influenza virus (HPAIV) subtype H5N1 prevails worldwide and causes serious problems in poultry industry. The virus is also known as one of the most important zoonotic agents derived from avian species. Because many bird species other than poultry such as chicken and duck are susceptible for HPAIV infection, wild birds are thought to play an important role in distribution and transmission of the virus. However, the ecological role of wild birds as a reservoir of HPAIV in nature has not been completely understood. To define the ecological role of wild birds in distribution of HPAIV, extensive surveillance in wild birds including migratory and resident birds in Japan was conducted. Until now, 3 strains of H5N1 subtype have been isolated. One was isolated from mountain hawk-eagle (Spizaetus nipalensis) which was found sick at Sagara village, Kumamoto prefecture, Japan on January 2007 and ultimately died after a short while. The other two strains were isolated from whooper swans (Cygnus cygnus) which were found at Lake Towada in Aomori prefecture in April and May 2008, respectively. Because the wild birds migrate on a global scale, similar problems could be always happened in any other countries. Consequently, comprehensive surveillance in wild birds with international cooperation is required for efficient global control of HPAI.

  16. Distribution and dynamics of risk factors associated with highly pathogenic avian influenza H5N1

    PubMed Central

    Zhang, L.; Guo, Z. W.; Bridge, E. S.; Li, Y. M.; Xiao, X. M.

    2016-01-01

    SUMMARY Within China’s Poyang Lake region, close interactions between wild migratory birds and domestic poultry are common and provide an opportunity for the transmission and subsequent outbreaks of highly pathogenic avian influenza (HPAI) virus. We overlaid a series of ecological factors associated with HPAI to map the risk of HPAI in relation to natural and anthropogenic variables, and we identified two hotspots for potential HPAI outbreaks in the Poyang Lake region as well as three corridors connecting the two hotspot areas. In hotspot I, there is potential for migratory birds to bring new avian influenza (AI) strains that can reassort with existing strains to form new AI viruses. Hotspot II features high-density poultry production where outbreaks of endemic AI viruses are likely. The three communication corridors that link the two hotspots further promote HPAI H5N1 transmission and outbreaks and lead to the persistence of AI viruses in the Poyang Lake region. We speculate that the region’s unevenly distributed poultry supply-and-demand system might be a key factor inducing HPAI H5N1 transmission and outbreaks in the Poyang Lake region. PMID:23398949

  17. Distribution and dynamics of risk factors associated with highly pathogenic avian influenza H5N1.

    PubMed

    Zhang, L; Guo, Z W; Bridge, E S; Li, Y M; Xiao, X M

    2013-11-01

    Within China's Poyang Lake region, close interactions between wild migratory birds and domestic poultry are common and provide an opportunity for the transmission and subsequent outbreaks of highly pathogenic avian influenza (HPAI) virus. We overlaid a series of ecological factors associated with HPAI to map the risk of HPAI in relation to natural and anthropogenic variables, and we identified two hotspots for potential HPAI outbreaks in the Poyang Lake region as well as three corridors connecting the two hotspot areas. In hotspot I, there is potential for migratory birds to bring new avian influenza (AI) strains that can reassort with existing strains to form new AI viruses. Hotspot II features high-density poultry production where outbreaks of endemic AI viruses are likely. The three communication corridors that link the two hotspots further promote HPAI H5N1 transmission and outbreaks and lead to the persistence of AI viruses in the Poyang Lake region. We speculate that the region's unevenly distributed poultry supply-and-demand system might be a key factor inducing HPAI H5N1 transmission and outbreaks in the Poyang Lake region.

  18. Avian influenza: Public health and food safety concerns

    USDA-ARS?s Scientific Manuscript database

    Avian Influenza (AI) is an asymptomatic infection or disease caused by Influenza virus A. AI viruses are species specific and rarely crosses the species barrier. However subtypes H5, H7 and H9 have caused sporadic infections in humans mostly as a result of direct contact with infected birds. H5N1 hi...

  19. Highly Pathogenic Avian Influenza Virus Infection in Feral Raccoons, Japan

    PubMed Central

    Maeda, Ken; Murakami, Shin; Kiso, Maki; Iwatsuki-Horimoto, Kiyoko; Sashika, Mariko; Ito, Toshihiro; Suzuki, Kazuo; Yokoyama, Mayumi; Kawaoka, Yoshihiro

    2011-01-01

    Although raccoons (Procyon lotor) are susceptible to influenza viruses, highly pathogenic avian influenza virus (H5N1) infection in these animals has not been reported. We performed a serosurvey of apparently healthy feral raccoons in Japan and found specific antibodies to subtype H5N1 viruses. Feral raccoons may pose a risk to farms and public health. PMID:21470469

  20. Highly pathogenic avian influenza virus infection in feral raccoons, Japan.

    PubMed

    Horimoto, Taisuke; Maeda, Ken; Murakami, Shin; Kiso, Maki; Iwatsuki-Horimoto, Kiyoko; Sashika, Mariko; Ito, Toshihiro; Suzuki, Kazuo; Yokoyama, Mayumi; Kawaoka, Yoshihiro

    2011-04-01

    Although raccoons (Procyon lotor) are susceptible to influenza viruses, highly pathogenic avian influenza virus (H5N1) infection in these animals has not been reported. We performed a serosurvey of apparently healthy feral raccoons in Japan and found specific antibodies to subtype H5N1 viruses. Feral raccoons may pose a risk to farms and public health.

  1. Universal influenza vaccine: the holy grail?

    PubMed

    Shaw, Alan R

    2012-08-01

    Influenza vaccines have been available since the 1950s and have seen increasingly wide use as public health authorities expanded recommendations. Recent events including shortages and avian influenza outbreaks have renewed interest in influenza vaccines, particularly improved vaccines.

  2. Isolation and characterization of a novel H10N2 avian influenza virus from a domestic duck in Eastern China.

    PubMed

    Wu, Haibo; Lu, Rufeng; Wu, Xiaoxin; Peng, Xiaorong; Xu, Lihua; Cheng, Linfang; Lu, Xiangyun; Jin, Changzhong; Xie, Tiansheng; Yao, Hangping; Wu, Nanping

    2015-01-01

    During the surveillance for avian influenza viruses (AIVs) in live poultry markets (LPMs) in Eastern China, in 2013, an H10N2 AIV was isolated from a domestic duck. Phylogenetic analysis showed that this strain received its genes from H10, H1 and H7 AIVs of wild birds in China. The virulence of this strain was examined in chickens and mice, and was found to be low pathogenic in chickens but demonstrated moderate pathogenicity in mice. These results suggest that active surveillance of AIVs in LPMs should be used in an early warning system for avian influenza outbreaks. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Homo- and Heterosubtypic Low Pathogenic Avian Influenza Exposure on H5N1 Highly Pathogenic Avian Influenza Virus Infection in Wood Ducks (Aix sponsa)

    PubMed Central

    Costa, Taiana P.; Brown, Justin D.; Howerth, Elizabeth W.; Stallknecht, David E.; Swayne, David E.

    2011-01-01

    Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI) viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus has been shown to modulate the outcome of a highly pathogenic avian influenza (HPAI) virus infection in multiple domestic avian species, but few studies have addressed this effect in wild birds. In this study, the effect of pre-exposure to homosubtypic (homologous hemagglutinin) and heterosubtypic (heterologous hemagglutinin) low pathogenic avian influenza (LPAI) viruses on the outcome of a H5N1 HPAI virus infection in wood ducks (Aix sponsa) was evaluated. Pre-exposure of wood ducks to different LPAI viruses did not prevent infection with H5N1 HPAI virus, but did increase survival associated with H5N1 HPAI virus infection. The magnitude of this effect on the outcome of the H5N1 HPAI virus infection varied between different LPAI viruses, and was associated both with efficiency of LPAI viral replication in wood ducks and the development of a detectable humoral immune response. These observations suggest that in naturally occurring outbreaks of H5N1 HPAI, birds with pre-existing immunity to homologous hemagglutinin or neuraminidase subtypes of AI virus may either survive H5N1 HPAI virus infection or live longer than naïve birds and, consequently, could pose a greater risk for contributing to viral transmission and dissemination. The mechanisms responsible for this protection and/or the duration of this immunity remain unknown. The results of this study are important for surveillance efforts and help clarify epidemiological data from outbreaks of H5N1 HPAI virus in wild bird populations. PMID:21253608

  4. Homo- and heterosubtypic low pathogenic avian influenza exposure on H5N1 highly pathogenic avian influenza virus infection in wood ducks (Aix sponsa).

    PubMed

    Costa, Taiana P; Brown, Justin D; Howerth, Elizabeth W; Stallknecht, David E; Swayne, David E

    2011-01-06

    Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI) viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus has been shown to modulate the outcome of a highly pathogenic avian influenza (HPAI) virus infection in multiple domestic avian species, but few studies have addressed this effect in wild birds. In this study, the effect of pre-exposure to homosubtypic (homologous hemagglutinin) and heterosubtypic (heterologous hemagglutinin) low pathogenic avian influenza (LPAI) viruses on the outcome of a H5N1 HPAI virus infection in wood ducks (Aix sponsa) was evaluated. Pre-exposure of wood ducks to different LPAI viruses did not prevent infection with H5N1 HPAI virus, but did increase survival associated with H5N1 HPAI virus infection. The magnitude of this effect on the outcome of the H5N1 HPAI virus infection varied between different LPAI viruses, and was associated both with efficiency of LPAI viral replication in wood ducks and the development of a detectable humoral immune response. These observations suggest that in naturally occurring outbreaks of H5N1 HPAI, birds with pre-existing immunity to homologous hemagglutinin or neuraminidase subtypes of AI virus may either survive H5N1 HPAI virus infection or live longer than naïve birds and, consequently, could pose a greater risk for contributing to viral transmission and dissemination. The mechanisms responsible for this protection and/or the duration of this immunity remain unknown. The results of this study are important for surveillance efforts and help clarify epidemiological data from outbreaks of H5N1 HPAI virus in wild bird populations.

  5. Aerosolized avian influenza virus by laboratory manipulations.

    PubMed

    Li, Zhiping; Li, Jinsong; Zhang, Yandong; Li, Lin; Ma, Limin; Li, Dan; Gao, Feng; Xia, Zhiping

    2012-08-06

    Avian H5N1 influenza viruses present a challenge in the laboratory environment, as they are difficult to collect from the air due to their small size and relatively low concentration. In an effort to generate effective methods of H5N1 air removal and ensure the safety of laboratory personnel, this study was designed to investigate the characteristics of aerosolized H5N1 produced by laboratory manipulations during research studies. Normal laboratory procedures used to process the influenza virus were carried out independently and the amount of virus polluting the on-site atmosphere was measured. In particular, zootomy, grinding, centrifugation, pipetting, magnetic stirring, egg inoculation, and experimental zoogenetic infection were performed. In addition, common accidents associated with each process were simulated, including breaking glass containers, syringe injection of influenza virus solution, and rupturing of centrifuge tubes. A micro-cluster sampling ambient air pollution collection device was used to collect air samples. The collected viruses were tested for activity by measuring their ability to induce hemagglutination with chicken red blood cells and to propagate in chicken embryos after direct inoculation, the latter being detected by reverse-transcription PCR and HA test. The results showed that the air samples from the normal centrifugal group and the negative-control group were negative, while all other groups were positive for H5N1. Our findings suggest that there are numerous sources of aerosols in laboratory operations involving H5N1. Thus, laboratory personnel should be aware of the exposure risk that accompanies routine procedures involved in H5N1 processing and take proactive measures to prevent accidental infection and decrease the risk of virus aerosol leakage beyond the laboratory.

  6. Avian influenza: Myth or mass murder?

    PubMed Central

    Louie, Carol

    2005-01-01

    The purpose of the present article was to determine whether avian influenza (AI) is capable of causing a pandemic. Using research from a variety of medical journals, books and texts, the present paper evaluates the probability of the AI virus becoming sufficiently virulent to pose a global threat. Previous influenza A pandemics from the past century are reviewed, focusing on the mortality rate and the qualities of the virus that distinguish it from other viruses. Each of the influenza A viruses reviewed were classified as pandemic because they met three key criteria: first, the viruses were highly pathogenic within the human population; second, the viruses were easily transmissible from person to person; and finally, the viruses were novel, such that a large proportion of the population was susceptible to infection. Information about the H5N1 subtype of AI has also been critically assessed. Evidence suggests that this AI subtype is both novel and highly pathogenic. The mortality rate from epidemics in Thailand in 2004 was as high as 66%. Clearly, this virus is aggressive. It causes a high death rate, proving that humans have a low immunity to the disease. To date, there has been little evidence to suggest that AI can spread among humans. There have been cases where the virus has transferred from birds to humans, in settings such as farms or open markets with live animal vending. If AI were to undergo a genetic reassortment that allowed itself to transmit easily from person to person, then a serious pandemic could ensue, resulting in high morbidity and mortality. Experts at the World Health Organization and the United States Centers for Disease Control and Prevention agree that AI has the potential to undergo an antigenic shift, thus triggering the next pandemic. PMID:18159544

  7. Avian influenza: Myth or mass murder?

    PubMed

    Louie, Carol

    2005-05-01

    The purpose of the present article was to determine whether avian influenza (AI) is capable of causing a pandemic. Using research from a variety of medical journals, books and texts, the present paper evaluates the probability of the AI virus becoming sufficiently virulent to pose a global threat.Previous influenza A pandemics from the past century are reviewed, focusing on the mortality rate and the qualities of the virus that distinguish it from other viruses. Each of the influenza A viruses reviewed were classified as pandemic because they met three key criteria: first, the viruses were highly pathogenic within the human population; second, the viruses were easily transmissible from person to person; and finally, the viruses were novel, such that a large proportion of the population was susceptible to infection. Information about the H5N1 subtype of AI has also been critically assessed. Evidence suggests that this AI subtype is both novel and highly pathogenic. The mortality rate from epidemics in Thailand in 2004 was as high as 66%. Clearly, this virus is aggressive. It causes a high death rate, proving that humans have a low immunity to the disease.To date, there has been little evidence to suggest that AI can spread among humans. There have been cases where the virus has transferred from birds to humans, in settings such as farms or open markets with live animal vending. If AI were to undergo a genetic reassortment that allowed itself to transmit easily from person to person, then a serious pandemic could ensue, resulting in high morbidity and mortality. Experts at the World Health Organization and the United States Centers for Disease Control and Prevention agree that AI has the potential to undergo an antigenic shift, thus triggering the next pandemic.

  8. Antimicrobial Products Registered for Disinfection Use against Avian Influenza on Poultry Farms and Other Facilities

    EPA Pesticide Factsheets

    EPA registers disinfectants against Avian Influenza A. Although there are no antimicrobial products registered for the H5N2 subtype of Avian Influenza A virus, based on available scientific information these products will work against other HPAI strains.

  9. Avian influenza survey in migrating waterfowl in Sonora, Mexico.

    PubMed

    Montalvo-Corral, M; López-Robles, G; Hernández, J

    2011-02-01

    A two-year survey was carried out on the occurrence of avian influenza in migrating birds in two estuaries of the Mexican state of Sonora, which is located within the Pacific flyway. Cloacal and oropharyngeal swabs were collected from 1262 birds, including 20 aquatic bird species from the Moroncarit and Tobari estuaries in Sonora, Mexico. Samples were tested for type A influenza (M), H5 Eurasian and North American subtypes (H5EA and H5NA respectively) and the H7 North American subtype (H7NA). Gene detection was determined by one-step real-time reverse transcription polymerase chain reaction (RRT-PCR). The results revealed that neither the highly pathogenic avian influenza virus H5 of Eurasian lineage nor H7NA were detected. The overall prevalence of avian influenza type A (M-positive) in the sampled birds was 3.6% with the vast majority in dabbling ducks (Anas species). Samples from two birds, one from a Redhead (Aythya americana) and another from a Northern Shoveler (Anas clypeata), were positive for the low-pathogenic H5 avian influenza virus of North American lineage. These findings represented documented evidence of the occurrence of avian influenza in wintering birds in the Mexican wetlands. This type of study contributes to the understanding of how viruses spread to new regions of North America and highlights the importance of surveillance for the early detection and control of potentially pathogenic strains, which could affect animal and human health.

  10. Detection of avian influenza virus from fecal samples of poultry birds in Lagos State.

    PubMed

    Joseph, O O; Omilabu, S A; Orelolu, R M

    2014-12-01

    Although there have been a lot of research done on Avian Influenza in the world, there are still visible indications in the Nigerian poultry farming system that the bio-security measures are not adhered to strictly. Hence, it is of great importance to identify the circulating strains of Avian Influenza virus in Nigeria, so as to prevent and control another outbreak of the disease. Between May and June 2011, 184 stool samples were collected from seemingly healthy poultry birds in Ikorodu and Ejigbo, within Lagos state. RNA extraction using diatomaceous sand method and Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) was carried out on all samples. Influenza virus type A 25(13.6%) was detected from poultry B (Ejigbo poultry), while there was no positive sample from poultry A (Ikorodu Poultry), the positive samples were further sub-typed, and H1 [1(4%)] was detected. Altogether, 159 (86%) of the fecal samples collected gave a. negative result for Influenza A, and also, 24(96%) out the 25 samples positive for Influenza A gave tested negative when subtyped with H1 and H3. Results of the samples gotten from both poultries corroboratethe effect of poor bio-security practicesin the spread of Influenza A viruses and that some poultries in Nigeria are not adhering to proper farm bio-security practices. Also the identification of H1 subtype which is human adapted is indicative of a re- emerging potential threat to public health.

  11. Protecting poultry workers from exposure to avian influenza viruses.

    PubMed

    MacMahon, Kathleen L; Delaney, Lisa J; Kullman, Greg; Gibbins, John D; Decker, John; Kiefer, Max J

    2008-01-01

    Emerging zoonotic diseases are of increasing regional and global importance. Preventing occupational exposure to zoonotic diseases protects workers as well as their families, communities, and the public health. Workers can be protected from zoonotic diseases most effectively by preventing and controlling diseases in animals, reducing workplace exposures, and educating workers. Certain avian influenza viruses are potential zoonotic disease agents that may be transmitted from infected birds to humans. Poultry workers are at risk of becoming infected with these viruses if they are exposed to infected birds or virus-contaminated materials or environments. Critical components of worker protection include educating employers and training poultry workers about occupational exposure to avian influenza viruses. Other recommendations for protecting poultry workers include the use of good hygiene and work practices, personal protective clothing and equipment, vaccination for seasonal influenza viruses, antiviral medication, and medical surveillance. Current recommendations for protecting poultry workers from exposure to avian influenza viruses are summarized in this article.

  12. Efficacy of zanamivir for chemoprophylaxis of nursing home influenza outbreaks.

    PubMed

    Schilling, M; Povinelli, L; Krause, P; Gravenstein, M; Ambrozaitis, A; Jones, H H; Drinka, P; Shult, P; Powers, D; Gravenstein, S

    1998-11-01

    Despite vaccination, influenza remains a common of morbidity in nursing homes. Chemoprophylaxis of residents with currently available antivirals is not always effective and new agents effective against both influenza A and B are needed. In a randomized, unblinded pilot study, we compared 14 day chemoprophylaxis with zanamivir, an antiviral which inhibits influenza neuraminidase, to standard of care during sequential influenza A and influenza B outbreaks in a 735 bed nursing home. Influenza A outbreaks were declared on 6/14 epidemic units. Sixty-five volunteers on four epidemic units were randomized to zanamivir and on two epidemic units, 23 volunteers were randomized to rimantadine. During the 14 days of prophylaxis, only four new febrile respiratory illnesses were detected. One volunteer receiving rimantadine prophylaxis developed laboratory-confirmed influenza. Influenza B outbreaks were declared on 3/14 epidemic units. Thirty-five volunteers on two epidemic units were randomized to zanamivir and 18 volunteers on one epidemic unit were randomized to no drug. During the 14 days of prophylaxis, only one new febrile respiratory illness was detected. One volunteer randomized to receive no drug developed laboratory-confirmed influenza. Zanamivir appears comparably effective to standard of care in preventing influenza-like illness and laboratory-confirmed influenza in nursing homes, but requires further testing.

  13. Current situation of H9N2 subtype avian influenza in China.

    PubMed

    Gu, Min; Xu, Lijun; Wang, Xiaoquan; Liu, Xiufan

    2017-09-15

    In China, H9N2 subtype avian influenza outbreak is firstly reported in Guangdong province in 1992. Subsequently, the disease spreads into vast majority regions nationwide and has currently become endemic there. Over vicennial genetic evolution, the viral pathogenicity and transmissibility have showed an increasing trend as year goes by, posing serious threat to poultry industry. In addition, H9N2 has demonstrated significance to public health as it could not only directly infect mankind, but also donate partial or even whole cassette of internal genes to generate novel human-lethal reassortants like H5N1, H7N9, H10N8 and H5N6 viruses. In this review, we mainly focused on the epidemiological dynamics, biological characteristics, molecular phylogeny and vaccine strategy of H9N2 subtype avian influenza virus in China to present an overview of the situation of H9N2 in China.

  14. International standards and guidelines for vaccination of poultry against highly pathogenic avian influenza.

    PubMed

    Bruschke, C; Brückner, G; Vallat, B

    2007-01-01

    The current strain of highly pathogenic avian influenza (HPAI), H5N1, has caused an unprecedented situation, spreading over three continents, with severe economic and social consequences. The strategy of the World Organisation for Animal Health (OIE) focuses on the following key actions: early warning, early detection, rapid confirmation of suspected cases, rapid response and rapid and transparent notification. Vaccination is one means that can be used to control the virus. During the current H5N1 outbreak, the OIE received many requests from member countries for guidance in deciding whether to vaccinate and in the design of vaccination programmes. The OIE has published a general information document on vaccination against avian influenza and a document giving guidelines for decision-making, including a checklist of essentials for establishing a vaccination programme.

  15. Wild bird surveillance for highly pathogenic avian influenza H5 in North America

    USGS Publications Warehouse

    Flint, Paul L.; Pearce, John M.; Franson, J. Christian; Derksen, Dirk V.

    2015-01-01

    It is unknown how the current Asian origin highly pathogenic avian influenza H5 viruses arrived, but these viruses are now poised to become endemic in North America. Wild birds harbor these viruses and have dispersed them at regional scales. What is unclear is how the viruses may be moving from the wild bird reservoir into poultry holdings. Active surveillance of live wild birds is likely the best way to determine the true distribution of these viruses. We also suggest that sampling be focused on regions with the greatest risk for poultry losses and attempt to define the mechanisms of transfer to enhance biosecurity. Responding to the recent outbreaks of highly pathogenic avian influenza in North America requires an efficient plan with clear objectives and potential management outcomes.

