Science.gov

Sample records for avian influenza outbreak

  1. Overview of H5N8 avian influenza virus outbreaks – SEPRL research activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2014, outbreaks of highly pathogenic avian influenza (HPAI) H5N8 in poultry farms have been reported in Korea, Japan, China, Germany, United Kingdom, and the Netherlands. The first outbreak report of this virus was in domestic ducks in the Republic of Korea in January 2014. In Europe, the first...

  2. Avian Influenza.

    PubMed

    Zeitlin, Gary Adam; Maslow, Melanie Jane

    2005-05-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate more than 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantining, and disinfection. To prepare for and prevent an increase in human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short-interfering RNAs and new vaccine strategies that use plasmid-based genetic systems, offer promise should a pandemic occur.

  3. Avian influenza.

    PubMed

    Zeitlin, Gary A; Maslow, Melanie J

    2006-03-01

    The current epidemic of H5N1 highly pathogenic avian influenza in Southeast Asia raises serious concerns that genetic reassortment will result in the next influenza pandemic. There have been 164 confirmed cases of human infection with avian influenza since 1996. In 2004 alone, there were 45 cases of human H5N1 in Vietnam and Thailand, with a mortality rate over 70%. In addition to the potential public health hazard, the current zoonotic epidemic has caused severe economic losses. Efforts must be concentrated on early detection of bird outbreaks with aggressive culling, quarantines, and disinfection. To prepare for and prevent increased human cases, it is essential to improve detection methods and stockpile effective antivirals. Novel therapeutic modalities, including short, interfering RNAs and new vaccine strategies that use plasmid-based genetic systems offer promise, should a pandemic occur.

  4. Highly pathogenic avian influenza (H5N1) outbreaks in wild birds and poultry, South Korea.

    PubMed

    Kim, Hye-Ryoung; Lee, Youn-Jeong; Park, Choi-Kyu; Oem, Jae-Ku; Lee, O-Soo; Kang, Hyun-Mi; Choi, Jun-Gu; Bae, You-Chan

    2012-03-01

    Highly pathogenic avian influenza (H5N1) among wild birds emerged simultaneously with outbreaks in domestic poultry in South Korea during November 2010-May 2011. Phylogenetic analysis showed that these viruses belonged to clade 2.3.2, as did viruses found in Mongolia, the People's Republic of China, and Russia in 2009 and 2010.

  5. Scale-Free Distribution of Avian Influenza Outbreaks

    NASA Astrophysics Data System (ADS)

    Small, Michael; Walker, David M.; Tse, Chi Kong

    2007-11-01

    Using global case data for the period from 25 November 2003 to 10 March 2007, we construct a network of plausible transmission pathways for the spread of avian influenza among domestic and wild birds. The network structure we obtain is complex and exhibits scale-free (although not necessarily small-world) properties. Communities within this network are connected with a distribution of links with infinite variance. Hence, the disease transmission model does not exhibit a threshold and so the infection will continue to propagate even with very low transmissibility. Consequentially, eradication with methods applicable to locally homogeneous populations is not possible. Any control measure needs to focus explicitly on the hubs within this network structure.

  6. Outbreak patterns of the novel avian influenza (H7N9)

    NASA Astrophysics Data System (ADS)

    Pan, Ya-Nan; Lou, Jing-Jing; Han, Xiao-Pu

    2014-05-01

    The attack of novel avian influenza (H7N9) in East China caused a serious health crisis and public panic. In this paper, we empirically analyze the onset patterns of human cases of the novel avian influenza and observe several spatial and temporal properties that are similar to other infectious diseases. More specifically, using the empirical analysis and modeling studies, we find that the spatio-temporal network that connects the cities with human cases along the order of outbreak timing emerges two-regime-power-law edge-length distribution, indicating the picture that several islands with higher and heterogeneous risk straggle in East China. The proposed method is applicable to the analysis of the spreading situation in the early stage of disease outbreak using quite limited dataset.

  7. An outbreak of highly pathogenic H5N1 avian influenza in Korea, 2008.

    PubMed

    Kim, Hye-Ryoung; Park, Choi-Kyu; Lee, Youn-Jeong; Woo, Gye-Hyeong; Lee, Kyoung-Ki; Oem, Jae-Ku; Kim, Seong-Hee; Jean, Young-Hwa; Bae, Yu-Chan; Yoon, Soon-Seek; Roh, In-Soon; Jeong, Ok-Mi; Kim, Ha-Young; Choi, Jeong-Soo; Byun, Jae-Won; Song, Yun-Kyung; Kwon, Jun-Hun; Joo, Yi-Seok

    2010-03-24

    In spite of intensive surveillance programs for the control of HPAI, an outbreak of highly pathogenic avian influenza (HPAI) H5N1 in Korea in April 2008 caused serious damage to poultry farms, as did previous outbreaks in 2003/2004 and 2006/2007. Six viruses were selected from the Korean 2008 isolates for genetic analysis, and all eight gene segments from each of the influenza viruses were sequenced. A phylogenetic analysis showed that all of the viruses were of the same virus type and that the hemagglutinin (HA) gene was clustered with that of clade 2.3.2 viruses. However, the internal and neuraminidase (NA) genes were closely related to those of the clade 2.3.4 viruses (recent human and bird isolates from Southeast Asia).

  8. Surveillance for highly pathogenic avian influenza virus in wild birds during outbreaks in domestic poultry, Minnesota, 2015

    USGS Publications Warehouse

    Jennelle, Christopher S.; Carstensen, Michelle; Hildebrand, Erik C.; Cornicelli, Louis; Wolf, Paul C.; Grear, Daniel A.; Ip, Hon S.; VanDalen, Kaci K.; Minicucci, Larissa A.

    2016-01-01

    In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To clarify the role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9–June 4, 2015. HPAIV was isolated from a Cooper’s hawk but not from waterfowl.

  9. High pathogenicity avian influenza outbreaks since 2008 except multi-continental panzootic of H5 Goose/Guangdong-lineage viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2008, seven countries from five continents have experienced highly pathogenic avian influenza (HPAI) outbreaks in poultry due to viruses unrelated to H5 Goose/Guangdong lineage viruses. These have covered a range of virus subtypes and affected different production species from chickens to ost...

  10. Avian And Other Zoonotic Influenza

    MedlinePlus

    ... or indirect contact with infected live or dead poultry. Controlling the disease in the animal source is ... avian influenza (HPAI). Viruses that cause outbreaks in poultry but are not generally associated with severe disease ...

  11. Epidemiology, Evolution, and Recent Outbreaks of Avian Influenza Virus in China

    PubMed Central

    Su, Shuo; Wong, Gary; Gray, Gregory C.; Gao, George F.

    2015-01-01

    Novel reassortants of H7N9, H10N8, and H5N6 avian influenza viruses (AIVs) are currently circulating in China's poultry flocks, occasionally infecting humans and other mammals. Combined with the sometimes enzootic H5N1 and H9N2 strains, this cauldron of genetically diverse AIVs pose significant risks to public health. Here, we review the epidemiology, evolution, and recent outbreaks of AIVs in China, discuss reasons behind the recent increase in the emergence of novel AIVs, and identify warning signs which may point to the emergence of a potentially virulent and highly transmissible AIV to humans. This review will be useful to authorities who consider options for the detection and control of AIV transmission in animals and humans, with the goal of preventing future epidemics and pandemics. PMID:26063419

  12. Global dynamic analysis of a H7N9 avian-human influenza model in an outbreak region.

    PubMed

    Chen, Yongxue; Wen, Yongxian

    2015-02-21

    In 2013 in China a new type of avian influenza virus, H7N9, began to infect humans and had aroused severe fatality in the infected humans. We know that the spread is from poultry to humans, and the H7N9 avian influenza is low pathogenic in the poultry world but highly pathogenic in the human world, but the transmission mechanism is unclear. Since it has no signs of human-to-human transmission and outbreaks are isolated in some cities in China, in order to investigate the transmission mechanism of human infection with H7N9 avian influenza, an eco-epidemiological model in an outbreak region is proposed and analyzed dynamically. Researches and reports show that gene mutation makes the new virus be capable of infecting humans, therefore the mutation factor is taken into account in the model. The global dynamic analysis is conducted, different thresholds are identified, persistence and global qualitative behaviors are obtained. The impact of H7N9 avian influenza on the people population is concerned. Finally, the numerical simulations are carried out to support the theoretical analysis and to investigate the disease control measures. It seems that we may take people׳s hygiene and prevention awareness factor as a significant policy to achieve the aim of both the disease control and the economic returns.

  13. Surveillance for Highly Pathogenic Avian Influenza Virus in Wild Birds during Outbreaks in Domestic Poultry, Minnesota, 2015

    PubMed Central

    Carstensen, Michelle; Hildebrand, Erik C.; Cornicelli, Louis; Wolf, Paul; Grear, Daniel A.; Ip, Hon S.; Vandalen, Kaci K.; Minicucci, Larissa A.

    2016-01-01

    In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To understand the potential role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9–June 4, 2015. HPAIV was isolated from a Cooper’s hawk but not from waterfowl fecal samples. PMID:27064759

  14. Avian influenza in Poland.

    PubMed

    Smietanka, Krzysztof; Minta, Zenon

    2014-01-01

    Poland has experienced four episodes of avian influenza (AI) outbreaks over the past two decades. The first epidemic was caused by a low pathogenicity (LPAIV) H7N7 subtype and occurred in fattening and breeder turkeys in 1995. Two waves of H5N1 high pathogenicity avian influenza (HPAI) took place in 2006 and 2007. In spring 2006, 64 cases of the H5N1 virus were detected, mostly in mute swans. In December 2007, ten outbreaks of H5N1 HPAI were detected in commercial poultry (n = 9) and wild birds kept in captivity (n = 1). The outbreaks in 2006 and 2007 were caused by genetically similar but clearly distinguishable viruses of the 2.2 clade. In 2013, an H9N2 avian influenza virus was detected in 4 fattening turkey holdings. The virus was low pathogenic and a phylogenetic study has shown a close relatedness to the Eurasian lineage of AIV of the wild bird origin. Neither preventive nor prophylactic vaccinations have ever been used in poultry or other birds. Emergency vaccinations using autogenous vaccine were introduced only to control the H7N7 LPAI outbreaks in 1995. The baseline surveillance for AI in live migratory birds and poultry provides a valuable insight into the ecology of AIV at the wild and domestic bird interface. Passive surveillance is in place of early detection of HPAIV infection in dead or moribund birds.

  15. Ecological Determinants of Highly Pathogenic Avian Influenza (H5N1) Outbreaks in Bangladesh

    PubMed Central

    Ahmed, Syed S. U.; Ersbøll, Annette K.; Biswas, Paritosh K.; Christensen, Jens P.; Hannan, Abu S. M. A.; Toft, Nils

    2012-01-01

    Background The agro-ecology and poultry husbandry of the south Asian and south-east Asian countries share common features, however, with noticeable differences. Hence, the ecological determinants associated with risk of highly pathogenic avian influenza (HPAI-H5N1) outbreaks are expected to differ between Bangladesh and e.g., Thailand and Vietnam. The primary aim of the current study was to establish ecological determinants associated with the risk of HPAI-H5N1 outbreaks at subdistrict level in Bangladesh. The secondary aim was to explore the performance of two different statistical modeling approaches for unmeasured spatially correlated variation. Methodology/Principal Findings An ecological study at subdistrict level in Bangladesh was performed with 138 subdistricts with HPAI-H5N1 outbreaks during 2007–2008, and 326 subdistricts with no outbreaks. The association between ecological determinants and HPAI-H5N1 outbreaks was examined using a generalized linear mixed model. Spatial clustering of the ecological data was modeled using 1) an intrinsic conditional autoregressive (ICAR) model at subdistrict level considering their first order neighbors, and 2) a multilevel (ML) model with subdistricts nested within districts. Ecological determinants significantly associated with risk of HPAI-H5N1 outbreaks at subdistrict level were migratory birds' staging areas, river network, household density, literacy rate, poultry density, live bird markets, and highway network. Predictive risk maps were derived based on the resulting models. The resulting models indicate that the ML model absorbed some of the covariate effect of the ICAR model because of the neighbor structure implied in the two different models. Conclusions/Significance The study identified a new set of ecological determinants related to river networks, migratory birds' staging areas and literacy rate in addition to already known risk factors, and clarified that the generalized concept of free grazing duck and

  16. Observations from a live bird market in Indonesia following a contained outbreak of avian influenza A (H5N1).

    PubMed

    Naysmith, Scott

    2014-01-01

    Live bird markets are considered high-risk environments facilitating viral transfer and replication of influenza A H5N1. In Indonesia, these markets have been the source for multiple human infections of H5N1 resulting in death, and thus have been the focus of government-led interventions. This paper examines the aftermath of an intervention in one market in Bali, Indonesia. It highlights the social and economic factors influencing the adoption of risk prevention behaviour and concludes by arguing for further qualitative research to understand why at-risk individuals fail to adopt biosecurity measures, even after recently experiencing an outbreak of avian influenza.

  17. Avian-human influenza epidemic model.

    PubMed

    Iwami, Shingo; Takeuchi, Yasuhiro; Liu, Xianning

    2007-05-01

    A mathematical model is proposed to interpret the spread of avian influenza from the bird world to the human world. Our mathematical model warns that two types of the outbreak of avian influenza may occur if the humans do not prevent the spread of avian influenza. Moreover, it suggests that we cannot feel relieved although the total infected humans are kept at low level. In order to prevent spread of avian influenza in the human world, we must take the measures not only for the birds infected with avian influenza to exterminate but also for the humans infected with mutant avian influenza to quarantine when mutant avian influenza has already occurred. In particular, the latter measure is shown to be important to stop the second pandemic of avian influenza.

  18. Avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) is type A influenza, which is adapted to an avian host. Although avian influenza has been isolated from numerous avian species, the primary natural hosts for the virus are dabbling ducks, shorebirds, and gulls. The virus can be found world-wide in these species and in o...

  19. Avian Influenza (Bird Flu)

    MedlinePlus

    ... Research Making a Candidate Vaccine Virus Related Links Influenza Types Seasonal Avian Swine/Variant Pandemic Other Get ... this? Submit Button Past Newsletters Information on Avian Influenza Language: English Español Recommend on Facebook Tweet ...

  20. [A(H5N1) and A(H7N9) avian influenza: the H7N9 avian influenza outbreak of 2013].

    PubMed

    Wang, Quan; Yao, Kai-Hu

    2013-06-01

    influenza virus can infect humans and cause disease. The clinical presentation of human infection is usually mild, but the infection caused by A(H5N1) avian influenza virus occurring initially in Hongkong in 1997 or the A(H7N9) virus isolated first at the beginning of this year in China is severe and characterized by high mortality. The mortality rate of adolescents and children caused by H5N1 avian influenza is lower than that of adults and the younger the child the lower the mortality rate. A few pediatric H7N9 avian influenza cases recovered soon after treatment. A child was determined to be a H7N9 avian influenza virus carrier. These findings suggested that the pediatric H7N9 avian influenza infection was mild. It is very important to start anti-virus treatment with oseltamivir as early as possible in cases of avian influenza infection is considered. Combined therapy, including respiratory and circulatory support and inhibiting immunological reaction, is emphasized in the treatment of severe cases.

  1. Tracking Socioeconomic Vulnerability Using Network Analysis: Insights from an Avian Influenza Outbreak in an Ostrich Production Network

    PubMed Central

    Moore, Christine; Cumming, Graeme S.; Slingsby, Jasper; Grewar, John

    2014-01-01

    Background The focus of management in many complex systems is shifting towards facilitation, adaptation, building resilience, and reducing vulnerability. Resilience management requires the development and application of general heuristics and methods for tracking changes in both resilience and vulnerability. We explored the emergence of vulnerability in the South African domestic ostrich industry, an animal production system which typically involves 3–4 movements of each bird during its lifetime. This system has experienced several disease outbreaks, and the aim of this study was to investigate whether these movements have contributed to the vulnerability of this system to large disease outbreaks. Methodology/Principal Findings The ostrich production system requires numerous movements of birds between different farm types associated with growth (i.e. Hatchery to juvenile rearing farm to adult rearing farm). We used 5 years of movement records between 2005 and 2011 prior to an outbreak of Highly Pathogenic Avian Influenza (H5N2). These data were analyzed using a network analysis in which the farms were represented as nodes and the movements of birds as links. We tested the hypothesis that increasing economic efficiency in the domestic ostrich industry in South Africa made the system more vulnerable to outbreak of Highly Pathogenic Avian Influenza (H5N2). Our results indicated that as time progressed, the network became increasingly vulnerable to pathogen outbreaks. The farms that became infected during the outbreak displayed network qualities, such as significantly higher connectivity and centrality, which predisposed them to be more vulnerable to disease outbreak. Conclusions/Significance Taken in the context of previous research, our results provide strong support for the application of network analysis to track vulnerability, while also providing useful practical implications for system monitoring and management. PMID:24498004

  2. Wind-Mediated Spread of Low-Pathogenic Avian Influenza Virus into the Environment during Outbreaks at Commercial Poultry Farms.

    PubMed

    Jonges, Marcel; van Leuken, Jeroen; Wouters, Inge; Koch, Guus; Meijer, Adam; Koopmans, Marion

    2015-01-01

    Avian influenza virus-infected poultry can release a large amount of virus-contaminated droppings that serve as sources of infection for susceptible birds. Much research so far has focused on virus spread within flocks. However, as fecal material or manure is a major constituent of airborne poultry dust, virus-contaminated particulate matter from infected flocks may be dispersed into the environment. We collected samples of suspended particulate matter, or the inhalable dust fraction, inside, upwind and downwind of buildings holding poultry infected with low-pathogenic avian influenza virus, and tested them for the presence of endotoxins and influenza virus to characterize the potential impact of airborne influenza virus transmission during outbreaks at commercial poultry farms. Influenza viruses were detected by RT-PCR in filter-rinse fluids collected up to 60 meters downwind from the barns, but virus isolation did not yield any isolates. Viral loads in the air samples were low and beyond the limit of RT-PCR quantification except for one in-barn measurement showing a virus concentration of 8.48 x 10(4) genome copies/m(3). Air samples taken outside poultry barns had endotoxin concentrations of ~50 EU/m(3) that declined with increasing distance from the barn. Atmospheric dispersion modeling of particulate matter, using location-specific meteorological data for the sampling days, demonstrated a positive correlation between endotoxin measurements and modeled particulate matter concentrations, with an R(2) varying from 0.59 to 0.88. Our data suggest that areas at high risk for human or animal exposure to airborne influenza viruses can be modeled during an outbreak to allow directed interventions following targeted surveillance.

  3. Different environmental drivers of highly pathogenic avian influenza H5N1 outbreaks in poultry and wild birds.

    PubMed

    Si, Yali; de Boer, Willem F; Gong, Peng

    2013-01-01

    A large number of highly pathogenic avian influenza (HPAI) H5N1 outbreaks in poultry and wild birds have been reported in Europe since 2005. Distinct spatial patterns in poultry and wild birds suggest that different environmental drivers and potentially different spread mechanisms are operating. However, previous studies found no difference between these two outbreak types when only the effect of physical environmental factors was analysed. The influence of physical and anthropogenic environmental variables and interactions between the two has only been investigated for wild bird outbreaks. We therefore tested the effect of these environmental factors on HPAI H5N1 outbreaks in poultry, and the potential spread mechanism, and discussed how these differ from those observed in wild birds. Logistic regression analyses were used to quantify the relationship between HPAI H5N1 outbreaks in poultry and environmental factors. Poultry outbreaks increased with an increasing human population density combined with close proximity to lakes or wetlands, increased temperatures and reduced precipitation during the cold season. A risk map was generated based on the identified key factors. In wild birds, outbreaks were strongly associated with an increased Normalized Difference Vegetation Index (NDVI) and lower elevation, though they were similarly affected by climatic conditions as poultry outbreaks. This is the first study that analyses the differences in environmental drivers and spread mechanisms between poultry and wild bird outbreaks. Outbreaks in poultry mostly occurred in areas where the location of farms or trade areas overlapped with habitats for wild birds, whereas outbreaks in wild birds were mainly found in areas where food and shelters are available. The different environmental drivers suggest that different spread mechanisms might be involved: HPAI H5N1 spread to poultry via both poultry and wild birds, whereas contact with wild birds alone seems to drive the outbreaks

  4. Prevention and Treatment of Avian Influenza A Viruses in People

    MedlinePlus

    ... or prolonged contact with sick or dead infected poultry. Infected birds shed avian influenza virus in their ... known to have occurred. People who work with poultry or who respond to avian influenza outbreaks are ...

  5. An outbreak of low pathogenic avian influenza in a mixed-species aviculture unit in Dubai in 2005.

    PubMed

    Kent, Jo; Bailey, Tom; Silvanose, Christu-Das; McKeown, Sean; Wernery, Ulrich; Kinne, Joerg; Manvell, Ruth

    2006-09-01

    This case describes an outbreak of low pathogenic hemagglutinin 9 neuraminidase 2 avian influenza virus (AIV) in two white-bellied bustards (Eupodotis senegalensis), one stone curlew (Burhinus oedicnemius), and a blacksmith plover (Antibyx armatus) in a private zoologic collection in Dubai, United Arab Emirates. The four birds showed signs of respiratory disease, and all died as a result of disease or euthanasia. Attention has been paid to the diagnostic process and common differential diagnosis for upper respiratory tract disease in bustards, curlews, and plovers. To the knowledge of the authors, AIV has not been previously described in these species.

  6. Role of real-time RT-PCR platform technology in the diagnosis and management of notifiable avian influenza outbreaks: experiences in Great Britain.

    PubMed

    Slomka, M J; Irvine, R M; Pavlidis, T; Banks, J; Brown, I H

    2010-03-01

    Diagnosis and management of avian influenza outbreaks now include the use of validated real-time reverse transcription PCR (RRT-PCR) methods in many countries, including all member states of the European Union. Two outbreaks in poultry of notifiable avian influenza (H5 and H7 subtypes) that occurred in Great Britain during 2007 will serve as examples in which RRT-PCR demonstrated its value in 1) rapid diagnosis and confirmation of disease by sensitive and specific laboratory testing of samples derived from the index cases and 2) high-volume, rapid testing of surveillance samples. The two poultry outbreaks followed the incursion of a H7N2 low-pathogenicity notifiable avian influenza (LPNAI) virus (May-June 2007) and a Eurasian lineage H5N1 highly pathogenic notifiable avian influenza (HPNAI) virus (November 2007). Coupled with the use of high-throughput, robotic RNA extraction methods, a total of approximately 9300 and 20,300 field samples were tested by appropriate, validated RRT-PCR assays during the 4- and 5-wk duration of the H7N2 LPNAI and H5N1 HPNAI outbreaks, respectively. Fundamental features of the validated RRT-PCR assays used included their high degree of sensitivity, specificity, and rapidity, attributes that were invaluable in providing timely and accurate information for notifiable AI outbreak management.

  7. Avian influenza in Mexico.

    PubMed

    Villarreal, C

    2009-04-01

    The outbreak of highly pathogenic avian influenza (HPAI) H5N2 in Mexico in 1994 led to a clear increase in biosecurity measures and improvement of intensive poultry production systems. The control and eradication measures implemented were based on active surveillance, disease detection, depopulation of infected farms and prevention of possible contacts (identified by epidemiological investigations), improvement of biosecurity measures, and restriction of the movement of live birds, poultry products, by-products and infected material. In addition, Mexico introduced a massive vaccination programme, which resulted in the eradication of HPAI in a relatively short time in two affected areas that had a high density of commercial poultry.

  8. Supporting business continuity during a highly pathogenic avian influenza outbreak: a collaboration of industry, academia, and government.

    PubMed

    Hennessey, Morgan; Lee, Brendan; Goldsmith, Timothy; Halvorson, Dave; Hueston, William; McElroy, Kristina; Waters, Katherine

    2010-03-01

    Since 2006, a collaborative group of egg industry, state, federal, and academia representatives have worked to enhance preparedness in highly pathogenic avian influenza (HPAI) planning. The collaborative group has created a draft egg product movement protocol, which calls for realistic, science-based contingency plans, biosecurity assessments, commodity risk assessments, and real-time reverse transcriptase-PCR testing to support the continuity of egg operations while also preventing and eradicating an HPAI outbreak. The work done by this group serves as an example of how industry, government, and academia can work together to achieve better preparedness in the event of an animal health emergency. In addition, in the event of an HPAI outbreak in domestic poultry, U.S. consumers will be assured that their egg products come from healthy chickens.

  9. Avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) is type A influenza that is adapted to avian host species. Although the virus can be isolated from numerous avian species, the natural host reservoir species are dabbling ducks, shorebirds and gulls. Domestic poultry species (poultry being defined as birds that are rais...

  10. Influenza vaccines for avian species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beginning in Southeast Asia, in 2003, a multi-national epizootic outbreak of H5N1 highly pathogenic avian influenza (HPAI) was identified in commercial poultry and wild bird species. This lineage, originally identified in Southern China in 1996 and then Hong Kong in 1997, caused severe morbidity an...

  11. H5N2 highly pathogenic avian influenza viruses from the US 2014-2015 outbreak have an unusually long pre-clinical period in turkeys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From December 2014 through June 2015, the US experienced the most costly highly pathogenic avian influenza (HPAI) outbreak to date. Most cases in commercial poultry were caused by an H5N2 strain which was a reassortant with 5 Eurasian lineage genes, including a clade 2.3.4.4 goose/Guangdong/1996 lin...

  12. Avian influenza virus.

    PubMed

    Lee, Chang-Won; Saif, Yehia M

    2009-07-01

    Avian influenza viruses do not typically replicate efficiently in humans, indicating direct transmission of avian influenza virus to humans is unlikely. However, since 1997, several cases of human infections with different subtypes (H5N1, H7N7, and H9N2) of avian influenza viruses have been identified and raised the pandemic potential of avian influenza virus in humans. Although circumstantial evidence of human to human transmission exists, the novel avian-origin influenza viruses isolated from humans lack the ability to transmit efficiently from person-to-person. However, the on-going human infection with avian-origin H5N1 viruses increases the likelihood of the generation of human-adapted avian influenza virus with pandemic potential. Thus, a better understanding of the biological and genetic basis of host restriction of influenza viruses is a critical factor in determining whether the introduction of a novel influenza virus into the human population will result in a pandemic. In this article, we review current knowledge of type A influenza virus in which all avian influenza viruses are categorized.

  13. Environmental Correlates of H5N2 Low Pathogenicity Avian Influenza Outbreak Heterogeneity in Domestic Poultry in Italy

    PubMed Central

    Mughini-Gras, Lapo; Bonfanti, Lebana; Mulatti, Paolo; Monne, Isabella; Guberti, Vittorio; Cordioli, Paolo; Marangon, Stefano

    2014-01-01

    Italy has experienced recurrent incursions of H5N2 avian influenza (AI) viruses in different geographical areas and varying sectors of the domestic poultry industry. Considering outbreak heterogeneity rather than treating all outbreaks of low pathogenicity AI (LPAI) viruses equally is important given their interactions with the environment and potential to spread, evolve and increase pathogenicity. This study aims at identifying potential environmental drivers of H5N2 LPAI outbreak occurrence in time, space and poultry populations. Thirty-four environmental variables were tested for association with the characteristics of 27 H5N2 LPAI outbreaks (i.e. time, place, flock type, number and species of birds affected) occurred among domestic poultry flocks in Italy in 2010–2012. This was done by applying a recently proposed analytical approach based on a combined non-metric multidimensional scaling, clustering and regression analysis. Results indicated that the pattern of (dis)similarities among the outbreaks entailed an underlying structure that may be the outcome of large-scale, environmental interactions in ecological dimension. Increased densities of poultry breeders, and increased land coverage by industrial, commercial and transport units were associated with increased heterogeneity in outbreak characteristics. In areas with high breeder densities and with many infrastructures, outbreaks affected mainly industrial turkey/layer flocks. Outbreaks affecting ornamental, commercial and rural multi-species flocks occurred mainly in lowly infrastructured areas of northern Italy. Outbreaks affecting rural layer flocks occurred mainly in areas with low breeder densities in south-central Italy. In savannah-like environments, outbreaks affected mainly commercial flocks of galliformes. Suggestive evidence that ecological ordination makes sense genetically was also provided, as virus strains showing high genetic similarity clustered into ecologically similar outbreaks

  14. Migration of Whooper Swans and Outbreaks of Highly Pathogenic Avian Influenza H5N1 Virus in Eastern Asia

    PubMed Central

    Newman, Scott H.; Iverson, Samuel A.; Takekawa, John Y.; Gilbert, Martin; Prosser, Diann J.; Batbayar, Nyambyar; Natsagdorj, Tseveenmyadag; Douglas, David C.

    2009-01-01

    Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003–2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds. PMID:19479053

  15. Risk factors and characteristics of H5N1 Highly Pathogenic Avian Influenza (HPAI) post-vaccination outbreaks.

    PubMed

    Henning, Joerg; Pfeiffer, Dirk U; Vu, Le Tri

    2009-01-01

    Highly pathogenic avian influenza (HPAI) virus H5N1 is now endemic in South-East Asia but HPAI control methods differ between countries. A widespread HPAI vaccination campaign that started at the end of 2005 in Viet Nam resulted in the cessation of poultry and human cases, but in 2006/2007 severe HPAI outbreaks re-emerged. In this study we investigated the pattern of this first post-vaccination epidemic in southern Viet Nam identifying a spatio-temporal cluster of outbreak occurrence and estimating spatially smoothed incidence rates of HPAI. Spatial risk factors associated with HPAI occurrence were identified. Medium-level poultry density resulted in an increased outbreak risk (Odds ratio (OR) = 5.4, 95% confidence interval (CI): 1.6-18.9) but also climate-vegetation factors played an important role: medium-level normalised difference vegetation indices during the rainy season from May to October were associated with higher risk of HPAI outbreaks (OR = 3.7, 95% CI: 1.7-8.1), probably because temporal flooding might have provided suitable conditions for the re-emergence of HPAI by expanding the virus distribution in the environment and by enlarging areas of possible contacts between domestic waterfowl and wild birds. On the other hand, several agricultural production factors, such as sweet potatoes yield, increased buffalo density, as well as increased electricity supply were associated with decreased risk of HPAI outbreaks. This illustrates that preventive control measures for HPAI should include a promotion of low-risk agricultural management practices as well as improvement of the infrastructure in village households. Improved HPAI vaccination efforts and coverage should focus on medium poultry density areas and on the pre-monsoon time period.

  16. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in Eastern Asia

    USGS Publications Warehouse

    Newman, Scott H.; Iverson, Samuel A.; Takekawa, John Y.; Gilbert, Martin; Prosser, Diann J.; Batbayar, Nyambyar; Natsagdorj, Tseveenmyadag; Douglas, David C.

    2009-01-01

    Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003-2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds.

  17. A PROPOSED TAXONOMY FOR CHARACTERIZATION AND ASSESSMENT OF AVIAN INFLUENZA OUTBREAKS

    PubMed Central

    Mohammed, Sule L.; Lehmann, Harold P.; Kim, George R.

    2009-01-01

    Purpose The speed and high potential impact of Avian Influenza’s (AI) on local bird populations, poultry economies and human health make timely and coordinated characterization, assessment and response to possible threats essential. To achieve effective collaboration, stakeholders (public health, medical, veterinary, and agricultural professionals) must be able to communicate and record findings, assessments, and actions in a standard fashion. We seek to discern a taxonomy of concepts and relationships that are important to the stakeholder community when sharing information about the characterization and assessment of an AI outbreak, according to a consistent and common perspective, interpretation, and level of detail. Methods To derive concepts relevant to AI characterization and assessment, we reviewed selected journal articles, reporting and laboratory forms, and public health Websites associated with AI case reporting. We mapped concepts to existing medical terminologies when possible, using the Unified Medical Language System MetaMap. Results From 54 distinct information sources, we extracted 1113 concepts, of which 533 mapped to 15 medical terminologies; 580 did not map to specific terminologies. Using a combination of semantic type-relationship matching and expert consensus, we constructed the proposed taxonomy, with linkages to existing terminologies where pragmatic. Conclusion The proposed taxonomy describes core knowledge, data and communication needs for the characterization and assessment of AI outbreaks in the context of existing medical terminologies across different domains. We also describe areas for further work. PMID:18805050

  18. Avian Influenza A Virus Infections in Humans

    MedlinePlus

    ... this? Submit Button Past Newsletters Avian Influenza A Virus Infections in Humans Language: English Español Recommend ... with Avian Influenza A Viruses Avian Influenza A Virus Infections in Humans Although avian influenza A viruses ...

  19. Movements of wild ruddy shelducks in the Central Asian Flyway and their spatial relationship to outbreaks of highly pathogenic avian influenza H5N1

    USGS Publications Warehouse

    Takekawa, John Y.; Prosser, Diann J.; Collins, Bridget M.; Douglas, David C.; Perry, William M.; Baoping, Yan; Luo, Ze; Hou, Yuansheng; Lei, Fumin; Li, Tianxian; Li, Yongdong; Newman, Scott H.

    2013-01-01

    Highly pathogenic avian influenza H5N1 remains a serious concern for both poultry and human health. Wild waterfowl are considered to be the reservoir for low pathogenic avian influenza viruses; however, relatively little is known about their movement ecology in regions where HPAI H5N1 outbreaks regularly occur. We studied movements of the ruddy shelduck (Tadorna ferruginea), a wild migratory waterfowl species that was infected in the 2005 Qinghai Lake outbreak. We defined their migration with Brownian Bridge utilization distribution models and their breeding and wintering grounds with fixed kernel home ranges. We correlated their movements with HPAI H5N1 outbreaks, poultry density, land cover, and latitude in the Central Asian Flyway. Our Akaike Information Criterion analysis indicated that outbreaks were correlated with land cover, latitude, and poultry density. Although shelduck movements were included in the top two models, they were not a top parameter selected in AICc stepwise regression results. However, timing of outbreaks suggested that outbreaks in the flyway began during the winter in poultry with spillover to wild birds during the spring migration. Thus, studies of the movement ecology of wild birds in areas with persistent HPAI H5N1 outbreaks may contribute to understanding their role in transmission of this disease.

  20. Nonlinear dynamics of avian influenza epidemic models.

    PubMed

    Liu, Sanhong; Ruan, Shigui; Zhang, Xinan

    2017-01-01

    Avian influenza is a zoonotic disease caused by the transmission of the avian influenza A virus, such as H5N1 and H7N9, from birds to humans. The avian influenza A H5N1 virus has caused more than 500 human infections worldwide with nearly a 60% death rate since it was first reported in Hong Kong in 1997. The four outbreaks of the avian influenza A H7N9 in China from March 2013 to June 2016 have resulted in 580 human cases including 202 deaths with a death rate of nearly 35%. In this paper, we construct two avian influenza bird-to-human transmission models with different growth laws of the avian population, one with logistic growth and the other with Allee effect, and analyze their dynamical behavior. We obtain a threshold value for the prevalence of avian influenza and investigate the local or global asymptotical stability of each equilibrium of these systems by using linear analysis technique or combining Liapunov function method and LaSalle's invariance principle, respectively. Moreover, we give necessary and sufficient conditions for the occurrence of periodic solutions in the avian influenza system with Allee effect of the avian population. Numerical simulations are also presented to illustrate the theoretical results.

  1. Avian influenza: an emerging pandemic threat.

    PubMed

    Jin, Xian Wen; Mossad, Sherif B

    2005-12-01

    While we are facing the threat of an emerging pandemic from the current avian flu outbreak in Asia, we have learned important traits of the virus responsible for the 1918 Spanish influenza pandemic that made it so deadly. By using stockpiled antiviral drugs effectively and developing an effective vaccine, we can be in a better position than ever to mitigate the global impact of an avian influenza pandemic.

  2. Avian Influenza in Birds

    MedlinePlus

    ... National Wildlife Health Center website . Avian Influenza in Poultry (Domesticated Birds) Domesticated birds (chickens, turkeys, etc.) may ... direct contact with infected waterfowl or other infected poultry, or through contact with surfaces that have been ...

  3. Avian flu to human influenza.

    PubMed

    Lewis, David B

    2006-01-01

    Influenza A viral infection causes substantial annual morbidity and mortality worldwide, particularly for infants, the elderly, and the immunocompromised. The virus mainly replicates in the respiratory tract and is spread by respiratory secretions. A growing concern is the recent identification of H5N1 strains of avian influenza A in Asia that were previously thought to infect only wild birds and poultry, but have now infected humans, cats, pigs, and other mammals, often with fatal results, in an ongoing outbreak. A human pandemic with H5N1 virus could potentially be catastrophic because most human populations have negligible antibody-mediated immunity to the H5 surface protein and this viral subtype is highly virulent. Whether an H5N1 influenza pandemic will occur is likely to hinge on whether the viral strains involved in the current outbreak acquire additional mutations that facilitate efficient human-to-human transfer of infection. Although there is no historical precedent for an H5N1 avian strain causing widespread human-to-human transmission, some type of influenza A pandemic is very likely in the near future. The possibility of an H5N1 influenza pandemic has highlighted the many current limitations of treatment with antiviral agents and of vaccine production and immunogenicity. Future vaccine strategies that may include more robust induction of T-cell responses, such as cytotoxic T lymphocytes, may provide better protection than is offered by current vaccines, which rely solely or mainly on antibody neutralization of infection.

  4. Avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) is caused by type A influenza virus, a member of the Orthomyxoviridae family. AI viruses are serologically categorized into 16 hemagglutinin (H1-H16) and 9 neuraminidase (N1-N9) subtypes. All subtypes have been identified in birds. Infections by AI viruses have been reported in ...

  5. Outbreaks of highly pathogenic Eurasian H5N8 avian influenza in two commercial poultry flocks in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In January 2015, a highly pathogenic Eurasian lineage H5N8 avian influenza (AI) virus was detected in a commercial meat turkey flock in Stanislaus County, California. Approximately 3 weeks later, a similar case was diagnosed in commercial chickens from a different company located in Kings County, C...

  6. Highly pathogenic avian influenza A(H5N8) outbreaks: protection and management of exposed people in Europe, 2014/15 and 2016

    PubMed Central

    Adlhoch, Cornelia; Brown, Ian H.; Angelova, Svetla G.; Bálint, Ádám; Bouwstra, Ruth; Buda, Silke; Castrucci, Maria R.; Dabrera, Gavin; Dán, Ádám; Grund, Christian; Harder, Timm; van der Hoek, Wim; Krisztalovics, Katalin; Parry-Ford, Frances; Popescu, Rodica; Wallensten, Anders; Zdravkova, Anna; Zohari, Siamak; Tsolova, Svetla; Penttinen, Pasi

    2016-01-01

    Introduction of highly pathogenic avian influenza (HPAI) virus A(H5N8) into Europe prompted animal and human health experts to implement protective measures to prevent transmission to humans. We describe the situation in 2016 and list public health measures and recommendations in place. We summarise critical interfaces identified during the A(H5N1) and A(H5N8) outbreaks in 2014/15. Rapid exchange of information between the animal and human health sectors is critical for a timely, effective and efficient response. PMID:27983512

  7. Highly pathogenic avian influenza A(H5N8) outbreaks: protection and management of exposed people in Europe, 2014/15 and 2016.

    PubMed

    Adlhoch, Cornelia; Brown, Ian H; Angelova, Svetla G; Bálint, Ádám; Bouwstra, Ruth; Buda, Silke; Castrucci, Maria R; Dabrera, Gavin; Dán, Ádám; Grund, Christian; Harder, Timm; van der Hoek, Wim; Krisztalovics, Katalin; Parry-Ford, Frances; Popescu, Rodica; Wallensten, Anders; Zdravkova, Anna; Zohari, Siamak; Tsolova, Svetla; Penttinen, Pasi

    2016-12-08

    Introduction of highly pathogenic avian influenza (HPAI) virus A(H5N8) into Europe prompted animal and human health experts to implement protective measures to prevent transmission to humans. We describe the situation in 2016 and list public health measures and recommendations in place. We summarise critical interfaces identified during the A(H5N1) and A(H5N8) outbreaks in 2014/15. Rapid exchange of information between the animal and human health sectors is critical for a timely, effective and efficient response.

  8. Avian influenza control strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Control strategies for avian influenza in poultry vary depending on whether the goal is prevention, management, or eradication. Components used in control programs include: 1) education which includes communication, public awareness, and behavioral change, 2) changes to production and marketing sys...

  9. Avian influenza (fowl plague)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) viruses infect domestic poultry and wild birds. In domestic poultry, AI viruses are typically of low pathogenicity (LP) causing subclinical infections, respiratory disease or drops in egg production. However, a few AI viruses cause severe systemic disease with high mortality; ...

  10. Avian influenza: a pandemic waiting in the wings?

    PubMed

    Hampson, Alan W

    2006-01-01

    Recent widespread outbreaks of avian influenza and, associated with these a growing number of human infections with a high mortality rate, have raised concerns that this might be the prelude to a severe pandemic of human influenza. As a background to these concerns the present article reviews influenza as a human disease, its origins and the involvement of other species, properties of the influenza viruses and the current status of influenza prevention and control.

  11. The genome sequence analysis of H5N1 avian influenza A virus isolated from the outbreak among poultry populations in Thailand.

    PubMed

    Viseshakul, Nareerat; Thanawongnuwech, Roongroje; Amonsin, Alongkorn; Suradhat, Sanipa; Payungporn, Sunchai; Keawchareon, Juthatip; Oraveerakul, Kanisak; Wongyanin, Piya; Plitkul, Sukanya; Theamboonlers, Apiradee; Poovorawan, Yong

    2004-10-25

    In this report, the genome of the Thai avian influenza virus A (H5N1); A/Chicken/Nakorn-Pathom/Thailand/CU-K2/04, isolated from the Thai avian influenza A (AI) epidemic during the early of 2004 was sequenced. Phylogenetic analyses were performed in comparison to AI viruses from Hong Kong 1997 outbreaks and other AI (H5N1) isolates reported during 2001-2004. Molecular characterization of the Thai AI (H5N1) HA gene revealed a common characteristic of a highly pathogenic AI (HPAI), a 20-codon deletion in the neuraminidase gene, a 5-codon deletion in the NS gene and polymorphisms of the M2 and PB2 genes. Moreover, the HA and NA genes of the Thai AI displayed high similarity to those of the AI viruses isolated from human cases during the same epidemic. Finally, our results demonstrated that the Thai AI emerged as a member of 2000's AI lineage with most of the genetic sequences closely related to the Influenza A/Duck/China/E319.2/03 (H5N1).

  12. Epidemiology of the avian influenza A (H7N9) outbreak in Zhejiang Province, China

    PubMed Central

    2014-01-01

    Background A novel influenza A virus infection was identified on March 31, 2013 in China and a total of 134 cases were identified in 12 provinces of China between March 25 and September 31, 2013. Of these, 46 cases occurred in Zhejiang Province and the number of patients is the largest in China. Methods Field investigations were conducted for each confirmed H7N9 case. A standardized questionnaire was used to collect information about demographics, exposure history, clinical signs and symptoms, timelines of medical visits and care after onset of illness, and close contacts. Descriptive statistics were used to analyze the epidemiological and clinical characteristics. Samples from the patients were collected and tested by real time reverse transcriptase-polymerase chain reaction and viral culture. Results A total of 46 laboratory confirmed cases of H7N9 influenza infection were identified in the Zhejiang province between March 31 and September 31, 2013 of which 29 were male and 17 were female. The median age of patients was 61.5 years and 76.09% of cases occurred in persons aged ≥50 years old. Unlike other province, 34.78% of cases in Zhejiang Province were rural residents. Among 11 deaths, 9 were male, 10 were older than 60 years old, and 10 had underlying diseases. 30 of 38 cases with available data had a recent history of poultry exposures and 8 cases had multi-exposure history. The estimated median incubation period was two days which was shorter than corresponding data in other provinces. All cases were hospitalized and the median time from illness onset to hospitalization was 5 days. Symptoms at the onset of the illness included fever, cough, expectoration, shivering, fatigue, muscular aches, nausea, vomiting. Only 4.91% contacts developed respiratory symptoms, but their samples were tested negative for H7N9 virus designating lack of human-to-human transmission of the virus. Conclusions All cases were sporadic and there was no evidence of an epidemiologic

  13. Pandemic threat posed by avian influenza A viruses.

    PubMed

    Horimoto, T; Kawaoka, Y

    2001-01-01

    Influenza pandemics, defined as global outbreaks of the disease due to viruses with new antigenic subtypes, have exacted high death tolls from human populations. The last two pandemics were caused by hybrid viruses, or reassortants, that harbored a combination of avian and human viral genes. Avian influenza viruses are therefore key contributors to the emergence of human influenza pandemics. In 1997, an H5N1 influenza virus was directly transmitted from birds in live poultry markets in Hong Kong to humans. Eighteen people were infected in this outbreak, six of whom died. This avian virus exhibited high virulence in both avian and mammalian species, causing systemic infection in both chickens and mice. Subsequently, another avian virus with the H9N2 subtype was directly transmitted from birds to humans in Hong Kong. Interestingly, the genes encoding the internal proteins of the H9N2 virus are genetically highly related to those of the H5N1 virus, suggesting a unique property of these gene products. The identification of avian viruses in humans underscores the potential of these and similar strains to produce devastating influenza outbreaks in major population centers. Although highly pathogenic avian influenza viruses had been identified before the 1997 outbreak in Hong Kong, their devastating effects had been confined to poultry. With the Hong Kong outbreak, it became clear that the virulence potential of these viruses extended to humans.

  14. Pandemic Threat Posed by Avian Influenza A Viruses

    PubMed Central

    Horimoto, Taisuke; Kawaoka, Yoshihiro

    2001-01-01

    Influenza pandemics, defined as global outbreaks of the disease due to viruses with new antigenic subtypes, have exacted high death tolls from human populations. The last two pandemics were caused by hybrid viruses, or reassortants, that harbored a combination of avian and human viral genes. Avian influenza viruses are therefore key contributors to the emergence of human influenza pandemics. In 1997, an H5N1 influenza virus was directly transmitted from birds in live poultry markets in Hong Kong to humans. Eighteen people were infected in this outbreak, six of whom died. This avian virus exhibited high virulence in both avian and mammalian species, causing systemic infection in both chickens and mice. Subsequently, another avian virus with the H9N2 subtype was directly transmitted from birds to humans in Hong Kong. Interestingly, the genes encoding the internal proteins of the H9N2 virus are genetically highly related to those of the H5N1 virus, suggesting a unique property of these gene products. The identification of avian viruses in humans underscores the potential of these and similar strains to produce devastating influenza outbreaks in major population centers. Although highly pathogenic avian influenza viruses had been identified before the 1997 outbreak in Hong Kong, their devastating effects had been confined to poultry. With the Hong Kong outbreak, it became clear that the virulence potential of these viruses extended to humans. PMID:11148006

  15. DIVA vaccination strategies for avian influenza virus.

    PubMed

    Suarez, David L

    2012-12-01

    Vaccination for both low pathogenicity avian influenza and highly pathogenic avian influenza is commonly used by countries that have become endemic for avian influenza virus, but stamping-out policies are still common for countries with recently introduced disease. Stamping-out policies of euthanatizing infected and at-risk flocks has been an effective control tool, but it comes at a high social and economic cost. Efforts to identify alternative ways to respond to outbreaks without widespread stamping out has become a goal for organizations like the World Organisation for Animal Health. A major issue with vaccination for avian influenza is trade considerations because countries that vaccinate are often considered to be endemic for the disease and they typically lose their export markets. Primarily as a tool to promote trade, the concept of DIVA (differentiate infected from vaccinated animals) has been considered for avian influenza, but the goal for trade is to differentiate vaccinated and not-infected from vaccinated and infected animals because trading partners are unwilling to accept infected birds. Several different strategies have been investigated for a DIVA strategy, but each has advantages and disadvantages. A review of current knowledge on the research and implementation of the DIVA strategy will be discussed with possible ways to implement this strategy in the field. The increased desire for a workable DIVA strategy may lead to one of these ideas moving from the experimental to the practical.

  16. Surveillance for highly pathogenic H5 avian influenza virus in synanthropic wildlife associated with poultry farms during an acute outbreak

    PubMed Central

    Shriner, Susan A.; Root, J. Jeffrey; Lutman, Mark W.; Kloft, Jason M.; VanDalen, Kaci K.; Sullivan, Heather J.; White, Timothy S.; Milleson, Michael P.; Hairston, Jerry L.; Chandler, Shannon C.; Wolf, Paul C.; Turnage, Clinton T.; McCluskey, Brian J.; Vincent, Amy L.; Torchetti, Mia K.; Gidlewski, Thomas; DeLiberto, Thomas J.

    2016-01-01

    In November 2014, a Eurasian strain H5N8 highly pathogenic avian influenza virus was detected in poultry in Canada. Introduced viruses were soon detected in the United States and within six months had spread to 21 states with more than 48 million poultry affected. In an effort to study potential mechanisms of spread of the Eurasian H5 virus, the United States Department of Agriculture coordinated several epidemiologic investigations at poultry farms. As part of those efforts, we sampled synanthropic birds and mammals at five infected and five uninfected poultry farms in northwest Iowa for exposure to avian influenza viruses. Across all farms, we collected 2,627 samples from 648 individual birds and mammals. House mice were the most common mammal species captured while house sparrows, European starlings, rock pigeons, swallows, and American robins were the most commonly captured birds. A single European starling was positive for Eurasian H5 viral RNA and seropositive for antibodies reactive to the Eurasian H5 virus. Two American robins were also seropositive. No mammal species showed evidence of infection. These results indicate synanthropic species merit further scrutiny to better understand potential biosecurity risks. We propose a set of management practices aimed at reducing wildlife incursions. PMID:27812044

  17. On avian influenza epidemic models with time delay.

    PubMed

    Liu, Sanhong; Ruan, Shigui; Zhang, Xinan

    2015-12-01

    After the outbreak of the first avian influenza A virus (H5N1) in Hong Kong in 1997, another avian influenza A virus (H7N9) crossed the species barrier in mainland China in 2013 and 2014 and caused more than 400 human cases with a death rate of nearly 40%. In this paper, we take account of the incubation periods of avian influenza A virus and construct a bird-to-human transmission model with different time delays in the avian and human populations combining the survival probability of the infective avian and human populations at the latent time. By analyzing the dynamical behavior of the model, we obtain a threshold value for the prevalence of avian influenza and investigate local and global asymptotical stability of equilibria of the system.

  18. Pathological and Immunohistochemical Findings of Natural Highly Pathogenic Avian Influenza Infection in Tufted Ducks during 2010–2011 Outbreaks in Japan

    PubMed Central

    ABDO, Walied; HARIDY, Mohie; KATOU, Yuki; GOTO, Minami; MIZOGUCHI, Toshio; SAKODA, Yoshihiro; SAKAI, Hiroki; YANAI, Tokuma

    2014-01-01

    ABSTRACT In the winter of 2010–2011, an outbreak of highly pathogenic avian influenza virus (HPAIV) infection occurred in wild and domestic birds in Japan. Tufted ducks were found dead in an urban area of Toyota City, Koriyama, Fukushima Prefecture. Two tufted ducks were examined histopathologically, immunohistochemically and molecularly. Gross findings included marked dark-red clotted blood in the pectoral muscles and multifocal hemorrhages on the serous membranes. Microscopically, non-suppurative meningoencephalitis, multifocal to coalescing pancreatic necrosis and severe pulmonary congestion were observed. HPAIV antigen was detected in the malacic areas, neuronal, glial and ependymal cells, pulmonary capillary endothelial cells and epithelium of pulmonary bronchioles, necrotic pancreatic acini and degenerated cardiac myocytes. The HPAIV isolate was genetically classified into clade 2.3.2.1 group A. The broad distribution of virus antigen in brain and pulmonary tissues associated with HPAIV spontaneous infection in tufted ducks might be useful in understanding its pathogenesis in nature. PMID:24881650

  19. Quantification of Bird-to-Bird and Bird-to-Human Infections during 2013 Novel H7N9 Avian Influenza Outbreak in China

    PubMed Central

    Hsieh, Ying-Hen; Wu, Jianhong; Fang, Jian; Yang, Yong; Lou, Jie

    2014-01-01

    From February to May, 2013, 132 human avian influenza H7N9 cases were identified in China resulting in 37 deaths. We developed a novel, simple and effective compartmental modeling framework for transmissions among (wild and domestic) birds as well as from birds to human, to infer important epidemiological quantifiers, such as basic reproduction number for bird epidemic, bird-to-human infection rate and turning points of the epidemics, for the epidemic via human H7N9 case onset data and to acquire useful information regarding the bird-to-human transmission dynamics. Estimated basic reproduction number for infections among birds is 4.10 and the mean daily number of human infections per infected bird is 3.16*10−5 [3.08*10−5, 3.23*10−5]. The turning point of 2013 H7N9 epidemic is pinpointed at April 16 for bird infections and at April 9 for bird-to-human transmissions. Our result reveals very low level of bird-to-human infections, thus indicating minimal risk of widespread bird-to-human infections of H7N9 virus during the outbreak. Moreover, the turning point of the human epidemic, pinpointed at shortly after the implementation of full-scale control and intervention measures initiated in early April, further highlights the impact of timely actions on ending the outbreak. This is the first study where both the bird and human components of an avian influenza epidemic can be quantified using only the human case data. PMID:25479054

  20. Quantification of bird-to-bird and bird-to-human infections during 2013 novel H7N9 avian influenza outbreak in China.

    PubMed

    Hsieh, Ying-Hen; Wu, Jianhong; Fang, Jian; Yang, Yong; Lou, Jie

    2014-01-01

    From February to May, 2013, 132 human avian influenza H7N9 cases were identified in China resulting in 37 deaths. We developed a novel, simple and effective compartmental modeling framework for transmissions among (wild and domestic) birds as well as from birds to human, to infer important epidemiological quantifiers, such as basic reproduction number for bird epidemic, bird-to-human infection rate and turning points of the epidemics, for the epidemic via human H7N9 case onset data and to acquire useful information regarding the bird-to-human transmission dynamics. Estimated basic reproduction number for infections among birds is 4.10 and the mean daily number of human infections per infected bird is 3.16*10-5 [3.08*10-5, 3.23*10-5]. The turning point of 2013 H7N9 epidemic is pinpointed at April 16 for bird infections and at April 9 for bird-to-human transmissions. Our result reveals very low level of bird-to-human infections, thus indicating minimal risk of widespread bird-to-human infections of H7N9 virus during the outbreak. Moreover, the turning point of the human epidemic, pinpointed at shortly after the implementation of full-scale control and intervention measures initiated in early April, further highlights the impact of timely actions on ending the outbreak. This is the first study where both the bird and human components of an avian influenza epidemic can be quantified using only the human case data.

  1. Low-Pathogenic Avian Influenza Viruses in Wild House Mice

    PubMed Central

    Shriner, Susan A.; VanDalen, Kaci K.; Mooers, Nicole L.; Ellis, Jeremy W.; Sullivan, Heather J.; Root, J. Jeffrey; Pelzel, Angela M.; Franklin, Alan B.

    2012-01-01

    Background Avian influenza viruses are known to productively infect a number of mammal species, several of which are commonly found on or near poultry and gamebird farms. While control of rodent species is often used to limit avian influenza virus transmission within and among outbreak sites, few studies have investigated the potential role of these species in outbreak dynamics. Methodology/Principal Findings We trapped and sampled synanthropic mammals on a gamebird farm in Idaho, USA that had recently experienced a low pathogenic avian influenza outbreak. Six of six house mice (Mus musculus) caught on the outbreak farm were presumptively positive for antibodies to type A influenza. Consequently, we experimentally infected groups of naïve wild-caught house mice with five different low pathogenic avian influenza viruses that included three viruses derived from wild birds and two viruses derived from chickens. Virus replication was efficient in house mice inoculated with viruses derived from wild birds and more moderate for chicken-derived viruses. Mean titers (EID50 equivalents/mL) across all lung samples from seven days of sampling (three mice/day) ranged from 103.89 (H3N6) to 105.06 (H4N6) for the wild bird viruses and 102.08 (H6N2) to 102.85 (H4N8) for the chicken-derived viruses. Interestingly, multiple regression models indicated differential replication between sexes, with significantly (p<0.05) higher concentrations of avian influenza RNA found in females compared with males. Conclusions/Significance Avian influenza viruses replicated efficiently in wild-caught house mice without adaptation, indicating mice may be a risk pathway for movement of avian influenza viruses on poultry and gamebird farms. Differential virus replication between males and females warrants further investigation to determine the generality of this result in avian influenza disease dynamics. PMID:22720076

  2. Leveraging social networking sites for disease surveillance and public sensing: the case of the 2013 avian influenza A(H7N9) outbreak in China.

    PubMed

    Zhang, Emma Xuxiao; Yang, Yinping; Di Shang, Richard; Simons, Joseph John Pyne; Quek, Boon Kiat; Yin, Xiao Feng; See, Wanhan; Oh, Olivia Seen Huey; Nandar, Khine Sein Tun; Ling, Vivienne Ruo Yun; Chan, Pei Pei; Wang, Zhaoxia; Goh, Rick Siow Mong; James, Lyn; Tey, Jeannie Su Hui

    2015-01-01

    We conducted in-depth analysis on the use of a popular Chinese social networking and microblogging site, Sina Weibo, to monitor an avian influenza A(H7N9) outbreak in China and to assess the value of social networking sites in the surveillance of disease outbreaks that occur overseas. Two data sets were employed for our analysis: a line listing of confirmed cases obtained from conventional public health information channels and case information from Weibo posts. Our findings showed that the level of activity on Weibo corresponded with the number of new cases reported. In addition, the reporting of new cases on Weibo was significantly faster than those of conventional reporting sites and non-local news media. A qualitative review of the functions of Weibo also revealed that Weibo enabled timely monitoring of other outbreak-relevant information, provided access to additional crowd-sourced epidemiological information and was leveraged by the local government as an interactive platform for risk communication and monitoring public sentiment on the policy response. Our analysis demonstrated the potential for social networking sites to be used by public health agencies to enhance traditional communicable disease surveillance systems for the global surveillance of overseas public health threats. Social networking sites also can be used by governments for calibration of response policies and measures and for risk communication.

  3. Leveraging social networking sites for disease surveillance and public sensing: the case of the 2013 avian influenza A(H7N9) outbreak in China

    PubMed Central

    Zhang, Emma Xuxiao; Yang, Yinping; Di Shang, Richard; Simons, Joseph John Pyne; Quek, Boon Kiat; Yin, Xiao Feng; See, Wanhan; Oh, Olivia Seen Huey; Nandar, Khine Sein Tun; Ling, Vivienne Ruo Yun; Chan, Pei Pei; Wang, Zhaoxia; Goh, Rick Siow Mong; James, Lyn

    2015-01-01

    We conducted in-depth analysis on the use of a popular Chinese social networking and microblogging site, Sina Weibo, to monitor an avian influenza A(H7N9) outbreak in China and to assess the value of social networking sites in the surveillance of disease outbreaks that occur overseas. Two data sets were employed for our analysis: a line listing of confirmed cases obtained from conventional public health information channels and case information from Weibo posts. Our findings showed that the level of activity on Weibo corresponded with the number of new cases reported. In addition, the reporting of new cases on Weibo was significantly faster than those of conventional reporting sites and non-local news media. A qualitative review of the functions of Weibo also revealed that Weibo enabled timely monitoring of other outbreak-relevant information, provided access to additional crowd-sourced epidemiological information and was leveraged by the local government as an interactive platform for risk communication and monitoring public sentiment on the policy response. Our analysis demonstrated the potential for social networking sites to be used by public health agencies to enhance traditional communicable disease surveillance systems for the global surveillance of overseas public health threats. Social networking sites also can be used by governments for calibration of response policies and measures and for risk communication. PMID:26306219

  4. Prevalence of avian influenza virus in wild birds before and after the HPAI H5N8 outbreak in 2014 in South Korea.

    PubMed

    Shin, Jeong-Hwa; Woo, Chanjin; Wang, Seung-Jun; Jeong, Jipseol; An, In-Jung; Hwang, Jong-Kyung; Jo, Seong-Deok; Yu, Seung Do; Choi, Kyunghee; Chung, Hyen-Mi; Suh, Jae-Hwa; Kim, Seol-Hee

    2015-07-01

    Since 2003, highly pathogenic avian influenza (HPAI) virus outbreaks have occurred five times in Korea, with four HPAI H5N1 outbreaks and one HPAI H5N8 outbreak. Migratory birds have been suggested to be the first source of HPAI in Korea. Here, we surveyed migratory wild birds for the presence of AI and compared regional AI prevalence in wild birds from September 2012 to April 2014 for birds having migratory pathways in South Korea. Finally, we investigated the prevalence of AI in migratory birds before and after HPAI H5N8 outbreaks. Overall, we captured 1617 migratory wild birds, while 18,817 feces samples and 74 dead birds were collected from major wild bird habitats. A total of 21 HPAI viruses were isolated from dead birds, and 86 low pathogenic AI (LPAI) viruses were isolated from captured birds and from feces samples. Spatiotemporal distribution analysis revealed that AI viruses were spread southward until December, but tended to shift north after January, consistent with the movement of migratory birds in South Korea. Furthermore, we found that LPAI virus prevalences within wild birds were notably higher in 2013-2014 than the previous prevalence during the northward migration season. The data from our study demonstrate the importance of the surveillance of AI in wild birds. Future studies including in-depth genetic analysis in combination with evaluation of the movement and ecology of migratory birds might help us to bridge the gaps in our knowledge and better explain, predict, and ultimately prevent future HPAI outbreaks.

  5. Changes in and shortcomings of control strategies, drug stockpiles, and vaccine development during outbreaks of avian influenza A H5N1, H1N1, and H7N9 among humans.

    PubMed

    Mei, Lin; Song, Peipei; Tang, Qi; Shan, Ke; Tobe, Ruoyan Gai; Selotlegeng, Lesego; Ali, Asghar Hammad; Cheng, Yangyang; Xu, Lingzhong

    2013-04-01

    The purpose of this review is to provide a reference for the future prevention and control of emerging infectious diseases by summarizing the control strategies, the status of drugs and vaccines, and shortcomings during three major outbreaks of avian influenza among humans (H5N1 in 2003, H1N1 in 2009, and H7N9 in 2013). Data on and documents regarding the three influenza outbreaks have been reviewed. Results indicated that the response to pandemic influenza outbreaks has improved markedly in terms of control strategies, stockpiles of antivirals, and vaccine development. These improvements also suggest advances in disease surveillance, transparency in reporting, and regional collaboration and cooperation. These trends also foreshadow better prospects for prevention and control of emerging infectious diseases. However, there are shortcomings since strategies failed to focus on high-risk groups, quantitative and measurable results (both direct and indirect) were unclear, and quantitative assessment is still lacking.

  6. Epidemiological and ornithological aspects of outbreaks of highly pathogenic avian influenza virus H5N1 of Asian lineage in wild birds in Germany, 2006 and 2007.

    PubMed

    Globig, A; Staubach, C; Beer, M; Köppen, U; Fiedler, W; Nieburg, M; Wilking, H; Starick, E; Teifke, J P; Werner, O; Unger, F; Grund, C; Wolf, C; Roost, H; Feldhusen, F; Conraths, F J; Mettenleiter, T C; Harder, T C

    2009-04-01

    In Germany, two distinct episodes of outbreaks of highly pathogenic avian influenza virus of subtype H5N1 (HPAIV H5N1) in wild birds occurred at the beginning of 2006, and in summer 2007. High local densities of wild bird populations apparently sparked clinically detectable outbreaks. However, these remained restricted in (i) number of birds, (ii) species found to be affected, (iii) time, and (iv) location despite the presence of several hundred thousands of susceptible wild birds and further stressors (food shortage, harsh weather conditions and moulting). Northern and southern subpopulations of several migratory anseriform species can be distinguished with respect to their preference for wintering grounds in Germany. This corroborates viral genetic data by Starick et al. (2008) demonstrating the introduction of two geographically restricted virus subpopulations of Qinghai-like lineage (cluster 2.2.A and 2.2.B) into northern and southern Germany, respectively, in 2006. The incursion of virus emerging in 2007, found to be distinct from the clusters detected in 2006 (Starick et al., 2008), may have been associated with moulting movements. Intensive past-outbreak investigations with negative results of live and dead wild birds and of terrestrial scavengers excluded continued circulation of virus on a larger scale. However, persistence of virus in small pockets of local wild bird populations could not be ruled out resiliently. 1.5% of investigated sera originating from cats sampled at the epicentres of the Ruegen 2006-outbreak contained H5-antibodies. Passive monitoring was found to be highly superior to live bird surveillance when aiming at the detection of HPAIV H5N1 in wild birds (P < 0.0001).

  7. Characterization of the 2012 highly pathogenic avian influenza H7N3 virus isolated from poultry in an outbreak in Mexico: pathobiology and vaccine protection.

    PubMed

    Kapczynski, Darrell R; Pantin-Jackwood, Mary; Guzman, Sofia G; Ricardez, Yadira; Spackman, Erica; Bertran, Kateri; Suarez, David L; Swayne, David E

    2013-08-01

    In June of 2012, an H7N3 highly pathogenic avian influenza (HPAI) virus was identified as the cause of a severe disease outbreak in commercial laying chicken farms in Mexico. The purpose of this study was to characterize the Mexican 2012 H7N3 HPAI virus (A/chicken/Jalisco/CPA1/2012) and determine the protection against the virus conferred by different H7 inactivated vaccines in chickens. Both adult and young chickens intranasally inoculated with the virus became infected and died at between 2 and 4 days postinoculation (p.i.). High virus titers and viral replication in many tissues were demonstrated at 2 days p.i. in infected birds. The virus from Jalisco, Mexico, had high sequence similarity of greater than 97% to the sequences of wild bird viruses from North America in all eight gene segments. The hemagglutinin gene of the virus contained a 24-nucleotide insert at the hemagglutinin cleavage site which had 100% sequence identity to chicken 28S rRNA, suggesting that the insert was the result of nonhomologous recombination with the host genome. For vaccine protection studies, both U.S. H7 low-pathogenic avian influenza (LPAI) viruses and a 2006 Mexican H7 LPAI virus were tested as antigens in experimental oil emulsion vaccines and injected into chickens 3 weeks prior to challenge. All H7 vaccines tested provided ≥90% protection against clinical disease after challenge and decreased the number of birds shedding virus and the titers of virus shed. This study demonstrates the pathological consequences of the infection of chickens with the 2012 Mexican lineage H7N3 HPAI virus and provides support for effective programs of vaccination against this virus in poultry.