  16. Wild bird surveillance for highly pathogenic avian influenza H5 in North America.

    PubMed

    Flint, Paul L; Pearce, John M; Franson, J Christian; Derksen, Dirk V

    2015-09-28

    It is unknown how the current Asian origin highly pathogenic avian influenza H5 viruses arrived, but these viruses are now poised to become endemic in North America. Wild birds harbor these viruses and have dispersed them at regional scales. What is unclear is how the viruses may be moving from the wild bird reservoir into poultry holdings. Active surveillance of live wild birds is likely the best way to determine the true distribution of these viruses. We also suggest that sampling be focused on regions with the greatest risk for poultry losses and attempt to define the mechanisms of transfer to enhance biosecurity. Responding to the recent outbreaks of highly pathogenic avian influenza in North America requires an efficient plan with clear objectives and potential management outcomes.

  17. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  18. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  19. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  20. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  1. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  2. Occurrence and Reassortment of Avian Influenza A (H7N9) Viruses Derived from Coinfected Birds in China

    PubMed Central

    Liu, Wei; Fan, Hang; Raghwani, Jayna; Lam, Tommy Tsan-Yuk; Li, Jing; Pybus, Oliver G.; Yao, Hong-Wu; Wo, Ying; Liu, Kun; An, Xiao-Ping; Pei, Guang-Qian; Li, Hao; Wang, Hong-Yu; Zhao, Jian-Jun; Jiang, Tao; Ma, Mai-Juan; Xia, Xian; Dong, Yan-De; Zhao, Tong-Yan; Jiang, Jia-Fu; Yang, Yin-Hui; Guan, Yi

    2014-01-01

    ABSTRACT Over the course of two waves of infection, H7N9 avian influenza A virus has caused 436 human infections and claimed 170 lives in China as of July 2014. To investigate the prevalence and genetic diversity of H7N9, we surveyed avian influenza viruses in poultry in Jiangsu province within the outbreak epicenter. We found frequent occurrence of H7N9/H9N2 coinfection in chickens. Molecular clock phylogenetic analysis confirms coinfection by H7N9/H9N2 viruses and also reveals that the identity of the H7N9 outbreak lineage is confounded by ongoing reassortment between outbreak viruses and diverse H9N2 viruses in domestic birds. Experimental inoculation of a coinfected sample in cell culture yielded two reassortant H7N9 strains with polymerase segments from the original H9N2 strain. Ongoing reassortment between the H7N9 outbreak lineage and diverse H9N2 viruses may generate new strains with the potential to infect humans, highlighting the need for continued viral surveillance in poultry and humans. IMPORTANCE We found frequent occurrence of H7N9/H9N2 coinfection in chickens. The H7N9 outbreak lineage is confounded by ongoing reassortment between H7N9 and H9N2 viruses. The importance of H9N2 viruses as the source of novel avian influenza virus infections in humans requires continuous attention. PMID:25210174

  3. Comparative susceptibility of avian species to low pathogenic avian influenza viruses of the H13 subtype

    USDA-ARS?s Scientific Manuscript database

    Gulls are widely recognized reservoirs for low pathogenic avian influenza (LPAI) viruses; however, the subtypes maintained in these populations and/or the transmission mechanisms involved are poorly understood. Although, a wide diversity of influenza viruses have been isolated from gulls, two hemag...

  4. Modification of the Hemagglutinin Cleavage Site Allows Indirect Activation of Avian Influenza Virus H9N2 by Bacterial Staphylokinase

    PubMed Central

    Tse, Longping V.; Whittaker, Gary R.

    2015-01-01

    Influenza H9N2 is considered to be a low pathogenicity avian influenza (LPAI) virus that commonly infects avian species and can also infect humans. In 1996, the influenza virus, A/chicken/Korea/MS96-CE6/1996/H9N2 (MS96) was isolated from an outbreak in multiple farms in South Korea that resulted in upwards of 30% mortality in infected chickens, with the virus infecting a number of extrapulmonary tissues, indicating internal spread. However, in experimental infections, complete recovery of specific pathogen free (SPF) chickens occurred. Such a discrepancy indicated an alternative pathway for MS96 virus to gain virulence in farmed chickens. A key determinant of influenza pathogenesis is the susceptibility of the viral hemagglutinin (HA) to proteolytic cleavage/activation. Here, we identified that an amino acid substitution, Ser to Tyr found at the P2 position of the MS96 HA cleavage site optimizes cleavage by the protease plasmin (Pm). Importantly, we identified that certain Staphylococcus sp. are able to cleave and activate MS96 HA by activating plasminogen (Plg) to plasmin by use of a virulence factor, staphylokinase. Overall, these studies provide an in-vitro mechanism for bacterially mediated enhancement of influenza activation, and allow insight into the microbiological mechanisms underlying the avian influenza H9N2 outbreak in Korea in1996. PMID:25841078

  5. Comparative Serological Assays for the Study of H5 and H7 Avian Influenza Viruses

    PubMed Central

    Milani, Adelaide; Terregino, Calogero; Cattoli, Giovanni; Temperton, Nigel J.

    2013-01-01

    The nature of influenza virus to randomly mutate and evolve into new types is an important challenge in the control of influenza infection. It is necessary to monitor virus evolution for a better understanding of the pandemic risk posed by certain variants as evidenced by the highly pathogenic avian influenza (HPAI) viruses. This has been clearly recognized in Egypt following the notification of the first HPAI H5N1 outbreak. The continuous circulation of the virus and the mass vaccination programme undertaken in poultry have resulted in a progressive genetic evolution and a significant antigenic drift near the major antigenic sites. In order to establish if vaccination is sufficient to provide significant intra- and interclade cross-protection, lentiviral pseudotypes derived from H5N1 HPAI viruses (A/Vietnam/1194/04, A/chicken/Egypt-1709-01/2007) and an antigenic drift variant (A/chicken/Egypt-1709-06-2008) were constructed and used in pseudotype-based neutralization assays (pp-NT). pp-NT data obtained was confirmed and correlated with HI and MN assays. A panel of pseudotypes belonging to influenza Groups 1 and 2, with a combination of reporter systems, was also employed for testing avian sera in order to support further application of pp-NT as an alternative valid assay that can improve avian vaccination efficacy testing, vaccine virus selection, and the reliability of reference sera. PMID:24163763

  6. A current review of avian influenza in pigeons and doves (Columbidae).

    PubMed

    Abolnik, Celia

    2014-06-04

    Recent reports of the detection of the zoonotic low pathogenic avian influenza (LPAI) H7N9 viruses in healthy pigeons have again put the spotlight on the potential role of pigeons and doves in the transmission of avian influenza between infected poultry and humans. A surge in studies followed the highly pathogenic avian influenza (HPAI) H5N1 epidemic, and this review collates the new data on AIV in pigeons and doves, both from a surveillance perspective, as well as the results of numerous clinical studies. Collectively, results of 32 field studies representing 24 countries across four continents indicate an antibody prevalence of 8.01% in pigeons and doves but only 0.37% of the total was associated with exposure to the same serotype as a highly pathogenic avian influenza (HPAI) outbreak occurring in poultry at the time. Only 1.1% of 6155 columbids sampled tested positive for the virus, and only 9/6155 (0.15%) viruses were detected in regions that were experiencing outbreaks of a notifiable serotype at the time. In 22 experimental infection studies with HPAI and LPAI viruses since 1944, only 26/715 (3.64%) mortalities were reported, and these could usually be associated with excessive doses of inoculum, which would induce fatal inflammatory responses. Since seroconversion and virus detection was demonstrated in many of these studies, albeit without clinical signs in most cases, it is clear that columbids are susceptible to infection, but ineffective propagators and disseminators of the virus, i.e. "dead end" hosts for AIVs, even HPAI. Viruses are shed in minute quantities from both the choana and in the feces for a short duration but titers are below the minimum threshold require to infect other species. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Risk Maps for the Spread of Highly Pathogenic Avian Influenza in Poultry

    PubMed Central

    Boender, Gert Jan; Hagenaars, Thomas J; Bouma, Annemarie; Nodelijk, Gonnie; Elbers, Armin R. W; de Jong, Mart C. M; van Boven, Michiel

    2007-01-01

    Devastating epidemics of highly contagious animal diseases such as avian influenza, classical swine fever, and foot-and-mouth disease underline the need for improved understanding of the factors promoting the spread of these pathogens. Here the authors present a spatial analysis of the between-farm transmission of a highly pathogenic H7N7 avian influenza virus that caused a large epidemic in The Netherlands in 2003. The authors developed a method to estimate key parameters determining the spread of highly transmissible animal diseases between farms based on outbreak data. The method allows for the identification of high-risk areas for propagating spread in an epidemiologically underpinned manner. A central concept is the transmission kernel, which determines the probability of pathogen transmission from infected to uninfected farms as a function of interfarm distance. The authors show how an estimate of the transmission kernel naturally provides estimates of the critical farm density and local reproduction numbers, which allows one to evaluate the effectiveness of control strategies. For avian influenza, the analyses show that there are two poultry-dense areas in The Netherlands where epidemic spread is possible, and in which local control measures are unlikely to be able to halt an unfolding epidemic. In these regions an epidemic can only be brought to an end by the depletion of susceptible farms by infection or massive culling. The analyses provide an estimate of the spatial range over which highly pathogenic avian influenza viruses spread between farms, and emphasize that control measures aimed at controlling such outbreaks need to take into account the local density of farms. PMID:17447838

  8. Avian Influenza in wild birds from Chile, 2007-2009.

    PubMed

    Mathieu, Christian; Moreno, Valentina; Pedersen, Janice; Jeria, Julissa; Agredo, Michel; Gutiérrez, Cristian; García, Alfonso; Vásquez, Marcela; Avalos, Patricia; Retamal, Patricio

    2015-03-02

    Aquatic and migratory birds, the main reservoir hosts of avian influenza viruses including those with high pathogenic potential, are the wildlife species with the highest risk for viral dissemination across countries and continents. In 2002, the Chilean poultry industry was affected with a highly pathogenic avian influenza strain, which created economic loss and triggered the establishment of a surveillance program in wild birds. This effort consisted of periodic samplings of sick or suspicious animals found along the coast and analyses with standardized techniques for detection of influenza A virus. The aim of this work is to report the detection of three avian influenza strains (H13N2, H5N9, H13N9) in gulls from Chile between 2007-2009, which nucleotide sequences showed highest similitudes to viruses detected in wild birds from North America. These results suggest a dissemination route for influenza viruses along the coasts of Americas. Migratory and synanthropic behaviors of birds included in this study support continued monitoring of avian influenza viruses isolated from wild birds in The Americas and the establishment of biosecurity practices in farms.

  9. Susceptibility and Status of Avian Influenza in Ostriches.

    PubMed

    Abolnik, Celia; Olivier, Adriaan; Reynolds, Chevonne; Henry, Dominic; Cumming, Graeme; Rauff, Dionne; Romito, Marco; Petty, Deryn; Falch, Claudia

    2016-05-01

    The extensive nature of ostrich farming production systems bears the continual risk of point introductions of avian influenza virus (AIV) from wild birds, but immune status, management, population density, and other causes of stress in ostriches are the ultimate determinants of the severity of the disease in this species. From January 2012 to December 2014, more than 70 incidents of AIV in ostriches were reported in South Africa. These included H5N2 and H7N1 low pathogenicity avian influenza (LPAI) in 2012, H7N7 LPAI in 2013, and H5N2 LPAI in 2014. To resolve the molecular epidemiology in South Africa, the entire South African viral repository from ostriches and wild birds from 1991 to 2013 (n = 42) was resequenced by next-generation sequencing technology to obtain complete genomes for comparison. The phylogenetic results were supplemented with serological data for ostriches from 2012 to 2014, and AIV-detection data from surveillance of 17 762 wild birds sampled over the same period. Phylogenetic evidence pointed to wild birds, e.g., African sacred ibis (Threskiornis aethiopicus), in the dissemination of H7N1 LPAI to ostriches in the Eastern and Western Cape provinces during 2012, in separate incidents that could not be epidemiologically linked. In contrast, the H7N7 LPAI outbreaks in 2013 that were restricted to the Western Cape Province appear to have originated from a single-point introduction from wild birds. Two H5N2 viruses detected in ostriches in 2012 were determined to be LPAI strains that were new introductions, epidemiologically unrelated to the 2011 highly pathogenic avian influenza (HPAI) outbreaks. Seventeen of 27 (63%) ostrich viruses contained the polymerase basic 2 (PB2) E627K marker, and 2 of the ostrich isolates that lacked E627K contained the compensatory Q591K mutation, whereas a third virus had a D701N mutation. Ostriches maintain a low upper- to midtracheal temperature as part of their adaptive physiology for desert survival, which may

  10. Avian influenza: mixed infections and missing viruses.

    PubMed

    Lindsay, LeAnn L; Kelly, Terra R; Plancarte, Magdalena; Schobel, Seth; Lin, Xudong; Dugan, Vivien G; Wentworth, David E; Boyce, Walter M

    2013-08-05

    A high prevalence and diversity of avian influenza (AI) viruses were detected in a population of wild mallards sampled during summer 2011 in California, providing an opportunity to compare results obtained before and after virus culture. We tested cloacal swab samples prior to culture by matrix real-time PCR, and by amplifying and sequencing a 640bp portion of the hemagglutinin (HA) gene. Each sample was also inoculated into embryonated chicken eggs, and full genome sequences were determined for cultured viruses. While low matrix Ct values were a good predictor of virus isolation from eggs, samples with high or undetectable Ct values also yielded isolates. Furthermore, a single passage in eggs altered the occurrence and detection of viral strains, and mixed infections (different HA subtypes) were detected less frequently after culture. There is no gold standard or perfect reference comparison for surveillance of unknown viruses, and true negatives are difficult to distinguish from false negatives. This study showed that sequencing samples prior to culture increases the detection of mixed infections and enhances the identification of viral strains and sequences that may have changed or even disappeared during culture.

  11. Avian Influenza: Mixed Infections and Missing Viruses

    PubMed Central

    Lindsay, LeAnn L.; Kelly, Terra R.; Plancarte, Magdalena; Schobel, Seth; Lin, Xudong; Dugan, Vivien G.; Wentworth, David E.; Boyce, Walter M.

    2013-01-01

    A high prevalence and diversity of avian influenza (AI) viruses were detected in a population of wild mallards sampled during summer 2011 in California, providing an opportunity to compare results obtained before and after virus culture. We tested cloacal swab samples prior to culture by matrix real-time PCR, and by amplifying and sequencing a 640bp portion of the hemagglutinin (HA) gene. Each sample was also inoculated into embryonated chicken eggs, and full genome sequences were determined for cultured viruses. While low matrix Ct values were a good predictor of virus isolation from eggs, samples with high or undetectable Ct values also yielded isolates. Furthermore, a single passage in eggs altered the occurrence and detection of viral strains, and mixed infections (different HA subtypes) were detected less frequently after culture. There is no gold standard or perfect reference comparison for surveillance of unknown viruses, and true negatives are difficult to distinguish from false negatives. This study showed that sequencing samples prior to culture increases the detection of mixed infections and enhances the identification of viral strains and sequences that may have changed or even disappeared during culture. PMID:23921843

  12. Lack of chicken adaptation of newly emergent Eurasian H5N8 and reassortant H5N2 high pathogenicity avian influenza viruses in the U.S. is consistent with restricted poultry outbreaks in the Pacific flyway during 2014-2015.

    PubMed

    Bertran, Kateri; Swayne, David E; Pantin-Jackwood, Mary J; Kapczynski, Darrell R; Spackman, Erica; Suarez, David L

    2016-07-01

    In 2014-2015, the U.S. experienced an unprecedented outbreak of Eurasian clade 2.3.4.4 H5 highly pathogenic avian influenza (HPAI) virus, initially affecting mainly wild birds and few backyard and commercial poultry premises. To better model the outbreak, the pathogenesis and transmission dynamics of representative Eurasian H5N8 and reassortant H5N2 clade 2.3.4.4 HPAI viruses detected early in the North American outbreak were investigated in chickens. High mean chicken infectious doses and lack of seroconversion in survivors indicated the viruses were poorly chicken adapted. Pathobiological features were consistent with HPAI virus infection, although the delayed appearance of lesions, longer mean death times, and reduced replication in endothelial cells differed from features of most other Eurasian H5N1 HPAI viruses. Although these initial U.S. H5 HPAI viruses had reduced adaptation and transmissibility in chickens, multi-generational passage in poultry could generate poultry adapted viruses with higher infectivity and transmissibility. Copyright © 2016. Published by Elsevier Inc.

  13. Surveillance of Wild Birds for Avian Influenza Virus

    PubMed Central

    Munster, Vincent J.; Nishiura, Hiroshi; Klaassen, Marcel; Fouchier, Ron A.M.

    2010-01-01

    Recent demand for increased understanding of avian influenza virus in its natural hosts, together with the development of high-throughput diagnostics, has heralded a new era in wildlife disease surveillance. However, survey design, sampling, and interpretation in the context of host populations still present major challenges. We critically reviewed current surveillance to distill a series of considerations pertinent to avian influenza virus surveillance in wild birds, including consideration of what, when, where, and how many to sample in the context of survey objectives. Recognizing that wildlife disease surveillance is logistically and financially constrained, we discuss pragmatic alternatives for achieving probability-based sampling schemes that capture this host–pathogen system. We recommend hypothesis-driven surveillance through standardized, local surveys that are, in turn, strategically compiled over broad geographic areas. Rethinking the use of existing surveillance infrastructure can thereby greatly enhance our global understanding of avian influenza and other zoonotic diseases. PMID:21122209

  14. Surveillance of wild birds for avian influenza virus.

    PubMed

    Hoye, Bethany J; Munster, Vincent J; Nishiura, Hiroshi; Klaassen, Marcel; Fouchier, Ron A M

    2010-12-01

    Recent demand for increased understanding of avian influenza virus in its natural hosts, together with the development of high-throughput diagnostics, has heralded a new era in wildlife disease surveillance. However, survey design, sampling, and interpretation in the context of host populations still present major challenges. We critically reviewed current surveillance to distill a series of considerations pertinent to avian influenza virus surveillance in wild birds, including consideration of what, when, where, and how many to sample in the context of survey objectives. Recognizing that wildlife disease surveillance is logistically and financially constrained, we discuss pragmatic alternatives for achieving probability-based sampling schemes that capture this host-pathogen system. We recommend hypothesis-driven surveillance through standardized, local surveys that are, in turn, strategically compiled over broad geographic areas. Rethinking the use of existing surveillance infrastructure can thereby greatly enhance our global understanding of avian influenza and other zoonotic diseases.

  15. Detection method for avian influenza viruses in water.

    PubMed

    Rönnqvist, Maria; Ziegler, Thedi; von Bonsdorff, Carl-Henrik; Maunula, Leena

    2012-03-01

    Recent events have shown that humans may become infected with some pathogenic avian influenza A viruses (AIV). Since soil and water, including lakes, rivers, and seashores, may be contaminated by AIV excreted by birds, effective methods are needed for monitoring water for emerging viruses. Combining water filtration with molecular methods such as PCR is a fast and effective way for detecting viruses. The objective of this study was to apply a convenient method for the detection of AIV in natural water samples. Distilled water and lake, river, and seawater were artificially contaminated with AIV (H5N3) and passed through a filter system. AIV was detected from filter membrane by real-time RT-PCR. The performance of Zetapor, SMWP, and Sartobind D5F membranes in recovering influenza viruses was first evaluated using contaminated distilled water. SWMP, which gave the highest virus recoveries, was then compared with a pre-filter combined GF/F filter membrane in a trial using natural water samples. In this study, the cellulose membrane SMWP was found to be practical for recovery of AIVs in water. Viral yields varied between 62.1 and 65.9% in distilled water and between 1 and 16.7% in natural water samples. The borosilicate glass membrane GF/F combined with pre-filter was also feasible in filtering natural water samples with viral yields from 1.98 to 7.33%. The methods described can be used for monitoring fresh and seawater samples for the presence of AIV and to determine the source of AIV transmission in an outbreak situation.

  16. Reassortment of NS Segments Modifies Highly Pathogenic Avian Influenza Virus Interaction with Avian Hosts and Host Cells

    PubMed Central

    Petersen, Henning; Wang, Zhongfang; Lenz, Eva; Pleschka, Stephan

    2013-01-01

    Highly pathogenic avian influenza viruses (HPAIV) of subtypes H5 and H7 have caused numerous outbreaks in diverse poultry species and rising numbers of human infections. Both HPAIV subtypes support a growing concern of a pandemic outbreak, specifically via the avian-human link. Natural reassortment of both HPAIV subtypes is a possible event with unpredictable outcome for virulence and host specificity of the progeny virus for avian and mammalian species. NS reassortment of H5N1 HPAIV viruses in the background of A/FPV/Rostock/1934 (H7N1) HPAIV has been shown to change virus replication kinetics and host cell responses in mammalian cells. However, not much is known about the virus-host interaction of such viruses in avian species. In the present study, we show that the NS segment of A/Vietnam/1203/2004 (FPV NS VN, H5N1) HPAIV significantly altered the characteristics of the H7 prototype HPAIV in tracheal organ cultures (TOC) of chicken and turkey in vitro, with decreased replication efficiency accompanied by increased induction of type I interferon (IFN) and apoptosis. Furthermore, species-specific differences between chicken and turkey were demonstrated. Interestingly, NS-reassortant FPV NS VN showed an overall highly pathogenic phenotype, with increased virulence and replication potential compared to the wild-type virus after systemic infection of chicken and turkey embryos. Our data demonstrate that single reassortment of an H5-type NS into an H7-type HPAIV significantly changed virus replication abilities and influenced the avian host cell response without prior adaptation. PMID:23468508

  17. Cost-benefit analysis of avian influenza control in Nepal.

    PubMed

    Karki, S; Lupiani, B; Budke, C M; Karki, N P S; Rushton, J; Ivanek, R

    2015-12-01

    Numerous outbreaks of highly pathogenic avian influenza A strain H5N1 have occurred in Nepal since 2009 despite implementation of a national programme to control the disease through surveillance and culling of infected poultry flocks. The objective of the study was to use cost-benefit analysis to compare the current control programme (CCP) with the possible alternatives of: i) no intervention (i.e., absence of control measures [ACM]) and ii) vaccinating 60% of the national poultry flock twice a year. In terms of the benefit-cost ratio, findings indicate a return of US $1.94 for every dollar spent in the CCP compared with ACM. The net present value of the CCP versus ACM, i.e., the amount of money saved by implementing the CCP rather than ACM, is US $861,507 (the benefits of CCP [prevented losses which would have occurred under ACM] minus the cost of CCP). The vaccination programme yields a return of US $2.32 for every dollar spent when compared with the CCR The net present value of vaccination versus the CCP is approximately US $12 million. Sensitivity analysis indicated thatthe findings were robust to different rates of discounting, whereas results were sensitive to the assumed market loss and the number of birds affected in the outbreaks under the ACM and vaccination options. Overall, the findings of the study indicate that the CCP is economically superior to ACM, but that vaccination could give greater economic returns and may be a better control strategy. Future research should be directed towards evaluating the financial feasibility and social acceptability of the CCP and of vaccination, with an emphasis on evaluating market reaction to the presence of H5N1 infection in the country.