  8. Epidemiological and Evolutionary Inference of the Transmission Network of the 2014 Highly Pathogenic Avian Influenza H5N2 Outbreak in British Columbia, Canada

    PubMed Central

    Xu, Wanhong; Berhane, Yohannes; Dubé, Caroline; Liang, Binhua; Pasick, John; VanDomselaar, Gary; Alexandersen, Soren

    2016-01-01

    The first North American outbreak of highly pathogenic avian influenza (HPAI) involving a virus of Eurasian A/goose/Guangdong/1/1996 (H5N1) lineage began in the Fraser Valley of British Columbia, Canada in late November 2014. A total of 11 commercial and 1 non-commercial (backyard) operations were infected before the outbreak was terminated. Control measures included movement restrictions that were placed on a total of 404 individual premises, 150 of which were located within a 3 km radius of an infected premise(s) (IP). A complete epidemiological investigation revealed that the source of this HPAI H5N2 virus for 4 of the commercial IPs and the single non-commercial IP likely involved indirect contact with wild birds. Three IPs were associated with the movement of birds or service providers and localized/environmental spread was suspected as the source of infection for the remaining 4 IPs. Viral phylogenies, as determined by Bayesian Inference and Maximum Likelihood methods, were used to validate the epidemiologically inferred transmission network. The phylogenetic clustering of concatenated viral genomes and the median-joining phylogenetic network of the viruses supported, for the most part, the transmission network that was inferred by the epidemiologic analysis. PMID:27489095

  9. Phylodynamics of H5N1 Highly Pathogenic Avian Influenza in Europe, 2005-2010: Potential for Molecular Surveillance of New Outbreaks.

    PubMed

    Alkhamis, Mohammad A; Moore, Brian R; Perez, Andres M

    2015-06-23

    Previous Bayesian phylogeographic studies of H5N1 highly pathogenic avian influenza viruses (HPAIVs) explored the origin and spread of the epidemic from China into Russia, indicating that HPAIV circulated in Russia prior to its detection there in 2005. In this study, we extend this research to explore the evolution and spread of HPAIV within Europe during the 2005-2010 epidemic, using all available sequences of the hemagglutinin (HA) and neuraminidase (NA) gene regions that were collected in Europe and Russia during the outbreak. We use discrete-trait phylodynamic models within a Bayesian statistical framework to explore the evolution of HPAIV. Our results indicate that the genetic diversity and effective population size of HPAIV peaked between mid-2005 and early 2006, followed by drastic decline in 2007, which coincides with the end of the epidemic in Europe. Our results also suggest that domestic birds were the most likely source of the spread of the virus from Russia into Europe. Additionally, estimates of viral dispersal routes indicate that Russia, Romania, and Germany were key epicenters of these outbreaks. Our study quantifies the dynamics of a major European HPAIV pandemic and substantiates the ability of phylodynamic models to improve molecular surveillance of novel AIVs.

  10. Molecular characterization of highly pathogenic avian influenza H5N8 viruses isolated from Baikal teals found dead during a 2014 outbreak in Korea

    PubMed Central

    Kim, Seol-Hee; Hur, Moonsuk; Suh, Jae-Hwa; Woo, Chanjin; Wang, Seung-Jun; Park, Eung-Roh; Hwang, Jongkyung; An, In-Jung; Jo, Seong-Deok; Shin, Jeong-Hwa; Yu, Seung Do; Choi, Kyunghee; Lee, Dong-Hun

    2016-01-01

    Nineteen highly pathogenic avian influenza (HPAI) H5N8 viruses were isolated from wild birds in the Donglim reservoir in Gochang, Jeonbuk province, Korea, which was first reported to be an outbreak site on January 17, 2014. Most genes from the nineteen viruses shared high nucleotide sequence identities (i.e., 99.7% to 100%). Phylogenetic analysis showed that these viruses were reassortants of the HPAI H5 subtype and the H4N2 strain and that their hemagglutinin clade was 2.3.4.4, which originated from Eastern China. The hemagglutinin protein contained Q222 and G224 at the receptor-binding site. Although the neuraminidase protein contained I314V and the matrix 2 protein contained an S31N substitution, other mutations resulting in oseltamivir and amantadine resistance were not detected. No substitutions associated with increased virulence and enhanced transmission in mammals were detected in the polymerase basic protein 2 (627E and 701D). Non-structural-1 was 237 amino acids long and had an ESEV motif with additional RGNKMAD amino acids in the C terminal region. These viruses caused deaths in the Baikal teal, which was unusual, and outbreaks occurred at the same time in both poultry and wild birds. These data are helpful for epidemiological understanding of HPAI and the design of prevention strategies. PMID:26245355

  11. Phylodynamics of H5N1 Highly Pathogenic Avian Influenza in Europe, 2005–2010: Potential for Molecular Surveillance of New Outbreaks

    PubMed Central

    Alkhamis, Mohammad A.; Moore, Brian R.; Perez, Andres M.

    2015-01-01

    Previous Bayesian phylogeographic studies of H5N1 highly pathogenic avian influenza viruses (HPAIVs) explored the origin and spread of the epidemic from China into Russia, indicating that HPAIV circulated in Russia prior to its detection there in 2005. In this study, we extend this research to explore the evolution and spread of HPAIV within Europe during the 2005–2010 epidemic, using all available sequences of the hemagglutinin (HA) and neuraminidase (NA) gene regions that were collected in Europe and Russia during the outbreak. We use discrete-trait phylodynamic models within a Bayesian statistical framework to explore the evolution of HPAIV. Our results indicate that the genetic diversity and effective population size of HPAIV peaked between mid-2005 and early 2006, followed by drastic decline in 2007, which coincides with the end of the epidemic in Europe. Our results also suggest that domestic birds were the most likely source of the spread of the virus from Russia into Europe. Additionally, estimates of viral dispersal routes indicate that Russia, Romania, and Germany were key epicenters of these outbreaks. Our study quantifies the dynamics of a major European HPAIV pandemic and substantiates the ability of phylodynamic models to improve molecular surveillance of novel AIVs. PMID:26110587

  12. Farm- and flock-level risk factors associated with Highly Pathogenic Avian Influenza outbreaks on small holder duck and chicken farms in the Mekong Delta of Viet Nam.

    PubMed

    Henning, Kate A; Henning, Joerg; Morton, John; Long, Ngo Thanh; Ha, Nguyen Truc; Meers, Joanne

    2009-10-01

    After 11 consecutive months of control, the Mekong Delta in Viet Nam experienced a wave of Highly Pathogenic Avian Influenza (HPAI) H5N1 outbreaks on small holder poultry farms from December 2006 to January 2007. We conducted a retrospective matched case-control study to investigate farm- and flock-level risk factors for outbreak occurrence during this period. Twenty-two case farms were selected from those where clinical signs consistent with HPAI H5N1 had been present and HPAI H5N1 had been confirmed with a positive real-time PCR test from samples obtained from affected birds. For every case farm enrolled, two control farms were selected matched on time of outbreak occurrence, farm location and species. Veterinarians conducted interviews with farmers, to collect information on household demographics, farm characteristics, husbandry practices, trading practices, poultry health, vaccination and biosecurity. Exact stratified logistic regression models were used to assess putative risk factors associated with a flock having or not having a HPAI outbreak. Nested analyses were also performed, restricted to subsets of farms using scavenging, confinement or supplementary feeding practices. Risk of an outbreak of HPAI H5N1 was increased in flocks that had received no vaccination (odds ratio (OR)=20.2; 95% confidence interval (CI): 1.0, +infinity) or only one vaccination (OR=85.2; 95% CI: 6.5, +infinity) of flocks compared to two vaccinations, and in flocks on farms that had family and friends visiting (OR=8.2; 95% CI: 1.0, +infinity) and geese present (OR=11.5; 95% CI: 1.1, +infinity). The subset analysis using only flocks that scavenged showed that sharing of scavenging areas with flocks from other farms was associated with increased risk of an outbreak (OR=10.9; 95% CI: 1.4, 492.9). We conclude that none or only one vaccination, visitors to farms, the presence of geese on farms and sharing of scavenging areas with ducks from other farms increase the risk of HPAI H5N1

  13. Avian Influenza A(H5N1) Virus Outbreak Investigation: Application of the FAO-OIE-WHO Four-way Linking Framework in Indonesia.

    PubMed

    Setiawaty, V; Dharmayanti, N L P I; Misriyah; Pawestri, H A; Azhar, M; Tallis, G; Schoonman, L; Samaan, G

    2015-08-01

    WHO, FAO and OIE developed a 'four-way linking' framework to enhance the cross-sectoral sharing of epidemiological and virological information in responding to zoonotic disease outbreaks. In Indonesia, outbreak response challenges include completeness of data shared between human and animal health authorities. The four-way linking framework (human health laboratory/epidemiology and animal health laboratory/epidemiology) was applied in the investigation of the 193 rd human case of avian influenza A(H5N1) virus infection. As recommended by the framework, outbreak investigation and risk assessment findings were shared. On 18 June 2013, a hospital in West Java Province reported a suspect H5N1 case in a 2-year-old male. The case was laboratory-confirmed that evening, and the information was immediately shared with the Ministry of Agriculture. The human health epidemiology/laboratory team investigated the outbreak and conducted an initial risk assessment on 19 June. The likelihood of secondary cases was deemed low as none of the case contacts were sick. By 3 July, no secondary cases associated with the outbreak were identified. The animal health epidemiology/laboratory investigation was conducted on 19-25 June and found that a live bird market visited by the case was positive for H5N1 virus. Once both human and market virus isolates were sequenced, a second risk assessment was conducted jointly by the human health and animal health epidemiology/laboratory teams. This assessment concluded that the likelihood of additional human cases associated with this outbreak was low but that future sporadic human infections could not be ruled out because of challenges in controlling H5N1 virus contamination in markets. Findings from the outbreak investigation and risk assessments were shared with stakeholders at both Ministries. The four-way linking framework clarified the type of data to be shared. Both human health and animal health teams made ample data available, and there was

  14. Avian influenza virus infections in humans.

    PubMed

    Wong, Samson S Y; Yuen, Kwok-Yung

    2006-01-01

    Seroepidemiologic and virologic studies since 1889 suggested that human influenza pandemics were caused by H1, H2, and H3 subtypes of influenza A viruses. If not for the 1997 avian A/H5N1 outbreak in Hong Kong of China, subtype H2 is the likely candidate for the next pandemic. However, unlike previous poultry outbreaks of highly pathogenic avian influenza due to H5 that were controlled by depopulation with or without vaccination, the presently circulating A/H5N1 genotype Z virus has since been spreading from Southern China to other parts of the world. Migratory birds and, less likely, bird trafficking are believed to be globalizing the avian influenza A/H5N1 epidemic in poultry. More than 200 human cases of avian influenza virus infection due to A/H5, A/H7, and A/H9 subtypes mainly as a result of poultry-to-human transmission have been reported with a > 50% case fatality rate for A/H5N1 infections. A mutant or reassortant virus capable of efficient human-to-human transmission could trigger another influenza pandemic. The recent isolation of this virus in extrapulmonary sites of human diseases suggests that the high fatality of this infection may be more than just the result of a cytokine storm triggered by the pulmonary disease. The emergence of resistance to adamantanes (amantadine and rimantadine) and recently oseltamivir while H5N1 vaccines are still at the developmental stage of phase I clinical trial are causes for grave concern. Moreover, the to-be pandemic strain may have little cross immunogenicity to the presently tested vaccine strain. The relative importance and usefulness of airborne, droplet, or contact precautions in infection control are still uncertain. Laboratory-acquired avian influenza H7N7 has been reported, and the laboratory strains of human influenza H2N2 could also be the cause of another pandemic. The control of this impending disaster requires more research in addition to national and international preparedness at various levels. The

  15. 76 FR 24793 - Highly Pathogenic Avian Influenza

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... Inspection Service 9 CFR Parts 93, 94, and 95 RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal... products from regions where any subtype of highly pathogenic avian influenza is considered to exist. The... vaccinated for certain types of avian influenza, or that have moved through regions where any subtype...

  16. Current situation on highly pathogenic avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza is one of the most important diseases affecting the poultry industry worldwide. Avian influenza viruses can cause a range of clinical disease in poultry. Viruses that cause severe disease and mortality are referred to as highly pathogenic avian influenza (HPAI) viruses. The Asian ...

  17. Identification and characterization of a highly pathogenic H5N1 avian influenza A virus during an outbreak in vaccinated chickens in Egypt.

    PubMed

    Amen, O; Vemula, S V; Zhao, J; Ibrahim, R; Hussein, A; Hewlett, I K; Moussa, S; Mittal, S K

    2015-12-02

    Highly pathogenic avian influenza A (HPAI) H5N1 viruses continue to be a major veterinary and public health problem in Egypt. Continued surveillance of these viruses is necessary to devise strategies to control the spread of the virus and to monitor its evolutionary patterns. This is a report of the identification of a variant strain of HPAI H5N1 virus during an outbreak in 2010 in vaccinated chicken flocks in a poultry farm in Assiut, Egypt. Vaccination of chickens with an oil-emulsified inactivated A/chicken/Mexico/232/94 (H5N2) vaccine induced high levels of hemagglutination inhibition (HI) antibody titers reaching up to 9 log2. However, all flocks irrespective of the number of vaccine doses and the resultant HI titer levels came down with severe influenza infections. The qRT-PCR and rapid antigen test confirmed the influenza virus to be from H5N1 subtype. Sequencing of the hemagglutinin (HA) gene fragment from ten independent samples demonstrated that a single H5N1 strain was involved. This strain belonged to clade 2.2.1 and had several mutations in the receptor-binding site of the HA protein, thereby producing a variant strain of HPAI H5N1 virus which was antigenically different from the parent clade 2.2.1 virus circulating in Egypt at that time. In order to define the variability in HPAI H5N1 viruses over time in Egypt, we sequenced another H5N1 virus that was causing infections in chickens in 2014. Phylogenetic analysis revealed that both viruses had further distanced from the parent virus circulating during 2010. This study highlights that the antigenic mutations in HPAI H5N1 viruses represent a definitive challenge for the development of an effective vaccine for poultry. Overall, the results emphasize the need for continued surveillance of H5N1 outbreaks and extensive characterization of virus isolates from vaccinated and non-vaccinated poultry populations to better understand genetic changes and their implications.

  18. The history of avian influenza.

    PubMed

    Lupiani, Blanca; Reddy, Sanjay M

    2009-07-01

    The first description of avian influenza (AI) dates back to 1878 in northern Italy, when Perroncito [Perroncito E. Epizoozia tifoide nei gallinacei. Annali Accad Agri Torino 1878;21:87-126] described a contagious disease of poultry associated with high mortality. The disease, termed "fowl plague", was initially confused with the acute septicemic form of fowl cholera. However, in 1880, soon after its first description, Rivolta and Delprato [as reported by Stubs EL. Fowl pest, In: Biester HE, Devries L, editors. Diseases of poultry. 1st ed. Ames, IO: Iowa State College Press; 1943. p. 493-502] showed it to be different from fowl cholera, based on clinical and pathological properties, and called it Typhus exudatious gallinarum. In 1901, Centanni and Savunzzi [Centanni E, Savonuzzi E, La peste aviaria I & II, Communicazione fatta all'accademia delle scienze mediche e naturali de Ferrara, 1901] determined that fowl plague was caused by a filterable virus; however, it was not until 1955 that the classical fowl plague virus was shown to be a type A influenza virus based on the presence of type A influenza virus type-specific ribonucleoprotein [Schäfer W. Vergleichender sero-immunologische Untersuchungen über die Viren der Influenza und klassischen Geflügelpest. Z Naturf 1955;10b:81-91]. The term fowl plague was substituted by the more appropriate term highly pathogenic avian influenza (HPAI) at the First International Symposium on Avian Influenza [Proceedings of the First International Symposium on Avian Influenza. Beltsville, MD. 1981, Avian Dis 47 (Special Issue) 2003.] and will be used throughout this review when referring to any previously described fowl plague virus.

  19. Avian biology, the human influence on global avian influenza transmission, and performing surveillance in wild birds.

    PubMed

    Gibbs, Samantha E J

    2010-06-01

    This paper takes a closer look at three interrelated areas of study: avian host biology, the role of human activities in virus transmission, and the surveillance activities centered on avian influenza in wild birds. There are few ecosystems in which birds are not found. Correspondingly, avian influenza viruses are equally global in distribution, relying on competent avian hosts. The immune systems, annual cycles, feeding behaviors, and migration patterns of these hosts influence the ecology of the disease. Decreased biodiversity has also been linked to heightened disease transmission in several disease systems, and it is evident that active destruction and modification of wetland environments for human use is impacting avian populations drastically. Legal and illegal trade in wild birds present a significant risk for introduction and maintenance of exotic diseases. After the emergence of HPAI H5N1 in Hong Kong in 1996 and the ensuing geographic spread of outbreaks after 2003, both infected countries and those at risk of introduction began intensifying avian influenza surveillance efforts. Several techniques for sampling wild birds for influenza viruses have been applied. Benefits, problems, and biases exist for each method. The wild bird avian influenza surveillance programs taking place across the continents are now scaling back due to the rise of other spending priorities; hopefully the lessons learned from this work will be preserved and will inform future research and disease outbreak response priorities.

  20. Global dynamics of avian influenza epidemic models with psychological effect.

    PubMed

    Liu, Sanhong; Pang, Liuyong; Ruan, Shigui; Zhang, Xinan

    2015-01-01

    Cross-sectional surveys conducted in Thailand and China after the outbreaks of the avian influenza A H5N1 and H7N9 viruses show a high degree of awareness of human avian influenza in both urban and rural populations, a higher level of proper hygienic practice among urban residents, and in particular a dramatically reduced number of visits to live markets in urban population after the influenza A H7N9 outbreak in China in 2013. In this paper, taking into account the psychological effect toward avian influenza in the human population, a bird-to-human transmission model in which the avian population exhibits saturation effect is constructed. The dynamical behavior of the model is studied by using the basic reproduction number. The results demonstrate that the saturation effect within avian population and the psychological effect in human population cannot change the stability of equilibria but can affect the number of infected humans if the disease is prevalent. Numerical simulations are given to support the theoretical results and sensitivity analyses of the basic reproduction number in terms of model parameters that are performed to seek for effective control measures for avian influenza.

  1. Host-specific exposure and fatal neurologic disease in wild raptors from highly pathogenic avian influenza virus H5N1 during the 2006 outbreak in Germany.

    PubMed

    van den Brand, Judith Ma; Krone, Oliver; Wolf, Peter U; van de Bildt, Marco W G; van Amerongen, Geert; Osterhaus, Albert D M E; Kuiken, Thijs

    2015-03-05

    Raptors may contract highly pathogenic avian influenza virus H5N1 by hunting or scavenging infected prey. However, natural H5N1 infection in raptors is rarely reported. Therefore, we tested raptors found dead during an H5N1 outbreak in wild waterbirds in Mecklenburg-Western Pomerania, Germany, in 2006 for H5N1-associated disease. We tested 624 raptors of nine species-common buzzard (385), Eurasian sparrowhawk (111), common kestrel (38), undetermined species of buzzard (36), white-tailed sea eagle (19), undetermined species of raptor (12), northern goshawk (10), peregrine falcon (6), red kite (3), rough-legged buzzard (3), and western marsh-harrier (1)-for H5N1 infection in tracheal or combined tracheal/cloacal swabs of all birds, and on major tissues of all white-tailed sea eagles. H5N1 infection was detected in two species: common buzzard (12 positive, 3.1%) and peregrine falcon (2 positive, 33.3%). In all necropsied birds (both peregrine falcons and the six freshest common buzzards), H5N1 was found most consistently and at the highest concentration in the brain, and the main H5N1-associated lesion was marked non-suppurative encephalitis. Other H5N1-associated lesions occurred in air sac, lung, oviduct, heart, pancreas, coelomic ganglion, and adrenal gland. Our results show that the main cause of death in H5N1-positive raptors was encephalitis. Our results imply that H5N1 outbreaks in wild waterbirds are more likely to lead to exposure to and mortality from H5N1 in raptors that hunt or scavenge medium-sized birds, such as common buzzards and peregrine falcons, than in raptors that hunt small birds and do not scavenge, such as Eurasian sparrowhawks and common kestrels.

  2. Lack of chicken adaptation of newly emergent Eurasian H5N8 and reassortant H5N2 high pathogenicity avian influenza viruses in the U.S. is consistent with restricted poultry outbreaks in the Pacific flyway during 2014-2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2014-2015, the U.S. experienced an unprecedented outbreak of Eurasian clade 2.3.4.4 H5 highly pathogenic avian influenza (HPAI) virus, initially affecting mainly wild birds and few backyard and commercial poultry premises. To better model the outbreak, the pathogenesis and transmission dynamics o...

  3. Human Infection with Avian Influenza A(H7N9) Virus - China

    MedlinePlus

    ... reduction Human infection with avian influenza A(H7N9) virus – China Disease outbreak news 18 January 2017 On ... confirmed human infection with avian influenza A(H7N9) virus and on 12 January 2017, the Health Bureau, ...

  4. Phylogenetics and pathogenesis of early avian influenza viruses (H5N2), Nigeria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prior to the first officially recognized outbreaks of highly pathogenic avian influenza (HPAI) in poultry in Nigeria, in February 2006, an effort based at the poultry diagnostic clinic of the University of Ibadan Veterinary Teaching Hospital, was underway to isolate avian influenza viruses from sick...

  5. Avian influenza virus RNA extraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficient extraction and purification of viral RNA is critical for down-stream molecular applications whether it is the sensitive and specific detection of virus in clinical samples, virus gene cloning and expression, or quantification of avian influenza (AI) virus by molecular methods from expe...

  6. Prevention and control of avian influenza in Asia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 62 countries during the past 15 years. For 2011-2012, 19 countries reported outbreaks of H5N1 in domestic poultry, wild birds or both. The majority of the outbr...

  7. Avian influenza: worldwide situation and effectiveness of current vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 63 countries during the past 18 years. The majority of the recent outbreaks of H5N2 HPAI have occurred in Indonesia, Egypt, Vietnam, and Bangladesh, in decreasi...

  8. Avian influenza: the political economy of disease control in Cambodia.

    PubMed

    Ear, Sophal

    2011-01-01

    Abstract In the wake of avian flu outbreaks in 2004, Cambodia received $45 million in commitments from international donors to help combat the spread of animal and human influenza, particularly avian influenza (H5N1). How countries leverage foreign aid to address the specific needs of donors and the endemic needs of the nation is a complex and nuanced issue throughout the developing world. Cambodia is a particularly compelling study in pandemic preparedness and the management of avian influenza because of its multilayered network of competing local, national, and global needs, and because the level of aid in Cambodia represents approximately $2.65 million per human case-a disproportionately high number when compared with neighbors Vietnam and Indonesia. This paper examines how the Cambodian government has made use of animal and human influenza funds to protect (or fail to protect) its citizens and the global community. It asks how effective donor and government responses were to combating avian influenza in Cambodia, and what improvements could be made at the local and international level to help prepare for and respond to future outbreaks. Based on original interviews, a field survey of policy stakeholders, and detailed examination of Cambodia's health infrastructure and policies, the findings illustrate that while pandemic preparedness has shown improvements since 2004, new outbreaks and human fatalities accelerated in 2011, and more work needs to be done to align the specific goals of funders with the endemic needs of developing nations.

  9. Bird Flu (Avian Influenza)

    MedlinePlus

    ... years, outbreaks of bird flu have occurred in Asia, Africa and parts of Europe. Most people who ... for travelers If you're traveling to Southeast Asia or to any region with bird flu outbreaks, ...

  10. [Isolation and molecular characterization of the influenza virus A/H5N1 strains isolated during outbreak of avian influenza among birds in the European part of Russia in 2005: strain with ozeltamivir-resistance mutation was found].

    PubMed

    Iatsyshina, S B; Shestopalov, A M; Evseenko, V A; Astakhova, T S; Braslavskaia, S I; Ternovoí, V A; Kondrat'eva, T Iu; Alekseev, A Iu; Zolotykh, S I; Rassadkin, Iu N; Zaíkovskaia, A V; Durymanov, A G; Netesov, S V; Shipulin, G A

    2008-01-01

    Isolation and characterization of the influenza virus A/H5N1 strains, isolated from chicken in the Yandovka village (Tula Region) and from wild swan near the orifice of the Volga River that died during an outbreak of avian flu in autumn 2005, were carried out. Genetic and phylogenetic analyses were performed. The goals of the analysis were to determine possible geographical origin of the strain, genetic similarity of isolated strains to earlier sequenced isolates, epidemic potential, existence of pathogenicity markers, and resistance to antiviral drugs. It was shown that the isolated influenza virus belonged to highly pathogenic variants of China origin by a reassortment of viruses genotypes Z and V circulated in poultry and wild birds. A number of molecular markers of pathogenicity to gallinaceous birds and mammals were found out. Mutations in the hemagglutinin gene promoting potentially high rate of replication in humans as well as mutations causing the resistance to amantadine/rimantadine were not found. The strain isolated from wild swan had the mutation causing resistance to tamiflu/ozeltamivir.

  11. Forecasting seasonal outbreaks of influenza

    PubMed Central

    Shaman, Jeffrey; Karspeck, Alicia

    2012-01-01

    Influenza recurs seasonally in temperate regions of the world; however, our ability to predict the timing, duration, and magnitude of local seasonal outbreaks of influenza remains limited. Here we develop a framework for initializing real-time forecasts of seasonal influenza outbreaks, using a data assimilation technique commonly applied in numerical weather prediction. The availability of real-time, web-based estimates of local influenza infection rates makes this type of quantitative forecasting possible. Retrospective ensemble forecasts are generated on a weekly basis following assimilation of these web-based estimates for the 2003–2008 influenza seasons in New York City. The findings indicate that real-time skillful predictions of peak timing can be made more than 7 wk in advance of the actual peak. In addition, confidence in those predictions can be inferred from the spread of the forecast ensemble. This work represents an initial step in the development of a statistically rigorous system for real-time forecast of seasonal influenza. PMID:23184969

  12. Forecasting seasonal outbreaks of influenza.

    PubMed

    Shaman, Jeffrey; Karspeck, Alicia

    2012-12-11

    Influenza recurs seasonally in temperate regions of the world; however, our ability to predict the timing, duration, and magnitude of local seasonal outbreaks of influenza remains limited. Here we develop a framework for initializing real-time forecasts of seasonal influenza outbreaks, using a data assimilation technique commonly applied in numerical weather prediction. The availability of real-time, web-based estimates of local influenza infection rates makes this type of quantitative forecasting possible. Retrospective ensemble forecasts are generated on a weekly basis following assimilation of these web-based estimates for the 2003-2008 influenza seasons in New York City. The findings indicate that real-time skillful predictions of peak timing can be made more than 7 wk in advance of the actual peak. In addition, confidence in those predictions can be inferred from the spread of the forecast ensemble. This work represents an initial step in the development of a statistically rigorous system for real-time forecast of seasonal influenza.

  13. Perceptions on the risk communication strategy during the 2013 avian influenza A/H7N9 outbreak in humans in China: a focus group study

    PubMed Central

    Li, Richun; Xie, Ruiqian; Yang, Chong

    2016-01-01

    Objective To identify the general public’s perceptions of the overall risk communication strategy carried out by Chinese public health agencies during the first wave of avian influenza A(H7N9) outbreak in humans in 2013. Methods Participants were recruited from communities in Beijing, Lanzhou and Hangzhou, China in May and June 2013 by convenience sampling. Demographics and other relevant information were collected using a self-administered questionnaire. Focus group interviews were conducted using a set of nine pre-developed questions and a tested moderator guide. The interviews were audio recorded and were transcribed verbatim. The constant comparative method was used to identify trends and themes. Results A total of nine focus group interviews, with 94 participants recruited from nine communities, were conducted. Most participants received H7N9 information via television and the Internet. Most the participants appreciated the transparency and timeliness of the information released by the government. They expressed a sense of trust in the recommended public health advice and followed most of them. The participants suggested that the government release more information about clinical treatment outcomes, have more specific health recommendations that are practical to their settings and expand the use of new media channels for risk communication. Conclusion The public perceived the overall risk communication strategy by the Chinese public health agencies as effective, though the moderator had a governmental agency title that might have biased the results. There is a need to expand the use of social media for risk communication in the future. PMID:27757257

  14. Avian influenza and human health.

    PubMed

    Capua, Ilaria; Alexander, Dennis J

    2002-07-01

    Natural infections with influenza A viruses have been reported in a variety of animal species including humans, pigs, horses, sea mammals, mustelids and birds. Occasionally devastating pandemics occur in humans. Although viruses of relatively few HA and NA subtype combinations have been isolated from mammalian species, all 15 HA subtypes and all 9 NA subtypes, in most combinations, have been isolated from birds. In the 20th century the sudden emergence of antigenically different strains transmissible in humans, termed antigenic shift, has occurred on four occasions, 1918 (H1N1), 1957 (H2N2), 1968 (H3N2) and 1977 (H1N1), each time resulting in a pandemic. Genetic analysis of the isolates demonstrated that 'new' strains most certainly emerged after reassortment of genes of viruses of avian and human origin in a permissive host. The leading theory is that the pig represents the 'mixing vessel' where this genetic reassortment may occur. In 1996, an H7N7 influenza virus of avian origin was isolated from a woman with a self-limiting conjunctivitis. During 1997 in Hong Kong, an H5N1 avian influenza virus was recognised as the cause of death of 6 of 18 infected patients. Genetic analysis revealed these human isolates of H5N1 subtype to be indistinguishable from a highly pathogenic avian influenza virus that was endemic in the local poultry population. More recently, in March 1999, two independent isolations of influenza virus subtype H9N2 were made from girls aged one to four who recovered from flu-like illnesses in Hong Kong. Subsequently, five isolations of H9N2 virus from humans on mainland China in August 1998 were reported. H9N2 viruses were known to be widespread in poultry in China and other Asian countries. In all these cases there was no evidence of human to human spread except with the H5N1 infections where there was evidence of very limited spread. This is in keeping with the finding that all these viruses possessed all eight genes of avian origin. It may well

  15. Global avian influenza surveillance in wild birds: a strategy to capture viral diversity.

    PubMed

    Machalaba, Catherine C; Elwood, Sarah E; Forcella, Simona; Smith, Kristine M; Hamilton, Keith; Jebara, Karim B; Swayne, David E; Webby, Richard J; Mumford, Elizabeth; Mazet, Jonna A K; Gaidet, Nicolas; Daszak, Peter; Karesh, William B

    2015-04-01

    Wild birds play a major role in the evolution, maintenance, and spread of avian influenza viruses. However, surveillance for these viruses in wild birds is sporadic, geographically biased, and often limited to the last outbreak virus. To identify opportunities to optimize wild bird surveillance for understanding viral diversity, we reviewed responses to a World Organisation for Animal Health-administered survey, government reports to this organization, articles on Web of Knowledge, and the Influenza Research Database. At least 119 countries conducted avian influenza virus surveillance in wild birds during 2008-2013, but coordination and standardization was lacking among surveillance efforts, and most focused on limited subsets of influenza viruses. Given high financial and public health burdens of recent avian influenza outbreaks, we call for sustained, cost-effective investments in locations with high avian influenza diversity in wild birds and efforts to promote standardized sampling, testing, and reporting methods, including full-genome sequencing and sharing of isolates with the scientific community.

  16. Climate change and avian influenza

    PubMed Central

    Slingenbergh, J.; Xiao, X.

    2009-01-01

    Summary This paper discusses impacts of climate change on the ecology of avian influenza viruses (AI viruses), which presumably co-evolved with migratory water birds, with virus also persisting outside the host in subarctic water bodies. Climate change would almost certainly alter bird migration, influence the AI virus transmission cycle and directly affect virus survival outside the host. The joint, net effects of these changes are rather unpredictable, but it is likely that AI virus circulation in water bird populations will continue with endless adaptation and evolution. In domestic poultry, too little is known about the direct effect of environmental factors on highly pathogenic avian influenza transmission and persistence to allow inference about the possible effect of climate change. However, possible indirect links through changes in the distribution of duck-crop farming are discussed. PMID:18819672

  17. Universal Detection and Identification of Avian Influenza Virus by Use of Resequencing Microarrays

    DTIC Science & Technology

    2009-04-01

    Society for Microbiology. All Rights Reserved. Universal Detection and Identification of Avian Influenza Virus by Use of Resequencing Microarrays...been, and continue to emerge as, threats to human health. The recent outbreaks of highly pathogenic avian influenza virus in bird populations and the...appearance of some human infections have increased the concern of a possible new influenza pandemic, which highlights the need for broad-spectrum

  18. Outbreaks of avian influenza A (H5N2), (H5N8), and (H5N1) among birds--United States, December 2014-January 2015.

    PubMed

    Jhung, Michael A; Nelson, Deborah I

    2015-02-06

    During December 15, 2014-January 16, 2015, the U.S. Department of Agriculture received 14 reports of birds infected with Asian-origin, highly pathogenic avian influenza A (HPAI) (H5N2), (H5N8), and (H5N1) viruses. These reports represent the first reported infections with these viruses in U.S. wild or domestic birds. Although these viruses are not known to have caused disease in humans, their appearance in North America might increase the likelihood of human infection in the United States. Human infection with other avian influenza viruses, such as HPAI (H5N1) and (H5N6) viruses and (H7N9) virus, has been associated with severe, sometimes fatal, disease, usually following contact with poultry.

  19. USGS highly pathogenic avian influenza research strategy

    USGS Publications Warehouse

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  20. The global nature of avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus is a global virus which knows no geographic boundaries, has no political agenda, and can infect poultry irrespective of their agricultural or anthropocentric production systems. Avian influenza viruses or evidence of their infection have been detected in poultry and wild birds...

  1. A brief introduction to avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) causes a disease of high economic importance for poultry production worldwide. The earliest recorded cases of probable high pathogenicity AIV in poultry were reported in Italy in the 1870’s and avian influenza been recognized in domestic poultry through the modern era of ...

  2. Protective measures and H5N1-seroprevalence among personnel tasked with bird collection during an outbreak of avian influenza A/H5N1 in wild birds, Ruegen, Germany, 2006

    PubMed Central

    2009-01-01

    Background In Germany, the first outbreak of highly pathogenic avian influenza A/H5N1 occurred among wild birds on the island of Ruegen between February and April 2006. The aim of this study was to investigate the use of recommended protective measures and to measure H5N1-seroprevalence among personnel tasked with bird collection. Methods Inclusion criteria of our study were participation in collecting wild birds on Ruegen between February and March 2006. Study participants were asked to complete a questionnaire, and to provide blood samples. For evaluation of the use of protective measures, we developed a personal protective equipment (PPE)-score ranging between 0 and 9, where 9 corresponds to a consistent and complete use of PPE. Sera were tested by plaque neutralization (PN) and microneutralization (MN) assays. Reactive sera were reanalysed in the World Health Organization-Collaborating Centre (WHO-CC) using MN assay. Results Of the eligible personnel, consisting of firemen, government workers and veterinarians, 61% (97/154) participated in the study. Of those, 13% reported having always worn all PPE-devices during bird collection (PPE-score: 9). Adherence differed between firemen (mean PPE-score: 6.6) and government workers (mean PPE-score: 4.5; p = 0.006). The proportion of personnel always adherent to wearing PPE was lowest for masks (19%). Of the participants, 18% had received seasonal influenza vaccination prior to the outbreak. There were no reports of influenza-like illness. Five sera initially H5-reactive by PN assay were negative by WHO-CC confirmatory testing. Conclusion Gaps and variability in adherence demonstrate the risk of exposure to avian influenza under conditions of wild bird collection, and justify serological testing and regular training of task personnel. PMID:19835632

  3. Protection of poultry against the 2012 Mexican H7N3 highly pathogenic avian influenza virus with inactivated H7 avian influenza vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In June of 2012, an outbreak of highly pathogenic avian influenza (HPAI) H7N3 was reported poultry in Jalisco, Mexico. Since that time the virus has spread to the surrounding States of Guanajuato and Aguascalientes and new outbreaks continue to be reported. To date more than 25 million birds have di...

  4. Outbreaks of highly pathogenic avian influenza H5N1 clade 2.3.2.1c in hunting falcons and kept wild birds in Dubai implicate intercontinental virus spread.

    PubMed

    Naguib, Mahmoud M; Kinne, Jörg; Chen, Honglin; Chan, Kwok-Hung; Joseph, Sunitha; Wong, Po-Chun; Woo, Patrick C Y; Wernery, Renate; Beer, Martin; Wernery, Ulrich; Harder, Timm C

    2015-11-01

    Highly pathogenic avian influenza viruses (HPAIVs) of subtype H5N1 have continued to perpetuate with divergent genetic variants in poultry within Asia since 2003. Further dissemination of Asian-derived H5 HPAIVs to Europe, Africa and, most recently, to the North American continent has occurred. We report an outbreak of HPAIV H5N1 among falcons kept for hunting and other wild bird species bred as falcon prey in Dubai, United Arab Emirates, during the autumn of 2014. The causative agent was identified as avian influenza virus subtype H5N1, clade 2.3.2.1c, by genetic and phylogenetic analyses. High mortality in infected birds was in accordance with systemic pathomorphological and histological alterations in affected falcons. Genetic analysis showed the HPAIV H5N1 of clade 2.3.2.1c is a reassortant in which the PB2 segment was derived from an Asian-origin H9N2 virus lineage. The Dubai H5N1 viruses were closely related to contemporary H5N1 HPAIVs from Nigeria, Burkina-Faso, Romania and Bulgaria. Median-joining network analysis of 2.3.2.1c viruses revealed that the Dubai outbreak was an episode of a westward spread of these viruses on a larger scale from unidentified Asian sources. The incursion into Dubai, possibly via infected captive hunting falcons returning from hunting trips to central Asian countries, preceded outbreaks in Nigeria and other West African countries. The alarmingly enhanced geographical mobility of clade 2.3.2.1.c and clade 2.3.4.4 viruses may represent another wave of transcontinental dissemination of Asian-origin HPAIV H5 viruses, such as the outbreak at Qinghai Lake caused by clade 2.2 (‘Qinghai’ lineage) in 2005.

  5. [Epidemics of conjunctivitis caused by avian influenza virus and molecular basis for its ocular tropism].

    PubMed

    Yang, Chao; Jin, Ming

    2014-07-01

    Avian influenza virus (AIV) has caused several outbreaks in humans, leading to disasters to human beings. The outbreak of H7N9 avian influenza in China in 2003 re-attracted our close attention to this disease. More and more evidences demonstrated that eye is one of invasion portals of AIV, leading to conjunctivitis. The current studies showed that only subtypes H7 and H5 could cause severe systemic infections. Abundant distribution of α-2, 3 siliac acid receptor in conjunctiva and cornea as well as specific activiation of NF-κB signal transduction pathway by subtype H7 virus may contribute to the ocular tropism of the virus. These studies suggest that avian influenza conjunctivitis should be considered as a differential diagnosis during influenza epidemic seasons, and eyes should be well protected for disease control personnel when handling avian influenza epidemics. This review focused on AIV conjunctivitis and the molecular basis of ocular tropism.

  6. Experimental vaccines against potentially pandemic and highly pathogenic avian influenza viruses

    PubMed Central

    Mooney, Alaina J; Tompkins, S Mark

    2013-01-01

    Influenza A viruses continue to emerge and re-emerge, causing outbreaks, epidemics and occasionally pandemics. While the influenza vaccines licensed for public use are generally effective against seasonal influenza, issues arise with production, immunogenicity, and efficacy in the case of vaccines against pandemic and emerging influenza viruses, and highly pathogenic avian influenza virus in particular. Thus, there is need of improved influenza vaccines and vaccination strategies. This review discusses advances in alternative influenza vaccines, touching briefly on licensed vaccines and vaccine antigens; then reviewing recombinant subunit vaccines, virus-like particle vaccines and DNA vaccines, with the main focus on virus-vectored vaccine approaches. PMID:23440999

  7. Microarray analysis following infection with highly pathogenic avian influenza H5N1 virus in naive and vaccinated SPF chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) is a viral disease of poultry that remains a constant threat to commercial poultry throughout the world. Within the last few years, outbreaks of highly pathogenic avian influenza (HPAI) H5N1 have originated in Southeast Asia and spread to several European, Middle Eastern, and A...

  8. International standards for the control of avian influenza.

    PubMed

    Pearson, J E

    2003-01-01

    The Office International des Epizooties (OIE) has developed international standards to reduce the risk of the spread of high-pathogenicity avian influenza though international trade. These standards include providing a definition of high-pathogenicity avian influenza (HPAI), procedures for prompt reporting of HPAI outbreaks, requirements that must be met for a country or zone to be defined as free of HPAI, requirements that should be met to import live birds and avian products into a HPAI-free country or zone, and the general provisions that countries should meet to reduce the risk of spread of HPAI through trade. The goal of these standards is to facilitate trade while minimizing the risk of the introduction of HPAI.

  9. A Simulation-Based Evaluation of Premovement Active Surveillance Protocol Options for the Managed Movement of Turkeys to Slaughter During an Outbreak of Highly Pathogenic Avian Influenza in the United States.

    PubMed

    Todd Weaver, J; Malladi, Sasidhar; Bonney, Peter J; Patyk, Kelly A; Bergeron, Justin G; Middleton, Jamie L; Alexander, Catherine Y; Goldsmith, Timothy J; Halvorson, David A

    2016-05-01

    Risk management decisions associated with live poultry movement during a highly pathogenic avian influenza (HPAI) outbreak should be carefully considered. Live turkey movements may pose a risk for disease spread. On the other hand, interruptions in scheduled movements can disrupt business continuity. The Secure Turkey Supply (STS) Plan was developed through an industry-government-academic collaboration to address business continuity concerns that might arise during a HPAI outbreak. STS stakeholders proposed outbreak response measure options that were evaluated through risk assessment. The developed approach relies on 1) diagnostic testing of two pooled samples of swabs taken from dead turkeys immediately before movement via the influenza A matrix gene real-time reverse transcriptase polymerase chain reaction (rRT-PCR) test; 2) enhanced biosecurity measures in combination with a premovement isolation period (PMIP), restricting movement onto the premises for a few days before movement to slaughter; and 3) incorporation of a distance factor from known infected flocks such that exposure via local area spread is unlikely. Daily exposure likelihood estimates from spatial kernels from past HPAI outbreaks were coupled with simulation models of disease spread and active surveillance to evaluate active surveillance protocol options that differ with respect to the number of swabs per pooled sample and the timing of the tests in relation to movement. Simulation model results indicate that active surveillance testing, in combination with strict biosecurity, substantially increased HPAI virus detection probability. When distance from a known infected flock was considered, the overall combined likelihood of moving an infected, undetected turkey flock to slaughter was predicted to be lower at 3 and 5 km. The analysis of different active surveillance protocol options is designed to incorporate flexibility into HPAI emergency response plans.

  10. Are live bird markets reservoirs of avian influenza?

    PubMed

    Cardona, C; Yee, K; Carpenter, T

    2009-04-01

    Live bird markets (LBM) are essential for marketing poultry in many developing countries, and they are a preferred place for many people to purchase poultry for consumption throughout the world. Live bird markets are typically urban and have a permanent structure in which birds can be housed until they are sold. Live bird markets bring together a mixture of bird species that meet the preferences of their customers and that are commonly produced by multiple suppliers. The mixture of species, the lack of all-in-all-out management, and multiple suppliers are all features that make LBM potential sources of avian influenza viruses (AIV), especially for their supply flocks. Live bird markets have been linked to many outbreaks of avian influenza internationally and in the United States. Avian influenza virus is endemic in many, but not all, LBM systems. For instance, AIV has not been isolated from the Southern California LBM system since December 2005, although the risk of new introductions remains. The California LBM system is much smaller than the New York system, handles fewer birds, and has fewer bird suppliers, which, combined with recent avian influenza prevention and control plans, have enabled it to be AIV free for nearly 3 yr.

  11. Avian influenza virus RNA extraction.

    PubMed

    Spackman, Erica; Lee, Scott A

    2014-01-01

    The efficient extraction and purification of viral RNA is critical for down-stream molecular applications whether it is the sensitive and specific detection of virus in clinical samples, virus gene cloning and expression, or quantification of avian influenza (AI) virus by molecular methods from experimentally infected birds. Samples can generally be divided into two types; enriched (e.g. virus stocks) and clinical. Clinical type samples, which may be tissues or swab material, are the most difficult to process due to the complex sample composition and possibly low virus titers. In this chapter two well established procedures for the isolation of AI virus RNA from common clinical specimen types and enriched virus stocks for further molecular applications will be presented.

  12. Avian influenza outbreak management: action at time of confirmation, depopulation and disposal methods; the 'Belgian experience' during the H7N7 highly pathogenic avian influenza epidemic in 2003.

    PubMed

    van den Berg, T; Houdart, P

    2008-01-01

    Eradication of H5 and H7 influenza in a positive flock will include mass depopulation of birds, containment and inactivation of the virus in the carcasses and litter, and decontamination of the facility. A quick response is desired in the event of a disease outbreak. Ideally, birds should be depopulated within 24 h after detecting the virus. Mass depopulation of birds must be performed in a humane manner while minimizing human health and biosecurity risks. In the framework of the European legislation, a number of methods are authorized for the killing of poultry for processing prior to marketing. However, during emergencies such as a disease outbreak, there are fewer options. The current most commonly used procedures for large-scale emergency depopulation of birds consist of exposing poultry to CO or CO(2) gas. Both gasses have been used in Belgium during the H7N7 crisis in 2003. The gassing procedures include whole house gassing, portable panel enclosures, cage cabinets, containers and polyethylene tent method. Whole house gassing requires sealing the house to prevent gas leakage and, using specialized equipment, introducing large volumes of gas evenly over the birds. All procedures are very labour intensive, create a biosecurity risk and require a large number of personnel. There are considerable region-to-region differences in emergency depopulation techniques and disposal of carcasses and infected material. Because of the differences in bird type and species, management, housing and stocking density, it is difficult to propose a depopulation technique that will be suitable for all circumstances. Safety of the human operators is an increasing concern with all H5 and H7 strains and in particular with the highly pathogenic H5N1 strain. Researchers and commercial poultry companies in the United States recently established that non-toxic water-based foam with a certain bubble size presents a practicable, effective and humane method for mass depopulation. Foam of the

  13. A possible outbreak of swine influenza, 1892

    PubMed Central

    Morens, David M; Taubenberger, Jeffery K

    2014-01-01

    Influenza A viruses are globally enzootic in swine populations. Swine influenza has been recognised only since 1918, but an anecdotal report suggests that a swine-influenza epizootic might have occurred in England in 1892, at the same time as an explosive epidemic (or pandemic recurrence) of human influenza. This outbreak suggests that the ecobiological association between human and swine influenza could extend to before 1918. By contrast with the recent documentation of swine influenza, influenza in horses has been well documented for hundreds of years, and was often linked temporally and geographically to epidemics of human influenza. Both decreased contact between people and horses, and the concomitant increase in swine production over the past century, might have altered the character and dynamics of influenza host-switch events between people and domestic mammals. PMID:24290840

  14. A possible outbreak of swine influenza, 1892.

    PubMed

    Morens, David M; Taubenberger, Jeffery K

    2014-02-01

    Influenza A viruses are globally enzootic in swine populations. Swine influenza has been recognised only since 1918, but an anecdotal report suggests that a swine-influenza epizootic might have occurred in England in 1892, at the same time as an explosive epidemic (or pandemic recurrence) of human influenza. This outbreak suggests that the ecobiological association between human and swine influenza could extend to before 1918. By contrast with the recent documentation of swine influenza, influenza in horses has been well documented for hundreds of years, and was often linked temporally and geographically to epidemics of human influenza. Both decreased contact between people and horses, and the concomitant increase in swine production over the past century, might have altered the character and dynamics of influenza host-switch events between people and domestic mammals.

  15. Antibody responses to avian influenza viruses in wild birds broaden with age

    PubMed Central

    Manvell, Ruth J.; Schulenburg, Bodo; Shell, Wendy; Wikramaratna, Paul S.; Perrins, Christopher; Sheldon, Ben C.; Brown, Ian H.; Pybus, Oliver G.

    2016-01-01

    For viruses such as avian influenza, immunity within a host population can drive the emergence of new strains by selecting for viruses with novel antigens that avoid immune recognition. The accumulation of acquired immunity with age is hypothesized to affect how influenza viruses emerge and spread in species of different lifespans. Despite its importance for understanding the behaviour of avian influenza viruses, little is known about age-related accumulation of immunity in the virus's primary reservoir, wild birds. To address this, we studied the age structure of immune responses to avian influenza virus in a wild swan population (Cygnus olor), before and after the population experienced an outbreak of highly pathogenic H5N1 avian influenza in 2008. We performed haemagglutination inhibition assays on sampled sera for five avian influenza strains and show that breadth of response accumulates with age. The observed age-related distribution of antibody responses to avian influenza strains may explain the age-dependent mortality observed during the highly pathogenic H5N1 outbreak. Age structures and species lifespan are probably important determinants of viral epidemiology and virulence in birds. PMID:28003449

  16. Detection of Avian H7N9 Influenza A Viruses in the Yangtze Delta Region of China During Early H7N9 Outbreaks.

    PubMed

    Li, Yin; Huang, Xin-Mei; Zhao, Dong-Min; Liu, Yu-Zhuo; He, Kong-Wang; Liu, Yao-Xing; Chen, Chang-Hai; Long, Li-Ping; Xu, Yifei; Xie, Xing-Xing; Han, Kai-Kai; Liu, Xiao-Yan; Yang, Jing; Zhang, You-Fa; Fan, Feng; Webby, Richard; Wan, Xiu-Feng

    2016-05-01

    Since the first H7N9 human case in Shanghai, February 19, 2013, the emerging avian-origin H7N9 influenza A virus has become an epizootic virus in China, posing a potential pandemic threat to public health. From April 2 to April 28, 2013, some 422 oral-pharyngeal and cloacal swabs were collected from birds and environmental surfaces at five live poultry markets (LPMs) and 13 backyard poultry farms (BPFs) across three cities, Wuxi, Suzhou, and Nanjing, in the Yangtze Delta region. In total 22 isolates were recovered, and six were subtyped as H7N9, nine as H9N2, four as H7N9/H9N2, and three unsubtyped influenza A viruses. Genomic sequences showed that the HA and NA genes of the H7N9 viruses were similar to those of the H7N9 human isolates, as well as other avian-origin H7N9 isolates in the region, but the PB1, PA, NP, and MP genes of the sequenced viruses were more diverse. Among the four H7N9/H9N2 mixed infections, three were from LPM, whereas the other one was from the ducks at one BPF, which were H7N9 negative in serologic analyses. A survey of the bird trading records of the LPMs and BPFs indicates that trading was a likely route for virus transmission across these regions. Our results suggested that better biosecurity and more effective vaccination should be implemented in backyard farms, in addition to biosecurity management in LPMs.

  17. Detection of avian H7N9 influenza A viruses at the Yangtze Delta Region of China during early H7N9 outbreaks

    PubMed Central

    Li, Yin; Huang, Xin-mei; Zhao, Dong-min; Liu, Yu-zhuo; He, Kong-wang; Liu, Yao-xing; Chen, Chang-hai; Long, Li-Ping; Xu, Yifei; Xie, Xing-xing; Han, Kai-kai; Liu, Xiao-yan; Yang, Jing; Zhang, You-Fa; Fan, Feng; Webby, Richard; Wan, Xiu-Feng

    2016-01-01

    SUMMARY Since the first H7N9 human case in Shanghai, February 19, 2013, the emerging avian-origin H7N9 influenza A virus has become an epizootic virus in China, posing a potential pandemic threat to public health. From April 2 to April 28, 2013, 422 oral-pharyngeal and cloacal swabs were collected from birds and environmental surfaces at five live poultry markets (LPMs) and 13 backyard poultry farms (BPFs) across three cities, Wuxi, Suzhou, and Nanjing, in the Yangtze Delta Region. A total of 22 isolates were recovered, and 6 were subtyped as H7N9, 9 as H9N2, 4 as H7N9/H9N2, and 3 un-subtyped influenza A viruses. Genomic sequences showed that the HA and NA genes of the H7N9 viruses were similar to those of the H7N9 human isolates as well as other avian origin H7N9 isolates in the region but the PB1, PA, NP, and MP genes of the sequenced viruses were, however, more diverse. Among the four H7N9/H9N2 mixed infections, three were from LPM whereas the other one from the ducks at one BPF, which were H7N9 negative in serological analyses. A survey of the bird trading records of the LPMs and BPFs indicates that trading was a likely route for virus transmission across these regions. Our results suggested that a better biosecurity and more effective vaccination should be implemented in backyard farms besides biosecurity management in LPMs. PMID:27309047

  18. Avian influenza surveillance of wild birds

    USGS Publications Warehouse

    Slota, Paul

    2007-01-01

    The President's National Strategy for Pandemic Influenza directs federal agencies to expand the surveillance of United States domestic livestock and wildlife to ensure early warning of hightly pathogenic avian influenza (HPAI) in the U.S. The immediate concern is a potential introduction of HPAI H5N1 virus into the U.S. The presidential directive resulted in the U.S. Interagency Strategic Plan for Early Detection of H5N1 Highly Pathogenic Avian Influenza in Wild Migratory Birds (referred to as the Wild Bird Surveillance Plan or the Plan).

  19. Hospital Viability during a Pandemic Influenza Outbreak

    DTIC Science & Technology

    2009-06-01

    provide protection from the next pandemic. 15. SUBJECT TERMS Hospital Security, Pandemic Influenza , Viability Checklist, 1918 Spanish Flu, 2003 SARS...pandemic influenza : 1918 Spanish Flu, 1957 Asian Flu, 1968 Hong Kong Flu, 2003 SARS epidemic, and 2005 Hurricane Katrina. Understanding the...emergency management events: 1918 , Spanish flu (H1N1); 2003, SARS outbreak; 2005, Hurricane Katrina, and the 2009, Swine flu (H1N1) outbreak, for the

  20. Vaccine protection of turkeys against H5N1 highly pathogenic avian influenza virus with a recombinant HVT expressing the hemagglutinin gene of avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Outbreaks of H5 highly pathogenic avian influenza (HPAI) in commercial poultry are a constant threat to animal health and food supplies. While vaccination can enhance protection and reduce the spread of disease, there is considerable evidence that the level of immunity required for protection varies...

  1. Potency, efficacy, and antigenic mapping of H7 avian influenza virus vaccines against the 2012 H7N3 highly pathogenic avian influenza virus from Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the spring of 2012 an outbreak of H7N3 highly pathogenic (HP) avian influenza virus (AIV) occurred in poultry in Mexico. Vaccination was implemented as a control measure along with increased biosecurity and surveillance. At that time there was no commercially available H7 AIV vaccine in North Ame...

  2. A mathematical model of avian influenza with half-saturated incidence.

    PubMed

    Chong, Nyuk Sian; Tchuenche, Jean Michel; Smith, Robert J

    2014-03-01

    The widespread impact of avian influenza viruses not only poses risks to birds, but also to humans. The viruses spread from birds to humans and from human to human In addition, mutation in the primary strain will increase the infectiousness of avian influenza. We developed a mathematical model of avian influenza for both bird and human populations. The effect of half-saturated incidence on transmission dynamics of the disease is investigated. The half-saturation constants determine the levels at which birds and humans contract avian influenza. To prevent the spread of avian influenza, the associated half-saturation constants must be increased, especially the half-saturation constant H m for humans with mutant strain. The quantity H m plays an essential role in determining the basic reproduction number of this model. Furthermore, by decreasing the rate β m at which human-to-human mutant influenza is contracted, an outbreak can be controlled more effectively. To combat the outbreak, we propose both pharmaceutical (vaccination) and non-pharmaceutical (personal protection and isolation) control methods to reduce the transmission of avian influenza. Vaccination and personal protection will decrease β m, while isolation will increase H m. Numerical simulations demonstrate that all proposed control strategies will lead to disease eradication; however, if we only employ vaccination, it will require slightly longer to eradicate the disease than only applying non-pharmaceutical or a combination of pharmaceutical and non-pharmaceutical control methods. In conclusion, it is important to adopt a combination of control methods to fight an avian influenza outbreak.

  3. Role for migratory wild birds in the global spread of avian influenza H5N8

    USGS Publications Warehouse

    ,; Ip, Hon S.

    2016-01-01

    Avian influenza viruses affect both poultry production and public health. A subtype H5N8 (clade 2.3.4.4) virus, following an outbreak in poultry in South Korea in January 2014, rapidly spread worldwide in 2014–2015. Our analysis of H5N8 viral sequences, epidemiological investigations, waterfowl migration, and poultry trade showed that long-distance migratory birds can play a major role in the global spread of avian influenza viruses. Further, we found that the hemagglutinin of clade 2.3.4.4 virus was remarkably promiscuous, creating reassortants with multiple neuraminidase subtypes. Improving our understanding of the circumpolar circulation of avian influenza viruses in migratory waterfowl will help to provide early warning of threats from avian influenza to poultry, and potentially human, health.

  4. Role for migratory wild birds in the global spread of avian influenza H5N8.

    PubMed

    2016-10-14

    Avian influenza viruses affect both poultry production and public health. A subtype H5N8 (clade 2.3.4.4) virus, following an outbreak in poultry in South Korea in January 2014, rapidly spread worldwide in 2014-2015. Our analysis of H5N8 viral sequences, epidemiological investigations, waterfowl migration, and poultry trade showed that long-distance migratory birds can play a major role in the global spread of avian influenza viruses. Further, we found that the hemagglutinin of clade 2.3.4.4 virus was remarkably promiscuous, creating reassortants with multiple neuraminidase subtypes. Improving our understanding of the circumpolar circulation of avian influenza viruses in migratory waterfowl will help to provide early warning of threats from avian influenza to poultry, and potentially human, health.

  5. The continued pandemic threat posed by avian influenza viruses in Hong Kong.

    PubMed

    Hatta, Masato; Kawaoka, Yoshihiro

    2002-07-01

    In 1997, a highly pathogenic avian H5N1 influenza virus was transmitted directly from live commercial poultry to humans in Hong Kong. Of the 18 people infected, six died. The molecular basis for the high virulence of this virus in mice was found to involve an amino acid change in the PB2 protein. To eliminate the source of the pathogenic virus, all birds in the Hong Kong markets were slaughtered. In 1999, another avian influenza virus of H9N2 subtype was transmitted to two children in Hong Kong. In 2000-2002, H5N1 avian viruses reappeared in the poultry markets of Hong Kong, although they have not infected humans. Continued circulation of H5N1 and other avian viruses in Hong Kong raises the possibility of future human influenza outbreaks. Moreover, the acquisition of properties of human viruses by the avian viruses currently circulating in southeast China might result in a pandemic.

  6. The prevention and control of avian influenza: the avian influenza coordinated agriculture project.

    PubMed

    Cardona, C; Slemons, R; Perez, D

    2009-04-01

    The Avian Influenza Coordinated Agriculture Project (AICAP) entitled "Prevention and Control of Avian Influenza in the US" strives to be a significant point of reference for the poultry industry and the general public in matters related to the biology, risks associated with, and the methods used to prevent and control avian influenza. To this end, AICAP has been remarkably successful in generating research data, publications through an extensive network of university- and agency-based researchers, and extending findings to stakeholders. An overview of the highlights of AICAP research is presented.

  7. Highly pathogenic avian influenza virus among wild birds in Mongolia.

    PubMed

    Gilbert, Martin; Jambal, Losolmaa; Karesh, William B; Fine, Amanda; Shiilegdamba, Enkhtuvshin; Dulam, Purevtseren; Sodnomdarjaa, Ruuragchaa; Ganzorig, Khuukhenbaatar; Batchuluun, Damdinjav; Tseveenmyadag, Natsagdorj; Bolortuya, Purevsuren; Cardona, Carol J; Leung, Connie Y H; Peiris, J S Malik; Spackman, Erica; Swayne, David E; Joly, Damien O

    2012-01-01

    Mongolia combines a near absence of domestic poultry, with an abundance of migratory waterbirds, to create an ideal location to study the epidemiology of highly pathogenic avian influenza virus (HPAIV) in a purely wild bird system. Here we present the findings of active and passive surveillance for HPAIV subtype H5N1 in Mongolia from 2005-2011, together with the results of five outbreak investigations. In total eight HPAIV outbreaks were confirmed in Mongolia during this period. Of these, one was detected during active surveillance employed by this project, three by active surveillance performed by Mongolian government agencies, and four through passive surveillance. A further three outbreaks were recorded in the neighbouring Tyva Republic of Russia on a lake that bisects the international border. No HPAIV was isolated (cultured) from 7,855 environmental fecal samples (primarily from ducks), or from 2,765 live, clinically healthy birds captured during active surveillance (primarily shelducks, geese and swans), while four HPAIVs were isolated from 141 clinically ill or dead birds located through active surveillance. Two low pathogenic avian influenza viruses (LPAIV) were cultured from ill or dead birds during active surveillance, while environmental feces and live healthy birds yielded 56 and 1 LPAIV respectively. All Mongolian outbreaks occurred in 2005 and 2006 (clade 2.2), or 2009 and 2010 (clade 2.3.2.1); all years in which spring HPAIV outbreaks were reported in Tibet and/or Qinghai provinces in China. The occurrence of outbreaks in areas deficient in domestic poultry is strong evidence that wild birds can carry HPAIV over at least moderate distances. However, failure to detect further outbreaks of clade 2.2 after June 2006, and clade 2.3.2.1 after June 2010 suggests that wild birds migrating to and from Mongolia may not be competent as indefinite reservoirs of HPAIV, or that HPAIV did not reach susceptible populations during our study.

  8. Factors Associated with the Emergence of Highly Pathogenic Avian Influenza A (H5N1) Poultry Outbreaks in China: Evidence from an Epidemiological Investigation in Ningxia, 2012.

    PubMed

    Liu, H; Zhou, X; Zhao, Y; Zheng, D; Wang, J; Wang, X; Castellan, D; Huang, B; Wang, Z; Soares Magalhães, R J

    2015-10-30

    In April 2012, highly pathogenic avian influenza virus of the H5N1 subtype (HPAIV H5N1) emerged in poultry layers in Ningxia. A retrospective case-control study was conducted to identify possible risk factors associated with the emergence of H5N1 infection and describe and quantify the spatial variation in H5N1 infection. A multivariable logistic regression model was used to identify risk factors significantly associated with the presence of infection; residual spatial variation in H5N1 risk unaccounted by the factors included in the multivariable model was investigated using a semivariogram. Our results indicate that HPAIV H5N1-infected farms were three times more likely to improperly dispose farm waste [adjusted OR = 0.37; 95% CI: 0.12-0.82] and five times more likely to have had visitors in their farm within the past month [adjusted OR = 5.47; 95% CI: 1.97-15.64] compared to H5N1-non-infected farms. The variables included in the final multivariable model accounted only 20% for the spatial clustering of H5N1 infection. The average size of a H5N1 cluster was 660 m. Bio-exclusion practices should be strengthened on poultry farms to prevent further emergence of H5N1 infection. For future poultry depopulation, operations should consider H5N1 disease clusters to be as large as 700 m.

  9. Avian influenza viruses and human health.

    PubMed

    Alexander, D J

    2006-01-01

    Influenza A viruses cause natural infections of humans, some other mammals and birds. Few of the 16 haemagglutinin and nine neuraminidase subtype combinations have been isolated from mammals, but all subtypes have been isolated from birds. In the 20th century, there were four pandemics of influenza as a result of the emergence of antigenically different strains in humans: 1918 (H1N1), 1957 (H2N2), 1968 (H3N2) and 1977 (H1N1). Influenza A viruses contain eight distinct RNA genes and reassortment of these can occur in mixed infections with different viruses. The 1957 and 1968 pandemic viruses differed from the preceding viruses in humans by the substitution of genes that came from avian viruses, suggesting they arose by genetic reassortment of viruses of human and avian origin. Up to 1995, there had been only three reports of avian influenza viruses infecting humans, in 1959, 1977 and 1981 (all H7N7), but, since 1996, there have been regular reports of natural infections of humans with avian influenza viruses: in England in 1996 (H7N7), Hong Kong 1997 (H5N1), 1999 (H9N2), and 2003 (H5N1), in The Netherlands 2003 (H7N7), Canada 2004 (H7N3), Vietnam 2004 (H5N1) and Thailand 2004 (H5N1). The H5N1 virus is alarming because 51 (64 %) of the 80 people confirmed as infected since 1997 have died.

  10. Avian Schistosomes and Outbreaks of Cercarial Dermatitis

    PubMed Central

    Mikeš, Libor; Lichtenbergová, Lucie; Skála, Vladimír; Soldánová, Miroslava; Brant, Sara Vanessa

    2015-01-01

    SUMMARY Cercarial dermatitis (swimmer's itch) is a condition caused by infective larvae (cercariae) of a species-rich group of mammalian and avian schistosomes. Over the last decade, it has been reported in areas that previously had few or no cases of dermatitis and is thus considered an emerging disease. It is obvious that avian schistosomes are responsible for the majority of reported dermatitis outbreaks around the world, and thus they are the primary focus of this review. Although they infect humans, they do not mature and usually die in the skin. Experimental infections of avian schistosomes in mice show that in previously exposed hosts, there is a strong skin immune reaction that kills the schistosome. However, penetration of larvae into naive mice can result in temporary migration from the skin. This is of particular interest because the worms are able to migrate to different organs, for example, the lungs in the case of visceral schistosomes and the central nervous system in the case of nasal schistosomes. The risk of such migration and accompanying disorders needs to be clarified for humans and animals of interest (e.g., dogs). Herein we compiled the most comprehensive review of the diversity, immunology, and epidemiology of avian schistosomes causing cercarial dermatitis. PMID:25567226

  11. Efficacy of inactivated influenza vaccines for protection of poultry against the H7N9 low pathogenic avian influenza virus isolated in China during 2013

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent outbreak in China of avian influenza (AI) H7N9 in birds and humans underscores the interspecies movement of these viruses. Interestingly, the genetic composition of these H7N9 viruses appears to be solely of avian origin and of low pathogenicity in birds. Although few isolations of these ...

  12. Emergence of Fatal Avian Influenza in New England Harbor Seals

    PubMed Central

    Anthony, S. J.; St. Leger, J. A.; Pugliares, K.; Ip, H. S.; Chan, J. M.; Carpenter, Z. W.; Navarrete-Macias, I.; Sanchez-Leon, M.; Saliki, J. T.; Pedersen, J.; Karesh, W.; Daszak, P.; Rabadan, R.; Rowles, T.; Lipkin, W. I.

    2012-01-01

    ABSTRACT From September to December 2011, 162 New England harbor seals died in an outbreak of pneumonia. Sequence analysis of postmortem samples revealed the presence of an avian H3N8 influenza A virus, similar to a virus circulating in North American waterfowl since at least 2002 but with mutations that indicate recent adaption to mammalian hosts. These include a D701N mutation in the viral PB2 protein, previously reported in highly pathogenic H5N1 avian influenza viruses infecting people. Lectin staining and agglutination assays indicated the presence of the avian-preferred SAα-2,3 and mammalian SAα-2,6 receptors in seal respiratory tract, and the ability of the virus to agglutinate erythrocytes bearing either the SAα-2,3 or the SAα-2,6 receptor. The emergence of this A/harbor seal/Massachusetts/1/2011 virus may herald the appearance of an H3N8 influenza clade with potential for persistence and cross-species transmission. PMID:22851656

  13. Emergence of fatal avian influenza in New England harbor seals

    USGS Publications Warehouse

    Anthony, S.J.; St. Leger, J. A.; Pugliares, K.; Ip, H.S.; Chan, J.M.; Carpenter, Z.W.; Navarrete-Macias, I.; Sanchez-Leon, M.; Saliki, J.T.; Pedersen, J.; Karesh, W.; Daszak, P.; Rabadan, R.; Rowles, T.; Lipkin, W.I.

    2012-01-01

    From September to December 2011, 162 New England harbor seals died in an outbreak of pneumonia. Sequence analysis of postmortem samples revealed the presence of an avian H3N8 influenza A virus, similar to a virus circulating in North American waterfowl since at least 2002 but with mutations that indicate recent adaption to mammalian hosts. These include a D701N mutation in the viral PB2 protein, previously reported in highly pathogenic H5N1 avian influenza viruses infecting people. Lectin staining and agglutination assays indicated the presence of the avian-preferred SAα-2,3 and mammalian SAα-2,6 receptors in seal respiratory tract, and the ability of the virus to agglutinate erythrocytes bearing either the SAα-2,3 or the SAα-2,6 receptor. The emergence of this A/harbor seal/Massachusetts/1/2011 virus may herald the appearance of an H3N8 influenza clade with potential for persistence and cross-species transmission.

  14. The Role of Environmental Transmission in Recurrent Avian Influenza Epidemics

    PubMed Central

    Breban, Romulus; Drake, John M.; Stallknecht, David E.; Rohani, Pejman

    2009-01-01

    Avian influenza virus (AIV) persists in North American wild waterfowl, exhibiting major outbreaks every 2–4 years. Attempts to explain the patterns of periodicity and persistence using simple direct transmission models are unsuccessful. Motivated by empirical evidence, we examine the contribution of an overlooked AIV transmission mode: environmental transmission. It is known that infectious birds shed large concentrations of virions in the environment, where virions may persist for a long time. We thus propose that, in addition to direct fecal/oral transmission, birds may become infected by ingesting virions that have long persisted in the environment. We design a new host–pathogen model that combines within-season transmission dynamics, between-season migration and reproduction, and environmental variation. Analysis of the model yields three major results. First, environmental transmission provides a persistence mechanism within small communities where epidemics cannot be sustained by direct transmission only (i.e., communities smaller than the critical community size). Second, environmental transmission offers a parsimonious explanation of the 2–4 year periodicity of avian influenza epidemics. Third, very low levels of environmental transmission (i.e., few cases per year) are sufficient for avian influenza to persist in populations where it would otherwise vanish. PMID:19360126

  15. Case Series of Turkey Farms from the H5N2 Highly Pathogenic Avian Influenza Outbreak in the United States During 2015.

    PubMed

    Dargatz, David; Beam, Andrea; Wainwright, Sherri; McCluskey, Brian

    2016-06-01

    Between December 2014 and June 2015, an outbreak of H5N2 HPAI caused the largest and most expensive agriculture emergency in U.S. Department of Agriculture-Animal and Plant Health Inspection Service history. The outbreak affected 21 states; 232 poultry farms (211 commercial and 21 backyard) were affected, and approximately 49.6 million birds were depopulated on poultry farms. The majority of affected farms were commercial turkey operations (n = 160). This report is a case series describing 104 H5N2 HPAI-affected turkey farms in Iowa, Minnesota, Missouri, North Dakota, South Dakota, and Wisconsin that had H5N2 HPAI virus detected between March 5 and June 1, 2015. The farm manager or farm personnel voluntarily completed an epidemiologic questionnaire administered by state and federal animal health officials. Equipment and vehicle sharing with other farms was common, particularly for feed trucks (77% of farms shared feed trucks with other farms), live haul loaders (90.4%), poult trailers (72.0%), and preloaders (80.7%). Many farms had water bodies in proximity to the farm, such as a pond (42.6%) or stream (21.8%). About one-third of farms (33.7%) reported seeing wild birds inside the turkey barns. Only 44.2% of farms reported that third-party biosecurity audits or assessments had been conducted. Because the newly introduced Asian H5N8 HPAI and two new HPAI viruses, H5N2 and H5N1, are now circulating in U.S. wild birds, primarily migratory waterfowl, a greater potential for reoccurrence exists with the spring and fall migratory seasons, representing higher risk periods for outbreaks of HPAI in commercial poultry farms in the future. Eliminating exposure to wild birds, especially waterfowl or environments contaminated by wild waterfowl, will reduce risk of reintroduction of H5N2 HPAI virus, and ensuring good on-farm biosecurity will help the poultry industry avoid introduction of influenza and lateral spread between farms.

  16. Genetic data provide evidence for wind-mediated transmission of highly pathogenic avian influenza.

    PubMed

    Ypma, Rolf J F; Jonges, Marcel; Bataille, Arnaud; Stegeman, Arjan; Koch, Guus; van Boven, Michiel; Koopmans, Marion; van Ballegooijen, W Marijn; Wallinga, Jacco

    2013-03-01

    Outbreaks of highly pathogenic avian influenza in poultry can cause severe economic damage and represent a public health threat. Development of efficient containment measures requires an understanding of how these influenza viruses are transmitted between farms. However, the actual mechanisms of interfarm transmission are largely unknown. Dispersal of infectious material by wind has been suggested, but never demonstrated, as a possible cause of transmission between farms. Here we provide statistical evidence that the direction of spread of avian influenza A(H7N7) is correlated with the direction of wind at date of infection. Using detailed genetic and epidemiological data, we found the direction of spread by reconstructing the transmission tree for a large outbreak in the Netherlands in 2003. We conservatively estimate the contribution of a possible wind-mediated mechanism to the total amount of spread during this outbreak to be around 18%.

  17. Avian influenza vaccines and vaccination for poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccines against avian influenza (AI) have had more limited use in poultry than vaccines against other poultry diseases such as Newcastle disease (ND) and infectious bronchitis, and have been used more commonly in the developing world. Over the past 40 years, AI vaccines have been primarily based o...

  18. The global nature of avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) virus (AIV) is a global virus which knows no geographic boundaries, has no political agenda, and can infect poultry irrespective of their occupying ecosystem, agricultural production system, or other anthropocentric niches. AIVs or evidence of their infection have been detected...

  19. 77 FR 34783 - Highly Pathogenic Avian Influenza

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... importation of bird and poultry products from regions where any subtype of highly pathogenic avian influenza... poultry and birds that have been vaccinated for certain types of HPAI, or that have been moved through... into the United States of live birds, poultry, eggs for hatching, and bird and poultry products and...

  20. Avian influenza virus and Newcastle disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) severely impact poultry egg production. Decreased egg yield and hatchability, as well as misshapen eggs, are often observed during infection with AIV and NDV, even with low-virulence strains or in vaccinated flocks. Data suggest that in...

  1. Viral vectors for avian influenza vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prior to 2003, vaccines against avian influenza (AI) had limited, individual country or regional use in poultry. In late 2003, H5N1 high pathogenicity (HP) AI spread from China to multiple Southeast Asian countries, and to Europe during 2005 and Africa during 2006, challenging governments and all p...

  2. Pathobiology of avian influenza in domestic ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domestic ducks are an important source of food and income in many parts of the world. The susceptibility of domestic ducks to avian influenza (AI) viruses varies depending on many factors, including the species and the age of the ducks, the virus strain, and management practices. Although wild wat...

  3. Environmental role in influenza virus outbreaks.

    PubMed

    Sooryanarain, Harini; Elankumaran, Subbiah

    2015-01-01

    The environmental drivers of influenza outbreaks are largely unknown. Despite more than 50 years of research, there are conflicting lines of evidence on the role of the environment in influenza A virus (IAV) survival, stability, and transmissibility. With the increasing and looming threat of pandemic influenza, it is important to understand these factors for early intervention and long-term control strategies. The factors that dictate the severity and spread of influenza would include the virus, natural and acquired hosts, virus-host interactions, environmental persistence, virus stability and transmissibility, and anthropogenic interventions. Virus persistence in different environments is subject to minor variations in temperature, humidity, pH, salinity, air pollution, and solar radiations. Seasonality of influenza is largely dictated by temperature and humidity, with cool-dry conditions enhancing IAV survival and transmissibility in temperate climates in high latitudes, whereas humid-rainy conditions favor outbreaks in low latitudes, as seen in tropical and subtropical zones. In mid-latitudes, semiannual outbreaks result from alternating cool-dry and humid-rainy conditions. The mechanism of virus survival in the cool-dry or humid-rainy conditions is largely determined by the presence of salts and proteins in the respiratory droplets. Social determinants of heath, including health equity, vaccine acceptance, and age-related illness, may play a role in influenza occurrence and spread.

  4. Pandemic and Avian Influenza A Viruses in Humans: Epidemiology, Virology, Clinical Characteristics, and Treatment Strategy.

    PubMed

    Li, Hui; Cao, Bin

    2017-03-01

    The intermittent outbreak of pandemic influenza and emergence of novel avian influenza A virus is worldwide threat. Although most patients present with mild symptoms, some deteriorate to severe pneumonia and even death. Great progress in the understanding of the mechanism of disease pathogenesis and a series of vaccines has been promoted worldwide; however, incidence, morbidity, and mortality remains high. To step up vigilance and improve pandemic preparedness, this article elucidates the virology, epidemiology, pathogenesis, clinical characteristics, and treatment of human infections by influenza A viruses, with an emphasis on the influenza A(H1N1)pdm09, H5N1, and H7N9 subtypes.

  5. The avian-origin H3N2 canine influenza virus has limited replication in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A genetically and antigenically distinct H3N2 canine influenza of avian-origin was detected in March of 2015 in Chicago, Illinois. A subsequent outbreak was reported with over 1,000 dogs in the Midwest affected. The potential for canine-to-swine transmission was unknown. Experimental infection in pi...

  6. Avian influenza virus detection and quantitation by real-time RT-PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Real-time RT-PCR (rRT-PCR) has been used for avian influenza virus (AIV) detection since the early 2000’s for routine surveillance, during outbreaks and for research. Some of the advantages of rRT-PCR are: high sensitivity, high specificity, rapid time-to-result, scalability, cost, and its inherentl...

  7. Update on H7N3 highly pathogenic avian influenza in Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In June of 2012, an H7N3 highly pathogenic avian influenza (HPAI) virus was identified as the cause of a severe disease outbreak in commercial laying chicken farms in Jalisco, Mexico. This region is responsible for approximately 55% of the eggs produced in Mexico, and infection with this virus seve...

  8. Inactivation of avian influenza virus in chicken litter as a potential method to decontaminate poultry houses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Full cleaning and disinfection of a poultry house after an avian influenza virus (AIV) outbreak is expensive and labor intensive. An alternative to full house cleaning and disinfection is to inactivate the virus with high temperatures within the house. Litter in the house normally has a high virus...

  9. Avian Influenza Biosecurity: Filling the Gaps with Non-Traditional Education

    ERIC Educational Resources Information Center

    Madsen, Jennifer; Tablante, Nathaniel

    2013-01-01

    Outbreaks of highly pathogenic avian influenza have become endemic, crippling trade and livelihood for many, and in rare cases, resulting in human fatalities. It is imperative that up-to-date education and training in accessible and interactive formats be available to key target audiences like poultry producers, backyard flock owners, and…

  10. Can we improve vaccines and there use for preventing and controlling avian influenza?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There have been 32 epizootics of high pathogenicity avian influenza (HPAI) in birds since 1959. The largest has been the H5N1 HPAI panzootic that emerged in China during 1996 and has spread to infect poultry and/or wild birds in 62 countries during the past 17 years. The majority of the outbreaks oc...

  11. The global avian influenza situation and assessment of effective control methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 62 countries during the past 15 years. For 2011-2012, 19 countries reported outbreaks of H5N1 in domestic poultry, wild birds or both. The majority of the outbr...

  12. Global expansion of high pathogenicity avian influenza: implications on prevention and control programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 63 countries during the past 18 years. The majority of the recent outbreaks of H5N1 HPAI have occurred in Indonesia, Egypt, Vietnam, and Bangladesh, in decreas...

  13. H7 avian influenza virus vaccines protect chickens against challenge with antigenically diverse isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccination has been a critical tool in the control of some avian influenza viruses (AIV) and has been used routinely in Pakistan to help control sporadic outbreaks of highly pathogenic (HP) H7 AIV since 1995. During that time, several AIV isolates were utilized as inactivated vaccines with varying...

  14. Global expansion of high pathogenicity avian influenza: implications on prevention and control programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The H5N1 high pathogenicity avian influenza (HPAI) virus emerged in China during 1996 and has spread to infect poultry and/or wild birds in 63 countries during the past 18 years. The majority of the recent outbreaks of H5N1 HPAI have occurred in Indonesia, Egypt, Vietnam, and Bangladesh, in decreasi...

  15. Use of avian influenza vaccination in Hong Kong.

    PubMed

    Ellis, T M; Sims, L D; Wong, H K H; Wong, C W; Dyrting, K C; Chow, K W; Leung, C; Peiris, J S M

    2006-01-01

    Outbreaks of H5N1 highly pathogenic avian influenza (HPAI) that occurred in Hong Kong up until February/March 2002 were controlled by stamping out. With endemic presence of the virus in the region and large daily importation of poultry to Hong Kong, the Administration considered that further risk management measures, in addition to improved biosecurity and enhanced surveillance, were necessary to prevent outbreaks. Vaccination using a killed H5N2 vaccine was evaluated over a 12-month period in the district with the last HPAI cases in the early 2002 outbreak. The vaccination trial showed that farmer-administered killed H5N2 vaccine produced suitable flock antibody responses; vaccinated birds were protected against H5N1 HPAI virus challenge and excreted significantly less H5N1 virus; and vaccination was able to control virus excretion in flocks during field outbreaks. Universal vaccination of local chicken farms was introduced in June 2003 and by the end of 2003 all chickens entering the live poultry markets in Hong Kong were vaccinated by killed H5N2 vaccine. In addition to vaccination, an enhanced biosecurity programme on farms and in live poultry markets and a comprehensive surveillance programme in poultry, wild birds, recreation park birds and pet birds were in place. Vaccination use and performance is closely monitored. This programme was successful in protecting local farms and live poultry markets from H5N1 outbreaks during the regional H5N1 outbreaks in 2004.

  16. Early responses of chicken lungs and spleens to infection with highly pathogenic avian influenza virus using microarray analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Within the last few years, outbreaks of highly pathogenic avian influenza (HPAI) have originated in Asia and spread through several Middle Eastern, African and European countries, resulting in one of the most serious animal disease incident in recent history. These outbreaks were characterized by t...

  17. Complete Genome Sequence of the First H5N1 Avian Influenza Virus Isolated from Chickens in Lebanon in 2016

    PubMed Central

    Ibrahim, Elias; Sirawan, Abeer; El-Bazzal, Bassel; El Hage, Jeanne; Abi Said, Mounir; Kandeil, Ahmed; Ali, Mohamed A.

    2016-01-01

    We generated the full genome of a highly pathogenic H5N1 avian influenza virus that caused an outbreak on a chicken farm in Lebnaon in April 2016. Analysis revealed that the virus belonged to clade 2.3.2.1c that recently caused outbreaks in West Africa and the United Arab Emirates. PMID:27795243

  18. Avian influenza in shorebirds: experimental infection of ruddy turnstones (Arenaria interpres) with avian influenza virus

    USGS Publications Warehouse

    Hall, Jeffrey S.; Krauss, Scott; Franson, J. Christian; TeSlaa, Joshua L.; Nashold, Sean W.; Stallknecht, David E.; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    Background: Low pathogenic avian influenza viruses (LPAIV) have been reported in shorebirds, especially at Delaware Bay, USA, during spring migration. However, data on patterns of virus excretion, minimal infectious doses, and clinical outcome are lacking. The ruddy turnstone (Arenaria interpres) is the shorebird species with the highest prevalence of influenza virus at Delaware Bay. Objectives: The primary objective of this study was to experimentally assess the patterns of influenza virus excretion, minimal infectious doses, and clinical outcome in ruddy turnstones. Methods: We experimentally challenged ruddy turnstones using a common LPAIV shorebird isolate, an LPAIV waterfowl isolate, or a highly pathogenic H5N1 avian influenza virus. Cloacal and oral swabs and sera were analyzed from each bird. Results: Most ruddy turnstones had pre-existing antibodies to avian influenza virus, and many were infected at the time of capture. The infectious doses for each challenge virus were similar (103·6–104·16 EID50), regardless of exposure history. All infected birds excreted similar amounts of virus and showed no clinical signs of disease or mortality. Influenza A-specific antibodies remained detectable for at least 2 months after inoculation. Conclusions: These results provide a reference for interpretation of surveillance data, modeling, and predicting the risks of avian influenza transmission and movement in these important hosts.

  19. Global Avian Influenza Surveillance in Wild Birds: A Strategy to Capture Viral Diversity

    PubMed Central

    Machalaba, Catherine C.; Elwood, Sarah E.; Forcella, Simona; Smith, Kristine M.; Hamilton, Keith; Jebara, Karim B.; Swayne, David E.; Webby, Richard J.; Mumford, Elizabeth; Mazet, Jonna A.K.; Gaidet, Nicolas; Daszak, Peter

    2015-01-01

    Wild birds play a major role in the evolution, maintenance, and spread of avian influenza viruses. However, surveillance for these viruses in wild birds is sporadic, geographically biased, and often limited to the last outbreak virus. To identify opportunities to optimize wild bird surveillance for understanding viral diversity, we reviewed responses to a World Organisation for Animal Health–administered survey, government reports to this organization, articles on Web of Knowledge, and the Influenza Research Database. At least 119 countries conducted avian influenza virus surveillance in wild birds during 2008–2013, but coordination and standardization was lacking among surveillance efforts, and most focused on limited subsets of influenza viruses. Given high financial and public health burdens of recent avian influenza outbreaks, we call for sustained, cost-effective investments in locations with high avian influenza diversity in wild birds and efforts to promote standardized sampling, testing, and reporting methods, including full-genome sequencing and sharing of isolates with the scientific community. PMID:25811221

  20. Surveillance and analysis of avian influenza viruses, Australia.

    PubMed

    Hansbro, Philip M; Warner, Simone; Tracey, John P; Arzey, K Edla; Selleck, Paul; O'Riley, Kim; Beckett, Emma L; Bunn, Chris; Kirkland, Peter D; Vijaykrishna, Dhanasekaran; Olsen, Bjorn; Hurt, Aeron C

    2010-12-01

    We investigated carriage of avian influenza viruses by wild birds in Australia, 2005-2008, to assess the risks to poultry industries and human health. We collected 21,858 (7,357 cloacal, 14,501 fecal) samples and detected 300 viruses, representing a detection rate of ≈1.4%. Rates were highest in autumn (March-May) and differed substantially between bird types, areas, and years. We typed 107 avian influenza viruses and identified 19 H5, 8 H7, and 16 H9 (40% of typed viruses). All were of low pathogenicity. These viruses formed clearly different phylogenetic clades to lineages from Eurasia or North America, suggesting the potential existence of Australian lineages. H7 viruses were similar to highly pathogenic H7 strains that caused outbreaks in poultry in Australia. Several periods of increased detection rates (numbers or subtypes of viruses) were identified. This study demonstrates the need for ongoing surveillance to detect emerging pathogenic strains and facilitate prevention of outbreaks.

  1. Surveillance and Analysis of Avian Influenza Viruses, Australia

    PubMed Central

    Warner, Simone; Tracey, John P.; Arzey, K. Edla; Selleck, Paul; O’Riley, Kim; Beckett, Emma L.; Bunn, Chris; Kirkland, Peter D.; Vijaykrishna, Dhanasekaran; Olsen, Bjorn; Hurt, Aeron C.

    2010-01-01

    We investigated carriage of avian influenza viruses by wild birds in Australia, 2005–2008, to assess the risks to poultry industries and human health. We collected 21,858 (7,357 cloacal, 14,501 fecal) samples and detected 300 viruses, representing a detection rate of ≈1.4%. Rates were highest in autumn (March–May) and differed substantially between bird types, areas, and years. We typed 107 avian influenza viruses and identified 19 H5, 8 H7, and 16 H9 (40% of typed viruses). All were of low pathogenicity. These viruses formed clearly different phylogenetic clades to lineages from Eurasia or North America, suggesting the potential existence of Australian lineages. H7 viruses were similar to highly pathogenic H7 strains that caused outbreaks in poultry in Australia. Several periods of increased detection rates (numbers or subtypes of viruses) were identified. This study demonstrates the need for ongoing surveillance to detect emerging pathogenic strains and facilitate prevention of outbreaks. PMID:21122219

  2. Overview of avian influenza DIVA test strategies.

    PubMed

    Suarez, David L

    2005-12-01

    The use of vaccination in poultry to control avian influenza has been increasing in recent years. Vaccination has been primarily with killed whole virus-adjuvanted vaccines. Proper vaccination can reduce or prevent clinical signs, reduce virus shedding in infected birds, and increase the resistance to infection. Historically, one limitation of the killed vaccines is that vaccinated birds cannot be differentiated serologically from naturally infected birds using the commonly available diagnostic tests. Therefore, surveillance for avian influenza becomes much more difficult and often results in trade restrictions because of the inability to differentiate infected from vaccinated animals (DIVA). Several different DIVA strategies have been proposed for avian influenza to overcome this limitation. The most common is the use of unvaccinated sentinels. A second approach is the use of subunit vaccines targeted to the hemagglutinin protein that allows serologic surveillance to the internal proteins. A third strategy is to vaccinate with a homologous hemagglutinin to the circulating field strain, but a heterologous neuraminidase subtype. Serologic surveillance can then be performed for the homologous NA subtype as evidence of natural infection. The fourth strategy is to measure the serologic response to the nonstructural protein 1 (NS1). The NS1 protein is produced in large quantities in infected cells, but it is not packaged in the virion. Since killed vaccines for influenza are primarily made with whole virions, a differential antibody response can be seen between naturally infected and vaccinated animals. However, poultry vaccines are not highly purified, and they contain small amounts of the NS1 protein. Although vaccinated chickens will produce low levels of antibody to the NS1 protein, virus infected chickens will produce higher levels of NS1 antibody, and the two groups can be differentiated. All four DIVA strategies have advantages and disadvantages, and further

  3. An Avian Connection as a Catalyst to the 1918-1919 Influenza Pandemic.

    PubMed

    Hollenbeck, James E

    2005-01-01

    The 1918 Influenza pandemic was one of the most virulent strains of influenza in history. This strain quickly dispatched previously held theories on influenza. World War One introduced new environmental stresses and speed of dissemination logistics never experienced by humans. In light of new phylogenic evidence the cause of this influenza outbreak is now being considered to have linkage to the avian influenza. Animals act as reservoirs for this influenza virus and research indicates the influenza virus often originates in the intestines of aquatic wildfowl. The virus is shed into the environment, which in turns infects domestic poultry, which in turn infects mammalian hosts. These animals, usually pigs, act as a transformer or converters; creating a strain that can more readily infect humans. Therefore swine can be infected with both avian and human influenza A viruses and serve as a source for infection for a number of species as the incidents of direct infection from birds to humans have been rare. Increased human habitation near poultry and swine raising facilities pose greater influenza outbreak risk. It was this combination of environmental factors that may have contributed to the greatest pandemic of recent times, and, moreover, similar conditions exist throughout Southeast Asia today.

  4. Avian influenza virus and free-ranging wild birds

    USGS Publications Warehouse

    Dierauf, Leslie A.; Karesh, W.B.; Ip, Hon S.; Gilardi, K.V.; Fischer, John R.

    2006-01-01

    Recent media and news reports and other information implicate wild birds in the spread of highly pathogenic avian influenza in Asia and Eastern Europe. Although there is little information concerning highly pathogenic avian influenza viruses in wild birds, scientists have amassed a large amount of data on low-pathogenicity avian influenza viruses during decades of research with wild birds. This knowledge can provide sound guidance to veterinarians, public health professionals, the general public, government agencies, and other entities with concerns about avian influenza.

  5. Characterization of a new avian-like influenza A virus from horses in China.

    PubMed

    Guo, Y; Wang, M; Kawaoka, Y; Gorman, O; Ito, T; Saito, T; Webster, R G

    1992-05-01

    In March 1989 a severe outbreak of respiratory disease occurred in horses in the Jilin and Heilongjiang provinces of Northeast China that caused up to 20% mortality in some herds. An influenza virus of the H3N8 subtype was isolated from the infected animals and was antigenically and molecularly distinguishable from the equine 2 (H3N8) viruses currently circulating in the world. The reference strain A/Equine/Jilin/1/89 (H3N8) was most closely related to avian H3N8 influenza viruses. Sequence comparisons of the entire hemagglutinin (HA), nucleoprotein (NP), neuraminidase (NA), matrix (M), and NS genes along with partial sequences of the three polymerase (PB1, PB2, PA) genes suggest that six of the eight gene segments (PA, HA, NP, NA, M, NS) are closely related to avian influenza viruses. Since direct sequence analysis can only provide a crude measure of relationship, phylogenetic analysis was done on the sequence information. Phylogenetic analyses of the entire HA, NP, M, and NS genes and of partial sequences of PB1, PB2, and PA indicated that these genes are of recent avian origin. The NP gene segment is closely related to the gene segment found in the newly described H14 subtype isolated from ducks in the USSR. The A/Equine/Jilin/1/89 (H3N8) influenza virus failed to replicate in ducks, but did replicate and cause disease in mice on initial inoculation and on subsequent passaging caused 100% mortality. In ferrets, the virus caused severe influenza symptoms. A second outbreak of influenza in horses in Northeast China occurred in April 1990 in the Heilongjiang province with 48% morbidity and no mortality. The viruses isolated from this outbreak were antigenically indistinguishable from those in the 1989 outbreak and it is probable that the reduced mortality was due to the immune status of of the horses in the region. No influenza was detected in horses in Northern China in the spring, summer, or fall of 1991 and no influenza has been detected in horses in adjacent

  6. North American Plan for Avian and Pandemic Influenza

    DTIC Science & Technology

    2007-08-01

    human influenza virus. f this does not hap- pen with the currently circulating h5N1 viruses , history suggests that another novel influenza virus will...material between human and avian influenza viruses when they simultaneously infect the same swine or human host. This re-assortment could result in...pathogenic (hPA) h5N1 avian influenza virus, which re-emerged in Asia in late 2003, has already spread to Europe, the Middle East and Africa

  7. An inhibitory activity in human cells restricts the function of an avian-like influenza virus polymerase.

    PubMed

    Mehle, Andrew; Doudna, Jennifer A

    2008-08-14

    Transmission of avian influenza virus into human populations has the potential to cause pandemic outbreaks. A major determinant of species tropism is the identity of amino acid 627 in the PB2 subunit of the heterotrimeric influenza polymerase; glutamic acid predominates in avian PB2, whereas lysine occupies this position in human isolates. We show that a dominant inhibitory activity in human cells potently and selectively restricts the function of polymerases containing an avian-like PB2 with glutamic acid at residue 627. Restricted polymerases fail to assemble into ribonucleoprotein complexes, resulting in decreased genome transcription, replication, and virus production without any significant effect on relative viral infectivity. Understanding the molecular basis of this species-specific restriction should provide strategies to prevent and treat avian influenza outbreaks in humans.

  8. The live bird market system and low-pathogenic avian influenza prevention in southern California.

    PubMed

    Yee, Karen S; Carpenter, Tim E; Mize, Sarah; Cardona, Carol J

    2008-06-01

    Although live bird markets (LBMs) have been associated with outbreaks of avian influenza (AI), there are some LBM systems where AI outbreaks are extremely rare events. The California LBMs have not had any detected avian influenza viruses (AIVs) since December 2005. Responses to a detailed questionnaire on the practices and characteristics of the participants in the California low-pathogenic (LP) AI control program have been described to characterize possible reasons for the lack of AI outbreaks in LBMs. Compliance with an LPAI control program that contains active surveillance, prevention, and rapid response measures by those involved in the LBM system, rendering services to dispose of carcasses, no wholesalers, and few third-party bird deliveries was associated with the lack of LPAIV circulating in the Southern California LBM system.

  9. Inhibiting avian influenza virus shedding using a novel RNAi antiviral vector technology: proof of concept in an avian cell model.

    PubMed

    Linke, Lyndsey M; Wilusz, Jeffrey; Pabilonia, Kristy L; Fruehauf, Johannes; Magnuson, Roberta; Olea-Popelka, Francisco; Triantis, Joni; Landolt, Gabriele; Salman, Mo

    2016-03-01

    Influenza A viruses pose significant health and economic threats to humans and animals. Outbreaks of avian influenza virus (AIV) are a liability to the poultry industry and increase the risk for transmission to humans. There are limitations to using the AIV vaccine in poultry, creating barriers to controlling outbreaks and a need for alternative effective control measures. Application of RNA interference (RNAi) techniques hold potential; however, the delivery of RNAi-mediating agents is a well-known obstacle to harnessing its clinical application. We introduce a novel antiviral approach using bacterial vectors that target avian mucosal epithelial cells and deliver (small interfering RNA) siRNAs against two AIV genes, nucleoprotein (NP) and polymerase acidic protein (PA). Using a red fluorescent reporter, we first demonstrated vector delivery and intracellular expression in avian epithelial cells. Subsequently, we demonstrated significant reductions in AIV shedding when applying these anti-AIV vectors prophylactically. These antiviral vectors provided up to a 10,000-fold reduction in viral titers shed, demonstrating in vitro proof-of-concept for using these novel anti-AIV vectors to inhibit AIV shedding. Our results indicate this siRNA vector technology could represent a scalable and clinically applicable antiviral technology for avian and human influenza and a prototype for RNAi-based vectors against other viruses.

  10. Transmission of Eurasian avian H2 influenza virus to shorebirds in North America.

    PubMed

    Makarova, N V; Kaverin, N V; Krauss, S; Senne, D; Webster, R G

    1999-12-01

    Influenza A virus of the H2 subtype caused a serious pandemic in 1957 and may cause similar outbreaks in the future. To assess the evolution and the antigenic relationships of avian influenza H2 viruses, we sequenced the haemagglutinin (HA) genes of H2 isolates from shorebirds, ducks and poultry in North America and derived a phylogenetic tree to establish their interrelationships. This analysis confirmed the divergence of H2 HA into two geographical lineages, American and Eurasian. One group of viruses isolated from shorebirds in North America had HA belonging to the Eurasian lineage, indicating an interregional transmission of the H2 gene. Characterization of HA with a monoclonal antibody panel revealed that the antigenicity of the Delaware strains differed from the other avian strains analysed. The data emphasizes the importance of avian influenza surveillance.

  11. USGS role and response to highly pathogenic avian influenza

    USGS Publications Warehouse

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  12. When animal viruses attack: SARS and avian influenza.

    PubMed

    Lee, Paul J; Krilov, Leonard R

    2005-01-01

    SARS and avian influenza have many common features. They both arose in Asia and originated from animal viruses. They both have the potential to become pandemics because human beings lack antibodies to the animal-derived antigens present on the viral surface and rapid dissemination can occur from the relative ease and availability of high speed and far-reaching transportation methods. Pediatricians, in particular, should remain alert about the possibility of pandemic illnesses in their patients. Annual rates of influenza in children may be 1.5 to 3 times those in the adult population, and infection rates during a community epidemic may exceed 40% in preschool-aged children and 30% in school-aged children. Infected children also play a central role in disseminating influenza, as they are the major point of entry for the virus into the household, from which adults spread disease into the community. Of course, children younger than 24 months also are at high risk for complications from influenza. A 1999 Centers for Disease Control and Prevention projection of an influenza pandemic in the US paints a grim picture: 89,000 to 207,000 deaths, 314,000 to 734,000 hospitalizations, 18 million to 42 million outpatient visits, and 20 million to 47 million additional illnesses, at a cost to society of at least dollars 71.3 billion to dollars 166.5 billion. High-risk patients (15% of the population) would account for approximately 84% of all deaths. Although SARS has been kind to the pediatric population so far, there are no guarantees that future outbreaks would be as sparing. To aid readers in remaining up-to-date with SARS and avian influenza, some useful websites are listed in the Sidebar. Two masters of suspense, Alfred Hitchcock and Stephen King, may have been closer to the truth than they ever would have believed. Both birds and a super flu could bring about the end of civilization as we know it. But all is not lost--to paraphrase Thomas Jefferson, the price of health is

  13. Serologic and virologic surveillance of avian influenza in Nigeria, 2006-7.

    PubMed

    Joannis, T M; Meseko, C A; Oladokun, A T; Ularamu, H G; Egbuji, A N; Solomon, P; Nyam, D C; Gado, D A; Luka, P; Ogedengbe, M E; Yakubu, M B; Tyem, A D; Akinyede, O; Shittu, A I; Sulaiman, L K; Owolodun, O A; Olawuyi, A K; Obishakin, E T; Fasina, F O

    2008-10-16

    Since January 2006, H5N1 avian influenza has affected Nigeria's poultry population causing enormous loss of resources. The current circulating virus is a potential candidate for pandemic influenza which may severely affect the human and animal population worldwide especially in the resource-poor countries. In this study, we report on our field and laboratory surveillance efforts in Nigeria. A total of 1,821 tissue samples, 8,638 tracheal swabs, 7,976 cloacal swabs and 7,328 avian sera were analysed over a period of two years, with 312 positive results [corrected] We recovered 299 isolates of highly pathogenic avian influenza virus H5N1 mainly from the diagnostic samples of poultry kept in backyard, small scale and free range farms. This finding emphasised the role played by these farming systems in the dissemination of avian influenza in Nigeria and highlights the need for a continued surveillance in humans since human-animal interaction is a key feature in Africa. Furthermore, there is a need for the strengthening of border controls. Since October 2007, there has been no reported and confirmed outbreak of avian influenza in Nigeria.

  14. Single PA mutation as a high yield determinant of avian influenza vaccines

    PubMed Central

    Lee, Ilseob; Il Kim, Jin; Park, Sehee; Bae, Joon-Yong; Yoo, Kirim; Yun, Soo-Hyeon; Lee, Joo-Yeon; Kim, Kisoon; Kang, Chun; Park, Man-Seong

    2017-01-01

    Human infection with an avian influenza virus persists. To prepare for a potential outbreak of avian influenza, we constructed a candidate vaccine virus (CVV) containing hemagglutinin (HA) and neuraminidase (NA) genes of a H5N1 virus and evaluated its antigenic stability after serial passaging in embryonated chicken eggs. The passaged CVV harbored the four amino acid mutations (R136K in PB2; E31K in PA; A172T in HA; and R80Q in M2) without changing its antigenicity, compared with the parental CVV. Notably, the passaged CVV exhibited much greater replication property both in eggs and in Madin-Darby canine kidney and Vero cells. Of the four mutations, the PA E31K showed the greatest effect on the replication property of reverse genetically-rescued viruses. In a further luciferase reporter, mini-replicon assay, the PA mutation appeared to affect the replication property by increasing viral polymerase activity. When applied to different avian influenza CVVs (H7N9 and H9N2 subtypes), the PA E31K mutation resulted in the increases of viral replication in the Vero cell again. Taken all together, our results suggest the PA E31K mutation as a single, substantial growth determinant of avian influenza CVVs and for the establishment of a high-yield avian influenza vaccine backbone. PMID:28084423

  15. Avian influenza in Indonesia: Observations of disease detection in poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza, subtype H5N1, also known as highly pathogenic notifiable avian influenza (HPNAI), has spread throughout Indonesia since 2003. As of June 2007 there have been a total of 100 documented human cases in Indonesia, 80 of which have been fatal. Although efforts have be...

  16. Migratory bird avian influenza sampling; Yukon Kuskokwim Delta, Alaska, 2015

    USGS Publications Warehouse

    Ramey, Andy M.

    2016-01-01

    Data set containing avian influenza sampling information for spring and summer waterbirds on the Yukon Kuskokwim Delta, 2015. Data contains sample ID, species common name, age and sex, collection data and location, and laboratory specific data used to identify presence and absence of avian influenza viruses.

  17. Practical aspects of vaccination of poultry against avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although little has changed in vaccine technology for avian influenza virus (AIV) in the past 20 years, the approach to vaccination of poultry (chickens, turkeys and ducks) for avian influenza has evolved as highly pathogenic (HP) AIV has become endemic in several regions of the world. Vaccination f...

  18. Experimental vaccinations for avian influenza virus including DIVA approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) is a viral disease of poultry that remains an economic threat to commercial poultry throughout the world by negatively impacting animal health and trade. Strategies to control avian influenza (AI) virus are developed to prevent, manage or eradicate the virus from the country, re...

  19. Avian influenza in birds and mammals.

    PubMed

    Cardona, Carol J; Xing, Zheng; Sandrock, Christian E; Davis, Cristina E

    2009-07-01

    The disease syndromes caused by avian influenza viruses are highly variable depending on the host species infected, its susceptibility and response to infection and the virulence of the infecting viral strain. Although avian influenza viruses have a broad host range in general, it is rare for an individual strain or subtype to infect more than one species. The H5N1 highly pathogenic avian influenza virus (HPAIV) lineages of viruses that descended from A/goose/Guandong/96 (H5N1 HPAIV) are unusual in the diversity of species they have infected worldwide. Although the species affected by H5N1 HPAI in the field and those that have been experimentally studied are diverse, their associated disease syndromes are remarkably similar across species. In some species, multi-organ failure and death are rapid and no signs of the disease are observed. Most prominently in this category are chickens and other avian species of the order Galliformes. In other species, neurologic signs develop resulting in the death of the host. This is what has been reported in domestic cats (Carnivora), geese (Anseriformes), ratites (Struthioniformes), pigeons inoculated with high doses (Columbiformes) and ducks infected with H5N1 HPAIV isolated since 2002 (Anseriformes). In some other species, the disease is more prolonged and although multi-organ failure and death are the eventual outcomes, the signs of disease are more extensive. Predominantly, these species include humans (Primates) and the laboratory models of human disease, the ferret (Carnivora), mouse (Rodentia) and cynamologous macaques (Primates). Finally, some species are more resistant to infection with H5N1 HPAIV and show few or no signs of disease. These species include pigeons in some studies (Columbiformes), ducks inoculated with pre-2002 isolates (Anseriformes), and pigs (Artiodactyla).

  20. Structural basis for preferential avian receptor binding by the human-infecting H10N8 avian influenza virus.

    PubMed

    Wang, Min; Zhang, Wei; Qi, Jianxun; Wang, Fei; Zhou, Jianfang; Bi, Yuhai; Wu, Ying; Sun, Honglei; Liu, Jinhua; Huang, Chaobin; Li, Xiangdong; Yan, Jinghua; Shu, Yuelong; Shi, Yi; Gao, George F

    2015-01-09

    Since December 2013, at least three cases of human infections with H10N8 avian influenza virus have been reported in China, two of them being fatal. To investigate the epidemic potential of H10N8 viruses, we examined the receptor binding property of the first human isolate, A/Jiangxi-Donghu/346/2013 (JD-H10N8), and determined the structures of its haemagglutinin (HA) in complex with both avian and human receptor analogues. Our results suggest that JD-H10N8 preferentially binds the avian receptor and that residue R137-localized within the receptor-binding site of HA-plays a key role in this preferential binding. Compared with the H7N9 avian influenza viruses, JD-H10N8 did not exhibit the enhanced binding to human receptors observed with the prevalent H7N9 virus isolate Anhui-1, but resembled the receptor binding activity of the early-outbreak H7N9 isolate (Shanghai-1). We conclude that the H10N8 virus is a typical avian influenza virus.

  1. Multiple reassortment events among highly pathogenic avian influenza A(H5N1) viruses detected in Bangladesh.

    PubMed

    Gerloff, Nancy A; Khan, Salah Uddin; Balish, Amanda; Shanta, Ireen S; Simpson, Natosha; Berman, Lashondra; Haider, Najmul; Poh, Mee Kian; Islam, Ausraful; Gurley, Emily; Hasnat, Md Abdul; Dey, T; Shu, Bo; Emery, Shannon; Lindstrom, Stephen; Haque, Ainul; Klimov, Alexander; Villanueva, Julie; Rahman, Mahmudur; Azziz-Baumgartner, Eduardo; Ziaur Rahman, Md; Luby, Stephen P; Zeidner, Nord; Donis, Ruben O; Sturm-Ramirez, Katharine; Davis, C Todd

    2014-02-01

    In Bangladesh, little is known about the genomic composition and antigenicity of highly pathogenic avian influenza A(H5N1) viruses, their geographic distribution, temporal patterns, or gene flow within the avian host population. Forty highly pathogenic avian influenza A(H5N1) viruses isolated from humans and poultry in Bangladesh between 2008 and 2012 were analyzed by full genome sequencing and antigenic characterization. The analysis included viruses collected from avian hosts and environmental sampling in live bird markets, backyard poultry flocks, outbreak investigations in wild birds or poultry and from three human cases. Phylogenetic analysis indicated that the ancestors of these viruses reassorted (1) with other gene lineages of the same clade, (2) between different clades and (3) with low pathogenicity avian influenza A virus subtypes. Bayesian estimates of the time of most recent common ancestry, combined with geographic information, provided evidence of probable routes and timelines of virus spread into and out of Bangladesh.

  2. Where do avian influenza viruses meet in the Americas?

    PubMed

    Gonzalez-Reicheabc, Ana S; Perez, Daniel R

    2012-12-01

    Avian influenza virus (AIV) surveillance has been scarce in most countries of Latin America and the Caribbean. Historically, avian influenza surveillance efforts in Central and South America have been localized in places where outbreaks in poultry have occurred. Since the emergence of the H5N1 subtype in Asia, active surveillance in wild birds has increased in a number of Latin American countries, including Barbados, Guatemala, Argentina, Brazil, Mexico, and Peru. A broad diversity of virus subtypes has been detected; however, nucleotide sequence data are still limited in comparison to other regions of the world. Here we review the current knowledge of AIV in Latin America, including phylogenetic relationships among publicly available viral genomes. Overall AIV reports are sparse across the region and the cocirculation of two distinct genetic lineages is puzzling. Phylogenetic analysis reflects bias in time and location where sampling has been conducted. Increased surveillance is needed to address the major determinants for AIV ecology, evolution, and transmission in the region.

  3. Economic epidemiology of avian influenza on smallholder poultry farms☆

    PubMed Central

    Boni, Maciej F.; Galvani, Alison P.; Wickelgren, Abraham L.; Malani, Anup

    2013-01-01

    Highly pathogenic avian influenza (HPAI) is often controlled through culling of poultry. Compensating farmers for culled chickens or ducks facilitates effective culling and control of HPAI. However, ensuing price shifts can create incentives that alter the disease dynamics of HPAI. Farmers control certain aspects of the dynamics by setting a farm size, implementing infection control measures, and determining the age at which poultry are sent to market. Their decisions can be influenced by the market price of poultry which can, in turn, be set by policy makers during an HPAI outbreak. Here, we integrate these economic considerations into an epidemiological model in which epidemiological parameters are determined by an outside agent (the farmer) to maximize profit from poultry sales. Our model exhibits a diversity of behaviors which are sensitive to (i) the ability to identify infected poultry, (ii) the average price of infected poultry, (iii) the basic reproductive number of avian influenza, (iv) the effect of culling on the market price of poultry, (v) the effect of market price on farm size, and (vi) the effect of poultry density on disease transmission. We find that under certain market and epidemiological conditions, culling can increase farm size and the total number of HPAI infections. Our model helps to inform the optimization of public health outcomes that best weigh the balance between public health risk and beneficial economic outcomes for farmers. PMID:24161559

  4. Economic epidemiology of avian influenza on smallholder poultry farms.

    PubMed

    Boni, Maciej F; Galvani, Alison P; Wickelgren, Abraham L; Malani, Anup

    2013-12-01

    Highly pathogenic avian influenza (HPAI) is often controlled through culling of poultry. Compensating farmers for culled chickens or ducks facilitates effective culling and control of HPAI. However, ensuing price shifts can create incentives that alter the disease dynamics of HPAI. Farmers control certain aspects of the dynamics by setting a farm size, implementing infection control measures, and determining the age at which poultry are sent to market. Their decisions can be influenced by the market price of poultry which can, in turn, be set by policy makers during an HPAI outbreak. Here, we integrate these economic considerations into an epidemiological model in which epidemiological parameters are determined by an outside agent (the farmer) to maximize profit from poultry sales. Our model exhibits a diversity of behaviors which are sensitive to (i) the ability to identify infected poultry, (ii) the average price of infected poultry, (iii) the basic reproductive number of avian influenza, (iv) the effect of culling on the market price of poultry, (v) the effect of market price on farm size, and (vi) the effect of poultry density on disease transmission. We find that under certain market and epidemiological conditions, culling can increase farm size and the total number of HPAI infections. Our model helps to inform the optimization of public health outcomes that best weigh the balance between public health risk and beneficial economic outcomes for farmers.

  5. Avian influenza: public health and food safety concerns.

    PubMed

    Chmielewski, Revis; Swayne, David E

    2011-01-01

    Avian influenza (AI) is a disease or asymptomatic infection caused by Influenzavirus A. AI viruses are species specific and rarely cross the species barrier. However, subtypes H5, H7, and H9 have caused sporadic infections in humans, mostly as a result of direct contact with infected birds. H5N1 high pathogenicity avian influenza (HPAI) virus causes a rapid onset of severe viral pneumonia and is highly fatal (60% mortality). Outbreaks of AI could have a severe economic and social impact on the poultry industry, trade, and public health. Surveillance data revealed that H5N1 HPAI has been detected in imported frozen duck meat from Asia, and on the surface and in contaminated eggs. However, there is no direct evidence that AI viruses can be transmitted to humans via the consumption of contaminated poultry products. Implementing management practices that incorporate biosecurity principles, personal hygiene, and cleaning and disinfection protocols, as well as cooking and processing standards, are effective means of controlling the spread of the AI viruses.

  6. Practical aspects of vaccination of poultry against avian influenza virus.

    PubMed

    Spackman, Erica; Pantin-Jackwood, Mary J

    2014-12-01

    Although little has changed in vaccine technology for avian influenza virus (AIV) in the past 20 years, the approach to vaccination of poultry (chickens, turkeys and ducks) for avian influenza has evolved as highly pathogenic AIV has become endemic in several regions of the world. Vaccination for low pathogenicity AIV is also becoming routine in regions where there is a high level of field challenge. In contrast, some countries will not use vaccination at all and some will only use it on an emergency basis during eradication efforts (i.e. stamping-out). There are pros and cons to each approach and, since every outbreak situation is different, no one method will work equally well in all situations. Numerous practical aspects must be considered when developing an AIV control program with vaccination as a component, such as: (1) the goals of vaccination must be defined; (2) the population to be vaccinated must be clearly identified; (3) there must be a plan to obtain and administer good quality vaccine in a timely manner and to achieve adequate coverage with the available resources; (4) risk factors for vaccine failure should be mitigated as much as possible; and, most importantly, (5) biosecurity must be maintained as much as possible, if not enhanced, during the vaccination period.

  7. New USDA licensed avian influenza vaccine (rHVT-AI) for protection against H5 avian influenza and usage discussion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, a new avian influenza vaccine was licensed by USDA for use in the United States for protection of commercial poultry. The vaccine is a recombinant herpes virus of turkeys expressing the hemagglutinin gene of an H5 subtype avian influenza virus belonging to the 2.2 clade of the H5N1 highly ...

  8. Healthcare Information Systems to Assess Influenza Outbreaks

    PubMed Central

    Figar, S.; Aliperti, V.; Salazar, E.; Otero, C.; Schpilberg, M.; Taliercio, V.; Otero, P.; de Quirós, F. González Bernaldo

    2011-01-01

    Objective To determine whether a private HIS could have detected the influenza epidemic outbreaks earlier through changes in morbidity and mortality patterns. Methods Data Source included a health information system (HIS) from an academic tertiary health care center integrating administrative and clinical applications. It used a local interface terminology server which provides support through data autocoding of clinical documentation. Specific data subsets were created to compare the burden of influenza during the epidemiological week (EW) 21 to 26 for years 2007 to 2009 among 150,000 Health Maintenance Organization members in Argentina. The threshold for identifying an epidemic was considered met when the weekly influenza-like illness (ILI) rate exceeded 200 per 100,000 visits. Case fatality rates and mortality rates of severe acute respiratory infection (SARI) from 2007 to 2009 were retrospectively compared. Case fatality rates and mortality rates for A/H1N1 influenza 2009 also were estimated. Results The HIS detected the outbreak in EW 23 while the government Ministry of Health (MoH) gave a national epidemic alert during EW 25. The number of visits for ILI increased more than fourfold when comparing 2009 to the period 2007-2008. The SARI mortality rate in 2009 was higher than in 2008 (RR 2.8; 95%CI 1.18-6.63) and similar to that of 2007 (RR 1.05; 95%CI 0.56-1.49). 2009 was the first year with mortalities younger than 65 years attributable to SARI. The estimated A/H1N1 case fatality rate for SARI was 6.2% (95%CI 2.5 to 15.5) and A/H1N1 mortality rate was 6 per 100,000 (95%CI 0 to 11.6). Conclusion Our HIS detected the outbreak two weeks before than the MoH gave a national alert. The information system was useful in assessing morbidity and mortality during the 2009 influenza epidemic H1N1 outbreak suggesting that with a private-public integration a more real-time outbreak and disease surveillance system could be implemented. PMID:23616861

  9. Avian influenza A H5N1 virus.

    PubMed

    Loeffelholz, Michael J

    2010-03-01

    Although influenza A viruses of avian origin have long been responsible for influenza pandemics, including the "Spanish flu" pandemic of 1918, human infections caused by avian subtypes of influenza A virus, most notably H5N1, have emerged since the 1990s (H5N1 in 1997; H9N2 in 1999; and H7N7 in 2003). The wide geographic distribution of influenza A H5N1 in avian species, and the number and severity of human infections are unprecedented. Together with the ongoing genetic evolution of this virus, these features make influenza A H5N1 a likely candidate for a future influenza pandemic. This article discusses the epidemiology, pathogenesis, and diagnosis of human infections caused by influenza A H5N1 virus.

  10. Free-grazing ducks and highly pathogenic avian influenza, Thailand.

    PubMed

    Gilbert, Marius; Chaitaweesub, Prasit; Parakamawongsa, Tippawon; Premashthira, Sith; Tiensin, Thanawat; Kalpravidh, Wantanee; Wagner, Hans; Slingenbergh, Jan

    2006-02-01

    Thailand has recently had 3 epidemic waves of highly pathogenic avian influenza (HPAI); virus was again detected in July 2005. Risk factors need to be identified to better understand disease ecology and assist HPAI surveillance and detection. This study analyzed the spatial distribution of HPAI outbreaks in relation to poultry, land use, and other anthropogenic variables from the start of the second epidemic wave (July 2004-May 2005). Results demonstrate a strong association between H5N1 virus in Thailand and abundance of free-grazing ducks and, to a lesser extent, native chickens, cocks, wetlands, and humans. Wetlands used for double-crop rice production, where free-grazing duck feed year round in rice paddies, appear to be a critical factor in HPAI persistence and spread. This finding could be important for other duck-producing regions in eastern and southeastern Asian countries affected by HPAI.

  11. Highly Pathogenic Avian Influenza H5N1, Thailand, 2004

    PubMed Central

    Chaitaweesub, Prasit; Songserm, Thaweesak; Chaisingh, Arunee; Hoonsuwan, Wirongrong; Buranathai, Chantanee; Parakamawongsa, Tippawon; Premashthira, Sith; Amonsin, Alongkorn; Gilbert, Marius; Nielen, Mirjam; Stegeman, Arjan

    2005-01-01

    In January 2004, highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first confirmed in poultry and humans in Thailand. Control measures, e.g., culling poultry flocks, restricting poultry movement, and improving hygiene, were implemented. Poultry populations in 1,417 villages in 60 of 76 provinces were affected in 2004. A total of 83% of infected flocks confirmed by laboratories were backyard chickens (56%) or ducks (27%). Outbreaks were concentrated in the Central, the southern part of the Northern, and Eastern Regions of Thailand, which are wetlands, water reservoirs, and dense poultry areas. More than 62 million birds were either killed by HPAI viruses or culled. H5N1 virus from poultry caused 17 human cases and 12 deaths in Thailand; a number of domestic cats, captive tigers, and leopards also died of the H5N1 virus. In 2005, the epidemic is ongoing in Thailand. PMID:16318716

  12. Prevention and control of avian influenza in Singapore.

    PubMed

    Leong, Hon Keong; Goh, Cheryl S; Chew, Siang Thai; Lim, Chee Wee; Lin, Yueh Nuo; Chang, Siow Foong; Yap, Him Hoo; Chua, Sin Bin

    2008-06-01

    The highly pathogenic avian influenza (HPAI) H5N1 virus was first detected in 1996 in Guangdong, China. Since 2003, H5N1 outbreaks have been reported in parts of Asia, Europe, the Middle East, and Africa. It is currently entrenched among poultry in parts of Asia and poses a major challenge to animal and human health. Singapore is free from HPAI. Given Singapore's need to import food, the Agri-Food and Veterinary Authority (AVA) has adopted a pro-active risk management system to prevent the introduction of HPAI. AVA's approach maybe described as a multi-layered control strategy for the prevention and control of HPAI. The strategy includes control measures at source, border control measures, local control measures and emergency preparedness.

  13. Bovine and human-derived passive immunization could help slow a future avian influenza pandemic.

    PubMed

    Alisky, Joseph

    2009-01-01

    An epidemic of human transmitted avian influenza could have casualties on a scale seen in the great Spanish influenza pandemic of 1918. This paper proposes that should such occur before effective vaccines and antiviral drugs are available, the outbreak could be significantly slowed by consumption of raw milk produced by herds of pathogen-free lactating cows intranasally inoculated with heat-sterilized sputa pooled from avian influenza patients, supplemented by parenteral serum immune globulin from the same cows. Efficiency of bovine antibody production could be enhanced using cholera toxin subunit b, and milk production could be rapidly accelerated using recombinant bovine somatotropin hormone. In this way, it would be possible to quickly create and distribute large quantities of milk-based and serum-based passive immune globulin active against the strains of avian influenza present in a particular geographic area and gain time for production of human convalescent plasma and other public health measures. This novel approach might also have utility for other serious respiratory infectious diseases, including non-avian influenza, SARS, hantavirus, respiratory syncytial virus, antibiotic-resistant Streptococcus pneumoniae and pneumonia-causing Staphylococcus aureus.

  14. Complete Genome Sequence of Influenza Virus H9N2 Associated with a Fatal Outbreak among Chickens in Dubai.

    PubMed

    Lau, Siu-Ying; Joseph, Sunitha; Chan, Kwok-Hung; Chen, Honglin; Patteril, Nissy Annie Gerogy; Elizabeth, Shyna K; Muhammed, Rubeena; Baskar, Vijay; Lau, Susanna K P; Kinne, Joerg; Wernery, Ulrich; Woo, Patrick C Y

    2016-08-18

    We report the complete genome sequence of influenza virus H9N2 associated with a fatal outbreak among chickens in Dubai. All segments are clustered with avian H9N2 viruses circulating in the Middle East but distinct from those in southeast Asia. It is not a reassortant virus or transmitted from other regions.

  15. Persistence of Pasteurella multocida in wetlands following avian cholera outbreaks

    USGS Publications Warehouse

    Blanchong, Julie A.; Samuel, M.D.; Goldberg, D.R.; Shadduck, D.J.; Lehr, M.A.

    2006-01-01

    Avian cholera, caused by Pasteurella multocida, affects waterbirds across North America and occurs worldwide among various avian species. Once an epizootic begins, contamination of the wetland environment likely facilitates the transmission of P. multocida to susceptible birds. To evaluate the ability of P. multocida serotype-1, the most common serotype associated with avian cholera in waterfowl in western and central North America, to persist in wetlands and to identify environmental factors associated with its persistence, we collected water and sediment samples from 23 wetlands during winters and springs of 1996a??99. These samples were collected during avian cholera outbreaks and for up to 13 wk following initial sampling. We recovered P. multocida from six wetlands that were sampled following the initial outbreaks, but no P. multocida was isolated later than 7 wk after the initial outbreak sampling. We found no significant relationship between the probability of recovery of P. multocida during resampling and the abundance of the bacterium recovered during initial sampling, the substrate from which isolates were collected, isolate virulence, or water quality conditions previously suggested to be related to the abundance or survival of P. multocida. Our results indicate that wetlands are unlikely to serve as a long-term reservoir for P. multocida because the bacterium does not persist in wetlands for long time periods following avian cholera outbreaks.

  16. Predicting the Lay Preventive Strategies in Response to Avian Influenza from Perceptions of the Threat

    PubMed Central

    Raude, Jocelyn; Setbon, Michel

    2011-01-01

    Background The identification of patterns of behaviors that lay people would engage in to protect themselves from the risk of infection in the case of avian influenza outbreak, as well as the lay perceptions of the threat that underlie these risk reduction strategies. Methodology/Principal Findings A population-based survey (N = 1003) was conducted in 2008 to understand and describe how the French public might respond to a possible outbreak. Factor analyses highlighted three main categories of risk reduction strategies consisting of food quality assurance, food avoidance, and animal avoidance. In combination with the fear of contracting avian influenza, mental representations associated with the manifestation and/or transmission of the disease were found to significantly and systematically shape the behavioral responses to the perceived threat. Conclusions/Significance This survey provides insight into the nature and predictors of the protective patterns that might be expected from the general public during a novel domestic outbreak of avian influenza. PMID:21949799

  17. Efficacy of commercial vaccines in chickens and ducks against H5N1 highly pathogenic avian influenza viruses from Vietnam

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic (HP) H5N1 avian influenza (AI) viruses continue to circulate in Asia and have spread to other regions of the world. Though attempts at eradication of the viruses during various outbreaks have been successful for short periods of time, new strains of H5N1 viruses continue to emerge...

  18. (Highly pathogenic) avian influenza as a zoonotic agent.

    PubMed

    Kalthoff, Donata; Globig, Anja; Beer, Martin

    2010-01-27

    Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence by mutation after transmission and adaptation to susceptible gallinaceous poultry. Those so-called highly pathogenic avian influenza viruses (HPAIV) then cause mass die-offs in susceptible birds and lead to tremendous economical losses when poultry is affected. Besides a number of avian influenza virus subtypes that have sporadically infected mammals, the HPAIV H5N1 Asia shows strong zoonotic characteristics and it was transmitted from birds to different mammalian species including humans. Theoretically, pandemic viruses might derive directly from avian influenza viruses or arise after genetic reassortment between viruses of avian and mammalian origin. So far, HPAIV H5N1 already meets two conditions for a pandemic virus: as a new subtype it has been hitherto unseen in the human population and it has infected at least 438 people, and caused severe illness and high lethality in 262 humans to date (August 2009). The acquisition of efficient human-to-human transmission would complete the emergence of a new pandemic virus. Therefore, fighting H5N1 at its source is the prerequisite to reduce pandemic risks posed by this virus. Other influenza viruses regarded as pandemic candidates derive from subtypes H2, H7, and H9 all of which have infected humans in the past. Here, we will give a comprehensive overview on avian influenza viruses in concern to their zoonotic potential.

  19. Global concern regarding the fifth case of human infection with avian influenza A (H7N9) virus in China.

    PubMed

    Shen, Yinzhong; Lu, Hongzhou

    2017-02-28

    Since the first case of human infection with the avian influenza A (H7N9) virus was identified in 2013, five seasonal outbreaks have occurred in China. The fifth outbreak started earlier than usual. A sudden increase in cases of human infection with the avian influenza A (H7N9) virus has been reported in China since September 2016, and the number of cases reported this season is exceeding that reported in previous seasons. This increase in the number of new cases of H7N9 infection has caused domestic and international concern. This paper summarizes the current prevalence of H7N9 in China and it also discusses measures that China has taken to control those outbreaks. This paper also describes steps China must take in the future. This paper can serve as a reference for prevention and control of H7N9 outbreaks around the world.

  20. Genetic evolution of H5 highly pathogenic avian influenza virus in domestic poultry in Vietnam between 2011 and 2013.

    PubMed

    Lee, Eun-Kyoung; Kang, Hyun-Mi; Kim, Kwang-Il; Choi, Jun-Gu; To, Thanh Long; Nguyen, Tho Dang; Song, Byung-Min; Jeong, Jipseol; Choi, Kang-Seuk; Kim, Ji-Ye; Lee, Hee-Soo; Lee, Youn-Jeong; Kim, Jae-Hong

    2015-04-01

    In spite of highly pathogenic avian influenza H5N1 vaccination campaigns for domestic poultry, H5N1 viruses continue to circulate in Vietnam. To estimate the prevalence of avian influenza virus in Vietnam, surveillance was conducted between November 2011 and February 2013. Genetic analysis of 312 highly pathogenic avian influenza H5 viruses isolated from poultry in Vietnam was conducted and possible genetic relationships with strains from neighboring countries were investigated. As previously reported, phylogenetic analysis of the avian influenza virus revealed two H5N1 HPAI clades that were circulating in Vietnam. Clade 1.1, related to Cambodian strains, was predominant in the southern provinces, while clade 2.3.2.1 viruses were predominant in the northern and central provinces. Sequence analysis revealed evidence of active genetic evolution. In the gene constellation of clade 2.3.2.1, genotypes A, B, and B(II) existed during the 2011/2012 winter season. In June 2012, new genotype C emerged by reassortment between genotype A and genotype B(II), and this genotype was predominant in 2013 in the northern and central provinces. Interestingly, enzootic Vietnamese clade 2.3.2.1C H5 virus subsequently reassorted with N2, which originated from wild birds, to generate H5N2 highly pathogenic avian influenza, which was isolated from duck in the northeast region. This investigation indicated that H5N1 outbreaks persist in Vietnam and cause genetic reassortment with circulating viruses. It is necessary to strengthen active influenza surveillance to eradicate highly pathogenic avian influenza viruses and sever the link between highly pathogenic avian influenza and other circulating influenza viruses.

  1. Preferential recognition of avian-like receptors in human influenza A H7N9 viruses.

    PubMed

    Xu, Rui; de Vries, Robert P; Zhu, Xueyong; Nycholat, Corwin M; McBride, Ryan; Yu, Wenli; Paulson, James C; Wilson, Ian A

    2013-12-06

    The 2013 outbreak of avian-origin H7N9 influenza in eastern China has raised concerns about its ability to transmit in the human population. The hemagglutinin glycoprotein of most human H7N9 viruses carries Leu(226), a residue linked to adaptation of H2N2 and H3N2 pandemic viruses to human receptors. However, glycan array analysis of the H7 hemagglutinin reveals negligible binding to humanlike α2-6-linked receptors and strong preference for a subset of avian-like α2-3-linked glycans recognized by all avian H7 viruses. Crystal structures of H7N9 hemagglutinin and six hemagglutinin-glycan complexes have elucidated the structural basis for preferential recognition of avian-like receptors. These findings suggest that the current human H7N9 viruses are poorly adapted for efficient human-to-human transmission.

  2. Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections.

    PubMed

    Zou, Zhen; Yan, Yiwu; Shu, Yuelong; Gao, Rongbao; Sun, Yang; Li, Xiao; Ju, Xiangwu; Liang, Zhu; Liu, Qiang; Zhao, Yan; Guo, Feng; Bai, Tian; Han, Zongsheng; Zhu, Jindong; Zhou, Huandi; Huang, Fengming; Li, Chang; Lu, Huijun; Li, Ning; Li, Dangsheng; Jin, Ningyi; Penninger, Josef M; Jiang, Chengyu

    2014-05-06

    The potential for avian influenza H5N1 outbreaks has increased in recent years. Thus, it is paramount to develop novel strategies to alleviate death rates. Here we show that avian influenza A H5N1-infected patients exhibit markedly increased serum levels of angiotensin II. High serum levels of angiotensin II appear to be linked to the severity and lethality of infection, at least in some patients. In experimental mouse models, infection with highly pathogenic avian influenza A H5N1 virus results in downregulation of angiotensin-converting enzyme 2 (ACE2) expression in the lung and increased serum angiotensin II levels. Genetic inactivation of ACE2 causes severe lung injury in H5N1-challenged mice, confirming a role of ACE2 in H5N1-induced lung pathologies. Administration of recombinant human ACE2 ameliorates avian influenza H5N1 virus-induced lung injury in mice. Our data link H5N1 virus-induced acute lung failure to ACE2 and provide a potential treatment strategy to address future flu pandemics.

  3. Avian Influenza in Wild Birds, Central Coast of Peru

    PubMed Central

    Blazes, David L.; Icochea, Eliana; Gonzalez, Rosa I.; Kochel, Tadeusz; Tinoco, Yeny; Sovero, Merly M.; Lindstrom, Stephen; Shu, Bo; Klimov, Alexander; Gonzalez, Armando E.; Montgomery, Joel M.