  18. Outbreak with a novel avian influenza A(H7N9) virus in China--scenarios and triggers for assessing risks and planning responses in the European Union, May 2013.

    PubMed

    Schenk, C; Plachouras, D; Danielsson, N; Nicoll, A; Robesyn, E; Coulombier, D

    2013-05-16

    As part of the risk assessment and strategic planning related to the emergence of avian influenza A(H7N9) in China the European Centre for Disease Prevention and Control (ECDC) has considered two major scenarios. The current situation is the one of a zoonotic epidemic (Scenario A) in which the virus might be transmitted sporadically to humans in close contact with an animal reservoir. The second scenario is the movement towards efficient human to human transmission (a pandemic Scenario B). We identified epidemiological events within the different scenarios that would trigger a new risk assessment and a review of the response activities to implement in the European Union (EU). Further, we identified the surveillance activities needed to detect these events. The EU should prepare for importation of isolated human cases infected in the affected area, though this event would not change the level of public health risk. Awareness among clinicians and local public health authorities, combined with nationally available testing, will be crucial. A ’one health’ surveillance strategy is needed to detect extension of the infection towards Europe. The emergence of a novel reassortant influenza A(H7N9) underlines that pandemic preparedness remains important for Europe.

  19. Genetic changes that accompanied shifts of low pathogenic avian influenza viruses toward higher pathogenicity in poultry

    PubMed Central

    Abdelwhab, El-Sayed M; Veits, Jutta; Mettenleiter, Thomas C

    2013-01-01

    Avian influenza viruses (AIV) of H5 and H7 subtypes exhibit two different pathotypes in poultry: infection with low pathogenic (LP) strains results in minimal, if any, health disturbances, whereas highly pathogenic (HP) strains cause severe morbidity and mortality. LPAIV of H5 and H7 subtypes can spontaneously mutate into HPAIV. Ten outbreaks caused by HPAIV are known to have been preceded by circulation of a predecessor LPAIV in poultry. Three of them were caused by H5N2 subtype and seven involved H7 subtype in combination with N1, N3, or N7. Here, we review those outbreaks and summarize the genetic changes which resulted in the transformation of LPAIV to HPAIV under natural conditions. Mutations that were found directly in those outbreaks are more likely to be linked to virulence, pathogenesis, and early adaptation of AIV. PMID:23863606

  20. Psychosocial effects associated with highly pathogenic avian influenza (H5N1) in Nigeria.

    PubMed

    Fasina, Oludayo F; Jonah, Godman E; Pam, Victoria; Milaneschi, Yuri; Gostoli, Sara; Rafanelli, Chiara

    2010-01-01

    Highly pathogenic avian influenza H5N1 (HPAI H5N1) infected poultry in Nigeria in 2006. The outbreaks caused significant economic losses and had serious zoonotic repercussions. The outbreaks have also had psychosocial effects on Nigerian farmers. To date, empirical data on the effect of outbreaks on humans are scarce. In this study, field data on HPAI H5N1 in Nigeria were analysed. Although only one human case leading to death was reported in Nigeria, the fact that HPAI H5N1 caused a human death created a disruption in social order and in the well-being of farmers (stress, altered livelihood and trauma) and affected the rural economy. The implication of the above on health communication, the importance of successful control measures in poultry and policy implementation are stressed. Further studies are encouraged.

  1. Avian Influenza Risk Surveillance in North America with Online Media

    PubMed Central

    Robertson, Colin; Yee, Lauren

    2016-01-01

    The use of Internet-based sources of information for health surveillance applications has increased in recent years, as a greater share of social and media activity happens through online channels. The potential surveillance value in online sources of information about emergent health events include early warning, situational awareness, risk perception and evaluation of health messaging among others. The challenge in harnessing these sources of data is the vast number of potential sources to monitor and developing the tools to translate dynamic unstructured content into actionable information. In this paper we investigated the use of one social media outlet, Twitter, for surveillance of avian influenza risk in North America. We collected AI-related messages over a five-month period and compared these to official surveillance records of AI outbreaks. A fully automated data extraction and analysis pipeline was developed to acquire, structure, and analyze social media messages in an online context. Two methods of outbreak detection; a static threshold and a cumulative-sum dynamic threshold; based on a time series model of normal activity were evaluated for their ability to discern important time periods of AI-related messaging and media activity. Our findings show that peaks in activity were related to real-world events, with outbreaks in Nigeria, France and the USA receiving the most attention while those in China were less evident in the social media data. Topic models found themes related to specific AI events for the dynamic threshold method, while many for the static method were ambiguous. Further analyses of these data might focus on quantifying the bias in coverage and relation between outbreak characteristics and detectability in social media data. Finally, while the analyses here focused on broad themes and trends, there is likely additional value in developing methods for identifying low-frequency messages, operationalizing this methodology into a

  2. Application of Humidity Data for Predictions of Influenza Outbreaks.

    NASA Astrophysics Data System (ADS)

    Teixeira, J.; Thrastarson, H. T.; Yeo, E.

    2016-12-01

    Seasonal influenza outbreaks infect millions of people, cause hundreds of thousands of deaths worldwide, and leave an immense economic footprint. Potential forecasting of the timing and intensity of these outbreaks can help mitigation and response efforts (e.g., the management and organization of vaccines, drugs and other resources). Absolute (or specific) humidity has been identified as an important driver of the seasonal behavior of influenza outbreaks in temperate regions. Building upon this result, we incorporate humidity data from both NASA's AIRS (Atmospheric Infra-Red Sounder) instrument and ERA-Interim re-analysis into a SIRS (Susceptible-Infectious-Recovered-Susceptible) type numerical epidemiological model, comprising a prediction system for influenza outbreaks. Data for influenza activity is obtained from sources such as Google Flu Trends and the CDC (Center for Disease Control) and used for comparison and assimilation. The accuracy and limitations of the prediction system are tested with hindcasts of outbreaks in the United States for the years 2005-2015. Our results give support to the hypothesis that local weather conditions drive the seasonality of influenza in temperate regions. The implementation of influenza forecasts that make use of NCEP humidity forecasts is also discussed.

  3. Agro-Environmental Determinants of Avian Influenza Circulation: A Multisite Study in Thailand, Vietnam and Madagascar

    PubMed Central

    Paul, Mathilde C.; Gilbert, Marius; Desvaux, Stéphanie; Rasamoelina Andriamanivo, Harena; Peyre, Marisa; Khong, Nguyen Viet; Thanapongtharm, Weerapong; Chevalier, Véronique

    2014-01-01

    Outbreaks of highly pathogenic avian influenza have occurred and have been studied in a variety of ecological systems. However, differences in the spatial resolution, geographical extent, units of analysis and risk factors examined in these studies prevent their quantitative comparison. This study aimed to develop a high-resolution, comparative study of a common set of agro-environmental determinants of avian influenza viruses (AIV) in domestic poultry in four different environments: (1) lower-Northern Thailand, where H5N1 circulated in 2004–2005, (2) the Red River Delta in Vietnam, where H5N1 is circulating widely, (3) the Vietnam highlands, where sporadic H5N1 outbreaks have occurred, and (4) the Lake Alaotra region in Madagascar, which features remarkable similarities with Asian agro-ecosystems and where low pathogenic avian influenza viruses have been found. We analyzed H5N1 outbreak data in Thailand in parallel with serological data collected on the H5 subtype in Vietnam and on low pathogenic AIV in Madagascar. Several agro-environmental covariates were examined: poultry densities, landscape dominated by rice cultivation, proximity to a water body or major road, and human population density. Relationships between covariates and AIV circulation were explored using spatial generalized linear models. We found that AIV prevalence was negatively associated with distance to the closest water body in the Red River Delta, Vietnam highlands and Madagascar. We also found a positive association between AIV and duck density in the Vietnam highlands and Thailand, and with rice landscapes in Thailand and Madagascar. Our findings confirm the important role of wetlands-rice-ducks ecosystems in the epidemiology of AI in diverse settings. Variables influencing circulation of the H5 subtype in Southeast Asia played a similar role for low pathogenic AIV in Madagascar, indicating that this area may be at risk if a highly virulent strain is introduced. PMID:25029441

  4. Quantifying Transmission of Highly Pathogenic and Low Pathogenicity H7N1 Avian Influenza in Turkeys

    PubMed Central

    Saenz, Roberto A.; Essen, Steve C.; Brookes, Sharon M.; Iqbal, Munir; Wood, James L. N.; Grenfell, Bryan T.; McCauley, John W.; Brown, Ian H.; Gog, Julia R.

    2012-01-01

    Outbreaks of avian influenza in poultry can be devastating, yet many of the basic epidemiological parameters have not been accurately characterised. In 1999–2000 in Northern Italy, outbreaks of H7N1 low pathogenicity avian influenza virus (LPAI) were followed by the emergence of H7N1 highly pathogenic avian influenza virus (HPAI). This study investigates the transmission dynamics in turkeys of representative HPAI and LPAI H7N1 virus strains from this outbreak in an experimental setting, allowing direct comparison of the two strains. The fitted transmission rates for the two strains are similar: 2.04 (1.5–2.7) per day for HPAI, 2.01 (1.6–2.5) per day for LPAI. However, the mean infectious period is far shorter for HPAI (1.47 (1.3–1.7) days) than for LPAI (7.65 (7.0–8.3) days), due to the rapid death of infected turkeys. Hence the basic reproductive ratio, is significantly lower for HPAI (3.01 (2.2–4.0)) than for LPAI (15.3 (11.8–19.7)). The comparison of transmission rates and are critically important in relation to understanding how HPAI might emerge from LPAI. Two competing hypotheses for how transmission rates vary with population size are tested by fitting competing models to experiments with differing numbers of turkeys. A model with frequency-dependent transmission gives a significantly better fit to experimental data than density-dependent transmission. This has important implications for extrapolating experimental results from relatively small numbers of birds to the commercial poultry flock size, and for how control, including vaccination, might scale with flock size. PMID:23028760

  5. Agro-environmental determinants of avian influenza circulation: a multisite study in Thailand, Vietnam and Madagascar.

    PubMed

    Paul, Mathilde C; Gilbert, Marius; Desvaux, Stéphanie; Andriamanivo, Harena Rasamoelina; Peyre, Marisa; Khong, Nguyen Viet; Thanapongtharm, Weerapong; Chevalier, Véronique

    2014-01-01

    Outbreaks of highly pathogenic avian influenza have occurred and have been studied in a variety of ecological systems. However, differences in the spatial resolution, geographical extent, units of analysis and risk factors examined in these studies prevent their quantitative comparison. This study aimed to develop a high-resolution, comparative study of a common set of agro-environmental determinants of avian influenza viruses (AIV) in domestic poultry in four different environments: (1) lower-Northern Thailand, where H5N1 circulated in 2004-2005, (2) the Red River Delta in Vietnam, where H5N1 is circulating widely, (3) the Vietnam highlands, where sporadic H5N1 outbreaks have occurred, and (4) the Lake Alaotra region in Madagascar, which features remarkable similarities with Asian agro-ecosystems and where low pathogenic avian influenza viruses have been found. We analyzed H5N1 outbreak data in Thailand in parallel with serological data collected on the H5 subtype in Vietnam and on low pathogenic AIV in Madagascar. Several agro-environmental covariates were examined: poultry densities, landscape dominated by rice cultivation, proximity to a water body or major road, and human population density. Relationships between covariates and AIV circulation were explored using spatial generalized linear models. We found that AIV prevalence was negatively associated with distance to the closest water body in the Red River Delta, Vietnam highlands and Madagascar. We also found a positive association between AIV and duck density in the Vietnam highlands and Thailand, and with rice landscapes in Thailand and Madagascar. Our findings confirm the important role of wetlands-rice-ducks ecosystems in the epidemiology of AI in diverse settings. Variables influencing circulation of the H5 subtype in Southeast Asia played a similar role for low pathogenic AIV in Madagascar, indicating that this area may be at risk if a highly virulent strain is introduced.

  6. Summary of avian influenza activity in Europe, Asia, Africa, and Australasia, 2002-2006.

    PubMed

    Alexander, Dennis J

    2007-03-01

    Between December 2003 and January 2004 highly pathogenic avian influenza (HPAI) H5N1 infections of poultry were declared in China, Japan, South Korea, Laos, Thailand, Cambodia, Vietnam, and Indonesia. In 2004 an outbreak was reported in Malaysia. In 2005 H5N1 outbreaks were recorded in poultry in Russia, Kazakhstan, Mongolia, Romania, Turkey, and Ukraine, and virus was isolated from swans in Croatia. In 2004 HPAI H5N1 virus was isolated from smuggled eagles detected at the Brussels Airport and in 2005 imported caged birds held in quarantine in England. In 2006 HPAI was reported in poultry in Iraq, India, Azerbaijan, Pakistan, Myanmar, Afghanistan, and Israel in Asia; Albania, France, and Sweden in Europe; and Nigeria, Cameroon, and Niger in Africa; as well as in wild birds in some 24 countries across Asia and Europe. In 2003, over 25,000,000 birds were slaughtered because of 241 outbreaks of HPAI caused by virus of H7N7 subtype in the Netherlands. The virus spread into Belgium (eight outbreaks) and Germany (one outbreak). HPAI H5N2 virus was responsible for outbreaks in ostriches in South Africa during 2005. HPAI H7N3 virus was isolated in Pakistan in 2004. Low-pathogenicity avian influenza (LPAI) H5 or H7 viruses were isolated from poultry in Italy (H7N3 2002-2003; H5N2 2005), The Netherlands (H7N3 2002), France (H5N2 2003), Denmark (H5N7 2003), Taiwan (H5N2 2004), and Japan (H5N2 2005). Many isolations of LPAI viruses of other subtypes were reported from domestic and wild birds. Infections with H9N2 subtype viruses have been widespread across Asia during 2002-06.

  7. Highly pathogenic avian influenza virus subtype H5N1 in Mute swans in the Czech Republic.

    PubMed

    Nagy, Alexander; Machova, Jirina; Hornickova, Jitka; Tomci, Miroslav; Nagl, Ivan; Horyna, Bedrich; Holko, Ivan

    2007-02-25

    In order to determine the actual prevalence of avian influenza viruses (AIV) in wild birds in the Czech Republic extensive surveillance was carried out between January and April 2006. A total of 2101 samples representing 61 bird species were examined for the presence of influenza A by using PCR, sequencing and cultivation on chicken embryos. AIV subtype H5N1 was detected in 12 Mute swans (Cygnus olor). The viruses were determined as HPAI (highly pathogenic avian influenza) and the hemagglutinin sequence was closely similar to A/mallard/Italy/835/06 and A/turkey/Turkey/1194/05. Following the first H5N1 case, about 300 wild birds representing 33 species were collected from the outbreak region and tested for the presence of AIV without any positive result. This is the first report of highly pathogenic avian influenza subtype H5N1 in the Czech Republic. The potential role of swan as an effective vector of avian influenza virus is also discussed.

  8. Assessment of national strategies for control of high-pathogenicity avian influenza and low-pathogenicity notifiable avian influenza in poultry, with emphasis on vaccines and vaccination.

    PubMed

    Swayne, D E; Pavade, G; Hamilton, K; Vallat, B; Miyagishima, K

    2011-12-01

    Twenty-nine distinct epizootics of high-pathogenicity avian influenza (HPAI) have occurred since 1959. The H5N1 HPAI panzootic affecting Asia, Africa and Eastern Europe has been the largest among these, affecting poultry and/or wild birds in 63 countries. A stamping-out programme achieved eradication in 24 of these epizootics (and is close to achieving eradication in the current H5N2 epizootic in South African ostriches), but vaccination was added to the control programmes in four epizootics when stamping out alone was not effective. During the 2002 to 2010 period, more than 113 billion doses of avian influenza (AI) vaccine were used in at-risk national poultry populations of over 131 billion birds. At two to three doses per bird for the 15 vaccinating countries, the average national vaccination coverage rate was 41.9% and the global AI vaccine coverage rate was 10.9% for all poultry. The highest national coverage rate was nearly 100% for poultry in Hong Kong and the lowest national coverage was less than 0.01% for poultry in Israel and The Netherlands. Inactivated AI vaccines accounted for 95.5% and live recombinant virus vaccines for 4.5% of the vaccines used. Most of these vaccines were used in the H5N1 HPAI panzootic, with more than 99% employed in the People's Republic of China, Egypt, Indonesia and Vietnam. Implementation of vaccination in these four countries occurred after H5N1 HPAI became enzootic in domestic poultry and vaccination did not result in the enzootic infections. Vaccine usage prevented clinical disease and mortality in chickens, and maintained rural livelihoods and food security during HPAI outbreaks. Low-pathogenicity notifiable avian influenza (LPNAI) became reportable to the World Organisation for Animal Health in 2006 because some H5 and H7 low-pathogenicity avian influenza (LPAI) viruses have the potential to mutate to HPAI viruses. Fewer outbreaks of LPNAI have been reported than of HPAI and only six countries used vaccine in control

  9. Generation of an attenuated H5N1 avian influenza virus vaccine with all eight genes from avian viruses.

    PubMed

    Shi, Huoying; Liu, Xiu Fan; Zhang, Xiaorong; Chen, Sujuan; Sun, Lei; Lu, Jianhong

    2007-10-16

    In the face of disease outbreaks in poultry and the potential pandemic threat to humans caused by the highly pathogenic avian influenza viruses (HPAIVs) of H5N1 subtype, improvement in biosecurity and the use of inactivated vaccines are two main options for the control of this disease. Vaccine candidates of influenza A viruses of H5N1 subtype have been generated in several laboratories by plasmid-based reverse genetics with hemagglutinin (HA) and neuraminidase (NA) genes from the epidemic strains of avian viruses in a background of internal genes from the vaccine donor strain of human strains, A/Puerto Rico/8/34 (PR8). These reassortant viruses containing genes from both avian and human viruses might impose biosafety concerns, also may be do if C4/F AIV would be a live attenuated vaccine or cold-adaptive strain vaccine. In order to generate better and safer vaccine candidate viruses, we genetically constructed attenuated reassortant H5N1 influenza A virus, designated as C4/F AIV, by plasmid-based reverse genetics with all eight genes from the avian strains. The C4/F AIV virus contained HA and NA genes from an epidemic strain A/Chicken/Huadong/04 (H5N1) (C4/H5N1) in a background of internal genes derived from a low pathogenic strain of A/Chicken/F/98(H9N2). The reassortant virus was attenuated by removal of the multibasic amino acid motif in the HA gene by mutation and deletion (from PQRERRRKKR (downward arrow) G to PQIETR (downward arrow) G). The intravenous pathogenicity index (IVPI) of C4/F AIV virus was 0, whereas that of the donor virus C4/H5N1 was 3.0. The virus HA titer of C4/H5N1 in the allantoic fluid from infected embryonated eggs was as high as 1:2048. The inactivated vaccine prepared from the reassortant virus C4/F AIV-induced high HI titer in vaccinated chickens and gave 100% protection when challenged with highly pathogenic avian influenza virus of H5N1 subtype.

  10. A generic model of contagious disease and its application to human-to-human transmission of avian influenza.

    SciTech Connect

    Hirsch, Gary B.

    2007-03-01

    Modeling contagious diseases has taken on greater importance over the past several years as diseases such as SARS and avian influenza have raised concern about worldwide pandemics. Most models developed to consider projected outbreaks have been specific to a single disease. This paper describes a generic System Dynamics contagious disease model and its application to human-to-human transmission of a mutant version of avian influenza. The model offers the option of calculating rates of new infections over time based either on a fixed ''reproductive number'' that is traditional in contagious disease models or on contact rates for different sub-populations and likelihood of transmission per contact. The paper reports on results with various types of interventions. These results suggest the potential importance of contact tracing, limited quarantine, and targeted vaccination strategies as methods for controlling outbreaks, especially when vaccine supplies may initially be limited and the efficacy of anti-viral drugs uncertain.

  11. A Bayesian Outbreak Detection Method for Influenza-Like Illness

    PubMed Central

    García, Yury E.; Christen, J. Andrés; Capistrán, Marcos A.

    2015-01-01

    Epidemic outbreak detection is an important problem in public health and the development of reliable methods for outbreak detection remains an active research area. In this paper we introduce a Bayesian method to detect outbreaks of influenza-like illness from surveillance data. The rationale is that, during the early phase of the outbreak, surveillance data changes from autoregressive dynamics to a regime of exponential growth. Our method uses Bayesian model selection and Bayesian regression to identify the breakpoint. No free parameters need to be tuned. However, historical information regarding influenza-like illnesses needs to be incorporated into the model. In order to show and discuss the performance of our method we analyze synthetic, seasonal, and pandemic outbreak data. PMID:26425552

  12. Human H7N9 avian influenza virus infection: a review and pandemic risk assessment.

    PubMed

    Yiu Lai, Kang; Wing Yiu Ng, George; Fai Wong, Kit; Fan Ngai Hung, Ivan; Kam Fai Hong, Jeffrey; Fan Cheng, Fanny; Kwok Cheung Chan, John

    2013-08-01

    China is undergoing a recent outbreak of a novel H7N9 avian influenza virus (nH7N9) infection that has thus far involved 132 human patients, including 37 deaths. The nH7N9 virus is a reassortant virus originating from the H7N3, H7N9 and H9N2 avian influenza viruses. nH7N9 isolated from humans contains features related to adaptation to humans, including a Q226L mutation in the hemagglutinin cleavage site and E627K and D701N mutations in the PB2 protein. Live poultry markets provide an environment for the emergence, spread and maintenance of nH7N9 as well as for the selection of mutants that facilitate nH7N9 binding to and replication in the human upper respiratory tract. Innate immune suppression conferred by the internal genes of H9N2 may contribute to the virulence of nH7N9. The quail may serve as the intermediate host during the adaptation of avian influenza viruses from domestic waterfowl to gallinaceous poultry, such as chickens and related terrestrial-based species, due to the selection of viral mutants with a short neuraminidase stalk. Infections in chickens, common quails, red-legged partridges and turkeys may select for mutants with human receptor specificity. Infection in Ratitae species may lead to the selection of PB2-E627K and PB2-D701N mutants and the conversion of nH7N9 to a highly pathogenic avian influenza virus.