    2009-01-01

    To determine genotypes of avian influenza virus circulating among wild birds in South America, we collected and tested environmental fecal samples from birds along the coast of Peru, June 2006–December 2007. The 9 isolates recovered represented 4 low-pathogenicity avian influenza strains: subtypes H3N8, H4N5, H10N9, and H13N2. PMID:19523296

  4. Global alert to avian influenza virus infection: From H5N1 to H7N9

    PubMed Central

    Poovorawan, Yong; Pyungporn, Sunchai; Prachayangprecha, Slinporn; Makkoch, Jarika

    2013-01-01

    Outbreak of a novel influenza virus is usually triggered by mutational change due to the process known as ‘antigenic shift’ or re-assortment process that allows animal-to-human or avian-to-human transmission. Birds are a natural reservoir for the influenza virus, and subtypes H5, H7, and H9 have all caused outbreaks of avian influenza in human populations. An especially notorious strain is the HPAI influenza virus H5N1, which has a mortality rate of approximately 60% and which has resulted in numerous hospitalizations, deaths, and significant economic loss. In March 2013, in Eastern China, there was an outbreak of the novel H7N9 influenza virus, which although less pathogenic in avian species, resulted in 131 confirmed cases and 36 deaths in humans over a two-month span. The rapid outbreak of this virus caused global concern but resulted in international cooperation to control the outbreak. Furthermore, cooperation led to valuable research-sharing including genome sequencing of the virus, the development of rapid and specific diagnosis, specimen sharing for future studies, and vaccine development. Although a H7N9 pandemic in the human population is possible due to its rapid transmissibility and extensive surveillance, the closure of the live-bird market will help mitigate the possibility of another H7N9 outbreak. In addition, further research into the source of the outbreak, pathogenicity of the virus, and the development of specific and sensitive detection assays will be essential for controlling and preparing for future H7N9 outbreaks. PMID:23916331

  5. Global alert to avian influenza virus infection: from H5N1 to H7N9.

    PubMed

    Poovorawan, Yong; Pyungporn, Sunchai; Prachayangprecha, Slinporn; Makkoch, Jarika

    2013-07-01

    Outbreak of a novel influenza virus is usually triggered by mutational change due to the process known as 'antigenic shift' or re-assortment process that allows animal-to-human or avian-to-human transmission. Birds are a natural reservoir for the influenza virus, and subtypes H5, H7, and H9 have all caused outbreaks of avian influenza in human populations. An especially notorious strain is the HPAI influenza virus H5N1, which has a mortality rate of approximately 60% and which has resulted in numerous hospitalizations, deaths, and significant economic loss. In March 2013, in Eastern China, there was an outbreak of the novel H7N9 influenza virus, which although less pathogenic in avian species, resulted in 131 confirmed cases and 36 deaths in humans over a two-month span. The rapid outbreak of this virus caused global concern but resulted in international cooperation to control the outbreak. Furthermore, cooperation led to valuable research-sharing including genome sequencing of the virus, the development of rapid and specific diagnosis, specimen sharing for future studies, and vaccine development. Although a H7N9 pandemic in the human population is possible due to its rapid transmissibility and extensive surveillance, the closure of the live-bird market will help mitigate the possibility of another H7N9 outbreak. In addition, further research into the source of the outbreak, pathogenicity of the virus, and the development of specific and sensitive detection assays will be essential for controlling and preparing for future H7N9 outbreaks.

  6. Universal influenza vaccine: the holy grail?

    PubMed

    Shaw, Alan R

    2012-08-01

    Influenza vaccines have been available since the 1950s and have seen increasingly wide use as public health authorities expanded recommendations. Recent events including shortages and avian influenza outbreaks have renewed interest in influenza vaccines, particularly improved vaccines.

  7. Application of Species Distribution Modeling for Avian Influenza surveillance in the United States considering the North America Migratory Flyways

    PubMed Central

    Belkhiria, Jaber; Alkhamis, Moh A.; Martínez-López, Beatriz

    2016-01-01

    Highly Pathogenic Avian Influenza (HPAI) has recently (2014–2015) re-emerged in the United States (US) causing the largest outbreak in US history with 232 outbreaks and an estimated economic impact of $950 million. This study proposes to use suitability maps for Low Pathogenic Avian Influenza (LPAI) to identify areas at high risk for HPAI outbreaks. LPAI suitability maps were based on wild bird demographics, LPAI surveillance, and poultry density in combination with environmental, climatic, and socio-economic risk factors. Species distribution modeling was used to produce high-resolution (cell size: 500m x 500m) maps for Avian Influenza (AI) suitability in each of the four North American migratory flyways (NAMF). Results reveal that AI suitability is heterogeneously distributed throughout the US with higher suitability in specific zones of the Midwest and coastal areas. The resultant suitability maps adequately predicted most of the HPAI outbreak areas during the 2014–2015 epidemic in the US (i.e. 89% of HPAI outbreaks were located in areas identified as highly suitable for LPAI). Results are potentially useful for poultry producers and stakeholders in designing risk-based surveillance, outreach and intervention strategies to better prevent and control future HPAI outbreaks in the US. PMID:27624404

  8. Application of Species Distribution Modeling for Avian Influenza surveillance in the United States considering the North America Migratory Flyways

    NASA Astrophysics Data System (ADS)

    Belkhiria, Jaber; Alkhamis, Moh A.; Martínez-López, Beatriz

    2016-09-01

    Highly Pathogenic Avian Influenza (HPAI) has recently (2014–2015) re-emerged in the United States (US) causing the largest outbreak in US history with 232 outbreaks and an estimated economic impact of $950 million. This study proposes to use suitability maps for Low Pathogenic Avian Influenza (LPAI) to identify areas at high risk for HPAI outbreaks. LPAI suitability maps were based on wild bird demographics, LPAI surveillance, and poultry density in combination with environmental, climatic, and socio-economic risk factors. Species distribution modeling was used to produce high-resolution (cell size: 500m x 500m) maps for Avian Influenza (AI) suitability in each of the four North American migratory flyways (NAMF). Results reveal that AI suitability is heterogeneously distributed throughout the US with higher suitability in specific zones of the Midwest and coastal areas. The resultant suitability maps adequately predicted most of the HPAI outbreak areas during the 2014–2015 epidemic in the US (i.e. 89% of HPAI outbreaks were located in areas identified as highly suitable for LPAI). Results are potentially useful for poultry producers and stakeholders in designing risk-based surveillance, outreach and intervention strategies to better prevent and control future HPAI outbreaks in the US.

  9. Control strategies for highly pathogenic avian influenza: a global perspective.

    PubMed

    Lubroth, J

    2007-01-01

    Comprehensive programmes for the prevention, detection and control of highly pathogenic avian influenza (HPAI) require a national dimension and relevant national legislation in which veterinary services can conduct surveillance, competent diagnosis and rapid response. Avian influenza was controlled and prevented by vaccination long before the current H5N1 crisis. The use of vaccine cannot be separated from other essential elements of a vaccination campaign, which include education in poultry production practices, such as hygiene, all in-all out production concepts, separation of species, biosecurity (bio-exclusion to keep the disease out and biocontainment to keep the disease from spreading once suspected or detected), competence in giving the vaccine and the role of vaccination teams, post-vaccination monitoring to ensure efficacy and to detect the circulation of wild-type virus, surveillance and buffer zones in outbreak areas, and performance indicators to determine when vaccination can cease. Reporting of disease can be improved through well-structured, adequately financed veterinary services and also by fair compensation for producers who suffer financial loss. A rapid response to suspected cases of HPAI should be ensured in simulation exercises involving various sectors of the food production and marketing chain, policy-makers, official veterinary structures and other government personnel. As for other transboundary animal diseases, national approaches must be part of a regional strategy and regional networks for cooperation and information sharing, which in turn reflect global policies and international standards, such as the quality of vaccines, reporting obligations, humane interventions, cleaning and disinfection methods, restocking times, monitoring and safe trade.

  10. Avian Influenza spread and transmission dynamics

    USGS Publications Warehouse

    Bourouiba, Lydia; Gourley, Stephen A.; Liu, Rongsong; Takekawa, John Y.; Wu, Jianhong; Chen, Dongmei; Moulin, Bernard; Wu, Jianhong

    2015-01-01

    The spread of highly pathogenic avian influenza (HPAI) viruses of type A of subtype H5N1 has been a serious threat to global public health. Understanding the roles of various (migratory, wild, poultry) bird species in the transmission of these viruses is critical for designing and implementing effective control and intervention measures. Developing appropriate models and mathematical techniques to understand these roles and to evaluate the effectiveness of mitigation strategies have been a challenge. Recent development of the global health surveillance (especially satellite tracking and GIS techniques) and the mathematical theory of dynamical systems combined have gradually shown the promise of some cutting-edge methodologies and techniques in mathematical biology to meet this challenge.

  11. Avian influenza virus risk assessment in falconry

    PubMed Central

    2011-01-01

    Background There is a continuing threat of human infections with avian influenza viruses (AIV). In this regard falconers might be a potential risk group because they have close contact to their hunting birds (raptors such as falcons and hawks) as well as their avian prey such as gulls and ducks. Both (hunting birds and prey birds) seem to be highly susceptible to some AIV strains, especially H5N1. We therefore conducted a field study to investigate AIV infections in falconers, their falconry birds as well as prey birds. Findings During 2 hunting seasons (2006/2007 and 2007/2008) falconers took tracheal and cloacal swabs from 1080 prey birds that were captured by their falconry birds (n = 54) in Germany. AIV-RNA of subtypes H6, H9, or H13 was detected in swabs of 4.1% of gulls (n = 74) and 3.8% of ducks (n = 53) using RT-PCR. The remaining 953 sampled prey birds and all falconry birds were negative. Blood samples of the falconry birds tested negative for AIV specific antibodies. Serum samples from all 43 falconers reacted positive in influenza A virus-specific ELISA, but remained negative using microneutralisation test against subtypes H5 and H7 and haemagglutination inhibition test against subtypes H6, H9 and H13. Conclusion Although we were able to detect AIV-RNA in samples from prey birds, the corresponding falconry birds and falconers did not become infected. Currently falconers do not seem to carry a high risk for getting infected with AIV through handling their falconry birds and their prey. PMID:21513552

  12. Distribution and dynamics of risk factors associated with highly pathogenic avian influenza H5N1.

    PubMed

    Zhang, L; Guo, Z W; Bridge, E S; Li, Y M; Xiao, X M

    2013-11-01

    Within China's Poyang Lake region, close interactions between wild migratory birds and domestic poultry are common and provide an opportunity for the transmission and subsequent outbreaks of highly pathogenic avian influenza (HPAI) virus. We overlaid a series of ecological factors associated with HPAI to map the risk of HPAI in relation to natural and anthropogenic variables, and we identified two hotspots for potential HPAI outbreaks in the Poyang Lake region as well as three corridors connecting the two hotspot areas. In hotspot I, there is potential for migratory birds to bring new avian influenza (AI) strains that can reassort with existing strains to form new AI viruses. Hotspot II features high-density poultry production where outbreaks of endemic AI viruses are likely. The three communication corridors that link the two hotspots further promote HPAI H5N1 transmission and outbreaks and lead to the persistence of AI viruses in the Poyang Lake region. We speculate that the region's unevenly distributed poultry supply-and-demand system might be a key factor inducing HPAI H5N1 transmission and outbreaks in the Poyang Lake region.

  13. Avian influenza: Public health and food safety concerns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian Influenza (AI) is an asymptomatic infection or disease caused by Influenza virus A. AI viruses are species specific and rarely crosses the species barrier. However subtypes H5, H7 and H9 have caused sporadic infections in humans mostly as a result of direct contact with infected birds. H5N1 hi...

  14. Avian Influenza A (H7N9) Virus

    MedlinePlus

    ... Humans Diagnostics for Detecting H7N9 Using rRT-PCR Infection Control Within Healthcare Settings for Patients with Novel Influenza ... percent of people confirmed with Asian H7N9 virus infection died. Epidemiology Most human infections with avian influenza viruses, including ...

  15. Efficacy of zanamivir for chemoprophylaxis of nursing home influenza outbreaks.

    PubMed

    Schilling, M; Povinelli, L; Krause, P; Gravenstein, M; Ambrozaitis, A; Jones, H H; Drinka, P; Shult, P; Powers, D; Gravenstein, S

    1998-11-01

    Despite vaccination, influenza remains a common of morbidity in nursing homes. Chemoprophylaxis of residents with currently available antivirals is not always effective and new agents effective against both influenza A and B are needed. In a randomized, unblinded pilot study, we compared 14 day chemoprophylaxis with zanamivir, an antiviral which inhibits influenza neuraminidase, to standard of care during sequential influenza A and influenza B outbreaks in a 735 bed nursing home. Influenza A outbreaks were declared on 6/14 epidemic units. Sixty-five volunteers on four epidemic units were randomized to zanamivir and on two epidemic units, 23 volunteers were randomized to rimantadine. During the 14 days of prophylaxis, only four new febrile respiratory illnesses were detected. One volunteer receiving rimantadine prophylaxis developed laboratory-confirmed influenza. Influenza B outbreaks were declared on 3/14 epidemic units. Thirty-five volunteers on two epidemic units were randomized to zanamivir and 18 volunteers on one epidemic unit were randomized to no drug. During the 14 days of prophylaxis, only one new febrile respiratory illness was detected. One volunteer randomized to receive no drug developed laboratory-confirmed influenza. Zanamivir appears comparably effective to standard of care in preventing influenza-like illness and laboratory-confirmed influenza in nursing homes, but requires further testing.

  16. Antimicrobial Products Registered for Disinfection Use against Avian Influenza on Poultry Farms and Other Facilities

    EPA Pesticide Factsheets

    EPA registers disinfectants against Avian Influenza A. Although there are no antimicrobial products registered for the H5N2 subtype of Avian Influenza A virus, based on available scientific information these products will work against other HPAI strains.

  17. Avian influenza survey in migrating waterfowl in Sonora, Mexico.

    PubMed

    Montalvo-Corral, M; López-Robles, G; Hernández, J

    2011-02-01

    A two-year survey was carried out on the occurrence of avian influenza in migrating birds in two estuaries of the Mexican state of Sonora, which is located within the Pacific flyway. Cloacal and oropharyngeal swabs were collected from 1262 birds, including 20 aquatic bird species from the Moroncarit and Tobari estuaries in Sonora, Mexico. Samples were tested for type A influenza (M), H5 Eurasian and North American subtypes (H5EA and H5NA respectively) and the H7 North American subtype (H7NA). Gene detection was determined by one-step real-time reverse transcription polymerase chain reaction (RRT-PCR). The results revealed that neither the highly pathogenic avian influenza virus H5 of Eurasian lineage nor H7NA were detected. The overall prevalence of avian influenza type A (M-positive) in the sampled birds was 3.6% with the vast majority in dabbling ducks (Anas species). Samples from two birds, one from a Redhead (Aythya americana) and another from a Northern Shoveler (Anas clypeata), were positive for the low-pathogenic H5 avian influenza virus of North American lineage. These findings represented documented evidence of the occurrence of avian influenza in wintering birds in the Mexican wetlands. This type of study contributes to the understanding of how viruses spread to new regions of North America and highlights the importance of surveillance for the early detection and control of potentially pathogenic strains, which could affect animal and human health.

  18. Protecting poultry workers from exposure to avian influenza viruses.

    PubMed

    MacMahon, Kathleen L; Delaney, Lisa J; Kullman, Greg; Gibbins, John D; Decker, John; Kiefer, Max J

    2008-01-01

    Emerging zoonotic diseases are of increasing regional and global importance. Preventing occupational exposure to zoonotic diseases protects workers as well as their families, communities, and the public health. Workers can be protected from zoonotic diseases most effectively by preventing and controlling diseases in animals, reducing workplace exposures, and educating workers. Certain avian influenza viruses are potential zoonotic disease agents that may be transmitted from infected birds to humans. Poultry workers are at risk of becoming infected with these viruses if they are exposed to infected birds or virus-contaminated materials or environments. Critical components of worker protection include educating employers and training poultry workers about occupational exposure to avian influenza viruses. Other recommendations for protecting poultry workers include the use of good hygiene and work practices, personal protective clothing and equipment, vaccination for seasonal influenza viruses, antiviral medication, and medical surveillance. Current recommendations for protecting poultry workers from exposure to avian influenza viruses are summarized in this article.

  19. Wild bird surveillance for highly pathogenic avian influenza H5 in North America

    USGS Publications Warehouse

    Flint, Paul L.; Pearce, John M.; Franson, J. Christian; Derksen, Dirk V.

    2015-01-01

    It is unknown how the current Asian origin highly pathogenic avian influenza H5 viruses arrived, but these viruses are now poised to become endemic in North America. Wild birds harbor these viruses and have dispersed them at regional scales. What is unclear is how the viruses may be moving from the wild bird reservoir into poultry holdings. Active surveillance of live wild birds is likely the best way to determine the true distribution of these viruses. We also suggest that sampling be focused on regions with the greatest risk for poultry losses and attempt to define the mechanisms of transfer to enhance biosecurity. Responding to the recent outbreaks of highly pathogenic avian influenza in North America requires an efficient plan with clear objectives and potential management outcomes.

  20. International standards and guidelines for vaccination of poultry against highly pathogenic avian influenza.

    PubMed

    Bruschke, C; Brückner, G; Vallat, B

    2007-01-01

    The current strain of highly pathogenic avian influenza (HPAI), H5N1, has caused an unprecedented situation, spreading over three continents, with severe economic and social consequences. The strategy of the World Organisation for Animal Health (OIE) focuses on the following key actions: early warning, early detection, rapid confirmation of suspected cases, rapid response and rapid and transparent notification. Vaccination is one means that can be used to control the virus. During the current H5N1 outbreak, the OIE received many requests from member countries for guidance in deciding whether to vaccinate and in the design of vaccination programmes. The OIE has published a general information document on vaccination against avian influenza and a document giving guidelines for decision-making, including a checklist of essentials for establishing a vaccination programme.

  1. Wild bird surveillance for highly pathogenic avian influenza H5 in North America.

    PubMed

    Flint, Paul L; Pearce, John M; Franson, J Christian; Derksen, Dirk V

    2015-09-28

    It is unknown how the current Asian origin highly pathogenic avian influenza H5 viruses arrived, but these viruses are now poised to become endemic in North America. Wild birds harbor these viruses and have dispersed them at regional scales. What is unclear is how the viruses may be moving from the wild bird reservoir into poultry holdings. Active surveillance of live wild birds is likely the best way to determine the true distribution of these viruses. We also suggest that sampling be focused on regions with the greatest risk for poultry losses and attempt to define the mechanisms of transfer to enhance biosecurity. Responding to the recent outbreaks of highly pathogenic avian influenza in North America requires an efficient plan with clear objectives and potential management outcomes.

  2. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of...

  3. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of...

  4. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of...

  5. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of...

  6. 9 CFR 145.15 - Diagnostic surveillance program for low pathogenic avian influenza.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... low pathogenic avian influenza. 145.15 Section 145.15 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of...

  7. Modification of the Hemagglutinin Cleavage Site Allows Indirect Activation of Avian Influenza Virus H9N2 by Bacterial Staphylokinase

    PubMed Central

    Tse, Longping V.; Whittaker, Gary R.

    2015-01-01

    Influenza H9N2 is considered to be a low pathogenicity avian influenza (LPAI) virus that commonly infects avian species and can also infect humans. In 1996, the influenza virus, A/chicken/Korea/MS96-CE6/1996/H9N2 (MS96) was isolated from an outbreak in multiple farms in South Korea that resulted in upwards of 30% mortality in infected chickens, with the virus infecting a number of extrapulmonary tissues, indicating internal spread. However, in experimental infections, complete recovery of specific pathogen free (SPF) chickens occurred. Such a discrepancy indicated an alternative pathway for MS96 virus to gain virulence in farmed chickens. A key determinant of influenza pathogenesis is the susceptibility of the viral hemagglutinin (HA) to proteolytic cleavage/activation. Here, we identified that an amino acid substitution, Ser to Tyr found at the P2 position of the MS96 HA cleavage site optimizes cleavage by the protease plasmin (Pm). Importantly, we identified that certain Staphylococcus sp. are able to cleave and activate MS96 HA by activating plasminogen (Plg) to plasmin by use of a virulence factor, staphylokinase. Overall, these studies provide an in-vitro mechanism for bacterially mediated enhancement of influenza activation, and allow insight into the microbiological mechanisms underlying the avian influenza H9N2 outbreak in Korea in1996. PMID:25841078

  8. Avian Influenza in wild birds from Chile, 2007-2009.

    PubMed

    Mathieu, Christian; Moreno, Valentina; Pedersen, Janice; Jeria, Julissa; Agredo, Michel; Gutiérrez, Cristian; García, Alfonso; Vásquez, Marcela; Avalos, Patricia; Retamal, Patricio

    2015-03-02

    Aquatic and migratory birds, the main reservoir hosts of avian influenza viruses including those with high pathogenic potential, are the wildlife species with the highest risk for viral dissemination across countries and continents. In 2002, the Chilean poultry industry was affected with a highly pathogenic avian influenza strain, which created economic loss and triggered the establishment of a surveillance program in wild birds. This effort consisted of periodic samplings of sick or suspicious animals found along the coast and analyses with standardized techniques for detection of influenza A virus. The aim of this work is to report the detection of three avian influenza strains (H13N2, H5N9, H13N9) in gulls from Chile between 2007-2009, which nucleotide sequences showed highest similitudes to viruses detected in wild birds from North America. These results suggest a dissemination route for influenza viruses along the coasts of Americas. Migratory and synanthropic behaviors of birds included in this study support continued monitoring of avian influenza viruses isolated from wild birds in The Americas and the establishment of biosecurity practices in farms.

  9. Living with avian FLU--Persistence of the H5N1 highly pathogenic avian influenza virus in Egypt.

    PubMed

    Njabo, Kevin Yana; Zanontian, Linda; Sheta, Basma N; Samy, Ahmed; Galal, Shereen; Schoenberg, Frederic Paik; Smith, Thomas B

    2016-05-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) continues to cause mortality in poultry and threaten human health at a panzootic scale in Egypt since it was reported in 2006. While the early focus has been in Asia, recent evidence suggests that Egypt is an emerging epicenter for the disease. Despite control measures, epizootic transmission of the disease continues. Here, we investigate the persistence of HPAIV across wild passerine birds and domestic poultry between 2009 and 2012 and the potential risk for continuous viral transmission in Egypt. We use a new weighted cross J-function to investigate the degree and spatial temporal nature of the clustering between sightings of infected birds of different types, and the risk of infection associated with direct contact with infected birds. While we found no infection in wild birds, outbreaks occurred year round between 2009 and 2012, with a positive interaction between chickens and ducks. The disease was more present in the years 2010 and 2011 coinciding with the political unrest in the country. Egypt thus continues to experience endemic outbreaks of avian influenza HPAIV in poultry and an increased potential risk of infection to other species including humans. With the current trends, the elimination of the HPAIV infection is highly unlikely without a complete revamp of current policies. The application of spatial statistics techniques to these types of data may help us to understand the characteristics of the disease and may subsequently allow practitioners to explore possible preventive solutions.

  10. Avian influenza: mixed infections and missing viruses.

    PubMed

    Lindsay, LeAnn L; Kelly, Terra R; Plancarte, Magdalena; Schobel, Seth; Lin, Xudong; Dugan, Vivien G; Wentworth, David E; Boyce, Walter M

    2013-08-05

    A high prevalence and diversity of avian influenza (AI) viruses were detected in a population of wild mallards sampled during summer 2011 in California, providing an opportunity to compare results obtained before and after virus culture. We tested cloacal swab samples prior to culture by matrix real-time PCR, and by amplifying and sequencing a 640bp portion of the hemagglutinin (HA) gene. Each sample was also inoculated into embryonated chicken eggs, and full genome sequences were determined for cultured viruses. While low matrix Ct values were a good predictor of virus isolation from eggs, samples with high or undetectable Ct values also yielded isolates. Furthermore, a single passage in eggs altered the occurrence and detection of viral strains, and mixed infections (different HA subtypes) were detected less frequently after culture. There is no gold standard or perfect reference comparison for surveillance of unknown viruses, and true negatives are difficult to distinguish from false negatives. This study showed that sequencing samples prior to culture increases the detection of mixed infections and enhances the identification of viral strains and sequences that may have changed or even disappeared during culture.

  11. Surveillance of wild birds for avian influenza virus.

    PubMed

    Hoye, Bethany J; Munster, Vincent J; Nishiura, Hiroshi; Klaassen, Marcel; Fouchier, Ron A M

    2010-12-01

    Recent demand for increased understanding of avian influenza virus in its natural hosts, together with the development of high-throughput diagnostics, has heralded a new era in wildlife disease surveillance. However, survey design, sampling, and interpretation in the context of host populations still present major challenges. We critically reviewed current surveillance to distill a series of considerations pertinent to avian influenza virus surveillance in wild birds, including consideration of what, when, where, and how many to sample in the context of survey objectives. Recognizing that wildlife disease surveillance is logistically and financially constrained, we discuss pragmatic alternatives for achieving probability-based sampling schemes that capture this host-pathogen system. We recommend hypothesis-driven surveillance through standardized, local surveys that are, in turn, strategically compiled over broad geographic areas. Rethinking the use of existing surveillance infrastructure can thereby greatly enhance our global understanding of avian influenza and other zoonotic diseases.

  12. Detection method for avian influenza viruses in water.

    PubMed

    Rönnqvist, Maria; Ziegler, Thedi; von Bonsdorff, Carl-Henrik; Maunula, Leena

    2012-03-01

    Recent events have shown that humans may become infected with some pathogenic avian influenza A viruses (AIV). Since soil and water, including lakes, rivers, and seashores, may be contaminated by AIV excreted by birds, effective methods are needed for monitoring water for emerging viruses. Combining water filtration with molecular methods such as PCR is a fast and effective way for detecting viruses. The objective of this study was to apply a convenient method for the detection of AIV in natural water samples. Distilled water and lake, river, and seawater were artificially contaminated with AIV (H5N3) and passed through a filter system. AIV was detected from filter membrane by real-time RT-PCR. The performance of Zetapor, SMWP, and Sartobind D5F membranes in recovering influenza viruses was first evaluated using contaminated distilled water. SWMP, which gave the highest virus recoveries, was then compared with a pre-filter combined GF/F filter membrane in a trial using natural water samples. In this study, the cellulose membrane SMWP was found to be practical for recovery of AIVs in water. Viral yields varied between 62.1 and 65.9% in distilled water and between 1 and 16.7% in natural water samples. The borosilicate glass membrane GF/F combined with pre-filter was also feasible in filtering natural water samples with viral yields from 1.98 to 7.33%. The methods described can be used for monitoring fresh and seawater samples for the presence of AIV and to determine the source of AIV transmission in an outbreak situation.

  13. Outbreak with a novel avian influenza A(H7N9) virus in China--scenarios and triggers for assessing risks and planning responses in the European Union, May 2013.

    PubMed

    Schenk, C; Plachouras, D; Danielsson, N; Nicoll, A; Robesyn, E; Coulombier, D

    2013-05-16

    As part of the risk assessment and strategic planning related to the emergence of avian influenza A(H7N9) in China the European Centre for Disease Prevention and Control (ECDC) has considered two major scenarios. The current situation is the one of a zoonotic epidemic (Scenario A) in which the virus might be transmitted sporadically to humans in close contact with an animal reservoir. The second scenario is the movement towards efficient human to human transmission (a pandemic Scenario B). We identified epidemiological events within the different scenarios that would trigger a new risk assessment and a review of the response activities to implement in the European Union (EU). Further, we identified the surveillance activities needed to detect these events. The EU should prepare for importation of isolated human cases infected in the affected area, though this event would not change the level of public health risk. Awareness among clinicians and local public health authorities, combined with nationally available testing, will be crucial. A ’one health’ surveillance strategy is needed to detect extension of the infection towards Europe. The emergence of a novel reassortant influenza A(H7N9) underlines that pandemic preparedness remains important for Europe.

  14. Cost-benefit analysis of avian influenza control in Nepal.

    PubMed

    Karki, S; Lupiani, B; Budke, C M; Karki, N P S; Rushton, J; Ivanek, R

    2015-12-01

    Numerous outbreaks of highly pathogenic avian influenza A strain H5N1 have occurred in Nepal since 2009 despite implementation of a national programme to control the disease through surveillance and culling of infected poultry flocks. The objective of the study was to use cost-benefit analysis to compare the current control programme (CCP) with the possible alternatives of: i) no intervention (i.e., absence of control measures [ACM]) and ii) vaccinating 60% of the national poultry flock twice a year. In terms of the benefit-cost ratio, findings indicate a return of US $1.94 for every dollar spent in the CCP compared with ACM. The net present value of the CCP versus ACM, i.e., the amount of money saved by implementing the CCP rather than ACM, is US $861,507 (the benefits of CCP [prevented losses which would have occurred under ACM] minus the cost of CCP). The vaccination programme yields a return of US $2.32 for every dollar spent when compared with the CCR The net present value of vaccination versus the CCP is approximately US $12 million. Sensitivity analysis indicated thatthe findings were robust to different rates of discounting, whereas results were sensitive to the assumed market loss and the number of birds affected in the outbreaks under the ACM and vaccination options. Overall, the findings of the study indicate that the CCP is economically superior to ACM, but that vaccination could give greater economic returns and may be a better control strategy. Future research should be directed towards evaluating the financial feasibility and social acceptability of the CCP and of vaccination, with an emphasis on evaluating market reaction to the presence of H5N1 infection in the country.

  15. Genetic changes that accompanied shifts of low pathogenic avian influenza viruses toward higher pathogenicity in poultry

    PubMed Central

    Abdelwhab, El-Sayed M; Veits, Jutta; Mettenleiter, Thomas C

    2013-01-01

    Avian influenza viruses (AIV) of H5 and H7 subtypes exhibit two different pathotypes in poultry: infection with low pathogenic (LP) strains results in minimal, if any, health disturbances, whereas highly pathogenic (HP) strains cause severe morbidity and mortality. LPAIV of H5 and H7 subtypes can spontaneously mutate into HPAIV. Ten outbreaks caused by HPAIV are known to have been preceded by circulation of a predecessor LPAIV in poultry. Three of them were caused by H5N2 subtype and seven involved H7 subtype in combination with N1, N3, or N7. Here, we review those outbreaks and summarize the genetic changes which resulted in the transformation of LPAIV to HPAIV under natural conditions. Mutations that were found directly in those outbreaks are more likely to be linked to virulence, pathogenesis, and early adaptation of AIV. PMID:23863606

  16. A Bayesian Outbreak Detection Method for Influenza-Like Illness

    PubMed Central

    García, Yury E.; Christen, J. Andrés; Capistrán, Marcos A.

    2015-01-01

    Epidemic outbreak detection is an important problem in public health and the development of reliable methods for outbreak detection remains an active research area. In this paper we introduce a Bayesian method to detect outbreaks of influenza-like illness from surveillance data. The rationale is that, during the early phase of the outbreak, surveillance data changes from autoregressive dynamics to a regime of exponential growth. Our method uses Bayesian model selection and Bayesian regression to identify the breakpoint. No free parameters need to be tuned. However, historical information regarding influenza-like illnesses needs to be incorporated into the model. In order to show and discuss the performance of our method we analyze synthetic, seasonal, and pandemic outbreak data. PMID:26425552

  17. Avian Influenza Risk Surveillance in North America with Online Media

    PubMed Central

    Robertson, Colin; Yee, Lauren

    2016-01-01

    The use of Internet-based sources of information for health surveillance applications has increased in recent years, as a greater share of social and media activity happens through online channels. The potential surveillance value in online sources of information about emergent health events include early warning, situational awareness, risk perception and evaluation of health messaging among others. The challenge in harnessing these sources of data is the vast number of potential sources to monitor and developing the tools to translate dynamic unstructured content into actionable information. In this paper we investigated the use of one social media outlet, Twitter, for surveillance of avian influenza risk in North America. We collected AI-related messages over a five-month period and compared these to official surveillance records of AI outbreaks. A fully automated data extraction and analysis pipeline was developed to acquire, structure, and analyze social media messages in an online context. Two methods of outbreak detection; a static threshold and a cumulative-sum dynamic threshold; based on a time series model of normal activity were evaluated for their ability to discern important time periods of AI-related messaging and media activity. Our findings show that peaks in activity were related to real-world events, with outbreaks in Nigeria, France and the USA receiving the most attention while those in China were less evident in the social media data. Topic models found themes related to specific AI events for the dynamic threshold method, while many for the static method were ambiguous. Further analyses of these data might focus on quantifying the bias in coverage and relation between outbreak characteristics and detectability in social media data. Finally, while the analyses here focused on broad themes and trends, there is likely additional value in developing methods for identifying low-frequency messages, operationalizing this methodology into a

  18. A Humidity-Driven Prediction System for Influenza Outbreaks

    NASA Astrophysics Data System (ADS)

    Thrastarson, H. T.; Teixeira, J.

    2015-12-01

    Recent studies have highlighted the role of absolute (or specific) humidity conditions as a leading explanation for the seasonal behavior of influenza outbreaks in temperate regions. If the timing and intensity of seasonal influenza outbreaks can be forecast, this would be of great value for public health response efforts. We have developed and implemented a SIRS (Susceptible-Infectious-Recovered-Susceptible) type numerical prediction system that is driven by specific humidity to predict influenza outbreaks. For the humidity, we have explored using both satellite data from the AIRS (Atmospheric Infrared Sounder) instrument as well as ERA-Interim re-analysis data. We discuss the development, testing, sensitivities and limitations of the prediction system and show results for influenza outbreaks in the United States during the years 2010-2014 (modeled in retrospect). Comparisons are made with other existing prediction systems and available data for influenza outbreaks from Google Flu Trends and the CDC (Center for Disease Control), and the incorporation of these datasets into the forecasting system is discussed.

  19. Agro-Environmental Determinants of Avian Influenza Circulation: A Multisite Study in Thailand, Vietnam and Madagascar

    PubMed Central

    Paul, Mathilde C.; Gilbert, Marius; Desvaux, Stéphanie; Rasamoelina Andriamanivo, Harena; Peyre, Marisa; Khong, Nguyen Viet; Thanapongtharm, Weerapong; Chevalier, Véronique

    2014-01-01

    Outbreaks of highly pathogenic avian influenza have occurred and have been studied in a variety of ecological systems. However, differences in the spatial resolution, geographical extent, units of analysis and risk factors examined in these studies prevent their quantitative comparison. This study aimed to develop a high-resolution, comparative study of a common set of agro-environmental determinants of avian influenza viruses (AIV) in domestic poultry in four different environments: (1) lower-Northern Thailand, where H5N1 circulated in 2004–2005, (2) the Red River Delta in Vietnam, where H5N1 is circulating widely, (3) the Vietnam highlands, where sporadic H5N1 outbreaks have occurred, and (4) the Lake Alaotra region in Madagascar, which features remarkable similarities with Asian agro-ecosystems and where low pathogenic avian influenza viruses have been found. We analyzed H5N1 outbreak data in Thailand in parallel with serological data collected on the H5 subtype in Vietnam and on low pathogenic AIV in Madagascar. Several agro-environmental covariates were examined: poultry densities, landscape dominated by rice cultivation, proximity to a water body or major road, and human population density. Relationships between covariates and AIV circulation were explored using spatial generalized linear models. We found that AIV prevalence was negatively associated with distance to the closest water body in the Red River Delta, Vietnam highlands and Madagascar. We also found a positive association between AIV and duck density in the Vietnam highlands and Thailand, and with rice landscapes in Thailand and Madagascar. Our findings confirm the important role of wetlands-rice-ducks ecosystems in the epidemiology of AI in diverse settings. Variables influencing circulation of the H5 subtype in Southeast Asia played a similar role for low pathogenic AIV in Madagascar, indicating that this area may be at risk if a highly virulent strain is introduced. PMID:25029441

  20. Agro-environmental determinants of avian influenza circulation: a multisite study in Thailand, Vietnam and Madagascar.

    PubMed

    Paul, Mathilde C; Gilbert, Marius; Desvaux, Stéphanie; Andriamanivo, Harena Rasamoelina; Peyre, Marisa; Khong, Nguyen Viet; Thanapongtharm, Weerapong; Chevalier, Véronique

    2014-01-01

    Outbreaks of highly pathogenic avian influenza have occurred and have been studied in a variety of ecological systems. However, differences in the spatial resolution, geographical extent, units of analysis and risk factors examined in these studies prevent their quantitative comparison. This study aimed to develop a high-resolution, comparative study of a common set of agro-environmental determinants of avian influenza viruses (AIV) in domestic poultry in four different environments: (1) lower-Northern Thailand, where H5N1 circulated in 2004-2005, (2) the Red River Delta in Vietnam, where H5N1 is circulating widely, (3) the Vietnam highlands, where sporadic H5N1 outbreaks have occurred, and (4) the Lake Alaotra region in Madagascar, which features remarkable similarities with Asian agro-ecosystems and where low pathogenic avian influenza viruses have been found. We analyzed H5N1 outbreak data in Thailand in parallel with serological data collected on the H5 subtype in Vietnam and on low pathogenic AIV in Madagascar. Several agro-environmental covariates were examined: poultry densities, landscape dominated by rice cultivation, proximity to a water body or major road, and human population density. Relationships between covariates and AIV circulation were explored using spatial generalized linear models. We found that AIV prevalence was negatively associated with distance to the closest water body in the Red River Delta, Vietnam highlands and Madagascar. We also found a positive association between AIV and duck density in the Vietnam highlands and Thailand, and with rice landscapes in Thailand and Madagascar. Our findings confirm the important role of wetlands-rice-ducks ecosystems in the epidemiology of AI in diverse settings. Variables influencing circulation of the H5 subtype in Southeast Asia played a similar role for low pathogenic AIV in Madagascar, indicating that this area may be at risk if a highly virulent strain is introduced.

  1. Highly pathogenic avian influenza virus subtype H5N1 in Mute swans in the Czech Republic.

    PubMed

    Nagy, Alexander; Machova, Jirina; Hornickova, Jitka; Tomci, Miroslav; Nagl, Ivan; Horyna, Bedrich; Holko, Ivan

    2007-02-25

    In order to determine the actual prevalence of avian influenza viruses (AIV) in wild birds in the Czech Republic extensive surveillance was carried out between January and April 2006. A total of 2101 samples representing 61 bird species were examined for the presence of influenza A by using PCR, sequencing and cultivation on chicken embryos. AIV subtype H5N1 was detected in 12 Mute swans (Cygnus olor). The viruses were determined as HPAI (highly pathogenic avian influenza) and the hemagglutinin sequence was closely similar to A/mallard/Italy/835/06 and A/turkey/Turkey/1194/05. Following the first H5N1 case, about 300 wild birds representing 33 species were collected from the outbreak region and tested for the presence of AIV without any positive result. This is the first report of highly pathogenic avian influenza subtype H5N1 in the Czech Republic. The potential role of swan as an effective vector of avian influenza virus is also discussed.

  2. Assessment of national strategies for control of high-pathogenicity avian influenza and low-pathogenicity notifiable avian influenza in poultry, with emphasis on vaccines and vaccination.

    PubMed

    Swayne, D E; Pavade, G; Hamilton, K; Vallat, B; Miyagishima, K

    2011-12-01

    Twenty-nine distinct epizootics of high-pathogenicity avian influenza (HPAI) have occurred since 1959. The H5N1 HPAI panzootic affecting Asia, Africa and Eastern Europe has been the largest among these, affecting poultry and/or wild birds in 63 countries. A stamping-out programme achieved eradication in 24 of these epizootics (and is close to achieving eradication in the current H5N2 epizootic in South African ostriches), but vaccination was added to the control programmes in four epizootics when stamping out alone was not effective. During the 2002 to 2010 period, more than 113 billion doses of avian influenza (AI) vaccine were used in at-risk national poultry populations of over 131 billion birds. At two to three doses per bird for the 15 vaccinating countries, the average national vaccination coverage rate was 41.9% and the global AI vaccine coverage rate was 10.9% for all poultry. The highest national coverage rate was nearly 100% for poultry in Hong Kong and the lowest national coverage was less than 0.01% for poultry in Israel and The Netherlands. Inactivated AI vaccines accounted for 95.5% and live recombinant virus vaccines for 4.5% of the vaccines used. Most of these vaccines were used in the H5N1 HPAI panzootic, with more than 99% employed in the People's Republic of China, Egypt, Indonesia and Vietnam. Implementation of vaccination in these four countries occurred after H5N1 HPAI became enzootic in domestic poultry and vaccination did not result in the enzootic infections. Vaccine usage prevented clinical disease and mortality in chickens, and maintained rural livelihoods and food security during HPAI outbreaks. Low-pathogenicity notifiable avian influenza (LPNAI) became reportable to the World Organisation for Animal Health in 2006 because some H5 and H7 low-pathogenicity avian influenza (LPAI) viruses have the potential to mutate to HPAI viruses. Fewer outbreaks of LPNAI have been reported than of HPAI and only six countries used vaccine in control

  3. A generic model of contagious disease and its application to human-to-human transmission of avian influenza.

    SciTech Connect

    Hirsch, Gary B.

    2007-03-01

    Modeling contagious diseases has taken on greater importance over the past several years as diseases such as SARS and avian influenza have raised concern about worldwide pandemics. Most models developed to consider projected outbreaks have been specific to a single disease. This paper describes a generic System Dynamics contagious disease model and its application to human-to-human transmission of a mutant version of avian influenza. The model offers the option of calculating rates of new infections over time based either on a fixed ''reproductive number'' that is traditional in contagious disease models or on contact rates for different sub-populations and likelihood of transmission per contact. The paper reports on results with various types of interventions. These results suggest the potential importance of contact tracing, limited quarantine, and targeted vaccination strategies as methods for controlling outbreaks, especially when vaccine supplies may initially be limited and the efficacy of anti-viral drugs uncertain.

  4. Generation of an attenuated H5N1 avian influenza virus vaccine with all eight genes from avian viruses.

    PubMed

    Shi, Huoying; Liu, Xiu Fan; Zhang, Xiaorong; Chen, Sujuan; Sun, Lei; Lu, Jianhong

    2007-10-16

    In the face of disease outbreaks in poultry and the potential pandemic threat to humans caused by the highly pathogenic avian influenza viruses (HPAIVs) of H5N1 subtype, improvement in biosecurity and the use of inactivated vaccines are two main options for the control of this disease. Vaccine candidates of influenza A viruses of H5N1 subtype have been generated in several laboratories by plasmid-based reverse genetics with hemagglutinin (HA) and neuraminidase (NA) genes from the epidemic strains of avian viruses in a background of internal genes from the vaccine donor strain of human strains, A/Puerto Rico/8/34 (PR8). These reassortant viruses containing genes from both avian and human viruses might impose biosafety concerns, also may be do if C4/F AIV would be a live attenuated vaccine or cold-adaptive strain vaccine. In order to generate better and safer vaccine candidate viruses, we genetically constructed attenuated reassortant H5N1 influenza A virus, designated as C4/F AIV, by plasmid-based reverse genetics with all eight genes from the avian strains. The C4/F AIV virus contained HA and NA genes from an epidemic strain A/Chicken/Huadong/04 (H5N1) (C4/H5N1) in a background of internal genes derived from a low pathogenic strain of A/Chicken/F/98(H9N2). The reassortant virus was attenuated by removal of the multibasic amino acid motif in the HA gene by mutation and deletion (from PQRERRRKKR (downward arrow) G to PQIETR (downward arrow) G). The intravenous pathogenicity index (IVPI) of C4/F AIV virus was 0, whereas that of the donor virus C4/H5N1 was 3.0. The virus HA titer of C4/H5N1 in the allantoic fluid from infected embryonated eggs was as high as 1:2048. The inactivated vaccine prepared from the reassortant virus C4/F AIV-induced high HI titer in vaccinated chickens and gave 100% protection when challenged with highly pathogenic avian influenza virus of H5N1 subtype.

  5. Yeast Surface-Displayed H5N1 Avian Influenza Vaccines

    PubMed Central

    Lei, Han; Jin, Sha; Karlsson, Erik; Schultz-Cherry, Stacey

    2016-01-01

    Highly pathogenic H5N1 avian influenza viruses pose a pandemic threat to human health. A rapid vaccine production against fast outbreak is desired. We report, herein, a paradigm-shift influenza vaccine technology by presenting H5N1 hemagglutinin (HA) to the surface of yeast. We demonstrated, for the first time, that the HA surface-presented yeast can be used as influenza vaccines to elicit both humoral and cell-mediated immunity in mice. The HI titer of antisera reached up to 128 in vaccinated mice. A high level of H5N1 HA-specific IgG1 and IgG2a antibody production was detected after boost immunization. Furthermore, we demonstrated that the yeast surface-displayed HA preserves its antigenic sites. It preferentially binds to both avian- and human-type receptors. In addition, the vaccine exhibited high cross-reactivity to both homologous and heterologous H5N1 viruses. A high level production of anti-HA antibodies was detected in the mice five months after vaccination. Finally, our animal experimental results indicated that the yeast vaccine offered complete protection of mice from lethal H5N1 virus challenge. No severe side effect of yeast vaccines was noted in animal studies. This new technology allows for rapid and large-scale production of influenza vaccines for prepandemic preparation. PMID:28078309

  6. Yeast Surface-Displayed H5N1 Avian Influenza Vaccines.

    PubMed

    Lei, Han; Jin, Sha; Karlsson, Erik; Schultz-Cherry, Stacey; Ye, Kaiming

    2016-01-01

    Highly pathogenic H5N1 avian influenza viruses pose a pandemic threat to human health. A rapid vaccine production against fast outbreak is desired. We report, herein, a paradigm-shift influenza vaccine technology by presenting H5N1 hemagglutinin (HA) to the surface of yeast. We demonstrated, for the first time, that the HA surface-presented yeast can be used as influenza vaccines to elicit both humoral and cell-mediated immunity in mice. The HI titer of antisera reached up to 128 in vaccinated mice. A high level of H5N1 HA-specific IgG1 and IgG2a antibody production was detected after boost immunization. Furthermore, we demonstrated that the yeast surface-displayed HA preserves its antigenic sites. It preferentially binds to both avian- and human-type receptors. In addition, the vaccine exhibited high cross-reactivity to both homologous and heterologous H5N1 viruses. A high level production of anti-HA antibodies was detected in the mice five months after vaccination. Finally, our animal experimental results indicated that the yeast vaccine offered complete protection of mice from lethal H5N1 virus challenge. No severe side effect of yeast vaccines was noted in animal studies. This new technology allows for rapid and large-scale production of influenza vaccines for prepandemic preparation.

  7. Human H7N9 avian influenza virus infection: a review and pandemic risk assessment.

    PubMed

    Yiu Lai, Kang; Wing Yiu Ng, George; Fai Wong, Kit; Fan Ngai Hung, Ivan; Kam Fai Hong, Jeffrey; Fan Cheng, Fanny; Kwok Cheung Chan, John

    2013-08-01

    China is undergoing a recent outbreak of a novel H7N9 avian influenza virus (nH7N9) infection that has thus far involved 132 human patients, including 37 deaths. The nH7N9 virus is a reassortant virus originating from the H7N3, H7N9 and H9N2 avian influenza viruses. nH7N9 isolated from humans contains features related to adaptation to humans, including a Q226L mutation in the hemagglutinin cleavage site and E627K and D701N mutations in the PB2 protein. Live poultry markets provide an environment for the emergence, spread and maintenance of nH7N9 as well as for the selection of mutants that facilitate nH7N9 binding to and replication in the human upper respiratory tract. Innate immune suppression conferred by the internal genes of H9N2 may contribute to the virulence of nH7N9. The quail may serve as the intermediate host during the adaptation of avian influenza viruses from domestic waterfowl to gallinaceous poultry, such as chickens and related terrestrial-based species, due to the selection of viral mutants with a short neuraminidase stalk. Infections in chickens, common quails, red-legged partridges and turkeys may select for mutants with human receptor specificity. Infection in Ratitae species may lead to the selection of PB2-E627K and PB2-D701N mutants and the conversion of nH7N9 to a highly pathogenic avian influenza virus.

  8. An outbreak of equine influenza at a harness horse racetrack.

    PubMed

    Kemen, M J; Frank, R A; Babish, J B

    1985-04-01

    An outbreak of an influenza-like illness affected approximately 1/3 of the 1050 race horses stabled at a standardbred racetrack and resulted in a 3-day suspension of racing. A/Equi-2 influenza virus was isolated from 1 affected horse and 8 of 10 horses sampled seroconverted. Threshold protective levels of HI antibody against A/Equi-2 influenza virus were not demonstrated in unaffected horses. Resistance in unaffected horses was assumed to result from other factors following previous exposure. Few of the horses had been vaccinated against equine influenza. It was felt that an outbreak of this magnitude might have been prevented if a vaccination program had been followed.

  9. Rapid Emergence of Highly Pathogenic Avian Influenza Subtypes from a Subtype H5N1 Hemagglutinin Variant.

    PubMed

    de Vries, Erik; Guo, Hongbo; Dai, Meiling; Rottier, Peter J M; van Kuppeveld, Frank J M; de Haan, Cornelis A M

    2015-05-01

    In 2014, novel highly pathogenic avian influenza A H5N2, H5N5, H5N6, and H5N8 viruses caused outbreaks in Asia, Europe, and North America. The H5 genes of these viruses form a monophyletic group that evolved from a clade 2.3.4 H5N1 variant. This rapid emergence of new H5Nx combinations is unprecedented in the H5N1 evolutionary history.

  10. Canada geese and the epidemiology of avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canada geese (Branta canadensis) are numerous, highly visible, and widely distributed in both migratory and resident populations in North America; as a member of the Order Anseriformes, they are often suggested as a potential reservoir and source for avian influenza (AI) viruses. To further examine...

  11. Duck hunters' perceptions of risk for avian influenza, Georgia, USA.

    PubMed

    Dishman, Hope; Stallknecht, David; Cole, Dana

    2010-08-01

    To determine duck hunters'risk for highly pathogenic avian influenza, we surveyed duck hunters in Georgia, USA, during 2007-2008, about their knowledge, attitudes, and practices. We found they engage in several practices that could expose them to the virus. Exposures and awareness were highest for those who had hunted >10 years.

  12. Duck Hunters’ Perceptions of Risk for Avian Influenza, Georgia, USA

    PubMed Central

    Stallknecht, David; Cole, Dana

    2010-01-01

    To determine duck hunters’ risk for highly pathogenic avian influenza, we surveyed duck hunters in Georgia, USA, during 2007–2008, about their knowledge, attitudes, and practices. We found they engage in several practices that could expose them to the virus. Exposures and awareness were highest for those who had hunted >10 years. PMID:20678324

  13. Highly pathogenic avian influenza challenge studies in waterfowl

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Waterfowl are the natural hosts of avian influenza (AI) virus. The majority of AI viruses are classified as low pathogenicity (LP) based on their virulence in chickens, which are the reference species for pathotype testing and can be any of the 16 hemagglutinin subtypes (H1-16). Circulation of H5 ...

  14. Rapidly expanding range of highly pathogenic avian influenza viruses

    USGS Publications Warehouse

    Hall, Jeffrey S.; Dusek, Robert J.; Spackman, Erica

    2015-01-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus’ propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  15. Digital diffraction detection of protein markers for avian influenza.

    PubMed

    Im, Hyungsoon; Park, Yong Il; Pathania, Divya; Castro, Cesar M; Weissleder, Ralph; Lee, Hakho

    2016-04-21

    Rapid pathogen testing is expected to play a critical role in infection control and in limiting epidemics. Smartphones equipped with state-of-the-art computing and imaging technologies have emerged as new point-of-use (POU) sensing platforms. We herein report a new assay format for fast, sensitive and portable detection of avian influenza-associated antibodies.

  16. Highly pathogenic avian influenza virus among wild birds in Mongolia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The central Asian country of Mongolia supports large populations of migratory water birds that migrate across much of Asia where highly pathogenic avian influenza (HPAI) virus subtype H5N1 is endemic. This, together with the near absence of domestic poultry, makes Mongolia an ideal location to unde...

  17. Vaccines and vaccination for avian influenza in poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) vaccines have been developed and used to protect poultry and other birds in various countries of the world. Protection is principally mediated by an immune response to the subtype-specific hemagglutinin (HA) protein. AI vaccines prevent clinical signs of disease, death, egg pr...

  18. Conducting influenza virus pathogenesis studies in avian species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian infection studies with influenza A are an important means of assessing host susceptibility, viral pathogenesis, host responses to infection, mechanisms of transmission and viral pathotype. Complex systems and natural settings may also be explored with carefully designed infection studies. In ...

  19. Thermal inactivation of avian influenza virus in liquid egg products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty eight percent of the 200 million cases of shelled eggs produced per year in the U.S. are processed as liquid egg product. The U.S. also exports internationally a large amount of egg products. Although the U.S. is normally free of avian influenza, concern about contamination of egg product wit...

  20. Food markets with live birds as source of avian influenza.

    PubMed

    Wang, Ming; Di, Biao; Zhou, Duan-Hua; Zheng, Bo-Jian; Jing, Huaiqi; Lin, Yong-Ping; Liu, Yu-Fei; Wu, Xin-Wei; Qin, Peng-Zhe; Wang, Yu-Lin; Jian, Li-Yun; Li, Xiang-Zhong; Xu, Jian-Xiong; Lu, En-Jie; Li, Tie-Gang; Xu, Jianguo

    2006-11-01

    A patient may have been infected with highly pathogenic avian influenza virus H5N1 in Guangzhou, People's Republic of China, at a food market that had live birds. Virus genes were detected in 1 of 79 wire cages for birds at 9 markets. One of 110 persons in the poultry business at markets had neutralizing antibody against H5N1.

  1. Rapidly Expanding Range of Highly Pathogenic Avian Influenza Viruses.

    PubMed

    Hall, Jeffrey S; Dusek, Robert J; Spackman, Erica

    2015-07-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus' propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  2. Rapidly expanding range of highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent introduction of highly pathogenic avian influenza virus (HPAIV) H5N8 into Europe and North America poses significant risks to poultry industries and wildlife populations and warrants continued and heightened vigilance. First discovered in South Korean poultry and wild birds in early 2014...

  3. Scientific basis for use of vaccination as a strategy to control avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccines have been used to control a variety of piscian, avian, and mammalian diseases. Commercial usage of vaccines against avian influenza (AI) began in 1979, in Minnesota to control H4 and H6 low pathogenicity avian influenza (LPAI) which was causing economically significant disease in turkey br...

  4. Effects of closing and reopening live poultry markets on the epidemic of human infection with avian influenza A virus

    PubMed Central

    Lu, Jian; Liu, Wendong; Xia, Rui; Dai, Qigang; Bao, Changjun; Tang, Fenyang; Zhu, yefei; Wang, Qiao

    2016-01-01

    Abstract Live poultry markets (LPMs) are crucial places for human infection of influenza A (H7N9 virus). In Yangtze River Delta, LPMs were closed after the outbreak of human infection with avian influenza A (H7N9) virus, and then reopened when no case was found. Our purpose was to quantify the effect of LPMs’ operations in this region on the transmission of influenza A (H7N9) virus. We obtained information about dates of symptom onset and locations for all human influenza A (H7N9) cases reported from Shanghai, Jiangsu and Zhejiang provinces by May 31, 2014, and acquired dates of closures and reopening of LPMs from official media. A two-phase Bayesian model was fitted by Markov Chain Monte Carlo methods to process the spatial and temporal influence of human cases. A total of 235 cases of influenza A (H7N9) were confirmed in Shanghai, Jiangsu and Zhejiang by May 31, 2014. Using these data, our analysis showed that, after LPM closures, the influenza A (H7N9) outbreak disappeared within two weeks in Shanghai, one week in Jiangsu, and one week in Zhejiang, respectively. Local authorities reopened LPMs when there was no outbreak of influenza A (H7N9), which did not lead to reemergence of human influenza A (H7N9). LPM closures were effective in controlling the H7N9 outbreak. Reopening of LPM in summer did not increase the risk of human infection with H7N9. Our findings showed that LPMs should be closed immediately in areas where the H7N9 virus is confirmed in LPM. When there is no outbreak of H7N9 virus, LPMs can be reopened to satisfy the Chinese traditional culture of buying live poultry. In the long term, local authorities should take a cautious attitude in permanent LPM closure.

  5. Active surveillance for avian influenza virus, Egypt, 2010-2012.

    PubMed

    Kayali, Ghazi; Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S; Gomaa, Mokhtar M; Maatouq, Asmaa M; Shehata, Mahmoud M; Moatasim, Yassmin; Bagato, Ola; Cai, Zhipeng; Rubrum, Adam; Kutkat, Mohamed A; McKenzie, Pamela P; Webster, Robert G; Webby, Richard J; Ali, Mohamed A

    2014-04-01

    Continuous circulation of influenza A(H5N1) virus among poultry in Egypt has created an epicenter in which the viruses evolve into newer subclades and continue to cause disease in humans. To detect influenza viruses in Egypt, since 2009 we have actively surveyed various regions and poultry production sectors. From August 2010 through January 2013, >11,000 swab samples were collected; 10% were positive by matrix gene reverse transcription PCR. During this period, subtype H9N2 viruses emerged, cocirculated with subtype H5N1 viruses, and frequently co-infected the same avian host. Genetic and antigenic analyses of viruses revealed that influenza A(H5N1) clade 2.2.1 viruses are dominant and that all subtype H9N2 viruses are G1-like. Cocirculation of different subtypes poses concern for potential reassortment. Avian influenza continues to threaten public and animal health in Egypt, and continuous surveillance for avian influenza virus is needed.

  6. Clinical review: Update of avian influenza A infections in humans

    PubMed Central

    Sandrock, Christian; Kelly, Terra

    2007-01-01

    Influenza A viruses have a wide host range for infection, from wild waterfowl to poultry to humans. Recently, the cross-species transmission of avian influenza A, particularly subtype H5N1, has highlighted the importance of the non-human subtypes and their incidence in the human population has increased over the past decade. During cross-species transmission, human disease can range from the asymptomatic to mild conjunctivitis to fulminant pneumonia and death. With these cases, however, the risk for genetic change and development of a novel virus increases, heightening the need for public health and hospital measures. This review discusses the epidemiology, host range, human disease, outcome, treatment, and prevention of cross-transmission of avian influenza A into humans. PMID:17419881

  7. Pathogenesis of avian influenza A (H5N1) viruses in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. Genetic reassortment of avian influenza H5N1 viruses with currently circulating human influenza A strains is one possibility that could lead to efficient human-to-human transmissibility. Domestic pigs which are susceptible to infection with both human and avian influenza A viruses are o...

  8. Comparison of molecular classification and experimental pathogenicity for classification of low and high pathogenicity H5 and H7 avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza (HPAI) viruses, which have been restricted to H5 and H7 subtypes, have caused continuous outbreaks in the poultry industry with devastating economic losses and is a severe threat to public health. Genetic features and severity of the disease in poultry determine wh...

  9. Determination of efficacious vaccine seed strains for use against Egyptian H5N1 highly pathogenic avian influenza viruses through antigenic cartography and in vivo challenge studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2006, there have been reported outbreaks of H5N1 highly pathogenic avian influenza (HPAI) in vaccinated chickens in Africa and Asia. This study provides experimental data for selection of efficacious H5N1 vaccine seed strains against recently circulating strains of H5N1 HPAI viruses in Egypt....

  10. Changes in adaptation of H5N2 highly pathogenic avian influenza H5 clade 2.3.4.4 viruses in chickens and mallards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    H5N2 highly pathogenic avian influenza (HPAI) viruses caused a severe poultry outbreak in the United States (U.S.) during 2015. In order to examine changes in adaptation of this viral lineage, the infectivity, transmission and pathogenesis of poultry H5N2 viruses was investigated in chickens and mal...

  11. Comparison of potency required for protection against H7N3 or H5N1 highly pathogenic avian influenza following vaccination and challenge with homologous virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Outbreaks of H5 and H7 highly pathogenic avian influenza (HPAI) in commercial poultry are a constant threat to food supplies and animal/human health. While vaccination can enhance protection and reduce the spread of disease, there is considerable evidence that the level of immunity required for pro...

  12. Efficacy of commercial vaccines in protecting chickens and ducks against H5N1 highly pathogenic avian influenza viruses from Vietnam

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic (HP) H5N1 avian influenza (AI) viruses continue to circulate in Asia and have spread to other regions of the world. Though attempts at eradication of the viruses during various outbreaks have been successful for short periods of time, new strains of H5N1 viruses continue to emerge...

  13. Pathogenicity, Transmission and Antigenic Variation of H5N1 Highly Pathogenic Avian Influenza Viruses.

    PubMed

    Jiao, Peirong; Song, Hui; Liu, Xiaoke; Song, Yafen; Cui, Jin; Wu, Siyu; Ye, Jiaqi; Qu, Nanan; Zhang, Tiemin; Liao, Ming

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) was one of the most important avian diseases in poultry production of China, especially in Guangdong province. In recent years, new H5N1 highly pathogenic avian influenza viruses (HPAIV) still emerged constantly, although all poultry in China were immunized with H5N1 vaccinations compulsorily. To better understand the pathogenicity and transmission of dominant clades of the H5N1 HPAIVs in chicken from Guangdong in 2012, we chose a clade 7.2 avian influenza virus named A/Chicken/China/G2/2012(H5N1) (G2) and a clade 2.3.2.1 avian influenza virus named A/Duck/China/G3/2012(H5N1) (G3) in our study. Our results showed that the chickens inoculated with 10(3) EID50 of G2 or G3 viruses all died, and the titers of virus replication detected in several visceral organs were high but different. In the naive contact groups, virus shedding was not detected in G2 group and all chickens survived, but virus shedding was detected in G3 group and all chickens died. These results showed that the two clades of H5N1 HPAIVs had high pathogenicity in chickens and the contact transmission of them was different in chickens. The results of cross reactive HI assay showed that antigens of G2 and G3 were very different from those of current commercial vaccines isolates (Re-4, Re-6, and D7). And to evaluate the protective efficacy of three vaccines against most isolates form Guangdong belonging to clade 2.3.2.1 in 2012, G3 was chosen to challenge the three vaccines such as Re-4, Re-6, and D7. First, chickens were immunized with 0.3 ml Re-4, Re-6, and D7 inactivated vaccines by intramuscular injection, respectively, and then challenged with 10(6) EID50 of G3 on day 28 post-vaccination. The D7 vaccine had 100% protection against G3 for chickens, the Re-6 vaccine had 88.9%, and the Re-4 vaccine only had 66.7%. Our results suggested that the D7 vaccine could prevent and control H5N1 virus outbreaks more effectively in Guangdong. From the above, it was

  14. Pathogenicity, Transmission and Antigenic Variation of H5N1 Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Jiao, Peirong; Song, Hui; Liu, Xiaoke; Song, Yafen; Cui, Jin; Wu, Siyu; Ye, Jiaqi; Qu, Nanan; Zhang, Tiemin; Liao, Ming

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) was one of the most important avian diseases in poultry production of China, especially in Guangdong province. In recent years, new H5N1 highly pathogenic avian influenza viruses (HPAIV) still emerged constantly, although all poultry in China were immunized with H5N1 vaccinations compulsorily. To better understand the pathogenicity and transmission of dominant clades of the H5N1 HPAIVs in chicken from Guangdong in 2012, we chose a clade 7.2 avian influenza virus named A/Chicken/China/G2/2012(H5N1) (G2) and a clade 2.3.2.1 avian influenza virus named A/Duck/China/G3/2012(H5N1) (G3) in our study. Our results showed that the chickens inoculated with 103 EID50 of G2 or G3 viruses all died, and the titers of virus replication detected in several visceral organs were high but different. In the naive contact groups, virus shedding was not detected in G2 group and all chickens survived, but virus shedding was detected in G3 group and all chickens died. These results showed that the two clades of H5N1 HPAIVs had high pathogenicity in chickens and the contact transmission of them was different in chickens. The results of cross reactive HI assay showed that antigens of G2 and G3 were very different from those of current commercial vaccines isolates (Re-4, Re-6, and D7). And to evaluate the protective efficacy of three vaccines against most isolates form Guangdong belonging to clade 2.3.2.1 in 2012, G3 was chosen to challenge the three vaccines such as Re-4, Re-6, and D7. First, chickens were immunized with 0.3 ml Re-4, Re-6, and D7 inactivated vaccines by intramuscular injection, respectively, and then challenged with 106 EID50 of G3 on day 28 post-vaccination. The D7 vaccine had 100% protection against G3 for chickens, the Re-6 vaccine had 88.9%, and the Re-4 vaccine only had 66.7%. Our results suggested that the D7 vaccine could prevent and control H5N1 virus outbreaks more effectively in Guangdong. From the above, it was

  15. Coexistence of Avian Influenza Virus H10 and H9 Subtypes among Chickens in Live Poultry Markets during an Outbreak of Infection with a Novel H10N8 Virus in Humans in Nanchang, China.

    PubMed

    Hu, Maohong; Li, Xiaodan; Ni, Xiansheng; Wu, Jingwen; Gao, Rongbao; Xia, Wen; Wang, Dayan; He, Fenglan; Chen, Shengen; Liu, Yangqing; Guo, Shuangli; Li, Hui; Shu, Yuelong; Bethel, Jeffrey W; Liu, Mingbin; Moore, Justin B; Chen, Haiying

    2015-01-01

    Infection with the novel H10N8 virus in humans has raised concerns about its pandemic potential worldwide. We report the results of a cross-sectional study of avian influenza viruses (AIVs) in live poultry markets (LPMs) in Nanchang, China, after the first human case of H10N8 virus infection was reported in the city. A total of 201 specimens tested positive for AIVs among 618 samples collected from 24 LPMs in Nanchang from December 2013 to January 2014. We found that the LPMs were heavily contaminated by AIVs, with H9, H10, and H5 being the predominant subtypes and more than half of the LPMs providing samples that were positive for the H10 subtype. Moreover, the coexistence of different subtypes was common in LPMs. Of the 201 positive samples, 20.9% (42/201) had mixed infections with AIVs of different HA subtypes. Of the 42 mixed infections, 50% (21/42) showed the coexistence of the H9 and H10 subtypes, with or without H5, and were from chicken samples. This indicated that the H10N8 virus probably originated from segment reassortment of the H9 and H10 subtypes.

  16. Will the next human influenza pandemic be caused by the virus of the avian flu A/H5N1? Arguments pro and counter.

    PubMed

    Doerr, H W; Varwig, Domenica; Allwinn, Regina; Cinatl, J

    2006-06-01

    In 1997, the avian influenza A subtype H5N1 that caused big outbreaks of fowl pest in mass poultry farming had emerged in Hong Kong. Its spread throughout Eurasia had given rise to concerns in terms of the possible imminence of the next human influenza pandemic. In this article, epidemiological and virological arguments supporting or declining this fear are outlined and discussed with regard to viral infectivity and pathogenicity.

  17. Predicting transmission of avian influenza A viruses from avian to human by using informative physicochemical properties.

    PubMed

    Wang, Jia; Ma, Chuang; Kou, Zheng; Zhou, Yan-Hong; Liu, Huai-Lan

    2013-01-01

    Some strains of avian influenza A virus (AIV) can directly transmit from their natural hosts to humans. These avian-to-human transmissions have continuously been reported to cause human deaths worldwide since 1997. Predicting whether AIV strains can transmit from avian to human is valuable for early warning of AIV strains with human pandemic potential. In this study, we constructed a computational model to predict avian-to-human transmission of AIV based on physicochemical properties. Initially, ninety signature positions in the inner protein sequences were extracted with the entropy method. These positions were then encoded with 531 physicochemical features. Subsequently, the optimal subset of these physicochemical features was mined with several feature selection methods. Finally, a support vector machine (SVM) model named A2H was established to integrate the selected optimal features. The experimental results of cross-validation and an independent test show that A2H has the capability of predicting transmission of AIV from avian to human.

  18. Phylogenetic analysis of hemagglutinin and neuraminidase genes of highly pathogenic avian influenza H5N1 Egyptian strains isolated from 2006 to 2008 indicates heterogeneity with multiple distinct sublineages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Eurasian lineage H5N1 Highly pathogenic avian influenza (HPAI) virus caused widespread outbreaks in Egypt in 2006 and eventually become enzootic in poultry. Although outbreaks have a seasonal pattern with most occurring during the cooler winter months, it remains unclear if this seasonality ref...

  19. Characterization of Avian Influenza and Newcastle Disease Viruses from Poultry in Libya.

    PubMed

    Kammon, Abdulwahab; Heidari, Alireza; Dayhum, Abdunaser; Eldaghayes, Ibrahim; Sharif, Monier; Monne, Isabela; Cattoli, Giovanni; Asheg, Abdulatif; Farhat, Milad; Kraim, Elforjani

    2015-09-01

    On March 2013, the Libyan poultry industry faced severe outbreaks due to mixed infections of APMV-1 (Newcastle disease) and low pathogenic avian influenza (AI) of the H9N2 subtype which were causing high mortality and great economic losses. APMV-1 and H9N2 were isolated and characterized. Genetic sequencing of the APMV-1/chicken/Libya/13VIR/ 7225-1/2013 isolate revealed the presence of a velogenic APMV-1 belonging to lineage 5 (GRRRQKR*F Lin.5) or genotype VII in class II, according to the nomenclature in use. Three AI viruses of the H9N2 subtype, namely A/avian/Libya/13VIR7225-2/2013, A/avian/Libya/13VIR7225-3/2013, and A/avian/Libya/13VIR7225-5/2013, were isolated and found to belong to the G1 lineage. Analysis of amino acid sequences showed that the analyzed H9N2 viruses contained the amino acid Leu at position 226 (H3 numbering) at the receptor binding site of the HA, responsible for human virus-like receptor specificity. On March 2014, an outbreak of highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was diagnosed in a backyard poultry farm in an eastern region of Libya. The H5N1 isolate (A/chicken/Libya/14VIR2749-16/2014) was detected by real time RT-PCR (rRT-PCR). Genetic characterization of the HA gene revealed that the identified subtype was highly pathogenic, belonged to the 2.2.1 lineage, and clustered with recent Egyptian viruses. This study revealed the presence of a velogenic APMV-1 genotype and of two influenza subtypes, namely HPAI H5N1 and H9N2, which are of major interest for public and animal health. Considering these findings, more investigations must be undertaken to establish and implement adequate influenza surveillance programs; this would allow better study of the epidemiology of APMV-1 genotype VII in Libya and evaluation of the current vaccination strategies.

  20. Novel avian-origin human influenza A(H7N9) can be transmitted between ferrets via respiratory droplets.

    PubMed

    Xu, Lili; Bao, Linlin; Deng, Wei; Dong, Libo; Zhu, Hua; Chen, Ting; Lv, Qi; Li, Fengdi; Yuan, Jing; Xiang, Zhiguang; Gao, Kai; Xu, Yanfeng; Huang, Lan; Li, Yanhong; Liu, Jiangning; Yao, Yanfeng; Yu, Pin; Li, Xiyan; Huang, Weijuan; Zhao, Xiang; Lan, Yu; Guo, Junfeng; Yong, Weidong; Wei, Qiang; Chen, Honglin; Zhang, Lianfeng; Qin, Chuan

    2014-02-15

    The outbreak of human infections caused by novel avian-origin influenza A(H7N9) in China since March 2013 underscores the need to better understand the pathogenicity and transmissibility of these viruses in mammals. In a ferret model, the pathogenicity of influenza A(H7N9) was found to be less than that of an influenza A(H5N1) strain but comparable to that of 2009 pandemic influenza A(H1N1), based on the clinical signs, mortality, virus dissemination, and results of histopathologic analyses. Influenza A(H7N9) could replicate in the upper and lower respiratory tract, the heart, the liver, and the olfactory bulb. It is worth noting that influenza A(H7N9) exhibited a low level of transmission between ferrets via respiratory droplets. There were 4 mutations in the virus isolated from the contact ferret: D678Y in the gene encoding PB2, R157K in the gene encoding hemagglutinin (H3 numbering), I109T in the gene encoding nucleoprotein, and T10I in the gene encoding neuraminidase. These data emphasized that avian-origin influenza A(H7N9) can be transmitted between mammals, highlighting its potential for human-to-human transmissibility.

  1. Human influenza is more effective than avian influenza at antiviral suppression in airway cells.

    PubMed

    Hsu, Alan Chen-Yu; Barr, Ian; Hansbro, Philip M; Wark, Peter A

    2011-06-01

    Airway epithelial cells are the initial site of infection with influenza viruses. The innate immune responses of airway epithelial cells to infection are important in limiting virus replication and spread. However, relatively little is known about the importance of this innate antiviral response to infection. Avian influenza viruses are a potential source of future pandemics; therefore, it is critical to examine the effectiveness of the host antiviral system to different influenza viruses. We used a human influenza (H3N2) and a low-pathogenic avian influenza (H11N9) to assess and compare the antiviral responses of Calu-3 cells. After infection, H3N2 replicated more effectively than the H11N9 in Calu-3 cells. This was not due to differential expression of sialic acid residues on Calu-3 cells, but was attributed to the interference of host antiviral responses by H3N2. H3N2 induced a delayed antiviral signaling and impaired type I and type III IFN induction compared with the H11N9. The gene encoding for nonstructural (NS) 1 protein was transfected into the bronchial epithelial cells (BECs), and the H3N2 NS1 induced a greater inhibition of antiviral responses compared with the H11N9 NS1. Although the low-pathogenic avian influenza virus was capable of infecting BECs, the human influenza virus replicated more effectively than avian influenza virus in BECs, and this was due to a differential ability of the two NS1 proteins to inhibit antiviral responses. This suggests that the subversion of human antiviral responses may be an important requirement for influenza viruses to adapt to the human host and cause disease.

  2. Avian influenza at both ends of a migratory flyway: characterizing viral genomic diversity to optimize surveillance plans for North America

    USGS Publications Warehouse

    Pearce, John M.; Ramey, Andrew M.; Flint, Paul L.; Koehler, Anson V.; Fleskes, Joseph P.; Franson, J. Christian; Hall, Jeffrey S.; Derksen, Dirk V.; Ip, Hon S.

    2009-01-01

    Although continental populations of avian influenza viruses are genetically distinct, transcontinental reassortment in low pathogenic avian influenza (LPAI) viruses has been detected in migratory birds. Thus, genomic analyses of LPAI viruses could serve as an approach to prioritize species and regions targeted by North American surveillance activities for foreign origin highly pathogenic avian influenza (HPAI). To assess the applicability of this approach, we conducted a phylogenetic and population genetic analysis of 68 viral genomes isolated from the northern pintail (Anas acuta) at opposite ends of the Pacific migratory flyway in North America. We found limited evidence for Asian LPAI lineages on wintering areas used by northern pintails in California in contrast to a higher frequency on breeding locales of Alaska. Our results indicate that the number of Asian LPAI lineages observed in Alaskan northern pintails, and the nucleotide composition of LPAI lineages, is not maintained through fall migration. Accordingly, our data indicate that surveillance of Pacific Flyway northern pintails to detect foreign avian influenza viruses would be most effective in Alaska. North American surveillance plans could be optimized through an analysis of LPAI genomics from species that demonstrate evolutionary linkages with European or Asian lineages and in regions that have overlapping migratory flyways with areas of HPAI outbreaks.

  3. Immediate early responses of avian tracheal epithelial cells to infection with highly pathogenic avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic (HP) avian influenza viruses (AIV) present an on going threat to the U.S. poultry industry. In order to develop new AIV control strategies it is necessary to understand the underlying mechanism of viral infection. Because the early events of AIV infection can occur on tracheal ep...

  4. Avian vacuolar myelinopathy outbreaks at a southeastern reservoir.

    PubMed

    Fischer, John R; Lewis-Weis, Lynn A; Tate, Cynthia M; Gaydos, Joseph K; Gerhold, Richard W; Poppenga, Robert H

    2006-07-01

    Avian vacuolar myelinopathy (AVM) is a neurologic disease of unknown etiology that affects bald eagles (Haliaeetus leucocephalus), American coots (Fulica americana), and several species of waterfowl. An unidentified neurotoxin is suspected as the cause of AVM, which has been documented at several reservoirs in the southeastern United States. We conducted diagnostic and epidemiologic studies annually during October-March from 1998-2004 at Clarks Hill/Strom Thurmond Lake on the Georgia/South Carolina border to better understand the disease. Avian vacuolar myelinopathy was confirmed or suspected as the cause of morbidity and mortality of 28 bald eagles, 16 Canada geese (Branta canadensis), six American coots, two great-horned owls (Bubo virginianus), and one killdeer (Charadrius vociferus). Active surveillance during the outbreaks yielded annual average prevalence of vacuolar lesions in 17-94% of coots, but not in 10 beavers (Castor canadensis), four raccoons (Procyon lotor), and one gray fox (Urocyon cinereoargenteus) collected for the study. Brain lesions were not apparent in 30 Canada geese collected and examined in June 2002. The outbreaks at this location from 1998-2004 represent the most significant AVM-related bald eagle mortality since the Arkansas epornitics of 1994-95 and 1996-97, as well as the first confirmation of the disease in members of Strigiformes and Charadriiformes.

  5. Incorporating risk communication into highly pathogenic avian influenza preparedness and response efforts.

    PubMed

    Voss, Shauna J; Malladi, Sasidhar; Sampedro, Fernando; Snider, Tim; Goldsmith, Timothy; Hueston, William D; Lauer, Dale C; Halvorson, David A

    2012-12-01

    A highly pathogenic avian influenza (HPAI) outbreak in the United States will initiate a federal emergency response effort that will consist of disease control and eradication efforts, including quarantine and movement control measures. These movement control measures will not only apply to live animals but also to animal products. However, with current egg industry "just-in-time" production practices, limited storage is available to hold eggs. As a result, stop movement orders can have significant unintended negative consequences, including severe disruptions to the food supply chain. Because stakeholders' perceptions of risk vary, waiting to initiate communication efforts until an HPAI event occurs can hinder disease control efforts, including the willingness of producers to comply with the response, and also can affect consumers' demand for the product. A public-private-academic partnership was formed to assess actual risks involved in the movement of egg industry products during an HPAI event through product specific, proactive risk assessments. The risk analysis process engaged a broad representation of stakeholders and promoted effective risk management and communication strategies before an HPAI outbreak event. This multidisciplinary team used the risk assessments in the development of the United States Department of Agriculture, Highly Pathogenic Avian Influenza Secure Egg Supply Plan, a comprehensive response plan that strives to maintain continuity of business. The collaborative approach that was used demonstrates how a proactive risk communication strategy that involves many different stakeholders can be valuable in the development of a foreign animal disease response plan and build working relationships, trust, and understanding.

  6. Circulating avian influenza viruses closely related to the 1918 virus have pandemic potential.

    PubMed

    Watanabe, Tokiko; Zhong, Gongxun; Russell, Colin A; Nakajima, Noriko; Hatta, Masato; Hanson, Anthony; McBride, Ryan; Burke, David F; Takahashi, Kenta; Fukuyama, Satoshi; Tomita, Yuriko; Maher, Eileen A; Watanabe, Shinji; Imai, Masaki; Neumann, Gabriele; Hasegawa, Hideki; Paulson, James C; Smith, Derek J; Kawaoka, Yoshihiro

    2014-06-11

    Wild birds harbor a large gene pool of influenza A viruses that have the potential to cause influenza pandemics. Foreseeing and understanding this potential is important for effective surveillance. Our phylogenetic and geographic analyses revealed the global prevalence of avian influenza virus genes whose proteins differ only a few amino acids from the 1918 pandemic influenza virus, suggesting that 1918-like pandemic viruses may emerge in the future. To assess this risk, we generated and characterized a virus composed of avian influenza viral segments with high homology to the 1918 virus. This virus exhibited pathogenicity in mice and ferrets higher than that in an authentic avian influenza virus. Further, acquisition of seven amino acid substitutions in the viral polymerases and the hemagglutinin surface glycoprotein conferred respiratory droplet transmission to the 1918-like avian virus in ferrets, demonstrating that contemporary avian influenza viruses with 1918 virus-like proteins may have pandemic potential.

  7. Mapping the risk of avian influenza in wild birds in the US

    PubMed Central

    2010-01-01

    Background Avian influenza virus (AIV) is an important public health issue because pandemic influenza viruses in people have contained genes from viruses that infect birds. The H5 and H7 AIV subtypes have periodically mutated from low pathogenicity to high pathogenicity form. Analysis of the geographic distribution of AIV can identify areas where reassortment events might occur and how high pathogenicity influenza might travel if it enters wild bird populations in the US. Modelling the number of AIV cases is important because the rate of co-infection with multiple AIV subtypes increases with the number of cases and co-infection is the source of reassortment events that give rise to new strains of influenza, which occurred before the 1968 pandemic. Aquatic birds in the orders Anseriformes and Charadriiformes have been recognized as reservoirs of AIV since the 1970s. However, little is known about influenza prevalence in terrestrial birds in the order Passeriformes. Since passerines share the same habitat as poultry, they may be more effective transmitters of the disease to humans than aquatic birds. We analyze 152 passerine species including the American Robin (Turdus migratorius) and Swainson's Thrush (Catharus ustulatus). Methods We formulate a regression model to predict AIV cases throughout the US at the county scale as a function of 12 environmental variables, sampling effort, and proximity to other counties with influenza outbreaks. Our analysis did not distinguish between types of influenza, including low or highly pathogenic forms. Results Analysis of 13,046 cloacal samples collected from 225 bird species in 41 US states between 2005 and 2008 indicates that the average prevalence of influenza in passerines is greater than the prevalence in eight other avian orders. Our regression model identifies the Great Plains and the Pacific Northwest as high-risk areas for AIV. Highly significant predictors of AIV include the amount of harvested cropland and the first

  8. Detection of evolutionarily distinct avian influenza a viruses in antarctica.

    PubMed

    Hurt, Aeron C; Vijaykrishna, Dhanasekaran; Butler, Jeffrey; Baas, Chantal; Maurer-Stroh, Sebastian; Silva-de-la-Fuente, M Carolina; Medina-Vogel, Gonzalo; Olsen, Bjorn; Kelso, Anne; Barr, Ian G; González-Acuña, Daniel

    2014-05-06

    ABSTRACT Distinct lineages of avian influenza viruses (AIVs) are harbored by spatially segregated birds, yet significant surveillance gaps exist around the globe. Virtually nothing is known from the Antarctic. Using virus culture, molecular analysis, full genome sequencing, and serology of samples from Adélie penguins in Antarctica, we confirmed infection by H11N2 subtype AIVs. Their genetic segments were distinct from all known contemporary influenza viruses, including South American AIVs, suggesting spatial separation from other lineages. Only in the matrix and polymerase acidic gene phylogenies did the Antarctic sequences form a sister relationship to South American AIVs, whereas distant phylogenetic relationships were evident in all other gene segments. Interestingly, their neuraminidase genes formed a distant relationship to all avian and human influenza lineages, and the polymerase basic 1 and polymerase acidic formed a sister relationship to the equine H3N8 influenza virus lineage that emerged during 1963 and whose avian origins were previously unknown. We also estimated that each gene segment had diverged for 49 to 80 years from its most closely related sequences, highlighting a significant gap in our AIV knowledge in the region. We also show that the receptor binding properties of the H11N2 viruses are predominantly avian and that they were unable to replicate efficiently in experimentally inoculated ferrets, suggesting their continuous evolution in avian hosts. These findings add substantially to our understanding of both the ecology and the intra- and intercontinental movement of Antarctic AIVs and highlight the potential risk of an incursion of highly pathogenic AIVs into this fragile environment. IMPORTANCE Avian influenza viruses (AIVs) are typically maintained and spread by migratory birds, resulting in the existence of distinctly different viruses around the world. However, AIVs have not previously been detected in Antarctica. In this study, we

  9. Detecting Spread of Avian Influenza A(H7N9) Virus Beyond China.

    PubMed

    Millman, Alexander J; Havers, Fiona; Iuliano, A Danielle; Davis, C Todd; Sar, Borann; Sovann, Ly; Chin, Savuth; Corwin, Andrew L; Vongphrachanh, Phengta; Douangngeun, Bounlom; Lindblade, Kim A; Chittaganpitch, Malinee; Kaewthong, Viriya; Kile, James C; Nguyen, Hien T; Pham, Dong V; Donis, Ruben O; Widdowson, Marc-Alain

    2015-05-01

    During February 2013-March 2015, a total of 602 human cases of low pathogenic avian influenza A(H7N9) were reported; no autochthonous cases were reported outside mainland China. In contrast, since highly pathogenic avian influenza A(H5N1) reemerged during 2003 in China, 784 human cases in 16 countries and poultry outbreaks in 53 countries have been reported. Whether the absence of reported A(H7N9) outside mainland China represents lack of spread or lack of detection remains unclear. We compared epidemiologic and virologic features of A(H5N1) and A(H7N9) and used human and animal influenza surveillance data collected during April 2013-May 2014 from 4 Southeast Asia countries to assess the likelihood that A(H7N9) would have gone undetected during 2014. Surveillance in Vietnam and Cambodia detected human A(H5N1) cases; no A(H7N9) cases were detected in humans or poultry in Southeast Asia. Although we cannot rule out the possible spread of A(H7N9), substantial spread causing severe disease in humans is unlikely.

  10. Detecting Spread of Avian Influenza A(H7N9) Virus Beyond China

    PubMed Central

    Havers, Fiona; Iuliano, A. Danielle; Davis, C. Todd; Sar, Borann; Sovann, Ly; Chin, Savuth; Corwin, Andrew L.; Vongphrachanh, Phengta; Douangngeun, Bounlom; Lindblade, Kim A.; Chittaganpitch, Malinee; Kaewthong, Viriya; Kile, James C.; Nguyen, Hien T.; Pham, Dong V.; Donis, Ruben O.; Widdowson, Marc-Alain

    2015-01-01

    During February 2013–March 2015, a total of 602 human cases of low pathogenic avian influenza A(H7N9) were reported; no autochthonous cases were reported outside mainland China. In contrast, since highly pathogenic avian influenza A(H5N1) reemerged during 2003 in China, 784 human cases in 16 countries and poultry outbreaks in 53 countries have been reported. Whether the absence of reported A(H7N9) outside mainland China represents lack of spread or lack of detection remains unclear. We compared epidemiologic and virologic features of A(H5N1) and A(H7N9) and used human and animal influenza surveillance data collected during April 2013–May 2014 from 4 Southeast Asia countries to assess the likelihood that A(H7N9) would have gone undetected during 2014. Surveillance in Vietnam and Cambodia detected human A(H5N1) cases; no A(H7N9) cases were detected in humans or poultry in Southeast Asia. Although we cannot rule out the possible spread of A(H7N9), substantial spread causing severe disease in humans is unlikely. PMID:25897654

  11. Intercontinental genetic structure and gene flow in Dunlin (Calidris alpina), a potential vector of avian influenza

    PubMed Central

    Miller, Mark P; Haig, Susan M; Mullins, Thomas D; Ruan, Luzhang; Casler, Bruce; Dondua, Alexei; Gates, H River; Johnson, J Matthew; Kendall, Steve; Tomkovich, Pavel S; Tracy, Diane; Valchuk, Olga P; Lanctot, Richard B

    2015-01-01

    Waterfowl (Anseriformes) and shorebirds (Charadriiformes) are the most common wild vectors of influenza A viruses. Due to their migratory behavior, some may transmit disease over long distances. Migratory connectivity studies can link breeding and nonbreeding grounds while illustrating potential interactions among populations that may spread diseases. We investigated Dunlin (Calidris alpina), a shorebird with a subspecies (C. a. arcticola) that migrates from nonbreeding areas endemic to avian influenza in eastern Asia to breeding grounds in northern Alaska. Using microsatellites and mitochondrial DNA, we illustrate genetic structure among six subspecies: C. a. arcticola,C. a. pacifica,C. a. hudsonia,C. a. sakhalina,C. a. kistchinski, and C. a. actites. We demonstrate that mitochondrial DNA can help distinguish C. a. arcticola on the Asian nonbreeding grounds with >70% accuracy depending on their relative abundance, indicating that genetics can help determine whether C. a. arcticola occurs where they may be exposed to highly pathogenic avian influenza (HPAI) during outbreaks. Our data reveal asymmetric intercontinental gene flow, with some C. a. arcticola short-stopping migration to breed with C. a. pacifica in western Alaska. Because C. a. pacifica migrates along the Pacific Coast of North America, interactions between these subspecies and other taxa provide route for transmission of HPAI into other parts of North America. PMID:25685191

  12. Intercontinental genetic structure and gene flow in Dunlin (Calidris alpina), a potential vector of avian influenza.

    PubMed

    Miller, Mark P; Haig, Susan M; Mullins, Thomas D; Ruan, Luzhang; Casler, Bruce; Dondua, Alexei; Gates, H River; Johnson, J Matthew; Kendall, Steve; Tomkovich, Pavel S; Tracy, Diane; Valchuk, Olga P; Lanctot, Richard B

    2015-02-01

    Waterfowl (Anseriformes) and shorebirds (Charadriiformes) are the most common wild vectors of influenza A viruses. Due to their migratory behavior, some may transmit disease over long distances. Migratory connectivity studies can link breeding and nonbreeding grounds while illustrating potential interactions among populations that may spread diseases. We investigated Dunlin (Calidris alpina), a shorebird with a subspecies (C. a. arcticola) that migrates from nonbreeding areas endemic to avian influenza in eastern Asia to breeding grounds in northern Alaska. Using microsatellites and mitochondrial DNA, we illustrate genetic structure among six subspecies: C. a. arcticola,C. a. pacifica,C. a. hudsonia,C. a. sakhalina,C. a. kistchinski, and C. a. actites. We demonstrate that mitochondrial DNA can help distinguish C. a. arcticola on the Asian nonbreeding grounds with >70% accuracy depending on their relative abundance, indicating that genetics can help determine whether C. a. arcticola occurs where they may be exposed to highly pathogenic avian influenza (HPAI) during outbreaks. Our data reveal asymmetric intercontinental gene flow, with some C. a. arcticola short-stopping migration to breed with C. a. pacifica in western Alaska. Because C. a. pacifica migrates along the Pacific Coast of North America, interactions between these subspecies and other taxa provide route for transmission of HPAI into other parts of North America.

  13. [An overview of surveillance of avian influenza viruses in wild birds].

    PubMed

    Zhu, Yun; Shi, Jing-Hong; Shu, Yue-Long

    2014-05-01

    Wild birds (mainly Anseriformes and Charadriiformes) are recognized as the natural reservoir of avian influenza viruses (AIVs). The long-term surveillance of AIVs in wild birds has been conducted in North America and Europe since 1970s. More and more surveillance data revealed that all the HA and NA subtypes of AIVs were identified in the wild ducks, shorebirds, and gulls, and the AIVs circulating in wild birds were implicated in the outbreaks of AIVs in poultry and humans. Therefore, the AIVs in wild birds pose huge threat to poultry industry and human health. To gain a better understanding of the ecology and epidemiology of AIVs in wild birds, we summarize the transmission of AIVs between wild birds, poultry, and humans, the main results of surveillance of AIVs in wild birds worldwide and methods for surveillance, and the types of samples and detection methods for AIVs in wild birds, which would be vital for the effective control of avian influenza and response to possible influenza pandemic.

  14. Sialic acid content in human saliva and anti-influenza activity against human and avian influenza viruses.

    PubMed

    Limsuwat, Nattavatchara; Suptawiwat, Ornpreya; Boonarkart, Chompunuch; Puthavathana, Pilaipan; Wiriyarat, Witthawat; Auewarakul, Prasert

    2016-03-01

    It was shown previously that human saliva has higher antiviral activity against human influenza viruses than against H5N1 highly pathogenic avian influenza viruses, and that the major anti-influenza activity was associated with sialic-acid-containing molecules. To further characterize the differential susceptibility to saliva among influenza viruses, seasonal influenza A and B virus, pandemic H1N1 virus, and 15 subtypes of avian influenza virus were tested for their susceptibility to human and chicken saliva. Human saliva showed higher hemagglutination inhibition (HI) and neutralization (NT) titers against seasonal influenza A virus and the pandemic H1N1 viruses than against influenza B virus and most avian influenza viruses, except for H9N2 and H12N9 avian influenza viruses, which showed high HI and NT titers. To understand the nature of sialic-acid-containing anti-influenza factors in human saliva, α2,3- and α2,6-linked sialic acid was measured in human saliva samples using a lectin binding and dot blot assay. α2,6-linked sialic acid was found to be more abundant than α2,3-linked sialic acid, and a seasonal H1N1 influenza virus bound more efficiently to human saliva than an H5N1 virus in a dot blot analysis. These data indicated that human saliva contains the sialic acid type corresponding to the binding preference of seasonal influenza viruses.

  15. Active surveillance of avian influenza viruses in Egyptian poultry, 2015.

    PubMed

    Kayed, A S; Kandeil, A; El Shesheny, R; Ali, M A; Kayali, G

    2016-10-02

    Surveillance for avian influenza viruses in Egyptian poultry has been conducted since 2009. Up to 2011, all the detected viruses were H5N1, and the overall prevalence was 5%. In 2011, H9N2 viruses were observed to be co-circulating and co-infecting the same hosts as H5N1 viruses. Since then, the detection rate has increased to around 10%. In the 2014-2015 winter season, H5N1 was circulating heavily in poultry flocks and caused an unprecedented number of human infections. In contrast, surveillance in the last quarter of 2015 indicated a near absence of H5N1 in Egyptian poultry. Surveillance for avian influenza viruses must continue in Egypt to monitor further developments in H5N1 circulation in poultry.

  16. Avian influenza vaccines against H5N1 'bird flu'.

    PubMed

    Li, Chengjun; Bu, Zhigao; Chen, Hualan

    2014-03-01

    H5N1 avian influenza viruses (AIVs) have spread widely to more than 60 countries spanning three continents. To control the disease, vaccination of poultry is implemented in many of the affected countries, especially in those where H5N1 viruses have become enzootic in poultry and wild birds. Recently, considerable progress has been made toward the development of novel avian influenza (AI) vaccines, especially recombinant virus vector vaccines and DNA vaccines. Here, we will discuss the recent advances in vaccine development and use against H5N1 AIV in poultry. Understanding the properties of the available, novel vaccines will allow for the establishment of rational vaccination protocols, which in turn will help the effective control and prevention of H5N1 AI.

  17. [From diagnosis to the detection of avian influenza virus].

    PubMed

    Wunderli, W

    2007-11-01

    Until now the avian influenza A (H5N1) virus is only adapted to birds. But even so infections in man are observed sporadically. Why is this possible and how big is the risk that the virus becomes fully adapted to man so that he can be transmitted easily from man to man. Two major mechanisms for the adaptation to a new host have been described: Adaptation by the accumulation of mutations in important places of the genome and adaptation through the exchange of genome segments between two different types of viruses. But there are indications that the adaptation is not linked to only one event. It is probably a multifactor event where its requirements are not all known or understood. Until now avian influenza is not adapted to man. Infection is primarily observed after close contact with infected birds or their contaminated secretions. It seems that the virus needs to reach the lower respiratory tract in order to be able to infect. The disease starts with the clinical symptoms of influenza but progresses rapidly involving primarily the lower respiratory tract causing sometimes live threatening complications. Because of the similarity of symptoms with normal flu laboratory testing is necessary to clarify the situation. Ideally a rapid test would give in a short time a result. Unfortunately this type of test shows insufficient sensitivity and for this reason is not recommended to screen suspect cases for avian influenza. For this reason the detection of the avian virus by RT-PCR in throat swabs is the method of choice in order to be able to confirm or exclude a suspect case.

  18. Surveillance of avian influenza viruses in Papua New Guinean poultry, June 2011 to April 2012.

    PubMed

    Jonduo, Marinjho; Wong, Sook-San; Kapo, Nime; Ominipi, Paskalis; Abdad, Mohammad; Siba, Peter; McKenzie, Pamela; Webby, Richard; Horwood, Paul

    2013-01-01

    We investigated the circulation of avian influenza viruses in poultry populations throughout Papua New Guinea to assess the risk to the poultry industry and human health. Oropharyngeal swabs, cloacal swabs and serum were collected from 537 poultry from 14 provinces of Papua New Guinea over an 11-month period (June 2011 through April 2012). Virological and serological investigations were undertaken to determine the prevalence of avian influenza viruses. Neither influenza A viruses nor antibodies were detected in any of the samples. This study demonstrated that avian influenza viruses were not circulating at detectable levels in poultry populations in Papua New Guinea during the sampling period. However, avian influenza remains a significant risk to Papua New Guinea due to the close proximity of countries having previously reported highly pathogenic avian influenza viruses and the low biosecurity precautions associated with the rearing of most poultry populations in the country.

  19. An exploration of how perceptions of the risk of avian influenza in poultry relate to urbanization in Vietnam.

    PubMed

    Finucane, Melissa L; Nghiem, Tuyen; Saksena, Sumeet; Nguyen, Lam; Fox, Jefferson; Spencer, James H; Thau, Trinh Dinh

    2014-01-01

    This research examined how perceptions of outbreaks of highly pathogenic avian influenza (HPAI) subtype H5N1 in poultry are related to urbanization. Via in-depth interviews with village leaders, household farmers, and large farm operators in modern, transitional, and traditional communes in the north of Vietnam, we explored behaviors, attitudes, cultural values, and traditions that might amplify or attenuate HPAI outbreaks. We also explored conceptualizations of urbanization and its impacts on animal husbandry and disease outbreaks. Qualitative theme analyses identified the key impacts, factors related to HPAI outbreaks, and disease prevention and management strategies. The analyses also highlighted how urbanization improves some aspects of life (e.g., food security, family wealth and health, more employment opportunities, and improved infrastructure), but simultaneously poses significant challenges for poultry farming and disease management. Awareness of qualitative aspects of HPAI risk perceptions and behaviors and how they vary with urbanization processes may help to improve the prevention and management of emerging infectious diseases.

  20. Low pathogenic avian influenza isolates from wild birds replicate and transmit via contact in ferrets without prior adaptation.

    PubMed

    Driskell, Elizabeth A; Pickens, Jennifer A; Humberd-Smith, Jennifer; Gordy, James T; Bradley, Konrad C; Steinhauer, David A; Berghaus, Roy D; Stallknecht, David E; Howerth, Elizabeth W; Tompkins, Stephen Mark

    2012-01-01

    Direct transmission of avian influenza viruses to mammals has become an increasingly investigated topic during the past decade; however, isolates that have been primarily investigated are typically ones originating from human or poultry outbreaks. Currently there is minimal comparative information on the behavior of the innumerable viruses that exist in the natural wild bird host. We have previously demonstrated the capacity of numerous North American avian influenza viruses isolated from wild birds to infect and induce lesions in the respiratory tract of mice. In this study, two isolates from shorebirds that were previously examined in mice (H1N9 and H6N1 subtypes) are further examined through experimental inoculations in the ferret with analysis of viral shedding, histopathology, and antigen localization via immunohistochemistry to elucidate pathogenicity and transmission of these viruses. Using sequence analysis and glycan binding analysis, we show that these avian viruses have the typical avian influenza binding pattern, with affinity for cell glycoproteins/glycolipids having terminal sialic acid (SA) residues with α 2,3 linkage [Neu5Ac(α2,3)Gal]. Despite the lack of α2,6 linked SA binding, these AIVs productively infected both the upper and lower respiratory tract of ferrets, resulting in nasal viral shedding and pulmonary lesions with minimal morbidity. Moreover, we show that one of the viruses is able to transmit to ferrets via direct contact, despite its binding affinity for α 2,3 linked SA residues. These results demonstrate that avian influenza viruses, which are endemic in aquatic birds, can potentially infect humans and other mammals without adaptation. Finally this work highlights the need for additional study of the wild bird subset of influenza viruses in regard to surveillance, transmission, and potential for reassortment, as they have zoonotic potential.

  1. Movements of birds and avian influenza from Asia into Alaska.

    PubMed

    Winker, Kevin; McCracken, Kevin G; Gibson, Daniel D; Pruett, Christin L; Meier, Rose; Huettmann, Falk; Wege, Michael; Kulikova, Irina V; Zhuravlev, Yuri N; Perdue, Michael L; Spackman, Erica; Suarez, David L; Swayne, David E

    2007-04-01

    Asian-origin avian influenza (AI) viruses are spread in part by migratory birds. In Alaska, diverse avian hosts from Asia and the Americas overlap in a region of intercontinental avifaunal mixing. This region is hypothesized to be a zone of Asia-to-America virus transfer because birds there can mingle in waters contaminated by wild-bird-origin AI viruses. Our 7 years of AI virus surveillance among waterfowl and shorebirds in this region (1998-2004; 8,254 samples) showed remarkably low infection rates (0.06%). Our findings suggest an Arctic effect on viral ecology, caused perhaps by low ecosystem productivity and low host densities relative to available water. Combined with a synthesis of avian diversity and abundance, intercontinental host movements, and genetic analyses, our results suggest that the risk and probably the frequency of intercontinental virus transfer in this region are relatively low.

  2. Avian influenza surveillance in backyard poultry of Argentina.

    PubMed

    Buscaglia, C; Espinosa, C; Terrera, M V; De Benedetti, R

    2007-03-01

    Avian influenza (AI) is an exotic disease in Argentina. A surveillance program for AI was conducted in backyard poultry during 1998-2005 in two regions: 1) region A, which included the avian population in the provinces that border Brazil, Bolivia, and Paraguay, and 2) region B, which included the rest of the provinces of the country. More than 8000 serum samples were tested for antibodies by enzyme-linked immunosorbent assay and/or agar gel immunodiffusion tests, and more than 18,000 tracheal and cloacal swabs were tested for virus by isolation in embryonated specific-pathogen-free eggs. This study was part of the AI prevention program in Argentina, which includes other avian populations such as commercial poultry and all the controls for importation and exportation of live birds. The results from backyard poultry were negative for AI.

  3. Research update on avian influenza viruses and H1N1 influenza virus in poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) remains an economic threat to commercial poultry throughout the world by negatively impacting animal health and trade. Southeast Poultry Research Laboratory conducts research on many areas related to AI including pathogenesis and transmission studies, use of vaccination, virus ...

  4. Fatal H5N6 Avian Influenza Virus Infection in a Domestic Cat and Wild Birds in China.

    PubMed

    Yu, Zhijun; Gao, Xiaolong; Wang, Tiecheng; Li, Yanbing; Li, Yongcheng; Xu, Yu; Chu, Dong; Sun, Heting; Wu, Changjiang; Li, Shengnan; Wang, Haijun; Li, Yuanguo; Xia, Zhiping; Lin, Weishi; Qian, Jun; Chen, Hualan; Xia, Xianzhu; Gao, Yuwei

    2015-06-02

    H5N6 avian influenza viruses (AIVs) may pose a potential human risk as suggested by the first documented naturally-acquired human H5N6 virus infection in 2014. Here, we report the first cases of fatal H5N6 avian influenza virus (AIV) infection in a domestic cat and wild birds. These cases followed human H5N6 infections in China and preceded an H5N6 outbreak in chickens. The extensive migration routes of wild birds may contribute to the geographic spread of H5N6 AIVs and pose a risk to humans and susceptible domesticated animals, and the H5N6 AIVs may spread from southern China to northern China by wild birds. Additional surveillance is required to better understand the threat of zoonotic transmission of AIVs.

  5. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .../H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of...

  6. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .../H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of...

  7. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .../H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of...

  8. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .../H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of...

  9. 9 CFR 146.14 - Diagnostic surveillance program for H5/H7 low pathogenic avian influenza.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .../H7 low pathogenic avian influenza. 146.14 Section 146.14 Animals and Animal Products ANIMAL AND PLANT... pathogenic avian influenza. (a) The Official State Agency must develop a diagnostic surveillance program for H5/H7 low pathogenic avian influenza for all poultry in the State. The exact provisions of...

  10. Interventions to reduce zoonotic and pandemic risks from avian influenza in Asia.

    PubMed

    Peiris, J S Malik; Cowling, Benjamin J; Wu, Joseph T; Feng, Luzhao; Guan, Yi; Yu, Hongjie; Leung, Gabriel M

    2016-02-01

    Novel influenza viruses continue to emerge, posing zoonotic and potentially pandemic threats, such as with avian influenza A H7N9. Although closure of live poultry markets (LPMs) in mainland China stopped H7N9 outbreaks temporarily, closures are difficult to sustain, in view of poultry production and marketing systems in China. In this Personal View, we summarise interventions taken in mainland China, and provide evidence for other more sustainable but effective interventions in the live poultry market systems that reduce risk of zoonotic influenza including rest days, and banning live poultry in markets overnight. Separation of live ducks and geese from land-based (ie, non-aquatic) poultry in LPM systems can reduce the risk of emergence of zoonotic and epizootic viruses at source. In view of evidence that H7N9 is now endemic in over half of the provinces in mainland China and will continue to cause recurrent zoonotic disease in the winter months, such interventions should receive high priority in China and other Asian countries at risk of H7N9 through cross-border poultry movements. Such generic measures are likely to reduce known and future threats of zoonotic influenza.

  11. Wetland environmental conditions associated with the risk of avian cholera outbreaks and the abundance of Pasteurella multocida

    USGS Publications Warehouse

    Blanchong, Julie A.; Samuel, Michael D.; Goldberg, Diana R.; Shadduck, Daniel J.; Creekmore, L.H.

    2006-01-01

    Avian cholera is a significant infectious disease affecting waterfowl across North America and occurs worldwide among various avian species. Despite the importance of this disease, little is known about the factors that cause avian cholera outbreaks and what management strategies might be used to reduce disease mortality. Previous studies indicated that wetland water conditions may affect survival and transmission of Pasteurella multocida, the agent that causes avian cholera. These studies hypothesized that water conditions affect the likelihood that avian cholera outbreaks will occur in specific wetlands. To test these predictions, we collected data from avian cholera outbreak and non-outbreak (control) wetlands throughout North America (wintera??spring 1995a??1996 to 1998a??1999) to evaluate whether water conditions were associated with outbreaks. Conditional logistic regression analysis on paired outbreak and non-outbreak wetlands indicated no significant association between water conditions and the risk of avian cholera outbreaks. For wetlands where avian cholera outbreaks occurred, linear regression showed that increased eutrophic nutrient concentrations (Potassium [K], nitrate [NO3], phosphorus [P], and phosphate [PO3]) were positively related to the abundance of P. multocida recovered from water and sediment samples. Wetland protein concentration and an El Ni??o event were also associated with P. multocida abundance. Our results indicate that wetland water conditions are not strongly associated with the risk of avian cholera outbreaks; however, some variables may play a role in the abundance of P. multocida bacteria and might be important in reducing the severity of avian cholera outbreaks.

  12. Highly pathogenic avian influenza H5N1 virus could partly be evacuated by pregnant BALB/c mouse during abortion or preterm delivery.

    PubMed

    Xu, Lili; Bao, Linlin; Deng, Wei; Qin, Chuan

    2011-07-08

    The highly pathogenic avian influenza H5N1 virus is one of candidates for future pandemic. Since H5N1 viruses had previously been isolated only from avian species, the outbreak raised questions about the ability of these viruses to cause severe disease and death in humans. Pregnant women are at increased risk for influenza-associated illness and death. However, little is known about whether influenza viruses could transmit to the fetus through the placenta, and the effects of abortion and preterm delivery to maternal influenza infection are not well understood. We found that the H5N1 viruses could vertical transmit to the fetus through the placenta in the BALB/c mouse model, and the viruses could partly be evacuated by the pregnant mice during abortion or preterm delivery. This study may further our understanding about the transmission of this highly pathogenic avian influenza viruses, supply optimized clinical treatment method for pregnant women, and shed some light on better preventing and controlling for future potential outbreak of H5N1 influenza pandemic.

  13. Swine Worker Precautions During Suspected Outbreaks of Influenza in Swine.

    PubMed

    Paccha, Blanca; Neira-Ramirez, Victor; Gibbs, Shawn; Torremorell, Montserrat; Rabinowitz, Peter M

    2016-05-01

    To assess the behavior and precautions that swine workers take during suspected influenza outbreaks in swine, six commercial swine farms in the Midwest U.S. region were visited when influenza outbreaks were suspected in herds during the fall/winter of 2012-2013. Use of personal protective equipment (PPE) and type of task performed by swine workers were recorded based on farm representative reports. Between one to two workers were working on the day of each visit and spent approximately 25 minutes performing work-related tasks that placed them in close contact with the swine. The most common tasks reported were walking the aisles (27%), handling pigs (21%), and handling equipment (21%). The most common PPE were boots (100%), heavy rubber gloves (75%), and dedicated nondisposable clothing (74%). Use of N95 respirators was reported at three farms. Hand hygiene practices were common in most of the farms, but reportedly performed for only 20% to 25% of tasks.

  14. Genomic and phylogenetic characterization of novel, recombinant H5N2 avian influenza virus strains isolated from vaccinated chickens with clinical symptoms in China.

    PubMed

    Xu, Huaiying; Meng, Fang; Huang, Dihai; Sheng, Xiaodan; Wang, Youling; Zhang, Wei; Chang, Weishan; Wang, Leyi; Qin, Zhuoming

    2015-02-25

    Infection of poultry with diverse lineages of H5N2 avian influenza viruses has been documented for over three decades in different parts of the world, with limited outbreaks caused by this highly pathogenic avian influenza virus. In the present study, three avian H5N2 influenza viruses, A/chicken/Shijiazhuang/1209/2013, A/chicken/Chiping/0321/2014, and A/chicken/Laiwu/0313/2014, were isolated from chickens with clinical symptoms of avian influenza. Complete genomic and phylogenetic analyses demonstrated that all three isolates are novel recombinant viruses with hemagglutinin (HA) and matrix (M) genes derived from H5N1, and remaining genes derived from H9N2-like viruses. The HA cleavage motif in all three strains (PQIEGRRRKR/GL) is characteristic of a highly pathogenic avian influenza virus strain. These results indicate the occurrence of H5N2 recombination and highlight the importance of continued surveillance of the H5N2 subtype virus and reformulation of vaccine strains.

  15. Antigenic cartographic analysis of H7 avian influenza viruses with chicken serum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antigenic cartography is a relatively new method that can be used to evaluate the antigenic relatedness among avian influenza virus isolates. Evaluation of antigenic relationships among avian influenza viruses can be applied to vaccine design and to understanding the evolution of the virus. Initia...

  16. Current status and future needs in diagnostics and vaccines for high pathogenicity avian influenza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 1959, 31 epizootics of high pathogenicity avian influenza (HPAI) have occurred in birds. Rapid detection and accurate identification of HPAI has been critical to controlling such epizootics in poultry. Specific paradigms for the detection and diagnosis of avian influenza virus (AIV) in poultry...

  17. Domestic pigs have low susceptibility to H5N1 highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. Genetic reassortment of H5N1 highly pathogenic avian influenza viruses (HPAI) with currently circulating human influenza A strains is one possibility that could lead to efficient human-to-human transmissibility. Domestic pigs which are susceptible to infection with both human and avian ...

  18. Strategies and challenges to the development and application of avian influenza vaccines in birds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccines against avian influenza (AI) have had limited use in poultry until 2002, when the H5N1 high pathogenicity avian influenza (HPAI) spread from China to Hong Kong, and then multiple southeast Asian countries in 2003-2004, and to Europe in 2005, and Africa in 2006. Over the past 40 years, AI ...

  19. Susceptibility of swine to H5 and H7 low pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of pigs to become infected with low pathogenic avian influenza (LPAI) viruses from an avian reservoir, and then generate mammalian adaptable influenza A viruses (IAVs) is difficult to determine. Yet, it is an important link to understanding any relationship between LPAI virus ecology and...

  20. Social and Economic Impacts of School Influenza Outbreaks in England: Survey of Caregivers

    ERIC Educational Resources Information Center

    Thorrington, Dominic; Balasegaram, Sooria; Cleary, Paul; Hay, Catherine; Eames, Ken

    2017-01-01

    Background: Influenza is a cause of considerable morbidity in England, particularly among children. A total of 39% of all influenza-attributable general practitioner consultations and 37% of all influenza-attributable hospital admissions occur in those aged under 15 years. Few studies have quantified the impact of influenza outbreaks on families.…

  1. Overview of the 2007 Australian outbreak of equine influenza.

    PubMed

    Webster, W R

    2011-07-01

    In August 2007 equine influenza (EI) was diagnosed in Australia's horse population following the failure to contain infection in quarantine after the importation of one or more infected horses. The response had many unique features, and addressed financial, social, economic, human and animal health, trade and recovery issues. The outbreak and the associated control measures had a vast impact on individual horse owners, the horse industry and associated sectors in both infected and uninfected states.

  2. Epidemiology and ecology of highly pathogenic avian influenza with particular emphasis on South East Asia.

    PubMed

    Martin, V; Sims, L; Lubroth, J; Pfeiffer, D; Slingenbergh, J; Domenech, J

    2006-01-01

    Highly pathogenic avian influenza (HPAI) has been recognised as a serious viral disease of poultry since 1878. The number of recorded outbreaks of HPAI has increased globally in the past 10 years culminating in 2004 with the unprecedented outbreaks of H5N1 HPAI involving at least nine countries in East and South-East Asia. Apart from the geographical extent of these outbreaks and apparent rapid spread, this epidemic has a number of unique features, among which is the role that asymptomatic domestic waterfowl and more particularly free-ranging ducks play in the transmission of highly pathogenic H5N1. Field epidemiological studies have been conducted by the Food and Agriculture Organization and several collaborative centres to explore the factors that could have led to a change from infection to the emergence of widespread disease in 2003-2004 and 2005. Domestic waterfowl, specific farming practices and agro-ecological environments have been identified to play a key role in the occurrence, maintenance and spread of HPAI. Although there are some questions that remain unanswered regarding the origins of the 2004 outbreaks, the current understanding of the ecology and epidemiology of the disease should now lead to the development of adapted targeted surveillance studies and control strategies.

  3. Avian influenza pandemic threat and health systems response.

    PubMed

    Bradt, David A; Drummond, Christina M

    2006-01-01

    Avian influenza is a panzootic and recurring human epidemic with pandemic potential. Pandemic requirements for a viral pathogen are: a novel virus must emerge against which the general population has little or no immunity; the new virus must be able to replicate in humans and cause serious illness; and the new virus must be efficiently transmitted from person to person. At present, only the first two conditions have been met. Nonetheless, influenza pandemics are considered inevitable. Expected worldwide human mortality from a moderate pandemic scenario is 45 million people or more than 75% of the current annual global death burden. Although mathematical models have predicted that an emerging pandemic could be contained at its source, this conclusion remains controversial among public health experts. The Terrestrial Animal Health Code and International Health Regulations are enforceable legal instruments integral to pandemic preparedness. Donor support in financial, material and technical assistance remains critical to disease control efforts - particularly in developing countries where avian influenza predominately occurs at present. Personal protective equipment kits, decontamination kits and specimen collection kits in lightweight, portable packages are becoming standardized. Air transport border control measures purporting to delay importation and spread of human avian influenza are scientifically controversial. National pandemic plans prioritize beneficiary access to antiviral drugs and vaccines for some countries. Other medical commodities including ventilators, hospital beds and intensive care units remain less well prioritized in national plans. These resources will play virtually no role in care of the overwhelming majority of patients worldwide in a pandemic. Prehospital care, triage and acute care all require additional professional standardization for the high patient volumes anticipated in a pandemic.

  4. Control of avian influenza: philosophy and perspectives on behalf of migratory birds

    USGS Publications Warehouse

    Friend, Milton

    1992-01-01

    Aquatic birds are considered the primary reservoir for influenza A viruses (Nettles et al., 1987).  However, there is little concern about avian influenza among conservation agencies responsible for the welfare of those species.  IN contrast, the poultry industry has great concern about avian influenza and view aquatic birds as a source for infection of poultry flocks.  In some instances, differences in these perspectives created conflict between conservation agencies and the poultry industry.  I speak on behalf of migratory birds, but philosophy and perspectives offered are intended to be helpful to the poultry industry in their efforts to combat avian influenza.

  5. Impact of vaccines and vaccination on global control of avian influenza.

    PubMed

    Swayne, David E

    2012-12-01

    There are 30 recorded epizootics of H5 or H7 high pathogenicity avian influenza (HPAI) from 1959 to early 2012. The largest of these epizootics, affecting more birds and countries than the other 29 epizootics combined, has been the H5N1 HPAI, which began in Guangdong China in 1996, and has killed or resulted in culling of over 250 million poultry and/or wild birds in 63 countries. Most countries have used stamping-out programs in poultry to eradicate H5N1 HPAI. However, 15 affected countries have utilized vaccination as a part of the control strategy. Greater than 113 billion doses were used from 2002 to 2010. Five countries have utilized nationwide routine vaccination programs, which account for 99% of vaccine used: 1) China (90.9%), 2) Egypt (4.6%), 3) Indonesia (2.3%), 4) Vietnam (1.4%), and 5) Hong Kong Special Administrative Region (< 0.01%). Mongolia, Kazakhstan, France, The Netherlands, Cote d'Ivoire, Sudan, North Korea, Israel, Russia, and Pakistan used < 1% of the avian influenza (AI) vaccine, and the AI vaccine was targeted to either preventive or emergency vaccination programs. Inactivated AI vaccines have accounted for 95.5% of vaccine used, and live recombinant virus vaccines have accounted for 4.5% of vaccine used. The latter are primarily recombinant Newcastle disease vectored vaccine with H5 influenza gene insert. China, Indonesia, Egypt, and Vietnam implemented vaccination after H5N1 HPAI became enzootic in domestic poultry. Bangladesh and eastern India have enzootic H5N1 HPAI and have not used vaccination in their control programs. Clinical disease and mortality have been prevented in chickens, human cases have been reduced, and rural livelihoods and food security have been maintained by using vaccines during HPAI outbreaks. However, field outbreaks have occurred in vaccinating countries, primarily because of inadequate coverage in the target species, but vaccine failures have occurred following antigenic drift in field viruses within China, Egypt

  6. Avian influenza H5N1 viral and bird migration networks in Asia

    USGS Publications Warehouse

    Tian, Huaivu; Zhou, Sen; Dong, Lu; Van Boeckel, Thomas P.; Cui, Yujun; Newman, Scott H.; Takekawa, John Y.; Prosser, Diann J.; Xiao, Xiangming; Wu, Yarong; Cazelles, Bernard; Huang, Shanqian; Yang, Ruifu; Grenfell, Bryan T.; Xu, Bing

    2015-01-01

    The spatial spread of the highly pathogenic avian influenza virus H5N1 and its long-term persistence in Asia have resulted in avian influenza panzootics and enormous economic losses in the poultry sector. However, an understanding of the regional long-distance transmission and seasonal patterns of the virus is still lacking. In this study, we present a phylogeographic approach to reconstruct the viral migration network. We show that within each wild fowl migratory flyway, the timing of H5N1 outbreaks and viral migrations are closely associated, but little viral transmission was observed between the flyways. The bird migration network is shown to better reflect the observed viral gene sequence data than other networks and contributes to seasonal H5N1 epidemics in local regions and its large-scale transmission along flyways. These findings have potentially far-reaching consequences, improving our understanding of how bird migration drives the periodic reemergence of H5N1 in Asia.

  7. Prevention and control of highly pathogenic avian influenza with particular reference to H5N1.

    PubMed

    Capua, Ilaria; Cattoli, Giovanni

    2013-12-05

    Highly pathogenic avian influenza viruses of the H5N1 subtype emerged in Far East Asia in 1996 and spread in three continents in a period of 10 or less years. Before this event, avian influenza infections caused by highly pathogenic viruses had occurred in many different countries, causing minor or major outbreaks, and had always been eradicated. The unique features of these H5N1 viruses combined to the geographic characteristics of the area of emergence, including animal husbandry practices, has caused this subtype to become endemic in several Asian countries, as well as in Egypt. Our aim is to review the direct and indirect control strategies with the rationale for use, advantages and shortcomings - particularly resulting from practicalities linked to field application and economic constraints. Certainly, in low income countries which have applied vaccination, this has resulted in a failure to eradicate the infection. Although the number of infected countries has dropped from over 40 (2006) to under 10 (2012), the extensive circulation of H5N1 in areas with high poultry density still represents a risk for public and animal health.

  8. Updated values for molecular diagnosis for highly pathogenic avian influenza virus.

    PubMed

    Sakurai, Akira; Shibasaki, Futoshi

    2012-08-01

    Highly pathogenic avian influenza (HPAI) viruses of the H5N1 strain pose a pandemic threat. H5N1 strain virus is extremely lethal and contagious for poultry. Even though mortality is 59% in infected humans, these viruses do not spread efficiently between humans. In 1997, an outbreak of H5N1 strain with human cases occurred in Hong Kong. This event highlighted the need for rapid identification and subtyping of influenza A viruses (IAV), not only to facilitate surveillance of the pandemic potential of avian IAV, but also to improve the control and treatment of infected patients. Molecular diagnosis has played a key role in the detection and typing of IAV in recent years, spurred by rapid advances in technologies for detection and characterization of viral RNAs and proteins. Such technologies, which include immunochromatography, quantitative real-time PCR, super high-speed real-time PCR, and isothermal DNA amplification, are expected to contribute to faster and easier diagnosis and typing of IAV.

  9. Poultry Farm Vulnerability and Risk of Avian Influenza Re-Emergence in Thailand

    PubMed Central

    Souris, Marc; Selenic, Dubravka; Khaklang, Supaluk; Ninphanomchai, Suwannapa; Minet, Guy; Gonzalez, Jean-Paul; Kittayapong, Pattamaporn

    2014-01-01

    Highly pathogenic avian influenza (HPAI) remains of concern as a major potential global threat. This article evaluates and discusses the level of vulnerability of medium and small-scale commercial poultry production systems in Thailand related to avian influenza virus re-emergence. We developed a survey on 173 farms in Nakhon Pathom province to identify the global level of vulnerability of farms, and to determine which type of farms appears to be more vulnerable. We used official regulations (the Good Agricultural Practices and Livestock Farm Standards regulations) as a reference to check whether these regulations are respected. The results show that numerous vulnerability factors subsist and could represent, in case of HPAI re-emergence, a significant risk for a large spread of the disease. Bio-security, farm management and agro-commercial practices are particularly significant on that matter: results show that these practices still need a thorough improvement on a majority of farms. Farms producing eggs (especially duck eggs) are more vulnerable than farms producing meat. Those results are consistent with the type of farms that were mostly affected during the 2004–2008 outbreaks in Thailand. PMID:24413705

  10. Avian influenza H5N1 viral and bird migration networks in Asia

    PubMed Central

    Tian, Huaiyu; Zhou, Sen; Dong, Lu; Van Boeckel, Thomas P.; Cui, Yujun; Newman, Scott H.; Takekawa, John Y.; Prosser, Diann J.; Xiao, Xiangming; Wu, Yarong; Cazelles, Bernard; Huang, Shanqian; Yang, Ruifu; Grenfell, Bryan T.; Xu, Bing

    2015-01-01

    The spatial spread of the highly pathogenic avian influenza virus H5N1 and its long-term persistence in Asia have resulted in avian influenza panzootics and enormous economic losses in the poultry sector. However, an understanding of the regional long-distance transmission and seasonal patterns of the virus is still lacking. In this study, we present a phylogeographic approach to reconstruct the viral migration network. We show that within each wild fowl migratory flyway, the timing of H5N1 outbreaks and viral migrations are closely associated, but little viral transmission was observed between the flyways. The bird migration network is shown to better reflect the observed viral gene sequence data than other networks and contributes to seasonal H5N1 epidemics in local regions and its large-scale transmission along flyways. These findings have potentially far-reaching consequences, improving our understanding of how bird migration drives the periodic reemergence of H5N1 in Asia. PMID:25535385

  11. Avian influenza H5N1 viral and bird migration networks in Asia.

    PubMed

    Tian, Huaiyu; Zhou, Sen; Dong, Lu; Van Boeckel, Thomas P; Cui, Yujun; Newman, Scott H; Takekawa, John Y; Prosser, Diann J; Xiao, Xiangming; Wu, Yarong; Cazelles, Bernard; Huang, Shanqian; Yang, Ruifu; Grenfell, Bryan T; Xu, Bing

    2015-01-06

    The spatial spread of the highly pathogenic avian influenza virus H5N1 and its long-term persistence in Asia have resulted in avian influenza panzootics and enormous economic losses in the poultry sector. However, an understanding of the regional long-distance transmission and seasonal patterns of the virus is still lacking. In this study, we present a phylogeographic approach to reconstruct the viral migration network. We show that within each wild fowl migratory flyway, the timing of H5N1 outbreaks and viral migrations are closely associated, but little viral transmission was observed between the flyways. The bird migration network is shown to better reflect the observed viral gene sequence data than other networks and contributes to seasonal H5N1 epidemics in local regions and its large-scale transmission along flyways. These findings have potentially far-reaching consequences, improving our understanding of how bird migration drives the periodic reemergence of H5N1 in Asia.

  12. A global model of avian influenza prediction in wild birds: the importance of northern regions.

    PubMed

    Herrick, Keiko A; Huettmann, Falk; Lindgren, Michael A

    2013-06-13

    Avian influenza virus (AIV) is enzootic to wild birds, which are its natural reservoir. The virus exhibits a large degree of genetic diversity and most of the isolated strains are of low pathogenicity to poultry. Although AIV is nearly ubiquitous in wild bird populations, highly pathogenic H5N1 subtypes in poultry have been the focus of most modeling efforts. To better understand viral ecology of AIV, a predictive model should 1) include wild birds, 2) include all isolated subtypes, and 3) cover the host's natural range, unbounded by artificial country borders. As of this writing, there are few large-scale predictive models of AIV in wild birds. We used the Random Forests algorithm, an ensemble data-mining machine-learning method, to develop a global-scale predictive map of AIV, identify important predictors, and describe the environmental niche of AIV in wild bird populations. The model has an accuracy of 0.79 and identified northern areas as having the highest relative predicted risk of outbreak. The primary niche was described as regions of low annual rainfall and low temperatures. This study is the first global-scale model of low-pathogenicity avian influenza in wild birds and underscores the importance of largely unstudied northern regions in the persistence of AIV.

  13. Ecology of avian influenza viruses in a changing world

    PubMed Central

    Vandegrift, Kurt J.; Sokolow, Susanne H.; Daszak, Peter; Kilpatrick, A. Marm

    2010-01-01

    Influenza A virus infections result in ~500,000 human deaths per year and many more sub-lethal infections. Wild birds are recognized as the ancestral host of influenza A viruses, and avian viruses have contributed genetic material to most human viruses, including subtypes H5N1 and H1N1. Thus, influenza virus transmission in wild and domestic animals and humans is intimately connected. Here we review how anthropogenic change, including human population growth, land use, climate change, globalization of trade, agricultural intensification, and changes in vaccine technology may alter the evolution and transmission of influenza viruses. Evidence suggests that viral transmission in domestic poultry, spillover to other domestic animals, wild birds and humans, and the potential for subsequent pandemic spread, are all increasing. We highlight four areas in need of research: drivers of viral subtype dynamics; ecological and evolutionary determinants of transmissibility and virulence in birds and humans; the impact of changing land use and climate on hosts, viruses, and transmission; and the impact of influenza viruses on wild bird hosts, including their ability to migrate while shedding virus. PMID:20536820

  14. Surveillance and characterization of low pathogenic H5 avian influenza viruses isolated from wild migratory birds in Korea.

    PubMed

    Baek, Yun Hee; Pascua, Philippe Noriel Q; Song, Min-Suk; Park, Kuk Jin; Kwon, Hyeok-il; Lee, Jun Han; Kim, Seok-Yong; Moon, Ho-Jin; Kim, Chul-Joong; Choi, Young Ki

    2010-06-01

    Migratory waterfowls are the natural reservoir of influenza A viruses. However, interspecies transmission had occasionally caused outbreaks in various hosts including humans. To characterize the genetic origins of H5 avian influenza viruses isolated from migratory birds in South Korea, phylogenetic analysis were conducted. A total of 53 H5 viruses were isolated between October 2005 and November 2008. Full genetic characterization indicated that most of these viruses belong to the Eurasian-like avian lineage. However, some segments of the AB/Korea/W235/07 and the AB/Korea/W236/07 isolates were clustered with North American lineage viruses rather than those of the Eurasian lineage, suggesting the occurrence of reassortment between these two avian virus lineages. Phylogenetic analysis further demonstrated that the H5N2 and H5N3 virus isolates were of the low pathogenicity H5 phenotype. The H5 viruses appear to be antigenically similar to each other, but could be distinguished from a recent HPAI H5N1 (EM/Korea/W149/06) virus by hemagglutinin inhibition (HI) assays. Experimental inoculation of representative viruses indicated that certain isolates, particularly AB/Korea/W163/07 (H5N2), could be detected in trachea and lungs of chickens but none could be transmitted by direct contact. Furthermore, all of the viruses could be detected in mice lung without prior adaptation which is indicative of their pathogenic potential in a mammalian host. Overall, our results emphasize the important role that migratory birds play in the perpetuation, transport, and reassortment of avian influenza viruses stressing the need for continued surveillance of influenza virus activity in these avian populations.

  15. Influenza A and B Virus Attachment to Respiratory Tract in Marine Mammals

    PubMed Central

    van Riel, Debby; van de Bildt, Marco W.G; Osterhaus, Albert; Kuiken, Thijs

    2012-01-01

    Patterns of virus attachment to the respiratory tract of 4 marine mammal species were determined for avian and human influenza viruses. Attachment of avian influenza A viruses (H4N5) and (H7N7) and human influenza B viruses to trachea and bronchi of harbor seals is consistent with reported influenza outbreaks in this species. PMID:22516350

  16. Isolation and genetic characterization of avian influenza viruses and a Newcastle disease virus from wild birds in Barbados: 2003-2004.

    PubMed

    Douglas, Kirk O; Lavoie, Marc C; Kim, L Mia; Afonso, Claudio L; Suarez, David L

    2007-09-01

    Zoonotic transmission of an H5N1 avian influenza A virus to humans in 2003-present has generated increased public health and scientific interest in the prevalence and variability of influenza A viruses in wild birds and their potential threat to human health. Migratory waterfowl and shorebirds are regarded as the primordial reservoir of all influenza A viral subtypes and have been repeatedly implicated in avian influenza outbreaks in domestic poultry and swine. All of the 16 hemagglutinin and nine neuraminidase influenza subtypes have been isolated from wild birds, but waterfowl of the order Anseriformes are the most commonly infected. Using 9-to-11-day-old embryonating chicken egg culture, virus isolation attempts were conducted on 168 cloacal swabs from various resident, imported, and migratory bird species in Barbados during the months of July to October of 2003 and 2004. Hemagglutination assay and reverse transcription-polymerase chain reaction were used to screen all allantoic fluids for the presence of hemagglutinating agents and influenza A virus. Hemagglutination positive-influenza negative samples were also tested for Newcastle disease virus (NDV), which is also found in waterfowl. Two influenza A viruses and one NDV were isolated from Anseriformes (40/168), with isolation rates of 5.0% (2/40) and 2.5% (1/40), respectively, for influenza A and NDV. Sequence analysis of the influenza A virus isolates showed them to be H4N3 viruses that clustered with other North American avian influenza viruses. This is the first report of the presence of influenza A virus and NDV in wild birds in the English-speaking Caribbean.

  17. Current developments in avian influenza vaccines, including safety of vaccinated birds as food.

    PubMed

    Swayne, D E; Suarez, D L

    2007-01-01

    Until recently, most vaccines against avian influenza were based on oil-emulsified inactivated low- or high-pathogenicity viruses. Now, recombinant fowl pox and avian paramyxovirus type 1 vaccines with avian influenza H5 gene inserts (+ or - N1 gene insert) are available and licensed. New technologies might overcome existing limitations to make available vaccines that can be grown in tissue culture systems for more rapid production; provide optimized protection, as a result of closer genetic relations to field viruses; allow mass administration by aerosol, in drinking-water or in ovo; and allow easier strategies for identifying infected birds within vaccinated populations (DIVA). The technologies include avian influenza viruses with partial gene deletions, avian influenza-Newcastle disease virus chimeras, vectored vaccines such as adenoviruses and Marek's disease virus, and subunit vaccines. These new methods should be licensed only after their purity, safety, efficacy and potency against avian influenza viruses have been demonstrated, and, for live vectored vaccines, restriction of viral transmission to unvaccinated birds. Use of vaccines in countries affected by highly pathogenic avian influenza will not only protect poultry but will provide additional safety for consumers. Experimental studies have shown that birds vaccinated against avian influenza have no virus in meat and minimal amounts in eggs after HPAI virus challenge, and that replication and shedding from their respiratory and alimentary tracts is greatly reduced.

  18. Genesis and Dissemination of Highly Pathogenic H5N6 Avian Influenza Viruses.

    PubMed

    Yang, Lei; Zhu, Wenfei; Li, Xiaodan; Bo, Hong; Zhang, Ye; Zou, Shumei; Gao, Rongbao; Dong, Jie; Zhao, Xiang; Chen, Wenbing; Dong, Libo; Zou, Xiaohui; Xing, Yongcai; Wang, Dayan; Shu, Yuelong

    2017-03-01

    Clade 2.3.4.4 highly pathogenic avian influenza viruses (H5Nx) have spread from Asia to other parts of the world. Since 2014, human infections with clade 2.3.4.4 highly pathogenic avian influenza H5N6 viruses have been continuously reported in China. To investigate the genesis of the virus, we analyzed 123 H5 or N6 environmental viruses sampled from live-poultry markets or farms from 2012 to 2015 in Mainland China. Our results indicated that clade 2.3.4.4 H5N2/N6/N8 viruses shared the same hemagglutinin gene as originated in early 2009. From 2012 to 2015, the genesis of highly pathogenic avian influenza H5N6 viruses occurred via two independent pathways. Three major reassortant H5N6 viruses (reassortants A, B, and C) were generated. Internal genes of reassortant A and B viruses and reassortant C viruses derived from clade 2.3.2.1c H5N1 and H9N2 viruses, respectively. Many mammalian adaption mutations and antigenic variations were detected among the three reassortant viruses. Considering their wide circulation and dynamic reassortment in poultry, we highly recommend close monitoring of the viruses in poultry and humans. IMPORTANCE Since 2014, clade 2.3.4.4 highly pathogenic avian influenza (H5Nx) viruses have caused many outbreaks in both wild and domestic birds globally. Severe human cases with novel H5N6 viruses in this group were also reported in China in 2014 and 2015. To investigate the genesis of the genetic diversity of these H5N6 viruses, we sequenced 123 H5 or N6 environmental viruses sampled from 2012 to 2015 in China. Sequence analysis indicated that three major reassortants of these H5N6 viruses had been generated by two independent evolutionary pathways. The H5N6 reassortant viruses had been detected in most provinces of southern China and neighboring countries. Considering the mammalian adaption mutations and antigenic variation detected, the spread of these viruses should be monitored carefully due to their pandemic potential.