  13. Broadly Protective Adenovirus-Based Multivalent Vaccines against Highly Pathogenic Avian Influenza Viruses for Pandemic Preparedness

    PubMed Central

    Vemula, Sai V.; Ahi, Yadvinder S.; Swaim, Anne-Marie; Katz, Jacqueline M.; Donis, Ruben; Sambhara, Suryaprakash; Mittal, Suresh K.

    2013-01-01

    Recurrent outbreaks of H5, H7 and H9 avian influenza viruses in domestic poultry accompanied by their occasional transmission to humans have highlighted the public health threat posed by these viruses. Newer vaccine approaches for pandemic preparedness against these viruses are needed, given the limitations of vaccines currently approved for H5N1 viruses in terms of their production timelines and the ability to induce protective immune responses in the absence of adjuvants. In this study, we evaluated the feasibility of an adenovirus (AdV)-based multivalent vaccine approach for pandemic preparedness against H5, H7 and H9 avian influenza viruses in a mouse model. Replication-defective AdV vectors expressing hemagglutinin (HA) from different subtypes and nucleoprotein (NP) from one subtype induced high levels of humoral and cellular immune responses and conferred protection against virus replication following challenge with H5, H7 and H9 avian influenza virus subtypes. Inclusion of HA from the 2009 H1N1 pandemic virus in the vaccine formulation further broadened the vaccine coverage. Significantly high levels of HA stalk-specific antibodies were observed following immunization with the multivalent vaccine. Inclusion of NP into the multivalent HA vaccine formulation resulted in the induction of CD8 T cell responses. These results suggest that a multivalent vaccine strategy may provide reasonable protection in the event of a pandemic caused by H5, H7, or H9 avian influenza virus before a strain-matched vaccine can be produced. PMID:23638099

  14. Human H7N9 avian influenza virus infection: a review and pandemic risk assessment

    PubMed Central

    Yiu Lai, Kang; Wing Yiu Ng, George; Fai Wong, Kit; Fan Ngai Hung, Ivan; Kam Fai Hong, Jeffrey; Fan Cheng, Fanny; Kwok Cheung Chan, John

    2013-01-01

    China is undergoing a recent outbreak of a novel H7N9 avian influenza virus (nH7N9) infection that has thus far involved 132 human patients, including 37 deaths. The nH7N9 virus is a reassortant virus originating from the H7N3, H7N9 and H9N2 avian influenza viruses. nH7N9 isolated from humans contains features related to adaptation to humans, including a Q226L mutation in the hemagglutinin cleavage site and E627K and D701N mutations in the PB2 protein. Live poultry markets provide an environment for the emergence, spread and maintenance of nH7N9 as well as for the selection of mutants that facilitate nH7N9 binding to and replication in the human upper respiratory tract. Innate immune suppression conferred by the internal genes of H9N2 may contribute to the virulence of nH7N9. The quail may serve as the intermediate host during the adaptation of avian influenza viruses from domestic waterfowl to gallinaceous poultry, such as chickens and related terrestrial-based species, due to the selection of viral mutants with a short neuraminidase stalk. Infections in chickens, common quails, red-legged partridges and turkeys may select for mutants with human receptor specificity. Infection in Ratitae species may lead to the selection of PB2-E627K and PB2-D701N mutants and the conversion of nH7N9 to a highly pathogenic avian influenza virus. PMID:26038484

  15. Yeast Surface-Displayed H5N1 Avian Influenza Vaccines.

    PubMed

    Lei, Han; Jin, Sha; Karlsson, Erik; Schultz-Cherry, Stacey; Ye, Kaiming

    2016-01-01

    Highly pathogenic H5N1 avian influenza viruses pose a pandemic threat to human health. A rapid vaccine production against fast outbreak is desired. We report, herein, a paradigm-shift influenza vaccine technology by presenting H5N1 hemagglutinin (HA) to the surface of yeast. We demonstrated, for the first time, that the HA surface-presented yeast can be used as influenza vaccines to elicit both humoral and cell-mediated immunity in mice. The HI titer of antisera reached up to 128 in vaccinated mice. A high level of H5N1 HA-specific IgG1 and IgG2a antibody production was detected after boost immunization. Furthermore, we demonstrated that the yeast surface-displayed HA preserves its antigenic sites. It preferentially binds to both avian- and human-type receptors. In addition, the vaccine exhibited high cross-reactivity to both homologous and heterologous H5N1 viruses. A high level production of anti-HA antibodies was detected in the mice five months after vaccination. Finally, our animal experimental results indicated that the yeast vaccine offered complete protection of mice from lethal H5N1 virus challenge. No severe side effect of yeast vaccines was noted in animal studies. This new technology allows for rapid and large-scale production of influenza vaccines for prepandemic preparation.

  16. Yeast Surface-Displayed H5N1 Avian Influenza Vaccines

    PubMed Central

    Lei, Han; Jin, Sha; Karlsson, Erik; Schultz-Cherry, Stacey

    2016-01-01

    Highly pathogenic H5N1 avian influenza viruses pose a pandemic threat to human health. A rapid vaccine production against fast outbreak is desired. We report, herein, a paradigm-shift influenza vaccine technology by presenting H5N1 hemagglutinin (HA) to the surface of yeast. We demonstrated, for the first time, that the HA surface-presented yeast can be used as influenza vaccines to elicit both humoral and cell-mediated immunity in mice. The HI titer of antisera reached up to 128 in vaccinated mice. A high level of H5N1 HA-specific IgG1 and IgG2a antibody production was detected after boost immunization. Furthermore, we demonstrated that the yeast surface-displayed HA preserves its antigenic sites. It preferentially binds to both avian- and human-type receptors. In addition, the vaccine exhibited high cross-reactivity to both homologous and heterologous H5N1 viruses. A high level production of anti-HA antibodies was detected in the mice five months after vaccination. Finally, our animal experimental results indicated that the yeast vaccine offered complete protection of mice from lethal H5N1 virus challenge. No severe side effect of yeast vaccines was noted in animal studies. This new technology allows for rapid and large-scale production of influenza vaccines for prepandemic preparation. PMID:28078309

  17. Thermal inactivation of avian influenza virus in liquid egg products

    USDA-ARS?s Scientific Manuscript database

    Thirty eight percent of the 200 million cases of shelled eggs produced per year in the U.S. are processed as liquid egg product. The U.S. also exports internationally a large amount of egg products. Although the U.S. is normally free of avian influenza, concern about contamination of egg product wit...

  18. Highly pathogenic avian influenza virus among wild birds in Mongolia

    USDA-ARS?s Scientific Manuscript database

    The central Asian country of Mongolia supports large populations of migratory water birds that migrate across much of Asia where highly pathogenic avian influenza (HPAI) virus subtype H5N1 is endemic. This, together with the near absence of domestic poultry, makes Mongolia an ideal location to unde...

  19. Food markets with live birds as source of avian influenza.

    PubMed

    Wang, Ming; Di, Biao; Zhou, Duan-Hua; Zheng, Bo-Jian; Jing, Huaiqi; Lin, Yong-Ping; Liu, Yu-Fei; Wu, Xin-Wei; Qin, Peng-Zhe; Wang, Yu-Lin; Jian, Li-Yun; Li, Xiang-Zhong; Xu, Jian-Xiong; Lu, En-Jie; Li, Tie-Gang; Xu, Jianguo

    2006-11-01

    A patient may have been infected with highly pathogenic avian influenza virus H5N1 in Guangzhou, People's Republic of China, at a food market that had live birds. Virus genes were detected in 1 of 79 wire cages for birds at 9 markets. One of 110 persons in the poultry business at markets had neutralizing antibody against H5N1.

  20. Highly pathogenic avian influenza challenge studies in waterfowl

    USDA-ARS?s Scientific Manuscript database

    Waterfowl are the natural hosts of avian influenza (AI) virus. The majority of AI viruses are classified as low pathogenicity (LP) based on their virulence in chickens, which are the reference species for pathotype testing and can be any of the 16 hemagglutinin subtypes (H1-16). Circulation of H5 ...

  1. Rapidly expanding range of highly pathogenic avian influenza viruses

    USGS Publications Warehouse

    Hall, Jeffrey S.; Dusek, Robert J.; Spackman, Erica

    2015-01-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus’ propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  2. Duck hunters' perceptions of risk for avian influenza, Georgia, USA.

    PubMed

    Dishman, Hope; Stallknecht, David; Cole, Dana

    2010-08-01

    To determine duck hunters'risk for highly pathogenic avian influenza, we surveyed duck hunters in Georgia, USA, during 2007-2008, about their knowledge, attitudes, and practices. We found they engage in several practices that could expose them to the virus. Exposures and awareness were highest for those who had hunted >10 years.

  3. Duck Hunters’ Perceptions of Risk for Avian Influenza, Georgia, USA

    PubMed Central

    Stallknecht, David; Cole, Dana

    2010-01-01

    To determine duck hunters’ risk for highly pathogenic avian influenza, we surveyed duck hunters in Georgia, USA, during 2007–2008, about their knowledge, attitudes, and practices. We found they engage in several practices that could expose them to the virus. Exposures and awareness were highest for those who had hunted >10 years. PMID:20678324

  4. Canada geese and the epidemiology of avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    Canada geese (Branta canadensis) are numerous, highly visible, and widely distributed in both migratory and resident populations in North America; as a member of the Order Anseriformes, they are often suggested as a potential reservoir and source for avian influenza (AI) viruses. To further examine...

  5. Conducting influenza virus pathogenesis studies in avian species

    USDA-ARS?s Scientific Manuscript database

    Avian infection studies with influenza A are an important means of assessing host susceptibility, viral pathogenesis, host responses to infection, mechanisms of transmission and viral pathotype. Complex systems and natural settings may also be explored with carefully designed infection studies. In ...

  6. Practical aspects of surveillance for avian influenza in poultry

    USDA-ARS?s Scientific Manuscript database

    The overall approach to surveillance for avian influenza virus (AIV) in poultry will vary depending on the situation, resources, and goals of a given surveillance program. However, the optimal methods for sample collection, transport, and handling are universal. Many practical questions have been ...

  7. Digital diffraction detection of protein markers for avian influenza.

    PubMed

    Im, Hyungsoon; Park, Yong Il; Pathania, Divya; Castro, Cesar M; Weissleder, Ralph; Lee, Hakho

    2016-04-21

    Rapid pathogen testing is expected to play a critical role in infection control and in limiting epidemics. Smartphones equipped with state-of-the-art computing and imaging technologies have emerged as new point-of-use (POU) sensing platforms. We herein report a new assay format for fast, sensitive and portable detection of avian influenza-associated antibodies.

  8. Rapidly Expanding Range of Highly Pathogenic Avian Influenza Viruses.

    PubMed

    Hall, Jeffrey S; Dusek, Robert J; Spackman, Erica

    2015-07-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus' propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  9. Rapidly expanding range of highly pathogenic avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    The recent introduction of highly pathogenic avian influenza virus (HPAIV) H5N8 into Europe and North America poses significant risks to poultry industries and wildlife populations and warrants continued and heightened vigilance. First discovered in South Korean poultry and wild birds in early 2014...

  10. Vaccines and vaccination for avian influenza in poultry

    USDA-ARS?s Scientific Manuscript database

    Avian influenza (AI) vaccines have been developed and used to protect poultry and other birds in various countries of the world. Protection is principally mediated by an immune response to the subtype-specific hemagglutinin (HA) protein. AI vaccines prevent clinical signs of disease, death, egg pr...

  11. A Humidity-Driven Prediction System for Influenza Outbreaks

    NASA Astrophysics Data System (ADS)

    Thrastarson, H. T.; Teixeira, J.

    2015-12-01

    Recent studies have highlighted the role of absolute (or specific) humidity conditions as a leading explanation for the seasonal behavior of influenza outbreaks in temperate regions. If the timing and intensity of seasonal influenza outbreaks can be forecast, this would be of great value for public health response efforts. We have developed and implemented a SIRS (Susceptible-Infectious-Recovered-Susceptible) type numerical prediction system that is driven by specific humidity to predict influenza outbreaks. For the humidity, we have explored using both satellite data from the AIRS (Atmospheric Infrared Sounder) instrument as well as ERA-Interim re-analysis data. We discuss the development, testing, sensitivities and limitations of the prediction system and show results for influenza outbreaks in the United States during the years 2010-2014 (modeled in retrospect). Comparisons are made with other existing prediction systems and available data for influenza outbreaks from Google Flu Trends and the CDC (Center for Disease Control), and the incorporation of these datasets into the forecasting system is discussed.

  12. Rapid Emergence of Highly Pathogenic Avian Influenza Subtypes from a Subtype H5N1 Hemagglutinin Variant.

    PubMed

    de Vries, Erik; Guo, Hongbo; Dai, Meiling; Rottier, Peter J M; van Kuppeveld, Frank J M; de Haan, Cornelis A M

    2015-05-01

    In 2014, novel highly pathogenic avian influenza A H5N2, H5N5, H5N6, and H5N8 viruses caused outbreaks in Asia, Europe, and North America. The H5 genes of these viruses form a monophyletic group that evolved from a clade 2.3.4 H5N1 variant. This rapid emergence of new H5Nx combinations is unprecedented in the H5N1 evolutionary history.

  13. Highly Pathogenic Avian Influenza Virus (H5N1) in Domestic Poultry and Relationship with Migratory Birds, South Korea

    PubMed Central

    Lee, Youn-Jeong; Choi, Young-Ki; Song, Min-Suk; Jeong, Ok-Mi; Lee, Eun-Kyoung; Jeon, Woo-Jin; Jeong, Wooseog; Joh, Seong-Joon; Choi, Kang-seuk; Her, Moon; ho Lee, Eun; Oh, Tak-Gue; Moon, Ho-Jin; Yoo, Dae-Won; Sung, Moon-Hee; Poo, Haryoung; Kwon, Jun-Hun

    2008-01-01

    During the 2006–2007 winter season in South Korea, several outbreaks of highly pathogenic avian influenza virus (H5N1) were confirmed among domestic poultry and in migratory bird habitats. Phylogenetic analysis showed that all isolates were closely related and that all belong to the A/bar-headed goose/Qinghai/5/2005–like lineage rather than the A/chicken/Korea/ES/2003–like lineage. PMID:18325269

  14. Serological and virological surveillance of avian influenza virus in domestic ducks of the north-east region of Bangladesh.

    PubMed

    Sarker, Rahul Deb; Giasuddin, Mohammad; Chowdhury, Emdadul Haque; Islam, Mohammad Rafiqul

    2017-06-17

    Wild waterfowl are considered as the natural reservoir for avian influenza (AI) viruses. Bangladesh has been experiencing highly pathogenic avian influenza (HPAI) outbreaks since 2007, mostly in chickens and occasionally in ducks. Ducks play an important role in the persistence and genetic recombination of AI viruses. This paper presents the results of serological and virological monitoring of AI in domestic ducks in 2013 in the north-east region of Bangladesh. A total of 871 and 662 serum samples and 909 and 302 pairs of cloacal and oropharyngeal swabs from domestic ducks of Mymensingh and Sylhet division, respectively, were analysed. Antibodies to type A influenza virus were detected by blocking ELISA in 60.73 and 47.73% serum samples of Mymensingh and Sylhet division, respectively. On haemagglutination-inhibition (HI) test 17.5% of ELISA positive serum samples were found to be seropositive to H5 avian influenza virus. Five cloacal swabs and one oropharyngeal swab were positive for M gene of type A influenza virus by real time RT-PCR (rRT-PCR), but all of them were negative for H5 influenza virus. Three of the six viruses were successfully characterized as H1N5, H2N5 and H7N5 subtype of AI virus, the other three remained uncharacterized. On sequencing and phylogenetic analysis the HA and NA genes were found to be of Eurasian avian lineage. The H7 virus had cleavage site motif of low pathogenic virus. Low pathogenic avian influenza viruses were detected from apparently healthy domestic ducks. A small proportion of domestic ducks were found seropositive to H5 AI virus.

  15. Scientific basis for use of vaccination as a strategy to control avian influenza

    USDA-ARS?s Scientific Manuscript database

    Vaccines have been used to control a variety of piscian, avian, and mammalian diseases. Commercial usage of vaccines against avian influenza (AI) began in 1979, in Minnesota to control H4 and H6 low pathogenicity avian influenza (LPAI) which was causing economically significant disease in turkey br...

  16. Active Surveillance for Avian Influenza Virus, Egypt, 2010–2012

    PubMed Central

    Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S.; Gomaa, Mokhtar M.; Maatouq, Asmaa M.; Shehata, Mahmoud M.; Moatasim, Yassmin; Bagato, Ola; Cai, Zhipeng; Rubrum, Adam; Kutkat, Mohamed A.; McKenzie, Pamela P.; Webster, Robert G.; Webby, Richard J.; Ali, Mohamed A.

    2014-01-01

    Continuous circulation of influenza A(H5N1) virus among poultry in Egypt has created an epicenter in which the viruses evolve into newer subclades and continue to cause disease in humans. To detect influenza viruses in Egypt, since 2009 we have actively surveyed various regions and poultry production sectors. From August 2010 through January 2013, >11,000 swab samples were collected; 10% were positive by matrix gene reverse transcription PCR. During this period, subtype H9N2 viruses emerged, cocirculated with subtype H5N1 viruses, and frequently co-infected the same avian host. Genetic and antigenic analyses of viruses revealed that influenza A(H5N1) clade 2.2.1 viruses are dominant and that all subtype H9N2 viruses are G1-like. Cocirculation of different subtypes poses concern for potential reassortment. Avian influenza continues to threaten public and animal health in Egypt, and continuous surveillance for avian influenza virus is needed. PMID:24655395

  17. Active surveillance for avian influenza virus, Egypt, 2010-2012.

    PubMed

    Kayali, Ghazi; Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S; Gomaa, Mokhtar M; Maatouq, Asmaa M; Shehata, Mahmoud M; Moatasim, Yassmin; Bagato, Ola; Cai, Zhipeng; Rubrum, Adam; Kutkat, Mohamed A; McKenzie, Pamela P; Webster, Robert G; Webby, Richard J; Ali, Mohamed A

    2014-04-01

    Continuous circulation of influenza A(H5N1) virus among poultry in Egypt has created an epicenter in which the viruses evolve into newer subclades and continue to cause disease in humans. To detect influenza viruses in Egypt, since 2009 we have actively surveyed various regions and poultry production sectors. From August 2010 through January 2013, >11,000 swab samples were collected; 10% were positive by matrix gene reverse transcription PCR. During this period, subtype H9N2 viruses emerged, cocirculated with subtype H5N1 viruses, and frequently co-infected the same avian host. Genetic and antigenic analyses of viruses revealed that influenza A(H5N1) clade 2.2.1 viruses are dominant and that all subtype H9N2 viruses are G1-like. Cocirculation of different subtypes poses concern for potential reassortment. Avian influenza continues to threaten public and animal health in Egypt, and continuous surveillance for avian influenza virus is needed.

  18. Effects of closing and reopening live poultry markets on the epidemic of human infection with avian influenza A virus

    PubMed Central

    Lu, Jian; Liu, Wendong; Xia, Rui; Dai, Qigang; Bao, Changjun; Tang, Fenyang; Zhu, yefei; Wang, Qiao

    2016-01-01

    Abstract Live poultry markets (LPMs) are crucial places for human infection of influenza A (H7N9 virus). In Yangtze River Delta, LPMs were closed after the outbreak of human infection with avian influenza A (H7N9) virus, and then reopened when no case was found. Our purpose was to quantify the effect of LPMs’ operations in this region on the transmission of influenza A (H7N9) virus. We obtained information about dates of symptom onset and locations for all human influenza A (H7N9) cases reported from Shanghai, Jiangsu and Zhejiang provinces by May 31, 2014, and acquired dates of closures and reopening of LPMs from official media. A two-phase Bayesian model was fitted by Markov Chain Monte Carlo methods to process the spatial and temporal influence of human cases. A total of 235 cases of influenza A (H7N9) were confirmed in Shanghai, Jiangsu and Zhejiang by May 31, 2014. Using these data, our analysis showed that, after LPM closures, the influenza A (H7N9) outbreak disappeared within two weeks in Shanghai, one week in Jiangsu, and one week in Zhejiang, respectively. Local authorities reopened LPMs when there was no outbreak of influenza A (H7N9), which did not lead to reemergence of human influenza A (H7N9). LPM closures were effective in controlling the H7N9 outbreak. Reopening of LPM in summer did not increase the risk of human infection with H7N9. Our findings showed that LPMs should be closed immediately in areas where the H7N9 virus is confirmed in LPM. When there is no outbreak of H7N9 virus, LPMs can be reopened to satisfy the Chinese traditional culture of buying live poultry. In the long term, local authorities should take a cautious attitude in permanent LPM closure.

  19. Persistence of Highly Pathogenic Avian Influenza Viruses in Natural Ecosystems

    PubMed Central

    Feare, Chris J.; Renaud, François; Thomas, Frédéric; Gauthier-Clerc, Michel

    2010-01-01

    Understanding of ecologic factors favoring emergence and maintenance of highly pathogenic avian influenza (HPAI) viruses is limited. Although low pathogenic avian influenza viruses persist and evolve in wild populations, HPAI viruses evolve in domestic birds and cause economically serious epizootics that only occasionally infect wild populations. We propose that evolutionary ecology considerations can explain this apparent paradox. Host structure and transmission possibilities differ considerably between wild and domestic birds and are likely to be major determinants of virulence. Because viral fitness is highly dependent on host survival and dispersal in nature, virulent forms are unlikely to persist in wild populations if they kill hosts quickly or affect predation risk or migratory performance. Interhost transmission in water has evolved in low pathogenic influenza viruses in wild waterfowl populations. However, oropharyngeal shedding and transmission by aerosols appear more efficient for HPAI viruses among domestic birds. PMID:20587174

  20. Clinical review: Update of avian influenza A infections in humans

    PubMed Central

    Sandrock, Christian; Kelly, Terra

    2007-01-01

    Influenza A viruses have a wide host range for infection, from wild waterfowl to poultry to humans. Recently, the cross-species transmission of avian influenza A, particularly subtype H5N1, has highlighted the importance of the non-human subtypes and their incidence in the human population has increased over the past decade. During cross-species transmission, human disease can range from the asymptomatic to mild conjunctivitis to fulminant pneumonia and death. With these cases, however, the risk for genetic change and development of a novel virus increases, heightening the need for public health and hospital measures. This review discusses the epidemiology, host range, human disease, outcome, treatment, and prevention of cross-transmission of avian influenza A into humans. PMID:17419881

  1. Pathogenesis of avian influenza A (H5N1) viruses in pigs

    USDA-ARS?s Scientific Manuscript database

    Background. Genetic reassortment of avian influenza H5N1 viruses with currently circulating human influenza A strains is one possibility that could lead to efficient human-to-human transmissibility. Domestic pigs which are susceptible to infection with both human and avian influenza A viruses are o...

  2. Pathogenicity, Transmission and Antigenic Variation of H5N1 Highly Pathogenic Avian Influenza Viruses.

    PubMed

    Jiao, Peirong; Song, Hui; Liu, Xiaoke; Song, Yafen; Cui, Jin; Wu, Siyu; Ye, Jiaqi; Qu, Nanan; Zhang, Tiemin; Liao, Ming

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) was one of the most important avian diseases in poultry production of China, especially in Guangdong province. In recent years, new H5N1 highly pathogenic avian influenza viruses (HPAIV) still emerged constantly, although all poultry in China were immunized with H5N1 vaccinations compulsorily. To better understand the pathogenicity and transmission of dominant clades of the H5N1 HPAIVs in chicken from Guangdong in 2012, we chose a clade 7.2 avian influenza virus named A/Chicken/China/G2/2012(H5N1) (G2) and a clade 2.3.2.1 avian influenza virus named A/Duck/China/G3/2012(H5N1) (G3) in our study. Our results showed that the chickens inoculated with 10(3) EID50 of G2 or G3 viruses all died, and the titers of virus replication detected in several visceral organs were high but different. In the naive contact groups, virus shedding was not detected in G2 group and all chickens survived, but virus shedding was detected in G3 group and all chickens died. These results showed that the two clades of H5N1 HPAIVs had high pathogenicity in chickens and the contact transmission of them was different in chickens. The results of cross reactive HI assay showed that antigens of G2 and G3 were very different from those of current commercial vaccines isolates (Re-4, Re-6, and D7). And to evaluate the protective efficacy of three vaccines against most isolates form Guangdong belonging to clade 2.3.2.1 in 2012, G3 was chosen to challenge the three vaccines such as Re-4, Re-6, and D7. First, chickens were immunized with 0.3 ml Re-4, Re-6, and D7 inactivated vaccines by intramuscular injection, respectively, and then challenged with 10(6) EID50 of G3 on day 28 post-vaccination. The D7 vaccine had 100% protection against G3 for chickens, the Re-6 vaccine had 88.9%, and the Re-4 vaccine only had 66.7%. Our results suggested that the D7 vaccine could prevent and control H5N1 virus outbreaks more effectively in Guangdong. From the above, it was

  3. Pathogenicity, Transmission and Antigenic Variation of H5N1 Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Jiao, Peirong; Song, Hui; Liu, Xiaoke; Song, Yafen; Cui, Jin; Wu, Siyu; Ye, Jiaqi; Qu, Nanan; Zhang, Tiemin; Liao, Ming

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) was one of the most important avian diseases in poultry production of China, especially in Guangdong province. In recent years, new H5N1 highly pathogenic avian influenza viruses (HPAIV) still emerged constantly, although all poultry in China were immunized with H5N1 vaccinations compulsorily. To better understand the pathogenicity and transmission of dominant clades of the H5N1 HPAIVs in chicken from Guangdong in 2012, we chose a clade 7.2 avian influenza virus named A/Chicken/China/G2/2012(H5N1) (G2) and a clade 2.3.2.1 avian influenza virus named A/Duck/China/G3/2012(H5N1) (G3) in our study. Our results showed that the chickens inoculated with 103 EID50 of G2 or G3 viruses all died, and the titers of virus replication detected in several visceral organs were high but different. In the naive contact groups, virus shedding was not detected in G2 group and all chickens survived, but virus shedding was detected in G3 group and all chickens died. These results showed that the two clades of H5N1 HPAIVs had high pathogenicity in chickens and the contact transmission of them was different in chickens. The results of cross reactive HI assay showed that antigens of G2 and G3 were very different from those of current commercial vaccines isolates (Re-4, Re-6, and D7). And to evaluate the protective efficacy of three vaccines against most isolates form Guangdong belonging to clade 2.3.2.1 in 2012, G3 was chosen to challenge the three vaccines such as Re-4, Re-6, and D7. First, chickens were immunized with 0.3 ml Re-4, Re-6, and D7 inactivated vaccines by intramuscular injection, respectively, and then challenged with 106 EID50 of G3 on day 28 post-vaccination. The D7 vaccine had 100% protection against G3 for chickens, the Re-6 vaccine had 88.9%, and the Re-4 vaccine only had 66.7%. Our results suggested that the D7 vaccine could prevent and control H5N1 virus outbreaks more effectively in Guangdong. From the above, it was

  4. Predicting transmission of avian influenza A viruses from avian to human by using informative physicochemical properties.

    PubMed

    Wang, Jia; Ma, Chuang; Kou, Zheng; Zhou, Yan-Hong; Liu, Huai-Lan

    2013-01-01

    Some strains of avian influenza A virus (AIV) can directly transmit from their natural hosts to humans. These avian-to-human transmissions have continuously been reported to cause human deaths worldwide since 1997. Predicting whether AIV strains can transmit from avian to human is valuable for early warning of AIV strains with human pandemic potential. In this study, we constructed a computational model to predict avian-to-human transmission of AIV based on physicochemical properties. Initially, ninety signature positions in the inner protein sequences were extracted with the entropy method. These positions were then encoded with 531 physicochemical features. Subsequently, the optimal subset of these physicochemical features was mined with several feature selection methods. Finally, a support vector machine (SVM) model named A2H was established to integrate the selected optimal features. The experimental results of cross-validation and an independent test show that A2H has the capability of predicting transmission of AIV from avian to human.

  5. Comparison of potency required for protection against H7N3 or H5N1 highly pathogenic avian influenza following vaccination and challenge with homologous virus

    USDA-ARS?s Scientific Manuscript database

    Outbreaks of H5 and H7 highly pathogenic avian influenza (HPAI) in commercial poultry are a constant threat to food supplies and animal/human health. While vaccination can enhance protection and reduce the spread of disease, there is considerable evidence that the level of immunity required for pro...

  6. Determination of efficacious vaccine seed strains for use against Egyptian H5N1 highly pathogenic avian influenza viruses through antigenic cartography and in vivo challenge studies

    USDA-ARS?s Scientific Manuscript database

    Since 2006, there have been reported outbreaks of H5N1 highly pathogenic avian influenza (HPAI) in vaccinated chickens in Africa and Asia. This study provides experimental data for selection of efficacious H5N1 vaccine seed strains against recently circulating strains of H5N1 HPAI viruses in Egypt....

  7. Changes in adaptation of H5N2 highly pathogenic avian influenza H5 clade 2.3.4.4 viruses in chickens and mallards

    USDA-ARS?s Scientific Manuscript database

    H5N2 highly pathogenic avian influenza (HPAI) viruses caused a severe poultry outbreak in the United States (U.S.) during 2015. In order to examine changes in adaptation of this viral lineage, the infectivity, transmission and pathogenesis of poultry H5N2 viruses was investigated in chickens and mal...

  8. Comparison of molecular classification and experimental pathogenicity for classification of low and high pathogenicity H5 and H7 avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza (HPAI) viruses, which have been restricted to H5 and H7 subtypes, have caused continuous outbreaks in the poultry industry with devastating economic losses and is a severe threat to public health. Genetic features and severity of the disease in poultry determine wh...

  9. Efficacy of commercial vaccines in protecting chickens and ducks against H5N1 highly pathogenic avian influenza viruses from Vietnam

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic (HP) H5N1 avian influenza (AI) viruses continue to circulate in Asia and have spread to other regions of the world. Though attempts at eradication of the viruses during various outbreaks have been successful for short periods of time, new strains of H5N1 viruses continue to emerge...

  10. Will the next human influenza pandemic be caused by the virus of the avian flu A/H5N1? Arguments pro and counter.

    PubMed

    Doerr, H W; Varwig, Domenica; Allwinn, Regina; Cinatl, J

    2006-06-01

    In 1997, the avian influenza A subtype H5N1 that caused big outbreaks of fowl pest in mass poultry farming had emerged in Hong Kong. Its spread throughout Eurasia had given rise to concerns in terms of the possible imminence of the next human influenza pandemic. In this article, epidemiological and virological arguments supporting or declining this fear are outlined and discussed with regard to viral infectivity and pathogenicity.

  11. Simultaneous subtyping and pathotyping of avian influenza viruses in chickens in Taiwan using reverse transcription loop-mediated isothermal amplification and microarray

    PubMed Central

    WANG, Lih-Chiann; HUANG, Dean; CHEN, Hui-Wen

    2016-01-01

    The H6N1 avian influenza virus has circulated in Taiwan for more than 40 years. The sporadic activity of low pathogenic H5N2 virus has been noted since 2003, and highly pathogenic H5N2 avian influenza virus has been detected since 2008. Ressortant viruses between H6N1 and H5N2 viruses have become established and enzootic in chickens throughout Taiwan. Outbreaks caused by Novel highly pathogenic H5 avian influenza viruses whose HA genes were closely related to that of the H5N8 virus isolated from ducks in Korea in 2014 were isolated from outbreaks in Taiwan since early 2015. The avian influenza virus infection status is becoming much more complicated in chickens in Taiwan. This necessitates a rapid and simple approach to detect and differentiate the viruses that prevail. H6N1, H5N2 and novel H5 viruses were simultaneously subtyped and pathotyped in this study using reverse transcription loop-mediated isothermal amplification and microarray, with detection limits of 10°, 101 and 10° viral copy numbers, respectively. The microarray signals were read by the naked eye with no expensive equipment needed. The method developed in this study could greatly improve avian influenza virus surveillance efficiency. PMID:27086860

  12. Simultaneous subtyping and pathotyping of avian influenza viruses in chickens in Taiwan using reverse transcription loop-mediated isothermal amplification and microarray.

    PubMed

    Wang, Lih-Chiann; Huang, Dean; Chen, Hui-Wen

    2016-09-01

    The H6N1 avian influenza virus has circulated in Taiwan for more than 40 years. The sporadic activity of low pathogenic H5N2 virus has been noted since 2003, and highly pathogenic H5N2 avian influenza virus has been detected since 2008. Ressortant viruses between H6N1 and H5N2 viruses have become established and enzootic in chickens throughout Taiwan. Outbreaks caused by Novel highly pathogenic H5 avian influenza viruses whose HA genes were closely related to that of the H5N8 virus isolated from ducks in Korea in 2014 were isolated from outbreaks in Taiwan since early 2015. The avian influenza virus infection status is becoming much more complicated in chickens in Taiwan. This necessitates a rapid and simple approach to detect and differentiate the viruses that prevail. H6N1, H5N2 and novel H5 viruses were simultaneously subtyped and pathotyped in this study using reverse transcription loop-mediated isothermal amplification and microarray, with detection limits of 10°, 10(1) and 10° viral copy numbers, respectively. The microarray signals were read by the naked eye with no expensive equipment needed. The method developed in this study could greatly improve avian influenza virus surveillance efficiency.

  13. Coexistence of Avian Influenza Virus H10 and H9 Subtypes among Chickens in Live Poultry Markets during an Outbreak of Infection with a Novel H10N8 Virus in Humans in Nanchang, China.

    PubMed

    Hu, Maohong; Li, Xiaodan; Ni, Xiansheng; Wu, Jingwen; Gao, Rongbao; Xia, Wen; Wang, Dayan; He, Fenglan; Chen, Shengen; Liu, Yangqing; Guo, Shuangli; Li, Hui; Shu, Yuelong; Bethel, Jeffrey W; Liu, Mingbin; Moore, Justin B; Chen, Haiying

    2015-01-01

    Infection with the novel H10N8 virus in humans has raised concerns about its pandemic potential worldwide. We report the results of a cross-sectional study of avian influenza viruses (AIVs) in live poultry markets (LPMs) in Nanchang, China, after the first human case of H10N8 virus infection was reported in the city. A total of 201 specimens tested positive for AIVs among 618 samples collected from 24 LPMs in Nanchang from December 2013 to January 2014. We found that the LPMs were heavily contaminated by AIVs, with H9, H10, and H5 being the predominant subtypes and more than half of the LPMs providing samples that were positive for the H10 subtype. Moreover, the coexistence of different subtypes was common in LPMs. Of the 201 positive samples, 20.9% (42/201) had mixed infections with AIVs of different HA subtypes. Of the 42 mixed infections, 50% (21/42) showed the coexistence of the H9 and H10 subtypes, with or without H5, and were from chicken samples. This indicated that the H10N8 virus probably originated from segment reassortment of the H9 and H10 subtypes.

  14. Characterization of Avian Influenza and Newcastle Disease Viruses from Poultry in Libya.

    PubMed

    Kammon, Abdulwahab; Heidari, Alireza; Dayhum, Abdunaser; Eldaghayes, Ibrahim; Sharif, Monier; Monne, Isabela; Cattoli, Giovanni; Asheg, Abdulatif; Farhat, Milad; Kraim, Elforjani

    2015-09-01

    On March 2013, the Libyan poultry industry faced severe outbreaks due to mixed infections of APMV-1 (Newcastle disease) and low pathogenic avian influenza (AI) of the H9N2 subtype which were causing high mortality and great economic losses. APMV-1 and H9N2 were isolated and characterized. Genetic sequencing of the APMV-1/chicken/Libya/13VIR/ 7225-1/2013 isolate revealed the presence of a velogenic APMV-1 belonging to lineage 5 (GRRRQKR*F Lin.5) or genotype VII in class II, according to the nomenclature in use. Three AI viruses of the H9N2 subtype, namely A/avian/Libya/13VIR7225-2/2013, A/avian/Libya/13VIR7225-3/2013, and A/avian/Libya/13VIR7225-5/2013, were isolated and found to belong to the G1 lineage. Analysis of amino acid sequences showed that the analyzed H9N2 viruses contained the amino acid Leu at position 226 (H3 numbering) at the receptor binding site of the HA, responsible for human virus-like receptor specificity. On March 2014, an outbreak of highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was diagnosed in a backyard poultry farm in an eastern region of Libya. The H5N1 isolate (A/chicken/Libya/14VIR2749-16/2014) was detected by real time RT-PCR (rRT-PCR). Genetic characterization of the HA gene revealed that the identified subtype was highly pathogenic, belonged to the 2.2.1 lineage, and clustered with recent Egyptian viruses. This study revealed the presence of a velogenic APMV-1 genotype and of two influenza subtypes, namely HPAI H5N1 and H9N2, which are of major interest for public and animal health. Considering these findings, more investigations must be undertaken to establish and implement adequate influenza surveillance programs; this would allow better study of the epidemiology of APMV-1 genotype VII in Libya and evaluation of the current vaccination strategies.

  15. Phylogenetic analysis of hemagglutinin and neuraminidase genes of highly pathogenic avian influenza H5N1 Egyptian strains isolated from 2006 to 2008 indicates heterogeneity with multiple distinct sublineages

    USDA-ARS?s Scientific Manuscript database

    The Eurasian lineage H5N1 Highly pathogenic avian influenza (HPAI) virus caused widespread outbreaks in Egypt in 2006 and eventually become enzootic in poultry. Although outbreaks have a seasonal pattern with most occurring during the cooler winter months, it remains unclear if this seasonality ref...

  16. Immediate early responses of avian tracheal epithelial cells to infection with highly pathogenic avian influenza

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic (HP) avian influenza viruses (AIV) present an on going threat to the U.S. poultry industry. In order to develop new AIV control strategies it is necessary to understand the underlying mechanism of viral infection. Because the early events of AIV infection can occur on tracheal ep...

  17. Avian influenza at both ends of a migratory flyway: characterizing viral genomic diversity to optimize surveillance plans for North America

    USGS Publications Warehouse

    Pearce, John M.; Ramey, Andrew M.; Flint, Paul L.; Koehler, Anson V.; Fleskes, Joseph P.; Franson, J. Christian; Hall, Jeffrey S.; Derksen, Dirk V.; Ip, Hon S.

    2009-01-01

    Although continental populations of avian influenza viruses are genetically distinct, transcontinental reassortment in low pathogenic avian influenza (LPAI) viruses has been detected in migratory birds. Thus, genomic analyses of LPAI viruses could serve as an approach to prioritize species and regions targeted by North American surveillance activities for foreign origin highly pathogenic avian influenza (HPAI). To assess the applicability of this approach, we conducted a phylogenetic and population genetic analysis of 68 viral genomes isolated from the northern pintail (Anas acuta) at opposite ends of the Pacific migratory flyway in North America. We found limited evidence for Asian LPAI lineages on wintering areas used by northern pintails in California in contrast to a higher frequency on breeding locales of Alaska. Our results indicate that the number of Asian LPAI lineages observed in Alaskan northern pintails, and the nucleotide composition of LPAI lineages, is not maintained through fall migration. Accordingly, our data indicate that surveillance of Pacific Flyway northern pintails to detect foreign avian influenza viruses would be most effective in Alaska. North American surveillance plans could be optimized through an analysis of LPAI genomics from species that demonstrate evolutionary linkages with European or Asian lineages and in regions that have overlapping migratory flyways with areas of HPAI outbreaks.

  18. Avian influenza at both ends of a migratory flyway: characterizing viral genomic diversity to optimize surveillance plans for North America

    PubMed Central

    Pearce, John M; Ramey, Andrew M; Flint, Paul L; Koehler, Anson V; Fleskes, Joseph P; Franson, J Christian; Hall, Jeffrey S; Derksen, Dirk V; Ip, Hon S

    2009-01-01

    Although continental populations of avian influenza viruses are genetically distinct, transcontinental reassortment in low pathogenic avian influenza (LPAI) viruses has been detected in migratory birds. Thus, genomic analyses of LPAI viruses could serve as an approach to prioritize species and regions targeted by North American surveillance activities for foreign origin highly pathogenic avian influenza (HPAI). To assess the applicability of this approach, we conducted a phylogenetic and population genetic analysis of 68 viral genomes isolated from the northern pintail (Anas acuta) at opposite ends of the Pacific migratory flyway in North America. We found limited evidence for Asian LPAI lineages on wintering areas used by northern pintails in California in contrast to a higher frequency on breeding locales of Alaska. Our results indicate that the number of Asian LPAI lineages observed in Alaskan northern pintails, and the nucleotide composition of LPAI lineages, is not maintained through fall migration. Accordingly, our data indicate that surveillance of Pacific Flyway northern pintails to detect foreign avian influenza viruses would be most effective in Alaska. North American surveillance plans could be optimized through an analysis of LPAI genomics from species that demonstrate evolutionary linkages with European or Asian lineages and in regions that have overlapping migratory flyways with areas of HPAI outbreaks. PMID:25567891

  19. Novel avian-origin human influenza A(H7N9) can be transmitted between ferrets via respiratory droplets.

    PubMed

    Xu, Lili; Bao, Linlin; Deng, Wei; Dong, Libo; Zhu, Hua; Chen, Ting; Lv, Qi; Li, Fengdi; Yuan, Jing; Xiang, Zhiguang; Gao, Kai; Xu, Yanfeng; Huang, Lan; Li, Yanhong; Liu, Jiangning; Yao, Yanfeng; Yu, Pin; Li, Xiyan; Huang, Weijuan; Zhao, Xiang; Lan, Yu; Guo, Junfeng; Yong, Weidong; Wei, Qiang; Chen, Honglin; Zhang, Lianfeng; Qin, Chuan

    2014-02-15

    The outbreak of human infections caused by novel avian-origin influenza A(H7N9) in China since March 2013 underscores the need to better understand the pathogenicity and transmissibility of these viruses in mammals. In a ferret model, the pathogenicity of influenza A(H7N9) was found to be less than that of an influenza A(H5N1) strain but comparable to that of 2009 pandemic influenza A(H1N1), based on the clinical signs, mortality, virus dissemination, and results of histopathologic analyses. Influenza A(H7N9) could replicate in the upper and lower respiratory tract, the heart, the liver, and the olfactory bulb. It is worth noting that influenza A(H7N9) exhibited a low level of transmission between ferrets via respiratory droplets. There were 4 mutations in the virus isolated from the contact ferret: D678Y in the gene encoding PB2, R157K in the gene encoding hemagglutinin (H3 numbering), I109T in the gene encoding nucleoprotein, and T10I in the gene encoding neuraminidase. These data emphasized that avian-origin influenza A(H7N9) can be transmitted between mammals, highlighting its potential for human-to-human transmissibility.

  20. Human influenza is more effective than avian influenza at antiviral suppression in airway cells.

    PubMed

    Hsu, Alan Chen-Yu; Barr, Ian; Hansbro, Philip M; Wark, Peter A

    2011-06-01

    Airway epithelial cells are the initial site of infection with influenza viruses. The innate immune responses of airway epithelial cells to infection are important in limiting virus replication and spread. However, relatively little is known about the importance of this innate antiviral response to infection. Avian influenza viruses are a potential source of future pandemics; therefore, it is critical to examine the effectiveness of the host antiviral system to different influenza viruses. We used a human influenza (H3N2) and a low-pathogenic avian influenza (H11N9) to assess and compare the antiviral responses of Calu-3 cells. After infection, H3N2 replicated more effectively than the H11N9 in Calu-3 cells. This was not due to differential expression of sialic acid residues on Calu-3 cells, but was attributed to the interference of host antiviral responses by H3N2. H3N2 induced a delayed antiviral signaling and impaired type I and type III IFN induction compared with the H11N9. The gene encoding for nonstructural (NS) 1 protein was transfected into the bronchial epithelial cells (BECs), and the H3N2 NS1 induced a greater inhibition of antiviral responses compared with the H11N9 NS1. Although the low-pathogenic avian influenza virus was capable of infecting BECs, the human influenza virus replicated more effectively than avian influenza virus in BECs, and this was due to a differential ability of the two NS1 proteins to inhibit antiviral responses. This suggests that the subversion of human antiviral responses may be an important requirement for influenza viruses to adapt to the human host and cause disease.