  19. Adaptive nowcasting of influenza outbreaks using Google searches

    PubMed Central

    Preis, Tobias; Moat, Helen Susannah

    2014-01-01

    Seasonal influenza outbreaks and pandemics of new strains of the influenza virus affect humans around the globe. However, traditional systems for measuring the spread of flu infections deliver results with one or two weeks delay. Recent research suggests that data on queries made to the search engine Google can be used to address this problem, providing real-time estimates of levels of influenza-like illness in a population. Others have however argued that equally good estimates of current flu levels can be forecast using historic flu measurements. Here, we build dynamic ‘nowcasting’ models; in other words, forecasting models that estimate current levels of influenza, before the release of official data one week later. We find that when using Google Flu Trends data in combination with historic flu levels, the mean absolute error (MAE) of in-sample ‘nowcasts’ can be significantly reduced by 14.4%, compared with a baseline model that uses historic data on flu levels only. We further demonstrate that the MAE of out-of-sample nowcasts can also be significantly reduced by between 16.0% and 52.7%, depending on the length of the sliding training interval. We conclude that, using adaptive models, Google Flu Trends data can indeed be used to improve real-time influenza monitoring, even when official reports of flu infections are available with only one week's delay. PMID:26064532

  20. Sparse evidence for equine or avian influenza virus infections among Mongolian adults with animal exposures.

    PubMed

    Khurelbaatar, Nyamdavaa; Krueger, Whitney S; Heil, Gary L; Darmaa, Badarchiin; Ulziimaa, Daramragchaa; Tserennorov, Damdindorj; Baterdene, Ariungerel; Anderson, Benjamin D; Gray, Gregory C

    2013-11-01

    In recent years, Mongolia has experienced recurrent epizootics of equine influenza virus (EIV) among its 2·1 million horses and multiple incursions of highly pathogenic avian influenza (HPAI) virus via migrating birds. No human EIV or HPAI infections have been reported. In 2009, 439 adults in Mongolia were enrolled in a population-based study of zoonotic influenza transmission. Enrollment sera were examined for serological evidence of infection with nine avian, three human, and one equine influenza virus strains. Seroreactivity was sparse among participants suggesting little human risk of zoonotic influenza infection.

  1. Influenza outbreaks at two correctional facilities -- Maine, March 2011.

    PubMed

    2012-04-06

    On March 8, 2011, the Maine Center for Disease Control and Prevention (Maine CDC) received a laboratory report of a positive influenza specimen from an intensive-care unit patient who was an inmate at a prison (facility A). That same day, the state medical examiner notified Maine CDC of an inmate death suspected to be have been caused by influenza at another, nearby prison (facility B). On March 9, Correctional Medical Services (CMS), which provides health services to both facilities, notified Maine CDC that additional inmates and staff members from both facilities were ill with influenza-like illness (ILI). CMS reported that influenza vaccination coverage among inmates was very low (<10%), and coverage among staff members was unknown but believed to be low. Maine CDC assisted CMS and the Maine Department of Corrections (DOC) in conducting an epidemiologic investigation to gather more information about the two cases, initiate case finding, and implement control measures, which included emphasizing respiratory hygiene and cough etiquette, closing both facilities to new admissions and transfers, and offering vaccination and antiviral drugs to inmates and staff members. This report describes the public health response and highlights the importance of collaboration between public health and corrections officials to identify quickly and mitigate communicable disease outbreaks in these settings, where influenza can spread rapidly in a large and concentrated population. Correctional facilities should strongly consider implementing the following measures during each influenza season: 1) offering influenza vaccination to all inmates and staff members, 2) conducting education on respiratory etiquette, and 3) making documentation regarding the vaccination status of inmates and staff members accessible.

  2. 9 CFR 147.9 - Standard test procedures for avian influenza.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Blood Testing Procedures § 147.9 Standard test procedures for avian influenza. (a) The agar gel immunodiffusion (AGID) test should be considered the basic screening test for antibodies to Type A influenza viruses. The AGID test is used to detect circulating antibodies to Type A influenza...

  3. 9 CFR 147.9 - Standard test procedures for avian influenza.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Blood Testing Procedures § 147.9 Standard test procedures for avian influenza. (a) The agar gel immunodiffusion (AGID) test should be considered the basic screening test for antibodies to Type A influenza viruses. The AGID test is used to detect circulating antibodies to Type A influenza...

  4. 9 CFR 147.9 - Standard test procedures for avian influenza.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Blood Testing Procedures § 147.9 Standard test procedures for avian influenza. (a) The agar gel immunodiffusion (AGID) test should be considered the basic screening test for antibodies to Type A influenza viruses. The AGID test is used to detect circulating antibodies to Type A influenza...

  5. 9 CFR 147.9 - Standard test procedures for avian influenza.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Blood Testing Procedures § 147.9 Standard test procedures for avian influenza. (a) The agar gel immunodiffusion (AGID) test should be considered the basic screening test for antibodies to Type A influenza viruses. The AGID test is used to detect circulating antibodies to Type A influenza...

  6. 9 CFR 147.9 - Standard test procedures for avian influenza.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Blood Testing Procedures § 147.9 Standard test procedures for avian influenza. (a) The agar gel immunodiffusion (AGID) test should be considered the basic screening test for antibodies to Type A influenza viruses. The AGID test is used to detect circulating antibodies to Type A influenza...

  7. Pathogenesis of novel reassortant avian influenza virus A (H5N8) Isolates in the ferret.

    PubMed

    Kim, Heui Man; Kim, Chi-Kyeong; Lee, Nam-Joo; Chu, Hyuk; Kang, Chun; Kim, Kisoon; Lee, Joo-Yeon

    2015-07-01

    Outbreaks of avian influenza virus H5N8 first occurred in 2014, and spread to poultry farms in Korea. Although there was no report of human infection by this subtype, it has the potential to threaten human public health. Therefore, we evaluated the pathogenesis of H5N8 viruses in ferrets. Two representative Korean H5N8 strains did not induce mortality and significant respiratory signs after an intranasal challenge in ferrets. However, ferrets intratracheally infected with A/broiler duck/Korea/Buan2/2014 virus showed dose-dependent mortality. Although the Korean H5N8 strains were classified as the HPAI virus, possessing multiple basic amino acids in the cleavage site of the hemagglutinin sequence, they did not produce pathogenesis in ferrets challenged intranasally, similar to the natural infection route. These results could be useful for public health by providing the pathogenic characterization of H5N8 viruses.

  8. 2.1 Natural History of Highly Pathogenic Avian Influenza H5N1

    PubMed Central

    Sonnberg, Stephanie; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    The ecology of highly pathogenic avian influenza (HPAI) H5N1 has significantly changed from sporadic outbreaks in terrestrial poultry to persistent circulation in terrestrial and aquatic poultry and potentially in wild waterfowl. A novel genotype of HPAI H5N1 arose in 1996 in southern China and through ongoing mutation, reassortment, and natural selection, has diverged into distinct lineages and expanded into multiple reservoir hosts. The evolution of Goose/Guangdong-lineage highly pathogenic H5N1 viruses is ongoing: while stable interactions exist with some reservoir hosts, these viruses are continuing to evolve and adapt to others, and pose an un-calculable risk to sporadic hosts, including humans. PMID:23735535

  9. Predicting Avian Influenza Co-Infection with H5N1 and H9N2 in Northern Egypt

    PubMed Central

    Young, Sean G.; Carrel, Margaret; Malanson, George P.; Ali, Mohamed A.; Kayali, Ghazi

    2016-01-01

    Human outbreaks with avian influenza have been, so far, constrained by poor viral adaptation to non-avian hosts. This could be overcome via co-infection, whereby two strains share genetic material, allowing new hybrid strains to emerge. Identifying areas where co-infection is most likely can help target spaces for increased surveillance. Ecological niche modeling using remotely-sensed data can be used for this purpose. H5N1 and H9N2 influenza subtypes are endemic in Egyptian poultry. From 2006 to 2015, over 20,000 poultry and wild birds were tested at farms and live bird markets. Using ecological niche modeling we identified environmental, behavioral, and population characteristics of H5N1 and H9N2 niches within Egypt. Niches differed markedly by subtype. The subtype niches were combined to model co-infection potential with known occurrences used for validation. The distance to live bird markets was a strong predictor of co-infection. Using only single-subtype influenza outbreaks and publicly available ecological data, we identified areas of co-infection potential with high accuracy (area under the receiver operating characteristic (ROC) curve (AUC) 0.991). PMID:27608035

  10. Avian influenza virus (H5N1); effects of physico-chemical factors on its survival.

    PubMed

    Shahid, Muhammad Akbar; Abubakar, Muhammad; Hameed, Sajid; Hassan, Shamsul

    2009-03-28

    Present study was performed to determine the effects of physical and chemical agents on infective potential of highly pathogenic avian influenza (HPAI) H5N1 (local strain) virus recently isolated in Pakistan during 2006 outbreak. H5N1 virus having titer 10(8.3) ELD(50)/ml was mixed with sterilized peptone water to get final dilution of 4HA units and then exposed to physical (temperature, pH and ultraviolet light) and chemical (formalin, phenol crystals, iodine crystals, CID 20, virkon-S, zeptin 10%, KEPCIDE 300, KEPCIDE 400, lifebuoy, surf excel and caustic soda) agents. Harvested amnio-allantoic fluid (AAF) from embryonated chicken eggs inoculated with H5N1 treated virus (0.2 ml/egg) was subjected to haemagglutination (HA) and haemagglutination inhibition (HI) tests. H5N1 virus lost infectivity after 30 min at 56 degrees C, after 1 day at 28 degrees C but remained viable for more than 100 days at 4 degrees C. Acidic pH (1, 3) and basic pH (11, 13) were virucidal after 6 h contact time; however virus retained infectivity at pH 5 (18 h), 7 and 9 (more than 24 h). UV light was proved ineffectual in inactivating virus completely even after 60 min. Soap (lifebuoy), detergent (surf excel) and alkali (caustic soda) destroyed infectivity after 5 min at 0.1, 0.2 and 0.3% dilution. All commercially available disinfectants inactivated virus at recommended concentrations. Results of present study would be helpful in implementing bio-security measures at farms/hatcheries levels in the wake of avian influenza virus (AIV) outbreak.

  11. Evidence of infection by H5N2 highly pathogenic avian influenza viruses in healthy wild waterfowl

    USGS Publications Warehouse

    Gaidet, N.; Cattoli, G.; Hammoumi, S.; Newman, S.H.; Hagemeijer, W.; Takekawa, J.Y.; Cappelle, J.; Dodman, T.; Joannis, T.; Gil, P.; Monne, I.; Fusaro, A.; Capua, I.; Manu, S.; Micheloni, P.; Ottosson, U.; Mshelbwala, J.H.; Lubroth, J.; Domenech, J.; Monicat, F.

    2008-01-01

    The potential existence of a wild bird reservoir for highly pathogenic avian influenza (HPAI) has been recently questioned by the spread and the persisting circulation of H5N1 HPAI viruses, responsible for concurrent outbreaks in migratory and domestic birds over Asia, Europe, and Africa. During a large-scale surveillance programme over Eastern Europe, the Middle East, and Africa, we detected avian influenza viruses of H5N2 subtype with a highly pathogenic (HP) viral genotype in healthy birds of two wild waterfowl species sampled in Nigeria. We monitored the survival and regional movements of one of the infected birds through satellite telemetry, providing a rare evidence of a non-lethal natural infection by an HP viral genotype in wild birds. Phylogenetic analysis of the H5N2 viruses revealed close genetic relationships with H5 viruses of low pathogenicity circulating in Eurasian wild and domestic ducks. In addition, genetic analysis did not reveal known gallinaceous poultry adaptive mutations, suggesting that the emergence of HP strains could have taken place in either wild or domestic ducks or in non-gallinaceous species. The presence of coexisting but genetically distinguishable avian influenza viruses with an HP viral genotype in two cohabiting species of wild waterfowl, with evidence of non-lethal infection at least in one species and without evidence of prior extensive circulation of the virus in domestic poultry, suggest that some strains with a potential high pathogenicity for poultry could be maintained in a community of wild waterfowl.

  12. Avian Influenza Viruses, Inflammation, and CD8+ T Cell Immunity

    PubMed Central

    Wang, Zhongfang; Loh, Liyen; Kedzierski, Lukasz; Kedzierska, Katherine

    2016-01-01

    Avian influenza viruses (AIVs) circulate naturally in wild aquatic birds, infect domestic poultry, and are capable of causing sporadic bird-to-human transmissions. AIVs capable of infecting humans include a highly pathogenic AIV H5N1, first detected in humans in 1997, and a low pathogenic AIV H7N9, reported in humans in 2013. Both H5N1 and H7N9 cause severe influenza disease in humans, manifested by acute respiratory distress syndrome, multi-organ failure, and high mortality rates of 60% and 35%, respectively. Ongoing circulation of H5N1 and H7N9 viruses in wild birds and poultry, and their ability to infect humans emphasizes their epidemic and pandemic potential and poses a public health threat. It is, thus, imperative to understand the host immune responses to the AIVs so we can control severe influenza disease caused by H5N1 or H7N9 and rationally design new immunotherapies and vaccines. This review summarizes our current knowledge on AIV epidemiology, disease symptoms, inflammatory processes underlying the AIV infection in humans, and recent studies on universal pre-existing CD8+ T cell immunity to AIVs. Immune responses driving the host recovery from AIV infection in patients hospitalized with severe influenza disease are also discussed. PMID:26973644

  13. The scientific rationale for the World Organisation for Animal Health standards and recommendations on avian influenza.

    PubMed

    Pasick, J; Kahn, S

    2014-12-01

    The World Organisation for Animal Health (OIE) prescribes standards for the diagnosis and control of avian influenza, as well as health measures for safe trade in birds and avian products, which are based on up-to-date scientific information and risk management principles, consistent with the role of the OIE as a reference standard-setting body for the World Trade Organization (WTO). These standards and recommendations continue to evolve, reflecting advances in technology and scientific understanding of this important zoonotic disease. The avian influenza viruses form part of the natural ecosystem by virtue of their ubiquitous presence in wild aquatic birds, a fact that human intervention cannot change. For the purposes of the Terrestrial Animal Health Code (Terrestrial Code), avian influenza is defined as an infection of poultry. However, the scope of the OIE standards and recommendations is not restricted to poultry, covering the diagnosis, early detection and management of avian influenza, including sanitary measures for trade in birds and avian products. The best way to manage avian influenza-associated risks to human and animal health is for countries to conduct surveillance using recommended methods, to report results in a consistent and transparent manner, and to applythe sanitary measures described in the Terrestrial Code. Surveillance for and timely reporting of avian influenza in accordance with OIE standards enable the distribution of relevant, up-to-date information to the global community.

  14. Large-scale avian influenza surveillance in wild birds throughout the United States.

    PubMed

    Bevins, Sarah N; Pedersen, Kerri; Lutman, Mark W; Baroch, John A; Schmit, Brandon S; Kohler, Dennis; Gidlewski, Thomas; Nolte, Dale L; Swafford, Seth R; DeLiberto, Thomas J

    2014-01-01

    Avian influenza is a viral disease that primarily infects wild and domestic birds, but it also can be transmitted to a variety of mammals. In 2006, the United States of America Departments of Agriculture and Interior designed a large-scale, interagency surveillance effort that sought to determine if highly pathogenic avian influenza viruses were present in wild bird populations within the United States of America. This program, combined with the Canadian and Mexican surveillance programs, represented the largest, coordinated wildlife disease surveillance program ever implemented. Here we analyze data from 197,885 samples that were collected from over 200 wild bird species. While the initial motivation for surveillance focused on highly pathogenic avian influenza, the scale of the data provided unprecedented information on the ecology of avian influenza viruses in the United States, avian influenza virus host associations, and avian influenza prevalence in wild birds over time. Ultimately, significant advances in our knowledge of avian influenza will depend on both large-scale surveillance efforts and on focused research studies.

  15. Optimal isolation control strategies and cost-effectiveness analysis of a two-strain avian influenza model.

    PubMed

    Agusto, F B

    2013-09-01

    The most important and effective measures against disease outbreaks in the absence of valid medicines or vaccine are quarantine and isolation strategies. In this paper optimal control theory is applied to a system of ordinary differential equation describing a two-strain avian influenza transmission via the Pontryagin's Maximum Principle. To this end, a pair of control variables representing the isolation strategies for individuals with avian and mutant strains were incorporated into the transmission model. The infection averted ratio (IAR) and the incremental cost-effectiveness ratio (ICER) were calculated to investigate the cost-effectiveness of all possible combinations of the control strategies. The simulation results show that the implementation of the combination strategy during the epidemic is the most cost-effective strategy for avian influenza transmission. This is followed by the control strategy involving isolation of individuals with the mutant strain. Also observed was the fact that low mutating and more virulent virus results in an increased control effort of isolating individuals with the avian strain; and high mutating with more virulent virus results in increased efforts in isolating individuals with the mutant strain.

  16. Outbreak of duck plague (duck herpesvirus enteritis) in numerous species of captive ducks and geese in temporal conjunction with enforced biosecurity (in-house keeping) due to the threat of avian influenza A virus of the subtype Asia H5N1.

    PubMed

    Kaleta, E F; Kuczka, A; Kühnhold, A; Bunzenthal, C; Bönner, B M; Hanka, K; Redmann, T; Yilmaz, A

    2007-01-01

    The continuing westward spread of avian influenza A virus of the subtype H5N1 in free-living and domestic birds forced the European Union and the German federal government to enhance all biosecurity measures including in-house keeping of all captive birds from October 20 to December 15, 2005. Movement of captive ducks and geese of many different species from a free-range system to tight enclosures and maintenance for prolonged times in such overcrowded sheds resulted in pronounced disturbance of natural behaviour, interruption of mating and breeding activities and possibly additional stress. Under these conditions the birds developed signs of severe disease and enhanced mortality twentyfour days later. A total of 17 out of 124 (14%) adult birds and 149 out of 184 year-old birds (81 %) died during the outbreak. A herpesvirus was isolated from many organs of succumbed ducks and geese that was identified as a duck plague herpesvirus by cross neutralization test using known antisera against duck plague virus. The published host range of duck plague comprises 34 species within the order Anseriformes. We report here on additional 14 species of this order that were found to be susceptible to duck plague virus. The exact source of the herpesvirus could not identified. However, low antibody titres in some ducks at day of vaccination indicate that at least some of the birds were latently infected with a duck plague herpesvirus. The remaining healthy appearing birds were subcutaneously vaccinated with a modified live duck plague vaccine (Intervet, Boxmeer, NL) that stopped losses and resulted in seroconversion in most of the vaccinated birds.

  17. Immunostimulatory motifs enhance antiviral siRNAs targeting highly pathogenic avian influenza H5N1.

    PubMed

    Stewart, Cameron R; Karpala, Adam J; Lowther, Sue; Lowenthal, John W; Bean, Andrew G

    2011-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus is endemic in many regions around the world and remains a significant pandemic threat. To date H5N1 has claimed almost 300 human lives worldwide, with a mortality rate of 60% and has caused the death or culling of hundreds of millions of poultry since its initial outbreak in 1997. We have designed multi-functional RNA interference (RNAi)-based therapeutics targeting H5N1 that degrade viral mRNA via the RNAi pathway while at the same time augmenting the host antiviral response by inducing host type I interferon (IFN) production. Moreover, we have identified two factors critical for maximising the immunostimulatory properties of short interfering (si)RNAs in chicken cells (i) mode of synthesis and (ii) nucleoside sequence to augment the response to virus. The 5-bp nucleoside sequence 5'-UGUGU-3' is a key determinant in inducing high levels of expression of IFN-α, -β, -λ and interleukin 1-β in chicken cells. Positioning of this 5'-UGUGU-3' motif at the 5'-end of the sense strand of siRNAs, but not the 3'-end, resulted in a rapid and enhanced induction of type I IFN. An anti-H5N1 avian influenza siRNA directed against the PB1 gene (PB1-2257) tagged with 5'-UGUGU-3' induced type I IFN earlier and to a greater extent compared to a non-tagged PB1-2257. Tested against H5N1 in vitro, the tagged PB1-2257 was more effective than non-tagged PB1-2257. These data demonstrate the ability of an immunostimulatory motif to improve the performance of an RNAi-based antiviral, a finding that may influence the design of future RNAi-based anti-influenza therapeutics.

  18. Intercontinental genetic structure and gene flow in Dunlin (Calidris alpina), a potential vector of avian influenza

    USGS Publications Warehouse

    Miller, Mark P.; Haig, Susan M.; Mullins, Thomas D.; Ruan, Luzhang; Casler, Bruce; Dondua, Alexei; Gates, River H.; Johnson, J. Matthew; Kendall, Steven J.; Tomkovich, Pavel S.; Tracy, Diane; Valchuk, Olga P.; Lanctot, Richard B.

    2015-01-01

    Waterfowl (Anseriformes) and shorebirds (Charadriiformes) are the most common wild vectors of influenza A viruses. Due to their migratory behavior, some may transmit disease over long distances. Migratory connectivity studies can link breeding and nonbreeding grounds while illustrating potential interactions among populations that may spread diseases. We investigated Dunlin (Calidris alpina), a shorebird with a subspecies (C. a. arcticola) that migrates from nonbreeding areas endemic to avian influenza in eastern Asia to breeding grounds in northern Alaska. Using microsatellites and mitochondrial DNA, we illustrate genetic structure among six subspecies: C. a. arcticola,C. a. pacifica, C. a. hudsonia, C. a. sakhalina, C. a. kistchinski, and C. a. actites. We demonstrate that mitochondrial DNA can help distinguish C. a. arcticola on the Asian nonbreeding grounds with >70% accuracy depending on their relative abundance, indicating that genetics can help determine whether C. a. arcticola occurs where they may be exposed to highly pathogenic avian influenza (HPAI) during outbreaks. Our data reveal asymmetric intercontinental gene flow, with some C. a. arcticola short-stopping migration to breed withC. a. pacifica in western Alaska. Because C. a. pacifica migrates along the Pacific Coast of North America, interactions between these subspecies and other taxa provide route for transmission of HPAI into other parts of North America.

  19. Knowledge, Attitudes, and Practices of School Personnel Regarding Influenza, Vaccinations, and School Outbreaks

    ERIC Educational Resources Information Center

    Ha, Chrysanthy; Rios, Lenoa M.; Pannaraj, Pia S.

    2013-01-01

    Background: School personnel are important for communicating with parents about school vaccination programs and recognizing influenza outbreaks. This study examined knowledge, attitudes, and practices of school personnel regarding seasonal and 2009 H1N1 influenza, vaccinations, and school outbreak investigations. Methods: Data were analyzed from…

  20. Reassortment of Influenza A Viruses in Wild Birds in Alaska before H5 Clade 2.3.4.4 Outbreaks

    PubMed Central

    Hill, Nichola J.; Hussein, Islam T.M.; Davis, Kimberly R.; Ma, Eric J.; Spivey, Timothy J.; Ramey, Andrew M.; Puryear, Wendy Blay; Das, Suman R.; Halpin, Rebecca A.; Lin, Xudong; Fedorova, Nadia B.; Suarez, David L.; Boyce, Walter M.

    2017-01-01

    Sampling of mallards in Alaska during September 2014–April 2015 identified low pathogenic avian influenza A virus (subtypes H5N2 and H1N1) that shared ancestry with highly pathogenic reassortant H5N2 and H5N1 viruses. Molecular dating indicated reassortment soon after interhemispheric movement of H5N8 clade 2.3.4.4, suggesting genetic exchange in Alaska or surrounds before outbreaks. PMID:28322698

  1. Antigenic analysis of highly pathogenic avian influenza virus H5N1 sublineages co-circulating in Egypt.

    PubMed

    Watanabe, Yohei; Ibrahim, Madiha S; Ellakany, Hany F; Kawashita, Norihito; Daidoji, Tomo; Takagi, Tatsuya; Yasunaga, Teruo; Nakaya, Takaaki; Ikuta, Kazuyoshi

    2012-10-01

    Highly pathogenic avian influenza virus H5N1 has spread across Eurasia and Africa, and outbreaks are now endemic in several countries, including Indonesia, Vietnam and Egypt. Continuous circulation of H5N1 virus in Egypt, from a single infected source, has led to significant genetic diversification with phylogenetically separable sublineages, providing an opportunity to study the impact of genetic evolution on viral phenotypic variation. In this study, we analysed the phylogeny of H5 haemagglutinin (HA) genes in influenza viruses isolated in Egypt from 2006 to 2011 and investigated the effect of conserved amino acid mutations in the HA genes in each of the sublineages on their antigenicity. The analysis showed that viruses in at least four sublineages still persisted in poultry in Egypt as of 2011. Using reverse genetics to generate HA-reassortment viruses with specific HA mutations, we found antigenic drift in the HA in two influenza virus sublineages, compared with the other currently co-circulating influenza virus sublineages in Egypt. Moreover, the two sublineages with significant antigenic drift were antigenically distinguishable. Our findings suggested that phylogenetically divergent H5N1 viruses, which were not antigenically cross-reactive, were co-circulating in Egypt, indicating that there was a problem in using a single influenza virus strain as seed virus to produce influenza virus vaccine in Egypt and providing data for designing more efficacious control strategies in H5N1-endemic areas.

  2. Limited evidence of trans-hemispheric movement of avian influenza viruses among contemporary North American shorebird isolates

    USGS Publications Warehouse

    Pearce, John M.; Ramey, Andrew M.; Ip, Hon S.; Gill, Robert E.

    2010-01-01

    Migratory routes of gulls, terns, and shorebirds (Charadriiformes) are known to cross hemispheric boundaries and intersect with outbreak areas of highly pathogenic avian influenza (HPAI). Prior assessments of low pathogenic avian influenza (LPAI) among species of this taxonomic order found some evidence for trans-hemispheric movement of virus genes. To specifically clarify the role of shorebird species in the trans-hemispheric movement of influenza viruses, assess the temporal variation of Eurasian lineages observed previously among North American shorebirds, and evaluate the necessity for continued sampling of these birds for HPAI in North America, we conducted a phylogenetic analysis of >700 contemporary sequences isolated between 2000 and 2008. Evidence for trans-hemispheric reassortment among North American shorebird LPAI gene segments was lower (0.88%) than previous assessments and occurred only among eastern North American isolates. Furthermore, half of the reassortment events occurred in just two isolates. Unique phylogenetic placement of these samples suggests secondary infection and or involvement of other migratory species, such as gulls. Eurasian lineages observed in North American shorebirds before 2000 were not detected among contemporary samples, suggesting temporal variation of LPAI lineages. Results suggest that additional bird migration ecology and virus phylogenetics research is needed to determine the exact mechanisms by which shorebirds in eastern North America become infected with LPAI that contain Eurasian lineage genes. Because of the low prevalence of avian influenza in non-eastern North America sites, thousands more shorebirds will need to be sampled to sufficiently examine genetic diversity and trans-hemispheric exchange of LPAI viruses in these areas. Alternatively, other avian taxa with higher virus prevalence could serve as surrogates to shorebirds for optimizing regional surveillance programs for HPAI through the LPAI phylogenetic

  3. Reactive strategies for containing developing outbreaks of pandemic influenza

    PubMed Central

    2011-01-01

    Background In 2009 and the early part of 2010, the northern hemisphere had to cope with the first waves of the new influenza A (H1N1) pandemic. Despite high-profile vaccination campaigns in many countries, delays in administration of vaccination programs were common, and high vaccination coverage levels were not achieved. This experience suggests the need to explore the epidemiological and economic effectiveness of additional, reactive strategies for combating pandemic influenza. Methods We use a stochastic model of pandemic influenza to investigate realistic strategies that can be used in reaction to developing outbreaks. The model is calibrated to documented illness attack rates and basic reproductive number (R0) estimates, and constructed to represent a typical mid-sized North American city. Results Our model predicts an average illness attack rate of 34.1% in the absence of intervention, with total costs associated with morbidity and mortality of US$81 million for such a city. Attack rates and economic costs can be reduced to 5.4% and US$37 million, respectively, when low-coverage reactive vaccination and limited antiviral use are combined with practical, minimally disruptive social distancing strategies, including short-term, as-needed closure of individual schools, even when vaccine supply-chain-related delays occur. Results improve with increasing vaccination coverage and higher vaccine efficacy. Conclusions Such combination strategies can be substantially more effective than vaccination alone from epidemiological and economic standpoints, and warrant strong consideration by public health authorities when reacting to future outbreaks of pandemic influenza. PMID:21356128

  4. Highly Pathogenic Reassortant Avian Influenza A(H5N1) Virus Clade 2.3.2.1a in Poultry, Bhutan

    PubMed Central

    Marinova-Petkova, Atanaska; Franks, John; Tenzin, Sangay; Dahal, Narapati; Dukpa, Kinzang; Dorjee, Jambay; Feeroz, Mohammed M.; Rehg, Jerold E.; Barman, Subrata; Krauss, Scott; McKenzie, Pamela; Webby, Richard J.

    2016-01-01

    Highly pathogenic avian influenza A(H5N1), clade 2.3.2.1a, with an H9-like polymerase basic protein 1 gene, isolated in Bhutan in 2012, replicated faster in vitro than its H5N1 parental genotype and was transmitted more efficiently in a chicken model. These properties likely help limit/eradicate outbreaks, combined with strict control measures. PMID:27584733

  5. Inactivation of various influenza strains to model avian influenza (Bird Flu) with various disinfectant chemistries.

    SciTech Connect

    Oberst, R. D.; Bieker, Jill Marie; Souza, Caroline Ann

    2005-12-01

    Due to the grave public health implications and economic impact possible with the emergence of the highly pathogenic avian influenza A isolate, H5N1, currently circulating in Asia we have evaluated the efficacy of various disinfectant chemistries against surrogate influenza A strains. Chemistries included in the tests were household bleach, ethanol, Virkon S{reg_sign}, and a modified version of the Sandia National Laboratories developed DF-200 (DF-200d, a diluted version of the standard DF-200 formulation). Validation efforts followed EPA guidelines for evaluating chemical disinfectants against viruses. The efficacy of the various chemistries was determined by infectivity, quantitative RNA, and qualitative protein assays. Additionally, organic challenges using combined poultry feces and litter material were included in the experiments to simulate environments in which decontamination and remediation will likely occur. In all assays, 10% bleach and Sandia DF-200d were the most efficacious treatments against two influenza A isolates (mammalian and avian) as they provided the most rapid and complete inactivation of influenza A viruses.

  6. Two Outbreak Sources of Influenza A (H7N9) Viruses Have Been Established in China

    PubMed Central

    Wang, Dayan; Yang, Lei; Zhu, Wenfei; Zhang, Ye; Zou, Shumei; Bo, Hong; Gao, Rongbao; Dong, Jie; Huang, Weijuan; Guo, Junfeng; Li, Zi; Zhao, Xiang; Li, Xiaodan; Xin, Li; Zhou, Jianfang; Chen, Tao; Dong, Libo; Wei, Hejiang; Li, Xiyan; Liu, Liqi; Tang, Jing; Lan, Yu; Yang, Jing

    2016-01-01

    ABSTRACT Due to enzootic infections in poultry and persistent human infections in China, influenza A (H7N9) virus has remained a public health threat. The Yangtze River Delta region, which is located in eastern China, is well recognized as the original source for H7N9 outbreaks. Based on the evolutionary analysis of H7N9 viruses from all three outbreak waves since 2013, we identified the Pearl River Delta region as an additional H7N9 outbreak source. H7N9 viruses are repeatedly introduced from these two sources to the other areas, and the persistent circulation of H7N9 viruses occurs in poultry, causing continuous outbreak waves. Poultry movements may contribute to the geographic expansion of the virus. In addition, the AnH1 genotype, which was predominant during wave 1, was replaced by JS537, JS18828, and AnH1887 genotypes during waves 2 and 3. The establishment of a new source and the continuous evolution of the virus hamper the elimination of H7N9 viruses, thus posing a long-term threat of H7N9 infection in humans. Therefore, both surveillance of H7N9 viruses in humans and poultry and supervision of poultry movements should be strengthened. IMPORTANCE Since its occurrence in humans in eastern China in spring 2013, the avian H7N9 viruses have been demonstrating the continuing pandemic threat posed by the current influenza ecosystem in China. As the viruses are silently circulated in poultry, with potentially severe outcomes in humans, H7N9 virus activity in humans in China is very important to understand. In this study, we identified a newly emerged H7N9 outbreak source in the Pearl River Delta region. Both sources in the Yangtze River Delta region and the Pearl River Delta region have been established and found to be responsible for the H7N9 outbreaks in mainland China. PMID:27030268

  7. Avian influenza virus isolates from wild birds replicate and cause disease in a mouse model of infection.

    PubMed

    Driskell, Elizabeth A; Jones, Cheryl A; Stallknecht, David E; Howerth, Elizabeth W; Tompkins, S Mark

    2010-04-10

    The direct transmission of highly pathogenic avian influenza (HPAI) viruses to humans in Eurasia and subsequent disease has sparked research efforts leading to better understanding of HPAI virus transmission and pathogenicity in mammals. There has been minimal focus on examining the capacity of circulating low pathogenic wild bird avian influenza viruses to infect mammals. We have utilized a mouse model for influenza virus infection to examine 28 North American wild bird avian influenza virus isolates that include the hemagglutinin subtypes H2, H3, H4, H6, H7, and H11. We demonstrate that many wild bird avian influenza viruses of several different hemagglutinin types replicate in this mouse model without adaptation and induce histopathologic lesions similar to other influenza virus infections but cause minimal morbidity. These findings demonstrate the potential of wild avian influenza viruses to directly infect mice without prior adaptation and support their potential role in emergence of pandemic influenza.

  8. The influence of economic indicators, poultry density and the performance of veterinary services on the control of high-pathogenicity avian influenza in poultry.

    PubMed

    Pavade, G; Awada, L; Hamilton, K; Swayne, D E

    2011-12-01

    High-pathogenicity avian influenza (HPAI) and low-pathogenicity notifiable avian influenza (LPNAI) in poultry are notifiable diseases that must be reported to the World Organisation for Animal Health (OIE). There are variations between countries' responses to avian influenza (AI) outbreak situations based on their economic status, diagnostic capacity and other factors. The objective of this study was to ascertain the significant association between HPAI control data and a country's poultry density, the performance of its Veterinary Services, and its economic indicators (gross domestic product, agricultural gross domestic product, gross national income, human development index and Organisation for Economic Co-operation and Development [OECD] status). Results indicate that as poultry density increases for least developed countries there is an increase in the number and duration of HPAI outbreaks and in the time it takes to eradicate the disease. There was no significant correlation between HPAI control and any of the economic indicators except membership of the OECD. Member Countries, i.e. those with high-income economies, transparency and good governance, had shorter and significantly fewer HPAI outbreaks, quicker eradication times, lower mortality rates and higher culling rates than non-OECD countries. Furthermore, countries that had effective and efficient Veterinary Services (as measured by the ratings they achieved when they were assessed using the OIE Tool for the Evaluation of Performance of Veterinary Services) had better HPAI control measures.

  9. Experimental infection of bar-headed geese (Anser indicus) and ruddy shelducks (Tadorna ferruginea) with a clade 2.3.2 H5N1 highly pathogenic avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2005, clade 2.2 H5N1 highly pathogenic avian influenza (HPAI) viruses have caused infections and disease involving numerous species of wild waterfowl in Eurasia and Africa. However, outbreaks associated with clade 2.3.2 viruses have increased since 2009, and viruses within this clade have beco...

  10. Determining the Phylogenetic and Phylogeographic Origin of Highly Pathogenic Avian Influenza (H7N3) in Mexico

    PubMed Central

    Lu, Lu; Lycett, Samantha J.; Leigh Brown, Andrew J.

    2014-01-01

    Highly pathogenic (HP) avian influenza virus (AIV) H7N3 outbreaks occurred 3 times in the Americas in the past 10 years and caused severe economic loss in the affected regions. In June/July 2012, new HP H7N3 outbreaks occurred at commercial farms in Jalisco, Mexico. Outbreaks continued to be identified in neighbouring states in Mexico till August 2013. To explore the origin of this outbreak, time resolved phylogenetic trees were generated from the eight segments of full-length AIV sequences in North America using BEAST. Location, subtype, avian host species and pathogenicity were modelled as discrete traits upon the trees using continuous time Markov chains. A further joint analysis among segments was performed using a hierarchical phylogenetic model (HPM) which allowed trait rates (location, subtype, host species) to be jointly inferred across different segments. The complete spatial diffusion process was visualised through virtual globe software. Our result indicated the Mexico HP H7N3 originated from the large North America low pathogenicity AIV pool through complicated reassortment events. Different segments were contributed by wild waterfowl from different N. American flyways. Five of the eight segments (HA, NA, NP, M, NS) were introduced from wild birds migrating along the central North American flyway, and PB2, PB1 and PA were introduced via the western North American flyway. These results highlight a potential role for Mexico as a hotspot of virus reassortment as it is where wild birds from different migration routes mix during the winter. PMID:25226523

  11. Determining the phylogenetic and phylogeographic origin of highly pathogenic avian influenza (H7N3) in Mexico.

    PubMed

    Lu, Lu; Lycett, Samantha J; Leigh Brown, Andrew J

    2014-01-01

    Highly pathogenic (HP) avian influenza virus (AIV) H7N3 outbreaks occurred 3 times in the Americas in the past 10 years and caused severe economic loss in the affected regions. In June/July 2012, new HP H7N3 outbreaks occurred at commercial farms in Jalisco, Mexico. Outbreaks continued to be identified in neighbouring states in Mexico till August 2013. To explore the origin of this outbreak, time resolved phylogenetic trees were generated from the eight segments of full-length AIV sequences in North America using BEAST. Location, subtype, avian host species and pathogenicity were modelled as discrete traits upon the trees using continuous time Markov chains. A further joint analysis among segments was performed using a hierarchical phylogenetic model (HPM) which allowed trait rates (location, subtype, host species) to be jointly inferred across different segments. The complete spatial diffusion process was visualised through virtual globe software. Our result indicated the Mexico HP H7N3 originated from the large North America low pathogenicity AIV pool through complicated reassortment events. Different segments were contributed by wild waterfowl from different N. American flyways. Five of the eight segments (HA, NA, NP, M, NS) were introduced from wild birds migrating along the central North American flyway, and PB2, PB1 and PA were introduced via the western North American flyway. These results highlight a potential role for Mexico as a hotspot of virus reassortment as it is where wild birds from different migration routes mix during the winter.

  12. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses.

    PubMed

    van Riel, Debby; den Bakker, Michael A; Leijten, Lonneke M E; Chutinimitkul, Salin; Munster, Vincent J; de Wit, Emmie; Rimmelzwaan, Guus F; Fouchier, Ron A M; Osterhaus, Albert D M E; Kuiken, Thijs

    2010-04-01

    Influenza viruses vary markedly in their efficiency of human-to-human transmission. This variation has been speculated to be determined in part by the tropism of influenza virus for the human upper respiratory tract. To study this tropism, we determined the pattern of virus attachment by virus histochemistry of three human and three avian influenza viruses in human nasal septum, conchae, nasopharynx, paranasal sinuses, and larynx. We found that the human influenza viruses-two seasonal influenza viruses and pandemic H1N1 virus-attached abundantly to ciliated epithelial cells and goblet cells throughout the upper respiratory tract. In contrast, the avian influenza viruses, including the highly pathogenic H5N1 virus, attached only rarely to epithelial cells or goblet cells. Both human and avian viruses attached occasionally to cells of the submucosal glands. The pattern of virus attachment was similar among the different sites of the human upper respiratory tract for each virus tested. We conclude that influenza viruses that are transmitted efficiently among humans attach abundantly to human upper respiratory tract, whereas inefficiently transmitted influenza viruses attach rarely. These results suggest that the ability of an influenza virus to attach to human upper respiratory tract is a critical factor for efficient transmission in the human population.

  13. Duck migration and past influenza A (H5N1) outbreak areas

    USGS Publications Warehouse

    Gaidet, Nicolas; Newman, Scott H.; Hagemeijer, Ward; Dodman, Tim; Cappelle, Julien; Hammoumi, Saliha; De Simone, Lorenzo; Takekawa, John Y.

    2008-01-01

    In 2005 and 2006, the highly pathogenic avian influenza (HPAI) virus subtype H5N1 rapidly spread from Asia through Europe, the Middle East, and Africa. Waterbirds are considered the natural reservoir of low pathogenic avian influenza viruses (1), but their potential role in the spread of HPAI (H5N1), along with legal and illegal poultry and wildlife trade (2), is yet to be clarified.

  14. Insight into Alternative Approaches for Control of Avian Influenza in Poultry, with Emphasis on Highly Pathogenic H5N1

    PubMed Central

    Abdelwhab, E. M.; Hafez, Hafez M.

    2012-01-01

    Highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 causes a devastating disease in poultry but when it accidentally infects humans it can cause death. Therefore, decrease the incidence of H5N1 in humans needs to focus on prevention and control of poultry infections. Conventional control strategies in poultry based on surveillance, stamping out, movement restriction and enforcement of biosecurity measures did not prevent the virus spreading, particularly in developing countries. Several challenges limit efficiency of the vaccines to prevent outbreaks of HPAIV H5N1 in endemic countries. Alternative and complementary approaches to reduce the current burden of H5N1 epidemics in poultry should be encouraged. The use of antiviral chemotherapy and natural compounds, avian-cytokines, RNA interference, genetic breeding and/or development of transgenic poultry warrant further evaluation as integrated intervention strategies for control of HPAIV H5N1 in poultry. PMID:23202521

  15. Pandemic influenza outbreak on a troop ship--diary of a soldier in 1918.

    PubMed

    Summers, Jennifer A

    2012-11-01

    A newly identified diary from a soldier in 1918 describes aspects of a troop ship outbreak of pandemic influenza. This diary is the only known document that describes this outbreak and provides information not officially documented concerning possible risk factors such as overcrowding and the suboptimal outbreak response by military leaders. It also presents an independent personal perspective of this overwhelming experience.

  16. Avian Influenza A(H5N1) Virus in Egypt

    PubMed Central

    Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S.; Maatouq, Asmaa M.; Cai, Zhipeng; McKenzie, Pamela P.; Webby, Richard J.; El Refaey, Samir; Kandeel, Amr; Ali, Mohamed A.

    2016-01-01

    In Egypt, avian influenza A subtype H5N1 and H9N2 viruses are enzootic in poultry. The control plan devised by veterinary authorities in Egypt to prevent infections in poultry focused mainly on vaccination and ultimately failed. Recently, widespread H5N1 infections in poultry and a substantial increase in the number of human cases of H5N1 infection were observed. We summarize surveillance data from 2009 through 2014 and show that avian influenza viruses are established in poultry in Egypt and are continuously evolving genetically and antigenically. We also discuss the epidemiology of human infection with avian influenza in Egypt and describe how the true burden of disease is underestimated. We discuss the failures of relying on vaccinating poultry as the sole intervention tool. We conclude by highlighting the key components that need to be included in a new strategy to control avian influenza infections in poultry and humans in Egypt. PMID:26886164

  17. Avian Influenza A(H5N1) Virus in Egypt.

    PubMed

    Kayali, Ghazi; Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S; Maatouq, Asmaa M; Cai, Zhipeng; McKenzie, Pamela P; Webby, Richard J; El Refaey, Samir; Kandeel, Amr; Ali, Mohamed A

    2016-03-01

    In Egypt, avian influenza A subtype H5N1 and H9N2 viruses are enzootic in poultry. The control plan devised by veterinary authorities in Egypt to prevent infections in poultry focused mainly on vaccination and ultimately failed. Recently, widespread H5N1 infections in poultry and a substantial increase in the number of human cases of H5N1 infection were observed. We summarize surveillance data from 2009 through 2014 and show that avian influenza viruses are established in poultry in Egypt and are continuously evolving genetically and antigenically. We also discuss the epidemiology of human infection with avian influenza in Egypt and describe how the true burden of disease is underestimated. We discuss the failures of relying on vaccinating poultry as the sole intervention tool. We conclude by highlighting the key components that need to be included in a new strategy to control avian influenza infections in poultry and humans in Egypt.

  18. Rapid PCR-Based Molecular Pathotyping of H5 and H7 Avian Influenza Viruses ▿ †

    PubMed Central

    Leijon, Mikael; Ullman, Karin; Thyselius, Susanna; Zohari, Siamak; Pedersen, Janice C.; Hanna, Amanda; Mahmood, Sahar; Banks, Jill; Slomka, Marek J.; Belák, Sándor

    2011-01-01

    While the majority of avian influenza virus (AIV) subtypes are classified as low-pathogenicity avian influenza viruses (LPAIV), the H5 and H7 subtypes have the ability to mutate to highly pathogenic avian influenza viruses (HPAIV) in poultry and therefore are the etiological agents of notifiable AIV (NAIV). It is of great importance to distinguish HPAIV from LPAIV variants during H5/H7 outbreaks and surveillance. To this end, a novel and fast strategy for the molecular pathotyping of H5/H7 AIVs is presented. The differentiation of the characteristic hemagglutinin (HA) protein cleavage sites (CSs) of HPAIVs and LPAIVs is achieved by a novel PCR method where the samples are interrogated for all existing CSs with a 484-plex primer mixture directly targeting the CS region. CSs characteristic for HP or LP H5/H7 viruses are distinguished in a seminested duplex real-time PCR format using plexor fluorogenic primers. Eighty-six laboratory isolates and 60 characterized NAIV-positive clinical specimens from poultry infected with H5/H7 both experimentally and in the field were successfully pathotyped in the validation. The method has the potential to substitute CS sequencing in the HA gene for the determination of the molecular pathotype, thereby providing a rapid means to acquire additional information concerning NAIV outbreaks, which may be critical to their management. The new assay may be extended to the LP/HP differentiation of previously unknown H5/H7 isolates. It may be considered for integration into surveillance and control programs in both domestic and wild bird populations. PMID:21900520

  19. The first case of a major avian type C botulism outbreak in Poland.

    PubMed

    Wlodarczyk, Radoslaw; Minias, Piotr; Kukier, Elibieta; Grenda, Tomasz; Smietanka, Krzysztof; Janiszewski, Tomasz

    2014-09-01

    Major outbreaks of avian type C botulism have been rarely reported from Central Europe. In this paper, we report the first severe outbreak of avian type C botulism in Poland. In 2011-12, two epizootics caused by Clostridium botulinum took place at Jeziorsko dam reservoir and affected an estimated number of 5500 birds in 2011 and 1600 birds in 2012. In total, 24 species ofwaterbirds were affected, including mainly waterfowl (37.0%), shorebirds (27.0%), rallids (25.7%), and larids (9.1%). Mallards (Anas platyrhynchos) and coots (Fulica atra) were most commonly represented among all affected species (27.5% and 25.0% of all recorded carcasses, respectively). Laboratory analyses confirmed the presence of type C botulinum toxin in the internal organs of paralyzed birds. This case study from the Jeziorsko dam reservoir demonstrates that this type of shallow-water habitat is especially prone to avian botulism outbreaks in the climatic conditions of Central Europe.

  20. The 2009 Influenza A(H1N1) "Swine Flu" Outbreak: An Overview

    DTIC Science & Technology

    2009-05-05

    Table 1. WHO Influenza Pandemic Phases (Current alert level is highlighted) Phase Description Phase 1 No animal influenza virus circulating among... animals has been reported to cause infection in humans. Phase 2 An animal influenza virus circulating in domesticated or wild animals is known to have...community-level outbreaks. Phase 4 Human-to-human transmission of an animal or human- animal influenza reassortant a virus able to sustain community

  1. Improved hatchability and efficient protection after in ovo vaccination with live-attenuated H7N2 and H9N2 avian influenza viruses

    PubMed Central

    2011-01-01

    Mass in ovo vaccination with live attenuated viruses is widely used in the poultry industry to protect against various infectious diseases. The worldwide outbreaks of low pathogenic and highly pathogenic avian influenza highlight the pressing need for the development of similar mass vaccination strategies against avian influenza viruses. We have previously shown that a genetically modified live attenuated avian influenza virus (LAIV) was amenable for in ovo vaccination and provided optimal protection against H5 HPAI viruses. However, in ovo vaccination against other subtypes resulted in poor hatchability and, therefore, seemed impractical. In this study, we modified the H7 and H9 hemagglutinin (HA) proteins by substituting the amino acids at the cleavage site for those found in the H6 HA subtype. We found that with this modification, a single dose in ovo vaccination of 18-day old eggs provided complete protection against homologous challenge with low pathogenic virus in ≥70% of chickens at 2 or 6 weeks post-hatching. Further, inoculation of 19-day old egg embryos with 106 EID50 of LAIVs improved hatchability to ≥90% (equivalent to unvaccinated controls) with similar levels of protection. Our findings indicate that the strategy of modifying the HA cleavage site combined with the LAIV backbone could be used for in ovo vaccination against avian influenza. Importantly, with protection conferred as early as 2 weeks post-hatching, with this strategy birds would be protected prior to or at the time of delivery to a farm or commercial operation. PMID:21255403

  2. Highly pathogenic avian influenza viruses and generation of novel reassortants,United States, 2014–2015

    USGS Publications Warehouse

    Dong-Hun Lee,; Justin Bahl,; Mia Kim Torchetti,; Mary Lea Killian,; Ip, Hon S.; David E Swayne,

    2016-01-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses.

  3. Highly Pathogenic Avian Influenza Viruses and Generation of Novel Reassortants, United States, 2014–2015

    PubMed Central

    Lee, Dong-Hun; Bahl, Justin; Torchetti, Mia Kim; Killian, Mary Lea; Ip, Hon S.; DeLiberto, Thomas J.

    2016-01-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses. PMID:27314845

  4. The new World Organisation for Animal Health standards on avian influenza and international trade.

    PubMed

    Thiermann, Alex B

    2007-03-01

    In 2002, the World Organisation for Animal Health began a review of the chapter on avian influenza by convening a group of experts to revise the most recent scientific literature. The group drafted the initial text that would provide the necessary recommendations on avian influenza control and prevention measures. The main objectives of this draft were to provide clear notification criteria, as well as commodity-specific, risk-based mitigating measures, that would provide safety when trading and encourage transparent reporting.

  5. [Detection of an NA gene molecular marker in H7N9 subtype avian influenza viruses by pyrosequencing].

    PubMed

    Zhao, Yong-Gang; Liu, Hua-Lei; Wang, Jing-Jing; Zheng, Dong-Xia; Zhao, Yun-Ling; Ge, Sheng-Qiang; Wang, Zhi-Liang

    2014-07-01

    This study aimed to establish a method for the detection and identification of H7N9 avian influenza viruses based on the NA gene by pyrosequencing. According to the published NA gene sequences of the avian influenza A (H7N9) virus, a 15-nt deletion was found in the NA gene of H7N9 avian influenza viruses. The 15-nt deletion of the NA gene was targeted as the molecular marker for the rapid detection and identification of H7N9 avian influenza viruses by pyrosequencing. Three H7N9 avian influenza virus isolates underwent pyrosequencing using the same assay, and were proven to have the same 15-nt deletion. Pyrosequencing technology based on the NA gene molecular marker can be used to identify H7N9 avian influenza viruses.

  6. [Comparative clinical trial of vaccines against avian influenza].

    PubMed

    Zverev, V V; Katlinskiĭ, A V; Kostinov, M P; Zhirova, S N; Erofeeva, M K; Stukova, M A; Korovkin, S A; Mel'nikov, S Ia; Semchenko, A V; Mironov, A N

    2007-01-01

    Scientic-production association "Microgen" has finished 1st phase of clinical trials of candidate vaccines against avian influenza in order to assess their reactogenicity, safety, and immunogenicity. Two vaccines constructed from NIBRG-14 vaccine strain [A/Vietnam/1 194/2004 (H5N1)], obtained from World Health Organization, were studied: "OrniFlu" (inactivated subunit influenza vaccine adsorbed on aluminium hydroxide) and inactivated polymer-subunit influenza vaccine with polyoxydonium (IPSIV). Clinical trial of the vaccines with different quantity of antigen (15, 30, and 45 mcg of H5N1 virus hemagglutinin) was carried out in Influenza Research Institute (St. Petersburg) and in Mechnikov Research Institute of Vaccines and Sera (Moscow). Analysis of results allowed to conclude that both vaccines were safe, well tolerated and characterized by low reactogenicity. Two-doses vaccination schedule was needed to meet required seroconversion and seroprotection rates (> or =1:40 in > or =70% of vaccinated volunteers). "Orni-Flu" vaccine containing 15 mcg of hemagglutinin and optimal quantity of aluminium hydroxide (0.5 mg) in one dose as well as IPSIV containing 45 mcg of hemagglutinin and 0.75 mg of polyoxydonium in one dose were most immunogenic after 2 doses - seroprotection rates in microneutralization assay were 72.2% and 77.0% respectively. Marked influence of aluminium hydroxide content on immunogenicity of the "OrniFlu" vaccine was confirmed in the study. Optimal quantity of adjuvant was 0.5 mg per dose. According to basic concept of vaccine development, preference is given to vaccine that under minimal quantity of antigen induces sufficient specific immune response and is safe in volunteers. "OrniFlu" vaccine containing 15 mcg of H5N1 virus hemagglutinin and optimal quantity of aluminium hydroxide (0.5 mg) corresponded to these requirements that allowed researchers to recommend it for clinical trials of 2nd phase.

  7. Influenza B virus outbreak on a cruise ship--Northern Europe, 2000.

    PubMed

    2001-03-02

    During June 23-July 5, 2000, an outbreak of respiratory illnesses occurred on the MS Rotterdam (Holland America Line & Windstar Cruises) during a 12-day Baltic cruise from the United Kingdom to Germany via Russia. The ship carried 1311 passengers, primarily from the United States, and 506 crew members from many countries. Although results of rapid viral testing for influenza A and B viruses were negative, immunofluorescence staining and viral culture results implicated influenza B virus infection as the cause of the outbreak. This report summarizes the findings of the outbreak investigation conducted by the ship's medical department and describes the measures taken to control the outbreak. Travelers at high risk for complications of influenza who were not vaccinated with influenza vaccine during the preceding fall or winter should consider receiving influenza vaccine before travel with large tourist groups at any time of year or to certain regions of the world.

  8. Analysis of the influenza virus gene pool of avian species from southern China.

    PubMed

    Lin, Y P; Shu, L L; Wright, S; Bean, W J; Sharp, G B; Shortridge, K F; Webster, R G

    1994-02-01

    Although Southern China has been considered the epicenter of human influenza pandemics, little is known about the genetic composition of influenza viruses in lower mammals or birds in that region. To provide information on the molecular epidemiology of these viruses, we used dot blot hybridization and phylogenetic methods to study the internal genes (PB1, PB2, PA, NP, M, and NS) of 106 avian influenza A viruses isolated from a total of 11,798 domestic ducks, chickens, and geese raised in Southern China including Hong Kong. All 636 genes examined were characteristic of avian influenza viruses; no human or swine influenza genes were detected. Thus, influenza virus reassortants do not appear to be maintained in the domesticated birds of Southeast Asia, eliminating opportunities for further gene reassortment. Phylogenetic analysis showed that the internal genes of these viruses belong to the Eurasian avian lineage, supporting geographical separation of the major avian lineages. The PB1 genes were most similar to A/Singapore/57 (H2N2) and Hong Kong (H3N2) viral genes, supporting an avian origin for the recent human H2N2 and H3N2 pandemic strains. The majority of internal genes from avian influenza viruses in Southern China belong to the Eurasian lineage and are similar to viruses that have recently been transmitted to humans, swine, and horses. This study provides evidence that the transmission of avian influenza viruses and their genes to other species is unidirectional and that the transmission of mammalian influenza virus strains to domestic poultry is probably not a factor in the generation of new pandemic strains.

  9. Comparing introduction to Europe of highly pathogenic avian influenza viruses A(H5N8) in 2014 and A(H5N1) in 2005.

    PubMed

    Adlhoch, C; Gossner, C; Koch, G; Brown, I; Bouwstra, R; Verdonck, F; Penttinen, P; Harder, T

    2014-12-18

    Since the beginning of November 2014, nine outbreaks of highly pathogenic avian influenza virus (HPAIV) A(H5N8) in poultry have been detected in four European countries. In this report, similarities and differences between the modes of introduction of HPAIV A(H5N1) and A(H5N8) into Europe are described. Experiences from outbreaks of A(H5N1) in Europe demonstrated that early detection to control HPAIV in poultry has proven pivotal to minimise the risk of zoonotic transmission and prevention of human cases.

  10. Communication and social capital in the control of avian influenza: lessons from behaviour change experiences in the Mekong Region.

    PubMed

    Waisbord, S R; Michaelides, T; Rasmuson, M

    2008-01-01

    International development agencies, national governments, and nongovernmental organizations are increasingly collaborating with local civil society groups in mounting behaviour change communication (BCC) interventions. Even in countries with weakened civil societies, the social capital of local organizations can be a fundamental communication resource. The experience of three programmes in the Mekong Region that used BCC to prevent and control outbreaks of avian influenza bore out this finding. These programmes worked with the Vietnam Women's Union to mobilize local women as conduits for education; worked with the Centre d'Etude et de Developpement Agricole Cambodgien (CEDAC), in Cambodia, to educate and train village health promoters and model farmers; and worked with the Lao Journalists Association to educate and build skills among print and broadcast journalists to enhance avian influenza coverage. Collaborating with civil society organizations can enhance communication reach, trust, and local ownership, but poses many challenges, particularly institutional capacity. Our experience, nevertheless, holds promise for a measured approach that views social capital as a set of communication resources at the community level that can be mobilized to promote complex behaviours, particularly in a rapidly changing outbreak situation.

  11. A SPR Aptasensor for Detection of Avian Influenza Virus H5N1

    PubMed Central

    Bai, Hua; Wang, Ronghui; Hargis, Billy; Lu, Huaguang; Li, Yanbin

    2012-01-01

    Rapid and specific detection of avian influenza virus (AIV) is urgently needed due to the concerns over the potential outbreaks of highly pathogenic H5N1 influenza in animals and humans. Aptamers are artificial oligonucleic acids that can bind specific target molecules, and show comparable affinity for target viruses and better thermal stability than monoclonal antibodies. The objective of this research was to use a DNA-aptamer as the specific recognition element in a portable Surface Plasmon Resonance (SPR) biosensor for rapid detection of AIV H5N1 in poultry swab samples. A SPR biosensor was fabricated using selected aptamers that were biotinylated and then immobilized on the sensor gold surface coated with streptavidin via streptavidin-biotin binding. The immobilized aptamers captured AIV H5N1 in a sample solution, which caused an increase in the refraction index (RI). After optimizing the streptavidin and aptamer parameters, the results showed that the RI value was linearly related (R2 = 0.99) to the concentration of AIV in the range of 0.128 to 1.28 HAU. Negligible signal (<4% of H5N1) was observed from six non-target AIV subtypes. The AIV H5N1 in poultry swab samples with concentrations of 0.128 to 12.8 HAU could be detected using this aptasensor in 1.5 h. PMID:23112728

  12. A SPR aptasensor for detection of avian influenza virus H5N1.

    PubMed

    Bai, Hua; Wang, Ronghui; Hargis, Billy; Lu, Huaguang; Li, Yanbin

    2012-01-01

    Rapid and specific detection of avian influenza virus (AIV) is urgently needed due to the concerns over the potential outbreaks of highly pathogenic H5N1 influenza in animals and humans. Aptamers are artificial oligonucleic acids that can bind specific target molecules, and show comparable affinity for target viruses and better thermal stability than monoclonal antibodies. The objective of this research was to use a DNA-aptamer as the specific recognition element in a portable Surface Plasmon Resonance (SPR) biosensor for rapid detection of AIV H5N1 in poultry swab samples. A SPR biosensor was fabricated using selected aptamers that were biotinylated and then immobilized on the sensor gold surface coated with streptavidin via streptavidin-biotin binding. The immobilized aptamers captured AIV H5N1 in a sample solution, which caused an increase in the refraction index (RI). After optimizing the streptavidin and aptamer parameters, the results showed that the RI value was linearly related (R(2) = 0.99) to the concentration of AIV in the range of 0.128 to 1.28 HAU. Negligible signal (<4% of H5N1) was observed from six non-target AIV subtypes. The AIV H5N1 in poultry swab samples with concentrations of 0.128 to 12.8 HAU could be detected using this aptasensor in 1.5 h.

  13. Global distribution patterns of highly pathogenic H5N1 avian influenza: environmental vs. socioeconomic factors.

    PubMed

    Chen, Youhua; Chen, You-Fang

    2014-01-01

    In this report, we quantitatively analyzed the essential ecological factors that were strongly correlated with the global outbreak of highly pathogenic H5N1 avian influenza. The ecological niche modeling (ENM) was used to reveal the potential outbreak hotspots of H5N1. A two-step modeling procedure has been proposed: we first used BioClim model to obtain the coarse suitable areas of H5N1, and then those suitable areas with very high probabilities were retained as the inputs of multiple-variable autologistic regression analysis (MAR) for model refinement. MAR was implemented taking spatial autocorrelation into account. The final performance of ENM was evaluated using the areas under the curve (AUC) of receiver-operating characteristic. In addition, principal component analysis (PCA) was employed to reveal the most important variables and relevant ecological gradients of H5N1 outbreak. Niche visualization was used to identify potential spreading trend of H5N1 along important ecological gradients. For the first time, we combined socioeconomic and environmental variables as joint predictors in developing ecological niche modeling. Environmental variables represented the natural element related to H5N1 outbreak, whereas socioeconomic ones represented the anthropogenic element. Our results indicated that: (1) the high-risk hotspots are mainly located in temperate zones (indicated by ENM)-correspondingly, we argued that the "ecoregions hypothesis" was reasonable to some extent; (2) evaporation, humidity, human population density, livestock population density were the first four important factors (in descending order) that were associated with the H5N1 global outbreak (indicated by PCA); (3) influenza had a tendency to expand into areas with low evaporation (indicated by niche visualization). In conclusion, our study substantiates that both the environmental and socioeconomic variables jointly determined the global spreading trend of H5N1, but environmental variables

  14. Induction of respiratory immune responses in the chicken; implications for development of mucosal avian influenza virus vaccines.

    PubMed

    de Geus, Eveline D; Rebel, Johanna M J; Vervelde, Lonneke

    2012-06-01

    The risk and the size of an outbreak of avian influenza virus (AIV) could be restricted by vaccination of poultry. A vaccine used for rapid intervention during an AIV outbreak should be safe, highly effective after a single administration and suitable for mass application. In the case of AIV, aerosol vaccination using live virus is not desirable because of its zoonotic potential and because of the risk for virus reassortment. The rational design of novel mucosal-inactivated vaccines against AIV requires a comprehensive knowledge of the structure and function of the lung-associated immune system in birds in order to target vaccines appropriately and to design efficient mucosal adjuvants. This review addresses our current understanding of the induction of respiratory immune responses in the chicken. Furthermore, possible mucosal vaccination strategies for AIV are highlighted.

  15. Nowcasting influenza outbreaks using open-source media report.

    SciTech Connect

    Ray, Jaideep; Brownstein, John S.

    2013-02-01

    We construct and verify a statistical method to nowcast influenza activity from a time-series of the frequency of reports concerning influenza related topics. Such reports are published electronically by both public health organizations as well as newspapers/media sources, and thus can be harvested easily via web crawlers. Since media reports are timely, whereas reports from public health organization are delayed by at least two weeks, using timely, open-source data to compensate for the lag in %E2%80%9Cofficial%E2%80%9D reports can be useful. We use morbidity data from networks of sentinel physicians (both the Center of Disease Control's ILINet and France's Sentinelles network) as the gold standard of influenza-like illness (ILI) activity. The time-series of media reports is obtained from HealthMap (http://healthmap.org). We find that the time-series of media reports shows some correlation ( 0.5) with ILI activity; further, this can be leveraged into an autoregressive moving average model with exogenous inputs (ARMAX model) to nowcast ILI activity. We find that the ARMAX models have more predictive skill compared to autoregressive (AR) models fitted to ILI data i.e., it is possible to exploit the information content in the open-source data. We also find that when the open-source data are non-informative, the ARMAX models reproduce the performance of AR models. The statistical models are tested on data from the 2009 swine-flu outbreak as well as the mild 2011-2012 influenza season in the U.S.A.

  16. Potency, efficacy, and antigenic mapping of H7 avian influenza virus vaccines against the 2012 H7N3 highly pathogenic avian influenza virus from Mexico.

    PubMed

    Spackman, Erica; Wan, Xiu-Feng; Kapczynski, Darrell; Xu, Yifei; Pantin-Jackwood, Mary; Suarez, David L; Swayne, David

    2014-09-01

    In the spring of 2012 an outbreak of H7N3 highly pathogenic (HP) avian influenza virus (AIV) occurred in poultry in Mexico. Vaccination was implemented as a control measure, along with increased biosecurity and surveillance. At that time there was no commercially available H7 AIV vaccine in North America; therefore, a recent H7N3 wild bird isolate of low pathogenicity from Mexico (A/cinnamon teal/Mexico/2817/2006 H7N3) was selected and utilized as the vaccine seed strain. In these studies, the potency and efficacy of this vaccine strain was evaluated in chickens against challenge with the 2012 Jalisco H7N3 HPAIV. Although vaccine doses of 256 and 102 hemagglutinating units (HAU) per bird decreased morbidity and mortality significantly compared to sham vaccinates, a dose of 512 HAU per bird was required to prevent mortality and morbidity completely. Additionally, the efficacy of 11 other H7 AIV vaccines and an antigenic map of hemagglutination inhibition assay data with all the vaccines and challenge viruses were evaluated, both to identify other potential vaccine strains and to characterize the relationship between genetic and antigenic distance with protection against this HPAIV. Several other isolates provided adequate protection against the 2012 Jalisco H7N3 lineage, but antigenic and genetic differences were not clear indicators of protection because the immunogenicity of the vaccine seed strain was also a critical factor.