  1. Incorporating risk communication into highly pathogenic avian influenza preparedness and response efforts.

    PubMed

    Voss, Shauna J; Malladi, Sasidhar; Sampedro, Fernando; Snider, Tim; Goldsmith, Timothy; Hueston, William D; Lauer, Dale C; Halvorson, David A

    2012-12-01

    A highly pathogenic avian influenza (HPAI) outbreak in the United States will initiate a federal emergency response effort that will consist of disease control and eradication efforts, including quarantine and movement control measures. These movement control measures will not only apply to live animals but also to animal products. However, with current egg industry "just-in-time" production practices, limited storage is available to hold eggs. As a result, stop movement orders can have significant unintended negative consequences, including severe disruptions to the food supply chain. Because stakeholders' perceptions of risk vary, waiting to initiate communication efforts until an HPAI event occurs can hinder disease control efforts, including the willingness of producers to comply with the response, and also can affect consumers' demand for the product. A public-private-academic partnership was formed to assess actual risks involved in the movement of egg industry products during an HPAI event through product specific, proactive risk assessments. The risk analysis process engaged a broad representation of stakeholders and promoted effective risk management and communication strategies before an HPAI outbreak event. This multidisciplinary team used the risk assessments in the development of the United States Department of Agriculture, Highly Pathogenic Avian Influenza Secure Egg Supply Plan, a comprehensive response plan that strives to maintain continuity of business. The collaborative approach that was used demonstrates how a proactive risk communication strategy that involves many different stakeholders can be valuable in the development of a foreign animal disease response plan and build working relationships, trust, and understanding.

  2. Circulating avian influenza viruses closely related to the 1918 virus have pandemic potential

    PubMed Central

    Watanabe, Tokiko; Zhong, Gongxun; Russell, Colin A.; Nakajima, Noriko; Hatta, Masato; Hanson, Anthony; McBride, Ryan; Burke, David F.; Takahashi, Kenta; Fukuyama, Satoshi; Tomita, Yuriko; Maher, Eileen A.; Watanabe, Shinji; Imai, Masaki; Neumann, Gabriele; Hasegawa, Hideki; Paulson, James C.; Smith, Derek J.; Kawaoka, Yoshihiro

    2014-01-01

    Summary Wild birds harbor a large gene pool of influenza A viruses that have the potential to cause influenza pandemics. Foreseeing and understanding this potential is important for effective surveillance. Our phylogenetic and geographic analyses revealed the global prevalence of avian influenza virus genes whose proteins differ only a few amino acids from the 1918 pandemic influenza virus, suggesting that 1918-like pandemic viruses may emerge in the future. To assess this risk, we generated and characterized a virus composed of avian influenza viral segments with high homology to the 1918 virus. This virus exhibited higher pathogenicity in mice and ferrets than an authentic avian influenza virus. Further, acquisition of seven amino acid substitutions in the viral polymerases and the hemagglutinin surface glycoprotein conferred respiratory droplet transmission to the 1918-like avian virus in ferrets, demonstrating that contemporary avian influenza viruses with 1918 virus-like proteins may have pandemic potential. PMID:24922572

  3. Circulating avian influenza viruses closely related to the 1918 virus have pandemic potential.

    PubMed

    Watanabe, Tokiko; Zhong, Gongxun; Russell, Colin A; Nakajima, Noriko; Hatta, Masato; Hanson, Anthony; McBride, Ryan; Burke, David F; Takahashi, Kenta; Fukuyama, Satoshi; Tomita, Yuriko; Maher, Eileen A; Watanabe, Shinji; Imai, Masaki; Neumann, Gabriele; Hasegawa, Hideki; Paulson, James C; Smith, Derek J; Kawaoka, Yoshihiro

    2014-06-11

    Wild birds harbor a large gene pool of influenza A viruses that have the potential to cause influenza pandemics. Foreseeing and understanding this potential is important for effective surveillance. Our phylogenetic and geographic analyses revealed the global prevalence of avian influenza virus genes whose proteins differ only a few amino acids from the 1918 pandemic influenza virus, suggesting that 1918-like pandemic viruses may emerge in the future. To assess this risk, we generated and characterized a virus composed of avian influenza viral segments with high homology to the 1918 virus. This virus exhibited pathogenicity in mice and ferrets higher than that in an authentic avian influenza virus. Further, acquisition of seven amino acid substitutions in the viral polymerases and the hemagglutinin surface glycoprotein conferred respiratory droplet transmission to the 1918-like avian virus in ferrets, demonstrating that contemporary avian influenza viruses with 1918 virus-like proteins may have pandemic potential.

  4. Detection of Evolutionarily Distinct Avian Influenza A Viruses in Antarctica

    PubMed Central

    Vijaykrishna, Dhanasekaran; Butler, Jeffrey; Baas, Chantal; Maurer-Stroh, Sebastian; Silva-de-la-Fuente, M. Carolina; Medina-Vogel, Gonzalo; Olsen, Bjorn; Kelso, Anne; Barr, Ian G.; González-Acuña, Daniel

    2014-01-01

    ABSTRACT Distinct lineages of avian influenza viruses (AIVs) are harbored by spatially segregated birds, yet significant surveillance gaps exist around the globe. Virtually nothing is known from the Antarctic. Using virus culture, molecular analysis, full genome sequencing, and serology of samples from Adélie penguins in Antarctica, we confirmed infection by H11N2 subtype AIVs. Their genetic segments were distinct from all known contemporary influenza viruses, including South American AIVs, suggesting spatial separation from other lineages. Only in the matrix and polymerase acidic gene phylogenies did the Antarctic sequences form a sister relationship to South American AIVs, whereas distant phylogenetic relationships were evident in all other gene segments. Interestingly, their neuraminidase genes formed a distant relationship to all avian and human influenza lineages, and the polymerase basic 1 and polymerase acidic formed a sister relationship to the equine H3N8 influenza virus lineage that emerged during 1963 and whose avian origins were previously unknown. We also estimated that each gene segment had diverged for 49 to 80 years from its most closely related sequences, highlighting a significant gap in our AIV knowledge in the region. We also show that the receptor binding properties of the H11N2 viruses are predominantly avian and that they were unable to replicate efficiently in experimentally inoculated ferrets, suggesting their continuous evolution in avian hosts. These findings add substantially to our understanding of both the ecology and the intra- and intercontinental movement of Antarctic AIVs and highlight the potential risk of an incursion of highly pathogenic AIVs into this fragile environment. PMID:24803521

  5. Avian vacuolar myelinopathy outbreaks at a southeastern reservoir.

    PubMed

    Fischer, John R; Lewis-Weis, Lynn A; Tate, Cynthia M; Gaydos, Joseph K; Gerhold, Richard W; Poppenga, Robert H

    2006-07-01

    Avian vacuolar myelinopathy (AVM) is a neurologic disease of unknown etiology that affects bald eagles (Haliaeetus leucocephalus), American coots (Fulica americana), and several species of waterfowl. An unidentified neurotoxin is suspected as the cause of AVM, which has been documented at several reservoirs in the southeastern United States. We conducted diagnostic and epidemiologic studies annually during October-March from 1998-2004 at Clarks Hill/Strom Thurmond Lake on the Georgia/South Carolina border to better understand the disease. Avian vacuolar myelinopathy was confirmed or suspected as the cause of morbidity and mortality of 28 bald eagles, 16 Canada geese (Branta canadensis), six American coots, two great-horned owls (Bubo virginianus), and one killdeer (Charadrius vociferus). Active surveillance during the outbreaks yielded annual average prevalence of vacuolar lesions in 17-94% of coots, but not in 10 beavers (Castor canadensis), four raccoons (Procyon lotor), and one gray fox (Urocyon cinereoargenteus) collected for the study. Brain lesions were not apparent in 30 Canada geese collected and examined in June 2002. The outbreaks at this location from 1998-2004 represent the most significant AVM-related bald eagle mortality since the Arkansas epornitics of 1994-95 and 1996-97, as well as the first confirmation of the disease in members of Strigiformes and Charadriiformes.

  6. High accumulation in tobacco seeds of hemagglutinin antigen from avian (H5N1) influenza.

    PubMed

    Ceballo, Yanaysi; Tiel, Kenia; López, Alina; Cabrera, Gleysin; Pérez, Marlene; Ramos, Osmany; Rosabal, Yamilka; Montero, Carlos; Menassa, Rima; Depicker, Ann; Hernández, Abel

    2017-10-06

    Tobacco seeds can be used as a cost effective system for production of recombinant vaccines. Avian influenza is an important respiratory pathogen that causes a high degree of mortality and becomes a serious threat for the poultry industry. A safe vaccine against avian flu produced at low cost could help to prevent future outbreaks. We have genetically engineered tobacco plants to express extracellular domain of hemagglutinin protein from H5N1 avian influenza virus as an inexpensive alternative for production purposes. Two regulatory sequences of seed storage protein genes from Phaseolus vulgaris L. were used to direct the expression, yielding 3.0 mg of the viral antigen per g of seeds. The production and stability of seed-produced recombinant HA protein was characterized by different molecular techniques. The aqueous extract of tobacco seed proteins was used for subcutaneous immunization of chickens, which developed antibodies that inhibited the agglutination of erythrocytes after the second application of the antigen. The feasibility of using tobacco seeds as a vaccine carrier is discussed.

  7. Detection of evolutionarily distinct avian influenza a viruses in antarctica.

    PubMed

    Hurt, Aeron C; Vijaykrishna, Dhanasekaran; Butler, Jeffrey; Baas, Chantal; Maurer-Stroh, Sebastian; Silva-de-la-Fuente, M Carolina; Medina-Vogel, Gonzalo; Olsen, Bjorn; Kelso, Anne; Barr, Ian G; González-Acuña, Daniel

    2014-05-06

    ABSTRACT Distinct lineages of avian influenza viruses (AIVs) are harbored by spatially segregated birds, yet significant surveillance gaps exist around the globe. Virtually nothing is known from the Antarctic. Using virus culture, molecular analysis, full genome sequencing, and serology of samples from Adélie penguins in Antarctica, we confirmed infection by H11N2 subtype AIVs. Their genetic segments were distinct from all known contemporary influenza viruses, including South American AIVs, suggesting spatial separation from other lineages. Only in the matrix and polymerase acidic gene phylogenies did the Antarctic sequences form a sister relationship to South American AIVs, whereas distant phylogenetic relationships were evident in all other gene segments. Interestingly, their neuraminidase genes formed a distant relationship to all avian and human influenza lineages, and the polymerase basic 1 and polymerase acidic formed a sister relationship to the equine H3N8 influenza virus lineage that emerged during 1963 and whose avian origins were previously unknown. We also estimated that each gene segment had diverged for 49 to 80 years from its most closely related sequences, highlighting a significant gap in our AIV knowledge in the region. We also show that the receptor binding properties of the H11N2 viruses are predominantly avian and that they were unable to replicate efficiently in experimentally inoculated ferrets, suggesting their continuous evolution in avian hosts. These findings add substantially to our understanding of both the ecology and the intra- and intercontinental movement of Antarctic AIVs and highlight the potential risk of an incursion of highly pathogenic AIVs into this fragile environment. IMPORTANCE Avian influenza viruses (AIVs) are typically maintained and spread by migratory birds, resulting in the existence of distinctly different viruses around the world. However, AIVs have not previously been detected in Antarctica. In this study, we

  8. Mapping the risk of avian influenza in wild birds in the US.

    PubMed

    Fuller, Trevon L; Saatchi, Sassan S; Curd, Emily E; Toffelmier, Erin; Thomassen, Henri A; Buermann, Wolfgang; DeSante, David F; Nott, Mark P; Saracco, James F; Ralph, Cj; Alexander, John D; Pollinger, John P; Smith, Thomas B

    2010-06-23

    Avian influenza virus (AIV) is an important public health issue because pandemic influenza viruses in people have contained genes from viruses that infect birds. The H5 and H7 AIV subtypes have periodically mutated from low pathogenicity to high pathogenicity form. Analysis of the geographic distribution of AIV can identify areas where reassortment events might occur and how high pathogenicity influenza might travel if it enters wild bird populations in the US. Modelling the number of AIV cases is important because the rate of co-infection with multiple AIV subtypes increases with the number of cases and co-infection is the source of reassortment events that give rise to new strains of influenza, which occurred before the 1968 pandemic. Aquatic birds in the orders Anseriformes and Charadriiformes have been recognized as reservoirs of AIV since the 1970s. However, little is known about influenza prevalence in terrestrial birds in the order Passeriformes. Since passerines share the same habitat as poultry, they may be more effective transmitters of the disease to humans than aquatic birds. We analyze 152 passerine species including the American Robin (Turdus migratorius) and Swainson's Thrush (Catharus ustulatus). We formulate a regression model to predict AIV cases throughout the US at the county scale as a function of 12 environmental variables, sampling effort, and proximity to other counties with influenza outbreaks. Our analysis did not distinguish between types of influenza, including low or highly pathogenic forms. Analysis of 13,046 cloacal samples collected from 225 bird species in 41 US states between 2005 and 2008 indicates that the average prevalence of influenza in passerines is greater than the prevalence in eight other avian orders. Our regression model identifies the Great Plains and the Pacific Northwest as high-risk areas for AIV. Highly significant predictors of AIV include the amount of harvested cropland and the first day of the year when a

  9. Mapping the risk of avian influenza in wild birds in the US

    PubMed Central

    2010-01-01

    Background Avian influenza virus (AIV) is an important public health issue because pandemic influenza viruses in people have contained genes from viruses that infect birds. The H5 and H7 AIV subtypes have periodically mutated from low pathogenicity to high pathogenicity form. Analysis of the geographic distribution of AIV can identify areas where reassortment events might occur and how high pathogenicity influenza might travel if it enters wild bird populations in the US. Modelling the number of AIV cases is important because the rate of co-infection with multiple AIV subtypes increases with the number of cases and co-infection is the source of reassortment events that give rise to new strains of influenza, which occurred before the 1968 pandemic. Aquatic birds in the orders Anseriformes and Charadriiformes have been recognized as reservoirs of AIV since the 1970s. However, little is known about influenza prevalence in terrestrial birds in the order Passeriformes. Since passerines share the same habitat as poultry, they may be more effective transmitters of the disease to humans than aquatic birds. We analyze 152 passerine species including the American Robin (Turdus migratorius) and Swainson's Thrush (Catharus ustulatus). Methods We formulate a regression model to predict AIV cases throughout the US at the county scale as a function of 12 environmental variables, sampling effort, and proximity to other counties with influenza outbreaks. Our analysis did not distinguish between types of influenza, including low or highly pathogenic forms. Results Analysis of 13,046 cloacal samples collected from 225 bird species in 41 US states between 2005 and 2008 indicates that the average prevalence of influenza in passerines is greater than the prevalence in eight other avian orders. Our regression model identifies the Great Plains and the Pacific Northwest as high-risk areas for AIV. Highly significant predictors of AIV include the amount of harvested cropland and the first

  10. Benign Acute Childhood Myositis During Influenza B Outbreak.

    PubMed

    Szenborn, Leszek; Toczek-Kubicka, K; Zaryczański, J; Marchewka-Kowalik, M; Miśkiewicz, K; Kuchar, E

    2017-08-10

    Benign acute childhood myositis (BACM) is a syndrome classically occurring in children during the convalescent phase from a febrile upper respiratory tract infection, most commonly after influenza B. BACM can cause difficulty walking due to severe calf pain. Laboratory results show increased serum creatinine kinase and AST. Although alarming, BACM is self-limiting with symptoms disappearing within a week. Herein, we described a case series of BCAM in children in two cities in Poland during the influenza outbreaks in 2012/2013 and 2014/2015. We discussed the presentation and the clinical workup and examinations of the myositic syndrome. In addition, we evaluated the association of BACM with influenza B. We detected specific IgG against influenza B virus in 83% of the children diagnosed with BCAM. Reports from the National Institute of Public Health - National Institute of Hygiene in Warsaw, Poland confirmed a high rate of influenza B cases during both epidemic seasons in question.

  11. Movement and contact patterns of long-distance free-grazing ducks and avian influenza persistence in Vietnam

    PubMed Central

    Dinh, Tung Xuan; Nhu, Thu Van; Pham, Long Thanh; Newman, Scott; Nguyen, Thuy Thi Thanh; Pfeiffer, Dirk Udo; Vergne, Timothée

    2017-01-01

    Presence of ducks, and in particular of free-grazing ducks, has consistently been shown to be one of the most important risk factors for highly pathogenic avian influenza outbreaks which has compromised poultry production in South-East Asia since the early 2000s and continues to threaten public health, farmers’ livelihood and food security. Although free-grazing duck production has been practised for decades in South-East Asia, there are few published studies describing this production system, which is suspected to play an important role in the maintenance of avian influenza viruses. This study aimed at describing quantitatively the long-distance free-grazing duck production system in South Vietnam, characterising the movement and contact patterns of the duck flocks, and identifying potential associations between farming practices, movement and contact patterns and the circulation of avian influenza viruses. We conducted interviews among stakeholders involved in the free-grazing duck production system (duck farmers, transporters and rice paddy owners) in combination with a virological cross-sectional survey in South Vietnam. Results show that both direct and indirect contacts between free-grazing duck flocks were frequent and diverse. The flocks were transported extensively across district and province boundaries, mainly by boat but also by truck or on foot. A third of the investigated flocks had a positive influenza A virology test, indicating current circulation of avian influenza viruses, but none were positive for H5 subtypes. The age and size of the flock as well as its location at the time of sampling were associated with the risk of influenza A circulation in the flocks. These findings should be considered when developing risk assessment models of influenza virus spread aimed at informing the development of improved biosecurity practices leading to enhanced animal health, sustainable animal production and reliable income for farmers. PMID:28632789

  12. Movement and contact patterns of long-distance free-grazing ducks and avian influenza persistence in Vietnam.

    PubMed

    Meyer, Anne; Dinh, Tung Xuan; Nhu, Thu Van; Pham, Long Thanh; Newman, Scott; Nguyen, Thuy Thi Thanh; Pfeiffer, Dirk Udo; Vergne, Timothée

    2017-01-01

    Presence of ducks, and in particular of free-grazing ducks, has consistently been shown to be one of the most important risk factors for highly pathogenic avian influenza outbreaks which has compromised poultry production in South-East Asia since the early 2000s and continues to threaten public health, farmers' livelihood and food security. Although free-grazing duck production has been practised for decades in South-East Asia, there are few published studies describing this production system, which is suspected to play an important role in the maintenance of avian influenza viruses. This study aimed at describing quantitatively the long-distance free-grazing duck production system in South Vietnam, characterising the movement and contact patterns of the duck flocks, and identifying potential associations between farming practices, movement and contact patterns and the circulation of avian influenza viruses. We conducted interviews among stakeholders involved in the free-grazing duck production system (duck farmers, transporters and rice paddy owners) in combination with a virological cross-sectional survey in South Vietnam. Results show that both direct and indirect contacts between free-grazing duck flocks were frequent and diverse. The flocks were transported extensively across district and province boundaries, mainly by boat but also by truck or on foot. A third of the investigated flocks had a positive influenza A virology test, indicating current circulation of avian influenza viruses, but none were positive for H5 subtypes. The age and size of the flock as well as its location at the time of sampling were associated with the risk of influenza A circulation in the flocks. These findings should be considered when developing risk assessment models of influenza virus spread aimed at informing the development of improved biosecurity practices leading to enhanced animal health, sustainable animal production and reliable income for farmers.

  13. Living with avian FLU--Persistence of the H5N1 highly pathogenic avian influenza virus in Egypt.

    PubMed

    Njabo, Kevin Yana; Zanontian, Linda; Sheta, Basma N; Samy, Ahmed; Galal, Shereen; Schoenberg, Frederic Paik; Smith, Thomas B

    2016-05-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) continues to cause mortality in poultry and threaten human health at a panzootic scale in Egypt since it was reported in 2006. While the early focus has been in Asia, recent evidence suggests that Egypt is an emerging epicenter for the disease. Despite control measures, epizootic transmission of the disease continues. Here, we investigate the persistence of HPAIV across wild passerine birds and domestic poultry between 2009 and 2012 and the potential risk for continuous viral transmission in Egypt. We use a new weighted cross J-function to investigate the degree and spatial temporal nature of the clustering between sightings of infected birds of different types, and the risk of infection associated with direct contact with infected birds. While we found no infection in wild birds, outbreaks occurred year round between 2009 and 2012, with a positive interaction between chickens and ducks. The disease was more present in the years 2010 and 2011 coinciding with the political unrest in the country. Egypt thus continues to experience endemic outbreaks of avian influenza HPAIV in poultry and an increased potential risk of infection to other species including humans. With the current trends, the elimination of the HPAIV infection is highly unlikely without a complete revamp of current policies. The application of spatial statistics techniques to these types of data may help us to understand the characteristics of the disease and may subsequently allow practitioners to explore possible preventive solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. [Present situation and control on emerging respiratory infectious diseases such as SARS and avian influenza].

    PubMed

    Okabe, Nobuhiko

    2005-11-01

    Infectious diseases have been recognized again due to appearing of emerging and re-emerging infectious diseases in the world. Most of them occur not only in developing countries but also in developed countries, and in Asian region. The pathogen is mainly virus and most of them are suspected zoonotic origin. SARS emerged in the world abruptly and disappeared in 2003. We have had many lessons and learn on control measures, public health, economic impacts, human rights, international cooperation and infectious diseases. The outbreaks of avian influenza among fowls have been occurred since 2004, and some fatal human cases infected with avian influenza virus are detected in Viet Nam, Thailand, Cambodia and Indonesia. Although the total number of human cases are still limited and human to human transmission mode is not yet detected, it has been concerned the possibility to shift new types of influenza for human as pandemic. It is necessary to recognize correctly on existing of infectious diseases, to enhance surveillance, to call partnerships among several sectors such as medical institutes, medical education institutes, research institutes and public health departments. Further, infectious disease control should tackle in global level.

  15. Detecting Spread of Avian Influenza A(H7N9) Virus Beyond China

    PubMed Central

    Havers, Fiona; Iuliano, A. Danielle; Davis, C. Todd; Sar, Borann; Sovann, Ly; Chin, Savuth; Corwin, Andrew L.; Vongphrachanh, Phengta; Douangngeun, Bounlom; Lindblade, Kim A.; Chittaganpitch, Malinee; Kaewthong, Viriya; Kile, James C.; Nguyen, Hien T.; Pham, Dong V.; Donis, Ruben O.; Widdowson, Marc-Alain

    2015-01-01

    During February 2013–March 2015, a total of 602 human cases of low pathogenic avian influenza A(H7N9) were reported; no autochthonous cases were reported outside mainland China. In contrast, since highly pathogenic avian influenza A(H5N1) reemerged during 2003 in China, 784 human cases in 16 countries and poultry outbreaks in 53 countries have been reported. Whether the absence of reported A(H7N9) outside mainland China represents lack of spread or lack of detection remains unclear. We compared epidemiologic and virologic features of A(H5N1) and A(H7N9) and used human and animal influenza surveillance data collected during April 2013–May 2014 from 4 Southeast Asia countries to assess the likelihood that A(H7N9) would have gone undetected during 2014. Surveillance in Vietnam and Cambodia detected human A(H5N1) cases; no A(H7N9) cases were detected in humans or poultry in Southeast Asia. Although we cannot rule out the possible spread of A(H7N9), substantial spread causing severe disease in humans is unlikely. PMID:25897654

  16. Intercontinental genetic structure and gene flow in Dunlin (Calidris alpina), a potential vector of avian influenza

    PubMed Central

    Miller, Mark P; Haig, Susan M; Mullins, Thomas D; Ruan, Luzhang; Casler, Bruce; Dondua, Alexei; Gates, H River; Johnson, J Matthew; Kendall, Steve; Tomkovich, Pavel S; Tracy, Diane; Valchuk, Olga P; Lanctot, Richard B

    2015-01-01

    Waterfowl (Anseriformes) and shorebirds (Charadriiformes) are the most common wild vectors of influenza A viruses. Due to their migratory behavior, some may transmit disease over long distances. Migratory connectivity studies can link breeding and nonbreeding grounds while illustrating potential interactions among populations that may spread diseases. We investigated Dunlin (Calidris alpina), a shorebird with a subspecies (C. a. arcticola) that migrates from nonbreeding areas endemic to avian influenza in eastern Asia to breeding grounds in northern Alaska. Using microsatellites and mitochondrial DNA, we illustrate genetic structure among six subspecies: C. a. arcticola,C. a. pacifica,C. a. hudsonia,C. a. sakhalina,C. a. kistchinski, and C. a. actites. We demonstrate that mitochondrial DNA can help distinguish C. a. arcticola on the Asian nonbreeding grounds with >70% accuracy depending on their relative abundance, indicating that genetics can help determine whether C. a. arcticola occurs where they may be exposed to highly pathogenic avian influenza (HPAI) during outbreaks. Our data reveal asymmetric intercontinental gene flow, with some C. a. arcticola short-stopping migration to breed with C. a. pacifica in western Alaska. Because C. a. pacifica migrates along the Pacific Coast of North America, interactions between these subspecies and other taxa provide route for transmission of HPAI into other parts of North America. PMID:25685191

  17. Detecting Spread of Avian Influenza A(H7N9) Virus Beyond China.

    PubMed

    Millman, Alexander J; Havers, Fiona; Iuliano, A Danielle; Davis, C Todd; Sar, Borann; Sovann, Ly; Chin, Savuth; Corwin, Andrew L; Vongphrachanh, Phengta; Douangngeun, Bounlom; Lindblade, Kim A; Chittaganpitch, Malinee; Kaewthong, Viriya; Kile, James C; Nguyen, Hien T; Pham, Dong V; Donis, Ruben O; Widdowson, Marc-Alain

    2015-05-01

    During February 2013-March 2015, a total of 602 human cases of low pathogenic avian influenza A(H7N9) were reported; no autochthonous cases were reported outside mainland China. In contrast, since highly pathogenic avian influenza A(H5N1) reemerged during 2003 in China, 784 human cases in 16 countries and poultry outbreaks in 53 countries have been reported. Whether the absence of reported A(H7N9) outside mainland China represents lack of spread or lack of detection remains unclear. We compared epidemiologic and virologic features of A(H5N1) and A(H7N9) and used human and animal influenza surveillance data collected during April 2013-May 2014 from 4 Southeast Asia countries to assess the likelihood that A(H7N9) would have gone undetected during 2014. Surveillance in Vietnam and Cambodia detected human A(H5N1) cases; no A(H7N9) cases were detected in humans or poultry in Southeast Asia. Although we cannot rule out the possible spread of A(H7N9), substantial spread causing severe disease in humans is unlikely.

  18. Intercontinental genetic structure and gene flow in Dunlin (Calidris alpina), a potential vector of avian influenza.

    PubMed

    Miller, Mark P; Haig, Susan M; Mullins, Thomas D; Ruan, Luzhang; Casler, Bruce; Dondua, Alexei; Gates, H River; Johnson, J Matthew; Kendall, Steve; Tomkovich, Pavel S; Tracy, Diane; Valchuk, Olga P; Lanctot, Richard B

    2015-02-01

    Waterfowl (Anseriformes) and shorebirds (Charadriiformes) are the most common wild vectors of influenza A viruses. Due to their migratory behavior, some may transmit disease over long distances. Migratory connectivity studies can link breeding and nonbreeding grounds while illustrating potential interactions among populations that may spread diseases. We investigated Dunlin (Calidris alpina), a shorebird with a subspecies (C. a. arcticola) that migrates from nonbreeding areas endemic to avian influenza in eastern Asia to breeding grounds in northern Alaska. Using microsatellites and mitochondrial DNA, we illustrate genetic structure among six subspecies: C. a. arcticola,C. a. pacifica,C. a. hudsonia,C. a. sakhalina,C. a. kistchinski, and C. a. actites. We demonstrate that mitochondrial DNA can help distinguish C. a. arcticola on the Asian nonbreeding grounds with >70% accuracy depending on their relative abundance, indicating that genetics can help determine whether C. a. arcticola occurs where they may be exposed to highly pathogenic avian influenza (HPAI) during outbreaks. Our data reveal asymmetric intercontinental gene flow, with some C. a. arcticola short-stopping migration to breed with C. a. pacifica in western Alaska. Because C. a. pacifica migrates along the Pacific Coast of North America, interactions between these subspecies and other taxa provide route for transmission of HPAI into other parts of North America.

  19. [An overview of surveillance of avian influenza viruses in wild birds].

    PubMed

    Zhu, Yun; Shi, Jing-Hong; Shu, Yue-Long

    2014-05-01

    Wild birds (mainly Anseriformes and Charadriiformes) are recognized as the natural reservoir of avian influenza viruses (AIVs). The long-term surveillance of AIVs in wild birds has been conducted in North America and Europe since 1970s. More and more surveillance data revealed that all the HA and NA subtypes of AIVs were identified in the wild ducks, shorebirds, and gulls, and the AIVs circulating in wild birds were implicated in the outbreaks of AIVs in poultry and humans. Therefore, the AIVs in wild birds pose huge threat to poultry industry and human health. To gain a better understanding of the ecology and epidemiology of AIVs in wild birds, we summarize the transmission of AIVs between wild birds, poultry, and humans, the main results of surveillance of AIVs in wild birds worldwide and methods for surveillance, and the types of samples and detection methods for AIVs in wild birds, which would be vital for the effective control of avian influenza and response to possible influenza pandemic.

  20. Avian influenza infection in birds: a challenge and opportunity for the poultry veterinarian.

    PubMed

    Capua, I; Alexander, D J

    2009-04-01

    Influenza A viruses infecting poultry can be divided into 2 groups. The extremely virulent viruses cause highly pathogenic avian influenza (HPAI), with flock mortality as great as 100%. These viruses have been restricted to subtypes H5 and H7, although not all H5 and H7 viruses cause HPAI. All other viruses cause a milder, primarily respiratory, disease (LPAI) unless exacerbated. Until recently, HPAI viruses were rarely isolated from wild birds, but for LPAI viruses, extremely great isolation rates have been recorded in surveillance studies. Influenza viruses may infect all types of domestic or captive birds in all areas of the world, with the frequency with which primary infections occur in any type of bird usually depending on the degree of contact of the bird with feral birds. Secondary spread is usually associated with human involvement, either by bird or bird product movement, or by transferring infective feces from infected to susceptible birds, but potentially wild birds could be involved. In recent years, the frequency of HPAI outbreaks appears to have increased, and there have been particularly costly outbreaks of HPAI in densely populated poultry areas in Italy, the Netherlands, and Canada. In each, millions of birds were slaughtered to bring the outbreaks under control. Since the 1990s, avian influenza infections attributable to 2 subtypes have been widespread in poultry across a large area of the world. The LPAI H9N2 virus appears to have spread across the whole of Asia in that time and has become endemic in poultry in many of the affected countries. However, these outbreaks have tended to be overshadowed by the H5N1 HPAI virus, which, although initially isolated in China, has now spread in poultry, wild birds, or both throughout Asia and into Europe and Africa, resulting in the death or culling of hundreds of millions of poultry and posing a significant zoonotic threat. To date, control methods seem to have been unsuccessful on the larger scale, and

  1. The impact of new epidemiological information on a risk analysis for the introduction of avian influenza viruses in imported poultry meat.

    PubMed

    Pharo, H J

    2003-01-01

    New Zealand has never experienced an outbreak of avian influenza, and the Ministry of Agriculture and Forestry has long been wary of the possibility of introducing high-pathogenicity avian influenza (HPAI) viruses in imported goods. Besides the potential threat posed to poultry, there are concerns that introduced viruses might have negative effects on already endangered native avian species. Under the framework of the World Trade Organization, the sanitary and phytosanitary (SPS) agreement requires member countries to base their sanitary measures for imported animal products on the Office International des Epizooties (OIE) standard or on a scientific assessment of risk. This paper presents the New Zealand experience with assessing the risk of avian influenza viruses in imported chicken meat and considers how the assessment of risk has changed in recent years as a result of the advances in understanding of the disease. The currently accepted view that low-pathogenicity avian influenza (LPAI) viruses are widespread and that they mutate to virulence after introduction into poultry has important implications concerning the appropriate definition for avian influenza viruses of regulatory concern and has possible implications concerning the significance of viruses present in this country.

  2. Sialic acid content in human saliva and anti-influenza activity against human and avian influenza viruses.

    PubMed

    Limsuwat, Nattavatchara; Suptawiwat, Ornpreya; Boonarkart, Chompunuch; Puthavathana, Pilaipan; Wiriyarat, Witthawat; Auewarakul, Prasert

    2016-03-01

    It was shown previously that human saliva has higher antiviral activity against human influenza viruses than against H5N1 highly pathogenic avian influenza viruses, and that the major anti-influenza activity was associated with sialic-acid-containing molecules. To further characterize the differential susceptibility to saliva among influenza viruses, seasonal influenza A and B virus, pandemic H1N1 virus, and 15 subtypes of avian influenza virus were tested for their susceptibility to human and chicken saliva. Human saliva showed higher hemagglutination inhibition (HI) and neutralization (NT) titers against seasonal influenza A virus and the pandemic H1N1 viruses than against influenza B virus and most avian influenza viruses, except for H9N2 and H12N9 avian influenza viruses, which showed high HI and NT titers. To understand the nature of sialic-acid-containing anti-influenza factors in human saliva, α2,3- and α2,6-linked sialic acid was measured in human saliva samples using a lectin binding and dot blot assay. α2,6-linked sialic acid was found to be more abundant than α2,3-linked sialic acid, and a seasonal H1N1 influenza virus bound more efficiently to human saliva than an H5N1 virus in a dot blot analysis. These data indicated that human saliva contains the sialic acid type corresponding to the binding preference of seasonal influenza viruses.

  3. Active surveillance of avian influenza viruses in Egyptian poultry, 2015.

    PubMed

    Kayed, A S; Kandeil, A; El Shesheny, R; Ali, M A; Kayali, G

    2016-10-02

    Surveillance for avian influenza viruses in Egyptian poultry has been conducted since 2009. Up to 2011, all the detected viruses were H5N1, and the overall prevalence was 5%. In 2011, H9N2 viruses were observed to be co-circulating and co-infecting the same hosts as H5N1 viruses. Since then, the detection rate has increased to around 10%. In the 2014-2015 winter season, H5N1 was circulating heavily in poultry flocks and caused an unprecedented number of human infections. In contrast, surveillance in the last quarter of 2015 indicated a near absence of H5N1 in Egyptian poultry. Surveillance for avian influenza viruses must continue in Egypt to monitor further developments in H5N1 circulation in poultry.

  4. Avian influenza vaccines against H5N1 'bird flu'.

    PubMed

    Li, Chengjun; Bu, Zhigao; Chen, Hualan

    2014-03-01

    H5N1 avian influenza viruses (AIVs) have spread widely to more than 60 countries spanning three continents. To control the disease, vaccination of poultry is implemented in many of the affected countries, especially in those where H5N1 viruses have become enzootic in poultry and wild birds. Recently, considerable progress has been made toward the development of novel avian influenza (AI) vaccines, especially recombinant virus vector vaccines and DNA vaccines. Here, we will discuss the recent advances in vaccine development and use against H5N1 AIV in poultry. Understanding the properties of the available, novel vaccines will allow for the establishment of rational vaccination protocols, which in turn will help the effective control and prevention of H5N1 AI.

  5. [From diagnosis to the detection of avian influenza virus].

    PubMed

    Wunderli, W

    2007-11-01

    Until now the avian influenza A (H5N1) virus is only adapted to birds. But even so infections in man are observed sporadically. Why is this possible and how big is the risk that the virus becomes fully adapted to man so that he can be transmitted easily from man to man. Two major mechanisms for the adaptation to a new host have been described: Adaptation by the accumulation of mutations in important places of the genome and adaptation through the exchange of genome segments between two different types of viruses. But there are indications that the adaptation is not linked to only one event. It is probably a multifactor event where its requirements are not all known or understood. Until now avian influenza is not adapted to man. Infection is primarily observed after close contact with infected birds or their contaminated secretions. It seems that the virus needs to reach the lower respiratory tract in order to be able to infect. The disease starts with the clinical symptoms of influenza but progresses rapidly involving primarily the lower respiratory tract causing sometimes live threatening complications. Because of the similarity of symptoms with normal flu laboratory testing is necessary to clarify the situation. Ideally a rapid test would give in a short time a result. Unfortunately this type of test shows insufficient sensitivity and for this reason is not recommended to screen suspect cases for avian influenza. For this reason the detection of the avian virus by RT-PCR in throat swabs is the method of choice in order to be able to confirm or exclude a suspect case.

  6. Surveillance of avian influenza viruses in Papua New Guinean poultry, June 2011 to April 2012.

    PubMed

    Jonduo, Marinjho; Wong, Sook-San; Kapo, Nime; Ominipi, Paskalis; Abdad, Mohammad; Siba, Peter; McKenzie, Pamela; Webby, Richard; Horwood, Paul

    2013-01-01

    We investigated the circulation of avian influenza viruses in poultry populations throughout Papua New Guinea to assess the risk to the poultry industry and human health. Oropharyngeal swabs, cloacal swabs and serum were collected from 537 poultry from 14 provinces of Papua New Guinea over an 11-month period (June 2011 through April 2012). Virological and serological investigations were undertaken to determine the prevalence of avian influenza viruses. Neither influenza A viruses nor antibodies were detected in any of the samples. This study demonstrated that avian influenza viruses were not circulating at detectable levels in poultry populations in Papua New Guinea during the sampling period. However, avian influenza remains a significant risk to Papua New Guinea due to the close proximity of countries having previously reported highly pathogenic avian influenza viruses and the low biosecurity precautions associated with the rearing of most poultry populations in the country.

  7. Low Pathogenic Avian Influenza Isolates from Wild Birds Replicate and Transmit via Contact in Ferrets without Prior Adaptation

    PubMed Central

    Humberd-Smith, Jennifer; Gordy, James T.; Bradley, Konrad C.; Steinhauer, David A.; Berghaus, Roy D.; Stallknecht, David E.; Howerth, Elizabeth W.; Tompkins, Stephen Mark

    2012-01-01

    Direct transmission of avian influenza viruses to mammals has become an increasingly investigated topic during the past decade; however, isolates that have been primarily investigated are typically ones originating from human or poultry outbreaks. Currently there is minimal comparative information on the behavior of the innumerable viruses that exist in the natural wild bird host. We have previously demonstrated the capacity of numerous North American avian influenza viruses isolated from wild birds to infect and induce lesions in the respiratory tract of mice. In this study, two isolates from shorebirds that were previously examined in mice (H1N9 and H6N1 subtypes) are further examined through experimental inoculations in the ferret with analysis of viral shedding, histopathology, and antigen localization via immunohistochemistry to elucidate pathogenicity and transmission of these viruses. Using sequence analysis and glycan binding analysis, we show that these avian viruses have the typical avian influenza binding pattern, with affinity for cell glycoproteins/glycolipids having terminal sialic acid (SA) residues with α 2,3 linkage [Neu5Ac(α2,3)Gal]. Despite the lack of α2,6 linked SA binding, these AIVs productively infected both the upper and lower respiratory tract of ferrets, resulting in nasal viral shedding and pulmonary lesions with minimal morbidity. Moreover, we show that one of the viruses is able to transmit to ferrets via direct contact, despite its binding affinity for α 2,3 linked SA residues. These results demonstrate that avian influenza viruses, which are endemic in aquatic birds, can potentially infect humans and other mammals without adaptation. Finally this work highlights the need for additional study of the wild bird subset of influenza viruses in regard to surveillance, transmission, and potential for reassortment, as they have zoonotic potential. PMID:22675507

  8. Low pathogenic avian influenza isolates from wild birds replicate and transmit via contact in ferrets without prior adaptation.

    PubMed

    Driskell, Elizabeth A; Pickens, Jennifer A; Humberd-Smith, Jennifer; Gordy, James T; Bradley, Konrad C; Steinhauer, David A; Berghaus, Roy D; Stallknecht, David E; Howerth, Elizabeth W; Tompkins, Stephen Mark

    2012-01-01

    Direct transmission of avian influenza viruses to mammals has become an increasingly investigated topic during the past decade; however, isolates that have been primarily investigated are typically ones originating from human or poultry outbreaks. Currently there is minimal comparative information on the behavior of the innumerable viruses that exist in the natural wild bird host. We have previously demonstrated the capacity of numerous North American avian influenza viruses isolated from wild birds to infect and induce lesions in the respiratory tract of mice. In this study, two isolates from shorebirds that were previously examined in mice (H1N9 and H6N1 subtypes) are further examined through experimental inoculations in the ferret with analysis of viral shedding, histopathology, and antigen localization via immunohistochemistry to elucidate pathogenicity and transmission of these viruses. Using sequence analysis and glycan binding analysis, we show that these avian viruses have the typical avian influenza binding pattern, with affinity for cell glycoproteins/glycolipids having terminal sialic acid (SA) residues with α 2,3 linkage [Neu5Ac(α2,3)Gal]. Despite the lack of α2,6 linked SA binding, these AIVs productively infected both the upper and lower respiratory tract of ferrets, resulting in nasal viral shedding and pulmonary lesions with minimal morbidity. Moreover, we show that one of the viruses is able to transmit to ferrets via direct contact, despite its binding affinity for α 2,3 linked SA residues. These results demonstrate that avian influenza viruses, which are endemic in aquatic birds, can potentially infect humans and other mammals without adaptation. Finally this work highlights the need for additional study of the wild bird subset of influenza viruses in regard to surveillance, transmission, and potential for reassortment, as they have zoonotic potential.

  9. An exploration of how perceptions of the risk of avian influenza in poultry relate to urbanization in Vietnam.

    PubMed

    Finucane, Melissa L; Nghiem, Tuyen; Saksena, Sumeet; Nguyen, Lam; Fox, Jefferson; Spencer, James H; Thau, Trinh Dinh

    2014-01-01

    This research examined how perceptions of outbreaks of highly pathogenic avian influenza (HPAI) subtype H5N1 in poultry are related to urbanization. Via in-depth interviews with village leaders, household farmers, and large farm operators in modern, transitional, and traditional communes in the north of Vietnam, we explored behaviors, attitudes, cultural values, and traditions that might amplify or attenuate HPAI outbreaks. We also explored conceptualizations of urbanization and its impacts on animal husbandry and disease outbreaks. Qualitative theme analyses identified the key impacts, factors related to HPAI outbreaks, and disease prevention and management strategies. The analyses also highlighted how urbanization improves some aspects of life (e.g., food security, family wealth and health, more employment opportunities, and improved infrastructure), but simultaneously poses significant challenges for poultry farming and disease management. Awareness of qualitative aspects of HPAI risk perceptions and behaviors and how they vary with urbanization processes may help to improve the prevention and management of emerging infectious diseases.

  10. Movements of Birds and Avian Influenza from Asia into Alaska

    PubMed Central

    McCracken, Kevin G.; Gibson, Daniel D.; Pruett, Christin L.; Meier, Rose; Huettmann, Falk; Wege, Michael; Kulikova, Irina V.; Zhuravlev, Yuri N.; Perdue, Michael L.; Spackman, Erica; Suarez, David L.; Swayne, David E.

    2007-01-01

    Asian-origin avian influenza (AI) viruses are spread in part by migratory birds. In Alaska, diverse avian hosts from Asia and the Americas overlap in a region of intercontinental avifaunal mixing. This region is hypothesized to be a zone of Asia-to-America virus transfer because birds there can mingle in waters contaminated by wild-bird–origin AI viruses. Our 7 years of AI virus surveillance among waterfowl and shorebirds in this region (1998–2004; 8,254 samples) showed remarkably low infection rates (0.06%). Our findings suggest an Arctic effect on viral ecology, caused perhaps by low ecosystem productivity and low host densities relative to available water. Combined with a synthesis of avian diversity and abundance, intercontinental host movements, and genetic analyses, our results suggest that the risk and probably the frequency of intercontinental virus transfer in this region are relatively low. PMID:17553268

  11. Avian influenza surveillance in backyard poultry of Argentina.

    PubMed

    Buscaglia, C; Espinosa, C; Terrera, M V; De Benedetti, R

    2007-03-01

    Avian influenza (AI) is an exotic disease in Argentina. A surveillance program for AI was conducted in backyard poultry during 1998-2005 in two regions: 1) region A, which included the avian population in the provinces that border Brazil, Bolivia, and Paraguay, and 2) region B, which included the rest of the provinces of the country. More than 8000 serum samples were tested for antibodies by enzyme-linked immunosorbent assay and/or agar gel immunodiffusion tests, and more than 18,000 tracheal and cloacal swabs were tested for virus by isolation in embryonated specific-pathogen-free eggs. This study was part of the AI prevention program in Argentina, which includes other avian populations such as commercial poultry and all the controls for importation and exportation of live birds. The results from backyard poultry were negative for AI.