  17. Unexpected Interfarm Transmission Dynamics during a Highly Pathogenic Avian Influenza Epidemic

    PubMed Central

    Tassoni, Luca; Milani, Adelaide; Hughes, Joseph; Salviato, Annalisa; Massi, Paola; Zamperin, Gianpiero; Bonfanti, Lebana; Marangon, Stefano; Cattoli, Giovanni; Monne, Isabella

    2016-01-01

    ABSTRACT Next-generation sequencing technology is now being increasingly applied to study the within- and between-host population dynamics of viruses. However, information on avian influenza virus evolution and transmission during a naturally occurring epidemic is still limited. Here, we use deep-sequencing data obtained from clinical samples collected from five industrial holdings and a backyard farm infected during the 2013 highly pathogenic avian influenza (HPAI) H7N7 epidemic in Italy to unravel (i) the epidemic virus population diversity, (ii) the evolution of virus pathogenicity, and (iii) the pathways of viral transmission between different holdings and sheds. We show a high level of genetic diversity of the HPAI H7N7 viruses within a single farm as a consequence of separate bottlenecks and founder effects. In particular, we identified the cocirculation in the index case of two viral strains showing a different insertion at the hemagglutinin cleavage site, as well as nine nucleotide differences at the consensus level and 92 minority variants. To assess interfarm transmission, we combined epidemiological and genetic data and identified the index case as the major source of the virus, suggesting the spread of different viral haplotypes from the index farm to the other industrial holdings, probably at different time points. Our results revealed interfarm transmission dynamics that the epidemiological data alone could not unravel and demonstrated that delay in the disease detection and stamping out was the major cause of the emergence and the spread of the HPAI strain. IMPORTANCE The within- and between-host evolutionary dynamics of a highly pathogenic avian influenza (HPAI) strain during a naturally occurring epidemic is currently poorly understood. Here, we perform for the first time an in-depth sequence analysis of all the samples collected during a HPAI epidemic and demonstrate the importance to complement outbreak investigations with genetic data to

  18. Perspectives on the global threat: the challenge of avian influenza viruses for the world's veterinary community.

    PubMed

    Capua, Ilaria; Alexander, Dennis

    2010-03-01

    The ongoing animal and human health crises caused by influenza viruses of H5N1 subtype have focused the attention of international organizations and donors on the need for improved veterinary infrastructure in developing countries and the need for improved communication between the human and animal health sectors. The circulation and re-emergence of high-pathogenicity avian influenza viruses of H5N1 subtype are still major concerns because of potential effects on human health, on the profitability of poultry industries, and on the livelihood of the rural environment. Significant improvements toward the management of these outbreaks have occurred worldwide, including new legislative tools, intervention strategies, and investments in capacity building in both developed and developing countries. This has led to a greater understanding of certain aspects of this infection and of its pandemic potential, although we are still far from certainties and from resolving the situation. Given that genetic analysis of the viruses causing human pandemics since the beginning of the 20th century have indicated that at least the hemagglutinin gene was donated from an avian progenitor virus, it would seem reasonable to exploit the information we have from an animal health perspective to support public health policies. Possibly the biggest challenge we have is to find novel ways to maximize the use of the information that is generated as a result of the improved networking and diagnostic capacities. In the era of globalization, emerging and re-emerging diseases of public health relevance are a concern to developing and developed countries and are a real threat because of the interdependence of the global economy. Communication and analysis systems currently available should be tailored to meet global health priorities, and used to develop and constantly improve novel systems for the exploitation of information to generate knowledge. Another fundamental task the veterinary community

  19. An overview of the characteristics of the novel avian influenza A H7N9 virus in humans.

    PubMed

    Tan, Kei-Xian; Jacob, Sabrina A; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    The novel avian influenza A H7N9 virus which caused the first human infection in Shanghai, China; was reported on the 31st of March 2013 before spreading rapidly to other Chinese provinces and municipal cities. This is the first time the low pathogenic avian influenza A virus has caused human infections and deaths; with cases of severe respiratory disease with pneumonia being reported. There were 440 confirmed cases with 122 fatalities by 16 May 2014; with a fatality risk of ∼28%. The median age of patients was 61 years with a male-to-female ratio of 2.4:1. The main source of infection was identified as exposure to poultry and there is so far no definitive evidence of sustained person-to-person transmission. The neuraminidase inhibitors, namely oseltamivir, zanamivir, and peramivir; have shown good efficacy in the management of the novel H7N9 virus. Treatment is recommended for all hospitalized patients, and for confirmed and probable outpatient cases; and should ideally be initiated within 48 h of the onset of illness for the best outcome. Phylogenetic analysis found that the novel H7N9 virus is avian in origin and evolved from multiple reassortments of at least four origins. Indeed the novel H7N9 virus acquired human adaptation via mutations in its eight RNA gene segments. Enhanced surveillance and effective global control are essential to prevent pandemic outbreaks of the novel H7N9 virus.

  20. An overview of the characteristics of the novel avian influenza A H7N9 virus in humans

    PubMed Central

    Tan, Kei-Xian; Jacob, Sabrina A.; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    The novel avian influenza A H7N9 virus which caused the first human infection in Shanghai, China; was reported on the 31st of March 2013 before spreading rapidly to other Chinese provinces and municipal cities. This is the first time the low pathogenic avian influenza A virus has caused human infections and deaths; with cases of severe respiratory disease with pneumonia being reported. There were 440 confirmed cases with 122 fatalities by 16 May 2014; with a fatality risk of ∼28%. The median age of patients was 61 years with a male-to-female ratio of 2.4:1. The main source of infection was identified as exposure to poultry and there is so far no definitive evidence of sustained person-to-person transmission. The neuraminidase inhibitors, namely oseltamivir, zanamivir, and peramivir; have shown good efficacy in the management of the novel H7N9 virus. Treatment is recommended for all hospitalized patients, and for confirmed and probable outpatient cases; and should ideally be initiated within 48 h of the onset of illness for the best outcome. Phylogenetic analysis found that the novel H7N9 virus is avian in origin and evolved from multiple reassortments of at least four origins. Indeed the novel H7N9 virus acquired human adaptation via mutations in its eight RNA gene segments. Enhanced surveillance and effective global control are essential to prevent pandemic outbreaks of the novel H7N9 virus. PMID:25798131

  1. Transmission of avian influenza virus (H3N2) to dogs.

    PubMed

    Song, Daesub; Kang, Bokyu; Lee, Chulseung; Jung, Kwonil; Ha, Gunwoo; Kang, Dongseok; Park, Seongjun; Park, Bongkyun; Oh, Jinsik

    2008-05-01

    In South Korea, where avian influenza virus subtypes H3N2, H5N1, H6N1, and H9N2 circulate or have been detected, 3 genetically similar canine influenza virus (H3N2) strains of avian origin (A/canine/Korea/01/2007, A/canine/Korea/02/2007, and A/canine/Korea/03/2007) were isolated from dogs exhibiting severe respiratory disease. To determine whether the novel canine influenza virus of avian origin was transmitted among dogs, we experimentally infected beagles with this influenza virus (H3N2) isolate. The beagles shed virus through nasal excretion, seroconverted, and became ill with severe necrotizing tracheobronchitis and bronchioalveolitis with accompanying clinical signs (e.g., high fever). Consistent with histologic observation of lung lesions, large amounts of avian influenza virus binding receptor (SAalpha 2,3-gal) were identified in canine tracheal, bronchial, and bronchiolar epithelial cells, which suggests potential for direct transmission of avian influenza virus (H3N2) from poultry to dogs. Our data provide evidence that dogs may play a role in interspecies transmission and spread of influenza virus.

  2. Novel route of exposure explains outbreaks of pH1N1 influenza in turkeys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of avian and swine influenza virus genes in the 2009 novel H1N1 pandemic virus (pH1N1) raises the potential for infection in poultry following exposure to infected humans or swine. This is especially true for turkeys because of their known susceptibility to type A influenza viruses and...

  3. Comparative susceptibility of waterfowl and gulls to highly pathogenic avian influenza H5N1 virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild avian species in the Orders Anseriformes (ducks, geese, swans) and Charadriiformes (gulls, terns, shorebirds) have traditionally been considered the natural reservoirs for avian influenza viruses (AIV) and morbidity or mortality is rarely associated with AIV infection in these hosts. However, ...

  4. Pathogenesis of H5N1 avian influenza virus reassortants in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic H5N1 avian influenza viruses produce severe disease and mortality in chickens. Identification of viral genes important for cell tropism and replication efficiency helps identify virulence factors. To determine which viral gene or genes contribute to the virulence of H5N1 avian in...

  5. Intersubtype Reassortments of H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Quail

    PubMed Central

    Nguyen, Tinh Huu; Than, Van Thai; Thanh, Hien Dang; Hung, Vu-Khac; Nguyen, Duc Tan; Kim, Wonyong

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) viruses are considered a threat to national animal industries, causing production losses and high mortality in domestic poultry. In recent years, quail has become a popular terrestrial poultry species raised for production of meat and eggs in Asia. In this study, to better understand the roles of quail in H5N1 viral evolution, two H5N1-positive samples, designated A/quail/Vietnam/CVVI-49/2010 (CVVI-49/2010) and A/quail/Vietnam/CVVI-50/2014 (CVVI-50/2014), were isolated from quail during H5N1 outbreaks in Vietnam, and their whole genome were analyzed. The phylogenetic analysis reveals new evolutionary variation in the worldwide H5N1 viruses. The quail HA genes were clustered into clades 1.1.1 (CVVI-49/2010) and clade 2.3.2.1c (CVVI-50/2014), which may have evolved from viruses circulating from chickens and/or ducks in Cambodia, mainland of China, Taiwan, Indonesia, and South Korea in recent years. Interestingly, the M2 gene of the CVVI-49/2010 strain contained amino acid substitutions at position 26L-I and 31S-N that are related to amantadine-resistance. In particular, the CVVI-50/2014 strain revealed evidence of multiple intersubtype reassortment events between virus clades 2.3.2.1c, 2.3.2.1b, and 2.3.2.1a. Data from this study supports the possible role of quail as an important intermediate host in avian influenza virus evolution. Therefore, additional surveillance is needed to monitor these HPAI viruses both serologically and virologically in quail. PMID:26900963

  6. Molecular Characterizations of Surface Proteins Hemagglutinin and Neuraminidase from Recent H5Nx Avian Influenza Viruses

    SciTech Connect

    Yang, Hua; Carney, Paul J.; Mishin, Vasiliy P.; Guo, Zhu; Chang, Jessie C.; Wentworth, David E.; Gubareva, Larisa V.; Stevens, James; Schultz-Cherry, S.

    2016-04-06

    ABSTRACT

    During 2014, a subclade 2.3.4.4 highly pathogenic avian influenza (HPAI) A(H5N8) virus caused poultry outbreaks around the world. In late 2014/early 2015, the virus was detected in wild birds in Canada and the United States, and these viruses also gave rise to reassortant progeny, composed of viral RNA segments (vRNAs) from both Eurasian and North American lineages. In particular, viruses were found with N1, N2, and N8 neuraminidase vRNAs, and these are collectively referred to as H5Nx viruses. In the United States, more than 48 million domestic birds have been affected. Here we present a detailed structural and biochemical analysis of the surface antigens of H5N1, H5N2, and H5N8 viruses in addition to those of a recent human H5N6 virus. Our results with recombinant hemagglutinin reveal that these viruses have a strict avian receptor binding preference, while recombinantly expressed neuraminidases are sensitive to FDA-approved and investigational antivirals. Although H5Nx viruses currently pose a low risk to humans, it is important to maintain surveillance of these circulating viruses and to continually assess future changes that may increase their pandemic potential.

    IMPORTANCEThe H5Nx viruses emerging in North America, Europe, and Asia pose a great public health concern. Here we report a molecular and structural study of the major surface proteins of several H5Nx influenza viruses. Our results improve the understanding of these new viruses and provide important information on their receptor preferences and susceptibilities to antivirals, which are central to pandemic risk assessment.

  7. Intersubtype Reassortments of H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Quail.

    PubMed

    Nguyen, Tinh Huu; Than, Van Thai; Thanh, Hien Dang; Hung, Vu-Khac; Nguyen, Duc Tan; Kim, Wonyong

    2016-01-01

    H5N1 highly pathogenic avian influenza (HPAI) viruses are considered a threat to national animal industries, causing production losses and high mortality in domestic poultry. In recent years, quail has become a popular terrestrial poultry species raised for production of meat and eggs in Asia. In this study, to better understand the roles of quail in H5N1 viral evolution, two H5N1-positive samples, designated A/quail/Vietnam/CVVI-49/2010 (CVVI-49/2010) and A/quail/Vietnam/CVVI-50/2014 (CVVI-50/2014), were isolated from quail during H5N1 outbreaks in Vietnam, and their whole genome were analyzed. The phylogenetic analysis reveals new evolutionary variation in the worldwide H5N1 viruses. The quail HA genes were clustered into clades 1.1.1 (CVVI-49/2010) and clade 2.3.2.1c (CVVI-50/2014), which may have evolved from viruses circulating from chickens and/or ducks in Cambodia, mainland of China, Taiwan, Indonesia, and South Korea in recent years. Interestingly, the M2 gene of the CVVI-49/2010 strain contained amino acid substitutions at position 26L-I and 31S-N that are related to amantadine-resistance. In particular, the CVVI-50/2014 strain revealed evidence of multiple intersubtype reassortment events between virus clades 2.3.2.1c, 2.3.2.1b, and 2.3.2.1a. Data from this study supports the possible role of quail as an important intermediate host in avian influenza virus evolution. Therefore, additional surveillance is needed to monitor these HPAI viruses both serologically and virologically in quail.

  8. Molecular Characterizations of Surface Proteins Hemagglutinin and Neuraminidase from Recent H5Nx Avian Influenza Viruses

    PubMed Central

    Yang, Hua; Carney, Paul J.; Mishin, Vasiliy P.; Guo, Zhu; Chang, Jessie C.; Wentworth, David E.; Gubareva, Larisa V.

    2016-01-01

    ABSTRACT During 2014, a subclade 2.3.4.4 highly pathogenic avian influenza (HPAI) A(H5N8) virus caused poultry outbreaks around the world. In late 2014/early 2015, the virus was detected in wild birds in Canada and the United States, and these viruses also gave rise to reassortant progeny, composed of viral RNA segments (vRNAs) from both Eurasian and North American lineages. In particular, viruses were found with N1, N2, and N8 neuraminidase vRNAs, and these are collectively referred to as H5Nx viruses. In the United States, more than 48 million domestic birds have been affected. Here we present a detailed structural and biochemical analysis of the surface antigens of H5N1, H5N2, and H5N8 viruses in addition to those of a recent human H5N6 virus. Our results with recombinant hemagglutinin reveal that these viruses have a strict avian receptor binding preference, while recombinantly expressed neuraminidases are sensitive to FDA-approved and investigational antivirals. Although H5Nx viruses currently pose a low risk to humans, it is important to maintain surveillance of these circulating viruses and to continually assess future changes that may increase their pandemic potential. IMPORTANCE The H5Nx viruses emerging in North America, Europe, and Asia pose a great public health concern. Here we report a molecular and structural study of the major surface proteins of several H5Nx influenza viruses. Our results improve the understanding of these new viruses and provide important information on their receptor preferences and susceptibilities to antivirals, which are central to pandemic risk assessment. PMID:27053557

  9. Inactivation of Avian Influenza Virus in Nonpelleted Chicken Feed.

    PubMed

    Toro, H; van Santen, V L; Breedlove, C

    2016-12-01

    Corn stored outside could become contaminated with avian influenza virus (AIV) from wild bird droppings. AIV-contaminated ingredients could pass into the poultry flocks in nonpelleted chicken feed. The efficacy of two disinfectants at inactivating AIV in chicken feed was evaluated. Both Termin-8 (a blend of formaldehyde, propionic acid, terpenes, and surfactant) and Finio (a blend of approved phytochemicals and carboxylic acids) effectively inactivated AIV in chicken feed. Because stability of infectious AIV in chicken feed is limited, we evaluated addition of protein (skim milk powder) to the virus suspension. Protein prolonged the stability of AIV in untreated feed to 24 hr at 24 C. However, both feed disinfectants were able to inactivate the virus in feed even when protected by skim milk powder.

  10. Inactivation of avian influenza virus using common detergents and chemicals.

    PubMed

    Lombardi, M E; Ladman, B S; Alphin, R L; Benson, E R

    2008-03-01

    Six disinfectant chemicals were tested individually for effectiveness against low pathogenic avian influenza virus (LPAIV) A/H7N2/Chick/MinhMa/04. The tested agents included acetic acid (C2H4O2), citric acid (C6H8O7), calcium hypochlorite (Ca(ClO)2), sodium hypochlorite (NaOCl), a powdered laundry detergent with peroxygen (bleach), and a commercially available iodine/acid disinfectant. Four of the six chemicals, including acetic acid (5%), citric acid (1% and 3%), calcium hypochlorite (750 ppm), and sodium hypochlorite (750 ppm) effectively inactivated LPAIV on hard and nonporous surfaces. The conventional laundry detergent was tested at multiple concentrations and found to be suitable for inactivating LPAIV on hard and nonporous surfaces at 6 g/L. Only citric acid and commercially available iodine/acid disinfectant were found to be effective at inactivating LPAIV on both porous and nonporous surfaces.

  11. Family Clusters of Avian Influenza A H7N9 Virus Infection in Guangdong Province, China

    PubMed Central

    Yi, Lina; Guan, Dawei; Kang, Min; Wu, Jie; Zeng, Xianqiao; Lu, Jing; Rutherford, Shannon; Zou, Lirong; Liang, Lijun; Ni, Hanzhong; Zhang, Xin; Zhong, Haojie; He, Jianfeng; Lin, Jinyan

    2014-01-01

    Since its first identification, the epizootic avian influenza A H7N9 virus has continued to cause infections in China. Two waves were observed during this outbreak. No cases were reported from Guangdong Province during the first wave, but this province became one of the prime outbreak sites during the second wave. In order to identify the transmission potential of this continuously evolving infectious virus, our research group monitored all clusters of H7N9 infections during the second wave of the epidemic in Guangdong Province. Epidemiological, clinical, and virological data on these patients were collected and analyzed. Three family clusters including six cases of H7N9 infection were recorded. The virus caused severe disease in two adult patients but only mild symptoms for all four pediatric patients. All patients reported direct poultry or poultry market exposure history. Relevant environment samples collected according to their reported exposures tested H7N9 positive. Virus isolates from patients in the same cluster shared high sequence similarities. In conclusion, although continually evolving, the currently circulating H7N9 viruses in Guangdong Province have not yet demonstrated the capacity for efficient and sustained person-to-person transmission. PMID:25339399

  12. Development of reverse transcription recombinase polymerase amplification assay for avian influenza H5N1 HA gene detection.

    PubMed

    Yehia, Nahed; Arafa, Abdel-Satar; Abd El Wahed, Ahmed; El-Sanousi, Ahmed A; Weidmann, Manfred; Shalaby, Mohamed A

    2015-10-01

    The 2006 outbreaks of H5N1 avian influenza in Egypt interrupted poultry production and caused staggering economic damage. In addition, H5N1 avian influenza viruses represent a significant threat to public health. Therefore, the rapid detection of H5 viruses is very important in order to control the disease. In this study, a qualitative reverse transcription recombinase polymerase amplification (RT-RPA) assay for the detection of hemagglutinin gene of H5 subtype influenza viruses was developed. The results were compared to the real-time reverse transcription polymerase chain reaction (RT-PCR). An in vitro transcribed RNA standard of 970 nucleotides of the hemagglutinin gene was developed and used to determine the assay sensitivity. The developed H5 RT-RPA assay was able to detect one RNA molecule within 7 min, while in real-time RT-PCR, at least 90 min was required. H5 RT-RPA assay did not detect nucleic acid extracted from H5 negative samples or from other pathogens producing respiratory manifestation in poultry. The clinical performance of the H5 RT-RPA assay was tested in 30 samples collected between 2014 and 2015; the sensitivity of H5 RT-RPA and real-time RT-PCR was 100%. In conclusion, H5 RT-RPA was faster than real-time RT-PCR and easily operable in a portable device. Moreover, it had an equivalent sensitivity and specificity.

  13. Highly pathogenic avian influenza (H7N7): vaccination of zoo birds and transmission to non-poultry species.

    PubMed

    Philippa, Joost D W; Munster, Vincent J; Bolhuis, Hester van; Bestebroer, Theo M; Schaftenaar, Willem; Beyer, Walter E P; Fouchier, Ron A M; Kuiken, Thijs; Osterhaus, Albert D M E

    2005-12-30

    In 2003 an outbreak of highly pathogenic avian influenza virus (H7N7) struck poultry in The Netherlands. A European Commission directive made vaccination of valuable species in zoo collections possible under strict conditions. We determined pre- and post-vaccination antibody titres in 211 birds by haemagglutination inhibition test as a measure of vaccine efficacy. After booster vaccination, 81.5% of vaccinated birds developed a titre of > or =40, while overall geometric mean titre (GMT) was 190 (95% CI: 144-251). Birds of the orders Anseriformes, Galliformes and Phoenicopteriformes showed higher GMT, and larger percentages developed titres > or =40 than those of the other orders. Antibody response decreased with increasing mean body weight in birds > or =1.5 kg body weight. In the vicinity of the outbreak, H7N7 was detected by RT-PCR in wild species (mallards and mute swans) kept in captivity together with infected poultry, illustrating the potential threat of transmission from poultry into other avian species, and the importance of protecting valuable avian species by means of vaccination.

  14. Bird flu, influenza and 1918: the case for mutant Avian tuberculosis.

    PubMed

    Broxmeyer, Lawrence

    2006-01-01

    just prior to the first human outbreaks was a disease of avian and human tuberculosis genetically combined through mycobacteriophage interchange, with the pig, susceptible to both, as its involuntary living culture medium. What are the implications of mistaking a virus such as Influenza A for what mycobacterial disease is actually causing? They would be disastrous, with useless treatment and preventative stockpiles. The obvious need for further investigation is presently imminent and pressing.

  15. The role of vaccines and vaccination in high pathogenicity avian influenza control and eradication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty epizootics of high pathogenicity avian influenza (HPAI) have occurred in the world since influenza was identified as the etiology in 1955. Twenty-four of the epizootics were eradicated by using stamping-out programs composed of education, biosecurity, rapid diagnostics and surveillance, and ...

  16. Subclinical avian influenza A(H5N1) virus infection in human, Vietnam.

    PubMed

    Le, Mai Quynh; Horby, Peter; Fox, Annette; Nguyen, Hien Tran; Le Nguyen, Hang Khanh; Hoang, Phuong Mai Vu; Nguyen, Khanh Cong; de Jong, Menno D; Jeeninga, Rienk E; Rogier van Doorn, H; Farrar, Jeremy; Wertheim, Heiman F L

    2013-10-01

    Laboratory-confirmed cases of subclinical infection with avian influenza A(H5N1) virus in humans are rare, and the true number of these cases is unknown. We describe the identification of a laboratory-confirmed subclinical case in a woman during an influenza A(H5N1) contact investigation in northern Vietnam.

  17. Newcastle disease virus detection and differentiation from avian influenza.

    PubMed

    Miller, Patti J; Torchetti, Mia Kim

    2014-01-01

    Newcastle disease (ND) is a contagious and often fatal disease that affects over 250 bird species worldwide, and is caused by infection with virulent strains of avian paramyxovirus-1 (APMV-1) of the family Paramyxoviridae, genus Avulavirus. Infections of poultry with virulent strains of APMV-1 (Newcastle disease virus) are reportable to the World Organization for Animal Health (OIE). Vaccination of poultry species is a key measure in the control of ND. Other APMV-1 viruses of low virulence, which are not used as vaccines, are also often isolated from wild bird species. The APMV-1 virus, like avian influenza virus (AIV), is a hemagglutinating virus (HA) and able to agglutinate chicken red blood cells (RBC). Because the clinical presentation of ND can be difficult to distinguish from disease caused by AIV, techniques for differential diagnosis are essential, as well as the ability to detect mixed infections. When an HA positive virus is detected from virus isolation, additional assays can be performed to determine which virus is present. Both antigenic and molecular methods are necessary as some virulent ND viruses from cormorants in the USA after 2002 have lost their ability to hemagglutinate chicken RBC and molecular methods are needed for identification.

  18. Water and sediment characteristics associated with avian botulism outbreaks in wetlands

    USGS Publications Warehouse

    Rocke, Tonie E.; Samuel, Michael D.

    1999-01-01

    Avian botulism kills thousands of waterbirds annually throughout North America, but management efforts to reduce its effects have been hindered because environmental conditions that promote outbreaks are poorly understood. We measured sediment and water variables in 32 pairs of wetlands with and without a current outbreak of avian botulism. Wetlands with botulism outbreaks had greater percent organic matter (POM) in the sediment (P = 0.088) and lower redox potential in the water (P = 0.096) than paired control wetlands. We also found that pH, redox potential, temperature, and salinity measured just above the sediment-water interface were associated (P ≤ 0.05) with the risk of botulism outbreaks in wetlands, but relations were complex, involving nonlinear and multivariate associations. Regression models indicated that the risk of botulism outbreaks increased when water pH was between 7.5 and 9.0, redox potential was negative, and water temperature was >20°C. Risk declined when redox potential increased (>100), water temperature decreased (10-15°C), pH was 9.0, or salinity was low (<2.0 ppt). Our predictive models could allow managers to assess potential effects of wetland management practices on the risk of botulism outbreaks and to develop and evaluate alternative management strategies to reduce losses from avian botulism.

  19. Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus.

    PubMed

    Kim, Young-Il; Pascua, Philippe Noriel Q; Kwon, Hyeok-Il; Lim, Gyo-Jin; Kim, Eun-Ha; Yoon, Sun-Woo; Park, Su-Jin; Kim, Se Mi; Choi, Eun-Ji; Si, Young-Jae; Lee, Ok-Jun; Shim, Woo-Sub; Kim, Si-Wook; Mo, In-Pil; Bae, Yeonji; Lim, Yong Taik; Sung, Moon Hee; Kim, Chul-Joong; Webby, Richard J; Webster, Robert G; Choi, Young Ki

    2014-10-01

    The endemicity of highly pathogenic avian influenza (HPAI) A(H5N1) viruses in Asia has led to the generation of reassortant H5 strains with novel gene constellations. A newly emerged HPAI A(H5N8) virus caused poultry outbreaks in the Republic of Korea in 2014. Because newly emerging high-pathogenicity H5 viruses continue to pose public health risks, it is imperative that their pathobiological properties be examined. Here, we characterized A/mallard duck/Korea/W452/2014 (MDk/W452(H5N8)), a representative virus, and evaluated its pathogenic and pandemic potential in various animal models. We found that MDk/W452(H5N8), which originated from the reassortment of wild bird viruses harbored by migratory waterfowl in eastern China, replicated systemically and was lethal in chickens, but appeared to be attenuated, albeit efficiently transmitted, in ducks. Despite predominant attachment to avian-like virus receptors, MDk/W452(H5N8) also exhibited detectable human virus-like receptor binding and replicated in human respiratory tract tissues. In mice, MDk/W452(H5N8) was moderately pathogenic and had limited tissue tropism relative to previous HPAI A(H5N1) viruses. It also induced moderate nasal wash titers in inoculated ferrets; additionally, it was recovered in extrapulmonary tissues and one of three direct-contact ferrets seroconverted without shedding. Moreover, domesticated cats appeared to be more susceptible than dogs to virus infection. With their potential to become established in ducks, continued circulation of A(H5N8) viruses could alter the genetic evolution of pre-existing avian poultry strains. Overall, detailed virological investigation remains a necessity given the capacity of H5 viruses to evolve to cause human illness with few changes in the viral genome.

  20. Unusually High Mortality in Waterfowl Caused by Highly Pathogenic Avian Influenza A(H5N1) in Bangladesh.

    PubMed

    Haider, N; Sturm-Ramirez, K; Khan, S U; Rahman, M Z; Sarkar, S; Poh, M K; Shivaprasad, H L; Kalam, M A; Paul, S K; Karmakar, P C; Balish, A; Chakraborty, A; Mamun, A A; Mikolon, A B; Davis, C T; Rahman, M; Donis, R O; Heffelfinger, J D; Luby, S P; Zeidner, N

    2017-02-01

    Mortality in ducks and geese caused by highly pathogenic avian influenza A(H5N1) infection had not been previously identified in Bangladesh. In June-July 2011, we investigated mortality in ducks, geese and chickens with suspected H5N1 infection in a north-eastern district of the country to identify the aetiologic agent and extent of the outbreak and identify possible associated human infections. We surveyed households and farms with affected poultry flocks in six villages in Netrokona district and collected cloacal and oropharyngeal swabs from sick birds and tissue samples from dead poultry. We conducted a survey in three of these villages to identify suspected human influenza-like illness cases and collected nasopharyngeal and throat swabs. We tested all swabs by real-time RT-PCR, sequenced cultured viruses, and examined tissue samples by histopathology and immunohistochemistry to detect and characterize influenza virus infection. In the six villages, among the 240 surveyed households and 11 small-scale farms, 61% (1789/2930) of chickens, 47% (4816/10 184) of ducks and 73% (358/493) of geese died within 14 days preceding the investigation. Of 70 sick poultry swabbed, 80% (56/70) had detectable RNA for influenza A/H5, including 89% (49/55) of ducks, 40% (2/5) of geese and 50% (5/10) of chickens. We isolated virus from six of 25 samples; sequence analysis of the hemagglutinin and neuraminidase gene of these six isolates indicated clade 2.3.2.1a of H5N1 virus. Histopathological changes and immunohistochemistry staining of avian influenza viral antigens were recognized in the brain, pancreas and intestines of ducks and chickens. We identified ten human cases showing signs compatible with influenza-like illness; four were positive for influenza A/H3; however, none were positive for influenza A/H5. The recently introduced H5N1 clade 2.3.2.1a virus caused unusually high mortality in ducks and geese. Heightened surveillance in poultry is warranted to guide appropriate

  1. Is avian influenza virus A(H5N1) a real threat to human health?

    PubMed

    Amendola, A; Ranghiero, A; Zanetti, A; Pariani, E

    2011-09-01

    The A(H5N1) influenza remains a disease of birds with a significant species barrier: in the presence of some tens million cases of infection in poultry--with a wide geographical spread--, only a few hundreds cases have occurred in humans. To date, human cases have been reported in 15 countries--mainly in Asia--and all were related to the onset of outbreaks in poultry. A peak of H5N1 human cases was recorded in 2006, then decreasing in subsequent years. Despite this trend, the H5N1 virus still represents a possible threat to human health, considering that more than half of human cases of H5N1 have been fatal. Moreover, despite the drop in the number of cases, the risk of a novel pandemic cannot be excluded, since H5N1 continues to circulate in poultry in countries with elevated human population density and where monitoring systems are not fully appropriate. In addition, there is a major global concern about the potential occurrence of a reassortment between the 2009 pandemic H1N1 and the highly pathogenic H5N1 influenza viruses following a co-infection in a susceptible host. Therefore, the implementation of appropriate surveillance and containment measures is crucial in order to minimize such risk. In conclusion, H5N1 avian influenza is still a rare disease in humans but its clinical severe outcome requires a careful monitoring of the virus's ability to evolve and to trigger a new pandemic.

  2. Transmission and reassortment of avian influenza viruses at the Asian-North American interface

    USGS Publications Warehouse

    Ramey, Andrew M.; Pearce, John M.; Ely, Craig R.; Guy, Lisa M. Sheffield; Irons, David B.; Derksen, Dirk V.; Ip, Hon S.

    2010-01-01

    Twenty avian influenza viruses were isolated from seven wild migratory bird species sampled at St. Lawrence Island, Alaska. We tested predictions based on previous phylogenetic analyses of avian influenza viruses that support spatially dependent trans-hemispheric gene flow and frequent interspecies transmission at a location situated at the Asian–North American interface. Through the application of phylogenetic and genotypic approaches, our data support functional dilution by distance of trans-hemispheric reassortants and interspecific virus transmission. Our study confirms infection of divergent avian taxa with nearly identical avian influenza strains in the wild. Findings also suggest that H16N3 viruses may contain gene segments with unique phylogenetic positions and that further investigation of how host specificity may impact transmission of H13 and H16 viruses is warranted.

  3. Implications of public understanding of avian influenza for fostering effective risk communication.

    PubMed

    Elledge, Brenda L; Brand, Michael; Regens, James L; Boatright, Daniel T

    2008-10-01

    Avian influenza has three of the four properties necessary to cause a pandemic. However, are we as individuals and communities prepared for a pandemic flu in the United States? To help answer this question, 12 focus groups (N = 60) were conducted in Tulsa, Oklahoma, to determine the level of awareness of avian and pandemic flu for the county health department to develop effective communication messages. The overall findings indicate that the general Tulsa public lacks information about avian influenza or pandemics, does not believe a pandemic will occur, and believes if one does occur the government will take care of it. Finally, the groups agreed that education would be the key to preventing widespread panic if a pandemic occurred. Five themes emerged: confusion about terminology, seriousness of avian influenza, disaster fatigue, appropriate precautions, and credibility of health information. Each should be considered in developing effective risk communication messages.

  4. Evaluation of cytokine gene expression after avian influenza virus infection in avian cell lines and primary cell cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The innate immune responses elicited by avian influenza virus (AIV) infection has been studied by measuring cytokine gene expression by relative real time PCR (rRT-PCR) in vitro, using both cell lines and primary cell cultures. Continuous cell lines offer advantages over the use of primary cell cult...

  5. New DIVA vaccine for the protection of poultry against H5 highly pathogenic avian influenza viruses irrespective of the N-subtype.

    PubMed

    Peeters, Ben; de Boer, Steffen Matthijn; Tjeerdsma, Gerjanne; Moormann, Rob; Koch, Guus

    2012-11-19

    Most human cases of highly pathogenic H5N1 avian influenza virus (HPAIV) infection are the result of direct contact with infected poultry. Therefore, infection of poultry should be prevented to avoid human exposure. One method to combat HPAIV outbreaks relies on depopulation. An alternative or supplementary method is the use of DIVA (discriminating infected from vaccinated animals) vaccines to prevent infection of animals on holdings surrounding an outbreak. Discrimination between infected and vaccinated animals is often based on the 'heterologous neuraminidase' strategy. This implies that a suitable vaccine can only be selected when the N-subtype of the outbreak strain is known. Thus, at least two vaccines with different N-subtypes must be available, allowing a switch of vaccine in the event that one of them matches the outbreak strain. However, such vaccines cannot be used preventively in situations in which the N-subtype of the outbreak strain is unknown. In order to circumvent these drawbacks we generated a recombinant influenza virus containing the HA gene of a contemporary H5N1 HPAIV strain in combination with the NA gene of a human type B influenza virus. An inactivated vaccine based on this virus protected chickens against clinical disease, and completely prevented virus shedding after H5N1 HPAIV challenge infection. Serological analyses confirmed that the vaccine complied with the DIVA principle. Since NA of type B does not occur in avian influenza strains, this vaccine is suitable as a DIVA vaccine against any H5 HPAIV, and may be used preventively without compromising the DIVA principle.

  6. Highly Pathogenic Avian Influenza H5N1 in Mainland China.

    PubMed

    Li, Xin-Lou; Liu, Kun; Yao, Hong-Wu; Sun, Ye; Chen, Wan-Jun; Sun, Ruo-Xi; de Vlas, Sake J; Fang, Li-Qun; Cao, Wu-Chun

    2015-05-08

    Highly pathogenic avian influenza (HPAI) H5N1 has posed a significant threat to both humans and birds, and it has spanned large geographic areas and various ecological systems throughout Asia, Europe and Africa, but especially in mainland China. Great efforts in control and prevention of the disease, including universal vaccination campaigns in poultry and active serological and virological surveillance, have been undertaken in mainland China since the beginning of 2006. In this study, we aim to characterize the spatial and temporal patterns of HPAI H5N1, and identify influencing factors favoring the occurrence of HPAI H5N1 outbreaks in poultry in mainland China. Our study shows that HPAI H5N1 outbreaks took place sporadically after vaccination campaigns in poultry, and mostly occurred in the cold season. The positive tests in routine virological surveillance of HPAI H5N1 virus in chicken, duck, goose as well as environmental samples were mapped to display the potential risk distribution of the virus. Southern China had a higher positive rate than northern China, and positive samples were mostly detected from chickens in the north, while the majority were from duck in the south, and a negative correlation with monthly vaccination rates in domestic poultry was found (R = -0.19, p value = 0.005). Multivariate panel logistic regression identified vaccination rate, interaction between distance to the nearest city and national highway, interaction between distance to the nearest lake and wetland, and density of human population, as well as the autoregressive term in space and time as independent risk factors in the occurrence of HPAI H5N1 outbreaks, based on which a predicted risk map of the disease was derived. Our findings could provide new understanding of the distribution and transmission of HPAI H5N1 in mainland China and could be used to inform targeted surveillance and control efforts in both human and poultry populations to reduce the risk of future infections.

  7. Highly Pathogenic Avian Influenza H5N1 in Mainland China

    PubMed Central

    Li, Xin-Lou; Liu, Kun; Yao, Hong-Wu; Sun, Ye; Chen, Wan-Jun; Sun, Ruo-Xi; de Vlas, Sake J.; Fang, Li-Qun; Cao, Wu-Chun

    2015-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 has posed a significant threat to both humans and birds, and it has spanned large geographic areas and various ecological systems throughout Asia, Europe and Africa, but especially in mainland China. Great efforts in control and prevention of the disease, including universal vaccination campaigns in poultry and active serological and virological surveillance, have been undertaken in mainland China since the beginning of 2006. In this study, we aim to characterize the spatial and temporal patterns of HPAI H5N1, and identify influencing factors favoring the occurrence of HPAI H5N1 outbreaks in poultry in mainland China. Our study shows that HPAI H5N1 outbreaks took place sporadically after vaccination campaigns in poultry, and mostly occurred in the cold season. The positive tests in routine virological surveillance of HPAI H5N1 virus in chicken, duck, goose as well as environmental samples were mapped to display the potential risk distribution of the virus. Southern China had a higher positive rate than northern China, and positive samples were mostly detected from chickens in the north, while the majority were from duck in the south, and a negative correlation with monthly vaccination rates in domestic poultry was found (R = −0.19, p value = 0.005). Multivariate panel logistic regression identified vaccination rate, interaction between distance to the nearest city and national highway, interaction between distance to the nearest lake and wetland, and density of human population, as well as the autoregressive term in space and time as independent risk factors in the occurrence of HPAI H5N1 outbreaks, based on which a predicted risk map of the disease was derived. Our findings could provide new understanding of the distribution and transmission of HPAI H5N1 in mainland China and could be used to inform targeted surveillance and control efforts in both human and poultry populations to reduce the risk of future infections

  8. Outbreak of influenza in highly vaccinated crew of U.S. Navy ship.

    PubMed Central

    Earhart, K. C.; Beadle, C.; Miller, L. K.; Pruss, M. W.; Gray, G. C.; Ledbetter, E. K.; Wallace, M. R.

    2001-01-01

    An outbreak of influenza A (H3N2) occurred aboard a U.S. Navy ship in February 1996, despite 95% of the crew's having been appropriately vaccinated. Virus isolated from ill crew members was antigenically distinct from the vaccination strain. With an attack rate of 42%, this outbreak demonstrates the potential for rapid spread of influenza in a confined population and the impact subsequent illness may have upon the workplace. PMID:11384530

  9. Novel human H7N9 influenza virus in China.

    PubMed

    Wang, Chengmin; Luo, Jing; Wang, Jing; Su, Wen; Gao, Shanshan; Zhang, Min; Xie, Li; Ding, Hua; Liu, Shelan; Liu, Xiaodong; Chen, Yu; Jia, Yaxiong; He, Hongxuan

    2014-06-01

    Outbreaks of H7N9 avian influenza in humans in 5 provinces and 2 municipalities of China have reawakened concern that avian influenza viruses may again cross species barriers to infect the human population and thereby initiate a new influenza pandemic. Evolutionary analysis shows that human H7N9 influenza viruses originated from the H9N2, H7N3 and H11N9 avian viruses, and that it is as a novel reassortment influenza virus. This article reviews current knowledge on 11 subtypes of influenza A virus from human which can cause human infections.

  10. Novel Reassortant Clade 2.3.4.4 Avian Influenza A(H5N8) Virus in Wild Aquatic Birds, Russia, 2016.

    PubMed

    Lee, Dong-Hun; Sharshov, Kirill; Swayne, David E; Kurskaya, Olga; Sobolev, Ivan; Kabilov, Marsel; Alekseev, Alexander; Irza, Victor; Shestopalov, Alexander

    2017-02-01

    The emergence of novel avian influenza viruses in migratory birds is of concern because of the potential for virus dissemination during fall migration. We report the identification of novel highly pathogenic avian influenza viruses of subtype H5N8, clade 2.3.4.4, and their reassortment with other avian influenza viruses in waterfowl and shorebirds of Siberia.

  11. Novel Reassortant Clade 2.3.4.4 Avian Influenza A(H5N8) Virus in Wild Aquatic Birds, Russia, 2016

    PubMed Central

    Lee, Dong-Hun; Sharshov, Kirill; Swayne, David E.; Kurskaya, Olga; Sobolev, Ivan; Kabilov, Marsel; Alekseev, Alexander; Irza, Victor

    2017-01-01

    The emergence of novel avian influenza viruses in migratory birds is of concern because of the potential for virus dissemination during fall migration. We report the identification of novel highly pathogenic avian influenza viruses of subtype H5N8, clade 2.3.4.4, and their reassortment with other avian influenza viruses in waterfowl and shorebirds of Siberia. PMID:27875109

  12. Lemna (duckweed) expressed hemagglutinin from avian influenza H5N1 protects chickens against H5N1 high pathogenicity avian influenza virus challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the last two decades, transgenic plants have been explored as safe and cost effective alternative expression platforms for producing recombinant proteins. In this study, a synthetic hemagglutinin (HA) gene from the high pathogenicity avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1)...

  13. Cross reactive antibody and cytotoxic T lymphocytes from avian influenza H9N2 infected chickens against homologous and heterologous avian influenza isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunity against avian influenza (AI) is largely based on the induction of neutralizing antibodies produced against the hemagglutinin, although cytotoxic T lymphocytes (CTL’s) have been reported as critical for clearance of virus from infected cells. Antibody production against a particular virus ...

  14. Assessment of reduced vaccine dose on efficacy of an inactivated avian influenza vaccine against an H5N1 high pathogenicity avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) vaccines have emerged to be a viable emergency tool for use in a comprehensive strategy for dealing with high pathogenicity (HP) AI in developed countries. However, the available doses of inactivated AI vaccine are limited to national vaccine banks and inventory stocks of some ...

  15. Protection against H7N3 high pathogenicity avian influenza in chickens immunized with a recombinant fowlpox and an inactivated avian influenza vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beginning on June 2012, an H7N3 highly pathogenic avian influenza (HPAI) epizootic was reported in the State of Jalisco (Mexico), with some 22.4 million chickens that died, were slaughtered on affected farms or were preemptively culled on neighboring farms. In the current study, layer chickens were ...

  16. Reduction of high pathogenicity avian influenza virus in eggs from chickens once or twice vaccinated with an oil-emulsified inactivated H5 avian influenza vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The negative impact of high pathogenicity avian influenza virus (HPAIV) infection on egg production and deposition of virus in eggs, as well as any protective effect of vaccination, is unknown. Individually housed non-vaccinated, sham-vaccinated and inactivated H5N9 vaccinated once or twice adult Wh...

  17. Investigation of avian influenza virus in poultry and wild birds due to novel avian-origin influenza A(H10N8) in Nanchang City, China.

    PubMed

    Ni, Xiansheng; He, Fenglan; Hu, Maohong; Zhou, Xianfeng; Wang, Bin; Feng, Changhua; Wu, Yumei; Li, Youxing; Tu, Junling; Li, Hui; Liu, Mingbin; Chen, Haiying; Chen, Shengen

    2015-01-01

    Multiple reassortment events within poultry and wild birds had resulted in the establishment of another novel avian influenza A(H10N8) virus, and finally resulted in human death in Nanchang, China. However, there was a paucity of information on the prevalence of avian influenza virus in poultry and wild birds in Nanchang area. We investigated avian influenza virus in poultry and wild birds from live poultry markets, poultry countyards, delivery vehicles, and wild-bird habitats in Nanchang. We analyzed 1036 samples from wild birds and domestic poultry collected from December 2013 to February 2014. Original biological samples were tested for the presence of avian influenza virus using specific primer and probe sets of H5, H7, H9, H10 and N8 subtypes by real-time RT-PCR. In our analysis, the majority (97.98%) of positive samples were from live poultry markets. Among the poultry samples from chickens and ducks, AIV prevalence was 26.05 and 30.81%, respectively. Mixed infection of different HA subtypes was very common. Additionally, H10 subtypes coexistence with N8 was the most prevalent agent during the emergence of H10N8. This event illustrated a long-term surveillance was so helpful for pandemic preparedness and response.

  18. Clinical severity of human infection with avian influenza A(H7N9) virus

    PubMed Central

    Yu, Hongjie; Cowling, Benjamin J.; Feng, Luzhao; Lau, Eric H. Y.; Liao, Qiaohong; Tsang, Tim K.; Peng, Zhibin; Wu, Peng; Liu, Fengfeng; Fang, Vicky J.; Zhang, Honglong; Li, Ming; Zeng, Lingjia; Xu, Zhen; Li, Zhongjie; Luo, Huiming; Li, Qun; Feng, Zijian; Cao, Bin; Yang, Weizhong; Wu, Joseph T.; Wang, Yu; Leung, Gabriel M.

    2013-01-01

    Background Characterizing the severity profile of human infections with influenza viruses of animal origin is a part of pandemic risk assessment, and an important part of the assessment of disease epidemiology. Our objective was to assess the clinical severity of human infections with the avian influenza A(H7N9) virus that has recently emerged in China. Methods Among laboratory-confirmed cases of A(H7N9) who were hospitalised, we estimated the risk of fatality, mechanical ventilation, and admission to the intensive care unit based on censored data during the currently ongoing outbreak. We also used information on laboratory-confirmed cases detected through sentinel influenza-like illness (ILI) surveillance to estimate the number of symptomatic A(H7N9) virus infections to date and the symptomatic case fatality risk. Findings Among 123 hospitalised cases, 37 cases had died and 69 had recovered by May 28, 2013. Hospitalised cases had high risks of mortality (36%; 95% confidence interval (CI): 26%–45%), mechanical ventilation or mortality (69%; 95% CI: 60%–77%), and ICU admission or mechanical ventilation or mortality (83%; 95% CI: 76%–90%), and the risk of these severe outcomes increased with age. Depending on assumptions about the coverage of the sentinel ILI network and health-care seeking behavior for cases of ILI associated with A(H7N9) virus infection, we estimated that the symptomatic case fatality risk could be between 160 and 2,800 per 100,000 symptomatic cases. Interpretation We estimated that the severity of A(H7N9) is somewhat lower than A(H5N1) but higher than seasonal influenza viruses and influenza A(H1N1)pdm09 virus. The estimated risks of fatality among hospitalised cases and symptomatic cases are measures of severity that should not be affected by shifts over time in the probability of laboratory-confirmation of mild cases and should inform risk assessment. Funding Ministry of Science and Technology, China; Research Fund for the Control of

  19. A systematic review of studies on forecasting the dynamics of influenza outbreaks.

    PubMed

    Nsoesie, Elaine O; Brownstein, John S; Ramakrishnan, Naren; Marathe, Madhav V

    2014-05-01

    Forecasting the dynamics of influenza outbreaks could be useful for decision-making regarding the allocation of public health resources. Reliable forecasts could also aid in the selection and implementation of interventions to reduce morbidity and mortality due to influenza illness. This paper reviews methods for influenza forecasting proposed during previous influenza outbreaks and those evaluated in hindsight. We discuss the various approaches, in addition to the variability in measures of accuracy and precision of predicted measures. PubMed and Google Scholar searches for articles on influenza forecasting retrieved sixteen studies that matched the study criteria. We focused on studies that aimed at forecasting influenza outbreaks at the local, regional, national, or global level. The selected studies spanned a wide range of regions including USA, Sweden, Hong Kong, Japan, Singapore, United Kingdom, Canada, France, and Cuba. The methods were also applied to forecast a single measure or multiple measures. Typical measures predicted included peak timing, peak height, daily/weekly case counts, and outbreak magnitude. Due to differences in measures used to assess accuracy, a single estimate of predictive error for each of the measures was difficult to obtain. However, collectively, the results suggest that these diverse approaches to influenza forecasting are capable of capturing specific outbreak measures with some degree of accuracy given reliable data and correct disease assumptions. Nonetheless, several of these approaches need to be evaluated and their performance quantified in real-time predictions.

  20. Influenza A(H3N2) outbreak at Transit Center at Manas, Kyrgyzstan, 2014.

    PubMed

    Parms, Tiffany A; Zorich, Shauna C; Kramer, Karen P

    2015-01-01

    In February 2014, the U.S. Air Force School of Aerospace Medicine Epidemiology Consult Service provided support in response to a moderate outbreak of influenza at the Transit Center at Manas (Kyrgyzstan). A total of 215 individuals presented with influenza-like illness symptoms from 3 December 2013 through 28 February 2014. There were 85 specimens positive for influenza (18 influenza A(H1N1)pdm09, 65 influenza A(H3N2), one influenza A/not subtyped, and one influenza B); six specimens were positive for other respiratory viruses (one human metapneumovirus, two parainfluenza, and three rhinovirus/enterovirus) and eight specimens were negative. Twenty-two of the specimens that were positive for influenza were sequenced and were not remarkably different from the strains seen during routine surveillance for the 2013-2014 season or from specimens collected at other deployed sites.

  1. The avian and mammalian host range of highly pathogenic avian H5N1 influenza.

    PubMed

    Kaplan, Bryan S; Webby, Richard J

    2013-12-05

    Highly pathogenic H5N1 influenza viruses have been isolated from a number of avian and mammalian species. Despite intensive control measures the number of human and animal cases continues to increase. A more complete understanding of susceptible species and of contributing environmental and molecular factors is crucial if we are to slow the rate of new cases. H5N1 is currently endemic in domestic poultry in only a handful of countries with sporadic and unpredictable spread to other countries. Close contact of terrestrial bird or mammalian species with infected poultry/waterfowl or their biological products is the major route for interspecies transmission. Intra-species transmission of H5N1 in mammals, including humans, has taken place on a limited scale though it remains to be seen if this will change; recent laboratory studies suggest that it is indeed possible. Here we review the avian and mammalian species that are naturally susceptible to H5N1 infection and the molecular factors associated with its expanded host range.

  2. The avian and mammalian host range of highly pathogenic avian H5N1 influenza

    PubMed Central

    Kaplan, Bryan S.; Webby, Richard J.

    2013-01-01

    Highly pathogenic H5N1 influenza viruses have been isolated from a number of avian and mammalian species. Despite intensive control measures the number of human and animal cases continues to increase. A more complete understanding of susceptible species and of contributing environmental and molecular factors is crucial if we are to slow the rate of new cases. H5N1 is currently endemic in domestic poultry in only a handful of countries with sporadic and unpredictable spread to other countries. Close contact of terrestrial bird or mammalian species with infected poultry/waterfowl or their biological products is the major route for interspecies transmission. Intra-species transmission of H5N1 in mammals, including humans, has taken place on a limited scale though it remains to be seen if this will change; recent laboratory studies suggest that it is indeed possible. Here we review the avian and mammalian species that are naturally susceptible to H5N1 infection and the molecular factors associated with its expanded host range. PMID:24025480

  3. Discordant detection of avian influenza virus subtypes in time and space between poultry and wild birds; Towards improvement of surveillance programs.

    PubMed

    Verhagen, Josanne H; Lexmond, Pascal; Vuong, Oanh; Schutten, Martin; Guldemeester, Judith; Osterhaus, Albert D M E; Elbers, Armin R W; Slaterus, Roy; Hornman, Menno; Koch, Guus; Fouchier, Ron A M

    2017-01-01

    Avian influenza viruses from wild birds can cause outbreaks in poultry, and occasionally infect humans upon exposure to infected poultry. Identification and characterization of viral reservoirs and transmission routes is important to develop strategies that prevent infection of poultry, and subsequently virus transmission between poultry holdings and to humans. Based on spatial, temporal and phylogenetic analyses of data generated as part of intense and large-scale influenza surveillance programs in wild birds and poultry in the Netherlands from 2006 to 2011, we demonstrate that LPAIV subtype distribution differed between wild birds and poultry, suggestive of host-range restrictions. LPAIV isolated from Dutch poultry were genetically most closely related to LPAIV isolated from wild birds in the Netherlands or occasionally elsewhere in Western Europe. However, a relatively long time interval was observed between the isolations of related viruses from wild birds and poultry. Spatial analyses provided evidence for mallards (Anas platyrhynchos) being more abundant near primary infected poultry farms. Detailed year-round investigation of virus prevalence and wild bird species distribution and behavior near poultry farms should be used to improve risk assessment in relation to avian influenza virus introduction and retarget avian influenza surveillance programs.

  4. Discordant detection of avian influenza virus subtypes in time and space between poultry and wild birds; Towards improvement of surveillance programs

    PubMed Central

    Verhagen, Josanne H.; Lexmond, Pascal; Vuong, Oanh; Schutten, Martin; Guldemeester, Judith; Osterhaus, Albert D. M. E.; Elbers, Armin R. W.; Slaterus, Roy; Hornman, Menno; Koch, Guus; Fouchier, Ron A. M.

    2017-01-01

    Avian influenza viruses from wild birds can cause outbreaks in poultry, and occasionally infect humans upon exposure to infected poultry. Identification and characterization of viral reservoirs and transmission routes is important to develop strategies that prevent infection of poultry, and subsequently virus transmission between poultry holdings and to humans. Based on spatial, temporal and phylogenetic analyses of data generated as part of intense and large-scale influenza surveillance programs in wild birds and poultry in the Netherlands from 2006 to 2011, we demonstrate that LPAIV subtype distribution differed between wild birds and poultry, suggestive of host-range restrictions. LPAIV isolated from Dutch poultry were genetically most closely related to LPAIV isolated from wild birds in the Netherlands or occasionally elsewhere in Western Europe. However, a relatively long time interval was observed between the isolations of related viruses from wild birds and poultry. Spatial analyses provided evidence for mallards (Anas platyrhynchos) being more abundant near primary infected poultry farms. Detailed year-round investigation of virus prevalence and wild bird species distribution and behavior near poultry farms should be used to improve risk assessment in relation to avian influenza virus introduction and retarget avian influenza surveillance programs. PMID:28278281

  5. A large outbreak of influenza A and B on a cruise ship causing widespread morbidity.

    PubMed

    Brotherton, J M L; Delpech, V C; Gilbert, G L; Hatzi, S; Paraskevopoulos, P D; McAnulty, J M

    2003-04-01

    In September 2000 an outbreak of influenza-like illness was reported on a cruise ship sailing between Sydney and Noumea with over 1,100 passengers and 400 crew on board. Laboratory testing of passengers and crew indicated that both influenza A and B had been circulating on the ship. The cruise coincided with the peak influenza period in Sydney. Morbidity was high with 40 passengers hospitalized, two of whom died. A questionnaire was sent to passengers 3 weeks after the cruise and 836 of 1,119 (75%) responded. A total of 310 passengers (37%) reported suffering from an influenza-like illness (defined as cough, fever, myalgia and weakness) and 528 (63%) had seen a doctor for illness related to the cruise. One-third of passengers reported receipt of influenza vaccination in 2000; however neither their rates of influenza-like illness nor hospitalization were significantly different from those in unvaccinated passengers. A case-control study also found no significant protective effect of influenza vaccination. With the increasing popularity of cruise vacations, such outbreaks are likely to affect increasing numbers of people. Whilst influenza vaccination of passengers and crew may afford some protection, uptake and effectiveness may not be sufficient to prevent outbreaks. Surveillance systems and early intervention measures, such as antiviral therapies, should be considered to detect and control such outbreaks.

  6. Dynamic changes in host gene expression associated with H5N8 avian influenza virus infection in mice

    PubMed Central

    Park, Su-Jin; Kumar, Mukesh; Kwon, Hyeok-il; Seong, Rak-Kyun; Han, Kyudong; Song, Jae-min; Kim, Chul-Joong; Choi, Young-Ki; Shin, Ok Sarah

    2015-01-01

    Emerging outbreaks of newly found, highly pathogenic avian influenza (HPAI) A(H5N8) viruses have been reported globally. Previous studies have indicated that H5N8 pathogenicity in mice is relatively moderate compared with H5N1 pathogenicity. However, detailed mechanisms underlying avian influenza pathogenicity are still undetermined. We used a high-throughput RNA-seq method to analyse host and pathogen transcriptomes in the lungs of mice infected with A/MD/Korea/W452/2014 (H5N8) and A/EM/Korea/W149/2006 (H5N1) viruses. Sequenced numbers of viral transcripts and expression levels of host immune-related genes at 1 day post infection (dpi) were higher in H5N8-infected than H5N1-infected mice. Dual sequencing of viral transcripts revealed that in contrast to the observations at 1 dpi, higher number of H5N1 genes than H5N8 genes was sequenced at 3 and 7 dpi, which is consistent with higher viral titres and virulence observed in infected lungs in vivo. Ingenuity pathway analysis revealed a more significant upregulation of death receptor signalling, driven by H5N1 than with H5N8 infection at 3 and 7 dpi. Early induction of immune response-related genes may elicit protection in H5N8-infected mice, which correlates with moderate pathogenicity in vivo. Collectively, our data provide new insight into the underlying mechanisms of the differential pathogenicity of avian influenza viruses. PMID:26576844

  7. Genetically Diverse Low Pathogenicity Avian Influenza A Virus Subtypes Co-Circulate among Poultry in Bangladesh.

    PubMed

    Gerloff, Nancy A; Khan, Salah Uddin; Zanders, Natosha; Balish, Amanda; Haider, Najmul; Islam, Ausraful; Chowdhury, Sukanta; Rahman, Mahmudur Ziaur; Haque, Ainul; Hosseini, Parviez; Gurley, Emily S; Luby, Stephen P; Wentworth, David E; Donis, Ruben O; Sturm-Ramirez, Katharine; Davis, C Todd

    2016-01-01

    Influenza virus surveillance, poultry outbreak investigations and genomic sequencing were assessed to understand the ecology and evolution of low pathogenicity avian influenza (LPAI) A viruses in Bangladesh from 2007 to 2013. We analyzed 506 avian specimens collected from poultry in live bird markets and backyard flocks to identify influenza A viruses. Virus isolation-positive specimens (n = 50) were subtyped and their coding-complete genomes were sequenced. The most frequently identified subtypes among LPAI isolates were H9N2, H11N3, H4N6, and H1N1. Less frequently detected subtypes included H1N3, H2N4, H3N2, H3N6, H3N8, H4N2, H5N2, H6N1, H6N7, and H7N9. Gene sequences were compared to publicly available sequences using phylogenetic inference approaches. Among the 14 subtypes identified, the majority of viral gene segments were most closely related to poultry or wild bird viruses commonly found in Southeast Asia, Europe, and/or northern Africa. LPAI subtypes were distributed over several geographic locations in Bangladesh, and surface and internal protein gene segments clustered phylogenetically with a diverse number of viral subtypes suggesting extensive reassortment among these LPAI viruses. H9N2 subtype viruses differed from other LPAI subtypes because genes from these viruses consistently clustered together, indicating this subtype is enzootic in Bangladesh. The H9N2 strains identified in Bangladesh were phylogenetically and antigenically related to previous human-derived H9N2 viruses detected in Bangladesh representing a potential source for human infection. In contrast, the circulating LPAI H5N2 and H7N9 viruses were both phylogenetically and antigenically unrelated to H5 viruses identified previously in humans in Bangladesh and H7N9 strains isolated from humans in China. In Bangladesh, domestic poultry sold in live bird markets carried a wide range of LPAI virus subtypes and a high diversity of genotypes. These findings, combined with the seven year

  8. Genetically Diverse Low Pathogenicity Avian Influenza A Virus Subtypes Co-Circulate among Poultry in Bangladesh

    PubMed Central

    Gerloff, Nancy A.; Khan, Salah Uddin; Zanders, Natosha; Balish, Amanda; Haider, Najmul; Islam, Ausraful; Chowdhury, Sukanta; Rahman, Mahmudur Ziaur; Haque, Ainul; Hosseini, Parviez; Gurley, Emily S.; Luby, Stephen P.; Wentworth, David E.; Donis, Ruben O.; Sturm-Ramirez, Katharine; Davis, C. Todd

    2016-01-01

    Influenza virus surveillance, poultry outbreak investigations and genomic sequencing were assessed to understand the ecology and evolution of low pathogenicity avian influenza (LPAI) A viruses in Bangladesh from 2007 to 2013. We analyzed 506 avian specimens collected from poultry in live bird markets and backyard flocks to identify influenza A viruses. Virus isolation-positive specimens (n = 50) were subtyped and their coding-complete genomes were sequenced. The most frequently identified subtypes among LPAI isolates were H9N2, H11N3, H4N6, and H1N1. Less frequently detected subtypes included H1N3, H2N4, H3N2, H3N6, H3N8, H4N2, H5N2, H6N1, H6N7, and H7N9. Gene sequences were compared to publicly available sequences using phylogenetic inference approaches. Among the 14 subtypes identified, the majority of viral gene segments were most closely related to poultry or wild bird viruses commonly found in Southeast Asia, Europe, and/or northern Africa. LPAI subtypes were distributed over several geographic locations in Bangladesh, and surface and internal protein gene segments clustered phylogenetically with a diverse number of viral subtypes suggesting extensive reassortment among these LPAI viruses. H9N2 subtype viruses differed from other LPAI subtypes because genes from these viruses consistently clustered together, indicating this subtype is enzootic in Bangladesh. The H9N2 strains identified in Bangladesh were phylogenetically and antigenically related to previous human-derived H9N2 viruses detected in Bangladesh representing a potential source for human infection. In contrast, the circulating LPAI H5N2 and H7N9 viruses were both phylogenetically and antigenically unrelated to H5 viruses identified previously in humans in Bangladesh and H7N9 strains isolated from humans in China. In Bangladesh, domestic poultry sold in live bird markets carried a wide range of LPAI virus subtypes and a high diversity of genotypes. These findings, combined with the seven year

  9. Low pathogenicity avian influenza viruses infect chicken layers by different routes of inoculation.

    PubMed

    Pantin-Jackwood, Mary J; Smith, Diane M; Wasilenko, Jamie L; Spackman, Erica

    2012-06-01

    In order to develop better control measures against avian influenza, it is necessary to understand how the virus transmits in poultry. In a previous study in which the infectivity and transmissibility of the pandemic H1N1 influenza virus was examined in different poultry species, we found that no or minimal infection occurred in chicken and turkeys intranasally (IN) inoculated with the virus. However, we demonstrated that the virus can infect laying turkey hens by the intracloacal (IC) and intraoviduct (IO) routes, possibly explaining the drops in egg production observed in turkey breeder farms affected by the virus. Such novel routes of exposure have not been previously examined in chickens and could also explain outbreaks of low pathogenicity avian influenza (LPAI) that cause a decrease in egg production in chicken layers and breeders. In the present study, 46-wk-old specific-pathogen-free chicken layers were infected by the IN, IC, or IO routes with one of two LPAI viruses: a poultry origin virus, A/chicken/CA/1255/02 (H6N2), and a live bird market isolate, A/chicken/NJ/12220/97 (H9N2). Only hens IN inoculated with the H6N2 virus presented mild clinical signs consisting of depression and anorexia. However, a decrease in number of eggs laid was observed in all virus-inoculated groups when compared to control hens. Evidence of infection was found in all chickens inoculated with the H6N2 virus by any of the three routes and the virus transmitted to contact hens. On the other hand, only one or two hens from each of the groups inoculated with the H9N2 virus shed detectable levels of virus, or seroconverted and did not transmit the virus to contacts, regardless of the route of inoculation. In conclusion, LPAI viruses can also infect chickens through other routes besides the IN route, which is considered the natural route of exposure. However, as seen with the H9N2 virus, the infectivity of the virus did not increase when given by these alternate routes.

  10. Highly pathogenic H5N1 avian influenza viruses differentially affect gene expression in primary chicken embryo fibroblasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza viruses cause severe clinical disease associated with high mortality in chickens and other gallinaceous species. However, the mechanism by which different strains of avian influenza viruses overcome host response in birds is still unclear. In the present study, ch...

  11. Survivability of Eurasian H5N1 highly pathogenic avian influenza viruses in water varies between strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquatic habitats play critical role in the transmission and maintenance of low pathogenic avian influenza (LPAI) viruses in wild waterfowl; however the importance of these environments in the ecology of H5N1 highly pathogenic avian influenza (HPAI) viruses is unknown. In laboratory-based studies, L...

  12. Experimental infection of mallard ducks with different subtype H5 and H7 highly pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza viruses (HPAIV’s) remain a threat to poultry worldwide. Avian influenza viruses, including HPAIV, are usually non-pathogenic for ducks and other wild aquatic birds, with the exception of some Asian lineage H5N1 HPAIVs which can cause severe disease in ducks. With ...

  13. Transmission of avian H9N2 influenza viruses in a murine model.

    PubMed

    Wu, Rui; Sui, Zhiwei; Liu, Zewen; Liang, Wangwang; Yang, Keli; Xiong, Zhongliang; Xu, Diping

    2010-05-19

    Avian H9N2 influenza viruses have circulated widely in domestic poultry around the world, resulting in occasional transmission of virus from infected poultry to humans. However, it is unknown whether H9N2 influenza virus has acquired the ability to be transmitted from human to human. Here, we report that mouse-adapted H9N2 influenza viruses can replicate efficiently and are lethal for several strains of mice. To evaluate the transmissibility of mouse-adapted H9N2 influenza viruses, we carried out transmission studies in mice using both contact and respiratory droplet routes. Our results indicate that mouse-adapted H9N2 influenza viruses can replicate efficiently and be transmitted between mice. This suggests that once H9N2 influenza viruses adapt to new host, they should present potential public health risks, therefore, urgent attention should be paid to H9N2 influenza viruses.

  14. Impact of the Australian equine influenza outbreak on a small business that was not infected.

    PubMed

    Myers, J

    2011-07-01

    At the outbreak of equine influenza (EI) we chose to close our horse-based business, as we did not want to risk our horses contracting the disease and the demand for our services ceased. We report our experiences of the outbreak.