  12. Movements of birds and avian influenza from Asia into Alaska.

    PubMed

    Winker, Kevin; McCracken, Kevin G; Gibson, Daniel D; Pruett, Christin L; Meier, Rose; Huettmann, Falk; Wege, Michael; Kulikova, Irina V; Zhuravlev, Yuri N; Perdue, Michael L; Spackman, Erica; Suarez, David L; Swayne, David E

    2007-04-01

    Asian-origin avian influenza (AI) viruses are spread in part by migratory birds. In Alaska, diverse avian hosts from Asia and the Americas overlap in a region of intercontinental avifaunal mixing. This region is hypothesized to be a zone of Asia-to-America virus transfer because birds there can mingle in waters contaminated by wild-bird-origin AI viruses. Our 7 years of AI virus surveillance among waterfowl and shorebirds in this region (1998-2004; 8,254 samples) showed remarkably low infection rates (0.06%). Our findings suggest an Arctic effect on viral ecology, caused perhaps by low ecosystem productivity and low host densities relative to available water. Combined with a synthesis of avian diversity and abundance, intercontinental host movements, and genetic analyses, our results suggest that the risk and probably the frequency of intercontinental virus transfer in this region are relatively low.

  13. Evolutionary interactions between haemagglutinin and neuraminidase in avian influenza

    PubMed Central

    2013-01-01

    Background Reassortment between the RNA segments encoding haemagglutinin (HA) and neuraminidase (NA), the major antigenic influenza proteins, produces viruses with novel HA and NA subtype combinations and has preceded the emergence of pandemic strains. It has been suggested that productive viral infection requires a balance in the level of functional activity of HA and NA, arising from their closely interacting roles in the viral life cycle, and that this functional balance could be mediated by genetic changes in the HA and NA. Here, we investigate how the selective pressure varies for H7 avian influenza HA on different NA subtype backgrounds. Results By extending Bayesian stochastic mutational mapping methods to calculate the ratio of the rate of non-synonymous change to the rate of synonymous change (dN/dS), we found the average dN/dS across the avian influenza H7 HA1 region to be significantly greater on an N2 NA subtype background than on an N1, N3 or N7 background. Observed differences in evolutionary rates of H7 HA on different NA subtype backgrounds could not be attributed to underlying differences between avian host species or virus pathogenicity. Examination of dN/dS values for each subtype on a site-by-site basis indicated that the elevated dN/dS on the N2 NA background was a result of increased selection, rather than a relaxation of selective constraint. Conclusions Our results are consistent with the hypothesis that reassortment exposes influenza HA to significant changes in selective pressure through genetic interactions with NA. Such epistatic effects might be explicitly accounted for in future models of influenza evolution. PMID:24103105

  14. Influenza A(H3N2) Outbreak at Transit Center at Manas, Kyrgyzstan, 2014

    DTIC Science & Technology

    2015-01-01

    pdm09, 65 influenza A(H3N2), one influenza A/not subtyped, and one influenza B); six specimens were positive for other respiratory viruses (one human...Article 3. DATES COVERED (From – To) December 2013-February 2014 4. TITLE AND SUBTITLE Influenza A(H3N2) Outbreak at Transit Center at Manas...support in response to a moderate outbreak of influenza at the Transit Center at Manas (Kyrgyzstan). A total of 215 individuals presented with

  15. Contemporary avian influenza A virus subtype H1, H6, H7, H10, and H15 hemagglutinin genes encode a mammalian virulence factor similar to the 1918 pandemic virus H1 hemagglutinin.

    PubMed

    Qi, Li; Pujanauski, Lindsey M; Davis, A Sally; Schwartzman, Louis M; Chertow, Daniel S; Baxter, David; Scherler, Kelsey; Hartshorn, Kevan L; Slemons, Richard D; Walters, Kathie-Anne; Kash, John C; Taubenberger, Jeffery K

    2014-11-18

    Zoonotic avian influenza virus infections may lead to epidemics or pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its H1 hemagglutinin was identified as a key mammalian virulence factor. A chimeric 1918 virus expressing a contemporary avian H1 hemagglutinin, however, displayed murine pathogenicity indistinguishable from that of the 1918 virus. Here, isogenic chimeric avian influenza viruses were constructed on an avian influenza virus backbone, differing only by hemagglutinin subtype expressed. Viruses expressing the avian H1, H6, H7, H10, and H15 subtypes were pathogenic in mice and cytopathic in normal human bronchial epithelial cells, in contrast to H2-, H3-, H5-, H9-, H11-, H13-, H14-, and H16-expressing viruses. Mouse pathogenicity was associated with pulmonary macrophage and neutrophil recruitment. These data suggest that avian influenza virus hemagglutinins H1, H6, H7, H10, and H15 contain inherent mammalian virulence factors and likely share a key virulence property of the 1918 virus. Consequently, zoonotic infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals. Influenza viruses from birds can cause outbreaks in humans and may contribute to the development of pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its main surface protein, an H1 subtype hemagglutinin, was identified as a key mammalian virulence factor. In a previous study, a 1918 virus expressing an avian H1 gene was as virulent in mice as the reconstructed 1918 virus. Here, a set of avian influenza viruses was constructed, differing only by hemagglutinin subtype. Viruses with the avian H1, H6, H7, H10, and H15 subtypes caused severe disease in mice and damaged human lung cells. Consequently, infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals, and therefore surveillance for human infections

  16. Research update on avian influenza viruses and H1N1 influenza virus in poultry

    USDA-ARS?s Scientific Manuscript database

    Avian influenza (AI) remains an economic threat to commercial poultry throughout the world by negatively impacting animal health and trade. Southeast Poultry Research Laboratory conducts research on many areas related to AI including pathogenesis and transmission studies, use of vaccination, virus ...

  17. Wild ducks as long-distance vectors of highly pathogenic avian influenza virus (H5N1).

    PubMed

    Keawcharoen, Juthatip; van Riel, Debby; van Amerongen, Geert; Bestebroer, Theo; Beyer, Walter E; van Lavieren, Rob; Osterhaus, Albert D M E; Fouchier, Ron A M; Kuiken, Thijs

    2008-04-01

    Wild birds have been implicated in the expansion of highly pathogenic avian influenza virus (H5N1) outbreaks across Asia, the Middle East, Europe, and Africa (in addition to traditional transmission by infected poultry, contaminated equipment, and people). Such a role would require wild birds to excrete virus in the absence of debilitating disease. By experimentally infecting wild ducks, we found that tufted ducks, Eurasian pochards, and mallards excreted significantly more virus than common teals, Eurasian wigeons, and gadwalls; yet only tufted ducks and, to a lesser degree, pochards became ill or died. These findings suggest that some wild duck species, particularly mallards, can potentially be long-distance vectors of highly pathogenic avian influenza virus (H5N1) and that others, particularly tufted ducks, are more likely to act as sentinels.

  18. Wild Ducks as Long-Distance Vectors of Highly Pathogenic Avian Influenza Virus (H5N1)

    PubMed Central

    Keawcharoen, Juthatip; van Riel, Debby; van Amerongen, Geert; Bestebroer, Theo; Beyer, Walter E.; van Lavieren, Rob; Osterhaus, Albert D.M.E.; Fouchier, Ron A.M.

    2008-01-01

    Wild birds have been implicated in the expansion of highly pathogenic avian influenza virus (H5N1) outbreaks across Asia, the Middle East, Europe, and Africa (in addition to traditional transmission by infected poultry, contaminated equipment, and people). Such a role would require wild birds to excrete virus in the absence of debilitating disease. By experimentally infecting wild ducks, we found that tufted ducks, Eurasian pochards, and mallards excreted significantly more virus than common teals, Eurasian wigeons, and gadwalls; yet only tufted ducks and, to a lesser degree, pochards became ill or died. These findings suggest that some wild duck species, particularly mallards, can potentially be long-distance vectors of highly pathogenic avian influenza virus (H5N1) and that others, particularly tufted ducks, are more likely to act as sentinels. PMID:18394278

  19. Fatal H5N6 Avian Influenza Virus Infection in a Domestic Cat and Wild Birds in China.

    PubMed

    Yu, Zhijun; Gao, Xiaolong; Wang, Tiecheng; Li, Yanbing; Li, Yongcheng; Xu, Yu; Chu, Dong; Sun, Heting; Wu, Changjiang; Li, Shengnan; Wang, Haijun; Li, Yuanguo; Xia, Zhiping; Lin, Weishi; Qian, Jun; Chen, Hualan; Xia, Xianzhu; Gao, Yuwei

    2015-06-02

    H5N6 avian influenza viruses (AIVs) may pose a potential human risk as suggested by the first documented naturally-acquired human H5N6 virus infection in 2014. Here, we report the first cases of fatal H5N6 avian influenza virus (AIV) infection in a domestic cat and wild birds. These cases followed human H5N6 infections in China and preceded an H5N6 outbreak in chickens. The extensive migration routes of wild birds may contribute to the geographic spread of H5N6 AIVs and pose a risk to humans and susceptible domesticated animals, and the H5N6 AIVs may spread from southern China to northern China by wild birds. Additional surveillance is required to better understand the threat of zoonotic transmission of AIVs.

  20. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .../H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  1. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .../H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  2. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .../H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  3. 75 FR 69046 - Notice of Determination of the High Pathogenic Avian Influenza Subtype H5N1 Status of Czech...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... Pathogenic Avian Influenza Subtype H5N1 Status of Czech Republic and Sweden AGENCY: Animal and Plant Health... the highly pathogenic avian influenza (HPAI) subtype H5N1 status of the Czech Republic and Sweden... status of the Czech Republic and Sweden relative to highly pathogenic avian influenza (HPAI) subtype H5N1...

  4. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .../H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  5. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .../H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of the...

  6. Interventions to reduce zoonotic and pandemic risks from avian influenza in Asia

    PubMed Central

    Peiris, Malik; Cowling, Benjamin J.; Wu, Joseph T.; Feng, Luzhao; Guan, Yi; Yu, Hongjie; Leung, Gabriel M.

    2017-01-01

    Summary Novel influenza viruses continue to emerge posing zoonotic and potentially pandemic threats, avian influenza A/H7N9 being the most recent example. While closure of live poultry markets in mainland China was effective at aborting A/H7N9 outbreaks temporarily, they are difficult to sustain, given the current poultry production and marketing systems in China. We summarise interventions taken in mainland China to date. We provide evidence for other more sustainable but effective interventions in the live poultry market (LPM) systems that reduce risk of zoonotic influenza including “rest days” in LPM and banning live poultry in markets overnight. On the longer term, separation of live ducks and geese from terrestrial poultry in LPM systems can reduce the risk of emergence of zoonotic, epizootic (and potentially pandemic) viruses at source. Given evidence that A/H7N9 is now endemic in over half of the provinces in mainland China, and will continue to cause recurrent zoonotic disease in the winter months, such interventions should receive high priority in China as well as other Asian countries which are at risk of introduction of A/H7N9 through cross-border poultry movements. Such generic measures are likely to reduce current as well as future threats from zoonotic influenza. PMID:26654122

  7. Interventions to reduce zoonotic and pandemic risks from avian influenza in Asia.

    PubMed

    Peiris, J S Malik; Cowling, Benjamin J; Wu, Joseph T; Feng, Luzhao; Guan, Yi; Yu, Hongjie; Leung, Gabriel M

    2016-02-01

    Novel influenza viruses continue to emerge, posing zoonotic and potentially pandemic threats, such as with avian influenza A H7N9. Although closure of live poultry markets (LPMs) in mainland China stopped H7N9 outbreaks temporarily, closures are difficult to sustain, in view of poultry production and marketing systems in China. In this Personal View, we summarise interventions taken in mainland China, and provide evidence for other more sustainable but effective interventions in the live poultry market systems that reduce risk of zoonotic influenza including rest days, and banning live poultry in markets overnight. Separation of live ducks and geese from land-based (ie, non-aquatic) poultry in LPM systems can reduce the risk of emergence of zoonotic and epizootic viruses at source. In view of evidence that H7N9 is now endemic in over half of the provinces in mainland China and will continue to cause recurrent zoonotic disease in the winter months, such interventions should receive high priority in China and other Asian countries at risk of H7N9 through cross-border poultry movements. Such generic measures are likely to reduce known and future threats of zoonotic influenza.

  8. Wetland environmental conditions associated with the risk of avian cholera outbreaks and the abundance of Pasteurella multocida

    USGS Publications Warehouse

    Blanchong, Julie A.; Samuel, Michael D.; Goldberg, Diana R.; Shadduck, Daniel J.; Creekmore, L.H.

    2006-01-01

    Avian cholera is a significant infectious disease affecting waterfowl across North America and occurs worldwide among various avian species. Despite the importance of this disease, little is known about the factors that cause avian cholera outbreaks and what management strategies might be used to reduce disease mortality. Previous studies indicated that wetland water conditions may affect survival and transmission of Pasteurella multocida, the agent that causes avian cholera. These studies hypothesized that water conditions affect the likelihood that avian cholera outbreaks will occur in specific wetlands. To test these predictions, we collected data from avian cholera outbreak and non-outbreak (control) wetlands throughout North America (wintera??spring 1995a??1996 to 1998a??1999) to evaluate whether water conditions were associated with outbreaks. Conditional logistic regression analysis on paired outbreak and non-outbreak wetlands indicated no significant association between water conditions and the risk of avian cholera outbreaks. For wetlands where avian cholera outbreaks occurred, linear regression showed that increased eutrophic nutrient concentrations (Potassium [K], nitrate [NO3], phosphorus [P], and phosphate [PO3]) were positively related to the abundance of P. multocida recovered from water and sediment samples. Wetland protein concentration and an El Ni??o event were also associated with P. multocida abundance. Our results indicate that wetland water conditions are not strongly associated with the risk of avian cholera outbreaks; however, some variables may play a role in the abundance of P. multocida bacteria and might be important in reducing the severity of avian cholera outbreaks.

  9. Highly pathogenic avian influenza H5N1 virus could partly be evacuated by pregnant BALB/c mouse during abortion or preterm delivery.

    PubMed

    Xu, Lili; Bao, Linlin; Deng, Wei; Qin, Chuan

    2011-07-08

    The highly pathogenic avian influenza H5N1 virus is one of candidates for future pandemic. Since H5N1 viruses had previously been isolated only from avian species, the outbreak raised questions about the ability of these viruses to cause severe disease and death in humans. Pregnant women are at increased risk for influenza-associated illness and death. However, little is known about whether influenza viruses could transmit to the fetus through the placenta, and the effects of abortion and preterm delivery to maternal influenza infection are not well understood. We found that the H5N1 viruses could vertical transmit to the fetus through the placenta in the BALB/c mouse model, and the viruses could partly be evacuated by the pregnant mice during abortion or preterm delivery. This study may further our understanding about the transmission of this highly pathogenic avian influenza viruses, supply optimized clinical treatment method for pregnant women, and shed some light on better preventing and controlling for future potential outbreak of H5N1 influenza pandemic.

  10. [Advances on epidemiological research of human infections with novel avian influenza A (H7N9) virus].

    PubMed

    Wang, Q M; Liu, S L; Chen, E F

    2017-02-06

    Human infections with novel avian influenza A(H7N9)virus was an emerging infectious disease discovered in March, 2013. As of June30, 2016, 770 cases of H7N9 were reported in worldwide including 315 deaths with 40.9% of high case fatality rate. Yangtze River Delta and Pearl River Delta were the high-prevalence area. Formerly, the cases of H7N9 were concentrated on the municipalities. However, most of the case-patients were from smaller cities or rural areas nowadays. The H7N9 human infections mainly occurred in winter and spring every waves as similar as seasonal and H5N1 human infections. Middle aged and old (the median age was 61 years) male patients were occupied the large proportion among the cases of H7N9. In addition, the phenomenon of the limited and unsustained human-to-human transmission were existed. At present, the 4 major epidemic waves had happened and human infections with novel avian influenza A (H7N9) virus could be outbreak regularly in China. In this paper, the pathogenic characteristics and disease distribution of H7N9 influenza A viruses were elaborated, with both transmission factors and control measures, which were helpful to provide the scientific evidence for prevention and control in H7N9avian influenza epidemic.

  11. Impact of poultry vaccines on control of H5N1 high pathogenicity avian influenza

    USDA-ARS?s Scientific Manuscript database

    Use of vaccines against avian influenza (AI) have been sporadic in poultry until 2002 when the H5N1 high pathogenicity avian influenza (HPAI) spread from China to Hong Kong, and then multiple southeast Asian countries in 2003-2004, and to Europe in 2005, and Africa in 2006. Over the past 40 years, ...

  12. Strategies and challenges to the development and application of avian influenza vaccines in birds

    USDA-ARS?s Scientific Manuscript database

    Vaccines against avian influenza (AI) have had limited use in poultry until 2002, when the H5N1 high pathogenicity avian influenza (HPAI) spread from China to Hong Kong, and then multiple southeast Asian countries in 2003-2004, and to Europe in 2005, and Africa in 2006. Over the past 40 years, AI ...

  13. 76 FR 66032 - Availability of an Environmental Assessment for Field Testing Avian Influenza-Marek's Disease...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... Assessment for Field Testing Avian Influenza-Marek's Disease Vaccine, H5 Subtype, Serotype 3, Live Marek's Disease Vector AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice. SUMMARY: We are... unlicensed Avian Influenza-Marek's Disease Vaccine, H5 Subtype, Serotype 3, Live Marek's Disease Vector....

  14. Antigenic cartographic analysis of H7 avian influenza viruses with chicken serum

    USDA-ARS?s Scientific Manuscript database

    Antigenic cartography is a relatively new method that can be used to evaluate the antigenic relatedness among avian influenza virus isolates. Evaluation of antigenic relationships among avian influenza viruses can be applied to vaccine design and to understanding the evolution of the virus. Initia...

  15. Seroprevalence of avian influenza H9N2 among poultry workers in Shandong Province, China.

    PubMed

    Huang, R; Wang, A-R; Liu, Z-H; Liang, W; Li, X-X; Tang, Y-J; Miao, Z-M; Chai, T-J

    2013-10-01

    H9N2 avian influenza virus has been circulating widely in birds, with occasional infection among humans. Poultry workers are considered to be at high risk of infection with avian influenza due to their frequent exposure to chickens, but the frequency of H9N2 avian influenza virus infections among them is still indistinct. This study was carried out in order to identify the seroprevalence of H9N2 avian influenza virus among poultry workers in Shandong, China. During the period from December 2011 to February 2012, a total of 482 subjects took part in this study, including 382 poultry workers and 100 healthy residents without occupational poultry exposure. Serum samples were collected and tested for the presence of antibodies against H9N2 avian influenza virus by hemagglutination inhibition (HI) and microneutralization (MN) assays. Nine subjects (9/382 = 2.3%) were positive for antibodies against H9N2 avian influenza virus among poultry workers by either HI or MN assays using ≥40 cut-off, while none of the 100 healthy residents were seropositive. In conclusion, our study identified H9N2 avian influenza infections among poultry workers in Shandong, China, and continuous surveillance of H9N2 avian influenza virus infection in humans should be carried out to evaluate the threat to public health.

  16. Current status and future needs in diagnostics and vaccines for high pathogenicity avian influenza

    USDA-ARS?s Scientific Manuscript database

    Since 1959, 31 epizootics of high pathogenicity avian influenza (HPAI) have occurred in birds. Rapid detection and accurate identification of HPAI has been critical to controlling such epizootics in poultry. Specific paradigms for the detection and diagnosis of avian influenza virus (AIV) in poultry...

  17. Domestic pigs have low susceptibility to H5N1 highly pathogenic avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    Background. Genetic reassortment of H5N1 highly pathogenic avian influenza viruses (HPAI) with currently circulating human influenza A strains is one possibility that could lead to efficient human-to-human transmissibility. Domestic pigs which are susceptible to infection with both human and avian ...

  18. Susceptibility of swine to H5 and H7 low pathogenic avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    The ability of pigs to become infected with low pathogenic avian influenza (LPAI) viruses from an avian reservoir, and then generate mammalian adaptable influenza A viruses (IAVs) is difficult to determine. Yet, it is an important link to understanding any relationship between LPAI virus ecology and...

  19. Genomic and phylogenetic characterization of novel, recombinant H5N2 avian influenza virus strains isolated from vaccinated chickens with clinical symptoms in China.

    PubMed

    Xu, Huaiying; Meng, Fang; Huang, Dihai; Sheng, Xiaodan; Wang, Youling; Zhang, Wei; Chang, Weishan; Wang, Leyi; Qin, Zhuoming

    2015-02-25

    Infection of poultry with diverse lineages of H5N2 avian influenza viruses has been documented for over three decades in different parts of the world, with limited outbreaks caused by this highly pathogenic avian influenza virus. In the present study, three avian H5N2 influenza viruses, A/chicken/Shijiazhuang/1209/2013, A/chicken/Chiping/0321/2014, and A/chicken/Laiwu/0313/2014, were isolated from chickens with clinical symptoms of avian influenza. Complete genomic and phylogenetic analyses demonstrated that all three isolates are novel recombinant viruses with hemagglutinin (HA) and matrix (M) genes derived from H5N1, and remaining genes derived from H9N2-like viruses. The HA cleavage motif in all three strains (PQIEGRRRKR/GL) is characteristic of a highly pathogenic avian influenza virus strain. These results indicate the occurrence of H5N2 recombination and highlight the importance of continued surveillance of the H5N2 subtype virus and reformulation of vaccine strains.

  20. Avian influenza pandemic threat and health systems response.

    PubMed

    Bradt, David A; Drummond, Christina M

    2006-01-01

    Avian influenza is a panzootic and recurring human epidemic with pandemic potential. Pandemic requirements for a viral pathogen are: a novel virus must emerge against which the general population has little or no immunity; the new virus must be able to replicate in humans and cause serious illness; and the new virus must be efficiently transmitted from person to person. At present, only the first two conditions have been met. Nonetheless, influenza pandemics are considered inevitable. Expected worldwide human mortality from a moderate pandemic scenario is 45 million people or more than 75% of the current annual global death burden. Although mathematical models have predicted that an emerging pandemic could be contained at its source, this conclusion remains controversial among public health experts. The Terrestrial Animal Health Code and International Health Regulations are enforceable legal instruments integral to pandemic preparedness. Donor support in financial, material and technical assistance remains critical to disease control efforts - particularly in developing countries where avian influenza predominately occurs at present. Personal protective equipment kits, decontamination kits and specimen collection kits in lightweight, portable packages are becoming standardized. Air transport border control measures purporting to delay importation and spread of human avian influenza are scientifically controversial. National pandemic plans prioritize beneficiary access to antiviral drugs and vaccines for some countries. Other medical commodities including ventilators, hospital beds and intensive care units remain less well prioritized in national plans. These resources will play virtually no role in care of the overwhelming majority of patients worldwide in a pandemic. Prehospital care, triage and acute care all require additional professional standardization for the high patient volumes anticipated in a pandemic.