  15. The spread of highly pathogenic avian influenza (subtype H5N1) clades in Bangladesh, 2010 and 2011.

    PubMed

    Osmani, Muzaffar G; Ward, Michael P; Giasuddin, Md; Islam, Md Rafiqul; Kalam, Abul

    2014-04-01

    Since the global spread of highly pathogenic avian influenza H5N1 during 2005-2006, control programs have been successfully implemented in most affected countries. HPAI H5N1 was first reported in Bangladesh in 2007, and since then 546 outbreaks have been reported to the OIE. The disease has apparently become endemic in Bangladesh. Spatio-temporal information on 177 outbreaks of HPAI H5N1 occurring between February 2010 and April 2011 in Bangladesh, and 37 of these outbreaks in which isolated H5N1 viruses were phylogenetically characterized to clade, were analyzed. Three clades were identified, 2.2 (21 cases), 2.3.4 (2 cases) and 2.3.2.1 (14 cases). Clade 2.2 was identified throughout the time period and was widely distributed in a southeast-northwest orientation. Clade 2.3.2.1 appeared later and was generally confined to central Bangladesh in a north-south orientation. Based on a direction test, clade 2.2 viruses spread in a southeast-to-northwest direction, whereas clade 2.3.2.1 spread west-to-east. The magnitude of spread of clade 2.3.2.1 was greater relative to clade 2.2 (angular concentration 0.2765 versus 0.1860). In both cases, the first outbreak(s) were identified as early outliers, but in addition, early outbreaks (one each) of clade 2.2 were also identified in central Bangladesh and in northwest Bangladesh, a considerable distance apart. The spread of highly pathogenic avian influenza H5N1 in Bangladesh is characterized by reported long-distance translocation events. This poses a challenge to disease control efforts. Increased enforcement of biosecurity and stronger control of movements between affected farms and susceptible farms, and better surveillance and reporting, is needed. Although the movement of poultry and equipment appears to be a more likely explanation for the patterns identified, the relative contribution of trade and the market chain versus wild birds in spreading the disease needs further investigation.

  16. Cooperative Crisis Management and Avian Influenza. A Risk Assessment Guide for International Contagious Disease Prevention and Risk Mitigation

    DTIC Science & Technology

    2006-03-01

    immediate demands. To some, the 1918 influenza pandemic seems like ancient history , so when comparisons are made between the devastation almost a century... history as a mirror and looks to the future, the 1918–1919 influenza pandemic provides a stark perspective on a potential avian influenza pandemic. The...quail, geese, felids, rodents, and swine are just some of the species susceptible to influenza A. The mechanisms of the spread of influenza virus

  17. Macaque Proteome Response to Highly Pathogenic Avian Influenza and 1918 Reassortant Influenza Virus Infections▿ †

    PubMed Central

    Brown, Joseph N.; Palermo, Robert E.; Baskin, Carole R.; Gritsenko, Marina; Sabourin, Patrick J.; Long, James P.; Sabourin, Carol L.; Bielefeldt-Ohmann, Helle; García-Sastre, Adolfo; Albrecht, Randy; Tumpey, Terrence M.; Jacobs, Jon M.; Smith, Richard D.; Katze, Michael G.

    2010-01-01

    The host proteome response and molecular mechanisms that drive disease in vivo during infection by a human isolate of the highly pathogenic avian influenza virus (HPAI) and 1918 pandemic influenza virus remain poorly understood. This study presents a comprehensive characterization of the proteome response in cynomolgus macaque (Macaca fascicularis) lung tissue over 7 days of infection with HPAI (the most virulent), a reassortant virus containing 1918 hemagglutinin and neuraminidase surface proteins (intermediate virulence), or a human seasonal strain (least virulent). A high-sensitivity two-dimensional liquid chromatography-tandem mass spectroscopy strategy and functional network analysis were implemented to gain insight into response pathways activated in macaques during influenza virus infection. A macaque protein database was assembled and used in the identification of 35,239 unique peptide sequences corresponding to approximately 4,259 proteins. Quantitative analysis identified an increase in expression of 400 proteins during viral infection. The abundance levels of a subset of these 400 proteins produced strong correlations with disease progression observed in the macaques, distinguishing a “core” response to viral infection from a “high” response specific to severe disease. Proteome expression profiles revealed distinct temporal response kinetics between viral strains, with HPAI inducing the most rapid response. While proteins involved in the immune response, metabolism, and transport were increased rapidly in the lung by HPAI, the other viruses produced a delayed response, characterized by an increase in proteins involved in oxidative phosphorylation, RNA processing, and translation. Proteomic results were integrated with previous genomic and pathological analysis to characterize the dynamic nature of the influenza virus infection process. PMID:20844032

  18. Isolation and identification of highly pathogenic avian influenza virus subtype H5N1 in peafowl (Pavo cristatus).

    PubMed

    Ismail, Mahmoud Moussa; Khan, Owais Ahmed; Cattoli, Giovanni; Lu, Huaguang

    2010-03-01

    An outbreak of highly pathogenic avian influenza (HPAI) virus subtype H5N1 was first diagnosed in a "backyard" flock of peafowl (Pavo cristatus) raised on palace premises in the Kingdom of Saudi Arabia in December 3, 2007. The flock consisted of 40 peafowl, and their ages ranged from 3 to 5 years old. Affected birds suffered from depression, anorexia, and white diarrhea. Four dead birds were submitted for HPAI diagnosis at the Central Veterinary Diagnostic Laboratory in Riyadh. Brain and liver tissues and tracheal and cloacal swabs were taken from the dead birds and processed for a real-time reverse transcriptase (RT)-PCR test and virus isolation in specific-pathogen-free embryonating chicken eggs. The H5N1 subtype of avian influenza virus was isolated from the four dead birds and identified by a real-time RT-PCR before and after egg inoculation. The virus isolates were characterized as HPAI H5N1 virus by sequencing analysis. Phylogenetic comparisons revealed that the H5N1 viruses isolated from peafowl belong to the genetic clade 2.2 according to the World Health Organization nomenclature. The peafowl H5N1 virus falls into 2.2.2 sublineage II and clusters with the H5N1 viruses isolated from poultry in Saudi Arabia in 2007-08.

  19. Pathobiology of highly pathogenic avian influenza virus H5N2 infection in juvenile ostriches from South Africa.

    PubMed

    Howerth, Elizabeth W; Olivier, Adriaan; França, Monique; Stallknecht, David E; Gers, Sophette

    2012-12-01

    In 2011, over 35,000 ostriches were slaughtered in the Oudtshoorn district of the Western Cape province of South Africa following the diagnosis of highly pathogenic avian influenza virus H5N2. We describe the pathology and virus distribution via immunohistochemistry in juvenile birds that died rapidly in this outbreak after showing signs of depression and weakness. Associated sialic acid (SA) receptor distribution in uninfected birds is also described. At necropsy, enlarged spleens, swollen livers, and generalized congestion were noted. Birds not succumbing to acute influenza infection often became cachectic with serous atrophy of fat, airsacculitis, and secondary infections. Necrotizing hepatitis, splenitis, and airsacculitis were prominent histopathologic findings. Virus was detected via immunohistochemistry in abundance in the liver and spleen but also in the air sac and gastrointestinal tract. Infected cells included epithelium, endothelium, macrophages, circulating leukocytes, and smooth muscle of a variety of organs and vessel walls. Analysis of SA receptor distribution in uninfected juvenile ostriches via lectin binding showed abundant expression of SAalpha2,3Gal (avian type) and little or no expression of SAalpha2,6Gal (human type) in the gastrointestinal and respiratory tracts, as well as leukocytes in the spleen and endothelial cells in all organs, which correlated with H5N2 antigen distribution in these tissues.

  20. Genetic characterization of highly pathogenic H5N1 avian influenza virus from live migratory birds in Bangladesh.

    PubMed

    Parvin, Rokshana; Kamal, Abu H M; Haque, Md E; Chowdhury, Emdadul H; Giasuddin, Mohammed; Islam, Mohammad R; Vahlenkamp, Thomas W

    2014-12-01

    Since the first outbreak of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 in Bangladesh in 2007, the virus has been circulating among domestic poultry causing severe economic losses. To investigate the presence of HPAIV H5N1 in migratory birds and their potential role in virus spread, 205 pools of fecal samples from live migratory birds were analyzed. Here, the first virus isolation and genome characterization of two HPAIV H5N1 isolates from migratory birds (A/migratory bird/Bangladesh/P18/2010 and A/migratory bird/Bangladesh/P29/2010)are described. Full-length amplification, sequencing, and a comprehensive phylogenetic analysis were performed for HA, NA, M, NS, NP, PA, PB1, and PB2 gene segments. The selected migratory bird isolates belong to clade 2.3.2.1 along with recent Bangladeshi isolates from chickens, ducks, and crows which grouped in the same cluster with contemporary South and South-East Asian isolates. The studied isolates were genetically similar to other H5N1 isolates from different species within the respective clade although some unique amino acid substitutions were observed among them. Migratory birds remain a real threat for spreading pathogenic avian influenza viruses across the continent and introduction of new strains into Bangladesh.

  1. Genomic signature and protein sequence analysis of a novel influenza A (H7N9) virus that causes an outbreak in humans in China.

    PubMed

    Liu, Qi; Lu, Lu; Sun, Zhiwu; Chen, Guang-Wu; Wen, Yumei; Jiang, Shibo

    2013-06-01

    Very recently, a new avian flu outbreak in humans, which is caused by a novel H7N9 influenza A virus (AIV), was reported in China. As of April 13, 2013, 49 confirmed cases (mainly middle-aged to elderly males), including 11 deaths, were reported in China. Here we analyzed the genomic signatures and protein sequences of the human H7N9 AIVs. We found that the genomic signatures of A(H7N9) had high and low identity to avian and human IAVs, respectively, suggesting its avian origin. The signature amino acids of A(H7N9) had high identity to 1997 H5N1 and 2009 H1N1, but low identity to those influenza strains that caused pandemics before 1980. One of the key signature amino acids at 627 in PB2 mutated to lysine, which is associated with mammalian adaptation and increased virulence of the highly pathogenic avian influenza A(H5N1) virus. Besides, several other human-like signatures, including PB2-44S, PA-100A, PA-356R, and PA-409N are also found in this avian-origin A(H7N9) virus. The HA protein has the Q226L mutation, which is associated with increased binding to mammalian-like receptors bearing alpha 2,6 receptor in the human upper airway. The M2 protein contains the N31S mutation, suggesting its resistance to the M2 channel blockers amantadine and rimantadine. These findings suggest that this avian-origin AIV gains its bird-to-human, i.e., zoonotic, transmissibility and increased virulence, as well as drug-resistance, by mutating key signature amino acid residues and those in the functional domains of the viral proteins. Therefore, it is prudent to monitor the evolution of A(H7N9), as well as develop strategies to combat any potential epidemic or pandemic.

  2. In ovo and in vitro susceptibility of American alligators (Alligator mississippiensis) to avian influenza virus infection.

    PubMed

    Temple, Bradley L; Finger, John W; Jones, Cheryl A; Gabbard, Jon D; Jelesijevic, Tomislav; Uhl, Elizabeth W; Hogan, Robert J; Glenn, Travis C; Tompkins, S Mark

    2015-01-01

    Avian influenza has emerged as one of the most ubiquitous viruses within our biosphere. Wild aquatic birds are believed to be the primary reservoir of all influenza viruses; however, the spillover of H5N1 highly pathogenic avian influenza (HPAI) and the recent swine-origin pandemic H1N1 viruses have sparked increased interest in identifying and understanding which and how many species can be infected. Moreover, novel influenza virus sequences were recently isolated from New World bats. Crocodilians have a slow rate of molecular evolution and are the sister group to birds; thus they are a logical reptilian group to explore susceptibility to influenza virus infection and they provide a link between birds and mammals. A primary American alligator (Alligator mississippiensis) cell line, and embryos, were infected with four, low pathogenic avian influenza (LPAI) strains to assess susceptibility to infection. Embryonated alligator eggs supported virus replication, as evidenced by the influenza virus M gene and infectious virus detected in allantoic fluid and by virus antigen staining in embryo tissues. Primary alligator cells were also inoculated with the LPAI viruses and showed susceptibility based upon antigen staining; however, the requirement for trypsin to support replication in cell culture limited replication. To assess influenza virus replication in culture, primary alligator cells were inoculated with H1N1 human influenza or H5N1 HPAI viruses that replicate independent of trypsin. Both viruses replicated efficiently in culture, even at the 30 C temperature preferred by the alligator cells. This research demonstrates the ability of wild-type influenza viruses to infect and replicate within two crocodilian substrates and suggests the need for further research to assess crocodilians as a species potentially susceptible to influenza virus infection.

  3. Forecasting Influenza Outbreaks in Boroughs and Neighborhoods of New York City

    PubMed Central

    2016-01-01

    The ideal spatial scale, or granularity, at which infectious disease incidence should be monitored and forecast has been little explored. By identifying the optimal granularity for a given disease and host population, and matching surveillance and prediction efforts to this scale, response to emergent and recurrent outbreaks can be improved. Here we explore how granularity and representation of spatial structure affect influenza forecast accuracy within New York City. We develop network models at the borough and neighborhood levels, and use them in conjunction with surveillance data and a data assimilation method to forecast influenza activity. These forecasts are compared to an alternate system that predicts influenza for each borough or neighborhood in isolation. At the borough scale, influenza epidemics are highly synchronous despite substantial differences in intensity, and inclusion of network connectivity among boroughs generally improves forecast accuracy. At the neighborhood scale, we observe much greater spatial heterogeneity among influenza outbreaks including substantial differences in local outbreak timing and structure; however, inclusion of the network model structure generally degrades forecast accuracy. One notable exception is that local outbreak onset, particularly when signal is modest, is better predicted with the network model. These findings suggest that observation and forecast at sub-municipal scales within New York City provides richer, more discriminant information on influenza incidence, particularly at the neighborhood scale where greater heterogeneity exists, and that the spatial spread of influenza among localities can be forecast. PMID:27855155

  4. A pilot study of the immune response to whole inactivated avian influenza H7N1 virus vaccine in mice

    PubMed Central

    Hovden, Arnt‐Ove; Brokstad, Karl A.; Major, Diane; Wood, John; Haaheim, Lars R.; Cox, Rebecca J.

    2009-01-01

    Background  Highly pathogenic avian influenza (HPAI) outbreaks in domestic poultry bring humans into close contact with new influenza subtypes and represent a threat to human health. In 1999, an HPAI outbreak of H7N1 virus occurred in domestic poultry in Italy, and a wild‐type virus isolate from this outbreak was chosen as a pandemic vaccine candidate. Objectives  We conducted a pilot study to investigate the kinetics of the humoral immune response induced after immunisation with an egg grown whole inactivated H7N1 virus vaccine in BALB/c mice. Methods  Mice were vaccinated with one or two doses of H7N1 vaccine (15 μg total protein) to investigate the influenza specific antibody secreting cell (IS‐ASC) and serum antibody responses. Results  After the first dose of vaccine, only IgM IS‐ASC were detected in the spleen and bone marrow, whereas IgG, IgA and IgM IS‐ASC were found after the second dose. Low antibody titres were detected after the first immunisation, whilst the second dose of vaccine significantly boosted the HI (range 128–512), neutralising and IgG antibody titres. The IgG subclass response was dominated by IgG2a indicating a dominant Th1 response after the first vaccination, whereas a more mixed Th1/Th2 profile was observed after the second dose. Conclusions  This pilot study shows the value of using a number of immunological methods to evaluate the quality of the immune response to potential pandemic candidate vaccines. PMID:19453438

  5. Migration strategy affects avian influenza dynamics in mallards (Anas platyrhynchos).

    USGS Publications Warehouse

    Takekawa, John Y.; Hill, Nichola J.; Ackerman, Joshua T.; Herring, Garth; Hobson, Keith; Cardona, Carol J.; Runstadler, Jonathan; Boyce, Walter M.

    2012-01-01

    Studies of pathogen transmission typically overlook that wildlife hosts can include both migrant and resident populations when attempting to model circulation. Through the application of stable isotopes in flight feathers, we estimated the migration strategy of mallards (Anas platyrhynchos) occurring on California wintering grounds. Our study demonstrates that mallards- a principal host of avian influenza virus (AIV) in nature, contribute differently to virus gene flow depending on migration strategy. No difference in AIV prevalence was detected between resident (9.6%), intermediate-distance (9.6%) and long-distance migrants (7.4%). Viral diversity among the three groups was also comparable, possibly owing to viral pool mixing when birds converge at wetlands during winter. However, migrants and residents contributed differently to the virus gene pool at wintering wetlands. Migrants introduced virus from northern breeding grounds (Alaska and the NW Pacific Rim) into the wintering population, facilitating gene flow at continental scales, but circulation of imported virus appeared to be limited. In contrast, resident mallards acted as AIV reservoirs facilitating year-round circulation of limited subtypes (i.e. H5N2) at lower latitudes. This study supports a model of virus exchange in temperate regions driven by the convergence of wild birds with separate geographic origins and exposure histories.

  6. Perceived Risk of Avian Influenza and Urbanization in Northern Vietnam.

    PubMed

    Finucane, Melissa L; Tuyen, Nghiem; Saksena, Sumeet; Spencer, James H; Fox, Jefferson M; Lam, Nguyen; Thau, Trinh Dinh; Vien, Tran Duc; Lewis, Nancy Davis

    2017-03-01

    Highly pathogenic avian influenza (HPAI) is an important public health concern because of potential for widespread morbidity and mortality in humans and poultry and associated devastating economic losses. We examined how perceptions of the risk of HPAI in poultry vary across communes/wards in the north of Vietnam at different levels of urbanization (rural, peri-urban, urban). Analyses of questionnaire responses from 1081 poultry raisers suggested that the perceived risk of HPAI in poultry was highest in peri-urban and rural settings. We also found that perceived risk was higher when respondents rated settings in which they did not live and that the process of change is related to perceived risk. Compared with others, respondents in peri-urban areas reported less disease management planning; respondents in rural areas reported less ability to separate infected poultry. These findings are consistent with, and add to, the limited previous research on the perceived risk of HPAI in poultry in developing countries. What is new in the present findings is that we describe how urbanization is related to people's perceptions of and ability to respond appropriately to variations in their environment. In particular, the inability to respond is not necessarily because of an inability to perceive change. Rather, rapid and extensive change poses different challenges for poultry management as communes move from rural to peri-urban to urban settings. Our results suggest that health promotion campaigns should address the perceptions and needs of poultry raisers in different settings.

  7. Impact of avian influenza on village poultry production globally.

    PubMed

    Alders, Robyn; Awuni, Joseph Adongo; Bagnol, Brigitte; Farrell, Penny; de Haan, Nicolene

    2014-01-01

    Village poultry and their owners were frequently implicated in disease transmission in the early days of the highly pathogenic avian influenza (HPAI) H5N1 pandemic. With improved understanding of the epidemiology of the disease, it was recognized that village poultry raised under extensive conditions pose less of a threat than intensively raised poultry of homogeneous genetic stock with poor biosecurity. This paper provides an overview of village poultry production and the multiple ways that the HPAI H5N1 pandemic has impacted on village poultry, their owners, and the traders whose livelihoods are intimately linked to these birds. It reviews impact in terms of gender and cultural issues; food security; village poultry value chains; approaches to biosecurity; marketing; poultry disease prevention and control; compensation; genetic diversity; poultry as part of livelihood strategies; and effective communication. It concludes on a positive note that there is growing awareness amongst animal health providers of the importance of facilitating culturally sensitive dialogue to develop HPAI prevention and control options.

  8. Avian influenza virus sample types, collection, and handling.

    PubMed

    Killian, Mary Lea

    2014-01-01

    Successful detection of avian influenza (AI) virus, viral antigen, nucleic acid, or antibody is dependent upon the collection of the appropriate sample type, the quality of the sample, and the proper storage and handling of the sample. The diagnostic tests to be performed should be considered prior to sample collection. Sera are acceptable samples for ELISA or agar gel precipitin tests, but not for real-time RT-PCR. Likewise, swabs and/or tissues are acceptable for real-time RT-PCR and virus isolation. The sample type will also depend on the type of birds that are being tested; although it is optimal to collect both oropharyngeal and cloacal swabs, oropharyngeal swabs should be collected from gallinaceous poultry and cloacal swabs should be collected from waterfowl. In addition to collecting the appropriate sample for the tests to be performed, selecting the right materials for sample collection (i.e., type of swab) is very important. This chapter outlines the collection of different specimen types and procedures for proper specimen handling.

  9. Receptor characterization and susceptibility of cotton rats to avian and 2009 pandemic influenza virus strains.

    PubMed

    Blanco, Jorge C G; Pletneva, Lioubov M; Wan, Hongquan; Araya, Yonas; Angel, Matthew; Oue, Raymonde O; Sutton, Troy C; Perez, Daniel R

    2013-02-01

    Animal influenza viruses (AIVs) are a major threat to human health and the source of pandemic influenza. A reliable small-mammal model to study the pathogenesis of infection and for testing vaccines and therapeutics against multiple strains of influenza virus is highly desirable. We show that cotton rats (Sigmodon hispidus) are susceptible to avian and swine influenza viruses. Cotton rats express α2,3-linked sialic acid (SA) and α2,6-linked SA residues in the trachea and α2,6-linked SA residues in the lung parenchyma. Prototypic avian influenza viruses (H3N2, H9N2, and H5N1) and swine-origin 2009 pandemic H1N1 viruses replicated in the nose and in the respiratory tract of cotton rats without prior adaptation and produced strong lung pathology that was characterized by early lung neutrophilia, followed by subsequent pneumonia. Consistent with other natural and animal models of influenza, only the H5N1 virus was lethal for cotton rats. More importantly, we show that the different avian and pandemic H1N1 strains tested are strong activators of the type I interferon (IFN)-inducible MX-1 gene both locally and systemically. Our data indicate that the cotton rat is a suitable small-mammal model to study the infection of animal influenza viruses and for validation of vaccines and therapeutics against these viruses.

  10. A novel activation mechanism of avian influenza virus H9N2 by furin.

    PubMed

    Tse, Longping V; Hamilton, Alice M; Friling, Tamar; Whittaker, Gary R

    2014-02-01

    Avian influenza virus H9N2 is prevalent in waterfowl and has become endemic in poultry in Asia and the Middle East. H9N2 influenza viruses have served as a reservoir of internal genes for other avian influenza viruses that infect humans, and several cases of human infection by H9N2 influenza viruses have indicated its pandemic potential. Fortunately, an extensive surveillance program enables close monitoring of H9N2 influenza viruses worldwide and has generated a large repository of virus sequences and phylogenetic information. Despite the large quantity of sequences in different databases, very little is known about specific virus isolates and their pathogenesis. Here, we characterize a low-pathogenicity avian influenza virus, A/chicken/Israel/810/2001 (H9N2) (Israel810), which is representative of influenza virus strains that have caused severe morbidity and mortality in poultry farms. We show that under certain circumstances the Israel810 hemagglutinin (HA) can be activated by furin, a hallmark of highly pathogenic avian influenza virus. We demonstrate that Israel810 HA can be cleaved in cells with high levels of furin expression and that a mutation that eliminates a glycosylation site in HA(1) allows the Israel810 HA to gain universal cleavage in cell culture. Pseudoparticles generated from Israel810 HA, or the glycosylation mutant, transduce cells efficiently. In contrast, introduction of a polybasic cleavage site into Israel810 HA leads to pseudoviruses that are compromised for transduction. Our data indicate a mechanism for an H9N2 evolutionary pathway that may allow it to gain virulence in a distinct manner from H5 and H7 influenza viruses.

  11. Characterization of highly pathogenic H5N1 avian influenza A viruses isolated from South Korea.

    PubMed

    Lee, Chang-Won; Suarez, David L; Tumpey, Terrence M; Sung, Haan-Woo; Kwon, Yong-Kuk; Lee, Youn-Jeong; Choi, Jun-Gu; Joh, Seong-Joon; Kim, Min-Chul; Lee, Eun-Kyoung; Park, Jong-Myung; Lu, Xiuhua; Katz, Jacqueline M; Spackman, Erica; Swayne, David E; Kim, Jae-Hong

    2005-03-01

    An unprecedented outbreak of H5N1 highly pathogenic avian influenza (HPAI) has been reported for poultry in eight different Asian countries, including South Korea, since December 2003. A phylogenetic analysis of the eight viral genes showed that the H5N1 poultry isolates from South Korea were of avian origin and contained the hemagglutinin and neuraminidase genes of the A/goose/Guangdong/1/96 (Gs/Gd) lineage. The current H5N1 strains in Asia, including the Korean isolates, share a gene constellation similar to that of the Penfold Park, Hong Kong, isolates from late 2002 and contain some molecular markers that seem to have been fixed in the Gs/Gd lineage virus since 2001. However, despite genetic similarities among recent H5N1 isolates, the topology of the phylogenetic tree clearly differentiates the Korean isolates from the Vietnamese and Thai isolates which have been reported to infect humans. A representative Korean isolate was inoculated into mice, with no mortality and no virus being isolated from the brain, although high titers of virus were observed in the lungs. The same isolate, however, caused systemic infections in chickens and quail and killed all of the birds within 2 and 4 days of intranasal inoculation, respectively. This isolate also replicated in multiple organs and tissues of ducks and caused some mortality. However, lower virus titers were observed in all corresponding tissues of ducks than in chicken and quail tissues, and the histological lesions were restricted to the respiratory tract. This study characterizes the molecular and biological properties of the H5N1 HPAI viruses from South Korea and emphasizes the need for comparative analyses of the H5N1 isolates from different countries to help elucidate the risk of a human pandemic from the strains of H5N1 HPAI currently circulating in Asia.

  12. Avian influenza ecology in North Atlantic sea ducks: Not all ducks are created equal

    USGS Publications Warehouse

    Hall, Jeffrey S.; Russell, Robin E.; Franson, J. Christian; Soos, Catherine; Dusek, Robert J.; Allen, R. Bradford; Nashold, Sean W.; Teslaa, Joshua L.; Jónsson, Jón Einar; Ballard, Jennifer R.; Harms, Naomi Jnae; Brown, Justin D.

    2015-01-01

    Wild waterfowl are primary reservoirs of avian influenza viruses (AIV). However the role of sea ducks in the ecology of avian influenza, and how that role differs from freshwater ducks, has not been examined. We obtained and analyzed sera from North Atlantic sea ducks and determined the seroprevalence in those populations. We also tested swab samples from North Atlantic sea ducks for the presence of AIV. We found relatively high serological prevalence (61%) in these sea duck populations but low virus prevalence (0.3%). Using these data we estimated that an antibody half-life of 141 weeks (3.2 years) would be required to attain these prevalences. These findings are much different than what is known in freshwater waterfowl and have implications for surveillance efforts, AIV in marine environments, and the roles of sea ducks and other long-lived waterfowl in avian influenza ecology.

  13. Avian Influenza Ecology in North Atlantic Sea Ducks: Not All Ducks Are Created Equal

    PubMed Central

    Hall, Jeffrey S.; Russell, Robin E.; Franson, J. Christian; Soos, Catherine; Dusek, Robert J.; Allen, R. Bradford; Nashold, Sean W.; TeSlaa, Joshua L.; Jónsson, Jón Eínar; Ballard, Jennifer R.; Harms, Naomi Jane; Brown, Justin D.

    2015-01-01

    Wild waterfowl are primary reservoirs of avian influenza viruses (AIV). However the role of sea ducks in the ecology of avian influenza, and how that role differs from freshwater ducks, has not been examined. We obtained and analyzed sera from North Atlantic sea ducks and determined the seroprevalence in those populations. We also tested swab samples from North Atlantic sea ducks for the presence of AIV. We found relatively high serological prevalence (61%) in these sea duck populations but low virus prevalence (0.3%). Using these data we estimated that an antibody half-life of 141 weeks (3.2 years) would be required to attain these prevalences. These findings are much different than what is known in freshwater waterfowl and have implications for surveillance efforts, AIV in marine environments, and the roles of sea ducks and other long-lived waterfowl in avian influenza ecology. PMID:26677841

  14. Avian Influenza Ecology in North Atlantic Sea Ducks: Not All Ducks Are Created Equal.

    PubMed

    Hall, Jeffrey S; Russell, Robin E; Franson, J Christian; Soos, Catherine; Dusek, Robert J; Allen, R Bradford; Nashold, Sean W; TeSlaa, Joshua L; Jónsson, Jón Eínar; Ballard, Jennifer R; Harms, Naomi Jane; Brown, Justin D

    2015-01-01

    Wild waterfowl are primary reservoirs of avian influenza viruses (AIV). However the role of sea ducks in the ecology of avian influenza, and how that role differs from freshwater ducks, has not been examined. We obtained and analyzed sera from North Atlantic sea ducks and determined the seroprevalence in those populations. We also tested swab samples from North Atlantic sea ducks for the presence of AIV. We found relatively high serological prevalence (61%) in these sea duck populations but low virus prevalence (0.3%). Using these data we estimated that an antibody half-life of 141 weeks (3.2 years) would be required to attain these prevalences. These findings are much different than what is known in freshwater waterfowl and have implications for surveillance efforts, AIV in marine environments, and the roles of sea ducks and other long-lived waterfowl in avian influenza ecology.

  15. Collective symbolic coping with disease threat and othering: a case study of avian influenza.

    PubMed

    Gilles, Ingrid; Bangerter, Adrian; Clémence, Alain; Green, Eva G T; Krings, Franciska; Mouton, Audrey; Rigaud, David; Staerklé, Christian; Wagner-Egger, Pascal

    2013-03-01

    Much research studies how individuals cope with disease threat by blaming out-groups and protecting the in-group. The model of collective symbolic coping (CSC) describes four stages by which representations of a threatening event are elaborated in the mass media: awareness, divergence, convergence, and normalization. We used the CSC model to predict when symbolic in-group protection (othering) would occur in the case of the avian influenza (AI) outbreak. Two studies documented CSC stages and showed that othering occurred during the divergence stage, characterized by an uncertain symbolic environment. Study 1 analysed media coverage of AI over time, documenting CSC stages of awareness and divergence. In Study 2, a two-wave repeated cross-sectional survey was conducted just after the divergence stage and a year later. Othering was measured by the number of foreign countries erroneously ticked by participants as having human victims. Individual differences in germ aversion and social dominance orientation interacted to predict othering during the divergence stage but not a year later. Implications for research on CSC and symbolic in-group protection strategies resulting from disease threat are discussed.

  16. Mapping Spread and Risk of Avian Influenza A (H7N9) in China

    PubMed Central

    Fang, Li-Qun; Li, Xin-Lou; Liu, Kun; Li, Yin-Jun; Yao, Hong-Wu; Liang, Song; Yang, Yang; Feng, Zi-Jian; Gray, Gregory C.; Cao, Wu-Chun

    2013-01-01

    The outbreak of human infections with an emerging avian influenza A (H7N9) virus occurred in China in early 2013. It remains unknown what and how the underlying risk factors were involved in the bird-to-human cross-species transmission. To illustrate the dynamics of viral spread, we created a thematic map displaying the distribution of affected counties and plotted epidemic curves for the three most affected provinces and the whole country. We then collected data of agro-ecological, environmental and meteorological factors at the county level, and used boosted regression tree (BRT) models to examine the relative contribution of each factor and map the probability of occurrence of human H7N9 infection. We found that live poultry markets, human population density, irrigated croplands, built-up land, relative humidity and temperature significantly contributed to the occurrence of human infection with H7N9 virus. The discriminatory ability of the model was up to 97.4%. A map showing the areas with high risk for human H7N9 infection was created based on the model. These findings could be used to inform targeted surveillance and control efforts in both human and animal populations to reduce the risk of future human infections. PMID:24072008

  17. Field trial for assessment of avian influenza vaccination effectiveness in Indonesia.

    PubMed

    Bouma, A; Muljono, A Teguh; Jatikusumah, A; Nell, A J; Mudjiartiningsih, S; Dharmayanti, I; Siregar, E Sawitri; Claassen, I; Koch, G; Stegeman, J A

    2008-12-01

    The aim of this field study was to determine the efficacy of vaccination against highly pathogenic avian influenza (HPAI) virus strain H5N1 in Indonesia. A limited, prototype clinical trial was performed using a standardised treatment group, in which poultry flocks were vaccinated at least twice with a selected H5N1 vaccine, and a control group comprising flocks treated with non-standardised procedures chosen by the farmer. Each group consisted of six flocks comprising either layers or native chickens. Haemagglutination inhibition (HI) antibody levels were determined by regular serum sampling, and outbreak surveillance relied on non-AI-vaccinated sentinel birds. After three vaccinations high antibody titres were produced in the treatment group, and the percentage of layers with an HI titre > 40 was approximately 90%. Although no conclusions can be drawn regarding reduction of virus transmission, this study demonstrated that 11 farms remained free from AI during the observation period, and that a surveillance programme based on differentiating infected from vaccinated animals (DIVA) can be implemented.

  18. [Epidemiological actualization of the avian influenza. New analysis of sanitary risk].

    PubMed

    Suárez Fernández, Guillermo

    2009-01-01

    A review has been made of the present epidemics of Avian Influenza, which originated in the year 2003 in Southeast Asia, and expanded thereafter to 60 countries in three continents (Asia, Africa and Europe), with more than 3000 outbreaks and millions of affected poultry, and 80% mortality. Special emphasis is made on the genetic variability of the etiological agent, the Orthomyxovirus A H5N1, which may accumulate point mutations in several genes distributed in eight segments, and especially in the gene which encodes the hemagglutinin (HA). Stress is made in a recent mutation in the gene which encodes polymerase PB2, which determines the substitution of one amino acid, and is associated to the virulence of the virion, enabling it to adapt to the upper human respiratory tract and to replicate in this area. This mutation dangerously approaches the virus A H5N1 to a possible interhuman transmission and to become a pandemic virus, possibly in the near future. The present knowledge and the social structure would permit to content and control the pandemic state with the due speed and efficacy.

  19. Highly Pathogenic Avian Influenza A(H5N1) Virus Struck Migratory Birds in China in 2015

    PubMed Central

    Bi, Yuhai; Zhang, Zhenjie; Liu, Wenjun; Yin, Yanbo; Hong, Jianmin; Li, Xiangdong; Wang, Haiming; Wong, Gary; Chen, Jianjun; Li, Yunfeng; Ru, Wendong; Gao, Ruyi; Liu, Di; Liu, Yingxia; Zhou, Boping; Gao, George F.; Shi, Weifeng; Lei, Fumin

    2015-01-01

    Approximately 100 migratory birds, including whooper swans and pochards, were found dead in the Sanmenxia Reservoir Area of China during January 2015. The causative agent behind this outbreak was identified as H5N1 highly pathogenic avian influenza virus (HPAIV). Genetic and phylogenetic analyses revealed that this Sanmenxia H5N1 virus was a novel reassortant, possessing a Clade 2.3.2.1c HA gene and a H9N2-derived PB2 gene. Sanmenxia Clade 2.3.2.1c-like H5N1 viruses possess the closest genetic identity to A/Alberta/01/2014 (H5N1), which recently caused a fatal respiratory infection in Canada with signs of meningoencephalitis, a highly unusual symptom with influenza infections in humans. Furthermore, this virus was shown to be highly pathogenic to both birds and mammals, and demonstrate tropism for the nervous system. Due to the geographical location of Sanmenxia, these novel H5N1 viruses also have the potential to be imported to other regions through the migration of wild birds, similar to the H5N1 outbreak amongst migratory birds in Qinghai Lake during 2005. Therefore, further investigation and monitoring is required to prevent this novel reassortant virus from becoming a new threat to public health. PMID:26259704

  20. Highly Pathogenic Avian Influenza A(H5N1) Virus Struck Migratory Birds in China in 2015.

    PubMed

    Bi, Yuhai; Zhang, Zhenjie; Liu, Wenjun; Yin, Yanbo; Hong, Jianmin; Li, Xiangdong; Wang, Haiming; Wong, Gary; Chen, Jianjun; Li, Yunfeng; Ru, Wendong; Gao, Ruyi; Liu, Di; Liu, Yingxia; Zhou, Boping; Gao, George F; Shi, Weifeng; Lei, Fumin

    2015-08-11

    Approximately 100 migratory birds, including whooper swans and pochards, were found dead in the Sanmenxia Reservoir Area of China during January 2015. The causative agent behind this outbreak was identified as H5N1 highly pathogenic avian influenza virus (HPAIV). Genetic and phylogenetic analyses revealed that this Sanmenxia H5N1 virus was a novel reassortant, possessing a Clade 2.3.2.1c HA gene and a H9N2-derived PB2 gene. Sanmenxia Clade 2.3.2.1c-like H5N1 viruses possess the closest genetic identity to A/Alberta/01/2014 (H5N1), which recently caused a fatal respiratory infection in Canada with signs of meningoencephalitis, a highly unusual symptom with influenza infections in humans. Furthermore, this virus was shown to be highly pathogenic to both birds and mammals, and demonstrate tropism for the nervous system. Due to the geographical location of Sanmenxia, these novel H5N1 viruses also have the potential to be imported to other regions through the migration of wild birds, similar to the H5N1 outbreak amongst migratory birds in Qinghai Lake during 2005. Therefore, further investigation and monitoring is required to prevent this novel reassortant virus from becoming a new threat to public health.

  1. Replication of avian influenza viruses in equine tracheal epithelium but not in horses.

    PubMed

    Chambers, Thomas M; Balasuriya, Udeni B R; Reedy, Stephanie E; Tiwari, Ashish

    2013-12-01

    We evaluated a hypothesis that horses are susceptible to avian influenza viruses by in vitro testing, using explanted equine tracheal epithelial cultures, and in vivo testing by aerosol inoculation of ponies. Results showed that several subtypes of avian influenza viruses detectably replicated in vitro. Three viruses with high in vitro replication competence were administered to ponies. None of the three demonstrably replicated or caused disease signs in ponies. While these results do not exhaustively test our hypothesis, they do highlight that the tracheal explant culture system is a poor predictor of in vivo infectivity.

  2. Pandemic potential of avian influenza A (H7N9) viruses.

    PubMed

    Watanabe, Tokiko; Watanabe, Shinji; Maher, Eileen A; Neumann, Gabriele; Kawaoka, Yoshihiro

    2014-11-01

    Avian influenza viruses rarely infect humans, but the recently emerged avian H7N9 influenza viruses have caused sporadic infections in humans in China, resulting in 440 confirmed cases with 122 fatalities as of 16 May 2014. In addition, epidemiologic surveys suggest that there have been asymptomatic or mild human infections with H7N9 viruses. These viruses replicate efficiently in mammals, show limited transmissibility in ferrets and guinea pigs, and possess mammalian-adapting amino acid changes that likely contribute to their ability to infect mammals. In this review, we summarize the characteristic features of the novel H7N9 viruses and assess their pandemic potential.

  3. H7N9 avian influenza A virus and the perpetual challenge of potential human pandemicity.

    PubMed

    Morens, David M; Taubenberger, Jeffery K; Fauci, Anthony S

    2013-07-09

    ABSTRACT The ongoing H7N9 influenza epizootic in China once again presents us questions about the origin of pandemics and how to recognize them in early stages of development. Over the past ~135 years, H7 influenza viruses have neither caused pandemics nor been recognized as having undergone human adaptation. Yet several unusual properties of these viruses, including their poultry epizootic potential, mammalian adaptation, and atypical clinical syndromes in rarely infected humans, suggest that they may be different from other avian influenza viruses, thus questioning any assurance that the likelihood of human adaptation is low. At the same time, the H7N9 epizootic provides an opportunity to learn more about the mammalian/human adaptational capabilities of avian influenza viruses and challenges us to integrate virologic and public health research and surveillance at the animal-human interface.

  4. Evidence for subclinical H5N1 avian influenza infections among Nigerian poultry workers.

    PubMed

    Okoye, John O; Eze, Didacus C; Krueger, Whitney S; Heil, Gary L; White, Sarah K; Merrill, Hunter R; Gray, Gregory C

    2014-12-01

    In recent years Nigeria has experienced sporadic incursions of highly pathogenic H5N1 avian influenza among poultry. In 2008, 316 poultry-exposed agricultural workers, and 54 age-group matched non-poultry exposed adults living in the Enugu or Ebonyi States of Nigeria were enrolled and then contacted monthly for 24 months to identify acute influenza-like-illnesses. Annual follow-up sera and questionnaire data were collected at 12 and 24 months. Participants reporting influenza-like illness completed additional questionnaires, and provided nasal and pharyngeal swabs and acute and convalescent sera. Swab and sera specimens were studied for evidence of influenza A virus infection. Sera were examined for elevated antibodies against 12 avian influenza viruses by microneutralization and 3 human viruses by hemagglutination inhibition. Four (3.2%) of the 124 acute influenza-like-illness investigations yielded molecular evidence of influenza, but virus could not be cultured. Serial serum samples from five poultry-exposed subjects had a ≥4-fold change in microneutralization titers against A/CK/Nigeria/07/1132123(H5N1), with three of those having titers ≥1:80 (maximum 1:1,280). Three of the five subjects (60%) reported a preceding influenza-like illness. Hemagglutination inhibition titers were ≥4-fold increases against one of the human viruses in 260 participants. While cross-reactivity from antibodies against other influenza viruses cannot be ruled out as a partial confounder, over the course of the 2-year follow-up, at least 3 of 316 (0.9%) poultry-exposed subjects had evidence for subclinical HPAI H5N1 infections. If these data represent true infections, it seems imperative to increase monitoring for avian influenza among Nigeria's poultry and poultry workers.

  5. Controlling equine influenza: policy networks and decision-making during the 2007 Australian equine influenza outbreak.

    PubMed

    Schemann, K; Gillespie, J A; Toribio, J-A L M L; Ward, M P; Dhand, N K

    2014-10-01

    Rapid, evidence-based decision-making is critical during a disease outbreak response; however, compliance by stakeholders is necessary to ensure that such decisions are effective - especially if the response depends on voluntary action. This mixed method study evaluated technical policy decision-making processes during the 2007 outbreak of equine influenza in Australia by identifying and analysing the stakeholder network involved and the factors driving policy decision-making. The study started with a review of the outbreak literature and published policy documents. This identified six policy issues regarding policy modifications or differing interpretations by different state agencies. Data on factors influencing the decision-making process for these six issues and on stakeholder interaction were collected using a pre-tested, semi-structured questionnaire. Face-to-face interviews were conducted with 24 individuals representing 12 industry and government organizations. Quantitative data were analysed using social network analysis. Qualitative data were coded and patterns matched to test a pre-determined general theory using a method called theory-oriented process-tracing. Results revealed that technical policy decisions were framed by social, political, financial, strategic and operational considerations. Industry stakeholders had influence through formal pre-existing channels, yet specific gaps in stakeholder interaction were overcome by reactive alliances formed during the outbreak response but outside the established system. Overall, the crisis management system and response were seen as positive, and 75-100% of individuals interviewed were supportive of, had interest in and considered the outcome as good for the majority of policy decisions, yet only 46-75% of those interviewed considered that they had influence on these decisions. Training to increase awareness and knowledge of emergency animal diseases (EADs) and response systems will improve stakeholder

  6. Estimating transmission of avian influenza in wild birds from incomplete epizootic data: implications for surveillance and disease spreac

    USGS Publications Warehouse

    Viviane Henaux,; Jane Parmley,; Catherine Soos,; Samuel, Michael D.

    2013-01-01

    Synthesis and applications. Our study highlights the potential of integrating incomplete surveillance data with epizootic models to quantify disease transmission and immunity. This modelling approach provides an important tool to understand spatial and temporal epizootic dynamics and inform disease surveillance. Our findings suggest focusing highly pathogenic avian influenza virus (HPAIv) surveillance on postbreeding areas where mortality of immunologically naïve hatch-year birds is most likely to occur, and collecting serology to enhance HPAIv detection. Our modelling approach can integrate various types of disease data facilitating its use with data from other surveillance programs (as illustrated by the estimation of infection rate during an HPAIv outbreak in mute swansCygnus olor in Europe).

  7. Human and Avian Influenza Viruses Target Different Cells in the Lower Respiratory Tract of Humans and Other Mammals

    PubMed Central

    van Riel, Debby; Munster, Vincent J.; de Wit, Emmie; Rimmelzwaan, Guus F.; Fouchier, Ron A.M.; Osterhaus, Albert D.M.E.; Kuiken, Thijs

    2007-01-01

    Viral attachment to the host cell is critical for tissue and species specificity of virus infections. Recently, pattern of viral attachment (PVA) in human respiratory tract was determined for highly pathogenic avian influenza virus of subtype H5N1. However, PVA of human influenza viruses and other avian influenza viruses in either humans or experimental animals is unknown. Therefore, we compared PVA of two human influenza viruses (H1N1 and H3N2) and two low pathogenic avian influenza viruses (H5N9 and H6N1) with that of H5N1 virus in respiratory tract tissues of humans, mice, ferrets, cynomolgus macaques, cats, and pigs by virus histochemistry. We found that human influenza viruses attached more strongly to human trachea and bronchi than H5N1 virus and attached to different cell types than H5N1 virus. These differences correspond to primary diagnoses of tracheobronchitis for human influenza viruses and diffuse alveolar damage for H5N1 virus. The PVA of low pathogenic avian influenza viruses in human respiratory tract resembled that of H5N1 virus, demonstrating that other properties determine its pathogenicity for humans. The PVA in human respiratory tract most closely mirrored that in ferrets and pigs for human influenza viruses and that in ferrets, pigs, and cats for avian influenza viruses. PMID:17717141

  8. Analysis of spatial distribution and transmission characters for highly pathogenic avian influenza in Chinese mainland in 2004

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Wei, C. J.; Yan, L.; Chi, T. H.; Wu, X. B.; Xiao, C. S.

    2006-03-01

    After the outbreak of highly pathogenic Avian Influenza (HPAI) in South Korea in the end of year 2003, estimates of the impact of HPAI in affected countries vary greatly, the total direct losses are about 3 billion US dollars, and it caused 15 million birds and poultry flocks death. It is significant to understand the spatial distribution and transmission characters of HPAI for its prevention and control. According to 50 outbreak cases for HPAI in Chinese mainland during 2004, this paper introduces the approach of spatial distribution and transmission characters for HPAI and its results. Its approach is based on remote sensing and GIS techniques. Its supporting data set involves normalized difference vegetation index (NDVI) and land surface temperature (Ts) derived from a time-series of remote sensing data of 1 kilometer-resolution NOAA/AVHRR, birds' migration routes, topology geographic map, lake and wetland maps, and meteorological observation data. In order to analyze synthetically using these data, a supporting platform for analysis Avian Influenza epidemic situation (SPAS/AI) was developed. Supporting by SPAS/AI, the integrated information from multi-sources can be easily used to the analysis of the spatial distribution and transmission character of HPAI. The results show that the range of spatial distribution and transmission of HPAI in China during 2004 connected to environment factors NDVI, Ts and the distributions of lake and wetland, and especially to bird migration routes. To some extent, the results provide some suggestions for the macro-decision making for the prevention and control of HPAI in the areas of potential risk and reoccurrence.

  9. Spatial assessment of the potential risk of avian influenza A virus infection in three raptor species in Japan.

    PubMed

    Moriguchi, Sachiko; Onuma, Manabu; Goka, Koichi

    2016-08-01

    Avian influenza A, a highly pathogenic avian influenza, is a lethal infection in certain species of wild birds, including some endangered species. Raptors are susceptible to avian influenza, and spatial risk assessment of such species may be valuable for conservation planning. We used the maximum entropy approach to generate potential distribution models of three raptor species from presence-only data for the mountain hawk-eagle Nisaetus nipalensis, northern goshawk Accipiter gentilis and peregrine falcon Falco peregrinus, surveyed during the winter from 1996 to 2001. These potential distribution maps for raptors were superimposed on avian influenza A risk maps of Japan, created from data on incidence of the virus in wild birds throughout Japan from October 2010 to March 2011. The avian influenza A risk map for the mountain hawk-eagle showed that most regions of Japan had a low risk for avian influenza A. In contrast, the maps for the northern goshawk and peregrine falcon showed that their high-risk areas were distributed on the plains along the Sea of Japan and Pacific coast. We recommend enhanced surveillance for each raptor species in high-risk areas and immediate establishment of inspection systems. At the same time, ecological risk assessments that determine factors, such as the composition of prey species, and differential sensitivity of avian influenza A virus between bird species should provide multifaceted insights into the total risk assessment of endangered species.

  10. Spatial assessment of the potential risk of avian influenza A virus infection in three raptor species in Japan

    PubMed Central

    MORIGUCHI, Sachiko; ONUMA, Manabu; GOKA, Koichi

    2016-01-01

    Avian influenza A, a highly pathogenic avian influenza, is a lethal infection in certain species of wild birds, including some endangered species. Raptors are susceptible to avian influenza, and spatial risk assessment of such species may be valuable for conservation planning. We used the maximum entropy approach to generate potential distribution models of three raptor species from presence-only data for the mountain hawk-eagle Nisaetus nipalensis, northern goshawk Accipiter gentilis and peregrine falcon Falco peregrinus, surveyed during the winter from 1996 to 2001. These potential distribution maps for raptors were superimposed on avian influenza A risk maps of Japan, created from data on incidence of the virus in wild birds throughout Japan from October 2010 to March 2011. The avian influenza A risk map for the mountain hawk-eagle showed that most regions of Japan had a low risk for avian influenza A. In contrast, the maps for the northern goshawk and peregrine falcon showed that their high-risk areas were distributed on the plains along the Sea of Japan and Pacific coast. We recommend enhanced surveillance for each raptor species in high-risk areas and immediate establishment of inspection systems. At the same time, ecological risk assessments that determine factors, such as the composition of prey species, and differential sensitivity of avian influenza A virus between bird species should provide multifaceted insights into the total risk assessment of endangered species. PMID:26972333

  11. U.S. Geological Survey science strategy for highly pathogenic avian influenza in wildlife and the environment (2016–2020)

    USGS Publications Warehouse

    Harris, M. Camille; Pearce, John M.; Prosser, Diann J.; White, C. LeAnn; Miles, A. Keith; Sleeman, Jonathan M.; Brand, Christopher J.; Cronin, James P.; De La Cruz, Susan; Densmore, Christine L.; Doyle, Thomas W.; Dusek, Robert J.; Fleskes, Joseph P.; Flint, Paul L.; Guala, Gerald F.; Hall, Jeffrey S.; Hubbard, Laura E.; Hunt, Randall J.; Ip, Hon S.; Katz, Rachel A.; Laurent, Kevin W.; Miller, Mark P.; Munn, Mark D.; Ramey, Andy M.; Richards, Kevin D.; Russell, Robin E.; Stokdyk, Joel P.; Takekawa, John Y.; Walsh, Daniel P.

    2016-08-18

    IntroductionThrough the Science Strategy for Highly Pathogenic Avian Influenza (HPAI) in Wildlife and the Environment, the USGS will assess avian influenza (AI) dynamics in an ecological context to inform decisions made by resource managers and policymakers from the local to national level. Through collection of unbiased scientific information on the ecology of AI viruses and wildlife hosts in a changing world, the U.S. Geological Survey (USGS) will enhance the development of AI forecasting tools and ensure this information is integrated with a quality decision process for managing HPAI.The overall goal of this USGS Science Strategy for HPAI in Wildlife and the Environment goes beyond document­ing the occurrence and distribution of AI viruses in wild birds. The USGS aims to understand the epidemiological processes and environmental factors that influence HPAI distribution and describe the mechanisms of transmission between wild birds and poultry. USGS scientists developed a conceptual model describing the process linking HPAI dispersal in wild waterfowl to the outbreaks in poul­try. This strategy focuses on five long-term science goals, which include:Science Goal 1—Augment the National HPAI Surveillance Plan;Science Goal 2—Determine mechanisms of HPAI disease spread in wildlife and the environment;Science Goal 3—Characterize HPAI viruses circulating in wildlife;Science Goal 4—Understand implications of avian ecol­ogy on HPAI spread; andScience Goal 5—Develop HPAI forecasting and decision-making tools.These goals will help define and describe the processes outlined in the conceptual model with the ultimate goal of facilitating biosecurity and minimizing transfer of diseases across the wildlife-poultry interface. The first four science goals are focused on scientific discovery and the fifth goal is application-based. Decision analyses in the fifth goal will guide prioritization of proposed actions in the first four goals.

  12. The avian influenza H9N2 at avian-human interface: A possible risk for the future pandemics

    PubMed Central

    RahimiRad, Shaghayegh; Alizadeh, Ali; Alizadeh, Effat; Hosseini, Seyyed Masoud

    2016-01-01

    The avian influenza subtype H9N2 is considered a low pathogenic virus which is endemic in domestic poultry of a majority of Asian countries. Many reports of seropositivity in occupationally poultry-exposed workers and a number of confirmed human infections with an H9N2 subtype of avian influenza have been documented up to now. Recently, the human infections with both H7N9 and H10N8 viruses highlighted that H9N2 has a great potential for taking a part in the emergence of new human-infecting viruses. This review aimed at discussing the great potential of H9N2 virus which is circulating at avian-human interface, for cross-species transmission, contribution in the production of new reassortants and emergence of new pandemic subtypes. An intensified surveillance is needed for controlling the future risks which would be created by H9N2 circulation at avian-human interfaces. PMID:28083072

  13. Avian influenza, domestic ducks and rice agriculture in Thailand.

    PubMed

    Gilbert, Marius; Xiao, Xiangming; Chaitaweesub, Prasit; Kalpravidh, Wantanee; Premashthira, Sith; Boles, Stephen; Slingenbergh, Jan

    2007-01-01

    Highly pathogenic avian influenza (HPAI) caused by H5N1 viruses has become a global scale problem which first emerged in southern China and from there spread to other countries in Southeast and East Asia, where it was first confirmed in end 2003. In previous work, geospatial analyses demonstrated that free grazing ducks played critical role in the epidemiology of the disease in Thailand in the winter 2004/2005, both in terms of HPAI emergence and spread. This study explored the geographic association between free grazing duck census counts and current statistics on the spatial distribution of rice crops in Thailand, in particular the crop calendar of rice production. The analysis was carried out using both district level rice statistics and rice distribution data predicted with the aid of remote sensing, using a rice-detection algorithm. The results indicated a strong association between the number of free grazing ducks and the number of months during which second-crop rice harvest takes place, as well as with the rice crop intensity as predicted by remote sensing. These results confirmed that free grazing duck husbandry was strongly driven by agricultural land use and rice crop intensity, and that this later variable can be readily predicted using remote sensing. Analysis of rice cropping patterns may provide an indication of the location of populations of free grazing ducks in other countries with similar mixed duck and rice production systems and less detailed duck census data. Apart from free ranging ducks and rice cropping, the role of hydrology and seasonality of wetlands and water bodies in the HPAI risk analysis is also discussed in relation to the presumed dry season aggregation of wild waterfowl and aquatic poultry offering much scope for virus transmission.

  14. Avian influenza, domestic ducks and rice agriculture in Thailand

    PubMed Central

    Gilbert, Marius; Xiao, Xiangming; Chaitaweesub, Prasit; Kalpravidh, Wantanee; Premashthira, Sith; Boles, Stephen; Slingenbergh, Jan

    2008-01-01

    Highly pathogenic avian influenza (HPAI) caused by H5N1 viruses has become a global scale problem which first emerged in southern China and from there spread to other countries in Southeast and East Asia, where it was first confirmed in end 2003. In previous work, geospatial analyses demonstrated that free grazing ducks played critical role in the epidemiology of the disease in Thailand in the winter 2004/2005, both in terms of HPAI emergence and spread. This study explored the geographic association between free grazing duck census counts and current statistics on the spatial distribution of rice crops in Thailand, in particular the crop calendar of rice production. The analysis was carried out using both district level rice statistics and rice distribution data predicted with the aid of remote sensing, using a rice-detection algorithm. The results indicated a strong association between the number of free grazing ducks and the number of months during which second-crop rice harvest takes place, as well as with the rice crop intensity as predicted by remote sensing. These results confirmed that free grazing duck husbandry was strongly driven by agricultural land use and rice crop intensity, and that this later variable can be readily predicted using remote sensing. Analysis of rice cropping patterns may provide an indication of the location of populations of free grazing ducks in other countries with similar mixed duck and rice production systems and less detailed duck census data. Apart from free ranging ducks and rice cropping, the role of hydrology and seasonality of wetlands and water bodies in the HPAI risk analysis is also discussed in relation to the presumed dry season aggregation of wild waterfowl and aquatic poultry offering much scope for virus transmission. PMID:18418464

  15. Investigating Avian Influenza Infection Hotspots in Old-World Shorebirds

    PubMed Central

    Gaidet, Nicolas; Ould El Mamy, Ahmed B.; Cappelle, Julien; Caron, Alexandre; Cumming, Graeme S.; Grosbois, Vladimir; Gil, Patricia; Hammoumi, Saliha; de Almeida, Renata Servan; Fereidouni, Sasan R.; Cattoli, Giovanni; Abolnik, Celia; Mundava, Josphine; Fofana, Bouba; Ndlovu, Mduduzi; Diawara, Yelli; Hurtado, Renata; Newman, Scott H.; Dodman, Tim; Balança, Gilles

    2012-01-01

    Heterogeneity in the transmission rates of pathogens across hosts or environments may produce disease hotspots, which are defined as specific sites, times or species associations in which the infection rate is consistently elevated. Hotspots for avian influenza virus (AIV) in wild birds are largely unstudied and poorly understood. A striking feature is the existence of a unique but consistent AIV hotspot in shorebirds (Charadriiformes) associated with a single species at a specific location and time (ruddy turnstone Arenaria interpres at Delaware Bay, USA, in May). This unique case, though a valuable reference, limits our capacity to explore and understand the general properties of AIV hotspots in shorebirds. Unfortunately, relatively few shorebirds have been sampled outside Delaware Bay and they belong to only a few shorebird families; there also has been a lack of consistent oropharyngeal sampling as a complement to cloacal sampling. In this study we looked for AIV hotspots associated with other shorebird species and/or with some of the larger congregation sites of shorebirds in the old world. We assembled and analysed a regionally extensive dataset of AIV prevalence from 69 shorebird species sampled in 25 countries across Africa and Western Eurasia. Despite this diverse and extensive coverage we did not detect any new shorebird AIV hotspots. Neither large shorebird congregation sites nor the ruddy turnstone were consistently associated with AIV hotspots. We did, however, find a low but widespread circulation of AIV in shorebirds that contrast with the absence of AIV previously reported in shorebirds in Europe. A very high AIV antibody prevalence coupled to a low infection rate was found in both first-year and adult birds of two migratory sandpiper species, suggesting the potential existence of an AIV hotspot along their migratory flyway that is yet to be discovered. PMID:23029383

  16. Origin of the pandemic 1957 H2 influenza A virus and the persistence of its possible progenitors in the avian reservoir.

    PubMed

    Schäfer, J R; Kawaoka, Y; Bean, W J; Süss, J; Senne, D; Webster, R G

    1993-06-01

    H2N2 influenza A viruses caused the Asian pandemic of 1957 and then disappeared from the human population 10 years later. To assess the potential for similar outbreaks in the future, we determined the antigenicity of H2 hemagglutinins (HAs) from representative human and avian H2 viruses and then analyzed the nucleotide and amino acid sequences to determine their evolutionary characteristics in different hosts. The results of longitudinal virus surveillance studies were also examined to estimate the prevalence of avian H2 isolates among samples collected from wild ducks and domestic poultry. Reactivity patterns obtained with a large panel of monoclonal antibodies indicated antigenic drift in the HA of human H2 influenza viruses, beginning in 1962. Amino acid changes were clustered in two regions of HA1 that correspond to antigenic sites A and D of the H3 HA. By contrast, the antigenic profiles of the majority of avian H2 HAs were remarkably conserved through 1991, resembling the prototype Japan 57 (H2N2) strain. Amino acid changes were distributed throughout HA1, indicating that antibodies do not play a major role in the selection of avian H2 viruses. Phylogenetic analysis revealed two geographic site-specific lineages of avian H2 HAs: North American and Eurasian. Evidence is presented to support interregion transmission of gull H2 viruses. The human H2 HAs that circulated in 1957-1968 form a separate phylogenetic lineage, most closely related to the Eurasian avian H2 HAs. There was an increased prevalence of H2 influenza viruses among wild ducks in 1988 in North America, preceding the appearance of H2N2 viruses in domestic fowl. As the prevalence of avian H2N2 influenza viruses increased on turkey farms and in live bird markets in New York City and elsewhere, greater numbers of these viruses have come into direct contact with susceptible humans. We conclude that antigenically conserved counterparts of the human Asian pandemic strain of 1957 continue to circulate in

  17. Victims and vectors: highly pathogenic avian influenza H5N1 and the ecology of wild birds

    USGS Publications Warehouse

    Takekawa, John Y.; Prosser, Diann J.; Newman, Scott H.; Muzaffar, Sabir Bin; Hill, Nichola J.; Yan, Baoping; Xiao, Xiangming; Lei, Fumin; Li, Tianxian; Schwarzbach, Steven E.; Howell, Judd A.

    2010-01-01

    The emergence of highly pathogenic avian influenza (HPAI) viruses has raised concerns about the role of wild birds in the spread and persistence of the disease. In 2005, an outbreak of the highly pathogenic subtype H5N1 killed more than 6,000 wild waterbirds at Qinghai Lake, China. Outbreaks have continued to periodically occur in wild birds at Qinghai Lake and elsewhere in Central China and Mongolia. This region has few poultry but is a major migration and breeding area for waterbirds in the Central Asian Flyway, although relatively little is known about migratory movements of different species and connectivity of their wetland habitats. The scientific debate has focused on the role of waterbirds in the epidemiology, maintenance and spread of HPAI H5N1: to what extent are they victims affected by the disease, or vectors that have a role in disease transmission? In this review, we summarise the current knowledge of wild bird involvement in the ecology of HPAI H5N1. Specifically, we present details on: (1) origin of HPAI H5N1; (2) waterbirds as LPAI reservoirs and evolution into HPAI; (3) the role of waterbirds in virus spread and persistence; (4) key biogeographic regions of outbreak; and (5) applying an ecological research perspective to studying AIVs in wild waterbirds and their ecosystems.

  18. Reassortment ability of the 2009 pandemic H1N1 influenza virus with circulating human and avian influenza viruses: public health risk implications.

    PubMed

    Stincarelli, Maria; Arvia, Rosaria; De Marco, Maria Alessandra; Clausi, Valeria; Corcioli, Fabiana; Cotti, Claudia; Delogu, Mauro; Donatelli, Isabella; Azzi, Alberta; Giannecchini, Simone

    2013-08-01

    Exploring the reassortment ability of the 2009 pandemic H1N1 (A/H1N1pdm09) influenza virus with other circulating human or avian influenza viruses is the main concern related to the generation of more virulent or new variants having implications for public health. After different coinfection experiments in human A549 cells, by using the A/H1N1pdm09 virus plus one of human seasonal influenza viruses of H1N1 and H3N2 subtype or one of H11, H10, H9, H7 and H1 avian influenza viruses, several reassortant viruses were obtained. Among these, the HA of H1N1 was the main segment of human seasonal influenza virus reassorted in the A/H1N1pdm09 virus backbone. Conversely, HA and each of the three polymerase segments, alone or in combination, of the avian influenza viruses mainly reassorted in the A/H1N1pdm09 virus backbone. Of note, A/H1N1pdm09 viruses that reassorted with HA of H1N1 seasonal human or H11N6 avian viruses or carried different combination of avian origin polymerase segments, exerted a higher replication effectiveness than that of the parental viruses. These results confirm that reassortment of the A/H1N1pdm09 with circulating low pathogenic avian influenza viruses should not be misjudged in the prediction of the next pandemic.

  19. Origin and evolution of highly pathogenic H5N1 avian influenza in Asia.

    PubMed

    Sims, L D; Domenech, J; Benigno, C; Kahn, S; Kamata, A; Lubroth, J; Martin, V; Roeder, P

    2005-08-06

    Outbreaks of highly pathogenic avian influenza caused by H5N1 viruses were reported almost simultaneously in eight neighbouring Asian countries between December 2003 and January 2004, with a ninth reporting in August 2004, suggesting that the viruses had spread recently and rapidly. However, they had been detected widely in the region in domestic waterfowl and terrestrial poultry for several years before this, and the absence of widespread disease in the region before 2003, apart from localised outbreaks in the Hong Kong Special Autonomous Region (SAR), is perplexing. Possible explanations include limited virus excretion by domestic waterfowl infected with H5N1, the confusion of avian influenza with other serious endemic diseases, the unsanctioned use of vaccines, and the under-reporting of disease as a result of limited surveillance. There is some evidence that the excretion of the viruses by domestic ducks had increased by early 2004, and there is circumstantial evidence that they can be transmitted by wild birds. The migratory birds from which viruses have been isolated were usually sick or dead, suggesting that they would have had limited potential for carrying the viruses over long distances unless subclinical infections were prevalent. However, there is strong circumstantial evidence that wild birds can become infected from domestic poultry and potentially can exchange viruses when they share the same environment. Nevertheless, there is little reason to believe that wild birds have played a more significant role in spreading disease than trade through live bird markets and movement of domestic waterfowl. Asian H5N1 viruses were first detected in domestic geese in southern China in 1996. By 2000, their host range had extended to domestic ducks, which played a key role in the genesis of the 2003/04 outbreaks. The epidemic was not due to the introduction and spread of a single virus but was caused by multiple viruses which were genotypically linked to the Goose

  20. A new generation of modified live-attenuated avian influenza viruses using a two-strategy combination as potential vaccine candidates.

    PubMed

    Song, Haichen; Nieto, Gloria Ramirez; Perez, Daniel R

    2007-09-01

    In light of the recurrent outbreaks of low pathogenic avian influenza (LPAI) and highly pathogenic avian influenza (HPAI), there is a pressing need for the development of vaccines that allow rapid mass vaccination. In this study, we introduced by reverse genetics temperature-sensitive mutations in the PB1 and PB2 genes of an avian influenza virus, A/Guinea Fowl/Hong Kong/WF10/99 (H9N2) (WF10). Further genetic modifications were introduced into the PB1 gene to enhance the attenuated (att) phenotype of the virus in vivo. Using the att WF10 as a backbone, we substituted neuraminidase (NA) for hemagglutinin (HA) for vaccine purposes. In chickens, a vaccination scheme consisting of a single dose of an att H7N2 vaccine virus at 2 weeks of age and subsequent challenge with the wild-type H7N2 LPAI virus resulted in complete protection. We further extended our vaccination strategy against the HPAI H5N1. In this case, we reconstituted an att H5N1 vaccine virus, whose HA and NA genes were derived from an Asian H5N1 virus. A single-dose immunization in ovo with the att H5N1 vaccine virus in 18-day-old chicken embryos resulted in more than 60% protection for 4-week-old chickens and 100% protection for 9- to 12-week-old chickens. Boosting at 2 weeks posthatching provided 100% protection against challenge with the HPAI H5N1 virus for chickens as young as 4 weeks old, with undetectable virus shedding postchallenge. Our results highlight the potential of live att avian influenza vaccines for mass vaccination in poultry.